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Summary 

Diagnostic Methods are fundamental in Clinical Medicine and in Epidemiology. 

Therefore, part of the discipline of Statistics has focused on the development of new 

methods to solve the problems that have been posed in this field, leading to what are 

known as Statistical Methods for Diagnosis in Medicine. This doctoral thesis seeks to 

contribute to research into new methods of estimation of parameters of binary 

diagnostic tests. It focuses on the study of binary diagnostic tests, whose assessment in 

relation to a gold standard gives rise to a 2 2  table when there is a single diagnostic 

test, or a 2 4  table when there are two binary diagnostic tests. In all the situations 

analysed in this Thesis, it is assumed that the disease status of all the individuals in the 

sample, or samples, is known. This doctoral thesis is structured in three Chapters. 

In Chapter 1, the main parameters of a binary diagnostic test are defined and studied: 

sensitivity and specificity, likelihood ratios, predictive values and the weighted kappa 

coefficient. 

Chapter 2 studies the estimations of the parameters presented in Chapter 1 when the 

study is cross-sectional and when it is case-control. The cross-sectional study consists of 

the application of the binary diagnostic test and the gold standard to all the individuals 

in a random sample; and the case-control study consists of applying the binary 

diagnostic test to all of the individuals in two samples, one of individuals with the 

disease (case sample) and another of individuals without the disease (control sample). 

The contribution made by this Chapter is the estimation of the weighted kappa 

coefficient subject to case-control sampling. Several confidence intervals are studied for 

this parameter, Monte Carlo simulation experiments are carried out to study the 
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asymptotic coverage of these intervals and a method is proposed to calculate the size of 

each sample. The results obtained are applied to real example. 

Chapter 3 studies two different problems: the comparison of parameters of two 

binary diagnostic tests subject to a paired design and the combination of parameters of 

two binary diagnostic tests. On the one hand, we present the hypothesis tests and 

confidence intervals to compare the parameters of two binary diagnostic tests, and on 

the other, we study the combination of parameters of two binary diagnostic tests. The 

contribution of this Chapter is the combination of the weighted kappa coefficients of 

two binary diagnostic tests in parallel testing, defining the weighted kappa coefficient of 

the combination of the two diagnostic tests and studying its properties. We have studied 

the conditions in which the combination of the two diagnostic tests produces an increase 

in the weighted kappa coefficient of the combination. Fieller’s method is applied to 

obtain a confidence interval for the ratio between the weighted kappa coefficient of the 

combination and each weighted kappa coefficient, and Monte Carlo simulation 

experiments are carried out to study the asymptotic behaviour of this interval. An R 

program is written to solve the problem posed and the results were applied to a real 

example. 
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Chapter 1 

Binary Diagnostic Test and its Parameters 

 

1.1. Introduction 

The diagnosis of diseases is fundamental in the practice of Medicine and the study of 

Statistical Methods for Diagnosis in Medicine is an important topic in Biostatistics 

(Zhou et al, 2002; Pepe, 2003). A diagnostic test (DT) is medical test that is applied to 

an individual in order to determine the presence or absence of a certain disease. The 

level of PSA for the diagnosis of prostate cancer and a stress test for the diagnosis of 

coronary artery disease are two examples of DTs. A DT can be helpful for screening, for 

diagnosis and for individual management: 
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a) Screening: to detect a disease in asymptomatic individuals, and therefore reduce 

disease morbidity and mortality through early treatment. 

b) Diagnosis: establish or exclude the presence of a disease in symptomatic 

individuals.  

c) Individual management: evaluate the severity of a disease, estimate prognosis, 

monitor the course of a disease (progression, stability, or resolution), detect 

disease recurrence, select drugs and therapy and adjust them. 

The application of a DT for the assessment of diseases has different purposes (Zhou et 

al, 2002): 

a) To provide reliable information about the disease status of an individual. 

b) To influence the planning of the treatment of an individual. 

c) To understand the mechanism and the nature of the disease through research. 

The interpretation of a DT depends on several factors (Zhou et al, 2002): 

a) The intrinsic ability of the DT in order to distinguish between diseased and non-

diseased individuals (discriminatory accuracy). 

b) The particular characteristics of each individual. 

c) The environment in which the DT is applied. 

A DT may make a mistake in the diagnosis of the disease status of an individual, and 

therefore the accuracy of a DT is measured in terms of probabilities (or functions of 

them). When the result of a DT is positive (indicating the presence of the disease) or 

negative (indicating the absence of the disease), the DT is called a binary diagnostic test 

(BDT) and its accuracy is measured in terms of two fundamental parameters: sensitivity 



Chapter 1. Parameters of a BDT 

3 
 

and specificity. Other parameters to assess the performance of a BDT are the likelihood 

ratios (LRs), the predictive values (PVs) and the weighted kappa coefficient   c . In 

order to obtain an unbiased estimators of the sensitivity and the specificity of the BDT, 

and therefore for the other parameters, it is necessary to know the true disease status 

(present or absent) of each individual in the random sample. The medical test through 

which the true disease status of each individual is known is called the gold standard 

(GS). A biopsy for the diagnosis of prostate cancer and an angiography for the diagnosis 

of coronary disease are two examples of GS. Therefore, there are two methods to 

diagnose the disease: DT and GS. The DT may make a mistake in the diagnosis of the 

disease while the GS does not. Why not always use the GS? There are several reasons to 

use a DT instead of a GS: 

a) The DT is usually less expensive than the GS. 

b) The use of a GS may lead to some risk for the individual. For example, a 

coronary angiography may cause a stroke, thrombosis or even death of the 

individual. 

c) There is not always a GS. For example, in the case of some psychiatric diseases. 

The objective is to estimate the accuracy of the BDT, not to know if the individual has 

the disease or not. In the following sections of this chapter we will study each of the 

parameters of a BDT: 

a) Sensitivity and specificity.  

b) Likelihood ratios. 

c) Predictive values. 

d) Weighted kappa coefficient. 



Chapter 1. Parameters of a BDT 

4 
 

1.2. Sensitivity and specificity 

Sensitivity and specificity are the fundamental measures of accuracy of a BDT. Let D be 

the random variable which models the result of the GS, so that 1D   when an 

individual does have the disease and 0D   when an individual does not have the 

disease. Let T  be the random variable which models the result of the BDT, in such a 

way that 1T   when the result is positive (indicating the presence of the disease) and 

0T   when it is negative (indicating the absence of the disease). The probability of a 

randomly chosen individual from among all of the individuals in the population having 

the disease, denoted as  1p P D  , is known as the disease prevalence. Sensitivity 

(Se) is the probability that the result of the BDT will be positive when an individual has 

the disease, i.e.  

  1 1Se P T D   . (1.1) 

The probability  0 1 1P T D Se     is called the probability of a false negative. 

Specificity ( Sp ) is the probability that the result of the BDT will be negative when the 

individual does not have the disease, i.e. 

  0 0Sp P T D   . (1.2) 

The probability  1 0 1P T D Sp     is called the probability of a false positive. 

Sensitivity and specificity only depend on the intrinsic ability of the BDT to distinguish 

between individuals who have the disease and those who do not, i.e. these parameters 

depend on the physical, chemical and biological bases upon which the BDT has been 

developed, and they are not affected by the prevalence of the disease. A BDT with high 
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Se is useful to exclude a diagnosis because a highly sensitive test will render few results 

that are falsely negative. A BDT with high Sp is useful to confirm a diagnosis, because a 

highly specific test will have few results that are falsely positive. Cicchetti et al (1995) 

have classified the Se and the Sp at the following intervals: 70%  “Poor”, 70 79% %  

“Fair”, 80 89% %  “Good” and 90 100% %  “Excellent”. 

The parameter 1Y Se Sp    is called Youden index (Youden, 1950). The Youden 

index is a summary measure of accuracy of a BDT. The Youden index does not depend 

on the prevalence of disease and it indicates the likelihood of a positive result among 

individuals with the disease versus those without the disease. The Youden index has the 

following property: if the BDT and the disease are independent, then Se and Sp are 

complementary  1Se Sp  . This aspect is not desirable in a BDT, and therefore it is 

demanded that the Youden index of a BDT be bigger than zero  0 or 1Y Se Sp   . If 

0Y   the results of the diagnosis are interchanged, 1T   should be a negative result 

and 0T   should be a positive result, and the analysis should be limited only to the 

positive values of the Youden index. 

 

1.3. Likelihood ratios 

Other parameters for evaluating the performance of a BDT are the likelihood ratios 

(LRs). When the result of the BDT is positive, the LR (called the positive likelihood 

ratio, LR ) is the quotient between the probability of a positive result for the BDT when 

the individual has the disease and the probability of a positive result for the BDT when 

the individual does not have the disease, i.e. 



Chapter 1. Parameters of a BDT 

6 
 

 
1

Se
LR

Sp

 


. (1.3) 

When the result of the BDT is negative, the LR (called the negative likelihood ratio, 

LR ) is the quotient between the probability of a negative result of the BDT when the 

individual has the disease and the probability of a negative result of the BDT when the 

individual does not have the disease, i.e. 

 1 Se
LR

Sp

 
 . (1.4) 

The LRs depend on the Se and Sp of the diagnostic test and do not depend on the 

disease prevalence, and their values vary between zero and infinite. When the result of 

the BDT and the disease status are independent, then 1LR LR   . When the BDT 

correctly classifies all of the individuals (diseased and non-diseased), then LR   and 

0LR  . A value 1LR   indicates that a positive result of the BDT is more probable 

in a diseased individual than in a non-diseased individual, and a value 1LR   indicates 

that a negative result of the BDT is more probable in a non-diseased individual than in a 

diseased individual. The LRs quantify the increase in knowledge of the presence of the 

disease through the application of the BDT. Before applying the BDT, the odds of a 

individual being diseased is 

pre-test odds
1

p

p



, 

where p is the disease prevalence. After applying the BDT, the odds of disease are 

 
 

1
post-test odds ,   0,1

0
P D T j

j
P D T j

 
 

 
. 

The LRs relate the pre-test odds and post-test odds 
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 

 

Post test odds 1 pre test odds

Post test odds 0 pre test odds,

T LR

T LR





  

  
 

Therefore, the likelihood ratios quantify the change in the odds of disease obtained by 

knowledge of the application of the BDT. 

 

1.4. Predictive values 

Predictive values (PVs) are the measures of the clinical accuracy of a BDT. When the 

result of the BDT is positive, the PV (called the positive predictive value, PPV) is the 

probability of a individual being diseased when the test result is positive, i.e. 

  
 

1 1
1

p Se
PPV P D T

p Se q Sp


   

   
, (1.5) 

where 1q p  . When the result of the BDT is negative, the PV (called the negative 

predictive value, NPV) is the probability of a individual not being diseased when the test 

result is negative, i.e. 

  
 

0 0
1

q Sp
NPV P D T

p Se q Sp


   

   
. (1.6) 

While sensitivity and specificity quantify how well the BDT reflexes the true disease 

status (present or absent), the PVs quantify the clinical value of the BDT, since both the 

clinic and the individual are more interested in knowing how probable it is to have the 

disease given a diagnostic test result. Cicchetti et al (1995) have classified the PPV and 

the NPV at the following intervals: 70%  “Poor”, 70 79% %  “Fair”, 80 89% %  

“Good” and 90 100% %  “Excellent”. In Figures 1.1 and 1.2 we show how the PVs 

varies according to the prevalence p for different values of Se and Sp. 
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Figure 1.1. Predictive values for 0.95Se   and 0.90Sp  . 

 

 

 

Figure 1.2. Predictive values for 0.80Se   and 0.95Sp  . 
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1.5. Weighted kappa coefficient 

The weighted kappa coefficient (Kraemer, 1992; Kraemer et al, 2002) of a BDT is 

defined as a measure of the beyond-chance agreement between the BDT and the GS, and 

it is a parameter that considers the losses associated with an erroneous classification 

with the BDT. Let L  be the loss or the cost that occurs when wrongly classifying a 

diseased individual with the BDT, and L  the loss or cost that occurs when wrongly 

classifying a non-diseased individual with the BDT. It is assumed that the losses L and 

L  are 0 when an individual (diseased or non-diseased) is classified correctly with the 

BDT. Table 1.1 shows the probabilities and the losses associated to the assessment of 

the BDT, where the random variables T  and D are defined in Section 1.2. In terms of 

the probabilities of Table 1.1, the expected loss is 

    1 1p Se L q Sp L   , (1.7) 

and the random loss is 

      1 1p p Se qSp L q pSe q Sp L     . (1.8) 

The expected loss given by equation (1.7) is described by Bloch (1998) as the risk of 

error and is interpreted as the average loss which occurs when the BDT erroneously 

classifies an individual (diseased or non-diseased) and its values vary between zero and 

infinite. The random loss given by equation (1.8) is the expected loss when the BDT and 

the GS are independent, i.e. it is the expected loss when    P T i D j P T i     with 

0 1i, j , . The weighted kappa coefficient of a BDT is defined as 

 
Random loss Expected loss

Random loss



   (1.9) 
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Substituting in equation (1.9) each loss with its expression it holds that the weighted 

kappa coefficient of the BDT is 

  
   1 1

pqY
c

p Q c qQ c
 

  
, (1.10) 

where   1 1Q pSe p Sp     is the probability that the result of the BDT will be 

positive,  1 1Q p Se qSp     is the probability that the result of the BDT will be 

negative, and  c L L L   is the weighting index.  

 

Table 1.1. Probabilities and losses. 

Probabilities 

 1T   0T   Total 

1D   p Se   1p Se   p  

0D    1q Sp   q Sp  q  

Total  1Q p Se q Sp       1 1Q p Se q Sp       1 

Losses 

 1T   0T   Total 

1D   0 L  L  

0D   L  0 L  

Total L  L  L L  

 

When the loss L  is zero then 0c   and the weighted kappa coefficient is 

  
 1

0
Sp Q PPV p

Q q


  
  , (1.11) 
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and when the loss L  is zero then 1c   and the weighted kappa coefficient is 

  1
1
Se Q NPV q

Q p


 
 


. (1.12) 

The weighted kappa coefficient  c  can be written in terms of p , Q ,  0  and  1  

as 

  
       

   

1 1 1 0
1 1

p Q c qQ c
c

p Q c qQ c

 


  


  
, (1.13) 

with 0 1c  , and therefore the weighted kappa coefficient is a weighted average of 

 0  and  1 . Index c is between 0 and 1, and it is a clinician’s judgment of the 

relative clinical cost of false positives and false negatives. For example, let us consider a 

diagnosis of colon cancer using a colonography as BDT. If the colonography is positive 

for an individual who does not have the cancer (false positive), a colonoscopy (GS) will 

be performed on the individual, and this will give a final negative diagnosis. The loss L  

is determined from the economic costs of the diagnosis and also of factors such as risk, 

stress and anxiety caused to the individual. If the colonography is negative for an 

individual with the cancer (false negative), the individual may be diagnosed later. In this 

case the cancer may have spread and the possibility of the treatment being successful 

will be reduced. The loss L is determined from these considerations. Hence, the losses L 

and L  are not only measured in economic terms but also by factors such as risk and 

stress, for which reason the value of these losses cannot be determined in clinical 

practice. This is why the relative discrepancy between the losses L and L  is replaced by 

the relative discrepancy between the false positives and the false negatives. The value of 

the weighting index  c L L L   may be supposed, depending on the considerations 
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taken into account by the clinician about the false positives and the false negatives. If 

the clinician is going to use the BDT as a screening test, then there is more concern 

about false negatives and the c index is greater than 0.5  0 5 1. c  . If the clinician is 

going to use the BDT as a first step towards an risk treatment, then there is more 

concern about false positives and the c index is less than 0.5  0 0 5c .  . Therefore, 

the value of the c index will depend on what are the clinical objectives for using the 

BDT. If in equation (1.13) L L , then 0.5c   and  0.5  is known as Cohen’s kappa 

coefficient; if L L  then 0.5 1c  , and if L L   then 0 0.5c  . For example, if 

the clinician considers that the false positives are three times more important than the 

false negatives, then  1 3 1 0.25c    ; and if the clinician considers that the false 

negatives are four times more important than the false positives then  4 1 4 0.8c    . 

The weighted kappa coefficient has the following properties:  

a) When the agreement between the BDT and the GS is perfect  1Se Sp  , the 

expected loss is zero and then   1c  . 

b) When Se and Sp are complementary  1Se Sp  , i.e. when the diagnosis of the 

disease is made randomly, then   0c  . 

c) If the random loss is greater than expected loss then   0c  , and if the 

expected loss is greater than random loss then   0c  . If   0c   the results 

of the diagnosis are interchanged, 1T   should be a negative result and 0T   

should be a positive result, and the analysis should be limited only to the 

positive values of the weighted kappa coefficient   0 1c  . 
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d) The weighted kappa coefficient is a function of the c index which may be 

increasing (if Q p ) or decreasing (if Q p ), or it can be a constant function 

which is equal to the Youden index  1Se Sp   if Q p . 

Figures 1.3 and 1.4 show how the weighted kappa coefficient varies according to the 

weighting index c and the disease prevalence p, for high values of Se and Sp. 

Coefficient  c  is an increasing or decreasing function, depending on p, in the 

weighting index c.  
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Figure 1.3. Weighted kappa coefficients for 0.95Se  , 0.90Sp   and different values 
of prevalence p. 
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Figure 1.4. Weighted kappa coefficients for 0.90Se  , 0.95Sp   and different values 
of prevalence p. 
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Equation Chapter 2 Section 1 

 

 

 

 

Chapter 2 

Estimation of the Parameters of a Binary 

Diagnostic Test 

 

2.1. Introduction 

In this Chapter we study the estimation of the parameters of a BDT studied in Chapter 2 

subject to two types of study: cross-sectional study and case-control study. The 

estimation of the weighted kappa coefficient subject to a case-control study is the first 

contribution to this Doctoral Thesis. For the other parameters, different methods of 

estimation are reviewed. The advantages and disadvantages of case-control design over 

the cross-sectional can be seen in the book of Pepe (2003). Summarizing, case-control 

study has some advantages over the cross-sectional study: 
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a) Case-control study is more efficient in terms of sample size requirements. 

b) Case-control study allow for the exploration of subject-related characteristics on 

the test.  

Nevertheless, the case-control study has the disadvantage that by using it we cannot 

estimate the prevalence of the disease p. Therefore, if in a case-control study we wish to 

estimate parameters that depend on the prevalence, it is necessary to have a value for the 

prevalence, e.g. an estimation obtained from health surveys, other studies, etc.  

First, we study the estimation subject to a cross-sectional study, and secondly we 

study the estimation subject to a case-control study. 

 

2.2. Estimation subject to a cross-sectional study 

The estimation of the parameters of a BDT in relation to a GS subject to a cross-

sectional study consists of applying the BDT and the GS to all of the individuals in a 

random sample sized n, giving rise to Table 2.1. 

 

Table 2.1. Frequencies subject to a cross-sectional study. 

 1T   0T   Total 

1D   1s  0s  s 

0D   1r  0r  r 

Total 1 1s r  0 0s r  n 
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2.2.1. Sensitivity and specificity 

Conditioning in variable D, the samples  1 0s ,s  and  1 0r ,r  are two independent 

samples, and it is verified that the observed frequency 1s  is the product of a binomial 

distribution  B s,Se , and the frequency 0r  is the product of a binomial distribution 

 B r,Sp . Therefore, the estimators of Se and Sp are the estimators of binomial 

proportions, i.e.  

 1 0  and  s rˆ ˆSe Sp
s r

  , (2.1) 

and the estimators of their variances are 

  
 

 
 1 1

  and  
ˆ ˆ ˆ ˆSe Se Sp Sp

ˆ ˆˆ ˆVar Se Var Sp
s r

 
  . (2.2) 

Subject to a a cross-sectional study, the estimator of the prevalence of the disease p is 

 
s

p̂
n

 . (2.3) 

The estimation of a binomial proportion has been the object of many studies. We 

present five confidence intervals (CIs) for Se and Sp : Clopper-Pearsson, Wilson, 

Agresti-Coull, Yu et al, and the arcsine CI of Martín-Andrés and Álvarez-Hernández. 

The first CI is an exact interval and the other CIs are approximate intervals that have a 

good asymptotic behaviour.  
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2.2.1.1. Clopper-Pearson CI 

Clopper and Pearson  1934  studied an exact CI for a binomial proportion. The 

 100 1 %  Clopper-Pearson CI for Se is 

 
    

    
    
1 2 1 01

1 0 2 0 1 0 1 2 1 0

1 2 1 ;2
 , 

1 2 1 ;2 1 2 1 ;2
s F s ss

s s F s s s s F s s



 

  
 
       

, (2.4) 

and for Sp the CI is 

 
    

    
    
0 2 0 10

0 1 2 1 0 1 0 2 0 1

1 2 1 ,2
 , 

1 2 1 ,2 1 2 1 ,2
r F r rr

r r F r r r r F r r



 

  
 
       

, (2.5) 

where  2 1 2, vF v  is the 2  quantile from an F-distribution with 1v  and 2v  degrees of 

freedom. 

 

2.2.1.2. Wilson score CI 

Wilson (1927) proposed, using the approximation to the normal distribution, an 

approximate CI for a binomial proportion. The Wilson CI is sometimes called the 

Wilson score CI. The  100 1 %  Wilson CI for Se is 

 
 2 2

1 2 1 2
1 22 2

1 2

ˆ ˆ1ˆ
2 4

Se Sez zs
Se z

s z s s s

 





 





 
 

  
   
 

, (2.6) 

and for Sp is 

 
 2 2

1 2 1 2
1 22 2

1 2

ˆ ˆ1ˆ
2 4

Sp Spz zr
Sp z

r z r r r

 





 





 
 

  
   
 

, (2.7) 



Chapter 2. Estimation of the parameters of a BDT 

21 
 

where 1 2z 
 is the  100 1 2 %  percentile of the standard normal distribution. 

 

2.2.1.3. Agresti-Coull CI 

The CI of Agresti and Coull  1998  is another approximate CI for a binomial 

proportion. The  100 1 %  Agresti and Coull CI for Se is 

 
 

1 2 2
1 2

1Se Se
Se z

s z












, (2.8) 

where 
2

1 1 2
2
1 2

2s z
Se

s z













 is the adjusted estimator of Se. The  100 1 %  Agresti and 

Coull CI for Sp is 

 
 

1 2 2
1 2

1Sp Sp
Sp z

r z












, (2.9) 

where 
2

0 1 2
2
1 2

2r z
Sp

r z













 is the adjusted estimator of Sp. 

 

2.2.1.4. Modified score CI 

Yu et al (2014) have proposed a CI, called modified score interval, based on a 

modification of the midpoint of the Wilson CI .The  100 1 %  modified score CI for 

Se is  
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  

4
1 2

2
1 2 1 2 1 0

2 2
1 2 1 2

53 ˆ0.5 0.5
4

z
s z z s s

Se
s z s z s



 

 



 

 



   
 

. (2.10) 

Similarly, the  100 1 %  modified score CI for Sp is 

  

4
1 2

2
1 2 1 2 0 1

2 2
1 2 1 2

53 ˆ0.5 0.5
4

z
r z z r r

Sp
r z r z r



 

 



 

 



   
 

. (2.11) 

 

2.2.1.5. Arcsine CI 

Martín-Andrés and Álvarez-Hernández (2014a) evaluated 29 approximate CIs 

(excluding the Yu et al CI) for a binomial proportions, recommending using the arcsine 

CI with continuity correction. The  100 1 %  arcsine CI with continuity correction 

for Se is 

 
 

1 22 1 1 0.5sin sin
1 4 1

zs

s s


 
 
   

, (2.12) 

and for Sp 

 
 

1 22 1 0 0.5sin sin
1 4 1

zr

r r


 
 
   

. (2.13) 

Martín-Andrés and Álvarez-Hernández (2016) have compared the performance of 

the 29 CIs studied, recommending: 

a) For 80s   ( 80r  ) and 1%  or 5%  , to use the modified score CI of Yu 

et al (2014). 
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b) For 100s   ( 100r  ) and 10%  , to use the arcsine CI with continuity 

correction of Martín-Andrés and Álvarez-Hernández (2014a). 

c) In other situations, to use the CI of Agresti and Coull (1998). 

 

2.2.2. Likelihood ratios 

The estimators of the likelihood ratios are 

 1 0

1 0

ˆ ˆ1ˆ ˆ  and  ˆ ˆ1
Se s r Se s r

LR LR
r s r sSp Sp

  
   


. (2.14) 

Applying the delta method, the estimated asymptotic variances are 

 
 

 
ˆ ˆ ˆ ˆˆ ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ and ˆˆ1

LR Se Sp LR Se Sp
Var LR LR Var LR LR

s r s rSpSp

 
   

    
             

. (2.15) 

The LRs are the ratio of the two independent binomial proportions, so that the LRs 

can be estimated applying methods to estimate the ratio of two independent binomial 

proportions. We now present several of these methods. 

 

2.2.2.1. Gart-Nam CI 

The Gart and Nam (1988) CI is a classic method to estimate the ratio of two 

independent binomial proportions. The  100 1 %  CI of Gart and Nam for LR  is 

obtained by solving the equation 
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 

  

 
 

 

1
1 2

1

11 1
1 1

1 1

s LR Sp s
z

LR Sp
LR SpSp

r Sp LR Sp s













 
 

 
 


 

, (2.16) 

where Sp  is the appropriate solution for the quadratic equation 

     
2

1 1 1 11 1 0LR Sp n r s LR s r Sp s r          . 

In a similar way, the  100 1 %  CI for LR  is obtained by solving the equation 

 
 

0
1 211

1 1

s sLR Sp
LR z

LR Sp
Sp LR Sp

rSp sLR Sp















 


 



, (2.17) 

where Sp  is the appropriate solution for the quadratic equation 

  2
0 0 0 0 0nLR Sp r s LR s r Sp s r        . 

 

2.2.2.2. Logarithmic CI 

The LRs have a non-symmetrical distribution and therefore the napierian logarithm of 

the LRs has a more symmetrical distribution which is closer to the normal distribution. 

Thus, based on the asymptotic normality of the napierian logarithms of the L̂Rs , Simel 

et al (1991) proposed the following CIs for LRs,  

   0 0
1 2

1 1

ˆexp ln s r
LR LR z

s s rr


 



  
   

  
 (2.18) 

and 
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   1 1
1 2

0 0

ˆexp ln s r
LR LR z

s s r r


 



  
   

  
. (2.19) 

 

2.2.2.3. Martín-Andrés and Álvarez-Hernández CI 

Martín-Andrés and Álvarez-Hernández (2014b) studied CIs for the ratio of two 

independent binomial proportions. The  100 1 %  CI for the LRs are 

     

  

2 2 2
1 2 1 22

1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1

2
1 1 1 2 1

ˆ ˆ2
2 4

ˆ

z z
n s r s s r r s r z n s r s r n p p s s r r

LR

r n s p z s r

 





 






                          


     

 (2.20) 

and 

     

  

2 2 2
1 2 1 22

0 0 0 0 0 0 1 2 0 0 0 0 3 4 0 0

2
0 3 1 2 0

ˆ ˆ2
2 4

ˆ

z z
n s r s s r r s r z n s r s r n p p s s r r

LR

r n s p z s r

 





 






                          


     

 (2.21) 

where 0.5i is s   , 0 5i ir r .   , 1 0s s s    , 1 0r r r    , n s r    , 1 1p̂ r r  , 

2 1p̂ s s ,   3 0p̂ r r   and 4 0p̂ s s  . If the upper limit of the interval for the LR  is 

lower than  1 1s n r    or higher than L̂R , then the upper limit of the interval is 

 
 

2 2
1 2 1 2

1 1 1 2 1 1 22 2
1 1 2

1
2 4

z z
ˆ ˆ ˆs p z s p p

ˆs p z

 





 





         
     

, 

and the upper limit of this interval is higher than  1 1n s r    or lower than L̂R , then 

the upper limit of the CI is 
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 
 

2 2
1 2 1 2

1 2 1 2 1 2 12
1

1
2 4

z z
ˆ ˆ ˆr p z r p p

ˆr p

 



 



         
    

. 

Regarding the CI for LR , if the upper limit of this CI is lower than  0 0s n r    or 

higher than L̂R , then the lower limit is 

 
 

2 2
1 2 1 2

0 3 1 2 0 3 42 2
3 1 2

1
2 4

z z
ˆ ˆ ˆs p z s p p

ˆs p z

 





 





         
     

, 

and if the upper limit of this interval is higher than  0 0n s r    or lower than L̂R , 

then the upper limit is 

 
 

2 2
1 2 1 2

0 4 1 2 0 4 32
3

1
2 4

z z
ˆ ˆ ˆr p z r p p

ˆr p

 



 



         
    

. 

The CI proposed by Martín-Andrés and Álvarez-Hernández is the interval that has a 

better asymptotic coverage. 

 

2.2.3. Predictive Values 

Conditioning in variable T, the samples  1 1,s r  and  0 0s ,r  are two independent samples 

It is verified that the frequency 1s  is the product of a binomial distribution 

 1 1B s r ,PPV  and that the observed frequency 0r  is the realization of a binomial 

distribution  0 0B s r ,NPV . Therefore, the estimators of the PVs are the estimators of 

binomial proportions, i.e. 
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 1 0

1 1 0 0

  and  s rˆ ˆPPV NPV
s r s r

 
 

, (2.22) 

and the estimators of their variances are 

  
 

 
 

1 1 0 0

1 1
  and  

ˆ ˆ ˆ ˆPPV PPV NPV NPV
ˆ ˆ ˆ ˆVar PPV Var NPV

s r s r

 
 

 
. (2.23) 

The estimation through CIs of the PVs can be carried out by applying the same CIs that 

for a binomial proportion. 

 

2.2.3.1. Clopper-Pearson CI 

The  100 1 %  Clopper-Pearson CI for PPV is 

 
    

    
    
1 2 1 11

1 1 2 1 1 1 1 2 1 1

1 2 1 ;2
 , 

1 2 1 ;2 1 2 1 ;2
s F s rs

s r F r s r s F s r



 

  
 
       

, (2.24) 

and for NPV the CI is 

 
    

    
    
0 2 0 00

0 0 2 0 0 0 0 2 0 0

1 2 1 ,2
 , 

1 2 1 ,2 1 2 1 ,2
r F r sr

r s F s r s r F r s



 

  
 
       

, (2.25) 

where  2 1 2, vF v  is the 2  quantile from an F-distribution with 1v  and 2v  degrees of 

freedom. 
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2.2.3.2. Wilson score CI 

The  100 1 %  Wilson CI for PPV is 

 
 
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 

, (2.26) 

and for NPV is 
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      
 

. (2.27) 

 

2.2.3.3. Agresti-Coull CI 

The  100 1 %  Agresti and Coull CI for the PPV 

 
 

1 2 2
1 1 1 2

1PPV PPV
PPV z

s r z











 
, (2.28) 

where 
2

1 1 2
2

1 1 1 2

2s z
PPV

s r z












 
 is the adjusted estimator of PPV. The  100 1 %  Agresti 

and Coull CI for the NPV 
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s r z

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
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, (2.29) 

where 
2
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2

0 0 1 2

2r z
NPV

s r z












 
 is the adjusted estimator of NPV. 
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2.2.3.4. Modified score CI 

The  100 1 %  modified score CI of Yu et al for PPV is 

  

4
1 2

21 1
1 2 1 2 1 1

2 2
1 1 1 2 1 1 1 2 1 1
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4
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, (2.30) 

and the  100 1 %  modified score CI for NPV is 

  

4
1 2
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1 2 1 2 0 0

2 2
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4

z
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 
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    

. (2.31) 

 

2.2.3.5. Arcsine CI 

The  100 1 %  arcsine CI of Martín-Andrés and Álvarez-Hernández (2014a) for the 

PPV is 

 
 

1 22 1 1

1 1 1 1

0.5sin sin
1 4 1

zs

s r s r


 
 
     

, (2.32) 

and for the NPV 

 
 

1 22 1 0

0 0 0 0

0.5sin sin
1 4 1

zr

s r s r


 
 
     

. (2.33) 

Martín-Andrés and Álvarez-Hernández (2016) recommend: 

a) For 1 1 80s r    0 0 80s r   and 1%  or 5%  , to use the modified score 

CI of Yu et al (2014). 
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b) For 1 1 100s r    0 0 100s r   and 10%  , to use the arcsine CI with 

continuity correction of Martín-Andrés and Álvarez-Hernández (2014a). 

c) In other situations, to use the CI of Agresti and Coull (1998). 

 

2.2.4. Weighted kappa coefficient 

Substituting in equation (1.10), or (1.13), the parameters Se, Sp and p with their 

estimators given by the equations (2.1) and (2.3) respectively, the estimator of  c  is 

  
    

1 0 0 1

1 1 0 0

ˆ
1
s r s r

c
r s r c s s r c





   

, (2.34) 

with 0 1c  . Applying the delta method, the estimated asymptotic variance of  ˆ c  is 

  
         
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1 0 1 0 0 1 1 0 1 1 0

22 2
0 1 1 0 1 1 0 0 0 1 1 1 1

223 2 2
1 0 1 1 1 0 1 1

ˆ ˆ
1 2 1 1
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1 .

nr
Var c

s n c r n cr c r s n r c r s s s r s r

s r s r c rns c rn s c s r s r s r r s

s s nr c rn s cr r r r nsr s r c s s n

  
          

          

           

 (2.35) 

Roldán-Nofuentes et al (2009) have studied different CIs for  c : Wald CI, Logit CI 

and bootstrap CI. 

 

2.2.4.1. Wald CI 

Assuming the asymptotic normality of  ˆ c , the  100 1 %  CI for  c  is 

    1 2
ˆˆ ˆc z Var c     . (2.36) 
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This CI performs well for relatively small samples  100n  . 

 

2.2.4.2. Logit CI 

Assuming the asymptotic normality of  ˆ c , the logit transformation of  ˆ c , 

      ˆ ˆ ˆlogit log 1c c c         , is closer to a normal distribution with mean 

 logit c   . The  100 1 %  CI for the  logit c    is 

    1 2
ˆˆ ˆlogit logitc z Var c 

      , where 
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nsr

    
      

              




        

 (2.37) 

Finally, the logit CI for  c  is 

      1 2
ˆˆ ˆexpit logit logitc z Var c 

      , (2.38) 

where      expit exp 1 exp         is the inverse of logit. This CI performs well for 

samples of 200 or more. 
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2.2.4.3. Bootstrap CI 

The bootstrap CI is calculated generating K samples with replacement from the sample. 

The coefficient  c  is estimate from each sample with replacement, and the bootstrap 

estimator of  c  is estimated as the average of the K estimated  i
ˆ c , i.e. 

   
1

ˆ ˆ
K

B i

i

c c K 


 , and its variance is estimated as      
2

1

ˆ ˆ 1
K

i B

k

c c K 


    . 

Then, the bias-corrected bootstrap CI (Efron and Tibshirani, 1993) is calculated. Let 

    ˆ ˆ# iA c c    be the number of bootstrap estimators that are lower than the 

estimator, and let  1
0ẑ A K , where  1   is the inverse function of the standard 

normal cumulative distribution function. Let  1 0 1 2ˆ2z z     and 

 2 0 1 2ˆ2z z    , where 1 2z 
 is the  100 1 2 th  percentile of the normal 

standard distribution, then the bias-corrected bootstrap CI is 

         1 2ˆ ˆ ,  i ic c
 

  , (2.39) 

where    ˆ j

i c


  is the jth quantile of the distribution of the K bootstrap estimations of 

 c . In general, the performance of the bootstrap CI is similar to that of the Wald CI. 

 

2.3. Estimation subject to a case-control study 

The estimation of the parameters of a BDT subject to a case-control study consists of 

applying the BDT to two random independent samples, one of 1n  individuals who have 

the disease (sample of case) and another of 0n  individuals who do not have the disease 
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(sample of control). Let us suppose that of the 1n  individuals who have the disease, in 

10n  the BDT gives a negative result and in the rest  11 1 10n n n   the BDT gives a 

positive result. In the same way, let us suppose that of the 0n  individuals without the 

disease, in 00n  the BDT gives a negative result and in the rest  01 0 00n n n   the BDT 

gives a positive result. The results are summarized in Table 2.2. The sample of 

individuals that have the disease is extracted from a population of individuals that have 

the disease (e.g. registers of diseases), and the control sample is extracted from a 

population of individuals who are known not to have the disease. 

 

Table 2.2. Frequencies subject to case-control study. 

 1T   0T   Total 

Case 11n  10n  1n  

Control 01n  00n  0n  

 

In this situation, it is verified that the observed frequency 11n  is the product of a 

binomial distribution  1B n ,Se  and the observed frequency 00n  is the product of a 

binomial distribution  0B n ,Sp . In a case-control study, the quotient  1 1 0n n n  is not 

an estimator of the disease prevalence because the sample sizes 1n  and 0n  are set by the 

researcher. Therefore, it is not possible to estimate the prevalence of the disease from a 

case-control study. 

 

 



Chapter 2. Estimation of the parameters of a BDT 

34 
 

2.3.1. Sensitivity and specificity 

The estimators of Se and Sp are the estimators of binomial proportions, i.e.  

 11 00

1 0

  and  n nˆ ˆSe Sp
n n

  , (2.40) 

and the estimators of their variances are 

  
 

 
 

1 0

1 1
  and  

ˆ ˆ ˆ ˆSe Se Sp Sp
ˆ ˆˆ ˆVar Se Var Sp

n n

 
  . (2.41) 

The CIs for Se and Sp are the same that in Section 2.2.1 but replacing 1s  by 11n , 0s  by 

10n , 1r  by 01n , 0r  by 00n , s  by 1n  and r  by 0n . 

 

2.3.1.1. Clopper-Pearson CI 

The  100 1 %  Clopper-Pearson CI (1934) for Se is 
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, (2.42) 

and for Sp the CI is 
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. (2.43) 
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2.3.1.2. Wilson score CI 

The  100 1 %  Wilson CI (1927) for Se is 
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, (2.44) 

and for Sp 
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. (2.45) 

 

2.3.1.3. Agresti-Coull CI 

The  100 1 %  Agresti and Coull (1998) CI for Se is 
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1 2 2
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1Se Se
Se z

n z
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
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
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where 
2

11 1 2
2

1 1 2

2n z
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n z


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







 is the adjusted estimator of Se. The CI for Sp is 
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where 
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2n z
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


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
 is the adjusted estimator of Sp. 
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2.3.1.4. Modified score CI 

The  100 1 %  modified score CI of Yu et al (2014) for Se is 

  

4
1 2
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1 2 1 2 11 10

2 2
1 1 2 1 1 2 1
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z
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, (2.48) 

and for Sp 

  
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. (2.49) 

 

2.3.1.5. Arcsine CI 

The  100 1 %  arcsine CI with continuity correction of Martín-Andrés and Álvarez-

Hernández (2014a) for Se is 

 
 

1 22 1 11

1 1

0.5sin sin
1 4 1
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n n


 
 
   

, (2.50) 

and for Sp 

 
 

1 22 1 00

0 0

0.5sin sin
1 4 1

zn

n n


 
 
   

. (2.51) 

The recommendations are similar to the previous case (Martín-Andrés and Álvarez-

Hernández, 2016): 

d) For 1 80n   ( 0 80n  ) and 1%   or 5%  , to use the modified score CI of 

Yu et al (2014). 
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e) For 1 100n   ( 0 100n  ) and 10%  , to use the arcsine CI with continuity 

correction of Martín-Andrés and Álvarez-Hernández (2014a). 

f) In other situations, to use the CI of Agresti and Coull (1998). 

 

2.3.2. Likelihood ratios 

The estimators of the likelihood ratios are 

 0 11 0 10

1 01 1 00

ˆ ˆ1ˆ ˆ  and  ˆ ˆ1
Se n n Se n n

LR LR
n n n nSp Sp

  
   


, (2.52) 

and applying the delta method the estimated asymptotic variances are 

 
 

 
1 0 1 0

ˆ ˆ ˆ ˆˆ ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ and ˆˆ1
LR Se Sp LR Se Sp
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n n n nSpSp

 
   

    
             

. (2.53) 

The CIs for LRs are the same that in Section 2.2.2. 

 

2.3.2.1. Gart-Nam CI 

The  100 1 %  CI of Gart and Nam (1988) for LR  is obtained by solving the 

equation 
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 
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 
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
 

, (2.54) 

where Sp  is the appropriate solution for the quadratic equation 
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       
2

1 0 01 1 11 0 11 011 1 0LR Sp n n n n LR n n Sp n n           . 

The  100 1 %  CI for LR  is obtained by solving the equation 
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, (2.55) 

where Sp  is the appropriate solution for the quadratic equation 

    2
1 0 00 1 10 0 10 00 0n n LR Sp n n LR n n Sp n n         . 

 

2.3.2.2. Logarithmic CI 

The  100 1 %  logarithmic CI (Simel et al, 1991) for LRs are 

   10 00
1 2

11 1 01 0

ˆexp ln n n
LR LR z

n n n n


 



  
   

  
 (2.56) 

and 

   11 01
1 2

10 1 00 0

ˆexp ln n n
LR LR z

n n n n


 



  
   

  
. (2.57) 

 

2.3.2.3. Martín-Andrés and Álvarez-Hernández CI 

The  100 1 %  CI of Martín-Andrés and Álvarez-Hernández (2014b) for the LRs are 

     

  

2 2
21 2 1 22

11 01 1 11 0 01 11 01 1 2 11 01 11 01 1 2 1 11 0 01

2
01 1 1 1 2 1 01

ˆ ˆ2
2 4

ˆ

z z
n n n n n n n n n z n n n n n n p p n n n n

LR
n n n p z n n

 





 








                           


      

 (2.58) 
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and 

     

  

2 2
21 2 1 22

10 00 1 10 0 00 10 00 1 2 10 00 10 00 3 4 1 10 0 00

2
00 1 3 1 2 1 00

ˆ ˆ2
2 4

ˆ

z z
n n n n n n n n n z n n n n n n p p n n n n

LR
n n n p z n n

 





 






                           


      

, (2.59) 

where 1 1 0.5i in n   , 0 0 0 5i in n .   , 1 11 10n n n    , 0 01 00n n n    , 1 0n n n    , 

1 01 0p̂ n n   , 2 11 1p̂ n n   , 3 00 0p̂ n n    and 4 10 1p̂ n n   . If the upper limit of the interval 

for the LR  is lower than  11 01n n n    or higher than L̂R , then the upper limit of the 

interval is 

 
 

2 2
1 2 1 2

11 1 1 2 11 1 22 2
1 1 1 2

1
2 4

z z
ˆ ˆ ˆn p z n p p

ˆn p z

 





 





  
        

     

, 

and the upper limit of this interval is higher than  11 01n n n    or lower than L̂R , then 

the upper limit of the CI is 

 
 

2 2
1 2 1 2

01 2 1 2 01 2 12
0 1

1
2 4

z z
ˆ ˆ ˆn p z n p p

ˆn p

 



 



  
        

    

. 

Regarding the CI for LR , if the upper limit of this CI is lower than  10 00n n n    or 

higher than L̂R , then the lower limit is 

 
 

2 2
1 2 1 2

10 3 1 2 10 3 42 2
1 3 1 2

1
2 4

z z
ˆ ˆ ˆn p z n p p

ˆn p z

 





 





  
        

     

, 

and if the upper limit of this interval is higher than  10 00n n n    or lower than L̂R , 

then the upper limit is 
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 
 

2 2
1 2 1 2

00 4 1 2 00 4 32
0 3

1
2 4

z z
ˆ ˆ ˆn p z n p p

ˆn p

 



 



  
        

    

. 

The CI proposed by Martín-Andrés and Álvarez-Hernández is the interval that has a 

better asymptotic coverage. 

 

2.3.3. Predictive values 

The PVs of a BDT depend on the Se, Sp and disease prevalence p. As the prevalence 

cannot be estimated from a case-control study, since the quotient  1 1 0n n n  is not an 

estimator of the prevalence, the PVs cannot be estimated form a case-control study. 

Therefore, in order to estimate the PVs is it necessary to know an estimation of the 

prevalence of the disease. From now on it is assumed that we have an estimation of the 

prevalence of the disease. This value can be obtained from other clinical studies, health 

surveys, etc. If p  is an estimation of the disease prevalence, then the estimators of the 

PVs are 

 11 1 0 00 1 0
2 2

11 1 0 00 1 11 0 00 1 0

  and  pn n n qn n nˆ ˆPPV NPV
pn n n qn n pn n qn n n

 
 

, (2.60) 

where 1q p  . Different CIs have been studied for the PVs subject to a case-control 

study. Mercaldo et al (2007) have studied four frequentist CIs for the PVs and Stamey 

and Holt (2010) have studied two Bayesian CIs. 
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2.3.3.1. Study of Mercaldo et al 

Mercaldo et al. (2007) have studied four CIs for the PVs subject to a case-control study, 

a Wald type CI and a logit CI, in both cases using the classical estimators and the 

adjusted estimators of Se and Sp. The  100 1 %  Wald CIs for the PVs are 

    1 2 1- 2
ˆ ˆ ˆ ˆ ˆ ˆ  and  PPV PPV z Var PPV NPV NPV z Var NPV     , (2.61) 

where 

  
 

   

 

2 2

1 0
4

ˆ ˆ ˆ ˆ1 1ˆ ˆ1
ˆ ˆ

ˆ ˆ1

Se Se Sp Sp
pq Sp pqSe

n n
Var PPV

qSe p Sp

 
    

  


  
 

  (2.62) 

and 

  

 
 

 

 

22

1 0
4

ˆ ˆ ˆ ˆ1 1ˆ ˆ1
ˆ ˆ

ˆ ˆ1

Se Se Sp Sp
pqSp pq Se

n n
Var NPV

p Se qSp

 
    

   


  
 

. (2.63) 

The  100 1 %  Wald CIs for the PVs with the adjusted estimates of Se and Sp are 

    1 2 1- 2
ˆ ˆ  and  PPV PPV z Var PPV NPV NPV z Var NPV     , (2.64) 

where 

 
   

  and  
1 1

pSe qSp
PPV NPV

pSe q Sp p Se qSp
 

   
, (2.65) 

 

2 2
1 2 1 2

1 2

1 2

ˆ ˆ
2 2  and  

z z
n Se n Sp

Se Sp
n n

  
 

  , (2.66) 
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with 2
1 2i in n z   , and 

  
 

 
 

 

 

2 2

1 0
4

1 1
1

ˆ
1

Se Se Sp Sp
pq Sp pqSe

n n
Var PPV

pSe q Sp

 
  
 


  
 

 (2.67) 

and 

  
 

 
 

 

 

22

1 0
4

1 1
1

ˆ
1

Se Se Sp Sp
pqSp pq Se

n n
Var NPV

p Se qSp

 
  
 


  
 

. (2.68) 

On the other hand, the  100 1 %  CI for the logit of the PVs are 

      1 2
ˆ ˆ ˆlogit logit logitPPV PPV z Var PPV

  
 

 (2.69) 

and 

      1 2
ˆ ˆ ˆlogit logit logitNPV NPV z Var NPV

  
 

, (2.70) 

where 

 
 

logit log log
1 1

PPV pSe
PPV

PPV q Sp

  
    

    
 

and 

 
 

logit log log
1 1

NPV qSp
NPV

NPV p Se

  
    

    
. 

Finally, the  100 1 %  logit CI for the PVs are 
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     1 2
ˆ ˆ ˆexpit logit logitVPP PPV z Var PPV

  
 

  (2.71) 

and 

     1 2
ˆ ˆ ˆexpit logit logitNPV NPV z Var NPV

  
 

, (2.72) 

where       expit exp 1 exp      is the inverse of logit. The variances, obtained 

applying the delta method, are 

  
 1 0

ˆ ˆ1ˆ ˆlogit ˆ ˆ1
Se Sp

Var PPV
n Se n Sp

   
  

 (2.73) 

and 

  
  01

ˆ ˆ1ˆ ˆlogit ˆˆ1
Se Sp

Var NPV
n Spn Se

   
  

. (2.74) 

With the adjusted estimates of Se and Sp, the logit CIs are 

     1 2
ˆexpit logit logitVPP PPV z Var PPV

  
 

  (2.75) 

and 

     1 2
ˆexpit logit logitNPV NPV z Var NPV

  
 

, (2.76) 

and where the variances are 

  
 1 0

1ˆ ˆlogit
1

Se Sp
Var PPV

n Se n Sp

   
  

 (2.77) 

and 
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  
  01

1ˆ ˆlogit
1
Se Sp

Var NPV
n Spn Se

   
  

. (2.78) 

Mercaldo et al have compared the asymptotic coverage of these four CIs, and in 

general terms, they recommend to apply the logit CI not adjusted, except when the 

estimator of a PV is equal to 1 in which case they recommend to apply the adjusted logit 

CI. 

 

2.3.3.2. Study of Stamey and Holt 

Stamey and Holt (2010) have studied two Bayesian CIs for the PVs subject to a case-

control study: a CI without assuming distribution for the prevalence, and another CI 

assuming a probability distribution for the prevalence. Stamey and Holt have also 

shown that the second CI has a better asymptotic behaviour than the first CI. A 

summary of this second CI is presented below. 

The observed frequencies 11n  and 00n  are the product of binomial distributions, i.e. 

    11 1 00 0  and  n B n ,Se n B n ,Sp  . (2.79) 

For Se and Sp, conjugate beta prior distributions are proposed, i.e.  

    1 1 2 2
ˆ ˆ,   and  ,Se Beta Sp Beta     , (2.80) 

and therefore, their posterior distributions are 

   11 1 1 11 1 00 2 0 00 2  and  ˆ ˆSe d Beta x ,n x Sp d Beta x ,n x           , (2.81) 

And for the prevalence, the model is 

    3 3   and  p Beta , y B n, p   , (2.82) 
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with posterior distribution 

  3 3p d Beta y ,n y     , (2.83) 

where  11 00 1 0d x ,x ,y,n ,n ,n , and the data  y,n  are obtained from a survey or other 

study. Then, posterior distributions for PVs is approximated via Monte Carlo sampling 

by simulating B values from the posteriors distributions (2.81) and (2.83). In each 

iteration, the generated values of Se, Sp and p are plugged in to the equations 

 
   

        
 

   

        
  and  

1 1

j j j j
j j

j j j j j j j j

p Se q Sp
PPV NPV

p Se q Sp p Se q Sp
 

   
, (2.84) 

with    1j j
q p  . Finally, from the B values of PVs, CIs based on the quantiles are 

calculated for PPV and NPV. Simulation experiments have shown that the Bayesian CI 

has a better asymptotic behaviour than the Mercaldo et al CI. 

 

2.3.4. Weighted kappa coefficient 

Subject to case-control study, Jannarone et al (1987) and Kraemer and Bloch (1990) 

have studied the point estimation of the weighted kappa coefficient, assuming that we 

have an estimation of the prevalence obtained from another study. Roldán-Nofuentes et 

al (2009) have studied various CIs (Wald, logit and bootstrap) for the weighted kappa 

coefficient subject to a cross-sectional study. The results obtained by Roldán-Nofuentes 

et al (2009), summarized in Section 2.2.4, are not valid in a case-control study, because, 

as has been pointed out previously, the quotient  1 1 0n n n  it is not an estimator of the 

prevalence of the disease. The studies by Jannarone et al (1987) and Kraemer and Bloch 

(1990) focused on studying the point estimation of the weighted kappa coefficient and 
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deducing the variance of the estimator. Therefore, it is necessary to explore this topic in 

more depth, study the estimation by CIs and study a method to determine the sample 

sizes necessary to carry out the study. 

In this Section, two objectives are studied: firstly, different approximate CIs for the 

weighted kappa coefficient subject to case-control study, and secondly we propose a 

method to determine the sample sizes (case sample and control sample) necessary to 

estimate the weighted kappa coefficient. For both objectives, it is necessary to know a 

value of the prevalence of the disease. In Section 2.3.4.1, different CIs are proposed to 

estimate this parameter subject to a case-control study. In Section 2.3.4.2, simulation 

experiments are carried out to study the asymptotic coverage of these CIs, giving some 

general rules of application. In Section 2.3.4.3, we present a method to determine the 

(case and control) sample sizes to estimate the weighted kappa coefficient with the 

precision required. In Section 2.3.4.4, the results are applied to a real example, and in 

Section 2.3.5.5 the results obtained are discussed. 

 

2.3.4.1. Approximate CIs 

The weighted kappa coefficient of a BDT is 

  
 

     

1
1 1 1

pq Se Sp
c

p p Se qSp c p pSe q Sp c


 


           

, (2.85) 

where the only unknown parameters are the Se and the Sp, since it is assumed that we 

have an estimator p of the disease prevalence. Substituting in this equation (2.85) each 

parameter with its estimator, the estimator of the weighted kappa coefficient is 
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  
 

    
11 00 10 01

10 0 00 1 11 0 01 1

ˆ
1

pq n n n n
c

p pn n qn n c q pn n qn n c





   
, (2.86) 

where 1q p  . Applying the delta method the estimation of the variance of  ˆ c  is 

 
 

 

         

2

2 2
10 11 00 01

3 3
1 0

ˆˆ ˆ ˆ

ˆ ˆ .

c
Var c

pqY

n n n n
pq c p q c pq c q c q

n n




 

 
     
 

 
           
 

 (2.87) 

The demonstration can be seen in Appendix 2.1. We will now propose several CIs for 

the weighted kappa coefficient. 

 

2.3.4.1.1. Wald CI 

The Wald CI for a parameter is well known. Assuming that we know an estimation of 

the prevalence of the disease and that the researcher has set a value of the weighting 

index c, the estimator  ˆ c  is a function of Ŝe  and of Ŝp . This situation is a particular 

case which is analysed by Koch et al (1977). Applying the results of Koch et al (1977), 

the distribution of  ˆ c  is asymptotically normal, i.e.       ˆ ˆ,dc N c Var c      . 

Based on the asymptotic normality, the  100 1 %  CI for  c  is 

    1 2
ˆˆ ˆc z Var c      (2.88) 

where 1 2z   is the  100 1 2 th  percentile of the standard normal distribution.  

This CI can also be calculated from the observed frequencies increased by a certain 

quantity, such as 0.5, 2 or 2
1 2 2z  . This procedure is very frequent in the analysis of 
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2 2  tables and in the estimation of binomial proportions (for example, Anscombe, 

1956; Agresti and Coull, 1998; Martín-Andrés and Álvarez-Hernández, 2014a) or 

combinations of them (Martín-Andrés and Álvarez-Hernández, 2014b). These 

corrections aim to improve the coverages of the CIs, especially when the samples are 

small. Let us 1 1j jm n h   and 0 0j jm n h  , with h equal to 0.5, 2 or 2
1 2 2z  , and 

0,1j  . In this situation, the adjusted estimators of the Se and the Sp are 11 1Se m m  

and 00 0Sp m m , and the estimated variances are   3
10 11 1V̂ar Se m m m  and 

  3
00 01 0V̂ar Sp m m m , with 2i im n h  . Substituting in equations (2.86) and (2.87) 

each parameter with its adjusted estimator and each frequency 
ijn  and in  with 

ijm  and 

im  we obtain the adjusted estimators of the weighted kappa coefficient  c  and the 

adjusted Wald CIs. For 5%   it holds that 2h   is approximately equal to the case 

2 2
1 2 2 1.96 2h z   . For 0h  , the expressions (2.86), (2.87) and (2.88) are obtained. 

 

2.3.4.1.2. Logit CI 

As the value of  c  is between 0 and 1, the logit transformation can be applied. 

Assuming the asymptotic normality of the logit of  ˆ c , i.e.

       ˆ ˆlogit logit , logitdc N c Var c             , the  100 1 %  CI for 

 logit c    is 

     1 2
ˆˆ ˆlogit logitc z Var c          (2.89) 

Applying the delta method it is obtained that 
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  
    

       

2

2 2

10 11 00 01

3 3
1 0

1ˆ ˆlogit
ˆ ˆˆ ˆ 1

ˆ ˆ ˆ ˆ1
,

Var c

Y c q pY Sp q Sp

n n c q Sp q Sp n n c Se p qSe

n n

    
    
  

 
    

 
 

 
 

 (2.90) 

and undoing  the logit transformation, the logit CI for t  c  is 

      1 2
ˆˆ ˆexpit logit logitc z Var c        , (2.91) 

where       expit exp 1 exp      is the inverse of logit. This CI can also be 

calculated increasing the frequencies by a quantity of h, for which we substitute 
ijn , in , 

Ŝe , Ŝp  and ˆ
c  with 

ijm , im , Se , Sp  and c  respectively for each value of h. 

 

2.3.4.1.3. Arcsine CI 

The arcsine transformation is a transformation that has been used to estimate a binomial 

proportion (Brown et al, 2001; Martín-Andrés and Álvarez-Hernández, 2014a) and is a 

transformation that stabilizes the variance. Performing the transformation 

   arcsinF c c       
 and assuming the asymptotic normality of this transformation, 

i.e.       ˆ ˆarcsin arcsin , arcsindc N c Var c   
 

, the approximate CI for 

 F c    is 

     1 2
ˆˆ ˆF c z Var F c        , (2.92) 

where the variance is estimated applying the delta method and whose expression is 
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  
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       
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2 2
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.

Var F c

pq

Y c q pY Sp q Sp c Sp p Y q Sp pY

n n q Sp c Sp q n n c p Se qSe

n n

   




          
 

 
    

 
 

 
 

 (2.93) 

As the inverse function of  arcsin c  is 2sin , then the CI for  c  is 

     2
1 2

ˆˆ ˆsin F c z Var F c 
         

. (2.94) 

As in the case of the logit CI, the arcsine CI can be calculated adding to the observed 

frequencies the quantity h, and the process is similar to that of the previous case. 

 

2.3.4.1.4. Bootstrap CI 

The bootstrap CI is calculated generating K samples with replacement from the case 

sample and another K samples with replacement based on the control sample. From 

each case sample with replacement we estimate ˆ
iSe  and from each control sample with 

replacement we estimate ˆ
iSp ; then we estimate the weighted kappa coefficient as  

  
 

   

ˆ ˆ 1
ˆ

ˆ ˆ1 1
i i

i

i i

pq Se Sp
c

p Q c qQ c


 


  
, (2.95) 

with 1,...,i K . The bootstrap estimator of the weighted kappa coefficient is estimated 

as the average of the K estimated weighted kappa coefficients, i.e.  
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  
 

1

ˆ
ˆ

K

i

i
B

c

c
K



 


, (2.96) 

and its variance is estimated as      
2

1

ˆ ˆ 1
K

i B

k

c c K 


    . We then calculate the bias-

corrected bootstrap CI (Efron and Tibshirani, 1993) as will now be shown. Let 

 ˆ ˆ# ci cA     be the number of bootstrap estimators that are lower than the estimator, 

and let  1
0ẑ A K , where  1   is the inverse function of the standard normal 

cumulative distribution function. Let  1 0 1 2ˆ2z z     and  2 0 1 2ˆ2z z    , 

where 1 2z   is the  100 1 2 th  percentile of the normal standard distribution, then 

the bias-corrected bootstrap CI is 

         1 2ˆ ˆ ,  i ic c
 

  , (2.97) 

where    ˆ j

i c


  is the jth quantile of the distribution of the K bootstrap estimations of 

 c . 

 

2.3.4.1.5. Bayesian CI 

The CIs proposed in the previous sections are frequentist and are based on the 

asymptotic normality of the maximum likelihood estimator of  c  (and of its logit and 

arcsine transformations). The problem is now approached from a Bayesian perspective. 

From the case sample it is obtained that  11 1,n Binomial n Se , and from the control 

sample  00 0,n Binomial n Sp . For sensitivity and specificity, conjugate beta prior 
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distributions are proposed, which are appropriate distributions for binomial proportions 

(as are Ŝe  and Ŝp ), i.e.  

  ˆ ,Se SeSe Beta   , (2.98) 

and 

  ˆ ,Sp SpSp Beta   . (2.99) 

For the prevalence of the disease (which is also a binomial proportion) we propose 

  ,p pp Beta    (2.100) 

and 

  *,t Binomial n p , (2.101) 

where *n  is the sample size starting from which the prevalence has been estimated, and 

t is a binomial variable that represents the number of individuals with the disease among 

the *n . The a posteriori distributions for Ŝe  and the Ŝp  are 

    10 1 00 0 11 10
ˆ , , , ,Se SeSe n n n n Beta n n     (2.102) 

and 

    10 1 00 0 00 01
ˆ , , , ,Sp SeSp n n n n Beta n n    . (2.103) 

Considering the a priori distribution (2.100) and the data *n  and t, the a posteriori 

distribution for the prevalence is 

    * *
10 1 00 0, , , , , ,p pp n n n n t n Beta t n t     . (2.104) 



Chapter 2. Estimation of the parameters of a BDT 

53 
 

Once all of the distributions are defined, the estimation of the weighted kappa 

coefficient is carried out applying the Monte Carlo method and calculating a CI based 

on quantiles. The algorithm for the Monte Carlo method is the following: 

Step 1. Set the values of the parameters of the a priori distributions of Ŝe , Ŝp  and p, 

i.e., set the values of Se , Se , 
Sp , 

Sp , 
p  and 

p . For example, a non-

informative distribution can be used, such as the distribution  1,1Beta , for each a 

priori distribution. 

Step 2. Generate the random number of each one of distributions (2.98), (2.99) and 

(2.100). 

Step 3. Generate a random number of distribution (2.101) from the random number 

generated with distribution (2.100). 

Step 4. Generate a random number of distributions (2.102), (2.103) and (2.104), 

using for this purpose the random values obtained in Steps 2 and 3. 

Step 5. Calculate  ˆ c  with equation (2.85) using the random numbers obtained in 

Step 4. If it is verified that ˆ ˆˆ 1 0Y Se Sp    , then we must go back to Step 1 (since 

for all BDTs we must demand that their Youden index be greater than 0 and, 

therefore, that  ˆ 0c  ). 

Step 6. Repeat M times Steps 1 to 5, obtaining M estimations of  c . 

Once this algorithm has been applied, from the M estimations of  c  a CI based on 

the quantiles is calculated, i.e. the  100 1 %   CI for  c  is 
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  2 1 2 ,  q q  , (2.105) 

where q  is the th  quantile of the distribution of the M estimations of  c . As the 

estimator of  c , the average of the M estimations is calculated. 

 

2.3.4.2. Simulation experiments 

Simulation experiments were carried out to study the asymptotic coverage of the CIs 

proposed in previous Section 2.3.4.1. For this purpose, 10000 random samples were 

generated, both case samples and control samples, with sizes 25, 50, 75, 100 and 200, 

for case and control samples. The nine possible combinations with    1 0, 25,50,75n n   

and the four possible combinations with    1 0, 100,200n n   have been considered, and 

therefore 13 pairs of sample sizes have been considered. The case (control) samples 

were generated from binomial distributions with parameters in  and Se (Sp). These 

random samples were generated from values of weighted kappa coefficients, and not 

setting the values of Se and of Sp, through the following method: 

1) For the weighted kappa coefficients  0  and  1  we set the values

 0.01,  0.02,...,  0.98,  0.99 . 

2) For the weighting index c  0 1c   we set the values 0.1 and 0.9. 

3) As the disease prevalence we took the values 10%, 25% and 50%. 
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4) Once the values of  0 ,  1 , c, and of p were set, the values of Se and of Sp 

were calculated solving (through the Newton-Raphson method) the system formed 

by equations (1.11) and (1.12), i.e.  

  
 
 

 
 

 

1 1
0   and  1

1 1
p Sp p Se q Se q Sp

p Se q Sp p Se q Sp
 

       
 

       
. 

5) Finally, the value of the weighted coefficient was calculated with equation (1.13), 

i.e. 

 
       

   

1 1 1 0
1 1

p Q c qQ c
c

p Q c qQ c

 


  


  
. 

Therefore, through this method the random samples were generated setting values for 

weighted kappa coefficients. We then calculated all of the CIs proposed in Section 

2.3.4.1 to 95%  5%  , calculating the coverage probability and the average length 

of each one of them. Regarding the bootstrap CI, for each one of the 10000 case and 

control samples 5000 samples with replacement were generated. As for the Bayesian CI, 

for each one of the 10000 samples, another 10000 random samples were generated 

considering several scenarios. As a priori distributions for Se and Sp, non-informative 

distributions were considered, i.e.  1,1Beta  distributions, for both parameters. For the 

prevalence of the disease, two a priori distributions were considered:  1,1Beta  and 

 * *,Beta pn qn . The first one corresponds to a non-informative distribution, and the 

second distribution is a beta distribution with an average p and one which uses 

information provided by the sample from which the estimation of the prevalence was 
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obtained. As a value of *n , we took 500 and 5000, and thus we studied the effect of this 

sample size on the asymptotic behaviour of this CI. 

The comparison of the performance of the CIs was made following criteria similar to 

those of Agreti and Coull (1998), Price and Bonnett (2004), and Martín-Andrés and 

Álvarez-Hernández (2014a, 2014b). These criteria consists of determining if the method 

“fails” for a confidence at 95%, which happens if the CI has a probability of coverage 

lower than or equal to 93% (in Appendix 2.2 this method is justified). The selection of 

the optimum CI was made with the following steps: 

1) Choosing the CIs with the fewest failures (probability of coverage 93% ) 

2) From the CIs with the fewest failures, choose those with the lowest average width 

(more accurate). 

In Tables 2.3 and 2.4 we show the probabilities of coverage and the average lengths 

of the CIs when  c  is equal to 0.1 and 0.9 (which are values close to the extremes) 

and for some sample sizes, indicating in each Table the values of Se, Sp,  0 ,  1 , c 

and p with those with which we have calculated the value of  c . Therefore, 

considering the classification of the values of the weighted kappa coefficient given by 

Cicchetti (2001), values of the weighted kappa coefficient were considered with 

different levels of clinical significance (if 0 0.40c   the level of clinical significance 

is poor; if 0.40 0.59c   the level of clinical significance is fair; if 0.60 0.74c   

the level of clinical significance is good; and if 0.75 1c   the level of clinical 

significance is excellent). In these Tables, we indicate the failures (coverage probability 

93% ) in bold, and we also indicate the coverage probabilities and lengths for the 13 
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pairs of sample sizes considered. The results obtained for 2h   are not shown since 

they are very similar to those obtained for 2
1 2 2h z  . For the Bayesian CI we only 

show the results obtained for * 500n  . From the results obtained in the scenarios 

considered and for the sample sizes studied, the following conclusions are obtained for 

each CI: 

a) Wald CI. For 0h   and 0.5h   this interval does not fail, even when the value of 

 c  is near to 0 or to 1. When the samples are small  75in   the Wald CI 0.5h   

shows, in general terms, a better performance than when 0h  ; and for larger sample 

sizes  100in   the value of h (0 or 0.5) has practically no effect on the asymptotic 

behaviour of this CI. The Wald CI with 2
1 2 2h z   (or 2h  ) has failures, especially 

when the samples are small  75in  .  

b) Logit CI. For 0h   this interval fails when  c  is near to 0   0.1c   and 

does not fail when 0.2c  ; for 0.5h   the interval does not fail when c  is not near to 

0 or 1   0.2 0.8c   and the sample sizes are large  100in  . The logit CI with 

2
1 2 2h z   (or 2h  ) has failures especially when the sample sizes are small 

 75 .in   

c) Arcsine CI. The behaviour of the arcsine CI with 0h   is very similar to that of 

the logit CI with 0h  . For 0.5h   this interval does not fail, and for 2
1 2 2h z   (or 

2h  ) has failures when the samples are small  75in  . 
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d) Bootstrap CI. The bias-corrected bootstrap CI fails when the value of  c  is near 

to the extremes (   0.2c   or   0.8c  ) and the samples are small  75in  ; for the 

rest of the values, in general terms this CI has a similar behaviour to that of Wald CI. 

e) Bayesian CI. When the a priori distribution of p is a  1,1Beta  this interval fails 

for moderate or very high values of  c . When the a priori distribution of p is a 

 * *,Beta pn qn , the Bayesian CI fails when the samples are small  75in   and the 

value of  c  is nearer to 1. For the rest of the values of  c  the behaviour of this is 

generally similar to that of Wald CI. The performance of the Bayesian CI is better when 

we use the informative beta distribution,  * *,p Beta pn qn , as when we use the non-

informative one,  1,1p Beta . This result was predictable, since the informative 

distribution introduces into the Bayesian model the information provided by the sample 

from which we estimate the disease prevalence; whereas the non-informative beta 

distribution is flat for all possible values of p and this distribution has a minimal impact 

on the a posteriori distribution of p. The performance of the Bayesian CI when 

* 5000n   is very similar to the case of * 500n  , so that the sample size with which we 

can estimate the prevalence has practically no effect on the asymptotic behaviour of the 

Bayesian CI. 

Only in terms of the sample sizes, we can give the following rules for the application 

of the CIs: 

a) When the sample sizes are small  75in  , use the Wald CI with 0.5h  , as it is 

an interval that does not fail for the values of  c  considered. 
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b) For other sample sizes  100in   use the Wald CI with 0h  , also because it is 

the only interval that does not fail. 

For sample sizes 100in   we can also use the logit and arcsine CIs (with 0h  ), 

bootstrap and Bayesian with  * *,p Beta pn qn , although these last two require a 

greater computational effort than the rest, and the Wald one is the easiest to calculate.  
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Table 2.3. Coverage probabilities and lengths of the CIs for   0.1c  . 

0 10.55  0.55  50%  0.1  0.1  0.1Se Sp p c         
Wald CI 

  0h   0.5h   2
1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.959 0.434 0.966 0.424 0.981 0.397 
25 50 0.953 0.357 0.959 0.351 0.977 0.337 
50 25 0.970 0.394 0.975 0.385 0.983 0.363 
50 50 0.961 0.319 0.964 0.315 0.974 0.305 
75 75 0.973 0.264 0.973 0.262 0.978 0.256 

100 100 0.968 0.235 0.969 0.233 0.972 0.229 
200 200 0.981 0.179 0.981 0.179 0.983 0.178 

Logit CI 
  0h   0.5h   2

1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.883 0.648 0.892 0.646 0.921 0.642 
25 50 0.886 0.594 0.889 0.594 0.919 0.593 
50 25 0.891 0.631 0.906 0.627 0.930 0.619 
50 50 0.892 0.523 0.900 0.522 0.919 0.520 
75 75 0.913 0.451 0.918 0.450 0.931 0.449 

100 100 0.934 0.397 0.938 0.397 0.942 0.396 
200 200 0.943 0.252 0.947 0.252 0.952 0.251 

Arcsine CI 
  0h   0.5h   2

1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.797 0.480 1 0.472 0.823 0.450 
25 50 0.764 0.401 1 0.397 0.792 0.384 
50 25 0.793 0.439 1 0.432 0.819 0.411 
50 50 0.873 0.360 1 0.356 0.881 0.347 
75 75 0.866 0.298 1 0.296 0.871 0.291 

100 100 0.895 0.262 1 0.261 0.900 0.257 
200 200 0.957 0.191 1 0.190 0.962 0.189 

Bootstrap CI 
Bayesian CI 

 1,1p Beta   * *,p Beta pn qn  

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.719 0.476 1 0.413 0.967 0.405 
25 50 0.796 0.365 1 0.354 0.962 0.334 
50 25 0.803 0.452 1 0.379 0.964 0.382 
50 50 0.881 0.340 1 0.315 0.971 0.307 
75 75 0.923 0.277 1 0.274 0.972 0.256 

100 100 0.932 0.244 1 0.246 0.968 0.229 
200 200 0.977 0.180 1 0.202 0.973 0.175 

Cov.: coverage probability. Leng.: length. 
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Table 2.4. Coverage probabilities and lengths of the CIs for   0.9c  . 

0 10.925  0.975  25%  0.9  0.9  0.9Se Sp p c         
Wald CI 

  0h   0.5h   2
1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.990 0.251 0.982 0.269 0.868 0.328 
25 50 0.996 0.236 0.989 0.251 0.914 0.303 
50 25 0.934 0.198 0.975 0.201 0.881 0.234 
50 50 0.932 0.174 0.986 0.181 0.912 0.205 
75 75 0.933 0.142 0.947 0.147 0.934 0.160 

100 100 0.946 0.123 0.956 0.126 0.948 0.135 
200 200 0.947 0.088 0.949 0.089 0.951 0.092 

Logit CI 
  0h   0.5h   2

1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.953 0.290 0.875 0.301 0.578 0.326 
25 50 0.963 0.281 0.947 0.289 0.665 0.305 
50 25 0.946 0.203 0.886 0.213 0.617 0.236 
50 50 0.958 0.187 0.936 0.194 0.798 0.209 
75 75 0.944 0.150 0.942 0.153 0.848 0.163 

100 100 0.958 0.128 0.952 0.130 0.886 0.137 
200 200 0.959 0.090 0.953 0.091 0.913 0.093 

Arcsine CI 
  0h   0.5h   2

1 2 2h z   

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.981 0.258 1 0.280 0.669 0.319 
25 50 0.985 0.246 1 0.265 0.829 0.296 
50 25 0.974 0.188 1 0.201 0.773 0.230 
50 50 0.933 0.172 1 0.182 0.867 0.202 
75 75 0.941 0.141 1 0.146 0.890 0.158 

100 100 0.950 0.122 1 0.125 0.923 0.134 
200 200 0.946 0.088 1 0.089 0.931 0.092 

Bootstrap CI 
Bayesian CI 

 1,1p Beta   * *,p Beta pn qn  

1n  0n  Cov. Leng. Cov. Leng. Cov. Leng. 
25 25 0.995 0.227 0.821 0.771 0.867 0.294 
25 50 0.996 0.211 0.834 0.768 0.923 0.272 
50 25 0.926 0.179 0.777 0.732 0.893 0.213 
50 50 0.904 0.162 0.861 0.726 0.944 0.186 
75 75 0.907 0.136 0.845 0.710 0.934 0.148 

100 100 0.924 0.119 0.878 0.699 0.939 0.128 
200 200 0.931 0.087 0.867 0.689 0.944 0.089 

Cov.: coverage probability. Leng.: length. 
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In Figure 2.1, we show the probabilities of coverage of the Wald CIs (Wald with 

0.5h   when 75in   and Wald with 0h   when 100in  ) obtained for values of  c  

equal to 0.2, 0.4, 0.6 and 0.8, and it can be observed that, for the sample sizes 

considered, these intervals do not fail. 

Regarding the corrections 2h   and 2
1 2 2h z  , they do not improve the 

asymptotic behaviour of the CIs, and for small samples they even have a negative effect 

on the coverage probabilities of the CIs. 
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Figure 2.1. Coverage probabilities of the Wald CIs. 
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2.3.4.3. Sample sizes 

A very important question in the study of statistical methods for diagnosis is the 

determination of the sample size necessary to be able to estimate a parameter of a BDT 

with a determined precision to a confidence  100 1 % . Then, based on the Wald CI 
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(which is an interval that in general terms performs well, both with small samples and 

with large ones), a method is proposed to calculate sample sizes 1n  and 0n  needed to 

estimate c  with a precision   and a confidence  100 1 % . Based on the 

asymptotic normality of the estimator  ˆ c , it is verified that 

      1 2ˆ ˆc c z Var c       , (2.106) 

i.e. the probability of obtaining an estimator  ˆ c  is in interval (2.106) with a 

probability  100 1 % . Let 0 1n n  . Substituting 0n  with 1n  in equation (3.32) 

(see Appendix 2.1), and setting the value of   and precision  , then it is possible to 

calculate sample size 1n  using the following expression 

  1 2 ˆz Var c     . (2.107) 

Clearing 1n  it holds that 

 

           
 

2
1 2

1

2 2 1
1 .

z c
n

pqY

Sp Sp
pq c p q c Se Se pq c q c q

 



 


 
  
 

 
            
 

 (2.108) 

If an estimation of the disease prevalence is known and setting the value of the 

weighting index c, this method requires knowledge of the values of Se, Sp and  c , 

i.e. it is necessary to know some estimators of these parameters (e.g. from pilot samples 

or other previous studies). The procedure would consist of the following steps: 

Step 1. Take two pilot samples, one with 1n  individuals who have the disease and 

another one with 0n  individuals who do not have the disease, and based on these we 
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obtain Ŝe , Ŝp ,  ˆ c  and the Wald CI. If the Wald CI calculated has a precision  , 

i.e. if 
Upper limit Lower limit

2



 , then with the two pilot samples precision has 

been achieved and the process is finished; if precision is not achieved 

Upper limit Lower limit
2


 

 
 

 then we must go to the next step. 

Step 2. From the values estimated in Step 1, calculate the new sample size 1n  with 

equation (2.108) (in this equation each parameter is substituted with its estimated 

value in Step 1) and calculate 0 1n n . 

Step 3. Take two samples, one composed of 1n  individuals with the disease and 

another composed of 0n  individuals without the disease (to samples in  from Step 1 

individuals are added until the completion of new sample sizes in ). From these new 

samples, Ŝe , Ŝp ,  ˆ c  and the Wald CI are calculated. If the Wald CI calculated 

has a precision   then with the two new samples precision has been achieved and 

the process has finished. If the Wald CI does not have the desired precision, then 

consider these two samples to be pilot samples and go to Step 1. 

The method propose to calculate the sample size is an iterative method that depends 

on the pilot samples and does not guarantee that with the sizes calculated  c  is 

estimated with precision  . Therefore, when applying this method it is necessary to 

check that with the sample sizes calculated the precision required is achieved. 

This method can be applied considering 0h   when the sizes of the pilot samples are 

100  or with 0.5h   when these sizes are lower than 100. 



Chapter 2. Estimation of the parameters of a BDT 

66 
 

2.3.4.4. Example 

The results obtained in the previous Sections were applied to the study by Patil et al 

(2013) on the assessment of ischaemia modified albumin in the diagnosis of acute 

coronary syndrome in India. This diagnostic test was applied to a sample of 102 

individuals diagnosed with coronary disease and to a sample of 110 healthy control 

individuals. In Table 2.5 (Frequencies), the data from the study are shown (the 

frequencies were calculated from the results provided by the authors). In India, the 

prevalence of coronary heart disease has been estimated at a range of 1.6% to 7.4% in 

rural populations and from 1% to 13.2% in urban populations (Gupta et al, 2008). 

Taking into account the conclusions of the simulation experiments obtained in Section 

2.3.4.2 and considering the prevalence value to be 5%, in Table 2.5 (Estimation of the 

weighted kappa coefficient) we can see the estimations of the weighted kappa 

coefficient for different values of the weighting index c. As for the Bayesian CI, two 

sample sizes have been supposed to estimate the prevalence: * 1000n   and * 5000n  .  

If the clinician considers that the false positives are more important than the false 

negatives (as is the case when ischaemia modified albumin is going to be used as a 

definitive test before a risky treatment, e.g. a surgical operation), then 0 0.5c   and 

the weighted kappa coefficient has a level of clinical significance (Cicchetti, 2001) 

which varies mainly between ‘poor’ and ‘fair’ (in terms of the 95% CIs) depending on 

the c index. For example, if the clinician considers that 0.1c  , the false positives are 9 

times more important than the false negatives, then the 95% Wald CI is  0.21 ; 0.55  

and the level of clinical significance of ischaemia modified albumin is a value between 

‘poor’ and ‘fair’ and, therefore, ischaemia modified albumin is not a useful test for the 

definitive diagnosis of coronary disease. 
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Table 2.5. Data from the study by Patil et al (2013) and estimations of  c . 

Frequencies 

 Negative test Positive test Total 

Case 12 90 102 

Control 102 8 110 

Estimation of the weighted kappa coefficient 

  ˆ Standard errorc   95% Wald CI 

c 0h   0.5h   0h   0.5h   

0.1 0.38 0.087  0.37 0.084  0.21  0.55  0.20  0.53  

0.4 0.47 0.089  0.45 0.086  0.29  0.64  0.28  0.62  

0.5 0.51 0.087  0.49 0.085  0.34  0.68  0.32  0.66  

0.6 0.55 0.084  0.54 0.082  0.39  0.72  0.38  0.70  

0.9 0.76 0.050  0.75 0.050  0.66  0.86  0.65  0.85  

 95% Logit CI 95% Arcsine CI 

c 0h   0.5h   0h   0.5h   

0.1 0.23  0.56  0.22  0.54  0.22  0.55  0.21  0.53  

0.4 0.30  0.64  0.29  0.62  0.30  0.64  0.29  0.62  

0.5 0.34  0.67  0.33  0.65  0.34  0.67  0.33  0.66  

0.6 0.39  0.71 0.38  0.69  0.39  0.71 0.38  0.69  

0.9 0.65  0.84  0.64  0.83  0.65  0.85  0.65  0.84  

 95% Bayesian CI 

  * * *1000 , ,n p Beta pn qn    * * *5000 , ,n p Beta pn qn   

c  ˆ c  95% CI  ˆ c  95% CI 

0.1 0.37 0.21  0.55  0.37 0.22  0.55  

0.4 0.45 0.29  0.63  0.45 0.30  0.63  

0.5 0.49 0.32  0.66  0.49 0.33  0.66  

0.6 0.53 0.37  0.69  0.53 0.38  0.69  

0.9 0.74 0.63  0.83 0.74 0.63  0.83  
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If the clinician considers that the false negatives are more important than the false 

positives (as is the case when ischaemia modified albumin is going to be used as a 

screening test), then 0.5 1c   and the level of clinical significance (Cicchetti, 2001) of 

the weighted kappa coefficient varies between ‘fair’ and ‘excellent’ (in terms of the 

95% CIs) depending on the c index. For example, for 0.9c  , the false negatives are 9 

times more important than the false positives, the 95% Wald CI is  0.66 ; 0.86  and the 

level of clinical significance of ischaemia modified albumin is a value between ‘good’ 

and ‘excellent’ and, therefore, this diagnostic test is very useful as a screening test. 

As for the CIs, in this example as the sample sizes 1n  and 0n  are relatively large 

 100in  , all of them are very similar. Regarding the Bayesian CI, the sample size 

from which the prevalence is estimated does not have any effect upon the intervals 

obtained. 

In order to illustrate the method described in Section 2.3.4.3 about the calculation of 

the sample sizes, let us consider that 0.9c  . In this situation, the 95% Wald CI with 

0h   is  0.66 ; 0.86  and the precision is 0.10 0.86 0.66 0.10
2
 

 
 

. As an example, 

let us consider that the clinician wishes to estimate the weighted kappa coefficient with 

a precision 0.05   and that the case sample and the control sample are the same size 

 1  . As with the samples of 102 and 110 individuals, the desired precision 

 0.05 0.10    was not achieved, then using the two previous samples as pilot 

samples ( ˆ 0.88Se   , ˆ 0.93Sp   and  ˆ 0.9 0.76  ) applying equation (2.108) it is 

obtained that 1 227n   and 0 1 227n n  . Therefore, to the initial case sample it is 

necessary to add 125 individuals with the disease and 117 individuals without the 
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disease must be added to the control sample. Once these new samples have been taken, 

it is necessary to check that the desired precision is verified. 

 

2.3.4.5. Discussion 

The weighted kappa coefficient is a valid measure to assess and compare the 

performance of BDTs, and it depends on the sensitivity and the specificity of the test, on 

the prevalence of the disease and the relative importance between the false positives and 

the false negatives (weighting index). The sensitivity and the specificity of the test are 

easily estimated, both in cross-sectional studies and in case-control studies, since they 

are estimators of binomial proportions. Regarding the weighting index, this is set by the 

clinician depending on his or her knowledge of the problem in question. The estimation 

of the weighted kappa coefficient in case-control studies requires knowledge of an 

estimation of the prevalence of the disease based on another study (or from the 

literature, etc.), since from this design it is impossible to estimate the prevalence. In this 

article, we have studied the estimation of the weighted kappa coefficient of a single 

BDT subject to case-control study assuming that we have an estimation of the 

prevalence of the disease. Fourteen approximate CIs were studied and compared for this 

parameter (thirteen were frequentist and one was Bayesian). The results of the 

simulation experiments carried out demonstrated that, in very general terms, for small 

samples  75in   it is possible to use the Wald CI with 0.5h  , and that for samples 

with 100in   the Wald, logit, arcsine (with 0h  ) and Bayesian (with  * *,Beta pn qn ) 

intervals can be used. The Bayesian CI performs well when for prevalence an a priori 

distribution  * *,Beta pn qn  is considered, where *n  is the sample size from which the 
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prevalence has been estimated. If sample size *n is not known, any value (e.g. 500 or 

5000) can be used, since the simulation experiments have demonstrated that this value 

has practically no effect upon the coverage probability and length of the interval. 

Another important question that has been studied is the calculation of the sample 

sizes 1n  and 0n  needed to estimate the weighted kappa coefficient with a determined 

precision. Therefore, and once we have set the values of index c, of the desired 

precision   and of the relation between 1n  and 0n    , a method based on the Wald CI 

has been proposed that requires knowledge of the sensitivity, the specificity and the 

weighted kappa coefficient of the BDT (e.g. from pilot samples or other studies). The 

method proposed depends on the auxiliary information (pilot samples or other studies) 

and, therefore, it does not guarantee the estimation of the weighted kappa coefficient 

with the desired precision, and thus it is necessary to check this condition once the new 

samples have been taken. 

The estimation of the weighted kappa coefficient requires knowledge of an 

estimation of the prevalence obtained from another study e.g. a health survey. To study 

the effect of a misspecification of the prevalence in the estimation of the weighted 

kappa coefficient, we carried out simulation experiments similar to those made in 

Section 2.3.4.2. For this we took as the prevalence for the inference an overestimation 

(and underestimation) equal to 10% and to 20% of the value of the prevalence set, and 

we studied the asymptotic behaviour of the intervals recommended (Wald with 0.5h   

for small samples and Wald with 0h   for large samples). In the Tables 2.6 and 2.7 we 

show some of the results obtained. The results demonstrated that slight (10%) and 
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moderate (20%) misspecifications of the disease prevalence do not have an important 

effect on the probabilities of coverage of the Wald CIs. 

 

Table 2.6. Coverage probabilities and lengths of the Wald CIs for   0.1c  . 

0.55  0.55  0.1  True prevalence 50%Se Sp c     

  True prevalence
0.10 True prevalence 55%

p 



 

 True prevalence
0.10 True prevalence 45%

p 



 

 

1n  0n  Cov. Leng. Cov. Leng. 
25 25 0.962 0.443 0.977 0.399 
25 50 0.957 0.374 0.974 0.333 
50 25 0.974 0.402 0.982 0.361 
50 50 0.955 0.331 0.973 0.295 
75 75 0.965 0.278 0.979 0.246 
100 100 0.961 0.249 0.979 0.220 
200 200 0.965 0.190 0.977 0.167 

  True prevalence
0.20 True prevalence 60%

p 



 

 True prevalence
0.20 True prevalence 40%

p 



 

 

1n  0n  Cov. Leng. Cov. Leng. 
25 25 0.953 0.460 0.987 0.371 
25 50 0.943 0.391 0.979 0.308 
50 25 0.969 0.417 0.987 0.336 
50 50 0.947 0.345 0.984 0.273 
75 75 0.958 0.291 0.987 0.227 
100 100 0.957 0.260 0.983 0.202 
200 200 0.956 0.199 0.963 0.154 

Cov.: coverage probability. Leng.: length. 
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Table 2.7. Coverage probabilities and lengths of the Wald CIs for   0.9c  . 

0.925  0.975  0.9  True prevalence 25%Se Sp c     

  True prevalence
0.10 True prevalence 27.5%

p 



 

 True prevalence
0.10 True prevalence 22.5%

p 



 

 

1n  0n  Cov. Leng. Cov. Leng. 
25 25 0.982 0.287 0.981 0.280 
25 50 0.991 0.269 0.991 0.259 
50 25 0.979 0.205 0.979 0.203 
50 50 0.986 0.188 0.986 0.182 
75 75 0.941 0.150 0.947 0.144 
100 100 0.944 0.125 0.933 0.120 
200 200 0.941 0.090 0.939 0.086 

  True prevalence
0.20 True prevalence 30%

p 



 

 True prevalence
0.20 True prevalence 20%

p 



 

 

1n  0n  Cov. Leng. Cov. Leng. 
25 25 0.982 0.292 0.981 0.278 
25 50 0.986 0.275 0.991 0.255 
50 25 0.962 0.208 0.979 0.204 
50 50 0.974 0.192 0.986 0.179 
75 75 0.960 0.154 0.947 0.142 
100 100 0.944 0.129 0.934 0.118 
200 200 0.948 0.092 0.933 0.084 

Cov.: coverage probability. Leng.: length. 

 

In this Section we have studied the estimation of the weighted kappa coefficient 

through CIs. Further research should be carried out when, subject to case-control study, 

a hypothesis test on this parameter is made i.e. 0 0: c cH    vs 1 0: c cH   , proposing 

different methods to solve this hypothesis test and also studying the sample sizes 

necessary to solve the hypothesis test to an error   and to a power  . 
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Equation Chapter 3 Section 1 

 

 

 

Chapter 3 

Comparison and Combination of two Binary 

Diagnostic Tests 

 

3.1 Introduction 

This Chapter studies the comparison of parameters of two BDTs subject to a paired 

design and the combination of two BDTs. The comparison of parameters of two BDTs is 

an important topic in the field of Statistical Methods for Diagnosis in Medicine. In this 

Chapter, the hypothesis tests and the CIs to compare the parameters of two BDTs 

subject to a paired design are presented. In this Chapter we also study the combination 

of the parameters of two BDTs. In practice, it is common to combine two BDTs in order 

to increase the accuracy of the diagnosis of the disease. The combination of the 

sensitivities and of specificities, likelihoods ratios, predictive values and weighted 

kappa coefficient of two BDTs are presented. The combination of the weighted kappa 
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coefficients of two BDTs is the second contribution of this Thesis. Each one of these 

objectives will now be studied. 

 

3.2. Comparison of two BDTs 

Let us consider two BDTs whose performance is compared in relation to the same GS. 

A paired design consists of applying the two BDTs and the GS to all the individuals in a 

random sample sized n, and the most common type of sampling when we want to 

compare the performance of two BDTs. Let 1T  and 2T  be the random binary variables 

that model the results of Test 1 and Test 2 respectively, in such a way that 1kT   when 

the result of the BDT is positive and 0kT   when the result is negative. Let D be the 

random binary variable that models the result of the GS, in such a way that 1D   when 

the individual is diseased and 0D   when the individual is non-diseased. Let 

 1 1k kSe P T D    be the sensitivity of the kth BDT and  0 0k kSp P T D    be 

the specificity;  1k k kLR Se Sp    the positive likelihood ratio and 

 1k k kLR Se Sp    the negative likelihood ratio;  1 1k kPPV P D T    the positive 

predictive value and  0 0k kNPV P D T    the negative predictive value; and  k c  

the weighted kappa coefficient of the kth BDT. Let us consider that the two BDTs and 

the GS are applied independently to all of the individuals in a sample sized n, leading to 

Table 3.1, where ijs  is the number of diseased individuals in which 1T i  and 2T j , 

and ijr  is the number of non-diseased individuals in which 1T i  and 2T j , with 

, 0,1i j  . 
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The data in Table 3.1 are the product of a multinomial distribution whose 

probabilities are shown in Table 3.2, where 

    
1 1

1 1 2 2 11 1h kh k

hk hkp p Se Se Se Se  
     

 
  (3.1) 

and 

    1 1
1 1 2 2 01 1h kh k

hk hkq q Sp Sp Sp Sp       
 

, (3.2) 

with  
1

, 0

1 hk

h k

p P D p


    , 
1

, 0

1 hk

h k

q p q


     and , 0,1h k  . The parameter 1  is the 

covariance (Vacek, 1985) between the two BDTs when 1D  , and the parameter 0  is 

the covariance between the two BDTs when 0D  , with 1hk   if h k  and 1hk    

if h k , and verifying that     1 1 2 2 10 min 1 , 1Se Se Se Se     and 

    0 1 2 2 10 min 1 , 1Sp Sp Sp Sp    . If 1 0 0    then the two BDTs are 

conditionally independent on the disease. In practice the supposition of conditional 

independence is not realistic, so that usually 1 0   and/or 0 0  . The Vacek model 

(1985) treats conditional dependence as an additive factor. Using the transformations 

 1 1 2 1 1Se Se    and    0 1 2 01 1 1Sp Sp     , the model treats conditional 

dependence as a multiplicative factor. Parameter 1  is the covariance (Berry et al, 

2002) between the BDTs when 1D  , and 0  is the covariance (Berry et al, 2002) 

between the BDTs when 0D  , and it is verified that  1 1 21 1 max ,Se Se   and 

    0 1 21 1 max 1 , 1Sp Sp    . In the case that 1 0 1    the two BDTs are 

conditionally independent on the disease.  
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Table 3.1. Frequencies when comparing two BDTs subject to a paired design. 

 1 0T   1 1T    

 2 0T   2 1T   2 0T   2 1T   Total 

1D   00s  01s  10s  11s  s 

0D   00r  01r  10r  11r  r 

Total 00n  01n  10n  11n  n 

 

 

Table 3.2. Probabilities subject to a paired design. 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   11p  10p  01p  00p  p  

0D   11q  10q  01q  00q  q  

Total 11 11p q  10 10p q  01 01p q  00 00p q  1 

 

 

3.2.1. Sensitivities and specificities 

The hypothesis test to compare two sensitivities is 

0 1 2 1 1 2:   vs  :H Se Se H Se Se  , 

that it is equivalent to checking 

0 01 10 1 01 10:   vs  :H p p H p p  . 
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Therefore, the comparison of two sensitivities is equivalent to the comparison of two 

paired binomial proportions. If 01 10 10s s   this hypothesis test is solved by applying 

the McNemar’s test (with correction continuity), i.e.  

  01 10

01 10

0.5
0,1

s s
z N

s s

 
 


. (3.3) 

If 01 10 10s s  , the hypothesis test is solved by applying the exact test to compare two 

paired binomial proportions. In this situation, the exact p-value is 

  
01 10

01 10
01 10

0

12 ,   min ,
2

s sh

i

s s
p value h s s

i





  
     

  
 . (3.4) 

The comparison of the two specificities is solved in a similar way. The hypothesis 

test to compare two specificities is 

0 1 2 1 1 2:   vs  :H Sp Sp H Sp Sp  , 

that it is equivalent to checking 

0 01 10 1 01 10:   vs  :H q q H q q  . 

If 01 10 10r r  , the McNemar’s test (with correction continuity) is 

  01 10

01 10

0,5
0,1

r r
z N

r r

 
 


. (3.5) 

If 01 10 10r r  , the exact p-value is 

  
01 10

01 10
01 10

0

12 ,   min ,
2

r rh

i

r r
p value h r r

i





  
     

  
 . (3.6) 



Chapter 3. Comparison and combination of two BDTs 

78 
 

The estimation by CIs of the difference between two paired proportions has been 

object of many studies. Agresti and Min (2005) have proposed a CI called 2Wald   for 

the differences of two paired binomial proportions, which is a CI that has good 

asymptotic coverage. In terms of data of Table 3.1, the  100 1 %  2Wald   CI for 

the difference between the two sensitivities is 

 
 

 
2

10 01
10 01

10 01
1 2 1 2

1
2

2 2

s s
s s

s s sSe Se z
s s




  

   
 

, (3.7) 

and for the difference between the two specificities the CI is 

 
 

 
2

01 10
01 10

01 10
1 2 1 2

1
2

2 2

r r
r r

r r rSp Sp z
r r




  

   
 

. (3.8) 

 

3.2.2. Likelihood ratios 

Roldán-Nofuentes and Luna del Castillo (2007) have studied the comparison of the 

likelihood ratios of two BDTs subject to a paired design. When the results of the two 

BDTs are positive, the hypothesis test to check the equality of the LRs is 

0 1: 0  vs  : 0H H    , 

and when the results of both BDTs are negative, the hypothesis test is 

0 1: 0  vs  : 0H H    , 

where 1

2

ln LR

LR







 
  

 
 and 1

2

ln LR

LR







 
  

 
. In terms of the probabilities given in Table 

3.2, the positive LRs are written as 
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 11 10 11 01
1 2

11 10 11 01

1 1  and  p p p p p p
LR LR

p q q p q q

    
 

 
, (3.9) 

and the negative LRs are written as 

 01 00 10 00
1 2

01 00 10 00

1 1  and  p p p p p p
LR LR

p q q p q q

    
 

 
. (3.10) 

Therefore, it holds that 

   
  

  
  

11 10 11 01 01 00 10 00

11 01 11 10 10 00 01 00

ln   and  ln
p p q q p p q q

p p q q p p q q
  

         
    

         
. (3.11) 

Let  00 01 10 11 00 01 10 11, , , , , , , T
p p p p q q q qπ  be a vector whose components are the 

probabilities in Table 3.2. As the probabilities 
ijp  and 

ijq  are probabilities of a 

multinomial distribution, their MLEs are ˆ ij

ij

ij

s
p

n
  and ˆ ij

ij

n
q

n
 , and the estimated 

variance-covariance matrix of π̂  is   ˆ
ˆ ˆ ˆ ˆdiag T n  
π

π ππ . The MLEs of the positive 

LRs are 

  
 

 
 

11 10 11 01
1 2

11 10 11 01

  and  
r s s r s s

LR LR
s r r s r r

  
 

 
, (3.12) 

and the MLEs of the negative LRs are 

  
 

 
 

01 00 10 00
1 2

01 00 10 00

  and  
r s s r s s

LR LR
s r r s r r

  
 

 
. (3.13) 

Then the MLEs of   and   are 

   
  

  
  

11 10 11 01 01 00 10 00

11 01 11 10 10 00 01 00

ˆ ˆln   and  ln
s s r r s s r r

s s r r s s r r
  

         
    

         
, (3.14) 



Chapter 3. Comparison and combination of two BDTs 

80 
 

and applying the delta method the estimated variance of ̂  is 

   ˆ
ˆ ˆ

ˆ ˆ
T

Var
 


 

    
    

    
π

π π π ππ π
, (3.15) 

where ̂  is ̂  or ̂ . Finally, the statistic for the hypothesis test 0 : 0H    vs 

1 : 0H    is 

 
 

 
ˆ

0,1
ˆ ˆ

n
z N

Var






  . (3.16) 

An approximate CI for   is obtained by inverting the contrast statistics (3.16), i.e.  

  1 2
ˆˆ ˆz Var    , (3.17) 

where 1 2z   is the  100 1 2 th  percentile of the normal standard distribution. The 

 100 1 %  CI for the ratio of the two positive (negative) LRs is 

  1
1 2

2

ˆˆ ˆexpLR
z Var

LR
 

  
  

, (3.18) 

where iLR  is 
iLR  or 

iLR . 

Roldán-Nofuentes et al (2007) also studied the simultaneous comparison of the LRs 

of the two BDTs. This hypothesis test consists of solving the global hypothesis test 

   0 1: 0  and  0   vs  : 0  and/or  0H H          . 

Applying the central theorem of the multivariate limit it holds that 

 11 12

12 22

ˆ 0
,

ˆ 0n
n N

  


  

 

 

     
        

       
π , (3.19) 
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where the elements of the variance-covariance matrix are estimated applying the delta 

method. In this way, if  ,
T

  ω  then 

 ˆ ˆ
ˆ ˆ

ˆ ˆ
T

 

    
     

    
πω

π π π π

ω ω

π π
, (3.20) 

and the test statistic of the global hypothesis test is 

 
12 2

ˆ 2ˆ ˆT

n
Q 




  ωω ω . (3.21) 

Finally, the comparison of the LRs of the two BDTs subject to a paired design is realised 

following the next steps: 1) Solve the global hypothesis test  0 : 0  and  0H      

to an error of   using the statistic 
12

ˆˆ ˆTQ


 ωω ω ; 2) If the global hypothesis test is not 

significant to an error of  , then the homogeneity of the LRs of the two BDTs is not 

rejected, but if the global hypothesis test is significant to an error of  , then the study 

of the causes of the significance is performed by solving hypothesis tests 0 : 0H    

and 0 : 0H    along with a multiple comparison method (e.g. Bonferroni (1936), 

Holm (1979) or Hochberg (1988)) to an error of  . 

 

3.2.3. Predictive values 

The comparison of the predictive values of two binary diagnostic tests is a topic of great 

interest in the study of Statistical Methods for Diagnosis, and has been the subject of 

many papers in the literature of Statistics. The most recent studies are: Leisenring et al 

(2000), Wang et al (2006), Roldán-Nofuentes et al (2012) and Kosinski (2013). From 

Tables 3.1 and 3.2, the MLEs of PVs are 
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 10 11 00 01
1 2

10 11 10 11 00 01 00 01

ˆ ˆ  and  s s r r
PPV PPV

s s r r s s r r

 
 

     
 (3.22) 

for Test 1, and 

 01 11 00 10
1 2

01 11 01 11 00 10 00 10

ˆ ˆ  and  s s r r
NPV NPV

s s r r s s r r

 
 

     
 (3.23) 

for Test 2. Applying the delta method, the estimated variances-covariances of the 

estimators of the predictive values are: 

 
  

 
 

  

 

 
  

 
 

  

 

 

10 11 10 11 01 11 01 11
1 22 2

10 11 10 11 01 11 01 11

00 01 00 01 00 10 00 10
1 22 2

00 01 00 01 00 10 00 10

01 10 11 1
1 2

ˆ ˆ ˆ ˆ , ,

ˆ ˆ ˆ ˆ , ,

ˆ ˆ ˆ,

s s r r s s r r
Var PPV Var PPV

n s s r r n s s r r

s s r r s s r r
Var NPV Var NPV

n s s r r n s s r r

s s r s
Cov PPV PPV

   
 

     

   
 

     




   

   

 

 
     

   

1 01 10 11 11 01 10 11 10 11
2 2

01 11 01 11 10 11 10 11

1 1

00 10 11 10 10 10 10 11 00 10 10 00 10 11
1 2 2 2

00 10 00 10 10 11 10 11

2

,

ˆ ˆ ˆ, 0,

ˆ ˆ ˆ, ,

ˆ ˆ ˆ,

r r r r s s s r r

s s r r s s r r

Cov PPV NPV

s s s r s r s s r r s r r r
Cov PPV NPV

s s r r s s r r

Cov PPV N

       

     



      
 

     

 
     

   

 

 
   

 

00 01 11 01 01 01 01 11 00 01 01 00 01 11
1 2 2

00 01 00 01 01 11 01 11

2 2

2
00 00 01 10 00 00 01 10 00 01 10 00 01

1 2 2
00 01 00 01 00 10 00

,

ˆ ˆ ˆ, 0,

ˆ ˆ ˆ,

s s s r s r s s r r s r r r
PV

s s r r s s r r

Cov PPV NPV

s r r r r r s s s s s r r
Cov NPV NPV

s s r r s s r

      
 

     



        
      

2
10

.
r

 (3.24) 

We will now describe each of these four methods to compare the PVs of two BDTs 

subject to a paired design. 
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3.2.3.1. Study of Leisenring et al 

Leisenring et al (2000) studied the comparison of the PPVs and NPVs of two BDTs 

through marginal regression models. These authors deduced score statistics to compare 

the PPVs and NPVs of two BDTs in paired designs. The score statistic for the test 

 0 1 2 1 1 2:   vs  :H PPV PPV H PPV PPV    (3.25) 

is 

    
             

2

11 1 01 1 10 1
2 2 2 2 2 2 22 2 2 2 2

11 1 1 01 1 1 10 1 1 11 1 1 01 1 1 10 1 1

1 2 1
,

1 1 2 1 1 1 1 2 1

PPVT

s Z s Z s Z

s D Z s D Z s D Z r D Z r D Z r D Z



   

           

 (3.26) 

and the score statistic for the test 

 0 1 2 1 1 2:   vs  :H NPV NPV H NPV NPV   (3.27) 

is 

    
             

2

00 2 10 2 01 2
2 2 2 2 2 2 22 2 2 2 2

00 2 2 10 2 2 01 2 2 00 2 2 10 2 2 01 2 2

1 2 1
.

1 1 2 1 1 1 1 2 1

NPVT

r Z r Z r Z

r D Z r D Z r D Z s D Z s D Z s D Z



   

           

 (3.28) 

The score statistics have a chi-squared distribution with 1 degree of freedom when the 

null hypothesis is true, and where  

11 01 11 01
1

11 01 10 11 10 012 2
s s r r

Z
s s s r r r

  

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, 11 01 10

1
11 01 10 11 10 01

2
2 2

s s s
D

s s s r r r

 


    
, 

00 10 00 10
2

00 01 10 00 01 102 2
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Z
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  

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 and 00 01 10

2
00 01 10 00 01 10

2
2 2

r r r
D

s s s r r r

 


    
. 
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3.2.3.2. Study of Wang et al 

Wang et al (2006) studied the comparison of the PVs of two BDTs through a weighted 

least square method. The statistics proposed for hypothesis tests (3.25) and (3.27) are 

 
 
 

 
 

2 2

1 2 1 22 2

1 2 1 2

ˆ ˆ ˆ ˆ
  and  ˆ ˆ ˆ ˆ ˆ ˆPPV NPV

PPV PPV NPV NPV

Var PPV PPV Var NPV NPV
 

 
 

 
, (3.29) 

respectively. Both statistics have a chi-squared distribution with 1 degree of freedom, 

and the variances are estimated by applying the delta method (equations (3.24)).  

CIs for the difference between the two PPVs and the two NPVs are obtained by 

inverting each contrast statistics (3.29), i.e. 

    1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆPPV PPV PPV PPV z Var PPV PPV      (3.30) 

and 

    1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆNPV NPV NPV NPV z Var NPV NPV     . (3.31) 

Wang et al have compared this method with the method of Leisenring et al (2000), and 

they recommend using the weighted least square method. 

 

3.2.3.3. Study of Kosinski 

Kosinski (2013) has proposed a weighted generalized score statistic to solve the 

hypothesis tests of comparison of the PVs. The weighted generalized score statistic for 

the hypothesis test (3.25) is 
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 

  

2
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


 
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  

, (3.32) 

and the weighted generalized score statistic for the hypothesis test (3.27) is 

 
 

  
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NPV NPV C
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


 
   

  

. (3.33) 

Both statistics have a chi-squared distribution with 1 degree of freedom when the null 

hypothesis is true, and where 

 11 10 01 00 01 10

11 10 01 00 01 10

2 2ˆ ˆ  and  
2 2p p

s s s r r r
PPV NPV

n n n n n n

   
 

   
 (3.34) 

are the pooled PPV and pooled NPV respectively, and 

 
   

2 22 2
11 11 00 00
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s PPV r PPV s NPV r NPV
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   
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   
. (3.35) 

CIs for the difference between the two PPVs and the two NPVs are obtained by 

inverting the contrast statistics (3.32) and (3.33), i.e. 

   1 2 1 2 1 2
10 11 01 11

1 1ˆ ˆ ˆ ˆ1 2 PPV

p p pPPV PPV PPV PPV z PPV PPV C
n n n n



 
            

 (3.36) 

and 

   1 2 1 2 1 2
00 01 00 10

1 1ˆ ˆ ˆ ˆ1 2 NPV

p p pNPV NPV NPV NPV z NPV NPV C
n n n n



 
            

. (3.37) 

Kosinski has demonstrated that his method performed better in terms of the type I 

error than methods of Leisenring et al (2000) and of Wang et al (2006). 
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3.2.3.4. Study of Roldán-Nofuentes et al 

Roldán-Nofuentes et al (2012) have studied the simultaneous comparison of the PVs of 

two BDTs in paired design, and these authors have shown that the comparison of the 

PVs should be performed simultaneously and not independently (as are the previous 

methods). The simultaneous comparison of the PVs of two BDTs consists of solving the 

hypothesis test 

 
 

 

0 1 2 2 2

1 1 2 2 2

:   and  

:   and/or  .

H PPV PPV NPV NPV

H PPV PPV NPV NPV

 

 
 (3.38) 

The contrast statistics for the hypothesis test  0 1 2 2 2:   and  H PPV PPV NPV NPV   is 

  
1

2 2
2

ˆˆ ˆT T T

n
Q 




  η φ φ φ φη  (3.39) 

where  1 2 1 2
ˆ ˆ ˆ ˆˆ , , ,

T

PPV PPV NPV NPVη , ̂  is the estimated variance-covariance matrix 

of η̂  (its elements are shown in equations (3.24)) and 
1 1 0 0
0 0 1 1

 
  

 
φ  is the 

design matrix. The statistic 2Q  (3.39) is distributed asymptotically according to a 

central chi-square distribution with two degrees of freedom if 0H  is true. To apply this 

method it is necessary that all PVs can be estimated and that matrix ˆ Tφ φ  is non-

singular. Therefore, the method cannot be applied if there are many observed 

frequencies that are equal to zero. If this global hypothesis test is significant to an error 

rate of  , the investigation of the causes of the significance is carried out by comparing 

the PPVs and the NPVs independently (for example, applying the method of Kosinski 

(2013)) and subsequently applying a method of multiple comparisons (method of Holm 

(1979) or method of Hochberg (1988)) to the same error rate of  . Simulation 
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experiments performed have shown that samples of between 300 and 500 individuals 

are necessary in order for the power of the global hypothesis test to be high ( 80%). 

 

3.2.4. Weighted kappa coefficients 

Bloch (1997) has studied the comparison of the weighted kappa coefficients of two 

BDTs subject to a paired design. The hypothesis test is 

        0 1 2 1 1 2  vs  H : c c H : c c     . (3.40) 

In terms of the probabilities of the Table 3.2, the weighted kappa coefficient of Test 1 is 

  
     

     

11 10 01 00 01 00 10 11
1 1 1

0 0 1 1
0 0

1k k k k

k k

p p q q p p q q
c

pc p q q c p q



 

    


    
 (3.41) 

and that of Test 2 is 

  
     

     

11 01 10 00 10 00 01 11
2 1 1

0 0 1 1
0 0

1h h h h

h h

p p q q p p q q
c

pc p q q c p q



 

    


    
. (3.42) 

As the probabilities hkp  and hkq  are the probabilities of the multinomial distribution, 

their estimators are hk hkp̂ s n  and hk hkq̂ r n . By substituting each parameter in the 

expressions of the weighted kappa coefficients with its estimator, the estimators of the 

weighted kappa coefficients are 

  
     

     

11 10 01 00 01 00 10 11
1 1 1

0 0 1 1
0 0

1k k k k

k k

s s r r s s r r
ˆ c

sc s r r c s r



 

    


    
 (3.43) 

and 
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  
     

     

11 01 10 00 10 00 01 11
2 1 1

0 0 1 1
0 0

1h h h h

h h

s s r r s s r r
ˆ c

sc s r r c s r



 

    


    
. (3.44) 

Finally, the statistic for the hypothesis test (3.40) is 

    

       
 1 2

1 2 1 2

ˆ ˆ
0,1

ˆˆ ˆˆ ˆ ˆ ˆ2 ,
n

c c
z N

Var c Var c Cov c c

 

   



 

           

, (3.45) 

where the expressions of the variances and the covariance have been obtained by Bloch 

applying the delta method, i.e. 

 

 

         

       

1 2
00 01 11 10

2 2
00 01 11 10 00 01 11 10

1 1 1

2 2
11 10 01 00 11 10 01 00

1 1 1

1ˆ ˆ
ˆ ˆ1

ˆ ˆ ˆˆ ˆ1 1 1

ˆ ˆ ˆˆ ˆ1 1 ,

Var c
n n n n

n cp c q
n n

n n s s n n r r
q c p c c c

n n n n

n n s s n n r r
q c c c p c

n n n n



  

  

    
  

  
 

       
        

   

       
       

    

  (3.46) 

 

 

         

       

2 2
00 10 11 01

2 2
00 10 11 01 00 10 11 01

2 2 2

2 2
11 01 10 00 11 01 10 00

2 2 2

1ˆ ˆ
ˆ ˆ1

ˆ ˆ ˆˆ ˆ1 1 1

ˆ ˆ ˆˆ ˆ1 1

Var c
n n n n

n cp c q
n n

n n s s n n r r
q c p c c c

n n n n

n n s s n n r r
q c c c p c

n n n n



  

  

    
  

  
 

       
        

   

       
       

    

  (3.47) 

and 
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   

           

     
  

      

  

1 2

00 01 11 10 00 10 11 01

200 11 11 10 11
1 2 2

2 211 00 11 10 11 10 00 01 11 0100
2 3

11 10 00 01 11

ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ1 1

ˆ ˆ ˆ1 1

ˆ ˆ

Cov c c

n

cp n n c q n n cp n n c q n n

r r n n r
c c p

n n

s s n n s s n n n ns
q q

n n n

r r n n n

 

 

   


              

    
     

  

      
   

 

       

   

        
  

  

        
  

2 201 01 00 00 10 11 10
3 3

201 00 00 10 11 10
3

11 01 11 1011
1 2 2

10 00 00 0100
2

11 10 11 0111
1 2 2

00

ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ1 1 1

ˆ ˆ

ˆ ˆ ˆ ˆ1 1 1

ˆ ˆ

n s s n n n n
p q

n n

r r n n n n
p

n

r r n nr
c c c p c p

n n

s s n ns
cq cq

n n

r r n nr
c c c p c p

n n

ss
cq cq

n

 

 

   
 

   




 
    



  
 



 
    




  

     
2201 00 00 10 00 11

12 2
ˆ ˆ 1 ,

s n n s r
c c c c

n n n
 

    
     

  

 (3.48) 

where ˆ ˆ1q p  . An approximate CI for    1 2c c   is obtained by inverting the 

contrast statistics (3.45), i.e. 

            1 2 1 2 1 2 1 2
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 ,c c z Var c Var c Cov c c                   . (3.49) 

 

3.3. Combination of two BDTs 

In disease diagnosis it is common to combine two BDTs in order to increase the 

accuracy of the diagnosis. The combination of two BDTs can be carried out in parallel 

testing or in serial testing, and in each case, with the AND rule or the OR rule (Zhou et 

al, 2002). In the parallel testing the two BDTs are applied to all the individuals in a 

sample, and in the serial testing the application of a BDT depends on the result of the 
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other BDT. The AND rule implies that the diagnosis is positive if both BDTs are positive 

and the diagnosis is negative if one of the two BDTs is negative (or both are negative). 

The OR rule implies that the diagnosis is positive if one of the two BDTs is positive (or 

both are positive), and the diagnosis is negative if both BDTs are negative. From a 

clinical perspective (Zhou et al, 2002), the serial testing has the advantage of cost-

effectiveness, because only a single test needs to be applied to some of the individuals; 

however its main disadvantage is the delay in applying the treatment for the disease, 

because this cannot be started until the result of the second test is obtained (where that 

is necessary). Marshall (1989) has studied the effect of combining two binary tests on 

the PVs of the combination and has proposed some criteria for testing when combining 

increases the value of the PVs. Lin (1999) has studied the effect of the two diagnostic 

tests on the Se and Sp of the combination of both tests. Macaskill et al (2002) have 

studied the estimation of the LRs of the combination of two BDTs in parallel testing. In 

this Chapter we summarize the results of these authors, and we make the second 

contribution of this thesis: the combination of the weighted kappa coefficients of two 

BDTs when these are applied in parallel testing with the AND rule or with the OR rule.  

 

3.3.1. Study of Marshall 

Marshall (1989) studied the combination of the predictive values of two BDTs in 

parallel testing with the AND rule and with the OR rule, proposing criteria, and their 

graphic representations, to determine when there is an increase in the PVs of the 

combination of both BDTs. The criteria proposed depend on the covariances between 

the two BDTs. Using the notation followed in Chapters 1 and 2, and supposing that 
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1 2PPV PPV  and that the covariances 1  and 0  verify  1 1 21 1 max ,Se Se   and 

    0 1 21 1 max 1 , 1Sp Sp    , since it is assumed that the association between the 

two BDTs is positive  1i  , the regions where there is and is not an increase in the 

PPVs of the combination of the two BDTs are: 

a)    1 1 0 1 1̂
ˆ ˆ ˆ ˆ ˆ, ;  ANDR PPV PPV       , with  1 2 0 21ˆ ˆ ˆˆSp Se   . 

b)    1 1 0 1 2̂
ˆ ˆ ˆ ˆ ˆ, ;  ORR PPV PPV       , with 

       2 2 0 2 1 2 1 2 1 1 21 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆSp Se Sp Se Se Sp Se Sp Se           
   

. 

c)     1 1 0 1 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆmax , , ;  AND ORR PPV PPV PPV         . 

Regarding the NPVs, the regions are: 

a)    1 1 0 1 1
ˆ ˆ ˆ ˆ ˆ ˆ, ;  ANDR NPV NPV       , with  

 1 0 1 1 1 2 11ˆ ˆ ˆ ˆ ˆˆ ˆê Se Sp Se Se Sp           
 

and 

     1 1 2 1 2 11 1 1ˆ ˆ ˆ ˆ ˆ ˆê Sp Se Sp Se Se Sp    . 

b)    1 1 0 1 2
ˆ ˆ ˆ ˆ ˆ ˆ, ;  ORR NPV NPV       , with 

       2 0 1 2 2 1 2 2 1 2 11 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆê Se Sp Se Sp Se Sp Se Se Sp          
 

. 

c)     1 1 0 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmax , , ;  AND ORR NPV NPV NPV         . 
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In the previous regions, the estimators of 1  and 0  are 11
1

1 2

ˆˆ ˆ ˆˆ
p

pSe Se
   and 

  
11

0
1 2

ˆˆ
ˆ ˆˆ 1 1

q

q Sp Sp
 

 
. 

 

3.3.2. Study of Lin 

Lin (1999) studied the sensitivity and specificity of the combination of two BDTs in 

parallel testing with the AND rule, discussing the dependence effect between the two 

BDTs. The results obtained by Lin are obvious and they are obtained from the 

probabilities given by equations (3.1) and (3.2). With the AND rule, the sensitivity and 

the specificity of the combination of the two BDTs are 

 11 10 01 00  and  AND AND

p q q q
Se Sp

p q

 
  . (3.50) 

Lin also discussed the dependence effect between the two BDTs on the PVs, as well as 

the estimation of all the parameters (sensitivity, specificity and PVs). 

 

3.3.3. Study of Macaskill et al 

Macaskill et al (2002) studied the combination of the likelihood ratios of two BDTs (a 

main test and another adjunct test) in parallel testing with the AND rule and with the OR 

rule, and compared the combined LRs in relation to those of the main test. In this 

situation, the estimators of the LRs are 

 
 
 

01 0011
1 1

11 01 00

  and  DD

D D

n n nn nˆ ˆLR LR
n n n n n

 

 

  


 


 (3.51) 
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for the main test, and  

 
 
 

10 0011

11 00 10

  and  DD
AND AND

D D

n n nn nˆ ˆLR LR
n n n n n

 

 

  


 


 (3.52) 

for the combination of the positive LRs with the AND rule, and 

 
 
 

11 10 00

0011 01

  and  D D
OR OR

DD

n n n n nˆ ˆLR LR
n nn n n

  

 

 


 


 (3.53) 

for the combination of the positive LRs with the OR rule, when ijn   ijn  is the number 

of diseased (non-diseased) individuals in which the combination of the two BDTs gives 

a result i and the main test gives a result j, with 0 1i, j , , and Dn   D
n  is the total 

number of diseased (non-diseased) individuals.  

In the situation studied by these authors, there structural zeros, since the combination 

of the two BDTs is compared in relation to a main test. With the AND rule, the number 

of diseased (non-diseased) individuals for whom the test is negative and the 

combination of the two BDTs is positive is equal to 0  01 01 0n n   . With the AND 

rule, in terms of the frequencies in Table 3.1, it is verified that 11 11n s  , 10 10n s  , 

00 01 00n s s   , 11 11n r  , 10 10n r   and 00 01 00n r r   . With the OR rule, the number of 

diseased (non-diseased) individuals for whom the test is positive and the combination of 

the two BDTs is negative is equal to 0  10 10 0n n   . With the OR rule, in terms of the 

frequencies in Table 3.1, it is verified that 11 11 10n s s   , 01 01n s  , 00 00n s  , 11 11 10n r r  

, 01 01n r   and 00 00n r  . Macaskill et al proposed CIs for 1ANDLR LR  and 1ORLR LR , i.e. 
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        1 1 2 1
1

exp log log log logAND
AND AND

LR ˆ ˆ ˆ ˆ ˆLR LR z Var LR LR
LR


      
   

  (3.54) 

and 

        1 1 2 1
1

exp log log log logOR
OR OR

LR ˆ ˆ ˆ ˆ ˆLR LR z Var LR LR
LR


      
   

, (3.55) 

where LR is LR  or LR , and the variances are estimated applying the delta method. If 

the interval is greater than 1 (the lower limit if greater than 1), then the combination of 

the two BDTs with the corresponding rule is better than the main test. 

 

3.3.4. Combination of two weighted kappa coefficients 

Let us consider two BDTs, Test 1 and Test 2, which are evaluated in relation of the same 

GS. Let hT  be the random variable which models the result of the hth BDT, in such a 

way that 1hT   when the result is positive and 0hT   when it is negative; and let D be 

the random variable which models the result of the GS, so that 1D   when the 

individual does have the disease and 0D   when the individual does not have the 

disease. Let hSe  and hSp  be the sensitivity and specificity of the hth BDT. When both 

BDTs are applied in parallel testing the probabilities given in Table 3.2 are obtained. In 

Table 3.3 the associated losses when the AND rule or the OR rule are used are shown. In 

this situation the observed frequencies (Table 3.1) are the product of a multinomial 

distribution with probabilities  11 10 01 00 11 10 01 00, , , , , , , T
p p p p q q q qπ , verifying that 

, hkh k
p p , 

, hkh k
q q  and 1p q  , where p is the prevalence of the disease. In 

the following the weighted kappa coefficient for the combination of the two BDTs is 
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defined and the conditions under which the combination of both BDTs increases the 

combined weighted kappa coefficient are studied. 

 

Table 3.3. Losses in parallel testing. 

Losses with the AND rule 

 1 1T   1 0T   

 2 1T   2 0T   2 1T   2 0T   

1D   0 L  L  L  

0D   L  0 0 0 

Losses with the OR rule 

 1 1T   1 0T   

 2 1T   2 0T   2 1T   2 0T   

1D   0 0 0 L  

0D   L  L  L  0 

 

 

3.3.4.1. Combined weighted kappa coefficient 

In parallel testing with the AND rule the combined weighted kappa coefficient is 

  
   

11 11

1 1AND

AND AND

p q q p
c

p Q c qQ c





  
, (3.56) 

where 11 11ANDQ p q   is the probability that the combination of the two BDTs will be 

positive and 11 111 1ANDQ p q     is the probability that it will be negative. With the 

OR rule the combined weighted kappa coefficient is 
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  
   

00 00

1 1OR

OR OR

q p p q
c

p Q c qQ c





  
, (3.57) 

where 00 001ORQ p q    is the probability that the combination of the two BDTs will be 

positive and 00 001 ORQ p q    that it will be negative. The proofs are shown in 

Appendix 3.1. Expressions (3.56) and (3.57) also can be written in terms of sensitivities 

and specificities by replacing in these equations 
ijp  and 

ijq  by the expressions (3.1) and 

(3.2) respectively. Then 

  
  1 1 2

AND
AND

AND

pqY
c

pc q c Se Se qY





  
  (3.58) 

where 1AND AND ANDY Se Sp    is the Youden index of the combination of the two BDTs 

in parallel testing with the AND rule, and 11ANDSe p p  and  10 01 00ANDSp q q q q    

are the sensitivity and the specificity of the combination of the two BDTs. For the OR 

rule, 

  
  1 2 1 1 2

OR
OR

OR

pqY
c

pc q c Se Se Se Se qY





    
  (3.59) 

where 1 21OR OR OR ANDY Se Sp Y Y Y       is the Youden index in parallel testing with 

the OR rule, and where  11 10 01ORSe p p p p    and 00ORSp q q  are the sensitivity 

and specificity of the combination of the two BDTs, and 1h h hY Se Sp    is the 

Youden index of the hth BDT. 

If  c  is  AND c  or  OR c  depending on the rule used, then the combined 

weighted kappa coefficient  c  verifies the following properties:  
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a)  1 1c   , however as every BDT must have a Youden index between 0 and 

1  0 1hY   then  0 1c  . 

b)  c  is an function increasing in c if Q p , decreasing if Q p  and it is a 

constant function equal to the combined Youden index Y  if Q p , where Q  is 

equal to ANDQ  or ORQ , and Y  is equal to ANDY  or ORY , respectively.  

These properties are similar to those of the weighted kappa coefficient of a BDT. The 

object pursued when two BDTs are combined is to increase the accuracy of the 

combination of both tests. In the following, the conditions under which the combination 

in parallel testing increases the value of the weighted kappa coefficient of the 

combination of both BDTs are studied, both with the AND rule and with the OR rule. 

Let us consider that the combination in parallel testing of the two BDTs increases the 

value of the combined weighted kappa coefficient if it is verified that 

      1 2maxc c , c    for a fixed value of the weighting index c. If this is not the 

case,       1 2maxc c , c    for a fixed value of c, the combination of the BDTs 

does not increase the value of the weighted kappa coefficient of the combination. In this 

situation, the combination of the two BDTs should not be carried out for this value of c, 

because it does not increase the value of  c . 

In all that follows we shall consider that if the subindex i is equal to 1 (or 2) then the 

subindex j is equal to 2 (or 1). Moreover it is assumed that the Youden indices of the 

two BDTs are between 0 and 1  0 1  1 2hY , h ,   . The situation in which a Youden 

index (or both) is equal to 1 is not contemplated, since the weighted kappa coefficient of 

the corresponding BDT is always equal to 1, and then it is always verified that 
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   AND ic c   and    OR ic c   (an increase in the combined weighted kappa 

coefficient is never produced). 

 

3.3.4.1.1. Increase with the AND rule 

Let c be the weighting index fixed by the clinician and let 

 
   

h AND AND h

h

h AND AND h

q Q Y Q Y
c

Y p Q Y p Q




  
 with 1 2h , . Then the combination of the two BDTs 

with the AND rule increases the value of the combined weighted kappa coefficient for 

the weighting index c, that is       1 2maxAND c c , c   , if one of the two following 

conditions is verified: 

a)  1 20 minc c ,c  , with 10 1c   and 20 1c  . Moreover, it is always verified 

that       1 21 min 1 1AND ,    and       1 20 max 0 0AND ,   . 

b) 0 1ic c   , 1jc   (or 0jc  ) and j ANDY Y . In this situation it is verified that 

   AND ic c   for 0 1ic c   , and    AND jc c   for 0 1c  . 

In any other situation that is different to the previous ones, the combination of the 

two BDTs in parallel testing with the AND rule never increases the value of  AND c  for 

any value of c. The proofs of these results may be seen in Appendix 3.2. 

In Figure 3.1 two graphics are shown for  AND c  and for different values of 

sensitivities, specificities, prevalence and covariances. Graphic 1 corresponds to the 

situation in which 1c  and 2c  are between 0 and 1, and hence  AND c  is greater than 

 1 c  and  2 c  for  1 20 min 0 583c c ,c .   ; and in Graphic 2 it is verified that 1c  
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is between 0 and 1, 2c  is greater than 1 and 2 ANDY Y , and therefore    1AND c c   

for 0 0 095c .   and    2AND c c   for any value of  0 1c , . 

 

Figure 3.1. Examples of combined weighted kappa coefficients with the AND rule. 

1 1 2 2

1 0

1 2

1 2

Graphic 1
0.75  0.85  0.85  0.90  10%
1.09  3.83  0.695  0.943

0.60  0.75  0.637
0.959  0.583

AND AND

AND

Se Sp Se Sp p

Se Sp

Y Y Y

c c

 

    

   

  

 

 

 

1 1 2 2

1 0

1 2

1 2

Graphic 2
0.90  0.70  0.60  0.80  50%
1.09  2.87  0.589  0.828

0.60  0.40  0.417
0.095  1.161

AND AND

AND

Se Sp Se Sp p

Se Sp

Y Y Y

c c

 

    

   

  

 

 

 

 

 

3.3.4.1.2. Increase with the OR rule 

Let c be the weighting index fixed by the clinician and let 

 
   

h OR OR h

h

h OR OR h

q Q Y Q Y
c

Y p Q Y p Q


 

  
 with 1 2h , . Then the combination in parallel testing 

with the OR rule increases the value of the combined weighted kappa coefficient for the 

weighting index c, that is       1 2maxOR c c , c   , if one of the two following 

conditions is verified: 
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a)  1 2max 1c ,c c    , with 10 1c   and 20 1c  . Moreover, it is always verified 

that       1 20 min 0 0OR ,    and       1 21 max 1 1OR ,   . 

b) 0 1ic c   , 1jc   (or 0jc  ) and 
j ORY Y . In this situation it is verified that 

   OR ic c   for 0 1ic c   , and    OR jc c   for 0 1c  . 

In any other situation that is different to the previous ones, the combination of the 

two BDTs in parallel with the OR rule never increases the value of  OR c  for any value 

of c. The proofs of these results may be seen in Appendix 3.3. 

In Figure 3.2 two graphics for  OR c  are shown, and for different values of 

sensitivities, specificities, prevalence and covariances. Graphic 1 corresponds to the 

situation in which 1c  and 2c  are between 0 and 1, and therefore  OR c  is greater than 

 1 c  and  2 c  for  1 2max 0 423 1c ,c . c     ; and in Graphic 2 it is verified that 1c  

is between 0 and 1, 2c  is greater than 1 and 2 ORY Y , so that    1OR c c   for 

0 972 1. c   and    2OR c c   for any value of  0 1c , . 
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Figure 3.2. Examples of combined weighted kappa coefficients with the OR rule. 
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1.13  2.17  0.872  0.683
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c c

 

    

   

  

  

 

 
 

 

 

3.3.4.2. Estimation and CIs 

By substituting each parameter in the expressions of the combined weighted kappa 

coefficients with its estimator, the estimators of the combined weighted kappa 

coefficients are obtained, i.e. 

  
    

11 11

11 11 11 11 1AND

s r r s
ˆ c

s n s r c r s r c





    
 (3.60) 

and 

  
    

00 00

00 00 00 00 1OR

r s s r
ˆ c

s s r c r n s r c





    
. (3.61) 
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Their asymptotic variances are obtained by applying the delta method. As π  is the 

vector of probabilities of a multinomial distribution, then   diag T

ˆ n  
π

π ππ  and 

applying the delta method we obtain that 

  
   

ˆˆ
T

c c
Var c

 


    
            

π
π π

, (3.62) 

where  ˆ c  is  AND
ˆ c  or  OR

ˆ c . By realizing the algebraic operations and 

substituting each parameter by its estimator, the expressions of the estimated variance of 

 ˆ c  is obtained. These are long and complex expressions that require the use of 

software for their calculation. 

In Section 3.3.4.1 the situations in which the combination of the two BDTs produce 

an increase of the combined weighted kappa coefficient have been analysed. These 

conditions studied are theoretical (for the parameters), so that its practical application 

does not guarantee that the combination of the two BDTs produces and increase in the 

combined weighted kappa coefficient. Thus, in practice it is necessary to study the 

increase in  c  using CIs. Therefore, once the two BDTs have been applied to all the 

n individuals of a random sample and the value of the weighting index c has been fixed 

by the clinician, it is necessary to study if the combination of the two BDTs produce 

such an increase. For this we propose a CI for    h hc c    with 1 2h , . If the CI 

is greater than 1 (that is, the lower limit is greater than 1) then  c  is (to the fixed 

confidence) larger than  h c . If this happens for 1  and 2 , then  c  is greater that 

 1 c  and that  2 c , and the combination of the two BDTs increases the value of the 

combined weighted kappa coefficient. In the case that a CI (or both) contains the value 
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1 (or is lower than the said value), then the combination of the two BDTs does not 

increase the value of the combined weighted kappa coefficient. In the following, a CI 

for h  is proposed applying the Fieller method (1940). The Fieller method is a method 

that has been used for calculating a CI for the ratio of two parameters. For this, we shall 

base it on the approximation of the estimators to the normal bivariate distribution, i.e. 

      0
T

h hn
ˆ ˆc , c N , 


  , where the matrix 

11 12

21 22
h

 

 

 
   

 
 

is estimated by applying the delta method, i.e. 

 
         

T

h h

ˆh

c , c c , c       
     

       
π

π π
, (3.63) 

where  11 Var c     ,    12 21 hCov c , c         and  22 hVar c     . By 

applying the Fieller method, it is verified that 

     2
11 12 120 2h h h hn

ˆ ˆc c N ,       


    . The Fieller CI is obtained by 

searching for the set of values for h  that satisfy the inequality 

 
   

2

2
1 22

11 12 222
h h

h h

ˆ ˆc c
z

ˆ ˆ ˆ


  

    


   
 

, (3.64) 

where 1 2z   is the  100 1 2 th  percentile of the standard normal distribution. By 

resolving the equation (3.64) one obtains that the CI for    h hc c    is 

 
2

1 1 2 3

3
h

ˆ ˆ ˆ ˆ

ˆ


    



, (3.65) 
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where     2
1 12 1 2h

ˆ ˆ ˆ ˆc c z       ,   2
2 11 1 2

ˆ ˆ ˆc z       and   2
3 22 1 2h

ˆ ˆ ˆc z      . This 

interval is valid when 2
1 2 3

ˆ ˆ ˆ     and 3 0̂  . 

On the other hand, if the combination of the two BDTs increases the value of the 

combined weighted kappa coefficient then it is of interest to calculate a CI for this 

parameter. As the values of  AND c  and of  OR c  are between 0 and 1, the logit 

transformations can be applied. The logit transformation of  ˆ c  is closer to a normal 

distribution with mean  logit c   . Thus, the  100 1 %  CI for  logit c    is 

    1 2logit logitˆˆ ˆc z Var c 
      , where   logitˆ ˆVar c 

   is obtained by 

applying the delta method. Finally the  100 1 %  logit CI for  c  is 

  
      
      

1 2

1 2

ˆˆ ˆexp logit logit

ˆˆ ˆ1 exp logit logit

c z Var c

c

c z Var c





 


 





   


    

. (3.66) 

 

3.3.4.3. Simulation experiments 

Monte Carlo simulation experiments have been carried out for studying the coverage 

probabilities of the proposed CIs in the previous Section. For this, 10000 random 

samples of multinomial distributions have been generated, whose probabilities have 

been calculated from expressions (3.1) and (3.2), and with the sizes 

 100  200  300  400  500  1000n , , , , , . The random samples have been generated from 

values of weighted kappa coefficients, and not setting the values of Se and of Sp, from 

equations (1.11) and (1.12), i.e. 
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 
 

 
1

0   and  1
1

i i i i
i i

i i

Sp Q Se Q

Q Q
 

  
 


, 

in the following way. As disease prevalence we have taken the values 10%, 25% and 

50%; as weighting index c we have taken values 0.1, 0.5 and 0.9; and for each one of 

the two BDTs we have taken as  0h  and  1h  the values 0 10  0 20  0 80  0 90. , . ,..., . , . , 

with 1 2h , . Once the values of p,  0h  and  1h  were set, the values of Se and of 

Sp of each BDT were calculated solving (through the Newton-Raphson method) the 

system formed by equations (1.11) and (1.12). Finally, the value of the weighted kappa 

coefficient was calculated with equation (1.10) (or (1.13)), i.e. 

 
 

   

1
1 1

h h

h

h h

pq Se Sp
c

p Q c qQ c


 


  
, 

where  1h h hQ pSe q Sp   . As values of each weighted kappa coefficient only the 

values    0 2  0 4  0 6  0 8h c . , . , . , .   have been considered. Therefore, considering the 

classification of the values of the weighted kappa coefficient given by Cicchetti (2001), 

values of  h c  were considered with different levels of clinical significance: poor 

  0 40h c .  , fair   0 40 0 59h. c .  , good   0 60 0 74h. c .   and excellent 

  0 75 1h. c  . As covariances 1  and 0  we have taken intermediate and high 

values. All the samples have been generated in such a way that in all of them it has been 

possible to estimate all the parameters and their variances-covariances. For the whole 

study the confidence level has been taken as 95%. 

In Table 3.4 (Fieller CI) the coverage probabilities and the average lengths of the CI 

of    1AND c c   are shown, for different values of  1 c  and  2 c , indicating in 
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each case the values of p, iSe , iSp , 1  and 0  with those with which we have 

calculated the value of  1 c ,  2 c  and  AND c . We show situations in which there 

is an increase of  AND c  and situations in which there is no an increase of  AND c  for 

the values  0 1  0 5  0 9c . , . , . . The results for the CI of    2AND c c   are not shown 

because they are very similar to those obtained for    1AND c c  . In general terms the 

Fieller CI presents a coverage probability that fluctuates around 95%, although the 

coverage probability may overestimate the desired coverage of 95% when the sample 

size is relatively small  100-200n  . With regard to the CI for  AND c  the results are 

shown in Table 3.4 (Logit CI). The scenarios are the same as for the Fieller CI. In 

general terms, the coverage probabilities of the logit CI fluctuate around 95%, although 

they may overestimate the desired coverage of 95% when the sample size is 100-200. 

In Table 3.5 the coverage probabilities and the average lengths of the CI of 

   1OR c c   (Fieller CI) and of the CI of  OR c  (Logit CI) are shown, for different 

values of all parameters. We show situations in which there is an increase of  OR c  

and situations in which there is no an increase of  OR c  for  0 1  0 5  0 9c . , . , . . The 

results for the CI of    2OR c c   are not shown because they are very similar to those 

obtained for    1OR c c  . In general terms the Fieller CI of    1OR c c   and the 

Logit CI of  OR c  have a behaviour very similar to the CIs of    1AND c c   and of 

 AND c . 
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Table 3.4. Coverage probabilities and average lengths of the CI for    1AND c c   and 

of the CI for  AND c . 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.6  0.1 0.2
0.1 0.426

10%
0.85  0.90
0.75  0.85

1.281  6.75

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.4  0.5 0.4
0.5 0.449

10%
0.6727  0.8727
0.6727  0.8727
1.243  4.429

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.6  0.9 0.8
0.9 0.572

10%
0.64  0.96
0.82  0.98
1.110  13

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.941 1.357 0.987 0.639 0.978 1.702 0.980 0.485 0.985 0.795 0.989 0.522 
200 0.951 0.877 0.969 0.528 0.975 0.843 0.974 0.370 0.981 0.440 0.978 0.403 
300 0.959 0.719 0.959 0.458 0.953 0.594 0.956 0.306 0.963 0.318 0.961 0.338 
400 0.957 0.619 0.958 0.407 0.950 0.491 0.952 0.268 0.961 0.260 0.959 0.296 
500 0.947 0.552 0.958 0.370 0.947 0.429 0.956 0.241 0.956 0.226 0.957 0.267 
1000 0.946 0.385 0.953 0.269 0.950 0.292 0.944 0.172 0.948 0.155 0.954 0.191 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.6  0.1 0.4
0.1 0.530

25%
0.70  0.90
0.55  0.85
1.386  6.1

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.4  0.5 0.4
0.5 0.458

25%
0.76  0.72
0.76  0.72

1.158  2.286

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.8  0.9 0.8
0.9 0.820

25%
0.9429  0.7429
0.9429  0.7429
1.030  2.444

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.947 0.494 0.969 0.435 0.971 1.065 0.976 0.367 0.978 0.328 0.939 0.348 
200 0.951 0.293 0.953 0.319 0.957 0.525 0.962 0.265 0.971 0.185 0.959 0.224 
300 0.955 0.226 0.957 0.264 0.944 0.408 0.952 0.218 0.960 0.141 0.961 0.174 
400 0.957 0.193 0.953 0.230 0.954 0.347 0.945 0.190 0.958 0.119 0.956 0.148 
500 0.946 0.169 0.948 0.207 0.951 0.305 0.957 0.170 0.953 0.104 0.957 0.131 
1000 0.949 0.118 0.955 0.147 0.958 0.211 0.947 0.121 0.935 0.073 0.941 0.092 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.4  0.1 0.6
0.1 0.619

50%
0.70  0.70
0.80  0.80

1.125  2.167

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.8  0.5 0.6
0.5 0.7

50%
0.90  0.90
0.80  0.80
1.1  4.6

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.8  0.9 0.8
0.9 0.824

50%
0.9692  0.5846
0.9692  0.5846
1.016  1.704

AND

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.943 2.519 0.966 0.362 0.939 0.249 0.957 0.275 0.980 0.307 0.935 0.317 
200 0.941 0.997 0.958 0.265 0.942 0.166 0.956 0.195 0.972 0.172 0.951 0.201 
300 0.944 0.746 0.953 0.218 0.947 0.133 0.953 0.160 0.961 0.131 0.960 0.156 
400 0.947 0.620 0.946 0.190 0.951 0.114 0.958 0.139 0.959 0.111 0.956 0.133 
500 0.945 0.541 0.951 0.171 0.948 0.101 0.941 0.124 0.956 0.098 0.952 0.118 
1000 0.956 0.372 0.941 0.121 0.952 0.071 0.958 0.088 0.947 0.069 0.948 0.083 

Cov.: coverage probability. Leng.: average length. 
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Table 3.5. Coverage probabilities and average lengths of the CI for    1OR c c   and 

of the CI for  OR c . 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.6  0.1 0.2
0.1 0.392

10%
0.64  0.96
0.28  0.92

1.281  6.75

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.4  0.5 0.4
0.5 0.474

10%
0.3368  0.9789
0.3368  0.9789
1.438  7.171

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.6  0.9 0.8
0.9 0.828

10%
0.64  0.96
0.82  0.98
1.110  13

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.943 0.975 0.977 0.442 0.980 5.117 0.985 0.490 0.966 3.121 0.979 0.425 
200 0.946 0.456 0.967 0.334 0.971 3.323 0.983 0.393 0.938 1.070 0.974 0.297 
300 0.947 0.335 0.957 0.278 0.953 1.331 0.960 0.333 0.945 0.794 0.961 0.239 
400 0.953 0.283 0.951 0.242 0.943 0.929 0.957 0.293 0.938 0.670 0.942 0.207 
500 0.950 0.251 0.952 0.218 0.946 0.662 0.955 0.264 0.947 0.577 0.945 0.185 
1000 0.948 0.173 0.947 0.155 0.948 0.405 0.956 0.189 0.949 0.393 0.947 0.132 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.6  0.1 0.4
0.1 0.478

25%
0.70  0.90
0.55  0.85
1.386  6.1

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.4  0.5 0.4
0.5 0.410

25%
0.40  0.9429
0.76  0.72

1.158  2.286

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.8  0.9 0.4
0.9 0.514

25%
0.9429  0.7429
0.8667  0.40
1.030  1.333

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.941 0.420 0.969 0.368 0.942 3.218 0.976 0.328 0.976 0.483 0.980 0.393 
200 0.940 0.270 0.956 0.270 0.944 1.162 0.959 0.238 0.966 0.289 0.974 0.266 
300 0.948 0.216 0.958 0.223 0.945 0.782 0.960 0.195 0.955 0.225 0.959 0.213 
400 0.953 0.186 0.954 0.195 0.946 0.640 0.952 0.170 0.953 0.191 0.957 0.185 
500 0.947 0.166 0.955 0.175 0.948 0.558 0.947 0.152 0.948 0.169 0.948 0.165 
1000 0.949 0.116 0.954 0.124 0.947 0.377 0.951 0.108 0.948 0.118 0.946 0.117 

 

   
 

1 2

1 1

2 2

1 0

0.1 0.4  0.1 0.4
0.1 0.447

50%
0.2286  0.9429
0.2286  0.9429

2.688  9.25

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.5 0.8  0.5 0.6
0.5 0.7

50%
0.90  0.90
0.80  0.80
1.1  4.6

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

   
 

1 2

1 1

2 2

1 0

0.9 0.8  0.9 0.8
0.9 0.824

50%
0.9692  0.5846
0.9429  0.2286
1.016  1.148

OR

p

Se Sp

Se Sp

 



 

 





 

 

 

 

 Fieller CI Logit CI Fieller CI Logit CI Fieller CI Logit CI 

n Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. 

100 0.961 3.521 0.978 0.469 0.940 0.251 0.954 0.275 0.979 0.601 0.981 0.462 
200 0.959 1.491 0.974 0.347 0.942 0.166 0.958 0.195 0.961 0.389 0.976 0.328 
300 0.957 0.887 0.958 0.285 0.946 0.132 0.952 0.160 0.958 0.305 0.960 0.266 
400 0.956 0.569 0.954 0.249 0.950 0.114 0.956 0.139 0.949 0.260 0.958 0.229 
500 0.949 0.477 0.957 0.224 0.943 0.101 0.949 0.124 0.950 0.230 0.952 0.205 
1000 0.951 0.305 0.950 0.160 0.958 0.071 0.957 0.088 0.947 0.162 0.947 0.146 

Cov.: coverage probability. Leng.: average length. 
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3.3.4.4. Program in R 

A program has been written in R to solve this problem. This program, called “cwkc” 

(Combination of Weighted Kappa Coefficients), is executed with the command 

 11 10 01 00 11 10 01 00cwkc s ,s ,s ,s ,r ,r ,r ,r ,indexc,rule  

when the CIs are calculated to a confidence of 95%, where 
ijs  and 

ijr  are the observed 

frequencies, indexc the value of the weighting index c, and rule is equal to “and” 

(including commas) when the AND rule is used and is equal to “or” when the OR rule is 

used. The command is 

 11 10 01 00 11 10 01 00cwkc s ,s ,s ,s ,r ,r ,r ,r ,indexc,rule,conflevel  

when the confidence level is  100 %conflevel . First, the program always checks that 

all the initial values are correct; where this is not so, an error message is given. The 

program produces the estimations of the weighted kappa coefficients of the BDTs and 

their standard errors, the estimation of the combined weighted kappa coefficient and its 

standard error, and the CIs proposed in Section 3.3.4.2. The program also carries out a 

similar graph to those shown in Figures 3.1 and 3.2, and which is kept in a file called 

“Graph_cwkc.jpg” in the same folder from where the program is run. In this graph the 

values of hc  (or hc ) are indicated, provided that their values are between 0 and 1. 

Similarly, the results obtained when running the program are kept in a file called 

“Results_cwkc.txt” in the same folder from where the program is run. The program is 

written in the Appendix 3.4. 
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3.3.4.5. Example 

The results obtained have been applied to the study of Weiner et al (1979) on the 

diagnosis of coronary disease, using the clinical history (Test 1) and the exercise test 

(Test 2) as diagnostic tests, and the coronary angiography as GS. Weiner et al applied 

the two BDTs and the GS to a sample of 871 individuals. The results of this study are 

shown in Table 3.6, where the variable 1T  models the result of the clinical history, 2T  

models the result of the exercise test, and D the result of the coronary angiography. In 

the following, the results of the two BDTs being combined with the AND rule and with 

the OR are analysed. 

 

Table 3.6. Data of the study of Weiner et al (1979). 

 1 1T   1 0T    

 2 1T   2 0T   2 1T   2 0T   Total 

1D   473 81 29 25 608 

0D   22 44 46 151 263 

Total 495 125 75 176 871 

 

 

3.3.4.5.1. AND rule 

By executing the program “cwkc” with the command 

 cwkc 473 81 29 25 22 44 46 151, , , , , , , ,indexc,"and" , 

one obtains the Figure 3.3, independently of the index c chosen by the researcher, as 

well as the values of hc , where 1 0 377c .  and 2 0 921c . . By analysing this graph one 
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finds that       1 2AND
ˆ ˆ ˆc c , c    if 0 377c . . This result indicates that, in terms of 

the estimators, the combination of the two BDTs increases the value of  AND
ˆ c  if the 

clinician is more concerned with the false positives of the combination of the two BDTs 

(for example, when the combination of the two BDTs is used as a previous step to a 

risky treatment), but always for 0 0 377c .  . If the clinician is more concerned with 

the false negatives of the combination of the two BDTs (for example, when the 

combination of the two BDTs is used as a screening test), then    1AND
ˆ ˆc c   for any 

value 0 5 1. c   and the combination of the two BDTs never increases the value of 

 AND
ˆ c . 

 

Figure 3.3. Graphic of the study of Weiner et al with the AND rule. 
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In order to illustrate the method, let us consider the values 0.1 and 0.3, that are lower 

values than 0.377, as weighting indices. In Table 3.7 the results are shown. For 0 1c .  

the CIs for    10 1 0 1AND . .   and    20 1 0 1AND . .   are larger than 1 (the lower limit 

is greater than 1) and this indicates that       1 20 1 0 1 0 1AND . . , .   , and so, the 

combination of the two BDTs increases (to a 95% confidence level) the value of the 

weighted kappa coefficient. By interpreting the logit CI one obtains that  0 1AND .  is, 

with the confidence of 95%, a value between 0.738 and 0.839, which indicates that the 

level of clinical significance between the combination of the two BDTs and the GS is 

excellent (Cicchetti, 2001). For 0 3c .  the CI for    10 3 0 3AND . .   contains the value 

1, which indicates that  0 3AND .  is not (to a 95% confidence level) greater than 

 1 0 3. . Therefore, the combination of the two BDTs does not increase (to a 95% 

confidence level) the value of the combined weighted kappa coefficient. The CI for 

   20 3 0 3AND . .   is greater than 1, and this indicates that  0 3AND .  is (to a 95% 

confidence level) greater than  2 0 3. . Therefore the combination of the two BDTs has 

a weighted kappa coefficient greater than that of the Test 2, but is not higher than that of 

the Test 1.  

For any value of the index c greater than 0.377, the value of    1AND
ˆ ˆc c   is less 

than 1. In this situation, the CI contains the value    1AND
ˆ ˆc c  , so that the CI is less 

than 1 (the upper limit of the CI is less than 1) or the CI contains the value 1, and in 

both cases the combination of the two BDTs with the AND rule does not produce (to a 

95% confidence level) an increase of  AND c . 
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Table 3.7. Results obtained when combining the two weighted kappa coefficients with 
the AND rule. 

 0.1c   0.3c   

 Test 1 Test 2 Test 1 Test 2 

 ˆ
h c SE   0.652 0.0322  0.592 0.0345  0.660 0.0291  0.567 0.0311  

ĥY  0.660 0.567 0.660 0.567 

 ˆ
AND c SE   0.793 0.0256  0.695 0.0249  

ÂNDY  0.694 0.694 

Fieller CI for 
   1AND c c    1.121 ,  1.328   0.972 ,  1.144  

Fieller CI for 
   2AND c c    1.222 ,  1.483   1.128 ,  1.340  

Logit CI for 
 AND c   0.738 ,  0.839   0.644 ,  0.742  

 

 

3.3.4.5.2. OR rule 

By executing the program “cwkc” with the command 

 cwkc 473 81 29 25 22 44 46 151, , , , , , , ,indexc," or" , 

one obtains the Figure 3.4, independently of the index c chosen, as well as the values of 

hc , with 1 0 759c .   and 2 0 392c .  . By analysing this graph one finds that 

      1 2OR
ˆ ˆ ˆc c , c    if 0 759c . . This result indicates that, in terms of the 

estimators, the combination of the two BDTs increases the value of  OR
ˆ c  if the 

clinician has more concern for the false negative of the combination of the two BDTs, 

but always for 0 759 1. c  . If the clinician has more concern for the false positives 
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 0 0 5c .   of the combination of the two BDTs, then       1 2OR
ˆ ˆ ˆc c , c    and the 

combination of the two BDTs never increases the value of  OR
ˆ c . 

 

Figure 3.4. Graphic of the study of Weiner et al with the OR rule. 

 

 

 

In order to illustrate the method, we shall take as weighting indices the values 0.8 

and 0.9, which are lower values than 0.759. In Table 3.8 the results obtained are shown. 

For 0 8c .  the CI for    10 8 0 8OR . .   contains the value 1, which indicates that 

 0 8OR .  is not (95% confidence level) greater than  1 0 8. . Therefore, the 

combination of the two BDTs does not increase (to a 95% confidence level) the value of 

the combined weighted kappa coefficient. The CI for    20 8 0 8OR . .   is greater than 

1, which indicates that  0 8OR .  is (to a 95% confidence level) greater than  2 0 8. . 

Hence, the combination of the two BDTs has a weighted kappa coefficient greater than 
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that of Test 2, but is not greater than that of Test 1. For 0 9c .  the CIs for 

   10 9 0 9OR . .   and    20 9 0 9OR . .   are greater than 1, which indicates than 

      1 20 9 0 9 0 9OR . . , .    and therefore the combination of the two BDTs increases 

(to a 95% confidence level) the value of the combined weighted kappa coefficient. By 

interpreting the logit CI one obtains that  0 9OR .  is, with a 95% confidence level, a 

value between 0.676 and 0.802, which indicates that the level of clinical significance 

between the combination of the two BDTs and the GS is a value between good and 

excellent (Cicchetti, 2001). 

For any value of the index c lower than 0.759, the value of    1OR
ˆ ˆc c   is less than 

1. The CI will contains the value    1OR
ˆ ˆc c  , so that the CI is less than 1 or it 

contains the value 1, and in both cases the combination of the two BDTs with the OR 

rule does not produce (to a 95% confidence level) an increase of  OR c . 
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Table 3.8. Results obtained when combining the two weighted kappa coefficients with 
the OR rule. 

 0.8c   0.9c   

 Test 1 Test 2 Test 1 Test 2 

 ˆ
h c SE   0.682 0.0300  0.514 0.0318  0.687 0.0319  0.505 0.0327  

ĥY  0.660 0.567 0.660 0.567 

 ˆ
OR c SE   0.698 0.0304  0.744 0.0322  

ÔRY  0.533 0.533 

Fieller CI for 
   1OR c c    0.951 ,  1.099   1.008 ,  1.164  

Fieller CI for 
   2OR c c    1.225 ,  1.515   1.325 ,  1.654  

Logit CI for 
 OR c   0.635 ,  0.754   0.676 ,  0.802  

 

 

3.3.4.6. Discussion 

The combination of BDTs for incrementing the accuracy of the diagnosis of a disease is 

common in clinical practice. It consists in combining the results of the two tests using a 

suitable method and then estimating the parameters of the combination of both BDTs. In 

Section 3.3.4 we study the combination of the weighted kappa coefficients of two BDTs 

when the combination is in parallel testing under the rules AND and OR. The combined 

weighted kappa coefficient and its properties have been defined and the conditions 

under which the combination of the two BDTs increases the value of the combined 

weighted kappa coefficient have been studied. The conditions studied are theoretical 



Chapter 3. Comparison and combination of two BDTs 

117 
 

conditions (for the parameters), so that its practical application does not guarantee that 

the increase in the combined weighted kappa coefficient will be produced, although 

they can help to give a view of the problem. Thus, in practice, and as we carried out in 

the example of Weiner et al (1979), it is necessary to study the increase in  c  using 

CIs. 

The CIs proposed are approximate intervals, based on the asymptotic normality of 

the estimators. The simulation experiments carried out have shown that the coverage 

probabilities of these CIs can exceed the confidence level when the samples are not very 

large (sizes 100-200), and this may be due to the fact that the convergence of the 

multinomial distribution (which is the probability distribution inherent of the observed 

data) with the normal distribution is slow and requiring larger sample sizes. For larger 

sample sizes, the CIs proposed have a coverage probability fluctuating around the 95% 

confidence level. 

An alternative CI to Fieller method is obtained by applying the transformation of the 

naperian logarithm. Assuming that     ln 0 lnh hn
ˆ N ,Var 


    , then an 

approximate CI for h  is   1 2exp lnh h
ˆ ˆˆz Var 

  
 

, where  ln h
ˆV̂ar  

 
 is 

obtained by applying the delta method in a similar way as is indicated in the equation 

(3.62) but with  ln h̂ . Simulation experiments (similar to those made in Section 

3.3.4.3) have been carried out, obtaining that this CI has a very similar behaviour to the 

Fieller method when the sample size is 300 ; for samples of sizes 100 or 200, the 

coverage probability of this CI exceeds 95% or does not attain that coverage (and in 

some cases is below 90%). 
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We have only studied the combination of the two BDTs in parallel testing. A 

different scenario is when the serial testing is used, in which case the application of Test 

2 depends on the result of Test 1. From a statistical point of view, with the serial testing 

we cannot estimate [8]: all the probabilities 
ijp  and 

ijq , the sensitivity and specificity of 

Test 2, and the dependency factors between the two BDTs. 
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Conclusions 

The main parameters to estimate and compare the accuracy of binary diagnostic tests 

are sensitivity and specificity, which only depend on the intrinsic ability of the 

diagnostic test to distinguish between diseased individuals and non-diseased 

individuals. Other parameters are likelihood ratios which only depend on the sensitivity 

and specificity of the binary diagnostic test. Both sensitivity and specificity, like 

likelihood ratios, are superior measures of the accuracy of a binary diagnostic test, as 

they depend on the characteristics of the test. The predictive values of a binary 

diagnostic test are also parameters that are widely used to assess and compare binary 

diagnostic tests, and they represent the clinical accuracy of the test. The predictive 

values depend on the sensitivity and specificity of the test and the disease prevalence. 

When considering the losses or costs of an erroneous classification with the binary 

diagnostic test, the performance of a diagnostic test is measured through the weighted 

kappa coefficient. The weighted kappa coefficient depends on the sensitivity and 

specificity of the diagnostic test, on the disease prevalence and the weighting index c.  

The weighting index c represents the relative importance between the false positives and 
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the false negatives. In Chapter 1, all these parameters are defined and their properties 

are studied. 

In Chapter 2, we study the estimations and confidence intervals of the parameters 

defined in Chapter 1, subject to two types of study or sample: a cross-sectional study 

and a case-control study. The contribution made by this Chapter is the estimation of the 

weighted kappa coefficient subject to a case-control study. Different approximate 

confidence intervals are proposed for the weighted kappa coefficient: a Wald type 

interval, an interval with logit transformation, an interval with arcsine transformation, 

an interval using bootstrap and a Bayesian interval. For the first three intervals, we used 

four corrections which are frequent in this type of studies  2
1 20  0 5  2  2h , . , , z  . As a 

bootstrap interval, we used a bias-corrected one, and for the Bayesian interval we used 

an interval based on the Monte Carlo method based on quartiles with distribution which 

a priori are non-informative and also with distribution which a priori are informative. 

Simulation experiments to study the asymptotic coverage of these intervals, from which 

some general rules of application were given: when the sample sizes are small  75in   

use the Wald CI with 0.5h  , and for other sample sizes  100in   use the Wald CI 

with 0h  . A method has also been proposed to calculate the sample sizes (of cases and 

of controls) necessary to estimate the weighted kappa coefficient with a determined 

precision   to the confidence  100 1 % . The results obtained have been applied to a 

real example of the diagnosis of coronary disease. 
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Finally, in Chapter 3 we studied the comparison of the parameters defined in Chapter 

1 of two binary diagnostic tests subject to a paired design, presenting hypothesis tests to 

check the equality of the corresponding parameters and CIs for the respective 

differences. We also studied the combination of parameters of two binary diagnostic 

tests in parallel testing. The contribution of this Chapter is the combination of the 

weighted kappa coefficients of two binary diagnostic tests in parallel testing, both with 

the AND rule and with the OR rule. The combined weighted kappa coefficient was 

defined when using the AND rule and when using the OR rule, and we studied its 

properties, finding them to be similar to those of the weighted kappa coefficient of a 

binary diagnostic test. We studied the conditions under which the combination of two 

binary diagnostic tests produces an increase in the combined weighted kappa 

coefficient. Whether or not an increase occurs in the combined weighted kappa 

coefficient will depend on the value of the weighting index c set by the researcher, 

although in some situations such an increase never occurs. These conditions studied are 

theoretical, and therefore in a practical problem, whether or not there is an increase in 

the combined weighted kappa coefficient must be studied through a confidence interval. 

For this purpose, Fieller’s theorem was applied, obtaining a confidence interval for the 

ratio between the combined weighted kappa coefficient and each weighted kappa 

coefficient. Furthermore, a logit confidence interval was studied for the combined 

weighted kappa coefficient. Monte Carlo simulation experiments were carried out to 

study the asymptotic behaviour of the confidence intervals proposed, finding that, in 

general terms, these intervals have an asymptotic coverage that fluctuates around 95% 

even with relatively small samples, although in some situations the average coverage 
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can exceed 95%. An R programme was written to solve the problem posed. The results 

have been applied to a real example on the diagnosis of coronary disease. 
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Appendix 2.1: Estimation of the variance 

The variance of the weighted kappa coefficient can be estimated applying the delta 

method (Agresti, 2002), i.e.  

 
       

2 2

ˆ ˆˆ c c
Var c Var Se Var Sp

Se Sp

 


    
            

, 

since  ˆ ˆ, 0Cov Se Sp   (as the sensitivity is estimated from the case sample and the 

specificity from the control sample, and both samples are independent), and where 

 
 

1

1ˆ Se Se
Var Se

n


  and  

 

0

1ˆ Sp Sp
Var Sp

n


 . Carrying out the algebraic 

operations, it holds that 

   
    

c c
pq c p q c

Se pqY

 



    

 and    
    

c c
pq c q c q

Sp pqY

 



    

, 
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where 1Y Se Sp    is the Youden index. Thus, it holds that  

 
 

    
 

    
 

2

2 2

1 0

ˆ

1 1
.

c
Var c

pqY

Se Se Sp Sp
pq c p q c pq c q c q

n n




 

 
     
 

  
           
 

 (3.67) 

Substituting in this equation each parameter with its estimator and carrying out the 

algebraic operations we obtain equation (2.71). The variances of the logit of  c  and 

of the arcsine are estimated in a similar way to the previous case, i.e. 

  

 
 

 
 

2 2

ˆlogit

logit ogitˆ ˆ

Var c

c c
Var Se Var Sp

Se Sp



 

  

             
       

 

and 

  

 
 

 
 

2 2

ˆarcsin

arcsin arcsin
ˆ ˆ .

Var c

c c
Var Se Var Sp

Se Sp



 

  
 

       
      

       
   

 

The expression of the variance obtained here (equation (2.71)) is different to that 

obtained by Roldán-Nofuentes et al (2009). Equation (2.71) has a term of variability 

less than the variance deduced by Roldán-Nofuentes et al (2009), because in a case-

control study it is necessary to know a value for the prevalence in order to estimate 

 c . This means that the CIs for  c  have a length which is lower in the case-

control sample than in the cross-sectional sample. 
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Appendix 2.2: Comparison of the performance of the CIs 

“Step 1” of this method to choose the optimum CI establishes that the probability of 

coverage should be higher than 93%, or in other words, that the CI does not fail. 

* *          is defined, where 1 0.95     is the nominal confidence of the 

CI and *  the probability of coverage calculated. The hypothesis test (two-tailed) for 

the weighted kappa coefficient is    0 :H c c   vs    1 :H c c  , where  c  

is the value of  c  subject to 0H . This test can be solved through different methods. 

If the test is solved applying the Wald method, the contrast statistic is: 

   

 

ˆ
ˆ ˆ

W

c c
z

Var c

 






  

. 

Other alternatives are to use the logit and arcsine transformations. Applying the logit 

transformation, the test is    0 : logit logitH c c         vs 

   1 : logit logitH c c        , and the contrast statistic is 

   

  

ˆ ˆlogit logit

ˆ ˆlogit
L

c c
z

Var c

 



      


  

, 

and applying the arcsine transformation, the test    0 : arcsin arcsinH c c         vs 

   1 : arcsin arcsinH c c         is solved with the statistic 

   

  

1 1

1

ˆsin sin

ˆ ˆsin
A

c c
z

Var c

 



 




 . 
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In Step 1 of the method, a CI has a failure if its probability of coverage is 93% , i.e. if 

2   . In this situation, the type I error of the corresponding hypothesis test is 7%

, and therefore it is a very liberal hypothesis test and can give false significances. The 

93% criteria has been used by other authors (Agreti and Coull, 1998; Price and Bonnett, 

2004; Martín-Andrés and Álvarez-Hernández, 2014a and 2014b). If 2%  , i.e. the 

probability of coverage is greater than 97%, then the corresponding hypothesis test is 

very conservative  (its type I error is very small, 3% ), but at least it does not give 

false significances. Consequently, the choice of the optimum CI is linked to the 

decisions of the corresponding hypothesis test, and it is preferable to choose a 

conservative test rather than a very liberal one (then there will not be any false 

significances as its type I error is lower than the nominal one). 

 

 

Appendix 3.1: Combined weighted kappa coefficient 

The weighted kappa coefficient of BDT is defined [1] as 

 Random loss Expected loss
Random loss




 . (3.68) 

The expected loss is the average loss which occurs when erroneously classifying a 

diseased or non-diseased patient with the BDT. The random expected loss is the 

expected loss which occurs when the BDT and the GS are independent, i.e. when 

   P T i D j P T i    . In parallel testing with the AND rule, the random loss is 

   

   

10 01 00 10 01 00 11 11

11 11 11 11

Random loss

1 ,

Lp p p p q q q L q p q

Lp p q L q p q

        

   
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and the expected loss is 

   10 01 00 11 11 11Expected loss L p p p L q L p p L q        . 

By substituting the two previous expressions in equation (3.68) and realizing the 

algebraic operations, equation (3.56) is obtained. With the OR rule, the random loss is 

   

   

00 00 11 10 01 11 10 01

00 00 00 00

Random loss

1 ,

Lp p q L q p p p q q q

Lp p q L q p q

        

   
 

and the expected loss is 

   00 11 01 00 00 00Expected loss Lp L q q q Lp L q q        . 

By substituting these two previous expressions in equation (3.68) and realizing the 

algebraic operations, equation (3.57) is obtained. 

 

 

Appendix 3.2: The AND rule 

In all of the following, it will be taken that all the Youden indices are between 0 and 1 

 0 1Y  , and that the prevalence of the disease is also a value between 0 and 1 

 0 1p  . Let us consider the following equalities: 

11 10 10 11
1 1 1AND AND

p q p q
QY Q Y

pq



   , 11 01 01 11

2 2 2AND AND

p q p q
Q Y Q Y

pq



   , 

10 10
1 1AND

q p p q
Y Y

pq



   , 01 01

2 2AND

q p p q
Y Y

pq



   , 

1 11 10 11 10Q p p q q    , 2 11 01 11 01Q p p q q    , 
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1 1 10 10ANDQ Q p q     , 2 2 01 01ANDQ Q p q     , 

   1 1AND AND ANDpc Q q c Q      and    1 1h h hpc Q q c Q     , 1 2h , , 

where AND  and h  are the denominators of  AND c  and  h c  respectively. It is 

verified that 1 1h   , 1 1h   , 0 1hQ   and 0 1h  . By realizing algebraic 

operations it is verified that 

    
     h h h h h h h

AND h

AND AND h

pq c q c c q Y
c c pq

     
 

  

   
   . (3.69) 

Then    AND hc c   if 

  
   

  1 2h AND AND h h h
h

h AND AND h h h h

q Q Y Q Y q q
c c , h ,

Y p Q Y p Q p

 

  


    

   
, (3.70) 

where    h h AND AND h h hY p Q Y p Q p        . The values 1c  and 2c  can take any 

real value. In terms of hc  the equation (3.69) is written as 

    
 2

h h

AND h

h AND h

pq c c
c c

c


 

 


  . (3.71) 

In what follows the conditions under which the combination of the two BDTs with the 

AND rule produces an increase of the combined weighted kappa coefficient are shown. 

a) If 0 1hc   with 1 2h , , then  h hc  and  AND hc , can be calculated, so 

obtaining  
 

h
h h

h h h h

Y
c

Q


  



 and  

 
AND

AND h

h h AND h

Y
c

Q


  



. It is verified that 

0h h h

h

Q 




  and 0h h AND

h

Q 




 , 
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since both expressions are the denominators of weighted kappa coefficients. As it is 

always verified that h ANDQ Q , if 0h AND hY Y     then 

0h h AND h h h

h h

Q Q   

 

 
  . 

By realizing algebraic operations one obtains 

0h h AND h h h h h

h h h

Q Q     

  

 
   , 

and as h  and h  are greater than 0, then 0h  . If 0h AND hY Y     then 

0h h h h h AND

h h

Q Q   

 

 
  , 

and by realizing algebraic operations one obtains  

0h h h h h AND h h

h h h

Q Q     

  

  
   . 

As h  and h  are greater than 0, then 0h  . Thus, whatever the value of h , it is 

always verified that 0h  . As 0h
h

h

q
c




   then 0h  . If 0 hc c   then, from 

equation (3.71),    AND hc c   with 1 2h , . Finally, if  1 20 minc c ,c   then 

      1 2maxAND c c , c   . 

If 1c   then 1 0hc   , and from equation (3.71) it is verified that    1 1AND h   

with 1 2h , . Therefore       1 21 min 1AND , c   . 

b) From a) it can be verified that    AND ic c   if 0 1ic c   . Let us suppose 

that j ANDY Y , then 0j AND jY Y    . By multiplying by jQ  one obtains 
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 0 0 0j j j AND j j j AND j AND j j j j j j jQ Q Y Q Y Q Y Q Y Y Y                 , 

and by multiplying by ANDQ  one obtains  

 0 0
0

j AND AND AND AND j j j AND AND j j j AND

j j AND

Q Q Y Q Y Q Y Q Y Y

Y .

   

 

        

  
 

Hence, it can be verified that 0j j AND j jY Y     . As 1jc   and 0j  , then 

j j jp     must be greater than 0, and it is verified that 
j j  . Finally, as 0j   

then, from equation (3.71), it is verified that    AND jc c   for 0 1c  . 

In the case that 
j ANDY Y , then 0j  . Let us suppose that 0j  , then as 1jc   it 

must be verified that 0j jp   , and so one obtains 

0j j j j jq p         , 

which is contradictory to 0j  . Thus, if 
j ANDY Y  then 0j  , and from equation 

(3.71) it can be verified that    j ANDc c   for 0 1c  . 

If 0jc   the reasoning is the same as for 1jc  . In this case 0j jp   , so that it is 

also verified that j j jp    . 

 

For any situation different to those that have been dealt with in points a) and b), the 

combination of the two BDTs does not increase the value of  AND c  for any value of c. 

These situations are:  

1) 0 1ic c   , 1jc   (or 0jc  ) and AND jY Y , 
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2)  1 2min 1c ,c  , 

3)  1 2max 0c ,c  , 

4) 1ic   and 0jc  . 

In the following each of these is analysed. 

1) The situation 0 1ic c   , 1jc   (or 0jc  ) and 
AND jY Y  has been dealt with in 

point b) above. Let us study the same situation but supposing that 
AND jY Y . If 

AND jY Y  then 0j  . As j

j

j j

q
c

p



 



, if 0j   then 

jc q , but this is incompatible 

with 1jc   or 0jc  , because 0 1q  .  

 

2) Let us consider that 1 1c   and 2 1c  , i.e.  1 2min , 1c c  . Each equation 1hc  , 

1,2h  , has two solutions: 

 0 1h h hp        (3.72) 

and 

 1 0h h hp       . (3.73) 

Let us consider 

  
 

21 0h h h

h h

h

c c pq
  




   , 

then    1 1 2 21 1 0c c c c   , i.e.  
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    
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

 
    . (3.74) 

From equation (3.74) it is verified that    1 1 2 21 1 0c c c c    if 

   1 2 1 1 2 2 0       . (3.75) 

Moreover, 

 2 1 2
1 2

1 2

1c c q



  . (3.76) 

Solving the system formed by equations (3.75) and (3.76), the solutions for this system 

which are compatible with solutions (3.72) and (3.73) are 

1 1 10 1p       and 2 2 21 0p        

and 

1 1 1 0p      and 2 2 20 p     . 

In general terms, the solution is 

1 0 1j j j i i ip p              . 

As 0j   y 1jc  , then applying equation (3.34) it holds that    AND jc c   for 

0 1c  . As 0i   and 1ic  , then    AND ic c   for 0 1c  . Finally,  

     ,   0 1i AND jc c c c      . 

Consequently, if  1 2min , 1c c   then the combination of the two weighted kappa 

coefficients never increases the value of the combined weighted kappa coefficient. 

Furthermore, as 0j   then AND jY Y , and as 0i   then AND iY Y , i.e.  
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i AND jY Y Y  . 

 

3) Another possible situation is that 1 0c   and 2 0c  , i.e.  1 2max , 0c c  , then the 

solutions for each equation 0hc  , 1,2h  , are 0 1h h hp       or 

1 0h h hp       . Solving the system formed by the equations 

   
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

 
     

and 

2 1 2
1 2

1 2

0c c q



  , 

the appropriate solution is 1 0 1j j j i i ip p              . Finally, it holds 

that  

     ,   0 1i AND jc c c c      , 

and 

i AND jY Y Y  . 

 

4) Finally, another possible situation is that 1ic   and 0jc  . Solving the system 

formed by the equations 

   
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

 
     

and 
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2 0i j

i j

i j

c c q



  , 

the appropriate solution is 1 0 1j j j i i ip p              . In this situation, it 

is verified that if 0j   then 1 0j j j jp q          and 0j j jp     , and 

therefore 0jc  . Consequently, if 1ic   and 0jc  , the solution is 

1 0 1j j j i i ip p              , and it is again verified that 

     ,   0 1i AND jc c c c      , 

and 

i AND jY Y Y  . 

 

 

Appendix 3.3: The OR rule 

In all of the following, it will be taken that all the Youden indices are between 0 and 1 

 0 1Y  , and that the prevalence of the disease is also a value between 0 and 1 

 0 1p  . Let us take the following equalities 

   01 11 10 01 11 10
1 1 1OR OR

p q q q p p
QY Q Y

pq


  
    , 

   10 11 01 10 11 01
2 2 2OR OR

p q q q p p
Q Y Q Y

pq


  
    , 
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01 01
1 1OR

p q q p
Y Y

pq



    , 10 10

2 2OR

p q q p
Y Y

pq



    ,  1 1 01 01ORQ Q p q      , 

 2 2 10 10ORQ Q p q       and    1 1OR OR ORpc Q q c Q     . 

It is verified that 1 1h   , 1 1h    and 1 0h   . By realizing algebraic 

operations it can be verified that 

    
     h h h h h h h

OR h

OR OR h

pq c q c c q Y
c c pq

     
 

  

      
   , (3.77) 

so verifying that    OR hc c   if 

  
   

  1 2h OR OR h h h
h

h OR OR h h h h

q Q Y Q Y q q
c c , h ,

Y p Q Y p Q p

 

  

  
    

     
, (3.78) 

with    h h OR OR h h hY p Q Y p Q p          . The values 1c  and 2c  may take any 

real value. In terms of hc , equation (3.77) is written as 

    
 2

h h

OR h

h OR h

pq c c
c c

c


 

 

  
 


. (3.79) 

In what follows the conditions under which the combination of the two BDTs with the 

AND rule produces an increase of the combined weighted kappa coefficient are shown. 

a) If 0 1hc   with 1 2h , , then  h hc  and  OR hc , can be calculated, so 

obtaining  
 

h
h h

h h h h

Y
c

Q


  
 

  
 and  

 
OR

OR h

h h OR h

Y
c

Q


  


  
. It is verified that 

0h h h

h

Q 



 



 and 0h h OR

h

Q 



 



, 
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as both expressions are the denominators of weighted kappa coefficients. As it is always 

verified that OR hQ Q , if 0h OR hY Y     then 

0h h OR h h h

h h

Q Q   

 

    
 

 
. 

By realizing algebraic operations one obtains 

0h h OR h h h h h

h h h

Q Q     

  

     
  

  
, 

and as 0h   and 0h  , then 0h  . If 0h OR hY Y     then 

0h h OR h h h

h h

Q Q   

 

    
 

 
, 

and by realizing algebraic operations one obtains 

0h h OR h h h h h

h h h

Q Q     

  

      
  

  
. 

As 0h   and 0h   , then 0h  . Thus, whatever the value of h  , it is always verified 

that 0h  . As 0h
h

h

q
c






  


 then 0h  . If 0 1hc c    then, from equation (3.79), 

   OR hc c   with 1 2h , . Finally, if  1 20 max 1c ,c c     then 

      1 2maxOR c c , c   . 

If 0c   then 1 0hc   , and from equation (3.79) it is verified that    0 0OR h   

with 1 2h , . Therefore       1 20 min 0 0OR ,   . 
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b) From a) it can be verified that    OR ic c   if 0 1ic c   . Let us suppose that 

1jc   and that 
j ORY Y , then 0j OR jY Y    . Let us suppose that 0j  , as 1jc   

then 
j j jp       must be smaller than 0 and 0j j jq p       , and therefore it is 

verified that   0j jp      and therefore 
j j   . As 0j   it is not possible that 

0j  . Finally 0j   and from equation (3.79) it is verified that    OR jc c   for 

0 1c  . 

In the case that 
j ORY Y , then 0j  . By multiplying by 

jQ  one obtains 

 0 0 0j j j OR j j j OR j OR j j j j j j jQ Q Y Q Y Q Y Q Y Y Y                      , 

since 0j   . Multiplying by ORQ  one obtains 

 0 0 0j OR OR OR OR j j j OR OR j j j OR j j ORQ Q Y Q Y Q Y Q Y Y Y                      . 

Hence, it is verified that 0j j j j ORY Y       . Therefore, if j ORY Y  then 0j  , and 

from equation (3.79) it can be verified that    j ORc c   for 0 1c  . 

If 0jc   the reasoning is the same as for 1jc  . If 0j   then 0j  , and from 

equation (3.79) it is verified that    OR jc c   for 0 1c  . Therefore, if 0j   then 

0j  , and from equation (3.79) it can be verified that    j ORc c   for 0 1c  . 

 

For any situation different to those that have been dealt with in points a) and b), the 

combination of the two BDTs does not increase the value of  OR c  for any value of c. 

These situations are:  
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1) 0 1ic c   , 1jc   (or 0jc  ) and 
OR jY Y , 

2)  1 2min 1c ,c   , 

3)  1 2max 0c ,c   , 

4) 1ic   and 0jc  . 

In the following each of these is analysed. 

1) The situation 0 1ic c   , 1jc   (or 0jc  ) and OR jY Y  has been dealt with in 

point b) above. Let us study the same situation but supposing that OR jY Y . If OR jY Y  

then 0j  . As j

j

j j

q
c

p



 


 

 
, if 0j   then 

jc q  , but this is incompatible with 

1jc   or 0jc  , because 0 1q  . 

 

2) Let us consider that 1 1c    and 2 1c  , i.e.  1 2min , 1c c   . Each equation 1hc  , 

1,2h  , has two solutions: 

 0 1h h hp          (3.80) 

and 

 1 0h h hp         . (3.81) 

Let us consider 

  
 

21 0h h h

h h

h

c c pq
  



  
   


, 

then    1 1 2 21 1 0c c c c      , i.e.  
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    
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

      
      

 
. (3.82) 

From equation (3.74) it is verified that    1 1 2 21 1 0c c c c       if 

   1 2 1 1 2 2 0            . (3.83) 

Moreover, 

 2 1 2
1 2

1 2

1c c q




 
   

 
. (3.84) 

Solving the system formed by equations (3.83) and (3.84) with 0 1p  , the solutions 

for this system which are compatible with solutions (3.80) and (3.81) are 

1 1 10 1p         and 2 2 21 0p          

and 

1 1 11 0p          and 2 2 20 1p        . 

In general terms, the solution is 

1 0 1j j j i i ip p                   . 

As 0j   y 1jc  , then applying equation (3.79) it holds that    OR jc c   for 

0 1c  . As 0i   and 1ic  , then    OR ic c   for 0 1c  . Finally,  

     ,   0 1i OR jc c c c      . 

Consequently, if  1 2min , 1c c    then the combination of the two weighted kappa 

coefficients never increases the value of the combined weighted kappa coefficient. 

Furthermore, as 0j   then OR jY Y , and as 0i   then OR iY Y , i.e.  
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i OR jY Y Y  . 

 

3) Another possible situation is that 1 0c   and 2 0c  , i.e.  1 2max , 0c c   , then the 

solutions for each equation 0hc  , 1,2h  , are 0 1h h hp         or 

1 0h h hp         . Solving the system formed by the equations 

   
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

      
      

 
 

and 

2 1 2
1 2

1 2

0c c q




 
   

 
, 

the appropriate solution is 1 0 1j j j i i ip p                   . Finally, it holds 

that  

     ,   0 1i OR jc c c c      , 

and 

i OR jY Y Y  . 

 

4) Finally, another possible situation is that 1ic   and 0jc  . Solving the system 

formed by the equations  

   
  2 2 1 2 1 1 2 2

1 1 2 2 2 2
1 2

1 1 0c c c c p q
    

 

      
      

 
 

and 
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2 1 2
1 2

1 2

0c c q




 
   

 
, 

the solution is 1 0 1j j j i i ip p                   . In this situation, it is verified 

that if 0j   then 0j j jp q        and 0j j jp       , and therefore 0jc  . 

Consequently, if 1ic   and 0jc  , the solution is 

1 0 1j j j i i ip p                   , and it is again verified that 

     ,   0 1i OR jc c c c      , 

and 

i OR jY Y Y  . 

 

 

Appendix 3.4: The program “cwkc” 

cwkc <- function(s11, s10, s01, s00, r11, r10, r01, r00, indexc, rule, conflevel = 0.95) 

{ 

  library(graphics) 

   

  if (s11 < 0 | s10 < 0 | s01 < 0 | s00 < 0 | r11 < 0 | r10 < 0 | r01 < 0 | r00 < 0)  

    { 

      cat("\n") 

      stop("Any observed frequency can be negative. Introduces new values \n") 

      cat("\n") 

    } 
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  if (abs(s00 - trunc (s00)) > 0  | abs(s01 - trunc (s01)) > 0  | abs(s10 - trunc (s10)) > 0  | 

abs(s11 - trunc (s11)) > 0  | abs(r00 - trunc (r00)) > 0  | abs(r01 - trunc (r01)) > 0  | 

abs(r10 - trunc (r10)) > 0  | abs(r11 - trunc (r11)) > 0) 

    { 

      cat("\n") 

      stop("Observed frequencies can not have decimals. Introduces new values \n") 

      cat("\n") 

    }   

        

  if ((s11 + s10 + s01 + s00) == 0 | (r11 + r10 + r01 + r00) == 0)  

    { 

      cat("\n") 

      stop("Accuracy of a Binary Test cannot be estimated. There are many observed 

frequencies equal to zero. Introduces new values \n") 

      cat("\n") 

    } 

 

  if (indexc > 1 | indexc < 0)  

    { 

      cat("\n") 

      stop("Weighting index c should take a value between 0 and 1. Introduces a new 

value \n") 

      cat("\n") 

    } 

      

  n <- s00 + s01 + s10 + s11 + r00 + r01 + r10 + r11  

   

  p <- (s00 + s01 + s10 + s11) / n 

   

  Se1 <- (s11 + s10) / (s11 + s10 + s01 + s00) 

   

  Se2 <- (s11 + s01) / (s11 + s10 + s01 + s00) 
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  Sp1 <- (r01 + r00) / (r11 + r10 + r01 + r00) 

   

  Sp2 <- (r10 + r00) / (r11 + r10 + r01 + r00) 

   

  Y1 <- Se1 + Sp1 - 1 

   

  Y2 <- Se2 + Sp2 - 1 

   

  if (Y1 <= 0 | Y2 <= 0)  

    { 

      cat("\n") 

      cat("Estimated Youden index of Binary Test 1 is ",Y1, "\n") 

      cat("Estimated Youden index of Binary Test 2 is ",Y2, "\n") 

      stop("Estimated Youden index of a Binary Test must be greater than zero. 

Introduces new values \n") 

      cat("\n") 

    } 

     

   if (Y1 == 1 | Y2 == 1)  

    { 

      cat("\n") 

      cat("Estimated Youden index of Binary Test 1 is ",Y1, "\n") 

      cat("Estimated Youden index of Binary Test 2 is ",Y2, "\n") 

      stop("A Binary Test is a gold standard. Introduces new values \n") 

      cat("\n") 

    } 

     

  y <- as.character(rule) 

 

  y1 <- "and" 

  y2 <- "or" 
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  if(y !=  y1 && y != y2)  

    { 

      cat("\n") 

      stop("Write and for AND rule. Write or for OR rule  \n") 

      cat("\n") 

    } 

 

  r1 <- identical (y,y1) 

 

  r2 <- identical (y, y2) 

 

  if(isTRUE(r1)) 

    { 

      kappacomb <- expression((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + p01 

+ p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 + q00) 

* (1- indexc) * (p11 + q11))) 

       

      quot1 <- expression(log((((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + p01 

+ p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 + q00) 

* (1- indexc) * (p11 + q11))) / (((p10 + p11) * (q00 + q01) - (p00 + p01) * (q10 + q11)) 

/ ((p11 + p10 + p01 + p00) * indexc * (1- p11 - p10 - q11 - q10) + (q11 + q10 + q01 + 

q00) * (1 - indexc)* (p11 + p10 + q11 + q10)))))) 

       

      quot2 <- expression(log(((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + p01 

+ p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 + q00) 

* (1- indexc) * (p11 + q11))) / (((p01 + p11) * (q00 + q10) - (p00 + p10) * (q01 + q11)) 

/ ((p11 + p10 + p01 + p00) * indexc * (1- p11 - p01 - q11 - q01) + (q11 + q10 + q01 + 

q00) * (1 - indexc)* (p11 + p01 + q11 + q01)))))   

    

      arcsink <- expression(asin(sqrt((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + 

p01 + p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 + 

q00) * (1- indexc) * (p11 + q11))))) 



Appendices 

145 
 

      logitk <- expression(log(((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 + p01 

+ p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 + q00) 

* (1- indexc) * (p11 + q11))) / (1 - ((p11 * (q11 + q10 + q01 + q00) - q11 * (p11 + p10 

+ p01 + p00)) / ((p11 + p10 + p01 + p00) * indexc * (1 - p11 - q11) + (q11 + q10 + q01 

+ q00) * (1- indexc) * (p11 + q11)))))) 

    

    } 

  else 

    { 

      kappacomb <- expression((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 + q01 

+ q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) * 

(1- indexc) * (1 - p00 - q00)))   

       

      quot1 <- expression(log(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 + q01 

+ q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) * 

(1- indexc) * (1 - p00 - q00))) / (((p10 + p11) * (q00 + q01) - (p00 + p01) * (q10 + 

q11)) / ((p11 + p10 + p01 + p00) * indexc * (1- p11 - p10 - q11 - q10) + (q11 + q10 + 

q01 + q00) * (1 - indexc)* (p11 + p10 + q11 + q10)))))    

     

      quot2 <- expression(log(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 + q01 

+ q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) * 

(1- indexc) * (1 - p00 - q00))) / (((p01 + p11) * (q00 + q10) - (p00 + p10) * (q01 + 

q11)) / ((p11 + p10 + p01 + p00) * indexc * (1- p11 - p01 - q11 - q01) + (q11 + q10 + 

q01 + q00) * (1 - indexc)* (p11 + p01 + q11 + q01))))) 

       

      arcsink <- expression(asin(sqrt(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 

+ q01 + q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + 

q00) * (1- indexc) * (1 - p00 - q00)))))) 

      logitk <- expression(log(((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 + q01 

+ q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + q00) * 

(1- indexc) * (1 - p00 - q00))) / (1 - ((q00 * (p11 + p10 + p01 + p00) - p00 * (q11 + q10 
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+ q01 + q00)) / ((p11 + p10 + p01 + p00) * indexc * (p00 + q00) + (q11 + q10 + q01 + 

q00) * (1- indexc) * (1 - p00 - q00)))))) 

    }   

    

  Q1 <- p * Se1 + (1 - p) * (1 - Sp1)   

     

  k1 <- (p * (1 - p) * Y1) / (p * indexc * (1 - Q1) + (1 - p) * (1 - indexc) * Q1) 

   

  Q2 <- p * Se2 + (1 - p) * (1 - Sp2)   

     

  k2 <- (p * (1 - p) * Y2) / (p * indexc * (1 - Q2) + (1 - p) * (1 - indexc) * Q2) 

     

  z  = qnorm((1 + conflevel)/2,0,1) 

   

  alpha <- 1 - conflevel   

     

  kappa1 <- expression(((p10 + p11) * (q00 + q01) - (p00 + p01) * (q10 + q11)) / ((p11 

+ p10 + p01 + p00) * indexc * (1- p11 - p10 - q11 - q10) + (q11 + q10 + q01 + q00) * 

(1 - indexc)* (p11 + p10 + q11 + q10)))  

   

  kappa2 <- expression(((p01 + p11) * (q00 + q10) - (p00 + p10) * (q01 + q11)) / ((p11 

+ p10 + p01 + p00) * indexc * (1- p11 - p01 - q11 - q01) + (q11 + q10 + q01 + q00) * 

(1 - indexc)* (p11 + p01 + q11 + q01)))  

 

# Derivatives 

   

  derivk1p00 <- deriv(kappa1, "p00") 

  derivk1p01 <- deriv(kappa1, "p01") 

  derivk1p10 <- deriv(kappa1, "p10") 

  derivk1p11 <- deriv(kappa1, "p11") 

  derivk1q00 <- deriv(kappa1, "q00") 

  derivk1q01 <- deriv(kappa1, "q01") 
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  derivk1q10 <- deriv(kappa1, "q10") 

  derivk1q11 <- deriv(kappa1, "q11") 

   

  derivk2p00 <- deriv(kappa2, "p00") 

  derivk2p01 <- deriv(kappa2, "p01") 

  derivk2p10 <- deriv(kappa2, "p10") 

  derivk2p11 <- deriv(kappa2, "p11") 

  derivk2q00 <- deriv(kappa2, "q00") 

  derivk2q01 <- deriv(kappa2, "q01") 

  derivk2q10 <- deriv(kappa2, "q10") 

  derivk2q11 <- deriv(kappa2, "q11") 

   

  derivkappap00 <- deriv(kappacomb, "p00") 

  derivkappap01 <- deriv(kappacomb, "p01") 

  derivkappap10 <- deriv(kappacomb, "p10") 

  derivkappap11 <- deriv(kappacomb, "p11") 

  derivkappaq00 <- deriv(kappacomb, "q00") 

  derivkappaq01 <- deriv(kappacomb, "q01") 

  derivkappaq10 <- deriv(kappacomb, "q10") 

  derivkappaq11 <- deriv(kappacomb, "q11") 

     

  dlogitkappap00 <- deriv(logitk, "p00") 

  dlogitkappap01 <- deriv(logitk, "p01") 

  dlogitkappap10 <- deriv(logitk, "p10") 

  dlogitkappap11 <- deriv(logitk, "p11") 

  dlogitkappaq00 <- deriv(logitk, "q00") 

  dlogitkappaq01 <- deriv(logitk, "q01") 

  dlogitkappaq10 <- deriv(logitk, "q10") 

  dlogitkappaq11 <- deriv(logitk, "q11") 
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# Variances and covariances 

 

  p00 <- s00 / n 

  p01 <- s01 / n 

  p10 <- s10 / n 

  p11 <- s11 / n 

 

  q00 <- r00 / n 

  q01 <- r01 / n 

  q10 <- r10 / n 

  q11 <- r11 / n 

   

  vec1 <- vector("numeric", 8) 

   

  vec1[1] <- p00 

  vec1[2] <- p01 

  vec1[3] <- p10 

  vec1[4] <- p11 

  vec1[5] <- q00 

  vec1[6] <- q01 

  vec1[7] <- q10 

  vec1[8] <- q11 

   

  matp <- matrix(0, 8, 8) 

   

  matp[1,1] <- p00 

  matp[2,2] <- p01 

  matp[3,3] <- p10 

  matp[4,4] <- p11 

  matp[5,5] <- q00 

  matp[6,6] <- q01 

  matp[7,7] <- q10 
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  matp[8,8] <- q11 

      

  sigmap <- matrix(0, 8, 8) 

   

  sigmap <- (1 / n) * (matp - vec1 %*% t(vec1)) 

   

  vec2 <- vector("numeric", 8) 

   

  vec2[1] <- attr(eval(derivk1p00), "gradient")[1] 

  vec2[2] <- attr(eval(derivk1p01), "gradient")[1] 

  vec2[3] <- attr(eval(derivk1p10), "gradient")[1] 

  vec2[4] <- attr(eval(derivk1p11), "gradient")[1] 

 

  vec2[5] <- attr(eval(derivk1q00), "gradient")[1] 

  vec2[6] <- attr(eval(derivk1q01), "gradient")[1] 

  vec2[7] <- attr(eval(derivk1q10), "gradient")[1] 

  vec2[8] <- attr(eval(derivk1q11), "gradient")[1] 

   

  vec3 <- vector("numeric", 8) 

  

  vec3[1] <- attr(eval(derivk2p00), "gradient")[1] 

  vec3[2] <- attr(eval(derivk2p01), "gradient")[1] 

  vec3[3] <- attr(eval(derivk2p10), "gradient")[1] 

  vec3[4] <- attr(eval(derivk2p11), "gradient")[1] 

   

  vec3[5] <- attr(eval(derivk2q00), "gradient")[1] 

  vec3[6] <- attr(eval(derivk2q01), "gradient")[1] 

  vec3[7] <- attr(eval(derivk2q10), "gradient")[1] 

  vec3[8] <- attr(eval(derivk2q11), "gradient")[1] 

 

  mat1 <- rbind(vec2, vec3) 
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  sigma1 <- matrix(0, 2, 2) 

   

  sigma1 <- mat1 %*% sigmap %*% t(mat1) 

   

  vec4 <- vector("numeric", 8) 

   

  vec4[1] <- attr(eval(derivkappap00), "gradient")[1] 

  vec4[2] <- attr(eval(derivkappap01), "gradient")[1] 

  vec4[3] <- attr(eval(derivkappap10), "gradient")[1] 

  vec4[4] <- attr(eval(derivkappap11), "gradient")[1] 

 

  vec4[5] <- attr(eval(derivkappaq00), "gradient")[1] 

  vec4[6] <- attr(eval(derivkappaq01), "gradient")[1] 

  vec4[7] <- attr(eval(derivkappaq10), "gradient")[1] 

  vec4[8] <- attr(eval(derivkappaq11), "gradient")[1] 

   

  mat2 <- rbind(vec4, vec2) 

   

  sigma2 <- matrix(0, 2, 2) 

   

  sigma2 <- mat2 %*% sigmap %*% t(mat2) 

   

  mat3 <- rbind(vec4, vec3) 

   

  sigma3 <- matrix(0, 2, 2) 

   

  sigma3 <- mat3 %*% sigmap %*% t(mat3) 

    

  vec5 <- vector("numeric", 8)  

   

  vec5[1] <- attr(eval(dlogitkappap00), "gradient")[1] 

  vec5[2] <- attr(eval(dlogitkappap01), "gradient")[1] 
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  vec5[3] <- attr(eval(dlogitkappap10), "gradient")[1] 

  vec5[4] <- attr(eval(dlogitkappap11), "gradient")[1] 

 

  vec5[5] <- attr(eval(dlogitkappaq00), "gradient")[1] 

  vec5[6] <- attr(eval(dlogitkappaq01), "gradient")[1] 

  vec5[7] <- attr(eval(dlogitkappaq10), "gradient")[1] 

  vec5[8] <- attr(eval(dlogitkappaq11), "gradient")[1] 

  var1 <- t(vec5) %*% sigmap %*% vec5 

   

  if(isTRUE(r1)) 

    {      

      combSe <- p11 / p 

   

      combSp <- (q10 + q01 + q00) / (1 - p) 

   

      combQ <- p11 + q11 

    } 

     

  else 

    { 

      combSe <- (p11 + p10 + p01) / p 

   

      combSp <- q00 / (1 - p) 

   

      combQ <- 1 - p00 - q00        

    }  

   

  combY <- combSe + combSp - 1 

       

  combwkc <- (p * (1 - p) * combY) / (p * indexc * (1 - combQ) + (1 - p) * (1 - indexc) 

* combQ) 
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  logitcwkc <- log(combwkc / (1 - combwkc)) 

 

  # Fieller CI 

   

  d11 <- combwkc * k1 - sigma2[1,2] * z^2 

   

  d21 <- combwkc^2 - sigma2[1,1] * z^2 

   

  d31 <- k1^2 - sigma2[2,2] * z^2 

         

  LFiellerkappak1 <- (d11 - sqrt(d11^2 - d21 * d31)) / d31 

   

  UFiellerkappak1 <- (d11 + sqrt(d11^2 - d21 * d31)) / d31 

   

  d12 <- combwkc * k2 - sigma3[1,2] * z^2 

   

  d22 <- combwkc^2 - sigma3[1,1] * z^2 

   

  d32 <- k2^2 - sigma3[2,2] * z^2 

  LFiellerkappak2 <- (d12 - sqrt(d12^2 - d22 * d32)) / d32 

   

  UFiellerkappak2 <- (d12 + sqrt(d12^2 - d22 * d32)) / d32 

   

  # Logit CI 

    

  Llogitkappa <- exp(logitcwkc - z * sqrt(var1[1])) /(1 + exp(logitcwkc - z * 

sqrt(var1[1]))) 

  

  Ulogitkappa <- exp(logitcwkc + z * sqrt(var1[1])) /(1 + exp(logitcwkc + z * 

sqrt(var1[1]))) 

  

 



Appendices 

153 
 

  # Solutions for Kand = Ki and Kor = Ki 

  c1 <- (1 - p) *(Q1 * combY - combQ * Y1)/ (Y1 * (p - combQ) - combY * (p - Q1)) 

   

  c2 <- (1 - p) *(Q2 * combY - combQ * Y2)/ (Y2 * (p - combQ) - combY * (p - Q2)) 

   

  # Graphics    

  funct1 <- function (x) (p * (1 - p) * Y1) / (p * x * (1 - Q1) + (1 - p) * (1 - x) * Q1)    

  funct2 <- function (x) (p * (1 - p) * Y2) / (p * x * (1 - Q2) + (1 - p) * (1 - x) * Q2)   

  functkappa <- function (x) (p * (1 - p) * combY) / (p * x * (1 - combQ) + (1 - p) * (1 - 

x) * combQ)   

   

  if(isTRUE(r1)) tex <- "AND rule" else tex <- "OR rule"  

   

  jpeg("Graph_cwkc.jpg") 

  curve(functkappa, 0, 1,  lty = 1, ylim = c(0, 1), xlim = c(0, 1), xaxp = c(0, 1, 1), main = 

tex, xlab = "Weighting index", ylab = "Weighted kappa coefficient") 

  curve(funct1, 0, 1, lty = 2, add = TRUE) 

  curve(funct2, 0, 1, lty = 3, add = TRUE) 

  axis(1, at = c(round(c1, digits = 3), round(c2, digits = 3))) 

  abline(v = c(round(c1, digits = 3), round(c2, digits = 3)), lty = 2, lwd = .1, col = 

"gray90") 

  lab <- expression("Combined " * kappa * "(c)", kappa[1] * "(c)", kappa[2] * "(c)")  

  legend("top", lab, lty = c(1, 2, 3), ncol = 1, merge = TRUE) 

  dev.off() 

   

  #Result 

  sink("Results_cwkc.txt", split=TRUE) 

  cat("\n")  

  cat(" R E S U L T S \n") 

  cat("---------------\n") 

  cat("\n")  

  cat("     WEIGHTED KAPPA COEFFICIENTS OF THE BDTs \n") 
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  cat("\n")         

  cat("Weighting index c is:",indexc, "\n")   

  cat("\n")         

  cat("Estimated weighted kappa coefficient of Test 1 is ",k1," and its standard error is", 

sqrt(sigma1[1,1]), "\n")        

  cat("\n")  

  cat("Estimated weighted kappa coefficient of Test 2 is ",k2," and its standard error is", 

sqrt(sigma1[2,2]), "\n") 

  cat("\n") 

  cat("Estimated Youden index of Test 1 is: ",Y1, "\n")   

  cat("\n")  

  cat("Estimated Youden index of Test 2 is: ",Y2, "\n")   

  cat("\n")  

  

  cat("     COMBINATION OF THE TWO BDTs WITH THE ", rule," RULE \n") 

  cat("\n")    

  cat("Estimated combined weighted kappa coefficient is ",combwkc," and its standard 

error is", sqrt(sigma2[1,1]), "\n")  

  cat("\n") 

  cat("Estimated Youden index is: ",combY, "\n")  

  cat("\n") 

  cat("Estimated combined weighted kappa coefficient is equal to weighted kappa 

coefficient of Test 1 if c index is: ",c1, "\n")  

  cat("\n") 

  cat("Estimated combined weighted kappa coefficient is equal to weighted kappa 

coefficient of Test 2 if c index is: ",c2, "\n")  

  cat("\n") 

  cat(100 * conflevel,"% Fieller CI for combined weighted kappa coefficient / K1(c) is: 

(",LFiellerkappak1, " ; ",UFiellerkappak1,") \n") 

  cat("\n") 

  cat(100 * conflevel,"% Fieller CI for combined weighted kappa coefficient / K2(c) is: 

(",LFiellerkappak2, " ; ",UFiellerkappak2,") \n") 
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  cat("\n") 

  cat(100 * conflevel,"% Logit CI for combined weighted kappa coefficient is: 

(",Llogitkappa, " ; ",Ulogitkappa,") \n") 

  cat("\n") 

  sink()   

} 
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