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Resumen

Este resumen contiene una versión en español del Capítulo 1, y ha sido in-

cluido para cumplir con los requerimientos necesarios para poder optar a la

mención de Doctorado Europeo.

Motivación

En la última década la bioinformática se ha convertido en una parte integral

de la investigación y el desarrollo en las ciencias biomédicas. La bioinfor-

mática tiene ahora un papel esencial en el desciframiento de datos genómi-

cos, transcriptómicos y proteómicos generados por tecnologías experimen-

tales de alto rendimiento, y en la organización de la información obtenida

por la biología tradicional. Los métodos de análisis de secuencias de genes

o proteínas han evolucionado y mejorado, desarrollándose nuevos métodos

para el análisis de un gran número de genes o proteínas simultáneamente,

así como para la identificación de grupos de genes relacionados y redes de

interacción de proteínas. Con la secuenciación de los genomas de un número

cada vez más alto de organismos, la bioinformática está comenzando a ofre-

cer tanto las bases conceptuales como los métodos prácticos para la detección

de conductas funcionales sistémicas de la célula y el organismo.

La bioinformática es, por tanto, el campo de la ciencia donde la biología,

la informática, y la tecnología de la información se unen para formar una

única disciplina, con el objetivo de ayudar en el descubrimiento de nuevos

datos biológicos. De esta forma, la comprensión de los principios biológicos

que afectan a los organismos vivos es clave para el desarrollo de métodos

bioinformáticos apropiados.
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xiv Resumen

A lo largo de la historia de la ciencia, siempre ha existido la necesidad de

modelar y gestionar la incertidumbre existente en los experimentos reales.

Esto es particularmente cierto en la biología en general, y más reciente-

mente en la bioinformática. La variabilidad exhibida por la naturaleza al

estudiar el genoma y sus relaciones requieren modelos computacionales lo

suficientemente flexibles para capturar lo esencial, sin tener en cuenta todas

las variabilidades como algo completamente nuevo. La teoría difusa (Zadeh,

1965) es una potente herramienta que ha servido a los investigadores para

el modelo de situaciones donde la principal fuente de incertidumbre es la

aleatoriedad. En algunos casos, la incertidumbre puede adoptar otras for-

mas. Al considerar una secuencia nueva de un gen, puede ser de interés

conocer cómo de similar es a otra secuencia en particular. No se trata de el

clásico problema binario de saber si dos secuencias son iguales o no, si no de

saber cuánto se asemejan estas dos secuencias. Otras fuentes de incertidum-

bre incluyen: omisiones en los datos extraídos de muestras reales, la falta de

expresividad o de confianza en algunas características extraídas, la falta de

límites claros entre las distintas clases de proteínas, genes o productos de los

genes que son miembros de más de una clase, etc.

Además, hasta la fecha casi todos los problemas bioinformáticos se han

formulado de un modo determinista. La mayoría de estos problemas son

definidos fijando y optimizando funciones objetivo. Sin embargo, existen di-

versas situaciones en las que se hace necesario considerar la vaguedad de

los datos. Por ejemplo, la imprecisión que acompaña intrínsecamente a los

sistemas biológicos, las múltiples funciones que una entidad biológica puede

desarrollar, las descripciones difusas de algunos fenómenos biológicos, etc.

Esta tesis tiene como objetivo principal resolver algunos importantes pro-

blemas bioinformáticos mediante la aplicación de nociones sobre la teoría

de conjuntos difusos y lógica difusa, así como sobre otros métodos de soft

computing.

Debido a la reciente explosión de nuevos datos biológicos procedentes

de la secuenciación de genomas, los científicos se enfrentan al problema de

responder a muchas preguntas básicas, tratando de extraer información de

estos datos. Una de las principales tareas es la de descubrir la función a la que
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los genes están asociados. Recientemente, la bio-ontologías han desempeña-

do un papel importante para la integración automática de conocimiento, lo

que es fundamental para apoyar la generación y validación de hipótesis sobre

las funciones de los productos de los genes. En este sentido, la Gene Ontolo-

gy1 (GO) (Ashburner et~al., 2000) se ha convertido en un estándar de facto

para describir los productos de genes. Fue creada con el objetivo de nor-

malizar la representación de los genes y productos de genes procedentes de

distintas especies y bases de datos. Así, proporciona un vocabulario estruc-

turado y controlado para describir las funciones de los genes y los productos

de genes en cualquier organismo. Existen algunos trabajos que utilizan GO

para extraer la información biológica de grupos de productos de genes poten-

cialmente relacionados. Por lo general, estos enfoques se basan en medidas

definidas para una ontología genérica que son adaptadas a las característi-

cas específicas de GO (Resnik, 1995; Jiang and Conrath, 1997; Lin, 1998).

Sin embargo, pocos métodos basados en tecnología difusa están disponibles

actualmente. En nuestra opinión, las propiedades de la teoría de conjuntos

difusos la hacen interesante para su aplicación a este problema.

Por otro lado, las células controlan la abundancia de proteínas por medio

de diversos mecanismos. Uno de esos mecanismos es la regulación de la

transcripción, que es un proceso continuo en el que muchos factores se com-

binan para garantizar una adecuada tasa de síntesis de proteínas. La com-

prensión de estos complejos procesos es uno de los principales objetivos de la

biología computacional. Los factores de transcripción (TFs, del inglés trans-

cription factors) desempeñan un papel clave en la regulación de los genes,

mediante su unión a secuencias específicas, llamadas sitios de unión de fac-

tores de transcripción (TFBSs, del inglés transcription factor binding sites).

Aquellas secuencias de ADN donde se puede producir la unión del mismo TF

se se agrupan conjuntamente formando motivos, que se representan normal-

mente como matrices de frecuencias por posición (PFMs, del inglés position

frequency matrices). La predicción in silico de la posible unión de un TF a un

TFBS es un problema ampliamente estudiado por la biología computacional.

1Ontología de Genes en español
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Un punto importante en el contexto del descubrimiento de novo de mo-

tivos consiste en saber si, dados los candidatos a motivos recientemente

obtenidos, éstos se asemejan a otros motivos previamente descritos en las

bases de datos existentes. Por ésta y otras razones se han desarrollado varias

medidas de comparación entre motivos. La mayoría de los métodos propues-

tos están basados en técnicas estadísticas que comprueban si las diferentes

columnas de los motivos pertenecen a la misma distribución (Pietrokovski,

1996; Schones et~al., 2005; Wang and Stormo, 2003). Otros trabajos más

recientes proponen el uso de métodos más específicos que mejoran a los

enfoques probabilísticos (Gupta et~al., 2007; Pape et~al., 2008). Sin em-

bargo, en el contexto de la comparaciones entre motivos, la utilización de

PFMs como representación de las preferencias de unión de los TFs incluye

imprecisión. Además, los métodos actuales no están diseñados para tener en

cuenta la mayor aportación de las posiciones mejor conservadas de los mo-

tivos a la fuerza de la unión secuencia-motivo. Por lo tanto, nuevos métodos

que tengan en cuenta este tipo de problemas son necesarios.

Del mismo modo, el descubrimiento de patrones en secuencias de ADN

es una de los problemas más importante de la bioinformática, con aplica-

ciones en la búsqueda de elementos de regulación y TFBSs. Una importante

tarea en este problema es la búsqueda (o predicción) de sitios de unión

conocidos en una nueva secuencia de ADN. La mayoría de las herramien-

tas disponibles para la predicción de TFBSs asumen independencia entre las

posiciones de las bases de los sitios de unión (Hertz et~al., 1990; Sandelin

et~al., 2004b). Algunos trabajos recientes están empezando a considerar las

dependencias entre posiciones (Tomovic and Oakeley, 2007; Zare-Mirakabad

et~al., 2009). Uno de los objetivos principales en la predicción de TFBSs

es reducir la tasa de falsos positivos sin comprometer la sensibilidad de los

resultados. Los métodos que tienen en cuenta las dependencias entre posi-

ciones tienden a ser significativamente más eficaces. Sin embargo, algunas

cuestiones como el sobreaprendizaje de las secuencias de prueba, o la selec-

ción de un umbral arbitrario para detectar las dependencias entre posiciones,

siguen abiertas y necesitan nuevos enfoques para su resolución.
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Objetivos

El objetivo general de esta tesis es encontrar soluciones basadas en la tec-

nología difusa para algunos problemas bioinformáticos importantes, gestio-

nando así la incertidumbre asociada a los procesos biológicos. Más concre-

tamente, nos centramos en el estudio de las medidas de similitud semántica

para GO, las comparaciones de motivos de ADN, y la cuantificación de la

afinidad secuencia-motivo.
De acuerdo a esto, los objetivos específicos de esta tesis son los siguientes:

• Analizar las propiedades de GO y revisar el estado del arte de las me-

didas semánticas descritas sobre GO.

– Comparar las medidas semánticas crisp2 sobre GO y analizar sus

limitaciones.

– Aplicar diferentes métodos de agrupamiento y comparar su utili-

dad para el reconocimiento de familias de proteínas.

• Proponer una nueva medida de similitud semántica difusa para GO.

– Incorporar a la medida los códigos de evidencia de las anotaciones

para tener en cuenta la fiabilidad de la fuente de información.

– Comparar la nueva medida con las medidas existentes en proble-

mas de clasificación de proteínas.

• Revisar el estado del arte de las medidas de comparación entre motivos

y examinar la adecuación de enfoques difusos para dicha tarea.

– Adaptar medidas difusas clásicas al problema de la comparación

de motivos.

– Comparar las medidas difusas con otros enfoques relacionados en

problemas de detección de motivos.

• Proponer una nueva medida de similitud entre motivos basada en la

integral difusa, diseñada teniendo en cuenta la distinta importancia de

las posiciones de los motivos en función de su contenido de informa-

ción
2crisp es una palabra en inglés que significa lo contrario que difuso, se usa aquí al no

existir una palabra en español para dicho concepto.
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– Revisar medidas entre motivos recientes y analizar sus inconve-

nientes.

– Definir la nueva medida y demostrar su mejor funcionamiento en

experimentos tanto sintéticos como reales.

• Proponer un nuevo método basado en tecnología difusa para cuan-

tificar la afinidad secuencia-motivo.

– Discutir los últimos avances en esta materia.

– Mejorar la calidad de la predicción de TFs de los enfoques exis-

tentes.

– Aplicar el nuevo método a problemas biológicos reales.

Contenidos

Esta memoria se estructura en cuatro partes bien diferenciadas, cada una de

las cuales se compone de uno o más capítulos.

La Parte I contiene el Capítulo 1 que incluye una introducción en la que,

partiendo de los antecedentes en el área, se motiva nuestro trabajo, se es-

tablecen los objetivos de la tesis y se describe el contenido del documento.

A continuación, la Parte II expone los conocimientos preliminares nece-

sarios para una mejor comprensión del texto. El Capítulo 2 presenta algunos

conceptos básicos de biología, así como proporciona una revisión de la bioin-

formática, el campo de investigación donde se enmarca esta tesis. El Capítulo

3 introduce algunas nociones básicas sobre la teoría de conjuntos difusos, la

lógica difusa y otros métodos de soft computing.

La Parte III presenta las contribuciones de esta tesis. El Capítulo 4 define

una nueva medida de similitud difusa para GO, e investiga el funcionamiento

de ésta y otras medidas semánticas para GO en conjunto con distintos méto-

dos de agrupamiento en problemas de clasificación de proteínas. El Capítulo

5 expone el problema de comparación entre motivos de TFBSs, y muestra

cómo se pueden adaptar para esta tarea distintas medidas difusas clásicas. El

Capítulo 6 introduce los avances más recientes de las medidas entre motivos

y presenta una nueva medida de similitud para motivos de ADN basada en
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la integral difusa llamada FISim. Además, propone una nueva metodología

de agrupamiento basada en dicha medida y en métodos de kernelización. El

capítulo termina con una evaluación de nuestras propuestas en comparación

con los mejores métodos existentes. El Capítulo 7 aborda el problema de

búsqueda (o predicción) de sitios de unión ya conocidos en una secuencia de

ADN, proponiendo una nueva medida de afinidad motivo-secuencia basada

en la teoría de conjuntos difusos intuicionista.

Finalmente, la Parte IV, concluye esta tesis. El Capítulo 8 resume las con-

tribuciones de esta tesis. Los resultados se analizan de acuerdo con los obje-

tivos anteriormente establecidos. Además, se apuntan algunas ideas para el

trabajo futuro.
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CHAPTER 1
Introduction

1.1 Antecedents

In the past decade, bioinformatics has become an integral part of research

and development in the biomedical sciences. Bioinformatics now has an es-

sential role both in deciphering genomic, transcriptomic and proteomic data

generated by high-throughput experimental technologies and in organizing

information gathered from traditional biology. Sequence-based methods of

analyzing individual genes or proteins have been elaborated and expanded,

and methods have been developed for analyzing large numbers of genes or

proteins simultaneously, such as in the identification of clusters of related

genes and networks of interacting proteins. With the complete genome se-

quences for an increasing number of organisms at hand, bioinformatics is

beginning to provide both conceptual bases and practical methods for de-

tecting systemic functional behaviors of the cell and the organism. In turn,

bioinformatics is the field of science in which biology, computer science, and

information technology merge to form a single discipline, aiming to help

on the discovery of new biological insights. Therefore, understanding the

biological principles that affect to the living organisms is a key point for de-

veloping appropriate bioinformatics methods.

Throughout the history of science, there has always been a need to model

and manage uncertainty in real experiments. This is particularly true in biol-

3



4 Introduction

ogy in general, and more recently in bioinformatics. The variability exhibited

in nature in studying the genome and its relationships with very different as-

pects require computational models to be flexible enough to capture the es-

sential features without taking every deviation as something completely new.

Fuzzy theory (Zadeh, 1965) is a powerful tool that has served researchers to

model situations where the primary source of uncertainty is randomness.

In some cases, uncertainty adopt other forms. In considering a new gene

sequence, it may be important to know how similar it is to a particular se-

quence. It is not the classical binary problem of knowing whether or not two

sequences are equal, it is a question of how much this particular instance of

the new gene resembles a prototype. Other sources of uncertainty include

incompleteness in the data extracted from actual samples, lack of expressive-

ness or faithfulness of some features that we extract, lack of clear boundaries

between classes of proteins, genes or gene products that are member of more

than one class, etc.

In addition, almost all bioinformatics problem to date are formulated in a

deterministic manner. Most of these problems are defined by fixed objective

functions and solve by means of optimization. However, there are several

situations where fuzziness should be considered, e.g. intrinsic fuzziness in

biological systems, multiple roles of a biological object, fuzzy descriptions of

biological phenomena, etc. This thesis aims to solve some important bioin-

formatics problems applying notions on fuzzy set theory and fuzzy logic, as

well as on other soft computing methods.

Due to the recent flood of new biological data from genome sequencing,

scientists need to face the problem of answering many basic questions and

attempting to extract information from this data. One of the main tasks is to

discover to which function the genes are associated. Recently bio-ontologies

have played an important role for the automatic integration of background

knowledge which is fundamental to support the generation and validation of

hypotheses about the function of gene products. In this sense, the Gene

Ontology (GO) (Ashburner et al., 2000) has become a de facto standard

for describing gene products in databases. It was created with the aim of

standardizing the representation of gene and gene product attributes across
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species and databases. Thus, it provides a structured, controlled vocabulary

for describing the roles of genes and gene products in any organism. There

exist some works that use GO to extract biological information from groups

of potentially related gene products. Usually, these approaches are derived

from general ontology measures that are adapted to the GO specific charac-

teristics (Resnik, 1995; Jiang and Conrath, 1997; Lin, 1998). However, few

fuzzy-based methods are currently available. In our opinion, the properties

of fuzzy set theory make interesting its application to this problem.

On a different topic, cells control the abundance of proteins by means of

diverse mechanisms. One such mechanism is the regulation of transcription,

which is a continuous process whereby many factors combine to ensure ap-

propriate rates of protein synthesis. Understanding such complex processes

is one of the main objectives in computational biology. Transcription factors

(TFs) play a key role in gene regulation by binding to target sequences called

transcription factor binding sites (TFBSs). Related DNA sequences to which

the same TFs can bind are grouped together into TFBS motifs, usually repre-

sented as position frequency matrices (PFMs). In silico prediction of potential

binding of a TF to a binding site is a well-studied problem in computational

biology.

A common question in the context of de novo motif discovery is whether a

newly discovered, putative motif resembles any previously discovered motif

in an existing database. For this matter several motif comparison measures

have been proposed, most of them based on statistical techniques that test

whether the different columns belong to the same distribution (Pietrokovski,

1996; Schones et al., 2005; Wang and Stormo, 2003). Other recent ap-

proaches propose more specific methods that outperforms probabilistic ap-

proaches (Gupta et al., 2007; Pape et al., 2008). However, in the context of

motif comparisons, the utilization of PFMs as a representation of the binding

preferences of the TFs inherently includes imprecision. In addition, existing

methods are not designed to consider the higher contribution of better con-

served positions to the binding affinity. Therefore, new methods that deal

with these kinds of problems are needed.

Likewise, pattern discovery in DNA sequences is one of the most impor-
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tant problems in bioinformatics with applications in finding regulatory ele-

ments and transcription factor binding sites. An important task in this prob-

lem is to search (or predict) known binding sites in a new DNA sequence.

Most of the available tools for transcription factor binding site prediction as-

sume sequence independence between the binding site base positions (Hertz

et al., 1990; Sandelin et al., 2004b). New approaches are starting to consider

position dependencies, (Tomovic and Oakeley, 2007; Zare-Mirakabad et al.,

2009). One of the main goals in the prediction of TFBSs is to reduce the

false positive rate without compromising sensitivity. Methods that take into

account positional dependencies tend to be significantly more effective at

meeting this challenge. However some issues like overlearning of the train-

ing data, or the arbitrary threshold selection for testing dependencies remain

unsolved.

1.2 Objectives

The general aim of this dissertation is to find fuzzy-based solutions for impor-

tant bioinformatics problems in order to manage the uncertainty associated

to biological processes. More precisely, we focus on the study of seman-

tic similarity measures for GO, DNA motifs comparisons, and quantifying

sequence-motif affinity.

In accordance to this, the concretes objectives of this thesis are the fol-

lowing:

• To analyze GO properties and review the state of the art in GO semantic

measures.

– To compare GO crisp semantic measures and to analyze their lim-

itations.

– To apply different cluster methods and to compare their perfor-

mance for protein family recognition.

• To propose a new fuzzy similarity measure for GO.

– To incorporate the evidence codes of the annotations to take into

account the reliability of the source of information.
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– To compare the new measure with the state of the art measures

in terms of protein classification.

• To review the state of the art in motif comparison measures and to

examine the adequacy of fuzzy approaches for this task.

– To adapt classical fuzzy measures for the problem of motif com-

parison.

– To compare the fuzzy measures with respect to related approaches

in motif detection problems.

• To propose a novel motif similarity measure based on the fuzzy integral

that outperforms the existing approaches.

– To review recent motif measures and to analyze their drawbacks.

– To define the new measure and to prove its superior performance

in real and synthetic experiments.

• To propose a new method based on the IFS theory for the problem of

scoring DNA sequences against TFBS motifs.

– To discuss the latest advances on this topic.

– To improve the prediction quality for TFs of the existing approaches.

– To apply the new score to real research problems.

1.3 Thesis Structure

This dissertation is structured in four clearly defined parts, each of them

being composed of one or more chapters.

The first part comprises this introduction, which has been written also in

Spanish in order to fulfil the requirements to obtain the European Doctorate

mention (page xiii).

Part II starts with some necessary preliminaries. Chapter 2 is dedicated to

present some basic concepts of biology and to overview bioinformatics, the

research field of this thesis. Special attention is dedicated to introduce GO.

Chapter 3 reviews some basic notions on fuzzy set theory and fuzzy logic, as

well as on other soft computing methods.
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Part III presents the contributions of this thesis. Chapter 4 defines a novel

fuzzy semantic similarity measure over GO, and investigates the performance

of different ontology semantic measures over GO and clustering methods in

protein classification problems. Chapter 5 introduces the problem of com-

paring TFBS motifs and shows how some classical fuzzy measures can be

adapted for this problem. Then, Chapter 6 introduces the recent advances in

motif measures and presents a new similarity measure for DNA motifs called

FISim (Fuzzy Integral Similarity) together with a novel clustering methodol-

ogy for motifs. An evaluation of our proposed approaches is also performed.

Chapter 7 approaches the problem of searching (or predicting) known bind-

ing sites in a new DNA sequence and presents a new scoring function based

on intuitionistic fuzzy set theory.

Finally, Part IV concludes with some conclusions and future work. Chap-

ter 8 summarizes the contributions of this thesis. The results are analyzed in

accordance with the objectives established in this introductory chapter (Sec-

tion 1.2). In addition, some ideas for future research are finally pointed out.
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Preliminaries
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CHAPTER 2
Biology and Bioinformatics

All organisms consist of small cells. Each cell is a complex system consist-

ing of many different building blocks enclosed in a membrane bag and share

a common machinery for their basic functions. The exterior appearance of

living organisms is infinitely diverse, however they are very similar on the

inside. Bioinformatics is the field of science in which biology, computer sci-

ence, and information technology merge to form a single discipline, aiming

to help on the discovery of new biological insights. Therefore, understanding

the biological principles that affect to the living organisms is a key point for

developing appropriate bioinformatics methods.

Thus, in this first chapter we provide in Section 2.1 a basic introduction

to some biological concepts. Section 2.2 gives an overview of bioinformatics,

which constitutes the research field of this thesis. Finally, Section 2.3 pro-

vides an introduction of Gene Ontology together with its main applications.

2.1 Biology

In this section the universal characteristics of all the living organisms are

outlined. We briefly discuss the cellular diversity, and show how starting

from a common code, shared by all the organisms, it is possible to read,

measure, and disembowel the specifications of such code.

11
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Cells, DNAs, and Chromosomes

The diversification and evolution of the cells has been taking place for more

than 3.5 billion years (Berg et al., 2002). Each cell is a complex automaton

capable of generating new cells which are self-sustaining and self-replicating.

Figure 2.1 shows the structure of the cell. All cells with no known exceptions,

store their hereditary information in DNA (Deoxyribonucleic acid) molecules.

Figure 2.1: Cell structure. (National Human Genome Research Institute.)

Chemically, a DNA molecule is a long polymer of simple units called nu-

cleotides, with backbones made of sugars and phosphate groups joined by

ester bonds. In living organisms, DNA does not usually exist as a single

molecule, but instead as a pair of molecules that are held tightly together.

These two long strands entwine, in the shape of a double helix, which was

first described by Watson and Crick (1953).
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In order to understand the biological mechanisms, we first need to know

the double helix structure of the DNA molecules. The information in DNA

is stored as a code made up of four chemical bases: adenine (A), guanine

(G), cytosine (C), and thymine (T). As an example, human DNA consists of

about 3 billion bases. Each base is also attached to a sugar molecule and

a phosphate molecule. Together, a base, sugar, and phosphate are called a

nucleotide (Figure 2.2). Nucleotides are arranged in two long strands that

form a spiral called a double helix. DNA bases pair up with each other, A

with T and C with G, to form units called base pairs, and the paired bases

are said to be complementary (Figure 2.3). The structure of the double helix

is somewhat like a ladder, with the base pairs forming the ladder’s rungs

and the sugar and phosphate molecules forming the vertical sidepieces of

the ladder (Figure 2.4).

P

S
cc

Sugar

Cytosine

Nitrogenous base

Phosphate group

Nucleotide

Figure 2.2: Nucleotide.

This model states that the two polynucleotide chains run in opposite di-

rections (antiparallel). The bases lie on the inside. They are flat structures,

lying in pairs perpendicular to the axis of the helix. Each base pair is rotated

∼ 36◦ around the axis of the helix relative to the next base pair. So ∼ 10 base
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Figure 2.3: DNA.

pairs make a complete tum of 360◦. The twisting of the two strands around

one another forms a double helix with a minor groove (∼ 12 Å across) and a

major groove (∼ 22 Å across). These features represent the accepted model

for what is known as the B-form of DNA.

It is important to realize that the B-form represents an average, not a

precisely specified structure. DNA structure can change locally. If it has more

base pairs per turn it is said to be overwound; if it has fewer base pairs

per turn it is underwound. Local winding can be affected by the overall

conformation of the DNA double helix in space or by the binding of proteins

to specific sites.

Typically, the DNA in a cell is found not in one but in several physically

separate molecules called chromosomes. While different species may have

different number of chromosomes, the specific arrangement among all mem-

ber in the same species is always consistent, and is called karyotype. Any
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Figure 2.4: DNA double helix. (National Human Genome Research Institute.)

aberration from the default chromosomal arrangement is often lethal or lead

to serious genetic disorders. A well-known chromosomal disease in humans

is the Down’s Syndrome, in which an extra copy of one of the chromosomes

causes mental retardation and other associated problems.

The chromosomes are usually organized in homologous pairs, each chro-

mosome pair containing one chromosome from each parent. In humans there

are 23 pairs of homologous chromosomes ranging in length from about 50

million to 250 million base pairs. Figure 2.5 shows a photograph of the 23

pairs of human chromosomes. Collectively, the genetic information in the

chromosomes are called the genome. As each cell divides, the entire genome

in the DNA is copied exactly in the new cells. Therefore, in theory, any of the

cell on our body possesses the necessary information for building a complex

living organism as ourselves.
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Figure 2.5: Human chromosomes. (National Human Genome Research Institute.)

From Gene to Protein: The Central Dogma

DNA contains the genetic recipes for making proteins, which are the actual

workhorses that perform most most life functions. In this section we intro-

duce how a DNA sequence turns into a chain of amino acids and forms a

protein in the cell.

For a cell to make a protein, the information from a gene recipe is first

copied (base by base) from a strand of DNA in the cell’s nucleus into a strand

of messenger RNA (mRNA). Chemically, the RNA, or ribonucleic acid, and

the DNA are very similar. RNA molecules are also made up of four different

nucleotides (A,C,G,U), the nucleotide U (uracil) replaces the T (thymine) in

DNA. Like thymine, the uracil also base-pairs to adenine.

After copying the genetic recipes on the DNA in the nucleus, the mRNA

molecules then travel out into the cytoplasm and becomes accessible to the
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cell organelles called ribosomes. Here, each ribosome molecule reads the

specific genetic code on an mRNA, and translates the genetic code into the

corresponding amino acid sequence based on a genetic coding scheme. With

the help of transfer RNA (tRNA), molecules that transport different amino

acids in the cell to the ribosome molecule as needed, the prescribed pro-

tein molecule is assembled (amino acid by amino acid) as instructed by the

genetic recipe. Figure 2.6 illustrates how information stored in DNA is ulti-

mately transferred to protein in the cell.

Figure 2.7 provides a schematic view of the relationship between DNA,

RNA and protein in terms of three major processes:

• Replication. Process by which the information in the DNA molecule

in one cell is passed on to new cells as the cell divides and the organ-

ism grows. Entire genetic blueprint can be passed on from cell to cell

through DNA replication. In this way, virtually, all cells in our body

have the full set of recipes for making all the proteins necessary to

sustain life’s many different functions.

• Transcription. Process by which the relevant information encoded in

DNA is transferred into the copies of messenger RNA molecules during

the synthesis of the messenger RNA molecules. Transcription allows

the amount of the corresponding proteins synthesized by the protein

factories (the ribosomes) to be regulated by the rate at which the re-

spective mRNAs are synthesized in the nucleus. The study of the regu-

lation of the transcription is one of the main goals in this thesis, there-

fore, a deeper discussion of this process is provided in the following

section.

• Translation. Process by which genetic information on the mRNA is

transferred into actual proteins. Protein synthesis is carried out by the

ribosomes, and it involves translating the genetic code transcribed on

the mRNA into a corresponding amino acid string which can then fold

into the functional protein.

This multi-step process of transferring genetic information from DNA to

RNA to protein is known as the Central Dogma of Molecular Biology.
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Figure 2.6: From gene to protein. (National Human Genome Research Institute.)

The Central Dogma of Molecular Biology

DNA RNA ProteinReplication
Transcription Translation

Figure 2.7: The Central Dogma of Molecular Biology.

Transcription

As outlined above, all cells within one organism share the same code for

creating them and making them live. This is the general rule for all living
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organisms ranging from those composed of just a single cell (e.g., yeast) to

more complex creatures such as ourselves. Given that the DNA sequence is

known to us, the first level of understanding is where the functional units,

called genes, are coded in it. Assuming this is also roughly known via var-

ious experimental and computational analysis performed, we focus in this

work on a certain type of programs regulating the production of the genes

at the transcription level, i.e. when DNA is transcribed into mRNA. This is

a necessary step in gene production and much of the living cell’s control on

its spatial content is believed to be conducted via regulatory programs at this

transcriptional stage, hence their importance to us.

Experimental methods developed in recent years have enabled us to si-

multaneously measure the mRNA levels of thousands of genes under diverse

conditions. Other new methods help us by testing thousands of genes to see

whether certain proteins called transcription factors (TFs) are involved in

regulating their production. These high-throughput experiments, combined

with the huge amounts of DNA coding sequence, are actually responsible for

developing our field of research, that of computational biology. They pose

us the challenge of turning these vast amounts of data into valid biological

hypotheses that can later be tested in a lab. We need to develop computa-

tional tools that are able to cope with large amount of data that is usually

very noisy and partial.

We now give a brief description of the biology behind genetic regula-

tion, followed by some of the experimental methods used to produce high-

throughput data.

Transcription involves synthesis of an RNA chain representing strand if a

DNA sequence. RNA synthesis is catalyzed by the enzyme RNA polymerase.

Transcription starts when RNA polymerase binds to a special region, the pro-

moter, at the start of the gene. Promoter surrounds the first base pair that

is transcribed into RNA (the so-called startpoint), and from there, the RNA

polymerase moves along the template, synthesizing RNA, until it reaches a

terminator sequence. In order for the RNA polymerase to initiate the tran-

scription, it separates the two strands of DNA and uses one of them as a
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template to directly synthesize a complementary RNA sequence. The tran-

scription reaction can be divided into four stages:

1. Template recognition. It begins with the binding of RNA polymerase

to the double-stranded DNA at a promoter. Then the strands are un-

wound locally to to allow the template strand to be available for base

pairing with ribo-nucleotides.

2. Initiation. It describes the synthesis of the first nucleotide bonds in

RNA. The enzyme remains at the promoter while it synthesizes the

first ∼ 9 nucleotide bonds. The initiation phase ends when the enzyme

succeeds in extending the chain and clears the promoter.

3. Elongation. The enzyme moves along the DNA and extends the grow-

ing RNA chain. As the enzyme moves, it unwinds the DNA helix to

expose a new segment of the template in single-stranded condition.

4. Termination. The enzyme recognizes the point at which no further

bases should be added to the chain. When the last base is added to the

RNA chain, the RNA polymerase is separated from the DNA, and the

DNA reforms in duplex state.

The transcription process can be regulated at multiple levels by diverse

mechanisms. We can distinguish at least five potential control points:

1. Activation of gene structure.

2. Imitation of transcription.

3. Processing of the transcript.

4. Transport to the cytoplasm.

5. Translation of mRNA.

As it was stated above, in this thesis we focus in the study of the regu-

lation of the transcription in the control point 2 (Initiation of transcription).

In fact, this point may be the most important one in the regulation of the

production of many genes in eukaryotes (Lewin, 2004).
Initiation of transcription involves many protein-protein and protein-DNA

interactions among transcription factors and bound at the promoter or at an

enhancer. Figure 2.8 summarizes their properties. The factors required for

transcription can be divided into several classes.
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• Basal factors, together with RNA polymerase, bind at the startpoint.

• Activators, transcription factors that recognize specific short consen-

sus elements. They bind to sites in the promoter or in enhancers. They

act by increasing the efficiency with which the basal apparatus binds

to the promoter. They therefore increase the frequency of transcrip-

tion, and are required for a promoter to function at an adequate level.

These factors are therefore responsible for the control of transcription

patterns in time and space.

• Coactivators, which provide a connection between activators and the

basal apparatus without binding themselves DNA. They work by protein-

protein interactions, forming bridges between activators and the basal

transcription apparatus.

• Repressors, transcription factors that inhibit basal apparatus function.

Repression is usually achieved by affecting chromatin structure, but

there are repressors that act by binding to specific DNA locations.

2.2 Bioinformatics

What is Bioinformatics?

The beginning of bioinformatics can be traced back to Margaret Dayhoff in

1968 and her collection of protein sequences known as the Atlas of Protein

Sequence and Structure (Dayhoff, 1969). Since then, major advances in the

field of molecular biology, together with advances in genomic technologies,

have led to an exponential growth in the biological information generated

by the scientific community (see Figure 2.9 as an example). The scientific

community has applied these advances to achieve new goals in diverse re-

search projects such as the well-known Human Genome Project, which aimed

to identify all the approximately 20,000-25,000 genes in human DNA and

determine the sequences of the 3 billion chemical base pairs that make up

human DNA. This torrent of genomic information has, in turn, led to an ab-

solute requirement for computerized databases to store, organize, and index
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Figure 2.8: Transcription factor interactions.

the data and for specialized tools to view and analyze the data. In this con-

text, bioinformatics emerged as a new discipline combining many scientific

fields including computational biology, statistics, mathematics, molecular bi-

ology, and genetics.

Definition

The term bioinformatics has been recently created. Although, as outlined

above, the application of information technologies to biomedical sciences

began many years before, the word bioinformatics did not start to be used

until the last decade. Bioinformatics, as any interdisciplinary field, is open to
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Figure 2.9: Growth of GenBank.

multiple definitions. However, they share a common feature: Bioinformatics

is the link between maths, informatics, and biology. Although there is not a

standard definition for bioinformatics to date, a commonly accepted the one

given by the National Institutes of Health (NIH):

Bioinformatics is the research, development, or application of

computational tools and approaches for expanding the use of bi-

ological, medical, behavioral or health data, including those to

acquire, store,organize, archive, analyze, or visualize such data.

In addition, some scientists provide different definitions for bioinformatics

and computational biology. For example the NIH states:
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Computational biology is the development and application of

data-analytical and theoretical methods, mathematical modeling

and computational simulation techniques o the study of biologi-

cal, behavioral, and social systems.

As can be seen, although the two concepts refer to different disciplines,

the line between them is not very clear and they overlap in many aspects. A

graphical representation of the context of the bioinformatics discipline can

be seen in Figure 2.10.

Figure 2.10: Bioinformatics as an interdisciplinary field.

Goals of Bioinformatics

The goals of bioinformatics can be divided in three different groups:

1. Organise data in a way that allows researchers to access existing in-

formation and to submit new entries as they are produced, e.g. the

Gene Ontology Consortium (Ashburner et al., 2000), where the sci-

entific community annotates their findings related to gene products

(more details will be given in Section 2.3). Data-curation was one of
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the first duties of bioinformatics and it is still an essential task. How-

ever, the information stored in these databases is essentially useless

until analysed, mainly due to its enormous size. Thus the purpose of

bioinformatics was extended much further.

2. Develop tools and resources for the analysis of biomedical data. For

example, having sequenced a genome for a particular organism, it is

of interest to compare its genes with those from previously character-

ized organisms. This needs more than just a simple text-based search

and programs such as BLAST (Altschul et al., 1997) must consider what

comprises a biologically significant match. For the development of such

resources expertise in computational theory as well as a thorough un-

derstanding of biology are necessary.

3. Use these tools to analyse the data and provide biologically meaningful

interpretations of the results. Traditionally, biological studies examined

individual systems in detail, and comparing them with a few that are

related afterwards. In bioinformatics, we can conduct global analyses

of all the available data with the aim of uncovering common principles

that apply across many systems and highlight novel features.

Bioinformatics Data Sources

One of the main features of modern molecular biology is the generation (usu-

ally automatized) of extensive amount of data. As it was previously com-

mented, one of the major issues in bioinformatics is to find ways to collect

the data and organise them in a meaningful manner. Table 2.1 lists the types

of data that are analysed in bioinformatics and the range of topics where

they fall within the field. These sources of information can be divided into

DNA sequences, protein sequences, macromolecular structures, genome se-

quences, and other whole genome data. On the other hand, Table 2.2 lists

the main bioinformatics databases. Two type of databases can be distin-

guished: i) primary databases, containing among others DNA and protein

sequences, protein structures, and gene and protein expression profiles; ii)

secondary databases, containing the data obtained the analysis of primary
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databases, such as protein families, regulatory motifs, mutation, polymor-

phisms, etc. In addition, there exist other specialized databases that pro-

vide different information about the biomedical data, e.g. PubMed (NIH,

2009) for bibliographic information and OMIM (McKusick and Antonarakis,

1998) for genetic diseases. In this section we present the bioinformatics data

types and their corresponding databases that provide access to the principal

sources of information.

The DNA sequence is the classic data type of the molecular biology. In or-

der to decipher the nucleotide sequence of a DNA string a sequencing process

needs to be carried out. The sequencing process is nowadays so automatized

that sequencing the complete genome of a given organism has become a

routine task. The GenBank database (Benson et al., 1999) of nucleic acid

sequences currently contains a total of 99.1 billion bases in 98.8 million se-

quences (data from February 2009, see Figure 2.9).

At the next level are protein sequences comprising strings of 20 amino

acid-letters. There are over 1 million known protein sequences, with a typical

bacterial protein containing approximately 300 amino acids. Macromolecu-

lar structural data represents a more complex form of information. There

are currently 61.695 entries in the Protein Data Bank (PDB) (Berman et al.,

2002) most of which are protein structures. A PDB record for a medium-

sized protein typically contains the x,y,z, coordinates of approximately 2.000

atoms.

Recently, the impact of the genome projects drastically increased the

amount of sequence data. A genome sequence for a given organism presents

the complete set of genes and their precise locations in the chromosome. As

with the DNA sequences, genomes consist of strings of bases, ranging from

1.6 million bases in Haemophilus influenzae to 3 billion in humans. Auto-

matic sequencing has had an enormous impact as it has been at the start-

ing point of the high-throughput generation of various biological data like

sequence tags (ESTs) and single-nucleotide polymorphisms (SNPs) among

others.

DNA microarrays systematically analyze gene expression profiles. There

exist some public resources where the scientific community can store and
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query microarray data (GEO, 2009; Demeter et al., 2006). One should note

that, due to the variety of platforms and preprocessing methods that are

available, these databases are not as standardized as, for example, sequence

databases. Other genomic scale data include biochemical information on

metabolic pathways, regulatory networks, protein-protein interaction data

from two-hybrid experiments, and systematic knockouts of individual genes

to test the viability of an organism.
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Computer Science in Bioinformatics

A major role of bioinformatics is to provide insights about gene function from

existing data. Unfortunately, data is usually incomplete, noisy, and covers dif-

ferent organisms that may not share most of their features. Therefore, it is

necessary to constantly make use of the biological principles to obtain mean-

ingful information. Based on the availability of the data and goals described

above, we now present the different computer science tasks that lead to a

better understanding of gene function. They can be summarized as follows:

• Comparing Sequences. Given the increasing number of sequences

available, there has been a need to develop algorithms to deal with

comparisons of large numbers of long sequences. These algorithms

take into account the possibility of deletion, insertion, and replace-

ments of symbols representing the sequences, as might occur in nature.

• Constructing Evolutionary Trees. These trees are often also known as

phylogenetic trees. They are usually built from the comparison of the

sequences belonging to different organisms, grouping the sequences

according to their degree of similarity. They shed light in the problem

of infer how the sequences have been transformed through evolution.

• Detecting Sequence Patterns. This task involves, for example, one

of the first problems that the bioinformatics community tried to solve:

the detection of genes in a DNA sequence. Another example is the

detection of common short sequences in the promoter regions of re-

lated genes (the so-called motifs). There are several ways to perform

these tasks. Many of them are based on machine learning and include

probabilistic grammars, or neural networks.

• Determining 3D Structures. These tasks intrinsically needs a high

computational effort. The determination of RNA shape from sequences

requires algorithms of cubic complexity. On the other hand, the infer-

ence of structures of proteins from their amino acid sequences remains

an unsolved problem.

• Inferring Cell Regulation. The role of a gene or protein in a metabolic

or signaling pathway provides a good idea about its function. As we
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discussed in previous sections, genes interact with each other, while

proteins can also prevent or assist in the production of other genes or

proteins. In this sense, microarray technology helps to understand how

some genes are co-regulated under similar circumstances.

• Determining Protein Function and Metabolic Pathways. The objec-

tive here is to interpret protein functions from human annotations usu-

ally derived from specific experiments, and also to provide databases

representing graphs where one can query for the existence of nodes

(reactions) and paths (sequences of reactions).

• Assembling DNA Fragments. Fragments provided by sequencing ma-

chines are assembled using computers. There has been an increasing

interest in this field with the advent of the Next-Generation Sequencing

(NGS). The main problems are: i) very short fragments to assemble; ii)

big data, e.g. a microbial genome will yield about 200 Mbp; iii) new

technologies are continuously appearing.

2.3 Gene Ontology

The Gene Ontology (GO) Consortium (Ashburner et al., 2000) has already

become a de facto standard for describing gene products in databases. It

was created with the aim of standardizing the representation of gene and

gene product attributes across species and databases. Thus, it provides a

structured, controlled vocabulary for describing the roles of genes and gene

products in any organism.

Structure

GO organizes the information by means of three different ontologies:

• Cellular component. It describes locations, at the levels of subcel-

lular structures and macromolecular complexes. Examples of cellular

components include nuclear inner membrane and cytoplasmic vesicle.
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• Biological process. It represents recognized series of events or molec-

ular functions. A process is a collection of molecular events with a

defined beginning and end. Examples of biological process terms are

cellular physiological process or signal transduction.

• Molecular function. It describes activities that occur at the molecular

level. GO molecular function terms represent activities rather than

the entities (molecules or complexes) that perform the actions, and do

not specify where or when, or in what context, the action takes place.

Examples of molecular function terms are catalytic activity or binding.

Terms within each of these ontologies are independent of each other, i.e.

a term does not belong to more than one ontology. Figure 2.3 shows the

distribution of the annotated gene products in the different GO ontologies.

The ontologies of GO are structured as a graph, with terms as nodes in

the graph and the relations between the terms as arcs. In addition the rela-

tions between GO terms are also categorized and defined. These comprise is

a (is a subtype of); part of ; and regulates, negatively regulates and positively

regulates. The GO Consortium (Ashburner et al., 2000) uses the following

conventions for the relations:

• Where it is appropriate to talk about a parent-child relationship be-

tween nodes, parent refers to the node closer to the root(s) of the

graph, and child to that closer to the leaf nodes; the parent would

be a broader GO term, and the child would be a more specific term.

• The arrowhead indicates the direction of the relationship.

Annotations

Thus, the terms (nodes) in the GO database form a Directed Acyclic Graph

(DAG), in which terms are children of one or several more general terms.

This implies that the closer a term is to the root, the more general it is, and

the closer a term is to the leaf, the more specific it is. The terms themselves

do not describe specific genes or gene products. Genes and gene products

are annotated by collaborating databases in one or more terms at the most
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Figure 2.11: GO gene products distribution. GO has 377451 annotated
gene products as of December 2009. Biological process has 270918 (71.7 %).
Molecular function has 289839 (76.7 %). Cellular component has 258598
(68.5 %).

specific level possible, but are considered to share the attributes of all the

parent nodes (Dwight et al., 2002). In Figure 2.3 can be seen an example of

the DAG structure of GO.

Evidences

The annotations include not only the source’s attribution, but also an indica-

tion of the evidence on which the annotation is based. A simple controlled

vocabulary, which is provided in Table 2.3, is used to describe the evidence

supporting the attribution e.g. Traceable Author Statement (TAS). Referenc-

ing each annotation with both experimental method and citation is intended

to help researchers evaluate their reliability and is critically important to the
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Figure 2.12: Directed acyclic graph taken from GO. The solid arrows in-
dicate the GO ’part-of ’ link and the dashed arrows the GO ’is-a’ link. The GO
unique identifiers (IDs) are printed below each term. The term ’Cell Differenti-
ation’ has two parents (Cellular Process and Development), which in turn link
back to the same antecedent ’Biological Process’ which is part-of the Gene On-
tology. The unterminated arrows leading from Cell Differentiation indicate that
it has a number of offspring terms.

evaluation and use of these annotations. One may have greater confidence in

an assignment based on direct experimental evidence than one based solely

on a computational method such as sequence similarity. In GO there exist

four types of evidence codes:

• Experimental evidence codes, which indicate that the cited paper dis-

played results from a physical characterization of a gene/gene product

that has supported the association of a GO term.

• Computational analysis evidence codes, which indicate that the an-

notation is based on an in silico analysis of the gene sequence and/or

other data as described in the cited reference.

• Author statement codes, which indicate that the annotation was made

on the basis of a statement made by the author in the cited reference.
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• Curatorial statement evidence codes, which indicate an annotation

made on the basis of a curatorial judgment that does not fit into one of

the other evidence code classifications.

Table 2.3: GO Evidence Codes.

Code Name Type
EXP Inferred from Experiment Experimental
IDA Inferred from Direct Assay Experimental
IPI Inferred from Physical Interaction Experimental
IMP Inferred from Mutant Phenotype Experimental
IGI Inferred from Genetic Interaction Experimental
IEP Inferred from Expression Pattern Experimental
ISS Inferred from Sequence or structural Similarity Computational
ISO Inferred from Sequence Orthology Computational
ISA Inferred from Sequence Computational
ISM Inferred from Sequence Model Computational
IGC Inferred from Genomic Context Computational
RCA Inferred from Reviewed Computational Analysis Computational
TAS Traceable Author Statement Author Statement
NAS Non-traceable Author Statement Author Statement
IC Inferred by Curator Curatorial
ND No biological Data available Curatorial
IEA Inferred from Electronic Annotation Automatic

GO Applications

GO can be applied to a number of different tasks and many public GO-based

tools have been developed. In this section a summary of the most important

applications is presented:

• Obtain the information of a gene product. This is the first and most

direct application of GO. From a given gene product it is possible to

know its molecular functions, the biological processes where the gene

product take place, and where in the cell is acting. This information

is very useful in a diversity of biological experiment since it gives an

idea of the behaviour of the gene product before it is exposed to the
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experimental conditions. AmiGO (Carbon et al., 2009), provided by

the GO Consortium, is the standard tool for this matter.

• Obtain the information of a term. Unlike the previous application,

the information of interest is now the terms themselves. From them it

is possible to extract their annotations and those from their offsprings,

obtaining gene products that are related to each other. Here again,

the AmiGO tool is usually used for this task. This information is used,

for example in a study by Zhou et al. (2002) where they perform a

microarray experiment analysis. In this work, the authors previously

separated the genes according to their cellular component annotations

in order to take into account the fact that a given metabolic pathway

will have its corresponding genes activated or not regarding where in

the cell the pathway is taking place at a determined moment.

• Make a connection between biological knowledge and gene ex-

pression data. From the combination of microarray data and GO

information it is possible to obtain group of co-regulated genes bio-

logically meaningful (see Figure 2.13). As exposed above, there are

a number of tools to do this and scientifics continuously apply them

in their research. For example, West et al. (2008) used the GO anno-

tations to find overrepresentation of gene ontology groups among the

significantly expressed genes.

• Predict new associations between terms. Some studies have focused

in the prediction of new GO terms or relations between them taking

into account the existing terms and/or associations. For this matter,

King et al. (2003) used decision trees and Bayesian networks, and Læ-

greid et al. (2003) applied supervised learning techniques to face this

problem.

• Study semantics similarities between gene products. Given two or

more gene products it is possible to measure their semantic similarity

studying their GO annotations. This similarity can be used to perform

analysis of group of genes, to compare and validate experimental re-

sults, to group gene products for further studies, etc. For this task, sev-
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Figure 2.13: Cellular component protein classification. Schematic
representation of the subcellular fractionation procedure (Kislinger et al.,
2003)

eral measures have been previously defined (Resnik, 1995; Jiang and

Conrath, 1997; Lin, 1998; Popescu et al., 2006). As it was stated above,

this chapter focuses precisely on this topic. Thus, in the following sec-

tions we describe the problem and present our proposed solutions.





CHAPTER 3
Fuzzy theory

This chapter introduces some basic notions on fuzzy set theory and fuzzy

logic, as well as on other soft computing methods which will be necessary to

understand the rest of this document. Further details about these topics can

be found in Dubois et al. (2007), Hájek (2005), and Klir and Yuan (1995).

Section 3.1 begins with the definition of a fuzzy set. Section 3.2 de-

scribes some basic operations with fuzzy sets. Fuzzy clustering methods are

introduced in Section 3.3. Then, Section 3.4 and Section 3.5 present the

concept of fuzzy measure and the define the λ-fuzzy measures respectively.

Section 3.6 outlines the fuzzy integrals. Section 3.7 gives a brief introduction

on other soft computing methods used for the purpose of this work (kernel

methods and genetic algorithms). Finally, a summary of some of the most

important applications of fuzzy theory on bioinformatics is given in Section

3.8.

3.1 Fuzzy sets

The classical notion of set is deeply related to the fulfillment of a given prop-

erty which is satisfied by all the members of the set. We may think of a

property as a function defined over a set of objects U (which is referred as

the referential set or domain of discourse) relating each of these objects to a

39
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element of the set {0,1}. A particular element belongs to the set if the func-

tion assigns 1 to it; otherwise (if the function assigns 0 to it), the element

does not belong to the set. These sets are called crisp or classical.

According to this, any property P determines a set SP which is composed

by the following elements:

SP = {u ∈ U : P(u) = 1}.

In the same way, any subset S ⊆ U induces a property PS which is deter-

mined by the following expression:

PS(u) = 1 if and only if u ∈ S.

Fuzzy set theory, originally proposed by (Zadeh, 1965) generalizes this

classical notion of set, having into account that the properties which define a

set are defined over the referential U, but now using as an image the real in-

terval [0, 1]. Any property satisfying these characteristic is said to be a fuzzy

property, and the set that it determines is given by the following expression:

SP = {< u,α >: P(x) = α, u ∈ U ,α ∈ [0,1]}.

Definition 1 Fuzzy set. Let U be a referential set. A fuzzy subset A of U is

every set of the form A = {(u,α), u ∈ U ,α ∈ [0,1])}, that is, every set formed

by the objects from U, having associated each of them some membership degree,

defined in the interval [0, 1], to A.

Consequently, a fuzzy set A defined over the domain of discourse U is

univocally characterized using a membership function µA(u), or simply A(u),
which assigns any u ∈ U to a value in the interval of real numbers between

0 and 1, representing the membership degree of the element u to A. As in

the classical case, 0 means no-membership and 1 full membership, but now

a value between 0 and 1 represents the extent to which u can be considered
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Figure 3.1: Fuzzy membership function.

as an element of A. For example, in Figure 3.1 the elements in [a, b] fully

belong to A, whereas the elements in (b, c) partially belong to A.
If the domain of discourse U is discrete (U = {u1, u2, ...,un}), the fuzzy

set is usually expressed using the following notation:

A= µA(u1)/u1+µA(u2)/u2+ . . .+µA(un)/un.

When U is continuous, the fuzzy set is denoted by:

A=

∫

u∈U

µA(u)/u.

The set of all fuzzy subsets which can be defined over a domain of dis-

course U is called ℘̃(U). Classical sets are a special case of fuzzy sets and

hence ℘(U)⊆ ℘̃(U).

Level Cuts

Definition 2 α-cut. For each α ∈ [0, 1] and each fuzzy set A, the α-cut of

A is defined as the set of all elements of the domain of universe which have a

membership degree to A which is greater or equal than α, that is:
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A≥α = u ∈ U : µA(U)≥ α.

The different α-cuts of a fuzzy set have an inclusion relation between

them which is determined by the following property:

(α > β)⇒ (A≥α ⊆ A≥β).

Definition 3 Strict α-cut. Analogously, for each α ∈ [0,1] and each fuzzy

set A, the strict α-cut of A is defined as the set of all elements of the domain of

universe which have a membership degree to A which is strictly greater than α,

that is:

A>α = u ∈ U : µA(U)> α.

Obviously, strict α-cuts are contained in α-cuts:

A>α ⊆ A≥α.

Among the crisp sets which can be defined from a fuzzy set, there are two

of special significance: the support and the core.

Definition 4 Support. The support of a fuzzy set A defined over a domain of

discourse U is the set of elements of U which have a membership degree strictly

greater than 0, that is:

supp(A) = {u ∈ U : µA(u)> 0}.

Definition 5 Core. The core of a fuzzy set A defined over a domain of discourse

U is the set of elements of U which have a membership degree equal to 1, that

is:

core(A) = {u ∈ U : µA(u) = 1}.

Finally, Zadeh’s Resolution’s Identity (Zadeh, 1965) shows that a fuzzy

set A can be univocally represented from its decomposition in α-cuts in the

following way:

∧(A) = {α : µA(u) = α for some u ∈ U}.
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3.2 Fuzzy set operators

Zadeh (1965) provided the basic definitions for the generate the fuzzy set the-

ory, i.e. union of two fuzzy sets, intersection of two fuzzy sets and complement

of a fuzzy set. Let A : X → [0,1] be a fuzzy subset of X . The complement, Ac,

of A is defined as:

Ac(x) = 1− A(x). (3.1)

In addition, if B : X → [0,1] is another fuzzy subset of X , Zadeh defined:

(A∪ B) =max{A(x), B(x)}= A(x)∨ B(x),

and

(A∩ B) =min{A(x), B(x)}= A(x)∧ B(x).

These standard definitions are just one of the infinite number of ways to

define complement, union and intersection (Klir and Yuan, 1995). For exam-

ple, Yager (1980) proposed a family of operators very useful for multicriteria

decision making with the complement, union and intersection are given by:

Ac(x) = (1− A(x)w)1/x , (3.2)

(A∩w B)(x) = min{1, A(x)w + B(x)w)1/w}, and (3.3)

(A∪w B)(x) = 1−min{1, ((1− A(x))w + (1− B(x))w)1/w}, (3.4)

where w ∈ (0,∞). Another fuzzy set theory used for fuzzy logic inference is

generated by the operators:

(A∪b B)(x) = 1∧ (A(x) + B(x)), (3.5)

(A∩b B)(x) = 0∨ (1− (A(x) + B(x))), (3.6)

together with the standard complement defined in equation 3.1.



44 Fuzzy theory

3.3 Fuzzy Clustering

One of the main tools to mine and analyze unlabeled data is clustering, which

is a division of data into groups of similar objects. Thus, each cluster is a

collection of objects which are similar between them and are dissimilar to the

objects belonging to other clusters. From the machine learning perspective,

clustering can be seen as an unsupervised learning of concepts. In order to

describe some fuzzy approaches for this task, we first introduce the problem

of clustering.

Let X be a data set consisting of data points xk (1≤ k ≤ n). All clustering

is based on the concept of a C-partition of the set X defined by the a partition

matrix U = {uik} (1 ≤ k ≤ C and 1 ≤ i ≤ n), where uik is the membership

degree of xk to the cluster Ai, fulfilling the following property:

C
∑

i=1

uik = 1 for all k. (3.7)

In the crisp case, each xk is assigned to a single cluster Ai. In other words,

for each xk ∈ X , uik = 1 for some cluster i between 1 and C , and uik = 0 for

all other clusters. These conditions are relaxed in the fuzzy case as we will

show next.

C-Means

C-Means clustering (Hartigan, 1975) is a maximization of expectation algo-

rithm that minimize the following cost function:

c−meanscost =
c
∑

i=1

∑n
j=1

∑n
k=1 M ji Mki D jk
∑n

l=1 Ml i

, (3.8)

where c is the number of clusters, n is the number of objects to cluster, D

is the pairwise distance matrix, and M is a binary stochastic matrix M ∈
{0, 1}n×k where M ji = 1 if object j is in cluster i.
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Fuzzy C-Means

The Fuzzy C-Means (FCM) algorithm (Bezdek, 1981) aims to partition a set

of data into a given number of clusters considering the uncertainty of cluster

assignment. Likewise, it allows for sharing objects between clusters. This

method represents each cluster by a prototype (or cluster center). Let vi be

the prototype of cluster Ai and let V be the set of all C cluster prototypes.

The objective of FCM is to minimize:

J(U , V ) =
n
∑

k=1

C
∑

i=1

(uik)
md2(xk, vi), (3.9)

where d2 is a distance function and the condition
∑C

i=i ui j = 1 for all k is sat-

isfied. In this equation, the parameter m is called the fuzzifier. Larger values

of m benefits more fuzzy partitions. In order to perform this minimization

the following two equations need to be solved.

Prototypes must have the following form:

vi =

∑n
k=1(uik)m xk
∑n

k=1(uik)m
. (3.10)

In addition, the necessary condition on the membership values is:

uik =

�

1

d(xk, vi)

�
2

m−1

∑C
j=1

�

1

d(xk, vi)

�
2

m−1

. (3.11)

The FCM algorithm iteratively updates cluster memberships and cluster

prototypes in each iteration. The pseudocode for FCM can be found in Figure

3.3. The inputs for FCM are the data set X , the number of clusters C , the

fuzzifier parameter m, and the stop criterion ε.
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FUZZY C-MEANS(X , C , m,ε)

1 V(0)← {v(0)1 , . . . , v(0)C } Â randomly
2 t← 0
3 repeat
4 for k← 1 to length[X ]
5 do
6 if d(xk, vi) = 0 for some i
7 then u(t)ik ← 1 and u(t)jk = 0 for j 6= i
8 else Compute u(t)ik applying Equation 3.11
9 t← t+1

10 Compute V (t) applying Equation 3.10 using U (t−1)

11 until
∑C

i=1 ‖v
(t)
i − v(t−1)

i ‖< ε Â ‖ ∗ ‖ is any vector norm

Figure 3.2: Fuzzy C-Means pseudocode.

Possibilistic C-Means

The FCM algorithm sheds light into the problem of crisp grouping when the

features possess ambiguity. FCM has offered promising results in different

fields of application, it suffers from some problems specially when the object

present high similarities with elements of two different clusters, i.e can be

a member of two different classes at the same time. In reality these is no

reason that memberships of a given feature sum to one (Equation 3.7). FCM

is subject to this constraint in order to avoid the trivial solution (all member-

ships equal zero) in minimizing the criterion function (Equation 3.9). Also,

it is not uncommon that some of the features extracted are outlier that really

do not belong to any cluster.

Krishnapuram and Keller (1993) proposed a new clustering method to

overcome the drawbacks of FCM by relaxing the sum constraint while avoid-

ing the trivial solution. They defined a new criterion function resulting a the

new algorithm called Possibilistic C-Means (PCM). The criterion function is:

J(U , V ) =
n
∑

k=1

C
∑

i=1

(uik)
md2(xk, vi) +

C
∑

i=1

ηi

n
∑

k=1

(1− uik)
m, (3.12)
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where the ηi are appropriately chosen or estimated values, and can be inter-

preted as the radio of the corresponding cluster (Krishnapuram and Keller,

1996). Here, the necessary conditions to minimize Equation 3.12 are:

uik =
1

1+

�

d(vi, xk)2

ηi

�m ,

and the condition on the cluster prototypes is identical to Equation 3.10.

3.4 Fuzzy Measures

Let X = {x1, x2..., xn} be a finite set, let A, B ⊆ X , and let ℘(X ) the power

set of X . A fuzzy measure, µ, is a real valued function µ : ℘(X ) → [0, 1],
satisfying the following properties:

1. µ(;) = 0 and µ(X ) = 1. (3.13)

2. µ(A)≤ µ(B) if A⊆ B. (3.14)

The reader should note that the additivity condition of probability theory is

relaxed in property 2 to the condition of monotonicity.

For a fuzzy measure µ, let µ({x i}) = µi. The mapping x i → µi is known

as fuzzy density function. The fuzzy density of a single element x i ∈ X , µi,

can be interpreted as the importance of x i in determining the set X .

Fuzzy measures can be separated into different classes according to the

strategies used to evaluate the similarity. Next, we provide a summary of

those that have been used for the purpose of this thesis.

Set-theoretic measures: Jaccard coefficient

Set-theoretic measures can be considered generalizations of the classical set-

theoretic similarity functions. The set-theoretic operations on fuzzy sets are

used to define various measures. Among them, we selected the well-known

Jaccard coefficient for some problems addressed in this work. The Jaccard
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coefficient is an unparameterized ratio model of similarity (Jaccard, 1908).

It is also known as index of communality. The Jaccard coefficient of two

fuzzy sets A and B over a finite universe of discourse U = {u1, u2, · · · , un} is:

SJ(A, B) =
n
∑

i=i

| µA(ui)−µB(ui) |
max

�

µA(ui),µB(ui)
� . (3.15)

Angular coefficient-based: Bhattacharyya distance

Bhattacharyya distance measures the cosine of the angle between two vectors

when the values in each vector are standardized as deviates from the mean

of the membership function (Bhattacharyya, 1946). This cosine is taken as

the corresponding similarity measure

SB(A, B) =

∑n
i=1

�

µA(ui) ·µB(ui)
�

�
∑n

i=1

�

µA(ui)
�2�

1
2 ·
�
∑n

i=1

�

µB(ui)
�2�

1
2

, (3.16)

where notation from previous section holds.

Proximity-based measure: Minkowsky r-metric

The distance between the partial membership functions of fuzzy sets A and B

over a finite universe of discourse U = {u1, u2, ..., un} may be measured using

a Minkowsky r-metric (Zwick et al., 1987). A fuzzy set A is represented by a

point [µA(u1), ...,µA(un)] in the n-dimensional space:

dr(A, B) =

 

n
∑

i=1

| µA(ui)−µB(ui) |r
!

1
r

, r ≥ 1. (3.17)

As the name implies, the Minkowsky r-metric is a metric. With r = 1 dr

becomes the city-block model or Hamming distance; r = 2, the Euclidean

distance; and with r =∞, the dominance metric. More on this topic can be

found in Cross and Sudkamp (2002).
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3.5 λ−Fuzzy Measures

Due to the nature of the definition of a fuzzy measure µ, the measure of the

union of two disjoints subsets cannot be directly computed from the compo-

nent measures. In other words, the fuzzy measure value of a subset is not

just the sum of the measures of its elements. Therefore, in order to define a

fuzzy measure one needs to know not only the individual fuzzy densities of

the elements of the measured set, but also the measure for each combination

thereof. This information can be supplied by an expert or extracted from the

problem definition. However, when dealing with sets of numerous elements

this task might become noisy, tedious or even unfeasible. A possible solution

for this problem is the use of λ-fuzzy measures

λ-fuzzy measures (Sugeno, 1977) satisfy the properties of fuzzy mea-

sures plus the following additional property: for all A, B ⊂ X and A∩ B = ;,

µ(A∪ B) = µ(A) +µ(B) +λµ(A)µ(B), for some λ >−1. (3.18)

Furthermore it can be proved that λ can be obtained by solving:

λ+ 1=
n
∏

i=1

(1+λµi). (3.19)

Therefore, applying Equation 3.18 and 3.19 one will only need to know

the individual fuzzy densities of the elements, µi, (i = 1, . . . , n), in order to

construct the fuzzy measure.

3.6 Fuzzy Integral

Sugeno Fuzzy Integral

Let X be a set and let h : X → [0,1] represent a function that matches each

element of X to its evidence, and let µ : ℘(X )→ [0, 1] be a fuzzy measure.

Then the Sugeno fuzzy integral is defined by:
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∫

h(x) ◦µ= sup
E⊆X
[min(min

x∈E
(h(x),µ(E)))] = sup

α∈[0,1]
[min(α,µ(Aα))],

where Aα = {x |h(x)≥ α}.
For the finite case, let X = {x1, . . . , xn} be a finite set representing a set of

n information sources. Let’s suppose that h(x1) ≥ h(x2) ≥ · · · ≥ h(xn), if it is

not the case for any element, then reorder X so that the relation holds. Then

the Sugeno fuzzy integral of h with respect to the fuzzy measure µ is:

Sµ(h) =
n

max
i=1
[min(h(x i),µ(Ai))], (3.20)

where Ai = {x1, . . . , x i}. The reader should note that if µ is a λ-fuzzy mea-

sure, then µ(Ai) can be obtained applying equation (3.18).

The fuzzy integral considers the evidence supplied by each element of

a given set and the worth of each subset of elements (by means of a fuzzy

measure) in its decision making process. This combination of the importance

of the sources and the information provided makes the fuzzy integral appro-

priate for information fusion. Due to its ability to deal with uncertainties

associated with the data extracting and processing procedures, it has been

widely applied in pattern recognition and classification (Keller et al., 2000;

Sugeno, 1977).

Choquet Fuzzy Integral

Murofushi and Sugeno proposed the Choquet fuzzy integral, referring to a

function defined by Choquet in a different context (Murofushi and Sugeno,

1989). The Choquet fuzzy integral is a fuzzy integral based on λ-fuzzy mea-

sure that provides alternative computational scheme for aggregating infor-

mation. Let h(x1), . . . , h(xn) be a collection of input sources of h and let µ be

a λ-fuzzy measure, then the Choquet fuzzy integral can be defined as

∫

X

h(x) ◦µ=
∫ 1

0

µ(Aα)dα, where Aα = {x |h(x)≥ α}. (3.21)
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For the finite case, the Choquet fuzzy integral is defined by

Cµ(h) =
n
∑

i=1

[h(x i)− h(x i+1)]·µ(Ai), (3.22)

where h(x1)≥ h(x2)≥ · · · ≥ h(xn), h(xn+1) = 0, and Ai = {x1, · · · , x i}.

3.7 Other Soft Computing Methods

Kernel Methods

Given a space X of objects we want to classify, cluster, rank, etc., we can

define a function φ : X → F , where F is a feature space that eases X classifi-

cation, clustering, ranking, etc. For example, objects could be more separa-

ble in F than in X . Imagine we have a real-valued function k : X × X → ℜ
and for each x , y ∈ X , k(x , y) tells us how similar x and y are in F . k

is called a kernel function and can be defined as the inner product in F :

k(x , y) = φ(x) ·φ(y). In fact, most of the times F is hard or impossible to

compute, e.g. it could be infinite dimensional. A learning method that uses

k to avoid F computation is called a kernel method. More on this topic can

be found in Schölkopf et al. (2004).

Let us call P = {x1, x2, ..., xn} the set of objects to be analyzed. We can

construct a kernel matrix Ki, j = k(x i, x j), x i, x j ∈ X . K can be thought as a

similarity matrix in F and it is the only way kernel methods access data. For

K to be a kernel, it must be semidefinite positive, i.e. all its eigenvalues must

be non-negative.

Any learning algorithm that can be formulated in terms of inner products

can be interpreted as a kernel method if we replace the inner product with a

kernel function. This is known as the kernel trick Schölkopf et al. (2004) and

allows us to convey kernel ideas to clustering, as can be seen in the original

paper.
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Genetic Algorithms

Genetic algorithms, developed in the mid-1960s, are inspired by Darwin’s

theory about evolution. In this section we provide an introduction to the

schema of the genetic algorithms. In the work of (Holland, 1992) more

details can be found.

Possible solutions to a problem are called chromosomes, and a diverse

set of chromosomes is grouped into a gene pool. The relative quality of

these answers is determined using a fitness function. This quality is used to

determine whether or not the chromosomes will be used in producing the

next generation of chromosomes. The contents of high quality chromosomes

are more likely to continue into the next generation. The next generation is

generally formed via the processes of crossover, i.e. combining elements of

two chromosomes from the gene pool, and mutation, i.e. randomly altering

elements of a chromosome. A large number of strategies have been proposed

for determining the contents of a new generation of chromosomes. Two

classical approaches are discussed here.

The first approach was described by Holland (1992). Each solution in the

gene pool is evaluated by the fitness function. A probability of being selected

as a member of the next pool is assigned to each chromosome, according to

the quality of the actual solution. Therefore, those with better quality are

more likely to be chosen. A new pool is then constructed by randomly se-

lecting solutions following the probability distribution generated. The new

generation is then created by mixing the chromosomes of the new pool cho-

sen at random. This is generally called crossover.

A second approach that may be used was proposed by Bean (1994). This

strategy as elitist, since some percentage of the solutions with the best fitness

function values are copied directly into the the next generation. In addition

some random chromosomes are used to perform crossovers. The next gen-

eration is then formed by some of the best solutions and some of those gen-

erated from such crossover. The choice here is done entirely at random; no

weighting based on the quality of the solutions is performed. Bean (1994)

shows that this strategy leads to stable results.
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Genetic algorithms are not sensitive to the presence of local minima since

they work on a large number of points in the problem space simultaneously.

Discussion of the benefits gained by using genetic algorithms instead of ex-

haustive search for different optimization problems can be found in Painton

and Campbell (1995).

3.8 Fuzzy Applications in Bioinformatics

Fuzzy theory has been successfully applied to diverse practical areas. In

bioinformatics, it has been used to develop systems and methods for a variety

of problems. Some of the most important applications are:

• Gene functions prediction (Tari et al., 2009).

• Study of differences between polynucleotides (Torres and Nieto, 2003).

• Alignment of DNA sequences based on the characteristics of DNA frag-

ments and a fuzzy logic system (Kim et al., 2008a).

• DNA sequencing using genetic fuzzy systems (Cordon et al., 2004).

• Clustering genes from microarray expression data (Mukhopadhyay and

Maulik, 2009)

• Spot segmentation and quantification of gene expression level from

microarray images (Wang et al., 2008).

• Measuring the significance of gene pathways in a particular disease

(Liang et al., 2008).

• Deciphering genetic networks (Ressom et al., 2003).

• Classification of amino acid sequences (Bandyopadhyay, 2005).

• Biological knowledge extraction (Lopez et al., 2008).
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CHAPTER 4
Semantic Measures for Gene

Ontology

Due to the recent flood of new biological data from genome sequencing,

scientists are struggling to answer many basic questions and attempting to

extract information from this data. One of the main tasks is to discover

to which function the genes are associated. Ontology has long been the

preserve of philosophers and logicians. Recently, ideas from this field have

been applied by computer scientists as a basis for encoding knowledge and

with the hope of achieving interoperability and intelligent system behavior.

In bioinformatics, ontologies ease query and data-mining activities. Recently

bio-ontologies have played an important role for the automatic integration

of background knowledge which is fundamental to support the generation

and validation of hypotheses about the function of gene products.

In this chapter we introduce the Gene Ontology (GO) as a tool to ex-

tract biological information from groups of potentially related gene prod-

ucts. Likewise, we investigate the performance of different ontology seman-

tic measures and clustering methods in protein family recognition tasks. Fi-

nally, we propose a novel fuzzy semantic similarity measure over GO and

we show its effectiveness in protein classification problems, comparing our

proposed measure with existing approaches.
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This chapter is organized as follows. Section 4.1 reviews the principles of

semantic similarity in ontologies. Section 4.2 discusses the crisp approaches

to the problem and presents a novel methodology for evaluating these mea-

sures together with different cluster methods for protein family recognition.

The novel fuzzy similarity measure is presented in Section 4.3. In Section 4.4

we evaluate the performance of GO semantic similarity measures based on

the effectiveness in recognizing protein families. Section 4.5 concludes this

chapter.

4.1 Semantic Similarity in Ontologies

Before we discuss the GO semantic similarity, we will outline first how the

semantic similarity for two elements in a general ontology can be defined.

The definition of semantic similarity measures for elements of an ontology

has been intensively studied in diverse fields such as artificial intelligence,

psychology, linguistic, etc. In particular, the data mining and information re-

trieval literature presents a number of research works focused on documents

similarity (Lee et al., 2007; Janowicz et al., 2008).

Edge-based Methods

The traditional method for measuring the semantic distance between two

elements of an ontology is to measure the distance between the two nodes

where the elements are annotated (Lee et al., 1993). In other words, given

two elements c1 and c2, their semantic distance is computed as a function

of the distance between the nodes where they are contained. There exist a

number of proposed approaches that makes use of this idea. The most widely

extended are:

sim(c1, c2) = min(dist(C1, C2)) (4.1)

sim(c1, c2) =

∑

dist(C1, C2))
k

(4.2)

sim(c1, c2) = min(dist(C1, NCA(C1, C2)), dist(C2, NCA(C1, C2))), (4.3)
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where C1 and C2 are the nodes where the elements c1 and c2 are contained,

dist(c1, c2) is the edge distance between the elements c1 and c2, min is the

usual minimum function, k is the number of paths between c1 and c2, and

NCA(c1, c2) is the nearest common ancestor of c1 and c2.

In equation 4.1 the semantic distance of c1 and c2 is defined as the length

of the minimum path between C1 and C2.

In equation 4.2 the semantic distance of c1 and c2 is defined as the average

of the length of the paths between C1 and C2.

In equation 4.3 the semantic distance of c1 and c2 is defined as the min-

imum distance between each node and the nearest common antecesor of

them.

One disadvantage of these techniques is that the distance between nodes

of the higher levels of the ontology (non-specific nodes) might be similar to

those obtained between nodes in low levels (very specific). This fact lead to

spurious similarities as it was shown in a work from Richardson and Smeaton

(1995).

A main drawback derived from the use of these methods is that they need

a uniform distribution of the nodes and their relations across the ontology in

order to provide proper results. These conditions are not always fulfilled,

specially when the size of ontology increases, as is usually the case when

dealing with ontologies defined for real problems like GO.

Node-based Methods

There exist a variety of techniques that make use of the properties of the

nodes to calculate the semantic similarity between two elements of an on-

tology. Some of these techniques were studied by Bernstein et al. (2005).

Among all the approaches, the Jaccard measure (Manning and Schutze,

2002), based on the set theory, was one of the most popular for the anal-

ysis of the similarity of ontology nodes:

s(c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

, (4.4)
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where c1 and c2 are the ontology nodes being compared.

More recently, node-based methods that use the information content of

the nodes of the ontology in order to provide a semantic similarity/distance

for two elements have emerged as a good alternative. The main idea is to

measure the semantic similarity/distance of two concepts as a function of the

degree of information that the two concepts share in common. It is assumed

that the more information the nodes share, the more similar they are. This is

precisely the approach that fits the best with the features of GO. Therefore,

in this section we focus on those models that make use of the Information

Content (IC) of the nodes which is defined as:

IC(c) =− log(P(c)), (4.5)

where c is a node and P(c) is the probability of occurrence of c or some of its

offspring in the ontology.

Resnik Model

Resnik (1995) first proposed to define an object of an ontology is defined by

the members of the class specified.. In a explicit ontology (e.g. GO) the set

of members of a class is equivalent to the offspring of the object in question.

The information of a given class is defined as the probability P of finding an

occurrence of this class or any of its offsprings in the ontology. The entropy

of a class a function of the logarithm of such probability. Thus, the similarity

between two nodes c1 and c2 is:

SI MResnik(c1, c2) = max
c∈S(c1,c2)

(− log(P(c))) = max
c∈S(c1,c2)

(IC(c)), (4.6)

where S(c1, c2) represents the set of common antecesors shared by the nodes

c1 and c2. Thus, Resnik proposed that the similarity between two nodes

of an ontology is the specificity (or entropy) of the most specific common

antecesor. This measure can take values in the interval [0,∞] since P takes

values between 0 and 1.



4.1. Semantic Similarity in Ontologies 61

Lin Model

An alternative to the Resnik model was proposed by Lin (1998). Similarly,

Lin used the IC of the nodes of the ontology for his purpose. In this model the

similarity of two nodes is also computed taking into account their common

antecesors. However, Lin incorporates the IC of the nodes that are being

compared. Thus, Lin defined the similarity between two nodes c1 and c2 as:

SI MLin(c1, c2) =
2·maxc∈S(c1,c2)(− log(P(c)))

log(P(c1)) + log(P(c2))
, (4.7)

where the notation of equation 4.6 holds. This measure can take values

between 0 and 1. It can be seen as a normalized version of equation 4.6.

Mixed methods

In addition of the two traditional methods (nodes-based and edges-based),

there exist other mixed approaches that try to integrate the benefits of both

of them into a single method. The method proposed by Jiang and Conrath

(1997) is the mixed method that has had a great impact in the scientific

community (Islam and Inkpen, 2008; Markines et al., 2009).

Jiang and Conrath Model

Jiang and Conrath (1997) proposed a method that is derived from the edges-

based models (taking into account node distances), and incorporated the

nodes IC as a factor. Particularly, it focused in determining the strength link

strength (LS) between a parent node with its child node. The authors pro-

posed that the such strength is a function of the probability of occurrence of

the child node ci given the occurrence of his parent node p:

P(ci|p) =
P(ci ∪ p)

P(p)
=

P(ci)
P(p)

. (4.8)
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According to theoretical information concepts, Jiang and Conrath (1997)

defined the LS as the negative logarithm of the probability shown in equation

4.8:

LS(ci, p) =− log(P(ci|p)) = IC(ci)− IC(p). (4.9)

This indicates that the LS can be calculated as the difference of IC of the child

and parent nodes. Following these ideas, the authors defined their distance

semantic measure as:

DISTJ&C(ci, c j) = IC(ci) + IC(c j)− 2· IC(NCA(ci, c j)), (4.10)

where the notation of previous equation holds. This measure provides the se-

mantic difference between the pair of nodes (ci, c j) and gives values between

[0,∞].

4.2 Gene Ontology Crisp Semantic Measures for

Related Proteins Recognition

In this section we show how general ontology semantic measures can be

adapted to be applied in GO and we make use of these measures for: i)

study of correlations between GO and some protein grouping approaches

(sequence similarity, expression level, protein-protein interaction, and pro-

tein homology), and ii) evaluate the performance of several clustering meth-

ods in recognition of related proteins (standard c-means, “matrix” c-means,

kernel c-means and constant shift embedding c-means).

Our methodology includes the construction of families of related proteins

and the comparison of how well the different clustering methods recognize

our initial families. We use two GO ontologies (biological process and molecu-

lar function) independently and all three together (ALL = biological process +
molecular function + cellular component) to compute the three GO semantic

measures explained above (Resnik, Lin and Jiang & Conrath).
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Adapting Classical Measures

As outlined in the previous section, classical semantic similarity measures

for ontologies are designed for comparing two individual nodes. Thus, these

measures are not directly suitable for measuring semantic similarities of el-

ements defined by a set of nodes. This approach can be used when dealing

with domains like WordNet (Fellbaum et al., 1998) where, although a single

word can have multiple meanings, it is rare that such ambiguity arises since

the appropriate meaning can be inferred from the context where the word

is used. However, this is not the case of GO gene products. For example,

when a given gene is significantly expressed in a microarray experiment, it is

not possible to know in advance which of its different functions or activities

will the corresponding gene product perform. To this effect, the most widely

used approach is to compute the semantic similarity/distance measure of two

gene products as the average inter-set similarity between the GO annotations

of the two gene products:

SI M(gi, g j) =
1

m · n

∑

ak∈Ai ,ap∈A j

sim(ak, ap) (4.11)

DIST (gi, g j) =
1

m · n

∑

ak∈Ai ,ap∈A j

dist(ak, ap), (4.12)

where gi and g j are gene products with the sets of GO annotations Ai and

A j respectively, Ai and A j have m and n annotations respectively, sim(ak, ap)
is the semantic similarity of the terms ak and ap computed as in equations

4.6 and 4.7 and dist(ak, ap) is the semantic distance of the terms ak and ap

computed as in equation 4.10.

Distances and Similarities

Among the three GO semantic measures (Resnik, Lin and Jiang & Conrath),

Resnik and Lin propose similarity measures, while Jiang & Conrath define a

distance or dissimilarity measure. We use clustering methods whose inputs

are either distances or similarities, so next it is shown how to convert ones

into others:
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Generally, if we initially have a distance D, we normalize to [0,1] and

later we compute the similarity S as S = 1− D . The same is true to convert

a similarity into a distance.

However, in case the similarity is an inner product, we can compute the

distance between objects i and j as Di j = Sii + S j j − 2Si j. We can not get a

similarity from a metric distance likewise, since several similarity matrices S

can produce the same distance D.

Clustering

Some difficulties arise when we try to use measures defined over GO in learn-

ing methods, such as clustering. First of all, Jiang is a dissimilarity measure,

but it is not a metric. In this case, the space defined by the measure is not

a metric space, i.e. it does not fulfill the triangle inequality Di j ≤ Dik + Dk j

where Di j denotes the distance between points i and j. The same holds

true for similarity measures, such as Resnik and Lin. Those measures do not

have the properties of an inner product and, therefore, they do not define a

norm that fulfills the triangle inequality. Consequently, the learning methods,

which are prepared to work with metric distances or inner products, do not

work properly with those measures. For example, they do not converge. We

take two approaches to solve this issue:

1. If we want a distance D to be metric, we use Constant Shift Embedding

(CSE) (Roth et al., 2003a): Given D, CSE sums the minimum possible

constant D0 to the non-diagonal entries in D in order to make D a met-

ric. It can be shown that D0 = −2λn(Sc), where λn(x) is the minimum

eigenvalue of x and Sc is the centralized similarity matrix computed as

Sc =−1
2
Dc and Dc =QDQ with Q = I − 1

n
eeT , e = (1, 1, ..., )T .

2. According to that explained in Section 3.7, if we want a similarity S

to be an inner product, we have to force it into a kernel. A kernel is

a positive semidefinite matrix, i.e. all its eigenvalues should be non-

negative. Therefore, we can obtain a matrix S′ preserving the positive

eigenvalues and corresponding eigenvectors of S. However, the reader

should note that this transformation implies losing some information.
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We consider four ways to apply c-means to cluster genes from their sim-

ilarities (distances) in GO: standard c-means (cmeans), a naive approach we

call matrix c-means (mcmeans), kernel c-means (kcmeans) and c-means with

CSE (csecmeans).
Briefly, c-means clustering (Hartigan, 1975) is a maximization of expecta-

tion algorithm that minimize the cost function shown in Equation 3.8. Next,

we explain how we use c-means in the four cases outlined above:
• cmeans: Given a symmetric distance matrix D, we apply c-means as

described in equation 3.8. Notice, that D could be a non-metric dis-

tance, so we can expect to face convergence problems.

• mcmeans: Given a symmetric distance or similarity matrix Y , we think

of every row Y as an object to be clustered. Therefore, we apply c-

means over the rows of Y .

• kcmeans: Given a symmetric similarity matrix S, we get rid of negative

eigenvalues to produce a kernel S′, which is an inner product. We

compute the distance matrix Di j = Sii + S j j − 2 ∗ Si j and then apply

c-means to cluster. In this case, we avoid convergence problems.

• csecmeans: Given a symmetric distance matrix D, we apply Constant

Shift Embedding to get D′ and then we apply c-means to cluster. In this

case, we also avoid convergence problems.
When the method expects a similarity (distance) and we have a distance

(similarity), we use the transformations described in Section 4.2.

Validation

After clustering is performed, we need to assess the quality of the obtained

solutions. If we know the “true clustering”, as in this case, two scores that

can be used to evaluate the computed clustering are Jaccard and Minkowski

(Tan et al., 2005).
Let T be the “true clustering” and C the computed clustering. We name

n11 the number of pairs of data that are in the same cluster in both T and C ,

n01 the number of pairs that are in the same cluster only in T , and n10 the

number of pairs that are in the same cluster only in C . The scores are defined

as:
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• Jaccard Score: J(T, C) = n11

n11+n01+n10
. The higher J(T, C), the better C

as clustering result.

• Minkowski Score: M(T, C) =
q

n01+n10

n11+n10
. The lower M(T, C), the better

C as clustering result.

These measures do not represent a percentage of hits, but a score of the

global quality of the clustering. We use the score of a random clustering as a

reference of how good the results are. Also, it can be expected Jaccard and

Minskowski are congruent, i.e. the best clustering has higher J and lower M ,

but this does not always happen.

Datasets

Our experiment setup is intended to give us insights into which GO measure

best describes gene proximity and which of the proposed clustering methods

is the most appropriate and which GO ontology should be used in each case.

In this study we use the annotations corresponding to the November, 2006

GO version.

In order to make the results comparable, the datasets are constructed

using related families of proteins with approximately similar size. We also

avoid overlapping between families, since we are using crisp methods to

recover them.

With these goals, we build families of genes and proteins from the fol-

lowing sources:

• CluSTr (Kriventseva et al., 2001a) families (C). These families belong

to the CluSTr database, which classifies UniProt KW (Bairoch et al.,

2005) human proteins in groups of related proteins. Proteins in CluSTr

are grouped according to pair-wise sequence comparisons with the

Smith-Waterman algorithm. We use families of similar size to build

each of the five datasets of sizes two, three, four, five, and six clusters.

We denote them by C2, C3, C4, C5 and C6.

• MIPS (Mewes et al., 1999) families (M). First, we select random nodes

from MIPS database. Yeast genes annotated in the same node are con-

sidered to be in the same family. Finally, several random families of
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Figure 4.1: Workflow.

approximately the same number of genes are grouped together to form

M3, M4, M5, M6 and M7.

• Expression similarity families (E). These families are obtained from

well-known yeast Saccharomyces cerevisae clusters reported by Eisen

et al. (1998). The clustering with the proposed ten families is consid-

ered: E10.

• Pfam (Bateman et al., 2002) families (P). These families are built

by sequence alignment and profile-Hidden Markov Models (profile-

HMMs). Selected a random yeast protein, the rest of the proteins are

ranked according to the alignment distance. The closest proteins form

a new family. Several families of similar size are used to build the final

datasets: P2, P3, P9 and P17.

• Gene Sorter (Hinrichs et al., 2006) yeast protein homology families

(H). These families are based on the BLASTP E-value. Further informa-

tion can be found in Kent et al. (2005). Same as with P families, after

selecting a random protein, a family consists of the closest proteins to

it. Families are grouped to form H2, H3, H4, H5, H6, H7 and H8.

Figure 4.2 summarizes all the steps from family construction to clustering

validation.
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Results

For each experiment, we compute nine matrices by combining each of the

three GO measures (Jiang, Lin and Resnik) with the annotations1 in BP on-

tology, MF ontology and all three ontologies together (ALL = BP + MF +
CC)2. The clustering methods cmeans, mcmeans,kcmeans and csecmeans are

executed over these nine matrices.The obtained clusterings are compared

with the true initial families with the Minkowski and Jaccard scores. The

random method denotes the scores obtained by a random clustering of the

genes and it should be compared with the other scores to evaluate the qual-

ity of clusters. In this paper, we show in tables 1 to 5 the results that most

intuitively illustrate our findings3.

1We did not take into account the Inferred from Electronic Annotations (IEAs) since they
do not provide a reliable source of information

2We do not provide the results for CC since it presented poor results in terms of family
recognition.

3We use * aside the value for the score when cmeans fails to converge.
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The performance of Resnik, Lin and Jiang measures across experiments

is very similar. However, Resnik seems to produce the best scores in most

of them. This is consistent with results of other experimental works Lord

et al. (2003); Sevilla et al. (2005). Resnik also presents less variability but

it usually has more convergence problems with the c-means algorithm than

the other measures.
Next, we focus our discussion on the clustering methods:
• cmeans algorithm is not appropriate to be used directly with GO mea-

sures. As commented before, it does not converge in some of the cases.

Therefore, we need one of the other methods if we intend to guarantee

a stable result.

• mcmeans is the first proposed solution. It is clear from the tables that

it produces the worst and most variable results.

• kcmeans produces the best results for many of the families. It also

improves cmeans results in most cases, even though it involves loss of

information with respect to the original similarity matrix.

• csecmeans also produces very good results, similar to those of kcmeans.

This was expected since this method keeps clustering structure intact

(Roth et al., 2003b), favoring family identification.
GO contains a lot of usable knowledge for genomic research. As expected,

when we consider the molecular structure of proteins (experiments C, H and

P), the MF ontology provides the best explanation of the families. Further-

more, when we look at the biological behavior of proteins (experiments E

and M), it is the BP ontology which performs the best. For example, fami-

lies according to gene expression (Table 4.3) are very well recovered, even

when the dataset has many genes (over 260) and clusters (10). Also, the

performance is not dependent on the organism used for the study, obtaining

comparable results for sets of human and yeast proteins.
Measures computed over all of the GO ontologies (ALL) provide variable

results. Sometimes results are worse (Table 4.4) and sometimes better (Table

4.2). An explanation for this is that the CC ontology might hinder recognition

in some experiments, since its definition (location of the protein in the cell)

is not clearly related to the family construction methods we use.
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As a conclusion, GO contains knowledge about molecular alignments of

proteins (C families), gene expression (E families), protein homology ac-

cording to blast (H families), other ontologies (M families), and Pfam (P

families). Computing the different measures defined over GO, we can use

such knowledge to analyze sets of annotated proteins.

Cluster Analysis

In this section it is shown that GO separates fairly well different families of

proteins. Here, we consider the biological meaning of the results intend-

ing to explain of protein misclassification, discussing the analysis of the best

cluster for the family C44, focusing on the protein misplacements and other

interesting considerations.

If a protein is not clustered into its appropriate family, there exist four

possible reasons:

• The clustering method failed and made the protein belong to a wrong

group. Therefore, different clustering methods should be considered.

• The GO measure was not appropriate since the computed distances/sim-

ilarities did not capture the family structure. The clustering method,

although working well, would not be able to place the protein into its

family.

• The GO annotations of the protein were very different from the GO

annotations of the other proteins in the family. In this case, we should

ask whether the protein actually belongs to this family or not.

• The protein was poorly annotated in GO. Therefore, the lack of infor-

mation would lead to a random behavior of the method.

In Table 4.6, a summary of the best cluster for the family C4 is shown.

We use all three ontologies (BP, MF and CC) in our analysis. Reader should

note that, as exposed in section 4.2, C families are constructed according to

the molecular structure of proteins. Therefore, MF usually provides the best

explanation.

4The best cluster for the family C4 is using the Resnik measure and the kcmeans method
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In C4, Cluster 1 contains 23 proteins and 22 of them belong to Family

1, which groups 23 proteins. This implies that there is one missing protein

(PTK2B) and one non-expected protein (ADRA1A) in the cluster. The clus-

tering method does not locate PTK2B together with its hypothetical family.

An analysis of the GO annotations of the family reveals that PTK2B is the

only protein not annotated to receptor activity (GO:0004872). However, it is

the only one annotated to nucleotide binding (GO:0000166). Moreover, this

protein is the only one not found in the membrane node (CC, GO:0016020)

but in the intracellular node (CC, GO:0054430). This clearly shows that our

method is working properly for this protein. On the other hand, ADRA1A is

included in Cluster 1 since it shares the main annotations with the proteins

in that cluster.

In Cluster 2, there are 25 proteins, all of them belonging to Family 2.

However, Family 2 contains 28 proteins, so we have three missing proteins

(ADRA1A, HGF and LPA). As explained above, ADRA1A belongs to Cluster

1. ADRA1A is also the only protein not present in the peptidase activity node

(GO:0008233) together with THRB. Studying THRB, we observe that it can be

considered as an outlier since it has its own different set of annotations, e. g.

transcription regulator activity (GO:0030528). However, THRB is clustered in

its hypothetical family because its annotations are more related to this family

than to the rest of the families. HGF and LPA share the main annotations in

Family 2, e. g. catalytic activity (GO:0003284) so, in order to explain why

they are misplaced, we need to explore the clusters where they are assigned.

Cluster 3 has 27 proteins, 25 of them in Family 3, which also has 27

proteins. The two missing proteins are CCR1 and CCBP2, and the two extra

proteins are HGF and MCHR1. We observe that HGF only shares annotations

with two proteins in this cluster in the hidrolase activity node (GO:0016787).

Therefore, considering the analysis of Cluster 2, the clustering method is not

working as expected. In this case, applying fuzzy cmeans gives us a correct

classification of this protein. MCHR1 presents a small number of annotations.

Furthermore, it shares an annotation at a very low GO level (high specificity)

with two proteins in Family 2, e. g. the neurotransmitter receptor activity

node (GO:0042923). Consequently, the GO measure assigns a very small
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Table 4.6: Best clusters for experiment C4. (Jaccard = 0.772).

fam i cluster j % i in j len(i) misplaced / cluster j

1 1 22 // 23 (96%) 23 {PTK2B / 4}
2 2 25 // 25 (100%) 28 {ADRA1A / 1, LPA / 4, HGF / 3}

3 3 25 // 27 (93%) 27 {CCBP2 / 4, CCR1 / 4}
4 4 26 // 30 (87%) 27 {MCHR1 / 3}

distance between these three proteins, and the clustering method groups

them together. For CCR1 and CCBP2, it seems that they should belong to this

cluster since they collect most of the general annotations of the family. This

fact will be confirmed after the analysis of the last cluster.

Cluster 4 presents 30 proteins, 26 of them belonging to Family 4, which

has 27 proteins. There is one missing protein (MCHR1) and four misplaced

proteins (CCR1, CCBP2, LPA and PTK2B). MCHR1 is not annotated to catalytic

activity node nor in transferase activity node (GO:0003824 and GO:0016704),

while the other proteins in the family are annotated to one or both of these

GO terms. This shows again that the method works according with the in-

formation provided. CCR1 and CCBP2 do not have important annotations

in common with the rest of the proteins in this cluster, however they share

annotations with those in Cluster 3. In this case, the method does not work

properly but, unlike in the case of HGF, other clustering methods (e. g. fuzzy

kmeans) provide the same results. It is clear then that the GO similarity

measures do not work as expected in this case. An study of the annota-

tions of PTK2B shows that it shares most of them with the proteins in this

family, mainly catalytic activity and transferase activity (GO:0003824 and

GO:0016704). Therefore, the method works properly for this protein. Fi-

nally, LPA has very few annotations and a correct classification using GO is

not feasible.

In Table 4.7 we summarize the information discussed in this section. Ob-

serve that for the dataset C4 the method groups correctly 102 out 105 pro-

teins (97%).
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Table 4.7: Proteins misplaced for experiment C4.

Protein Reason for the misplacement Method works

ADRA1A Annotations close to the other family Yes
CCBP2 GO similarity measure No
CCR1 GO similarity measure No
HGF Cluster method No
LPA Poor GO annotations Yes
MCHR1 Poor GO annotations Yes
PTK2B Annotations close to the other family Yes
THRB5 Outlier: very different GO annotations Yes
All the rest —————– Yes

4.3 Fuzzy Semantic Similarity Measure for Gene

Ontology

In this section we present a new fuzzy similarity measure (FSM) for comput-

ing the similarity of two gene products annotated with terms from an ontol-

ogy. The measures mentioned above do not take into account the reliability

of the source of information. In order to do it we propose the aggregation

of the information content and the evidence code together. In particular, the

evidence codes are translated into weights by means of a Genetic Algorithm

(GA).

Adapting Fuzzy Approaches

Fuzzy techniques have been applied in order to solve the problem of comput-

ing the semantic similarity between GO gene products. Keller et al. (2004)

proposed a Fuzzy Measure-based Similarity (FMS) for computing the sim-

ilarity of two gene products annotated with terms from an ontology. The

advantage of FMS is that it takes into consideration the context of the whole

set when computing the similarity.
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Definition

The similarity measure will be based on the concept of a general fuzzy mea-

sure using the ontology annotations of the given gene products. Let G be a

fuzzy measure over a set X (the finite universe of discourse with the subsets

A, B, ...) satisfying the conditions shown in equation 3.13 and equation 3.14.

Given two gene products, G1 and G2, we can consider them as being

represented by collections of terms:

G1 = {T11, . . . , T1n}, G2 = {T21, . . . , T2n}. (4.13)

In this context, the terms in a combined set describing two gene products

will be considered as “information sources” that support the similarity of two

genes. Each annotation Ti will have a fuzzy density value which is inter-

preted as the importance of the single information source Ti in defining the

gene products it belongs to. General fuzzy measures are broad, but it is of-

ten the case that the densities can be extracted from the problem domain or

supplied by experts. The key to using fuzzy measures involves finding those

that can be built out of the densities (Keller et al., 2004), such as Sugeno

λ-measures (see Section 3.5).

For constructing the fuzzy densities we use the information-theoretic prin-

ciples (Resnik, 1995). It has been demonstrated that this type of approach

is less sensitive and in some cases not sensitive to the problem of not uni-

form distribution in the ontology (Budanitsky and Hirst, 2001). Similarly to

what was discussed in Section 4.1, for each term, T , we calculate P(T ) as

the probability of finding T or a child of T in the ontology and then we com-

pute − log(P(T )). This creates a problem when − log(P(T )) > 1. In order

to avoid this, we normalize the result dividing by the maximum specificity

i.e. − log( 1

Total number of annotations). Finally, for a term T we obtain the

importance, I(T ), by multiplying its value by a factor depending on the best

evidence code annotated in the term:

I(T ) =
− log(P(T ))
− log(P(min))

EC(T ). (4.14)
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Previous studies did not take into account the reliability of the source

of information. Using the evidence codes to compute the importance of the

terms makes the measure more natural and intuitive since we adjust the

importance depending on the credibility of the source of information. In GO

there are currently 17 evidences codes6 (Table 2.3) . In the GO web page it is

said that users can and should form their own conclusions as to the reliability

of each type of evidence and each individual annotation.

Following this idea we assigned a numeric value in [0, 1] for each evi-

dence code. As we said before, these weights will be multiplied by the in-

formation content to get the importance of each term. Hence, we have to

solve a search problem in order to find the values for the codes that make

the FSM provide the best result. Such problem consists of finding twelve

values in [0, 1] that allow the FSM to get the best similarity values. In order

to solve this problem we propose the use of a Genetic Algorithm. Genetic

algorithms have been widely proved to provide good solutions in this kind of

problems with an acceptable time consuming. They have also been proved

to outperform other techniques when solving complex problems with many

parameters (Pardalos and Resende, 2002). Another advantage of genetic al-

gorithms is that they bring a set of solutions instead of a unique solution7.

The pseudo-code of the genetic algorithm we used is provided in Figure 4.3.

The main features of the GA are the following:

• Each individual in the population is an array of 10 values. Each value

of the array is a weight for the corresponding evidence code.

• The population is initialized randomly.

• Evaluation: for each individual, a similarity matrix is computed and the

procedure described in Section 4.4 carried out to get the performance

of the FSM with the corresponding weights.

• Mutation operator: changes each weight with probability Pm by a ran-

dom number in [0, 1].

6In what follows, we work with the 11 evidence codes available at the time of moment
of developing this work.

7See Section 3.7 for more on GAs
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GENETIC ALGORITHM

1 t← 0
2 Initialize P(t)
3 Evaluate P(t)
4 while (stop condition not satisfied)
5 do t← t+1
6 Select P ′(t − 1) from P(t − 1)
7 Recombine P ′(t − 1) to obtain P(t)
8 Evaluate P(t)

Figure 4.2: Pseudocode for the genetic algorithm.

• The selection process is carried out by means of the tournament selec-

tion with size 2.

• For recombining the selected population P ′(t − 1) in each iteration we

use the Wright’s heuristic crossover (Wright, 1991).

• For each iteration, the two best solutions of the current population are

directly copied in the next population.

• We ignored the IEA annotations since they do not represent a reliable

source of information.

4.4 Protein Classification using Gene Ontology

One of the central problems in computational biology is the classification of

proteins into functional and structural families based on sequence homology.

In this section we evaluate the performance of each GO semantic similarity

measure based on the effectiveness in recognizing protein families.

Methods

The protein families were downloaded from the CluSTr database of UniProt

(Bairoch et al., 2005), which offers a resource for an automatic classifica-

tion of UniProt Knowledgebase proteins into groups of related proteins. In
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the CluSTr database, the clustering is based on analysis of all pair-wise se-

quence comparisons between proteins using the Smith-Waterman algorithm

(Smith and Waterman, 1981) between protein sequences, for various levels

of protein similarity (Kriventseva et al., 2001b).

Families within the CluSTr database are univocally identified with an ID

code, e.g. HU:3515:141.1. The last number in the ID (141.1) is the z-score

for the corresponding family. The higher the z-score is, the more differen-

tiated the family is. We wanted to compare how the different FSMs help

to recognize the families according to their GO annotations. Therefore, we

selected families of human proteins with medium-high similarity in order to

have groups of proteins with some common properties (if not it could lead

to random solutions), but not so well differentiated (which could lead to a

trivial problem).

We combined the obtained families to form several datasets. The most

representative datasets are shown in Table 4.10. The annotations were taken

from the GO database, release of October of 2005. In our case, proteins are

groped together into families according to their functional similarities. Due

to this, we used the molecular function ontology to compute the similarity

between the proteins and hence to obtain the similarity matrix. All selected

families are comprised of human proteins. Therefore, only the annotations

of UniProt of H. Sapiens gene products were considered for the experiments.

For the training of the genetic algorithm we used different sets of families

in order to obtain as much generalization as possible. In validating their

results, previous works implemented a hierarchical clustering algorithm that

groups the proteins according to the similarity matrix obtained before (Keller

et al., 2004). This approach is too restrictive since it forces the elements to

belong or to not belong to a cluster i.e. a family. In reality a protein might be

a member of more than one family, and it could belong to one family more

than to another if it shares more properties with the proteins from the former

than with those from the latter.

Fuzzy clustering could solve the problem of belonging to several families;

however, these techniques have the restriction that the sum of the member-

ship degrees is always equal to one. Therefore it creates the problem that a
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protein cannot be part of two or more families to a high degree at the same

time. Another problem would be the case that a protein does not belong at

all to any family with which we are working. In that case, fuzzy clustering

approaches also do not work properly since they assign at least one high

membership degree in order to fulfil the property that the sum of degrees

equals to 1.
We implemented a possibilistic clustering algorithm to deal with these

problems. Like fuzzy approaches, possibilistic clustering gives a membership

degree to each element for each cluster. However, possibilistic approaches

do not have restrictions related to the degrees (see Section 3.3). It solves the

problems mentioned above since the possibilistic approaches allow a protein

to belong either to several families with a high membership degree or to be-

long to no family at all. This makes the approach much more realistic and

natural since it is more similar to the real situation we are addressing. There-

fore, the possibilistic algorithm returns a list of genes with their membership

degrees for each cluster. In order to determine the cluster to which a gene

belongs, we follow the following rules:

• If a gene presents a membership degree greater than 0.8 for one or

more clusters, the gene belongs to all of those clusters.

• If a gene presents a membership degree greater than 0.4 and lower

than 0.8 for one or more clusters, the gene belongs to the cluster with

the highest membership degree.

• Otherwise, the gene does not belong to any cluster in the experiment.

In addition, if there are too many genes associated to several clusters in a

given experiment, the semantic similarity measure might not be suitable for

such experiment since it is not able to distinguish the families in a correct

manner. We considered that if more than 20% of the genes belonged to

more than one cluster, the number of correctly classified genes was 0. All

these thresholds were selected after observing the clusters obtained in many

runs of the algorithm. We saw that these are good values to get clusters with

an acceptable size and biological meaning.
Once we got the clusters, we calculated the proportion of genes of each

family that belonged to each cluster to assign a family to every cluster. A
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Table 4.8: Evidence Weights.

TAS IDA IMP IGI IPI ISS IEP NAS ND NR IC

0.930 0.933 0.120 0.030 0.031 0.271 0 0.577 - - 0.04

family was assigned to the cluster with the highest proportion of genes on it.

Finally, we created a measure to compare the quality of the family recogni-

tion. This measure counted the number of genes that had been assigned to

the cluster to where their family was previously assigned. The more genes

are correctly located, the better the measure has performed.

Results

To demonstrate the applicability of our approach we compared the results of

our semantic similarity measure to the results of the Resnik, Jian and Con-

rath, Lin, and Keller SS measures. We took a variety of families, combined

them in different manners, and applied the methodology explained before

in order to carry out such comparison. We run the GA explained above for

obtaining the weights for the evidence codes. Results of the GA are shown in

Table 1. The weights follow the loose hierarchy proposed by the GO Consor-

tium (Harris et al., 2004).

We show in Table 4.10 the four most representative experiments. A and

B refer to experiments of proteins from two families, C and D refer to exper-

iments of proteins from three families. The IDs of the families correspond

with those obtained from CluSTr Database of UniProt, with the correspond-

ing family z-score indicated at the end (i.e. HU:1995:116.8 implies a z-score

equals to 116.8).

In Table 4.10 can be seen that the fuzzy semantic similarity measure pro-

posed outperforms the results of the rest of the methods. This was expected

and demonstrates that incorporating the information of the technique used

for the experiments (i.e. evidence codes) makes the measure more reliable

and accurate. It confirms that the GO annotations are a good source of infor-

mation and should be used to address bioinformatics problems. Our measure
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Table 4.9: Semantic similarity measures over BP and CC.

Data set 1 HU:1995:116.8 HU:1897:110.7
Data set 2 HU:3515:141.1 HU:398:62.2
Ontology biological process cellular component
Family A1 A2

Resnik 30 (53%) 28 (49%)
Lin 27 (47%) 25 (44%)
Jiang 33 (58%) 28 (49%)
Keller 32 (58%) 25 (44%)
FSM w/ EC 33 (58%) 17 (30%)

is the most stable one, and even when the families are not so well differ-

entiated, it still has a high proportion of correctly classified genes (always

greater than 70%). For instance, the second family in experiment B presents

a medium-low z-score (62.2), 61% of the genes in the experiment belong to

this family, and our measure still classifies 70% of the genes correctly.

In order to verify the correct performance of our method, we studied the

behavior of the measures when working over the other two subontologies:

biological process and cellular component. Results are shown in Table 4.9.

In Table 4.9 we can see that the performance of all the measures de-

creases substantially compared to the performance for the molecular func-

tion subontology. This was expected since, as explained above, families are

created according to similarities in the protein sequences, and neither the

process where a protein participates, nor the place in the cell where it is lo-

cated, are directly related to the sequence similarity. The decrease is more

significant for the cellular component subontology. This was expected too

because besides the problem with the family construction, in this subontol-

ogy there are less annotations than in the other two, and therefore the SS

measures cannot deal with the problems properly.
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4.5 Concluding Remarks

In this chapter, we analyzed the classical GO semantic measures (Resnik,

Jiang and Lin). Starting with different groups of related proteins accord-

ing to different criteria (sequence similarity, expression level, protein-protein

interaction, and protein homology), we proposed a method to analyze the

performance of GO similarity measures in recognizing these relationships.

We used different GO ontologies for computing similarities/distances be-

tween proteins, and all three together. We calculated the (di)similarity ma-

trices corresponding to three (di)similarity measures to see how they per-

form in different experiments. Finally, we applied four clustering methods

(cmeans, mcmeans, kcmeans and csecmeans) to these matrices, we validated

the results with two scores (Jaccard and Minkowski), and we analyzed the

obtained clusters in order to observe the correlation between GO and the

different families constructed.

We demonstrated that two of the clustering methods, kcmeans and csec-

means, provide better results than the others and they should be considered

when dealing with imprecise data. Furthermore, we showed that selecting

an appropriate GO partition is a key issue for each problem, e.g. molecu-

lar function ontology should be used when dealing with molecular structure

of proteins. Thus, we proved that this knowledge can be applied to recog-

nize related proteins, to validate other assessments and to incorporate it to

other experiments. In that sense, kernel methods, like kcmeans, are very ap-

propriate for integration of knowledge, so the proposed kernelization of the

similarity matrix is specially interesting.

In addition, we presented a new fuzzy similarity measure for computing

the similarity of two gene products annotated with terms from an ontology.

The alternative measures discussed through this chapter do not take into

account the reliability of the source of information. In order to do it, we

aggregated the information content and the evidence code together. The

evidence codes were translated into weights by means of a genetic algorithm.

Our proposed measure for GO annotations provides results that outper-

forms previous techniques and are consistent with the biological meaning of
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the annotations and with the expected results. It confirms that semantic sim-

ilarity measures are adequate to face bio-ontology problems. By taking into

account the different ways for annotating a gene product (evidence codes)

in the GO, we have provided a more realistic approach for calculating the

similarity between gene products since we have challenged the techniques

used to carry out the experiments.

Semantic measures depend on the annotations in the GO. A source of

noise is that some of the proteins we used were not annotated in the GO

or that they had poor annotations. These annotations are being increased

and improved by the scientific community everyday. As we know more about

genes, GO will be more complete and better results are expected.



CHAPTER 5
Comparing TFBS Motifs

One of the main goals in computational biology is to understand how expres-

sion of genes is controlled, and to unravel gene regulatory networks. Cells

control the abundance and activity of proteins by means of diverse factors

in which transcription regulation plays a central role. Transcription factors

(TFs) play a key role in gene regulation by binding to target sequences called

transcription factor binding sites (TFBSs). In silico prediction of potential

binding of a TF to a binding site is a well-studied problem in computational

biology. A common question in the context of de novo motif discovery is

whether a newly discovered, putative motif resembles any previously dis-

covered motif in an existing database. Fuzzy concepts are specially suitable

for this problem. In this chapter we introduce the problem of comparing

TFBS motifs and we define fuzzy measures motifs that outperforms classical

probabilistic measures.

This chapter is organized as follows. Section 5.1 gives an introduction to

the problem of comparing TFBS motifs. Section 5.2 discusses the different

representations for motifs. Section 5.3 introduces the existing probabilistic

measures. In Section 5.4 we show how to adapt different classes of fuzzy

measures for our purpose. Section 5.5 present an exploratory study the mea-

sures previously commented. In Section 5.6 we conclude the chapter.

89
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5.1 Background

As discussed in Section 2.1, transcription is the process of transcribing a DNA

sequence into its corresponding RNA sequence. Multiple events are involved

in the initiation of transcription of a gene. One of the most important ones

is the binding of several proteins, called transcription factors (TFs), to DNA

near the gene, called transcription factor binding sites (TFBSs). TFBSs are

usually located close to the transcription start site (TSS) of the gene and

upstream from it. Additionally, in some cases TFBSs can be found down-

stream the TSS or, in rare instances, even within exons (Pan, 2006). These

interactions between DNA and proteins play a crucial role in controlling the

expression of the genes by activating or inhibiting the transcriptional ma-

chinery.
TFs generally have distinct preferences towards specific target sequences.

Sometimes a given TF can bind to only one TFBS, but usually the same TF

can bind to different DNA sequences. For a known group of binding sites

of the same TF, it is possible to construct a model that describe the binding

preferences. These groups of TFBSs are known as regulatory motifs, and there

are a number of studies that discuss the most appropriate representation,

which will be introduced in the following section.
The identification of binding sites bound by transcription factors is there-

fore a key problem in predicting transcription regulation. With the emer-

gence of high-throughput technologies (e.g. ChIP-chip assays, DNA microar-

rays, etc.) numerous algorithms for finding motifs have appeared (for a

review see Das and Dai (2007)). The recognition of de novo TFBSs usually

includes the issue of comparing putative motifs with one another and with

motifs that are already known. In addition, these algorithms usually filter

their outputs in order to improve their significance, e.g. merging similar mo-

tifs. However, the outcome of these tools, particularly when dealing with

large datasets, is usually presented as a large list of motifs that require fur-

ther post-processing in order to make it meaningful. Methods for comparing

motifs are usually applied to give biological significance to the outputs of

these programs. This is usually done by comparing the putative motifs pro-

vided by these algorithms against known motifs reported in motif databases
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such as JASPAR or TRANSFAC (Sandelin et al., 2004a; Matys et al., 2006).

Unveiling these relationships might be crucial for the design of appropriate

biological experiments.

The existing motif discovery algorithms make use of different strategies

to overcome drawbacks of other approaches, usually implying new or dif-

ferent limitations. One common approach involves using several of these

algorithms and compounding their outputs (Tompa et al., 2005). In this

case, motifs found by different algorithms can either correspond to the same

TFBSs or to different ones, making the compounded result very noisy and

imprecise. This suggests a need for comparison methods for finding similar

motifs to be either removed or merged into a new motif.

5.2 Motif Representations

Many studies discuss the advantages of different regulatory motifs repre-

sentations (Osada et al., 2004). Regulatory motifs representations aim to

describe the binding affinity of the TFs, derived from a multiple alignment of

confirmed binding sites for a given transcription factor. Here, we give a brief

introduction of the most popular representations for DNA motifs:

• Consensus Sequences. It represents a minimum nucleotide sequence

of the most common base (although not necessarily identical) in differ-

ent related binding sites (see Figure 5.1).

• Extended Consensus Sequences. Previous notation may be extended

if it is necessary to represent more than one base match per position

(Figure 5.1). In this case, the International Union of Pure and Applied

Chemistry (IUPAC) provides an alphabet that encoding each subset of

the four nucleotides (Table 5.1).

• Position Frequency Matrices (PFMs). They are used to record the

position-dependent frequency of each residue or nucleotide within the

motif (Figure 5.2b).

• Position Weighted Matrices (PWMs). They are derived from PFMs,

and they contain score values that give a weighted match to any given
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Figure 5.1: Consensus sequence for TFBSs.

substring of fixed length, converting normalized frequency values to a

log-scale (Figure 5.2c).

• Sequence Logos. They provide a very intuitive visual representation

of motifs by means of a graphical representation proposed in Crooks

et al. (2004) (Figure 5.2d).

Table 5.1: IUPAC codes for extended consensus sequences.

Code Corresponding class
A [A]
C [C]
G [G]
T [T]
R [GA]
Y [TC]
K [GT]
M [AC]
S [GC]
W [AT]
B [GTC]
D [GAT]
H [ACT]
V [GCA]
N [ACGT]
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Figure 5.2: Motif representations. a) Binding sequences, b) Position Fre-
quency Matrix (PFM), c) Position Weight Matrix (PWM), d) Sequence Logo.

5.3 Probabilistic Measures

The most common strategy for comparing motifs relies on the assumption

that the columns of the matrices are probability distributions. Thus, most

measures between motifs are based on statistical techniques that test whether

the different columns belong to the same distribution. Pietrokovski (1996)

used a straightforward algorithm based on the Pearson correlation coefficient

(PCC). Wang and Stormo (2003) proposed the average log-likelihood ratio

(ALLR) to compare between motif columns. Schones et al. (2005) made the

comparison by means of a Pearson χ 2 test (PCST). They also proposed the

Fisher-Irwin exact test (FIET) which provided poorer results. In addition,

the Kullback-Leibler divergence (KLD) was used to compare motifs (Roepcke
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et al., 2005). Rather than comparing distributions, Choi et al. (2004) used

the euclidean distance (ED) between columns, obtaining promising results.

Next we briefly introduce such measures.

Pearson correlation coefficient

Pietrokovski (1996) first introduced the Pearson correlation coefficient for

comparing motif columns:

PCC =

∑

b∈B (bC1
− C1)(bC2

− C2)
Æ

∑

b∈B (bC1
− C1)2

∑

b∈B (bC2
− C2)2

. (5.1)

The correlations of all the columns are summarized using the mean.

Average log-likelihood ratio

Wang and Stormo (2003) defined the Average log-likelihood ratio (ALLR)

statistic to perform motif columns comparisons, which is the sum of two log-

likelihood ratios. ALLR is defined as:

ALLR=

∑

b∈B NbC1
log
�

bC2

pb

�

+
∑

b∈B NbC2
log
�

bC1

pb

�

∑

b∈B (NbC1
+ NbC2

)
, (5.2)

where pb is the prior for base b. To compare multiples columns, the scores

of single columns are summed.

χ2 test

χ2 test was proposed by Schones et al. (2005) for comparing motifs. This test

is computed under the hypothesis that the columns are observations from the

same distribution. The p-value is computed from this χ2 score with 3 degrees

of freedom:

χ2 =
∑

j=C1,C2

∑

b∈B

(N o
jb − N e

jb)
2

N e
jb

, (5.3)
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where N o
jb is the observed number of base b at position j, and N e

jb is the

expected number of base b at position j (see the work by Schones et al.

(2005) for more details). The p-value is considered as an additive score.

Kullback-Leibler divergence

Kullback-Leibler divergence has been used to determine similarities between

motifs (Roepcke et al., 2005). Its symmetric form is:

K LD =
1

2

 

∑

b∈B

bC1
log

�

bC1

bC2

�

+
∑

b∈B

bC2
log

�

bC2

bC1

�

!

. (5.4)

Multiple columns are compared averaging column-to-column divergences.

5.4 Adapting Fuzzy Measures

In recent years, it has been seen that the inherent uncertainty and noise

that characterize biological data cannot always be modeled sufficiently well

by probabilistic approaches and that, consequently, alternative models for

gathering this uncertainty may be required. Furthermore, in the context of

motif comparisons, the utilization of PFMs as a representation of the binding

preferences of the TFs inherently includes imprecision. In addition to the

usual missing values and noisy data associated with biological data, there

exist some hidden factors apart from the DNA sequence itself that affect the

binding preferences of TFs, e.g. cooperative binding and chromatin structure

(Lam et al., 2008). Moreover, an arbitrary threshold must usually be chosen

in the construction of a PFM itself.
As discussed in Chapter 3, fuzzy set theory, proposed by Zadeh (1965),

is especially suitable for dealing with imprecise, noisy and uncertain en-

vironments. Fuzzy set theory has been previously used in bioinformatics,

however there exist fields where very few or none fuzzy approaches have

been applied. During last years, some works have appeared that integrate

fuzzy solutions to solve biological problems like microarrays analysis, pro-

teins location, understanding of genomes, etc., showing promising results
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(Pan, 2006; Huang and Li, 2004; Lopez et al., 2008). Quantifying similarity

within the framework of fuzzy set theory is a crucial concept in approximate

reasoning. Similarity measures have been successfully applied in different

areas including expert systems, information retrieval or intelligent database

systems (Cross and Sudkamp, 2002).

In our case, fuzzy concepts are especially suitable for the tasks of motifs

comparison and detection. For example, a given TF might bind to more than

one TFBSs, presenting more affinity to bind to some DNA patterns than to

others. Therefore, in the matrix representation of the motifs, the binding

preferences of each position (column) can be thought as the fuzzy member-

ship degrees to sets of the four DNA nucleotides (A, C, G, T).

In this section we discuss the adaptation for our problem of different

classes of classical measures for fuzzy sets including set-theoretic (Jaccard’s

method (Jaccard, 1908)), proximity-based (Minkowsky’s r-metric) (Zwick

et al., 1987), and angular coefficient-based (Bhattacharyya distance) (Bhat-

tacharyya, 1946). In addition, we also consider a more recent DNA sequence-

oriented dissimilarity measure (Torres and Nieto, 2003). All but the last

measure are column-to-column measures and therefore the notation stated

above holds. Notation for the remaining measure is given below.

Definitions

Set-theoretic measure: Jaccard coefficient

The Jaccard coefficient is an unparameterized ratio model of similarity (Jac-

card, 1908). It is also known as index of communality. The Jaccard coeffi-

cient for two PFMs columns is:

SJ(C1, C2) =
∑

b∈B

| bC1
− bC2

|

max
�

bC1
, bC2

� . (5.5)

For PFMs composed by multiple columns, the average of the obtained mea-

sures is considered.
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Angular coefficient-based: Bhattacharyya distance

Bhattacharyya distance measures the cosine of the angle between two vectors

when the values in each vector are standardized as deviates from the mean

of the membership function (Bhattacharyya, 1946). This cosine is taken as

the corresponding similarity measure. In the case of two PFMs columns:

SB(C1, C2) =

∑

b∈B

�

bC1
· bC2

�

�

∑

b∈B

�

bC1

�2
�

1
2 ·
�

∑

b∈B

�

bC2

�2
�

1
2

. (5.6)

To compare multiple columns, the scores of single columns are averaged.

Proximity-based measure: Minkowsky r-metric

The distance between the partial membership functions of fuzzy sets A and

B over a finite universe of discourse U = {u1, u2, ..., un} may be measured

using a Minkowsky r-metric (Zwick et al., 1987). A fuzzy set A is represented

by a point [µA(u1), ...,µA(un)] in the n-dimensional space. In our case U =
{A, C , G, T} and the distance is:

dr(C1, C2) =

 

∑

b∈B

| bC1
− bC2

|r
!

1
r

, r ≥ 1, (5.7)

with r = 1 dr becomes the Hamming distance; r = 2, the Euclidean distance;

and with r = ∞, the dominance metric. More on this topic can be found

in Cross and Sudkamp (2002). Although further studies are needed for ob-

taining an optimal value for r, in this work we selected an arbitrary value

of r = 1.3 which provided the most consistent results throughout the experi-

ments. Again, to compare multiple columns, the scores of single columns are

averaged.

DNA sequence-oriented

In Torres and Nieto (2003) polynucleotide chains are transformed to ordered

fuzzy sets to define a so-called fuzzy polynucleotide space (FPS). Also, a
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Table 5.2: PFM toy example.

# 1 2 3

A 0.7 0.2 0

C 0.1 0 1

G 0 0 0

T 0.2 0.8 0

fuzzy measure for DNA sequences in this space is proposed based on the

ideas found in Zadeh (1965). In order to compute this measure the authors

proposed the controversial idea1 of mapping the PFMs into a point in the 12-

dimensional unit hypercube [0, 1]12. For the PFM shown on Table 5.2 this

mapping is MT = (0.7,0.1, 0,0.2, 0.2,0, 0,0.8, 0,0, 1,0). The fuzzy polynu-

cleotide space measure (FPSM) for two PFMs is defined as:

F PSM(M1, M2) =

∑12
i=1 | M1i

−M2i
|

∑12
i=1 max

�

M1i
, M2i

� , (5.8)

where M1 and M2 are the mapping of the two PFMs to be compared. More

details can be found in Torres and Nieto (2003).

5.5 Probability and Fuzzy Measures Analysis

In this section we present an exploratory study of the fuzzy measures for

DNA motifs presented in the previous section. We compare their results with

those obtained by the probabilistic measures introduced in Section 5.3.

Similar Columns Recognition

We wanted to test the performance of the methods in measuring the dif-

ferences between sets of random single columns derived from the differ-

ent distributions. In order to do so, we generated datasets derived from
1This idea was later argued by Sadegh-Zadeh in Sadegh-Zadeh (2007) although the

authors obtained promising results in Torres and Nieto (2003).
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random seed columns where existing methods have shown a good behav-

ior (Pietrokovski, 1996; Schones et al., 2005). We considered 25 randomly

generated seed columns. We controlled the information content (IC) to be

uniformly distributed in the interval [0.01,2]. For each one of the 25 seed

motifs, a true dataset was generated of 50000 single columns. In order to

match with the properties of real motifs (Fogel et al., 2005), each column in

the true datasets was obtained by sampling its corresponding seed column

from a Dirichlet distribution with a random sample size between 25 and 35

(Schones et al., 2005). A false dataset was generated in a similar manner:

the process is the same as for the true datasets but we skipped the sampling

from seed columns. We tested the effectiveness of the methods in the follow-

ing experiment: for each of the 25 true datasets, we computed the similarity

of each column and its seed column, together with the similarity of each col-

umn in the false dataset and the same seed column. We considered a success

when a bigger similarity is given to a column in the true dataset. In Figure

5.3 we show the power (selectivity) of the methods when the FDR (False Dis-

covery Rate) is set to 0.01. All the methods present good results when IC gets

higher. However, fuzzy approaches perform better when the IC is low. It can

be seen that PCC presents the worst behavior while ALLR provides unstable

results. Among the fuzzy measures2, Minkowsky method presents lower se-

lectivity across the experiment while Bhattacharyya performs slightly better

for lower ICs values.

Clustering motifs

In order to check the performance of the measures in recognizing related

real motifs, we used the freely accessible Jaspar database for our experi-

ments (Sandelin et al., 2004a). Jaspar contains 71 nonzinc-finger motifs

divided in 11 classes according to the structural properties of transcription

factors (Table 5.3). Familial Binding Profiles (FBPs) are generalized binding

profiles that can be used as the representatives of their respective group of

2As expected, Jaccard and FPSM measures overlap in Figure 5.3 since their formulas are
equivalent when dealing with one column PFMs.
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Figure 5.3: Recognition of random PFMs columns. Power of the methods to
recognize random PFMs columns generated by the same distribution.

motifs (Sandelin and Wasserman, 2004). In our proposed methodology, we

compute FBPs for each Jaspar family from a multiple alignment of the mo-

tifs within each family. An example of the logos of the bZIP EBP family and

its corresponding FBP can be found in Figure 5.4. Sequence logos are com-

puted using the freely accessible weblogo application (Crooks et al., 2004).

For each of the measures we tested the similarity obtained from each FBP to

its corresponding family member. In the case that the measure is a distance

we converted its value into a similarity by normalizing the distance D to

[0,1] and later computing the similarity S as S = 1− D. Table 5.4 shows the

average similarity obtained from each measure for each Jaspar family. It can

be easily seen that Angular, χ2, ALLR and PCC measures provide the worst

results. It is noteworthy that Angular and ALLR measures provide unstable

results, yielding high similarities for some families and very poor similarities
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Table 5.3: Jaspar family distribution.

Family No of motifs Family No of motifs

ETS 7 TRP 5

FORKHEAD 8 HMG 6

BHLH 10 HOMEO 8

bZIP EBP 4 NUCLEAR 8

MADS 5 bZIP CREB 4

REL 6

Figure 5.4: Logos for the bZIP EBP family and its corresponding FBP.

for others. On the other hand, Jaccard and FPSM measures provide similar

robust results in all the families. However, the Minkowsky metric performs

in a better way. Using a paired t-test, the hypothesis that the distances ob-

tained with the Minkowsky metric are not greater than those of the Jaccard

or FPSM measures can be rejected with a p-value p ≤ 0.01.

Case study. Skeletal muscle-specific

Wasserman and Fickett (1998) curated a set of PFMs for skeletal muscle-

specific TFBSs. Their research was focused on locating binding sites for tran-
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Table 5.4: Computed scores for Jaspar families and their FBPs.

Family Jac. FPSM Mink. Ang. χ2 ALLR PCC

ETS 0.63 0.62 0.71 0.75 0.19 0.71 0.24

Forkhead 0.46 0.45 0.55 0.02 0.01 0.05 0.1

bHLH 0.57 0.54 0.64 0.24 0.02 0.43 0.05

EBP 0.64 0.63 0.72 0.25 0.11 0.62 0.07

MADS 0.62 0.61 0.69 0.04 0.01 0.70 0.16

REL 0.70 0.68 0.76 0.27 0.19 0.77 0.05

TRP 0.50 0.49 0.58 0.26 0.03 0.17 0.01

HMG 0.55 0.54 0.65 0.90 0.05 0.50 0.02

HOMEO 0.47 0.47 0.59 0.73 0.02 0.37 0.07

Nuclear 0.45 0.44 0.53 0.91 0.01 0.07 0.28

CREB 0.70 0.69 0.77 0.09 0.26 0.92 0.14

Mean 0.57 0.55 0.65 0.41 0.08 0.48 0.10

scription factors associated with skeletal muscle-specific expression. They

developed PFMs for the binding sites of Mef-2, Myf, Sp-1, SRF, and Tef tran-

scription factors. They ensured maximum specificity for the PFMs, selecting

only those sites for which there was clear and direct evidence both for func-

tion and for the identity of the factor bound were selected. In addition, for

each transcription factor, they compiled its corresponding PFM using data

obtained from in vitro binding studies and regulatory sequences from genes

not specifically expressed in muscle cells. Likewise, this set is the indepen-

dent counterpart of the muscle-specific one. Although gene regulation is a

very complex process, the study of the transcription factor binding prefer-

ences in the two sets can shed light on deciphering the associated regulatory

machinery. Figure 5.5 shows the logos for the two sets of PFMs.
It is well-known that in vitro binding of transcription factors to a given

DNA sequence is not always confirmed by in vivo experiments and vice versa.

Given the two curated sets of PFMs, we describe these differences in quantifi-

able terms, comparing the analogous PFMs from the muscle-specific and in-
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Table 5.5: Measures for muscle-specific VS independent PFMs.

Motif Mink. Ang. Jac. FPSM

Tef 0.24 0.94 0.26 0.32

Mef-2 0.29 0.87 0.31 0.36

Myf 0.44 0.78 0.45 0.50

Sp1 0.45 0.73 0.45 0.54

SRF 0.78 0.53 0.70 0.76

dependent sets using the fuzzy measures introduced above. Table 5.5 shows

the scores obtained from the four fuzzy measures proposed. Once again, the

results suggest that the Minkowsky measure is the robustest and stablest one.

It can be seen that for all the measures the order of proximity of the different

PFMs is the same3: Tef is the closest one, followed by Mef-2, Myf and Sp1,

finally SRF is considered as the most dissimilar. Reader should note that,

although there is not a true similarity order for these motifs that can be used

as a reference, the Minkowsky measure provides lower/higher distances for

the considered more/less similar motifs than the rest of the measures. It is

out of the scope of this work to investigate the biological implications of the

obtained similarities. However, the adequacy of this order can be confirmed

by observing the logos in Figure 5.5. Roughly speaking, it can be seen that

the lower the differences between high conserved positions (crucial in com-

puting the similarity between motifs), the lower the obtained fuzzy distances

are.

For the rest of the measures this order is not always obtained. For ex-

ample, the closest motifs for the ALLR measure are the Mef-2 PFMs. Also,

the distances tend to be bigger than for the fuzzy approaches, confirming the

insights given in previous sections.

3Reader should note that the Angular measure is a similarity and therefore, the bigger
the similarity, the closer the two PFMs
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Figure 5.5: Logos for the muscle-specific and independent motifs studied
in Wasserman and Fickett (1998).

5.6 Concluding Remarks

TFBSs are known as regulatory motifs and can be represented as position fre-

quency matrices (PFMs). The de novo identification of transcription factor

binding sites (TFBSs) is a crucial problem in computational biology and in-

cludes the issue of comparing putative TFBSs to one another and to already

known TFBSs. To date there is no fuzzy approach for this problem. In this

chapter we propose the use of fuzzy measures to deal with motif comparison

tasks. We investigate the behavior of different classes of classical measures

for fuzzy sets including set-theoretic (Jaccard’s method), proximity-based

(Minkowsky’s r-metric), angular coefficient based (Bhattacharyya’s distance)
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and a measure defined for the fuzzy polynucleotide space. We show that

fuzzy measures provide excellent results when dealing with sets of randomly

generated motifs, outperforming other existing measures when facing data-

sets of real motifs. This chapter shows the adequacy of fuzzy technology

within motif comparison issues.





CHAPTER 6
Advances in Motif Measures

Although the methods proposed in Chapter 5 have been shown to work well,

there is still room for improvement. Recently, new approaches have appeared

aiming to improve the performance of existing measures. In this chapter we

propose a new similarity measure for DNA motifs called FISim (Fuzzy Inte-

gral Similarity). FISim is based on the fuzzy integral of the distance of the

nucleotides with respect to the information content of the positions. Unlike

existing methods, FISim is designed to consider the higher contribution of

better conserved positions to the binding affinity. Furthermore, we propose a

new cluster methodology based on kernel theory together with FISim to ob-

tain groups of related motifs potentially bound by the same TFs. We compare

the performance of our proposed approaches with the measures introduced

in Chapter 5 and with two newly developed methods that have been shown

to be very promising.
Section 6.1 motivates the chapter. Section 6.2 gives a brief introduction of

the two newly developed methods. Section 6.3 proposes our novel similarity

measure FISim. Section 6.4 describes our proposed cluster methodology.

Section 6.5 presents the experiments while Section 6.6 analyzes the results.

The conclusion for the chapter is given in Section 6.7.

6.1 Motivation

There are several properties that are desirable for a motif similarity measure:

107
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• Greater importance should be given to the similarity of high informa-

tion content positions of the motifs than to the similarity of low information

content positions.

• Methods should be designed to deal with the inherent uncertainty as-

sociated with motif comparison tasks.

• The use of parameters should be minimized.

Existing methods fail to follow one or more of these considerations. In

general their approaches are not designed to deal with imprecise scenarios.

In addition, these methods are not designed to consider the higher contri-

bution of better conserved positions to the binding affinity. Some methods

intrinsically tend to give greater importance to better conserved positions

(e.g. ED). However, this can be improved. There is therefore a need for

similarity measures for motifs that deal with these kinds of problems. In this

section we present FISim (Fuzzy Integral Similarity), a novel similarity mea-

sure for comparing two motifs with one another based on the fuzzy integral

with respect to a fuzzy measure.

One of the most popular tools for information aggregation is the weighted

average method. It is simple, intuitive and easy to implement. This method

assumes that the different information sources are non-interactive/indepen-

dent and, hence, their weighted effects are viewed as additive. Due to some

inherent interaction/inter-dependencies among diverse information sources,

the weighted average method does not work well in many real problems. In

our case, the affinity of a TF to a specific TFBS is typically correlated with

how well the site matches the consensus sequence of the corresponding mo-

tif. However not all mismatches at a given position have the same effect

and some interactions between positions have been observed (D’haeseleer,

2006). Here, we propose the use of the fuzzy integral to formally incorpo-

rate the different degrees of importance of the positions according to their

information content level. Fuzzy integrals are a type of non-linear function

dependent on fuzzy measures, and have been shown to be very useful for

multiple information source fusion (Sugeno, 1977; Popescu et al., 2006).

The combination of multiple information sources is very valuable with re-

gard to overcoming the inherent ambiguities present in single information
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sources. Fuzzy integrals are capable of representing the interaction among

the information sources (e.g. motif columns) and of combining them to make

the result more significant than just the sum of the individual comparisons,

enabling the individual importance of each source to be considered in the

final result (e.g. information content level). More information about fuzzy

integrals can be found in Section 3.6.

6.2 New approaches

In the last years, some methods have appeared that aim to overcome the

difficulties outlined above. Before we present our proposed approach, in this

section we give an introduction to two newly-developed methods that have

quickly become very popular.

Gupta et al. (2007) proposed an algorithm (Tomtom) that allows any

column-to-column measure. They obtained best results when using euclidean

distance. More recently, Pape et al. (2008) introduced the concept of a natu-

ral measure between motifs. They proposed that two motifs should be con-

sidered to be similar if they yield a high number of overlapping hits on a

random sequence. They considered the number of hits as a random vari-

able and described a method based on covariance to measure the correlation

between the random variables of two PFMs.

Later on this chapter, we will compare the results obtained by these meth-

ods on different experiments with those obtained by our proposed measure.

Tomtom

Gupta et al. (2007) developed an algorithm (Tomtom) that admits any co-

lumn-to-column measure to compute the p-values of the match scores for the

columns of the query motif aligned with a given target motif. Best results are

obtained when using euclidean distance (Choi et al., 2004). ED is defined

as:

ED =−
r

∑

b∈B

(bC1
− bC2

)2. (6.1)
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In the Tomtom algorithm, a null distribution is approximated in order to

obtain a p-value for the sum of the distances for all positions in the motif.

The probability of observing a minimum p-value of p∗ among a collection of

N independent p-values is 1− (1− p)N . This value is the motif p-value.

Natural measure

Pape et al. (2008) defined their measure under what they called the natural

assumption that two motifs should be considered as similar if they yield a

high number of overlapping hits on a random sequence, and the number of

hits is correlated between both motifs using the asymptotic covariance. Let

A and B the motifs to be compared. They compute the score distributions sA

and sB for the fixed thresholds tA and tB. Let Qk
nA+k(sA, sB) be the probability

to observe score sA starting at position j and score sB starting at position j+k

(see Pape et al. (2008) for more details). The overlap probability is:

γA,B(k) =
∑

sA≥tA

∑

sB≥tB

Qk
nA+k(sA, sB). (6.2)

6.3 Fuzzy Integral Similarity for Motifs (FISim)

Definition

Using PFMs for the representation of the motifs, we propose a novel column-

to-column motif similarity measure called FISim (Fuzzy Integral Similarity).

FISim is based on the Sugeno fuzzy integral of the distances of the nucleotide

frequencies with respect to the level of conservation of the positions. In our

case, the binding preferences of each position (column) are taken as the

fuzzy membership degrees to sets of the four DNA nucleotides (A, C, G, T).

The reader should note that uniform background distribution is assumed.

When dealing with a biased background, PFMs should be modified as stated

in D’haeseleer (2006).

Let C1 = (AC1
, CC1

, GC1
, TC1
) and C2 = (AC2

, CC2
, GC2

, TC2
) be the two columns

to be compared. Let X = {(AC1
, AC2
), (CC1

, CC2
), (GC1

, GC2
), (TC1

, TC2
)} be the
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set of information sources. To simplify the notation we label the pairs with a

single letter so that X = {A, C , G, T}.

As it was stated in Section 3.6, Sugeno fuzzy integrals need of a function

to be integrated (the so-called h function). h can be defined as:

h(i) = 1− |iC1
− iC2

|, (6.3)

where i = {A, C , G, T}, i.e. the similarity of the nucleotide i in the two

columns C1 and C2.

In addition, a fuzzy measure is needed to determine the relative impor-

tance of the subset of elements being considered. Taking advantage of the

properties of the fuzzy measures explained in Section 3.5, we can define a

λ-fuzzy measure µ, constructed from the fuzzy densities of the individual

elements µi. In our case, µi is defined as:

µi =max(iC1
, iC2
), (6.4)

where i ∈ {A, C , G, T}, i.e. the maximum level of conservation of the two

nucleotides, which favors the importance of better conserved positions.

At this point, we can just apply Equation 3.19 to obtain λ, and Equation

3.18 to finally obtain the fuzzy measure µ. It can be easily proven that µ

fulfils properties 1 and 2 of the fuzzy measures. Once we have h and µ, it is

a straightforward task to obtain the fuzzy integral applying equation 3.20.

Similarity between two PFMs comprising multiple columns needs to be

constructed from the aggregation of the column-wise similarities. We pro-

ceed by averaging the similarities of the columns considering the best of

all possible alignments between the PFMs as well as their reversed comple-

mentary sequences. This technique has been shown to work well in previ-

ous approaches (Schones et al., 2005; Roepcke et al., 2005). The algorithm

pseudocode can be found in Figure 6.1. The source code can obtained from

http://genome.ugr.es/fisim. Next, we provide an example of the computa-

tion.
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FUZZY INTEGRAL SIM(C1, C2)

1 bases← {A, C , G, T}
2 for i ∈ bases
3 do h(i)← 1− |iC1

− iC2
|

4 µi ←max(iC1
, iC2
)

5 bases← Sort bases with respect to h
6 µ← {µh(bases(1))}
7 curSet← {bases(1)}
8 λ← SOLVE equation (3.19)
9 for i← 2 to 4

10 do curSet← curSet+bases(i)
11 µ← µ+µ(curSet), applying equation (3.18) for λ
12 sim←min(h(bases(1)),µ(1))
13 for i← 2 to 4
14 do curSim←min(h(bases(i)),µ(i))
15 if curSim> sim
16 then sim← curSim
17 return sim

Figure 6.1: FISim pseudocode.

FISim example

Let C1 = (0,0.9, 0.1,0), C2 = (0.1, 0.05,0.05, 0.8) the columns from the PFMs.

F ISim(C1, C2) is obtained as follows: First, we need to compute h. Following

the formula explained above h(i) = 1− |iC1
− iCi
|. Therefore:

h(A) = 1− |0− 0.1| = 0.9

h(C) = 1− |0.9− 0.05| = 0.15

h(G) = 1− |0.1− 0.05| = 0.95

h(T ) = 1− |0− 0.8| = 0.2

Next, h is arranged in a decreasing order: {G, A, T, C}. From here, the

sets Ai = {x1, . . . , x i} can be obtained:
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A1 = {G}

A2 = {G, A}

A3 = {G, A, T}

A4 = {G, A, T, C}

For the second part of the fuzzy integrals, a fuzzy measure µ, is needed.

Since we have defined a λ-fuzzy measure, we can obtain µ from the indi-

vidual importances µ({x i}) = µi. As we explained above µi = max(iC1
, iC2
).

Hence:

µA = max (0, 0.1) = 0.1

µC = max (0.9,0.05) = 0.9

µG = max (0.1,0.05) = 0.1

µT = max (0, 0.8) = 0.8

Next, we need to obtain the value for the parameter λ. This can be done

by solving Equation 3.19, for example by applying Newton’s method. In our

case λ=−0.979.

Now, it is easy to compute µ(Ai) by applying Equation 3.18: µ(A1) =
µ({G}) = µG = 0.1, µ(A2) = µ({G, A}) = µ({G})+µ({A})+λµ({G})µ({A}) =
0.1+ 0.1− 0.979 · 0.1 · 0.1= 0.190. Similarly, we obtain µ(A3) = 0.841, and

µ(A4) = 1.

Now, we are ready to compute the value of the fuzzy integral by solving

Equation 3.20. In our case it reduces to:

F ISim(C1, C2) =max(0.1, 0.190,0.2, 0.15) = 0.2.

Table 6.1 shows a summary of the computation. The reader should note

that FISim will assign a high similarity between two columns when their sim-

ilar values also correspond to well-conserved nucleotides. If a well-conserved
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Table 6.1: FISim example. Summary of the computation of the fuzzy integral
for the given example (λ = −0.979). In bold are the minimum between h(i)
and µ(Ai). The fuzzy integral value is the maximum value of such minimums,
i.e. 0.2.

i h(i) µi Ai µ(Ai)

G 0.95 0.1 {G} 0.1
A 0.9 0.1 {G, A} 0.190
T 0.2 0.8 {G, A, T} 0.841
C 0.15 0.9 {G, A, T, C} 1

position in one column (say 0.9) clearly differs from its corresponding posi-

tion in the other column (say 0.2), the high value for the importance between

these positions (0.9) is ignored. On the contrary, the similarity (0.3) will be

the value chosen to proceed with the fuzzy integral computation explained

in the previous section.

The reader might ask what are the advantages of FISim over the weighted

sum:
∑n

i=1 h(i)µi. Apart from benefits such as the combination of multiple in-

formation sources discussed in previous sections, FISim captures much more

effectively the concept of similarity in this context, as can be seen in the

example. Computing the weighted sum results:

WA(C1, C2) = 0.9 · 0.1+ 0.15 · 0.9+ 0.95 · 0.1+ 0.2 · 0.8= 0.48.

This score gives the wrong impression that C1 and C2 present medium

similarity. On the other hand, the result provided by FISim (0.2) is much

more realistic, as the similarity between C1 and C2 is expected to be low.

6.4 Novel Clustering Methodology for Motifs

One of the main applications of motif measures is that they can be incor-

porated into clustering procedures for grouping related motifs. There exist

two previously proposed approaches: application of hierarchical clustering

methods (Mahony et al., 2007); or adaptation of the PAM (Partition Around
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Medoids) algorithm (Pape et al., 2008). Hierarchical methods present prob-

lems when dealing with noisy data. They also suffer from a lack of robustness

and solutions may be dependent on the data order. Moreover, PAM imple-

mentations have the drawbacks that they can converge to local optima and

cannot identify clusters that are non-linearly separated in the input space.

We propose a novel clustering methodology called kcmeans (kernel c-means)

based on the well-known c-means algorithm, kernel methods, and our FISim

measure.

The c-means algorithm uses the distances between the objects to group

them into clusters (see Section 3.3). As FISim is a similarity measure, we

first need to convert the similarities into distances. If the similarity (S) is an

inner product, we can compute the distance (D) between objects i and j as

Di j = Sii + S j j − 2 ∗ Si j.

Furthermore, if we want a similarity S to be an inner product, we have

to force it into a kernel. According to the kernel theory (Section 3.7), we

can obtain a kernel matrix S′ preserving the positive eigenvalues and corre-

sponding eigenvectors of S. The reader should note that this transformation

implies losing some information, however it is expected to be the least sig-

nificant. Similarly to that explained in Section 4.2, the clustering method-

ology we propose works as follows: we obtain a symmetric matrix of motifs

similarities S using FISim, we eliminate negative eigenvalues to produce a

kernel S′, which is an inner product. Finally, we compute the distance matrix

Di j = Sii + S j j − 2 ∗ Si j and then apply c-means to cluster.

6.5 Experiments

Distinguishing randomized motifs

Random motifs

We tested the performance of FISim in measuring the differences between

sets of random motifs. We considered 20 randomly generated seed motifs of

a fixed length of 6 nucleotides. Following the JASPAR motif properties, the

information content was uniformly ranged from 1.5 to 10.5 (see Figure 6.2
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for some statistics of JASPAR motifs). For each one of the 20 seed motifs,

a true dataset was generated containing 10000 motifs. In order to match

with the properties of real motifs (Fogel et al., 2005), each motif in the true

datasets was obtained as follows:

Figure 6.2: JASPAR statistics.

A random motif of a random length between 6 and 14 was generated.

The information content of this random motif is controlled to be low in order

to create a non-conserved flanking region for the motif. The corresponding

seed motif was sampled from a Dirichlet distribution with a random sample

size between 25 and 35 (Schones et al., 2005), which generated a sample

motif of length 6. Finally, starting in a random position, the columns in the

random motif are replaced by the sample motif.

Similarly, a false dataset was generated. The process is the same as for

the true datasets but we omitted the insertion of samples from seed motifs

and the information content is not controlled. Figure 6.3 shows the power

(selectivity) of the methods in recognizing motifs generated from the seed

motifs when the FDR is 0.01. FISim shows a very good performance in a

random dataset.
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Figure 6.3: Random Motifs. Power of the methods to recognize random PFMs
generated by the same distribution.

Distinguishing conserved and non-conserved motifs

Case study

We wanted to demonstrate the ability of the measures in discriminating the

importance of non-conserved positions and well-conserved positions. In Fig-

ure 6.4 we show three motifs. We used the middle one as a reference. It has

well-conserved positions in the odd locations (permutations of the column

vector [10,2, 2,2]), and non-conserved positions in the even locations (from

column vector [4,4, 4,4]). This reference motif was compared with the other

two motifs to check how each measure performs:
• Motif A is composed of non-conserved columns. It therefore matches

perfectly with the even positions of the reference motif. However, the similar-

ity between odd positions (well-conserved) is expected to be low.
•Motif B is made up of two kind of columns: a) well-conserved positions

in the odd locations that match perfectly with the corresponding positions of

the reference motif, and b) medium-conserved positions (derived from per-

mutations of the vector [7,7, 1,1]) in the odd locations that differ from the

odd positions of the reference motif.
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Note that both motifs A and B perfectly match half of the positions of

the reference motif, while they differ in the other half of the positions. These

differences are controlled for balance, in the sense that the raw distance of

the different positions is the same, e.g. raw distance between [10, 2,2, 2] and

[4, 4,4,4] (reference motif and motif A differences) equals to the raw distance

between [4, 4,4, 4] and [7, 7,1, 1] (reference motif and motif B differences).

We call raw distance to the sum of the absolute value of the four differences

between the counts of the nucleotides of the two columns.

We then considered two cases for each of the measures: case 1: distance

between motif A and the reference motif, and case 2: distance between motif

B and the reference motif. As has been explained above, it would be desirable

that the distance for case 2 be lower than the distance case 1, as, unlike

motif A, motif B and the reference motif share the similarities in the most

conserved positions of the motifs. In Figure 6.4 we show the ratio of the

distances for case 1 against case 2. Results for the measures proposed by

Gupta et al. (2007) and Pape et al. (2008) are not shown since they require

a background dataset to function correctly. Three of the measures (χ2, KLD

and ALLR) failed to capture the expected differences, and provided a lower

distance for case 1. On the other hand, our measure obtained a more realistic

distance between the motifs, providing a much lower distance for case 2.

Related motifs

We extended the last experiment to check the performance of the methods

in datasets of related motifs. We generated a reference motif of length 8 com-

prising four well-conserved positions and four non-conserved positions used

as a reference (see previous section for more details). We then obtained a pair

of seed motifs comprising one close motif and one distant motif with respect

to the reference one. Each of these motifs present three positions dissimi-

lar to the reference motif. The close motif present the dissimilarities in the

non-conserved positions, while the distant motif present the dissimilarities

in the conserved positions (Figure 6.5). We generated a true dataset for the

close motif and a true dataset for the distant motif following the procedure
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Figure 6.4: Case study. Ratio of distances. In order to facilitate the visual
comparison of the non-conserved positions, fraction-based logos are used. We
do not show results for the measures proposed by Pape et al. (2008) nor Gupta
et al. (2007) since they need a background dataset to work properly.

of above experiments. For each motif in the datasets we computed its dis-

tance to the reference motif. We determined a correct classification when a

smaller distance is assigned to the close motif, and determined an incorrect

classification otherwise. We arranged the motifs according to their distances,

and from this arranged set of motifs we computed an ROC (Receiver Op-

erating Characteristic) curve (Hanley and McNeil, 1982). ROC curves plot

the percentage of correct classifications as a function of incorrect classifica-

tions. In Figure 6.6 we show the ROC curves obtained from the different

approaches. It can be seen that our FISim method proposed outperforms

the other methods. Similar results are obtained when varying the number

of dissimilar positions of the seed motifs. The area under the curves (AUC)

scores and the logos for the motifs can be found in Table 6.2 and Figure 6.7

respectively.
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Figure 6.5: Related motifs. Three dissimilar positions are observed between
the reference motif and both close and distant motif. Again, fraction-based logos
are used to ease the visual comparison of the non-conserved positions.

Figure 6.6: ROC curves. ROC curves for the case of three different columns.
FISim provides a more consistent classification than the rest of the methods.
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Figure 6.7: Pairs of seeds of related motifs. The number of the columns not
shared with the reference motifs is indicated between brackets.

Table 6.2: Area Under the Curve scores for the related motifs experiment.
Note that the more differences between the motifs the more difficult the discrim-
ination task is.

Differences FISim KLD Chi2 ALLR Tomtom Euclidean Pape

1 0.785 0.328 0.242 0.232 0.894 0.657 0.701
2 0.785 0.350 0.282 0.315 0.795 0.633 0.430
3 0.783 0.353 0.291 0.276 0.697 0.615 0.590
4 0.682 0.202 0.157 0.213 0.573 0.404 0.632
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Clustering real data

In order to check the performance of kcmeans in separating related motifs,

we used the freely accessible JASPAR (Sandelin et al., 2004a) database for

our experiments. JASPAR contains 71 nonzinc-finger motifs divided into 11

classes according to the structural properties of the transcription factors. The

distribution of the families of the JASPAR motifs can be found in Table 6.3.

For each motif we computed the core region, following the suggestions of

Schones et al. (2005). In order to obtain a symmetric matrix, comparisons

between two motifs were made by averaging the similarity between the core

region of the first motif and the second motif, and the similarity between the

first motif and the core region of the second motif. Once we obtained the

similarity matrix, we applied the kcmeans clustering method as described in

the Methods section. For each cluster, the FBP is automatically obtained from

a multiple alignment of its corresponding motifs.

Table 6.3: JASPAR family distribution. Summary of the JASPAR classifica-
tion. There exist 71 motifs divided into 11 families.

Family Number of motifs Family Number of motifs

ETS 7 TRP 5
FORKHEAD 8 HMG 6
bHLH 10 HOMEO 8
bZIP EBP 4 NUCLEAR 8
MADS 5 bZIP CREB 4
REL 6

To obtain the optimal number of clusters (k) we used the Silhouette co-

efficient (Kaufman and Rousseew, 1990). The optimal clustering of the 11

motifs classes was found for k = 15. The 15 clusters can be found in Figure

6.8. Next, we discuss the clustering.

All five TRPs motifs are contained in two homogeneous clusters with two

and three motifs. Five of ten BHLHs motifs form one homogeneous cluster.

Four of the remaining five BHLHs are grouped together with one ETS mo-

tif. All six remaining ETSs motifs form one cluster together with three of
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Figure 6.8: Clusters obtained by kcmeans for the Jaspar motifs. The motifs
that share the same background color belong to the same Jaspar family.

four bZIP EBPs motifs. Four of five MADSs motifs are grouped in one ho-

mogeneous cluster. The remaining MADS motif is contained in one cluster

together with five of six HOMEOs motifs. There exists one heterogeneous

cluster formed by the remaining HOMEO motif, one HMG motif and one

FORKHEAD motif. Four of the remaining five HMGs motifs are grouped in

two homogeneous clusters of two motifs each. Five of the remaining six

FORKHEAD motifs form one homogeneous cluster. Seven of eight NUCLEAR

motifs form one homogeneous cluster. Finally, all five bZIP CREBs motifs

form one homogeneous cluster, and all six RELs motifs form two homoge-

neous clusters with four and two motifs. Figure 6.8 shows the clustering

result. Logos for the different clusters can be found in the next section. As

a summary, ten out of 15 of the obtained clusters are homogeneous, while

eight motifs are not clustered and are considered as outliers.
To ensure the quality of the clustering, we compared our results with

those provided by Pape et al. (2008).
Two identical clusters are obtained: NUCLEAR and bZIP CREB. The same

MADS and HOMEO groups are provided but we yielded a MADS motif,

MEF2A, within the HOMEO group. MADSs motifs present the consensus

CCA*A, while HOMEO motifs present the consensus ATTA. MEF2A motif

contains the consensus ATT showing that the FISim measure certainly gives

greater importance to better conserved positions (for sequence logos see Ap-

pendix A). We presented the REL family in two clusters, while in Pape et al.
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(2008), this appears together in the same cluster. We obtained the same

two TRPs clusters, but added one extra TRP motif (MYB.ph3) to one clus-

ter which Pape et al. (2008) considered as an outlier. The MYB.ph3 motif

shares the consensus AAC*G with the motifs in its cluster. The same bZIP

cEBP group is provided, although we added six out of the seven ETSs motifs.

Here, the common high degree of conservation of the consensus TTCC forces

them to belong to the same cluster. We yielded the same two bHLH clusters,

but added one bHLH motif (Arnt-Ahr), considered as an outlier in Pape et al.

(2008), as well as the remaining ETS motif to one of the clusters. Pape et al.

(2008) presented the FORKHEAD and HMG groups in one single cluster in

comparison with three homogeneous clusters obtained. Finally, the heteroge-

neous cluster that we produced comprises one extra FORKHEAD motif Foxd3

that does not contain the consensus GTTTA present in the FORKHEAD group.
In short, we obtained 15 clusters (eleven homogeneous) and found eight

outliers (i.e. motifs not clustered), compared to 14 clusters (ten homoge-

neous) and twelve outliers in Pape et al. (2008). Hence, we found more

motifs in the final clustering, reducing the number of non-classified motifs,

and maintaining a homogeneous structure. Figure 6.5 shows the sequence

logos of one REL group as well as its corresponding FBP.

Motif identification in co-regulated genes

As discussed in previous sections, one of the most common applications of

a motif similarity measure is its use for comparing putative motifs of co-

regulated genes obtained from motif discovery algorithms to those reported

in motif databases such as JASPAR or TRANSFAC. In this section we present

the results of applying FISim to this workflow with the data studied in Sørlie

et al. (2001).
The aim of this study was to classify breast carcinomas based on their

gene expression profiling derived from 85 microarray experiments and to

correlate tumor characteristics to clinical outcome. The authors classified the

tumor samples into two main branches, each of these separated into three

subgroups. For this experiment, we selected the “Luminal Subtype A” sub-

group, which contains 15 clones (13 genes) clearly involved in pathological
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Figure 6.9: REL group retrieved by kcmeans. The FBP is computed from the
multiple alignment of the TFs Dorsal_1 and RELA.

processes of breast cancer. This cluster includes genes implicated in tran-

scription, development and differentiation such as ESR1, GATA3, LIV1, and

XBP1 (see Table 6.4 for a whole list of genes).

We applied the motif discovery tool WebMOTIFS (Romer et al., 2007) to

further investigate regulation of the predicted cluster of genes. We used Web-

MOTIFS to find putative motifs in the promoter regions of these 15 clones,

setting the options to default, i.e. selecting AlignACE, MDscan, MEME and

Weeder methods (Hughes et al., 2000; Liu et al., 2002; Bailey and Elkan,

1994; Pavesi et al., 2006) and no Bayesian information. For each method,
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Table 6.4: Co-regulated genes. Genes that belong to the cluster termed “Lu-
minal epithelial gene cluster containing ER” in Sørlie et al. (2001).

Gene GenBank Acc. Description

GPR160 H50224 G protein-coupled receptor 160
ACADSB H95792 Acyl-Coenzyme A dehydrogenase
ESR1 AA291749 Estrogen receptor 1
TFF3 N74131 Trefoil factor 3 (intestinal)
GATA3 R31441 GATA binding protein 3
XBP1 W90128 X-box binding protein 1
FOXA1 T74639 Forkhead box A1
AFF3 H99588 AF4/FMR2 family, member 3
LIV1 H29315 Estrogen-regulated protein LIV-1
NPNT AA029948 Nephronectin
TUBA1C N54508 Tubulin, alpha 1c
NAT1 R91802 N-acetyltransferase 1
MYO6 AA625890 Myosin VI
MYO6 AA030004 Myosin VI

Table 6.5: Best JASPAR matches for the MDSCAN algorithm.

Motif Best JASPAR match FISim value

MDSCAN-1 CREB1 0.745
MDSCAN-2 ABI4 0.700
MDSCAN-3 ESR1 0.731
MDSCAN-4 TP53 0.732
MDSCAN-5 Pax4 0.704
MDSCAN-6 NFKB1 0.743
MDSCAN-7 TFAP2A 0.701

we selected the most significant motifs and compared these to the publicly

available JASPAR motifs using FISim. Some of the most similar motifs found

in JASPAR include ESR1, CREB1, TAL1-TCF3, TP53, NFKB1 and PAX5. For a

complete list of motifs, as well as their similarities with JASPAR motifs, see

Tables 6.5-6.7. Logos for those motifs are available in Appendix B.

As expected, the link between these motifs is the estrogen receptor al-

pha (ESR1) gene. Estrogens play an important role in both female and male
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reproductive function, as well as in female cancers, and they have multi-

ple effects on the nervous, skeletal, and cardiovascular systems. ESR1 is

over-expressed in the “Luminal Subtype A" subgroup together with, among

others, the GATA-3, LIV-1 and XBP1 genes. Previous studies described how

these genes are coordinately expressed with ESR1 in breast cancers (Wilson

and Giguere, 2008; Gomez et al., 2007). A wide variety of non-DNA binding

molecules, called coactivators, have been identified that are able to enhance

ligand-induced activity of steroid receptors, including ESR1, through direct

or indirect binding to these receptors (Dutertre and Smith, 2003). Among

them, CREB-binding protein is critical for ligand-induced, nuclear receptor-

mediated transcription activation (Torchia et al., 1997). In addition, there

is evidence that estrogen and progesterone together with TGF-β signaling

are necessary for maintenance of p53 activity in the mammary epithelium

(Becker et al., 2005), and for an ESR-mediated inhibition of the NFKB sig-

naling pathway. NFKB target genes are significantly elevated in ESR-negative

versus ESR-positive breast tumors, which indicates a potential crosstalk be-

tween NFKB and ESR (Van Laere et al., 2006).

6.6 Analysis of the Results

We have introduced a new measure of similarity for regulatory motifs called

FISim. The uncertainty associated with motif comparison tasks makes fuzzy

concepts particularly suitable for handling this kind of data. FISim is based

on the fuzzy integral and takes advantage of the fuzzy concepts to overcome

Table 6.6: Best JASPAR matches for the MEME algorithm.

Motif Best JASPAR match FISim value

MEME-1 MNB1A 0.790
MEME-2 SPIB 0.793
MEME-3 SPI1 0.808
MEME-4 ZNF42 0.775
MEME-5 GATA2 0.745
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Table 6.7: Best JASPAR matches for the Weeder algorithm.

Motif Best JASPAR match FISim value

Weeder-1 Pax5 0.727
Weeder-2 TAL1-TCF3 0.744
Weeder-3 ESR1 0.682
Weeder-4 TCF11 0.789
Weeder-5 CREB1 0.701

some of the known difficulties that arise in measuring motifs tasks. There

are three main differences from other approaches: i) it considers not only

the distance between the PFMs columns, but also the relative importance of

each occurrence within each column, ii) it enables the inherent uncertainty

of the PFMs to be handled, and iii) it does not make use of any user-provided

parameter.

A simple experiment shows how other measures fail in capturing realistic

differences, while FISim provides good results (Figure 6.4). These results

are confirmed on extending the experiment to long datasets (Figure 6.6).

Furthermore, it is noteworthy how the naive euclidean distance (Choi et al.,

2004) inherently appears to assign greater importance to better conserved

positions (see Figure 6.4). This might explain why Gupta et al. (2007) and

Mahony et al. (2007) found the best performance of their methods when

using the euclidean distance to compare the motifs.

As explained above, FISim is based on the fuzzy integral theory. Fuzzy

integrals have been proven to be very suitable for information fusion. The

combination of the evidence supplied by the information sources (nucleotide

frequencies) and the importance of each subset of information sources (nu-

cleotide conservation level) is very interesting in motif recognition tasks.

When dealing with long random datasets, we show that FISim provides ex-

cellent results in terms of motif recognition, similar to those obtained apply-

ing existing methods. This was expected, since the probability of overlap-

ping within random motifs is low, which facilitates the discrimination of the

origins of the motifs. Some methods perform poorly when the information
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contents are low (e.g. ALLR and PCC), however, FISim also provides good

results under these circumstances.

This task gets more complicated when motifs are interrelated. In this

case, it is noteworthy that the Tomtom algorithm provides very good results

for higher information content values. However, FISim provides better re-

sults, especially when the information content of the motifs is lower, i.e.

when it is more difficult to recognize the motifs. This makes FISim partic-

ularly interesting when dealing with real problems. For example, as motif

discovery algorithms become more and more powerful, motifs with lower

information content will be produced as putative motifs and these will need

to be tested.

Another advantage of our method is that it does not require any ad-

ditional parameter. This makes FISim a more robust and fully automated

method, thus avoiding the need to select parameters via expert knowledge

or trial-and-error approaches.

We used FISim to investigate the motifs found by popular motif discov-

ery algorithms in a well-known set of co-regulated genes corresponding to

the subgroup “Luminal Subtype A” of breast carcinomas. Comparison of the

obtained motifs with those reported in JASPAR suggested that the ESR1 gene

plays a crucial role in this kind pathology. Furthermore, ESR1 interacts with

other motifs also present among the most significant motifs obtained. These

findings confirm previous studies and show the reliability of FISim in real-life

problems.

Our proposed cluster methodology (kcmeans) makes use of FISim and

the kernel theory to avoid problems found when applying other classical

methods (i.e. definition of a medoid, data order dependence, etc.). The

study of the performance of kcmeans in real data shows promising results in

terms of accuracy and cluster compactness. Comparison of our results with

those from similar experiments shows a better global behavior and a more

accurate grouping of the motifs.
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6.7 Concluding Remarks

In this chapter we introduce FISim, a new similarity measure for motifs and

a novel clustering methodology, based on the fuzzy integral and on kernel

technology respectively. Our main objectives were to favor the influence of

the better conserved positions of the motifs and to exploit the tolerance for

imprecision and uncertainty of fuzzy technology. FISim corrects a design

flaw of the most popular methods, whose measures favor similarity of low

information content positions. Our measure takes into account the relative

importance of each nucleotide within a given position. We use our mea-

sure to successfully identify motifs that describe binding sites for the same

TF and to solve real-life problems. We show that FISim outperforms other

approaches in motif recognition tasks, and prove how it can be successfully

applied to day-to-day research problems. In this chapter the reliability of

fuzzy technology for motif comparison tasks is proven.



CHAPTER 7
Scoring DNA Sequences against

TFBS Motifs

Pattern discovery in DNA sequences is one of the most important problems

in bioinformatics with applications in finding regulatory elements and tran-

scription factor binding sites. An important task in this problem is to search

(or predict) known binding sites in a new DNA sequence. The most com-

mon approach for this matter, is to score all the subsequences of the given

DNA sequence by means of an scoring function. Most of the available tools

for transcription factor binding site prediction are based on methods which

assume no sequence dependence between the binding site base positions.

New approaches aim to consider position dependencies. In this chapter, our

primary objective is to propose a novel scoring method based on the intu-

itionistic fuzzy set theory that outperforms existing methods.

Section 7.1 introduces the problem. Section 7.2 reviews the existing ap-

proaches. Our new scoring method is proposed in Section 7.3. In Section 7.4

we compare the methods with different experiments. Section 7.5 provides an

analysis of the results of the experiments performed in the previous section.

In Section 7.6 we use our proposed scoring method for the study of single

nucleotide polymorphisms. Finally, Section 7.7 concludes the chapter.
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7.1 Introduction

Cells control the abundance of proteins by means of diverse mechanisms.

One such mechanism is the regulation of transcription, which is a continu-

ous process whereby many factors combine to ensure appropriate rates of

protein synthesis. Understanding such complex processes is one of the main

objectives in computational biology. In its early stages, transcription is con-

trolled by the binding of proteins called transcription factors (TFs) to spe-

cific regions of a given chromosome called transcription factor binding sites

(TFBSs). These interactions between proteins and DNA usually take place

upstream from the gene, close to the transcription start site (TSS), in the

so-called promoter region of the gene.

One of the biggest issues in identifying TFBSs is that a single binding pro-

tein can bind to different DNA sequences. Related DNA sequences to which

the same TF can bind are grouped together into a TFBS motif. The identi-

fication of TFBSs within a given set of DNA sequences is an active area of

research. In this context there exist two main approaches: i) the de novo dis-

covery of motifs, and ii) the detection of TFBSs using motifs that are already

known.

De novo methods aim to find significant sub-sequence patterns within a

set of TFBS sequences. Some of the most popular approaches are MEME

(Bailey and Elkan, 1994), Gibbs sampling (Lawrence et al., 1993) and Alig-

nACE (Hughes et al., 2000). For a review of these methods see Das and Dai

(2007).

Detection methods, on the other hand, focus on inferring new TFBSs from

known binding motifs. Early detection methods assumed independence be-

tween positions within a putative TFBS sequence, e.g. in Patser (Hertz et al.,

1990) and ConSite (Sandelin et al., 2004b). However, it is now well estab-

lished that this assumption is wrong (Benos et al., 2002; Bulyk et al., 2002;

Eisen, 2005), and two recent methods have been developed that take into

account interdependencies between TFBS positions. Tomovic and Oakeley

(2007) proposed a method that incorporates a measure of positional interde-

pendence into the overall score. More recently, Zare-Mirakabad et al. (2009)



7.1. Introduction 133

developed a method based on joint information content and mutual infor-

mation. In this method, positional dependencies are taken into account by

considering all pairwise combinations of positions (See Section 7.2 for more

information).

The fact that TFBS sequences are usually very short means that the same

or very similar sequences tend to occur by chance at a relatively high fre-

quency. Consequently one of the main goals in the prediction of TFBSs is

to reduce the false positive rate without compromising sensitivity. Methods

that take into account positional dependencies tend to be significantly more

effective at meeting this challenge. However, there remains room for im-

provement. As we will show in Section 7.4, existing methods have some

drawbacks, such as overlearning of the training data, arbitrary threshold se-

lection for testing dependencies, etc. The purpose of the work presented

here is to provide a new method for measuring sequence-motif affinity that

improves on existing approaches in precisely these areas.

Zadeh (1965) proposed fuzzy set theory to mathematically model the

imprecision inherent in certain concepts. Briefly, fuzzy set theory allows an

object to partially belong to a set with a membership degree between 0 and 1.

Classical set theory is a special case of its fuzzy counterpart in which member-

ship and certainty degrees are restricted to either 0 or 1. Attanasov (1986)

proposed intuitionistic fuzzy set (IFS) theory as an extension of the fuzzy

set theory. IFSs generalize the notion of a fuzzy set representing uncertainty

with respect to both the degree of membership (µ) and non-membership (ν)

of a set by allowing that the sum µ+ ν ≤ 1.

Owing to the fact that IFSs are capable of modelling the uncertainty

present in real-life situations, they have been widely applied during the past

decades to a variety of problems (see Section 7.3). In recent years, it has

been seen that the inherent uncertainty and noise that characterize biolog-

ical data cannot always be modeled sufficiently well using probabilistic ap-

proaches and that, as a consequence, alternative approaches to modeling

this uncertainty may be required (Garcia et al., 2009; Lopez et al., 2008;

Liang et al., 2008). As it was previously discussed, in addition to the usual

problems of missing values and noisy data associated with biological data,
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there exist some additional hidden factors that affect binding affinities in the

context of sequence-motif scoring, e.g. cooperative binding and chromatin

structure (Lam et al., 2008). Furthermore, the described motifs are subject

to change as new experiments confirm new binding sites. In this work we

make use of IFS theory to formally model the uncertainty associated with the

problem of scoring DNA sequences against TFBS motifs.

7.2 Alternative approaches

In recent years, several scoring methods for the prediction of TFBSs have

been proposed. In this section we give a brief overview of those methods

that take account of positional dependencies, as they have been shown to

outperform methods that assume independence. Let us first introduce the

notation. Let B = {A, C , G, T} be the set of the four DNA nucleotides. Let

D = d1, . . . , dn be an ordered DNA sequence on B of length n. Let us suppose

that we have a motif M = S1, . . . , St , where Si ∈ D consists of t aligned

binding sites of length n . The problem is then reduced to assigning a score

to the pair formed by a given putative TFBS, S ∈ D, and a given motif, M .
In what follows we will follow the notation of Wasserman and Sandelin

(2004) where F(b, i), for b ∈ B and 1 ≤ i ≤ n shows the occurrences of

nucleotide b in position i, and P(b, i) = F(b,i)
t
+ a(b), for b ∈ B and 1≤ i ≤ n

is the corrected probability of base b at position i, where a(b) is a smoothing

parameter (a(b) = 0.001)1.

Statistical dependencies.

Tomovic and Oakeley (2007) extended the previous method that assumed

positional independence. The authors also followed the notation of Wasser-

man and Sandelin (2004) and defined Wb,i as a position weighted matrix

(PWM) of base b in position i computed as:

Wb,i = log2

P(b, i)
P(b)

. (7.1)

1a(b) = 0.01 is usually reported but our experiments show that smaller values provide
more accurate results.
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In the case where independence is assumed, the score for a given DNA

sequence S can be computed by summing all the values of Wb,i for every base

in S:

SCindep(S) =
n
∑

i=1

WSi ,i. (7.2)

The first step for extending this score involves testing the dependencies

between each pair of positions i and j. The authors introduced three different

methods:

• χ2 test:

χ2 =
∑

bi ,b j

(P(bi, b j, i, j)− P(bi, i)P(b j, k))2

P(bi, i)P(b j, k)
, (7.3)

where P(bi, b j, i, j) =
F(bi ,b j ,i, j)

t
. Here F(bi, b j, i, j) is the frequency of

base pairs bi b j at positions i and j.

• G statistics:

G = 2
∑

bi ,b j

P(bi, b j, i, j) ln

�

(P(bi, b j, i, j)

P(bi, i)P(b j, k)

�

. (7.4)

• Bayesian hypothesis testing of the hypotheses i) H0: both distributions

P(bi, b j, i, j) and P(bi, i)P(b j, k) are the same; and ii) H1: otherwise.

The authors show that the Bayes Factor BF(H0, H1) can be approxi-

mated as:

log2(BF(H0, H1))≈−tMi j, (7.5)

where Mi j is the mutual information between positions i and j given

by:

Mi j =
∑

bi ,b j

P(bi, b j, i, j) log2

�

(P(bi, b j, i, j)

P(bi, i)P(b j, k)

�

. (7.6)

The authors used these three methods to calculate the dependencies be-

tween pairs of positions in the motifs available in the public database JASPAR
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(Sandelin et al., 2004a). The reader should note that the accurate computa-

tion of positional dependencies is still an open problem since different results

are obtained depending on the method and parameters used in their compu-

tation (see Supplementary Material 2-4 in Tomovic and Oakeley (2007)).

Further details about obtaining the position dependencies and multiple test

corrections can be found in Tomovic and Oakeley (2007).

In order to compute the new score, the corrected probability for the bases

b1 b2 . . . bm in the dependent positions i1i2 . . . im is defined by:

P(b1, . . . , bm, i1, . . . , im) =
F(b1, . . . , bm, i1, . . . , im)

t
+

+ a(b1, . . . , bm),
(7.7)

where a(b1, . . . , bm) = a(b1) . . . a(bm) is a smoothing parameter.

It is straightforward then to obtain values that correspond to the PWM

values:

Wb1,...,bm,i1,...,im = log2

�

P(b1, . . . , bm, i1, . . . , im)
P(b1) . . . P(bm)

�

. (7.8)

Finally, their proposed scoring function, which incorporates positional

dependencies, can be computed as:

SCdep(S) =
k1
∑

i=1

WSi ,i +
k2
∑

i=1

WS ji
,S ji+1

, ji , ji+1
+ · · ·+

+
km
∑

i=1

WS ji
,...,S ji+m−1

, ji ,..., ji+m−1
,

(7.9)

where, k1 is the number of independent positions, k2 is the number of de-

pendent positions of order 2 (nucleotides at positions ji and ji+1) and km the

number of dependent positions of order m (in other words, nucleotides at

positions ji, ji+1, . . . , ji+m−1).

For both the SCindep and SCdep it is advisable to perform the following

normalization:

NSC =
SC −min(SC)

max(SC)−min(SC)
. (7.10)
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Matrix based.

Zare-Mirakabad et al. (2009) proposed a new scoring function based on

the dependency between all pairwise combinations of binding site positions.

Their method is based on the mutual information matrix (see equation (7.6))

and on the joint information content (JIC), defined as:

J IC =
n−1
∑

i=1

n
∑

j=i+1

∑

b1∈B

∑

b2∈B

P(b1, b2, i, j) log
�

P(b1, b2, i, j)
p(b1)p(b2)

�

. (7.11)

In order to compute their score, the authors defined a PWM, W PW , con-

taining 16 rows and (n∆(n−1)/2) columns for all the pairwise combinations

of the positions:

W PW
b1,b2,i, j = log

�

P(b1, b2, i, j)
p(b1)p(b2)

�

+ log
�

P(b1, b2, i, j)
p(b1, i)p(b2, j)

�

, (7.12)

where b1, b2 ∈ B and 1≤ i, j ≤ n and i 6= j.

Finally, for a given DNA sequence S ∈ D of length n the score SCmat is

computed as:

SCmat =
n−1
∑

i=1

n
∑

j=i+1

W PW
Si ,S j ,i, j

. (7.13)

In order to obtain a normalized value for the score, equation (7.10)

should be applied.

7.3 New Intuitionistic Approach (SCintui t)

Intuitionistic fuzzy sets

Intuitionistic fuzzy set (IFS) theory was proposed by Attanasov (1986) and

has been applied in such diverse fields as decision making (Szmidt and Kac-

przyk, 1996), logic programming (Atanassov and Gargov, 1990) medical di-

agnosis (De et al., 2001b; Khatibi and Montazer, 2009), pattern recognition

(Hung and Yang, 2004). IFS theory is an extension of the fuzzy sets theory

previously proposed by Zadeh (1965) that allows the degrees of membership
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and non-membership to be independently uncertain, which makes the rep-

resentation more flexible at capturing the current state of our understanding

given inconclusive data (Atanassov, 1994; De et al., 2001a). Next, we intro-

duce some basic IFS concepts.
Let X be the universe of discourse. An intuitionistic fuzzy set A in X is an

object having the form:

A= {(x ,µA(x),νA(x)) : x ∈ X }, (7.14)

where µA,νA : X → [0, 1] denote membership function and non-membership

function of A, satisfying 0 ≤ µA + νA ≤ 1 for every x ∈ X . Therefore, the

degree of uncertainty of x to A is πA(x) = 1−µA−νA. For more on this topic

please refer to Attanasov (1986); Atanassov (1994); De et al. (2001a).

Intuitionistic representation of motifs

For our approach, a given motif M is represented as the set of IFSs of all the

pairwise combinations of its positions: I M = {I M
i, j}, where 1 ≤ i, j ≤ n and

i 6= j. Each of the i, j combinations for the motif positions is then an IFS of

16 elements defined as:

I M
i, j = {b,µI M

i, j
(b), vI M

i, j
(b) : b ∈ B× B}, (7.15)

where B×B is the universe of discourse, i.e. the set of all 16 possible combi-

nations of bases for two given positions i and j (AA, AC, ..., TT).

Membership degree computation

µI M
i, j

represents the degree of membership of the pairs for the basis b1, b2 ∈ B

in a given pair of positions i, j in a motif M . It can be automatically computed

as:

µI M
i, j
(b1, b2) = P(b1, b2, i, j)+(1− P(b1, b2, i, j))

p(b1, i) + p(b2, j)
2

, (7.16)

where the above notation holds. Obviously, 0 ≤ µI M
i, j
(b1, b2) ≤ 1 and the de-

gree increases as do the corrected probabilities of bases b1 and b2 in positions

i and j, as well as the individual corrected probabilities p(b1, i) and p(b2, j).
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Non-membership degree computation.

νI M
i, j

represents the non-membership degree of the pairs for the basis b1, b2 ∈
B in a given pair of positions i and j in a motif M . It can be automatically

computed as:

νI M
i, j
(b1, b2) =





IC b1
i + IC b2

j

2



 (1−µI M
i, j
(b1, b2)), (7.17)

where IC b
p =

p(b,p) log2(p(b,p))
2

is the normalized information content of base

b in position p and νI M
i, j
(b1, b2) is in the range 0 ≤ νI M

i, j
(b1, b2) ≤ 1. As

νI M
i, j
(b1, b2) increases, the information content of the two basis increases and

the corresponding membership degree decreases. It is easy to prove that

µI M
i, j
(b1, b2) + νI M

i, j
(b1, b2)≤ 1.

Scoring

In order to define our proposed score, we first introduce the simplest case of

scoring a length-2 DNA subsequence D = b1, b2 in the positions i and j of a

motif M :

SC i, j
intui t(b1, b2) = µI M

i, j
(b1, b2)(max(νI M

i, j
)− νI M

i, j
(b1, b2)), (7.18)

where max(νI M
i, j
) is the maximum degree of non-membership in M found in

the pair of positions i and j considering all the possible combination of basis

b1, b2 ∈ B2, and µI M
i, j
(b1, b2) and νI M

i, j
(b1, b2) are the membership degree and

non-membership degree of the pairs for the basis b1, b2 ∈ B in the pair of

positions i, j of M , computed as stated in sections 7.3 and 7.3 respectively.
As with the previously defined scores, a normalization step needs to be

performed in order to obtain comparable results

NSC i, j
intui t(b1, b2) =

SC i, j
intui t(b1, b2)−min(SC i, j

intui t(b1, b2))

max(SC i, j
intui t(b1, b2))−min(SC i, j

intui t(b1, b2))
. (7.19)

Finally, for a given DNA sequence S ∈ D of length n the score SCintui t is

computed as:

SCintui t =
n−1
∑

i=1

n
∑

j=i+1

NSC i, j
intui t(Si, S j). (7.20)
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7.4 Comparative Study of the Performance of

SCintui t

Case study

In the majority of cases, the sequences known to belong to a given TFBS mo-

tif have very similar nucleotide compositions and highly conserved positions.

However, in the databases of known motifs there are a number of examples

where individual sequences differ from the majority in highly-conserved po-

sitions. Such a binding sequence can be considered an outlier with respect to

the motif. When scoring new nucleotide sequences against a given TFBS mo-

tif, we should generally tolerate small, additional variations in the sequence

with respect to non-outliers, but be far less tolerant of mutations to outlier

sequences. Here we evaluate the extent to which each scoring method is able

to discriminate between sequences belonging to these two categories.

Take, as a preliminary example, the binding sequences for motif MZF1 in

the JASPAR database, as shown in Figure 7.1(A). It can be observed how the

highlighted outlier sequence GGAGGA does not contain the highly-conserved

base G at the third position, while the highlighted sequence TGGGGA is

clearly a non-outlier (see motif logo in Figure 7.1(B)). We selected the high-

lighted sequences and additionally created two new sequences by mutating

its sixth position giving GGAGGG and TGGGGT. We scored each pair of se-

quences against the motif by means of the different methods. Figure 7.1(C)

shows the results.

In the case of the non-outlier binding sequence, all three methods per-

formed similarly for the two sequences. They gave very high scores for the

original sequence, indicating a high binding probability, using, for example, a

standard threshold as discussed in section 7.4 below. In addition, high scores

are obtained for the mutated sequence, as expected, since the sequence still

shares most of the highly conserved positions with the motif. This situation

changes in the case of the outlier binding sequence. As can be seen, all

three methods gave a high score for the original sequence, indicating a high

binding probability, whereas, the results for the mutated sequence are signif-
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Figure 7.1: Motif MZF1. A) Shows the binding sequences found in JASPAR.
B) Shows the logo representation of the motif (center), with the original and
mutated sequences for the non-outlier binding sequence (above), and the outlier
binding sequence (below). C) Shows the results for each of the three methods
when scoring the original and mutated sequence of the non-outlier binding se-
quence (top) and the outlier binding sequence (bottom).

icantly different. In reality one would expect a low binding probability owing

to the fact that the original sequence is an outlier and the mutated sequence

has an additional mismatch at one of the highly conserved positions of the

motif. As desired, a low score is obtained by our proposed method SCintui t .

However, high scores are obtained by the SCmat and SCdep methods, giving

the incorrect impression that binding might occur.

These insights are confirmed in the following sections where the exper-

iments are extended to use large datasets, and the results are measured in

terms of discovery rates without regard to the chosen threshold.
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Prediction of TFBSs

Synthetic sequences

In order to compare the performance of the different methods in predict-

ing TFBSs, we used the publicly available JASPAR motifs database (Sandelin

et al., 2004a) for our experiments. We selected all motifs for which binding

sequences are available (not only matrix profiles), resulting in a dataset of

124 motifs. For each of these motifs, a binding site was randomly selected

and inserted in a random sequence from a third-order Markov model back-

ground distribution obtained from the program RSA (Van Helden, 2003). For

each position of each sequence we computed the score for its corresponding

motif. We consider a correct classification to have occurred when a higher

score is assigned to a position where a binding site was inserted, and an

incorrect classification otherwise. In order to control the number of true

negatives for the different lengths of the motifs, we fixed the length of the

random sequences to 50 bases more than the length of the inserted binding

site. Thus, we obtained a dataset comprising 124 true positives and 6200 true

negatives.

Usually, methods have a high sensitivity (i.e. can detect true positives),

so that the key difference between them is the number of false positives.

Following the recommendations of Tomovic and Oakeley (2007), we selected

a threshold of 0.7 indicating a match for a binding site. The thresholded

results for the different methods indicate that our proposed scoring function

performed best, giving the smallest number of false positives per TF whilst

simultaneously giving a high number of true positives.

In order not to rely on the selection of an arbitrary threshold for evaluat-

ing the results, we arranged the motifs according to their distances, and from

this arranged set of motifs we computed a ROC (Receiver Operating Charac-

teristic) curve (Hanley and McNeil, 1982). ROC curves plot the percentage

of correct classifications as a function of incorrect classifications. In Figure

7.2 we show the ROC curves obtained using the different approaches. Area

under the curve (AUC) values can be observed in Table 7.4. It can be seen

that our proposed method SCintui t outperforms the other methods.
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Figure 7.2: ROC curves of the three scoring methods for the synthetic
sequences experiment. SCintui t provides a more consistent classification than
the rest of the methods.

Precision-recall (PR) curves are commonly used in information retrieval

for evaluating classification performance and give a more informative picture

of a method’s performance when dealing with highly skewed datasets as is

the case here (Fawcett, 2006). Figure 7.3 shows the PR graphs together

with a representation of the F-measure results2 in function of the selected

threshold for the three methods. SCintui t produces a better PR graph than

the remaining methods (see Table 7.4 for AUC values). This is confirmed

by the F-measure performance at the selected threshold. Positive values are

obtained when the F-scores for SCmat and SCdep are subtracted from that for

SCintui t (1.45 and 0.89 respectively).

2F-measure is the weighted harmonic mean of precision and recall.
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Table 7.1: AUC values for the synthetic and mutated sequence experiments.

Synthetic Mutated

AUC ROC AUC PR AUC ROC AUC PR

SCdep 0.904 0.822 0.878 0.730
SCmat 0.987 0.891 0.984 0.819
SCintui t 0.992 0.942 0.991 0.924

Figure 7.3: Precision-recall and F-measure graphs of the three scoring
methods for the synthetic sequences experiment.

Mutated sequences

To further evaluate our proposed method, we obtained a set of putative bind-

ing sites that are very similar to those that are already known. This is a com-

mon scenario in motif discovery, where the set of known sequences belonging
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to a given binding motif is incomplete. In order to simulate this situation, we

proceeded in a similar way to our previous experiment; all the steps were

the same except that we gave a single base mutation at a random position

within the selected binding site for each motif. ROC curves and AUC values

were computed to compare the performance of the different methods (Figure

7.4 and Table 7.4). In addition, Figure 7.5 shows the precision-recall and F-

measure graphs for the three methods. SCintui t clearly obtains better results

than the remaining methods. The ROC and precision-recall graphs shows

how SCintui t gives consistently superior values, with a higher AUC value (Ta-

ble 7.4), which are confirmed by the representation of the F-measure results.

Here again, positive values are obtained when the F-scores for SCmat and

SCdep are subtracted from that for SCintui t (2.16 and 4.37 respectively). It

can be observed that the improvement of the performance of our method

compared to SCmat and SCdep grew with respect to the synthetic sequences

experiment discussed in the previous section. Arguably this makes it more

reliable to be used in real problems.

Real Data

We analyzed the performance of the proposed methods when dealing with

real experimental data. In order to do so, we made use of the published ChIP-

seq data on binding of TFs in embryonic stem cells from mouse by Chen et al.

(2008), as provided in the supplementary material of Sharov and Ko (2009).

We considered the three TFs (SMAD1, Myc, and STAT3) that have binding

sequences available in the TRANSFAC database (Matys et al., 2006). Thus,

we obtained three sets of 200 bp sequence segments centered at TF binding

locations, and we randomly selected 50 sequence segments from each set

for our study. We scanned each set of sequences using the 124 TFs from

JASPAR for which binding sequences are available. The results demonstrate

the superior performance of our new scoring method, as it gives the smallest

number of false positives per nucleotide and per TF, and has an excellent

true-positive rate (Figure 7.6). It can be seen how our method maintains

consistently low false-positive rate with all three set of sequences, whilst the

performance of the other methods varies with respect to the different dataset.
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Figure 7.4: ROC curves of the three scoring methods for the mutated
sequences experiment.

7.5 Analysis of the Results

We have introduced a new IFS-based approach for scoring DNA sequences

against DNA motifs called SCintui t . In section 7.2 we presented three scoring

schemes. These approaches have several drawbacks. SCindep is based on an

incorrect assumption that the nucleotides of a given TFBS are independent.

In that context, SCdep extended the score in order to account for positional

dependencies. Zare-Mirakabad et al. (2009) pointed out the problems as-

sociated with unnormalized scores at each position. In addition, the results

vary depending on the choice of the method and parameters for testing the

dependencies (see section 7.2). The main drawback with SCmat is outlined

in section 7.4: it has a tendency to overlearn the training data and conse-

quently its performance decreases when applied to real problems. There is
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Figure 7.5: Precision-recall and F-measure graphs of the three scoring
methods for the mutated sequences experiment.

therefore a need for a scoring method that accounts for positional depen-

dencies without compromising either the consistency or the accuracy of the

results.

As explained above, SCintui t is based on the IFS theory, which has been

successfully applied to problems that suffers from noisy and imprecise data.

IFS theory represents uncertainty with respect to both the degree of member-

ship and non-membership. The uncertainty associated with the tasks of scor-

ing DNA sequences against motifs makes intuitionistic concepts particularly

suitable for handling this kind of data. Taking advantage of such proper-

ties, we define the membership and non-membership degrees of a given pair

bases at a given position not only as a function of their combined probability

of occurrence, but also taking into account the importance of each individual

base at its corresponding position.
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Figure 7.6: Average false-positive ratio per TF for different thresholds for
the proposed scoring methods.

One of the biggest issues for this kind of scoring methods is giving high

scores for the known binding sequences of the motifs without overfitting. Our

proposed approach adequately solves the problem of computing the score of

a given sequence against a given motif by considering the binding sequences

that comprise the motif not only individually but also as part of such set of

sequences. A simple experiment shows how other methods fail in capturing

realistic differences, while SCintui t provides good results (Figure 7.1). Our

method assigned high scores for known binding sites, disfavoring mutations

in the conserved positions of the binding site.

These insights are confirmed from experiments for predicting TFBSs in

large datasets (Section 7.4). We compared the performance of the proposed

scoring methods on recognizing motifs in sets of random sequences from a



7.6. Study of SNPs in TNFR1 for the Response against Aspergillus 149

third-order Markov model background distribution in two circumstances: i)

when inserting known binding sequences, and ii) when inserting mutated

binding sequences. In both situations we found that our proposed method

gave the smallest number of false positives per TF whilst simultaneously giv-

ing a high number of true positives (Figures 7.2-7.5). More importantly, our

method outperforms the other approaches when dealing with real experi-

mental data derived from Chip-seq assays. In this case, again, the number of

false positive is significantly reduced (Figure 7.6).
In general, the obtained results on the different experiments demon-

strated that the proposed intuitionistic approach provide a better and more

accurate model for the detection of motifs and for the relationships between

positions of the TFBSs.

7.6 Study of Single Nucleotide Polymorphisms

in TNFR1 Gene for the Response against

Aspergillus Fumigatus

Motivation

Hematological patients are typically treated by chemotherapy and/or radia-

tion. These treatments usually produce immunosuppression and severe neu-

tropenia. This clinical situation can be exploited by opportunistic pathogens

such as Aspergillus fumigatus to cause a deadly infection called Invasive Pul-

monary Aspergillosis (IPA) (Denning, 1998; Offner et al., 1998). Aspergillus

fumigatus is then an important fungal pathogen that can cause IPA in im-

munocompromised patients with high morbidity and mortality rates. The

importance of finding ways to combat this pathogen is evidenced by the fact

that IPA occurs in roughly 10% to 40% of hematological patients, with over-

all mortality rates ranging from 50% to 90% (Chamilos et al., 2006; Diop

et al., 2005).
Tumor necrosis factor (TNF) is primarily secreted by macrophages and

activates T lymphocytes in response to fungal infections through TNF recep-

tors. One of the most important TNF receptors is TNFR1, which triggers a
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pro-inflammatory response and, therefore, plays a crucial role in immune

regulation and host immune responses. Experimental studies with TNFR1

knockout mice indicate that TNFR1 is indispensable in host resistance against

several infections (Hehlgans and Pfeffer, 2005). Our hypothesis is that single

nucleotide polymorphisms (SNPs) in TNFR1 gene may influence the innate

immune response against Aspergillus fumigatus.

Identification of patients who are more susceptible for infection could

facilitate the development of effective prevention strategies. Genetic fac-

tors explain, at least in part, why some people resist infection more success-

fully than others. Gene disruptions can cause fatal vulnerability to specific

pathogens (Kwiatkowski, 2000). Indeed, SNPs in the promoter and coding

regions of cytokine genes have been described associated with a difference in

the cytokine production (Kim et al., 2008b) or function (Knight, 2005) and,

therefore, they might influence susceptibility to infections.

The gene encoding TNFR1 contain numerous polymorphisms (Bochud

et al., 2008; Baker et al., 1991). By means of different experiments, we

concluded that TNFR1-609(G/T) polymorphism is critical in the development

of the response against Aspergillus because it might be regulating the cell-

mediated Th1 immune response3. In this section, we use our proposed scor-

ing method SCintui t to know whether the TNFR1-609(G/T) promoter polymor-

phism is involved in the disruption of the recognition of a potential binding

site for a critical transcription factor that could influence TNFR1 transcription

level.

TNFR1-609(G/T) Polymorphism Binding Affinity

As commented above, there are several databases where TFBSs are avail-

able for the scientific community. For this experiment we used motifs found

in TRANSFAC database (Matys et al., 2006), which has been widely used

in research works involving regulatory elements (Wingender, 2008). In or-

der to find interesting dependences between the TNFR1-609(G/T) SNP and

3Details on these experiments are out of the scope of this dissertation and can be con-
sulted in Sainz et al. (2009).
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Figure 7.7: Set of putative binding sequences for the G allele of the
TNFR1-609(G/T). Best results are found for the highlighted SG_8 sequence. A
corresponding set was also obtained for the T allele.

TFs binding affinity we scored the human TRANSFAC TFBSs against the

TNFR1-609(G/T) polymorphism by means of the SCintui t method.

TFs bind to short parts of the TNFR1 promoter region and, therefore, for

each trial, we need to define a fragment of the promoter sequence containing

the TNFR1-609(G/T) SNP that might be considered as the putative TFBS. To

this, we need to determine the length of the sub-sequences and the relative

offset to the position of the TNFR1-609(G/T) SNP. For each of the 446 human

TF in TRANSFAC, we generated a set of putative binding sequences by using

a window size of a fixed length equals to the number of position of the corre-

sponding TF. Moving the window across the sequence in 5’-3’ direction gave

us the sub-sequences for the TNFR1-609(G/T) SNP that we considered to be

putative TFBSs (see Figure 7.7 for an example). Next, we scored each pair

of sub-sequences (one sub-sequence for G allele, and for T allele) against the

given TF applying the SCintui t method.

We were interested in those sub-sequences that fulfil two properties: i)

they have a high score in one allele (G or T) so they can be considered



152 Scoring DNA Sequences against TFBS Motifs

as candidates to be binding sites, and ii) the score is substantially lowered

when considering the remaining allele so the SNP might affect to the binding

affinity. For this matter, we kept those TFBSs that presented a score over 0.74

After that, we compared the selected TFBSs with their corresponding alleles

(sequences with a G(T) instead of a T(G) at position -609). Results are shown

in Table 7.2. In the next section we discuss these finding from a biological

point of view.

Table 7.2: SCintui t scores for the two alleles.

TF Starting position Direction TNFR1-609(T) TNFR1-609(G)
AREB6 603 - 0.59 0,70

E2A 606 - 0.64 0.79
HNF4 605 + 0.52 0.78
ICSBP 606 + 0.81 0.69
MYB 601 - 0.76 0.77
Pax-2 604 - 0.76 0.58
SMAD 603 + 0.73 0.73

Functional Effect of ICSBP/IRF-8 in the TNFR1-609(C/T)

SNP

In the previous section, we obtained predictive results using SCintui t method

and TRANSFAC database (Table 7.2). From them, we selected four candi-

dates according to the two properties outlined in the previous section, i.e

E2A, HNF4, ICSBP, and Pax-2. We did not find described relations between

IPA response for any of E2A, HNF4, and Pax-2 TFs. Logos for these TFs are

provided in Figure 7.8.
On the other hand, we found ICSBP (also known as IRF-8) to be directly

related with the purpose of our study. ICSBP/IRF-8 shows a preference for

binding the T allele (see Table 7.2). As a member of IRF family of transcrip-

tion factors it is an important modulator of IFNγ signalling cascade and was

4This arbitrary threshold is used as a conservative level. Later on this section we show
how the most interesting insights are found for the ICSBP TF which presents the highest
scoring among all the human TRANSFAC motifs.
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Figure 7.8: Discarded TFs.

identified in association on the promoter region of numerous macrophage

essential genes such as IL12, IL1β , IL18, iNOS or ISG15 (Dror et al., 2007).

In addition, several genes regulated by ICSBP/IRF-8, such as MAP4K4,

IL-17R, and SOCS7, are involved in different stages of the nuclear factor κB

(NFκB) signaling pathway (Dror et al., 2007). Therefore, we can hypothe-

size that ICSBP/IRF-8 transcription factor might be also regulating the NFκB

signaling pathway through the control of the first gene of this signalling cas-

cade, the TNFR1 gene. In support of this hypothesis, (Zhao et al., 2006)

established that ICSBP/IRF-8 and TNFR1 are closely related genes. They

found ICSBP/IRF-8 to be associated with an enhanced ubiquination of TNFR

associated factor 6 (TRAF6), a protein that mediate the signal transduction

from members of the TNF receptor superfamily, and the activation of AP-1

and NFκB transcription factors.

On the other hand, several studies demonstrated that ICSBP/IRF-8 pro-

motes the differentiation and activation of dendritic cells and macrophages

cells (Tamura and Ozato, 2002; Tamura et al., 2000) and that, at the same
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Figure 7.9: ICSBP against TNFR1-609(G/T) polymorphism.

time, TNFR1 mRNA level is increased during this biological process (Schling

et al., 2006).

Taken into account these observations, we hypothesize that the presence

of TNFR1-609(G/T) promoter polymorphisms can modify the binding affinity

to ICSBP/IRF-8 (see Figure 7.9) and, therefore, it could be used to predict

susceptibility to infection and to facilitate risk stratification of hematological

patients. However, the question of whether the TNFR1 polymorphisms have

biological relevance regulating mRNA TNFR1 levels through ICSBP/IRF-8

transcription factor remains unanswered. Functional analysis should be per-

formed to demonstrate the role of TNFR1-609(G/T) polymorphism mediating

the binding of ICSBP/IRF-8 to TNFR1 promoter.
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7.7 Concluding Remarks

In the present study, we have introduced SCintui t , a new scoring method for

measuring sequence-motif affinity, based on IFS theory. Our main objective

was to improve the prediction quality for TFs of the existing approaches,

reducing the false positive rate without compromising sensitivity. We show

that SCintui t outperforms other approaches in motif recognition tasks, and

prove how it can be successfully applied to real research problems like ChIP-

chip experiments or SNP analysis. Results for this last task suggest that the

presence of G allele at position -609 might disrupt the binding affinity to in-

terferon consensus binding protein (ICSBP/IRF-8). In the absence of T allele,

the binding of ICSBP/IRF-8 to this region is predicted to be disrupted, poten-

tially disturbing the transcriptional activation (Figure 7.9). We hypothesize

that this putative transcription factor binding site might be involved in the

initiation of TNFR1 transcription process, which should be confirmed with in

vitro and/or in vivo experiments.

We have used our approach as a scanning method for the prediction of

TFBSs, but it also can be incorporated with methods for de novo discovery

of motifs. As intuitionistic theory is specially suitable for problems that deal

with imprecise concepts, we are currently working on a fuzzy approach that

applies the proposed scoring in an ab initio method to find motifs in large

sets of related DNA sequences.
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CHAPTER 8
Conclusions and Future Work

8.1 Conclusions

This section summarizes the contributions of this thesis to the field of bioin-

formatics, analyzing the results in accordance with the initial objectives. This

dissertation means an important step in the application of fuzzy technology,

capable of representing and handling imprecise, vague and uncertain sce-

narios, to bioinformatics research problems. Throughout the document, we

have presented examples in different real and synthetic experiments, such

as protein classification, motif identification in co-regulated genes, or single

nucleotide polymorphisms.

Objective 1. The first part of Chapter 4 fulfills the first of our objectives,

which was to perform a critical review of the state of the art in GO semantic

measures. We have applied these GO crisp semantic measures combined with

different clustering methods in order to achieve protein family recognition.

We have demonstrated that two of the clustering methods (kcmeans and

csecmeans), provide better results than the others and they should be con-

sidered when dealing with imprecise data. Furthermore, we have showed

that selecting an appropriate GO partition is a key issue for each problem.

Although the results are promising and show that we can use the knowledge

contained in GO to analyze sets of annotated proteins, we have seen that

159
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they present some limitations. Some of them have been overcome in the

next chapter.

Objective 2. The definition of a new fuzzy semantic similarity measure for

GO in the second part of Chapter 4 fulfills the second of our objectives. We

have extended the approach proposed by Keller et al. (2004) so that the re-

liability of the source of information is taken into account by means of the

evidence codes of the annotations. We have provided a comparison of our

new method with previously defined methods in terms of protein classifica-

tions. We have proved that our proposed measure provides results that out-

performs previous techniques and are consistent with the biological meaning

of the annotations and with the expected results.

Objective 3. Chapter 5 fulfills the third objective. We have exposed the state

of the art in motif comparison measures, providing a review of the most

popular probabilistic measures for motifs. We have also adapted different

classes of classical measures for fuzzy sets and a measure defined for the

fuzzy polynucleotide space, so that they can be applied to motif comparison

tasks. We have proved the adequacy of fuzzy technology within motif com-

parison issues. The results showed that fuzzy measures provide excellent

results when dealing with sets of randomly generated motifs and outper-

forms other existing measures when facing datasets of real motifs.

Objective 4. Chapter 6 proposes a new similarity measure for DNA motifs

called FISim (Fuzzy Integral Similarity), which fulfills our fourth objective.

FISim takes into account the relative importance of each nucleotide within

a given position of the motif. For the validation of our new approach, we

have introduced the recent advances in motif measures, including two recent

methods that have shown better results than probabilistic approaches (Gupta

et al., 2007; Pape et al., 2008). We have demonstrated that FISim outper-

forms other approaches in motif recognition tasks, and it can be successfully

applied to real-life research problems. In addition, we have also proposed

a novel clustering methodology for motifs based on our FISim measure and
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kernel theory, showing promising results in terms of accuracy and cluster

compactness. All of this proves the reliability of fuzzy technology for motif

comparison tasks.

Objective 5. The definition of SCintui t , a novel scoring method for measur-

ing sequence-motif affinity, in Chapter 7 fulfills our fifth objective. SCintui t

is based on IFS theory, which makes our method more flexible at capturing

the real meaning of the affinity sequence-motif given the uncertain available

data. We have introduced the latest advances on this topic, showing that con-

sidering dependencies among motif positions is a key point for this matter.

We have proved that SCintui t outperforms other approaches in motif recog-

nition tasks, and we have shown how it can be successfully applied to real

research problems like ChIP-chip experiments or SNP analysis.

8.2 Future Work

The application of fuzzy techniques for bioinformatics problems is a relatively

new field of research. Therefore, there is still much room for further work

that improves and extends current approaches. Particularly, from the work

presented in this thesis, some ideas that should be considered next are:

• Taking advantage of the DAG structure of GO, it would be very inter-

esting to have a GO semantic measure that is directly a kernel so it can

be incorporated in any kernel method.

• To extend classical fuzzy measures for motifs by taking into account

the different importances of the motif positions regarding the observed

conservation, e.g. incorporating weights to the positions according to

their corresponding information content.

• To incorporate FISim and SCintui t into a publicly available web plat-

form that allows the scientific community to easily use them for their

experiments.

• One of the main problems of the scoring methods for measuring se-

quence-motif affinity is that outlier sequences of the a given motif tend
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to have relatively low scores when scoring them against their corre-

sponding motif. It would be necessary to have work on a scoring

method that increases those scores without overestimating of lower

conserved positions of TFBSs.

• As fuzzy technology is especially suitable for problems that involving

imprecise concepts, it is a natural next step to work on a fuzzy algo-

rithm that applies both FISim and SCintui t for finding de novo motifs in

large sets of related DNA sequences.
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Figure .1: Cluster 1

Figure .2: Cluster 2
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Figure .3: Cluster 3

Figure .4: Cluster 4

Figure .5: Cluster 5
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Figure .6: Cluster 6

Figure .7: Cluster 7

Figure .8: Cluster 8
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Figure .9: Cluster 9

Figure .10: Cluster 10

Figure .11: Cluster 11
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Figure .12: Cluster 12

Figure .13: Cluster 13

Figure .14: Cluster 14
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Figure .15: Cluster 15
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Retrieved motifs

In this section we show the most significant motifs obtained from the three

motif discovery programs used.

MDSCAN

Figure .16: MDSCAN-1

Figure .17: MDSCAN-2

189



190 Appendix B

Figure .18: MDSCAN-3

Figure .19: MDSCAN-4

Figure .20: MDSCAN-5
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Figure .21: MDSCAN-6

Figure .22: MDSCAN-7

MEME

Figure .23: MEME-1

Figure .24: MEME-2
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Figure .25: MEME-3

Figure .26: MEME-4

Figure .27: MEME-5
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Figure .28: MEME-6

Weeder

Figure .29: Weeder-1

Figure .30: Weeder-2



194 Appendix B

Figure .31: Weeder-3

Figure .32: Weeder-4

Figure .33: Weeder-5
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