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CAPÍTULO I 

INTRODUCCIÓN Y OBJETIVOS DE LA TESIS 
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PREFACIO 

 

 Operaciones aritméticas simples, tales como sumas o multiplicaciones de un 

dígito (e.g., 2 + 4 o 2 x 4) están presentes con frecuencia en nuestra vida cotidiana. 

Hacemos uso de la aritmética en una gran variedad de tareas y contextos a los que nos 

enfrentamos diariamente (e.g., al recibir la vuelta tras comprar unos zapatos, cuando 

calculamos cuánto tiempo falta para que empiece una clase, o incluso cuando hay que 

compartir las porciones de una pizza entre varios amigos), aun sin percatarnos 

realmente de cómo esos hechos aritméticos están conformados en eso que llamamos 

“mente” y qué procesos mentales nos permiten llevar a cabo dichas operaciones.   

La aritmética cognitiva es un campo de estudio que se ha ampliado y 

desarrollado de manera considerable desde los años 70 en adelante (Ashcraft, 1982; 

Groen y Parkman, 1972). En éste se asume que los hechos aritméticos simples se 

encuentran almacenados en la memoria a largo plazo formando redes asociativas con 

nodos interconectados, de modo que la fuerza asociativa entre los diferentes nodos que 

conforman la red se va configurando a través del aprendizaje y de la experiencia 

educativa (Ashcraft, 1992; 1987; Campbell y Graham, 1985; Siegler y Jenkins, 1989).  

En base a esta arquitectura mental de los hechos aritméticos, a la hora de 

resolver un problema aritmético (e.g., una suma simple 2 + 4) los nodos de la red que 

representan el problema (2 y 4) y aquellos que representan la respuesta (6) se activarían 

permitiendo que la solución se recuperase desde la memoria (Campbell y Graham, 

1985). Además, debido a la propagación de la activación a través de las diferentes 

conexiones que configuran la red, otros nodos que representan información aritmética 

relacionada podrían activarse de manera concurrente, como el resultado de multiplicar 

los operandos (8) o restarlos (2) (Ashcraft y Battaglia, 1978; Winkelman y Schmidt, 

1974; Zbrodoff y Logan, 1986). Así pues, la representación de los hechos aritméticos en 

la memoria a largo plazo permite que diferente información aritmética relacionada se 

active conjuntamente y de manera automática. Además, esta activación concurrente 

plantea la cuestión de cómo los hechos aritméticos son finalmente seleccionados dentro 
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de esa red para dar la respuesta correcta en cada caso (e.g., seleccionar el resultado 6 

para resolver la suma 2 + 4). 

En los siguientes apartados de la introducción, profundizaremos en los modelos 

teóricos que han sido formulados a lo largo del tiempo para explicar cómo los hechos 

aritméticos están representados en la memoria a largo plazo. Después, describiremos la 

amplia evidencia empírica que avala el fenómeno de coactivación de hechos aritméticos 

asociados a la suma y a la multiplicación, esto es, la activación automática y conjunta de 

hechos aritméticos que se encuentran relacionados en la red asociativa. Posteriormente, 

daremos paso a la ilustración de los mecanismos de selección de hechos aritméticos que 

han sido propuestos desde diferentes perspectivas. Continuaremos detallando una serie 

de factores que determinan el uso de los hechos aritméticos para, en último lugar, 

concretar los objetivos y la estructura de la serie experimental realizada en la presente 

tesis doctoral.  

 

MODELOS DE REPRESENTACIÓN Y RECUPERACIÓN DE HECHOS 

ARITMÉTICOS 

 

Desde los años 80 (Ashcraft, 1982) en adelante se ha propuesto una serie de 

modelos teóricos que intentan dar cuenta de cómo los hechos aritméticos se adquieren a 

través de su práctica y van configurando una red asociativa en la memoria a largo plazo. 

En este apartado, nos centramos en la revisión de los modelos asociativos clásicos más 

relevantes que han contribuido al entendimiento de tres cuestiones fundamentales de 

esta red aritmética: cómo se configura a través del aprendizaje, cómo se representan los 

hechos aritméticos en ella y cómo se recuperan y seleccionan finalmente desde la red 

para ofrecer la solución a un problema.  

 

El modelo de la Red de Recuperación de Ashcraft 
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Uno de los primeros modelos que contribuyó tanto teórica como empíricamente 

al entendimiento de la arquitectura de los hechos aritméticos simples y cómo éstos se 

recuperan de la memoria a largo plazo fue el modelo de la red de recuperación 

(Ashcraft’s network retrieval model; Ashcraft, 1982). Según este modelo, las personas 

con aprendizaje formal en aritmética tendrían una red de hechos aritméticos almacenada 

permanentemente en memoria. En esta red de hechos aritméticos coexistirían nodos que 

representan el primer operando de una operación (2 + N), aquellos que representan el 

segundo operando (N + 4) y los que representan la respuesta asociada a los operandos 

(6). Estos nodos se encontrarían relacionados en función de una fuerza asociativa que se 

iría estableciendo tras la práctica reiterada con cada operación. De este modo, los nodos 

que representan los operandos estarían relacionados con las diversas respuestas que los 

contienen (e.g., 2 + N, estaría asociado con las respuestas 3, 4, 5… de sumar 2 + 1, 2 + 

2, 2 + 3, etc.) (ver Figura 1).  
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Figura 1. Ejemplificación del modelo de red de recuperación (Ashcraft, 1982). Los 

nodos que representan ambos operandos (1
er

 operando arriba a la izquierda, 2º operando abajo a 

la izquierda) estarían asociados con sus respuestas correspondientes (a la derecha). A su vez, 

estas respuestas relacionadas estarían asociadas entre sí. Para ejemplificar, los nodos que 

representan los operandos 4 y 6 estarían asociados con la respuesta 24, la que a su vez 

establecería conexiones con respuestas relacionadas como 30.  

En el modelo se proponía que el principio de propagación de la activación sería 

utilizado para acceder a la información aritmética en la red y recuperar el resultado 

correcto desde la memoria. De esta manera, la activación se propagaría en paralelo 

desde los diferentes conjuntos de nodos: los nodos que representan los operandos (2 + N 

y  N + 4), aquellos que representan la respuesta (6) y otros nodos de respuesta que se 

encuentren relacionados con los anteriores (8); seleccionando la respuesta correcta del 

nodo que mayor activación recibiese finalmente. 

Una de las contribuciones posteriores del modelo (Ashcraft, 1987) fue la 

inclusión de la perspectiva evolutiva. En concreto, en el modelo se asumió que la fuerza 

asociativa de las conexiones, entre los nodos que representan los operandos y aquellos 

que representan las respuestas, dependía de la frecuencia con la que cada problema era 

practicado, fundamentalmente, durante los primeros años de escolarización en la edad 

infantil. De este modo, los problemas de tamaño menor (e.g., 2 + 4) serían recuperados 

con mayor frecuencia que los problemas de mayor tamaño (e.g., 7 + 8), lo que a su vez 

produciría que se resolviesen con mayor precisión debido a la mayor fuerza asociativa 

de sus conexiones en la red de hechos aritméticos. Esta interpretación sentaba la base 

teórica del conocido efecto del tamaño, el cual consiste en menores tiempos de reacción 

y menor porcentaje de errores cuando se resuelven problemas de menor tamaño en 

comparación con problemas de mayor tamaño (Groen y Parkman, 1972). 

Aunque el modelo de la red de recuperación (Aschcraft, 1982; 1987) fue 

relevante a la hora de entender cómo los hechos aritméticos se representan en la red 

asociativa y cómo ésta va tomando forma a través de la práctica educativa, este modelo 

no recogía al completo el conjunto de estrategias mediante las cuales los hechos 

aritméticos se van adquiriendo y conformando en la red. En concreto, el modelo de 

Aschcraft (1982, 1987) asumió la recuperación directa desde la memoria como la 
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manera por defecto de solucionar una operación aritmética, sin contemplar otras 

estrategias de naturaleza procedimental que están presentes fundamentalmente en los 

primeros años de escolarización. El modelo que describiremos a continuación (el 

modelo de distribución de asociaciones; Siegler y Jenkins, 1989) ofreció una primera 

aproximación en la que se contemplaba el uso de diferentes estrategias a la hora de 

resolver un problema aritmético simple.  

 

El modelo de Distribución de Asociaciones de Siegler 

 

En el modelo de distribución de asociaciones (Siegler’s distribution of 

associations model; Siegler y Jenkins, 1989) se reconocía el uso de estrategias 

procedimentales dentro del proceso de adquisición de la red aritmética. Para 

ejemplificar el proceso, cuando los niños comienzan su instrucción formal en la 

resolución de sumas simples (2 + 4 =), éstos pueden valerse del conteo para, partiendo 

del primer operando (2), contar según la magnitud del segundo (cuatro elementos) y 

llegar al resultado (6) (así, 2 + 4 = 2 y 3, 4, 5, 6). Igualmente, con la instrucción en 

multiplicaciones simples, a través del procedimiento de sumar repetidas veces el valor 

del primer operando se obtiene el resultado de la operación (2 x 4 = 2 + 2 + 2 + 2 = 8). 

En el modelo se propone que a través de la práctica repetida de estas estrategias (y de la 

recuperación directa) se irían estableciendo las conexiones entre los nodos que 

representan los operandos y aquellos que representan las respuestas (2 + 4 = 6, 2 x 4 = 

8) en la memoria a largo plazo del niño.  

Además, debido a que en la práctica de estrategias procedimentales podían 

cometerse errores en el proceso (e.g., añadir una suma más a la resolución de la 

multiplicación 2 + 4 = 2 + 2 + 2 + 2 + 2 = 10), Siegler propuso que en la red de hechos 

aritméticos también se establecían asociaciones entre los operandos y respuestas 

erróneas a los mismos (2 + 4 = 10). De este modo, la fuerza asociativa entre los nodos 

que representan los operandos y aquellos que representan las posibles respuestas variaba 

en función del aprendizaje y de la práctica con cada problema específico. Así, el efecto 
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del tamaño podía concebirse igualmente desde este modelo: por ejemplo, al realizar 

repetidas sumas para ofrecer la respuesta de una multiplicación de tamaño pequeño, la 

probabilidad de tener asociaciones erróneas sería menor debido al menor número de 

sumas repetidas necesarias del multiplicando (2 x 2 = 2 + 2 = 4, dos sumas repetidas del 

número 2) en comparación con aquellas que se precisarían en operaciones de mayor 

tamaño (2 x 6 = 2 + 2 + 2 + 2 + 2 + 2= 12, seis sumas repetidas del número 2), o/y 

posibles errores de conteo uno a uno dentro de las sumas simples. Este proceso 

configuraba una relación asociativa de mayor fuerza entre las conexiones de los 

operandos y la respuesta correcta en operaciones de menor tamaño, mientras que las 

conexiones de los operandos de mayor tamaño con las posibles respuestas serían más 

distribuidas y, por ende, de menor fuerza asociativa con cada una de ellas, cometiendo 

un mayor número de errores y necesitando un mayor tiempo para ofrecer la solución 

(ver Figura 2). 

  

Figura 2. Ejemplificación del modelo de distribución de asociaciones (Siegler y 

Jenkins, 1989). Los nodos que representan los operandos (3 x 4) establecerían asociaciones con 

diversos nodos que representan no sólo la respuesta correcta (12) sino también otras posibles 

respuestas (15,13). Además, el número de conexiones entre los nodos que representan los 

operandos y aquellos que representan las posibles respuestas sería mayor a medida que 

aumentase el tamaño del problema (6 x 7, a la derecha).  

 

Tras asumir la variedad de estrategias que los niños utilizan en el ámbito escolar, 

en el modelo de distribución de asociaciones (Siegler y Jenkins, 1989) se propuso un 

mecanismo de selección de estrategias (de recuperación o procedimentales) en función 
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de dos criterios: la distribución de fuerzas asociativas entre operandos-respuestas y la 

longitud de la búsqueda (número de búsquedas necesarias para dar la respuesta 

correcta). En consecuencia, ante la presentación de un problema específico, el 

mecanismo seleccionaría con una mayor probabilidad la estrategia de recuperación 

directa desde la memoria conforme mayor fuese la fuerza asociativa entre operandos-

respuesta correcta, y no se superase un número de búsquedas establecido. Cuando este 

número de búsquedas se sobrepasase sin dar la respuesta correcta o la distribución de 

asociaciones fuese más plana (esto es, las conexiones operandos-respuestas estuviesen 

más distribuidas), una estrategia procedimental sería la encargada de solucionar 

finalmente el problema aritmético. A medida que las asociaciones entre operandos-

respuesta correcta cobraran mayor fuerza asociativa a consecuencia de la práctica, el 

mecanismo tendería a elegir con mayor probabilidad la estrategia de recuperación desde 

la memoria. De esta manera, este modelo no solo sirvió para aumentar nuestra 

comprensión sobre cómo los hechos aritméticos se representaban y se resolvían, sino 

para explicar cómo esta red aritmética se iba configurando a través de la experiencia 

educativa de los niños y cómo las estrategias procedimentales iban dando paso a 

estrategias de recuperación más rápidas y eficaces.  

Sin embargo, son varias las críticas que el modelo de Siegler ha recibido a lo 

largo del tiempo: autores como Ashcraft (1992) han puntualizado que el modelo se 

ajustaba a un rango de edad escolar no generalizable a la edad adulta, donde las 

personas hacían un mayor uso de estrategias de recuperación frente a estrategias 

procedimentales. Además, entre las críticas más relevantes dentro de nuestro campo de 

estudio, estaba el hecho de que el modelo no podía acomodar una explicación plausible 

para los efectos de relación reportados en la literatura empírica, como es el caso del 

efecto de confusión asociativa (Stazyk, Ashcraft y Hamann, 1982; Winkelman y 

Schmidt, 1974; Zbrodoff y Logan, 1986). Como veremos más adelante, el efecto de 

confusión asociativa consiste en un peor rendimiento cuando se verifica una operación 

cuyo resultado es incorrecto pero está relacionado con el problema en cuestión: por 

ejemplo, se ha descrito un mayor tiempo en resolver una suma cuyo resultado es aquel 

de multiplicar sus operandos (2 + 4 = 8) en comparación con una suma cuyo resultado 

no está relacionado con la multiplicación de los operandos (2 + 4 = 10). Desde el 
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modelo de Siegler, era posible explicar patrones de resultados que se debían a 

asociaciones erróneas consecuencia de fallos en las estrategias procedimentales, pero no 

era posible ofrecer una explicación sobre cómo la información procedente de diferentes 

operaciones aritméticas (sumas, multiplicaciones) podía estar interrelacionada en la 

memoria a largo plazo. En el siguiente apartado, describimos un nuevo modelo que da 

cuenta de efectos de confusión asociativa como los expuestos en ese párrafo.  

 

El modelo de la Red de Interferencia de Campbell 

 

En el modelo de la red de interferencia propuesto por Campbell (Campbell’s 

nerwork interference model; Campbell, 1987; Campbell y Graham, 1985) se asumía, al 

igual que en el modelo de la red de recuperación de Ashcraft (1982), que la red de 

hechos aritméticos era accesible a través del principio de propagación de la activación y 

que los nodos se encontraban conectados con una fuerza asociativa que dependía de la 

práctica. En este modelo, se argumentaba que diferentes nodos en la red representarían 

no solo los operandos (2 x N, N x 4) o las respuestas asociadas a los mismos (8), sino 

también el problema como un todo (2 x 4). De este modo, ante la presentación de un 

problema, la propagación de la activación se daría en paralelo desde los nodos que 

representan los operandos y desde aquellos que representan el problema hacia un 

conjunto de nodos que representan diversas respuestas (la respuesta correcta y otras 

respuestas relacionadas tanto con los operandos como con el problema). De forma 

adicional, desde cada nodo de respuesta se establecerían conexiones con un conjunto de 

nodos que representan diversos operandos y problemas (ver Figura 3). Finalmente, 

como en el modelo de Ashcraft, la respuesta que mayor activación recibiera en la red 

era seleccionada y recuperada desde la memoria.  
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Figura 3. Ejemplificación del modelo de red de interferencia (Campbell, 1987; 

Campbell y Graham, 1985). Los nodos que representan los operandos (arriba a la izquierda), así 

como los nodos que representan los problemas (abajo a la izquierda) estarían asociados con sus 

respuestas correspondientes (a la derecha). A su vez, estas respuestas relacionadas estarían 

asociadas entre sí. Para ejemplificar, los nodos que representan los operandos 4 y 5, y aquel que 

representa el problema al completo (4 x 5) estarían asociados con el nodo que representa la 

respuesta 20. A su vez, el nodo que representa la respuesta 20 estaría asociado con respuestas 

relacionadas como 24. 

 

Una de las aportaciones exclusivas del modelo de la red de interferencia fue que 

introdujo el concepto de interferencia en la recuperación de los hechos aritméticos. 

Cuando un problema aritmético era presentado (e.g., la multiplicación 2 x 4) no solo se 

activaría la respuesta correcta (8), sino que otras respuestas relacionadas con los 

operandos o con el problema (e.g., 12, asociado a los operandos 2 x 6 y 4 x 3) también 

podrían activarse, interfiriendo en el proceso de selección de la respuesta correcta. Este 

fenómeno de interferencia en la selección fue avalado empíricamente por el efecto 

conocido como facilitación del error (Campbell, 1987): cuando se presentaba una 

multiplicación simple, por ejemplo 6 x 4, se recuperaba la respuesta correcta, en este 
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caso 24. Si inmediatamente después se presentaba otra multiplicación, por ejemplo 4 x 

8, que tuviese conexiones en la red aritmética con el resultado dado previamente, en este 

caso los operandos 4 y 8 estaban asociados al resultado 24 (4 x 6 = 24, 3 x 8 = 24, 

Campbell y Graham, 1985), sería más probable que la respuesta dada fuese 24 en lugar 

de la respuesta correcta 32. Este efecto sugirió que la recuperación de una respuesta a 

una primera operación producía una activación en la red que se mantenía por un lapso 

de tiempo, de manera que si inmediatamente después se presentaba un segundo 

problema relacionado con la respuesta del primero, el nodo de la respuesta asociado a la 

primera operación recibiría aún mayor activación, interfiriendo con la selección de la 

respuesta al segundo problema.  

Por otro lado, el efecto de confusión asociativa descrito previamente 

(Winkelman y Schmidt, 1974; Zbrodoff y Logan, 1986) encajaba dentro del modelo de 

Campbell. Ante la presentación de un problema aritmético (e.g., una suma 2 + 4) se 

activarían los nodos que representan los operandos, el problema, y aquellos que 

representan el resultado de la operación aritmética presentada (6). Además, debido al 

principio de propagación de la activación, otros nodos de la red también recibirían 

activación, como el resultado de la multiplicación de los dos operandos presentados (8). 

Este fenómeno de coactivación del resultado de la suma (6) y el de la multiplicación (8) 

podría dar lugar a interferencia a la hora de seleccionar la respuesta correcta (6, en caso 

de presentarse la suma 2 + 4 =). 

El modelo de red de interferencia de Campbell ha sido bien aceptado en la 

aritmética simple. Es innovador al proponer la idea de interferencia en la resolución de 

problemas matemáticos y da cuenta de muchos efectos empíricos observados durante la 

resolución de operaciones simples (e.g., efecto de facilitación de error, efecto de 

confusión asociativa). Sin embargo, en el modelo no se abordó el posible mecanismo 

utilizado por las personas para resolver la interferencia generada por la coactivación de 

información en la red de hechos aritméticos. El siguiente modelo que describimos da 

cuenta explícitamente de dicho mecanismo de selección.    
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Modelo de la Recuperación de la Red Semántica de Whalen 

 

En el modelo de recuperación de la red semántica (Whalen’s  semantic network 

retrieval model; Whalen, 2000) se incluía el componente inhibitorio como un elemento 

fundamental de la selección de hechos aritméticos dentro de la red asociativa. Según 

esta teoría, el sistema encargado de la recuperación representaría información 

procedente de tres fuentes: I) el problema aritmético que se pretende resolver, II) los 

hechos aritméticos asociados al problema en memoria, y III) la respuesta de salida. De 

este modo, al presentar un problema aritmético, se activarían en la red los nodos que lo 

representan y otros nodos relacionados con los operandos a través de conexiones 

excitatorias unidireccionales. Por ejemplo, al presentar la suma 2 + 4, se activarían los 

nodos que representan el problema (e.g., 2 + 4) y otros nodos relacionados con los 

operandos (e.g., 2 + 5, 2 x 4). De manera adicional, se establecerían conexiones 

inhibitorias con el resto de nodos no relacionados con el problema presentado (e.g., 3 + 

6).  A su vez, los nodos que representan los problemas en memoria establecerían 

conexiones excitatorias bidireccionales con aquellos nodos que representan las posibles 

respuestas de salida (e.g., 6, 7, 8) y conexiones inhibitorias con el resto de nodos de 

respuesta (e.g., 9). En el modelo se propuso un juego concurrente de procesos de 

activación e inhibición entre representaciones, de forma que la activación se iría 

focalizando al final del proceso de selección hacia los nodos correctos, permitiendo 

seleccionar una respuesta de salida: por ejemplo, si los nodos que representan los 

problemas activos (e.g., 2 + 4, 2 + 5, 2 x 4) comenzaran a inhibirse mutuamente, el 

problema que mayor activación acumulase en el tiempo (2 + 4) propagaría la activación 

al nodo que representa la respuesta asociada al mismo (6) y ésta sería finalmente 

seleccionada como la respuesta de salida. Existe evidencia empírica que apoya la idea 

de que procesos inhibitorios pueden estar al servicio del mecanismo de selección de 

hechos aritméticos en la red (Campbell, Chen y Maslany, 2013; Campbell y Dowd, 

2012; Campbell y Thompson, 2012). Estos estudios se revisarán minuciosamente en el 

apartado “Selección de hechos aritméticos: El papel de la inhibición”.  
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En resumen, los modelos que hemos presentado se encuadraron dentro de los 

modelos asociativos de aritmética simple. Todos ellos postularon que los hechos 

aritméticos se representan en la memoria a largo plazo formando una red cuyos nodos 

estarían conectados a través de diferentes fuerzas asociativas. En primer lugar, en el 

modelo de la red de recuperación (Ashcraft, 1982) se argumentó que la información que 

se encontraba relacionada en la red podía ser activada a través del principio de 

propagación de la activación. Además, se asumió que la estrategia utilizada por defecto 

a la hora de resolver operaciones aritméticas simples sería la recuperación de la 

respuesta directamente desde la red asociativa. Por otro lado, el modelo de distribución 

de asociaciones (Siegler y Jenkins, 1989) contempló un conjunto más amplio de 

estrategias. El modelo puso el énfasis en cómo se va configurando la red a medida que 

el niño usa estrategias de tipo procedimental que, a su vez, van dando paso a estrategias 

de recuperación, más rápidas y eficientes. Por su parte,  el modelo de la red de 

interferencia (Campbell, 1987; Campbell y Graham, 1985) hizo hincapié en los 

procesos de interferencia que podían desencadenarse tras la activación de hechos 

aritméticos relacionados en la red, y cómo estos procesos afectarían a la selección de la 

respuesta correcta en cada caso. Además, se dio una mayor importancia a las 

conexiones entre representaciones de hechos aritméticos asociados a diferentes 

operaciones (sumas y multiplicaciones), abarcando fenómenos como el efecto de 

confusión asociativa (Winkelman y Schmidt, 1974; Zbrodoff y Logan, 1986). Por 

último, el modelo de recuperación de la red semántica (Whalen, 2000) se centró 

principalmente en determinar cómo se resolvían estas situaciones de interferencia en la 

red asociativa. Es decir, desde el modelo se enfatizó en los mecanismos de selección de 

hechos aritméticos, dando un papel crucial a procesos de naturaleza inhibitoria en la 

selección final de la respuesta correcta a cada problema específico. 

Tras la revisión de los principales modelos asociativos que postulaban la 

existencia de una red aritmética, en el siguiente apartado nos detendremos en un aspecto 

fundamental del funcionamiento de dicha red, como es el fenómeno de coactivación. 

Este fenómeno viene a indicar que cuando resolvemos operaciones aritméticas simples, 

como por ejemplo la suma 2 + 4, en la red no solo se activaría la respuesta correcta (6) 
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sino que otras respuestas asociadas a los operandos también recibirían activación, como 

el resultado asociado a la multiplicación (8).   

 

COACTIVACIÓN DE HECHOS ARITMÉTICOS 

 

En este apartado, nos centraremos en el fenómeno de coactivación de hechos 

aritméticos asociados a la suma y a la multiplicación. En primer lugar, examinaremos el 

efecto de confusión asociativa (Winkelman y Schmidt, 1974), el cual se ha interpretado 

como evidencia empírica del fenómeno de coactivación. Además, nos centraremos en 

aquellos estudios que han explorado el grado de automatización del fenómeno de 

coactivación (Galfano, Rusconi y Umiltà, 2003; LeFevre, Bisanz y Mrkonjic, 1988; 

LeFevre y Kulak, 1994; Lemaire, Fayol y Abdi, 1991; Rusconi, Galfano, Speriani y 

Umiltà, 2004; Zbrodoff y Logan, 1986). Posteriormente, nos detendremos en explorar si 

la coactivación de hechos aritméticos en memoria subyace realmente al efecto de 

confusión asociativa. En este sentido, pasaremos a explorar las evidencias aportadas 

desde estudios que utilizan técnicas de neuroimagen (De Visscher, Berens, Keidel, Noël 

y Bird, 2015; Grabner, Ansari, Koschutnig, Reishofer y Ebner, 2013) y electrofisiología 

cerebral (Domahs et al., 2007; Jost, Hennighausen y Rösler, 2004; Niedeggen y Rösler, 

1996, 1999; Niedeggen, Rösler y Jost, 1999). 

 

El efecto de confusión asociativa 

 

El fenómeno de coactivación de hechos aritméticos se ha estudiado 

fundamentalmente mediante la tarea de verificación de operaciones (Winkelman y 

Schmidt, 1974; Zbrodoff y Logan, 1986; Lemaire et al., 1991). En esta tarea, 

operaciones simples (principalmente sumas o multiplicaciones de un dígito) son 

presentadas junto con un resultado que puede ser correcto o no. Los participantes han de 

verificar con la mayor precisión y velocidad posible si el resultado de cada operación es 



 

15 

 

 

correcto o incorrecto. Es común encontrar que los problemas con respuestas correctas 

son verificados con una mayor rapidez que aquellos cuyas respuestas son incorrectas 

(Zbrodoff y Logan, 1986). Sin embargo, en lo que respecta al efecto de confusión 

asociativa, los estudios se han centrado en el análisis de los ensayos con respuestas 

incorrectas, comparando los problemas cuyas respuestas, aún siendo incorrectas, están 

relacionadas con otra operación aritmética (e.g., 2 + 4 = 8) frente a aquellos cuyas 

respuestas son incorrectas y no están relacionadas con otra operación aritmética (e.g., 2 

+ 4 = 10). Tomando la diferencia en precisión y tiempo de respuesta entre ambos 

conjuntos de problemas se obtiene la magnitud del efecto de confusión asociativa, 

índice a su vez de la coactivación de hechos aritméticos relacionados en la memoria a 

largo plazo. 

El efecto de confusión asociativa fue reportado en la literatura empírica antes de 

que los modelos asociativos de la aritmética fueran descritos en detalle (Winkelman y 

Schmidt, 1974), sirviendo como soporte teórico a los mismos (Ashcraft, 1982). Este 

primer estudio de 1974 se realizó con la tarea de verificación en una pequeña muestra 

de estudiantes universitarios. La tarea de verificación estaba formada por un conjunto de 

problemas reducido que incluía cinco sumas y cinco multiplicaciones simples que 

compartían los operandos (3 + 3, 4 + 3, 3 + 5, 4 + 5 y 5 + 5; 3 x 3, 4 x 3, 3 x 5, 4 x 5 y 5 

x 5). Para estudiar el efecto, se manipuló la respuesta que acompañaba a cada uno de los 

problemas. En este sentido, son de destacar las siguientes condiciones experimentales: 

I) resultados relacionados con la otra operación (e.g., 3 + 3 = 9, donde el resultado 9 es 

aquel resultante de multiplicar los operandos de la suma; 3 x 3 = 6, donde el resultado 6 

es aquel resultante de sumar los operandos de la multiplicación), II) resultados no 

relacionados (e.g., 3 + 3 = 12, 3 x 3 = 7), y III) resultados correctos (e.g., 3 + 3 = 6, 3 x 

3 = 9). Más allá de la operación (suma o multiplicación), los resultados mostraron que 

los sujetos tardaron de media unos 60 milisegundos más en verificar un problema con 

resultado relacionado en comparación con un problema con resultado no relacionado. 

Asimismo, el número de errores fue mayor en los problemas con resultados 

relacionados (221) en comparación con los de resultados no relacionados (46). Este peor 

rendimiento en problemas con resultados relacionados fue interpretado como la 

consecuencia de la coactivación de información aritmética relacionada y se denominó 
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efecto de confusión asociativa. Además, los autores sugirieron que el efecto debía tener 

su origen en procesos asociativos involucrados en la resolución de operaciones simples, 

más allá del uso de estrategias procedimentales como el conteo uno a uno de los 

operandos. 

 

La automaticidad de la coactivación 

 

Una vez delimitado el efecto de confusión asociativa como índice de la 

coactivación de hechos aritméticos, investigaciones posteriores se centraron en replicar 

dicho efecto (Findlay, 1978; Zbrodoff, 1979) y determinar su automaticidad (Lemaire et 

al., 1991; Zbrodoff y Logan, 1986). Por ejemplo, Zbrodoff y Logan (1986) quisieron 

determinar en qué grado el efecto de confusión era un proceso automático que se 

desencadena sin la intención del sujeto y si era posible evitar este efecto de manera 

intencionada. A través de una serie experimental, los autores crearon condiciones donde 

la intención de los participantes para procesar la información aritmética relacionada 

pudiera verse comprometida. Utilizaron la tarea de verificación con sumas y 

multiplicaciones simples. Dentro del conjunto de resultados incorrectos se establecieron 

dos condiciones con igual número de ensayos: I) resultados relacionados (3 x 4 = 7) y 

II) no relacionados (3 x 4 = 11). Además, se utilizó todo el conjunto de operandos 

posibles de un solo dígito (desde el 1 hasta el 9, exceptuando el par 2 * 2). Para 

manipular la intención de los participantes de procesar la información aritmética 

relacionada, se manipuló el modo de presentación de los problemas entre-grupos 

(Experimentos 1 y 2): en un grupo, las operaciones fueron presentadas en bloques puros 

(sumas o multiplicaciones) por lo que los participantes no tendrían por qué tener la 

intención de procesar la información de la operación irrelevante para realizar 

correctamente la tarea. En el otro grupo, las operaciones fueron presentadas de manera 

combinada (sumas y multiplicaciones presentadas aleatoriamente) por lo que la 

intención de los participantes estaría centrada en resolver tanto una operación como la 

otra. Los resultados mostraron que el efecto de confusión asociativa fue mayor cuando 

las operaciones fueron presentadas de manera combinada (60 ms) que cuando eran 
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presentadas en bloques puros (15 ms), lo que sugería que la coactivación de hechos 

aritméticos no era un proceso completamente automático, sino que se veía modulado 

por la intención del sujeto de procesar la información relacionada con cada operación. 

Continuando con la serie experimental (Experimentos 3 y 4), los autores manipularon la 

frecuencia de presentación de resultados relacionados entre-grupos: I) 20% de 

problemas relacionados, II) 80% de problemas relacionados. Se observó que el efecto de 

confusión asociativa fue modulado por la frecuencia de presentación de resultados 

relacionados, de modo que éste desaparecía en el grupo con un 80% de resultados 

relacionados (-3ms) en comparación con el grupo con un 20% de resultados 

relacionados (57 ms), mostrando que la intención de los participantes de procesar la 

información irrelevante para maximizar su rendimiento podía estar modulando el 

fenómeno.  

En nuestra opinión, los resultados encontrados en esta serie experimental 

desarrollada por Zbrodoff y Logan (1986) podrían ser interpretados de una manera 

alternativa. Por ejemplo, la presentación combinada frente a la presentación en bloques 

puros podría favorecer la coactivación entre operaciones, de manera que tanto los 

hechos aritméticos asociados a la suma (e.g., 3 + 4 = 7) como aquellos asociados a la 

multiplicación (e.g., 3 x 4 = 12) recibirían una mayor activación en la red aritmética que 

podría permanecer durante un lapso temporal (Campbell, 1987). Esta mayor activación 

de hechos asociados a ambas operaciones se reflejaría en un mayor efecto de confusión 

asociativa en bloques combinados frente a la presentación de las operaciones en bloques 

puros, en los que no se está favoreciendo la activación de la otra operación asociada. 

Nótese que este patrón es explicable sin la necesidad de recurrir a la intencionalidad del 

sujeto, sino en términos de una activación residual en los diferentes nodos relacionados 

de la red aritmética. Por otro lado, los resultados obtenidos tras manipular la proporción 

de ensayos relacionados (20% vs. 80%) podrían ser explicados en términos de 

adaptación al conflicto (Botvinick, Braver, Barch, Carter y Cohen, 2001; Lindsay y 

Jacoby, 1994), de manera que cuando la proporción de ensayos relacionados es elevada, 

los participantes podrían aprender a resolver el conflicto de manera más eficaz, por 

ejemplo, desatendiendo o inhibiendo rápidamente la información conflictiva; de modo 

que el efecto de confusión asociativa desaparecería.  
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Por su parte, Lemaire et al. (1991) también aportaron evidencia empírica sobre 

el grado de automaticidad del efecto de confusión asociativa. Los autores evaluaron el 

rendimiento de estudiantes universitarios en la tarea de verificación de sumas y 

multiplicaciones (con los operandos desde 2 + 3 hasta 9 + 9), presentadas de manera 

aleatoria. Como en la investigación previa, los resultados que acompañaban a los 

problemas podían ser: I) resultados relacionados, II) resultados no relacionados y III) 

resultados correctos. Además, cuatro diferentes retrasos temporales fueron introducidos 

entre la presentación de los operandos del problema y la aparición de la respuesta, 

siendo manipulados entre-grupos: I) 0 ms, II) 100 ms, III) 300 ms o IV) 500 ms. Los 

autores replicaron el efecto de confusión asociativa en los grupos donde el retraso fue de 

0 ms y 100 ms. Sin embargo, el efecto desapareció en los grupos donde el retraso 

introducido fue mayor (300 ms y 500 ms), apoyando la hipótesis de que el efecto de 

confusión asociativa era “parcialmente automático”: “automático” porque ante la 

presentación del problema los hechos aritméticos relacionados fueron coactivados sin la 

intención de los participantes, “parcialmente” porque si los participantes disponían de 

suficiente tiempo para recuperar la respuesta correcta, las personas intencionalmente 

evitaban que la respuesta relacionada interfiriera en la resolución del problema.  

Es nuestra opinión, el patrón de resultados reportado por Lemaire et al. (1991) 

puede ser interpretado de manera alternativa sin la necesidad de recurrir a la 

intencionalidad del sujeto. Si ante la presentación de un problema aritmético simple 

(e.g., 2 + 4), asumimos que se da una coactivación en la red del resultado correcto (e.g., 

6) y del resultado asociado a la multiplicación (e.g., 8), éstos podrían competir en el 

proceso de selección de la respuesta correcta. Esta competición podría ser resuelta 

mediante la inhibición de la información irrelevante en cada caso (e.g., 8), un proceso 

que requiere tiempo. Al introducir un retraso temporal entre los operandos y el 

resultado, podría haber tiempo suficiente para que el proceso de inhibición se 

completase y se seleccionase la respuesta correcta. De esta manera, cuando apareciese el 

resultado correcto, el participante ya habría seleccionado la respuesta correcta y el 

proceso de coactivación e interferencia habría sido resuelto, no observándose el efecto 

de confusión asociativa. Esta hipótesis inhibitoria se planteará en detalle más adelante.  
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Los estudios revisados hasta ahora sobre el efecto de confusión asociativa fueron 

realizados en contextos aritméticos, donde los participantes necesitaban recuperar 

información aritmética para realizar correctamente la tarea. Estos estudios apoyaron la 

visión de que la coactivación de hechos aritméticos asociados a la suma y a la 

multiplicación tenía lugar, al menos parcialmente, de manera automática. Una nueva 

manera de evaluar si la coactivación de hechos aritmético se realizaba de manera 

automática era el estudio de dicha coactivación fuera de un contexto aritmético 

específico, es decir, incluso cuando ninguna operación aritmética era requerida (Galfano 

et al., 2003; García-Orza, Damas-López, Matas y Rodríguez, 2009; LeFevre et al., 

1988; LeFevre y Kulak, 1994; Rusconi et al., 2004).  

En este sentido, el estudio de LeFevre et al. (1988) se centró en evaluar si la 

activación de hechos aritméticos asociados a la suma se desencadenaba de manera 

automática fuera del contexto aritmético. Para ello, los autores se valieron de una tarea 

de comparación numérica simple, en la que se les pedía a los participantes que indicaran 

si un número de un dígito (e.g., 5) había sido presentado previamente como parte de una 

operación (e.g., 5 + 1,  en este caso la respuesta era “si”) y en ningún momento la tarea 

requería que los participantes realizaran la operación aritmética en cuestión. De manera 

similar a los estudios realizados dentro de un contexto aritmético, dos condiciones 

experimentales fueron de interés: I) estímulo de prueba relacionado con la suma, donde 

el número a comparar era el resultado de realizar la suma de los operandos (e.g., 6, 

precedido por 5 + 1); y II) estímulo de prueba neutral, en la que el número no estaba 

relacionado con la operación (e.g., 3, precedido por 5 + 1), en ambos casos los 

participantes tenían que contestar “no”. Además, se introdujeron diferentes retrasos 

temporales entre el problema y la aparición del estímulo de prueba (60 ms, 120 ms, 180 

ms, 240 ms, 480 ms). Los autores planteaban que tras la presentación de los operandos 

(e.g., 5 + 1) se produciría una activación automática del resultado de la suma en la red 

(e.g., 6), que podría interferir con los otros estímulos activados (e.g., 5 y 1) a la hora de 

decidir cuál había sido presentado previamente. Como se predecía, al comparar las 

condiciones relacionada y control se encontró un efecto de interferencia: los 

participantes tardaron un mayor tiempo en refutar un estímulo de prueba que era el 

resultado de sumar la operación que en refutar un estímulo neutral; sugiriendo que la 
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respuesta asociada a la suma de la operación había sido activada de manera automática 

aunque no era necesaria para realizar la tarea e interfería a la hora de decidir si había 

sido presentada previamente o no. Este efecto de interferencia solo fue significativo 

cuando el retraso entre los estímulos fue corto (retrasos menores de 180 ms) pero no con 

retrasos de tiempo superiores, lo que fue interpretado como consecuencia de que dicha 

activación en memoria decaía con el tiempo o bien debido a que los participantes 

tuvieron un intervalo de tiempo suficiente para inhibir la información irrelevante de la 

suma. Es interesante señalar que el efecto se mantenía incluso si el problema era 

presentado sin el símbolo aritmético (e.g., 5 1), es decir, únicamente tras la presentación 

de pares de números. Lo anterior sugiere que, a pesar de no haber claves que 

favorecieran la coactivación de hechos aritméticos, la mera exposición a pares de 

números favoreció la activación del resultado de la sumatoria de ambos. En resumen, la 

activación de hechos aritméticos asociados a la suma en memoria parece ser un 

fenómeno robusto que se desencadena de manera obligatoria más allá del contexto 

aritmético, ¿ocurre lo mismo con hechos aritméticos asociados a la multiplicación? 

Para contestar a esta pregunta y determinar si la activación de los hechos 

aritméticos asociados a la multiplicación también se desencadenaba de manera 

automática en contextos no aritméticos, Rusconi et al. (2004) usaron nuevamente la 

tarea de comparación numérica simple, en la que pares de números eran presentados sin 

el símbolo aritmético asociado a la multiplicación “x” (e.g., 3  8). Fue de interés la 

comparación de dos condiciones experimentales similares al estudio de LeFevre et al. 

(1988): I) estímulo de prueba relacionado con la multiplicación, donde el número a 

comparar era el resultado de multiplicar los operandos (e.g., 24, precedido por 3  8); y 

II) estímulo de prueba neutral, donde el número no estaba relacionado con la 

multiplicación de los operandos (e.g., 49, precedido por 3  8). Los autores encontraron 

un patrón de resultados análogo al caso de la activación del resultado de la suma 

(LeFevre et al., 1988) descrito anteriormente: los participantes tardaban más tiempo en 

refutar un estímulo de prueba relacionado con la multiplicación en comparación con un 

número no relacionado. De lo que se induce que tras la aparición del par de estímulos 

(e.g., 3  8) se produjo la activación automática del resultado asociado a la multiplicación 

de los mismos (e.g., 24), y a su vez la activación de éste interfería a la hora de decidir si 



 

21 

 

 

había sido presentado previamente o no, al competir con la activación del par de 

estímulos realmente presentados (e.g., 3 y 8). Estos resultados apoyaban que, al igual 

que ocurre con los hechos aritméticos asociados a la suma, en la red aritmética de la 

memoria a largo plazo tiene lugar una activación obligatoria del conocimiento asociado 

a la multiplicación, incluso en aquellas condiciones en las que ninguna operación 

aritmética es necesaria para la ejecución de la tarea.  

En conclusión, la coactivación de hechos aritméticos asociados a la suma y a la 

multiplicación parece ser un fenómeno robusto de naturaleza parcialmente automática, 

que se desencadena tras el procesamiento de estímulos relevantes. La mera presentación 

de pares de números, favorece la activación de diferentes nodos que se encuentran inter-

conectados en la red aritmética de la memoria; con independencia de que los hechos 

aritméticos sean necesarios o no para la realización de una tarea. Para nuestro presente 

trabajo de investigación, es esencial destacar que este efecto ha sido interpretado como 

evidencia de la coactivación de hechos aritméticos asociados tanto a la suma como a la 

multiplicación en la memoria a largo plazo (Winkelman y Schmidt, 1974; Zbrodoff y 

Logan, 1986; Lemaire et al., 1991). Sin embargo, dicha premisa ha de ser corroborada 

empíricamente. En el siguiente apartado revisamos una serie de estudios que, directa o 

indirectamente, parece sugerir que la coactivación de hechos aritméticos subyace a los 

efectos de confusión asociativa reportados en la literatura. 

 

¿La coactivación subyace a la confusión asociativa? 

 

Aunque ha sido asumido que la coactivación de hechos aritméticos subyace al 

efecto de confusión asociativa, reconocemos que la investigación previa ha ofrecido 

apoyo indirecto a dicha interpretación (Galfano et al., 2003; LeFevre et al., 1994; 

Lemaire et al., 1991; Rusconi et al., 2004; Winkelman y Schmidt, 1974; Zbrodoff y 

Logan, 1986). Estudios actuales en que se han considerado técnicas de neuroimagen y 

electrofisiología cerebral parecen concretar más directamente la relación entre 

coactivación aritmética y confusión asociativa.   
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 De forma específica, estudios recientes utilizando la técnica de neuroimagen por 

Resonancia Magnética Funcional (IRMf) se han centrado en explorar el correlato 

cerebral de los efectos de relación en la aritmética simple (De Visscher et al., 2015; 

Grabner et al., 2013). Concretamente, el estudio de Grabner et al. (2013) se centró en 

determinar los correlatos neuroanatómicos del efecto de confusión asociativa. Como en 

los estudios previos, a una muestra de adultos se les pidió que realizaran una tarea de 

verificación de sumas y multiplicaciones simples que se presentaban de manera 

combinada (pseudo-aleatoriamente). El conjunto de problemas presentados fue desde 2 

+ 3 hasta 9 + 9 y se establecieron las ya conocidas condiciones experimentales: I) 

resultados relacionados, II) resultados no relacionados y III) resultados correctos. A 

nivel comportamental, se replicó el efecto de confusión asociativa. Por su parte, el 

análisis de IRMf mostró que cuando los participantes resolvían problemas que eran 

acompañados de resultados relacionados (e.g., 3 + 4 = 12) se producía una mayor 

activación del giro angular izquierdo (anterior) que se extendía hacia el giro 

supramarginal y la corteza parietal superior y, a su vez, una mayor activación de la 

corteza prefrontal dorso-lateral del hemisferio izquierdo, en comparación con la 

condición en la que los participantes resolvían problemas con resultados no 

relacionados (e.g., 3 + 4 = 7). 

Si consideramos que el giro angular izquierdo ha sido íntimamente ligado con la 

representación de hechos aritméticos (Delazer, Domahs, Bartha, Brenneis, Lochy, 

Trieb, & Benke, 2003; Grabner, Ansari, Koschutnig, Reishofer, Ebner, & Neuper, 

2009), este estudio parece sugerir que, en efecto, la activación de la red aritmética 

subyace al efecto de confusión asociativa. Además, los autores (Grabner et al., 2013) 

disociaron el efecto de confusión asociativa de los efectos asociados a la dificultad del 

problema en el giro angular izquierdo (el cual presentaba una menor activación durante 

la resolución de problemas difíciles en comparación con la resolución de problemas 

fáciles), apoyando que esta área cerebral estaría comprometida con los procesos de 

mapeo entre el problema presentado y las posibles respuestas asociadas al mismo. De 

este modo, cuando un problema con resultado relacionado es presentado, se produciría 

de manera automática una mayor activación de dichos resultados en la memoria a largo 

plazo del sujeto. 
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Por otro lado, en estudios de registro de la actividad electrofisiológica cerebral 

(Domahs et al., 2007; Guthormsen, Fisher, Bassok, Osterhout, DeWolf y Holyoak, 

2015; Jost et al., 2004; Niedeggen y Rösler, 1996, 1999; Niedeggen et al., 1999) 

también se ha evaluado el fenómeno de coactivación ligado al procesamiento de 

multiplicaciones simples. Por ejemplo, en el estudio de Niedeggen y Rösler (1999) se 

utilizó una tarea de verificación de multiplicaciones simples en la que los participantes 

tenían que indicar si cada multiplicación presentada era correcta o no. En lo que 

respecta a las multiplicaciones incorrectas, se establecieron dos condiciones 

experimentales: I) condición relacionada, en la que el resultado presentado era múltiplo 

del primer o del segundo operando (e.g., 5 x 8 = 32, dado que 4 x 8 = 32), y II) 

condición control, en la que el resultado presentado no estaba relacionado con la 

operación (e.g., 5 x 8  = 34). Los autores consideraron tanto medidas comportamentales 

(e.g., tiempo de reacción), como de promediado de la actividad eléctrica cerebral (ERPs, 

por sus siglas en inglés Event-Related Potentials). Por una parte, se encontró un efecto 

de interferencia similar al efecto de confusión asociativa, pero entre resultados 

asociados únicamente a multiplicaciones simples. Así, los participantes tardaban más 

tiempo en descartar una multiplicación incorrecta relacionada (e.g., 5 x 8 = 32) frente a 

una multiplicación no relacionada (e.g., 5 x 8  = 34). Este resultado fue interpretado 

como consecuencia de la coactivación de varias respuestas relacionadas con la 

multiplicación en la red aritmética; coactivación que interfería en la selección de la 

respuesta correcta al problema (e.g., 40). Por otra parte, se encontraron modulaciones 

del componente N400, una onda negativa cuyo pico se encuentra aproximadamente 

entre los 350-450 ms tras la presentación del estímulo, y que ha sido considerado como 

un índice ligado a la dificultad/facilidad en el acceso a la información semántica (Kutas 

y Hillyard, 1980, 1984). En concreto, se observó una atenuación del componente N400 

en la condición relacionada frente a la condición control. Los autores interpretaron que 

la atenuación en el componente N400 en la condición relacionada se debía a la 

propagación de la activación en la red aritmética en la condición relacionada, de manera 

que la activación de la respuesta relacionada facilitaba la activación de la respuesta 

correcta. A su vez, este proceso de coactivación entre respuestas relacionadas 

interferiría posteriormente en la selección de la respuesta correcta. Esta interferencia fue 

observada en los resultados comportamentales, no pudiendo ser capturada mediante 
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medidas electrofisiológicas. Por lo tanto, parece existir evidencia empírica que vincula 

el fenómeno de coactivación con el posterior efecto de interferencia entre hechos 

aritméticos relacionados y asociados a la multiplicación. 

 Por otro lado, en un estudio reciente de Avancini et al. (Avancini, Soltész y 

Szűcs, 2015) se ha mostrado que las modulaciones del N400 asociadas al procesamiento 

aritmético se desencadenaban incluso cuando no es necesaria la recuperación del hecho 

aritmético desde la memoria. Estos autores crearon un nuevo paradigma experimental 

en el que, inicialmente, se presentaba una suma simple (e.g., 3 + 4) seguida de un tercer 

número (e.g., 9). Los participantes debían indicar la paridad del tercer número (e.g., 9, 

impar). Además, los autores manipularon la relación entre el tercer número y los dos 

operandos presentados previamente de forma que dicho número podía ser el resultado 

de la suma (7) o no (9). A pesar de que los sujetos no tenían que realizar operaciones 

aritméticas sino juicios de paridad, se encontró una modulación del componente N400, 

de manera que su amplitud fue menos negativa cuando el tercer número era el resultado 

de la suma frente a cuando no lo era. Esta atenuación del componente N400 fue 

interpretada como evidencia de la recuperación del hecho aritmético asociado a la suma 

aunque no fuese necesario para la resolución del problema. 

Hemos visto, por lo tanto, que la atenuación del componente N400 se ha tomado 

como un indicador del acceso tanto a hechos aritméticos asociados a sumas (Avancini et 

al., 2015) como a multiplicaciones (Niedeggen y Rösler, 1996, 1999; Niedeggen et al., 

1999). Sin embargo, es importante destacar que en estas investigaciones previas de corte 

electrofisiológico se ha evaluado la coactivación de hechos aritméticos dentro de una 

misma categoría de problemas (entre resultados de multiplicaciones, o entre resultados 

de sumas). Sería de especial interés explorar si las mismas modulaciones del 

componente N400 se dan como consecuencia de la coactivación entre hechos 

aritméticos asociados a diferentes operaciones aritméticas (sumas y multiplicaciones) y 

si esta coactivación subyace al efecto de confusión asociativa descrito hace cuarenta 

años (Winkelman y Schmidt, 1974). Estas cuestiones se abordarán en el Capítulo IV de 

la serie experimental. 
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SELECCIÓN DE HECHOS ARITMÉTICOS: EL PAPEL DE LA INHIBICIÓN 

 

En el apartado anterior, hemos explorado un aspecto fundamental de la 

representación de hechos aritméticos en la memoria a largo plazo: el fenómeno de 

coactivación, es decir, la activación conjunta de diversos hechos aritméticos que se 

encuentran relacionados en la red asociativa. Sin embargo, resulta importante destacar 

que, a pesar de la interferencia que el fenómeno de coactivación puede generar a la hora 

de seleccionar la respuesta correcta (e.g., es más difícil contestar a una suma cuyo 

resultado es aquel de multiplicar sus operandos, 2 + 4 = 8; Zbrodoff y Logan, 1986), la 

mayor parte de las personas realizamos correctamente este tipo de operaciones 

aritméticas simples. Así pues, cabe preguntarse de qué modo se selecciona finalmente la 

respuesta correcta y se descartan otras posibles respuestas competidoras. En este 

apartado, centraremos nuestra atención justamente en los procesos de selección que 

permiten finalmente recuperar la respuesta correcta desde la memoria, dándole un papel 

fundamental a procesos de naturaleza inhibitoria.  

A lo largo de los años, resultados de diferentes estudios han sugerido que 

procesos de naturaleza inhibitoria podrían estar implicados en la selección de hechos 

aritméticos (Lemaire et al., 1991; LeFevre et al., 1988; LeFevre y Kulak, 1994). 

Además, modelos asociativos centrados en la recuperación, como el modelo de 

recuperación de la red semántica (Whalen, 2000) descrito en páginas precedentes, 

incluían procesos inhibitorios como elementos fundamentales de la selección de hechos 

aritmético. Recordemos que en el modelo se proponía que la selección de una respuesta 

concreta se debía a la sucesión de conexiones tanto excitatorias como inhibitorias entre 

diversos nodos de la red, de manera que la activación se iría focalizando en los nodos 

relevantes permitiendo seleccionar la respuesta correcta. 

Una primera línea de evidencia empírica que parece demostrar la importancia de 

los procesos inhibitorios en la aritmética simple es de corte evolutivo. De hecho, en una 

gran variedad de estudios se ha mostrado la relación entre diferentes medidas de control 

inhibitorio y el rendimiento en matemáticas de niños en edad escolar (Adams y Hitch, 

1997; Bull, Johnston y Roy, 1999; Bull y Scerif, 2001; Fürst y Hitch, 2000; Geary, 
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Hamson y Hoard, 2000; Gilmore et al., 2013; Lubin, Vidal, Lanoë, Houdé y Borst, 

2013; McLean y Hitch, 1999; Van der Sluis, De Jong y Van der Leij, 2004). Dicha 

evidencia empírica será revisada en el apartado “El desarrollo de la red asociativa”.  

Por otro lado, se ha encontrado evidencia empírica a favor de la existencia de 

procesos de auto-inhibición encargados de regular el rendimiento en tareas secuenciales 

utilizando operaciones aritméticas simples (Arbuthnott y Campbell, 2000; 2003; 

Campbell y Arbuthnott, 1996). Los procesos de auto-inhibición son los encargados de 

suprimir el estímulo que deja de ser relevante para procesar el siguiente estímulo y 

conseguir así que una tarea secuencial se ejecute de manera fluida. En el estudio de 

Arbuthnott y Campbell (2003) el objetivo era evaluar si estos procesos de auto-

inhibición ocurrían tras la mera activación de la representación del estímulo en memoria 

o si era necesaria una producción motora asociada al estímulo para su posterior 

inhibición. Para ello, los autores usaron  una tarea de producción de sumas en la que se 

manipularon dos condiciones: I) condición relacionada, en la que dos sumas 

consecutivas estaban relacionadas, de manera que algún operando de la primera (e.g., 3 

+ 7) coincidía con el resultado de la segunda (e.g., 2 + 5 = 7), y II) condición control, en 

la que la primera suma (e.g., 3 + 9) no estaba relacionada con la segunda (e.g., 2 + 5 = 

7). Téngase en cuenta que en la condición relacionada, si tras la activación de la 

representación de los operandos de la primera operación se producía la inhibición de los 

mismos como posibles respuestas (e.g., 3 + 7), se tardaría un mayor tiempo en 

responder a una segunda operación cuyo resultado coincidiese con alguno de los 

operandos (e.g., 2 + 5 = 7) puesto que se requeriría más tiempo para recuperar este 

estímulo nuevamente desde la memoria. Los resultados mostraron este efecto de 

interferencia en la condición relacionada en comparación con la condición control, 

sugiriendo que la activación de la representación del operando en la primera suma era 

suficiente para que se produjese la inhibición del mismo como respuesta, interfiriendo 

en la ejecución de una suma consecutiva cuya respuesta coincidía con el número 

inhibido. Este estudio resultó de gran relevancia a la hora de mostrar que los procesos 

de inhibición no necesitaban de una respuesta motora, sino que podían desencadenarse 

tras la activación de la representación del número en memoria, lo que era acorde con el 

modelo de recuperación de la red semántica (Whalen, 2000). Sin embargo, una vez más, 
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estos estudios no especificaban el posible papel del control inhibitorio en la selección de 

los hechos aritméticos cuando hay coactivación y competición de resultados en la red 

asociativa. 

Recientemente, en una serie de estudios conducidos por Campbell (Campbell, 

Chen y Maslany, 2013; Campbell y Dowd, 2012; Campbell y Thompson, 2012) se ha 

examinado directamente el papel de los procesos inhibitorios en la selección de hechos 

aritméticos. Para ello, en estos estudios se ha utilizado una adaptación del paradigma de 

práctica en la recuperación, el cual se utiliza normalmente para mostrar cómo la 

interferencia producida por diferentes representaciones en la memoria es resuelta 

mediante un mecanismo de inhibición de las representaciones competidoras (Anderson, 

Bjork y Bjork, 1994).  

En los estudios realizados por Campbell et al., los participantes pasaban 

previamente por una fase de entrenamiento, en la cual se presentaba una serie de 

multiplicaciones simples y había que dar el resultado correcto en voz alta a cada una de 

ellas (e.g., 2 x 3 = ?). Tras esta fase de entrenamiento, los participantes pasaban a la fase 

de prueba, en la que se presentaban sumas simples y los participantes igualmente tenían 

que resolverlas en voz alta. Lo interesante es que entre las sumas, se incluían problemas 

cuyos operandos habían sido practicados previamente en la fase de entrenamiento en 

multiplicaciones (e.g., 2 + 3 = ?) y problemas cuyos operandos no habían sido 

practicados en la fase de entrenamiento (e.g., 2 + 5 = ?). El principal resultado 

encontrado fue un efecto de interferencia en la segunda fase, de manera que los 

participantes contestaron más lentamente a las sumas practicadas frente a las sumas 

cuyos operandos no habían sido practicados previamente en la multiplicación. Este 

efecto, denominado como Olvido Inducido por la Recuperación (OIR o efecto RIF, en 

inglés: Retrieval-Induced Forgetting) fue interpretado en términos inhibitorios, de modo 

que la recuperación de los hechos asociados a la multiplicación en la fase de 

entrenamiento produjo una inhibición de los hechos competidores asociados a la suma 

en la red aritmética. Como consecuencia, en la fase de prueba, los participantes tardaron 

un mayor tiempo en recuperar aquellos hechos asociados a la suma que habían sido 

previamente inhibidos en comparación con los aquellos no inhibidos.  
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Por otro lado, Campbell et al. (Campbell et al., 2013; Campbell y Dowd, 2012; 

Campbell, Dufour y Chen, 2015; Campbell y Thompson, 2012) han especificado 

diversas características del efecto OIR en la aritmética simple, entre ellas: el fenómeno 

OIR se hace más evidente en los problemas de tamaño pequeño (la suma de sus 

operandos es ≤ 10), es decir, en aquellos cuya fuerza asociativa es mayor en la red 

aritmética y, por lo tanto, producen una gran competición. Además, el fenómeno ocurre 

con independencia del formato en el que los hechos aritméticos se presentan, se ha 

encontrado el mismo patrón tanto si los problemas eran presentados en un formato 

numérico familiar (e.g., 2 x 3 =) o escritos en palabras (e.g., dos más tres igual).  

Llegados a este punto, podríamos preguntarnos sobre el locus del proceso 

inhibitorio. Campbell et al. (Campbell et al., 2013; Campbell y Dowd, 2012; Campbell 

y Thompson, 2012) no especifican qué es exactamente lo que se está inhibiendo al 

seleccionar la respuesta correcta. En nuestra opinión, la inhibición podría producirse en 

las respuestas competidoras relacionadas con el problema en cuestión, de manera que; 

tras la presentación de un hecho aritmético asociado a la multiplicación (e.g., 2 x 3 =) se 

activarían la respuesta correcta (6) y otras respuestas asociadas, entre ellas, el resultado 

de la suma de los operandos (5). Esta competición podría resolverse inhibiendo la 

respuesta incorrecta asociadas a la suma (5). De este modo, cuando la respuesta inhibida 

es relevante en la fase de prueba, se precisaría un tiempo adicional para recuperarla 

nuevamente desde la memoria. 

En resumen, los estudios revisados en esta sección sugieren la existencia de un 

mecanismo de carácter inhibitorio durante la resolución de operaciones aritméticas 

simples. Es importante destacar que este mecanismo inhibitorio tiene consecuencias a 

largo plazo puesto que se asume que la inhibición descrita por Campbell et al. se 

produce en una fase de entrenamiento con multiplicaciones y, pasada esta tarea, se 

evalúan las consecuencias del proceso inhibitorio durante la tarea de sumas. A lo largo 

de nuestra serie experimental, nosotros evaluaremos si este mecanismo inhibitorio actúa 

de manera continua, es decir, ensayo a ensayo, cuando las personas resuelven 

operaciones aritméticas simples.  
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EL USO DE HECHOS ARITMÉTICOS: FACTORES MODULADORES 

 

En los apartados precedentes nos hemos centrado en dos aspectos fundamentales 

de la recuperación de hechos aritméticos desde la memoria: la coactivación de 

información aritmética relacionada en la red, y el posterior proceso de selección de la 

respuesta correcta en cada caso. Sin embargo, tal y como señalaba Siegler (Siegler y 

Jenkins, 1989), es importante tener en cuenta que en la resolución de operaciones 

aritméticas simples intervienen tanto estrategias de recuperación como estrategias de 

tipo procedimental. En este apartado, pasaremos a preguntarnos qué factores influyen en 

el uso de hechos aritméticos desde la memoria. En un primer momento, nos centraremos 

en aquellos modelos que han defendido el uso de mecanismos procedimentales en la 

aritmética simple (Baroody, 1983) y la evidencia empírica que han recibido (Barrouillet 

y Thevenot, 2013; Della Puppa et al., 2015; LeFevre, Sadesky y Bisanz, 1996; Roussel, 

Fayol y Barrouillet, 2002; Thevenot, Barrouillet, Castel y Uittenhove, 2016; Thevenot, 

Castel, Danjon y Fayol, 2015; Thevenot, Fanget y Fayol, 2007). Posteriormente, 

exploraremos cómo el formato en que las operaciones aritméticas son presentadas puede 

modular el uso de estrategias en la resolución de operaciones aritméticas simples 

(Campbell y Epp, 2004). En último lugar, contemplaremos el desarrollo evolutivo de los 

niños como otro de los factores que influye en el uso de hechos aritméticos al tiempo 

que se va conformando la red aritmética en la memoria (Siegler y Jenkins, 1989). 

 

Mecanismos procedimentales 

 

En el modelo de distribución de asociaciones de Siegler (Siegler y Jenkins, 

1989), descrito más arriba, se contempló el uso de estrategias procedimentales para la 

resolución de problemas aritméticos simples incluso en la población adulta. A través del 

uso de auto-informes, en los que se les pedía a adultos de diferentes rangos de edad que 

indicaran cómo habían resuelto operaciones aritméticas simples, se mostró que todos 

reportaban haber utilizado estrategias procedimentales en mayor o menor grado (Geary 
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y Wiley, 1991; Healy, Rickard y Bourne, 1993; Núñez-Peña, Colomé y Tubau, 2015). 

Por ejemplo, el estudio de Geary y Wiley (1991) mostró que adultos jóvenes resolvían 

un 10% de las operaciones a través de estrategias procedimentales, frente al 90% del 

uso de recuerdo directo de la respuesta desde la memoria. Sin embargo, los modelos 

asociativos asumieron que el uso de estrategias procedimentales era más lento en 

comparación con la rápida recuperación desde la memoria (Ashcraft, 1992), apostando 

por la eficacia de esta última estrategia.       

Un planteamiento alternativo a los modelos asociativos (Ashcraft, 1982; 1987; 

Campbell y Graham, 1985; Siegler y Jenkins, 1989) fue el modelo basado en esquemas 

de Baroody (Baroody’s schema-based model; Baroody, 1983; 1994) que defendía el uso 

de estrategias procedimentales como la estrategia por defecto en la resolución de las 

operaciones aritméticas simples. En un primer momento, Baroody (1983) criticó la 

asunción de los modelos asociativos sobre la rapidez del uso del recuerdo frente a 

estrategias de carácter procedimental, argumentando que la práctica continuada de 

estrategias procedimentales en edad escolar podría hacer que éstas se ejecutaran de una 

manera automática, y por ende, con gran rapidez. Además, el autor argumentó que un 

modelo basado en estrategias procedimentales era más económico en términos 

cognitivos: por un lado, bajo su planteamiento, no era necesaria la representación de un 

amplio rango de hechos aritméticos en la memoria; sino que un rango más concreto de 

reglas, heurísticos y principios generales podría ser almacenado y aplicado a una gran 

variedad de operaciones aritmética simples. Por ejemplo, el uso de la regla N + 1 (el 

resultado es el siguiente número a N) sería más fácil de aplicar que la búsqueda en 

memoria del resultado asociado a ambos operandos. 

Por otro lado, resulta relevante indicar que Baroody (1983) puso en duda que el 

efecto de confusión asociativa (Winkelman y Schmidt, 1974) fuese evidencia de que los 

hechos aritméticos están almacenados en la memoria. El fenómeno, según el autor, 

podría entenderse como consecuencia de la utilización de reglas inapropiadas para la 

operación en cuestión. Por ejemplo, ante la resolución de la multiplicación 7 x 0, el uso 

de una regla correspondiente a la suma como N + 0 = N (en lugar de la regla relevante 

para la multiplicación N x 0 = 0) podría derivar en el fenómeno de confusión. Sin 
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embargo, tal y como objeta Ashcraft (1983), Baroody no plantea explícitamente qué 

reglas inapropiadas podrían estar a la base del fenómeno en operaciones aritméticas de 

mayor tamaño, que no se siguen de una regla aparente (3 + 5 = 15) y que son distintas 

de aquellas reglas aplicadas cuando los operandos son 0 ó 1 (N + 0, N x 0, N + 1 o N x 

1). Además, el autor no justifica el porcentaje tan elevado de errores (implementación 

de reglas inapropiadas) que deberían usar los participantes para evidenciar un fenómeno 

tan robusto en la literatura empírica como el efecto de confusión asociativa (Findlay, 

1978; Lemaire et al., 1991; Winkelman y Schmidt, 1974; Zbrodoff y Logan, 1986; 

Zbrodoff, 1979). 

En una formulación posterior del modelo basado en esquemas de Baroody 

(1994), el autor especificó que además de la representación de algunos hechos 

aritméticos en la memoria a largo plazo, las diferentes estrategias procedimentales a las 

que es posible acceder para resolver un problema aritmético también se representarían 

en memoria, conformando la estructura de esquemas. Por ejemplo, ante la resolución de 

una multiplicación, un primer esquema podría activarse para identificar la operación 

concreta del problema (en este caso, una multiplicación). A partir de este paso inicial, 

diferentes esquemas se activarían dependiendo del problema: I) Si el problema fuese del 

tipo N x 0, se ejecutaría el esquema de la regla N x 0 = 0 (Si 0 es multiplicado a otro 

número, entonces el resultado es 0); II) Si el problema fuese del tipo N x 1, se ejecutaría 

el esquema de la regla N x 1 = N (Si 1 es multiplicado a otro número, entonces el 

resultado es igual al número). Además, en el modelo se incluían esquemas cuya premisa 

era acceder a la red aritmética: III) Si el problema fuese del tipo N1 x N1 (Si un número 

es multiplicado por él mismo, entonces accede a la red asociativa). En otras palabras, 

esta formulación del modelo estaba a medio caballo entre el uso de reglas 

procedimentales y la recuperación en memoria como maneras de resolver operaciones 

aritméticas simples.  

Diferentes investigaciones empíricas (Barrouillet y Thevenot, 2013; LeFevre et 

al., 1996; Roussel et al., 2002; Thevenot et al., 2007, 2015, 2016) parecen apoyar el 

modelo basado en esquemas (Baroody, 1983; 1994) en población adulta. En términos 

metodológicos, estas investigaciones comparten la idea de que las medidas de auto-
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informe en que se pregunta a los sujetos sobre la manera en que han resuelto un 

problema, podrían ser medidas cuestionables para determinar la recuperación en 

memoria frente al uso de procedimientos. En concreto, en estos estudios se plantea que 

si las estrategias procedimentales son automáticas, el sujeto puede resolver el problema 

rápidamente sin tener consciencia de haberlas usado. En consecuencia, una medida de 

auto-informe no evidenciaría el uso de procedimientos al ser ejecutados de manera no 

consciente. Por estas razones, Thevenot et al. (2007) utilizaron un paradigma de 

reconocimiento de operandos para evaluar el uso de estrategias procedimentales en la 

resolución de sumas de tamaño pequeño (la suma es < 10), mediano (la suma es > 10) y 

grande (los operandos de la suma son de dos dígitos). Los autores querían corroborar si 

las sumas eran resueltas mediante estrategias procedimentales como la transformación 

de los operandos (e.g., 5 + 7 = 5 + 5 + 2 = 12). Se argumentó que, de ser así, si tras la 

resolución del problema los operandos originales volviesen a presentarse (5 y 7)  y el 

participante tuviese que indicar si éstos aparecieron previamente o no, el 

reconocimiento de los mismos se vería afectado, comparándolo con una tarea de 

comparación numérica (e.g., ¿Está el número 6 entre 5 y 7?) en la que no se precisaba 

la transformación de los números. Los autores encontraron un peor desempeño en el 

reconocimiento de los operandos cuando las sumas eran de tamaño mediano y grande, 

lo que fue interpretado como consecuencia del uso de estrategias procedimentales en 

algunas de las operaciones. Sin embargo, el reconocimiento no se vio afectado con 

sumas pequeñas (e.g., 3 + 5 = 8), sugiriendo que éstas se realizaban a través de la 

recuperación de la respuesta desde la memoria, sin necesidad de transformar los 

operandos. En un segundo experimento, los autores mostraron que los participantes con 

una alta habilidad aritmética únicamente empeoraron su rendimiento en la tarea de 

reconocimiento con los problemas grandes, sugiriendo que el resto de sumas simples 

eran resueltas principalmente a través del recuerdo desde la red aritmética; y en nuestra 

opinión, mostrando que el recuerdo reemplaza a las estrategias procedimentales a 

medida que la práctica incrementa. 

Por otro lado, Fayol y Thevenot (2012) pidieron a participantes adultos que 

resolviesen sumas, restas o multiplicaciones simples cuyos operandos iban del 1 al 9 y 

que eran precedidos por el signo de la operación 150 ms antes (e.g., +, 9 + 6 = ?) o 
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aparecían directamente junto con los operandos. Los autores partían de la idea de que si 

las operaciones se resolvían a través de estrategias procedimentales, éstas debían 

activarse tan rápido como fuese posible, independientemente del problema concreto a 

resolver. Los resultados mostraron que tanto las sumas como las restas se contestaron 

más rápidamente cuando fueron precedidas por el signo aritmético (+ y - 

respectivamente), mientras que las multiplicaciones fueron contestadas con la misma 

rapidez independientemente si eran precedidas del signo aritmético (x) o no. Además, el 

patrón de resultados fue similar para todas las sumas, exceptuando los problemas “tie” 

con operandos iguales (e.g., 3 + 3), sobre los que se asume una especial representación 

en la memoria a largo plazo. Este patrón fue interpretado como consecuencia de una 

pre-activación de estrategias procedimentales que facilitaron la resolución de 

operaciones aritméticas simples como la resta o la suma. Por ejemplo, en el caso de la 

suma, tras la presentación del signo + la “min estrategia” (contar desde el operando de 

mayor tamaño) podría activarse en la memoria, facilitando la posterior aplicación de la 

misma. 

Basándose en los resultados expuestos arriba, Fayol y Thevenot (2012) 

defendieron que las estrategias procedimentales eran el método por defecto utilizado a 

la hora de resolver sumas simples; pero no en el caso de las multiplicaciones simples, 

siendo éstas resueltas a través de la recuperación. Sin embargo, en nuestra opinión, es 

posible que el paradigma empleado por los autores favoreciese artificialmente el uso de 

estrategias procedimentales. Es decir, al presentarse previamente el signo aritmético, los 

participantes podrían decantarse por el uso de estrategias en vez de por la recuperación, 

puesto que la preactivación de estrategias favorecería la rápida resolución del problema 

una vez que los operandos fuesen presentados.  Es interesante señalar que los autores 

también encuentran un menor tiempo en responder a sumas, restas y multiplicaciones 

cuando unos 150 ms antes del problema aparecen los operandos sin el signo aritmético 

(e.g., 9 6, 9 + 6 = ?). En este caso, podría suceder que estos operandos preactivasen 

hechos aritméticos en memoria,  facilitando el recuerdo directo como manera de 

resolver el problema. Es decir, en nuestra opinión, la investigación realizada por Fayol y 

Thevenot (2012), presenta posibles explicaciones alternativas a la idea del uso de 
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estrategias procedimentales usadas por defecto en la resolución de problemas 

aritméticos simples. 

En resumen, existe evidencia empírica que apoya tanto el uso de estrategias de 

recuerdo (Geary y Wiley, 1991) como el uso de estrategias procedimentales (Barrouillet 

y Thevenot, 2013; LeFevre et al., 1996; Núñez-Peña et al., 2015; Roussel et al., 2002) 

en la resolución de operaciones aritméticas simples. En un capítulo de nuestra sección 

experimental, directamente evaluaremos el uso de dichas estrategias frente a la 

recuperación de hechos aritméticos (ver Capítulo V). Por otro lado, sería interesante 

preguntarse por factores que indujesen a la elección de una manera de resolver las 

operaciones aritméticas (recuerdo frente a procedimientos). En este sentido, cambios en 

la familiaridad del formato en el que las operaciones son presentadas, por ejemplo, 

escritas en palabras (e.g., dos + cuatro) en lugar de en dígitos (e.g., 2 + 4), puede 

determinar el mayor uso de estrategias procedimentales frente a estrategias de recuerdo 

(Schunn, Reder, Nhouyvanisvong, Richards y Stroffolino, 1997). En el siguiente 

apartado, describiremos brevemente tanto los estudios como los principales modelos 

teóricos que han sido propuestos para explicar las diferencias encontradas en aritmética 

simple dependiendo del formato numérico.  

 

El papel del formato de presentación de las operaciones aritméticas 

 

 Como acabamos de indicar en el apartado previo, en varias investigaciones se ha 

demostrado que el uso de la red de hechos aritméticos (recuerdo desde la memoria) y el 

uso de reglas procedimentales parecen coexistir al resolver operaciones aritméticas 

simples. En este apartado, nos centraremos en cómo el formato en el que se presentan 

las operaciones aritméticas simples puede influir en la manera en la que éstas son 

resueltas.  

Investigaciones previas han mostrado que el uso de estrategias procedimentales 

era mayor cuando las operaciones eran presentadas en un formato poco familiar (e.g., 

escritas, dos + cuatro) frente a un formato familiar (e.g., en dígitos, 2 + 4) (Campbell y 
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Alberts, 2009; Campbell y Epp, 2004; Campbell y Fugelsang, 2001; Schunn et al., 

1997). Para ejemplificar, en el estudio de Campbell y Fugelsang (2001) se presentaban 

sumas simples junto con un resultado y los participantes tenían que decidir si éste era 

correcto o incorrecto. Tras dar una respuesta, se les pedía que indicaran si habían 

resuelto la operación por medio de estrategias de recuerdo o por estrategias de tipo 

procedimental. Se manipularon dos formatos, de manera que las operaciones podían ser 

presentadas en dígitos (e.g., 2 + 4 = 6) o escritas en palabras (e.g., dos + cuatro = seis). 

Los participantes tardaron un mayor tiempo en responder a las operaciones escritas en 

palabras frente al formato en dígitos. Además, mientras que los participantes 

únicamente hicieron uso de estrategias procedimentales en un 25% de las operaciones 

presentadas en dígitos, el uso de estas estrategias se incrementó de manera significativa 

en un 41% de los casos con operaciones escritas en palabras. Estos resultados sugirieron 

que el formato tenía un papel crucial en el uso de estrategias procedimentales frente al 

recuerdo desde la memoria a la hora de resolver un problema aritmético simple.  

Ahora bien, a pesar de que las estrategias procedimentales parecían ser usadas en 

mayor medida cuando los problemas eran presentados en formato escrito frente a 

números arábigos, lo cierto es que un porcentaje de estos problemas también era 

resuelto mediante la recuperación en memoria (un 59% de los problemas en formato 

verbal, Campbell y Fugelsang, 2001). Así pues, cabe preguntarse si, cuando se utiliza la 

recuperación en memoria, el formato de presentación del problema tiene un impacto 

directo en la recuperación de hechos aritméticos o no. Desde varios modelos teóricos se 

han dado respuestas diferentes a esta pregunta (Campbell y Clark, 1992; Campbell y 

Epp, 2004; Dehaene, 1992; McCloskey, 1992; McCloskey, Sokol y Goodman, 1986; 

Noël y Seron, 1992). En el modelo modular abstracto de McCloskey (McCloskey’s 

abstract-modular model, McCloskey, 1992) se defendía que los hechos aritméticos están 

representados de manera abstracta en la memoria. De este modo, cuando un problema 

aritmético es presentado en un formato determinado (e.g., en dígitos, 2 + 4), en el 

proceso de codificación éste sería transformado a una forma abstracta, y su resolución 

se llevaría a cabo de manera independiente a las características periféricas del formato 

en que se presentó. Este modelo ofrecía explicaciones plausibles al mayor tiempo 

necesario para resolver un problema en un formato poco familiar (e.g., dos + cuatro) 
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frente a un problema en formato familiar (e.g., 2 + 4) (Blankenberger y Vorberg, 1997): 

La familiaridad del formato facilitaría el procesamiento del problema en una etapa 

temprana de análisis, cuando el problema está siendo codificado, siendo más rápida la 

transformación de éste a su representación abstracta en caso de presentarse en un 

formato practicado (e.g., números arábigos). Así pues, desde esta perspectiva, el acceso 

y representación de hechos aritméticos sería independiente del formato del problema. El 

formato solamente afectaría a los procesos iniciales de codificación.  

En resumen, en el modelo modular abstracto (McCloskey, 1992) se asumía que 

la resolución de las operaciones se efectuaría en una misma forma abstracta, 

independiente del formato, por lo que no se esperaría encontrar ninguna modulación del 

formato sobre fenómenos ligados a la representación de los hechos aritméticos en 

memoria. Sin embargo, diferentes estudios demostraron que el formato sí influía en el 

procesamiento central de la aritmética (Campbell y Alberts, 2009; Campbell y Clark, 

1992; Campbell y Fugelsang, 2001; Jackson y Coney, 2007; McNeil y Warrington, 

1994). Por ejemplo, el efecto del tamaño (recordemos que consiste en una peor 

ejecución en la resolución de problemas de tamaño mayor frente a problemas de menor 

tamaño ligado a la mejor representación de los últimos en la red) era mayor cuando las 

operaciones eran presentadas escritas en palabras frente al formato en dígitos (Campbell 

y Clark, 1988). Estos datos parecían indicar que la resolución de operaciones aritméticas 

simples sí era dependiente del formato en el que se presentaban, puesto que el efecto del 

tamaño del problema es índice de la representación de hechos aritméticos y no de etapas 

de codificación tempranas. En este sentido, los datos empíricos parecían ir a favor del 

modelo de codificación compleja de Campbell (Campbell’s encoding-complex model, 

Campbell y Clark, 1988; Campbell y Clark, 1992). En este modelo, se postuló que tanto 

la representación de los hechos aritméticos en memoria como la resolución de los 

mismos eran dependientes del formato. De esta manera, las características periféricas 

del estímulo, en este caso el formato, influirían en el procesamiento central del mismo. 

Desde el modelo, se asumió que la resolución de operaciones en dígitos (e.g., 2 + 4) era 

más automática por la práctica reiterada de operaciones en este formato a lo largo de la 

vida, lo que facilitaba la recuperación de la respuesta correcta desde la red asociativa 

(e.g., 6). 
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En resumen, mientras que los primeros modelos teóricos y la evidencia empírica 

favorecieron la idea de que el formato no afectaba a la representación de hechos 

aritméticos, la investigación más reciente sugiere que el formato del problema 

determina la manera en que se recuperan los hechos aritméticos asociados. En nuestra 

serie experimental directamente evaluamos el papel del formato de presentación de 

operaciones aritméticas simples tanto en la coactivación como en la selección de hechos 

aritméticos (ver Capítulos V y VI). 

 

El desarrollo de la red asociativa 

  

Volviendo al modelo de distribución de asociaciones de Siegler (Siegler y 

Jenkins, 1989), en éste se postulaba la importancia del uso de estrategias 

procedimentales en la adquisición de la red asociativa durante los primeros años de 

educación formal. Así pues, en un primer momento, los niños se valdrían de estrategias 

procedimentales para resolver operaciones aritméticas simples; por ejemplo, contando 

desde el primer operando de una suma para dar la respuesta correcta (e.g., 2 + 4 = 2 y 3, 

4, 5, 6). Tras la práctica reiterada de este tipo de estrategias, la respuesta a cada 

problema específico (e.g., 6) se almacenaría en la memoria. A medida que la red 

aritmética va configurándose, los niños pasarían de un mayor uso de estrategias 

procedimentales al uso prioritario del recuerdo de la respuesta directamente desde la 

memoria. 

Esta transición desde estrategias de tipo procedimental hasta la recuperación de 

hechos aritméticos desde la memoria a medida que el niño configura el conocimiento 

aritmético en la red ha sido avalada empíricamente (Cooney, Swanson y Ladd, 1988; 

Imbo y Vandierendock, 2007, 2008; Lemaire y Siegler, 1995). Por ejemplo, Imbo y 

Vandierendock (2008) comprobaron que el uso de la recuperación desde la memoria 

para resolver operaciones aritméticas simples aumentaba entre niños de diferentes 

cursos educativos. Mientras que niños en el 2º curso de Educación Primaria usaban la 

recuperación únicamente en un 60% de las ocasiones; el porcentaje aumentaba 
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significativamente en niños de 4º o 6º curso (80,5% y 79,5% respectivamente). Así 

pues, la probabilidad de elegir una estrategia de recuperación directa frente a estrategias 

de carácter procedimental se incrementaría a través de la experiencia educativa. 

Por otro lado, en apartados anteriores nos centramos en la evidencia empírica 

sobre el fenómeno de coactivación de hechos aritméticos en la población adulta 

(Ashcraft y Battaglia, 1978; Winkelman y Schmidt, 1974). En los estudios revisados 

previamente se llegaba a la conclusión de que la coactivación de hechos aritméticos 

relacionados en la red ocurría de manera, al menos parcialmente, automática; sirviendo 

de apoyo a los modelos que planteaban la recuperación directa como estrategia 

prioritaria en la edad adulta (Zbrodoff y Logan, 1986). De manera adicional a estos 

estudios en población adulta, para determinar si el grado de automaticidad variaba 

dependiendo del conocimiento en aritmética simple, Lemaire et al. (1991) llevaron a 

cabo un estudio con niños de 9 y 10 años de edad (4º y 5º de Educación Primaria, 

respectivamente). Los autores encontraron que mientras los niños con 9 años de edad 

fueron capaces de suprimir el efecto de confusión asociativa cuando el retraso entre el 

problema y la respuesta fue de 500 ms, en los niños con 10 años de edad el efecto 

desaparecía con retrasos de 300 ms y 500 ms, comportándose igual que los adultos. Este 

patrón sugirió que el efecto de confusión asociativa y, por ende, el fenómeno de 

coactivación de hechos aritméticos, se va desarrollando con la edad a la par de aquellos 

mecanismos que permiten controlarlo y seleccionar la respuesta correcta en cada caso. 

Además, en esta investigación se ofrece una visión de la coactivación como un 

fenómeno que no es completamente automático, sino sobre el cual podemos ejercer un 

control aun de manera parcial, con el fin de maximizar nuestro rendimiento en la 

resolución de operaciones aritméticas simples. Como venimos diciendo y en nuestra 

opinión, este patrón de resultados podría ser explicado por la implementación de un 

posible mecanismo inhibitorio que se desarrollase durante el curso evolutivo del niño; 

de manera que a mayor edad, mayor eficacia del mecanismo, permitiendo seleccionar 

rápidamente la respuesta correcta. Esta hipótesis será evaluada empíricamente en el 

Capítulo VII del presente trabajo. 
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En este sentido, existe evidencia empírica que sugiere la implicación de procesos 

inhibitorios en el rendimiento aritmético de los niños en edad escolar (Adams y Hitch, 

1997; Bull et al., 1999; Bull y Scerif, 2001; Dooren y Inglis, 2015; Fürst y Hitch, 2000; 

Geary et al., 2000; Gilmore et al., 2013; Lubin et al., 2013; McLean y Hitch, 1999; Van 

der Sluis et al., 2004). Para ejemplificar, en el estudio de Bull et al. (1999) los autores 

clasificaron a una muestra de niños en dos grupos de alta y baja habilidad matemática 

según su rendimiento en una prueba aritmética (la cual contenía sumas y restas con 

operandos de uno o varios dígitos) y les administraron el Wisconsin Card Sorting Test 

(WCST) como medida de control inhibitorio. En esta tarea, los participantes van 

recibiendo tarjetas una a una que pueden variar en tres criterios (color, forma o número) 

y tienen que ir clasificándolas según uno de los criterios. El experimentador no informa 

del criterio de clasificación, sino que únicamente les indica si han clasificado 

correctamente cada tarjeta después de cada ensayo (correcto o incorrecto). Una vez que 

el participante ha clasificado correctamente diez tarjetas dentro de una categoría (e.g., 

color), se cambia sin previo aviso a otra categoría (e.g., forma). Al cambiar el criterio 

pueden aparecer errores perseverativos, cuando los participantes siguen intentando 

clasificar las respuestas según el antiguo criterio, aunque el experimentador indique que 

es incorrecto. Los errores perseverativos son tomados como evidencia de un fallo en la 

inhibición de la categoría anterior. Los autores encontraron que los niños con baja 

habilidad matemática presentaban un mayor número de errores tanto perseverativos 

como no perseverativos en el WCST en comparación con el grupo de alta habilidad 

matemática, lo que sugería que estos niños tenían una mayor dificultad para inhibir 

estrategias aprendidas que interferían con la ejecución de la prueba. Además, las 

puntuaciones de las medidas perseverativas del WCST correlacionaron con el 

rendimiento en aritmética, sugiriendo una relación entre los procesos de control 

inhibitorio y el desempeño en tareas aritméticas.  

En otro estudio, siguiendo un procedimiento similar, Bull y Scerif (2001) 

encontraron resultados análogos en niños de 7 años al introducir una tarea Stroop como 

medida de capacidad inhibitoria. De este modo, aquellos niños clasificados dentro del 

grupo de baja habilidad matemática tenían una mayor dificultad para inhibir la 

dimensión irrelevante en la tarea Stroop. Sin embargo, a pesar de que estos estudios 
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sugieren una relación funcional entre los procesos de control inhibitorio y el desempeño 

de la aritmética, no permiten determinar el papel concreto de la inhibición en la 

resolución de operaciones aritméticas simples y se hace necesario investigar esta 

cuestión de manera más directa. En el Capítulo VII de nuestra serie experimental nos 

dedicaremos al estudio del desarrollo evolutivo de este posible mecanismo inhibitorio 

encargado de la selección de hechos aritméticos. 

Tras revisar exhaustivamente tanto los modelos teóricos como la evidencia 

experimental que avala la existencia de una red asociativa de hechos aritméticos, en el 

último apartado pasamos a describir los objetivos y la estructura de nuestra serie 

experimental. 

 

OBJETIVOS Y ESTRUCTURA DE LA SERIE EXPERIMENTAL 

 

Nuestra serie experimental se engloba en la aritmética cognitiva simple. Más en 

concreto, en la representación y recuperación de hechos aritméticos durante la 

resolución de operaciones aritméticas tan simples como las sumas. Dos fueron los 

objetivos generales de toda nuestra serie experimental. En primer lugar, queríamos 

caracterizar el fenómeno de coactivación en la red asociativa (hechos aritméticos 

asociados a sumas y multiplicaciones) como fenómeno subyacente al efecto de 

confusión asociativa (Winkelman y Schmidt, 1974; Zbrodoff y Logan, 1986). En 

segundo lugar, estábamos interesados en determinar el mecanismo de selección de 

hechos aritméticos utilizado a la hora de resolver sumas simples. Hasta el momento, 

conocíamos que la presentación de una operación simple (e.g., 2 + 4 =) podía 

desencadenar la activación de diversas respuestas relacionadas (e.g., 6, 8)  en la 

memoria (Ashcraft y Battaglia, 1978; Winkelman y Schmidt, 1974; Zbrodoff y Logan, 

1986); y que a su vez, esta coactivación podría interferir a la hora de seleccionar la 

respuesta correcta (e.g., 6) (Campbell y Graham, 1985). Sin embargo, la investigación 

no se había encargado de dar la respuesta a cómo finalmente se resuelve la coactivación 

y se selecciona la respuesta correcta.  
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Para abordar nuestros dos objetivos, en toda nuestra serie experimental hicimos 

uso de un nuevo paradigma, diseñado por nosotros, para evaluar la coactivación y la 

selección de hechos aritméticos. En nuestro paradigma, los participantes realizaban una 

tarea de verificación, en la se presentaban sumas simples junto con un resultado y había 

que indicar la veracidad del mismo. La tarea de verificación estaba compuesta por 

bloques de dos ensayos consecutivos (ver Figura 4). El primer ensayo nos sirvió para 

indexar el efecto de confusión asociativa. En este ensayo, los resultados eran incorrectos 

y podían estar relacionados con la multiplicación de los operandos (e.g., 2 + 4 = 8) o no 

estar relacionados (e.g., 2 + 4 = 10). Esperábamos, por lo tanto, encontrar un mayor 

tiempo de reacción en la condición relacionada frente a la condición control. La 

comparación de estas dos condiciones nos ofreció un índice de la coactivación del 

resultado de la multiplicación durante la suma. Por otro lado, el segundo ensayo estaba 

destinado a evaluar el posible mecanismo inhibitorio utilizado por los participantes para 

seleccionar la respuesta correcta en el ensayo previo. En este ensayo, se presentaron 

sumas cuya respuesta era correcta y podía coincidir con el resultado de multiplicar los 

operandos del ensayo previo (e.g., 2 + 6 = 8; precedido de 2 + 4) o no estar relacionado 

con el ensayo previo (e.g., 4 + 6 = 10, precedido de 2 + 4). Esperábamos un mayor 

tiempo de reacción en la condición relacionada frente a la condición control. En caso de 

que los participantes inhibiesen el resultado de la multiplicación en el primer ensayo (8) 

para seleccionar correctamente el resultado correcto asociado a la suma (6), éstos 

tardarían un mayor tiempo en recuperar nuevamente el resultado inhibido (8) para 

contestar correctamente al segundo ensayo (e.g., 2 + 6 = 8) frente a una condición no 

relacionada.  

La serie experimental al completo se estructura en cinco capítulos (Capítulos III, 

IV, V, VI y VII) que se describen por objetivos concretos de investigación. 
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Figura 4. Adaptación del paradigma del priming negativo (Tipper y Driver, 1998) a nuestro 

estudio. Se presentaron bloques de sumas con dos ensayos consecutivos. En el primer ensayo, el resultado 

era incorrecto y podía coincidir con el resultado de multiplicar los operandos (relacionado 1) o no (control 

1). En el segundo ensayo, el resultado era correcto y podía coincidir con el resultado de multiplicar los 

operandos del ensayo previo (relacionado 2) o no (control 2). 

En el Capítulo III desarrollamos dos experimentos guiados por el objetivo 

principal de la presente serie experimental. En el Experimento 1, evaluamos la 

coactivación de hechos aritméticos y el posible carácter inhibitorio del mecanismo de 

selección, poniendo a prueba para ello, el paradigma experimental diseñado por 

nosotros. En el Experimento 2, evaluamos si este mecanismo inhibitorio encargado de 

la selección de hechos aritméticos depende de características contextuales, como la 

presentación de multiplicaciones simples durante la verificación de sumas. 

En el Capítulo IV, a través del registro del electroencefalograma (ERPs), nos 

centramos en demostrar si el efecto de confusión asociativa se encuentra realmente 

ligado a la coactivación de hechos aritméticos en memoria. Además, queríamos explorar 

las consecuencias de la inhibición en la red asociativa para conocer qué ocurre a la hora 

de recuperar desde la memoria información que ha sido inhibida previamente. Con este 
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objetivo en mente, adaptamos la tarea experimental para el registro de medidas 

electrofisiológicas y, finalmente, indexar el efecto de coactivación mediante marcadores 

electrofisiológicos (potenciales evocados). 

Por su parte, en el Capítulo V, se desarrollaron dos experimentos encargados de 

examinar el papel del formato tanto en la coactivación como en el mecanismo 

inhibitorio implicado en la selección de la respuesta correcta. En ambos experimentos, 

las operaciones se presentaron en formato numérico (e.g., 2 + 4 = 8) o en formato 

escrito (e.g., dos + cuatro = ocho). Además, en el Experimento 2, se analizó el papel 

modulador de las estrategias que utilizaban los participantes (procedimentales vs. 

recuerdo directo) en la coactivación y selección de hechos aritméticos en los formatos 

investigados (números arábigos y formato verbal escrito).  

El Capítulo VI está dedicado a la evaluación del fenómeno de coactivación y del 

mecanismo inhibitorio en el formato auditivo. Este capítulo consta de dos experimentos. 

En el Experimento 1, el objetivo fue determinar si ambos procesos se dan en el formato 

auditivo, el cual es el formato elegido por defecto para aprender las tablas de multiplicar 

en la educación formal. En el Experimento 2, determinamos si el patrón de resultados 

encontrados con el formato auditivo es consecuencia de la secuencia temporal en que 

aparecen los operandos y el resultado de un problema en esta modalidad de 

presentación. 

Por último, en el Capítulo VII nos centramos en determinar el desarrollo 

evolutivo de los dos procesos de interés en nuestra serie experimental a través de la 

educación formal. Para tal fin, evaluamos a alumnos/as desde los 8 hasta los 13 años de 

edad, circunscritos en tres ciclos educativos bien diferenciados (2º ciclo de Educación 

Primaria, 3
er

 ciclo de Educación Primaria y 1
er

 ciclo de Educación Secundaria 

Obligatoria). 
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PREFACE 

 

 In the field of arithmetic cognition, it is assumed that arithmetic facts are stored 

in long-term memory, in an associative network whose nodes are interconnected 

(Ashcraft, 1982). When a problem is presented (e.g., a simple addition 2 + 4), the nodes 

that represent the problem (2 and 4) and the answer (6) are activated and the correct 

result is retrieved from memory directly (Campbell & Graham, 1985). Furthermore, due 

to the spreading of activation, other related nodes are activated too such as the result of 

multiplying (8) or subtracting (2) the operands (Ashcraft & Battaglia, 1978; Winkelman 

& Schmidt, 1974; Zbrodoff & Logan, 1986). This concurrent coactivation of related 

arithmetic facts might produce interference when individuals solve the problem 

(Campbell & Graham, 1985), opening the question about the mechanism responsible to 

finally select the correct answer.  

 In the present chapter, we review theoretical models proposed to explain the 

arithmetic network. We report empirical evidence of coactivation associated to 

additions and multiplications. Afterwards, we talk about the selection mechanisms of 

arithmetic facts. Then, we discuss factors that determine the use of arithmetic facts. 

Finally, we describe the aims and the structure of the empirical research carried out in 

the current doctoral dissertation.  

  

REPRESENTATION AND RETRIEVAL MODELS OF ARITHMETIC FACTS 

 

From the 80s (Ashcraft, 1982) onwards, it has been proposed several theoretical 

models to explain how arithmetic facts are acquired through practice and how they 

configure an arithmetic network in long-term memory. In this section, we focus on most 

relevant theoretical models.  
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Ashcraft’s network retrieval model 

 

In Ashcraft’s network retrieval model (Ashcraft, 1982), it was proposed an 

arithmetic network composed by nodes that represent the first operand of an operation 

(2 + N), nodes that represent the second operand (N + 4) and the node that represents 

the answer associated to the operands (6). Moreover, the associative strength between 

these nodes would depend on the repeated practice with each problem in formal 

learning (Ashcraft, 1897). Furthermore, the principle of spreading activation would 

enable the access to the arithmetic network, activating the node that represents the 

correct answer (6) and other nodes that represent related results (for example, the one of 

multiplying the operands, 8). Finally, the node with a higher activation would be 

selected as the correct result of the problem. 

Although this model was relevant to understand how arithmetic facts are 

represented in the network, it did not contemplate all possible strategies used to shape 

the arithmetic network through educational experience (e.g., counting one-by-one the 

operands 2 + 4 = 2, 3, 4, 5, 6). In this model, it was assumed that the retrieval of the 

correct result from memory was the only way to resolve simple arithmetic problems. 

However, it has been observed that other procedural strategies have an important role in 

the acquisition of the network in first years of elementary school. In the next model 

(Siegler’s distribution of associations model; Siegler & Jenkins, 1989), it was 

considered the use of diverse strategies along with retrieval from memory. 

 

Siegler’s distribution of associations model  

 

In distribution of associations model proposed by Siegler and Jenkins (1989), it 

was postulated the use of both retrieval and procedural strategies in the acquisition of 

the arithmetic network. For example, when children begin formal instruction in the 

resolution of simple additions (2 + 4 =), they use procedural strategies as the counting 

one-by-one the magnitude of the second operand (4) from the first operand (2) to obtain 
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the result (6) (e.g., 2 + 4 = 2 and 3, 4, 5, 6). According to this model, the connections 

between the nodes that represent operands and answers would be established by the 

repeated practice of these procedures (and the retrieval from memory). Furthermore, 

since the use of procedures is subject to errors in some occasions (e.g., 2 + 4 = 2 and 3, 

4, 5, 6, 7); Siegler proposed that these incorrect results would be stored in the network 

associated to the operands of the problem (e.g., 2 + 4 and the answer 7).  

In this model, a mechanism to select the way of solving the problem (retrieval or 

procedures) is proposed. This mechanism works with two criterions: the distribution of 

associative strengths operands-answer and the time consumed in memory search 

(number of searches needed to get the correct answer).  When an arithmetic problem is 

presented, the mechanism would select retrieval from memory when the associative 

strength between operands-answer is higher and the number of searchers is not too high. 

When individuals take a long time in the memory search process, the selection 

mechanism would opt for a procedural strategy. Moreover, it is important to note that 

practice with arithmetic problems would increase associative strength between 

operands-answer and this could facilitate the selection of retrieval from memory over 

procedures. Therefore, individuals with a good knowledge of arithmetic would use 

retrieval from memory since it would be faster and more efficient than procedural 

strategies (Ashcraft, 1992).   

Siegler’s distribution of associations model is a nice approach to explain how 

individuals establish the network of arithmetic facts. However, within this account it is 

difficult to explain some effects observed in cognitive arithmetic such as the associative 

confusion effect (Stazyk, Ashcraft, & Hamann, 1982; Winkelman & Schmidt, 1974; 

Zbrodoff & Logan, 1986). This effect consists in worse performance when people have 

to verify an incorrect operation whose result is related with the problem: for example, it 

has been described longer time to respond to an addition problem presented with a 

proposed result that is incorrect but is the result of multiplying the operands (e.g., 2 + 4 

= 8) compared to an addition problem presented with a proposed result that is incorrect 

and unrelated (e.g., 2 + 4 = 10). Siegler did not describe how information of different 

arithmetic operations (additions and multiplications) is interconnected in long-term 

memory. Therefore, the associative confusion effect could not be explained. In the next 
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section, we describe another model of cognitive arithmetic which accommodates 

relation effects between arithmetic operations.  

 

Campbell’s network interference model 

 

In Campbell’s network interference model (Campbell, 1987; Campbell & 

Graham, 1985), it was assumed that the arithmetic network involved spreading 

activation. Similarly to Ashcraft’s network retrieval model (Ashcraft, 1982), nodes were 

described to represent operands (2 x N, N x 4) and answers (8). Furthermore, in this 

model, it was included an additional set of nodes to represent the problem as a whole (2 

x 4). 

One of the unique contributions of Campbell’s network interference model was 

the concept of “interference” in the retrieval process of arithmetic facts. When one 

arithmetic problem is presented (e.g., the multiplication 2 x 4), both the correct answer 

(8) and other related answers (e.g., 12, because it is associated with operands, 2 x 6 and 

4 x 3) could be activated, which would produce interference in the selection of the 

correct response. This interference phenomenon in the arithmetic network was 

supported by several relation effects, as the error priming effect (Campbell, 1987) or the 

associative confusion effect (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). 

For example, in the associative confusion effect, after the presentation of an arithmetic 

problem (e.g., the addition 2 + 4), the nodes that represent the operands, the problem as 

a whole and the correct answer (6) would be activated. Moreover, other related nodes, 

as the result of multiplying the operands (8) would be activated by the principle of 

spreading activation. This coactivation of facts associated to additions (6) and 

multiplications (8) would produce interference to select the needed to perform a task. 

However, in this model, the mechanism used to solve this interference between 

coactivated arithmetic facts was not discussed. The next model focused on this selection 

mechanisms. 
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Whalen´s semantic network retrieval model 

 

In Whalen’s semantic network retrieval model (Whalen, 2000), the author 

argued that inhibitory processes have a crucial role in the selection of arithmetic facts. 

In this model, the retrieval system would represent three type of information: I) the 

problem to solve, II) the arithmetic fact associated to the problem and, III) the output 

answers. When an arithmetic problem is presented, in the network there are excitatory 

connections between the nodes that represent the problem (e.g., 2 + 4), other related 

nodes (e.g., 2 + 5, 2 x 4) and nodes representing the answer (e.g., 6, 7, 8). Additionally, 

there are inhibitory connections with unrelated nodes (e.g., 3 + 6). Through these 

excitatory and inhibitory connections, activation would focus on correct representations 

at the end of the selection process, so participants would be able to perform the task. 

There is empirical evidence of an inhibitory mechanism responsible to the selection of 

arithmetic facts in simple arithmetic (Campbell, Chen & Maslany, 2013; Campbell & 

Dowd, 2012; Campbell & Thompson, 2012). These studies will be reviewed in the 

section “Selection of arithmetic facts: The role of inhibition”. 

To conclude, the models discussed in this section propose that arithmetic facts 

are represented in an associative network in long-term memory that takes shape through 

educational experience (Ashcraft, 1982; Siegler & Jenkins, 1989). Moreover, in 

Campbell’s network interference model, it was introduced the concept of interference in 

the selection of arithmetic facts, and in Whalen’s semantic network retrieval model, it 

was proposed an inhibitory mechanism responsible for resolving interference to select 

the correct answer to arithmetic problems.  

After the review of the main associative models, we will focus on one 

characteristic of the network of arithmetic facts: the concurrent coactivation of related 

arithmetic facts.  

 

 

 



 

63 

 

 

COACTIVATION OF ARITHMETIC FACTS 

 

In this section, we describe the coactivation phenomenon associated to additions 

and multiplications. First, we examine the associative confusion effect (Winkelman & 

Schmidt, 1974) and the automaticity of this effect (Galfano, Rusconi, & Umiltà, 2003; 

LeFevre, Bisanz, & Mrkonjic, 1988; LeFevre & Kulak, 1994; Lemaire, Fayol, & Abdi, 

1991; Rusconi, Galfano, Speriani, & Umiltà, 2004; Zbrodoff & Logan, 1986). 

Afterwards, we evaluate whether this coactivation underlies the associative confusion 

effect. To this end, we discuss studies in which neuroimage techniques are used (De 

Visscher, Berens, Keidel, Noël, & Bird, 2015; Grabner, Ansari, Koschutnig, Reishofer, 

& Ebner, 2013) and cerebral electrophysiology registered (Domahs et al., 2007; Jost, 

Hennighausen, & Rösler, 2004; Niedeggen, & Rösler, 1996, 1999; Niedeggen, Rösler, 

& Jost, 1999). 

 

The associative confusion effect 

 

The coactivation of arithmetic facts has been studied mainly with the arithmetic 

verification task (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986; Lemaire et 

al., 1991). In this task, simple problems are presented with a proposed result and 

participants have to decide if the result is correct o no. This task was used in the study 

of Winkelman and Schmidt (1974), the first time the associative confusion effect was 

reported. In this study, the verification task included a small set of simple addition and 

multiplication problems (3 + 3, 4 + 3, 3 + 5, 4 + 5 y 5 + 5; 3 x 3, 4 x 3, 3 x 5, 4 x 5 y 5 x 

5). In order to determine the associative confusion effect, two critical experimental 

conditions were used in which the proposed result was manipulated, so that it could be: 

I) a related result (e.g., 3 + 3 = 9, where 9 was the result of multiplying the operands of 

the addition problem; 3 x 3 = 6, where 6 was the result of adding the operands of the 

multiplication problem), or II) an unrelated result (e.g., 3 +  3 = 12; 3 x 3 = 7). 

Regardless of the operation (addition or multiplication problems), participants took 

more time to respond to related results compared to unrelated results (60 ms). This 
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interference effect was interpreted as a consequence of the coactivation of related 

information in the network of arithmetic facts and it was named the associative 

confusion effect. 

 

Automaticity in the coactivation  

 

In further research the associative confusion effect was replicated (Findlay, 

1978; Zbrodoff, 1979) and its automaticity was determined (Lemaire et al., 1991; 

Zbrodoff & Logan, 1986). For example, Zbrodoff and Logan (1986) explored in a series 

of experiments if the associative confusion effect would depend on the intentionality of 

participants. To illustrate, in Experiments 1 and 2, the authors manipulated the 

presentation of problems: problems could be presented in a blocked condition (only 

additions or only multiplications) or in a mixed condition (additions and multiplications 

randomly presented). The prediction was that in the blocked condition, for example 

with additions only, the participants would not have the intention of performing 

multiplications. Thus, no coactivation would be produced and no associative confusion 

effect observed. In agreement with this hypothesis, the results showed that the 

associative confusion effect was smaller when problems were presented in the blocked 

condition (15 ms) compared to the presentation of additions and multiplications in the 

mixed condition (60 ms). These results supported the partial automaticity of the 

associative confusion effect. It was only partially automatic because the effect was 

found in all cases (the blocked and the mixed condition). However, it was subject to 

some intentional control since the associative confusion effect was modulated by the 

context in which operations were presented. However, in our opinion, it is possible that 

this pattern of results had an alternative explanation. For example, it is possible that the 

presentation of problems in a mixed condition (compared to a blocked condition) 

facilitated the coactivation between operations, so that both arithmetic facts associated 

to additions (e.g., 3 + 4 = 7) and multiplications (e.g., 3 x 4 = 12) would receive a 

higher activation. Therefore, the mixed condition fostered the associative confusion 
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effect compared with the blocked condition without taking into account the intentionally 

of participants in performing the task.  

In other study, Lemaire et al. (1991) found that the associative confusion effect 

disappeared when a delay (higher than 300 ms) was introduced between presenting the 

operands and the result. The authors suggested that the associative confusion effect was 

partially automatic: “automatic” because after presenting the problem, related arithmetic 

facts were activated without the participant’s intention, “partially” because if 

participants had enough time to retrieve the correct answer, the related result did not 

interfere with the resolution of the problem. However, it is possible that this pattern of 

results could be interpreted in other terms: when the operands were presented (e.g., 2 + 

4), they produced the activation of both the correct result (e.g., 6) and the result 

associated to the multiplication (e.g., 8) and these results could compete in the selection 

processes. This competition could be resolved by the inhibition of the irrelevant 

information (e.g., 8), which is a time consuming process. When a temporal delay was 

introduced between the operands and the result, participants would have enough time to 

perform the selection-by-inhibition process so no interference effect would be observe. 

This inhibitory hypothesis will be described later.  

The studies reviewed so far showed that the coactivation of arithmetic facts was, 

at least, partially automatic. These studies were performed inside an arithmetic context, 

where participants needed to retrieve arithmetic information in order to perform the task 

successfully. However, another way of evaluating the automaticity of the coactivation 

phenomenon is outside arithmetic contexts, where no arithmetic facts are needed to 

perform the task (Galfano et al., 2003; García-Orza, Damas-López, Matas, & 

Rodríguez, 2009; LeFevre et al., 1988; LeFevre & Kulak, 1994; Rusconi et al., 2004). 

In this regard, there is empirical evidence of the automatic coactivation of arithmetic 

facts associated to additions and multiplications even when the task does not require 

arithmetic processing. To illustrate, Rusconi et al. (2004) used a simple numerical 

comparison task in which participants had to indicate if a single number (e.g., 8) was 

presented previously in a set of two numbers (e.g., 3  8). These pairs of numbers were 

presented without arithmetic signs (e.g., 3  8) and participants did not perform any 

operation with them. There were two experimental conditions of interest: I) the single 
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number coincided with the result of multiplying the pair of numbers (e.g., 24, preceded 

by 3  8), and II) the single number was unrelated with the previous pair (e.g., 49, 

preceded by 3  8).  The results showed that participants took more time to reject the 

single number as one of the numbers presented previously when it was the result of 

multiplying the two numbers of the pair. The authors interpreted this pattern as due to 

the automatic activation of multiplication facts (e.g., 24), so that it interfered in the 

decision processes, competing with the activation of the other numbers (e.g., 3 and 8). 

Furthermore, similar results have been found with arithmetic facts associated to 

additions (LeFevre et al., 1988). These results supported that, in the arithmetic network, 

the activation of arithmetic knowledge associated to additions and multiplications is 

automatic and mandatory, even when no arithmetic operations are needed to perform 

the task. 

It is important to note for our research work that the associative confusion effect 

(Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986; Lemaire et al., 1991) was 

considered an index of coactivation in all studied reviewed above. However, this 

assumption needs to be corroborated empirically. In the following section, we review 

several studies which support that coactivation of arithmetic facts underlies the 

associative confusion effect. 

 

Does coactivation underlie the associative confusion? 

 

Recent studies which use functional Magnetic Resonance Imaging (fMRI), have 

explored cerebral correlates of relation effects in simple arithmetic (De Visscher et al., 

2015; Grabner et al., 2013). For example, Grabner et al. (2013) described brain areas 

involved in the associative confusion effect. The authors found that when participants 

had to reject related problems (e.g., 3 + 4 = 12) compared to unrelated problems (e.g., 3 

+ 4 = 7), there was higher activation from the left angular gyrus to the supramarginal 

gyrus, the superior parietal cortex and the left dorsolateral prefrontal cortex. 

Importantly, the left angular gyrus has been related with the retrieval of arithmetic facts 
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(Delazer, Domahs, Bartha, Brenneis, Lochy, Trieb, & Benke, 2003; Grabner, Ansari, 

Koschutnig, Reishofer, Ebner, & Neuper, 2009). Thus, the coactivation of arithmetic 

facts seems to underlie the associative confusion effect.  

Moreover, in electrophysiological studies (Domahs et al., 2007; Guthormsen, 

Fisher, Bassok, Osterhout, DeWolf & Holyoak, 2015; Jost et al., 2004; Niedeggen & 

Rösler, 1996, 1999; Niedeggen et al., 1999), it has been evaluated the coactivation of 

arithmetic facts associated to multiplications. To illustrate, in the study of Niedeggen 

and Rösler (1999), participants had to verify simple multiplication problems that could 

be presented with a correct result (e.g., 5 x 8 = 40), an incorrect related result (e.g., 5 x 8 

= 32, so that 4 x 8 = 32) or an incorrect unrelated result (e.g., 5 x 8  = 34). Similar to 

what is found with the associative confusion effect, participants took more time to reject 

incorrect multiplication problems whose results were related compared to unrelated 

multiplication problems. This result was interpreted as due to the coactivation of several 

related results associated to multiplication in the arithmetic network. Moreover, there 

was a modulation of the N400 component, a negative wave peaking at 350-450 ms after 

stimulus presentation, which has been considered an index of semantic processing 

(Kutas & Hillyard, 1980, 1984). Specifically, there was an attenuation of the N400 

component in the related condition, suggesting that the activation of the related result 

could facilitate the activation of the correct result due to the spreading of activation in 

the network of multiplication facts. This coactivation would produce a subsequent 

interference between related answers in a late selection process which was captured in 

the latency analysis. Furthermore, it has been also found N400 modulations during the 

retrieval of additions (Avancini, Soltész y Szűcs, 2015). Therefore, these studies suggest 

that the attenuation of the N400 component is an index of the accessing to interrelated 

arithmetic facts. However, these studies evaluated the coactivation of arithmetic facts 

within a category of problems (e.g., only multiplications). Therefore, it needs to be 

explored if N400 component is also sensitive to the coactivation of arithmetic facts 

between operations (e.g., additions and multiplications). This question will be explored 

in Chapter IV of the experimental series.  
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SELECTION OF ARITHMETIC FACTS: THE ROLE OF INHIBITION 

 

As we have shown in previous sections, coactivation of several arithmetic facts 

can produce interference when individuals solve simple arithmetic problems. However, 

most of the time people resolve them successfully. Therefore, it is important to ask 

about the mechanism responsible for the selection of correct answers when people have 

to resolve simple arithmetic problems.  

In Whalen’s semantic network retrieval model (Whalen, 2000), it was proposed 

that the selection of simple arithmetic problems was carried out by a game of excitatory 

and inhibitory connections between several nodes of the network of arithmetic facts. 

Furthermore, over the years, results from different studies have suggested that inhibitory 

process could be involved in the selection of arithmetic facts (Lemaire et al., 1991; 

LeFevre et al., 1988; LeFevre & Kulak, 1994). Firstly, children show a relationship 

between inhibitory control and performance in mathematics (Adams & Hitch, 1997; 

Bull, Johnston, & Roy, 1999; Bull & Scerif, 2001; Dooren & Inglis, 2015; Fürst & 

Hitch, 2000; Geary, Hamson, & Hoard, 2000; Gilmore et al., 2013; Lubin, Vidal, 

Lanoë, Houdé, & Borst, 2013; McLean & Hitch, 1999; Van der Sluis, De Jong, & Van 

der Leij, 2004). This empirical evidence will review in the section “The development of 

the arithmetic network”. Moreover, empirical evidence suggests the involvement of 

self-inhibition processes in the performance of arithmetic sequential tasks (Arbuthnott 

& Campbell, 2000; 2003; Campbell & Arbuthnott, 1996). In this regard, self-inhibition 

processes are responsible for suppressing one stimulus in order to process the next one 

and finally perform a numerical task fluently. However, these studies do not specify the 

role of inhibitory control in the selection of arithmetic facts from the associative 

network.   

Recently, one series of studies performed by Campbell et al. (Campbell, Chen, 

& Maslany, 2013; Campbell & Dowd, 2012; Campbell & Thompson, 2012) examined 

directly the role of inhibition in the selection of arithmetic facts. To this end, the authors 

used an adapted version of the retrieval-practice paradigm (a paradigm typically used to 

demonstrate inhibition of irrelevant information in memory, Anderson, Bjork, & Bjork, 
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1994). In these studies, participants performed a training phase in which simple 

multiplication problems were presented (e.g., 2 x 3 = ?) and they had to say aloud the 

correct answer to each one. Afterwards, the same operands were used in a second test 

phase with simple addition problems (e.g., 2 + 3 = ?). The main result was that training 

the multiplication problems slowed the response times to the addition counterpart 

compared to additions whose operands were not presented in the training phase. This 

interference effect, named Retrieval-Induced Forgetting (RIF), was interpreted in terms 

of inhibition: The retrieval of arithmetic facts associated to multiplications in the 

training phase would produce the inhibition of related additions that competed for 

selection in the network. 

Campbell et al. (Campbell et al., 2013; Campbell & Dowd, 2012; Campbell & 

Thompson, 2012) did not specify what was inhibited exactly in the selection process. In 

our opinion, inhibition could take place on answers, so that; after the presentation of the 

problem (e.g., 2 x 3 =), both the correct answer (6) and other related answers (e.g., the 

one of adding the operands, 5) would be activated. This competition between answers 

could be resolved by inhibiting the incorrect answer associated to the addition (5). Thus, 

when the inhibited answer was relevant in the test phase, an additional time was needed 

to retrieve it from memory again.  

In all, the studies reviewed in this section suggested the involvement of an 

inhibitory mechanism in the resolution of simple arithmetic facts. Furthermore, it seems 

that this inhibitory mechanism has long-term consequences. Concretely, in the retrieval-

practice paradigm, it is assumed that inhibition occurs in the training phase and it 

influences a posterior test phase in which the consequences of applying inhibition are 

evaluated. In our experimental series, we evaluate if this inhibitory mechanism acts in a 

continuous manner when people solve simple arithmetic facts.  

 

USE OF ARITHMETIC FACTS: MODULATING FACTORS 
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In previous sections, we have talk about two crucial aspects of the arithmetic 

network: the coactivation of related arithmetic information and the selection of the 

correct answer needed to resolve a problem. However, it is important to note that during 

the resolution of simple arithmetic problems, people can use both retrieval from 

memory and procedural strategies (Siegler & Jenkins, 1989). In this section, we focus 

on one model of procedural mechanisms (Baroody, 1983) and the empirical evidence 

that supports it (Barrouillet & Thevenot, 2013; Della Puppa et al., 2015; LeFevre, 

Sadesky, & Bisanz, 1996; Roussel, Fayol, & Barrouillet, 2002; Thevenot, Barrouillet, 

Castel, & Uittenhove, 2016; Thevenot, Castel, Danjon, & Fayol, 2015; Thevenot, 

Fanget, & Fayol, 2007). Afterwards, we explore several variables that can determine the 

use of simple arithmetic facts, such as the numerical format in which arithmetic 

problems are presented (Campbell & Epp, 2004) and the development of the network in 

childhood (Siegler & Jenkins, 1989).  

 

Procedural mechanisms 

 

In Siegler’s distribution of associations model (Siegler & Jenkins, 1989), it was 

considered the use of procedural strategies to resolve arithmetic problems. Furthermore, 

empirical research showed the use of these strategies in adult population (Geary & 

Wiley, 1991; Healy, Rickard, & Bourne, 1993; Núñez-Peña, Colomé & Tubau, 2015). 

For example, in the study of Geary and Wiley, young adults reported that they resolved 

10% of simple problems by procedural strategies.  

In associative models, it was assumed that adults do not use procedural strategies 

to resolve arithmetic problems since they are less efficient than retrieval from memory 

processes (Ashcraft, 1992). However, other authors have highlighted the relevance of 

procedural strategies in mental arithmetic. Baroody (1983) defended that practice with 

procedural mechanisms through educational experience would let procedures to be used 

automatically, quickly and without awareness. Also, Baroody argued that the use of 

procedures would consume less cognitive resources since they could be applied to a 
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large set of arithmetic problems without representing all possible problems in memory 

as it was proposed in associative models of mental arithmetic.  

In Baroody’s schema-based model (Baroody, 1983; 1994), it was assumed the 

representation of procedural strategies stored as schemas in long-term memory. When a 

simple problem is encountered, a first scheme would be activated to identify the 

arithmetic operation (e.g., multiplication). Afterwards, different schemas could be 

activated depending on the problem. For example, if the problem follows the structure N 

x 0, the rule N x 0 would be executed (“If 0 and N are multiplied, then the product is 

equal to N”). Furthermore, this model also included the use of arithmetic facts; for 

example, in the case of tie problems the N1 x N1 rule would be used (“If a number is 

multiplied by itself, then access to the network of arithmetic facts”). 

Empirical research (Barrouillet & Thevenot, 2013; LeFevre et al., 1996; Roussel 

et al., 2002; Thevenot et al., 2007, 2015, 2016) supports Baroody’s schema-based 

model (Baroody, 1983; 1994). To illustrate, Thevenot et al. (2007) used an operand 

recognition paradigm to evaluate the use of procedural strategies in the resolution of 

addition problems with different sizes: small (the result was < 10), medium (the result 

was > 10) or large (two-digit operands). The authors wanted to demonstrate that 

addition problems were resolved by procedural mechanisms, as the transformation of 

their operands (e.g., 5 + 7 = 5 + 5 + 2 = 12). To this end, after the resolution of each 

problem, the operands were presented again (5 and 7) and participants had to indicate if 

these numbers appeared previously. This task was compared to a number comparison 

task in which participants decided if a number was between the two operands (e.g., is 

the number 6 between 5 and 7?). If participants used procedures to perform the 

arithmetic facts, recognition would be impaired compared to the comparison task due to 

the additional computation done with these numbers in the arithmetic task. The results 

showed worse recognition of operands after the resolution of medium and large addition 

problems; however, the recognition was not disrupted in the case of small addition 

problems (e.g., 3 + 5 = 8), suggesting that they were performed by retrieval from 

memory. Therefore, this study leaves open the possibility of using procedural strategies 

to resolve simple arithmetic problems, at least those with medium and large size. 
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It is important to note that empirical evidence about the resolution of arithmetic 

operations supports the use of both retrieval from memory (Geary and Wiley, 1991) and 

procedural strategies (Barrouillet & Thevenot, 2013; LeFevre et al., 1996; Núñez-Peña 

et al., 2015; Roussel et al., 2002). Therefore, it would be interesting to examine factors 

that might determine the use of retrieval over procedures in mental arithmetic. 

Familiarity of numerical format in which operations are presented (e.g., 2 + 4 vs. two + 

four) might be one of these factors (Schunn, Reder, Nhouyvanisvong, Richards, & 

Stroffolino, 1997). In the next section, we describe studies and theoretical models 

proposed to explain the role of numerical format in cognitive arithmetic.  

 

The role of numerical format 

 

 Previous research have been shown that the use of procedural strategies is higher 

when operations are presented in an unfamiliar format (e.g., written number words, two 

+ four) compared to a familiar format (e.g., Arabic digits, 2 + 4) (Campbell & Alberts, 

2009; Campbell & Epp, 2004; Campbell & Fugelsang, 2001; Schunn et al., 1997). To 

illustrate, in the study of Campbell and Fugelsang (2001), simple addition problems 

were presented and participants decided whether the proposed result was correct or not. 

Afterwards, participants reported the strategy used to solve the problem. The format of 

addition problems was manipulated, so that operations were presented with Arabic 

digits (e.g., 2 + 4 = 6) or written number words (e.g., two + four = six). Participants 

took more time to respond to verbal operations compared to operations with Arabic 

digits. Furthermore, procedural strategies were used to a less extend (25% of total) 

when operations were presented in the digit format relative to verbal arithmetic 

problems (41% of total). This result suggested that numerical format determined the 

strategy used to solve simple arithmetic problems.  

Even when procedural strategies are used with verbal problems, it is true that 

retrieval from memory is the preferred way of resolving these operations (e.g., 59% of 

total with verbal problems in Campbell and Fugelsang, 2001). Therefore, it is important 
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to evaluate the role of numerical format in occasions where retrieval from memory is 

used to resolve arithmetic problems. Different theoretical models have proposed 

alternative answers to this question (Campbell & Clark, 1992; Campbell & Epp, 2004; 

Dehaene, 1992; McCloskey, 1992; McCloskey, Sokol & Goodman, 1986; Noël & 

Seron, 1992). In McCloskey’s abstract-modular model (McCloskey, 1992), it was 

argued that arithmetic facts are abstract entities whose representation do not depend on 

the format in which the arithmetic problem is presented. Therefore, numerical format 

effects would be located at the encoding stage of processing.  

However, different studies show that numerical format influences central 

processing of arithmetic problems (Campbell & Alberts, 2009; Campbell & Clark, 

1992; Campbell & Fugelsang, 2001; Jackson & Coney, 2007; McNeil & Warrington, 

1994). For example, the size problem effect (worse performance with large problems 

compared to small problems) is larger when operations are presented with words than 

with Arabic digits (Campbell & Clark, 1988). This pattern suggests that the resolution 

of simple arithmetic problems depends on numerical format. Moreover, this sort of 

evidence supports Campbell’s encoding-complex model (Campbell & Clark, 1988; 

Campbell & Clark, 1992). In this model, it is proposed that representation and 

resolution of arithmetic problems depend on numerical format. Concretely, it is 

assumed that resolution of problems presented with Arabic digits is more automatic, 

which facilitates retrieval of correct answers in an efficient way. In our experimental 

series, we evaluate the role of numerical format in the coactivation and selection of 

simple arithmetic facts (see Chapters V and VI). 

 

The development of the arithmetic network 

  

In childhood there is a progressive change from procedural strategies to retrieval 

from memory as the way of resolving simple arithmetic problems (Cooney, Swanson, & 

Ladd, 1988; Imbo & Vandierendock, 2007, 2008; Lemaire & Siegler, 1995). For 

example, Imbo and Vandierendock (2008) demonstrated that the use of retrieval from 
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memory increased with educational instruction: children in 2
nd

 grade of elementary 

school used retrieval in 60% of problems, whereas those children in 4
th

 and 6
th

 grade 

used retrieval to resolve most of the problems (80.5% and 79.5% respectively).  

We have reviewed in previous section the coactivation of arithmetic facts in 

adults (Ashcraft & Battaglia, 1978; Winkelman & Schmidt, 1974), and it has been 

demonstrated that the coactivation is partially automatic (Zbrodoff & Logan, 1986). To 

determine if automaticity depends on knowledge about simple arithmetic, Lemaire et al. 

(1991) carried out a study with 9-10 years-old children. The authors found that 9 years-

old children did not show the associative confusion effect when a delay of 500 ms was 

introduced between the operands and the answer; however, in 10 years-old children, the 

associative confusion effect disappeared with delays of 300 ms and 500 ms, showing 

the pattern found in adults. This observation suggests that the associative confusion 

effect and, therefore, the coactivation of several arithmetic facts, develop with age. 

Furthermore, these results can be explained with the inclusion of inhibition as the 

mechanism responsible to select arithmetic facts. It is possible that this mechanism 

develops with education in mathematics. This hypothesis will be evaluated in Chapter 

VII. 

Furthermore, empirical evidence supports the relationship between inhibitory 

control and arithmetical performance in children (Adams & Hitch, 1997; Bull et al., 

1999; Bull & Scerif, 2001; Dooren & Inglis, 2015; Fürst & Hitch, 2000; Geary et al., 

2000; Gilmore et al., 2013; Lubin et al., 2013; McLean & Hitch, 1999; Van der Sluis et 

al., 2004). For example, in the study of Bull et al. (1999), the authors classified children 

in two groups (low and high arithmetic ability) and the Wisconsin Card Sorting Test 

(WCST) was administrated to index inhibitory control. Children with low arithmetic 

ability presented higher number of non-perseverative and perseverative errors compared 

to children with high arithmetic ability. Furthermore, perseverative measures correlated 

with performance in arithmetic, suggesting the relationship between inhibitory control 

and arithmetical performance. In Chapter VII of our experimental series, we evaluate 

the development of a possible inhibitory mechanism responsible to select simple 

arithmetic facts.  
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After the review of both theoretical models and experimental evidence about the 

network of arithmetic facts we continue with the description of the aims and structure of 

our research work.   

 

AIMS AND STRUCTURE OF EXPERIMENTAL SERIES 

 

Our experimental series is framed within arithmetic cognition. Specifically, this 

dissertation focused on coactivation and selection of simple arithmetic facts. The main 

goal of our research work was two-fold. Firstly, we aimed at determining coactivation 

across arithmetic facts (additions and multiplications) as the phenomenon underlying 

the associative confusion effect (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 

1986). Secondly, we explored the mechanism used to select arithmetic facts during the 

resolution of simple addition problems.  

In order to address our goal, we designed a new experimental paradigm to 

evaluate the coactivation and selection of arithmetic facts. In this paradigm, participants 

performed a verification task in which simple addition problems were presented and 

they decided whether the proposed result was correct or not. The task comprised two 

consecutive trials. In the first trial, we evaluated the associative confusion effect. In this 

trial, the proposed result of an addition problem was incorrect and it could be related 

with the multiplication (e.g., 2 + 4 = 8) or not (e.g., 2 + 4 = 10). We expected slower 

reaction time in the related condition compared to the control condition. Therefore, the 

comparison between these two conditions was an index of the coactivation of arithmetic 

facts associated to multiplications and additions. Furthermore, in the second trial, we 

evaluated the possible inhibitory mechanism used by participants to select the correct 

answer in the previous trial. Here, addition problems were presented with a correct 

result, and this result coincided with that of multiplying the operands of the previous 

trial (e.g., 2 + 6 = 8; preceded by 2 + 4) or it was unrelated (e.g., 4 + 6 = 10, preceded 

by 2 + 4). We expected slower reaction time in the related condition compared to the 

control condition. If participants inhibited in the first trial the result of multiplying the 
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operands of the problem (8) to select the correct answer (6); they would take more time 

to retrieve the inhibited result (8) to respond to the second trial (e.g., 2 + 6 = 8). 

Our experimental series was structured in five chapters (Chapters III, IV, V, VI 

and VII). In all chapters we embraced the paradigm described above to evaluate several 

research questions about the coactivation and selection of arithmetic facts.   

In Chapter III, we developed two experiments to evaluate our main goal. In 

Experiment 1, we examined the coactivation and the possible inhibitory mechanism 

responsible to select arithmetic facts. In Experiment 2, we evaluated if this inhibitory 

mechanism depended on contextual factors, as the presentation of multiplication 

problems in the task. 

In Chapter IV, we gathered electrophysiological indexes to evaluate whether the 

associative confusion effect really involved coactivation of arithmetic facts. 

Furthermore, we wanted to explore the consequence of inhibiting arithmetic knowledge 

in the network of arithmetic facts.   

In Chapter V, we performed two experiments in order to determine the role of 

numerical format in the coactivation of arithmetic facts and selection-by-inhibition. In 

both experiments, problems were presented with Arabic digits (e.g., 2 + 4 = 8) or 

written number words (e.g., two + four = eight). Furthermore, in Experiment 2, we 

evaluated the strategies used by participants (retrieval or procedural strategies) to 

resolve the problem as a modulating factor.  

In Chapter VI, we evaluated coactivation and inhibition when problems were 

presented in auditory format. Here, we performed two experiments too. In Experiment 

1, the goal was to determine if both processes (coactivation and selection) would occur 

in oral calculation. In Experiment 2, we examined if the pattern of results found with 

this format was due to the way in which individuals receive oral problems.  

Finally, in Chapter VII, we explored the development of coactivation and 

selection-by-inhibition through formal instruction in arithmetic knowledge. To this end, 

we evaluated 8 to 13 years-old children (from 2
nd

 cycle of elementary school to 1
er 

cycle 

of high school).  
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CHAPTER III 

SIMPLE ARITHMETIC: EVIDENCE OF AN INHIBITORY 

MECHANISM TO SELECT ARITHEMTIC FACTS
1
 

In two experiments we evaluated the coactivation of arithmetic facts and the 

possible inhibitory mechanism used to select the correct one. To this end, we introduced 

an adapted version of the negative priming paradigm in which participants received 

additions and they decided whether they were correct or not. When the addition was 

incorrect but the result was that of multiplying the operands (e.g., 2 + 4 = 8) 

participants took more time to respond relative to control additions with unrelated 

results. This finding corroborated that participants coactivated arithmetic facts of 

multiplications even when they were irrelevant to perform the task. Moreover, the 

participants were slower to respond to an addition whose result was that of multiplying 

the operands of the previous trial (e.g., 2 + 6 = 8). These results support the existence 

of an inhibitory mechanism involved in the selection of arithmetic facts.  

 

 

 

 

 

 

 

 

1
 This paper was published in Psychological Research and it was co-authored by Pedro Macizo and 

Amparo Herrera.  
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SIMPLE ARITHMETIC: EVIDENCE OF AN INHIBITORY MECHANISM TO 

SELECT ARITHEMTIC FACTS 

 

There is a wide consensus about how we represent and solve arithmetic 

problems. Various theoretical models state that arithmetic facts are stored in long-term 

memory in an associative network with interrelated nodes, whose associative strength 

changes depending on learning and educational experience (Ashcraft, 1992). In 

addition, it is assumed that the solutions of simple arithmetic facts are automatically 

retrieved when an arithmetic problem is presented (although see Barrouillet &Thevenot, 

2013; Fayol & Thevenot, 2012, for a suggestion that simple additions are solved 

through procedures). For example, the Network-Interference Model proposed by 

Campbell (Campbell & Graham, 1985) assumes that when an arithmetic fact is 

presented (i.e., an addition, 2 + 4), the nodes that represent the operands of the problem 

are activated (2 and 4), along with that representing the solution (6). Furthermore, 

according to the principle of spreading activation, other nodes of the network would be 

activated, such as the result of multiplying the two operands (i.e., 8), even when the 

arithmetic problem was an addition. This automatic activation of several arithmetic facts 

would produce interference, since only one is required to solve the problem. Thus, when 

individuals are solving additions, the coactivation of the arithmetic facts associated to 

the multiplication would produce interference during the selection of the correct 

addition result.  

There is empirical evidence to support the concurrent coactivation of arithmetic 

facts associated to additions and multiplications (Winkelman & Schmidt, 1974). One 

procedure frequently used to corroborate this coactivation is the verification of additions 

(Zbrodoff & Logan, 1986). In this task, a simple addition is presented (i.e., a pair of 

one-digit operands and a result) and participants have to decide whether the result is the 

correct solution of the addition problem. The most interesting trials are those associated 

to negative responses (incorrect addition problems). In these occasions, participants take 

more time to respond when the result presented with the addition is incorrect but is the 

one of multiplying the operands (2 + 4 = 8) relative to a condition in which the result is 

unrelated (2 + 4 = 10). This longer reaction time when the incorrect addition result is the 
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one of multiplying the operands has been taken as an index of the simultaneous 

activation of addition and multiplication arithmetic facts. Furthermore, it is worth 

mentioning that it is assumed that coactivation is automatically produced after 

presenting the operands in any case. For example, when the problems 2 + 4 = 8 or 2 + 4 

= 10 are presented (incorrect additions), the result associated with multiplying the 

operands (8) would be activated. However, since the incorrect result (8) is visually 

presented in the first case (2 + 4 = 8), it would receive more activation and thus, it 

would compete more strongly with the correct solution of the addition problem (6), 

relative to the addition in which the incorrect result associated to the multiplication of 

the operands (8) is not visually presented (2 + 4 = 10).  

Despite the fact that participants perform the verification of additions more 

poorly when the result is the one of multiplying the operands (2 + 4 = 8), (Zbrodoff & 

Logan, 1986); most of the time they are able to perform the task successfully. 

Therefore, the question to answer is about the mechanism used to select the correct 

arithmetic fact to solve the problem efficiently. We suggest that this mechanism might 

be similar to that proposed in other cognitive fields to select correct representations 

among several competing alternatives. For instance, in the field of bilingualism, it has 

been observed that bilinguals coactivate words in their two languages even when they 

need only one language to communicate (Macizo, Bajo, & Martín, 2010). The 

bilinguals seem to select representations in the correct language by inhibiting those of 

the irrelevant language (e.g., Green, 1998; Macizo et al., 2010; see Kroll, Bobb, & 

Wodniecka, 2006, for a review). For example, Macizo et al. observed that Spanish-

English bilinguals were slower to process the word foot in English when they received 

previously the interlexical homographs pie (meaning foot in Spanish). The authors 

interpreted that the bilinguals activated the irrelevant Spanish meaning of pie (foot in 

Spanish) and later it was inhibited. The bilinguals took additional time to reactivate the 

inhibited word when it was presented later. Therefore, the authors proposed an 

inhibitory mechanism responsible to select correct representations by suppressing the 

activation of competing candidates.  

In the field of mathematical cognition there are some theoretical models that 

describe the way in which arithmetic facts are selected with the involvement of 
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inhibitory processes such as the Network Retrieval Theory (Whalen, 2000). This model 

identifies three types of nodes: (a) nodes to represent the operands of an arithmetic 

problem, (b) nodes to specify the type of problem (addition, multiplication), and (c) 

nodes associated to the results of the problems. When an arithmetic problem is 

presented (2 + 4), the network would spread activation to the operands, the possible 

arithmetic problems associated to the operands (i.e., addition 2 + 4, multiplication 2 x 

4), and the solutions (6 and 8 for the addition and multiplication problems, 

respectively). Moreover, the network also includes inhibitory connections to reduce the 

activation of unrelated nodes so finally, the operands, the type of arithmetic problem 

and the correct solution are selected (2 + 4 = 6). Hence, Whalen (2000) describes an 

architecture in which several arithmetic facts are automatically activated and inhibitory 

processes regulate the activation of the network to reach the correct solution.  

The available empirical evidence about the existence of an inhibitory mechanism 

underlying the selection of correct arithmetic facts is contradictory. Censabella and Noël 

(2004) asked whether simple mental arithmetic involved the suppression of irrelevant 

arithmetic facts. To this end, the authors evaluated the relationship between the 

production of additions and multiplications and three tasks aimed to index exogenous 

suppression, endogenous suppression and activation-based interference. These tasks 

were, respectively: (a) a Stroop tasks in which participants named the ink color of words 

that might denote a different color (i.e., incompatible trials such as the word green 

colored in red). The authors assumed that participants solved the interference in 

incompatible Stroop trials by the inhibition of the irrelevant dimension (i.e., reading of 

the word), after perceiving the exogenous stimulus; (b) a task in which participants first 

read sentences with high/low predictable final words and later they recognized whether 

a target word was presented in the sentence or not. The authors predicted that high 

predictable final words that were not presented would be more difficult to reject in the 

recognition test because they would be activated and subsequently they had to be 

suppressed; (c) finally the authors used a task based on the fan effect (Anderson, 1974) 

to evaluate the activation-based interference. The participants learned sentences 

containing a person (i.e., ‘the guard’) and a location (i.e., ‘is in the inn’) while the 

number of locations was manipulated to create different fan sizes. The authors assumed 
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that the recall of sentences would be higher with small-fan contexts relative to large-fan 

contexts due to the reduction of the target context activation with the increase of the 

number of competing contexts. Censabella and Noël observed that performance on the 

simple arithmetic tasks was related with the task based on the fan effect so participants 

with more errors when solving arithmetic problems showed a large fan effect. However, 

no associations were obtained between the arithmetic tasks and (a) the Stroop task or (b) 

the sentence reading and word recognition task. The authors interpreted these results as 

evidence that the solving of arithmetic problems did not involve inhibitory processes. 

Instead, they proposed that the interference associated to the coactivation of arithmetic 

facts was due to the reduced level of activation of the correct result because of the 

increased activation of associated responses.  

However, in our opinion, the study reported by Censabella and Noël (2004) is 

open to other interpretations. For example, some authors have suggested that the fan 

effect involves the inhibition of irrelevant contexts rather than the decrease of activation 

of the target context (i.e., Radvansky, Zacks, & Hasher, 1996). Thus, the relationship 

between the arithmetic task and the fan effect obtained in the Censabella and Noel’s 

study might be reflecting common inhibitory processes underlying both tasks.  

Recently, other empirical studies have given support to the existence of 

inhibitory processes in the selection of arithmetic facts. In several studies, Campbell and 

colleagues (Campbell & Dowd, 2012; Campbell & Thompson, 2012) have used an 

adaptation of the retrieval practice (RP) paradigm typically employed to demonstrate 

the active inhibition of irrelevant information (Anderson, 2003; Anderson, Bjork & 

Bjork, 1994). In these studies, participants perform a practice phase of simple 

multiplication problems (i.e., 2 x 3 = ?; 4 x 6 = ?) and, afterward, the same operands are 

used in a second test phase with simple addition problems (i.e., 2 + 3 = ?; 4 + 6 = ?). 

The overall finding is that practicing the multiplication problems slows the response 

times to the corresponding addition problems relative to additions problems whose 

operands were not presented in the practice phase with multiplication problems. This 

retrieval induced forgetting (RIF) effect is interpreted in terms of inhibitory processes. 

When participants solved the multiplication problems in the practice phase, the addition 

competitors need to be inhibited. Therefore, participants would take more time to solve 
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addition problems in the test phase because of the previous inhibition of these problems. 

Several studies with the RP paradigm have corroborated and delimited some 

characteristics of RIF effects in the resolution of simple arithmetic (i.e., stronger for 

small size problems, etc.); thus corroborating that an inhibitory mechanism is involved 

in the resolution of some arithmetic problems (Campbell & Dowd, 2012; Campbell & 

Thompson, 2012).  

The studies showing RIF effects in simple arithmetic with the RP paradigm 

nicely demonstrate inhibitory effects in mental arithmetic. More specifically, these 

studies show long-term inhibition since the result of inhibiting competing arithmetic 

problems in the practice phase is evaluated in a test phase which is performed several 

minutes later. The goal of the current study is to explore the existence of a continuous 

inhibitory mechanism which modulates the selection of arithmetic facts trial-by-trial. To 

this end, we made use of a paradigm employed in the field of bilingualism to explore 

inhibitory processes associated to the selection of a language, a version of the negative 

priming paradigm (Macizo et al., 2010; Tipper & Driver, 1988).  

Previous studies on arithmetical cognition have used also the negative priming 

paradigm to nicely demonstrate the involvement of inhibitory processes when 

participants solve additions (Arbuthnott & Campbell, 2000). The authors asked 

participants to solve probe additions while ignoring distractor additions. The relevant 

result for the present study was the observation of negative priming so the responses 

were slower to a probe addition when it was the distractor addition in the preceding 

trial. Hence, negative priming paradigm seems to be sensitive to index inhibition during 

arithmetic resolution. 

It is important to note that in the Arbuthnott and Campbell’s (2000) study and 

other relevant studies on cognitive arithmetic, the existence of inhibitory processes in 

simple arithmetic has been evaluated within categories of arithmetic facts such as sets of 

additions (Arbuthnott & Campbell, 2000, 2003) and sets of multiplications (Campbell & 

Arbuthnott, 1996) . For instance, Arbuthnott and Campbell showed that participants 

took longer to respond to an addition (e.g., 3 + 5) whose result was one of the operands 
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contained in a prime addition (4 + 8), suggesting that participants inhibited the 

previously encoded unit.   

The current study was aimed to evaluate the existence of a continuous inhibitory 

mechanism acting trial-by-trial to select addition facts among coactivated multiplication 

facts. To this end, a verification task was used in which arithmetic problems were 

presented and participants decided whether the result was correct or incorrect (see Table 

1). The task structure comprised blocks of two trials. In the first trial, the result of the 

addition problem could be the one of multiplying the operands (i.e., 2 + 4 = 8) or not 

(i.e., 2 + 4 = 10). If participants coactivate multiplication facts, they would take longer 

to respond to 2 + 4 = 8 relative to 2 + 4 = 10. In the second trial, the result of 

multiplying the operands in Trial 1 was presented again (2 + 6 = 8) or not (4 + 6 = 10). 

If participants inhibited the result of multiplying the operands of the first trial, they 

would take longer to respond to 2 + 6 = 8 relative to 4 + 6 = 10, since they would 

needed additional time to reactivate this solution when it became relevant in Trial 2. 

This pattern of results would indicate that when participants verify addition problems, 

they coactivate multiplication facts and they use an inhibitory mechanism to select the 

correct addition solution.  

 

Table 1. Examples of blocks of two trials used in the study. 

Example 1 

First trial 2 + 4 = 8 (Related 1 condition) 

Second trial 2 + 6 = 8 (Related 2 condition) 

Example2 

First trial 2 + 4 = 10 (Unrelated 1 condition) 

Second trial 4 + 6 = 10 (Unrelated 2 condition) 

 Note. Problems in the first trial were always incorrect additions. Problems in the second trial 

were always correct additions. 
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EXPERIMENT 1 

 

Method 

Participants. Forty-eight students from the University of Granada (36 women 

and 12 men) took part in the study. Their mean age was 23 years (SD = 4.23). Five were 

left-handed and 43 were right-handed. The participants gave informed consent and they 

were remunerated by academic credits. Before the experimental task, the participants 

completed a questionnaire to determine their use of simple arithmetic (Colomé, 

Bafalluy, & Noël, 2011). Most participants learned the multiplication tables orally 

(77.81%). Furthermore, 64.58% of participants made simple calculations on a daily 

basis (see Table 2). 

Table 2. Use of simple arithmetic of participants. 

 Experiment 1 Experiment 2 

Calculation frequency   

Daily 64.58% 48.48% 

Weekly 31.25% 39.39% 

Monthly 4.17% 12.12% 

Type of calculation    

Divisions 12.77% 19.73% 

Multiplications 20.10% 20.18% 

Additions 44.27% 38.00% 

Subtractions 22.85% 22.09% 

Calculation strategies   

Saying numbers mentally or aloud 35.67% 34.47% 

Visualising Arabic numbers mentally 30.28% 36.33% 

Writing numbers with pencil and paper 12.38% 11.44% 

With a calculator 19.93% 17.35% 

Other strategies 1.60% 0.38% 

Learning method (multiplication tables)   

Repeating it orally 77.81% 77.27% 
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Exercises with Arabic numbers 18.65% 19.39% 

Others methods 3.54% 3.33% 

 

In addition, to evaluate the participants’ knowledge about multiplications tables, 

after the main experiment they performed a multiplication task in which the operands 

used in the main experiment were presented ( i.e., 2 x 4 = ?) and participants had to say 

aloud the correct result (i.e., 8). The mean correct responses in the multiplication task 

was 88.04%, and there were no significant differences between males and females, t(46) 

= 1.55, p = .13.   

 

 Design and Materials. We used a verification task in which participants 

received one-digit additions and they decided whether they were correct or incorrect. 

The additions were presented in blocks of two trials. In the critical blocks, the first trial 

was composed of incorrect additions whereas in the second trial the additions were 

correct.  

 Two conditions were used in the first trial. In the related 1 condition, the result 

of the addition problem was not the result of adding the operands but the one of 

multiplying them. This condition was compared with an unrelated 1 condition in which 

the result of the addition was incorrect and it was not the result of multiplying the 

operands. In the second trial all additions were correct and the result of each addition 

could be the result of multiplying the operands of the previous trial (related 2 condition) 

or not (unrelated 2 condition).  

Therefore, in the first trial the Type of addition result was manipulated: (a) 

Related 1: An addition problem of one-digit is presented with an incorrect result which 

coincides with the result of multiplying the operands (i.e., 2 + 4 = 8). (b) Unrelated 1: 

An addition problem of one-digit is presented with an incorrect result which is not 

related with the result of multiplying the operands (i.e., 2 + 4 = 10). In the second trial, 

other two conditions were established: (c) Related 2: An addition problem of one-digit 

is presented (i.e., 2 + 6 = 8) with a correct result (8) which coincides with the result of 
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multiplying the operands of the previous trial (2 + 4), regardless of whether this result 

was explicitly presented in the previous trial (the related 1 condition: 2 + 4 = 8) or not 

(2 + 4 = 10). (d) Unrelated 2: An addition of one-digit is presented (i.e., 4 + 6 = 10) with 

a correct result (i.e., 10) which is not the one of multiplying the operands of the 

previous trial (i.e., 2 + 4), regardless of whether this result was explicitly present in the 

previous trial (i.e., 2 + 4 = 10) or not (2 + 4 = 8). An example of trials in each 

experimental condition is reported in Table 1.  

The stimulus material in the first trial was composed of 10 incorrect additions in 

the related 1 condition and other 10 incorrect additions in the unrelated 1 condition. In 

the second trial, 10 correct additions were selected for the related 2 condition and other 

10 correct additions for the unrelated 2 condition. The complete set of experimental 

trials used in the experiment is reported in Appendix 1.  

The verification task was composed of blocks of two trials. Forty experimental 

blocks were presented twice to each participant. The structure of the first trial and 

second trials of these blocks was as follows: The 10 incorrect additions in the related 1 

condition were followed by the 10 additions in the related 2 conditions. The 10 incorrect 

additions in the related 1 condition were also followed by the 10 additions in the 

unrelated 2 condition. Similarly, the 10 incorrect additions in the unrelated 1 condition 

were followed by the 10 additions in the related 2 condition and the same 10 incorrect 

additions from the unrelated 1 condition were also followed by 10 additions in the 

unrelated 2 conditions.  Hence, across the verification task, the related 2 condition and 

the unrelated 2 condition were presented an equal number of times preceded by the 

related 1 condition and the unrelated 1 condition.   

The additions used in the experimental task were carefully selected to equate 

them in several factors that might determine possible differences between the conditions 

in the first and second trial of the experiment. All additions were composed of one-digit 

operands and the two operands of each problem were presented in ascending order (i.e., 

2 + 6) and never in descending order (i.e., 6 + 2 was not used). The parity (even and odd 

digits) of operands and results was equally distributed across the conditions of the first 

trial and second trial of the experimental blocks. In each trial, the solution corresponded 
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to multiplication tables from 1 to 4 and it was never one of the two operands presented 

in the addition (i.e., 2 + 1 = 2 was not presented).   

In the first trial, the related 1 condition and the unrelated 1 condition were 

equated in the problem size (the sum of the two operands in both conditions was 7.40). 

The size of the incorrect results presented in the related 1 condition and the unrelated 1 

condition was also similar (11.80 and 11.60, respectively). Also, the distance between 

the incorrect result presented to the participants and the correct result of the addition in 

the two conditions of the first trial was the same (4.40). In the second trial, the problem 

size was equated in the related 2 condition (11.80) and the unrelated 2 condition 

(11.60). In order to maintain the same problem size in the two conditions of trial 2, one 

addition problem in the related 2 condition (7 + 9 = 16) and one problem in the 

unrelated 2 condition (4 + 6 = 10) were repeated. Other problems could be repeated to 

maintain this criterion. Thus, the repeated problems were randomly selected.  

In addition, in order to check that there were no differences in response latency 

and accuracy when individuals answer to the additions problems used in the related 2 

and unrelated 2 condition without any manipulation, we made use of the database 

developed by Campbell and Xue (2001). From this database; we selected the mean 

reaction times based on correct responses, median response time including outliers and 

error percentages when non-Asian Canadian individuals solved additions regardless of 

the strategy used to solve them. When mean RT was considered, there were no 

differences between the related 2 additions (928 ms) and the unrelated 2 additions (860 

ms), t(18) = 0.95, p = .36. Similarly, the median RT was equated in the related 2 

condition (958 ms) and the unrelated 2 condition (860 ms), t(18) = 1.02, p = .32. 

Finally, there were no differences in the percentage of errors associated to additions in 

the related 2 condition (6.26%) and the unrelated 2 condition (4.59%), t(18) = 0.62, p = 

.54.   

Moreover, we controlled for the amount of similarities between the additions 

presented in the first trial and those corresponding to the related 2 condition and the 

unrelated 2 condition of the second trial. The numerical distance between the incorrect 

result presented in the first trial and the second trial was the same in the related 2 
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condition and the unrelated 2 condition (1.40). The difference between the problem size 

in the first trial and the second trial was the same in the related 2 condition and the 

unrelated 2 condition (4.40). In addition, the number of repetitions between the digits 

presented in the first trial and the second trial (i.e., 2 was repeated in the block 

composed of the first trial 2 + 3 = 6 followed by 2 + 4 = 6), was the same in the related 

2 condition and the unrelated 2 condition (8 repetitions).  

To avoid the participant noticed the structure of the experimental blocks (a 

sequence of an incorrect operation in the first trial and a correct operation in the second 

trial), these blocks were randomly intermixed with 10 filler blocks of trials. The correct 

responses in the first and second trial of these blocks were ‘yes’-’yes’, ‘no’-’no’, and 

‘yes’-’no’, respectively. Therefore, the sequence of responses within each block of two 

trials was unpredictable through the experiment. The order in which the experimental 

blocks and filler blocks were presented was randomized for each participant.  

Previous studies have shown that the practice with multiplication problems 

interferes with the resolution of addition problems (i.e., Campbell & Arbuthnott, 2010). 

Since we were interested in the mechanism associated to the selection of arithmetic 

facts after competition, four out of the ten filler trials were multiplication problems 

which were introduced to foster competition among arithmetic facts. These 

multiplication trials were composed of two one-digit operands that were not used 

together as operands in the experimental trials. The complete set of filler trials used in 

the experiment is reported in Appendix 2. 

Before starting the verification task, the participants performed four blocks of 

practice trials (2 pairs of additions and 2 pairs of multiplications) with problems that 

were not used in the main experiment. 

 

 Procedure. The experiment was designed and controlled by E-prime 

experimental software, 1.1 version (Schneider, Eschman, & Zuccolotto, 2002). The 

stimuli were always presented in the middle of the screen in black color (Arial font, 30 
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point size) on a white background. Participants were tested individually and they were 

seated at approximately 60 cm from the computer screen.  

The experimental task was a verification of arithmetic problems presented in 

blocks of two trials. Participants had to decide if the result of each problem was correct 

or incorrect. The first trial began with a fixation point in the middle of screen for 500 

ms; followed by the arithmetic problem until the participant’s response. After giving the 

answer, the second trial appeared with the same sequence of events as that of the first 

trial: a fixation point for 500 ms and the arithmetic problem until the participant 

responded. After each block of two trials, the participants were instructed to press the 

space bar to continue with the following block. Participants were instructed to respond 

by pressing the Z and M keys of the keyboard. The Z and M keys to ‘correct’ and 

‘incorrect’ assignment were counterbalanced across participants. The duration of the 

experiment was approximately 25 minutes.  

 

Results 

Trials in which participants committed an error were eliminated from the latency 

analysis and submitted to the accuracy analyses (4.37% of the data in the first trial and 

4.19% of the data in the second trial). Furthermore, the trimming procedure excluded 

reaction times (RTs) that were 2 SD above and below the mean, separately for each 

participant and for each experimental condition.  The percentage of outliers was similar 

in the unrelated 1 condition (4.97%) and the related 1 condition (4.22%), F(1, 47) = 

3.35, p = .07. Similarly, the percentage of outliers did not differ in the unrelated 2 

condition (5.22%) and the related 2 condition (5.16%), F < 1.  

Since we were interested in possible differences between conditions within each 

trial, the two conditions of the first trial and the second trial were separately analyzed. A 

factorial design including the condition (related vs. unrelated) and the trial (first and 

second) could not be considered because the problem size of additions in the second 

trial was significantly larger (11.70) than that of the first trial (7.40), t(38) = 5.09, p < 

.001. This difference might produce a problem size effect (Ashcraft, 1992; Groen & 



 

103 

 

 

Parkman, 1972) which consists in longer reaction times and more errors when solving 

additions with large problem size relative to problems with small problem size. 

Therefore, we report first the results obtained in the first trial (related 1 condition vs. 

unrelated 1 condition) and then the results found in the second trial (related 2 condition 

vs. unrelated 2 condition)
1
.  

First Trial.
2
 We performed analyses of variance (ANOVAs) on the RTs and 

percentage of errors with the variable Type of addition result: related 1 (i.e., 2 + 4 = 8) 

and unrelated 1 (i.e., 2 + 4 = 10) as a within-subject factor. The difference between 

these conditions on the RT analysis was significant, F(1, 47) = 6.99, p = .01, η
2
 = .13, 

 

1
The analysis of second trial depending on the type of first trial. It is important to note 

that the type of second trial (related 2 vs. unrelated 2) could not be analyzed depending on the 

type of first trial (related 1 vs. unrelated 1) due to a repetition effect that might have a different 

impact on the two conditions of trial 2. For example, while the solution 8 is repeated in the 

related 2 condition: 2 + 6 = 8, after the related 1 condition 2 + 4 = 8; the solution 10 is repeated 

in the unrelated 2 condition 4 + 6 = 10 after the unrelated 1 condition 2 + 4 =10. Note, however, 

that this unbalanced repetition effect is avoided when related 2 and unrelated 2 conditions are 

directly compared since in both conditions, half of the solutions were explicitly presented in the 

previous trial.  Nevertheless, we performed additional analyses to evaluate the influence of Trial 

1 on Trial 2 by avoiding the unbalanced repetition effect. Firstly, the Trial 1 (related 1, unrelated 

1 condition) x Trial 2 (related 2, unrelated 2) interaction was significant, F(1, 47) = 17.55, p < 

.001, η
2
 = .27. Afterward, we compared the two conditions that involved repetition: (a) related 1 

- related 2 condition vs. (b) unrelated 1 - unrelated 2 condition. The RTs in Trial 2 were 100 ms 

slower in (a) vs. (b), F(1, 47) = 6.18, p = .02, η
2
 = .12, suggesting that, in spite of the repetition 

effect, Trial 2 was difficult to perform when it included the result of multiplying the operands of 

Trial 1. However, the comparison between (c) related 1 - unrelated 2 vs. (d) unrelated 1 vs. 

related 2 was not significant, F(1, 47) = 2.71, p = .11, η
2
 = .05 (57 ms difference). These two 

conditions did not involve repeating the result. Hence, the consequences of inhibiting the result 

of multiplying the operands of Trial 1 were only evident in Trial 2 when the result was visually 

present in both trials, the (a) condition.  
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such that responses to related 1 trials were slower than responses to unrelated 1 trials 

(see Table 3).  

Furthermore, the ANOVA performed on the percentage of errors showed 

significant the difference between the related 1 trials (6.30%, SE = 1.1) and the 

unrelated 1 trials (2.45%, SE = 0.52), F(1, 47) = 14.82, p < .001, η
2
 = .24.  

Second trial. We performed an ANOVA on the RTs and percentage of errors 

with the variable Type of result of previous trial (related 2 trials and unrelated 2 trials). 

There were significant differences between these two conditions, F(1, 47) = 8.17, p = 

.006, η
2
 = .15. As showed in Table 3, responses to related 2 trials were slower than 

responses to unrelated 2 trials. However, the accuracy analyses did not show significant 

differences between the related 2 condition (4.17%, SE = 0.8) and the unrelated 2 

condition (4.22%, SE = 0.86), F < 1.  

 

 

2
Possible differences due to the gender of participants were examined. In Experiment 1, 

the results obtained in the first trial did not show differences between females and males, F(1, 

46) = 1.61, p = .21, η
2
 = .03, and the Gender x Type of addition result was not significant F < 1. 

In the second trial, Gender was not a significant variable, F(1, 46) = 2.35, p = .13, η
2
 = .05, nor 

this variable interacted with type of results of previous trial, F < 1. In Experiment 2, the results 

of trial 1 did not show a significant effect of Gender, F < 1, and this variable did not interact 

with type of addition results, F < 1. In the second trial, Gender was not significant, F(1, 31) = 

1.12, p = .30, η
2
 = .03, and this variable did not interact with type of result of previous trial, F(1, 

31) = 1.20, p = .28, η
2
 = .04. Hence, there were no differences due to the gender of participants 

in this study. 
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Table 3. Results (RT) in Experiment 1. 

First Trial 

  Related 1             

condition 

(2 + 4 = 8) 

 Unrelated 1 

condition 

(2 + 4 = 10) 

RT Diff. 

 1335 (48.00) 1301 (48.18) 34 

Second Trial 

 Related 2                  

condition 

(2 + 6 = 8) 

Unrelated 2 

condition 

(4 + 6 = 10) 

 

 1467 (63.28) 1384 (64.3) 83 

 Note. Mean reaction times in milliseconds (ms) for each condition in first and second trial of 

Experiment 1. Standard errors are reported into bracket.  

 

To evaluate whether the magnitude of the interference effect varies between the 

first trial and the second trial, we performed additional analyses computing the 

interference effect (unrelated condition vs. related condition) for each participants in the 

two trials of the experiment. The results showed that the magnitude of the interference 

effect was similar in the first trial (34 ms) and the second trial (83 ms) of the 

experiment, F(1, 47) = 2.33, p = .13.  

 

Discussion  

The aim of Experiment 1 was to evaluate the possible inhibitory mechanism 

involved in the selection of arithmetic facts. However, in order to be able to address this 

goal, a previous step was to corroborate that participants activated arithmetic facts that 
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were irrelevant to solve the addition problems. The results obtained in the first trial of 

the experimental blocks confirmed that participants coactivated the result of multiplying 

two operands when they decided on the correctness of adding these two operands. The 

participants were slower to answer when the result of the incorrect addition problems (2 

+ 4 = 8) was that of multiplying the operands relative to a control condition with an 

unrelated result (2 + 4 = 10).  

The coactivation of arithmetic facts found in Experiment 1 is not new and it has 

been observed in previous studies (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 

1986). Zbrodoff and Logan suggested that the coactivation of arithmetic facts is an 

automatic process which would be obtained any time participants are presented with an 

arithmetic problem. This statement would imply that, in the current study, the 

participants activated the result of multiplying the two operands (the result 8 when 2 + 4 

was presented) in the two conditions of the first trial. However, the competition would 

be greater in the related 1 condition relative to the unrelated 1 condition since in the first 

case the result of multiplying the operands (8) was visually presented (2 + 4 = 8), 

enhancing thus its activation relative to the second case in which the result of 

multiplying the operands was not visually presented (2 + 4 = 10).  

More important for the purpose of the current study was the observation that 

participants took more time to respond when the result of multiplying the operands of 

the first trial (2 and 4) was the correct result of the problem presented in the second trial 

(2 + 6 = 8), relative to the unrelated 2 condition. This pattern of results suggests that 

participants inhibited the result that was irrelevant in the first trial so they needed 

additional time to retrieve it when it was presented again in the related 2 condition of 

the second trial. Hence, the results of Experiment 1 suggest that participants used an 

inhibitory mechanism to select the correct arithmetic facts.  

The paradigm introduced in Experiment 1 to study the possible inhibitory 

mechanism underlying the selection of arithmetic facts has not been used before in the 

field of mathematical cognition. Therefore, we decided to gather additional evidence 

with the same paradigm under circumstances that did not favor the activation of 

irrelevant arithmetic facts. Previous research has shown that participants are sensitive to 
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contextual information presented in the course of an experiment. For example, in a 

comparison task in which participants decide the larger of two-digit number pairs (i.e., 

42-58), although the decade digit suffices to answer (58 is larger than 42 because 5 > 4), 

the participants activate the irrelevant unit digits and this activation depends on the 

amount of filler trials presented in the experiment (Macizo & Herrera, 2011, 2013): 

When there is a large number of filler trials in which the unit digit needs to be 

necessarily processed (i.e., within-decade number pairs with the same decade digit; 42-

48), participants strongly activate the unit digit even in trials in which the units are 

irrelevant and might produce competition (the unit-decade compatibility effect, Macizo 

& Herrera, 2011, 2013). Therefore, these studies indicate that the activation of irrelevant 

numerical representations depends on the nature of filler trials introduced in the study. 

In Experiment 1, we included filler trials with multiplication problems in order to favor 

the coactivation of irrelevant arithmetic facts (multiplications) when they solved 

addition problems. In Experiment 2, we continued evaluating the selection of arithmetic 

facts under circumstances that did not promote the retrieval of irrelevant arithmetic 

facts.   

 

EXPERIMENT 2 

 

This experiment was aimed to gather additional evidence of the way individuals 

coactivate irrelevant multiplication facts when they verify the correctness of addition 

problems. Previous studies showing the coactivation of several arithmetic facts have 

used a task in which multiplications and addition are presented intermixed so both are 

relevant to perform the task (Grabner, Ansari, Koschutnig, Reishofer, & Ebner, 2013; 

Lemaire, Fayol, & Abdi, 1991, Winkelman & Schmidt, 1974; Zbrodoff & Logan, 

1986). Similarity, in Experiment 1 the verification task included filler trials with 

multiplication problems to foster the coactivation of irrelevant arithmetic facts 

associated to multiplication problems. In Experiment 2 only addition problems were 

presented so multiplication facts were completely irrelevant to perform the task. Hence, 

we had the opportunity to evaluate the coactivation of multiplication facts when they 
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were completely irrelevant to verify the correctness of addition problems. In addition, 

Experiment 2 was a replication of Experiment 1 with the exception that multiplication 

filler trials were excluded. Thus, we were able to examine again the involvement of 

inhibitory processes during the verification of simple additions.  

 

Method 

Participants. A new set of thirty-three students from the University of Granada 

(26 women and 7 men) took part in Experiment 2. None of them participated in 

Experiment 1. Their mean age was 21 years (SD = 2.71). Three were left-handed and 30 

were right-handed. The participants gave informed consent and their participation was 

remunerated by academic credits. After the experimental task, the participants 

completed the same questionnaire used in Experiment 1 to determine their knowledge 

of simple arithmetic (Colomé et al., 2011). T-tests analyses did not show differences 

between participants of Experiments 1 and 2 in the scores of this questionnaire (all p 

values > .15), except an increased use of division in daily life in participants of 

Experiment 1 (M = 19.73%) relative to participants of Experiment 2 (M = 12.77%), 

t(79) = 2.49, p = .01. Most of the participants of Experiment 2 learned the multiplication 

tables orally (77.27%). In addition, 48.48% of participants made simple calculations on 

a daily basis (see Table 2). 

As in Experiment 1, the participants performed a multiplication task with 

multiplication tables 1-4 which was performed at the end of the experimental session to 

avoid possible influences of the multiplication problems on the main tasks of 

verification of additions. The mean correct responses in the multiplication task was 

89.2%, and there were no significant differences between males and females, t(31) = 

1.34, p = .19. The correct responses in the multiplication task was similar in Experiment 

1 (88.04%) and Experiment 2 (89.2%), t(79) = 0.67, p = .50.  

 

Design and Materials. The experimental task and the experimental conditions in 

the first trial and second trial of this experiment were the same as those of Experiment 
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1. The only difference between experiments concerned the blocks of filler trials. While 

in Experiment 1 the 10 filler blocks included 4 blocks of multiplications, in Experiment 

2, the 10 filler blocks were composed of additions only. The filler additions were never 

used as experimental trials. As in Experiment 1, the two trials of these filler blocks 

followed the sequence of ‘yes’-‘yes’, ‘no’-‘no’, and ‘yes’-‘no’ responses; so the 

sequence of responses within each block of two trials was unpredictable across the 

experiment. 

 

Procedure. The same procedure employed in Experiment 1 was used in 

Experiment 2. 

 

Results 

Trials in which participants committed an error were excluded from the latency 

analyses and submitted to the accuracy analyses (1.14% of the data in the first trial and 

2.12% of the data in the second trial). As in Experiment 1, the trimming procedure 

excluded RT data that were 2 SD above and below the mean, separately for each 

participant and for each experimental condition.  The percentage of outliers was similar 

in the unrelated 1 condition (4.98%) and the related 1 condition (4.75%), F < 1. 

Similarly, the percentage of outliers did not differ in the unrelated 2 condition (4.78%) 

and the related 2 condition (4.53%), F < 1. As in Experiment 1, we performed an 

ANOVA on the RTs and percentage of errors of the first trial and then the same was 

analyzed in the second trial. 

First Trial. The ANOVA on the RTs with the variable Type of addition result 

showed significant differences between the related 1 condition and the unrelated 1 

condition, F(1, 32) = 3.86, p = .05, η
2
 = .11, so related 1 trials were answered to more 

slowly than unrelated 1 trials (see Table 4).  

However, the accuracy analyses showed similar error rates in the related 1 

condition (1.06%, SE = 0.34) and the unrelated 1 condition (1.21%, SE = 0.33), F < 1.   
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Second Trial. The ANOVA on the RTs with the variable Type of result of 

previous trial showed significant differences between the related 2 condition and the 

unrelated 2 condition, F(1, 32) = 35.44, p < .001, η
2
 = .53, such that related 2 trials were 

answered to more slowly than unrelated 2 trials (see Table 4).  

 

Table 4. Results (RT) in Experiment 2. 

First Trial 

  Related 1                   

condition 

(2 + 4 = 8) 

 Unrelated 1 

condition 

(2 + 4 = 10) 

RT Diff. 

 1183 (50.66) 1151 (41.83) 32 

Second Trial 

 Related 2                    

condition 

(2 + 6 = 8) 

Unrelated 2 

condition 

(4 + 6 = 10) 

 

 1563 (90.64) 1433 (79.75) 130 

Note. Mean reaction times in milliseconds (ms) for each condition in first and second trial of 

Experiment 2. Standard errors are reported into brackets. 

 

Nevertheless, the accuracy analyses did not show significant differences 

between these two conditions: related 2 condition (2.5%, SE = 0.36) and the unrelated 2 

condition (1.74%, SE = 0.4), F(1, 32) = 3.13, p = .09, η
2
 = .09.  

Additional analyses showed that the magnitude of the interference effect in the 

second trial was larger (130 ms) than that observed in the first trial (32 ms), F(1, 32) = 

15.38, p < .001 η
2
 = 0.32. 

 Joint analyses of Experiment 1 and 2. Cross-experiment analyses were 

performed to compare the effects observed in the first and second trial. In these 

analyses, the experiment was considered a between-participants variable. In the first 

trial, the main effect of the Type of addition result was significant, F(1, 79) = 10.31, p = 
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.002, η
2
 = 0.12. The related 1 condition was answered to more slowly (1259 ms, SE = 

35.77) than the unrelated 1 condition (1225 ms, SE = 33.86), (33 ms difference). 

However, although the main effect of the Experiment was significant, F(1, 79) = 4.79, p 

= .03, η
2
 = 0.06 (151 ms difference between Experiment 1 and 2), this variable did not 

interact with the Type of addition result, F < 1.  

Moreover, the ANOVA on the second trial showed significant differences 

between the related 2 condition and the unrelated 2 condition, F(1,79) = 29.19, p < 

.001, η
2 

= 0.27, so related 2 trials were answered to more slowly (1515 ms, SE = 53.53) 

that unrelated 2 trials (1409 ms, SE = 50.95), (106 ms difference). Nevertheless, the 

main effect of the Experiment was not significant and this variable did not interact with 

the Type of result of previous trial (ps > .23). 

 

Discussion  

 The results obtained in this experiment were exactly the same as those found in 

Experiment 1. In the first trial, the participants took more time to respond to the related 

1 condition relative to the unrelated 1 condition, which suggests that they coactivated 

the arithmetic fact associated to the multiplication when they performed the addition 

verification task. In the second trial, the participants responded to more slowly in the 

related 2 condition relative to the unrelated 2 condition. This result suggests that the 

irrelevant multiplication facts coactivated in the first trial were inhibited so participants 

required additional time to reactivate them when they became relevant in the second 

trial.  

The similar pattern of results obtained in Experiment 1 and 2 strongly indicates 

that there is a coactivation of different arithmetic facts (additions, multiplications) even 

when some of them are irrelevant to perform the experimental task (i.e., the 

multiplication facts). Moreover, the data obtained in the second trial of Experiment 1 

and 2 suggests the existence of an inhibitory mechanism responsible for the selection of 

the correct result of simple arithmetic problems.  
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Although the results of Experiment 2 replicate those of Experiment 1, we 

expected reduced interference effects in the first and second trial of Experiment 2 

relative to those found in Experiment 1. In Experiment 2 there were no contextual 

factors to promote the activation of irrelevant multiplication facts (all trials were simple 

addition problems). In this scenario, we expected a reduced coactivation of 

multiplication facts in the first trial of Experiment 2 which would be reflected in a small 

difference between the related 1 and the unrelated 1 condition. However, these between-

experiments differences were not found. We will elaborate further on this point in the 

next section.  

 

GENERAL DISCUSSION 

 

It is widely agreed that individuals have represented in long-term memory 

arithmetic facts associated to simple mental arithmetic such as addition and 

multiplication problems (e.g., Ashcraft, 1987; Campbell & Graham, 1985; Siegler & 

Shrager, 1984). It is also assumed that these arithmetic facts are represented in an 

associative network with interconnections among different arithmetic problems, their 

operands and results. When an individual is performing an addition problem (i.e., 2 + 4 

= ?) or evaluating whether it is correct or not (i.e., 2 + 4 = 8, false solution), the 

activation flows through the arithmetic network so the nodes associated to the correct 

addition solution become active. Moreover, due to this automatic spreading of 

activation, other related nodes (i.e., multiplication facts) receive activation too (i.e., 2 x 

4 = 8). The concurrent activation of the correct addition and the incorrect but related 

multiplication produces competition among representations. This competition causes 

interference which is indexed in experimental studies as longer response latencies to 

decide the correctness of an addition problem (2 + 4 = 8) when the solution presented to 

the participant is false but associated to other related arithmetic problem (8 which is the 

result of multiplying 2 x 4) (Zbrodoff & Logan, 1986). The question addressed in the 

current study was about the cognitive mechanism involved in the resolution of this 

conflict among coactivated arithmetic facts. The answer that can be drawn from 
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previous studies is not unequivocal. Within the activation-based account, Censabella 

and Nöel (2004) argue that the conflict among coactivated arithmetic facts derivates 

from the limited amount of activation that might spread through the arithmetic network 

when participants perform simple arithmetic. In a given trial of a verification task (i.e., 2 

+ 4 = 10), the activation spreads to other related nodes (also the one associated to 

multiplying the operands 2 x 4 = 8); however, competition is not too high since the 

coactivated irrelevant result (8) is not presented to the participant. On the contrary, 

when participants receive a false addition with a related solution (2 + 4 = 8), the related 

node (2 x 4 = 8) receives a large amount of activation while the correct one would be 

weakly activated producing, thus, the competition and interference effect. In other 

words, the passive activation of false but related nodes produces an overfacilitation of 

the competing nodes.  

There is empirical evidence supporting the passive activation account such as the 

relationship found between the accuracy in solving arithmetic facts and the fan effect 

(Censabella & Noël, 2004), a phenomenon which is usually explained by the principle 

of passive activation. However, as we commented on earlier sections of this paper, the 

fan effect is open to several interpretations. Hence, the explanation of conflict and 

selection of arithmetic facts based on the passive activation is not conclusive. An 

alternative view is offered by Campbell and colleagues (Campbell & Dowd, 2012; 

Campbell & Thompson, 2012). The authors propose that the selection of arithmetic 

facts is mediated by inhibitory processes. After the coactivation of irrelevant nodes in 

the semantic network, the individuals are able to correctly perform the arithmetic 

problem by inhibiting the irrelevant competing alternatives. In several studies the 

authors have corroborated this inhibitory mechanism with the RP paradigm (Anderson, 

2003; Anderson, Bjork & Bjork, 1994). The retrieval of multiplication facts in a 

practice phase (2 x 4 = ?), slows down the retrieval of their addition counterparts on a 

posterior test phase (2 + 4 = ?). This RIF effect shows the long-term consequences of 

inhibiting the competing arithmetic facts since their accessibility is evaluated after 

minutes of delay from the competing situation (the practice phase in which it is 

supposed that the irrelevant arithmetic facts were inhibited). 
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The main goal of this study was to gather direct evidence of this inhibitory 

mechanism after the coactivation of arithmetic facts and the selection of the correct one. 

To this end, the first step was to design a paradigm with which we could capture the 

continuous retrieval and coactivation of arithmetic facts when participants performed a 

verification task of addition problems. In two experiments we observed interference 

effects that seem to be due to the retrieval of irrelevant multiplication counterparts. 

Firstly, participants took longer to decide that the problem 2 + 4 = 8 was incorrect 

relative to the problem 2 + 4 = 10, which might be interpreted as due to the competition 

between the correct result 6 and the incorrect result 8, which is the one of multiplying 

the operands (2 x 4 = 8). Importantly, an interference effect was also found when the 

irrelevant result (8) was presented again and it became relevant to decide that 2 + 6 = 8 

was a correct addition, relative to the control problem 4 + 6 = 10. This interference 

effect was interpreted as reflecting inhibitory processes during the selection of addition 

facts. Therefore, we suggest that in the first moment, participants correctly responded 

‘no’ to 2 + 4 = 8 by inhibiting the competing result (8). Afterward, participants needed 

to overcome inhibition as reflected by the additional time required to respond to the 

previous conflicting result when it became relevant later (2 + 6 = 8). 

In this study, evidence for the coactivation and the posterior inhibition of 

irrelevant arithmetic facts was obtained in two experiments. Nevertheless, we expected 

some differences between experiments. In Experiment 1, we fostered the coactivation of 

irrelevant multiplication facts because our main interest was to corroborate the 

involvement of inhibitory processes to resolve the competition. To this end, 

multiplication problems were intermixed with additions. In Experiment 2, only 

additions problems were used to evaluate the consequences of presenting multiplication 

filler problems in our first experiment. In Experiment 2, we expected reduced 

coactivation of irrelevant multiplication facts in a task that could be resolved with 

addition facts solely, and thus, we predicted less interference. However, the similar 

pattern of results obtained in Experiment 1 and 2, indicates that contextual 

multiplication problems did not influence the retrieval of multiplication facts when 

participants resolved addition problems. This finding is particularly odd because it is 

usually found that when participants are engaged in a number cognition tasks (i.e., 
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number comparison) their performance is modulated by the type and number of filler 

trials used in the experiment (Huber, Mann, Nuerk, & Moeller, 2014; Macizo & 

Herrera, 2011, 2013). Several explanations might be offered for the lack of contextual 

effects in our study. These explanations are based on the degree of activation and 

competition in the current study between the target arithmetic facts (addition facts) and 

the competitors (multiplication facts). The addition problems used in our study were 

very simple; they were composed of one-digit operands. Thus, it might be argued that 

the retrieval of the irrelevant multiplication facts in this situation would be largely 

automatic, so they would become easily activated regardless of the experimental context 

in which they were immersed. As a consequence, they would strongly compete with the 

addition facts producing the interference effect in Experiments 1 and 2. In other words, 

competition between addition and multiplication facts might be promoted by the type of 

addition problems used in the study (small problems with sums < 18). It has been 

observed that small problems have greater memory strength than large problems (i.e., 

Campbell & Xue, 2001; LeFevre, Sadesky & Bisanz, 1996; Zbrodoff & Logan, 2005). 

Hence, the competition of arithmetic facts would be observed more easily with small 

addition problems than with large problems, because the coactivation would be stronger 

in the first case irrespective of the experimental context used in Experiments 1 and 2. 

Future research will shed light on these explanations. However, the main point to draw 

up is that the current study supports the existence of an inhibitory mechanism that is 

involved in the continuous selection of simple arithmetic facts. 
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CHAPTER IV 

SIMPLE ARITHMETIC: ELECTROPHYSIOLOGICAL EVIDENCE 

OF COACTIVATIONA AND SELECTION OF ARITHMETIC 

FACTS
1 

This study aimed at demonstrating that the associative confusion effect found in 

simple arithmetic involves the coactivation of arithmetic facts in semantic memory. We 

also evaluated the consequences of selecting arithmetic facts to resolve addition 

problems. We gathered electrophysiological evidence when participants performed a 

verification task. Simple addition problems were presented in blocks of two trials and 

participants decided whether they were correct or not. The N400-like component was 

considered an index of semantic access (i.e, the retrieval of arithmetic facts) and the 

P200 component was used to determine the difficulty of retrieving arithmetic facts after 

the answer to an addition problem. When an addition problem was incorrect but the 

result presented to the participant was that of multiplying the operands (e.g., 2 + 4 = 

8), N400-like amplitude was reduced relative to an unrelated condition (e.g., 2 + 4 = 

10). This finding suggested that the coactivation of addition and multiplication facts 

took place. Furthermore, the P200 amplitude was more positive when participants 

answered to addition problems whose result was that of multiplying the operands of the 

previous trial (e.g., 2 + 6 = 8). This suggests that irrelevant results were inhibited and 

it was difficult to retrieve them later.  

 

 

 

1
 This paper was submitted to Experimental Brain Research and it was co-authored by Pedro Macizo. 
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SIMPLE ARITHMETIC: ELECTROPHYSIOLOGICAL EVIDENCE OF 

COACTIVATIONA AND SELECTION OF ARITHMETIC FACTS 

 

 Simple arithmetic facts are stored in semantic memory as an associative network 

whose nodes are interrelated (Campbell & Graham, 1985). When a simple problem is 

presented (i.e., the addition problem 2 + 4), the nodes that represent the operands (i.e., 2 

and 4) and the solution (i.e., 6) of the problem are activated automatically. Furthermore, 

due to the principle of spreading activation, other related nodes become activated too 

(i.e., 8, the result of multiplying the operands 2 and 4) (Ashcraft, 1992). This concurrent 

activation produces competition between arithmetic facts (Winkelman & Schmidt, 

1974). For instance, when individuals resolve an addition problem (i.e., 2 + 4), the 

arithmetic fact associated with the multiplication (i.e., 8) produces interference and 

slows down the time needed to select the correct answer (i.e., 6).  

There is empirical evidence of this interference effect during the verification of 

addition problems (Grabner, Ansari, Koschutnig, Reishofer, & Ebner, 2013; Lemaire, 

Fayol, & Adbi, 1991; Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). In this 

task, a simple addition problem is presented (i.e., a pair of one–digit operands and a 

result) and participants have to decide whether the proposed result is correct or not. The 

critical trials are those associated with negative responses (incorrect addition problems). 

In these trials, participants take more time to respond when the proposed result is 

incorrect but it is the one of multiplying the operands (2 + 4 = 8) relative to an unrelated 

condition (2 + 4 = 10). This so-called associative confusion effect (Winkelman & 

Schmidt, 1974) has been taken as an index of the simultaneous activation of addition 

and multiplication facts in semantic memory (Grabner et al., 2013; de Visscher, Berens, 

Keidel, Noël, & Brid, 2015). The current study was aimed at evaluating this 

assumption.  

In our study, we recorded electrophysiological activity when participants 

resolved addition problems in order to demonstrate that the coactivation of semantic 

information in simple arithmetic (i.e., the retrieval of arithmetic facts) underlies the 

associative confusion effect. Specifically, we focused on the N400, a negative-going 

waveform peaking at approximately 350-450 ms after stimulus onset. Importantly for 
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the current study, the amplitude of this component is sensitive to the processing of 

semantic information (Domahs et al., 2007; Jost, Henninghausen, & Rösler, 2004; 

Macizo, Van Petten, & O’Rourke, 2012; Niedeggen & Rösler, 1996, 1999; Niedeggen, 

Rösler, & Jost, 1999). For instance, in psycholinguistic studies, it has been corroborated 

that N400 amplitude is attenuated (less negative) when a target stimulus is preceded by 

a semantically related context relative to an unrelated context (Kutas & Hillyard, 1980, 

1984). This N400 attenuation has been interpreted as due to the spreading of activation 

in semantic memory which facilitates the processing of target stimuli preceded by 

related primes (Kutas & Federmeier, 2011). The N400 is not specific to the processing 

of linguistic stimuli. In fact, N400-like potentials have been found when individuals 

process meaningful stimuli in the non-verbal domain (pictures, faces, etc.), suggesting 

that members of this family of N400-like potentials are found whenever stimuli tap into 

semantic memory (Kutas & Federmeier, 2011). 

 To our knowledge, ERPs have not been used to study the associative confusion 

effect in simple arithmetic. However, amplitude modulations of N400-like components 

have been reported in studies about the processing of multiplication problems (Domahs 

et al., 2007; Jost et al., 2004; Niedeggen & Rösler, 1996, 1999; Niedeggen et al., 

1999)
1
. To illustrate, Niedeggen and Rösler (1999) asked participants to decide whether 

simple multiplication problems were correct or not. The result of incorrect 

multiplication problems could be related (i.e., the results were multiples of either the 

first or the second operand, 5 x 8 = 32) or unrelated (i.e., 5 x 8 = 34). The authors found 

behavioral interference so related problems were responded slower than unrelated 

problems. In contrast, when the ERP pattern was considered, an attenuation of the 

N400-like component was obtained for related results relative to unrelated results. 

Hence, the authors observed dissociation between decision times and ERPs measures 

where behavioral interference was accompanied by an attenuation of the N400-like 

amplitude. The authors concluded that N400-like effects indexed the spreading of 

activation in the network of arithmetic facts so related results facilitated the retrieval of 

the correct multiplication results. In contrast, behavioral interference was interpreted as 

the consequence of a late competition process which was not captured in ERP measures 

but it was observed in response times. 
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 When we revisit the associative confusion effect, we observe that even when 

people take more time to verify a problem whose result is the one of multiplying its 

operands (i.e., 2 + 4 = 8), they are able to resolve it correctly most of the time (i.e., to 

say that 2 + 4 = 8 is incorrect). It has been proposed that the conflict produced by the 

co-activation of arithmetic facts is solved by an inhibitory mechanism (Campbell & 

Dowd, 2012; Campbell & Thompson, 2012; Megías, Macizo, & Herrera, 2014; Megías 

& Macizo, 2015a, 2015b). In a recent study, Megías et al. demonstrated that this 

inhibitory mechanism acts in a continuous manner in order to reduce interference when 

competition between arithmetic facts takes place. To address this issue, Megías et al. 

(2015a) designed a new paradigm in which additions were presented in blocks of two 

trials and participants had to decide whether the proposed result of an addition problem 

was correct or not. In the first trial, participants took more time to respond to an 

incorrect addition problem whose result was the one of multiplying the operands (i.e., 2 

+ 4 = 8) relative to an unrelated condition (i.e., 2 + 4 = 10). This interference effect 

suggested that participants activated multiplication facts when they verified addition 

problems. In the second trial, the participants took more time to respond to another 

addition problem whose result was the one of multiplying the operands of the previous 

trial (i.e., 2 + 6 = 8 preceded by 2 + 4) relative to an unrelated condition (i.e., 4 + 6 = 10  

 

1
Apart from the ERP components considered here, there are other potentials associated 

to the processing of numerical information. N100 is sensitive to variations in non-symbolic 

magnitudes (Hyde & Spelke, 2009), P100 modulations seem to be related to the implicit 

estimation of ordinal information (Rubinsten, Dana, Lavro, & Berger, 2013). In verification 

tasks, large vs. small distance between the proposed result and the correct result is related to 

more negative N2b amplitude and more positive P3b amplitude (Avancini, Soltész, & Szűcs, 

2015, for a review). In the current study, we did not consider these indexes since the underlying 

cognitive processes did not apply (e.g., we did not use non-symbolic quantities nor magnitude 

estimation), or they were equated across conditions of our experiment (e.g., the distance 

between the incorrect and correct results was equated in the conditions of trial 1, and the 

distance between the results in trial 1 and 2 was also equated in the two conditions of trial 2). 
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preceded by 2 + 4). This interference effect obtained in the second trial was interpreted 

as the consequence of inhibiting the irrelevant multiplication result when participants 

responded to the first trial. Hence, they needed additional time to reactivate the inhibited 

result (i.e., 8) when it was presented again in the second trial and it was the one needed 

to perform the task (i.e., 2 + 6 = 8).  

 The second goal of the current study was to gather electrophysiological evidence 

of the consequences associated to the selection of arithmetic facts. To this end, we 

focused on the P200 potential, a complex component peaking at about 200 ms after 

stimulus onset. This component is sensitive to several cognitive processes such as the 

analysis of facial expressions (Paulmann & Pell, 2009), the early processing of lexical 

stimuli (Dehaene, 1995; McCandliss, Posner, & Givon, 1997), and the encoding and 

retrieval of the meaning of stimuli in semantic memory (Chapman, McCrary, & 

Chapman, 1978; Dunn, Dunn, Languis, & Andrews, 1998; Friedman, Vaughn, & 

Erlenmeyer-Kimling, 1981). Therefore, the cognitive interpretation of the P200 is not 

straightforward and it depends on what is being studied. In the current research we 

considered the sensitivity of the P200 potential to index the difficulty to retrieve 

information from semantic memory (Raney, 1993; Smith, 1993). For instance, when 

participants with high or low recall of a list of words are compared (Dunn et al., 1998), 

low recall participants show larger P200 amplitude in anterior regions and smaller 

posterior amplitudes than high recall participants. The authors suggest that frontal P200 

would be associated to the ease of encoding a stimulus whose meaning has to be 

retrieved while the posterior P200 would be linked to the complete access to long-term 

memory.  

 In the field of arithmetic cognition, the P200 component has been related also to 

the difficulty of retrieving semantic information with numerical stimuli (Kong, Wang, 

Shang, Yang, & Zhuang, 1999; Muluh, Vaughan, & John, 2011; Szűcs & Csépe, 2004). 

For example, when participants have to verify the correctness of addition problems, the 

P200 amplitude is larger in frontal regions when the addition problem is difficult (i.e., 

large addition problems with carrying in solution; e.g., 7 + 8 =) relative to easy addition 

problems (small addition problems without carrying in solution; e.g., 2 + 4 =) (Kong et 

al., 1999). This problem size effect seems to indicate that arithmetic facts associated 
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with large problems are less accessible than those associated with small problems 

(Ashcraft, 1992). Therefore, the results of these studies suggest that P200 component 

can be considered an index of the difficulty in resolving simple arithmetic problems. 

 

 The current study. The goal of the current study was two-fold. Firstly, we 

aimed at demonstrating that the associative confusion effect reported in the past when 

participants performed arithmetic tasks involves semantic activation (arithmetic facts 

stored in semantic memory; Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). 

To this end, participants verified the correctness of addition problems. In a first trial, we 

expected to corroborate the behavioral interference effect reported in previous research 

(Megías et al., 2014; Megías & Macizo, 2015a, 2015b), so participants would take more 

time to verify an incorrect related addition problem presented with a proposed result 

that was the one of multiplying the operands (i.e., related 1 condition: 2 + 4 = 8) relative 

to an unrelated condition. This effect would capture the automatic co-activation of 

addition and multiplication facts in long-term memory. Moreover, if participants 

coactivate arithmetic facts, a N400-like attenuation would be observed in the related 1 

condition due to the spreading of activation in the associative network of arithmetic 

facts which would facilitate the activation of related nodes.  

 Our second goal was to examine the consequences associated to the selection of 

arithmetic facts in order to resolve the addition problems. We expected to observe 

longer reaction times in a second trial when participants verify a correct addition 

problem whose result is the one of multiplying the operands of the previous trial 

(related 2 condition, i.e., 2 + 6 = 8, preceded by 2 + 4 =) compared to an unrelated 

condition. This interference effect has been interpreted as due to the inhibition of the 

irrelevant result in the previous trial, so the difficulty to retrieve the result increases 

when it is presented afterwards (Megías et al., 2014; Megías & Macizo, 2015a, 2015b). 

If this argument is correct, the behavioral interference effect in the second trial would be 

accompanied by a modulation of the P200 component which is associated with the 

difficulty of retrieving information in long-term memory.  
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METHOD 

 

Participants. Seventeen students from the University of Granada (10 women 

and 7 men) took part in the study. Their mean age was 22 years (SD = 4.12). Sixteen 

participants were right-handed and 1 participant was left-handed. All participants had 

normal or corrected-to-normal visual acuity. None had any reported history of 

neurological or psychiatric disorders. The experiment was undertaken in accordance 

with the Declaration of Helsinki. The Ethics Committees of the University of Granada 

approved the experimental procedures and each subject provided written informed 

consent before performing the experiment. Their participation was remunerated with 

academic credits. Before the experimental task, they completed a questionnaire to 

determine their use of simple arithmetic (Colomé, Bafalluy, & Noël, 2011) (see Table 

1). The percentage of calculation of addition problems on a daily basis was 43.8% (SD 

= 11.80). Moreover, 81.18% (SD = 27.36) of the participants learned the multiplication 

tables orally. 

 

Table 1. Use of Simple Arithmetic  

Calculation frequency   

Daily 

Weekly 

Monthly 

58.82% 

41.18% 

0% 

Type of calculation   

Multiplications 19.71% 

Divisions 12.76% 

Additions 43.82% 

Subtractions 23.12% 

Calculation strategies  

Saying numbers mentally or aloud 48.01% 
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Visualizing Arabic numbers mentally 21.29% 

Writing numbers with pencil and paper 16.95% 

With a calculator 13.75% 

Learning method (multiplication tables)  

Repeating orally 81.18% 

Exercises with Arabic numbers 17.65% 

Others methods 1.18% 

 

 In order to control that participants had a good knowledge about multiplication 

tables, they performed a production multiplication task. In this task, tables from 1 to 4 

were presented (i.e., 2 x 4 = ?) and participants had to say aloud the correct result (i.e., 

8). This task was performed after the experiment and electrophysiological data were not 

recorded. Participants showed a good knowledge of simple multiplication problems, 

with 92.84% of correct responses (SD = 5.74). 

 

 Design and Materials. We used a verification of arithmetic problems task (see 

Figure 1) in which participants received addition problems and they decided whether 

they were correct or incorrect. The addition problems were presented in blocks of two 

trials. In the first trial, the variable Relation 1 was manipulated as a within-subject factor 

with two conditions: the related 1 condition included an incorrect addition problem 

whose result was that of multiplying the operands (i.e., 2 + 4 = 8), and the unrelated 1 

condition contained an incorrect addition problem whose result was not the one of 

multiplying the operands (i.e., 2 + 4 = 10). In the second trial, the variable Relation 2 

was manipulated as a within-subject factor with two conditions: the related 2 condition 

contained a correct addition problem whose result was the one of multiplying the 

operands of the previous trial (i.e., 2 + 6 = 8), and the unrelated 2 condition included a 

correct addition problem with a result which was not the one of multiplying the 

operands of the previous trial (4 + 6 = 10).  
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 To make the experimental blocks of trials, 20 false addition problems were 

selected in the first trial (10 related 1 addition problems and 10 unrelated 1 addition 

problems), and 20 correct addition problems were used in the second trial (10 related 2 

addition problems and 10 unrelated 2 addition problems) (see Appendix 1). Across 

participants, each problem in each condition of the first trial (related 1 and unrelated 1 

addition problems) was presented half of the times followed by related 2 addition 

problems and the other half they were followed by unrelated 2 addition problems. 

Therefore, the related 2 and unrelated 2 addition problems were preceded an equal 

number of times by related 1 and unrelated 1 trials. Each participant received the 

experimental block of trials three times in order to have more trials per condition. 

Therefore, the total number of observations was 60 in each condition of the first trial 

(related 1 and unrelated 1) and in each condition of the second trial (related 2 and 

unrelated 2). The complete set of experimental trials used in the experiment is reported 

in Appendix 1. 

 Figure 1. Adaptation of the negative priming parading.  
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Note. The arithmetic verification task was presented in blocks of two trials. The first trial started 

with a fixation point of 500 ms followed by an addition problem. Two addition problems could be 

presented: Related 1 addition problems (i.e., 2 + 4 = 8) or Unrelated 1 addition problems (i.e., 2 + 4 = 10). 

After the participant’s response, the second trial started with a fixation point of 500 ms followed by the 

second addition problem which could belonged to the Related 2 condition (i.e., 2 + 6 = 8) or the 

Unrelated 2 condition (4 + 6 = 10). 

The addition problems used in the experimental task were carefully selected to 

equate them in several factors that might determine possible differences between 

conditions in the first and second trial of the experiment. All addition problems were 

composed of single-digit operands and the two operands of each problem were 

presented in ascending order (i.e., 2 + 6). The parity (even and odd digits) of operands 

and results was equally distributed across the conditions of the first and second trials of 

the experimental blocks. In each trial, the solution corresponded to multiplication tables 

from 1 to 4 and it was never one of the two operands presented in the problem (i.e., 2 + 

1 = 2 was not presented). 

 In the first trial, the related 1 condition and the unrelated 1 condition 

were equated in problem size (the sum of the two operands in both conditions was 

exactly the same: M = 7.40). The size of the incorrect results presented in the related 1 

condition and the unrelated 1 condition was also similar (M = 11.80 and M = 11.60, 

respectively), t(18) = 0.12, p = .90. Furthermore, the distance between the incorrect 

result presented to the participants and the correct result of the addition problem in the 

two conditions of the first trial was exactly the same (M = 4.40). In the second trial, the 

problem size was equated in the related 2 condition (M = 11.80) and the unrelated 2 

condition (M = 11.60), t(18) = 0.12, p = .90. In order to maintain the same problem size 

in the two conditions of the second trial, one addition problem in the related 2 condition 

(7 + 9 = 16) and one addition in the unrelated 2 condition (4 + 6 = 10) were repeated. 

The selection of these problems was random.  

Moreover, we controlled for the degree of similarities between the addition 

problems presented in the first trial and those corresponding to the related 2 and the 

unrelated 2 condition of the second trial. The numerical distance between the incorrect 

result presented in the first trial and the second trial was exactly the same in the related 
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2 condition and the unrelated 2 condition (M = 1.40). The difference between the 

problem size in the first trial and the second trial was exactly the same in the related 2 

condition and the unrelated 2 condition (M = 4.40). The number of repetitions between 

the digits presented in the first trial and the second trial (i.e., 2 was repeated in the block 

composed of the first trial 2 + 3 = 6 followed by 2 + 4 = 6), was exactly the same in the 

related 2 condition and the unrelated 2 condition (8 repetitions).  

In order to check that there were no differences in response latency and accuracy 

when individuals answered to the addition problems used in the related 2 and unrelated 

2 condition without any manipulation, we performed a pilot study (Megías & Macizo, 

2015b). Participants performed a production task that contained the addition problems 

presented in the related 2 and unrelated 2 conditions. There were no differences in the 

percentage of errors associated with related 2 addition problems (13.53%) and unrelated 

2 addition problems (11.59%), F < 1. Furthermore, there were no differences in reaction 

times associated to the related 2 (990 ms) and the unrelated 2 conditions (984 ms). 

Therefore, the two conditions of the second trial were equated. 

 To prevent the participants from noticing the structure of the 

experimental blocks (a sequence of an incorrect operation in the first trial and a correct 

operation in the second trial), each list of experimental blocks was randomly intermixed 

with 10 filler blocks of trials which were repeated four times. The correct responses in 

the first and second trial of these blocks were ‘yes’-’yes’, ‘no’-’no’, and ‘yes’-’no’, 

respectively. Therefore, the sequence of responses within each block of two trials was 

unpredictable through the experiment. The filler blocks included 6 addition problems 

and 4 multiplication problems. Before starting the arithmetic verification task, the 

participants performed four blocks of practice trials (2 pairs of addition problems and 2 

pairs of multiplication problems) with problems that were not used in the main 

experiment. 

 

Procedure. The experiment was designed and controlled by E-prime 

experimental software (Schneider, Eschman, & Zuccolotto, 2002). The stimuli were 



 

133 

 

 

always presented in the middle of the screen in black color (Arial font, 40 point size) on 

a white background. Participants were tested individually and they were seated at 

approximately 60 cm from the computer screen. At this viewing distance, one character 

subtended a maximum vertical visual angle of 0.86 degrees and a maximum horizontal 

visual angle of 0.76 degrees. 

The experimental task was a verification of arithmetic problems presented in 

blocks of two trials. Participants had to decide if the result of each problem was correct 

or incorrect. We used the same procedure described by Megías et al. (2014; Megías & 

Macizo, 2015a, 2015b) in order to make comparable the current electrophysiological 

experiment with behavioral studies previously done with the same paradigm: The first 

trial began with a fixation point in the middle of screen for 500 ms; followed by the 

arithmetic problem until the participant’s response. After giving the answer, the second 

trial appeared with the same sequence of events as that of the first trial: a fixation point 

for 500 ms and the arithmetic problem until the participant’s response. After each block 

of two trials, the participants were instructed to press the space bar to continue with the 

following block. Participants were instructed to respond by pressing the keys ‘M’ and 

‘Z’, which were labeled as ‘correct’ and ‘incorrect’. The ‘correct’ and ‘incorrect’ 

position assignment was counterbalanced across participants.  The duration of the 

complete experimental session was approximately 90 minutes. 

 

Electrophysiological recording and analysis. The EEG was recorded from 15 

scalp electrodes (left frontal, F3, F1; medial frontal, FZ; right frontal, F2, F4; left 

central, C3, C1; medial central, CZ; right central, C2, C4; left parietal, P3, P1; medial 

parietal, PZ; and right parietal, P4, P2) mounted on an elastic cap according to the 

international 10-20 system (Jasper, 1958). The continuous electrical activity was 

recorded with Neuroscan Synamps2 amplifiers (El Paso, TX). The EEG was initially 

recorded against an electrode placed in the midline of the cap (between Cz and CPz) 

and re-referenced off-line against a common average reference. To control for vertical 

and horizontal eye movements two additional pairs of electrodes were used: a) Bipolar 

pairs of electrodes placed above and below the left eye and on the outer canthi, allowed 
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blink artefact to be corrected; b) two electrodes placed in the external canthi, with one 

electrode on the left and another on the right side, allowed eye movements to be 

rejected. Each EEG channel was amplified with a band pass of 0.01–100 Hz and 

digitized at a sampling rate of 500 Hz. Impedances were kept below 5 kΩ. 

Trials contaminated by eye movements, or amplifier saturation artefacts were 

rejected. Eye blinks were corrected from EEG using a voltage threshold method in 

which a voltage threshold was computed for each participant after a careful visual 

inspection between 100μV and 300μV. Afterwards, blinks were averaged using a 

minimum of 73 blinks for each participant and later corrected with Neuroscan Scan 4.5 

software (El Paso, TX). Individual epochs were performed for each experimental 

condition beginning with a 100 ms pre-stimulus baseline. Average ERP waveforms 

were time-locked to the presentation of the arithmetic problem. Trials with incorrect 

responses in the arithmetic verification task were excluded from average ERP and they 

were submitted to the behavioral analysis of accuracy (2.01% of the data in the first trial 

and 3.14% of the data in the second trial). Afterward, averages in each condition of the 

study were comprised of a mean of 58.46 trials out of 60 trials (with a minimum of 58 

trials per condition). 

Statistical analyses were performed on the mean amplitude in two time 

windows. These time windows were established after visual inspection and were 

intended to evaluate two ERP components: The 170-230 ms time window was used to 

assess the P200 component (Jiang & Zhou, 2009; Paulmann,
 
Bleichner, & Kotz, 2013) 

and the 350-450 ms time window was used to evaluate the N400 component (Carreiras, 

Duñabeitia, & Molinaro, 2009; Galfano, Penolazzi, Vervaeck, Angrilli, & Umiltà, 

2009). For the repeated-measure analyses of variance (ANOVAs), the Greenhouse-

Geisser correction (Greenhouse & Geisser, 1959) for nonsphericity of variance was 

used for all F-ratios with more than one degree of freedom in the denominator; reported 

are the original df, the corrected probability level, and the ε correction factor. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Paulmann%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bleichner%20M%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kotz%20SA%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689289/#B14
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RESULTS 

 

Behavioural. The reaction times (RTs) associated with correct responses were 

trimmed following the procedure described by Tabachnick and Fidell (2001) to 

eliminate univariate outliers (data points that after standardization were 3 SD outside the 

normal distribution of the data in each trial): 5.45% and 6.28% of the data were 

excluded in the first and second trials respectively. Since we were interested in possible 

differences between conditions within each trial, the two conditions of the first trial and 

the second trial were analyzed separately. Therefore, we report firstly the results 

obtained in the first trial (related 1 condition vs. unrelated 1 condition) and then the 

results found in the second trial (related 2 condition vs. unrelated 2 condition). 

First Trial. We performed ANOVAs on the RTs and percentage of errors with 

the variable Relation 1 (related 1 and unrelated 1) as a within-subject factor. The RT 

analysis showed a main effect of Relation 1, F(1, 16) = 4.29, p = .05, η
2 

= .21, so that 

responses to related 1 trials (1074 ms, SE = .46) were slower than responses to unrelated 

1 trials (1051 ms, SE = .45) (see Table 2). Moreover, the ANOVA on the percentage of 

errors showed a significant difference between the related 1 trials (3.14%, SE = 1.05) 

and the unrelated 1 trials (0.88%, SE = .48), F(1, 16) = 6.08, p = .03, η
2
 = .28 . 

Second Trial. We performed ANOVAs on the RTs and percentage of errors with 

the variable Relation 2 (related 2 and unrelated 2) as a within-subject factor. In the RT 

analysis, we found significant differences between these two conditions, F(1, 16) = 

23.73, p < .001, η
2
 = .60, such that responses to related 2 trials (1239 ms, SE = .67) were 

slower than responses to unrelated 2 trials (1140 ms, SE = .62) (see Table 2). However, 

the ANOVA on the percentage of errors did not show significant differences between 

the related 2 (3.33%, SE = .77) and unrelated 2 conditions (2.94%, SE = .72), F < 1. 

Table 2. Behavioral Results  

Condition  RT Diff. 

     First trial 

Unrelated 1 1051 (45)  
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Related 1 1074 (46) 22* 

    Second trial 

Unrelated 2 1140 (62)  

Related 2 1239 (67) 99*** 

Note. Mean reaction times in milliseconds for each condition in first and second trial. Standard 

errors are reported into brackets. RT Diff.: Reaction time difference between the two conditions in 

milliseconds. 
*
p < .05, 

***
p < .001. 

 

Event-Related Potentials. Analyses are reported in the same order in which 

each component is discussed in the introduction section, N400-like and P200. As with 

the behavioural data, for each component we report analysis of the first trial and then, 

analysis of the second trial.  

 

N400-like component 

First Trial. We performed ANOVAs on the mean amplitude in the 350-450 ms 

time window, with Relation 1 (related vs. unrelated conditions) and ROIs (left frontal, 

medial frontal, right frontal, left central, medial central, right central, left parietal, 

medial parietal and right parietal) as within-subject factors. The analysis showed a main 

effect of Relation 1, F(1, 16) = 4.31, p = .05, ηp
2 

= .21. Furthermore, there was a main 

effect of ROIs, F(8, 128) = 14.43, p < .001, ε = .20, ηp
2 

= .47. Importantly, the Relation 

1 x ROIs interaction effect was significant, F(8, 128) = 10.82, p < .001, ε = .38, ηp
2 

= 

.40. A posteriori analysis with Bonferroni correction for multiple comparisons was 

performed to evaluate the Relation 1 effect in all ROIs. The N400-like amplitude was 

less negative when participants responded to related 1 trials relative to unrelated 1 trials 

in the left frontal region (p = .004), the medial frontal region (p = .001), the right frontal 

region (p = .008) and the medial central region (p = .05). The Relation 1 effect was not 

significant in other regions (all ps > .53) (Figure 2). 

Second Trial. The ANOVA in the second trial with Relation 2 and ROIs as 

within-subject factors, did not show a main effect of relation 2, F < 1. There was a main 
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effect of ROIs, F(8, 128) = 8.63, p = .002, ε = .20, ηp
2 

= .35. The Relation 2 x ROIs 

interaction effect was not significant, F(8, 128) = 1.43, p = .24, ε = .44, ηp
2 
= .08.  

Figure 2. Grand average ERPs for Related 1 condition (i.e., 2 + 4 = 8) and 

Unrelated 1 condition (i.e., 2 + 4 = 10) of the first trial.   
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P-200 component 

 

First Trial. The ANOVA on the mean amplitude in the 170-230 ms time 

window with the Relation 1 and ROIs as within-subject factors did not show a main 

effect of Relation 1, F < 1. There was a main effect of ROIs, F(8, 128) = 16.46, p < 

.001, ε = .22, ηp
2 

= .51. The Relation 1 x ROIs interaction was not significant, F < 1.  

Second Trial. We performed ANOVAs on the mean amplitude with the Relation 

2 and the ROIs as within-subject factors. The analysis did not show a main effect of 

Relation 2, F(1, 16) = 2.39, p = .14. There was a main effect of ROIs, F(8, 128) = 

13.57, p < .001, ε = .19, ηp
2 

= .46. Moreover, the Relation 2 x ROIs interaction showed a 

trend toward significance, F(8, 128) = 2.57, p = .07, ε = .34, ηp
2 

= .14. A posteriori 

analysis with Bonferroni corrected probabilities showed a marginal Relation 2 effect in 

the medial frontal region (p = .07). The amplitude of the P200 component seemed to be 

more positive in the related 2 condition compared to the unrelated 2 condition. The 

Relation 2 effect was not significant in any other region (all ps > .90) (see Figure 3).   

 Finally, we explored the possible relationship between the N400-like 

attenuation associated to the Relation 1 effect and the increased P200 positivity 

associated to the Relation 2 effect. To this end, we computed the N400-like effect in the 

first trial (related 1 vs. unrelated 1) and the P200 effect found in the second trial (related 

2 vs. unrelated 2). There was a positive correlation between these two 

electrophysiological indexes (r = .75, p = .02). Thus, when the N400-like component 

increased its attenuation in the first trial, the P200 potential increased its positivity in the 

second trial. 
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Figure 3. Grand average ERPs for Related 2 condition (i.e., 2 + 6 = 8) and 

Unrelated 2 condition (4 + 6 = 10) of the second trial. 
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DISCUSSION 

 

During the 1970s, it was observed an associative confusion effect in mental 

arithmetic: The verification of an addition problem presented with an incorrect result 

which was the result of multiplying the operands (2 + 4 = 8) was difficult to be 

performed (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). It was assumed 

that this effect reflected the existence of an interrelated network of arithmetic facts in 

semantic memory: multiplication facts are activated even when individuals resolve 

addition problems (Ashcraft, 1992). Although this axiom has been largely assumed in 

cognitive arithmetic (Grabner et al., 2013; Lemaire et al., 1991; Winkelman & Schmidt, 

1974; Zbrodoff & Logan, 1986), direct empirical evidence needed to be offered.  

 In the first trial of our study, we replicated the associative confusion effect at the 

behavioral level. The participants took more time to verify an incorrect addition 

problem whose result was the one of multiplying the operands (2 + 4 = 8, the related 1 

condition) compared to an incorrect addition problem whose result was unrelated (2 + 4 

= 10, the unrelated 1 condition). Importantly, electrophysiological analyses helped us to 

determine whether this effect was associated to the spreading of activation in the 

network of arithmetic facts. In the 350-450 time window, N400-like amplitude was less 

negative in frontal-central regions in the related 1 condition relative to the unrelated 1 

condition. This pattern of results corroborates that the associative confusion effect 

involves the co-activation of related addition and multiplication facts in semantic 

memory.  

 To our knowledge, this is the first study in which the associative confusion 

effect has been indexed with electrophysiological markers. However, other studies have 

reported N400-like modulations as evidence of coactivation of arithmetic facts (Domahs 

et al., 2007; Jost et al., 2004; Niedeggen & Rösler, 1996, 1999; Niedeggen et al., 1999). 

In these studies, an attenuation of the N400 amplitude was found along with a 

behavioral interference when individuals resolved a multiplication whose result was 

incorrect but related (it was a multiple of one operand; 5 x 8 = 32) compared to an 
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unrelated condition (5 x 8 = 34). The critical difference between this previous evidence 

and the research presented here is that the former offered evidence of coactivation 

within-operations (several related multiplication facts are activated together) while our 

study demonstrates coactivation of related arithmetic facts across operations (additions 

and multiplications). It is important to note that the N400-like attenuation found in our 

study and those exploring coactivation effects in mental arithmetic are accompanied by 

a behavioral interference (slower responses in related problems relative to unrelated 

problems). The behavioral interference is interpreted as the consequence of a late 

competition process after the co-activation of irrelevant multiplication facts, a process 

that was not captured with EEG measures. The same dissociation between N400 

amplitudes and response times, and a similar interpretation of this dissociation has been 

offered in other fields (language production, Blackford, Holcomb, Grainger, & 

Kuperberg, 2012). The main point to highlight from the first trial of our study is that 

coactivation of related arithmetic facts across operations (additions and multiplications) 

underlies the associative confusion effect in simple arithmetic. 

 In our study, we also wanted to gather electrophysiological evidence of the 

consequences of selecting arithmetic facts. The results found in the second trial showed 

that participants were slower to verify an addition problem whose result was that of 

multiplying the operands of the first trial (the related 2 condition: 2 + 6 = 8, preceded by 

2 + 4) compared to an unrelated condition (the unrelated 2 condition: 4 + 6 = 10, 

preceded by 2 + 4). This interference effect has been found in previous research 

(Megías et al., 2014; Megías & Macizo, 2015a, 2015b) and it has been interpreted as the 

result of inhibiting irrelevant arithmetic facts: To resolve the competition between 

addition and multiplication facts in the first trial, the incorrect multiplication result (8) 

was inhibited in order to select the correct addition result (6). Hence, when the inhibited 

result was presented again and it was relevant to perform the second trial (2 + 4 = 8) an 

additional time was required to retrieve it from semantic memory. 

 When the electrophysiological pattern was considered in the second trial, we 

observed that the P200 amplitude was larger in the middle frontal region in the related 2 

condition relative to the unrelated 2 condition. As stated in the introduction section, it is 

difficult to offer a unique interpretation of P200 modulations since this component is 
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related to several cognitive processes. To illustrate, the P200 amplitude varies as a 

function of visual complexity of stimulus in language processing (Dehaene, 1995; 

McCandliss et al., 1997). However, this factor cannot account for the P200 pattern 

found here since the addition problems were presented in the same visual format 

(Arabic digits) in all conditions. Moreover, it could be argued the differences we found 

in the P200 amplitude were related to magnitude processing. For example, P200 

amplitudes are sensitive to distance effect in comparison tasks with numbers close to the 

numerical standard eliciting a larger P200 amplitude than numbers far from the standard 

(Turconi, Jemel, Rossion, & Seron, 2004; see also Hyde & Spelke, 2009; Hyde & 

Wood, 2011; for P200 modulations in non-symbolic comparison tasks). Nevertheless, 

this explanation would not account for the results found in our study since the 

magnitude of the addition results presented in the second trial were equated in the 

related 2 and unrelated 2 conditions (problem size) as well as the distance between these 

results and those presented in the previous trial.  

 Although tentative, we suggest that P200 modulations found in our study were 

associated to the difficulty in the retrieval of arithmetic facts when they were irrelevant 

in the previous trial. As we explained in the introduction section, P200 modulations 

have been related to the ease to which semantic information is retrieved form semantic 

memory (Dunn et al., 1998; Raney, 1993; Smith, 1993). Large P200 amplitude in 

anterior regions is associated to the difficulty in the encoding of stimuli to access 

semantic memory while a posterior P200 seems to reflect the complete retrieval process 

in long-term memory. The medial frontal P200 effect found in the second trial of our 

study suggests hence, that it is difficult to encode an addition problem whose result was 

irrelevant in the preceding trial. Support for this interpretation comes from the 

correlation between the N400 modulations found in the first trial and the P200 

modulations observed in the second trial. A greater N400 modulation was connected to 

a greater P200 effect suggesting that, the difficulty in the encoding of arithmetic 

problems depends on the degree to which they were activated when they were irrelevant 

in the preceding trial.   

 To conclude, this study shows that the presence of an associative confusion 

effect in decision times is related to N400-like modulations which support the 
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underlying coactivation of arithmetic facts in semantic memory. Moreover, once the 

addition problem is resolved, P200 modulations suggest that it is difficult to encode a 

posterior addition problem with a result which was previously irrelevant.  
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CHAPTER V 

ACTIVATION AND SELECTION OF ARITHMETIC FACTS: THE 

ROLE OF NUMERICAL FORMAT
1 

We examined the role of numerical format in the activation and selection of 

arithmetic facts. We also explored the inhibitory nature of this mechanism. To this end, 

in two experiments we manipulated the format of the operations (digit format and word 

format) while participants decided whether simple additions were correct or not. In 

Experiment 1, when an addition was incorrect but the result was that of multiplying the 

operands (e.g., 2 + 4 = 8) participants took more time to respond relative to a control 

condition where the addition’s result was incorrect but unrelated. Afterward, 

participants took more time to respond when the result of multiplying the operands was 

presented again in a correct addition problem (e.g., 2 + 6 = 8); suggesting that the 

related multiplication result in the previous trial (e.g., 8) was inhibited to select the 

correct response (e.g., 6); thus, when it was presented again in the next problem, 

additional time was necessary to reactivate it. These effects were found in the digit 

format but not in the word format. In Experiment 2, we considered the degree to which 

participants used memory retrieval to perform the task. In participants with high 

retrieval usage the interference effects in the first and second trials were larger for the 

digit format than for the word format. However, the participants with low retrieval 

usage showed interference effects only for problems with digits. These findings are 

discussed in terms of automaticity in retrieving arithmetic facts to perform simple 

arithmetic.  

 

 

 

 

1
 This paper was published in Memory and Cognition and it was co-authored by Pedro Macizo. 
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ACTIVATION AND SELECTION OF ARITHMETIC FACTS: THE ROLE OF 

NUMERICAL FORMAT 

 

 It is widely agreed that individuals have arithmetic facts represented in long-

term memory (e.g., Ashcraft, 1992; Campbell & Graham, 1985; Siegler & Shrager, 

1984), which are automatically retrieved when an arithmetic problem is presented 

(although see Barrouillet & Thevenot, 2013; Fayol & Thevenot, 2012, for a suggestion 

that simple additions are resolved through procedures). To illustrate, when a simple 

addition problem appears (i.e., 2 + 4), due to the principle of spreading activation, there 

is activation of the correct answer (i.e., 6) and other results related to the operands such 

as the result of multiplying them (i.e., 8, Winkelman & Schmidt, 1974; Zbrodoff & 

Logan, 1986) or subtracting them (i.e., 2; Ashcraft & Battaglia, 1978). There is 

empirical evidence supporting the coactivation of several arithmetic facts when people 

resolve arithmetic problems (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986): 

When participants perform an arithmetic verification task where they have to decided 

whether the result of an addition is correct or not, they show higher response latencies 

for false problems when the stated result is correct for the multiplication operation (i.e., 

2 + 4 = 8) compared to when it is not (2 + 4 = 10). This effect was named confusion-

product effect and it seems to indicate that participants coactivate the results associated 

to the addition and the multiplication problem. Furthermore, Lemaire, Fayol, and Adbi 

(1991) showed that this confusion-product effect was automatic because the 

multiplication answer was activated unintentionally after presenting the operands of the 

addition problem. Importantly, this effect disappeared when there was a 300 ms delay 

between the operands and the result, suggesting that people had time to resolve the 

competition among the correct addition result and the irrelevant multiplication result.  

 It has been proposed that the resolution of conflict after the coactivation of 

several arithmetic responses is resolved by an inhibitory mechanism (Campbell & 

Dowd, 2012; Campbell & Thompson, 2012; although see Censabella & Noël, 2004, for 

an alternative explanation). Campbell et al. (Campbell & Dowd, 2012; Campbell & 

Thompson, 2012) used an adaptation of the retrieval practice paradigm. This paradigm 

is typically employed to demonstrate the inhibition of irrelevant information that 
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competes for selection (Anderson, 2003; Anderson, Bjork & Bjork, 1994). Participants 

performed a practice phase with simple multiplication problems (i.e., 2 x 3 = ?; 4 x 6 = 

?) and, afterward, the same operands were used in a second test phase with simple 

addition problems (i.e., 2 + 3 = ?; 4 + 6 = ?). The overall finding was that practicing the 

multiplication problems slowed down the response times to resolve additions whose 

operands were presented in the practice phase relative to additions problems whose 

operands did not appear before. This retrieval induced forgetting effect was interpreted 

in terms of inhibitory processes. When participants resolved the multiplication problems 

in the practice phase, the addition problems which competed with the multiplications 

needed to be inhibited. Therefore, participants took more time to reactivate the additions 

when they were presented in the test phase.  

 In addition, recent evidence suggests that individuals apply this inhibitory 

mechanism in a continuous manner when competition between arithmetic facts takes 

place during the course of an arithmetic task (Megías, Macizo, & Herrera, 2014). 

Megías et al. designed an adaptation of the negative priming paradigm (Macizo, Bajo, 

& Matín, 2010; Tipper & Driver, 1988) in which additions were presented and 

participants decided whether they were correct or incorrect. The task structure 

comprised blocks of two trials. In the first trial, participants took more time to respond 

to an incorrect addition whose result was that of multiplying the operands (i.e., 2 + 4 = 

8) relative to a control condition with an unrelated result (i.e., 2 + 4 = 10). This 

interference effect corroborated that participants activated multiplication facts when 

they verified addition problems. Moreover, participants took more time to respond in a 

subsequent trial when a correct addition was presented and its result was that of 

multiplying the operands of the previous trial (i.e., 2 + 6 = 8) relative to a control 

condition with an unrelated result (i.e., 4 + 6 = 10). This interference effect obtained in 

the second trial was the consequence of inhibiting the irrelevant multiplication result in 

the first trial. Hence, participants needed additional time to reactivate it when it was 

presented again and became relevant to perform the task.  

 The main goal of the current study was to evaluate if the coactivation of 

arithmetic facts and this inhibitory mechanism depended on the numerical surface 

format with which arithmetic problems were presented. To address this point we 



 

155 

 

 

compared the processing of arithmetic problems presented in different numerical 

formats.  

 

 The role of the numerical format in mathematical cognition. There is no 

consensus on whether the representation of number magnitude which is needed to 

decide, for instance, the larger of two numbers, is format dependent. Similarly, there is 

no agreement on whether the representation of arithmetic facts used to resolve simple 

mathematical operations depends on the format in which they are presented (Cohen 

Kadosh, Henik, & Rubinsten, 2008).  

 Some models of mathematical cognition have proposed that magnitude 

information and arithmetic facts are abstract representations that do not depend on the 

format of the problem (i.e., the abstract-modular model, McCloskey, 1992; see also, 

Blankenberger & Vorberg, 1997). These models assume that regardless of the format, 

the processing of a numerical input involves the transcoding to an amodal 

representation. Hence, any difference observed between numerical formats would be 

located at the encoding stage of processing. For example, individuals take more time to 

resolve problems in the word format relative to problems in the digit format 

(Blankenberger & Vorberg, 1997; Campbell & Fugelsang, 2001). The amodal 

perspective would explain this difference as due to the additional time needed to encode 

the operands presented in the word format relative to the digit format.  

 Moreover, this amodal perspective would predict that an effect directly related to 

the representation of magnitude information or arithmetic facts in long-term memory 

would not depend on the format in which the problems are presented (i.e., McCloskey, 

Macaruso, & Whetstone, 1992). However, empirical data do not support this claim. To 

illustrate, the problem-size effect, which consists in longer reaction times and more 

errors when individuals resolve operations with large problem size relative to problems 

with small problem size (Ashcraft, 1992; Groen & Parkman, 1972), seems to depend on 

the numerical format of the problem (Campbell & Clark, 1988). In fact, the problem 

size effect is larger with operations presented in the word format relative to the same 

operations presented with Arabic digits. This pattern of evidence is easy to 
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accommodate within models suggesting that the representation of arithmetic facts 

indeed depends on the format of the problem, for instance, the encoding-complex model 

(Campbell, 1992; Campbell & Clark, 1988) in which it is assumed that the processing 

and representation of number magnitude and arithmetic facts is format-dependent.  

 Therefore, although there are studies suggesting the existence of an abstract 

representation of numbers at the behavioral level (e.g., Dehaene & Akhavein 1995; 

Naccache & Dehaene 2001a; Schwarz & Ischebeck, 2000) and at the neuronal level 

(Dehaene 1996; Libertus, Woldrorff, & Brannon, 2007; Naccache & Dehaene, 2001b); 

many recent studies support the format-dependent representation of number magnitude 

and arithmetic facts (Bernardo, 2001; Blankenberger & Vorberg, 1997; Campbell & 

Alberts, 2009; Campbell & Clark, 1992; Jackson & Coney, 2007; McNeil & 

Warrington, 1994; although see Cohen & Dehaene, 1994; Noël & Seron, 1992; for 

evidence of format-independent arithmetic processing). For instance, Jackson and 

Coney used a priming procedure to evaluate format dependent differences in the 

resolution of simple arithmetic problems. Participants had to name numbers (e.g., 5) 

that were preceded by congruent operations (e.g., 2 + 3 = 5), incongruent operations (9 

+ 7 = 5) or neutral operations (X + Y = 5). The overall priming effect (congruent vs. 

incongruent condition) was greater when the primes were presented with digit operands 

than with word operands.  

 In short, there is previous research demonstrating reliable format dependent 

effects in mathematical cognition (e.g., number magnitude and arithmetic facts). 

Therefore, the question to be addressed is the reason for the differences observed in the 

resolution of mathematical operations depending on the numerical surface format of the 

problems. We address this point in the following section. 

 

 Format effects and automaticity. The constant and continued practice along 

time on a specific task allows cognitive operations to be automatic (Posner & Snyder, 

1975). Automaticity can be considered a relatively low-effort cognitive process that 

leads to faster and more stable responding (Shiffrin & Schneider, 1977). In the field of 

mathematical cognition, it has been proposed that the resolution of problems presented 
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in the digit format might be more automatic than problems presented in the word format 

due to the continuous practice of individuals with Arabic digits (Campbell & Epp, 2004; 

2005). For example, as we commented in the previous section, the problem-size effect 

is larger for problems written in word format relative to problems with Arabic digits 

(Campbell, 1994; Campbell & Alberts, 2009; Noël, Fias & Brysbaert, 1997). The usual 

interpretation of this format dependent effect is that small problems are encountered 

more frequently in the digit format than in the word format so they are more likely to 

have high memory strength and to be retrieved more automatically relative to large 

problems.  

 

  The current study. Given that previous research has provided evidence of the 

role of surface format on the processing of numerical information and the resolution of 

arithmetic facts (Campbell, 1994; Campbell & Alberts, 2009; Lemaire & Reder, 1999; 

Noël, Fias & Brysbaert, 1997; Schunn & Reder, 2001; Siegler & Shipley, 1995), the 

main goal of the current study was to evaluate whether the coactivation of arithmetic 

facts and the inhibitory mechanism which seems to be responsible to select the correct 

answer (Campbell & Dowd, 2012; Campbell & Thompson, 2012; Megías, Macizo, & 

Herrera, 2014) depend on the format of the problem.  

 In the current study, we manipulated variables to index two processing stages 

during the resolution of arithmetic problems. The numerical format in which equations 

were presented directly tapped an encoding stage of processing, while the relationship 

between additions and multiplications was intended to evaluate two processes at a 

central level (the coactivation and the inhibition of nodes in the associative network of 

arithmetic facts). We expected that the activation and the selection of arithmetic facts 

through an inhibitory mechanism would depend on the format in which simple 

arithmetic problems were presented. This interaction would support the idea that 

encoding processes (the type of format in which the problems are presented) determines 

a central stage of processing (the spread of activation in the associative network 

represented in long term memory). To evaluate whether the format of problems 

determined the coactivation and selection of arithmetic facts, we used the paradigm 
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developed by Megías et al. (2014) and we extended it to the case of arithmetic equations 

presented with words. The participants verified the correctness of additions presented in 

the digit format (i.e., 2 + 6 = 8) and the word format (i.e., two + six = eight). The first 

trial was intended to evaluate the automatic coactivation of multiplication facts. We 

expected to find longer response latency to verify incorrect additions whose result was 

that of multiplying the operands (2 + 4 = 8) relative to a control condition with 

unrelated results (2 + 4 = 10). More importantly, if we assume that the automaticity in 

the resolution of simple arithmetic depends on the format of the problem, this effect 

would be observed with problems presented in the digit format but not with problems in 

the word format. These results would support the idea that the coactivation of arithmetic 

facts depends on the format in which the operations are presented. In addition, 

participants would inhibit the coactivated result in the digit format so they would take 

additional time to verify a correct addition whose result was that of multiplying the 

operands of the previous trials. Again, this effect would interact with the format of the 

problem so it might be only observed in the digit format condition but not in the word 

format condition, indicating that inhibition is applied when competition between 

coactivated arithmetic facts takes place.  

 

EXPERIMENT 1 

 

 In Experiment 1 we evaluated the coactivation and selection of arithmetic facts 

with problems presented in digit format and word format. Evidence for the coactivation 

of arithmetic facts with the adaptation of the negative priming paradigm was reported in 

Megías et al. (2014). Since the results reported by the authors with problems in the digit 

format were innovative, we wanted to replicate them here. Importantly, this condition 

was directly compared to a new condition where problems were presented using word 

format for numbers. This was done in order to explore the role played by presentation 

format in the retrieval of arithmetic facts. If the retrieval of arithmetic facts is less 

automatic in the case of operations presented with words relative to problems with digit 
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operands, the coactivation of arithmetic facts would be weaker in the written word 

format relative to the Arabic digit format.  

 

Method 

 Participants. Twenty six students from the University of Granada took part in 

this study. Thirteen participants (12 women and 1 man) were assigned randomly to the 

group of digit format. Their mean age was 20 years (SD = 2.22). All participants of the 

digit format condition were right-handed. Similarly, thirteen participants (12 women 

and 1 man) were assigned randomly to the group of word format. Their mean age was 

21 years (SD = 1.99). As in the digit format group, all participants were right-handed. 

All the participants gave informed consent to participate in the study at the beginning of 

the experimental session and their participation was remunerated with academic credits. 

The participants completed a questionnaire to determine their use of simple arithmetic 

(Colomé, Bafalluy, & Noël, 2011) before performing the experimental task (see Table 

1). All the participants made simple calculations on a daily basis, at least, once daily. 

Furthermore, t-tests analyses did not show differences between the participants of the 

digit format group and the participants of the word format group in the scores of this 

questionnaire, so they had the same knowledge of simple arithmetic (see Table 1). The 

percentage of calculation of additions on a daily basis was similar in both groups, t(24) 

= 0.07, p = .94 (43.46% for the digit format group and 43.08% for the word format 

group). Similarly, most of the participants in both groups learned the multiplication 

tables orally (75.38% for the digit format group and 83.08% for the word format group, 

t(24) = 0.77, p = .45). 

 

Table 1. Use of simple arithmetic of participants in Experiment 1  

 Digit format Word format 

Calculation frequency    

Daily 

Once daily 

100% 

   15.38% 

100% 

   38.46% 
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Twice daily 

Three o more times a day 

   30.77% 

   53.85% 

   23.08% 

   38.47% 

Type of calculation    

Divisions 16.54% 13.08% 

Multiplications 18.08% 20.77% 

Additions 43.46% 43.08% 

Subtractions 21.92% 23.08% 

Calculation strategies   

Saying numbers mentally or aloud 26.97% 42.36% 

Visualizing Arabic numbers mentally 34.04% 21.06% 

Writing numbers with pencil and paper 16.59% 12.07% 

With a calculator 18.41% 23.56% 

Learning method (multiplication tables)   

Repeating orally 75.38% 83.08% 

Exercises with Arabic numbers 13.85% 16.92% 

Other methods 10.77% 0% 

Note. The numerical format in which operations were presented (Digit format or Word format 

conditions) was manipulated as a between-participants variable.  

 

 To evaluate the participants’ knowledge about multiplication tables, they 

performed a multiplication task in which the operands used in the main experiment were 

presented (i.e., 2 x 4 = ?) and they had to say aloud the correct result (i.e., 8). The mean 

correct responses in the multiplication task was similar in both groups (94.65% for the 

digit format group and 92.31% for the word format group), t(24) = 1.08, p = .29. 

Response times in the multiplication task were also similar in the digit and word format 

groups (1062 ms and 1306 ms, respectively), t(24) = 2.02, p > .05. 

 

 Design and Materials. We used a verification task in which participants 

received additions and they decided whether they were correct or incorrect. The format 

of problems, digit format (2 + 4 = 8) and word format (two + four = eight), was 

manipulated between-participants. The additions were presented in blocks of two trials. 
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In the first trial, two conditions were manipulated within-participant. The related 1 

condition included incorrect additions whose result was that of multiplying the operands 

(i.e., 2 + 4 = 8). The unrelated 1 condition contained incorrect additions whose result 

was not that of multiplying the operands (i.e., 2 + 4 = 10). In the second trial, two 

conditions were also manipulated within-participant. The related 2 contained correct 

additions whose result was that of multiplying the previous trial (i.e., 2 + 6 = 8). The 

unrelated 2 condition included correct additions with a result which was not that of 

multiplying the previous trial (4 + 6 = 10). An example of trials in each experimental 

condition is reported in Table 2. 

 

Table 2. Example of trials used in the experiments 

Experimental condition Digit format Word format 

 First Trial  

Related 1                        2 + 4 = 8          two + four = eight 

Unrelated 1                    2 + 4 = 10         two + four = ten 

 Second Trial  

Related 2                    2 + 6 = 8          two + six = eight  

Unrelated 2                    4 + 6 = 10         four + six = ten  

 

 

 To create the experimental blocks of trials, 20 false additions were selected in 

the first trial (10 related 1 additions and 10 unrelated 1 additions), and 20 correct 

additions were selected in the second trial (10 related 2 additions and 10 unrelated 2 

additions).Across participants, each addition in each condition of trial 1 (related 1 and 

unrelated 1) was presented half of the times followed by a related 2 addition and the 

other half it was followed by an unrelated 2 addition. Therefore, the related 2 and 

unrelated 2 additions were preceded an equal number of times by related 1 trials and 

unrelated 1 trials. Each participant received the experimental block of trials twice. 

Hence, for each participant there was a total number of 40 observations in each 

condition of trial 1 (related 1 and unrelated 1) and each condition of trial 2 (related 2 
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and unrelated 2 condition). The complete set of stimuli used in the experiment is 

reported in Appendix 1. 

 The additions used in the experimental task were carefully selected to equate 

them in several factors that might determine possible differences between the conditions 

in the first and second trial of the experiment. All additions were composed of single-

digit operands. The two operands of each problem were presented in ascending order 

(i.e., 2 + 6) and never in descending order (i.e., 6 + 2 was not used). The parity (even 

and odd digits) of operands and results was equally distributed across the conditions of 

the first and second trial of the experimental blocks. In each trial, the solution 

corresponded to multiplication tables from 1 to 4 and it was never one of the two 

operands presented in the addition (i.e., 2 + 1 = 2 was not presented). 

 In the first trial, the related 1 condition and the unrelated 1 condition were 

equated in problem size (the sum of the two operands in both conditions was exactly the 

same: M = 7.40). The size of the incorrect results presented in the related 1 condition 

and the unrelated 1 condition was also similar (M = 11.80 and M = 11.60, respectively), 

t(18) = 0.12, p = .90. Also, the distance between the incorrect and the correct result in 

trial 1 was exactly the same (M = 4.40). In the second trial, the problem size was 

equated in the related 2 condition (M = 11.80) and the unrelated 2 condition (M = 

11.60), t(18) = 0.12, p = .90. In order to maintain the same problem size in the two 

conditions of trial 2, one addition problem in the related 2 condition (7 + 9 = 16) and 

one problem in the unrelated 2 condition (4 + 6 = 10) were repeated. The selection of 

these problems to maintain this criterion was random.  

 Moreover, we controlled for the degree of similarity between the additions 

presented in the first trial and those corresponding to the related 2 condition and the 

unrelated 2 condition of the second trial
1
. The numerical distance between the incorrect 

result presented in the first and second trial was the same in the related 2 condition and 

the unrelated 2 condition (M = 1.40). The difference between the problem size in the 

first and second trial was the same in the related 2 condition and the unrelated 2 

condition (M = 4.40). The number of repetitions between the digits presented in the first 

and second trial (i.e., 2 was repeated in the block composed of the first trial 2 + 3 = 6 
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followed by 2 + 4 = 6), was the same in the related 2 condition and the unrelated 2 

condition (8 repetitions).  

 

1
Tie problems (e.g., 4 + 4 = ) are solved faster than non-tie problems (Campbell & Xue, 

2001). The stimulus set in trial 1 included two tie problems that were presented in the related 1 

and unrelated 1 condition so this variable was controlled for. However, the stimulus set in trial 2 

was different in the related 2 and unrelated 2 condition and there was only a tie problem (i.e., 9 

+ 9 = 18) in the unrelated 2 condition. Thus, it could be argued that longer reaction times in the 

related 2 condition relative to the unrelated 2 condition might be modulated by the inclusion of 

this tie problem in the unrelated 2 condition only which would decrease the response time in 

this condition. However, analyses performed after eliminating this stimulus produced the same 

pattern of results as that reported in text. In Experiment 1, there was a main effect of relation, 

F(1, 24) = 20.11, p < .001, ηp
2
 = .46, such that participants took more time to respond to related 

trials (M = 1334 ms, SE = 27) compared to unrelated trials (M = 1298 ms, SE = 25). Moreover, 

the effect of numerical format was significant, F(1, 24) = 29.43, p < .001, ηp
2
 = .55, so that the 

word format group was slower (M = 1453 ms, SE = 36) than the digit format group (M = 1178 

ms, SE = 36). Furthermore, the Relation x Format interaction was significant, F(1, 24) = 16.07, 

p < .001, ηp
2
 = .40. Planned comparisons showed significant differences between the related (M 

= 1213 ms, SE = 38) and the unrelated conditions (M = 1144 ms, SE = 35) in the digit format 

group, F(1, 24) = 36.07, p < .001, ηp
2
 = .60; but not in the word format group, F < 1. In 

Experiment 2, there was a main effect of relation, F(1, 56) = 38.17, p < .001, ηp
2
 = .41, so that 

responses to related trials were slower (M = 1366 ms, SE = 21) compared to unrelated trials (M 

= 1326 ms, SE = 19). Furthermore, there was a main effect of the numerical format, F(1, 56) = 

45.37, p < .001, ηp
2
 = .45, so that the word format group was slower (M = 1477 ms, SE = 27) 

than the digit format group (M = 1215 ms, SE = 27). In the same way, there was a main effect of 

direct memory retrieval usage, F(1, 56) = 12.32, p < .001, ηp
2
 = .18, so that the low retrieval 

usage group was slower to respond (M = 1414 ms, SE = 27) compared to the high retrieval 

usage group (M = 1278 ms, SE = 27). More important, the Format x Direct memory retrieval 

usage interaction effect was significant, F(1, 56) = 5.52, p = .02, ηp
2
 = .09, and the Relation x 

Direct memory retrieval interaction was significant too, F(1, 56) = 4.38, p = .04, ηp
2
 = .07.  
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 Furthermore, we controlled for the length of the written number words when the 

additions were presented in word format. In the first trial, the related 1 condition and the 

unrelated 1 condition were equated in the number of letters of the first operand (M = 3.6 

in both conditions), the number of letters of the second operand (M = 4.9 in both 

conditions) and the number of letters of the result presented to the participant (M = 5.6 

and M = 5.4, respectively), t(18) = .23, p = .82. In the second trial, the length of the 

written number words was similar in the related 2 condition and the unrelated 2 

condition for the first operand (M = 4.4 and M = 4.7, respectively), t(18) = .25, p = .49, 

the second operand (M = 4.6 and M = 4.7, respectively), t(18) = .32, p = .75, and the 

result of the addition problem (M = 5.6 and M = 5.4, respectively), t(18) = .23, p = .82.  

In order to check that there were no differences in response latency and accuracy 

when individuals answered to the additions problems used in the related 2 and unrelated 

2 condition without any manipulation, we performed a pilot study. We evaluated 35 

students from the same population than those participating in the main experiment. The 

participants performed a production task that contained the addition problems presented 

in the related 2 and unrelated 2 conditions. In this task, the order of presentation of 

additions was pseudorandom, so we controlled that the result of one addition was 

different from the operands and the result of the preceding addition. We analyzed error 

percentages, mean RT, and median RT on correct responses with Relation 2 (Related 2 

or Unrelated 2) as a within-participant factor. There were no differences in the 

percentage of errors associated to related 2 additions (13.53%) and unrelated 2 additions 

(11.59%), F < 1. Furthermore, the results on the mean RT did not show significant 

differences between the related 2 (990 ms) and the unrelated 2 conditions (984 ms), F < 

1. Similarly, the median RT was equated in the related 2 condition (970 ms) and the 

unrelated 2 condition (946 ms), F < 1. 

 To prevent the participants from noticing the structure of the experimental 

blocks (a sequence of an incorrect operation in the first trial and a correct operation in 

the second trial), each list of experimental blocks was randomly intermixed with 10 

filler blocks of trials which were repeated four times. The correct responses in the first 

and second trial of these blocks were ‘yes’-’yes’, ‘no’-’no’, and ‘yes’-’no’, respectively. 

Therefore, the sequence of responses within each block of two trials was unpredictable 
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through the experiment. The filler blocks included 6 addition problems and 4 

multiplication problems (see Appendix 2). These filler blocks were presented as Arabic 

digits or as written number words in the digit condition and the word condition, 

respectively.  

 Before starting the verification task, the participants performed four blocks of 

practice trials (2 pairs of additions and 2 pairs of multiplications) with problems that 

were not used in the main experiment. 

 

 Procedure. The experiment was designed and controlled by E-prime 

experimental software, 1.1 version (Schneider, Eschman, & Zuccolotto, 2002). The 

stimuli were always presented in the middle of the screen in black color (Arial font, 30 

point size) on a white background. Participants were tested individually and they were 

seated at approximately 60 cm from the computer screen.  

The experimental task was a verification of arithmetic problems presented in 

blocks of two trials. All the problems were presented with Arabic digits (digit 

condition) or written number words in Spanish (word condition). Participants had to 

decide if the result of each problem was correct or incorrect. The first trial began with a 

fixation point in the middle of screen for 500 ms; followed by the arithmetic problem 

until the participant’s response. After giving the answer, the second trial appeared with 

the same sequence of events as that of the first trial: a fixation point for 500 ms and the 

arithmetic problem until the participant’s response. After each block of two trials, the 

participants were instructed to press the space bar to continue with the following block. 

Participants were instructed to respond by pressing the keys labeled as ‘correct’ and 

‘incorrect’. The duration of the experiment was approximately 25 minutes. 

 

 Results 

 The percentage of errors was 2.67%. Accuracy analyses were not performed due 

to the reduced variability of errors in two conditions of the study (only 3 out of 13 

participants committed errors in the unrelated 1 condition with digit numbers and only 5 
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out of 13 participants committed errors in the unrelated 1 condition with verbal 

numbers). Data points below 200 ms and above 2000 ms were considered outliers and 

analyses of variance (ANOVAs) were performed on mean reaction times with trial (first 

and second trial) and relation (related and unrelated) as within-participant variables and 

the numerical format (digit vs. numerical words) as a between-participants variable. 

These analyses showed a main effect of relation, F(1, 24) = 25.22, p < .001, ηp
2
 = .51, 

so that participants took more time to respond to related trials (M = 1334 ms, SE = 27) 

relative to unrelated trials (M = 1294 ms, SE = 25). Furthermore, there was a main effect 

of numerical format, F(1, 24) = 29.29, p < .001, ηp
2
 = .55, such that responses in the 

word format group were slower (M = 1452 ms, SE = 40) in comparison to responses in 

the digit format group (M = 1176 ms, SE = 36). However, there was not a main effect of 

trial, F < 1. Importantly, the Relation x Format interaction was significant, F(1, 24) = 

17.61, p < .001, ηp
2
 = .42. Planned comparisons showed significant differences between 

the related condition (M = 1213 ms, SE = 38) and the unrelated condition (M = 1139 

ms, SE = 35) in the digit format group, F(1, 24) = 23.52, p < .001, ηp
2
 = .49. However, 

in the word format group, there were no differences between the related condition (M = 

1455 ms, SE = 38) and the unrelated condition (M = 1448 ms, SE = 35), F < 1, ηp
2
 = .03. 

Other effects were not significant (all ps > .27) (see Table 3). 

 

Table 3. Results obtained in Experiment 1.  

 Digit format Word format 

 First trial 

Unrelated 1 1134 (38) 1445 (38) 

Related 1 1217 (39) 1442 (39) 

Int. Effect 83
***

 -3
ns

 

 Second trial 

Unrelated 2 1145 (35) 1451 (35) 

Related 2 1209 (40) 1468 (40) 

Int. Effect 64
***

 17
ns
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Note. Mean reaction times in milliseconds for each condition in the first and second trial 

depending on the digit and word format in which operations were presented. Standard errors pooled 

across the digit and word format are reported into brackets. Int. Effect: Interference effect (related 

condition minus unrelated condition). 
***

p < .001, 
ns

p > .30 

 

 Further analyses were performed. Firstly, we evaluated whether the interference 

effect depended on the problem size. To this end, the additions were categorized within 

each trial (trial 1 and trial 2) into small and large problems based on the size of the 

correct addition result (below and above the median problem size of the stimulus set). 

Afterwards, this problem size (large and small) was introduced in the analyses along 

with trial (first, second), format (digit, words) and relation (related, unrelated). The 

outcome of this analysis showed a significant problem size effect, F(1, 24) = 88.44, p < 

.001, ηp
2
 = .78. Small problems were resolved faster (1236 ms) than large problems 

(1391 ms). However, problem size did not interact with any other variable (all ps > .12). 

Importantly, the Relation x Format interaction was significant again, F(1, 24) = 7.76, p 

= .01, ηp
2
 = .24, indicating that after controlling for the problem size, the interference 

effect depended on the format of the addition problems. Secondly, we evaluated the 

possible relationship between the interference effect found in the first and second trial 

of the study. In the digit format group, the correlation was not significant, r = -.06, p = 

.83. In the word format condition, the correlation was not significant either, r = -.07, p = 

.83. Finally, the interference effect depended on the performance of participants in the 

experimental task. Thus, there was a negative correlation between the response time of 

participants to true addition problems in trial 2 and the interference effect (difference 

between related minus unrelated trials), r = -.39, p = .05.  

 

 Discussion 

 In Experiment 1 we observed interference effects that were modulated by the 

format in which the addition problems were presented. In the first trial, the participants 

in the digit group were slower in the related 1 condition relative to the unrelated 1 

condition which seems to indicate that they coactivated the result of multiplying the 

operands. However, this effect was not observed with additions presented in the word 
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format. Similarly, with Arabic digits, participants were slower in the related 2 condition 

relative to the unrelated 2 condition suggesting that they inhibited the irrelevant result of 

multiplying the operands of the first trial so they needed additional time to reactivate it 

in the second trial. Again, this effect was not found with problems presented in the word 

format. The results obtained with problems presented in the digit format replicate the 

data reported by Megías et al. (2014) with the same paradigm and surface form of the 

problems. Hence, the effects found with the adaptation of the negative priming 

paradigm seem to be a reliable phenomenon. Additionally, the interference effect did 

not depend on the size of the addition problems presented in the experiment which 

seems to indicate that overall, the problem size of addition problems we used was small 

so the automatic processing of additions fostered the coactivation of related nodes in the 

network of arithmetic facts. Moreover, in the digit condition of this experiment, the 

interference effects in trial 1 and trial 2 were unrelated, which seems to indicate that, in 

the context of the current study, the inhibition applied to select the correct solution was 

not proportional to the amount of conflict among coactivated arithmetic facts. 

Furthermore, if we consider the interference effect found in this experiment as an index 

of the degree of activation spreading through the network of arithmetic facts, it was 

related to the proficiency of participants in resolving addition problems. A stronger 

interference effect was associated to faster responses given to correctly resolved 

additions. 

  Importantly, the current experiment suggested that coactivation and inhibition of 

irrelevant arithmetic facts depend on the degree of automaticity with which problems 

are retrieved from memory. Problems with Arabic digits would be more automatically 

recovered relative to problems presented in the word format. This automatic retrieval 

from memory would be accompanied by the spread of activation though the network of 

arithmetic facts which would produce the coactivation of related nodes (i.e., 

multiplications) when participants verified addition problems. The results obtained in 

this experiment showed indeed faster response times in the digit format condition 

relative to the word format condition. However, the format dependent effect found here 

(interference effect in the digit format group only) might be due to differences in 

response speed between the two format groups. In fact, it has been documented that 
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negative priming effects are modulated by the time needed to perform the task (fast vs. 

slow responses, e.g., Neill & Westberry, 1987). Hence, in order to evaluate whether the 

presence or absence of interference was due to the format of the problem and not to 

differences in the speed of response, further analyses were performed. For each 

participant, the median RT was computed and RT data above and below the median 

were assigned to a fast speed condition and a slow speed condition. This factor was 

introduced in the analyses as a within-participant variable (fast responses, slow 

responses) along with trial (first, second), relation (related, unrelated) and format (digit, 

words). None of the two-way interactions including processing speed were significant 

(all ps > .05) and the interaction among all factors was not significant either, F < 1. 

Importantly, the critical Relation x Format interaction was marginal, F(1, 48) = 3.66, p 

= .06, ηp
2
 = .07. The interference effect was significant in the digit format group, F(1, 

48) = 7.65, p = .008, ηp
2
 = .14, while it was not in the word format group F < 1. 

Therefore, the absence of interference effects obtained with problems presented in the 

word format seems to be not explained by the slow RT of participants in this condition.  

 The pattern of results obtained in this experiment fits well with the idea that the 

automaticity in the retrieval of arithmetic facts underlies the presence of interference 

obtained with problems in the digit format and its absence with problems in the word 

format. 

 Nevertheless, it could be argued that the absence of interference effects obtained 

with word format operations were not due to a reduced automaticity in the retrieval of 

arithmetic facts but to the use of other ways to resolve these problems. The participants 

in the verbal format might be using non-retrieval strategies to verify the additions and 

thus, no evidence of coactivation and selection during the retrieval of arithmetic facts 

was observed. Previous proposals supposed that adult individuals always used direct 

retrieval from memory to resolve arithmetic problems such as additions and 

multiplications regardless of the numerical format (e.g., Ashcraft, 1992; Ashcraft & 

Christy, 1995; McCloskey, 1992). However, many recent studies have shown that even 

simple arithmetic problems might be solved with non-retrieval or procedural strategies 

such as counting (e.g., 4 + 3 = 4 + 1 + 1 + 1) and transformation (e.g., 4 + 7 = 4 + 4 + 3) 

(Campbell & Fugelsang, 2001; Fayol & Thevenot, 2012; Imbo & Vandierendonck, 
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2008; Metcalfe & Campbell, 2007; Thevenot, Fanget, & Fayol, 2007; see Ashcraft & 

Guillaume, 2009, for a review of strategies in mental arithmetic).  

 Campbell and Alberts (2009) evaluated whether the format of arithmetic 

problems (digit format and word format) influenced the degree to which participants 

used direct memory retrieval to resolve additions and subtractions. After performing 

these arithmetic problems, the participants indicated the way they resolved them. 

Overall, the participants used retrieval from memory to resolve problems presented in 

the digit format in 67% of cases while this percentage was reduced to 57% with 

problems presented in the word format.   

 Therefore, the absence of interference effects obtained in the word format group 

of Experiment 1 would be explained because participants were using non-retrieval 

(procedural) strategies to resolve the task so potential effects associated to direct 

memory retrieval were not observed. Thus, in order to conclude that the modulation of 

the interference effect by the surface format was due to automaticity (less automatic 

retrieval in the word format group), this modulation should be found in participants 

from the digit and word format groups that used retrieval from memory to perform the 

task. In the next experiment we addressed directly this issue.  

 

EXPERIMENT 2 

 

 The goal of Experiment 2 was to evaluate whether differences due to the format 

of the problem modulated the activation and selection of arithmetic facts in participants 

that mainly used direct memory retrieval to resolve the task. A modulation of the 

interference effects due to the numerical format in these participants would indicate that 

differences in automaticity would be the underlying factor explaining the effect of the 

surface form of the problems found in Experiment 1.  
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Method 

 Participants. A new set of sixty students from the University of Granada (33 

women and 27 men) took part in Experiment 2. None of them participated in 

Experiment 1. Thirty participants (18 women and 12 men) were assigned randomly to 

the group of digit format. Their mean age was 23 years (SD = 4.40). Twenty-eight 

participants of this condition were right-handed and 2 were left-handed. Thirty 

participants (15 women and 15 men) were assigned randomly to the group of word 

format. Their mean age was 23 years (SD = 4.45). In this group, twenty-seven 

participants were right-handed and 3 were left-handed. All the participants gave 

informed consent to participate in the study at the beginning of the experimental session 

and their participation was remunerated with academic credits.  

 In this experiment, we were interested in evaluating possible differences 

depending on the degree to which participants used direct memory retrieval to perform 

the task with problems presented in the digit format and word format. To this end, we 

formed a high retrieval usage group and a low retrieval usage group in each numerical 

format (digit and word) with the same sample size (15 participants of high retrieval 

usage and 15 of low retrieval usage in the digit and word format groups) by sorting the 

participants depending on the percentage of direct memory retrieval strategy reported 

after the finishing the experimental task. The criterion of selection was established 

according to the median value of direct memory retrieval reported by the participants in 

each format group. In the digit format condition, there were differences in the use of 

direct memory retrieval between the high retrieval usage group (90%) and the low 

retrieval usage group (44%), F(1, 28) = 79.28, p < .001, η
2 

= .74. The same difference 

was found in the word format condition between the high retrieval usage group (95%) 

and the low retrieval usage group (50%), F(1, 28) = 55.62, p < .001, η
2 

= .66. The 

interaction between format and strategy was not significant, F < 1, so the difference 

between the high retrieval usage group and the low retrieval usage group was similar in 

the two format groups. 

 Similarly to Experiment 1, the participants completed a questionnaire to 

determine their use of simple arithmetic (Colomé et al., 2011) before performing the 

experimental task (see Table 4). All the participants made simple calculations on a daily 
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basis, most of the participants in both groups learned the multiplication tables orally and 

no differences were found in other questions regarding additions and multiplications 

between the two format groups (all p values > .12). In addition, the participants of 

Experiments 1 and 2 were equated in the use of simple arithmetic (all ps > .12). 

 

Table 4. Use of simple arithmetic of participants in Experiment 2 

 Digit format Word format 

Calculation frequency    

Daily 

Once daily 

Twice daily 

Times a day 

100% 

   20.00% 

   40.00% 

   40.00% 

100% 

   23.33% 

   20.00% 

   56.67% 

Type of calculation    

Divisions 15.15% 17.00% 

Multiplications 19.02% 24.33% 

Additions 38.75% 37.67% 

Subtractions 27.08% 20.67% 

Calculation strategies   

Saying numbers mentally or aloud 34.46% 41.14% 

Visualizing Arabic numbers mentally 32.99% 36.31% 

Writing numbers with pencil and paper 14.19% 7.35% 

With a calculator 18.36% 15.20% 

Learning method (multiplication tables)   

Repeating orally 80.67% 86.17% 

Exercises with Arabic numbers 18.00% 13.17% 

Other methods 1.33% 0.67% 

Note. The numerical format in which operations were presented (Digit format or Word format 

conditions) was manipulated as a between-participants variable.  

 

 As in Experiment 1, we evaluated the participants’ knowledge about 

multiplication tables with the multiplication production task. The mean correct 
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responses in this task was similar in both format groups (92.46% for the digit format 

group and 91.30% for the word format group), t(58) = 0.67, p = .50. Response times 

were also similar in the digit and word format groups (1086 ms and 1114 ms, 

respectively), t(58) = 0.37, p = .70. Moreover, the percentage of correct responses in the 

multiplication product task was similar in participants of Experiment 1 (93.48%) and 

participants of Experiment 2 (91.88%), t(84) = -1.07, p = .29. Response times did not 

differ in participants of Experiment 1 and 2 (1184 ms and 1100 ms, respectively), t(84) 

= 1.19, p = .24. 

 

Design and Materials. The experimental task and the experimental conditions in 

the first and second trial of this experiment were the same as those of Experiment 1. 

Additionally, in this experiment we gathered information about the way participants 

performed the task at the end of the experiment through self-reports of strategies used to 

resolve arithmetic problems. The participants had to indicate the degree to which they 

used direct memory retrieval vs. non-retrieval strategies in a seven point Likert scale 

from 0 (never used) to 7 (always used) to perform the experimental task.  

 

Procedure. The same procedure employed in Experiment 1 was used here; 

except that in Experiment 2 participants had to indicate the degree to which they used 

retrieval from memory vs. nonretrieval strategies (transformation and counting) to 

resolve the task. The use of retrieval from memory included this explanation: when a 

problem such as 2 + 3 = is presented, you know from memory that 5 is the correct 

answer. Non-retrieval strategies included the explanation for counting (when a problem 

such as 2 + 3 = is presented, you count mentally from 2… 3, 4 and 5 to get the answer), 

transformation (when a problem such as 2 + 3 = is presented, you decompose it in other 

easy problems, e.g., 2 + 2 + 1) and other strategies different from those explained 

before. 
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Results 

 The mean percentage of incorrect responses was 3.18%. The mean percentage 

with which participants used direct memory retrieval over procedural strategies was 

70%, and there were no differences between the digit format group (67%) and the word 

format group (73%), F < 1. Data points below 200 ms and above 2000 ms were 

considered outliers and analyses of variance (ANOVAs) were performed on means of 

the reaction times with trial (first and second trial) and relation (related and unrelated) 

as within-participant variables (related and unrelated conditions), numerical format as a 

between-participants variable (digit format vs. word format) and direct memory 

retrieval usage as a between-participants variable (high retrieval usage vs. low retrieval 

usage). There was a main effect of relation, F(1, 56) = 53.00, p < .001, ηp
2
 = .49. As in 

Experiment 1, responses to related trials were slower (M = 1366 ms, SE = 21) than 

responses to unrelated trials (M = 1321 ms, SE = 19). Similarly, differences between the 

two numerical formats were significant, F(1, 56) = 44.25, p < .001, ηp
2
 = .44, so that 

participants in the word format group were slower to give the response (M = 1473 ms, 

SE = 28) relative to participants in the digit format group (M = 1213 ms, SE = 28). 

Furthermore, there was a main effect of direct memory retrieval usage, F(1, 56) = 12.31, 

p < .001, ηp
2
 = .18, such that participants in the low retrieval usage group were slower to 

respond (M = 1412 ms, SE = 28) in comparison to participants in the high retrieval 

usage group (M = 1275 ms, SE = 28). On the other hand, the Format x Direct memory 

retrieval usage interaction effect was significant, F(1, 56) = 5.26, p = .02, ηp
2
 = .09 as 

well as the Relation x Direct memory retrieval interaction, F(1, 56) = 5.59, p = .02, ηp
2
 

= .09.  

In order to further investigate these interactions including ‘direct memory 

retrieval’ as a variable, we conducted the same analyses performed in Experiment 1 for 

the two retrieval groups separately. The detailed results found in each cell of the current 

experiment are reported in Table 5.  
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Table 5. Results obtained in Experiment 2  

 High Retrieval usage Low Retrieval usage 

 Digit format Word format Digit format Word format 

 First trial 

Unrelated 1 1079 (44) 1425 (44) 1330 (41) 1489 (41) 

Related 1 1128 (42) 1459 (42) 1365 (39) 1497 (39) 

Int. Effect 49
**

 34
*
 36

~
 8

ns
 

 Second trial 

Unrelated 2 1044 (40) 1432 (40) 1276 (35) 1493 (35) 

Related 2 1148 (49) 1483 (49) 1336 (42) 1510 (42) 

Int. Effect 105
***

 51
**

 60
**

 17
ns

 

Note. Mean reaction times in milliseconds for each condition in the first and second trial 

depending on the high and low use of direct memory retrieval to resolve the task. Standard errors pooled 

across the digit and word format are reported into brackets. Int. Effect: Interference effect (related 

condition minus unrelated condition). 
***

p < .001,
 **

p < .01, 
*
p < .05, 

~
p = .07, 

ns
p > .40 

 

 High retrieval usage group. As done in Experiment 1, we performed an 

ANOVA with trial (first trial and second trial), relation (related condition, unrelated 

condition) and format (digit format vs. word format) (see Table 5). The analyses 

showed a main effect of relation, F(1, 28) = 42.78, p < .001, ηp
2
 = .60, such that related 

trials were answered to more slowly (M = 1305 ms, SE = 31) than unrelated trials (M = 

1245 ms, SE = 28). On the other hand, there was a significant difference between the 

two numerical formats, F(1, 28) = 35.57, p < .001, ηp
2
 = .56, so that participants in the 

word format group took more time to respond (M = 1450 ms, SE = 41) than participants 

in the digit format group (M = 1100 ms, SE = 41). Furthermore, the Relation x Format 

interaction effect was marginal, F(1, 28) = 3.58, p = .07, and it was associated to a 

medium effect size, ηp
2
 = .11. Planned comparison showed a large relation effect in the 

digit format group, F(1, 28) = 35.56, p < .001, ηp
2
 = .56 (77 ms difference); compared to 

the relation effect in the word format group, F(1, 28) = 10.81, p = .003, ηp
2
 = .28 (42 ms 

difference). The Trial x Relation x Format interaction effect was not significant, F(1, 

28) = 1.65, p = .21. No other effects were significant either (all ps > .41). 
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 Low retrieval usage group. Regarding the analysis in the low retrieval usage 

group, there was a main effect of relation, F(1, 28) = 13.23, p = .001, ηp
2
 = .32, so that 

participants took more time to respond to related trials (M = 1427 ms, SE = 27) 

compared to unrelated trials (M = 1397 ms, SE = 25). Furthermore, there was a main 

effect of numerical format, F(1, 28) = 10.85, p = .003, ηp
2
 = .28, so that problems in the 

word format were answered to more slowly (M = 1497 ms, SE = 37) than problems in 

the digit format (M = 1327 ms, SE = 37). In this case, the Relation x Format interaction 

effect was significant, F(1, 28) = 4.46, p = .04, ηp
2
 = .14. Planned comparison showed a 

relation effect in the digit format group, F(1, 28) = 16.53, p < .001, ηp
2
 = .37 (48 ms 

difference); whereas the relation effect in the word format group was not significant, 

F(1, 28) = 1.16, p = .29. The Trial x Relation x Format interaction effect was not 

significant, F < 1. No other effects were significant either (all ps > .11). 

 

Discussion 

 In Experiment 2, two interference effects were obtained when participants 

performed the verification of addition problems. These two effects seem to indicate, 

firstly, that participants coactivated multiplication facts when they checked the additions 

and secondly, that they used an inhibitory mechanism to suppress the activation of 

irrelevant arithmetic facts to correctly perform the task. However, these effects 

depended on the numerical format of the operations even in participants that mainly 

used direct memory retrieval to resolve the problem. In the next section we discuss this 

pattern of results in terms of the automaticity in the retrieval of arithmetic facts.  

 In the current experiment, we evaluated the way in which participants resolved 

the addition problems (memory retrieval, procedural strategies), by asking them to 

indicate how they accomplished the task at the end of the experiment. It might be 

argued that a final report is not valid to determine strategy use since traces in working 

memory of what participants did on each trial would not be available at the end of the 

task. Hence, a procedure in which participants reported the strategy used to resolve each 
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trial would be preferred. However, negative priming effects strongly depend on the 

inter-stimulus interval (i.e., Martín, Macizo, & Bajo, 2010). Therefore, sequential 

negative priming effect required that problems were solved in succession without an 

interfering task in-between. Moreover, in previous studies, the usual way of evaluating 

strategy selection is a choice procedure (e.g., Lemaire, Arnaud, & Lecacheur, 2004; 

Lemaire & Lecacheur, 2001, 2002; see Thevenot et al., 2007, for a critical discussion 

about the use verbal reports), where participants have to indicate whether they solve a 

problem by retrieving the result from memory or by using procedures. However, in the 

current study participants were asked to report the degree to which they used retrieval 

and procedures on a Likert scale. Hence, it could be argued also that the way in which 

we measured strategy selection with the use of a Likert scale was not appropriated.  

 We performed an additional control experiment to determine the validity of the 

self-report measure of strategy selection used in Experiment 2. We evaluated a new set 

of sixty students from the same pool that participated in Experiment 2. Individuals had 

to verify the correctness of all addition problems used in Experiment 1 and 2. Thirty 

participants performed the task with digit numbers, and another thirty with number 

words. Since we were not interested in the responses to the addition problems but in the 

strategy used to resolve them, the addition problems were randomly presented. 

Participants reported the strategy used to resolve each problem on a trial-by-trial basis 

with a two-choice procedure: After the answer to each addition, individuals decided 

whether they resolved it by direct memory retrieval or by a non-retrieval strategy. 

Furthermore, in order to compare the two-choice report measure to that used in 

Experiment 2, participants had to indicate at the end of the arithmetic task the degree to 

which they used direct memory retrieval vs. non-retrieval strategies in a seven point 

Likert scale from 0 (never used) to 7 (always used); a measure which was exactly the 

same as that used Experiment 2. We examined possible differences in the percentage of 

retrieval from memory usage due to the measure of strategy selection (trial-by-trial vs. 

final report) and the possible interaction with format (digit format vs. word format). The 

participants reported the use of retrieval from memory to a greater extent in the final 

report test (72%) than in the trial-by-trial test (65%), F(1, 58) = 4.38, p = .04, ηp
2
 = .07. 

The retrieval from memory percentage was similar in the digit format group (69%) and 
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the word format group (68%), F < 1. Importantly, the Strategy test x Format interaction 

was not significant, F < 1. In the trial-by-trial test, the percentage of retrieval from 

memory was 66% in the digit group and 65% in the word group. In the final report test, 

these percentages were 71% and 72% for the digit and word groups, respectively. 

Moreover, the retrieval from memory percentage obtained in the trial-by-trial test (65%) 

correlated with that obtained in the final report test (72%), r = .44, p < .001; and this 

correlation was significant in the digit format group, r = .38, p = .04; and in the word 

format group, r = .49, p = .006. Furthermore, when we compared the final report of this 

control experiment with that of Experiment 2, there were no differences in the 

percentage of retrieval from memory (70% and 72% respectively), nor the experiment 

interacted with format, Fs < 1. Thus, the measure used in Experiment 2 to evaluate 

strategy selection seems to be valid for set of addition problems used in the study. 

 A fine-grained examination of the results obtained in Experiment 2 leaves open 

another question that needs to be attended: There were no differences in the usage of 

direct retrieval between numerical formats. In fact, the use of direct memory retrieval 

was similar in the digit format (67%) and the word format (73%). This finding differs 

from previous studies showing that direct memory retrieval is more frequently used 

with word operands than with digit operands (Campbell, 1994; Campbell & Alberts, 

2009; Campbell, Kanz, & Xue, 1999; McNeil & Warrington, 1994). For example, 

Campbell and Alberts showed that when addition problems were presented in digit 

format, participants reported the use of direct memory retrieval more often than the use 

of procedural strategies (i.e., counting); while the opposite was found when participants 

resolved operations in the word format. The lack of differences in the use of the direct 

memory retrieval strategy might be due to the small size of the problems we selected 

(the addends produced a result equal or less than 18). In fact, there is evidence of 

reduced format effects on direct retrieval usage for equations with small problem size. 

Additionally, differences between the current study and previous research might be due 

to the way of manipulating the format of the problem. Thus, numerical format is usually 

considered as a within-participants variable (Campbell & Alberts, 2009; Campbell & 

Fugelsang, 2001; Campbell, Kanz, & Xue, 1999; McNeil & Warrington, 1994); while it 

was a between-participants factor in our study.  
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GENERAL DISCUSSION  

 

 The purpose of the current study was to evaluate if the retrieval and selection of 

arithmetic facts depended on the numerical surface format in which operations were 

presented. To this end, participants verified the correctness of simple additions 

presented either in a digit format or in a word format. The results obtained in 

Experiment 1 with digits showed that participants were slower to verify additions when 

the result was incorrect but it was that of multiplying the operands (2 + 4 = 8) relative to 

a control condition with an unrelated result (2 + 4 = 10). This interference effect is 

usually interpreted as due to the coactivation and competition of related multiplication 

answers when participants retrieve the addition facts needed to perform the task 

(Zbrodoff & Logan, 1986). Previous research has suggested that this competition is 

solved with the involvement of an inhibitory mechanism responsible to suppress the 

irrelevant arithmetic response (Campbell & Dowd, 2012; Campbell & Thompson, 2012; 

Megías et al., 2014). In the current study, this view would imply that participants 

inhibited the multiplication answer when they verified the correctness of addition 

problems in the first trial. As a consequence, participants would take additional time to 

resolve a subsequent addition when the result was that of multiplying the operands of 

the previous trial. In agreement with this hypothesis, participants responded more 

slowly to additions presented in the digit format when the result of multiplying the 

operands of the first trial (2 and 4) was the correct result of the problem presented in the 

second trial (2 + 6 = 8) relative to an unrelated condition. 

 Nevertheless, other explanations might account for the interference effects found 

in the current study when the additions were presented in the digit format. To illustrate, 

when an incorrect addition was presented in the first trial (e.g., 2 + 5 = 10), participants 

might coactivate and inhibit the multiplication fact (2 x 5 = 10) along with other 

addition facts to which the presented result was also true (e.g., 7 + 3 = 10). The current 

study cannot determine whether other addition facts were coactivated when participants 

performed the task. However, in our opinion, the interference effects obtained here 
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mainly came from the competition associated to coactivated multiplication facts: Firstly, 

the critical difference between the related 1 trials (2 + 5 = 10) and unrelated 1 trials (2 + 

5 = 14) was that the result of a related addition was exactly that of multiplying its 

operands while it was not the case in unrelated 1 additions. On the contrary, the possible 

coactivation of related additions with the same result (e.g., 7 + 3 = 10) would occur in 

both a related condition (2 + 5 = 10) and an unrelated condition (e.g., 3 + 4 = 10). 

Secondly, coactivation of arithmetic facts directly depends on the strength of 

connections among problems; and it is assumed that multiplications, which are learnt by 

rote in school, have a higher associative strength than additions (e.g., Ashcraft, 1992; 

Campbell & Xue, 2001). Therefore, it is reasonable to assume that coactivated 

multiplications might compete strongly relative to other additions potentially activated. 

 Another issue to be considered is that interference might not be located at the 

network of arithmetic facts but at the response level. Thus, in related 1 trial (2 + 4 = 8), 

participants might learn the association 8-false, so when a related 2 trial was presented 

afterwards (2 + 6 = 8), the result was associated to a true response (8-true) and thus, it 

was hard to overcome the previous incongruous association. Nevertheless, this 

explanation is difficult to reconcile with previous research showing that interference 

effects do not depend on the congruency of responses (same/different) in the first and 

second trial of a negative priming paradigm (Macizo et al., 2010, Experiment 2).  

 The interference effects obtained in Experiment 1 were only observed when the 

additions appeared in the digit format but not when they were presented with words. 

Hence, these results seemed to indicate that coactivation and selection of arithmetic 

facts was determined by the numerical surface format of problems. We argued that the 

format effect in the coactivation and selection of arithmetic facts was related to the 

degree of automaticity with which arithmetic facts are retrieved from memory. It has 

been proposed that the retrieval and selection of arithmetic facts is associated to practice 

in the solution of everyday mathematical problems (Besner & Coltheart, 1979). 

Individual are encountered with operations in the digit format more often than with 

operations in the word format. Therefore, the resolution of arithmetic problems in the 

digit format would be associated to an effortless processing of the task and a ballistic 

retrieval of arithmetic facts from memory. This explanation would imply that when 
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participants were presented with operations in the word format the processing was less 

automatic so the spreading of activation in the network of arithmetic facts was reduced 

and thus, participants did not coactivate arithmetic facts and no inhibitory processes 

were needed to resolve competition. As a consequence, no interference effects were 

found in the first trial and second trial of Experiment 1 with equations presented with 

words. 

 Nevertheless, the absence of interference effects in the word format group might 

be accounted simply by the fact that participants in this group did not use retrieval from 

memory as the way to resolve the problems. As a consequence, no interference effects 

would be expected. However, when we controlled for the way in which participants 

performed the arithmetic task in Experiment 2, the interference effects were still 

modulated by the numerical format. Specifically, the participants with a high use of 

retrieval from memory showed the interference effect in the first and second trial of the 

study. However, the magnitude of these effects was smaller in the word format group 

(42 ms) relative to the digit format group (77 ms). Since these participants were equated 

in their high use of direct retrieval to resolve the problems, the differences due to the 

numerical format seem to be related to the automaticity in the activation of arithmetic 

facts.  

 Moreover, we considered also participants with reduced use of direct memory 

retrieval (less than half of cases) and the interference effects were observed again in the 

digit format but it was not present in the word format. This last result suggests that even 

when individuals used retrieval from memory to a lesser extent, the automatic access to 

the calculation network with digit problems sufficed to observe the interference effect 

due to the coactivation of arithmetic facts. In contrast, in the word format, the less 

automatic spreading of activation in the calculation network reduced the probability of 

finding this interference effect. 

 Together, the results found in the current study suggest that the format of 

arithmetic problems and the degree to which participants use retrieval from memory, 

determine the resolution of simple additions. Both variables work together to foster the 

spread of activation in the network of arithmetic facts (coactivation effects) and the 
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subsequent selection of what is needed to resolve the problem. The highest coactivation 

in the network of arithmetic facts is produced when the use of retrieval predominates 

and the problem is presented in the digit format. On the contrary, reduced or no 

coactivation of arithmetic facts is observed when the use of retrieval is low and 

additions are presented in the word format. From this view, we can explain the 

interference effect associated to problems presented in the word format (Experiment 2). 

Even when the automaticity with which these problems are solved is low relative to 

problems in the digit format, interference arises when participants prefer the use of 

retrieval from memory to perform the task.  

 

 Implications for perspectives of arithmetic processing. The results obtained 

in the current study have relevant implications for current models of arithmetic 

processing discussed in the introduction section. Overall, the amodal view of arithmetic 

processing (the abstract-modular model, McCloskey, 1992; see also, Blankenberger & 

Vorberg, 1997) would assume that the resolution of simple arithmetic would not depend 

on the surface form of the problem. In contrast, from a format-dependent perspective 

(i.e., the encoding complex view, Campbell & Clark, 1992; Campbell & Epp, 2004) 

arithmetic processing and representation would vary with the surface form.  

 The main effect of surface format observed in this study could be accommodated 

within the abstract perspective (Blankenberger & Vorberg, 1997; McCloskey, 1992). 

The participants were faster in verifying the correctness of additions when they were 

presented in the digit format relative to the word format. This faster response time 

associated to problems presented with digits might be due to the familiarity of this 

format which would make easier to process the problem at the initial encoding stage of 

processing. Nevertheless, the results found in this study suggesting that the coactivation 

of arithmetic facts depended on the numerical format, is difficult to reconcile with the 

abstract perspective since these effects go beyond the encoding stage by impacting the 

retrieval of arithmetic facts. The abstract view assumes the existence of a problem-

encoding mechanism to convert several numeral surface forms into a common internal 

code for calculation and thus, the retrieval of arithmetic facts is not expected to differ 
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with surface form. Accordingly, regardless of the main effect of format, which could be 

explained by differences at the encoding stage of processing, no other differences would 

be observed in the coactivation of arithmetic facts across formats since coactivation is a 

direct image of how calculation knowledge is accessed within the network of arithmetic 

facts. In contrast, the surface format x relation interaction effects can be accommodated 

within a format-dependent perspective in arithmetic cognition (Campbell & Clark, 

1992; Campbell & Epp, 2004). When individuals mainly use retrieval from memory to 

resolve simple addition problems, calculation is less automatic with written number 

words relative to problems presented with Arabic digits.  

 Overall, we can consider two stages of processing involved in the resolution of 

arithmetic problems: The encoding level where the operands and the results are 

processed and a central level where activation spreads in the associative network of 

arithmetic facts. A main contribution of the current study is the demonstration of an 

interactive process by which encoding and central stages do not work in an independent 

manner. On the contrary, we observed an interaction between numerical formats, which 

tapped the encoding level, and coactivation and inhibition effects which were located at 

the central level. This pattern of results suggests that the resolution of simple arithmetic 

do not involve strictly serial processes performed in isolation but it supports a dynamic 

view of simple arithmetic in which interactions between peripheral and central 

processes take place.  
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CHAPTER VI 

THE RETRIEVAL AND SELECTION OF ARITHMETIC FACTS IN 

ORAL ARITHMETIC 

We examined the co-activation and the selection of arithmetic facts in oral 

arithmetic. In two experiments, participants had to verify whether simple additions were 

correct or not. In Experiment 1, additions were presented in the auditory-verbal format; 

in Experiment 2, additions were presented in the digit format but simulating the 

temporal sequence of auditory problems of Experiment 1. Results were similar in both 

experiments. Firstly, participants took the same time to respond when an addition was 

incorrect but the result was that of multiplying the operands (e.g., 2 + 4 = 8) relative to 

a control addition with unrelated results. Secondly, participants took more time to 

respond when the result of multiplying the operands of the first trial was presented 

again in a correct addition problem (e.g., 2 + 6 = 8) relative to a control addition. This 

pattern of results is discussed in terms of the temporal resolution to which auditory 

problems are resolved and the role of an inhibitory mechanism involved in the selection 

of arithmetic facts.  
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THE RETRIEVAL AND SELECTION OF ARITMETIC FACTS IN ORAL 

ARITHMETIC 

 

Simple arithmetic facts, such as one-digit additions and multiplications, are 

represented within an associative network in long-term memory (e.g., Ashcraft, 1992; 

Campbell & Graham, 1985; Siegler & Shrager, 1984). Arithmetic facts are 

automatically retrieved when individuals perform simple math problems (although see 

Barrouillet & Thevenot, 2013; Fayol & Thevenot, 2012, for a suggestion that simple 

additions are resolved through procedures). Moreover, individuals co-activate several 

arithmetic facts when they resolve a problem. The associative confusion effect supports 

this coactivation process (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986): 

When people perform an arithmetic verification task in which they have to decide 

whether an addition is correct or incorrect, they show slower response latencies for false 

problems when the stated result is correct for the multiplication operation (i.e., 2 + 4 = 

8) compared to when it is not (i.e., 2 + 4 = 10). This associative confusion effect seems 

to indicate that participants co-activate the facts associated to additions and 

multiplications automatically, even when the problem to be resolved is an addition. This 

co-activation would produce competition during the selection of the correct answer, 

since only one solution is needed to answer the problem successfully. 

 There is empirical evidence to support that competition produced by the co-

activation of several arithmetic facts is resolved by inhibition (Campbell & Dowd, 

2012; Campbell & Thompson, 2012; Megías, Macizo, & Herrera, 2014; Megías & 

Macizo, 2015a; 2015b; although see Censabella & Noël, 2004, for an alternative 

explanation). Campbell et al. used an adaptation of the retrieval practice paradigm. This 

paradigm is frequently employed to demonstrate the inhibition of irrelevant information 

that competes for selection (Anderson, 2003; Anderson, Bjork, & Bjork, 1994). 

Participants performed a practice phase with simple multiplication problems (i.e., 2 x 3 

= ?; 4 x 6 = ?) and, afterward, the same operands were used in a second test phase with 

simple addition problems (i.e., 2 + 3 = ?; 4 + 6 = ?). The overall finding was that 

practicing the multiplication problems slowed the response times to resolve additions 

whose operands were presented in the practice phase relative to additions problems 
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whose operands did not appear previously. This retrieval induced forgetting effect was 

interpreted in terms of inhibitory processes: When participants resolved the 

multiplication problems in the practice phase, the addition counterparts which competed 

with the multiplications needed to be inhibited. Therefore, participants took more time 

to reactivate these additions when they were presented in the test phase.  

 In addition, recent evidence suggests that individuals apply this inhibitory 

mechanism in a continuous manner when competition between arithmetic facts takes 

place during the course of an arithmetic task (Megías et al., 2014; Megías & Macizo, 

2015a, 2015b). Megías et al. designed an adaptation of the negative priming paradigm 

(Macizo, Bajo, & Martín, 2010; Tipper & Driver, 1988) in which additions in digit 

format were presented and participants decided whether they were correct or incorrect. 

The task structure comprised blocks of two trials. In the first trial, participants took 

more time to respond to incorrect additions whose result was the one of multiplying the 

operands (i.e., 2 + 4 = 8) relative to a control condition with an unrelated result (i.e., 2 + 

4 = 10). This interference effect captured the coactivation and competition of arithmetic 

facts (multiplication and addition problems). Moreover, participants took more time to 

respond in a subsequent trial when a correct addition was presented and its result was 

the one of multiplying the operands of the previous trial (i.e., 2 + 6 = 8) relative to a 

control condition with an unrelated result (i.e., 4 + 6 = 10). This interference effect 

obtained in the second trial was interpreted as the result of inhibiting the irrelevant 

multiplication result in the first trial. Hence, participants needed additional time to 

reactivate it when it was presented again and was relevant to perform the task.  

 The goal of the current study was to examine how oral arithmetic is carried out. 

Oral arithmetic is the preferred way of solving math problems when children learn 

multiplication tables (Colomé, Bafalluy, & Noël, 2011). To illustrate, Colomé et al. 

asked Spanish and Belgian people to report the format in which they learned the 

multiplication tables at school. The 63% and 66% of Spanish and Belgian participants, 

respectively, reported the learning of multiplication tables by rote. Similarly, most of 

the participants in the study by Megías et al. (2014) reported the memorization of 

multiplication tables orally in elementary school (77%). Hence, oral arithmetic plays an 

important role when individuals acquire arithmetic facts used to resolve simple addition 
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and multiplication problems. Therefore, the underlying mechanism involved in oral 

arithmetic deserves to be examined in deep. 

 

Oral arithmetic. Oral arithmetic has been considered in several models of 

arithmetic processing (Campbell & Clark, 1988, 1992; Dehaene, 1992; McCloskey, 

Sokol, & Goodman, 1986; Noël & Seron, 1992). For example, the Triple code model 

(Dehaene, 1992) defends that mental operations depend on the numerical format in 

which they are presented. Thus, oral arithmetic would be associated to specific 

representations in long-term memory and to specific mechanisms involved in the 

resolution of simple additions and multiplications. In the Abstract-modular model 

(McCloskey et al., 1986; McCloskey, Macaruso, & Whetstone, 1992) oral arithmetic 

would be similar to other ways of solving arithmetic problems (e.g., those visually 

presented with Arabic digits). The differences between numerical formats would be 

located at the encoding stage of processing. In other models, such as the Encoding-

complex model (Campbell & Clark, 1988, 1992) or the Preferred entry code model 

(Noël & Seron, 1992), it is argued that numbers are represented in different formats in 

long-term memory and the use of the oral format in the resolution of arithmetic 

problems depends on idiosyncratic factors, as the previous arithmetic learning.  

 Importantly, from a neuropsychological approach, it has been found dissociation 

between oral arithmetic and the resolution of problems presented in other formats 

(Cohen & Dehaene, 1995; Martin et al., 2003; McNeil & Warrington, 1994; Salguero-

Alcañiz & Alameda-Bailén, 2014). For example, in the study of Salguero-Alcañiz and 

Alameda-Bailén, six patients with acquired brain injury performed a written arithmetic 

test (e.g., two + four =) and an oral arithmetic test. Results showed a double dissociation 

between oral arithmetic and written arithmetic, suggesting the functional independence 

of the processes involved in these two types of problems. To illustrate, two patients, 

BET and MC, presented a lower percentage of correct responses when they had to 

resolve additions in the written format (66.5% and 69.5%, respectively) compared to the 

percentage of accuracy with oral addition problems (80% and 100%, respectively); 

whereas the patient MNL showed the inverse pattern: a good performance with written 

http://www.sciencedirect.com/science/article/pii/S016641150860895X
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additions (94.5%) compared to oral additions (60%). In another study, Martin et al. 

(2003) investigated possible oral and written arithmetic deficits in Alzheimer disease, 

comparing the performance of patients at different stages of the disease (mild and 

moderate) and healthy elderly individuals. In general, patients had a worse performance 

with both oral and written problems compared to healthy participants. More interesting 

was the results observed in patients with moderate Alzheimer disease; they had worse 

performance in written arithmetic compared to patients in a mild stage of the disease; 

however the performance in oral arithmetic was similar in both stages of the Alzheimer 

disease. In line with the previous study, these results support a functional independence 

of written and oral arithmetic processes.  

 Despite the relevance of oral arithmetic, there is little research about the 

processes underlying the resolution of oral problems in healthy adults (LeFevre, Lei, 

Smith-Chant, & Mullins, 2001), relative to the large number of studies in which other 

verbal formats have been considered (e.g., written numbers, i.e., two + four = six; 

Blankenberger & Vorberg, 1997; Bernardo, 2001; Campbell, 1994; 1997; 1999; 

Campbell & Alberts, 2009; Campbell & Fugelsang, 2001; Megías & Macizo, 2015b; 

Noël, Fias, & Brysbaert, 1997; Noël, Robert, & Brysbaert, 1998). LeFevre et al. defend 

the necessity of exploring the resolution of problems in the auditory format because 

they are more ecological than problems written with number words. The authors 

examined if the oral presentation of operations determined the resolution processes. The 

authors used a multiplication production task where problems were presented in an 

auditory format or in Arabic digit format (e.g., 2 x 4 =) while healthy participants had to 

give the solution to each one. Results showed that participants committed more errors in 

oral problems compared to problems with Arabic digits. More important, the percentage 

of phonological errors (e.g., naming errors, 2 x 4 = 4; operand intrusion errors, 2 x 4 = 

21) was higher in the auditory format too. The authors interpreted these results as 

evidence of an additional activation of phonological codes when multiplication 

problems were presented in the auditory format.  
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 The current study. The current study aimed at investigating the way in which 

oral arithmetic is performed. Specifically, we evaluated whether the co-activation and 

selection of arithmetic facts as indexed by the associative confusion effect (Winkelman 

& Schmidt, 1974; Zbrodoff & Logan, 1986) and widely corroborated with visual 

arithmetic problems, also applies when additions are presented in the auditory-verbal 

format. To our knowledge, there is no previous research in which this phenomenon has 

been evaluated in oral arithmetic. We addressed this issue by using the paradigm 

developed by Megías et al. (2014) and we extended it to the case of problems presented 

orally. The first trial was intended to evaluate the automatic co-activation of 

multiplication facts. If oral arithmetic is done as problems with Arabic digits, we 

expected to find longer response latency to verify an incorrect addition whose result was 

that of multiplying the operands (2 + 4 = 8) relative to an unrelated condition (2 + 4 = 

10). This associative confusion effect would indicate that the way in which addition 

facts are retrieved and related multiplication facts coactivated would be similar in digit 

and oral arithmetic. However, it might be possible that the coactivation and subsequent 

selection of arithmetic facts in oral arithmetic might differ from Arabic digit problems 

due to the inherent temporal sequence in which problems are processed in the auditory-

verbal format. Concretely, when an individual perceives a simple addition problem 

orally presented, the first operand, the second operand and the result are received in a 

temporal ordered sequence. Hence, the participant might have time to coactivate the 

multiplication result before the addition result was coded. For example, after presenting 

the two operands (2 + 4) participants would have time to retrieve the correct addition 

result (6) and the competing multiplication result (8). Under this situation, the 

individual might have time to resolve the competition among coactivated facts before 

finishing the stimulus presentation (the result presented in the auditory format). Thus, 

no differences between the related and unrelated conditions of the first trial would be 

observed since coactivation and competition might be resolved already.  

There is previous evidence indicating that the interference due to the 

coactivation of arithmetic facts disappears when participants have enough time between 

the presentation of the operands and the result to resolve competition. Lemaire, Fayol, 
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and Adbi (1991) explored whether the associative confusion effect with addition 

problems presented with Arabic digits depended on the delay between the presentation 

of the operands and the result. The authors observed the interference effect when the 

stimulus were presented simultaneously or when a delay of 100 ms was introduced 

between the operands and the result. However, the interference effect disappeared when 

the delay increased to 300 ms or higher (500 ms).  

Furthermore, the second trial of Experiment 1 was intended to evaluate the 

consequences of applying inhibition to resolve the competition between arithmetic facts 

in the first trial. We expected to find longer response latency to verify a correct addition 

whose result was the same of multiplying the operands of the previous trial (2 + 6 = 8, 

preceded by 2 + 4) relative to an unrelated condition (4 + 6 = 10, preceded by 2 + 4). 

This effect would indicate that participants inhibited the incorrect result in the first trial 

so they needed time to reactivate the inhibited answer when it was needed to resolve the 

second trial.  

 

EXPERIMENT 1 

 

 Method 

 Participants. Thirty students from the University of Granada (26 women and 4 

men) took part in this study. The mean age of participants was 20 years (SD = 1.79). All 

participants were right-handed. They did not report history of numerical or auditory 

problems. They gave informed consent to participate in the study and their participation 

was remunerated with academic credits. The participants completed a questionnaire to 

determine their use of simple arithmetic (Colomé et al., 2011) before performing the 

experimental task (see Table 1). The percentage of calculation of addition problems on a 

daily basis was 42.5% (SD = 16.18). Moreover, 74.67% (SD = 36.83) of participants 

learned multiplication tables in the auditory-verbal format by rote. 
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Table 1. Use of simple arithmetic of participants in both experiments 

 Experiment 1 Experiment 2 

Calculation frequency    

Daily 

Weekly 

Monthly  

Less than once per month 

50.00% 

43.33% 

3.33% 

3.33% 

52.27% 

45.45% 

2.73% 

0% 

Type of calculation    

Multiplications 21.50% 22.00% 

Divisions 14.50% 14.02% 

Additions 42.50% 40.34% 

Subtractions 21.50% 23.64% 

Calculation strategies   

Saying numbers mentally or aloud 37.08% 31.63% 

Visualizing Arabic numbers mentally 26.10% 29.23% 

Writing numbers with pencil and paper 11.95% 15.05% 

With a calculator 

Others strategies 

23.58% 

1.30% 

22.65% 

1.45% 

Learning method (multiplication tables)   

Repeating orally 74.67% 78.14% 

Exercises with Arabic numbers 24.67% 20.70% 

Others methods 0.67% 1.16% 

 

 Furthermore, participants performed a multiplication task to evaluate their 

knowledge about multiplication tables. In this task, tables from 1 to 4 were presented in 

ascending order (i.e., 2 x 4 = ?) and participants had to say aloud the correct result (i.e., 

8). Participants showed a good knowledge of simple multiplications, with 88.12% of 

correct responses (SD = 7.48). 
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 Design and Materials. We used a verification task in which participants 

received additions and they decided whether they were correct or not. The problems 

were presented in auditory-verbal format, so that participants were listening simple 

additions in Spanish language. The additions were presented in blocks of two trials. In 

the first trial, two conditions were manipulated within-participant. The related 1 

condition included incorrect additions whose result was that of multiplying the operands 

(i.e., 2 + 4 = 8). The unrelated 1 condition contained incorrect additions whose result 

was not the one of multiplying the operands (i.e., 2 + 4 = 10). In the second trial, two 

conditions were also manipulated within-participant. The related 2 condition contained 

correct additions whose result was the one of multiplying the operands of the previous 

trial (i.e., 2 + 6 = 8). The unrelated 2 condition included correct additions with a result 

which was not the one of multiplying the operands of the previous trial (4 + 6 = 10). An 

example of trials in each experimental condition is reported in Table 2. 

 

Table 2. Example of trials used in the study 

Experimental condition Experimental trial 

 First Trial 

Related 1 2 + 4 = 8  

Unrelated 1 2 + 4 = 10 

 Second Trial 

Related 2 2 + 6 = 8  

Unrelated 2 4 + 6 = 10 

 

 To create the experimental blocks of trials, 20 false additions were selected in 

the first trial (10 related 1 additions and 10 unrelated 1 additions), and 20 correct 

additions were selected in the second trial (10 related 2 additions and 10 unrelated 2 

additions). Across participants, each addition in each condition of trial 1 (related 1 and 

unrelated 1) was presented half of the times followed by a related 2 addition and the 

other half it was followed by an unrelated 2 addition. Therefore, the related 2 and 

unrelated 2 additions were preceded an equal number of times by related 1 trials and 
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unrelated 1 trials. Each participant received the experimental block of trials twice. 

Hence, for each participant there were 40 observations in each condition of trial 1 

(related 1 and unrelated 1) and in each condition of trial 2 (related 2 and unrelated 2). 

The complete set of experimental trials used in the experiment is reported in Appendix 

1. 

 Each simple problem used in the study was recorded by a female speaker in a 

quiet environment and digitized at 44 kHz. Audio files for each auditory problem were 

edited to align the acoustic onset of the word denoting the first operand with the onset 

of the audio file. Furthermore, the addition problems were carefully selected to equate 

them in several factors that might determine possible differences between the conditions 

in the first and second trials of the experiment. All additions were composed of one-

digit operands and the two operands of each problem were presented in ascending order 

(i.e., 2 + 6). The parity (even and odd digits) of operands and results was equally 

distributed across the conditions of the first and second trials of the experimental 

blocks. In each trial, the solution corresponded to multiplication tables from 1 to 4 and it 

was never one of the two operands presented in the addition (i.e., 2 + 1 = 2 was not 

presented). 

 In the first trial, the related 1 condition and the unrelated 1 condition were 

equated in problem size (the sum of the two operands in both conditions was exactly the 

same: M = 7.40). The size of the incorrect results presented in the related 1 condition 

and the unrelated 1 condition was also similar (M = 11.80 and M = 11.60, respectively), 

t(18) = 0.12, p = .90. Also, the distance between the incorrect result presented to the 

participants and the correct result of the addition in the two conditions of the first trial 

was exactly the same (M = 4.40). In the second trial, the problem size was equated in 

the related 2 condition (M = 11.80) and the unrelated 2 condition (M = 11.60), t(18) = 

0.12, p = .90. In order to maintain the same problem size in the two conditions of trial 2, 

one addition problem in the related 2 condition (7 + 9 = 16) and one problem in the 

unrelated 2 condition (4 + 6 = 10) were repeated. The selection of these problems was 

random. 
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 Moreover, we controlled for the amount of similarities between the additions 

presented in the first trial and those corresponding to the related 2 condition and the 

unrelated 2 condition of the second trial. The numerical distance between the incorrect 

result presented in the first trial and the second trial was exactly the same in the related 

2 condition and the unrelated 2 condition (M = 1.40). The difference between the 

problem size in the first trial and the second trial was exactly the same in the related 2 

condition and the unrelated 2 condition (M = 4.40). The number of repetitions between 

the digits presented in the first trial and the second trial (i.e., 2 was repeated in the block 

composed of the first trial 2 + 3 = 6 followed by 2 + 4 = 6), was exactly the same in the 

related 2 condition and the unrelated 2 condition (8 repetitions).  

 Furthermore, we controlled for the stimulus duration in each condition of the 

study. In the first trial, the duration of oral problems was similar in the related 1 

condition and the unrelated 1 condition (M = 2217 ms and M = 2212 ms, respectively), 

t(18) = 0.07, p = .95. In the second trial, the duration of the problem was similar in the 

related 2 condition and the unrelated 2 condition (M = 2235 ms and M = 2198 ms, 

respectively), t(18) = 0.43, p = .67.  

 To avoid the participants noticed the structure of the experimental blocks (a 

sequence of an incorrect operation in the first trial and a correct operation in the second 

trial), each list of experimental blocks was randomly intermixed with 10 filler blocks of 

trials which were repeated four times. The correct responses in the first and second trials 

of these blocks were ‘yes’-’yes’, ‘no’-’no’, and ‘yes’-’no’, respectively. Therefore, the 

sequence of responses within each block of two trials was unpredictable through the 

experiment. The filler blocks included 6 addition problems and 4 multiplication 

problems which were presented orally to the participants (see Appendix 2).  

 Before starting the verification task, the participants performed four blocks of 

practice trials (2 pairs of additions and 2 pairs of multiplications) with problems that 

were not used in the main experiment. 
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 Procedure. The experiment was designed and controlled by E-prime 

experimental software, 1.1 version (Schneider, Eschman, & Zuccolotto, 2002). The 

stimuli were presented through headphones. Participants were tested individually.  

The experimental task was a verification of arithmetic problems arranged in 

blocks of two trials. All problems were presented orally to the participants in Spanish 

language. Participants had to decide if the result of each problem was correct or 

incorrect. The first trial began with a visual fixation point in the middle of screen for 

500 ms; followed by the auditory arithmetic problem (e.g., 2 + 4). Afterward, the result 

was presented until the participant’s response. After giving the answer, the second trial 

appeared with the same sequence of events that the first trial: a visual fixation point for 

500 ms and the auditory arithmetic problem followed by the result until the participant’s 

response. After each block of two trials, the participants were instructed to press the 

space bar to continue with the following block. Participants were instructed to respond 

by pressing the Z and M keys of the keyboard. The Z and M keys to ‘correct’ and 

‘incorrect’ assignment was counterbalanced across participants. The duration of the 

experiment was approximately 25 minutes. 

 

Results 

Trials answered incorrectly were eliminated from the latency analysis and 

submitted to the accuracy analysis (1.75% of the data in the first trial, and 3.67% of the 

data in the second trial). Moreover, the RTs of correct responses were trimmed 

following the procedure described by Tabachnick and Fidell (2001) to eliminate 

univariate outliers (data points that after standardization were 3 SD outside of the 

normal distribution of the data). The percentage of outliers was 9.20% of the data in the 

first trial, and 12.50% of the data in the second trial. Firstly, we report the results 

obtained in the first trial and then the results found in the second trial (see Table 3). 
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Table 3. Results obtained in Experiment 1  

  RT Diff. 

 

Unrelated 1 

First Trial 

909 (33) 

 

Related 1 898 (30) -11
ns

 

 

Unrelated 2 

Second Trial 

981 (46) 

 

Related 2 1065 (48) 84* 

Note. Mean reaction times in milliseconds for each condition in the first and second trials. 

Standard errors are reported into brackets. RT Diff. indicates the difference in milliseconds between 

related minus unrelated conditions.*p < .05, 
ns

p > .05 

 

 First Trial. We performed analysis of variance (ANOVA) on reaction times and 

percentage of errors with relation 1 as the within-participant variable: related 1 

condition (i.e., 2 + 4 = 8) and unrelated 1 condition (i.e., 2 + 4 = 10). We did not find an 

effect of relation 1, F(1,29) = 1.57, p = .22. So that, participants took similar time to 

verify related 1 trials (M = 898 ms, SE = 29.83) and unrelated 1 trials (M = 909 ms, SE 

= 32.53). 

 On the other hand, the accuracy analysis showed a main effect of relation 1, F(1, 

29) = 11.15, p = .002, η
2
 = .28. Participants committed significantly more errors when 

they had to verify related trials (M = 3%, SE = 0.72) compared to unrelated trials (M = 

0.5%, SE = 0.28). 

 Second Trial. We performed ANOVAs on reaction times and percentage of 

errors with relation 2 as a within-participant variable: related 2 condition (i.e., 2 + 6 = 8) 

and unrelated 2 condition (i.e., 4 + 6 = 10). The results showed significant differences 

between the two conditions, F(1, 29) = 15.13, p < .001, ηp
2
 = .34. Participants took more 

time to respond to related 2 trials (M = 1065 ms, SE = 48.37) relative to unrelated 2 

trials (M = 981 ms, SE = 45.67). 
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 However, the accuracy analysis did not show significant differences between 

related 2 (M = 4.17%, SE = 0.78) and unrelated 2 conditions (M = 3.17%, SE = 0.63), 

F(1, 29) = 2.07, p = .16.  

 

Discussion  

 The associative confusion effect is a robust phenomenon previously described in 

many studies where simple problems are visually presented with Arabic digits (Grabner,  

Ansari, Koschutnig, Reishofer, & Ebner, 2013; Winkelman & Schmidt, 1974; Zbrodoff 

& Logan, 1986): Participants take more time to verify incorrect additions whose result 

is that of multiplying the operands (2 + 4 = 8) relative to an unrelated condition (2 + 4 = 

10); an effect which supports the co-activation of related arithmetic facts in long-term 

memory. This effect has been observed with the paradigm used in the current study 

when additions were presented with Arabic digits (Megías et al., 2014; Megías & 

Macizo, 2015a, 2015b). On the contrary, in the latency analyses, we did not find 

differences between the related 1 and unrelated 1 conditions of this experiment with oral 

presentation of additions. As we have indicated, the paradigm and the stimulus set used 

by Megías et al. (2014, Megías & Macizo, 2015a, 2015b) were exactly the same as 

those employed here. The only difference between studies was the format in which 

participants received the arithmetic problems. Therefore, it is reasonable to assume that 

the lack of effect in the first trial of the current study was due to the oral presentation of 

problems. We take up this argument in the next paragraph. When we examined the 

second trial, we observed that participants took more time to respond to additions whose 

results were those of multiplying the operands of the first trial (2 + 6 = 8, preceded by 2 

+ 4) compared to unrelated additions (4 + 6 = 10, preceded by 2 + 4). This pattern 

suggests that the irrelevant multiplication result was inhibited in the first trial. Thus, 

when it was presented again in the second trial, participants needed additional time to 

retrieve it from long-term memory.  

 One key difference between the processing of a visual and an oral problem is 

that the last is distributed in a temporal ordered sequence. This temporal constraint 

determines the processing of problems since participants would have time to activate 
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the addition result and the related multiplication result before the problem was 

completely listened. This explanation might account for the presence of associative 

confusion effect in previous studies (Megías et al., 2014, Megías & Macizo, 2015a; 

2015b) and its absence in the current experiment. In other words, participants might 

resolve the coactivation of arithmetic facts after listening the two operands of an oral 

addition so the competition would be resolved before the oral result was presented and 

no interference effect would be found in the reaction time analyses. This explanation 

agrees with studies in which the associative confusion effect is not found with visual 

arithmetic problems when there is a delay between the presentation of the Arabic digit 

operands and the addition result (Lemaire et al., 1991). In Experiment 2, we directly 

addressed whether temporal constraints of auditory presentation determined the 

differences found between oral arithmetic (Experiment 1) and visual arithmetic (Megías 

et al., 2014; Megías & Macizo, 2015a, 2015b) in the coactivation of arithmetic facts. 

 

EXPERIMENT 2 

 

 This experiment aimed at determining if the lack of the associative confusion 

effect in the first trial of Experiment 1 was due to the temporal sequence of arithmetic 

problems when they were presented orally. Previous studies have corroborated the 

associative confusion effect when additions are visually presented with Arabic digits 

(Megías et al., 2014; Megías & Macizo, 2015a, 2015b; Winkelman & Schmidt, 1974; 

Zbrodoff & Logan, 19860). In these previous studies the operands and the result of the 

problem are always presented simultaneously. On the contrary, in Experiment 2, we 

used visual problems with Arabic digits and we adapted the timing in which the 

operands and the result appeared. Thus, the operands and the result of each addition 

were shown for the same specific duration of each auditory problem used in Experiment 

1. If the sequential presentation determined the pattern of data found in Experiment 1 

with oral additions, the same results would be found here with problems presented 

visually. Furthermore, in the second trial of the study, which was intended to evaluate 

the consequences of selection-by-inhibition, we also expected to find the same results as 
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those reported in Experiment 1: Participants would take longer time to respond to 

related 2 trials relative to unrelated 2 trials as sing of the time needed to overcome 

inhibition.  

 

 Method 

 Participants. A new set of forty-four students from the University of Granada 

(35 women and 9 men) took part in Experiment 2. None of them participated in 

Experiment 1. The mean age of participants was 21 years (SD = 2.05). Forty-three 

participants were right-handed and only 1 was left-handed. They did not report history 

of numerical or auditory problems. All the participants gave informed consent to 

participate in the study and their participation was remunerated with academic credits. 

Similarly to Experiment 1, the participants completed a questionnaire to determine their 

use of simple arithmetic (Colomé et al., 2011) before performing the experimental task 

(see Table 1). Their percentage of calculation of addition problems on daily basis was 

40.34% (SD = 15.79), and most of participant learned multiplication tables orally 

(78.14%, SD = 29.78). More important, the participants of Experiments 1 and 2 were 

equated in the use of simple arithmetic (all ps > .05). As in Experiment 1, we evaluated 

the participants’ knowledge about multiplication tables. The percentage of correct 

responses in the multiplication production task was 87.75% (SD = 6.78), similar to the 

percentage obtained by participants of Experiment 1 (88.12%), t(72) = -.22, p = .83. 

 

Design and Materials. The task and the experimental conditions in the first and 

second trials of this experiment were the same that those of Experiment 1. The only 

difference was that the arithmetic problems were presented with Arabic digits in this 

experiment.  

 

Procedure. In order to simulate the temporal sequence in which oral problems 

were presented in Experiment 1, the audio file associated to each problem was carefully 

examined and then, it was divided in the constituents of the problem. We computed the 
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duration of the first operand, the symbol (+) and the second operand. Furthermore, we 

took the duration of the oral results of problems in Experiment 1. 

The duration of the additions (first operand, symbol and second operand) was 

equated in the two conditions of the first and second trials. In the first trial, there were 

not differences between related 1 and unrelated 1 conditions (M = 1663 ms and M = 

1659 ms, respectively), t(18) = 0.08, p = .94. Similarly, in the second trial, there were 

not differences between related 2 and unrelated 2 conditions (M = 1638 ms and M = 

1641 ms, respectively), t(18) = -0.04, p = .97. We also controlled for the duration of the 

results in the two conditions of trial 1 and 2. In the first trial, there were no difference 

between the related 1 condition and the unrelated 1 condition, t(18) = .14, p = .89. In the 

second trial, the duration of the result problem was similar in related 2 condition and the 

unrelated 2 condition (M = 551 ms and M = 543 ms, respectively), t(18) = .13, p = .90. 

In Experiment 2, the stimuli (problems presented with Arabic digits) were 

always presented in the middle of the screen in black color (Arial font, 30 point size) on 

a white background. As in Experiment 1, the first trial began with a fixation point in the 

middle of screen for 500 ms. Afterwards, the first operand, the symbol and the second 

operand were presented in succession with the same durations as those of the same 

elements (in the same problem) used in Experiment 1. The mean duration of these 

elements were M = 370 ms (SD = 59.52) for the first operand, M = 441 ms (SD = 75.25) 

for the symbol (+), and M = 850 ms (SD = 102.17) for the second operand. After the end 

of the second operand, the result of the problem was presented until the participant’s 

response. Once the participant responded to the first trial, the second trial appeared with 

the same sequence of events as that of the first trial: a fixation point for 500 ms, the 

operand 1 (M = 526 ms, SD = 124.42), the symbol (M = 333 ms, SD = 84.47), the 

operand 2 (M = 781 ms, SD = 168.39), and the result until the participant’s response. 

Other details were similar to those of Experiment 1.  
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Results 

The percentage of data eliminated from the latency analysis and submitted to the 

accuracy analysis was 6.19% in the first trial and 5.11% in the second trial. 

Furthermore, the trimming procedure was the same that in Experiment 1 (data points 

that after standardization were 3 SD outside of the normal distribution of the data, 

Tabachnick & Fidell, 2001). The percentage of outliers was 8.36% in the first trial, and 

11.53% in the second trial. As in Experiment 1, we performed ANOVAs on reaction 

times and percentage of errors separately for the first and second trials (see Table 4). 

 

Table 4. Results obtained in Experiment 2 

  RT Diff. 

 

Unrelated 1 

First Trial 

764 (23) 

 

Related 1 756 (23) -8
ns

 

 

Unrelated 2 

Second Trial 

786 (26) 

 

Related 2 729 (22) 58* 

Note. Mean reaction times in milliseconds for each condition in the first and second trials. 

Standard errors are reported into brackets. RT Diff. indicates the difference in milliseconds between 

related minus unrelated conditions. *p < .05, 
ns

p > .05 

 

 First Trial. ANOVA on reaction times with relation 1 as a within-participant 

variable did not show significant differences between related 1 condition (M = 756 ms, 

SE = 23.21) and unrelated 1 condition (M = 764 ms, SE = 23.45), F < 1. As in 

Experiment 1, participants took the same time in verifying related 1 trials (i.e., 2 + 4 = 

8) and unrelated trials (i.e., 2 + 4 = 10). 

 On the other hand, the ANOVA on percentage of errors showed differences 

between related 1 condition (M = 9.26%, SE = 1.43%) and unrelated 1 condition (M = 

3.13%, SE = 0.77), F(1, 43) = 25.50, p < .001, ηp
2
 = .37, so that participants committed 
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a higher percentage of errors when the result presented with the addition problem was 

the same of multiplying their operands (i.e., 2 + 4 = 8)  in comparison to unrelated trials 

(i.e., 2 + 4 = 10). 

 Second Trial. ANOVA on reaction times with relation 2 as a within-participant 

variable showed significant the difference between related 2 trials (M = 786 ms, SE = 

25.97) and unrelated 2 trials (M = 729 ms, SE = 22.02), F(1, 43) = 16.77, p < .001, ηp
2
 = 

.28. Participants took more time to respond when the result coincided with the one of 

multiplying the operands of the previous trial (i.e., 2 + 6 = 8) compared to trials in 

which the result was not the multiplication of the previous trial (i.e., 4 + 6 = 10). 

 However, accuracy analysis did not show difference between the related 2 

condition (M = 5.34%, SE = 0.79) and the unrelated 2 condition (M = 4.89%, SE = 

0.86), F < 1. 

 

 Discussion 

 The pattern of results found in the current study paralleled that of Experiment 1. 

In the first trial, participants took the same time to respond to additions whose result 

was that of multiplying the operands (2 + 4 = 8) compared to unrelated additions (2 + 4 

= 10). In the second trial, additions whose results were those of multiplying the 

operands of the first trial (2 + 6 = 8, preceded by 2 + 4) were answered more slowly 

than unrelated additions (4 + 6 = 10, preceded by 2 + 4).  

 Previous studies on mental calculation with Arabic digits in which the operands 

and the result of the problem are presented simultaneously show the associative 

confusion effect (Megías et al., 2014, Megías & Macizo, 2015a; 2015b; Winkelman & 

Schmidt, 1974; Zbrodoff & Logan, 1986). In contrast, when we presented the Arabic 

digit operands and the result in a sequential manner no interference effect was found. 

The temporal order in which the Arabic digit problems were presented in Experiment 2 

paralleled that used in Experiment 1 with oral problems. The similar pattern of results 

found in both experiments suggests that participants had time to retrieve addition and 
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multiplication facts and they resolved competition before finishing the presentation of 

the result of the problem. We discuss this point further in the next section.  

 

GENERAL DISCUSSION 

 

 When individuals resolve an addition problem, they coactivate related 

multiplication facts in memory which increases the time needed to resolve the 

operation. For example, when individuals receive an incorrect addition (e.g., 2 + 4 = 8), 

they take longer to decide that it is wrong since the result (8) is that of multiplying the 

operands (2 and 4). This associative confusion effect has been observed in many studies 

when the problems contain Arabic digits (Grabner et al., 2013; Winkelman & Schmidt, 

1974; Zbrodoff & Logan, 1986). Furthermore, individuals seem to inhibit irrelevant 

arithmetic facts in order to select the one needed to resolve the problem. Thus, 

participants respond more slowly when another addition with the inhibited result is 

presented afterwards (2 + 6 = 8, preceded by 2 + 4) (Megías et al., 2014; Megías & 

Macizo, 2015a, 2015b). 

 The coactivation and selection of arithmetic facts in simple arithmetic has been 

explored with problems whose operands and results are presented in Arabic digit format 

(Megías et al., 2014; Megías & Macizo, 2015a) and written number words (Megías & 

Macizo, 2015b). The study with Arabic digits is justified since it is the most 

conventional format in simple arithmetic. However, the study of the auditory format is 

of interest since children typically learn to do simple arithmetic orally in elementary 

school (Colomé et al., 2011). Moreover, different theories about arithmetic 

representation highlight the relevance of the format in which problems are coded 

(Campbell & Clark, 1988, 1992; Dehaene, 1992; McCloskey, Sokol, & Goodman, 

1986; Noël & Seron, 1992). Thus, the current study was intended to fill the gap in the 

study of the processes underlying oral arithmetic.  

The results of Experiment 1 with problems presented in auditory format showed 

similar response times in problems where the result was the one of multiplying the 

operands (2 + 4 = 8) compared to an addition problem whose result was unrelated (2 + 4 
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= 10). The absence of associative confusion effect in Experiment 1 contrasts with many 

studies in which the effect is found with Arabic digits. Since this effect indexes 

processes associated to representation of arithmetic facts, the different pattern of results 

found with oral problems in Experiment 1 seems to support models in which format 

effects influence the processing beyond encoding stages of analysis (e.g., the encoding 

complex model, Campbell & Clark, 1988, 1992; Dehaene & Cohen, 1995). Other 

studies have supported format dependent processing of arithmetic facts too (e.g., 

Campbell, 1994; 1999). To illustrate, the problem size effect (responses are faster for 

problems with small vs. large operands) is larger for verbal versus digit format 

operations. Since the problem size effect is associated to the retrieval of arithmetic facts, 

the format x size interaction would indicate that the processing of mental arithmetic is 

format dependent.  

The results found in Experiment 1 with additions in the auditory format are 

difficult to reconcile with encoding accounts of simple arithmetic (McCloskey, 1992). 

According to this view, format effects are attributed entirely to differences at the 

encoding level where the input is translated to an abstract representation to access the 

answer of the problem. Thus, under this perspective, the same associative confusion 

effect found with Arabic digits (Megías et al., 2014; Megías & Macizo, 2015a, 2015b) 

should be observed with problems in the auditory format since format dependent effects 

would be restricted to the analyses of the auditory input only. In other words, the 

encoding view assumes an additive processing in which the encoding stage is 

functionally independent of the retrieval stage. On the contrary, the encoding complex 

model (Campbell, 1994; 1999) assumes an interactive viewpoint, so encoding 

conditions might affect the subsequent retrieval of arithmetic facts. The results found in 

Experiment 1 seem to support this interactive perspective. Arithmetic problems in the 

auditory format are received in a temporal sequence and this encoding condition 

constrained the way to which arithmetic facts were retrieved. In fact, we considered this 

characteristic of the auditory input as the critical factor that determined the results found 

in the first trial of Experiment 1. When participants were listening the two operands of 

the addition problem, they were able to retrieve the solution of the problem as well as 

the multiplication counterpart. Thus, before finishing the listening of the auditory 
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problem, the participants already solved the competition between coactivated arithmetic 

facts and no differences were found between the related and unrelated condition of the 

first trial. The results found in Experiment 2 support this argumentation. The associative 

confusion effect has been replicated in several studies with Arabic digits presented with 

the same paradigm as that used here (Megías et al., 2014; Megías & Macizo, 2015a, 

2015b). However, the effect was not found in Experiment 2 when the problems were 

presented in the Arabic digit format simulating the timing in which auditory problems 

were listened in Experiment 1 (temporal sequence of operands and solution). The 

absence of associative confusion effect with Arabic digits presented in a sequence of 

operands and results agrees with previous observations (Lemaire et al., 1991): When 

there is a sufficient delay between the presentation of operands and result (300 ms and 

longer time intervals) participants do not show interference due to the concurrent 

coactivation of arithmetic facts.  

The assumption that participants retrieved arithmetic facts before the addition 

solution was presented in Experiment 1 and 2 requires further elaboration. Since the two 

addition operands were presented in a sequential manner, the access to arithmetic facts 

might took place during the processing of the first operand or the second operand. 

Previous research supports the second alternative. Zhou et al. (2007) examined event-

related potentials elicited by single-digit problems to evaluate the access to arithmetic 

facts. To this end, they considered the operand-order effect as evidence of arithmetic 

fact retrieval: Participants take shorter times to respond to smaller-operand-first 

problems (e.g., 2 x 8) than to larger-operand-first problems (e.g., 8 x 4). In this study, 

multiplication problems were presented in auditory format and participants were asked 

to decide whether the proposed answer was correct or not. The results did not show 

operand-order effect during the presentation of the first operand. On the contrary, this 

effect appeared as early as 120 ms after the onset of the second operand (a greater 

negativity for large-operand-first problems relative to smaller-operand-first problems). 

Hence, these results suggest that the processing of the first operand did not lead to 

automatic activation of arithmetic facts. However, the retrieval of arithmetic facts might 

begin before the auditory second operand was finished.  



 

215 

 

 

 Future research will shed light on whether the coactivation of arithmetic facts 

with problems in the auditory format takes place during the processing of the second 

operand. Nevertheless, the studies commented above seems to suggest that when 

participants resolve problems whose operands and result appears one at a time (auditory 

format and Arabic digits presented in a sequential manner) arithmetic facts are quickly 

accessed. Moreover, the results obtained in the second trial of Experiment 1 and 2 

suggest that participants coactivated addition and multiplication arithmetic facts in the 

first trial so they used an inhibitory process to select the correct addition result. 

Participants took more time to respond when the result of multiplying the operands of 

the first trial was the correct result of the second trial (2 + 6 = 8, preceded by 2 + 4) 

relative to an unrelated condition (4 + 6 = 10, preceded by 2 + 4). Under the inhibitory 

account, participants suppressed the irrelevant result in the first trial, so an additional 

time was needed in the second trial to reactivate it and to answer the arithmetic problem 

correctly. This interference effect corroborates that found in many other studies with the 

same paradigm and suggests that inhibition is the underlying mechanism responsible to 

suppress irrelevant solutions in simple arithmetic.  
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CHAPTER VII 

SIMPLE ARITHMETIC DEVELOPMENT IN SCHOOL AGE: THE 

COACTIVAION AND SELECTION OF ARITHMETIC FACTS
1 

We evaluated the possible inhibitory mechanism responsible to select arithmetic 

facts in children from 8-9 to 12-13 years of age. To this end, we used an adapted 

version of the negative priming paradigm (NP paradigm) in which children received 

additions and they decided whether they were correct or not. When an addition was 

incorrect but the result was that of multiplying the operands (e.g., 2 + 4 = 8) only 

children from 10-11 years of age onwards took more time to respond compared to 

control additions with unrelated results, suggesting that they coactivated arithmetic 

knowledge of multiplications even when it was irrelevant to perform the task. 

Furthermore, children from 10-11 years of age onwards were slower to respond when 

the result of multiplying the operands was presented again in a correct addition 

problem (e.g., 2 + 6 = 8). This result showed the development of an inhibitory 

mechanism involved in the selection of arithmetic facts through formal education. 

 

 

 

 

 

 

 

 

 

 

1
 This paper was published in Journal of Experimental Child Psychology and it was co-authored by Pedro 

Macizo. 
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SIMPLE ARITHMETIC DEVELOPMENT IN SCHOOL AGE: THE 

COACTIVATION AND SELECTION OF ARITHMETIC FACTS  

 

 In the field of numerical cognition, it is assumed that arithmetic facts are stored 

in long-term memory within an associative network whose nodes are interrelated. When 

a simple problem is presented (i.e., an addition, 2 + 4), nodes that represent the 

operands of the problem (2 and 4) and that representing the solution (6) are activated, so 

people can provide the correct solution directly by retrieving the problem from memory 

(Campbell & Graham, 1985).  

 In early years of schooling, children expend a lot of time memorizing 

multiplication facts to solve the problems by the retrieval of the stored answers in 

memory (Siegler, 1986). Several studies have evaluated the changes in the use of 

retrieval of arithmetic facts with age (Cooney, Swanson & Ladd, 1988; Imbo & 

Vandierendock, 2007, 2008; Lemaire & Siegler, 1995). Imbo and Vandierendock 

(2008) examined this question in children from 2
nd

, 4
th

 and 6
th

 grade of elementary 

school; and showed that the use of retrieval from memory to resolve multiplication and 

addition problems increased with the educational level in a progressive manner (60%, 

80.5% and 79.5% in 2
nd

, 4
th

 and 6
th

 grade, respectively). Hence, the probability of using 

the retrieval from memory seems to increase when children advance in educational 

cycles.  

 When the associative network of arithmetic facts is established, adult individuals 

coactivate several related nodes during the resolution of mathematical problems 

(Ashcraft, 1992). Hence, when two operands of an addition are presented (i.e., 2 + 4), 

the result of multiplying the two operands (i.e., 8) is activated even when the 

multiplication result is not needed to resolve the addition problem. Thus, when 

individuals are solving additions, the coactivation of the arithmetic fact associated to the 

multiplication would compete and an interference effect would be observed so the 

participants’ performance in the addition task would be impaired.  

 There is empirical evidence to support the concurrent coactivation of arithmetic 

facts associated to additions and multiplications in adults (Winkelman & Schmidt, 
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1974; Zbrodoff & Logan, 1986; see Grabner, Ansari, Koschutnig, Reishofer & Ebner, 

2013, for the neural correlate of this coactivation effect). One procedure frequently used 

to corroborate this coactivation is the verification of additions (Winkelman & Schmidt, 

1974; Zbrodoff & Logan, 1986). In this task, a simple addition is presented (i.e., a pair 

of one-digit operands and a result) and participants have to decide whether the result is 

the correct solution of the addition problem. The critical trials are those associated to 

negative responses (incorrect addition problems). In these trials, participants show an 

interference effect, so they take more time to respond when the result presented with the 

addition is incorrect but it is the one of multiplying the operands (2 + 4 = 8) relative to a 

control condition in which the result is unrelated (2 + 4 = 10). This longer reaction time 

when the incorrect addition result is the one of multiplying the operands has been taken 

as an index of the simultaneous activation of addition and multiplication arithmetic facts 

(Grabner et al., 2013; Lemaire, Fayol, & Adbi, 1991; Winkelman & Schmidt, 1974; 

Zbrodoff & Logan, 1986). 

 With regard to child population, Lemaire et al. (1991) found that children from 

4
th 

to 5
th

 grade (9-10 year-old children) already presented interference effects due to the 

coactivation of arithmetic facts when they had to verify simple addition and 

multiplication problems. Moreover, these authors showed that this phenomenon was 

partially automatic because the activation of related answers was produced 

unintentionally in all cases after the presentation of the operands; and only partially 

because the coactivation effect disappeared when the experimental procedure included a 

delay between the operands and the result of the problem above 300 ms or 500 ms. This 

abolishment of the coactivation effect depended on grade: children of 4
th 

grade showed 

the interference effect when the delay between the operands and the result was 500 ms, 

but not with a small delay (300 ms); whereas the interference effect was eliminated with 

both delays in 5
th 

grade children. These results suggest that when educational grade 

increases, the strength of associations between operands and answers becomes stronger. 

Thus, children at a higher grade can select the correct answer quickly. Furthermore, the 

authors proposed that suppression of irrelevant answers underlie the selection of correct 

arithmetic facts, however, they did not explore this conclusion. The current study aimed 

to address this mechanism and its development with age.  
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 It is difficult to answer to a problem whose result is the one of multiplying their 

operands (i.e., 2 + 4 = 8). Nevertheless, people are able to resolve it correctly most of 

the time (i.e., to say that 2 + 4 = 8 is incorrect). It has been proposed that the conflict 

produced by the coactivation of several arithmetic facts is solved by an inhibitory 

mechanism (Campbell & Dowd, 2012; Campbell & Thompson, 2012; although see 

Censabella & Noël, 2004, for an alternative explanation). Campbell and colleagues 

(Campbell & Dowd, 2012; Campbell & Thompson, 2012) used an adaptation of the 

retrieval practice (RP) paradigm typically employed to demonstrate the inhibition of 

irrelevant information in adult population (Anderson, 2003; Anderson, Bjork, & Bjork, 

1994). In these studies, participants performed a practice phase of simple multiplication 

problems (i.e., 2 x 3 = ?; 4 x 6 = ?) and, afterward, the same operands were used in a 

second test phase with simple addition problems (i.e., 2 + 3 = ?; 4 + 6 = ?). The overall 

finding was that practicing the multiplication problems slowed the response times to 

solve additions whose operands were presented in the practice phase relative to the 

response to addition problems whose operands were not presented previously. This 

retrieval induced forgetting (RIF) effect was interpreted in terms of inhibitory processes. 

When participants solved the multiplication problems in the practice phase, the addition 

problems which competed with the multiplications needed to be inhibited. Therefore, 

participants took more time to reactivate the additions when they were presented in the 

test phase.  

 Moreover, recent evidence suggests that this inhibitory mechanism acts in a 

continuous manner in order to reduce interference when competition between arithmetic 

facts takes place (Megías, Macizo, & Herrera, 2014). Megías et al. designed an 

adaptation of the negative priming paradigm (NP paradigm) (Macizo, Bajo, & Martín, 

2010; Tipper & Driver, 1988) to address this issue. The original NP paradigm included 

two trials (Tipper, 1985; Tipper & Driver, 1988). In the first trial, two objects were 

presented simultaneously (prime stimuli) and participants had to ignore one of the 

objects while attending to the other. In the second trial, two probe stimuli were 

presented, the ignored object (the test stimulus) or a new object (the control stimulus) 

and participants had to categorize them. The results showed that with probe stimuli, the 

participants took more time to respond to the ignored object relative to the control 
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object, suggesting that the ignored object was inhibited in the first trial and more time 

was needed to reactivate it when it appeared again in the second trial.  

 Several adapted versions of the NP paradigm have been used previously to 

evaluate the role of inhibitory processes when children use strategies to perform logical-

mathematical tasks (Borst, Poirel, Pineau, Cassotti, & Houdé, 2012; Houdé & Borst, 

2014; Houdé & Guichart, 2001; Lubin, Vidal, Lanoë, Houdé, & Borst, 2013; Perret, 

Paour, & Blaye, 2003). To illustrate, Houdé and Guichart (2001) adapted the NP 

paradigm to Piaget’s conservation of number task. A set of 9 year-old children were 

presented with prime stimuli (two rows that contained the same number of items but 

differed in length) and they had to indicate whether the rows were numerically 

equivalent or not. To respond correctly to this task, children had to inhibit a strategy 

based on the length and realize that both rows had the same number of items. When 

probe stimuli were presented afterwards, children had to activate the inhibited strategy 

(the test stimulus) to resolve a problem where the length coincided with the number of 

items. In this situation, a negative priming effect was found, so that additional time was 

needed to reactivate the inhibited strategy again.  

 Megías et al. (2014) adapted the NP paradigm to evaluate the possible inhibitory 

mechanism responsible to resolve simple arithmetic facts. The authors used an 

arithmetic task in which additions were presented and adult participants decided 

whether they were correct or incorrect. The stimuli that participants had to ignore were 

the results associated to multiplying the addition operands. The task structure comprised 

blocks of two trials. In the first trial, in which prime stimuli were presented,  the 

participants took more time to respond to incorrect additions whose result were those of 

multiplying the operands (i.e., 2 + 4 = 8) relative to a control condition with unrelated 

results (i.e., 2 + 4 = 10). This interference effect corroborated that participants activated 

multiplication facts when they verified addition problems. In the second trial, in which 

two types of probe stimuli were presented, the participants took more time to respond 

when a correct addition was presented and the result was the one of multiplying the 

operands of the previous trial (the test stimulus, i.e., 2 + 6 = 8 preceded by 2 + 4) 

relative to a neutral condition (the control stimulus, i.e., 4 + 6 = 10 preceded by 2 + 4). 

This interference effect obtained in the second trial was interpreted as the consequence 
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of inhibiting the irrelevant multiplication result in the first trial. Hence, participants 

needed additional time to reactivate the inhibited result (i.e., 8) when it was presented 

again and it was the one needed to perform the task (i.e., 2 + 6 = 8).  

 This inhibitory mechanism to select and resolve simple arithmetic facts has not 

been evaluated in children to date, and there are reasons to think that it develops over 

the course of formal instruction in arithmetic. Firstly, the ability of inhibitory control 

emerges early in the third year of life (Gerstadt, Hong, & Diamond, 1994), reaching its 

greater development at the first stages of elementary school, when children are between 

6-8 years of age (Davidson, Amso, Anderson, & Diamond, 2006; Gerstadt et al., 1994; 

Korkman, Kemp, & Kirk, 2001). Secondly, it has been observed the relationship 

between inhibitory control and mathematical skills in children (Adams & Hitch, 1997; 

Bull, Johnston, & Roy, 1999; Bull & Scerif, 2010; Fürst & Hitch, 2000; Geary, 

Hamson, & Hoard, 2000; McLean & Hitch, 1999; Van der Sluis, de Jong, & Van der 

Leij, 2004). Bull and Scerif (2010) evaluated 7 year-old children in both inhibitory 

control functions and mathematic ability, which included simple and multi-digit 

additions and subtractions. The authors showed that children with low vs. high 

mathematical ability had more difficulty suppressing the automatic activation of the 

irrelevant dimension in the Stroop task and they had more perseveration errors in the 

Wisconsin Card Sorting task (they maintained learned strategies which interfered with 

the demands of the test). In the same line, Van der Sluis et al. (2004) found that 

arithmetic-disabled children from 4
th

 and 5
th 

grade relative to a similar age-control 

group had difficulty in a number Stroop task to suppress the prepotent answer of 

naming a digit (e.g., to say 2 when 222 was presented) when they had to name the 

number of digits presented (e.g., to say 3). Moreover, recent research has shown that 

inhibitory control processes are involved in other aspects of children’s numerical 

cognition such as the resolution of arithmetic word problems (Lubin, Vidal, Lanoë, 

Houdé, & Borst, 2013) and the resolution of non-symbolic numerical tasks (Gilmore, 

Attridge, Clayton, Cragg, Johnson, Marlow, Simms, & Inglis, 2013).  
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 The current study. The main aim of the present research was to establish the 

developmental course of inhibition as the underlying mechanism used by children to 

select arithmetic facts
1
. However, since inhibition acts when there is competition 

between arithmetic facts, in this study we also adressed the development of coactivation 

and competition of arithmetic facts with age. As we have argued before, there are 

reasons to believe that the establishment of an associate network to represent arithmetic 

facts might develop through formal learning. Similarly, the possible inhibitory 

mechanism involved in the selection of several arithmetic facts could develop with 

formal instruction in arithmetic at schooling.  

In order to trace emerging inhibitory control as children become increasingly 

skilled in arithmetic, we selected a sample of children from three different educative 

cycles, namely 8-9 year-old children (second cycle of elementary school), 10-11 year-

old children (third cycle of elementary school) and 12-13 year-old children (first cycle 

of high school). The rationale behind selecting these particular groups of children was 

based on research about the developmental trajectory of arithmetic cognition: When 

children are 8-9 year-olds, in second cycle of elementary school, the mental structure of 

addition facts and the processes responsible to select and retrieve the correct answer are 

being implemented gradually through formal instruction in arithmetic (Ashcraft, 1982; 

Ashcraft & Fierman, 1982; Ashcraft, 1992).When they are 10-11 year-olds, in third 

cycle of elementary school, children seem to have the associate network of arithmetic 

facts fully established relative to younger children (De Brauwer, Verguts, & Fias, 2006; 

Lemaire et al., 1991). Finally, we evaluated an additional group of 12-13 year-old 

children, who were in the first cycle of high school, to see the progress in the resolution 

of simple arithmetic problems after the acquisition of arithmetic facts is completed.  

 

1
Inhibitory control is the mechanism widely accepted to account for the selection of 

arithmetic facts in adult population (Campbell & Dowd, 2012; Campbell & Thompson, 2012; 

Megías et al., 2014). There are non-inhibitory explanations also such as the cumulative 

activation of correct arithmetic facts with time to overcome the initial high activation of 

incorrect arithmetic facts (Censabella & Noël, 2004). However, since the inhibitory account has 

received the major amount of empirical evidence, we decided to focus on it here.   
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Furthermore, although the ability of inhibitory control progresses strongly between 6 

and 8 years of age; it develop continues through educational experience (Davidson et 

al., 2006; Huizinga, Dolan, & Van der Molen, 2006; Leon-Carrion, García-Orza, & 

Perez-Santamaria, 2004). Therefore, the selection of arithmetic facts by means of an 

inhibitory mechanism would be fully observed in 12-13 year-old children. According to 

research discussed previously on the development of inhibition, we expected that the 

use of an inhibitory mechanism to select arithmetic facts would be functional when the 

network of arithmetic facts is established completely, at the age of 10-11 year-olds 

onwards. 

 In the current study, all children were tested in two experimental tasks. Firstly, 

they completed a production multiplication task in which they had to say the answer of 

one-digit multiplication problems. This task was selected with the aim of evaluating the 

acquisition of simple multiplication facts through educational experience. More 

important, children performed a verification task which was an adapted version of the 

NP paradigm (Tipper, 1985; Tipper & Driver, 1988) where they had to verify if simple 

addition problems were correct or incorrect. This task was used in order to evaluate the 

possible coactivation of several arithmetic facts associated to multiplication and 

addition problems by the manipulation of the first experimental trial, and the possible 

inhibitory mechanism responsible to select the correct answer and resolve the arithmetic 

task by the manipulation of the second experimental trial. 

 

METHOD 

 

 Participants. One-hundred twenty children from different schools participated 

in the study (62 boys and 58 girls). Participants were divided into three groups 

depending on the age which corresponded to different educational cycles (see Table 1). 

The first group included forty 8-9 year-old children who were in the second cycle of 

elementary school (3
rd

 and 4
th

 grades). The next group included forty 10-11 year-old 

children who were in the third cycle of elementary school (5
th

 and 6
th

 grades). Finally, 

the last group included forty 12-13 year-old children who were in first cycle of high 
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school (1
st
 and 2

nd
 grades). There were 7 left-handed children and 113 right-handed 

children. There were no differences in gender across the three groups of children, X
2
(2, 

N = 120) = 0.27, p = .88. Both parents and teachers gave informed consent about the 

participation of children in the study. Children considered by their teachers to have 

learning difficulties were not included in the study. All children were native Spanish 

speakers (90% of them were born in Spain). Children of a cultural minority (10% of 

children) were equally distributed across the experimental groups, X
2
(2, N = 120) = 

0.56, p = .76. The cultural level of children and the mathematical grade was similar in 

the three age groups (all ps > .05). Demographic characteristics of children evaluated in 

the current study are reported in Table 1. 

 

Table 1. Demographic characteristic of children evaluated in the study 

 8-9 year-old children 10-11 year-old 

children 

12-13 year-old 

children 

Mean age 8 years and 9 months 

(SD = 0.54) 

10 years and 7 

months 

(SD = 0.67) 

12 years and 11 

months 

(SD = 0.92) 

Educational cycle 2
nd

 cycle of 

elementary school (3
rd

 

and 4
th

 grades) 

3
rd

 cycle of 

elementary school 

(5
th

and 6
th

 grades) 

1
st
 cycle of high 

school (1
st
 and 

2
nd

 grades) 

Gender (female - 

male) 

45% - 55% 50% - 50% 50% - 50% 

Cultural minority 12.5%  10%  7.5%  

Cultural level (0 - 4) 1.85 (SD = 0.42) 1.82 (SD = 0.52) 1.7 (SD = 0.41) 

Mathematical grade 

(0 - 10) 

8.21 (SD = 1.28) 8.41 (SD = 1.4) 7.72 (SD = 1.86) 

Note. Cultural minority included children who belonged to a minority social group or her/his 

family was from foreign countries. Cultural level of each child was evaluated by parents according to the 

frequency of use of educational material such as books, papers, internet or encyclopedia at home; the visit 

of cultural places and exhibitions; and the reading and writing habits of children in a Likert scale (from 0 
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as never to 4 as always). Mathematical grade obtained by each child in the previous semester in a 10 

point scale (0-insuficient, 10-excellent) where the passing grade was 5. 

 

 Design and Materials. We used a multiplication task to evaluate the children’s 

knowledge about multiplications tables with the operands that were used in the main 

experiment (verification of arithmetic problems). Children received multiplication 

tables from 1 to 4 (i.e., 2 x 4 = ?) and they had to say aloud the correct result (i.e., 8). 

This task included twenty-three multiplication problems with two one-digit operands 

presented in ascending order. The problems were presented randomly. 

 To evaluate the possible effects of coactivation and inhibition of arithmetic facts, 

we used a verification task in which children received one-digit additions and they 

decided whether they were correct or incorrect (see Figure 1).  

Figure 1.  Adapted negative priming paradigm used in the current study.  

 

Note. Adapted negative priming paradigm used in the current study. The verification task was 

presented in blocks of two trials. The first trial started with a fixation point followed by an addition 
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problem. Two additions could be presented: Related 1 additions (i.e., 2 + 4 = 8) or Unrelated 1 additions 

(i.e., 2 + 4 = 10). After the participant’s response, the second trial started with a fixation point followed 

by the second addition problem from the Related 2 condition (i.e., 2 + 6 = 8) or the Unrelated 2 condition 

(i.e., 4 + 6 = 10). 

 Participants received the verification task in blocks of two trials. In the first trial, 

two conditions were manipulated within-subject in order to evaluate the coactivation 

effect in simple arithmetic. The Related 1 condition was composed of an incorrect 

addition whose result was that of multiplying the operands (i.e., 2 + 4 = 8). The 

Unrelated 1 was a control condition that included an incorrect addition whose result was 

not the one of multiplying the operands (i.e., 2 + 4 = 10). In the second trial, two 

conditions were also manipulated within-subject in order to evaluate the possible 

inhibitory mechanism involved in the selection of simple arithmetic facts. The Related 2 

trials were a test condition that included a correct addition whose result was the one of 

multiplying the operands of the previous trial (i.e., 2 + 6 = 8). The Unrelated 2 trials 

were a control condition that contained a correct addition with a result which was not 

the one of multiplying the operands of the previous trial (4 + 6 = 10). The complete set 

of experimental stimuli is presented in Appendix 1. 

 To make the experimental blocks of trials, 20 false additions were selected in the 

first trial (10 related 1 additions and 10 unrelated 1 additions), and 20 correct additions 

were used in the second trial (10 related 2 additions and 10 unrelated 2 additions). 

Across participants, each addition in each condition of trial 1 (related 1 and unrelated 1 

additions) was presented half of the times followed by a related 2 addition and the other 

half they were followed by an unrelated 2 addition. Therefore, the related 2 and 

unrelated 2 additions were preceded an equal number of times by related 1 trials and 

unrelated 1 trials. Each participant received the experimental block of trials twice. 

Hence, for each participant there was a total number of 40 observations in each 

condition of trial 1 (related 1 and unrelated 1) and each condition of trial 2 (related 2 

and unrelated 2). 

 The additions used in the verification task were carefully selected to equate them 

in several factors that might determine possible differences across conditions in the first 

and second trial of the task. All additions were composed of one-digit operands and the 
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two operands of each problem were presented in ascending order (i.e., 2 + 6) and never 

in descending order (i.e., 6 + 2 was not used). The parity (even and odd digits) of 

operands and results was equally distributed across the conditions of the first trial and 

second trial of the experimental blocks. In each trial, the solution corresponded to 

multiplication tables from 1 to 4 and the solution was never one of the two operands 

presented in the addition (i.e., 2 + 1 = 2 was not presented). 

 In the first trial, the related 1 condition and the unrelated 1 condition were 

equated in problem size (the sum of the two operands in both conditions was exactly the 

same: 7.40). The size of the incorrect results presented in the related 1 condition and the 

unrelated 1 condition was also similar (11.80 and 11.60, respectively), t(18) = 0.12, p = 

.90. Also, the distance between the incorrect result presented to the participants and the 

correct result of the addition in the two conditions of the first trial was exactly the same 

(4.40). In the second trial, the problem size was equated in the related 2 condition 

(11.80) and the unrelated 2 condition (11.60), t(18) = 0.12, p = .90. In order to maintain 

the same problem size in the two conditions of trial 2, one addition problem in the 

related 2 condition (7 + 9 = 16) and one problem in the unrelated 2 condition (4 + 6 = 

10) were repeated. Other problems could be repeated to maintain this criterion. Thus, 

the repeated problems were randomly selected. 

We performed a pilot study in order to check that there were no differences in 

reaction times (RTs) and accuracy when children answered to the addition problems 

used in the related 2 and unrelated 2 conditions without any manipulation. We evaluated 

a sample of 54 children recruited from the same schools that in the experiment but that 

did not participate in the main study (eighteen 8-9 year-old children, eighteen 10-11 

year-old children and eighteen 12-13 year-old children). The children had to perform a 

production task which contained the addition problems presented in the related 2 and 

unrelated 2 conditions. In this task, the order of presentation of additions was 

pseudorandom so we controlled that the result of one addition was different from the 

operands and the result of the previous addition. We analyzed the error percentages, the 

mean RT and the median RT on correct responses with Relation 2 (related 2 and 

unrelated 2) as a within-subject factor and age group (8-9 year-olds, 10-11 year-olds and 

12-13 year-olds) as a between-subject factor. There were no differences in the 
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percentage of errors associated to additions in the related 2 condition (9.47%) and the 

unrelated 2 condition (8.44%), F < 1. Moreover, the results on the mean RT did not 

show significant differences between related 2 additions (1685 ms) and unrelated 2 

additions (1658 ms), F < 1. Similarly, the median RT was equated in the related 2 

condition (1672 ms) and the unrelated 2 condition (1624 ms), F < 1. Furthermore, the 

Relation 2 x Age group interaction was not significant in any case (all ps > .05). 

Furthermore, we controlled for the amount of similarities between the additions 

used in the first trial and those corresponding to the two conditions of the second trial 

(related 2 and unrelated 2). The numerical distance between the incorrect result 

presented in the first trial and the second trial was exactly the same in the related 2 

condition and the unrelated 2 condition (1.40). The difference between the problem size 

in the first trial and the second trial was exactly the same in the related 2 condition and 

the unrelated 2 condition (4.40). The number of repetitions between digits presented in 

the first trial and the second trial (i.e., 2 was repeated in 2 + 3 = 6 followed by 2 + 4 = 

6), was exactly the same in the related 2 condition and the unrelated 2 condition (8 

repetitions).  

 To avoid the participants noticing the structure of the experimental blocks (a 

sequence of an incorrect operation in the first trial and a correct operation in the second 

trial), the experimental blocks were randomly intermixed with 10 filler blocks of trials 

which were repeated four times. The correct responses in the first and second trial of 

these blocks were ‘yes’-’yes’, ‘no’-’no’, and ‘yes’-’no’, respectively. Therefore, the 

sequence of responses within each block of two trials was unpredictable through the 

experiment. The filler blocks included 6 addition problems and 4 multiplication 

problems (see Appendix 2). 

 Before starting the verification task, the participants performed four blocks of 

practice trials (2 pairs of additions and 2 pairs of multiplications) with problems that 

were not used in the main experiment. 
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 Procedure. The tasks of this study were designed and controlled by E-prime 

experimental software, 1.1 version. The stimuli were always presented in the middle of 

the screen in black color on a white background. Participants were tested individually 

outside their regular classroom, in a room provided by the school for this purpose. 

Children were seated at approximately 60 cm from the computer screen.  

The multiplication task began with a fixation point in the middle of screen for 

2000 ms; then the multiplication problem was presented until the participant’s response. 

All problems were presented in Arabic digit format. Reaction times were collected 

using a microphone ATR 20 with low impedance connected to a PST serial Response 

Box. The participants’ oral responses were recorded in audio files and afterwards, they 

were checked in order to eliminate incorrect responses in the RT analyses.  

The verification of arithmetic problems task was presented in blocks of two 

trials. The problems were presented in Arabic digits. Participants had to decide if the 

result of each problem was correct or incorrect. The first trial began with a fixation 

point in the middle of screen for 500 ms; followed by the arithmetic problem until the 

participant’s response. After giving the answer, the second trial appeared with the same 

sequence of events as that of the first trial: a fixation point for 500 ms and the arithmetic 

problem until the participant’s response. After each block of two trials, the participants 

were instructed to press the space bar to continue with the following block. Participants 

were instructed to respond by pressing the keys labeled as ‘correct’ and ‘incorrect’. The 

‘correct’ and ‘incorrect’ key to left and right position assignment was counterbalanced 

across participants. The duration of the experiment was approximately 50-60 minutes 

depending on the participant. 

 

RESULTS 

 

Multiplication task. Only correct responses were included in the RT analyses. 

Data points were excluded from the RT analyses if: (a) the participants produced 

nonverbal sounds that triggered the voice key, (b) the participants stuttered or hesitated 
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in producing the result of the problem, (c) the participants produced something different 

than the result requested. The percentage of errors was 9.93% (13.59% in 8-9 year-old 

children, 8.15% in 10-11 year-old children and 8.04% in 12-13 year-old children). 

Afterward, the RTs associated to correct responses were trimmed following the 

procedure described by Tabachnick and Fidell (2001) to eliminate univariate outliers 

(data points that after standardization were 3 SD outside of the normal distribution for 

each age group). The percentage of outliers was 2.32% in 8-9 year-old children, 4.95% 

in 10-11 year-old children and 7.01% in 12-13 year-old children. The RT and error data 

were submitted to analyses of variance (ANOVA) with age group as a between-subject 

factor.  

In the RT analysis, there were significant differences among age groups, F(2, 

105) = 29.12, p < .001, η
2 

= 0.36. The group of 8-9 year-old children were slower to 

respond to one-digit multiplications (M = 1964 ms, SE = 61.14) than 10-11 year-old 

children (M = 1546 ms, SE = 61.14), F(1, 78) = 19.06, p < .001, η
2
 = 0.20 (418 ms 

difference). Similarly, 10-11 year-old children were slower compared to 12-13 year-old 

children (M = 1253, SE = 73.07), F(1, 66) = 13.71, p < .001, η
2 

= 0.17 (292 ms 

difference). Likewise, 8-9 year-old children were slower in comparison to 12-13 year-

old children (710 ms difference), F(1, 66) = 53.16, p < .001, η
2
 = 0.45 (see Figure 2a). 

In the accuracy analyses the main effect of age group was significant, F(2, 117) 

= 5.25, p =.01, η
2
 = 0.08. Additional analyses showed that 8-9 year-old children 

committed a higher percentage of errors (M = 13.59%, SE = 1.38) compared to10-11 

year-old children (M = 8.15%, SE = 1.38), F(1, 78) = 6.40, p = .01, η
2
 = 0.08; but there 

were no differences in the percentage of errors committed by 10-11 year-old children 

and 12-13 year-old children (M = 8.04%, SE = 1.38), F < 1. Finally, the difference 

between 8-9 year-old children and 12-13 year-old children was significant, F(1, 78) = 

6.83, p = .01, η
2
 = 0.08. As shown in Figure 2b, 8-9 year-old children committed more 

errors in simple multiplications relative to 10-11 year-olds and older children. 
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Figure 2. Reaction times (in milliseconds) (a), and accuracy results (percentage 

of errors) (b), in multiplication task as a function of age groups.  

 

 

Note. a) Mean percentage of errors in the multiplication task as a function of age groups: 8-9, 10-

11, 12-13 year-old children. b) Mean reaction times in milliseconds in the multiplication task as a 

function of age group: 8-9, 10-11, 12-13 year-old children. Standard errors are presented in error bars. *p 

< .05, 
ns

p > .05 
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Verification task. Trials in which participants committed an error were 

submitted to the accuracy analyses (6.9% in the first trial and 6.5% in the second trial: 

8.16% and 7.72% in 8-9 year-old children, 6.22% and 6.94% in 10-11 year-old children, 

6.31% and 4.84% in 12-13 year-old children). We filtered correct RT data following the 

same procedure used to analyze the data of the multiplication task. Trials outside 3 SD 

the normal distribution in 8-9 year-old children were 6.53% in the first trial and 3.83% 

in the second trial. In 10-11 year-old children, were eliminated 6.22% in the first trial 

and 6.94% in the second trial. Finally, in 12-13 year-old children were eliminated 

4.09% in the first trial and 6.34% in the second trial. We analyzed the two conditions of 

the first trial and the second trial separately given that we were interested in possible 

differences between each condition within each trial
2
. Furthermore, a factorial design 

including the condition (related vs. unrelated) and the trial (first and second) could not 

be considered because the problem size of additions in the second trial was significantly 

larger (11.70) than that of the first trial (7.40), t(38) = 5.09, p < .001. This difference 

might produce a problem size effect (Ashcraft, 1992; Groen & Parkman, 1972) which 

consists in longer reaction times and more errors when solving additions with large 

problem size relative to problems with small problem size.  

 

2
It is important to note that the type of second trial (related 2 vs. unrelated 2) could not 

be analyzed depending on the type of first trial (related 1 vs. unrelated 1) due to a repetition 

effect that might have a different impact on the two conditions of the second trial. For example, 

while the solution 8 is repeated in the related 2 condition: 2 + 6 = 8, after the related 1 condition 

2 + 4 = 8; the solution 10 is repeated in the unrelated 2 condition 4 + 6 = 10 after the unrelated 1 

condition 2 + 4 =10. Note, however, that this unbalanced repetition effect is avoided when 

related 2 and unrelated 2 conditions are directly compared since in both conditions, half of the 

solutions were explicitly presented in the previous trial.   
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Hence, we report first the results obtained in the first trial (related 1 condition vs. 

unrelated 1 condition) and then the results found in the analysis of the second trial 

(related 2 condition vs. unrelated 2 condition) (see Table 2)
 3

. 

 

Table 2. Results in verification task in each age group 

First Trial 

 Related 1 condition 

(2 + 4 = 8) 

Unrelated 1 condition 

(2 + 4 = 10) 

8-9 year-old children 3324 ms (102.02) 

12.63% (1.67) 

3292 ms (101.36) 

3.69% (0.88) 

10-11 year-old children 2407 ms (102.02) 

8.81% (1.67) 

2278 ms (101.36) 

3.63% (0.88) 

12-13 year-old children 1653 ms (102.02) 

9.88% (1.67) 

1589 ms (101.36) 

2.75% (0.88) 

                  Second Trial 

 Related 2 condition 

(2 + 6 = 8) 

Unrelated 2 condition 

(4 + 6 = 10) 

8-9 year-old children  4186 ms (166.51) 

8.31% (1.15) 

4061 ms (161.23) 

7.13% (0.94) 

10-11 year-old children 2953 ms (166.51) 

7.88% (1.15) 

2620 ms (161.23) 

6.00% (0.94) 

12-13 year-old children 1824 ms (166.51) 

4.88% (1.15) 

1653 ms (161.23) 

4.81% (0.94) 

Note. Mean reaction times in milliseconds (ms) and percentage of errors for each condition in 

first and second trial. Standard errors are reported into brackets.  

 

First Trial. We performed an ANOVAs on the RTs and percentage of errors 

with the variable Relation 1: related 1 (i.e., 2 +4 = 8) and unrelated 1 (i.e., 2 + 4 = 10) as 

a within-subject factor and the variable Age group (8-9 year-old children, 10-11 year-

old children, and 12-13 year-old children) as a between-subject factor. The RT analysis 
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showed a main effect of relation 1, F(1, 117) = 15.08, p < .001, ηp
2
 = 0.11. The 

responses to related 1 trials were slower (M = 2461 ms, SE = 58.90) than the responses 

to unrelated 1 trials (M = 2386 ms, SE = 58.52) (75 ms difference). Furthermore, the 

difference across age groups was significant also, F(2, 117) = 71.24, p < .001, ηp
2
 = 

0.55. Bonferroni-corrected post-hoc comparisons showed that 8-9 year-old children 

were slower to respond (M = 3308 ms, SE = 100.31) than 10-11 year-old children (M = 

2342 ms, SE= 100.31) (966 ms difference); they responded more slowly than 12-13 

year-old children (M = 1621 ms, SE = 100.31) (722 ms difference); and 8-9 year-old 

children were slower than 12-13 year-old children (1687 ms difference), all ps < .001. 

However, the Relation 1 x Age interaction was not significant, F(2, 117) = 2.23, p = .11. 

Since we were interested in the development of the coactivation effect through formal 

instruction in arithmetic, we analyzed the performance in the first trial for each age 

group separately (see Figure 3). For 8-9 year-old children, we did not find significant 

the difference between the related 1 condition (M = 3324 ms, SE = 139.60) and the 

unrelated 1 condition (M = 3292 ms, SE = 147.24), F < 1. For 10-11 year-old children, 

the difference between the related 1 condition (M = 2407 ms, SE = 90.17) and the 

unrelated 1 condition (M = 2278 ms, SE = 77.99) was significant, F(1, 39) = 20.01, p < 

.001, ηp
2
 = 0.34 (130 ms difference). Likewise, the difference between the related 1 

condition (M = 1653 ms, SE = 60.04) and the unrelated 1 condition (M = 1589 ms, SE = 

55.33) was significant for 12-13 year-old children, F(1, 39) = 8.13, p = .007, ηp
2
 = 0.17 

 

3
The analyses reported in text were performed also after controlling for the variability 

explained by the arithmetic knowledge of children. The mean reaction times and percentage of 

errors in the multiplication task and the mathematical grade obtained by children were 

standardized and the mean of these three variables for each child was introduced as covariate in 

the analyses. The pattern of results was the same as that reported in the main text. The 8-9 year-

old group did not show interference effects in either the first and second trials (ps > .21). 

However, the interference effects in the first and second trials were significant in the 10-11 

year-old group and the 11-12 year-old group (ps < .02).   
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 (64 ms difference). Moreover, analyses on the interference effect (RT in the related 1 

condition minus RT in the unrelated 1 condition) showed a marginal difference between 

10-11 year-old children (M = 130 ms, SE = 25.87) and 12-13 year-old children (M = 64 

ms, SE = 25.87), F(1, 78) = 3.26, p = .07. 

 

Figure 3. Interference effect in the first trial as a function of age groups. 

  

Note. Interference effect in the first trial as a function of age groups. Reaction time difference in 

milliseconds: Mean reaction time in related 1 condition (i.e., 2 + 4 = 8) minus mean reaction time in 

unrelated 1 condition (i.e., 2 + 4 = 10) obtained in the first trial of the verification task as a function of 

age group: 8-9, 10-11, 12-13 year-old children. Standard errors are presented in error bars. *p < .05, 
ns

p > 

.05. 

 

 Regarding the ANOVA on the percentage of errors, the main effect of relation 1 

was significant, F(1, 117) = 82.45, p < .001,ηp
2
 = 0.41. Participants committed more 

errors in related 1 trials (M = 10.44%, SE = 0.97) relative to unrelated 1 trials (M = 

3.35%, SE = 0.51). However, the effect of age group was not significant, F < 1, so the 

percentage of errors was similar across age groups (8.16% in 8-9 year-old children, 

6.22% in 10-11 year-old children and 6.31% in 12-13 year-old children). Finally, the 

Relation 1 x Age group interaction was not significant, F(2, 117) = 1.93, p = .15.  
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 Second Trial. We performed an ANOVA on RTs with Relation 2 (related 2 

condition and unrelated 2 condition) as a within-subject factor and the Age group (8-9 

year-old children, 10-11 year-old children, and 12-13 year-old children) as a between-

subject factor. The main effect of Relation 2 was significant, F(1, 117) = 36.49, p < 

.001, ηp
2
 = 0.24 (210 ms difference), such that the responses to related 2 trials were 

slower (M = 2988 ms, SE = 96.13) than the responses to unrelated 2 trials (M = 2778 

ms, SE = 93.09). Moreover, there were significant differences between the age groups, 

F(2, 117) = 55.07, p < .001, ηp
2
 = 0.48. Bonferroni-corrected post-hoc comparisons 

showed that 8-9 year-old children were slower (M = 4124 ms, SE = 161.10) than 10-11 

year-old children (M = 2786 ms, SE = 161.10) (1338 ms difference); 10-11 year-old 

children were slower relative to 12-13 year-old children (M = 1738 ms, SE = 161.10) 

(1048 ms difference); and 8-9 year-old children were slower to respond compared to 12-

13 year-old children (2385 ms difference), all ps < .001. Importantly, the interaction 

between Relation 2 (related 2 vs. unrelated 2) and Age group (8-9, 10-11 and 12-13 

year-old children) was significant, F(2, 117) = 3.28, p = .04, ηp
2
 = 0.05. As in the first 

trial, we analyzed the performance in the second trial for each age group separately (see 

Figure 4). In 8-9 year-old children, the RTs were similar in the related 2 condition (M = 

4186 ms, SE = 220.16) and the unrelated 2 condition (M = 4061 ms, SE = 230.00), F(1, 

39) = 2.40, p = .13. However, in 10-11 year-old children, the difference between the 

related 2 condition (M = 2953 ms, SE = 162.02) and the unrelated 2 condition (M = 

2620 ms, SE = 133.84) was significant, F(1, 39) = 33.30, p < .001, ηp
2
 = 0.46 (333 ms 

difference). Similarly, the difference between the related 2 condition (M = 1824 ms, SE 

= 91.95) and the unrelated 2 condition (M = 1653 ms, SE = 84.68) was significant in 12-

13 year-old children, F(1, 39) = 30.03, p < .001, ηp
2
 = 0.44 (171 ms difference). Further 

analyses showed that the interference effect (RT in the related 2 condition minus RT in 

the unrelated 2 condition), was larger in 10-11 year-old children (M = 333 ms, SE = 

46.39) relative to the interference found in 12-13 year-old children (M = 171 ms, SE = 

46.39), F(1, 78) = 6.06, p = .02, ηp
2
 = 0.07. 
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Figure 4. Interference effect in the second trial as a function of age groups. 

 

 Note. Reaction time difference in milliseconds: Mean reaction time in related 2 condition (i.e., 2 

+ 6 = 8 preceded by 2 + 4) minus mean reaction time in unrelated 2 condition (i.e., 4 + 6 = 10 preceded 

by 2 + 4) obtained in the second trial of the verification task as a function of age groups: 8-9, 10-11, and 

12-13 year-old children. Standard errors are presented in error bars. *p < .05, 
ns

p > .05.  

 Moreover, the accuracy analysis showed a main effect of relation 2, F(1, 117) = 

4.99, p = .03, ηp
2
 = 0.04. Participants committed more errors in related 2 trials (M = 

7.02%, SE = 0.67) relative to unrelated 2 trials (M = 5.98%, SE = 0.54). However, the 

effect of age was not significant, F(2, 117) = 2.34, p = .10, so the percentage of errors 

was similar in all age groups: 8-9 year-old children (M = 7.72%, SE = 0.97), 10-11 year-

old children (M = 6.94%, SE = 0.97) and 12-13 year-old children (M = 4.84%, SE = 

0.97). Furthermore, the Relation 2 x Age group interaction was not significant, F(2, 

117) = 1.28, p = .28. 

  

Multiplication skills and verification of arithmetic problems. We performed 

additional analyses to evaluate whether the coactivation and selection of arithmetic facts 

were modulated by the proficiency of children in the resolution of multiplication 

problems. To this end, in each age group (8-9 year-old children, 10-11 year-old 

children, and 12-13 year-old children) we sorted the participants based on their accuracy 

in the multiplication task. Afterwards, we considered as variable the multiplication 
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accuracy in each age group (low skilled children and high skilled children) depending 

on whether their accuracy in the multiplication task was above or below the median 

accuracy by group.  

 Regarding the performance in the first trial, the Relation 1 x Age group x 

Multiplication accuracy interaction was significant, F(2,114) = 3.78, p = .03, ηp
2
 = 0.06. 

In 8-9 year-old children, there was a Relation 1 x Multiplication accuracy interaction, 

F(1, 38) = 6.81, p = .01, ηp
2
 = 0.15. High skilled participants in the multiplication task 

showed significant differences between the related 1 condition (M = 2937 ms, SE = 

152.46) and the unrelated 1 condition (M = 2796 ms, SE = 144.89) (141 ms difference), 

F(1, 19) = 6.81, p = .002, ηp
2
 = 0.40; whereas participants with lower accuracy in the 

multiplication task did not show significant the difference between the related 1 (M = 

3711 ms, SE = 179.19) and the unrelated 1 (M = 3789 ms, SE = 177.52) conditions, F(1, 

19) = 1.10, p = .31. However, the Relation 1 x Multiplication accuracy interaction was 

not significant in 10-11 year-old children, F < 1; and 12-13 year-old children, F < 1. 

However, in the second trial the Relation 2 x Age group x Multiplication accuracy 

interaction was not significant, F < 1.  

 Furthermore, we examined whether the interference effects obtained in the first 

and second trials of the verification task were predicted by indexes of mathematical 

knowledge. To this end, we performed a multiple linear regression analyses with the 

multiplication reaction time, the multiplication accuracy (percentage of errors in the 

multiplication task), and the mathematical grade (grade obtained by each child in the 

previous semester) as predictors; and the interference effect in the first trial (RT in the 

related 1 condition minus RT in the unrelated 1 condition) and the second trial (RT in 

the related 2 condition minus RT in the unrelated 2 condition) as dependent variables. 

When the interference effect in the first trial was considered, the regression model was 

significant, R
2
 = .09, F(3,92) = 3.14, p = .03. The only significant predictor was the 

multiplication accuracy, t(92) = -3.06, p =.003 (see Table 3). A decrease in the number 

of errors in the multiplication task was accompanied by an increase in the interference 

effect (b = -.33). However, when the interference effect in the second trial was 

examined, the multiple linear regression analyses was not significant, F < 1. 
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Table 3. Results of regression analyses with mathematical competences as 

predictors of the interference effects obtained in the study 

 B Standard error Β 

  Model of the interference in the First Trial (R
2
 = .09)

 
 

Constant 129.88 144.56  

Multiplication reaction time 0.06 0.05 .12 

Multiplication accuracy -7.78 2.55 -.33* 

Mathematical grade -8.20 15.25 -.05 

  Model of the interference in the Second Trial (R
2
 = .03)  

Constant 100.94 276.70  

Multiplication reaction time 0.11 0.10 .12 

Multiplication accuracy -6.67 4.87 -.15 

Mathematical grade 0.96 29.18 .00 

Note. Results of regression analyses with the interference effect in the first trial and the second 

trial of the experiment as dependent variable and the predictors: multiplication reaction time, 

multiplication accuracy (percentage of errors in the multiplication task), and mathematical grade (grade 

obtained by each child in the previous semester). The R square of the models in the first and second trials 

are reported into brackets.*p < .05. 

 

DISCUSSION 

 

 The main goal of the current study was to evaluate the development of an 

inhibitory mechanism to select arithmetic facts in children through formal education in 

mathematical knowledge. We evaluated also the arithmetic performance and the 

coactivation of arithmetic facts in children. The results obtained in the multiplication 

task showed a lineal increase in arithmetic performance associated to the age of children 

in different educational cycles. The 8-9 year-old children were slower to give a correct 

answer to the multiplication problem relative to 10-11 and 12-13 year-old children. 

Similarly, 12-13 year-old children were faster in the multiplication task than 10-11 year-

old children. This improvement in the reaction time of multiplication problems 
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associated to the educational level has been previously found in the literature (Campbell 

& Graham, 1985; De Brauwer et al., 2006; De Brauwer & Fias, 2009) and it can be 

understood as an index of the increased automaticity with which arithmetic facts are 

retrieved from memory (Koshmider & Ashcraft, 1991). However, it could be argued 

that the pattern of response time results was not specifically associated to the 

development of arithmetic skills but that it was a consequence of a general improvement 

in the processing speed with age. In fact, previous research has shown that the speed of 

encoding and retrieving information emerges and constantly improves with formal 

education regardless of the specific task children perform (Kail, 1991; Kail, & 

Salthouse, 1994; Miller & Vernon, 1997). Hence, more interesting were the benefits 

associated to formal education in response accuracy when children resolved 

multiplication problems. The 8-9 year-old children had a higher percentage of errors in 

the multiplication task relative to 10-11 and 12-13 year-old children; while no 

differences were found between 10-11 and 12-13 year-old children. These results 

suggest that the acquisition of arithmetic facts associated to multiplication problems 

were formed when children took the third cycle of elementary school and they used 

them afterwards in the first cycle of high school. This interpretation agrees with the 

results found by De Brauwer et al. (2006), which explored how the network of 

multiplication facts took shape during formal learning. The authors compared the 

performance of 9, 10 and 11 year-old children, and adults in a production multiplication 

task. The results showed differences among the children depending on age. However, 

11 year-old children behaved as adults suggesting that the network of multiplication 

facts in long-term-memory was fully established at this age. 

 

The coactivation of arithmetic facts in school age children. Beyond the 

examination of how formal education influences the configuration of arithmetic facts 

network, we were interested in evaluating how children managed the coactivation and 

selection of arithmetic facts once the network was established. To evaluate this issue, it 

was necessary to determine the possible concurrent activation of facts associated to 

multiplications and additions when children verified the correctness of simple 

arithmetic problems. This was the goal of the first trial in the verification task. The 
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results showed that children were slower to respond when the result of an incorrect 

addition problem was that of multiplying the operands (2 + 4 = 8) compared to an 

addition problem whose result was incorrect too, but it was unrelated with the 

multiplication counterpart (2 + 4 = 10).  

We considered the interference effect found in the first trial of the current study 

as an index of the concurrent activation of arithmetic facts. This coactivation of 

arithmetic facts has been observed in previous studies with adult (Winkelman & 

Schmidt, 1974; Zbrodoff & Logan, 1986) and child population (Lemaire et al., 1991). 

When the network of simple arithmetic facts is established, several arithmetic facts 

seem to be activated in long-term-memory when participants evaluate the correctness of 

addition problems (i.e., 2 + 4 = 8). This concurrent activation produces competition 

between different arithmetic facts, since only one answer is required to solve the 

problem successfully.  

However, when we analyzed each age group separately, we found that 8-9 year-

old children did not present this concurrent activation of addition and multiplication 

facts while it was observed in 10-11 and 12-13 year-old children. In fact, interference 

effects in the first trial of the verification task were only present in these two last age 

groups. Furthermore, additional analyses in 8-9 year-old children showed that only high 

skilled children in the multiplication task presented the interference effect in the first 

trial, suggesting that when 8-9 year-old children had already acquired a good knowledge 

of simple multiplication facts, the coactivation of multiplications and additions is 

produced automatically. Therefore, a good knowledge of simple multiplication facts 

seems to be necessary to observe the coactivation effect (Ashcraft, 1982; Ashcraft & 

Fierman, 1982; Ashcraft, 1992). Moreover, the outcomes of the regression analyses 

showed that the accuracy in resolving multiplication problems predicted the interference 

effect found in the first trial. Higher proficiency in solving multiplications was 

associated to a large interference effect which seems to indicate that when 

multiplication skills increase, children have configured the network of arithmetic facts; 

and they coactivate addition and multiplication facts even when this simultaneous 

activation produces interference. These results highlighted the role of formal education 

in the coactivation of arithmetic facts. However, other indices of the children’s 
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mathematical knowledge were not significant predictors (i.e., mathematical grade of 

children gathered by the teacher). It might be possible that mathematical grade obtained 

by the children at school was a general measure of numerical knowledge (i.e., 

knowledge of numerical formats, magnitude representation, counting skills, arithmetic 

knowledge) so it was not sensitive enough to capture possible differences in the 

resolution of simple arithmetic facts. 

The results obtained when 8-9 year-old children resolved the verification task in 

the first trial suggest that children in this age group were consolidating the network of 

arithmetic facts needed to perform simple problems by retrieving the results of the 

problems directly from long-term-memory. This conclusion agrees with previous 

studies in which the development of arithmetic skills was addressed. Ashcraft and 

Fierman (1982) showed that children in 4
th 

grade of formal education showed a good 

performance in the verification of correct addition problems (3 + 4 = 7). However, the 

children had difficulties in verifying the correctness of false problems (3 + 4 = 8). The 

authors interpreted that children in 4
th

 grade were consolidating the network of 

arithmetic facts so it could be used easily to verify correct addition problems. However, 

the retrieval from memory was still unstable at this educational level which was 

observed when children verified false addition problems. Hence, only when the network 

of arithmetic facts is fully established, the coactivation of several arithmetic problems 

show up. The current study suggests that this phenomenon occurs in 8-9 year-old 

children with good mathematical skills and it continues henceforth
4
. 

 

The selection by inhibition of arithmetic facts in school age. The main 

contribution of the current study was to evaluate the developmental course of inhibition 

as the underlying mechanism used by children to select arithmetic facts. Recent 

experimental evidence has been found to support the idea that inhibition underlies the 

resolution of conflict between coactivated arithmetic facts (Campbell & Dowd, 2012; 

Campbell & Thompson, 2012; Megías et al., 2014). This inhibitory mechanism has 

been corroborated in adult participants. However, to our knowledge, the current study is 

the first approach to this issue in child population. 



 

250 

 

 

The second trial of the adapted NP paradigm used in our study was intended to evaluate 

this inhibitory mechanism responsible to select simple arithmetic facts. The results 

obtained in this trial showed that children took more time to respond when the result of 

multiplying the operands of the previous trial (2 and 4) was the correct result of the 

second trial (2 + 6 = 8), relative to a control condition (4 + 6 = 10). This interference 

effect suggests that children inhibited the irrelevant result in the first trial (8). Therefore, 

when the inhibited result was presented again in the second trial (2 + 4 = 8) and it was 

the correct result to solve the problem, they needed additional time to retrieve it. 

Importantly, the interference effect in the second trial appeared in children who were 

10-11 and 12-13 years of age, but it was not observed in 8-9 year-old children. The 

absence of interference is easily explained by assuming that inhibition is a reactive 

mechanism devoted to resolve competition among coactivated arithmetic facts. Since 8-

9 year-old children did not coactivate competing multiplication facts (no interference 

effect was observed in the first trial), there was no need of applying inhibition to resolve 

competition. Furthermore, the results of the regression analyses showed that the 

interference effect found in the second trial was not predicted by the mathematical 

knowledge of children. Therefore, inhibition seems to be applied only when competition 

among arithmetic facts is found regardless of the children’s competence in the 

resolution of arithmetic problems. 

 

 4
In the current study children performed the task with experimental trials (addition 

problems) intermixed with multiplication trials (filler trials). Previous research in adult 

population has shown the same coactivation effects when additions are blocked relative to a 

mixed condition with additions and multiplications (Megías et al., 2014). However, it might be 

possible that the presence of multiplication problems would foster the coactivation of arithmetic 

facts to a more extend in children. Hence, the pattern of coactivation effects obtained in this 

study might apply only to situation in which children have to perform addition and 

multiplication problems intermixed in the same session (i.e., experimental task, educational 

setting). However, it is important to note that this restriction does not have relevance to the 

finding obtained in this study about the developmental course of selection by inhibition once 

coactivation of arithmetic facts is observed in children.   
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Moreover, the interference effects in trial 1 and trial 2 obtained in 10-11 and 12-

13 year-old children seem to indicate that from 10-11 years of age onwards children use 

the network of arithmetic facts, they coactivate related facts and they use an inhibitory 

mechanism to select the one needed to resolve mathematical problems. A closer look at 

the results obtained in the second trial of the verification task showed that the 

interference effect was larger in 10-11 year-old children relative to that found in 12-13 

year-old children. These differences seem to indicate that the cost associated to the 

inhibition of irrelevant information reduces with age. This observation agrees with 

previous research in which the continuous improvement of inhibitory control with 

educational instruction is corroborated (Davidson et al., 2006; Huizinga et al., 2006; 

Leon-Carrion et al., 2004). To illustrate, Davidson et al. (2006) evaluated the 

performance of children from preschool to high school in a typical task to evaluate 

inhibitory control (the Simon task). The authors observed that the magnitude of the 

interference effect (slower responses in spatially incongruent trials where the stimulus 

and the response side were in different locations) decreased from first grade of 

elementary school (6 year-olds) onward. Further evidence about the development of this 

inhibitory mechanism comes from studies in which an adapted version of the NP 

paradigm is used (Borst et al., 2013; Perret et al., 2003). Borst et al. (2013) evaluated 

the involvement of inhibitory processes in the resolution of a Piaget-like class-inclusion 

task. In this task, colored circles were presented (i.e., 8 circles in red color and 4 circles 

in yellow color) while adults and 10 year-old children had to indicate if there were more 

circles than reds or more reds than circles. To perform the task correctly, participants 

had to suppress a strategy based on the perceptual comparison of red and yellow 

elements, and they had to realize that the red color circles were included inside the 

category of circles. The cost associated to inhibit the irrelevant strategy based on color 

was higher for 10 year-old children (291 ms) compared to adults (129 ms). Thus, the 

ability of inhibiting irrelevant information increased with age. 

The evidence about the development of an inhibitory mechanism to select 

arithmetic facts is closely related to the developmental model proposed by Siegler 

(1996, 1999). In the strategy choice and discovery simulation model (SCADS model; 

Siegler & Araya, 2005), a multiple strategy approach is assumed in which several 
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strategies are considered to resolve arithmetic problems (counting the operands to reach 

the result of the problem, the retrieval of the answer from long-term-memory, etc.). The 

model proposes that children choose adaptively among available alternatives to select 

the more efficient strategy. In this scenario, inhibitory control would be useful to choose 

among strategies so children would select one strategy (i.e., the retrieval from memory) 

by inhibiting alternative ways to solve the problem. This inhibitory control would 

underlie the functioning of the interruption of procedures mechanism proposed in the 

SCADS model (Siegler & Araya, 2005). This mechanism would be involved in the 

change from overlearned strategies to new strategies which are more efficient to resolve 

a problem.  

In our opinion, inhibitory control might be considered a general mechanism 

involved in arithmetic cognition at several levels of processing. At a higher level, it 

would be involved in the selection of the strategy used to resolve the arithmetic 

problems (i.e., retrieval from memory) by rejecting other potential alternatives. At a 

lower level, once the children have selected one strategy to resolve the problem (i.e., 

retrieval from memory), inhibition would be also applied to select the correct arithmetic 

facts (i.e., addition facts) by suppressing the activation of related arithmetic facts (i.e., 

multiplication facts). 

Pedagogical and clinical implications can be drawn from the results found in the 

current study. If inhibition is involved in the selection of arithmetic facts and inhibitory 

control develops with age, teachers might use tasks involving the suppression of 

irrelevant information in order to increase the children ability to select correct arithmetic 

facts to resolve arithmetic problems. Moreover, inhibition would be a general ability 

that might underlie deficits in mathematical processing such as developmental 

dyscalculia (i.e., Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013). Thus, interference 

control might be evaluated systematically when children are screened for developmental 

dyscalculia and inhibitory control tasks would be used by teachers in the training 

protocol.  

To conclude, the present study traces the development of inhibitory control as 

the mechanism responsible to select arithmetic facts in children from second cycle of 



 

253 

 

 

elementary school to first cycle of high school. We have observed a developmental 

trend in resolving simple mathematical problems which is accompanied by the 

concurrent activation of several arithmetic facts and the use of an emerging inhibitory 

mechanism responsible to select the one needed to correctly perform simple arithmetic 

tasks.  
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The current doctoral dissertation was framed within the field of cognitive 

arithmetic. We focused on retrieval from memory as the way of solving simple 

arithmetic problems. Concretely, we evaluated two aspects associated to the functioning 

of the network of arithmetic facts stored in long-term memory: coactivation of 

arithmetic facts across operations (additions and multiplications), and selection of 

correct answers by the use of an inhibitory mechanism. In this chapter, we discuss the 

contribution of our research work to the understanding of coactivation and selection in 

simple arithmetic.  

In our research work, we have observed an associative confusion effect which 

reflected coactivation of arithmetic facts. Moreover, we offered evidence about the use 

of an inhibitory mechanism to select the appropriate arithmetic fact needed to resolve 

simple addition problems (Chapter III). We analyzed in deep the associative confusion 

effect to confirm that it involved coactivation of arithmetic facts. To this end, we 

gathered electrophysiological evidence of this phenomenon. We also corroborated that 

electrophysiological measures were sensitive to the consequences of applying inhibition 

to select arithmetic facts (Chapter IV). We continued with the evaluation of whether 

numerical format, written number words (Chapter V) and oral numbers (Chapter VI) 

modulated the retrieval and selection of arithmetic facts. Finally, we showed that 

coactivation and inhibition of arithmetic facts develop with formal instruction in 

childhood (Chapter VII). 

The structure of this Chapter is as follows. Firstly, we talk about our first goal: 

coactivation of simple arithmetic facts associated to additions and multiplications. 

Secondly, we focus on selection-by-inhibition of correct answers. Afterwards, all 

findings are taken together to give an integrative view of simple arithmetic processing.  
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COACTIVATION OF ARITHMETIC FACTS  

 

The coactivation of arithmetic facts is one of the most important processes 

underlying the functioning of the arithmetic network (Campbell, 1987; Campbell & 

Graham, 1985). If we assume that arithmetic facts are represented in an associative 

network whose nodes are interconnected, when a simple problem is presented (e.g., 2 + 

4), the correct answer would be activated in the network (6). Also, other answers related 

with the problem would be activated (e.g., the result of multiplying the operands, 8) due 

to spreading of activation between interconnected nodes in the network (Campbell, 

1987). In sum, within this architecture, coactivation of arithmetic facts between 

operations (e.g., additions and multiplications) would take place. This concurrent 

activation would produce interference (as it was proposed in Campbell’s network 

interference model, Campbell & Graham, 1985). Concretely, arithmetic facts associated 

to additions and multiplications would compete in the selection of the correct response. 

This competition would produce interference which is shown in the associative 

confusion effect (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). 

In our experimental series, we showed the associative confusion effect in several 

occasions. In Chapter III, we showed that adult participants took more time to reject an 

incorrect addition problem whose result was that of multiplying the operands (e.g., 2 + 4 

= 8) compared to an unrelated addition problem (e.g., 2 + 4 = 10). Furthermore, this 

effect was also found in Experiment 2, when participants executed the addition 

verification task without the presentation of filler multiplication problems. Together, 

this pattern of results suggests that activation spreads automatically through the network 

of arithmetic facts. Even when multiplications are no needed to perform the task, 

multiplication facts become activated when people have to resolve addition problems.  

Our pattern of results agrees with previous studies (Galfano, Rusconi, & Umiltà, 2003; 

García-Orza, Damas-López, Matas, & Rodríguez, 2009; LeFevre, Bisanz, & Mrkonjic, 

1988; Rusconi, Galfano, Speriani, & Umiltà, 2004) in which activation of multiplication 

facts seems to take place automatically, even when there are no cues in the experimental 

task to promote the retrieval of these operations.  
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Therefore, in the first part of our experimental work, we have confirmed that the 

associative confusion effect is a robust phenomenon. Importantly, in all studies where 

the associate confusion effect has been shown, the underlying assumption is that it 

involves coactivation in the network of arithmetic facts (Lemaire, Fayol, & Abdi, 1991; 

Winkelman & Schmidt, 1974; Zbrodoff & Logan, 1986). This premise is corroborated 

in our experimental series (Chapter IV). Concretely, we considered the N400 

component as an index of accessing to arithmetic information by spreading of activation 

in long-term memory (Niedeggen & Rösler, 1996, 1999; Niedeggen, Rösler, & Jost, 

1999). We found an attenuation of the N400 component in related problems (e.g., 2 + 4 

= 8) compared to unrelated problems (e.g., 2 + 4 = 10). This electrophysiological effect 

suggests that in fact, the associative confusion effect involves coactivation of additions 

and multiplications in long-term memory. Moreover, the N400 attenuation we observed 

with electrophysiological measures seems to suggest that firstly, coactivation of related 

multiplication facts facilitates the retrieval of addition facts. Afterwards, a competitive 

process would take place between coactivated arithmetic facts in order to select the 

correct answer, a process which was captured with behavioral measures in our 

experimental series (slower responses to related problems compared to unrelated 

problems).    

Additional data found in our research work allows us to characterize the retrieval 

of arithmetic facts from long-term memory. An old question in numerical cognition is 

whether arithmetic facts are stored as abstract representations which do not depend on 

the format of the problem (Blankenberger & Vorberg, 1997; McCloskey, Macaruso, & 

Whetstone, 1992) or they are format-dependent representations (Campbell & Clark, 

1988; 1992). In our research work, once we determined that the associate confusion 

effect really involved coactivation of arithmetic facts, we were ready to evaluate 

whether this effect was modulated by the format in which the problems were presented. 

An affirmative answer was found to this question. Concretely, the associative confusion 

effect was reduced when individuals resolved problems with written numbers relative to 

problems with Arabic digits, even when we made sure that all participants used retrieval 

from memory to resolve the problems (Chapter V, Experiment 2). Hence, our data 

indicate that activation of arithmetic facts depends on numerical format (see Bulthé, de 
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Smedt, & Op de Beeck, 2015, for a similar discussion in the field of magnitude 

representation in the intraparietal surcus with symbolic numbers and non-symbolic 

numerosities).   

Moreover, the data we found in oral calculation (Chapter VI) also adds to the 

conclusion that numerical format determines the retrieval of arithmetic facts. In this 

case, we did not observed associative confusion effect when participants received 

addition problems orally. We interpreted this result as due to time constraints imposed 

by the auditory signal. Compared to the processing of problems with Arabic digits, oral 

problems can be processed before the participant receives the complete stimulus due to 

the temporal sequence in which operands and result are presented. As a consequence, 

individuals would have time to coactivate arithmetic facts and reach the correct answer 

before the addition result was listened. This interpretation was further corroborated in a 

subsequent experiment (Experiment 2, Chapter VI) in which Arabic digits were 

presented with the same temporal sequence as that of oral additions. No associative 

confusion effect was obtained which suggested that numerical format determines the 

retrieval of arithmetic facts.  

Our research work also focused on the development of retrieval from memory in 

children from elementary school to high school (8-9, 10-11 and 12-13 years-old 

children). Firstly, we focused on coactivation of arithmetic facts through the study of 

the associative confusion effect (Winkelman & Schmidt, 1974; Zbrodoff & Logan, 

1986), as we did with adults (Chapter III). In this regard, we assumed that the 

associative confusion effect reflected automatic access to arithmetic facts due to the 

spreading of activation among related nodes in the arithmetic network. If this 

assumption is right, the associative confusion effect would depend on the knowledge of 

simple arithmetic facts stored in memory and the effect would appear only when 

children have acquired a good knowledge of simple arithmetic. The results reported in 

Chapter VII agree with these predictions. 

We observed that 8-9 years-old children did not show coactivation of arithmetic 

facts.  However, when they were classified depending on their knowledge about simple 

multiplication problems, we found that high-skilled children showed the associative 
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confusion effect. Thus, it seems that a good knowledge about simple multiplication 

facts is needed to automatically coactivate additions and multiplications. Furthermore, 

the accuracy of simple multiplication problems predicted the associative confusion 

effect in all children, so that improvements in multiplication skills fostered the 

coactivation of addition and multiplication facts even when this concurrent activation 

interfered in the selection process. When children are 10-11 years-old onwards, the 

associated network seems to be established fully in long-term memory compared to 

early ages (De Brauwer, Verguts, & Fias, 2006; Lemaire et al., 1991). According with 

this assumption, we found the associative confusion effect at this age, suggesting that 

coactivation of related multiplication information took place when resolving addition 

problems.  

In short, we have considered the associative confusion effect as an index of 

retrieval and coactivation of arithmetic facts as supported with behavioral and 

electrophysiological measures (Winkelman & Schmidt, 1974; ºZbrodoff & Logan, 

1986). Differences found between additions with Arabic digits, written numbers and 

oral numbers suggest that retrieval and coactivation are format-dependent.  The absence 

and presence of the associative confusion effect with age indicate that retrieval and 

coactivation develop with formal education in arithmetic. 

 

SELECTION-BY-INHIBITION OF ARITHMETIC FACTS 

 

In previous pages we have discussed the results we found about the first goal of 

our research work: coactivation of arithmetic facts. The second goal of the current 

doctoral dissertation was to explore the mechanism responsible to select the answers 

needed to resolve arithmetic problems. We proposed the inhibitory nature of this 

mechanism, which would suppress irrelevant information when competition is observed 

in the arithmetic network. In this regard, both theoretical models (Whalen, 2000) and 

empirical research highlight the relevance of inhibition in arithmetic performance 

(Adams & Hitch, 1997; Bull, Johnston, & Roy, 1999; Bull & Scerif, 2001; Dooren & 

Inglis, 2015; Fürst & Hitch, 2000; Geary, Hamson, & Hoard, 2000; Lemaire et al., 
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1991). Concretely, Campbell et al. (Campbell, Chen, & Maslany, 2013; Campbell & 

Dowd, 2012; Campbell, Dufour, & Chen, 2015; Campbell & Thompson, 2012) 

proposed that the selection of arithmetic facts was mediated by inhibition. The authors 

found a RIF effect in arithmetic, so that the retrieval of multiplication facts in a training 

phase (e.g., 2 x 4 = ?) slows down the retrieval of addition counterparts (e.g., 2 + 4 = ?) 

in a second test phase. This suggests the existence of an inhibitory mechanism that 

suppresses irrelevant information associated to addition facts in the training phase.   

In several experiments reported in our research work we obtained empirical 

evidence of this inhibitory mechanism during the resolution of simple arithmetic 

problems. The results showed that participants took more time to verify addition 

problems whose result was that of multiplying the operands of the previous trial (e.g., 2 

+ 6 = 8, preceded by 2 + 4) compared to control addition problems (e.g., 4 + 6 = 10, 

preceded by 2 + 4). Therefore, an inhibitory mechanism seems to be responsible to 

suppress irrelevant information in the first trial (8), so individuals would be able to 

resolve competition between several arithmetic facts (8, 6) and select the correct one (6) 

at the end of the process. As a consequence, in the second trial it is more difficult to 

retrieve the inhibited result (8) from memory again. The difficulty of retrieving 

arithmetic facts previously inhibited is reinforced by the pattern of results found with 

electrophysiological measures (Chapter IV). Differences were found between the related 

and unrelated condition after inhibition (second trial) as reflected by P200 modulations 

(more positive in the related condition); an ERP component associated to the difficulty 

of retrieving information from long-term memory (Dunn, Dunn, Languis, & Andrews, 

1998; Raney, 1993; Smith, 1993).   

As we have commented, previous studies showed inhibition of arithmetic facts 

during a training phase which was captured in a second test phase (Campbell et al., 

2013; Campbell & Dowd, 2012; Campbell & Thompson, 2012). If we compare previous 

studies about inhibition in simple arithmetic and those reported in our research work, 

the main contribution of our studies is the demonstration that inhibition applies in a 

continuous manner every time competition between arithmetic facts takes place.  
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Across our experimental series, we have observed that coactivation of arithmetic 

facts is modulated by the format in which the problems are presented. Similarly, format 

effects impact the inhibitory mechanism used to verify additions problems (Chapter V). 

When problems with Arabic digits and written numbers are compared, format effects in 

coactivation go hand in hand with inhibition. Specifically, when an overall comparison 

is performed between the verification of problems presented with Arabic digits vs. 

number words, the associative confusion effect is only found in the first case. The same 

is observed when the consequences of applying inhibition were evaluated (the relation 

effect in the second trial was observed with problems in Arabic digit format only). Put it 

differently, inhibition seems to be applied when competition between arithmetic facts 

takes place. Moreover, there is a fine-grained adjustment between the degree of 

competition and the inhibition applied during the selection process. When we controlled 

for the strategy used to resolve addition problems, participants with a high use of 

retrieval from memory showed evidence of coactivation and inhibition in both formats 

(digit and written number word formats), but the magnitude of these effects was smaller 

when problems were presented with written-words. Similarly, participants with less use 

of retrieval from memory showed coactivation and inhibition only when problems were 

presented with Arabic digits. However, in the written-word format, less automatic 

spreading activation in the network reduced coactivation of several arithmetic facts and 

inhibition was not needed. Therefore, inhibition seems to be applied to the same extend 

as competition is observed.   

Moreover, the results we observed in oral calculation (Chapter VI) seem to 

indicate that inhibition is quickly applied when participants receive an oral problem so 

they have time to resolve interference before the complete problem has been processed. 

Concretely, we did not observe associative confusion effect with oral problems in the 

first trial. However, analysis of the second trial supported inhibition of related 

multiplication facts in the first trial to select the correct answer associated to additions. 

In other words, when participants listened the operands (e.g., 2 + 4), the correct result 

(6) and the related result associated to multiplication (8) could be activated 

automatically. Afterwards, participants had time to inhibit the irrelevant multiplication 

fact (8) before the presentation of the proposed result (6). Thus, when the proposed 
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result was presented, participants took similar time to respond to related and unrelated 

addition problems. In Experiment 2 of Chapter VI, we corroborated this interpretation. 

We found that the associative confusion effect disappeared when Arabic digit problems 

were presented sequentially, simulating the timing in which oral problems were listened 

in Experiment 1. Moreover, in the second trial, we again observed an interference effect 

suggesting that the related result was inhibited in the first trial. This pattern of results 

fits well with previous research with Arabic digits (Lemaire et al., 1991): the 

presentation of a delay (higher than 300 ms) between the operands and the result 

produces the absence of the associative confusion effect, suggesting that participants 

had enough time to resolve competition by inhibiting  irrelevant information.  

Finally, we aimed at examining the development of the selection-by-inhibition 

mechanism in school-age. There were reasons to predict that this mechanism is present 

in children population. Firstly, the ability of inhibitory control have a greater 

development when children are between 6-8 years-old and it continues to develop 

through school-age (Davidson, Amso, Anderson, & Diamond, 2006; Korkman, Kemp, 

& Kirk, 2001; Leon-Carrion, García-Orza, & Pérez-Santamaría, 2004). Secondly, 

previous research demonstrated a relationship between inhibitory control and arithmetic 

skills; so that better inhibitory control, better performance in arithmetic (Adams & 

Hitch, 1997; Bull et al., 1999; Bull & Scerif, 2001; Geary, et al., 2000).   

To evaluate the existence of an inhibitory mechanism in children, in Chapter VII 

we analyzed the second trial of our experimental task to index the consequences of 

applying inhibition to resolve competition among coactivated arithmetic facts. The 

group of 8-9 years-old children did not show evidence of this inhibitory mechanism. It 

is important to note that coactivation did not take place in this group, so inhibition was 

not needed to resolve the task. We found signs of inhibition in 10-11 and 12-13 years-

old children, so that they took more time to refuse addition problems whose results were 

those of multiplying the operands of the previous trial (e.g., 2 + 6 = 8, preceded by 2 + 

4) compared to unrelated addition problems. Therefore, in Chapter VII, we observed the 

developmental course of inhibition in mental arithmetic. No inhibition seems to be 

applied in young children (8-9 years-old) since no retrieval seems to be used (no 

associative confusion effect); while 10-11 years-old children onwards seems to apply 
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inhibition to resolve competition of arithmetic facts. A fine-grained analysis showed 

that the cost associated to inhibit irrelevant information seems to decrease between 10-

11 years-old and 12-13 years-old children. This agrees with previous assumptions about 

the continuous develop of inhibitory control through school-age (Davidson, et al., 2006; 

Korkman, et al., 2001). Thus, 10-11 years-old children need more time to retrieve 

inhibited information than 12-13 years old children, showing that the inhibitory 

mechanism is more efficient in the last group.   

To sum up, in our experimental series we have gathered evidence of selection-by 

inhibition as the mechanism used to select arithmetic facts. When inhibition applies, 

additional time is required to reactivate the inhibited information as shown by the 

interference effect found in the second trial of our experimental paradigm (Chapters III 

and IV). Inhibition seems to be somehow proportional to the degree of competition so 

the format of the problem determines coactivation of arithmetic facts and inhibition of 

irrelevant information (Chapters V and VI). Finally, we have observed that the use of 

inhibition in cognitive arithmetic follows a developmental trajectory (Chapter VII).     

 

SIMPLE ARITHMETIC: AN INTEGRATIVE VIEW 

 

In the introduction section we described several models of cognitive arithmetic. 

Some models are directly related to the resolution of arithmetic problems: Ashcraft’s 

network retrieval model (Ashcraft, 1982), distribution of associations model proposed 

by Siegler and Jenkins (1989), Campbell’s network interference model (Campbell, 

1987; Campbell & Graham, 1985), Whalen’s semantic network retrieval model 

(Whalen, 2000) and Baroody’s schema-based model (Baroody, 1983; 1994). Other 

models commented later in the introduction section focus on possible format effects in 

mental arithmetic: McCloskey’s abstract-modular model (McCloskey et al., 1992) and 

Campbell’s encoding-complex model (Campbell & Clark, 1988). In this section, we 

would like to offer an integrative view about simple arithmetic in light of the results 

found in our experimental series. We will focus on critical aspects about representation 
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and processing of arithmetic facts. We also addresses some sensitive questions (with 

difficult answers) to outline tentative explanations.  

 

An integrated network represents cross-operation arithmetic facts 

(additions, multiplications). 

 

 The continuous practice in a specific field leads to automatic performance. This 

process is associated with structures of knowledge which are formed, stored and quickly 

retrieved from long-term-memory. The classical view to understand how arithmetic 

knowledge is represented in memory is within associative models (Ashcraft, 1982; 

Campbell, 1987; Campbell & Graham, 1985; Siegler & Jenkins, 1989; Whalen, 2000). 

All these models agree with the existence of a mental structure in which simple 

arithmetic facts are represented and stored in an associative network whose nodes are 

interrelated. Furthermore, in Ashcraft’s network retrieval model (Ashcraft, 1982) and 

Campbell’s network interference model (Campbell y Graham, 1985) cross-operation 

connections in the network are considered. In this regard, the associative confusion 

effects found in our research work supports these assumptions: arithmetic facts are 

stored in long-term memory and addition and multiplication facts are associated in the 

network (see Fabbri, 2015, for an alternative explanation).  

 

The network of arithmetic facts is format-dependent.  

 

In Whalen’s semantic network retrieval model (Whalen, 2000) excitatory 

connections are proposed between nodes that represent the problem (e.g., 2 + 4), other 

related nodes (e.g., 2 x 4) and answer-nodes (e.g., 6, 8). This proposal is in line with 

previous associative models (Ashcraft, 1982; Campbell, 1987; Campbell & Graham, 

1985) in which it is assumed that the access to the arithmetic network involves 

spreading of activation. Our research work supports the access to the arithmetic network 
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due to spreading of activation, because when an addition problem is presented 

coactivation of addition and multiplication facts takes place. Additionally, our findings 

can be accommodated with Campbell’s encoding-complex model (Campbell & Clark, 

1988) because in this model it is assumed that the access to the network is modulated by 

numerical format. In this regard, our results about numerical format effects in mental 

arithmetic suggest that the access to arithmetic network depends on automaticity in 

which problems are processed: With well-practiced formats (Arabic digits or oral 

problems) the access to the network seems to be automatic due to spreading of 

activation, whereas this automatic access is somewhat disrupted with unfamiliar formats 

(written number words). It is important to note that the results found in our research 

work are against format-independent models that assume an abstract-modular 

representation of arithmetic facts (McCloskey et al., 1992). Numerical format 

determines the associative confusion effect and this effect is a consequence of the 

spreading of activation (coactivation) at a central level of processing. Thus, our data 

seem to support models in which numerical format modulates the representation and 

processing of arithmetic facts (Campbell’s encoding-complex model, Campbell & 

Clark, 1988). 

 

What is exactly inhibited?  

 

As we have indicated, the results found in our study clearly indicate that 

arithmetic facts from different operations are coactivated (additions, multiplications). In 

Campbell’s network interference model (Campbell, 1987; Campbell & Graham, 1985), 

it is proposed that this coactivation produces interference in the network. This 

interference reflects competition between several answers because only one is required 

to give the correct response. Under this model, the answer with higher activation is 

selected finally. However, the mechanism used to solve competition and select the 

answer with higher activation is not discussed in this model. In Whalen’s semantic 

network retrieval model (Whalen, 2000) it is proposed a possible inhibitory mechanism 

responsible for resolving interference and selecting the correct answer to an arithmetic 
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problem. Our research work supports the involvement of an inhibitory mechanism in the 

selection of simple arithmetic facts. In all studies, we found that after competition 

between related arithmetic facts (e.g., after presentation of 2 + 4, coactivation of the 

correct result 6 and related result 8 generates competition between 6 and 8), inhibition 

of irrelevant facts takes place (e.g., inhibition of the related answer 8, in order to select 

the correct answer 6).  

After observing inhibition in the resolution of competition between arithmetic 

facts, a critical question is about what was exactly inhibited in our study. Several 

alternatives are possible and our experimental work cannot support completely any of 

them. It might be possible that participants inhibited the complete arithmetic fact (2 x 4 

= 8) when they retrieved the correct one (2 + 4 = 6). This explanation seems to be not 

correct since the consequences of applying inhibition with additions in the first trial 

were observed in the second trial with additions too. A way of examining this point 

would be to compare the interference effect in the second trial with related additions and 

multiplications. If inhibition applies to the whole multiplication problem, participants 

would take more time to answer afterwards when exactly the same multiplication 

problem was presented again. Thus, large interference effect with related multiplications 

in the second trial relative to related additions would support the idea that inhibition was 

applied to the whole multiplication fact.  

Another plausible argumentation is that participants inhibited competing results. 

In the example 2 + 4 = 8, participants might inhibit 8 in order to select 6. If we assume 

this explanation, further questions show up. It is possible that participants inhibited the 

number as an entity (8 represents a magnitude of eight elements) regardless of its role in 

the operation (the result of the problem). Alternatively, participants might inhibit the 

number labeled as a possible response (potential response-8). We are planning future 

experiments to dissociate between these accounts. If participants inhibited the number 

as an entity, interference effect would be found in the second trial when participants 

performed a non-arithmetic task with the inhibited number (e.g., a parity task, a 

magnitude task, etc.). If participants inhibited the number as a response (potential 

response-8), they would take more time to respond to a subsequent operation with the 

same result (10 - 2 = 8).  
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Development of simple arithmetic: From procedures to retrieval from 

memory. 

 

 Several models about cognitive arithmetic have considered that the way in 

which simple arithmetic problems are resolved follows a developmental trajectory. Two 

main views have been outlined to explain how arithmetic resolution changes in 

childhood. Firstly, the practice with additions, for example, would foster the efficient 

use of procedures as the way of solving these problems (Baroody’s schema-based 

model, Baroody, 1983, 1994). On the contrary, other authors defend that practicing 

arithmetic problems would favor retrieval from memory. To illustrate, in Siegler’s 

distribution of associations model (Siegler & Jenkins, 1989), it is assumed a balance 

between the use of procedures and retrieval from memory. The weight associated to 

retrieval as the way of solving the problem would increase with formal instruction in 

arithmetic. Moreover, in Ashcraft’s network retrieval model (Ashcraft, 1982) and 

Campbell’s network interference model (Campbell & Graham, 1985), it is assumed that 

related nodes in the network of arithmetic facts would strength their connections in 

childhood. If we consider that the associative confusion effect reflects the use of 

retrieval from memory, the results found in our work seems to indicate that arithmetic 

resolution in children would change from procedures to retrieval with age. Concretely, 

8-9 years-old children did not show associative confusion effect while it was present in 

children with 10-11 years-old onwards. Hence, it seems that 10 years of age is the 

inflexion point to change from procedures to retrieval as the mechanism underlying 

arithmetic resolution. We acknowledge our research remains silent about the possible 

automaticity of procedural strategies with practice (Baroody, 1983, 1994); however, 

what is clear is that older children preferred retrieval from memory since the associative 

confusion effect found in our study cannot be accounted by the use of procedural 

strategies. 
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The use of procedures in simple arithmetic.  

 

From the very beginning of cognitive arithmetic a debate was open between 

advocates of direct retrieval of arithmetic facts to resolve simple problems (Ashcraft’s 

network retrieval model, Ashcraft, 1982), and those proposing the use of procedural 

strategies (Baroody’s schema-based model, Baroody, 1983; 1994). Over the years, 

retrieval form memory was assumed to be the best way of resolving problems since it 

would be associated to automatic and faster performance (Campbell’s network 

interference model, Campbell, 1987; Campbell & Graham, 1985). However, the idea of 

procedures always remained latent; for example, as the initial operations used by 

children to resolve simple problems until they acquired the network of arithmetic facts 

(Siegler’s distribution of associations model; Siegler & Jenkins, 1989). Our data seems 

to suggest that the use of procedures is not an all or nothing question but they would be 

flexible adopted depending on some factors. The resolution of simple arithmetic 

problems with Arabic digits and written number words might involve both, retrieval 

from memory and procedural strategies (Geary & Wiley, 1991; Healy, Rickard, & 

Bourne, 1993). To illustrate, when we compared the processing of problems presented 

with Arabic digits and written numbers, there is a tendency to prefer procedures with 

problems in verbal format. Hence, numerical format might determine the use of 

procedures over retrieval. Furthermore, it is also true that even with problems presented 

with Arabic digits, participants reported the use of procedures in some occasions. This 

finding is in line with very recent research showing that simple arithmetic problems can 

be resolve with procedural strategies (Barrouillet & Thevenot, 2013; Della Puppa et al., 

2015; LeFevre, Sadesky, & Bisanz, 1996; Roussel, Fayol, & Barrouillet, 2002; 

Thevenot, Barrouillet, Castel, & Uittenhove, 2016; Thevenot, Fanget, & Fayol, 2007). 

Hence, some simple problems received in a well-practiced format might be still 

resolved with procedures in some occasions.  
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CONCLUDING REMARKS  

  

In the current doctoral dissertation, we contributed to understand simple 

arithmetic. When individuals resolve addition problems, they usually retrieve arithmetic 

facts from memory. Arithmetic facts are interconnected, they become activated and they 

might compete for selection. This competition seems to produce interference which is 

resolved with the involvement of an inhibitory mechanism. Both coactivation and 

selection-by-inhibition can be considered two steps of the retrieval process, and both 

seems to depend on the automaticity in which problems are processed according to the 

format of the problem and the development of the arithmetic network through formal 

instruction in childhood. 

We might ask whether the pattern of results found in our study is restricted to 

cognitive arithmetic. The response seems to be negative. Coactivation and inhibition has 

been shown in other fields of cognitive psychology. For example, the two languages of 

bilingual speakers seem to be activated even when they need only one language to 

communicate. In some occasions, this non-selective coactivation produces interference 

and inhibition seems to be applied to resolve competition (Macizo, Bajo, & Martín, 

2010). This pattern of results is analogous to the one presented in our research work, 

suggesting that representations of different types of information (linguistic, arithmetic, 

etc.) are retrieved in a similar way, through coactivation of related information in 

memory and selection-by-inhibition when competition arises.  

Moreover, if we focus on the findings found about simple arithmetic in children, 

pedagogical and clinical implications can be drawn. We have demonstrated that the 

correct functioning of arithmetic resolution in adults involves inhibition. Also, we have 

corroborated that this inhibitory mechanism develops with instruction in arithmetic. 

Thus, cognitive programs based on the training in inhibition might be implemented in 

order to foster the acquisition of arithmetic skills in children. Furthermore, training in 

inhibition might be a tool to remediate or compensate deficits in number processing 

such as dyscalculia. Future research will shed light on these suggestions.  
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APPENDIX 1 

 

Experimental trials used in the study 

First trial  Second trial 

Multiplication 1 Unrelated 1  Multiplication 2 Unrelated 2 

2 + 3 = 6 2 + 3 = 4  2 + 4 = 6 1 + 3 = 4 

2 + 4 = 8 2 + 4 = 10  2 + 6 = 8 4 + 6 = 10 

  3 + 4 = 12 3 + 4 = 10  5 + 7 = 12 4 + 6 = 10 

  2 + 5 = 10 2 + 5 = 14   3 + 7 = 10 6 + 8 = 14 

  2 + 6 = 12 2 + 6 = 10   4 + 8 = 12 3 + 7 = 10 

  2 + 7 = 14 2 + 7 = 12   6 + 8 = 14 5 + 7 = 12 

  4 + 4 = 16 4 + 4 = 18  7 + 9 = 16 9 + 9 = 18 

  2 + 8 = 16 2 + 8 = 14   7 + 9 = 16 5 + 9 = 14 

3 + 3 = 9  3 + 3 = 11  3 + 6 = 9 7 + 4 = 11 

  3 + 5 = 15 3 + 5 = 13  7 + 8 = 15 6 + 7 = 13 
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APPENDIX 2 

 

Filler trials used in the study 

First trial Second trial  

Addition trials  

8 + 9 = 17 1 + 5 = 6  

1 + 7 = 9 4 + 9 = 15  

3 + 9 = 12 1 + 2 = 5  

1 + 8 = 9 1 + 9 = 10  

6 + 9 = 17 1 + 4 = 7  

3 + 8 = 11 1 + 6 = 9  

Multiplication trials  

8 x 9 = 72 1 x 4 = 4  

1 x 6 = 5 4 x 9 = 36  

3 x 8 = 26 1 x 7 = 6  

1 x 7 = 6 3 x 9 = 25  
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