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Summary

Diagnostic Methods are fundamental in Clinical Medicine and in Epidemiology.
Therefore, part of the discipline of Statistics has focused on the development of new
methods to solve the problems that have been posed in this field, leading to what are
known as Statistical Methods for Diagnosis in Medicine. This doctoral thesis seeks to
contribute to research into new methods of estimation of parameters of binary
diagnostic tests. It focuses on the study of binary diagnostic tests, whose assessment in
relation to a gold standard gives rise to a 2x2 table when there is a single diagnostic
test, or a 2x4 table when there are two binary diagnostic tests. In all the situations
analysed in this Thesis, it is assumed that the disease status of all the individuals in the

sample, or samples, is known. This doctoral thesis is structured in three Chapters.

In Chapter 1, the main parameters of a binary diagnostic test are defined and studied:
sensitivity and specificity, likelithood ratios, predictive values and the weighted kappa

coefficient.

Chapter 2 studies the estimations of the parameters presented in Chapter 1 when the
study is cross-sectional and when it is case-control. The cross-sectional study consists of
the application of the binary diagnostic test and the gold standard to all the individuals
in a random sample; and the case-control study consists of applying the binary
diagnostic test to all of the individuals in two samples, one of individuals with the
disease (case sample) and another of individuals without the disease (control sample).
The contribution made by this Chapter is the estimation of the weighted kappa
coefficient subject to case-control sampling. Several confidence intervals are studied for

this parameter, Monte Carlo simulation experiments are carried out to study the



asymptotic coverage of these intervals and a method is proposed to calculate the size of

each sample. The results obtained are applied to real example.

Chapter 3 studies two different problems: the comparison of parameters of two
binary diagnostic tests subject to a paired design and the combination of parameters of
two binary diagnostic tests. On the one hand, we present the hypothesis tests and
confidence intervals to compare the parameters of two binary diagnostic tests, and on
the other, we study the combination of parameters of two binary diagnostic tests. The
contribution of this Chapter is the combination of the weighted kappa coefficients of
two binary diagnostic tests in parallel testing, defining the weighted kappa coefficient of
the combination of the two diagnostic tests and studying its properties. We have studied
the conditions in which the combination of the two diagnostic tests produces an increase
in the weighted kappa coefficient of the combination. Fieller’s method is applied to
obtain a confidence interval for the ratio between the weighted kappa coefficient of the
combination and each weighted kappa coefficient, and Monte Carlo simulation
experiments are carried out to study the asymptotic behaviour of this interval. An R
program is written to solve the problem posed and the results were applied to a real

example.

Granada

May, 2017



Chapter 1

Binary Diagnostic Test and its Parameters

1.1. Introduction

The diagnosis of diseases is fundamental in the practice of Medicine and the study of
Statistical Methods for Diagnosis in Medicine is an important topic in Biostatistics
(Zhou et al, 2002; Pepe, 2003). A diagnostic test (DT) is medical test that is applied to
an individual in order to determine the presence or absence of a certain disease. The
level of PSA for the diagnosis of prostate cancer and a stress test for the diagnosis of
coronary artery disease are two examples of DTs. A DT can be helpful for screening, for

diagnosis and for individual management:
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a) Screening: to detect a disease in asymptomatic individuals, and therefore reduce
disease morbidity and mortality through early treatment.

b) Diagnosis: establish or exclude the presence of a disease in symptomatic
individuals.

¢) Individual management: evaluate the severity of a disease, estimate prognosis,
monitor the course of a disease (progression, stability, or resolution), detect

disease recurrence, select drugs and therapy and adjust them.

The application of a DT for the assessment of diseases has different purposes (Zhou et

al, 2002):

a) To provide reliable information about the disease status of an individual.

b) To influence the planning of the treatment of an individual.

¢) To understand the mechanism and the nature of the disease through research.
The interpretation of a DT depends on several factors (Zhou et al, 2002):

a) The intrinsic ability of the DT in order to distinguish between diseased and non-

diseased individuals (discriminatory accuracy).
b) The particular characteristics of each individual.
¢) The environment in which the DT is applied.

A DT may make a mistake in the diagnosis of the disease status of an individual, and
therefore the accuracy of a DT is measured in terms of probabilities (or functions of
them). When the result of a DT is positive (indicating the presence of the disease) or
negative (indicating the absence of the disease), the DT is called a binary diagnostic test

(BDT) and its accuracy is measured in terms of two fundamental parameters: sensitivity
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and specificity. Other parameters to assess the performance of a BDT are the likelihood
ratios (LRS), the predictive values (PVs) and the weighted kappa coefficient (K'(C)) In

order to obtain an unbiased estimators of the sensitivity and the specificity of the BDT,
and therefore for the other parameters, it is necessary to know the true disease status
(present or absent) of each individual in the random sample. The medical test through
which the true disease status of each individual is known is called the gold standard
(GS). A biopsy for the diagnosis of prostate cancer and an angiography for the diagnosis
of coronary disease are two examples of GS. Therefore, there are two methods to
diagnose the disease: DT and GS. The DT may make a mistake in the diagnosis of the
disease while the GS does not. Why not always use the GS? There are several reasons to

use a DT instead of a GS:
a) The DT is usually less expensive than the GS.

b) The use of a GS may lead to some risk for the individual. For example, a
coronary angiography may cause a stroke, thrombosis or even death of the

individual.
¢) There is not always a GS. For example, in the case of some psychiatric diseases.

The objective is to estimate the accuracy of the BDT, not to know if the individual has
the disease or not. In the following sections of this chapter we will study each of the

parameters of a BDT:

a) Sensitivity and specificity.
b) Likelihood ratios.
c) Predictive values.

d) Weighted kappa coefficient.
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1.2. Sensitivity and specificity

Sensitivity and specificity are the fundamental measures of accuracy of a BDT. Let D be
the random variable which models the result of the GS, so that D=1 when an
individual does have the disease and D=0 when an individual does not have the
disease. Let T be the random variable which models the result of the BDT, in such a
way that T =1 when the result is positive (indicating the presence of the disease) and
T =0 when it is negative (indicating the absence of the disease). The probability of a
randomly chosen individual from among all of the individuals in the population having
the disease, denoted as p= P(D = l), is known as the disease prevalence. Sensitivity
(Se) is the probability that the result of the BDT will be positive when an individual has

the disease, i.e.

Se=P(T=1D=1). (1.1)

The probability P(T =0|D =1)=1—Se is called the probability of a false negative.
Specificity (Sp) is the probability that the result of the BDT will be negative when the

individual does not have the disease, i.e.

Sp=P(T=0|D=0). (1.2)

The probability P(T :1|D:0):1—Sp is called the probability of a false positive.

Sensitivity and specificity only depend on the intrinsic ability of the BDT to distinguish
between individuals who have the disease and those who do not, i.e. these parameters
depend on the physical, chemical and biological bases upon which the BDT has been

developed, and they are not affected by the prevalence of the disease. A BDT with high
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Se is useful to exclude a diagnosis because a highly sensitive test will render few results
that are falsely negative. A BDT with high Sp is useful to confirm a diagnosis, because a
highly specific test will have few results that are falsely positive. Cicchetti et al (1995)
have classified the Se and the Sp at the following intervals: <70% “Poor”, 70% —79%

“Fair”, 80% —89% “Good” and 90% —100% “Excellent”.

The parameter Y =Se+ Sp—1 is called Youden index (Youden, 1950). The Youden

index is a summary measure of accuracy of a BDT. The Youden index does not depend
on the prevalence of disease and it indicates the likelihood of a positive result among
individuals with the disease versus those without the disease. The Youden index has the

following property: if the BDT and the disease are independent, then Se and Sp are

complementary (Se+ Sp= 1) . This aspect is not desirable in a BDT, and therefore it is
demanded that the Youden index of a BDT be bigger than zero (Y >0 or Se+Sp>1). If

Y <0 the results of the diagnosis are interchanged, T =1 should be a negative result
and T =0 should be a positive result, and the analysis should be limited only to the

positive values of the Youden index.

1.3. Likelihood ratios

Other parameters for evaluating the performance of a BDT are the likelihood ratios
(LRs). When the result of the BDT is positive, the LR (called the positive likelihood
ratio, LR™) is the quotient between the probability of a positive result for the BDT when
the individual has the disease and the probability of a positive result for the BDT when

the individual does not have the disease, i.e.
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(1.3)

When the result of the BDT is negative, the LR (called the negative likelihood ratio,

LR™) is the quotient between the probability of a negative result of the BDT when the
individual has the disease and the probability of a negative result of the BDT when the

individual does not have the disease, i.e.

1-Se
Sp

LR™ =

(1.4)

The LRs depend on the Se and Sp of the diagnostic test and do not depend on the

disease prevalence, and their values vary between zero and infinite. When the result of
the BDT and the disease status are independent, then LR* =LR™ =1. When the BDT
correctly classifies all of the individuals (diseased and non-diseased), then LR =0 and
LR™ =0. A value LR" >1 indicates that a positive result of the BDT is more probable

in a diseased individual than in a non-diseased individual, and a value LR™ <1 indicates
that a negative result of the BDT is more probable in a non-diseased individual than in a
diseased individual. The LRs quantify the increase in knowledge of the presence of the
disease through the application of the BDT. Before applying the BDT, the odds of a

individual being diseased is
pre-test odds = P ,
1-p

where p is the disease prevalence. After applying the BDT, the odds of disease are

P(D=1[T =)
P(D=0[T =j)’

post-test odds = j=0,1.

The LRs relate the pre-test odds and post-test odds
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Post test odds (T =1) = LR" x pre test odds
Post test odds (T =0)= LR x pre test odds,

Therefore, the likelihood ratios quantify the change in the odds of disease obtained by

knowledge of the application of the BDT.

1.4. Predictive values

Predictive values (PVs) are the measures of the clinical accuracy of a BDT. When the
result of the BDT is positive, the PV (called the positive predictive value, PPV) is the

probability of a individual being diseased when the test result is positive, i.e.

pxSe
pxSe+qx(1-Sp)’

PPV =P(D=1T =1)= (1.5)

where g =1-—p. When the result of the BDT is negative, the PV (called the negative

predictive value, NPV) is the probability of a individual not being diseased when the test

result is negative, 1.e.

B o) gxSp
NPV =P(D=0|T =0)= ox(1-5¢) +qx5p" (1.6)

While sensitivity and specificity quantify how well the BDT reflexes the true disease
status (present or absent), the PVs quantify the clinical value of the BDT, since both the
clinic and the individual are more interested in knowing how probable it is to have the
disease given a diagnostic test result. Cicchetti et al (1995) have classified the PPV and
the NPV at the following intervals: <70% “Poor”, 70%—79% “Fair”, 80% —89%
“Good” and 90%—-100% “Excellent”. In Figures 1.1 and 1.2 we show how the PVs

varies according to the prevalence p for different values of Se and Sp.
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Figure 1.1. Predictive values for Se =0.95 and Sp=0.90.

Figure 1.2. Predictive values for Se =0.80 and Sp=0.95.

- NPV
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1.5. Weighted kappa coefficient

The weighted kappa coefficient (Kraemer, 1992; Kraemer et al, 2002) of a BDT is
defined as a measure of the beyond-chance agreement between the BDT and the GS, and
it is a parameter that considers the losses associated with an erroneous classification
with the BDT. Let L be the loss or the cost that occurs when wrongly classifying a
diseased individual with the BDT, and L' the loss or cost that occurs when wrongly
classifying a non-diseased individual with the BDT. It is assumed that the losses L and
L' are 0 when an individual (diseased or non-diseased) is classified correctly with the
BDT. Table 1.1 shows the probabilities and the losses associated to the assessment of
the BDT, where the random variables T and D are defined in Section 1.2. In terms of

the probabilities of Table 1.1, the expected loss is
p(1-Se)L+q(1-Sp)L, (1.7)
and the random loss is
p{p(1-Se)+qSp}L+q{pSe+q(1-Sp)fL". (1.8)

The expected loss given by equation (1.7) is described by Bloch (1998) as the risk of
error and is interpreted as the average loss which occurs when the BDT erroneously
classifies an individual (diseased or non-diseased) and its values vary between zero and

infinite. The random loss given by equation (1.8) is the expected loss when the BDT and
the GS are independent, i.e. it is the expected loss when P(T =i|D= j): P(T =i) with

i, =0,1. The weighted kappa coefficient of a BDT is defined as

e Random loss — Expected loss

(1.9)

Random loss
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Substituting in equation (1.9) each loss with its expression it holds that the weighted

kappa coefficient of the BDT is

_ pqY
x(c)= 2(1-Q)c+qQ(I-0)’ (1.10)

where Q = pSe+(1— p)(l—Sp) is the probability that the result of the BDT will be

positive, 1-Q = p(l—Se)+qu is the probability that the result of the BDT will be

negative, and ¢=L/(L+L") is the weighting index.

Table 1.1. Probabilities and losses.

Probabilities

T=1 T=0 Total
D=1 pxSe px(1-Se) P
D=0 qx(1-Sp) qxSp q
Total Q=pxSe+qx(1-Sp) 1-Q=px(1-Se)+qgxSp 1

Losses

T=1 T=0 Total
D=1 0 L L
D=0 L' 0 L'
Total L’ L L+L'

When the loss L is zero then ¢ =0 and the weighted kappa coefficient is

Sp—(1-Q) PPV -
K(0) =" g ) : P

(1.11)

10
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and when the loss L' is zero then ¢ =1 and the weighted kappa coefficient is

~Se-Q NPV —q

1.12
0 . (1.12)

x(1)

The weighted kappa coefficient x(C) can be written in terms of p, Q, x(0) and (1)

as

_ p(1-Q)cx(1)+aQ(1—c)x(0)
p(1-Q)c+aQ(1-c)

x(c)

: (1.13)

with 0<c<1, and therefore the weighted kappa coefficient is a weighted average of

x(0) and x(1). Index c is between 0 and 1, and it is a clinician’s judgment of the

relative clinical cost of false positives and false negatives. For example, let us consider a
diagnosis of colon cancer using a colonography as BDT. If the colonography is positive
for an individual who does not have the cancer (false positive), a colonoscopy (GS) will
be performed on the individual, and this will give a final negative diagnosis. The loss L'
is determined from the economic costs of the diagnosis and also of factors such as risk,
stress and anxiety caused to the individual. If the colonography is negative for an
individual with the cancer (false negative), the individual may be diagnosed later. In this
case the cancer may have spread and the possibility of the treatment being successful
will be reduced. The loss L is determined from these considerations. Hence, the losses L
and L' are not only measured in economic terms but also by factors such as risk and
stress, for which reason the value of these losses cannot be determined in clinical
practice. This is why the relative discrepancy between the losses L and L' is replaced by

the relative discrepancy between the false positives and the false negatives. The value of

the weighting index ¢=L/(L'+L) may be supposed, depending on the considerations

11
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taken into account by the clinician about the false positives and the false negatives. If

the clinician is going to use the BDT as a screening test, then there is more concern

about false negatives and the ¢ index is greater than 0.5 (0.5 <c<1). If the clinician is

going to use the BDT as a first step towards an risk treatment, then there is more

concern about false positives and the C index is less than 0.5 (0 <c< 0.5). Therefore,

the value of the Cc index will depend on what are the clinical objectives for using the

BDT. If in equation (1.13) L=L', then c=0.5 and K‘(O.S) is known as Cohen’s kappa

coefficient; if L>L" then 0.5<c<1, and if L'>L then 0<c<0.5. For example, if

the clinician considers that the false positives are three times more important than the

false negatives, then c= 1/ (3 + l) =0.25; and if the clinician considers that the false
negatives are four times more important than the false positives then ¢ = 4/ (1 + 4) =0.8.
The weighted kappa coefficient has the following properties:
a) When the agreement between the BDT and the GS is perfect (Se =Sp= 1) , the
expected loss is zero and then x(c)=1.
b) When Se and Sp are complementary (Se =1- Sp), i.e. when the diagnosis of the
disease is made randomly, then x(c)=0.
c) If the random loss is greater than expected loss then K(C) >0, and if the
expected loss is greater than random loss then x(¢)<0.If x(C)<0 the results

of the diagnosis are interchanged, T =1 should be a negative result and T =0

should be a positive result, and the analysis should be limited only to the

positive values of the weighted kappa coefficient (0 <k(c)< 1) :

12
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d) The weighted kappa coefficient is a function of the ¢ index which may be

increasing (if Q > p) or decreasing (if Q < p), or it can be a constant function
which is equal to the Youden index (Se+Sp—1) if Q= p.

Figures 1.3 and 1.4 show how the weighted kappa coefficient varies according to the

weighting index C and the disease prevalence p, for high values of Se and Sp.

Coefficient K(C) is an increasing or decreasing function, depending on p, in the

weighting index C.

13
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Figure 1.3. Weighted kappa coefficients for Se =0.95, Sp =0.90 and different values
of prevalence p.
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Figure 1.4. Weighted kappa coefficients for Se =0.90, Sp =0.95 and different values
of prevalence p.
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Chapter 2

Estimation of the Parameters of a Binary

Diagnostic Test

2.1. Introduction

In this Chapter we study the estimation of the parameters of a BDT studied in Chapter 2
subject to two types of study: cross-sectional study and case-control study. The
estimation of the weighted kappa coefficient subject to a case-control study is the first
contribution to this Doctoral Thesis. For the other parameters, different methods of
estimation are reviewed. The advantages and disadvantages of case-control design over
the cross-sectional can be seen in the book of Pepe (2003). Summarizing, case-control

study has some advantages over the cross-sectional study:
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Chapter 2. Estimation of the parameters of a BDT

a) Case-control study is more efficient in terms of sample size requirements.

b) Case-control study allow for the exploration of subject-related characteristics on

the test.

Nevertheless, the case-control study has the disadvantage that by using it we cannot
estimate the prevalence of the disease p. Therefore, if in a case-control study we wish to
estimate parameters that depend on the prevalence, it is necessary to have a value for the

prevalence, e.g. an estimation obtained from health surveys, other studies, etc.

First, we study the estimation subject to a cross-sectional study, and secondly we

study the estimation subject to a case-control study.

2.2. Estimation subject to a cross-sectional study

The estimation of the parameters of a BDT in relation to a GS subject to a cross-
sectional study consists of applying the BDT and the GS to all of the individuals in a

random sample sized n, giving rise to Table 2.1.

Table 2.1. Frequencies subject to a cross-sectional study.

T=1 T=0 Total
D=1 S Sy S
D=0 r r, r
Total S+ Sy + 1, n
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Chapter 2. Estimation of the parameters of a BDT

2.2.1. Sensitivity and specificity

Conditioning in variable D, the samples (s,,5,) and (Ir,r,) are two independent
samples, and it is verified that the observed frequency s, is the product of a binomial
distribution B(S,Se), and the frequency r, is the product of a binomial distribution

B(r,Sp). Therefore, the estimators of Se and Sp are the estimators of binomial

proportions, i.e.
y I
Sez% and Sp=-2, @.1)

and the estimators of their variances are

\7ar(§e) =@ and \7ar(§p) =M. (2.2)

Subject to a a cross-sectional study, the estimator of the prevalence of the disease p is

. S
p=2. (2.3)
n

The estimation of a binomial proportion has been the object of many studies. We
present five confidence intervals (CIs) for Se and Sp : Clopper-Pearsson, Wilson,
Agresti-Coull, Yu et al, and the arcsine Cl of Martin-Andrés and Alvarez-Hernandez.
The first Cl is an exact interval and the other CIs are approximate intervals that have a

good asymptotic behaviour.
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2.2.1.1. Clopper-Pearson CI

Clopper and Pearson (1934) studied an exact Cl for a binomial proportion. The

100(1—a)% Clopper-Pearson Cl for Se is

s, (s +1)F,,(2(s, +1):25,) )4
s+ (S +1)F, (2(s, +1):25,) so+(sl+1)Fa/2(2(sl+1);2s0) ’ @4

and for Sp the Cl is

r, (n+1)F,,(2(r,+1),2r) )5
L+(n+1)F,,(2(6+1).26) 7 n+(n+1)F,,(2(r+1),2r) | )

where F,,(V;,v,) is the @/2 quantile from an F-distribution with v, and v, degrees of

freedom.

2.2.1.2. Wilson score ClI

Wilson (1927) proposed, using the approximation to the normal distribution, an

approximate Cl for a binomial proportion. The Wilson Cl is sometimes called the

Wilson score Cl. The 100(1—er)% Wilson Cl for Se is

.~ 77 Se(1-Se 72
> | §e+ ey zl_a/z\/ (1-%) o | 2.6)
S+Z,p 2s S 4s
and for Sp is
r 2 Zl2—a/2 \/Sp (1 N Sp) le—a/Z
Sp+ tz + , 2.7
r+z;,, Py o r 4r? @7
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Chapter 2. Estimation of the parameters of a BDT

where z,, is the 100(1—a/2)% percentile of the standard normal distribution.

1-a/2

2.2.1.3. Agresti-Coull ClI

The ClI of Agresti and Coull (1998) is another approximate Cl for a binomial

proportion. The 100(1—«a)% Agresti and Coull CI for Se is

Setz, (2.8)

S S1 + le—a/2/2 . . . .
where Se=———"=— is the adjusted estimator of Se. The 100(1—-a)% Agresti and
S+27,,
Coull CI for Sp is
Sptz,,, (2.9)
- Nz, /2 , .
where Sp =———— is the adjusted estimator of Sp.
M2,

2.2.1.4. Modified score CI

Yu et al (2014) have proposed a Cl, called modified score interval, based on a

modification of the midpoint of the Wilson Cl .The 100(1 —a)% modified score Cl for

Se is
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Chapter 2. Estimation of the parameters of a BDT

4

Zl—a/2
>t 53 (& Z_o) le—a/Z S;S
0.5+— Se—O.S)iS+22 Ly (2.10)
1-a/2 l-a/2
Similarly, the 100(1—a)% modified score Cl for Sp is
Z4
T 15_;/2 2 A T
0.5+?(Sp—0.5)ir+22 2L @.11)
l-a/2 1-/2

2.2.1.5. Arcsine ClI

Martin-Andrés and Alvarez-Hernandez (2014a) evaluated 29 approximate Cls

(excluding the Yu et al Cl) for a binomial proportions, recommending using the arcsine

Cl with continuity correction. The 100(1—a)% arcsine Cl with continuity correction

for Se is

z
sin’| sin”' Sl+0'5i Lal |, (2.12)
sl J4(s+1)

and for Sp

z
sin’| sin”' r°+0'5J_r e (2.13)
\ el JA(r+1)

Martin-Andrés and Alvarez-Hernandez (2016) have compared the performance of

the 29 CIs studied, recommending:

a) For s<80 (r<80)and a=1%or a=5%, to use the modified score Cl of Yu

et al (2014).
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b) For s>100 (r=100) and a=10%, to use the arcsine Cl with continuity
correction of Martin-Andrés and Alvarez-Hernandez (2014a).

¢) In other situations, to use the Cl of Agresti and Coull (1998).

2.2.2. Likelihood ratios

The estimators of the likelihood ratios are

A A

(RP=—¢ _SF 4nd (R = o=t (2.14)
S

1
1-Sp T,

Applying the delta method, the estimated asymptotic variances are

Var ((R") = (lﬁRgp)(l‘fe . £R+j anaVar LR )L (% LS I:R‘J @13)

The LRs are the ratio of the two independent binomial proportions, so that the LRs
can be estimated applying methods to estimate the ratio of two independent binomial

proportions. We now present several of these methods.

2.2.2.1. Gart-Nam CI

The Gart and Nam (1988) Cl is a classic method to estimate the ratio of two

independent binomial proportions. The lOO(I—a)% Cl of Gart and Nam for LR" is

obtained by solving the equation
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Chapter 2. Estimation of the parameters of a BDT

sl—LR+(1—S~p)s

=47 (2.16)

—fl-q/2 >

1-LR"(1-9§ | !
{ ( p)}\/ §p  1-LR'(1-$p)

~ T =
r(l—Sp) LR" (1— Sp)s
where Sp is the appropriate solution for the quadratic equation
LR (I—SNp)2 n—{(r,+s)LR"+s, +r}(1-Sp)+s, +1,=0.

In a similar way, the 100(1 - a)% Cl for LR™ is obtained by solving the equation

S ]SLR Spl LR ==z,_,, (2.17)

(1_ LRgp)\jl—Sb s LR Sp

rSp sLRSp
where Sp is the appropriate solution for the quadratic equation

LR Sp” —{(r, +S)LR +s5,+r|Sp+s,+1,=0.

2.2.2.2. Logarithmic CI

The LRs have a non-symmetrical distribution and therefore the napierian logarithm of

the LRs has a more symmetrical distribution which is closer to the normal distribution.

Thus, based on the asymptotic normality of the napierian logarithms of the LRs, Simel

et al (1991) proposed the following Cls for LRs,

LR* eexp{ln(l:FF)izla/2 %Jrrr—‘:‘} (2.18)
1 1

and
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Chapter 2. Estimation of the parameters of a BDT

LR eexp{ln([R-)i 2 %Jr%} (2.19)
0 0

2.2.2.3. Martin-Andrés and Alvarez-Hernandez Cl

Martin-Andrés and Alvarez-Hernandez (2014b) studied Cls for the ratio of two

independent binomial proportions. The 100(1 — a)% Cl for the LRs are

2 2

z z 2
Ta ! 1-a/2 [ a1 ! 1! [ 12l 4 4 TAT AT 1-t/2 [ ate ! !
nsr +72 (SS1 +rn —ZSII’1 )iZla/z\/ﬂ S K (S1 +r =N plp2)+—4 (SS1 -r I’l)

LR" e (2.20)
B -2, (s )|
and
z; z; 2
n's, T, + "2“/2 (s'so' +rr’ —2s,r/ ) +7,_,4[N7S, T (so' +r —n'pip! ) + IZ/Z (s'so' - r’ro')
LR e (2.21)

’ A 2 ’
f {n's’pg - Zl—a/Z (S, —h )}

!

where s/ =5 +0.5, ' =r+05, s'=s'+s/, r'=r +r/, n=s+r, p=r/r,

A

P, =s/ / s, pi=r / r' and p,=s, / s'. If the upper limit of the interval for the LR" is

lower than s/ / (n' - rl') or higher than LR", then the upper limit of the interval is

1 7’ 7’
I ar 1-a/2 l-a/2 r(ar  ar
5 S P+ > o Zlfa/2 4 +53 (pl - pz) >

and the upper limit of this interval is higher than (n' — sl') / r' or lower than LR*, then

the upper limit of the Cl is
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Chapter 2. Estimation of the parameters of a BDT

: . \/22
I ar 1-a/2 l-a/2 I ar Ar
P A 7 [— 41 (B - )
2 )1 M l-a/2 1\ M2 |
r’(pl’) 2 4

Regarding the ClI for LR™, if the upper limit of this Cl is lower than s, / (n'— ro') or

higher than LR™, then the lower limit is

1 7’ z’
rar 1-a/2 1-a/2 I (Aar Al
Ay 2 So P+ 9 _Zlfa/2 4 +So(p3_p4) >

and if the upper limit of this interval is higher than (n'—sol) / r, or lower than LR,

then the upper limit is

z’ z’
I Ay ]—a/Z ]—a/Z vy} Ar
2 I + Zl—a/Z 4 +1 ( P, — ps)

L
r'( ) 2
The Cl proposed by Martin-Andrés and Alvarez-Hernandez is the interval that has a

better asymptotic coverage.

2.2.3. Predictive Values

Conditioning in variable T, the samples (Sl, I’]) and (SO ,ro) are two independent samples
It is verified that the frequency s, is the product of a binomial distribution
B(s,+1,,PPV) and that the observed frequency I, is the realization of a binomial
distribution B(s,+r,,NPV ). Therefore, the estimators of the PVs are the estimators of

binomial proportions, i.e.
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PPV = — and NPV =—0 (2.22)
Sl + I’l S0 + I’0
and the estimators of their variances are
. PPV (1—PI5V) ) N|5v(1—N|5v)

\7ar(PPV)= and \iar(NPV): (2.23)

S+, S, +T,

The estimation through CIs of the PVs can be carried out by applying the same CIs that

for a binomial proportion.

2.2.3.1. Clopper-Pearson CI

The 100(1 —a)% Clopper-Pearson Cl for PPV is

s, ’ (s, +1)F,,(2(s,+1):21) | .24
sl+(r1+1)Fa/2(2(r1+l);231) r1+(sl+l)Fa/2(2(Sl+l);2r1)

and for NPV the Cl is

r (n+1)F,,(2(r,+1),2s,)
r, +(s, +1) Fo{/z(z(s0 +1),2r0) " s, +(T, +1)Fa/2(2(r0 +1),250)

J . (225)

where F_, (V,,v,) is the @/2 quantile from an F-distribution with v, and v, degrees of

freedom.
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2.2.3.2. Wilson score ClI

The 100(1—05)% Wilson Cl for PPV is

) 22 PPV (1-PPV 22
e ( )+ te2 1 (2.26)
S +h+127,, S,+r) S +r, 4(s,+1)
and for NPV is
) 22 NPV (1- NPV 22
—STh NPV 4 g ( )+ be2 | (2.27)
So+ o+ 2o 2(s,+1,) S, +1, 4(s,+1,)
2.2.3.3. Agresti-Coull ClI
The 100(1—a)% Agresti and Coull CI for the PPV
- PPV (1-PPV)
PPV <tz ,, —, (2.28)
S +h+ Zl—a/z

2
S22
2
S+h+Z ),

where PPV = is the adjusted estimator of PPV. The 100(1—«&)% Agresti

and Coull ClI for the NPV

N NPV (1— NI5V)
NPV tz,,, T (2.29)
0 0 1-a/2

2
o+ 20,0 /2

2
So+ Ty T2 4

where NPV = is the adjusted estimator of NPV,
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2.2.3.4. Modified score ClI
The 100(1-a)% modified score Cl of Yu et al for PPV is

4

Zlfa/z
S A . ;2
3 -, -, S
0.5+—253(PPV —0.5)J_r af2 a2 | (2.30)
SHh+2 SHh+Z 4 S+h

and the 100(1—«)% modified score CI for NPV is

4

s tr 4 ken 2

0™ Yo A Z_, Z_, S, I
05+———33 (NPV-05)t 2 [Be2 20 (3]

So+ 1 +Z So+ 1 +2Z 4 Syt 1,

2.2.3.5. Arcsine ClI

The 100(1—a)% arcsine Cl of Martin-Andrés and Alvarez-Hernandez (2014a) for the

PPV is
sin?| sint [0 4 frae ) (2.32)
SHL+L J4(s +15+1)
and for the NPV
sin?| sin”! [0S 4 han . (2.33)
Sy + 1 +1 \/4(80 +1, +1)

Martin-Andrés and Alvarez-Hernandez (2016) recommend:

a) For s,+1,<80 (s,+1,<80) and a=1%or a=5%, to use the modified score

Clof Yu et al (2014).
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b) For s +1,>100 (S,+r,>100) and a=10%, to use the arcsine Cl with

continuity correction of Martin-Andrés and Alvarez-Hernandez (2014a).

¢) In other situations, to use the Cl of Agresti and Coull (1998).

2.2.4. Weighted kappa coefficient

Substituting in equation (1.10), or (1.13), the parameters Se, Sp and p with their

estimators given by the equations (2.1) and (2.3) respectively, the estimator of K(C) is

A — Slro_s()rl 2.34
<(c) r(s,+r)(1-c)+s(s,+r)c’ (2.34)

with 0 <c <1. Applying the delta method, the estimated asymptotic variance of I%(C) is

Var (£(c)) = nr 7%

s[nz(l—c)r, +n(cr, —2(1-c)r)s, +n{r,—(1-c)n s, +s(s,x, —slro)]

{(sor1 —sr, )2 [z(l—c)rlns —(1—c)rn® +s(c(s,r, + 25,5, +5,1,)— rls)]2 + (2.35)

s.s,nr*[(1-c)rn+s(cr —r)] +rrnsr? [slr +c(s” - sln)]z}.

Roldan-Nofuentes et al (2009) have studied different CIs for K‘(C): Wald Cl, Logit ClI

and bootstrap ClI.

2.2.4.1. Wald CI

Assuming the asymptotic normality of l%(c), the IOO(I—a)% Cl for K(C) is

£(c)t zl_a/zﬂﬁar [#(c)]. (2.36)
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This CI performs well for relatively small samples (n = 100) .

2.2.4.2. Logit ClI
Assuming the asymptotic normality of l%(C), the logit transformation of 12(0),
logit[z%(c)]=10g[1%(c)/(1—12(c))], is closer to a normal distribution with mean

logit| x(c)|.  The  100(1-a)%  ClI  for the  logit[x(c)] s

logit[ #(c) ]z, \/Var [ logit(#(c)) | , where

A 1
Var | logit(#(c)) | =
ar[ ogl (K(C))} [HS—(I—C)nn—C(Sofo +25.1, +slrl):|2 :

ss,r[(1-c)rn+(cr—r)s | +rrsr [sln —5;s+C(s7 - sln)}2

. + (2.37)
s(s,r—s1,)

[2(1—c)rlns—(1—c)rln2 +s(c(sor0 +25)5,+5,1,)— nS)]

nsr

Finally, the logit Cl for x(c) is

expit{logit[;e(c)] +7, \/Var[logit(ze(c))]} , (2.38)

where expit(~)=exp(-)/[1+exp(-)} is the inverse of logit. This Cl performs well for

samples of 200 or more.
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2.2.4.3. Bootstrap ClI

The bootstrap Cl is calculated generating K samples with replacement from the sample.

The coefficient x(c) is estimate from each sample with replacement, and the bootstrap

estimator of x(C) is estimated as the average of the K estimated & (C), ie.

K

K
zéB(c)=21€i(c)/K, and its variance is estimated as Z[;&i(c)—;eB (c)]z/(K_l).
k=1

i=1
Then, the bias-corrected bootstrap Cl (Efron and Tibshirani, 1993) is calculated. Let

A=#(# (c)<&(c)) be the number of bootstrap estimators that are lower than the
estimator, and let Z, = o (A/ K), where @' () is the inverse function of the standard
normal  cumulative  distribution  function. Let o, = CD(220 - 21705/2) and

a2:®(220+zl_a/2), where z is the 100(1—c/2)th percentile of the normal

l-a/2

standard distribution, then the bias-corrected bootstrap Cl is
(&) (c) , &(c)), (2.39)

where zei(“i)(c) is the jth quantile of the distribution of the K bootstrap estimations of

K(C) . In general, the performance of the bootstrap Cl is similar to that of the Wald CI.

2.3. Estimation subject to a case-control study

The estimation of the parameters of a BDT subject to a case-control study consists of

applying the BDT to two random independent samples, one of n, individuals who have

the disease (sample of case) and another of n; individuals who do not have the disease
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(sample of control). Let us suppose that of the n, individuals who have the disease, in
n, the BDT gives a negative result and in the rest (n, =n—n,) the BDT gives a
positive result. In the same way, let us suppose that of the n, individuals without the

disease, in n,, the BDT gives a negative result and in the rest (n, =n,—n,,) the BDT

gives a positive result. The results are summarized in Table 2.2. The sample of
individuals that have the disease is extracted from a population of individuals that have
the disease (e.g. registers of diseases), and the control sample is extracted from a

population of individuals who are known not to have the disease.

Table 2.2. Frequencies subject to case-control study.

T=1 T=0 Total
Case ny, Ny n
Control No Nyo n,

In this situation, it is verified that the observed frequency n,, is the product of a
binomial distribution B(n;,Se) and the observed frequency N, is the product of a
binomial distribution B(nO,Sp). In a case-control study, the quotient n, / ( n + no) is not

an estimator of the disease prevalence because the sample sizes n, and n, are set by the

researcher. Therefore, it is not possible to estimate the prevalence of the disease from a

case-control study.
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2.3.1. Sensitivity and specificity

The estimators of Se and Sp are the estimators of binomial proportions, i.e.

Se="1 gng Sp="w (2.40)
nl r-]0
and the estimators of their variances are
L Se(1-Se P Sp(1-Sp
Var(Se) :M and Var(Sp) =M. (2.41)
r]1 nO

The Cls for Se and Sp are the same that in Section 2.2.1 but replacing s, by n,,, S, by

No, I, by Ny, I, by Ny, s by nand r by n,.

2.3.1.1. Clopper-Pearson CI

The 100(1—ea)% Clopper-Pearson Cl (1934) for Se is

n, (n, +1)F,,(2(n,, +1);:2n,,)
Ny +(ng +1)F,, (2(ng +1);2n,) 7 nyg+(n, +1)F,, (2(n, +1):2n,,)

] , (2.42)
and for Sp the Cl is

Ny, (N +1)F,5 (2(ng +1),20,) 243)
Moo+ (Moy +1) B (2(Ng; +1),20 ) 7 0, + (g +1) F, 5 (2(ngo +1),20,,)
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2.3.1.2. Wilson score ClI

The 100(1—a)% Wilson CI (1927) for Se is

R 72 §e 1- §e 72
M| GeyTeizy zla/z\/ ( )+ a2 | (2.44)
N+, 2n, n, 4n;
and for Sp
.z Sp(1-Sp) 22
I Gp ey zla/z\/ ( )+ a2 |, (2.45)
Ny +Z; 4 2n, n, 4n;

2.3.1.3. Agresti-Coull ClI

The 100(1 - a)% Agresti and Coull (1998) CI for Se is

_ Se(1-Se)
etz | (2.46)
nl + Zl—a/2
~on,+z,/2
where Se = % is the adjusted estimator of Se. The CI for Sp is
r]1 + Zl—a/2
_ Sp(1-Sp
Sptz ), g , (2.47)
nO + Zl—a/2
~ Ny +Zi,,/2
where Sp = % is the adjusted estimator of Sp.

nO + Zl—a/Z

35



Chapter 2. Estimation of the parameters of a BDT

2.3.1.4. Modified score ClI

The 100(1—ea)% modified score Cl of Yu et al (2014) for Se is

1-a/2
n+—— 2
. Z., Z o NN
05+——33(Se-0.5) ¢ |TeR y Jido
n] + Z]—a/2 nl + Zl—a/2 4 n]
and for Sp
4
Zl—a/2
n, + 7 72
S -a - ny,N
0.5+ 253 (Sp—O.S)i ral? a2 | ot
Ny +Z Ny +Z 4 Ny

2.3.1.5. Arcsine ClI

(2.48)

(2.49)

The IOO(I—a)% arcsine Cl with continuity correction of Martin-Andrés and Alvarez-

Herndndez (2014a) for Se is

sin’ Lsin

and for Sp

sin’ Ls

m

—1 n“ +05 + Zl—a/Z
n+l o [a(n+1) )

L [ t05 7 J.

N+l [4(n, +1)

(2.50)

2.51)

The recommendations are similar to the previous case (Martin-Andrés and Alvarez-

Hernandez, 2016):

d) For n, <80 (n,<80)and a=1% or a=5%, to use the modified score Cl of

Yu et al (2014).
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e) For n >100 (n,>100) and a =10%, to use the arcsine Cl with continuity

correction of Martin-Andrés and Alvarez-Hernandez (2014a).

f) In other situations, to use the Cl of Agresti and Coull (1998).

2.3.2. Likelihood ratios

The estimators of the likelihood ratios are

(Rr=—% DM g (R = 1558 MM
I_Sp nanI Sp nanO

(2.52)

and applying the delta method the estimated asymptotic variances are

Var ((R") = (lﬁ_zp)[l; f%fl_':’nwj amaVar (R ) -5 [%1; » I:R‘J. 0.53)

The Cls for LRs are the same that in Section 2.2.2.

2.3.2.1. Gart-Nam CI

The IOO(I—a)% Cl of Gart and Nam (1988) for LR" is obtained by solving the

equation

n“—LR*(l—S~p)n1

N = 1
LR (1-Sp)] s  1-LR*(1-%p)
\J no(l—SNp)+ LR*(I—SNp)n1

=1z (2.54)

-af2°

where Sp is the appropriate solution for the quadratic equation
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LR*(I—S~p)2(n1 +1)={(ng +n ) LR" +n;, +n, }(1=Sp)+n,, +n,, =0.

The 100(1 - a)% Cl for LR™ is obtained by solving the equation

N ] n,LR"Sp =%7, ., (2.55)
1

1-LR°S = .
( p) 1—Sp+1—LR’Sp
nSp nLRSp

where Sp is the appropriate solution for the quadratic equation

(n+n,) LR Sp” —{(nyy + N, ) LR 41y + 1 f Sp+1y, +1, = 0.

2.3.2.2. Logarithmic CI

The 100(1-a)% logarithmic CI (Simel et al, 1991) for LRs are

LR cexp{ln((R" )£z, , [0+ o0 (2.56)
nllnl nOan

and

LR cexpiln(LR )£z, ), [+ 10l 1. 2.57)
nlOnl nOOnO

2.3.2.3. Martin-Andrés and Alvarez-Hernandez Cl

The 100(1 - a)% Cl of Martin-Andrés and Alvarez-Hernandez (2014b) for the LRS are

2
z z
TAl ! 1-a/2 1At ’Ar a 1240 A1 ’ r A rAr Al 1-a/2 1At 1At \2
nn;ny, + (nlnll + NNy, _2n11n01)i21-a/2 n n11"]01(”11 +No =Py 2)+ (n1n11 _nonm)
2 4

LR* e (2.58)

I’I(’” {n'n;b[ - le—(l/Z (n]' - n")l )}
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and

2 2
Zl—(x/Z rA! r At [ 121 AT ’ ’ rar Ar Z]—a/Z
> (nlnlo + Ny N,y _znmnoo)izlfa/z n nlOnOO(nIO +Ny —NP; p4)+ (

2
It ’ rAt At
Ny, + nn,, — nonoo)

LR e (2.59)

’ "' A/ 2 ’ ’ 2
Moo {n NP =24 (nl ~ Moo )}

'
0i

’
00 >

where n;=n;+0.5, n;=n,+05, n=n,+n,, ny=n,+n n=n+ng,
pr=n, /Ny, Po=n,/n, p;=ny,/ng and P, =n{,/n . If the upper limit of the interval
for the LR" is lower than nf,/(n'=n;) or higher than LR, then the upper limit of the

interval is

1 z 2’
A 1-a/2 1-a/2 A A
1 oan2 5 n;lpl,+ ) _Zl—a/Z T+n1!l(pl’_p;) >
n ( pl) + Zlfa/Z

and the upper limit of this interval is higher than (n'—n],)/n;, or lower than LR*, then

the upper limit of the Cl is

1 ’ \/22
Y 1-a/2 1-a/2 (A A1
Ny, P, + +Z_, —+N p,—p
5 7 ) o1 P2 ) a2 4 01( b 1)

Regarding the Cl for LR", if the upper limit of this CI is lower than nj,/(n'—n{,) or

higher than LR", then the lower limit is

1 z; z?
A 1-a/2 1-a/2 ' A A
1 oar\2 5 n{op;+ 2 _Zl—a/2 4 +n]0(p;_p:l) >
n ( p3) + Zlfa/Z

and if the upper limit of this interval is higher than (n'—n];)/n, or lower than LR,

then the upper limit is
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1 z z’

r Al l*a/Z 1701/2 ’ A A
' a2 Moo Ps + 2 +Zl—a/2 T+noo(p4_ 3)
n, (%)

The CI proposed by Martin-Andrés and Alvarez-Hernandez is the interval that has a

better asymptotic coverage.

2.3.3. Predictive values

The PVs of a BDT depend on the Se, Sp and disease prevalence p. As the prevalence

cannot be estimated from a case-control study, since the quotient N, / ( n + no) is not an

estimator of the prevalence, the PVs cannot be estimated form a case-control study.
Therefore, in order to estimate the PVS is it necessary to know an estimation of the
prevalence of the disease. From now on it is assumed that we have an estimation of the
prevalence of the disease. This value can be obtained from other clinical studies, health

surveys, etc. If p is an estimation of the disease prevalence, then the estimators of the

PVs are

P and NPV = — JhefiTh | (2.60)

PPV = - :
pnllnl nO + anOnl pnlan + anOnl nO

where q=1-p. Different Cls have been studied for the PVSs subject to a case-control

study. Mercaldo et al (2007) have studied four frequentist Cls for the PVs and Stamey

and Holt (2010) have studied two Bayesian CIs.
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2.3.3.1. Study of Mercaldo et al

Mercaldo et al. (2007) have studied four Cls for the PVs subject to a case-control study,

a Wald type CI and a logit CI, in both cases using the classical estimators and the

adjusted estimators of Se and Sp. The 100(1 — a)% Wald Cls for the PVs are

PPV e PPV +7,, Nar(PPV) and NPV eNPV +7, , Nar(Nﬁv), (2.61)

where

A

\7ar(P|f>V ) _ [ pq(l } ép)T Se(InTS(E) +[ pqSAE}2 Sp(lrl:Sp) .
= [q§e+ p(l_ép)}4 .

and

. [pq§p]2 Se(lnj Se) { N (1—§e)T Sp(ln: Sp)
ar(NPV ) = . (2.63)

[ p(l - §e) + qSAp}4

The 100(1 — a)% Wald Cls for the PVs with the adjusted estimates of Se and Sp are

PPV PPV +7, ,, NVar(PPV) and NPV e NPV izl_a/zﬁar(Nﬁv), (2.64)

where

PPV = P® o NPyo— PP (2.65)
pSe+q(1-Sp) p(1-Se)+aSp
. 2 . 2
_ nSe+ o nSp+
Se=— 2 and Sp=——— 2| (2.66)
nl n2
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with A, =n, + Zf_a/z , and

[ra-59)] %) s

1 0

Var (PPV ) = [p§e+q(1—§p)T

and

( I0q§|0)2 §e(1ﬁ— §e) +[ pq(l - S?e)}2 §p(1 ~ §p)

I;:iO

E p(l - §e) + qS~p}4

On the other hand, the 100(1—¢)% ClI for the logit of the PVs are

logit(PPV )  logit(PPV ) + zl_a/z\ﬁiar [logit( PPV )}

and
logit(NPV ) € logit(NPV )£, ,, \/\?ar [1ogit( NPV )} ,
where
. PPV pSe
logit(PPV ) =1 ~og| P&
oeit(PPV) Og(l—PPVj Og{q(l—Sp)J
and

. NPV S
logit(NPV ) = log[l_ NPV ) = long(?fpSe)J :

Finally, the 100(1—c)% logit CI for the PVs are
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VPP c expit {logit( PRV )2, War [mgit( PPV )]} 2.71)

and

NPV e expit {logit( NPV ) tz,,, \/\7ar [logit( NPV )}} , (2.72)

where expit(-)=exp(-)/ {1+exp(-)} is the inverse of logit. The variances, obtained

applying the delta method, are

\iar[logit(Pﬁv )} _ lr; sie - (ISfSp) 2.73)

and

Var[logit( NPV )} __ S 1= Sp. (2.74)
n, (1— Se) n,Sp
With the adjusted estimates of Se and Sp, the logit CIs are
VPP e expit {logit( PPV )<z, ,, War [logit(PPV )]} 2.75)
and
NPV e expit {logit( NPV )£z, War [ logit(NPV )]} , (2.76)
and where the variances are
Var[logit(Pﬁv )} _1=Se, S 2.77)

ASe  i,(1-Sp)

and
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Se +1—Sp

Var[logit(Nﬁv)}: -8 R

(2.78)

Mercaldo et al have compared the asymptotic coverage of these four Cls, and in
general terms, they recommend to apply the logit Cl not adjusted, except when the
estimator of a PV is equal to 1 in which case they recommend to apply the adjusted logit

Cl.

2.3.3.2. Study of Stamey and Holt

Stamey and Holt (2010) have studied two Bayesian CIs for the PVs subject to a case-
control study: a Cl without assuming distribution for the prevalence, and another Cl
assuming a probability distribution for the prevalence. Stamey and Holt have also
shown that the second Cl has a better asymptotic behaviour than the first Cl. A

summary of this second ClI is presented below.

The observed frequencies n;, and n,, are the product of binomial distributions, i.e.
n, = B(n,,Se) and n, —B(n,,Sp). (2.79)
For Se and Sp, conjugate beta prior distributions are proposed, i.e.
Se — Beta(a,, ) and Sp— Beta(a,,/3,). (2.80)
and therefore, their posterior distributions are
Se|ld — Beta(x,, +,,n,— %, + /) and Sp|d — Beta(x,, + .0y~ X +5),  (2.81)
And for the prevalence, the model is

p— Beta(c,,,) and y — B(n,p), (2.82)
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with posterior distribution

p|d > Beta(y+a;,n-y+4,), (2.83)

where d =(X;;,Xy,Y:N,,N,.N), and the data (y,n) are obtained from a survey or other

study. Then, posterior distributions for PVSs is approximated via Monte Carlo sampling
by simulating B values from the posteriors distributions (2.81) and (2.83). In each
iteration, the generated values of Se, Sp and p are plugged in to the equations

(el | (e
p_Se and NPV () = a4 Sp . (2.84)

PPV () =

with q(j) =1- p“). Finally, from the B values of PVs, ClIs based on the quantiles are

calculated for PPV and NPV. Simulation experiments have shown that the Bayesian Cl

has a better asymptotic behaviour than the Mercaldo et al Cl.

2.3.4. Weighted kappa coefficient

Subject to case-control study, Jannarone et al (1987) and Kraemer and Bloch (1990)
have studied the point estimation of the weighted kappa coefficient, assuming that we
have an estimation of the prevalence obtained from another study. Roldan-Nofuentes et
al (2009) have studied various Cls (Wald, logit and bootstrap) for the weighted kappa
coefficient subject to a cross-sectional study. The results obtained by Rolddn-Nofuentes
et al (2009), summarized in Section 2.2.4, are not valid in a case-control study, because,

as has been pointed out previously, the quotient n,/(n, +n,) it is not an estimator of the

prevalence of the disease. The studies by Jannarone et al (1987) and Kraemer and Bloch

(1990) focused on studying the point estimation of the weighted kappa coefficient and
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deducing the variance of the estimator. Therefore, it is necessary to explore this topic in
more depth, study the estimation by CIs and study a method to determine the sample

sizes necessary to carry out the study.

In this Section, two objectives are studied: firstly, different approximate CIs for the
weighted kappa coefficient subject to case-control study, and secondly we propose a
method to determine the sample sizes (case sample and control sample) necessary to
estimate the weighted kappa coefficient. For both objectives, it is necessary to know a
value of the prevalence of the disease. In Section 2.3.4.1, different Cls are proposed to
estimate this parameter subject to a case-control study. In Section 2.3.4.2, simulation
experiments are carried out to study the asymptotic coverage of these CIs, giving some
general rules of application. In Section 2.3.4.3, we present a method to determine the
(case and control) sample sizes to estimate the weighted kappa coefficient with the
precision required. In Section 2.3.4.4, the results are applied to a real example, and in

Section 2.3.5.5 the results obtained are discussed.

2.3.4.1. Approximate Cls

The weighted kappa coefficient of a BDT is

() pa(Se+Sp—-1)

€)= p[ p(1-Se)+aSp c+ p[ pSe+q(1-Sp)](1-c)’ 2:85)

where the only unknown parameters are the Se and the Sp, since it is assumed that we
have an estimator p of the disease prevalence. Substituting in this equation (2.85) each

parameter with its estimator, the estimator of the weighted kappa coefficient is
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~ pq(nnnoo _nmnm)
&(c)= , (2.86)
( ) p(pnlono+qn00n1)c+q(pnnno"'qnmnl)(l_c)

where ¢ =1-p. Applying the delta method the estimation of the variance of () is
. 2
. c
Var[(c)]= (@J x
pqyY

[[ pq_'e(c){p(q‘c)}T%—ZM[WHQ(C){Q(C—Q)}]“]LM.

n Ny

(2.87)

The demonstration can be seen in Appendix 2.1. We will now propose several Cls for

the weighted kappa coefficient.

2.3.4.1.1. Wald CI

The Wald CI for a parameter is well known. Assuming that we know an estimation of

the prevalence of the disease and that the researcher has set a value of the weighting
index c, the estimator IQ(C) is a function of Se and of ép . This situation is a particular
case which is analysed by Koch et al (1977). Applying the results of Koch et al (1977),

the distribution of £(C) is asymptotically normal, i.e. £(c)——>N (K(C),Var [IQ(C)]) .

Based on the asymptotic normality, the 100(1-a)% CI for «(c) is

£(c)x zl_a/z,ﬁar[zé(c)] (2.88)

where z,_, is the 100(1-o/ 2)th percentile of the standard normal distribution.

This CI can also be calculated from the observed frequencies increased by a certain

quantity, such as 0.5, 2 or Zf_a/z / 2. This procedure is very frequent in the analysis of
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2x2 tables and in the estimation of binomial proportions (for example, Anscombe,
1956, Agresti and Coull, 1998; Martin-Andrés and Alvarez-Hernandez, 2014a) or
combinations of them (Martin-Andrés and Alvarez-Hernandez, 2014b). These

corrections aim to improve the coverages of the Cls, especially when the samples are

small. Let us m;; =n;; +h and my; =n,; +h, with h equal to 0.5, 2 or Zf_a/2/2, and
j=0,1. In this situation, the adjusted estimators of the Se and the Sp are Se = m,,/m,
and Sp= my/M,, and the estimated variances are \7ar(§e) =m,m,,/m’ and
\7ar(§p) =m,,m,, /m;, with m =n, +2h. Substituting in equations (2.86) and (2.87)
each parameter with its adjusted estimator and each frequency n; and n, with m; and

m. we obtain the adjusted estimators of the weighted kappa coefficient I?(C) and the

adjusted Wald ClIs. For o =5% it holds that h=2 is approximately equal to the case

h=z,,/2=1.96’/2. For h=0, the expressions (2.86), (2.87) and (2.88) are obtained.

2.3.4.1.2. Logit Cl

As the value of K(C) is between 0 and 1, the logit transformation can be applied.

Assuming the asymptotic normality of the logit of l%(C), 1.e.
logit[ #(c) ]—>N (logit[ x(c)].Var {logit[ £(c)]}), the 100(1-a)% CI for

logit[/c(c)] is

logit[ #(c) £ 2,.,.,,Var {logit[ £(c) ]} (2.89)
Applying the delta method it is obtained that

48



Chapter 2. Estimation of the parameters of a BDT

Varosi[#(e)) - [\f {c(q +pY —Sp)-q(1- SAIO)}}2 i
. 02 ) o (2.90)
o, {c(d Srr:)—q(l—Sp)} ol {C(Sen; p)- ae} |

and undoing the logit transformation, the logit Cl for tK(C) is

expit(logit[;e(c)] +7, . Var {logit[ #(c)]} ) , (2.91)

where expit(-):exp(-)/{l+exp(-)} is the inverse of logit. This CI can also be

calculated increasing the frequencies by a quantity of h, for which we substitute n. , n.,

ijo i
Se, Sp and K, with my, m;, Se, Sp and i, respectively for each value of h.
2.3.4.1.3. Arcsine CI

The arcsine transformation is a transformation that has been used to estimate a binomial
proportion (Brown et al, 2001; Martin-Andrés and Alvarez-Hernandez, 2014a) and is a

transformation that stabilizes the variance. Performing the transformation

Flx(c)]= arcsin[ x(c) J and assuming the asymptotic normality of this transformation,

i.e. arcsin /%(C)—d—>N(arcsinﬂfl((c),Var[arcsinﬂfk(c)}), the approximate Cl for
Flx(c)] is

F[z%(c)]izlfa/ZWar{F[z%(c)]} , (2.92)

where the variance is estimated applying the delta method and whose expression is
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Var {F[&(c)]}=

—P9

{(q+pY Sp) q(l )}[c{l Sp+p( )}—q(l—§p+p\fﬂ2
nl{ ( pz c(Sp q)} noonm{c(p—SAe)jthAe}2

3
n n

X (2.93)

As the inverse function of aI‘CSiIlafK‘(C) is sin’, then the Cl for «(c) is

sin’ [F [#(c)]+ zl_a/z\/\far{F [;e(c)]}} : (2.94)

As in the case of the logit Cl, the arcsine Cl can be calculated adding to the observed

frequencies the quantity h, and the process is similar to that of the previous case.

2.3.4.1.4. Bootstrap ClI

The bootstrap Cl is calculated generating K samples with replacement from the case

sample and another K samples with replacement based on the control sample. From

each case sample with replacement we estimate §ei and from each control sample with

replacement we estimate §pi ; then we estimate the weighted kappa coefficient as

pal(Se; +Sp, 1)

t)= p(1-QJe+dQ (1-¢)

(2.95)

with i=1,...,K. The bootstrap estimator of the weighted kappa coefficient is estimated

as the average of the K estimated weighted kappa coefficients, i.e.
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35 (c)

&y (€)= H——or, (2.96)

A

and its variance is estimated as ZK:[IGI (c)—&y (C)]2 / (K—1). We then calculate the bias-
k=1

corrected bootstrap Cl (Efron and Tibshirani, 1993) as will now be shown. Let

A=#(K; <K,) be the number of bootstrap estimators that are lower than the estimator,

and let 2, =®"'(A/K), where ®'(-) is the inverse function of the standard normal

cumulative distribution function. Let ¢, = @(220 - Zl_a/z) and a, = @(220 + Zl_a/z),

where z, , is the 100(1—e/2)th percentile of the normal standard distribution, then

the bias-corrected bootstrap Cl is

(£ (c) , &“)(c)), (2.97)

o)

where «;

x(c).

(C) is the jth quantile of the distribution of the K bootstrap estimations of

2.3.4.1.5. Bayesian CI

The CIs proposed in the previous sections are frequentist and are based on the
asymptotic normality of the maximum likelihood estimator of K(C) (and of its logit and

arcsine transformations). The problem is now approached from a Bayesian perspective.

From the case sample it is obtained that n,; — Binomial(n,Se), and from the control

sample n, — Binomial(nO,Sp). For sensitivity and specificity, conjugate beta prior
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distributions are proposed, which are appropriate distributions for binomial proportions

(as are Se and §p ), 1.€.
Se — Beta (o, B, ) » (2.98)
and
Sp — Beta(ag,. B, ) (2.99)
For the prevalence of the disease (which is also a binomial proportion) we propose
p — Beta(a,. 3, ) (2.100)
and

t — Binomial (n’, p), (2.101)

where n” is the sample size starting from which the prevalence has been estimated, and

t is a binomial variable that represents the number of individuals with the disease among

the n". The a posteriori distributions for Se and the §p are
Se|(Myg, Nys Mg Ny ) = Beta(ny, + g,y + s, ) (2.102)
and

A

Sp

(Nios NNy, Ny ) = Beta(ny, +azgy. Ny, + B, ). (2.103)

Considering the a priori distribution (2.100) and the data n" and t, the a posteriori

distribution for the prevalence is

p‘(nlo,nl,noo,no,t,n*) — Beta(t+a,.n" —t+4,). (2.104)
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Once all of the distributions are defined, the estimation of the weighted kappa
coefficient is carried out applying the Monte Carlo method and calculating a Cl based
on quantiles. The algorithm for the Monte Carlo method is the following:

Step 1. Set the values of the parameters of the a priori distributions of §e, §p and p,

ie., set the values of «g, b, as,, B, a, and S . For example, a non-

p

informative distribution can be used, such as the distribution Beta(l,l) , for each a

priori distribution.

Step 2. Generate the random number of each one of distributions (2.98), (2.99) and

(2.100).

Step 3. Generate a random number of distribution (2.101) from the random number

generated with distribution (2.100).

Step 4. Generate a random number of distributions (2.102), (2.103) and (2.104),

using for this purpose the random values obtained in Steps 2 and 3.

Step 5. Calculate IG(C) with equation (2.85) using the random numbers obtained in

Step 4. If it is verified that Y =Se+ §p —1<0, then we must go back to Step 1 (since
for all BDTs we must demand that their Youden index be greater than 0 and,

therefore, that £(c)>0).
Step 6. Repeat M times Steps 1 to 5, obtaining M estimations of K(C) .

Once this algorithm has been applied, from the M estimations of K(C) a Cl based on

the quantiles is calculated, i.e. the 100x(1—a)% ClI for x(c) is
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(Aoyz » Ghaa)- (2.105)

where (, is the yth quantile of the distribution of the M estimations of K‘(C). As the

estimator of K(C) , the average of the M estimations is calculated.

2.3.4.2. Simulation experiments

Simulation experiments were carried out to study the asymptotic coverage of the Cls
proposed in previous Section 2.3.4.1. For this purpose, 10000 random samples were

generated, both case samples and control samples, with sizes 25, 50, 75, 100 and 200,

for case and control samples. The nine possible combinations with {n,,n,} ={25,50,75}

and the four possible combinations with {nl,no} = {100,200} have been considered, and

therefore 13 pairs of sample sizes have been considered. The case (control) samples

were generated from binomial distributions with parameters n, and Se (Sp). These

random samples were generated from values of weighted kappa coefficients, and not

setting the values of Se and of Sp, through the following method:

1) For the weighted kappa coefficients x(0) and x(1) we set the values

{0.01, 0.02,..., 0.98, 0.99}.

2) For the weighting index ¢ (0 <C <1) we set the values 0.1 and 0.9.

3) As the disease prevalence we took the values 10%, 25% and 50%.
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4) Once the values of K(O), K(l), c, and of p were set, the values of Se and of Sp

were calculated solving (through the Newton-Raphson method) the system formed

by equations (1.11) and (1.12), i.e.

_ gxSe—qx(1-Sp)

x(0)= pxSp— px(1-Se) and x(1)= )
px(1—Se)+qxSp

pxSe+qx(1-Sp)

5) Finally, the value of the weighted coefficient was calculated with equation (1.13),

1.e.

«(c) = p(1-Q)ex (1) +aQ(1-¢)x(0)
p(1-Q)c+aQ(1-c)

Therefore, through this method the random samples were generated setting values for
weighted kappa coefficients. We then calculated all of the CIs proposed in Section
2.3.4.1 to 95% (a = 5%) , calculating the coverage probability and the average length

of each one of them. Regarding the bootstrap ClI, for each one of the 10000 case and
control samples 5000 samples with replacement were generated. As for the Bayesian Cl,
for each one of the 10000 samples, another 10000 random samples were generated

considering several scenarios. As a priori distributions for Se and Sp, non-informative

distributions were considered, i.e. Beta(l,l) distributions, for both parameters. For the
prevalence of the disease, two a priori distributions were considered: Beta(l,l) and

Beta( pn*,qn*). The first one corresponds to a non-informative distribution, and the

second distribution is a beta distribution with an average p and one which uses

information provided by the sample from which the estimation of the prevalence was
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obtained. As a value of n", we took 500 and 5000, and thus we studied the effect of this

sample size on the asymptotic behaviour of this CI.

The comparison of the performance of the Cls was made following criteria similar to
those of Agreti and Coull (1998), Price and Bonnett (2004), and Martin-Andrés and
Alvarez-Hernandez (2014a, 2014b). These criteria consists of determining if the method
“fails” for a confidence at 95%, which happens if the Cl has a probability of coverage
lower than or equal to 93% (in Appendix 2.2 this method is justified). The selection of

the optimum CI was made with the following steps:
1) Choosing the Cls with the fewest failures (probability of coverage >93%)

2) From the Cls with the fewest failures, choose those with the lowest average width

(more accurate).

In Tables 2.3 and 2.4 we show the probabilities of coverage and the average lengths

of the Cls when K'(C) is equal to 0.1 and 0.9 (which are values close to the extremes)
and for some sample sizes, indicating in each Table the values of Se, Sp, K(O) , K(l) , C

and p with those with which we have calculated the value of K‘(C). Therefore,

considering the classification of the values of the weighted kappa coefficient given by

Cicchetti (2001), values of the weighted kappa coefficient were considered with

different levels of clinical significance (if 0 <x, <0.40 the level of clinical significance
is poor; if 0.40<x,<0.59 the level of clinical significance is fair; if 0.60<x, <0.74
the level of clinical significance is good; and if 0.75<x_ <1 the level of clinical

significance is excellent). In these Tables, we indicate the failures (coverage probability

<93%) in bold, and we also indicate the coverage probabilities and lengths for the 13
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pairs of sample sizes considered. The results obtained for h=2 are not shown since

they are very similar to those obtained for h= Zfﬁa/z / 2. For the Bayesian Cl we only

show the results obtained for n" =500. From the results obtained in the scenarios

considered and for the sample sizes studied, the following conclusions are obtained for

each ClI:

a) Wald CI. For h=0 and h=0.5 this interval does not fail, even when the value of

x(C) is near to 0 or to 1. When the samples are small (n; <75) the Wald Cl h=0.5

shows, in general terms, a better performance than when h=0; and for larger sample

sizes (ni 2100) the value of h (0 or 0.5) has practically no effect on the asymptotic
behaviour of this Cl. The Wald Cl with h= le_w/2 / 2 (or h=2) has failures, especially

when the samples are small (n, <75).

b) Logit Cl. For h=0 this interval fails when x(C) is near to 0 (K(C)=0.1) and
does not fail when &, >0.2; for h=0.5 the interval does not fail when «, is not near to
Oorl (0.2S K'(C) S0.8) and the sample sizes are large (ni ZIOO). The logit CI with
h= Zim / 2 (or h=2) has failures especially when the sample sizes are small
(n, <75).

c) Arcsine Cl. The behaviour of the arcsine Cl with h=0 is very similar to that of
the logit Cl with h=0. For h=0.5 this interval does not fail, and for h=27 , / 2 (or

h =2) has failures when the samples are small (ni <75 )
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d) Bootstrap Cl. The bias-corrected bootstrap Cl fails when the value of K‘(C) is near

to the extremes (& (C)<0.2 or «(c)>0.8) and the samples are small (n, <75); for the

rest of the values, in general terms this Cl has a similar behaviour to that of Wald CI.

e) Bayesian Cl. When the a priori distribution of p is a Beta(l,l) this interval fails
for moderate or very high values of K(C). When the a priori distribution of p is a
Beta( pn*,qn*), the Bayesian Cl fails when the samples are small (ni < 75) and the

value of K(C) is nearer to 1. For the rest of the values of K‘(C) the behaviour of this is
generally similar to that of Wald CI. The performance of the Bayesian ClI is better when

we use the informative beta distribution, p — Beta( pn*,qn*), as when we use the non-

informative one, p— Beta(l,l). This result was predictable, since the informative

distribution introduces into the Bayesian model the information provided by the sample
from which we estimate the disease prevalence; whereas the non-informative beta
distribution is flat for all possible values of p and this distribution has a minimal impact
on the a posteriori distribution of p. The performance of the Bayesian ClI when
n" =5000 is very similar to the case of n" =500, so that the sample size with which we
can estimate the prevalence has practically no effect on the asymptotic behaviour of the

Bayesian CI.

Only in terms of the sample sizes, we can give the following rules for the application

of the Cls:

a) When the sample sizes are small (ni < 75), use the Wald Cl with h=0.5, as it is

an interval that does not fail for the values of x(C) considered.
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b) For other sample sizes (n; >100) use the Wald Cl with h=0, also because it is

the only interval that does not fail.
For sample sizes n. >100 we can also use the logit and arcsine Cls (with h=0),

bootstrap and Bayesian with p — Beta(pn*,qn*), although these last two require a

greater computational effort than the rest, and the Wald one is the easiest to calculate.

59



Chapter 2. Estimation of the parameters of a BDT

Table 2.3. Coverage probabilities and lengths of the Cls for K(C) =0.1.

Se=0.55 Sp=0.55 p=50% c=0.1 x,=0.1 x,=0.1

Wald ClI
h=0 h=0.5 h=z2,,/2
n, n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.959 0.434 0.966 0.424 0.981 0.397
25 50 0.953 0.357 0.959 0.351 0.977 0.337
50 25 0.970 0.394 0.975 0.385 0.983 0.363
50 50 0.961 0.319 0.964 0.315 0.974 0.305
75 75 0.973 0.264 0.973 0.262 0.978 0.256
100 100 0.968 0.235 0.969 0.233 0.972 0.229
200 200 0.981 0.179 0.981 0.179 0.983 0.178
Logit Cl
h=0 h=0.5 h:ZIZ—a/Z/z
n, n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.883 0.648 0.892 0.646 0.921 0.642
25 50 0.886 0.594 0.889 0.594 0.919 0.593
50 25 0.891 0.631 0.906 0.627 0.930 0.619
50 50 0.892 0.523 0.900 0.522 0.919 0.520
75 75 0.913 0.451 0.918 0.450 0.931 0.449
100 100 0.934 0.397 0.938 0.397 0.942 0.396
200 200 0.943 0.252 0.947 0.252 0.952 0.251
Arcsine ClI
h=0 h=0.5 hzzlz—a/Z/z
n n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.797 0.480 1 0.472 0.823 0.450
25 50 0.764 0.401 1 0.397 0.792 0.384
50 25 0.793 0.439 1 0.432 0.819 0411
50 50 0.873 0.360 1 0.356 0.881 0.347
75 75 0.866 0.298 1 0.296 0.871 0.291
100 100 0.895 0.262 1 0.261 0.900 0.257
200 200 0.957 0.191 1 0.190 0.962 0.189
Bayesian ClI
Bootstrap Cl p — Beta(1,1) p — Beta(pn”.qn’)
n n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.719 0476 1 0.413 0.967 0.405
25 50 0.796  0.365 1 0.354 0.962 0.334
50 25 0.803 0.452 1 0.379 0.964 0.382
50 50 0.881  0.340 1 0.315 0.971 0.307
75 75 0923 0.277 1 0.274 0.972 0.256
100 100 0932 0.244 1 0.246 0.968 0.229
200 200 0977 0.180 1 0.202 0.973 0.175

Cov.: coverage probability. Leng.: length.
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Table 2.4. Coverage probabilities and lengths of the Cls for «(c)=0.9.

Se=0.925 Sp=0.975 p=25% ¢c=09 x,=0.9 k=09

Wald CI
h=0 h=0.5 h=z2,,/2
n, n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.990 0.251 0.982 0.269 0.868 0.328
25 50 0.996 0.236 0.989 0.251 0.914 0.303
50 25 0.934 0.198 0.975 0.201 0.881 0.234
50 50 0.932 0.174 0.986 0.181 0.912 0.205
75 75 0.933 0.142 0.947 0.147 0.934 0.160
100 100 0.946 0.123 0.956 0.126 0.948 0.135
200 200 0.947 0.088 0.949 0.089 0.951 0.092
Logit Cl
h=0 h=0.5 h:ZIZ—a/Z/z
n, n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.953 0.290 0.875 0.301 0.578 0.326
25 50 0.963 0.281 0.947 0.289 0.665 0.305
50 25 0.946 0.203 0.886 0.213 0.617 0.236
50 50 0.958 0.187 0.936 0.194 0.798 0.209
75 75 0.944 0.150 0.942 0.153 0.848 0.163
100 100 0.958 0.128 0.952 0.130 0.886 0.137
200 200 0.959 0.090 0.953 0.091 0.913 0.093
Arcsine ClI
h=0 h=0.5 hzzlz—a/Z/z
n n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.981 0.258 1 0.280 0.669 0.319
25 50 0.985 0.246 1 0.265 0.829 0.296
50 25 0.974 0.188 1 0.201 0.773 0.230
50 50 0.933 0.172 1 0.182 0.867 0.202
75 75 0.941 0.141 1 0.146 0.890 0.158
100 100 0.950 0.122 1 0.125 0.923 0.134
200 200 0.946 0.088 1 0.089 0.931 0.092
Bayesian ClI
Bootstrap Cl p — Beta(1,1) p — Beta(pn”.qn’)
n n, Cov. Leng. Cov. Leng. Cov. Leng.
25 25 0.995  0.227 0.821 0.771 0.867 0.294
25 50 0.996 0.211 0.834 0.768 0.923 0.272
50 25 0.926 0.179 0.777 0.732 0.893 0.213
50 50 0.904  0.162 0.861 0.726 0.944 0.186
75 75 0.907  0.136 0.845 0.710 0.934 0.148
100 100 0.924 0.119 0.878 0.699 0.939 0.128
200 200 0.931 0.087 0.867 0.689 0.944 0.089

Cov.: coverage probability. Leng.: length.
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In Figure 2.1, we show the probabilities of coverage of the Wald Cls (Wald with

h=0.5 when n, <75 and Wald with h=0 when n, >100) obtained for values of x(c)

equal to 0.2, 0.4, 0.6 and 0.8, and it can be observed that, for the sample sizes

considered, these intervals do not fail.

Regarding the corrections h=2 and h:Zf_a/2 /2, they do not improve the

asymptotic behaviour of the Cls, and for small samples they even have a negative effect

on the coverage probabilities of the Cls.
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Figure 2.1. Coverage probabilities of the Wald Cls.
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2.3.4.3. Sample sizes

A very important question in the study of statistical methods for diagnosis is the

determination of the sample size necessary to be able to estimate a parameter of a BDT

with a determined precision to a confidence IOO(I—a)%. Then, based on the Wald CI
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(which is an interval that in general terms performs well, both with small samples and

with large ones), a method is proposed to calculate sample sizes n, and n, needed to
estimate &, with a precision & and a confidence 100(1-a)%. Based on the

asymptotic normality of the estimator l%(C) , it is verified that

#(c)ex(c)tz, ,Nar[&(c)], (2.106)

i.e. the probability of obtaining an estimator l%(c) is in interval (2.106) with a
probability 100(1—-a)%. Let ¢=n,/n, . Substituting n, with n¢ in equation (3.32)
(see Appendix 2.1), and setting the value of ¢ and precision ¢, then it is possible to

calculate sample size n, using the following expression

5=12_,,, fgar [#(c)]. (2.107)

Clearing n, it holds that

2
" ( zla/zzc(c)J §
paYo

{[ pa—x(c){p(q —c)}]2 Se(l—Se)+[ P +K(c){q(c_q)}]2@ '

(2.108)

If an estimation of the disease prevalence is known and setting the value of the

weighting index C, this method requires knowledge of the values of Se, Sp and K(C),

1.e. it 1s necessary to know some estimators of these parameters (e.g. from pilot samples

or other previous studies). The procedure would consist of the following steps:

Step 1. Take two pilot samples, one with n/ individuals who have the disease and

another one with n; individuals who do not have the disease, and based on these we
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obtain §e, §p , l%(C) and the Wald CI. If the Wald CI calculated has a precision 0,

Upper limit — Lower limit
2

re. if

<0, then with the two pilot samples precision has

been achieved and the process is finished; if precision is not achieved

( Upper limit — Lower limit

5 >0 j then we must go to the next step.

Step 2. From the values estimated in Step 1, calculate the new sample size n, with

equation (2.108) (in this equation each parameter is substituted with its estimated

value in Step 1) and calculate n, =ng.

Step 3. Take two samples, one composed of n, individuals with the disease and
another composed of n, individuals without the disease (to samples n from Step 1

individuals are added until the completion of new sample sizes n, ). From these new

samples, Se, Sp, k(c) and the Wald Cl are calculated. If the Wald Cl calculated

has a precision 0 then with the two new samples precision has been achieved and

the process has finished. If the Wald Cl does not have the desired precision, then

consider these two samples to be pilot samples and go to Step 1.

The method propose to calculate the sample size is an iterative method that depends
on the pilot samples and does not guarantee that with the sizes calculated K‘(C) is
estimated with precision ¢ . Therefore, when applying this method it is necessary to

check that with the sample sizes calculated the precision required is achieved.

This method can be applied considering h=0 when the sizes of the pilot samples are

>100 or with h=0.5 when these sizes are lower than 100.
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2.3.4.4. Example

The results obtained in the previous Sections were applied to the study by Patil et al
(2013) on the assessment of ischaemia modified albumin in the diagnosis of acute
coronary syndrome in India. This diagnostic test was applied to a sample of 102
individuals diagnosed with coronary disease and to a sample of 110 healthy control
individuals. In Table 2.5 (Frequencies), the data from the study are shown (the
frequencies were calculated from the results provided by the authors). In India, the
prevalence of coronary heart disease has been estimated at a range of 1.6% to 7.4% in
rural populations and from 1% to 13.2% in urban populations (Gupta et al, 2008).
Taking into account the conclusions of the simulation experiments obtained in Section
2.3.4.2 and considering the prevalence value to be 5%, in Table 2.5 (Estimation of the
weighted kappa coefficient) we can see the estimations of the weighted kappa

coefficient for different values of the weighting index C. As for the Bayesian Cl, two

sample sizes have been supposed to estimate the prevalence: n" =1000 and n" =5000 .

If the clinician considers that the false positives are more important than the false
negatives (as is the case when ischaemia modified albumin is going to be used as a
definitive test before a risky treatment, e.g. a surgical operation), then 0<c<0.5 and
the weighted kappa coefficient has a level of clinical significance (Cicchetti, 2001)
which varies mainly between ‘poor’ and ‘fair’ (in terms of the 95% Cls) depending on

the ¢ index. For example, if the clinician considers that ¢ =0.1, the false positives are 9
times more important than the false negatives, then the 95% Wald Cl is (0.21 ; 0.55)

and the level of clinical significance of ischaemia modified albumin is a value between
‘poor’ and ‘fair’ and, therefore, ischaemia modified albumin is not a useful test for the

definitive diagnosis of coronary disease.
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Table 2.5. Data from the study by Patil et al (2013) and estimations of K(C) .

Frequencies
Negative test Positive test Total
Case 12 90 102
Control 102 8 110
Estimation of the weighted kappa coefficient
& (c)*Standard error 95% Wald CI
c h=0 h=0.5 h=0 h=0.5
0.1 0.38+0.087 0.37+0.084 0.21 — 0.55 0.20 — 0.53
0.4 0.47+0.089 0.45+0.086 0.29 — 0.64 0.28 — 0.62
0.5 0.51+0.087 0.49+0.085 0.34 — 0.68 0.32 — 0.66
0.6 0.55+0.084 0.54+0.082 0.39 — 0.72 0.38 — 0.70
0.9 0.76+£0.050 0.75+£0.050 0.66 — 0.86 0.65 — 0.85
95% Logit Cl 95% Arcsine ClI
c h=0 h=0.5 h=0 h=0.5
0.1 0.23 — 0.56 0.22 — 0.54 0.22 — 0.55 021 —0.53
0.4 0.30 — 0.64 0.29 — 0.62 0.30 — 0.64 0.29 — 0.62
0.5 0.34 — 0.67 0.33 — 0.65 0.34 — 0.67 0.33 — 0.66
0.6 0.39 — 0.71 0.38 — 0.69 0.39 — 0.71 0.38 — 0.69
0.9 0.65 — 0.84 0.64 — 0.83 0.65 — 0.85 0.65 — 0.84
95% Bayesian Cl
n"=1000,p—Beta(pn’,gn’)  n"=5000,p—> Beta(pn’,qn’)
c k(c) 95% ClI £(c) 95% ClI
0.1 0.37 0.21 — 0.55 0.37 0.22 — 0.55
0.4 0.45 0.29 — 0.63 0.45 0.30 — 0.63
0.5 0.49 0.32 — 0.66 0.49 0.33 — 0.66
0.6 0.53 0.37 — 0.69 0.53 0.38 — 0.69
0.9 0.74 0.63 — 0.83 0.74 0.63 — 0.83
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If the clinician considers that the false negatives are more important than the false
positives (as is the case when ischaemia modified albumin is going to be used as a
screening test), then 0.5 <C <1 and the level of clinical significance (Cicchetti, 2001) of
the weighted kappa coefficient varies between ‘fair’ and ‘excellent’ (in terms of the

95% CIs) depending on the ¢ index. For example, for ¢ =0.9, the false negatives are 9

times more important than the false positives, the 95% Wald Cl is (0.66 ; 0.86) and the

level of clinical significance of ischaemia modified albumin is a value between ‘good’

and ‘excellent’ and, therefore, this diagnostic test is very useful as a screening test.

As for the Cls, in this example as the sample sizes n, and n, are relatively large

(ni >100), all of them are very similar. Regarding the Bayesian Cl, the sample size

from which the prevalence is estimated does not have any effect upon the intervals

obtained.

In order to illustrate the method described in Section 2.3.4.3 about the calculation of

the sample sizes, let us consider that ¢ =0.9. In this situation, the 95% Wald CI with

h=0 is (0.66 ; 0.86) and the precision is 0.10 (w =O.10j. As an example,

let us consider that the clinician wishes to estimate the weighted kappa coefficient with

a precision 6 =0.05 and that the case sample and the control sample are the same size

(¢p=1). As with the samples of 102 and 110 individuals, the desired precision
(5=0.05<0.10) was not achieved, then using the two previous samples as pilot
samples (Se=0.88 , $Sp=0.93 and £(0.9)=0.76) applying equation (2.108) it is
obtained that n, =227 and n, =¢n, =227. Therefore, to the initial case sample it is

necessary to add 125 individuals with the disease and 117 individuals without the
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disease must be added to the control sample. Once these new samples have been taken,

it is necessary to check that the desired precision is verified.

2.3.4.5. Discussion

The weighted kappa coefficient is a valid measure to assess and compare the
performance of BDTS, and it depends on the sensitivity and the specificity of the test, on
the prevalence of the disease and the relative importance between the false positives and
the false negatives (weighting index). The sensitivity and the specificity of the test are
easily estimated, both in cross-sectional studies and in case-control studies, since they
are estimators of binomial proportions. Regarding the weighting index, this is set by the
clinician depending on his or her knowledge of the problem in question. The estimation
of the weighted kappa coefficient in case-control studies requires knowledge of an
estimation of the prevalence of the disease based on another study (or from the
literature, etc.), since from this design it is impossible to estimate the prevalence. In this
article, we have studied the estimation of the weighted kappa coefficient of a single
BDT subject to case-control study assuming that we have an estimation of the
prevalence of the disease. Fourteen approximate CIs were studied and compared for this
parameter (thirteen were frequentist and one was Bayesian). The results of the

simulation experiments carried out demonstrated that, in very general terms, for small

samples (ni < 75) it is possible to use the Wald Cl with h=0.5, and that for samples
with n, 2100 the Wald, logit, arcsine (with h=0) and Bayesian (with Beta( pn*,qn*))
intervals can be used. The Bayesian Cl performs well when for prevalence an a priori

distribution Beta( pn*,qn*) is considered, where n’ is the sample size from which the
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prevalence has been estimated. If sample size nis not known, any value (e.g. 500 or
5000) can be used, since the simulation experiments have demonstrated that this value

has practically no effect upon the coverage probability and length of the interval.

Another important question that has been studied is the calculation of the sample

sizes N, and n, needed to estimate the weighted kappa coefficient with a determined
precision. Therefore, and once we have set the values of index c, of the desired

precision & and of the relation between n, and n, (¢), a method based on the Wald Cl

has been proposed that requires knowledge of the sensitivity, the specificity and the
weighted kappa coefficient of the BDT (e.g. from pilot samples or other studies). The
method proposed depends on the auxiliary information (pilot samples or other studies)
and, therefore, it does not guarantee the estimation of the weighted kappa coefficient
with the desired precision, and thus it is necessary to check this condition once the new

samples have been taken.

The estimation of the weighted kappa coefficient requires knowledge of an
estimation of the prevalence obtained from another study e.g. a health survey. To study
the effect of a misspecification of the prevalence in the estimation of the weighted
kappa coefficient, we carried out simulation experiments similar to those made in
Section 2.3.4.2. For this we took as the prevalence for the inference an overestimation
(and underestimation) equal to 10% and to 20% of the value of the prevalence set, and
we studied the asymptotic behaviour of the intervals recommended (Wald with h=0.5
for small samples and Wald with h=0 for large samples). In the Tables 2.6 and 2.7 we

show some of the results obtained. The results demonstrated that slight (10%) and
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moderate (20%) misspecifications of the disease prevalence do not have an important

effect on the probabilities of coverage of the Wald CIs.

Table 2.6. Coverage probabilities and lengths of the Wald Cls forx(c)=0.1.

Se=0.55 Sp=0.55 ¢=0.1 True prevalence =50%

p= p=
True prevalence + True prevalence —
0.10x True prevalence = 55% 0.10x True prevalence = 45%
n, n, Cov. Leng. Cov. Leng.
25 25 0.962 0.443 0.977 0.399
25 50 0.957 0.374 0.974 0.333
50 25 0.974 0.402 0.982 0.361
50 50 0.955 0.331 0.973 0.295
75 75 0.965 0.278 0.979 0.246
100 100 0.961 0.249 0.979 0.220
200 200 0.965 0.190 0.977 0.167
p= p=
True prevalence + True prevalence —
0.20x True prevalence = 60% 0.20x True prevalence = 40%
n, n, Cov. Leng. Cov. Leng.
25 25 0.953 0.460 0.987 0.371
25 50 0.943 0.391 0.979 0.308
50 25 0.969 0.417 0.987 0.336
50 50 0.947 0.345 0.984 0.273
75 75 0.958 0.291 0.987 0.227
100 100 0.957 0.260 0.983 0.202
200 200 0.956 0.199 0.963 0.154

Cov.: coverage probability. Leng.: length.
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Table 2.7. Coverage probabilities and lengths of the Wald ClIs for K(C) =0.9.

Se=0.925 Sp=0.975 ¢=0.9 True prevalence =25%

p= p=
True prevalence + True prevalence —
0.10x True prevalence =27.5% 0.10x True prevalence = 22.5%
n, n, Cov. Leng. Cov. Leng.
25 25 0.982 0.287 0.981 0.280
25 50 0.991 0.269 0.991 0.259
50 25 0.979 0.205 0.979 0.203
50 50 0.986 0.188 0.986 0.182
75 75 0.941 0.150 0.947 0.144
100 100 0.944 0.125 0.933 0.120
200 200 0.941 0.090 0.939 0.086
p= p=
True prevalence + True prevalence —
0.20 x True prevalence = 30% 0.20x True prevalence = 20%
n, n, Cov. Leng. Cov. Leng.
25 25 0.982 0.292 0.981 0.278
25 50 0.986 0.275 0.991 0.255
50 25 0.962 0.208 0.979 0.204
50 50 0.974 0.192 0.986 0.179
75 75 0.960 0.154 0.947 0.142
100 100 0.944 0.129 0.934 0.118
200 200 0.948 0.092 0.933 0.084

Cov.: coverage probability. Leng.: length.

In this Section we have studied the estimation of the weighted kappa coefficient

through ClIs. Further research should be carried out when, subject to case-control study,

a hypothesis test on this parameter is made i.e. H, :x, =x,, vs H, :x, # k., proposing

different methods to solve this hypothesis test and also studying the sample sizes

necessary to solve the hypothesis test to an error « and to a power 6.
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Chapter 3

Comparison and Combination of two Binary

Diagnostic Tests

3.1 Introduction

This Chapter studies the comparison of parameters of two BDTs subject to a paired
design and the combination of two BDTS. The comparison of parameters of two BDTS is
an important topic in the field of Statistical Methods for Diagnosis in Medicine. In this
Chapter, the hypothesis tests and the CIs to compare the parameters of two BDTs
subject to a paired design are presented. In this Chapter we also study the combination
of the parameters of two BDTSs. In practice, it is common to combine two BDTS in order
to increase the accuracy of the diagnosis of the disease. The combination of the
sensitivities and of specificities, likelihoods ratios, predictive values and weighted

kappa coefficient of two BDTSs are presented. The combination of the weighted kappa
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coefficients of two BDTSs is the second contribution of this Thesis. Each one of these

objectives will now be studied.

3.2. Comparison of two BDTs

Let us consider two BDTs whose performance is compared in relation to the same GS.
A paired design consists of applying the two BDTSs and the GS to all the individuals in a

random sample sized n, and the most common type of sampling when we want to

compare the performance of two BDTs. Let T, and T, be the random binary variables
that model the results of Test 1 and Test 2 respectively, in such a way that T, =1 when

the result of the BDT is positive and T, =0 when the result is negative. Let D be the

random binary variable that models the result of the GS, in such a way that D =1 when

the individual is diseased and D=0 when the individual is non-diseased. Let
Se, =P (T, =1|D=1) be the sensitivity of the kth BDT and Sp, =P (T, =0|D=0) be
the specificity; LR =Se/(1-Sp,) the positive likelihood ratio and
LR, =(1-Se,)/Sp, the negative likelihood ratio; PPV, =P (D =1[T, =1) the positive
predictive value and NPV, = P(D = O|Tk = 0) the negative predictive value; and «, (C)

the weighted kappa coefficient of the kth BDT. Let us consider that the two BDTs and

the GS are applied independently to all of the individuals in a sample sized n, leading to

Table 3.1, where s; is the number of diseased individuals in which T, =i and T, = J,
and r; is the number of non-diseased individuals in which T =i and T, =], with
i,j=0,1.
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The data in Table 3.1 are the product of a multinomial distribution whose

probabilities are shown in Table 3.2, where

P = P Sel'(1-8¢,) " Sek (1-Se,) “ + 5,5, | 3.

and

G =0 SPI " (1-5p,)" SPL* (1-5p,)" + G, |- (32)

1 1
with p=P(D=1)= > py., q=1-p= >, q, and h,k=0,1. The parameter &, is the

h,k=0 h,k=0
covariance (Vacek, 1985) between the two BDTs when D =1, and the parameter ¢, is
the covariance between the two BDTs when D =0, with ¢, =1 if h=K and &, =-1
if hzk, and verifying that 0<g <min{Se (1-Se,),Se,(1-Se)} and
0<g,<min{Sp,(1-Sp,),Sp,(1-Sp,)}. If &=¢,=0 then the two BDTs are

conditionally independent on the disease. In practice the supposition of conditional

independence is not realistic, so that usually & >0 and/or &, >0. The Vacek model
(1985) treats conditional dependence as an additive factor. Using the transformations

& =5eSe,(o,—1) and & =(1-5p,)(1-Sp,)(e,—1), the model treats conditional
dependence as a multiplicative factor. Parameter ¢, is the covariance (Berry et al,
2002) between the BDTs when D=1, and «, is the covariance (Berry et al, 2002)
between the BDTs when D=0, and it is verified that 1<¢, Sl/ max{Sel,Sez} and

130{0Sl/max{(l—Spl),(l—sz)}. In the case that o, =¢,=1 the two BDTs are

conditionally independent on the disease.
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Table 3.1. Frequencies when comparing two BDTS subject to a paired design.

T =0 T =1

T,=0 T,=1 T,=0 T, =1 Total
D=1 Soo Sy, Sio S, S
D=0 oo lo1 Mo My r
Total Noo Noy Ny Ny, n

Table 3.2. Probabilities subject to a paired design.

T =1 T =0
T, =1 T,=0 T, =1 T,=0 | Total

D=1 Py, Pio Po; Poo P
D=0 0y Gy Gy Goo q
Total Py + 0, Pio + Gho Por + Gy Poo + Tloo 1

3.2.1. Sensitivities and specificities
The hypothesis test to compare two sensitivities is

H,:Se, =Se, vs H,:Se #Se,,

that it is equivalent to checking

Ho: Po =Py vs Hii Py # Py
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Therefore, the comparison of two sensitivities is equivalent to the comparison of two

paired binomial proportions. If s, +5,,>10 this hypothesis test is solved by applying

the McNemar’s test (with correction continuity), i.e.

=w_>|\|(0,1)_ (3.3)

\/SOI + SIO

If s, +5s,, <10, the hypothesis test is solved by applying the exact test to compare two

paired binomial proportions. In this situation, the exact p-value is

S +5S So1+S10
p—value = 2><Z( 01| 10}@} , h=min(s,.s,,). (3.4)
i=0

The comparison of the two specificities is solved in a similar way. The hypothesis

test to compare two specificities is
H,:Sp,=Sp, vs H,:Sp, #Sp,,
that it is equivalent to checking
Hy 0y =0y vs H, 10, #0-
If r,, + 1, >10, the McNemar’s test (with correction continuity) is

_ |r01 B Ir10|_0>5

Vot

If 1), +1, <10, the exact p-value is

—N(0,1). (3.5)

p—value = 2><Z(r°'+r j(lj , h=min(r,,r,). (3.6)

= i 2
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The estimation by CIs of the difference between two paired proportions has been
object of many studies. Agresti and Min (2005) have proposed a Cl called Wald +2 for

the differences of two paired binomial proportions, which is a CI that has good

asymptotic coverage. In terms of data of Table 3.1, the 100(1-a)% Wald +2 CI for

the difference between the two sensitivities is

2
(SIO +SOI +1)_w

Sio—S,
Se, —Se, e —>*+7, S+2 , (3.7)
S+2

and for the difference between the two specificities the Cl is

(r01 — Ty )2

(r01 + N +1)_
r+2 (3.8)

ro—r
Sp,—Sp, e 410 +7
PSP €7 T B r+2

3.2.2. Likelihood ratios

Roldan-Nofuentes and Luna del Castillo (2007) have studied the comparison of the
likelihood ratios of two BDTSs subject to a paired design. When the results of the two

BDTs are positive, the hypothesis test to check the equality of the LRS is
Hy:o"=0 vs H:0" %0,
and when the results of both BDTS are negative, the hypothesis test is

Hy:0o =0 vs H:o #0,

+
2

2

where 0" = ln( ::Rl J and o = h{ ::21 J In terms of the probabilities given in Table

3.2, the positive LRS are written as
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LR+=1_p P+ Pio and LR+=1_p P + Py (3 9)
1 2 s .
P Q,+0o p q,+q,

and the negative LRs are written as

Lszl_p Po; + Poo and Lszl_p Pio + Poo (3.10)
1 2 : :
P Qo 0o P G+ oo

Therefore, it holds that

w+=ln{(pn+pm)(q“+qm)} ond w_zln{(lom+ poo)(qlo+qoo)}_ 3.11)
(P + Por)(a +0y) (P10 + Poo ) (s + o)

Let 7=(Pyy» Pors Pro» pn,qoo,qm,qw,q“)T be a vector whose components are the

probabilities in Table 3.2. As the probabilities p; and ; are probabilities of a

S. N _
multinomial distribution, their MLEs are f; =— and §; =—, and the estimated

. n

ij

variance-covariance matrix of @ is 2, = {diag(ﬁt) —an' } / n. The MLEs of the positive

LRs are

LR;=r<SH+SlO) and LR;ZM, (3.12)
S(r11+r10) S(r11+r01

and the MLEs of the negative LRs are

T CTR T IR CTha ) (3.13)
S(r01+r00) S(rl0+r()0)

Then the MLEs of @' and @™ are

éf:ln{(swsm)(nﬁrm)} ond é):ln{(sm"'soo)(rlo"'roo)}, (3.14)

(311+301)(']1+r10 (310+300)(r01+r00
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and applying the delta method the estimated variance of @ is

\7ar(ab)=[%)] z,{%‘"j ,

where @ is @ or @& . Finally, the statistic for the hypothesis test H,:@=0 vs

(3.15)

H:o#0is

@
7= >N (0,1).
\/Var(c?)) o (0.0

(3.16)
An approximate Cl for @ is obtained by inverting the contrast statistics (3.16), i.e.
wedtz, ,,Nar(d), (3.17)

where z, , is the 100(1—a/2)th percentile of the normal standard distribution. The

100(1—-&)% CI for the ratio of the two positive (negative) LRS is

LR - A
L—R;eexp[a)i 2, a2 ar(a))}, (3.18)
where LR is LR" or LR™.

Roldan-Nofuentes et al (2007) also studied the simultaneous comparison of the LRs

of the two BDTSs. This hypothesis test consists of solving the global hypothesis test

HO:(afzo and af:O) Vs Hl:(af;tO and/or w*iO).

Applying the central theorem of the multivariate limit it holds that

\ﬁ 6:!\\)+_a)+ n N e 0 ’Zn: O, Op, ’
0 —-w o 0 O, Oy

(3.19)
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where the elements of the variance-covariance matrix are estimated applying the delta

method. In this way, if @ = ( @ 0 )T then

2 om . (o)
RN @20

and the test statistic of the global hypothesis test is
2 ATe lna 2
Q =0 Z(?J(DTZZ . (321)

Finally, the comparison of the LRs of the two BDTS subject to a paired design is realised

following the next steps: 1) Solve the global hypothesis test H, :(af =0 and @ = O)

-1
to an error of ¢ using the statistic Q> =®' o ® ; 2) If the global hypothesis test is not
significant to an error of «, then the homogeneity of the LRs of the two BDTSs is not
rejected, but if the global hypothesis test is significant to an error of «, then the study

of the causes of the significance is performed by solving hypothesis tests H,:@" =0

and H;:o =0 along with a multiple comparison method (e.g. Bonferroni (1936),

Holm (1979) or Hochberg (1988)) to an error of « .

3.2.3. Predictive values

The comparison of the predictive values of two binary diagnostic tests is a topic of great
interest in the study of Statistical Methods for Diagnosis, and has been the subject of
many papers in the literature of Statistics. The most recent studies are: Leisenring et al
(2000), Wang et al (2006), Roldan-Nofuentes et al (2012) and Kosinski (2013). From

Tables 3.1 and 3.2, the MLES of PVs are
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PPV, =— 2051 png PPy, =
SIO+S|1 +r10+r|1
for Test 1, and
NPV, =— S ang NPV, =

Sor + Sy + 1o Ty

r00 + r01

SOO + SOI + r00 + r01

Too *No

Soo FS10 + oo + o

(3.22)

(3.23)

for Test 2. Applying the delta method, the estimated variances-covariances of the

estimators of the predictive values are:

Var(PﬁV1)= (S0 *+8)(ho + 1

-, Aar(PPV)
n(510+sll+r10+rl

)
)
Var(NPV,) = (S0 ) (o * o ))2 Var(NPV, ) =

N(Syo + Sor + Ty + 1y

Soi +S11)( o Ty

(
n(
(

Sor TS+ +1y

Soo +S10) (oo +1,

N(Sg +Si + Fyo +

SOlslorll +Sll|:r01 r-10 + rll)+ I’11 (SOl +SIO +Sll + r-10 + rl :'

Cov(PPV PPV )

Cov(PPV,, NPV, ) =0,

(SOI+Sll+r01+rll) (SIO+SII+r10+rll)

2 35 ) 500(510+311)rm+510r10(510+311+roo+r10)+slo(roo+rlo)"11
Cov(PPV,,NPV, ) = - ~ 0
(Soo+310+roo+r10) (310+5”+r‘10+t‘“)

éO PISV NISV _ 500(501+S11)ro1+501r01(501+Sl1+roo+ro1)+501(roo+ro1)n1
v 29 )= 2 2
(Soo+301+roo+r01) (501+511+r01+r11)

Cov(PPV,,NPV, ) =0,
éOV(NFA’V N|5V )_ Soo(roo +r01)r10 +roo[ 00 +301510+500(501 + S0+ T +I’01)]
1 2=

(Soo + S+l + r01) (Soo + Sy Tl + rlO)

(3.24)

We will now describe each of these four methods to compare the PVs of two BDTs

subject to a paired design.
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3.2.3.1. Study of Leisenring et al

Leisenring et al (2000) studied the comparison of the PPVs and NPVs of two BDTs
through marginal regression models. These authors deduced score statistics to compare

the PPVs and NPVs of two BDTSs in paired designs. The score statistic for the test

H,:PPV,=PPV, vs H,:PPV, = PPV, (3.25)
is
Topy =
(s.(1-2Z) 45, (1-Z)-s,Z ) (3.26)

s,(1-D,) (1-2Z,) +s,,(1-D,) (1-Z ) +s,(1-D,) Z2 +1,0}(1-2Z,) +1, D} (1-Z ) +1,5°Z>

and the score statistic for the test

H,:NPV,=NPV, vs H, :NPV, = NPV, (3.27)
18
TNP\/ =
(o (1-2Z,) 41, (1-Z,) -1, Z,) (3.28)

= \2

hy(1-0,) (1-2Z,) +1,(1-DB,) (1-Z,) +1,(1-D,) Z2 +5,02(1-2Z,) +5,0(1-Z,) +5,D2Z}

The score statistics have a chi-squared distribution with 1 degree of freedom when the

null hypothesis is true, and where

Z_ _ S11"'301 +r11+r01 [_) _ 2511"'301 +510
1= [t ’
2511 +So1 TS0 +2I’” + 1y 2511 +Sp1 TS +2I’” +ho 1
Z_2 — S0 510 oo + lio and [_)2 — 2r00 +1o + o .
2Sy, +Sy; + S0 T 20, + 1y + 1y 28y, +Sy; TSy + 20 + 1, + 1
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3.2.3.2. Study of Wang et al
Wang et al (2006) studied the comparison of the PVs of two BDTs through a weighted

least square method. The statistics proposed for hypothesis tests (3.25) and (3.27) are

(PBV, ~PPV,)’
Var PPV, - PPV, |

NPV, -NPV,)
~ Var(NPV, - NPV, )’

(3.29)

Z;PV = d ey

respectively. Both statistics have a chi-squared distribution with 1 degree of freedom,

and the variances are estimated by applying the delta method (equations (3.24)).

Cls for the difference between the two PPVs and the two NPVs are obtained by

inverting each contrast statistics (3.29), i.e.

PPV, —PPV, (PPV,—PPV, |+ zlﬂ,!/z\/%r(F>F3v1 —~PPV, | (3.30)

and

NPV, — NPV, ( NPV, —NPV, )+ zl_a/z\/\far(NﬁV, ~NPV, ) . (3.31)

Wang et al have compared this method with the method of Leisenring et al (2000), and

they recommend using the weighted least square method.

3.2.3.3. Study of Kosinski

Kosinski (2013) has proposed a weighted generalized score statistic to solve the
hypothesis tests of comparison of the PVs. The weighted generalized score statistic for

the hypothesis test (3.25) is
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(PBV, ~PPV,)’

Toev = , (3.32)
{ 4 3 PPV 1 1
PPV, (1-PPV, )-2C; } +
n10+nll n01+nll
and the weighted generalized score statistic for the hypothesis test (3.27) is

A A 2

(NPV, -NPV, )
Taoe = (3.33)

A A 1 1
{NPVP (1_ vap)—ZCSPV}(nOO + Ny, " Ny + nle

Both statistics have a chi-squared distribution with 1 degree of freedom when the null

hypothesis is true, and where

SV TR Tk TR VA T Thal 1 (3.34)
2n, +n, +n,, 2Ny, + Ny, +ny,
are the pooled PPV and pooled NPV respectively, and
5, (1-PPV, ) +1, PPV SuNPV2 41, (1-NPV, )
cr = — P P andCV- P "L (3.39)

2n, +n, +ny, 2N, + Ny, + Ny

Cls for the difference between the two PPVS and the two NPVS are obtained by

inverting the contrast statistics (3.32) and (3.33), 1.e.

. . . 1 1
PPV, - PPV, e(PPV, - PPV, )+ 7, [ PPV (1-PPV )-2C™ + 3.36
1 ’ ( l 2) la/z\/[ p( p) P ](n10+n1| r101‘*’”11} ( )
and
NPV, NPV, & (NPV, -NPV, )£ 7, ,,, [Nﬁv (1-NPV )—ZCNPV] L L ] @337
“ P P P nOO +n()l nOO +n|0

Kosinski has demonstrated that his method performed better in terms of the type I

error than methods of Leisenring et al (2000) and of Wang et al (2006).
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3.2.3.4. Study of Roldan-Nofuentes et al

Roldan-Nofuentes et al (2012) have studied the simultaneous comparison of the PVs of
two BDTs in paired design, and these authors have shown that the comparison of the
PVs should be performed simultaneously and not independently (as are the previous
methods). The simultaneous comparison of the PVs of two BDTS consists of solving the

hypothesis test

H,:(PPV, = PPV, and NPV, = NPV,) 638)
H, :(PPV, = PPV, and/or NPV, # NPV, ). '

The contrast statistics for the hypothesis test H, :(PPV, = PPV, and NPV, = NPV, ) is

A 1

Q=o' (eZ0") o—5> 12 (3.39)
A A A A T A
where 1 :(PPVI, PPV,,NPV,, NPVZ) , 2 1s the estimated variance-covariance matrix

I -1 0 0
of N (its elements are shown in equations (3.24)) and (P:(O 0 1 J is the

design matrix. The statistic Q (3.39) is distributed asymptotically according to a

central chi-square distribution with two degrees of freedom if H, is true. To apply this

method it is necessary that all PVs can be estimated and that matrix (pi(pT 1S non-
singular. Therefore, the method cannot be applied if there are many observed
frequencies that are equal to zero. If this global hypothesis test is significant to an error
rate of « , the investigation of the causes of the significance is carried out by comparing
the PPVs and the NPVs independently (for example, applying the method of Kosinski
(2013)) and subsequently applying a method of multiple comparisons (method of Holm

(1979) or method of Hochberg (1988)) to the same error rate of «. Simulation
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experiments performed have shown that samples of between 300 and 500 individuals

are necessary in order for the power of the global hypothesis test to be high (> 80%).

3.2.4. Weighted kappa coefficients

Bloch (1997) has studied the comparison of the weighted kappa coefficients of two

BDTs subject to a paired design. The hypothesis test is
o1k (C)=xr,(c) vs H, 1k (c)=x,(c). (3.40)

In terms of the probabilities of the Table 3.2, the weighted kappa coefficient of Test 1 is

(C) - ( P+ plO)(qOI + qoo)_( Py + pOO)(qw +q11)

K, 1 1 (3.41)
PCD - (Po + i ) +A(1—=€) D ( Py + )
k=0 k=0
and that of Test 2 is
i, (c) = (P Por) (G * ) =(Pro + Pon) (G +Ghn) (3.42)

pchZ;;( Pro +0ho ) +A(1=C) D (Poy + )

h=0

As the probabilities p,, and ¢, are the probabilities of the multinomial distribution,

their estimators are p,, =S, /n and G, =r,/n. By substituting each parameter in the

expressions of the weighted kappa coefficients with its estimator, the estimators of the

weighted kappa coefficients are

(511+510)(r01+r00)_(501+3100)(r10+r“) (3.43)

sczl"(sOk +1 )+ (1=6) D (S + 1)

k=0 k=0

K, (c)=

and
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’2_2 (C) — (511 "1'501)("10 + rOO)_(SIO +ioo)(r01 + rn) ‘ (3.44)
SCY (Sno+ 1o )+ (1-¢) D (Sy + 1)
h=0 h=0
Finally, the statistic for the hypothesis test (3.40) is
2= £(0) %) __,N(0.1), (3.45)

\/Var[zel (c)]+Var[£,(c)]-2Cov[ £ (c).%,(c)]

where the expressions of the variances and the covariance have been obtained by Bloch

applying the delta method, i.e.
Var[ £ (c)]= ! x

2
~ Ny + 1N N, +Nn
n|:Cp 00 0]+(1—C)q 11 10:|

n n

{[q(l—r& (c)) e } Bt +[|@(1—ra (c))Mm—c)rﬁ(c)T Loy (346)

n n n n

2 2
[n”+n“’q(l—zél(c))+c:21(c)} 501+Soo+|:n11+n10 f)(l—z%l(c))} I‘01+I'00}’

n n

Var[ &,(c)|= 1 x

2
A Ny +N LNy, +N
n{cp 00 1°+(1—c)q 11 01j|
n n

n n n n

2 2
|:n11+n01qA(l—Iez(C))-i-Cl’(\'z(C):l Sio * S0 +{n11+n01 f)(l—lf‘z(c))} I’10+I’00}

n n n n

{[q(l_@(c))”m”w} S”+s°‘J{p(l—&z(c))Mﬂl—c)ﬁz(c)} W, (347)

and
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Cov[ £, (c).£,(c)]=
[P (g + gy ) +(1=C) (N, +ny ) ][ B (Mg +1y) + ( c)g(n,, +n, )]

e [ e
(bl 5)

5 (s“+sm)(n +ny, ) (N, +n, )q ~
n3

o

n? n
(rll + rlO)(nOO +n01)(n11 +n01) f)Z _(SOI +SOO)(n00 + nlO)(nll +n10)q2 _
n’ n’
(Fyy + 10 ) (Ngo + Ny ) (N + 1)

n3 10 ﬁ:|

rll _(1_C)Ffj(r11 +r0])(nll +r]10)4_

o 3 g (S0 " So0) (o 1 )}
n n
121(0)(1—’%2(C))‘:(1—C)f)%_(l_ )p(r11+r10)r](2n11+n01)
(3.48)
Cq S;O A(SOI+SOOI)1(2nOO+nIO) +Kl(c),€~(c)2|:c2 ;0+(1_C)2 :1]1:| ,

where §=1-p. An approximate Cl for x,(c)—x,(c) is obtained by inverting the

contrast statistics (3.45), i.e.

& (c)-&,(c)+ zl_a/z\i\?ar[zel(c)] +Var[ &,(c)]-2Cov[ & (c),£,(c)]. (3.49)

3.3. Combination of two BDTs

In disease diagnosis it is common to combine two BDTS in order to increase the
accuracy of the diagnosis. The combination of two BDTS can be carried out in parallel
testing or in serial testing, and in each case, with the AND rule or the OR rule (Zhou et
al, 2002). In the parallel testing the two BDTs are applied to all the individuals in a

sample, and in the serial testing the application of a BDT depends on the result of the
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other BDT. The AND rule implies that the diagnosis is positive if both BDTS are positive
and the diagnosis is negative if one of the two BDTSs is negative (or both are negative).
The OR rule implies that the diagnosis is positive if one of the two BDTS is positive (or
both are positive), and the diagnosis is negative if both BDTs are negative. From a
clinical perspective (Zhou et al, 2002), the serial testing has the advantage of cost-
effectiveness, because only a single test needs to be applied to some of the individuals;
however its main disadvantage is the delay in applying the treatment for the disease,
because this cannot be started until the result of the second test is obtained (where that
is necessary). Marshall (1989) has studied the effect of combining two binary tests on
the PVs of the combination and has proposed some criteria for testing when combining
increases the value of the PVs. Lin (1999) has studied the effect of the two diagnostic
tests on the Se and Sp of the combination of both tests. Macaskill et al (2002) have
studied the estimation of the LRs of the combination of two BDTS in parallel testing. In
this Chapter we summarize the results of these authors, and we make the second
contribution of this thesis: the combination of the weighted kappa coefficients of two

BDTs when these are applied in parallel testing with the AND rule or with the OR rule.

3.3.1. Study of Marshall

Marshall (1989) studied the combination of the predictive values of two BDTS in
parallel testing with the AND rule and with the OR rule, proposing criteria, and their
graphic representations, to determine when there is an increase in the PVSs of the
combination of both BDTs. The criteria proposed depend on the covariances between

the two BDTs. Using the notation followed in Chapters 1 and 2, and supposing that
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PPV, > PPV, and that the covariances ¢, and «, verify 1<¢, <1/max{Se,Se,} and
1< @, <1/max{(1-Sp,),(1-Sp, )}, since it is assumed that the association between the
two BDTs is positive (ai > 1), the regions where there is and is not an increase in the

PPVs of the combination of the two BDTS are:
a) R{PPV,p>PPV,}={d.d, & >4}, with ¢ =(1-Sp,)d, /Se, .
b) R{PPVo, >PPV,}={d.d,; & <4}, with
é =(1—§p2)020/§e2+[(1—§p1)§e2—éel(l—épz)]/[s”el(1—§pl)s”e2}.
0) R{Pﬁv1 Zmax(PlstND,PISVOR)} ={a.a; d<a,<4).
Regarding the NPV, the regions are:
a) R{NPV,o>NPV,|={d.d,; & >@}, with
6 =6d,+| Se,—~(1-Sp,) | /[§e1§e2§le
and
6=(1-Sp,)(1-Se,)(1-3p,)/(Se:Se.Sp, ).
b) R{NPV >NPV,|={4,d,; & <@}, with
6, =64, +| Se, (1-Sp, )~ Se, (1-Sp, ) + Se, - (1-p, ) | /(SeSe.Sp, ).

¢) R{Nlﬁv, > max NPV, NPV )} —{&.4,; §, <& <}
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Pu

s and
pSe,Se,

In the previous regions, the estimators of ¢, and «, are ¢ =

y qll

A

(1-p)(1-%p.)

3.3.2. Study of Lin

Lin (1999) studied the sensitivity and specificity of the combination of two BDTS in
parallel testing with the AND rule, discussing the dependence effect between the two
BDTs. The results obtained by Lin are obvious and they are obtained from the
probabilities given by equations (3.1) and (3.2). With the AND rule, the sensitivity and

the specificity of the combination of the two BDTS are

Se,p =P and Sp, g = ot o Fhw (3.50)
p q

Lin also discussed the dependence effect between the two BDTs on the PVs, as well as

the estimation of all the parameters (sensitivity, specificity and PVs).

3.3.3. Study of Macaskill et al

Macaskill et al (2002) studied the combination of the likelihood ratios of two BDTSs (a
main test and another adjunct test) in parallel testing with the AND rule and with the OR
rule, and compared the combined LRs in relation to those of the main test. In this

situation, the estimators of the LRs are

. n_ . Ny, + N )N
(R =" apg LR;:w (3.51)

n.n, (Mor + Moo ) Mo
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for the main test, and

. N . NG +ng )N
[R:p = and [R;, =(1_°—0_°)D (3.52)
nllnD (nOO + nlO) r]D
for the combination of the positive LRs with the AND rule, and
. n,+n;)ns . _
(R, = (tm)ts [R;, =l (3.53)

(ny, + 1) Noolo

for the combination of the positive LRs with the OR rule, when nj (n,] ) is the number

of diseased (non-diseased) individuals in which the combination of the two BDTSs gives

a result i and the main test gives a result j, with i,j=0,1, and n, (nﬁ) is the total

number of diseased (non-diseased) individuals.

In the situation studied by these authors, there structural zeros, since the combination
of the two BDTSs is compared in relation to a main test. With the AND rule, the number
of diseased (non-diseased) individuals for whom the test is negative and the

combination of the two BDTSs is positive is equal to 0 (n(;’1 =N, = O). With the AND

+

rule, in terms of the frequencies in Table 3.1, it is verified that n’ =s,, n,=5s,,
Noo =So1 +S00> Ny =h,» Ny="h, and ny, =r, +r,. With the OR rule, the number of
diseased (non-diseased) individuals for whom the test is positive and the combination of

the two BDTS is negative is equal to 0 (n;’0 =N, = O) . With the OR rule, in terms of the

+

frequencies in Table 3.1, it is verified that n/, =S, +5S,,, Ny, =S, Ny =S

1~ 201> N, =h,+h

00>

, N, =T, and ny, =r,,. Macaskill et al proposed Cls for LR,,/LR and LR,,/LR , i.e.
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LIF_QQND eexp{[log(I:RAND)—log(I:Rl)]izl_a/2\/Var[log(ERAND)—log(I:Rl)}} (3.54)

and

% e exp {[log( (Rox )~ log(LR ) |+2, .. \l\far | log(LRos )~ log(LR )]} , (359

1

where LR is LR or LR™, and the variances are estimated applying the delta method. If
the interval is greater than 1 (the lower limit if greater than 1), then the combination of

the two BDTs with the corresponding rule is better than the main test.

3.3.4. Combination of two weighted kappa coefficients

Let us consider two BDTS, Test 1 and Test 2, which are evaluated in relation of the same
GS. Let T, be the random variable which models the result of the hth BDT, in such a
way that T, =1 when the result is positive and T, =0 when it is negative; and let D be

the random variable which models the result of the GS, so that D=1 when the
individual does have the disease and D =0 when the individual does not have the

disease. Let Se, and Sp, be the sensitivity and specificity of the hth BDT. When both

BDTs are applied in parallel testing the probabilities given in Table 3.2 are obtained. In
Table 3.3 the associated losses when the AND rule or the OR rule are used are shown. In

this situation the observed frequencies (Table 3.1) are the product of a multinomial

distribution with probabilities 7 =(P,;, P> Poi> Poo»Gi1»Oho» o1 Goo )T , verifying that
P=>  Pu>d=D, 0y and p+q=1, where p is the prevalence of the disease. In

the following the weighted kappa coefficient for the combination of the two BDTS is
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defined and the conditions under which the combination of both BDTS increases the

combined weighted kappa coefficient are studied.

Table 3.3. Losses in parallel testing.
Losses with the AND rule

T, =1 T,=0
T,=1 T,=0 T,=1 T,=0
D= 0 L L L
D=0 L’ 0 0 0
Losses with the OR rule
T, =1 T,=0
T,=1 T,=0 T,=1 T,=0
D=1 0 0 0 L
D=0 L’ L’ L’ 0

3.3.4.1. Combined weighted kappa coefficient

In parallel testing with the AND rule the combined weighted kappa coefficient is

_ pllq - q11 p
Kanp (€)= P(1=Qu0)c+AQun(1=0) (3.56)

where Q,p = P;; +0,, is the probability that the combination of the two BDTs will be

positive and 1-Q,, =1—p,, —0,, is the probability that it will be negative. With the

OR rule the combined weighted kappa coefficient is
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— Goo P — Pyod
Kor (C) = p(l—QOR)C+CIQ0R (l—c) i (3.57)

where Qu; =1-p,, —0,, is the probability that the combination of the two BDTs will be

positive and 1-Q.; = Py, +0, that it will be negative. The proofs are shown in

Appendix 3.1. Expressions (3.56) and (3.57) also can be written in terms of sensitivities

and specificities by replacing in these equations p; and g by the expressions (3.1) and

(3.2) respectively. Then

PAY anp
i 3.58
Kanp (C) pc+(q_c)[alse18e2 _qYAND] ( )

where Y, p = S€up +SPap —1 1s the Youden index of the combination of the two BDTs

in parallel testing with the AND rule, and Se,, = P,,;/P and Spayo = (o + Gy + 0y )/4

are the sensitivity and the specificity of the combination of the two BDTSs. For the OR

rule,

_ PAYor 3.59
Kor (C) pC+(q_C)(Sel +Sez _alselsez _qYOR) ( | )

where Yz =S€qz +SPog —1=Y,+Y, =Y, p is the Youden index in parallel testing with
the OR rule, and where Se,, =(p,, + Py + Py, )/P and Spuz =0y,/q are the sensitivity
and specificity of the combination of the two BDTs, and Y, =Se, +Sp, —1 is the
Youden index of the hth BDT.

If x.(C) is Kpp(C) or &uz(C) depending on the rule used, then the combined

weighted kappa coefficient « (C) verifies the following properties:
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a) —1<k (C) <1, however as every BDT must have a Youden index between 0 and

1 (0<Y, <1) then 0<,(c)<1.

b) «.(c) is an function increasing in ¢ if Q > p, decreasing if Q < p and it is a
constant function equal to the combined Youden index Y, if Q =p, where Q. is

equal to Qo or Quz,and Y, is equal to Y,y or Y, respectively.

These properties are similar to those of the weighted kappa coefficient of a BDT. The
object pursued when two BDTs are combined is to increase the accuracy of the
combination of both tests. In the following, the conditions under which the combination
in parallel testing increases the value of the weighted kappa coefficient of the
combination of both BDTSs are studied, both with the AND rule and with the OR rule.
Let us consider that the combination in parallel testing of the two BDTS increases the

value of the combined weighted kappa coefficient if it is verified that

x.(¢)>max {x; (¢).,x,(c)} for a fixed value of the weighting index c. If this is not the

case, k. (C)< max{lcl(c),lc2 (C)} for a fixed value of c, the combination of the BDTSs

does not increase the value of the weighted kappa coefficient of the combination. In this

situation, the combination of the two BDTS should not be carried out for this value of c,

because it does not increase the value of «.(C).

In all that follows we shall consider that if the subindex i is equal to 1 (or 2) then the

subindex | is equal to 2 (or 1). Moreover it is assumed that the Youden indices of the

two BDTs are between 0 and 1 (0<Y, <1, h=1,2). The situation in which a Youden

index (or both) is equal to 1 is not contemplated, since the weighted kappa coefficient of

the corresponding BDT is always equal to 1, and then it is always verified that
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Kmp (€)<x(c) and xy(c)<x(c) (an increase in the combined weighted kappa

coefficient is never produced).

3.3.4.1.1. Increase with the AND rule

Let ¢ be the weighting index fixed by the clinician and let

C. = q (QhYAND — QANDYh )
h

= with h=1,2. Then the combination of the two BDTs
Yh ( p_QAND)_YAND ( p _Qh)

with the AND rule increases the value of the combined weighted kappa coefficient for
the weighting index ¢, that is #, (€) > max {x;(¢),x, (c)}, if one of the two following
conditions is verified:

a) 0<c<min{c,c,}, with 0<c <1 and 0<c, <1. Moreover, it is always verified

that #, (1) <min{x; (1),x, (1)} and x,, (0) > max{x, (0),x,(0)} .
b) 0<c<c <1, ¢;>1 (or ¢;<0) and Y; <Y, - In this situation it is verified that
Ko (€)>K;(c) for 0<c<c <1, and &, (c)>x;(c) for 0<c<1.

In any other situation that is different to the previous ones, the combination of the

two BDTSs in parallel testing with the AND rule never increases the value of &, (c) for

any value of c. The proofs of these results may be seen in Appendix 3.2.

In Figure 3.1 two graphics are shown for x,,, (C) and for different values of

sensitivities, specificities, prevalence and covariances. Graphic 1 corresponds to the

situation in which ¢, and ¢, are between 0 and 1, and hence &, (C) is greater than

k;(c) and x,(c) for 0<c<min{c,,c,} =0.583; and in Graphic 2 it is verified that c,
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is between 0 and 1, ¢, is greater than 1 and Y, <Y, and therefore &, (C)> x;(C)

for 0<¢<0.095 and &, (c) > &, (c) for any value of ce[0,1].

Figure 3.1. Examples of combined weighted kappa coefficients with the AND rule.

Graphic 1 Graphic 2
Se, =0.75 Sp, =0.85 Se, =0.85 Sp,=0.90 p=10% Se; =0.90 Sp, =0.70 Se, =0.60 Sp, =0.80 p=50%
a,=1.09 a,=3.83 Se,, =0.695 Sp,o =0.943 a,=1.09 a,=2.87 Se,,=0.589 Sp,,, =0.828
Y, =0.60 Y,=0.75 Y, =0.637 Y, =0.60 Y,=0.40 Y,,=0.417
¢, =0.959 ¢, =0.583 ¢, =0.095 ¢, =1.161

1 —— Combined «(c) - —— Combined x(c)
) —=- %4(0)

Weighted kappa coefficient
‘Weighted kappa coefficient

T T T T T T
0 0.583 0.959 1 0 0095 1

Weighting index Weighting index

3.3.4.1.2. Increase with the OR rule

Let ¢ be the weighting index fixed by the clinician and let

¢ = q (QhYOR _QORYh)
" Yh ( p_QOR)_YOR(p_Qh)

with h=1,2. Then the combination in parallel testing

with the OR rule increases the value of the combined weighted kappa coefficient for the

weighting index c, that is &y, (C)>max{x;(c).x,(c)}, if one of the two following

conditions is verified:
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a) max{c,,c,} <c<1, with 0<¢/ <1 and 0<c; <1. Moreover, it is always verified
that i, (0) <min{x; (0),x,(0)} and e (1)>max {x; (1),x,(1)}.
b) 0<c/<c<l, ¢, >1 (or ¢, <0) and Y, <Y, In this situation it is verified that
Kor (€)> x5 (c) for 0<c < <1, and ke (c)>x;(c) for 0<c<I1.

In any other situation that is different to the previous ones, the combination of the

two BDTSs in parallel with the OR rule never increases the value of &, () for any value

of c. The proofs of these results may be seen in Appendix 3.3.

In Figure 3.2 two graphics for ko (C) are shown, and for different values of

sensitivities, specificities, prevalence and covariances. Graphic 1 corresponds to the

situation in which ¢/ and ¢} are between 0 and 1, and therefore x;(C) is greater than
k;(c) and «,(c) for max{c/,c,} =0.423 <c<1; and in Graphic 2 it is verified that c,
is between 0 and 1, C; is greater than 1 and Y, <Y, so that x.(C)>x;(c) for

0.972<c<1 and xu,(C)>k,(c) for any value of ce[0,1].
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Figure 3.2. Examples of combined weighted kappa coefficients with the OR rule.

Graphic 1 Graphic 2
Se, =0.80 Sp, =0.95 Se, =0.85 Sp, =0.90 p=50% Se, =0.75 Sp, =0.95 Se, =0.80 Sp,=0.70 p=10%
a,=1.14 a,=82 Se,z =0.875 Spyz =0.891 o, =113 o, =2.17 Seyz =0.872 Spy =0.683
Y, =0.75 Y, =0.75 Yo, =0.766 Y,=0.70 Y, =0.50 Y, =0.555
¢, =0.423 ¢, =0.198 ¢, =0.972 ¢} =3.147
& - Combined<(c 24 =l
~~~~~~ () s (0)

08
0.8

0.6
0.6

0.4

0.4
‘Weighted kappa coefficient

Weighted kappa coeflicient

0.2
0.2

0.0
0.0

T T T T T T

0 0.198 0.423 1 0 0.972

Weighting index Weighting index

3.3.4.2. Estimation and Cls

By substituting each parameter in the expressions of the combined weighted kappa
coefficients with its estimator, the estimators of the combined weighted kappa

coefficients are obtained, i.e.

. S,F—r,S
= 3.60
Fano (©) s(n—s,, -1, )c+r(s,+n,)(1-c) (3.60)
and
Ron (€)= Yoo = S0 (3.61)

S(Spp + 1o )C+T(N=5p =T )(1—-C)
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Their asymptotic variances are obtained by applying the delta method. As =m is the

vector of probabilities of a multinomial distribution, then X, = {diag(n) —na’ } / n and

applying the delta method we obtain that

var[£.(c)] - {a’f—(")jz [a"—(c)j , (3.62)

on on

where & (C) is Kuyp(C) or Kez(c). By realizing the algebraic operations and

substituting each parameter by its estimator, the expressions of the estimated variance of

ié(c) is obtained. These are long and complex expressions that require the use of

software for their calculation.

In Section 3.3.4.1 the situations in which the combination of the two BDTS produce
an increase of the combined weighted kappa coefficient have been analysed. These
conditions studied are theoretical (for the parameters), so that its practical application
does not guarantee that the combination of the two BDTs produces and increase in the

combined weighted kappa coefficient. Thus, in practice it is necessary to study the

increase in k, (C) using Cls. Therefore, once the two BDTS have been applied to all the

n individuals of a random sample and the value of the weighting index c has been fixed

by the clinician, it is necessary to study if the combination of the two BDTs produce

such an increase. For this we propose a Cl for 6, =x.(c)/x;,(c) with h=1,2. If the Cl
is greater than 1 (that is, the lower limit is greater than 1) then K,(C) is (to the fixed
confidence) larger than «; (c). If this happens for 6, and 6,,, then x.(c) is greater that

k;(c) and that x,(c), and the combination of the two BDTS increases the value of the

combined weighted kappa coefficient. In the case that a Cl (or both) contains the value
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1 (or is lower than the said value), then the combination of the two BDTs does not

increase the value of the combined weighted kappa coefficient. In the following, a Cl

for 6, is proposed applying the Fieller method (1940). The Fieller method is a method

that has been used for calculating a Cl for the ratio of two parameters. For this, we shall

base it on the approximation of the estimators to the normal bivariate distribution, i.e.

(12, (C) K (C))T ——N (O,Zh ), where the matrix

o, O
Zh :L 11 IZJ
0y Op
is estimated by applying the delta method, i.e.

5 {8(/{, (C(;;Kh (C))}zn l:@(rc. (¢).x, (C))}T | o)

where o, =Var| x.(c)|, o,=0,=Cov|x.(c),x,(c)| and o, =Var|x,(c)|. By
applying the Fieller method, it is verified that

£.(c)-0,%,(c)—=—>N(0.0,,—20,0,, +6;0,,). The Fieller Cl is obtained by

searching for the set of values for 8, that satisfy the inequality

2
A _6 o)
£O-0/O)] . (3.64)
611 - 20.h012 + 9-h022

where z, , is the 100(1-«/ 2)th percentile of the standard normal distribution. By

resolving the equation (3.64) one obtains that the Cl for 6, =k, (C) / K, (C) is

A+ A -AA
g, e —— N1 2 (3.65)

A, ’
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where A, = K.(c)&,(c)=61,2 )5 A, = k.(c)-6,z%,, and A =£& (c)-06,2%,),. This

interval is valid when A? >A,A, and A, #0.

On the other hand, if the combination of the two BDTS increases the value of the

combined weighted kappa coefficient then it is of interest to calculate a Cl for this

parameter. As the values of k., (C) and of ku,(C) are between 0 and 1, the logit
transformations can be applied. The logit transformation of «. (C) is closer to a normal

distribution with mean logit[lc,(c)]. Thus, the 100(1-a)% CI for logit[ic,(c)] is

logit[/ﬁ (C)] + zl,a/z\/\iar [logit(le_ (C))J , where Var[logit(z%, (C))} is obtained by

applying the delta method. Finally the100(1—a)% logit Cl for . (c) is

exp {logit (le (C)) 2o War [logit (’% (C))]}
1+exp {logit (/% (c)) +7, ., War [logit (12 (c))]}

x.(c)e (3.66)

3.3.4.3. Simulation experiments

Monte Carlo simulation experiments have been carried out for studying the coverage
probabilities of the proposed ClIs in the previous Section. For this, 10000 random
samples of multinomial distributions have been generated, whose probabilities have

been calculated from expressions (3.1) and (3.2), and with the sizes

n= {100, 200, 300, 400, 500, 1000}. The random samples have been generated from

values of weighted kappa coefficients, and not setting the values of Se and of Sp, from

equations (1.11) and (1.12), i.e.
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Ki(o)Z%li_Qi) and Ki(l):slei__QiQi

in the following way. As disease prevalence we have taken the values 10%, 25% and

50%; as weighting index ¢ we have taken values 0.1, 0.5 and 0.9; and for each one of

the two BDTs we have taken as «;(0) and x; (1) the values {0.10, 0.20,..., 0.80, 0.90} ,

with h=1,2. Once the values of p, «;,(0) and «; (1) were set, the values of Se and of
Sp of each BDT were calculated solving (through the Newton-Raphson method) the
system formed by equations (1.11) and (1.12). Finally, the value of the weighted kappa
coefficient was calculated with equation (1.10) (or (1.13)), i.e.

pa(Se, +Sp, —1)
1-Q,)c+0Q,(1-c)’

K, (c)= o

where Q, = pSe, +q(1—Sph). As values of each weighted kappa coefficient only the

values «;,(c)={0.2, 0.4, 0.6, 0.8} have been considered. Therefore, considering the
classification of the values of the weighted kappa coefficient given by Cicchetti (2001),
values of K‘h(C) were considered with different levels of clinical significance: poor
(x,(c)<0.40), fair (0.40<x;,(c)<0.59), good (0.60<x;(c)<0.74) and excellent
(0.75 SKh(C)Sl). As covariances «; and «, we have taken intermediate and high

values. All the samples have been generated in such a way that in all of them it has been
possible to estimate all the parameters and their variances-covariances. For the whole

study the confidence level has been taken as 95%.

In Table 3.4 (Fieller Cl) the coverage probabilities and the average lengths of the CI

of Ko (C)/x (C) are shown, for different values of «,(c) and «,(c), indicating in
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each case the values of p, Se, Sp,, «, and ¢, with those with which we have
calculated the value of «,(C), &, (c) and K. (C). We show situations in which there
is an increase of &,y (C) and situations in which there is no an increase of i (c) for
the values ¢={0.1, 0.5, 0.9}. The results for the Cl of x,,(c)/x,(c) are not shown

because they are very similar to those obtained for ,, (C)/x;(C). In general terms the

Fieller Cl presents a coverage probability that fluctuates around 95%, although the

coverage probability may overestimate the desired coverage of 95% when the sample

size is relatively small (n=100-200). With regard to the Cl for i, (c) the results are

shown in Table 3.4 (Logit Cl). The scenarios are the same as for the Fieller Cl. In
general terms, the coverage probabilities of the logit Cl fluctuate around 95%, although

they may overestimate the desired coverage of 95% when the sample size is 100-200.

In Table 3.5 the coverage probabilities and the average lengths of the CI of

Koz (€)/1(c) (Fieller Cl) and of the Cl of xy,(c) (Logit Cl) are shown, for different
values of all parameters. We show situations in which there is an increase of &, (C)
and situations in which there is no an increase of &z (c) for c={0.1, 0.5, 0.9}. The
results for the Cl of x,(C)/x,(C) are not shown because they are very similar to those
obtained for xz(C)/x;(c). In general terms the Fieller Cl of x,(c)/x(c) and the

Logit Cl of xz(C) have a behaviour very similar to the CIs of & (C)/x;(c) and of

Ko (C)-
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Table 3.4. Coverage probabilities and average lengths of the Cl for &, (¢)/x; (c) and
of the Cl for x,(C).

,(0.1)=0.6 «,(0.1)=0.2
Kap (0.1)=0.426
p=10%

Se, =0.85 Sp, =0.90
Se, =0.75 Sp, =0.85
a,=1281 a,=6.75

5,(0.5)=0.4 x,(0.5)=0.4
Kap (0.5)=0.449
p=10%
Se, =0.6727 Sp, =0.8727
Se, =0.6727 Sp, =0.8727
a,=1243 a,=4.429

£,(0.9)=0.6 x,(0.9)=038
Kap (0.9)=0.572
p=10%
Se, =0.64 Sp, =0.96
Se, =0.82 Sp, =0.98
a,=1.110 a,=13

Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0941 1357 0987 0.639 0978 1.702 0980 0485 0.985 0.795 0.989 0.522
200 0951 0.877 0.969 0.528 0975 0.843 0974 0370 0981 0.440 0978 0.403
300 0959 0719 0959 0458 0953 0594 0956 0306 0.963 0318 0961 0.338
400 0957 0.619 0958 0407 0950 0491 0.952 0.268 0961 0260 0.959 0.296
500 0947 0552 0958 0.370 0.947 0429 0956 0241 0956 0226 0957 0.267
1000 0946 0.385 0.953 0.269 0950 0292 0944 0.172 0948 0.155 0.954 0.191
KI(O.I):O.6 K, (0.1):0.4 K‘I(O.S):OA K‘Z(O.S):OA K (0.9):0.8 K2(0.9):0.8
Kanp (0.1)=0.530 K anp (0.5)=0.458 K'AND(O.9)=0.820
p=25% p=25% p=25%
Se, =0.70 Sp, =0.90 Se, =0.76 Sp, =0.72 Se, =0.9429 Sp, =0.7429
Se, =0.55 Sp, =0.85 Se, =0.76 Sp, =0.72 Se, =0.9429 Sp, =0.7429
a,=1386 a,=6.1 o, =1.158 a,=2.286 a,=1.030 o, =2.444
Fieller CI Logit CI Fieller ClI Logit ClI Fieller CI Logit ClI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0947 0.494 0969 0435 0971 1.065 0976 0367 0.978 0328 0.939 0.348
200 0951 0293 0953 0.319 0957 0525 0962 0265 0971 0.185 0959 0.224
300 0955 0226 0957 0.264 0944 0408 0952 0218 0.960 0.141 0961 0.174
400 0957 0.193 0953 0230 0954 0347 0945 0.190 0958 0.119 0956 0.148
500 0946 0.169 0948 0.207 0951 0305 0957 0.170 0.953 0.104 0957 0.131
1000 0.949 0.118 0955 0.147 0958 0.211 0947 0.121 0935 0.073 0.941 0.092
K1(0.1)=0.4 K, (0.1)=0.6 K, (0.5)=0.8 x,(0.5)=0.6 K, (0.9)=0.8 K2(0.9)=0.8
Kap (0.1)=0.619 Kap (0.5)=0.7 Kap (0.9)=0.824
p=50% p=50% p=50%
Se, =0.70 Sp, =0.70 Se, =0.90 Sp, =0.90 Se, =0.9692 Sp, =0.5846
Se, =0.80 Sp, =0.80 Se, =0.80 Sp, =0.80 Se, =0.9692 Sp, =0.5846
o, =1.125 a,=2.167 o =11 a,=46 a,=1.016 «,=1.704
Fieller CI Logit CI Fieller CI Logit ClI Fieller CI Logit ClI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0943 2519 0966 0362 0939 0249 0957 0.275 0980 0307 0935 0.317
200 0941 0997 0958 0.265 0942 0.166 0956 0.195 0.972 0.172 0951 0.201
300 0944 0.746 0953 0.218 0.947 0.133 0953 0.160 0.961 0.131 0960 0.156
400 0947 0.620 0.946 0.190 0951 0.114 0958 0.139 0959 0.111 0956 0.133
500 0945 0541 0951 0.171 0948 0.101 0941 0.124 0956 0.098 0952 0.118
1000 0.956 0.372 0941 0.121 0952 0.071 0958 0.088 0.947 0.069 0.948 0.083
Cov.: coverage probability. Leng.: average length.
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Table 3.5. Coverage probabilities and average lengths of the Cl for xu,(¢)/x; (c) and
of the Cl for x;(C).

,(0.1)=0.6 «,(0.1)=0.2
Kor (0.1)=0.392
p=10%

Se, =0.64 Sp, =0.96
Se, =0.28 Sp, =0.92
a,=1281 a,=6.75

5,(0.5)=0.4 ,(0.5)=0.4
Kor (0.5)=0.474
p=10%
Se, =0.3368 Sp, =0.9789
Se, =0.3368 Sp, =0.9789
a,=1438 a,=7.171

£,(0.9)=0.6 x,(0.9)=038
Koz (0.9)=0.828
p=10%
Se, =0.64 Sp, =0.96
Se, =0.82 Sp, =0.98
a,=1.110 a,=13

Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0943 0975 0977 0442 0980 5.117 0985 0490 0.966 3.121 0979 0.425
200 0946 0456 0967 0334 0971 3323 0983 0393 0938 1.070 0974 0.297
300 0947 0335 0957 0278 0953 1331 0960 0333 0945 0.794 0961 0.239
400 0953 0.283 0951 0.242 0943 0929 0957 0.293 0938 0.670 0.942 0.207
500 0950 0251 0952 0218 0946 0.662 0955 0264 0.947 0.577 0945 0.185
1000 0948 0.173 0.947 0.155 0948 0405 0.956 0.189 0949 0393 0947 0.132
KI(O.I):O.6 K, (0.1):0.4 K‘I(O.S):OA K‘2(0.5):0.4 K (0.9):0.8 K2(0.9):0.4
Kor (0.1)=0.478 Kor (0.5):0.410 Kor (0.9)=0.514
p=25% p=25% p=25%
Se, =0.70 Sp, =0.90 Se, =0.40 Sp, =0.9429 Se, =0.9429 Sp, =0.7429
Se, =0.55 Sp, =0.85 Se, =0.76 Sp, =0.72 Se, =0.8667 Sp, =0.40
a,=1386 a,=6.1 o, =1.158 a,=2.286 a,=1.030 ¢o,=1333
Fieller CI Logit CI Fieller ClI Logit ClI Fieller CI Logit ClI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0941 0420 0969 0368 0942 3218 0976 0328 0976 0.483 0980 0.393
200 0940 0270 0956 0.270 0944 1.162 0959 0.238 0.966 0.289 0974 0.266
300 0948 0216 0958 0.223 0945 0.782 0960 0.195 0.955 0.225 0959 0.213
400 0953 0.186 0.954 0.195 0946 0.640 0952 0.170 0953 0.191 0957 0.185
500 0947 0.166 0955 0.175 0948 0.558 0947 0.152 0948 0.169 0948 0.165
1000 0.949 0.116 0954 0.124 0947 0.377 0951 0.108 0948 0.118 0.946 0.117
K1(0.1)=0.4 K, (0.1)=0.4 K, (0.5)=0.8 x,(0.5)=0.6 K, (0.9)=0.8 K2(0.9)=0.8
Kog (0.1)=0.447 Koz (0.5)=0.7 Kor (0.9)=0.824
p=50% p=50% p=50%
Se, =0.2286 Sp, =0.9429 Se, =0.90 Sp, =0.90 Se, =0.9692 Sp, =0.5846
Se, =0.2286 Sp, =0.9429 Se, =0.80 Sp, =0.80 Se, =0.9429 Sp, =0.2286
o, =2.688 a,=9.25 o =11 a,=46 o, =1.016 o,=1.148
Fieller CI Logit CI Fieller CI Logit ClI Fieller CI Logit ClI
n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.
100 0961 3.521 0978 0.469 0940 0251 0954 0.275 0979 0.601 0981 0.462
200 0959 1.491 0974 0347 0942 0.166 0958 0.195 0.961 0389 0976 0.328
300 0957 0.887 0958 0.285 0946 0.132 0952 0.160 0.958 0.305 0960 0.266
400 0956 0.569 0.954 0.249 0950 0.114 0956 0.139 0949 0260 0.958 0.229
500 0949 0477 0957 0.224 0943 0.101 0949 0.124 0950 0.230 0.952 0.205
1000 0.951 0.305 0950 0.160 0.958 0.071 0957 0.088 0947 0.162 0.947 0.146
Cov.: coverage probability. Leng.: average length.
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3.3.4.4. Program in R

A program has been written in R to solve this problem. This program, called “cwkc”

(Combination of Weighted Kappa Coefficients), is executed with the command

CWKC(S,1,5,01S11S00 116+ To1 : oo inEXC, rule)

when the Cls are calculated to a confidence of 95%, where s; and r; are the observed

frequencies, indexc the value of the weighting index ¢, and rule is equal to “and”
(including commas) when the AND rule is used and is equal to “or”” when the OR rule is

used. The command is

eWKC(S,1,510+S01 150011 hio s T o

1115105011500+ 111 Fi0 1 For oo indlexc, rule, conflevel )

when the confidence level is (lOOx conflevel )% . First, the program always checks that

all the initial values are correct; where this is not so, an error message is given. The
program produces the estimations of the weighted kappa coefficients of the BDTs and
their standard errors, the estimation of the combined weighted kappa coefficient and its
standard error, and the CIs proposed in Section 3.3.4.2. The program also carries out a
similar graph to those shown in Figures 3.1 and 3.2, and which is kept in a file called
“Graph_cwkc.jpg” in the same folder from where the program is run. In this graph the

values of ¢, (or ;) are indicated, provided that their values are between 0 and 1.

Similarly, the results obtained when running the program are kept in a file called
“Results_cwkc.txt” in the same folder from where the program is run. The program is

written in the Appendix 3.4.
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3.3.4.5. Example

The results obtained have been applied to the study of Weiner et al (1979) on the
diagnosis of coronary disease, using the clinical history (Test 1) and the exercise test
(Test 2) as diagnostic tests, and the coronary angiography as GS. Weiner et al applied
the two BDTs and the GS to a sample of 871 individuals. The results of this study are
shown in Table 3.6, where the variable T, models the result of the clinical history, T,
models the result of the exercise test, and D the result of the coronary angiography. In
the following, the results of the two BDTs being combined with the AND rule and with

the OR are analysed.

Table 3.6. Data of the study of Weiner et al (1979).

T, =1 T, =0
T,=1  T,=0 T, =1 T,=0 Total
D= 473 81 29 25 608
D=0 22 44 46 151 263
Total 495 125 75 176 871

3.3.4.5.1. AND rule

By executing the program “cwkc” with the command
cwke(473,81,29,25,22,44,46,151,indexc,"and"),

one obtains the Figure 3.3, independently of the index ¢ chosen by the researcher, as

well as the values of ¢, , where ¢, =0.377 and ¢, =0.921. By analysing this graph one
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finds that &, (c)>{%(c).&,(c)} if ¢<0.377. This result indicates that, in terms of

the estimators, the combination of the two BDTSs increases the value of &, (c) if the

clinician is more concerned with the false positives of the combination of the two BDTs
(for example, when the combination of the two BDTS is used as a previous step to a
risky treatment), but always for 0<c <0.377. If the clinician is more concerned with

the false negatives of the combination of the two BDTs (for example, when the

combination of the two BDTSs is used as a screening test), then Ko (C)<£;(c) for any

value 0.5<c<1 and the combination of the two BDTS never increases the value of

Ko (C)-

Figure 3.3. Graphic of the study of Weiner et al with the AND rule.
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In order to illustrate the method, let us consider the values 0.1 and 0.3, that are lower

values than 0.377, as weighting indices. In Table 3.7 the results are shown. For ¢=0.1
the CIs for &y (0.1)/x;(0.1) and & (0.1)/x,(0.1) are larger than 1 (the lower limit
is greater than 1) and this indicates that i, (0.1)>{x;(0.1),x,(0.1)}, and so, the

combination of the two BDTS increases (to a 95% confidence level) the value of the

weighted kappa coefficient. By interpreting the logit Cl one obtains that «,,, (0.1) is,

with the confidence of 95%, a value between 0.738 and 0.839, which indicates that the

level of clinical significance between the combination of the two BDTs and the GS is

excellent (Cicchetti, 2001). For ¢=0.3 the Cl for & (0.3)/x,(0.3) contains the value
1, which indicates that x,,(0.3) is not (to a 95% confidence level) greater than

k,(0.3). Therefore, the combination of the two BDTs does not increase (to a 95%
confidence level) the value of the combined weighted kappa coefficient. The Cl for
Ko (0.3)/%,(0.3) is greater than 1, and this indicates that x,,(0.3) is (to a 95%
confidence level) greater than , (0.3). Therefore the combination of the two BDTS has

a weighted kappa coefficient greater than that of the Test 2, but is not higher than that of

the Test 1.
For any value of the index ¢ greater than 0.377, the value of K (C)/&;(C) is less
than 1. In this situation, the CI contains the value Ko (C)/%;(C), so that the CI is less

than 1 (the upper limit of the ClI is less than 1) or the Cl contains the value 1, and in

both cases the combination of the two BDTs with the AND rule does not produce (to a

95% confidence level) an increase of &y (C).
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Table 3.7. Results obtained when combining the two weighted kappa coefficients with
the AND rule.

c=0.1 c=03

Test 1 Test 2 Test 1 Test 2

K, (c)+SE 0.652+0.0322 0.592+0.0345 0.660+£0.0291 0.567+0.0311

A

Y, 0.660 0.567 0.660 0.567
Kap (C)+SE 0.793+0.0256 0.695+0.0249
Yo 0.694 0.694

Fieller CI for

1121, 1.328 0.972 , 1.144
Ko (€)/5(C) ( ) ( )
Fieller Cl f
teller Gl for (1222, 1.483) (1.128 , 1.340)
Ko (C)/%:(C)
Logit CI f
ogit L7 tor (0.738 , 0.839) (0.644 , 0.742)
Kanp (C)

3.3.45.2. OR rule

By executing the program “cwkc” with the command
cwke(473,81,29,25,22,44,46,151,indexc," or")

one obtains the Figure 3.4, independently of the index ¢ chosen, as well as the values of

¢, with ¢ =0.759 and c,=0.392. By analysing this graph one finds that
Kog (C)>{1€1(C),122(C)} if ¢>0.759. This result indicates that, in terms of the
estimators, the combination of the two BDTS increases the value of Ky (c) if the

clinician has more concern for the false negative of the combination of the two BDTSs,

but always for 0.759 <c<1. If the clinician has more concern for the false positives
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(0<c<0.5) of the combination of the two BDTS, then &y, (¢)<{«;(c).&,(c)} and the

combination of the two BDTS never increases the value of K (c).

Figure 3.4. Graphic of the study of Weiner et al with the OR rule.
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In order to illustrate the method, we shall take as weighting indices the values 0.8

and 0.9, which are lower values than 0.759. In Table 3.8 the results obtained are shown.

For ¢=0.8 the Cl for . (0.8)/x,(0.8) contains the value 1, which indicates that

Koz (0.8) is mot (95% confidence level) greater than & (0.8). Therefore, the
combination of the two BDTs does not increase (to a 95% confidence level) the value of

the combined weighted kappa coefficient. The Cl for &z (0.8)/x,(0.8) is greater than

1, which indicates that x;(0.8) is (to a 95% confidence level) greater than «,(0.8).

Hence, the combination of the two BDTs has a weighted kappa coefficient greater than
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that of Test 2, but is not greater than that of Test 1. For ¢=0.9 the ClIs for
K‘OR(O.9)/K'1 (0.9) and K‘OR(O.9)/K‘2(O.9) are greater than 1, which indicates than
Koz (0.9) > {x,(0.9),x,(0.9)} and therefore the combination of the two BDTs increases

(to a 95% confidence level) the value of the combined weighted kappa coefficient. By

interpreting the logit Cl one obtains that &, (0.9) is, with a 95% confidence level, a

value between 0.676 and 0.802, which indicates that the level of clinical significance
between the combination of the two BDTs and the GS is a value between good and

excellent (Cicchetti, 2001).

For any value of the index ¢ lower than 0.759, the value of K, (C)/x;(c) is less than

1. The CI will contains the value K,(C)/x (c), so that the Cl is less than 1 or it

contains the value 1, and in both cases the combination of the two BDTs with the OR

rule does not produce (to a 95% confidence level) an increase of & (C) .
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Table 3.8. Results obtained when combining the two weighted kappa coefficients with
the OR rule.

c=0.8 c=09

Test 1 Test 2 Test 1 Test 2

K, (c)*=SE 0.682+0.0300 0.514+0.0318 0.687+0.0319 0.505+0.0327

Y, 0.660 0.567 0.660 0.567
Ron(C) £ SE 0.698+0.0304 0.74440.0322
Yor 0.533 0.533

Fieller CI f
e (0.951, 1.099) (1.008 , 1.164)
Kor (€)/xi(C)
Fieller CI f
teller Clfor (1.225, 1.515) (1325, 1.654)
Kor (€) /%5 (C)
Logit Cl f
ogit &1 for (0.635 , 0.754) (0.676 , 0.802)
Koz (C)

3.3.4.6. Discussion

The combination of BDTSs for incrementing the accuracy of the diagnosis of a disease is
common in clinical practice. It consists in combining the results of the two tests using a
suitable method and then estimating the parameters of the combination of both BDTS. In
Section 3.3.4 we study the combination of the weighted kappa coefficients of two BDTs
when the combination is in parallel testing under the rules AND and OR. The combined
weighted kappa coefficient and its properties have been defined and the conditions
under which the combination of the two BDTs increases the value of the combined

weighted kappa coefficient have been studied. The conditions studied are theoretical
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conditions (for the parameters), so that its practical application does not guarantee that
the increase in the combined weighted kappa coefficient will be produced, although

they can help to give a view of the problem. Thus, in practice, and as we carried out in

the example of Weiner et al (1979), it is necessary to study the increase in « (C) using

Cls.

The CIs proposed are approximate intervals, based on the asymptotic normality of
the estimators. The simulation experiments carried out have shown that the coverage
probabilities of these Cls can exceed the confidence level when the samples are not very
large (sizes 100-200), and this may be due to the fact that the convergence of the
multinomial distribution (which is the probability distribution inherent of the observed
data) with the normal distribution is slow and requiring larger sample sizes. For larger
sample sizes, the Cls proposed have a coverage probability fluctuating around the 95%
confidence level.

An alternative Cl to Fieller method is obtained by applying the transformation of the

naperian logarithm. Assuming that ln(é " )W’ N (O,Var [ln(ﬁ, " )]) , then an

approximate Cl for 6, is é_r]><e)<p{4_rzla/2 Aar[ln(éh)}}, where Vartln(éh)J is

obtained by applying the delta method in a similar way as is indicated in the equation
(3.62) but with ln(éh). Simulation experiments (similar to those made in Section
3.3.4.3) have been carried out, obtaining that this Cl has a very similar behaviour to the
Fieller method when the sample size is =300 ; for samples of sizes 100 or 200, the

coverage probability of this Cl exceeds 95% or does not attain that coverage (and in

some cases is below 90%).
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We have only studied the combination of the two BDTs in parallel testing. A
different scenario is when the serial testing is used, in which case the application of Test
2 depends on the result of Test 1. From a statistical point of view, with the serial testing

we cannot estimate [8]: all the probabilities p; and g, the sensitivity and specificity of

Test 2, and the dependency factors between the two BDTS.
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The main parameters to estimate and compare the accuracy of binary diagnostic tests
are sensitivity and specificity, which only depend on the intrinsic ability of the
diagnostic test to distinguish between diseased individuals and non-diseased
individuals. Other parameters are likelihood ratios which only depend on the sensitivity
and specificity of the binary diagnostic test. Both sensitivity and specificity, like
likelihood ratios, are superior measures of the accuracy of a binary diagnostic test, as
they depend on the characteristics of the test. The predictive values of a binary
diagnostic test are also parameters that are widely used to assess and compare binary
diagnostic tests, and they represent the clinical accuracy of the test. The predictive
values depend on the sensitivity and specificity of the test and the disease prevalence.
When considering the losses or costs of an erroneous classification with the binary
diagnostic test, the performance of a diagnostic test is measured through the weighted
kappa coefficient. The weighted kappa coefficient depends on the sensitivity and
specificity of the diagnostic test, on the disease prevalence and the weighting index c.

The weighting index C represents the relative importance between the false positives and
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the false negatives. In Chapter 1, all these parameters are defined and their properties

are studied.

In Chapter 2, we study the estimations and confidence intervals of the parameters
defined in Chapter 1, subject to two types of study or sample: a cross-sectional study
and a case-control study. The contribution made by this Chapter is the estimation of the
weighted kappa coefficient subject to a case-control study. Different approximate
confidence intervals are proposed for the weighted kappa coefficient: a Wald type
interval, an interval with logit transformation, an interval with arcsine transformation,

an interval using bootstrap and a Bayesian interval. For the first three intervals, we used
four corrections which are frequent in this type of studies (h =0, 0.5, 2, Zfﬁa/z / 2) .Asa
bootstrap interval, we used a bias-corrected one, and for the Bayesian interval we used
an interval based on the Monte Carlo method based on quartiles with distribution which
a priori are non-informative and also with distribution which a priori are informative.
Simulation experiments to study the asymptotic coverage of these intervals, from which

some general rules of application were given: when the sample sizes are small (ni < 75)
use the Wald Cl with h=0.5, and for other sample sizes (n, >100) use the Wald Cl

with h=0. A method has also been proposed to calculate the sample sizes (of cases and

of controls) necessary to estimate the weighted kappa coefficient with a determined

precision & to the confidence 100(1—«)%. The results obtained have been applied to a

real example of the diagnosis of coronary disease.
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Finally, in Chapter 3 we studied the comparison of the parameters defined in Chapter
1 of two binary diagnostic tests subject to a paired design, presenting hypothesis tests to
check the equality of the corresponding parameters and CIs for the respective
differences. We also studied the combination of parameters of two binary diagnostic
tests in parallel testing. The contribution of this Chapter is the combination of the
weighted kappa coefficients of two binary diagnostic tests in parallel testing, both with
the AND rule and with the OR rule. The combined weighted kappa coefficient was
defined when using the AND rule and when using the OR rule, and we studied its
properties, finding them to be similar to those of the weighted kappa coefficient of a
binary diagnostic test. We studied the conditions under which the combination of two
binary diagnostic tests produces an increase in the combined weighted kappa
coefficient. Whether or not an increase occurs in the combined weighted kappa
coefficient will depend on the value of the weighting index € set by the researcher,
although in some situations such an increase never occurs. These conditions studied are
theoretical, and therefore in a practical problem, whether or not there is an increase in
the combined weighted kappa coefficient must be studied through a confidence interval.
For this purpose, Fieller’s theorem was applied, obtaining a confidence interval for the
ratio between the combined weighted kappa coefficient and each weighted kappa
coefficient. Furthermore, a logit confidence interval was studied for the combined
weighted kappa coefficient. Monte Carlo simulation experiments were carried out to
study the asymptotic behaviour of the confidence intervals proposed, finding that, in
general terms, these intervals have an asymptotic coverage that fluctuates around 95%

even with relatively small samples, although in some situations the average coverage
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can exceed 95%. An R programme was written to solve the problem posed. The results

have been applied to a real example on the diagnosis of coronary disease.
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Appendix 2.1: Estimation of the variance

The variance of the weighted kappa coefficient can be estimated applying the delta

method (Agresti, 2002), i.e.

oSe

var #0022 ver( ) o[ 22) ver(3).

since Cov(ée, §p)=0 (as the sensitivity is estimated from the case sample and the

specificity from the control sample, and both samples are independent), and where

Var(ée)zw M
1

N,

and Var(§p)= Carrying out the algebraic

operations, it holds that

210 KO pq-e(o){p(a-0)] ana 2D EO (o) (e-a))].

oSe pqY osp - pqY
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where Y =Se+Sp—1 is the Youden index. Thus, it holds that
2
C
Var| £(c) ]~ [Mj x
pqyY

{[ pq-x(c){pP(q —c)}f@{pq +K(c){q(c_q)}]2M}_

1 nO

(3.67)

Substituting in this equation each parameter with its estimator and carrying out the

algebraic operations we obtain equation (2.71). The variances of the logit of K‘(C) and

of the arcsine are estimated in a similar way to the previous case, i.¢.

Var {logit[ #(c) ]}
[—ﬂoglggz(c)]J Var (§e) + (—%gi;[szg(c)]J Var (Sp)

and

Var {arcsin[ I%(C)}} ~

2 . 8arcsin[ K(C):|
Var (Se) + o5p

ﬁarcsin[ K(C)j| ’

oSe

Var(ép).

The expression of the variance obtained here (equation (2.71)) is different to that
obtained by Roldan-Nofuentes et al (2009). Equation (2.71) has a term of variability
less than the variance deduced by Roldan-Nofuentes et al (2009), because in a case-

control study it is necessary to know a value for the prevalence in order to estimate

x(c). This means that the Cls for x(c) have a length which is lower in the case-

control sample than in the cross-sectional sample.
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Appendix 2.2: Comparison of the performance of the Cls

“Step 17 of this method to choose the optimum CI establishes that the probability of

coverage should be higher than 93%, or in other words, that the Cl does not fail.

Aa=a—a =y —y is defined, where y =1—a =0.95 is the nominal confidence of the
Cl and »* the probability of coverage calculated. The hypothesis test (two-tailed) for
the weighted kappa coefficient is H,:x(c)=x’(c) vs H,:x(c)#«’(c), where x'(c)
is the value of K(C) subject to H,,. This test can be solved through different methods.

If the test is solved applying the Wald method, the contrast statistic is:

£(0)-x(0).
far [ £(c)]

ZW
Other alternatives are to use the logit and arcsine transformations. Applying the logit

transformation, the test is H, :logit I:K‘(C):' =logit [K' (C)] VS

H, : logit[lc(c)] # logit[lc’(c)] , and the contrast statistic is

- ‘logit[z%(c):l—logit[lé'(c)]‘ |
\l\iar{logit[le(c)]}

and applying the arcsine transformation, the test H, :arcsin[K(C)] = arcsin[rc'(c)] \&
H,: arcsin[K(C)] # arcsin[K'(C)] is solved with the statistic

‘sin%m—sinqm |
\/\?ar sin”' K‘(C)}

Z,=
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In Step 1 of the method, a Cl has a failure if its probability of coverage is <93%, i.e. if
Aa < -2. In this situation, the type I error of the corresponding hypothesis test is > 7%
, and therefore it is a very liberal hypothesis test and can give false significances. The
93% criteria has been used by other authors (Agreti and Coull, 1998; Price and Bonnett,
2004; Martin-Andrés and Alvarez-Hernandez, 2014a and 2014b). If Aa >2%, i.e. the
probability of coverage is greater than 97%, then the corresponding hypothesis test is
very conservative (its type I error is very small, <3%), but at least it does not give
false significances. Consequently, the choice of the optimum CI is linked to the
decisions of the corresponding hypothesis test, and it is preferable to choose a
conservative test rather than a very liberal one (then there will not be any false

significances as its type I error is lower than the nominal one).

Appendix 3.1: Combined weighted kappa coefficient

The weighted kappa coefficient of BDT is defined [1] as

o Random loss — Expected loss

(3.68)
Random loss

The expected loss is the average loss which occurs when erroneously classifying a
diseased or non-diseased patient with the BDT. The random expected loss is the

expected loss which occurs when the BDT and the GS are independent, i.e. when

P(T =i | D= j) =P(T =i). In parallel testing with the AND rule, the random loss is

Random loss = Lp( Py, + Py, + Poo + Gy + oy + oo )+ L'A( Py, + 0y, ) =
I—p(l_ p11_q11)+|—’q(p11+q11)>
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and the expected loss is
Expected loss = L(py, + Py, + Py )+ LG, =L(P—p,, )+ L0,

By substituting the two previous expressions in equation (3.68) and realizing the

algebraic operations, equation (3.56) is obtained. With the OR rule, the random loss is

Random loss = Lp( Py +Ggy )+ L'A( Py, + Py + Py + Gy + Gy + 0y ) =
Lp( Poo +qoo)+ L,q(l_ Poo _q00)>

and the expected loss is
Expected loss = Lpy, + L'( 0, + 0y, + gy ) = LRy + L'(q— 0o ) -

By substituting these two previous expressions in equation (3.68) and realizing the

algebraic operations, equation (3.57) is obtained.

Appendix 3.2: The AND rule

In all of the following, it will be taken that all the Youden indices are between 0 and 1

(0<Y <1), and that the prevalence of the disease is also a value between 0 and 1

(0< p<1). Let us consider the following equalities:

w = QIYAND _QANDYI — pllqlop_qploqll , W, = QZYAND _QANDYz — pllqmp_qpmqn ,

qlop_ p]Oq qmp_ pmq
E=Yyo Y, ="7—"",&E =YY, =,
1 AND 1 nq 2 AND 2 g

Ql = p11+ p10+q11+q10’ Q2= p11+ p01+q11+q01’
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7, =Q —Qawp = Pio + 0> 7 =Q, =Qanp = Por + o1
Vano = PC(1=Quup ) +9(1-C)Qup and v, = pc(1-Q,)+q(1-c)Q,, h=1.2,

where v,, and v, are the denominators of &, (c) and &, (c) respectively. It is

verified that —-l1<m, <1, —-1<{ <1, 0<Q, <1 and 0<rz, <1. By realizing algebraic

operations it is verified that

K, (C) = pag, —(c—a) 7.k, (c) _ g Evn—(c—a)z7Y, |

K anp (C) - (3.69)
V anD VanoVh
Then K (€)=, (c) if
c=c, = q(QhYAND _QANDYh) _ Qo, _ qo, Ch=1.2, (3.70)

_Yh(p_QAND)_YAND(p_Qh)_wh_pgh Wy

where ¥, =Y, (P—Qup)—Yao (P—Q,) =@, — p&,. The values ¢, and ¢, can take any

real value. In terms of ¢, the equation (3.69) is written as

‘o, (c,—C
KAND(C)_Kh(C):W' (3.71)
h” AND" h

In what follows the conditions under which the combination of the two BDTs with the
AND rule produces an increase of the combined weighted kappa coefficient are shown.
a) If 0<c, <1 with h=1,2, then x,(c,) and &,y (C,), can be calculated, so

i
(wh -&Q )/‘//h

Y . .
and iy (G, ) = AND . It is verified that

(wh - ghQAND )/l//h

obtaining & (¢, )=

@y, —&Q, ~0 and @, —$.Qump >0
Wi Wy

M

128



Appendices

since both expressions are the denominators of weighted kappa coefficients. As it is

always verified that Q, > Qup, if & =Yap =Y, >0 then

&y = 5. Qo _ W, —5.Qy >0,
Wy Wh

By realizing algebraic operations one obtains

@ =6 Qmp _ @ —&Qn _ ST >0
W W Y

2

and as &, and 7, are greater than 0, then y, >0.1If & =Y, —Y, <0 then

@, —§.Q, W, — & Qo >0
W Wh

b

and by realizing algebraic operations one obtains

@ =6, Q@ =G Qo _ —GhTh >0.
W Y W

As =& and 7, are greater than 0, then y, >0. Thus, whatever the value of & , it is

always verified that y, >0. As ¢, = 9% 50 then w,>0. If 0<c<c, then, from

Wi

equation (3.71), Ko (C)>k,(c) with h=1,2. Finally, if 0<c<min{c,c,} then
Ko (€) > max{; ()&, (c)} -
If c=1 then ¢,—1<0, and from equation (3.71) it is verified that i, (1)< x; (1)

with h=1,2. Therefore i, (1) <min{; (1).x,(c)}.

b) From a) it can be verified that &, (c)>x;(c) if 0<c<c <1. Let us suppose

that Y, <Y, , then & =Y, p —Y,; > 0. By multiplying by Q; one obtains
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£Q;>0=QYp —Q)Y; =QYap —(7;+Qup )Y, =@, - 7)Y, > 0= 0, > 7Y, >0,
and by multiplying by Q,,, one obtains

é:jQAND > 0= QoY ano _QANDYj = (Qj =T )YAND _QANDYj = w; _TjYAND >0
= w; > Z'J-YAND > 0.

Hence, it can be verified that @; >7,Yy, >7,Y;>0. As ¢;>1 and w; >0, then
w; =o; — p&; must be greater than 0, and it is verified that &; > ;. Finally, as @; >0

then, from equation (3.71), it is verified that &, (C)>x;(c) for 0<c<I.

In the case that Y; >Y,,, then &; <0. Let us suppose that @; >0, then as ¢; >1 it

must be verified that @; — p&; >0, and so one obtains
qo; > w; — ps&; = &; > w; >0,

which is contradictory to &; <0. Thus, if Y;>Y,, then ®; <0, and from equation

(3.71) it can be verified that &;(C)> &y (C) for 0<c<1.

If ¢; <0 the reasoning is the same as for ¢; >1. In this case @; — p&; <0, so that it is

also verified that &; > p&; > w;.

For any situation different to those that have been dealt with in points a) and b), the

combination of the two BDTs does not increase the value of i, (C) for any value of c.

These situations are:

1) 0<c<c <, c;>1(or ¢c; <0)and Yy, <Y,
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2) min{c,,c,} >1,
3) max{c,,c,} <0,
4) ¢;>1 and c; <0.

In the following each of these is analysed.

1) The situation 0<c<¢; <1, ¢; >1 (or ¢;<0) and Y,, <Y; has been dealt with in

point b) above. Let us study the same situation but supposing that Y, =Y,. If

-
Yao =Y then &, =0. As c; :q_—‘g, if £;=0 then c; =q, but this is incompatible

i j

with ¢; >1 or ¢; <0, because 0<q<1.

2) Let us consider that ¢, >1 and ¢, >1, i.e. min{c,c,}>1. Each equation ¢, >1,

h=1,2, has two solutions:

0<pé <m <&, <1 (3.72)
and
-1< & <w, < pé, <0. (3.73)
Let us consider
c,(1-c,)= qu;g“)<0,
Yh

then ¢, (1-¢,)c,(1-¢,)>0, ie.
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2.2 DD, (a)l _51)(0)2 _é:z)

c,(1-c)c,(1-c,)=p’q - >0. (3.74)
From equation (3.74) it is verified that ¢, (1—c,)c,(1-c,)>0 if
wo, (0, —&)(w,—&,)>0. (3.75)
Moreover,
cc, =g 2% 5. (3.76)

v\,

Solving the system formed by equations (3.75) and (3.76), the solutions for this system

which are compatible with solutions (3.72) and (3.73) are
0<pé <m<é<land -1<¢& <w, < ps, <0
and
& <w<ps<0and 0< pé, <m, <&, .

In general terms, the solution is

—1<é<w; <pé; <0< pg <o, <& <.
As ;<0 y c;>1, then applying equation (3.34) it holds that x,,(c)<x,(c) for
0<c<l.As @ >0 and ¢, >1, then x,(C)>x;(c) for 0<c<I. Finally,

K () <rmump(C)<x;(c), 0<c<I.

Consequently, if min{cl,cz} >1 then the combination of the two weighted kappa

coefficients never increases the value of the combined weighted kappa coefficient.

Furthermore, as &; <0 then Y, <Y, and as & >0 then Y, >Y,, ie.
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Y. <Yao <Yj .

3) Another possible situation is that ¢, <0 and ¢, <0, i.e. max{c,,c,} <0, then the
solutions for each equation ¢, <0, h=L2, are O<a@ <pg <& <1 or

-1< &, < p&, <w, <0. Solving the system formed by the equations

G (1_Cl)cz(l—02) =p’g’ ! (a)l _fl )2(0)2 _étz)
Wi,

>0

and

w, .
cC,=q°—2>0,
Vi,

the appropriate solution is —1<&; < pé; <w; <0< @ < p& <& <1. Finally, it holds

that

K (C) <ipp(C)<x;(c), 0<c<I,

and

Y <Yapo <Y;-

4) Finally, another possible situation is that ¢, >1 and ¢; <0. Solving the system

formed by the equations

2.2 a)1a)2(a)1 _51)((02 _52)

¢,(1-c)c,(1-c,)=p’q - >0

and
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2 G0;
cc; =q"——L<0,
ViV

the appropriate solution is —1<&; < pg; <w; <0< p& <@, <& <1. In this situation, it
is verified that if &, <0 then —1<¢; < pé; <w; <qw; <0 and y; =w, - pS; >0, and
therefore ¢, <0. Consequently, if ¢>1 and ¢;<0, the solution is

—1<&; < péj <m; <0< pg <@ <& <1, and it is again verified that
K (C)<ipp(C)<x;(c), 0<c<l,

and

Y <Yawp <Y;-

Appendix 3.3: The OR rule
In all of the following, it will be taken that all the Youden indices are between 0 and 1
(O <Y <1) , and that the prevalence of the disease is also a value between 0 and 1

(0 <p< 1) . Let us take the following equalities

o = Q¥ — Quat, = Pl * q”);qq“ (Pu*Po).

a); _ QzYOR _QORYZ _ Pio (qll + qm);qqlo( P, + p01) ,
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é:l,:YOR -Y :Wa é:z' =Yor — Y, :W’ T{le_QOR :_( p01+q01)’

T; :Qz _QOR :_( p10+q10) and Vor = pc(l_QOR)+q(1_C)QOR :

It is verified that —l<a@ <1, —1<& <1 and -1<z;<0. By realizing algebraic

operations it can be verified that

. pas, _(C_q)T;lKh (C) — nq EVa _(C_q)T;IYh

Kor(C)—K,(C)= = , (3.77)
on ()= (€) Vor Vorh
so verifying that x; (C)=x;(C) if
c=c = q(QhYOR _QORYh) _ Qu, Qo  h=12, (3.78)

Yh(p_QOR)_YOR(p_Qh) - ol — P&, - v

with wy =Y, (P—Qur)—Yor (P—Q,) =&} — p&,. The values ¢/ and ¢, may take any

real value. In terms of ¢/, equation (3.77) is written as

pg’w; (¢, —c)
Kom (C)— 5, (€) =m0 =) (3.79)
OR( ) h( ) ChVorVh

In what follows the conditions under which the combination of the two BDTS with the

AND rule produces an increase of the combined weighted kappa coefficient are shown.

a) If 0<c <1 with h=1,2, then x,(c,) and x(C,), can be calculated, so

Y,

h Yor
(a)r: -&Q, )/‘//r’]

— —. It is verified that
(a)h - ghQOR )/V/h

obtaining & (¢} )=

and Ko (G, )=

o, —&Q, >0 and @, — & Qg >0
78 W

2
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as both expressions are the denominators of weighted kappa coefficients. As it is always

verified that Qu; > Q,, if & =Yz —Y, >0 then

@ —&Q0k _ =5 . ¢
728 78

By realizing algebraic operations one obtains

(0,'1 _gt:QOR _ a)r,w _gr:Qh — é:rh >0
. v, v,

b

andas & >0 and 7, <0, then y, <0.If & =Y, —Y, <0 then

@ = & Qor _ ol —&Q, <0
Wy 8

and by realizing algebraic operations one obtains

60;] _ér:QOR _ a)r: _gr:Qh — r:Tr'1 <0.
W 78 78

As & <0 and 7/, <0, then y; <0. Thus, whatever the value of & , it is always verified

that y; <0. As ¢ = q_a:h >0 then @, <0.If 0<c; <c<I then, from equation (3.79),

Wh

kr(C)>x,(c) with h=12. Finally, if O<max{cci}<c<l then
Kor (€)>max {x; (¢) ., (c)} .
If =0 then ¢, —1<0, and from equation (3.79) it is verified that & (0)<x,(0)

with h=1,2. Therefore i (0) < min{; (0),x,(0)}.
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b) From a) it can be verified that x; (¢)>x;(c) if 0<¢/ <c<I. Let us suppose that
c;>1 and that Y; <Yq, then & =Y, —Y,;>0. Let us suppose that @; <0, as c]>1

then v = @, — p&; must be smaller than 0 and g <@ —ps;| <0, and therefore it is
verified that p(é; —a)})<0 and therefore & <wj. As & >0 it is not possible that

@} <0. Finally @] >0 and from equation (3.79) it is verified that x,(c)>«;(c) for

0<c<I.

In the case that Y; > Y, then &; <0. By multiplying by Q; one obtains

EQ, <0=Q Yo —QY; =Q,Yeq —(r; +Qqp )YJ. =0 —7)Y, <0= ), <Y, <0,

J

since 7} < 0. Multiplying by Qg one obtains
Qo < 0= QuaYor —QurY; =(Q) =7} )Yor — QurY; = ) —7)¥or <0=> @) < 7)Y <0

Hence, it is verified that @] <7)Y; <7{Yo, <0. Therefore, if Y; <Yy, then @] <0, and

from equation (3.79) it can be verified that (C) > Kog (C) for 0<c<1.

If ¢} <0 the reasoning is the same as for ¢;>1. If £ >0 then @] >0, and from
equation (3.79) it is verified that &, (C)>&;(c) for 0<c<1. Therefore, if & <0 then

@ <0, and from equation (3.79) it can be verified that x;(C)> ko (C) for 0<c<1.

For any situation different to those that have been dealt with in points a) and b), the
combination of the two BDTSs does not increase the value of & (C) for any value of C.

These situations are:

137



Appendices

1) 0<c/ <c<I, ¢ >1 (or ¢, <0)and Yo <Y,
2) min{c/,c;} >1,

3) max{c,c}} <0,

4) ¢/>1 and ¢} <0.

In the following each of these is analysed.

1) The situation 0<¢f<c<1, ¢j>1 (or ¢; <0) and Yo, <Y, has been dealt with in

point b) above. Let us study the same situation but supposing that Yo, =Y,. If Y, =V,

!
Jo;

then & =0. As ¢;=————, if & =0 then cj=q, but this is incompatible with
@

TR

i Foi

c;>1or ¢} <0, because 0<q<I.

2) Let us consider that ¢/ >1 and ¢, >1, i.e. min{c],c,}>1. Each equation ¢, >1,

h=1,2, has two solutions:

0<pé <o <& <1 (3.80)
and

-1<& <, < pé&, <0. (3.81)

Let us consider

then ¢f(1—c])c,(1-¢5)>0, i.e.
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q(1-¢)c,(1-¢,) = p’g’ s () _fl),ng ~%) .. (3.82)
iy,

From equation (3.74) it is verified that c{(1—c])c}(1—c5)>0 if

o) (o = &) (@~ &) >0. (3.83)
Moreover,
cc,=q° a)‘,wf >1. (3.84)
v\,

Solving the system formed by equations (3.83) and (3.84) with 0< p<1, the solutions

for this system which are compatible with solutions (3.80) and (3.81) are
0<pé<aw<&i<land —-1<& <w, < p& <0
and
—1<& <o <p& <0 and 0< p& <o)y <& <1.
In general terms, the solution is
—1<& <@, < p& <0< p&<af<&<l1.
As <0 y c}>1, then applying equation (3.79) it holds that x(c)<x;(c) for

0<c<l.As @' >0 and ¢/ >1, then xy,(c)>x;(c) for 0<Cc<I. Finally,

K () <xpp(c)<x;(c), 0<c<I.

Consequently, if min{cl',C;} >1 then the combination of the two weighted kappa

coefficients never increases the value of the combined weighted kappa coefficient.

Furthermore, as & <0 then Yo, <Y,, and as &' >0 then Yo, >Y,, i.e.
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Y <Yor <Y;.

3) Another possible situation is that ¢/ <0 and ¢, <0, i.e. max{c/,c,} <0, then the

solutions for each equation ¢ <0, h=12, are O<a <pé <& <l or

—1< & < p& <@ <0. Solving the system formed by the equations
' AW ' W@, (@ — é:' . — 5'
Cl(l_cl)cz(l_cz):pzqz 1 2( 1 l)( : 2)

>0
viwy

and

(PN

[0X0))
Al N2 142
CC,=q

>0,

W
the appropriate solution is —1< &} < p&j <) <0< < p <& <1. Finally, it holds
that

K, (c) <xpp(c)<x;(c), 0<c<I,

and

Y <Yor <Y;.

4) Finally, another possible situation is that ¢, >1 and c¢; <0. Solving the system
formed by the equations
a)!a)l a)! _ ! a)! _ !
Cl'(l—Cl')C;(l—C;)z pzqz 1 z( 1 51)( 2 52)

>0
V/1,2V/;2

and
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U !

, W@
cc,=q°——=<0,

w,

the solution is —1< &} < p&i <@ <0< p& <af <& <1. In this situation, it is verified

that if & <0 then pé& < <qw|<0 and v =, —p& >0, and therefore c|<0.

!

Consequently, if ¢ >1 and ¢; <0, the solution is

—1< & < péi <) <0< p& <@ <& <1, and it is again verified that
K, (c) < xpp(c)<x;(c), 0<c<I,
and

Y <Yor <Y;.

Appendix 3.4: The program “cwkc”

cwkc <- function(sl1, s10, s01, s00, r11, r10, r01, r00, indexc, rule, conflevel = 0.95)

{
library(graphics)

if (s11<0]s10<0]s01<0|s00<0|rl1<0|rl0<0|r01<0]r00<0)
{
cat("\n")
stop(""Any observed frequency can be negative. Introduces new values \n")
cat("\n")
h
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if (abs(s00 - trunc (s00)) > 0 | abs(s01 - trunc (s01)) >0 | abs(s10 - trunc (s10)) > 0 |
abs(s11 - trunc (s11)) > 0 | abs(r00 - trunc (r00)) > 0 | abs(r01 - trunc (r01)) > 0 |
abs(r10 - trunc (r10)) >0 |abs(rl1 - trunc (r11)) > 0)
{
cat("\n")
stop("Observed frequencies can not have decimals. Introduces new values \n")
cat("\n")
H

if ((s11 +s10+s01 +s00)==0 | (r11 +r10 +r01 + r00) == 0)
{
Cat("\n")
stop("Accuracy of a Binary Test cannot be estimated. There are many observed

frequencies equal to zero. Introduces new values \n")
cat("\n")
b
if (indexc > 1 | indexc < 0)
{
cat("\n")
stop("Weighting index ¢ should take a value between 0 and 1. Introduces a new
value \n")
cat("\n")
}

n <-s00+s01 +s10+s11+r00+101 +r10+rll

p <-(s00 +s01 +s10+sl1)/n

Sel <-(s11 +s10)/(s11 +s10 +s01 + s00)

Se2 <-(s11 +s01)/(s11 +s10+s01 + s00)
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Spl <- (r01 +r00) / (r11 +r10 + r01 + r00)

Sp2 <- (r10 +100) / (r11 +r10 +r01 + r00)

Y1 <-Sel +Spl -1

Y2 <-Se2+Sp2-1

if(Y1<=0]Y2<=0)

{
cat("\n")
cat("Estimated Youden index of Binary Test 1 is ", Y1, "\n")
cat("Estimated Youden index of Binary Test 2 is ",Y2, "\n")
stop("Estimated Youden index of a Binary Test must be greater than zero.

Introduces new values \n")

cat("\n")

h

if(Yl=1]|Y2==1)

{
cat("\n")
cat("Estimated Youden index of Binary Test 1 i1s ",Y 1, "\n")
cat("Estimated Youden index of Binary Test 2 is ",Y2, "\n")
stop("A Binary Test is a gold standard. Introduces new values \n")
cat("\n")

h

y <- as.character(rule)

yl <- "andﬂ

y2 <- HOI."
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if(ly I= yl && y !=y2)
{
cat("\n")
stop("Write and for AND rule. Write or for OR rule \n")
cat("\n")
}

rl <- identical (y,y1)

r2 <- identical (y, y2)

if(isTRUE(r1))
{
kappacomb <- expression((pl1 * (q11 +ql0 + q01 +q00) - q11 * (p11 + p10 + pO1
+p00)) / ((pl1 +pl0 + p0O1 + p00) * indexc * (1 - pl1-qll)+(qll+ql0+q0l +q00)
* (1- indexc) * (p11 +ql1)))

quotl <- expression(log((((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + pO1
+p00)) / ((pl1 +pl10 + p01 + p00) * indexc * (1 - pll1 -qll)+(qll +ql0+qO01 + q00)
* (1- indexc) * (pl11 +ql1))) / (((p10 + p11) * (q00 + qO01) - (p00 + p01) * (q10 + q11))
/ ((p11 + pl10 + pO1 + p00) * indexc * (1- pI11 - p10-qll - ql0) +(qll +ql0+q01 +
q00) * (1 - indexc)* (pl1 +pl0+qll +ql0))))))

quot2 <- expression(log(((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + pO1
+p00)) / ((p11 +pl10 + p01 + p00) * indexc * (1 - pl1 -qll)+(qll +ql0+ qO1 + q00)
* (1- indexc) * (p11 + q11))) / ((pO1 + p11) * (q00 + q10) - (p0O + p10) * (q01 + q11))
/ ((p11 +pl0 + p01 + p00) * indexc * (1- p11 - pOI - ql1 - q01) + (q11 + q10 + qO1 +
q00) * (1 - indexc)* (pl11 +p01 +ql1+q01)))))

arcsink <- expression(asin(sqrt((p11 * (q11 +ql10 + q01 +q00) - q11 * (p11 + p10 +

p01 + p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 +
q00) * (1- indexc) * (p11 + ql1)))))
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logitk <- expression(log(((p11 * (q11 +ql10 + q01 + q00) - q11 * (p11 + p10 + pO1
+p00)) / ((pl1 +pl0 + p01 + p00) * indexc * (1 - pl1 -qll)+(qll +ql0+qO1 + q00)
* (1- indexc) * (pl1 +ql1)))/ (1 - ((p11 * (q11 + q10 + q01 + q00) - qI1 * (p11 + p10
+p01 + p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11-qll)+(qll+ql0+ q01
+q00) * (1- indexc) * (pl1 +ql1))))))

}

else
{
kappacomb <- expression((q00 * (p11 + p10 + p0O1 + p00) - p00 * (q11 + q10 + qO01
+q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 +ql10 + qO1 + q00) *
(1- indexc) * (1 - p00 - q00)))

quotl <- expression(log(((q00 * (p11 + p10 + p0O1 + p00) - p00 * (q11 + q10 + qO01
+q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 +ql10 + qO1 + q00) *
(1- indexc) * (1 - p00 - q00))) / (((p10 + p11) * (q00 + qO1) - (p00 + p01) * (q10 +
qll)) / ((p11 + p10 + pO01 + p00) * indexc * (1- p11 - p10-qll -ql0)+(qll +ql0 +
q01 +q00) * (1 - indexc)* (pl1 +pl0+qll +ql0)))))

quot2 <- expression(log(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 + qO01
+q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) *
(1- indexc) * (1 - p00 - q00))) / (((p01 + p11) * (q00 + q10) - (p00 + p10) * (q01 +
qll)) / ((p11 + p10 + pO1 + p00) * indexc * (1- p11 - pO1 - q11 - q01) +(q11 + ql0 +
q01 + q00) * (1 - indexc)* (p11 + p01 +ql1 + q01)))))

arcsink <- expression(asin(sqrt(((q00 * (p11 +p10 + p01 + p00) - p00 * (q11 + q10
+q01 + q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (ql1 + q10 + q01 +
q00) * (1- indexc) * (1 - p00 - q00))))))

logitk <- expression(log(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + ql10 + qO1
+q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) *
(1- indexc) * (1 - p00 - q00))) / (1 - ((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + ql0
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+q01 + q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (ql1 + ql10 + qO01 +
q00) * (1- indexc) * (1 - p00 - q00))))))
H

Ql <-p*Sel +(1-p)*(1-Spl)

kI<-(p*(1-p)*Y1l)/(p*indexc * (1 -Q1)+(1-p)*(1-indexc) * Ql)

Q2<-p*Se2+(1-p)*(1-Sp2)

kK2<-(p*(1-p)*Y2)/(p*indexc * (1 -Q2)+(1-p)* (1 -indexc) * Q2)

z =qnorm((1 + conflevel)/2,0,1)

alpha <- 1 - conflevel

kappal <- expression(((pl0 + p11) * (q00 + qO01) - (p00 + p01) * (q10 + ql1))/ ((p11
+pl0 + p01 + p00) * indexc * (1- p1l - p10 - ql1 - q10) + (ql1 + q10 + qO01 + q00) *
(1 - indexc)* (p11 +pl0 +qll +ql0)))

kappa2 <- expression(((p01 + p11) * (q00 + q10) - (p00 + p10) * (q01 + q11)) / ((p11
+pl0 + p01 + p00) * indexc * (1- p1l - pO01 - q11 - q01) + (q11 + q10 + qO1 + q00) *
(1 - indexc)* (p11 +p01 +ql1 +q01)))

# Derivatives

derivk1p00 <- deriv(kappal, "p00")
derivk1p01 <- deriv(kappal, "p01")
derivk1p10 <- deriv(kappal, "p10")
derivk1pl1 <- deriv(kappal, "p11")
derivk1q00 <- deriv(kappal, "q00")
derivk1q01 <- deriv(kappal, "q01")
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derivk1q10 <- deriv(kappal, "q10")
derivklql1 <- deriv(kappal, "q11")

derivk2p00 <- deriv(kappa2, "p00")
derivk2p01 <- deriv(kappa2, "p01")
derivk2p10 <- deriv(kappa2, "p10™)
derivk2p11 <- deriv(kappa2, "p11")
derivk2q00 <- deriv(kappa2, "q00")
derivk2q01 <- deriv(kappa2, "q01")
derivk2q10 <- deriv(kappa2, "q10")
derivk2ql1 <- deriv(kappa2, "q11")

derivkappap00 <- deriv(kappacomb, "p00")

derivkappap01 <- deriv(kappacomb, "p01")

derivkappap10 <- deriv(kappacomb, "p10")

derivkappapl1 <- deriv(kappacomb, "p11")

derivkappaq00 <- deriv(kappacomb, "q00")

derivkappaq01 <- deriv(kappacomb, "q01")

derivkappaql0 <- deriv(kappacomb, "q10")

derivkappaql1 <- deriv(kappacomb, "q11")

dlogitkappap00 <- deriv(logitk, "p00")
dlogitkappap01 <- deriv(logitk, "p01")
dlogitkappap10 <- deriv(logitk, "p10")
dlogitkappap11 <- deriv(logitk, "p11")
dlogitkappaq00 <- deriv(logitk, "q00")
dlogitkappaq01 <- deriv(logitk, "q01")
dlogitkappaql0 <- deriv(logitk, "q10")
dlogitkappaql1 <- deriv(logitk, "q11")
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# Variances and covariances

p00 <-s00 /n
p01 <-s01 /n
pl0<-sl0/n
pll <-sll/n

q00 <-r00 /n
q01 <-r01/n
ql0<-rl0/n
qll<-rll/n

vecl <- vector("numeric", 8)

vecl[1] <- p00
vecl[2] <- pO1
vecl[3] <-pl10
4] <-pll
5]1<-q00
vecl[6] <- qO01

vecl

[
[
[
[
vecl|
[
vecl[7] <-ql0
vecl[8] <-qll

matp <- matrix(0, 8, 8)
matp[1,1] <- p00
matp[2,2] <- p01

matp[3,3] <- pl0

matp[5,5] <- q00

[

[

[

matp[4,4] <-pl1

[

matp[6,6] <- q01
[

matp[7,7] <- q10
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matp[8,8] <- ql1

sigmap <- matrix(0, 8, 8)

sigmap <- (1 /n) * (matp - vecl %*% t(vecl))

vec2 <- vector("numeric", 8)

vec2[1] <- attr(eval(derivk1p00), "gradient")[1]

1]

1]
vec2[4] <- attr(eval(derivklpl1), "gradient")[1]

vec2[2] <- attr(eval(derivk1p01), "gradient")

vec2

[ [
[ [
[3] <- attr(eval(derivk1p10), "gradient")[
[ [

vec2[5] <- attr(eval(derivk1q00), "gradient")[ 1]
1]
1]
vec2[8] <- attr(eval(derivklqll), "gradient")[ 1]

vec2[6] <- attr(eval(derivk1q01), "gradient")

vec2

[ [
[ [
[7] <- attr(eval(derivk1ql0), "gradient")[
[ [

vec3 <- vector("numeric", §)

vec3[1] <- attr(eval(derivk2p00), "gradient")[ 1]
1]
1]
vec3[4] <- attr(eval(derivk2p11), "gradient")[1]

vec3[2] <- attr(eval(derivk2p01), "gradient")

vec3

[ [
[ [
[3] <- attr(eval(derivk2p10), "gradient")[
[ [

vec3[5] <- attr(eval(derivk2q00), "gradient")[ 1]
1]
1]
vec3[8] <- attr(eval(derivk2ql1), "gradient")[1]

vec3[6] <- attr(eval(derivk2q01), "gradient")

vec3

[ [
[ [
[7] <- attr(eval(derivk2q10), "gradient")[
[ [

matl <- rbind(vec2, vec3)
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sigmal <- matrix(0, 2, 2)
sigmal <- matl %*% sigmap %*% t(matl)
vecd <- vector("numeric", 8)

vecd[1] <- attr(eval(derivkappap00), "gradient")[1]

vec4[2] <- attr(eval(derivkappap01), "gradient")[1]

vecd[3] <- attr(eval(derivkappap10), "gradient")[1]

[
[
[
vecd[4] <- attr(eval(derivkappap11), "gradient")[1]

vecd[5] <- attr(eval(derivkappaq00), "gradient")[1

vecd[6] <- attr(eval(derivkappaqO1), "gradient")[ 1

vecd[7] <- attr(eval(derivkappaq10), "gradient")[ 1

[ ]
[ ]
[ ]
vec4[8] <- attr(eval(derivkappaql1), "gradient")[1]
mat2 <- rbind(vec4, vec2)

sigma2 <- matrix(0, 2, 2)

sigma2 <- mat2 %*% sigmap %*% t(mat2)

mat3 <- rbind(vec4, vec3)

sigma3 <- matrix(0, 2, 2)

sigma3 <- mat3 %*% sigmap %*% t(mat3)

vecS <- vector("numeric", 8)

vec5[1] <- attr(eval(dlogitkappap00), "gradient")[1]
vec5[2] <- attr(eval(dlogitkappap01), "gradient")[1]
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vec5[3] <- attr(eval(dlogitkappap10), "gradient")[1]
vec5[4] <- attr(eval(dlogitkappap11), "gradient")[1]

vec5[5] <- attr(eval(dlogitkappaq00), "gradient")[1]
vec5[6] <- attr(eval(dlogitkappaq01), "gradient")[1]
vec5[7] <- attr(eval(dlogitkappaq10), "gradient")[1]
vec5[8] <- attr(eval(dlogitkappaql1), "gradient")[1]

varl <- t(vec5) %*% sigmap %*% vec5

ifisTRUE(r1))

{
combSe <-pll/p

combSp <- (q10 + q01 + q00) / (1 - p)

combQ <-pll+qll
h

else
{
combSe <- (p11 +pl10+p01)/p

combSp <-q00/ (1 - p)

combQ <- 1 - p00 - q00
h

combY <- combSe + combSp - 1

combwkc <- (p * (1 - p) * combY) / (p * indexc * (1 - combQ) + (1 - p) * (1 - indexc)
* combQ)
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logitewkc <- log(combwke / (1 - combwkc))

# Fieller CI

d11 <- combwke * k1 - sigma2[1,2] * z*2

d21 <- combwkc”2 - sigma2[1,1] * z*2

d31 <- k172 - sigma2[2,2] * z"2

LFiellerkappakl <- (d11 - sqrt(d1172 - d21 * d31)) / d31

UFiellerkappakl <- (d11 + sqrt(d112 - d21 * d31)) / d31

d12 <- combwke * k2 - sigma3[1,2] * z*2

d22 <- combwkc”2 - sigma3[1,1] * z"2

d32 <- k2”2 - sigma3[2,2] * z"2
LFiellerkappak2 <- (d12 - sqrt(d12"2 - d22 * d32)) / d32

UFiellerkappak?2 <- (d12 + sqrt(d1272 - d22 * d32)) / d32

# Logit CI

Llogitkappa <- exp(logitcwkc - z * sqrt(varl[1])) /(1 + exp(logitcwkc - z *
sqrt(varl[1])))

Ulogitkappa <- exp(logitcwkc + z * sqrt(varl[1])) /(1 + exp(logitctwkc + z *
sqrt(varl[1])))
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# Solutions for Kand = Ki and Kor = Ki
cl <-(1-p)*(Q1 * combY - combQ * Y1)/ (Y1 * (p - combQ) - combY * (p - Q1))

c2 <-(1-p) *(Q2 * combY - combQ * Y2)/ (Y2 * (p - combQ) - combY * (p - Q2))

# Graphics

functl <- function xX) (p* (1 -p) * Y1)/ (p*x* (1 -QI)+ (1 -p) * (1 -x)*QIl)

funct2 <- function (xX) (p * (1 -p) *Y2)/(p*x* (1 -Q2)+ (1 -p) * (1 -x) * Q2)

functkappa <- function (x) (p * (1 - p) * combY) / (p * x * (1 - combQ) + (1 -p) * (1 -
X) * combQ)

if(isTRUE(r1)) tex <- "AND rule" else tex <- "OR rule"

jpeg("Graph_cwke.jpg")

curve(functkappa, 0, 1, Ity =1, ylim = ¢(0, 1), xlim = ¢(0, 1), xaxp =¢c(0, 1, 1), main =
tex, xlab = "Weighting index", ylab = "Weighted kappa coefficient")

curve(functl, 0, 1, Ity = 2, add = TRUE)

curve(funct2, 0, 1, Ity = 3, add = TRUE)

axis(1, at = c(round(cl, digits = 3), round(c2, digits = 3)))

abline(v = c(round(cl, digits = 3), round(c2, digits = 3)), Ity = 2, lwd = .1, col =
"gray90")

lab <- expression("Combined " * kappa * "(c)", kappa[1] * "(c)", kappa[2] * "(c)")

legend("top", lab, Ity = c(1, 2, 3), ncol = 1, merge = TRUE)

dev.off()

#Result

sink("Results _cwke.txt", split=TRUE)
cat("\n")

cat("RESULTS \n")

cat("\n")
cat(" WEIGHTED KAPPA COEFFICIENTS OF THE BDTs \n")
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cat("\n")

cat("Weighting index c is:",indexc, "\n")

cat("\n")

cat("Estimated weighted kappa coefficient of Test 1 is ",k1," and its standard error is",
sqrt(sigmal[1,1]), "\n")

cat("\n")

cat("Estimated weighted kappa coefficient of Test 2 is ",k2," and its standard error is",

sqrt(sigmal[2,2]), "\n")

cat("\n")
cat("Estimated Youden index of Test 1 is: ", Y1, "\n")
cat("\n")
cat("Estimated Youden index of Test 2 is: ", Y2, "\n")
cat("\n")

cat(" COMBINATION OF THE TWO BDTs WITH THE ", rule," RULE \n")

cat("\n")

cat("Estimated combined weighted kappa coefficient is ",combwkc," and its standard
error is", sqrt(sigma2[1,1]), "\n")

cat("\n")

cat("Estimated Youden index is: ",combY, "\n")

cat("\n")

cat("Estimated combined weighted kappa coefficient is equal to weighted kappa
coefficient of Test 1 if ¢ index is: ",c1, "\n")

cat("\n")

cat("Estimated combined weighted kappa coefficient is equal to weighted kappa
coefficient of Test 2 if ¢ index is: ",c2, "\n")

cat("\n")

cat(100 * conflevel,"% Fieller CI for combined weighted kappa coefficient / K1(c) is:
(",LFiellerkappakl, " ; ",UFiellerkappak1,") \n")

cat("\n")

cat(100 * conflevel,"% Fieller CI for combined weighted kappa coefficient / K2(c¢) is:
(",LFiellerkappak2, " ; ",UFiellerkappak2,") \n")

154



Appendices

cat("\n")

cat(100 * conflevel,"% Logit CI for combined weighted kappa coefficient is:
(",Llogitkappa, " ; ",Ulogitkappa,") \n")

cat("\n")

sink()

}
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