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A B S T R A C T

The work presented in this dissertation is a contribution to the
field of fuzzy sets and fuzzy logic systems theory.

Firstly, we will approach the controversial discussion that has
been effusively debated among scholars of fuzzy logic for many
years. Some authors argue that the ability of type-2 fuzzy logic
systems to perform better than their type-1 counterparts relies
on the higher number of parameters they need to be defined. On
the other hand, other authors pose the argument that this ability
is due to how those parameters are used, and how type-2 fuzzy
sets model uncertainty in a more suitable way. Although other
previous works have tackled this discussion, we propose a new
approach based on a function approximation framework, using
type-1 fuzzy logic systems with a varying number of parame-
ters. This part of the work aims to support the previous findings
related to this topic, and justify the further research on type-2
fuzzy sets and fuzzy logic systems in the rest of the dissertation.

Secondly, after shedding some light on the previous discus-
sion, we will focus on the development of the theory about type-
2 fuzzy sets and fuzzy logic systems. Traditionally, although
type-2 fuzzy logic has proven to perform better than type-1, its
use has been somehow limited. One of those reasons has been
the limitation to operate with those sets; although the opera-
tions of intersection and union on these sets were defined at
the same time that type-2 fuzzy sets themselves, the operations
were computationally intensive, and closed formulas were only
available for type-2 fuzzy sets having normal and convex sec-
ondary grades. The main contribution of this work to the fuzzy
sets theory is to provide two new theorems for the intersection
and union operations, regardless of the specific shape of the sets’
secondary grades.

Those new theorems, which allow us to operate on type-2
fuzzy sets having non-convex secondary grades, are the keystone
to further developing the theory of interval type-2 fuzzy logic
systems. Interval type-2 fuzzy sets have been recently shown to
be more general than interval-valued fuzzy sets, and can actually
have non-convex secondary grades. Hence, a whole new theory
needs to be developed in order to provide those fuzzy logic sys-
tems with the appropriate theoretical framework; we aim to do
so in the last part of this dissertation.
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R E S U M E N

El trabajo presentado en esta tesis es una contribución en el ám-
bito de la teoría de conjuntos y sistemas difusos.

En primer lugar, se abordará una discusión controvertida y
polémica que se ha debatido intensamente a lo largo de los años
por los estudiosos de la lógica difusa. Algunos autores argumen-
tan que la capacidad de los sistemas difusos tipo-2 para obtener
un mejor rendimiento que sus homólogos tipo-1 subyace en el
mayor número de parámetros que requieren para ser definidos.
Por otra parte, otros autores exponen que dicha capacidad se
debe a cómo se utilizan dichos parámetros, y cómo los conjuntos
difusos tipo-2 modelan la incertidumbre de forma más adecuada.
A pesar de que otros trabajos previos también han abordado esta
problemática, en este documento se propone una nueva aproxi-
mación a la misma, basada en un marco de problemas de aproxi-
mación funcional, usando sistemas difusos tipo-1 con un número
variable de parámetros. Esta parte del trabajo tiene por objetivo
apoyar los resultados previos relacionados con esta temática, y
justificar así la investigación posterior sobre conjuntos y sistemas
difusos tipo-2 durante el resto de esta tesis.

En segundo lugar, tras arrojar algo de luz a la discusión ante-
rior, nos centraremos en el desarrollo de la teoría de conjuntos
y sistemas basados en lógica difusa de tipo-2. Tradicionalmente,
y a pesar de las pruebas fehacientes del mejor rendimiento de
los sistemas tipo-2 frente a los tipo-1, su uso ha sido, en cierto
modo, limitado. Una de las razones ha sido la limitación para
operar con estos conjuntos; a pesar de que las operaciones de in-
tersección y unión para estos conjuntos fueron definidas a la vez
que estos, dichas operaciones son computacionalmente muy cos-
tosas, y sólo se disponía de fórmulas cerradas para conjuntos di-
fusos de tipo-2 con grados secundarios normales y convexos. La
principal contribución de este trabajo a la teoría de conjuntos di-
fusos es proporcionar dos nuevos teoremas para las operaciones
de intersección y unión, independientemente de la forma especí-
fica de los grados secundarios.

Esos dos nuevos teoremas, que permiten operar sobre conjun-
tos difusos tipo-2 con grados secundarios no convexos, son la
pieza clave para desarrollar un paso más la teoría de sistemas di-
fusos intervalo tipo-2. Se ha demostrado recientemente que los
conjuntos difusos intervalo tipo-2 son más generales que los con-
juntos difusos con valores de intervalo. Por tanto, se hace nece-
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sario desarrollar una nueva teoría al completo para proporcionar
a estos sistemas difusos un marco teórico apropiado; este es el
objetivo de esta última parte de esta tesis.



There is nothing worse than a sharp image
of a fuzzy concept.

— Ansel Adams
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Part I

I N T R O D U C T I O N A N D F U N D A M E N TA L S





1
U N A R E V I S I Ó N H I S T Ó R I C A D E L A L Ó G I C A
D I F U S A

La lógica difusa es errónea, errónea, y perniciosa. Lo que necesitamos
es más pensamiento lógico, no menos. El peligro de la lógica difusa es
que anima a ese tipo de pensamiento impreciso que tantos problemas

nos ha traído. La lógica difusa es la cocaína de la ciencia.

— Profesor William Kahan (UC Berkeley)

1.1 EL INICIO DE LA LÓGICA DIFUSA

La lógica difusa se introdujo en el año 1965 de mano de L. A.
Zadeh, en su propuesta inicial de la teoría de conjuntos difu-

sos [117]. Este autor intentaba proporcionar un marco de referen-
cia para representar conceptos que son imprecisos o poco claros
en sí mismos [104]. A pesar de que su trabajo fue criticado con
severidad por la comunidad académica (debido principalmente
al énfasis de la teoría en la imprecisión), continuó su trabajo a
lo largo de la siguiente década, con algunos de sus artículos de
referencia como [116], [113], [114] y [115], entre otros. En estos
trabajos se introdujeron los conceptos de los conjuntos difusos
(y las nociones de su extensión), la lógica y la inferencia difusas,
el razonamiento aproximado y los conceptos básicos de las vari-
ables linguísticas.
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4 una revisión histórica de la lógica difusa

No obstante, muchos otros investigadores a lo largo y ancho
del mundo se sintieron atraídos por su propuesta y comenzaron
a expandir la teoría de la lógica, sistemas y controladores difu-
sos, aplicándolos en numerosos y diferentes campos. En 1974,
E. H. Mamdani presentó el primer controlador difuso [66], en
contraposición con las metodologías clásicas de control basadas
en un modelado matemático preciso. En 1977, Dubois presentó
un estudio exhaustivo en su tesis doctoral de las condiciones del
tráfico utilizando conjuntos difusos [28]. Más tarde, entre 1976 y
1987, la lógica difusa y sus aplicaciones a la industria atrajeron
una especial atención en Japón, donde en la ciudad de Sempai
se implementó un controlador basado en lógica difusa para con-
trolar una de sus líneas de tren [104]. Dicho éxito en aplicaciones
reales revivió el interés en la lógica difusa en Estados Unidos a
finales de la década de los 80, llevando a lo que se conoce como
"fuzzy boom" a lo largo de todo el mundo, atrayendo la atención
de numerosos investigadores.

Una de las principales críticas sobre la lógica difusa está rela-
cionada con la construcción de las funciones de pertenencia (para
conocer los detalles sobre éstas, por favor véase el capítulo 2). Si
se supone que los conjuntos difusos modelan la incertidumbre,
entonces algunos autores argumentan que asignar un número
concreto a un valor de pertenencia no contiene incertidumbre al-
guna. Dicha crítica llevó a Zadeh [10] a introducir la noción de
los conjuntos difusos de tipo-N en [118] y, como caso particular,
los conjuntos difusos de tipo-2, en los que los valores de perte-
nencia son conjuntos difusos en sí mismos. La definición formal
de tales conjuntos fue finalmente presentada en 1975 en [113].

Puesto que algunos autores claman que, paradójicamente, la
lógica difusa tipo-1 es incapaz de lidiar con la incertidumbre,
su extensión tipo-2 empezó a ganar relevancia debido a su ca-
pacidad para manejarla, en el sentido de modelar y minimizar sus
efectos [78]. Por consiguiente, numerosos autores comenzaron a
estudiar su definición, sus propiedades y sus operaciones teóri-
cas entre conjuntos: Mizumoto y Tanaka [80], Dubois y Prade
[29] y Mendel y Karnik [46] centraron sus esfuerzos en la defini-
ción de los conjuntos difusos tipo-2, así como en las operaciones
entre ellos.

El interés creciente en la lógica difusa, especialmente en su
versión tipo-2, motivó a los investigadores a afrontar de muchas
maneras diferentes el manejo y el modelado de la incertidumbre,
surgiendo variadas y numerosas propuestas de otros conjuntos
difusos: L-conjuntos difusos [34], conjuntos difusos de valores
de conjunto [35], conjuntos difusos intuicionistas de Atanassov
[4] (y, posteriormente, su versión en intervalo, conjuntos difusos
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intuicionistas de Atanassov intervalados, [3]), conjuntos grises
[22], conjuntos sombreados [82], conjuntos difusos titubeantes
[93], conjuntos difusos no estacionarios [33], entre otros. Una re-
visión histórica de los diferentes tipos de conjuntos difusos, al-
gunas de sus propiedades y sus relaciones puede encontrarse en
[10]. Sin embargo, estudiar profundamente estas variedades de
conjuntos difusos está fuera de los objetivos de esta tesis; aquí
nos centraremos en los conjuntos tipo-1, tipo-2 y en su versión
más específica tipo-2 intervalo.

Centrándonos en la lógica difusa tipo-2, tal y como se men-
cionó anteriormente, en 1975 Zadeh introdujo la noción de con-
junto difuso tipo-2. En 1976, Mizumoto y Tanaka estudiaron las
operaciones teóricas entre conjuntos, las propiedades de los val-
ores de pertenencia de tipo-2 y ambas operaciones de suma y
producto algebraico. Posteriormente, a finales de la década de
los 90, Karnik y Mendel extendieron dicho trabajo, y presentaron
fórmulas cerradas útiles para la intersección, unión y negación
sobre conjuntos difusos tipo-2 [46], [49]; también introdujeron el
concepto de centroide tipo-2 [48]. Muchos otros artículos, cen-
trados en estudiar la composición de relaciones tipo-2, se pub-
licaron entre 1978 and 1999 [26], [29]. Todo este trabajo previo
llevó a Liang y Mendel a centrar sus esfuerzos en el desarrollo
de una teoría completa sobre sistemas difusos tipo-2 intervalo.

A pesar de que la teoría de la lógica difusa iba progresando,
durante los inicios de la década del 2000 la lógica difusa tipo-2
intervalo atesoró la mayor parte de la atención por parte de los
investigadores, en detrimento de la lógica difusa tipo-2 general
(a pesar de que no hay una definición formal para esta última,
el término es ampliamente utilizado para diferenciarla explíci-
tamente de su versión más simple tipo intervalo). Esta diferen-
cia estaba fundamentada debido a su alta complejidad computa-
cional, especialmente en la operación de reducción de tipo (una
operación intermedia necesaria en un sistema difuso para com-
pletar el mapeo entre las entradas y la salida). Esta diferencia jus-
tificó una clara escisión en la investigación de la lógica difusa: el
progreso teórico se centró en el desarrollo de la lógica difusa de
tipo-2, mientras que las aplicaciones prácticas de sistemas reales
tendían a utilizar la versión más simple tipo intervalo.
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1.2 OBJETIVOS Y MOTIVACIÓN

La breve introducción histórica sobre la lógica difusa y su desar-
rollo nos permite acercarnos apropiadamente a los objetivos y
motivaciones de esta tesis, que detallamos a continuación.

El primer debate que atrae nuestra atención ha sido discu-
tido desde la misma aparición de la lógica difusa tipo-2. En
general, diversos trabajos y estudios han establecido [13] que la
lógica difusa tipo-2 general y la tipo-2 intervalo son capaces de
obtener mejor rendimiento que sus homólogos tipo-1, especial-
mente cuando se enfrentan a altos niveles de incertidumbre [31],
[38], [59]; sin embargo, por qué ocurre este rendimiento superior
aún permanece sin explicación. Este hecho llevó a una polémica
bien conocida [88], [11], en la que algunos autores declaran que
una razón por la que los sistemas difusos tipo-2 muestran un
mejor rendimiento estriba en el uso de parámetros extra en las
funciones de pertenencia en tipo-2 general e intervalo, cuando
se comparan con los tipo-1.

Algunos autores han propuesto marcos de referencia anterior-
mente para comparar los sistemas difusos tipo-1 y tipo-2 [45],
[88]; además, otros trabajos [11] proponen una comparación en-
tre tipo-1, non-singleton tipo-1 y singleton tipo-2 intervalo en
varios problemas de aproximación funcional, proporcionando a
cada sistema el mismo número de parámetros (cuando es posi-
ble), y dando a todos los sistemas las mismas oportunidades de
optimización utilizando algoritmos de búsqueda semi-aleatoria.
Sin embargo, tal y como se explicará posteriormente en esta
tesis, algunos de esos parámetros (por ejemplo, los consecuentes)
se obtienen de diferentes formas en los distintos tipos de sis-
temas, y por tanto, podría argumentarse que las opciones de
optimización no son estrictamente iguales, sino más bien aproxi-
madamente iguales.

Motivados por esta polémica sin fin aparente, la primera parte
de este trabajo trata de contribuir a la solución de este debate
desde una perspectiva nueva y diferente: si la discusión gira
en torno al número de parámetros libres o grados de libertad
disponibles para ajustar el sistema, entonces se propone dar un
paso atrás hacia los sistemas difusos tipo-1, y utilizar un marco
de referencia basado en aproximación funcional para comparar
este tipo de sistemas difusos, pero utilizando un número difer-
ente de parámetros por función de pertenencia, y compararlos
para verificar si existen diferencias estadísticamente significati-
vas en su rendimiento. Este trabajo trata de descubrir si el número
de parámetros es o no la clave para mejorar el rendimiento de
los sistemas difusos y, por tanto, probar o refutar si hay otros
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factores involucrados (por ejemplo, cómo esos parámetros se uti-
lizan en los sistemas tipo-1 y tipo-2).

Las conclusiones extraídas en este estudio justificarán plena-
mente que nos centremos en la teoría de conjuntos y sistemas
difusos tipo-2 en la parte ii. En ese sentido, es necesario consid-
erar dos factores importantes en la bibliografía existente sobre
lógica difusa tipo-2 general e intervalo, que se mencionan a con-
tinuación.

En primer lugar, algunos trabajos recientes [89] han demostrado
que los conjuntos difusos tipo-2 intervalo son más generales que
los conjuntos con valores intervalados (este y otros conceptos
se definirán con precisión en el Capítulo 2). Una interpretación
adecuada de la definición original de Mendel [78] revela que
esa clase de conjuntos incluye una variedad más amplia de ellos,
incluyendo conjuntos con formas no consideradas hasta ahora,
algunos de los cuales pueden tener grados secundarios no con-
vexos. Sin embargo, las operaciones matemáticas entre conjun-
tos involucradas en los sistemas tipo-2 intervalo suponen que
dichos conjuntos tienen como pertenencia primaria un intervalo
cerrado y conexo, una condición que ya no es válida. En con-
secuencia, las operaciones teóricas sobre estos conjuntos (esto
es, las operaciones join y meet) necesitan ser revisadas para de-
sarrollar adecuadamente la teoría relacionada con estos nuevos
conjuntos difusos.

No obstante, tal y como se ha mencionado, esta nueva clase
de conjuntos pueden tener grados secundarios no convexos, un
hecho que puede ser problemático. A pesar de que las defini-
ciones para las operaciones sobre estos conjuntos tipo-2 se es-
tablecieron cuando Zadeh introdujo su noción en [113], éstas se
describieron utilizando el Principio de Extensión, y no se propor-
cionó ninguna fórmula cerrada para operar con conjuntos difu-
sos tipo-2. Otros autores centraron sus esfuerzos más tarde [49]
en obtener tales fórmulas cerradas, pero éstas estaban limitadas
a conjuntos tipo-2 con grados secundarios normales y convexos.
Así pues, el segundo obstáculo es que la bibliografía existente
sobre las operaciones join y meet no puede utilizarse para de-
sarrollar la teoría de los sistemas difusos tipo-2 intervalo que
utilizan conjuntos no convexos.

Estas dos necesidades motivan el trabajo restante propuesto en
esta tesis, y comprenden el resto de nuestra contribución: por un
lado, la segunda parte del trabajo se centra en desarrollar las ope-
raciones teóricas sobre conjuntos difusos tipo-2 generales, con el
fin de obtener fórmulas cerradas para operar con estos conjuntos,
en los que las restricciones sobre la normalidad y convexidad de
sus grados secundarios dejan de ser necesarias. Por otra parte, es-
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tos resultados nos permitirán desarrollar más allá la teoría de los
sistemas difusos tipo-2 intervalo: en la tercera parte de esta tesis,
dichas ecuaciones para conjuntos tipo-2 generales serán partic-
ularizadas para conjuntos tipo-2 intervalo, obteniendo fórmulas
cerradas para las operaciones join y meet cuando estos conjuntos
tienen grados secundarios no convexos. Dichas operaciones nos
permitirán definir un nuevo motor de inferencia, que es la pieza
clave para definir las formas generales de los sistemas difusos
tipo-2 intervalo.

1.3 ESTRUCTURA DE ESTA TESIS

Esta tesis está organizada en Capítulos, cuyo contenido se re-
sume a continuación:

Capítulo 1. A Historical Overview On Fuzzy Logic: Se pre-
senta una breve revisión histórica sobre lógica difusa, tanto tipo-
1 como tipo-2, así como otros tipos de conjuntos difusos prop-
uestos a lo largo de la historia. Este pequeño resumen nos per-
mite justificar los objetivos y motivaciones de esta tesis, así como
su contribución al campo. Además, se presenta la estructura de
la misma.

Capítulo 2. Fundamentals of Fuzzy Logic: Este capítulo tiene
el propósito de revisar los conceptos básicos relacionados con
la teoría tanto de conjuntos como de sistemas difusos: las defini-
ciones, las operaciones teóricas, el proceso de inferencia y el Prin-
cipio de Extensión coparán la mayor parte de nuestra atención,
pese a que también se mencionará la estructura de los sistemas
difusos y su uso como aproximadores funcionales universales.

Capítulo 3. Effects of Extra Type-1 Fuzzy Set Parameters on
the Performance of a Fuzzy System: Se propone un enfoque
novedoso en este capítulo para dilucidar si el número de paráme-
tros libres es la única clave para mejorar el rendimiento de los sis-
temas difusos. Para hacerlo, se propone utilizar nueve problemas
de aproximación funcional diferentes, y comparar el rendimiento
de dos clases de sistemas difusos tipo-1, que son esencialmente
iguales pero difieren en el número de parámetros por función de
pertenencia. Este marco de referencia utiliza algoritmos genéti-
cos tanto mono-objetivo como multi-objetivo.

Capítulo 4. Join and Meet Operations for Type-2 Fuzzy Sets
With Nonconvex Secondary Memberships: Este capítulo se cen-
tra en las limitaciones tradicionales de las operaciones entre con-
juntos (unión e intersección) cuando se trata con conjuntos tipo-2.
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Se presenta una breve revisión sobre el Principio de Extensión y
las fórmulas existentes en la bibliografía. Además, se introducen
dos nuevos teoremas para las operaciones de unión e intersec-
ción, a fin de eliminar las restricciones relativas a la normalidad
y convexidad de los conjuntos tipo-2 al operar con los mismos.
Se realizarán varios ejemplos para ambas operaciones.

Capítulo 5. Towards a Fuzzy Logic System Based on General
Forms of Interval Type-2 Fuzzy Sets: los trabajos recientes que
demuestran que los conjuntos difusos tipo-2 intervalo son más
generales que los conjuntos difusos con valores intervalados ha-
cen necesario el desarrollo completo de un nuevo marco teórico
para estos sistemas difusos tipo-2 intervalo que pueden tener
grados secundarios no convexos (a los cuales nos referiremos
como "formas generales de conjuntos/sistemas difusos tipo-2 in-
tervalo"). La estructura completa de tales sistemas es revisada, y
se prestará especial atención al motor de inferencia (que utiliza
las operaciones definidas en el capítulo anterior) y al proceso de
reducción de tipo, los dos bloques que presentan diferencias sig-
nificativas con otros sistemas difusos ampliamente conocidos. Se
consideran ambos tipos de entradas a dichos sistemas, singleton
y non-singleton, y se propondrán dos ejemplos diferentes sobre
cómo usar estos conjuntos y sistemas.

Capítulo 6. Conclusions, main contributions and list of pub-
lications: El capítulo final resume las conclusiones extraídas du-
rante todo el trabajo, y resalta las principales contribuciones de
esta tesis. Además, se facilita una lista de publicaciones.

Finalmente, con la finalidad de facilitar la lectura de esta tesis,
se han adoptado las siguientes convenciones:

• Las ecuaciones, definiciones, figuras y teoremas están nu-
merados de acuerdo al número de sección, seguido de un
número creciente representado el elemento concreto dentro
de dicha sección; es decir, la ecuación/definición/figura/-
teorema 2.1.2 es el segundo elemento de la sección 2.1

• Los conjuntos difusos, tanto tipo-2 como tipo-2, se repre-
sentarán indistintamente utilizando letras mayúsculas, tales
como A, B, F1, F2, y así. No obstante, si en algún contexto
específico se requiere tratar con conjuntos tipo-1 y tipo-2 al
mismo tiempo, las mayúsculas normales se utilizarán para
representar a los tipo-1 (como en A o B), mientras que
sus homólogos tipo-2 se representarán utilizando letras con
tilde de la eñe (~) (como en Ã o B̃).

• En general el término "lógica/conjuntos/sistemas difusos
tipo-2" se utilizará en lugar de "lógica/conjuntos/sistemas
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difusos tipo-2 general". El motivo es que no existe defini-
ción formal para esta última. Sin embargo, en algunos con-
textos específicos se utilizará para diferenciarla explícita-
mente de la versión más específica de lógica/conjuntos/-
sistemas difusos tipo-2 intervalo.



1A H I S T O R I C A L O V E RV I E W O N F U Z Z Y L O G I C

Fuzzy theory is wrong, wrong, and pernicious. What we need is more
logical thinking, not less. The danger of fuzzy logic is that it will

encourage the sort of imprecise thinking that has brought us so much
trouble. Fuzzy logic is the cocaine of science.

— Professor William Kahan (UC Berkeley)

1.1 THE BEGINNING OF FUZZY LOGIC

Fuzzy logic was introduced as early as 1965 by L.A. Zadeh in
his proposal of fuzzy sets (FS) theory [117]. He aimed to pro-

vide a complete and formal mathematical framework to repre-
sent concepts that are themselves imprecise or unclear [104]. Al-
though his work was severely criticised by the academic commu-
nity (due mostly to the theory’s emphasis on imprecision), he
continued to develop his work over the following decade, with
some of his seminal papers such as [116], [113], [114] and [115],
among many others. In these works he introduced the concepts
of fuzzy sets (and the notion of their extension), fuzzy logic and
inference, approximate reasoning and the basic concepts of ligu-
istic variables.

Nonetheless, many other researchers around the world were
attracted by his proposal and started expanding fuzzy logic (FL)

11
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theory, systems and controllers, applying it to many different
fields. In 1974, E. H. Mamdani presented the very first fuzzy
logic controller (FLC) [66], in contrast with the classical method-
ologies of control based in precise mathematical modeling. In
1977, Dubois presented a comprehensive study of traffic condi-
tions using fuzzy sets in his PhD thesis [28]. Later, between 1976

and 1987, fuzzy logic and its application to industry attracted
special attention in Japan, where even a train line in Sendai im-
plemented a controller based on fuzzy logic [104]. That success
in real world applications revived the interest in fuzzy logic in
the United States in the late 80s, leading to a so called "fuzzy
boom" world-wide, attracting the attention of many researchers
around the world.

One of the main criticisms about fuzzy logic was related to
the construction of membership functions (MFs; for details about
MFs and its definition, please refer to Chapter 2). If fuzzy sets
are supposed to model uncertainty, then some authors argue that
assigning a crisp number to a membership degree has no uncer-
tainty at all. This criticism led Zadeh [10] to introduce the no-
tion of type-N fuzzy set in [118] and, therefore, type-2 fuzzy sets
(T2FS), in which the membership degrees were themselves fuzzy
sets. The formal definition of such sets was finally introduced in
1975 in [113].

As some authors argued that, paradoxically, type-1 (T1) fuzzy
logic is unable to handle uncertainty, its type-2 (T2) extension
started to gain prominence because of its ability to handle it, in
the sense of modelling and minimising its effects [78]. Hence, many
authors began to study their definition, properties and set theo-
retic operations: Mizumoto and Tanaka [80], Dubois and Prade
[29] and Mendel and Karnik [46] focused their efforts in the def-
inition of type-2 fuzzy sets, as well as in the operations on them.

The growing interest on FL, specially its type-2 version, moti-
vated researchers to approach uncertainty handling and model-
ing in many different ways, and many other proposals of fuzzy
sets arose: L-fuzzy sets (LFS) [34], set-valued fuzzy sets (SVFS)
[35], Atanassov intuitionistic fuzzy sets (AIFS) [4] (and, later, the
interval version of those sets, interval-valued Atanassov’s intu-
itionistic fuzzy sets, IVAIFS [3]), grey sets (GS) [22], shadowed
sets (SS) [82], hesitant fuzzy sets (HFS) [93], non-stationary fuzzy
sets (nSFS) [33], among many others. A historical review of the
different kinds of fuzzy sets, some of their properties and their
relationships can be found in [10]. However, a deep study on
these variety of fuzzy sets is out of the scope of this dissertation;
we will focus on type-1, type-2 and the most specific version of
interval type-2 fuzzy sets (IT2FS).
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Focusing on type-2 fuzzy logic, as mentioned above, as early
as 1975 Zadeh introduced the notion of type-2 FSs. In 1976, Mizu-
moto and Tanaka studied the set theoretic operations, the prop-
erties of membership grades of type-2 and both the operations
of algebraic sum and product. Later, in the late 90s, Karnik and
Mendel extended that work, and presented practical closed for-
mulas for the intersection, union and negation on T2FSs [46],
[49]; they also introduced the concept of a type-2 centroid [48].
Many other papers, studying mainly the composition of type-
2 relations were published between 1978 and 1999 [26], [29]. All
this previous work led to Liang and Mendel to focus their efforts
on the development of a complete theory about IT2FLS.

Although the theory of T2FL was progressing, during the early
2000s IT2FL hoarded most of the researchers’ attention to the
detriment of general type-2 (GT2) FL (although there is no for-
mal definition for the latter, the term is widely used in order to
make explicit difference from the simpler version of IT2FSs/FLSs).
This difference was motivated by its high computational com-
plexity, specially in the type reduction operation (an intermedi-
ate operation required in a fuzzy logic system in order to accom-
plish the input-output mapping). This difference motivated a
clear secession in the research of fuzzy logic: theoretical progress
was focused on developing the theory of T2FL, whereas practical
implementations of real world systems tended to use the simpler
IT2FL.

1.2 GOALS AND MOTIVATIONS

The brief historical introduction about fuzzy logic and its de-
velopment allows us to approach appropriately the goals and
motivations of this dissertation, which we will itemise in the fol-
lowing.

The first debate that attracts our attention has been discussed
since the very appearance of type-2 fuzzy logic. In general, it has
been established by various works and studies [13] that GT2 and
IT2FLSs are able to obtain a better performance than their type-
1 counterparts, specially when facing high levels of uncertainty
[31], [38], [59]; however, why this outperformance happens still
remains unexplained. This fact led to a well known controversy,
in which some authors state that one reason for type-2 FLSs to
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perform better is due to the use of extra parameters in each MF
in GT2 and IT2 FLSs when compared to their T1 counterparts.

Some authors have previously proposed different frameworks
to compare both type-1 and type-2 FLSs [45], [88]; furthermore,
other works [11] propose a comparison between T1, non-singleton
T1 and singleton IT2 FLSs in several function approximation
problems, providing each system with the same number of pa-
rameters (when possible), and giving all systems equal oppor-
tunities of optimisation using semi-random search algorithms.
However, as will be explained later in this dissertation, some of
those parameters (i.e. the consequents) are obtained optimally
but in different ways in the different kinds of systems, and thus,
it could be argued that the opportunities of optimisation are not
strictly the same, but rather roughly equal.

Motivated by this endless controversy, the first part of this dis-
sertation aims to contribute to solve this debate from a different
and novel approach: if the controversy revolves around the num-
ber of free parameters or degrees of freedom available to tune
the system, then we propose to step back to T1FLSs, and use
a function approximation framework to compare T1FLSs which
are essentially the same, but use a different number of parame-
ters per MF, and compare them to verify if there exist statistically
significant differences in their performance. The work aims to
find out whether the number of parameters is the key to improve
FLSs’ performance or not, and thus, to prove or disprove if some
other factors (i.e., how those parameters are used differently in
T1 and T2 FLSs) are involved.

Conclusions from the previous part will plenty justify our fo-
cus on type-2 fuzzy sets and systems theory in ii. On that regard,
we need to consider two important facts about the existing liter-
ature of GT2 and IT2 FL, which are introduced in the following.

Firstly, recent works have shown [89] that IT2FSs are more gen-
eral than interval-valued fuzzy sets (IVFS) (this and other con-
cepts will be precisely defined in Chapter 2). A proper interpreta-
tion of the original definition by Mendel [78] revealed that class
of sets include a broader variety of them, including sets with
certain shapes that had not been considered until now, some of
which might have non-convex secondary grades. However, the
mathematical set operations involved in the classic IT2FLSs as-
sumed those sets had closed and connected intervals as their
primary membership, a condition that does not hold any more.
Hence, the set theoretical operations on these sets (i.e, the join
and meet operations) need to be revised in order to properly de-
velop the theory related to the new IT2FLSs.



1.3 structure of this dissertation 15

Nonetheless, as stated, this new class of sets might have non-
convex secondary grades, a fact that can actually be troublesome.
Although the definitions for those operations on type-2 fuzzy
sets were established when Zadeh introduced their notion in
[113], they were described using the Extension Principle, and
no closed formula was provided to operate on type-2 fuzzy sets.
Other authors focused their efforts later [49] to obtain closed
formulas for these operations, but they were limited to T2FSs
having normal and convex secondary grades. Thus, the second
obstacle is that existing literature about the join and meet oper-
ations cannot be used to develop the theory of IT2FLSs using
non-convex sets.

These two needs motivate the remaining work proposed in
this dissertation, and they comprehend the rest of our contribu-
tion: on the one hand, the second part of this thesis will focus our
efforts in devoloping the theoretical operations on GT2FSs, in or-
der to obtain closed formulas to operate with these sets where
the restrictions about the normality and convexity of the sec-
ondary grades are no longer required. On the other hand, these
results will allow us to further develop the theory of IT2FLSs: in
the third part of this work, those equations for GT2FSs will be
particularised for IT2FSs, obtaining closed formulas for the join
and meet operations when these sets have non-convex SG. Those
operations will allow us to define a new inference engine, which
is the keystone to defining the general forms of IT2FLSs.

1.3 STRUCTURE OF THIS DISSERTATION

This dissertation is organised in Chapters, which content is sum-
marised in the following:

Chapter 1. A Historical Overview On Fuzzy Logic: A brief
historical overview about fuzzy logic, both type-1 and type-2, is
presented, as well as other kinds of fuzzy sets proposed through-
out history. This brief summary allows us to justify the motiva-
tions and goals of this dissertation, as well as its contribution to
the field. Moreover, the structure of the thesis is presented.

Chapter 2. Fundamentals of Fuzzy Logic: This chapter aims to
review the basic concepts related to the theory of both fuzzy sets
and fuzzy logic systems: definitions, set theoretic operations, the
inference process and the Extension Principle will attract most of
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our attention, although the structure of fuzzy logic systems and
their use as universal approximators will also be hightlighted.

Chapter 3. Effects of Extra Type-1 Fuzzy Set Parameters on
the Performance of a Fuzzy System: An innovative approach is
proposed in this chapter tu elucidate if the number of free param-
eters is the only keystone to improve the performance of fuzzy
logic systems. To do so, we propose using nine different func-
tion approximation problems, and comparing the performance
between two types of type-1 FLSs, which are essentially the same
but have different number of parameters per MF. The framework
uses both single-objective and multi-objective genetic algorithms
(GAs).

Chapter 4. Join and Meet Operations for Type-2 Fuzzy Sets
With Nonconvex Secondary Memberships: This chapter focuses
in the traditional limitations of the set theoretic operations (union
and intersection) when dealing with type-2 fuzzy sets. A brief
overview on the Extension Principle and existing formulas in
the literature is presented. Moreover, two new theorems for the
union and intersection operations are introduced, in order to
eliminate the restrictions regarding normality and convexity of
type-2 sets when operating with them. Several examples about
both operations will be carried out.

Chapter 5. Towards a Fuzzy Logic System Based on General
Forms of Interval Type-2 Fuzzy Sets: recent works proving that
IT2FSs are more general than IVFSs created the need of develop-
ing a whole new theoretical framework for this IT2FLSs which
can have non-convex secondary grades (which we will be refer-
ring to as "general forms of interval type-2 fuzzy sets/logic sys-
tems, gfIT2FS/gfIT2FLSs). The whole structure of the systems is
revisited, and especial attention is focused on the inference en-
gine (which uses the set theoretic operations defined in the pre-
vious chapter) and the type-reduction process, the two blocks
presenting significant differences with the other well-know FLSs.
Both singleton and non-singleton gfIT2FLSs are considered, and
two different examples about how to use these sets and systems
are proposed.

Chapter 6. Conclusions, main contributions and list of publi-
cations: The final chapter summarises the conclusions obtained
during all our work, and highlights the main contributions of
this dissertation. Moreover, a list of publications is provided.

Finally, in order to ease the reading of this dissertation, the
following conventions have been adopted:

• Equations, definitions, figures and theorems are numbered
with the section number, followed by an increasing num-
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ber representing the number of item within the section, i.e.,
equation/definition/figure/theorem 2.1.2 is the second one
in section 2.1.

• Fuzzy sets, both type-1, type-2 and the more specific ver-
sion interval type-2, will be represented indistinctly using
capital letters, such as A, B, F1, F2, and so on. Nonetheless,
if in some specific context we deal with type-1 and type-2
sets at the same time, regular capital letters will be used to
represent type-1 fuzzy sets (as A or B), whereas their type-2
counterparts will be represented using the tilde symbol (as
in Ã or B̃).

• In general the term "type-2 fuzzy sets/logic/systems" will
be used rather than "general type-2 fuzzy sets/logic/sys-
tems". The reason for that is that there is no formal defini-
tion for the latter. Nevertheless, in some specific contexts we
will use it to make explicit difference with the more specific
version of interval type-2 fuzzy sets/logic/systems.





2F U N D A M E N TA L S O F F U Z Z Y L O G I C

"Fuzzification" is a kind of scientific permissiveness. It tends to result
in socially appealing slogans unaccompanied by the discipline of hard

scientific work and patient observation.

— Professor Rudolf Kalman (University of Florida)

This chapter focuses in reviewing the concepts of fuzzy logic
needed to completely comprehend the work presented in this

dissertation. The first section is dedicated to type-1 fuzzy sets
and logic, whereas the second one draws its attention on the
type-2 counterpart. For both sections, we introduce the defini-
tions of the corresponding sets as well as the set theoretic opera-
tions for the union and intersection, using the Extension Princi-
ple when needed. Subsequently, we will introduce the concepts
of fuzzy rules and their role in fuzzy inference. Finally, we will
briefly highlight fuzzy logic systems as universal approximators.

19
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2.1 INTRODUCTION TO TYPE-1 FUZZY LOGIC

Although human beings are able to manage, process and under-
stand cuantitative information (represented by numbers and/or
mathematical equations), most of human knowledge is described
using language and linguistic terms. This linguistic information
is, by nature, imprecise: the statement "that person is tall" can
be considered as true by some people, whereas others may think
that given person is not tall at all; or, on the other hand, some
others may answer he is not very tall or not very short. In addition,
the appreciation of the concept tall might be strongly influenced
by social factors, as nationality, culture and age, among others.
This fact reveals that human knowledge is imprecise, vague or
partially true, a fact that is perfectly represented in the fuzzy
logic adage words mean different things to different people.

Zadeh’s initial work about fuzzy sets [117] and linguistic vari-
ables [113] was aiming to provide a whole theoretical framework
to properly represent uncertain or incomplete knowledge. In the
following subsection, we introduce the concepts and definitions
related to type-1 fuzzy sets and logic.

2.1.1 The concept of type-1 fuzzy sets

Fuzzy sets are named as opposition to classic or crisp sets, which
are completely delimited by a well defined frontier. In this sense,
a given element from a given universe of discourse belongs com-
pletely to the set, or it does not at all; partial memberships do
not exist in this context.

Hence, each element x in the universe of discourse X, x ∈ X
has associated a membership degree (or membership value) to
the set A, which is equal to 1 if the element belongs to the set,
and 0 otherwise. Thus, we can define the membership function of
a crisp set A, defined over a universe of discourse X, as:

µA (x) =

 1 if x ∈ X

0 if x /∈ X
(2.1.1)

As the fuzzy set A is completely and univoquely determined
and described by its membership function µA(x), we can stab-
lish a mathematical equivalence between them, as knowing one
of them implies knowing the other too. Usually, crisp sets are
represented only by means of their members, it is, representing
only the elements having a membership value equal to 1. For in-
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stance, the set of natural numbers less than or equal to 10 would
be:

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (2.1.2)

Oppositely, fuzzy sets were defined by Zadeh [117] as sets
whose members may have a partial degree of membership, allow-
ing the membership values to be any number contained within
the unit interval [0, 1], i. e., µA(x) ∈ [0, 1] ∀x ∈ X. The formal
definition of a fuzzy set is as follows:

Definition 2.1.1. A fuzzy set A, defined over a universe of dis-
course X, is the set of all ordered pairs such that:

A = {(x,µA(x)) | x ∈ X, µA : X 7→ [0, 1]} (2.1.3)

As it can be deduced from Definition 2.1.1, if we restrict the
membership values to be either 0 or 1, then a fuzzy set reduces
to a crisp set, thus proving that the former are a generalisation
of the latter.

Depending on the nature of the universe of discourse, fuzzy
sets are represented in a different way. When X is discrete, then
fuzzy sets are represented as in Equation (2.1.4), where the sym-
bol "/" represents ordered pairs, and the symbol + denotes union
of all elements within the set.

A =
∑
i

µA(xi)/xi = µA(x1)/x1 + µA(x2)/x2 + µA(x3)/x3 + ...

(2.1.4)

On the other hand, if X is continuous, the sets are represented
as in Equation (2.1.5), where union over all admisible values is
noted as

∫
X.

A =

∫
X

µA(x)/x (2.1.5)

This scheme is much more suitable to represent sets and con-
cepts whose limits are not clearly defined. As an example, let us
consider the set of tall people. We may agree that all people taller
than 1.90m are definitely tall (i.e., membership value equal to 1),
whereas all people shorter than 1.60m are short. Nonetheless, in-
dividuals having a height value between 1.60m and 1.90m belong
partially to the set of tall people; someone being 1.65m tall could
have a membership value of 0.15, whereas another person being
1.85m tall could be assigned a membership equal to 0.9.
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2.1.2 Other definitions regarding type-1 fuzzy sets

In this subsection we present other basic definitions related to
type-1 fuzzy sets, most of which will be used across this disser-
tation.

Definition 2.1.2. Fuzzy subset: let A and B be two fuzzy sets de-
fined over the same universe of discourse X. Then, A is a subset
of B or, equivalently, A is contained in B (which is denoted as
A ⊆ B), if and only if:

A ⊆ B ⇐⇒ µA(x) 6 µB(x) ∀x ∈ X (2.1.6)

Definition 2.1.3. Convex fuzzy set: a type-1 fuzzy set is said to
be convex if and only if it verifies the following condition:

λµA(x1) + (1− λ)µA(x2) > min(µA(x1),µA(x2))
∀x1, x2 ∈ X, ∀λ ∈ [0, 1] (2.1.7)

Definition 2.1.4. Support: let A be a fuzzy set. Then, the support
of A, which is denoted as S(A), is defined as:

S(A) = {x ∈ X | µA(x) > 0} (2.1.8)

Definition 2.1.5. Core (or kernel): let A be a fuzzy set. Then,
the core (also named kernel by other authors) is the subset of the
domain having a membership value equal to 1, i.e.:

Core(A) = {x ∈ X | µA(x) = 1} (2.1.9)

Definition 2.1.6. Amplitude: let A be a fuzzy set defined over
X ⊆ IR, having a support given by S(A). Then, the amplitude of
A, denoted by Amp(A), is given by:

Amp(A) = Sup(S(A)) − Inf(S(A)) (2.1.10)

In many applications of fuzzy logic and fuzzy control, normal
(normality is defined below) and convex sets are most widely
used. In those cases, it is usual to use the terms support and am-
plitude as synonyms. However, in part of this thesis we will work
with non-convex sets, whose support will be comprised in many
cases by closed, connected and disjointed intervals; hence, it is
importat to highlight that these terms will not be interchange-
able in the context of this dissertation.
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Definition 2.1.7. Height: let A be a fuzzy set. Then the height of
A, denoted by Height(A), is given by:

Height(A) = sup{µA(x) | x ∈ X} (2.1.11)

Definition 2.1.8. Normality: let A be a fuzzy set. Then A is said
to be a normal fuzzy set if there is at least one value x ∈ X such
that µA(x) = 1. Analogously, we can also define A as normal if
the following stands:

A is normal ⇐⇒ Heigth(A) = 1 (2.1.12)

Definition 2.1.9. α-cut: let A be a fuzzy set. Then, an α-cut of A,
which is denoted by Aα, is a crisp set defined as [101]:

Aα = {x ∈ X | µA(x) > α} α ∈ [0, 1] (2.1.13)

It is worthwhile to highlight that, when the fuzzy sets consid-
ered are convex, the resulting α-cut is a closed and connected
interval for any α ∈ [0, 1]; nonetheless, in this dissertation we
consider non-convex and/or non-normal type-1 fuzzy sets. In
such cases, the α-cuts may be comprised by the union of sev-
eral closed, connected and disjointed intervals and/or singletons,
which are subsequently defined.

Definition 2.1.10. Fuzzy singleton: a fuzzy set A is called a fuzzy
singleton if its support is comprised by a single element x ∈ X.

#S(A) = 1 ⇐⇒ S(A) = x ∈ X (2.1.14)

Where the symbol # denotes the number of elements within a
set.

Definition 2.1.11. Fuzzy number: [113] a fuzzy set A is said
to be a fuzzy number if it is defined over the real line IR with a
normal and convex membership function of bounded support.
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2.2 OPERATIONS ON TYPE-1 FUZZY SETS

The set theoretic operations of intersection and union are well de-
fined for crisp sets, and can be extended to operate on type-1
fuzzy sets. However, there is not a unique way of defining such
operations. In [112], Zadeh proposed the following formulas for
the union and intersection of fuzzy sets. Let A and B be two
fuzzy sets. Hence:

• The intersection ofA and B, denoted asA∩B, is uniquely de-
termined by its membership function µA∩B(x), and is given
by:

A∩B ⇐⇒ µA∩B(x) = min(µA(x),µB(x)) =
= µA(x)∧ µB(x) (2.2.1)

Where ∧ denotes the minimum operation.

• The union of A and B, denoted as A ∪ B, is uniquely deter-
mined by its membership function µA∪B(x), and is given
by:

A∪B ⇐⇒ µA∪B(x) = max(µA(x),µB(x)) =
= µA(x)∨ µB(x) (2.2.2)

Where ∨ denotes the maximum operation.

• The negation of a set A, denoted usually as A ′ or Ā, is
uniquely determined by its membership function µA ′(x) (or
µĀ), and is given by:

Ā ⇐⇒ µĀ(x) = 1− µA(x) (2.2.3)

The definitions of these operations are a generalisation of the
union, intersection and negation on crisp sets, in the sense that
if we restrict the membership values to {0, 1} rather than [0, 1],
then Equations (2.2.1), (2.2.2) and (2.2.3) describe the union, in-
tersection and negation of classic sets. Nevertheless, there is not
a unique way of defining these operations in such a way they
generalise their crisp counterparts, a topic we introduce subse-
quently.

2.2.1 Intersection operation on type-1 fuzzy sets: T-norms

In this subsection we focus our attention on the class of functions
that are suitable to generalise the intersection operation on type-
1 fuzzy sets from its crisp counterpart. That class of functions,
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referred to as T-norms, need to comply with a given set of axioms,
which are presented subsequently:

Definition 2.2.1. Let T be a function T : [0, 1]x[0, 1] 7→ [0, 1]. Then
T is a T-norm if it verifies the following axioms [101]:

• Axiom 1: T(0, 0) = 0, T(a, 1) = T(1,a) = a (known as
boundary condition).

• Axiom 2: T must be commutative, i.e., T(a,b) = T(b,a).

• Axiom 3: T must be non-decreasing in both variables, i.e.,
if a 6 a ′ and b 6 b ′, then:

T(a,b) 6 T(a ′,b ′) (2.2.4)

• Axiom 4: T must verify the associative condition, i.e.:

T(T(a,b), c) = T(a,T(b, c)) (2.2.5)

Many different T-norms have been proposed in the literature
[101], as:

• The drastic product:

TDP(a,b) =


a if b = 1

b if a = 1

0 otherwise

(2.2.6)

• The Einstein product:

TES(a,b) =
ab

2− (a+ b− ab)
(2.2.7)

• The algebraic product:

TAP(a,b) = ab (2.2.8)

• The minimum operation:

Tmin(a,b) = min(a,b) = a∧ b (2.2.9)

In addtion, some authors have also defined complete families
of functions to act as T-norms, obtaining a different function for
each value of a given parameter. Some of them are presented in
the following:
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• The Dombi class [25]:

Tλ =
1

1+ [( 1a − 1)λ + ( 1b − 1)λ]1/λ
(2.2.10)

λ ∈ (0, inf)

• The Dubois-Prade class [27]:

Tα(a,b) =
ab

max(a,b,α)
(2.2.11)

α ∈ [0, 1]

• The Yager class [103]:

Tω(a,b) = 1−min[1, ((1− a)ω + (1− b)ω)1/ω]
(2.2.12)

ω ∈ (0, inf)

All these functions and classes are suitable to implement the
operation of fuzzy intersection, among others. However, the most
used intersection functions in the literature are the minimum
and the product operations.

2.2.2 Union operation on type-1 fuzzy sets: T-conorms

In this subsection we study the class of functions that gener-
alise the union operation on fuzzy sets from its crisp counterpart,
which are called T-conorms (although other authors refer to them
as S-norms). Those functions need to verify a set of conditions,
which are itemised in the following definition:

Definition 2.2.2. Let S be a function S : [0, 1]x[0, 1] 7→ [0, 1]. Then
S is a T-conorm if it verifies the following axioms [101]:

• Axiom 1: S(1, 1) = 1, S(a, 0) = S(0,a) = a (known as bound-
ary condition).

• Axiom 2: S must be commutative, i.e., S(a,b) = S(b,a).

• Axiom 3: S must be non-decreasing in both variables, i.e., if
a 6 a ′ and b 6 b ′, then:

S(a,b) 6 S(a ′,b ′) (2.2.13)

• Axiom 4: S must verify the associative condition, i.e.:

S(S(a,b), c) = S(a, S(b, c)) (2.2.14)
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Many different T-conorms have been proposed in the literature
[101], as:

• The drastic sum:

SDS(a,b) =


a if b = 0

b if a = 0

0 otherwise

(2.2.15)

• The Einstein sum:

SES(a,b) =
a+ b

1+ ab
(2.2.16)

• The algebraic sum:

SAS(a,b) = a+ b− ab (2.2.17)

• The maximum operation:

Smax(a,b) = max(a,b) = a∨ b (2.2.18)

Moreover, some authors defined complete families of func-
tions to act as T-conorms. One different T-conorm is obtained for
each value of a given parameter, as the ones listed subsequently:

• The Dombi class [25]:

Sλ =
1

1+ [( 1a − 1)−λ + ( 1b − 1)−λ]−1/λ
(2.2.19)

λ ∈ (0, inf)

• The Dubois and Prade class [27]:

Sα(a,b) =
a+ b− ab−min(a,b, 1−α)

max(1− a, 1− b,α)
(2.2.20)

α ∈ [0, 1]

• The Yager class [103]:

Sω(a,b) = min[1, (aω + bω)1/ω] (2.2.21)
ω ∈ (0, inf)

All these functions and classes are suitable to implement the
operation of fuzzy union, among others. Nonetheless, the most
used union functions in the literature are the maximum and the
algebraic sum operations.
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2.2.3 Complement operation on type-1 fuzzy sets: nega-
tions

The concept of complement of a given element in a set is easily and
intuitively extended from the complement of an element from a
crisp set; the only difference is that the operation is applied to
the membership values of such given elements. The complement
measures to which extent a given element x ∈ X does not belog
to the given set.

As in the previous subsections related to intersection and union,
respectively, there are many different functions that can extend
the concept of negation from crisp sets to fuzzy sets. For a given
function to be considered a fuzzy complement, it must comply
with a given set of axioms, which are detailed in the following:

Definition 2.2.3. Let C be a function C : [0, 1] 7→ [0, 1]. Then C is
a fuzzy negation if it verifies the following axioms [101]:

• C(0) = 1 and C(1) = 0 (known as boundary condition).

• C must be non-increasing, i.e., ∀a,b ∈ [0, 1], if a 6 b, then
C(a) > C(b).

The most used negation function is the ordinary complement,
which is the most frequently used in the fuzzy logic literature:

C(a) = 1− a (2.2.22)

In addition, some classes of negation functions have been de-
fined, where a different complement is obtained depending of
the chosen parameter:

• The Sugeno class [90]:

Cλ(a) =
1− a

1+ λa
(2.2.23)

λ ∈ (−1, inf)

• The Yager class [103]:

Cω(a) = (1− aω)
1
ω (2.2.24)

ω ∈ (0, inf)

2.2.4 T-norms and T-conorms associated through comple-
ments

It is worthwhile to highlight that T-norms and T-conorms are
related in pairs through a given negation. To be more precise,
we can summarise that relation in the following definition:
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Definition 2.2.4. Let T, S and C be a T-norm, a T-conorm and a
fuzzy negation, respectively. Then, T, S and C are said to form
an associated class, if they verify the following condition:

C(S(a,b)) = T(C(a),C(b)) (2.2.25)

Definition 2.2.4 is important as, when designing a type-1 fuzzy
logic system, it is usual to implement the intersection and union
by choosing a t-norm and a t-conorm belonging to the same as-
sociated class.

2.3 FUZZY REASONING AND INFERENCE OF TYPE-1

Propositional logic (or propositional calculus) is a formal system
[7] concerned with the study of propositions (i.e. statements, con-
cepts, etc.) formed by other propositions, related and connected
through logical connectives (i.e., logical operations), and how their
truth values (either true or false) depend on the truth values of
their components. This logical framework accepts the law of ex-
cluded middle, which states that all propositions are either true or
false; this is clearly opposite with the basis of fuzzy logic, which
allows partial degrees of veracity. The logical connectives that al-
low us to combine propositions are presented subsequently: let
p and q be two propositions.

• Conjuntion: denoted as p∧q. It is evaluated as true if both
p and q are true.

• Disjunction: denoted as p∨ q. It is evaluated as true if ei-
ther p or q are true.

• Negation: denoted as ¬p. It is evaluated as the opposite of
p.

• Implication: denoted p→ q. In this connective, if p is true,
so is q. It is used to construct logical rules, and is usually
read as "if p is true, then q is true". This operation allows us
to define logical rules, also named if-then rules. Implication
describes a relation between these two variables.
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In propositional logic, in the process of inference, a certain num-
ber of propositions are combined, using the connectives listed
above, to create the premises, which are taken for granted. After-
wards, a conclusion is extracted from them using the inference
rule known as modus ponens, which takes the form:

Premise 1: p→ q

Premise 2: p

Conclusion: q

This example could be read as follows:

• Premise 1: if p is true, then q is true.

• Premise 2: p is true.

• Conclusion: q must be true.

An equivalent way of stating the previous premises and con-
clusions is using a logical rule as:

IF p THEN q (2.3.1)

Where both p and q can be simple or complex premises or
propositions. An example of how propositional logic works us-
ing modus ponens could be as follows:

Premise 1: All men are mortals.
Premise 2: Gonzalo is a man.
Conclusion: Gonzalo is mortal.

Nonetheless, this structure for reasoning does not hold in the
context of fuzzy logic, where truth is a matter of degree. When
dealing with fuzzy inference and reasoning, the propositions
within a rule admit fuzzy membership, and such rules are named
fuzzy rules, in which the concepts or propositions involved are
not clearly defined, or partially true. Such a fuzzy rule can be of
the form:

IF speed is high THEN kinetic energy is high (2.3.2)

Where speed is high is referred to as the rule antecedent, whereas
kinetic energy is high is the rule consequent. A general way of ex-
pressing a fuzzy rule such as Equation (2.3.2) is as Equation
(2.3.3):

IF x is A THEN y is B (2.3.3)
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Expressing Equation (2.3.3) using the implication operator wo-
uld lead us to A → B, which express a relation R between the
variables x and y. If we consider the crisp case, as stated in [52],
"a crisp relation represents the presence or absence of association,
interaction, or interconnectedness between the elements of two
or more sets". Herein, we limit our example to binary relations;
extending those concepts to the n-dimensional case is straight-
forward.

Let us denote X x Y the Cartesian product of X and Y, i.e.,
X x Y = {(x,y) | x ∈ X and y ∈ Y}. Hence, the relation R between
X and Y, usually denoted as R(X, Y), is a subset of X x Y, which
can be characterised by its membership function as follows:

µR(x,y) =

 1 iff (x,y) ∈ R(X, Y)

0 otherwise
(2.3.4)

When extending relations to their fuzzy counterparts [67], they
"represent a degree of presence or absence of association, interac-
tion, or interconectedness between the elements of two or more
fuzzy sets". Hence, R(X, Y) is a fuzzy subset of X x Y, where each
element (x,y) is associated with a membership value µR(x,y).
Formally:

R = A→ B =

∫
XxY

µA(x)→ µB(y)/(x,y) (2.3.5)

Where → denotes the implication operator chosen, which can
be, among others [5]:

• S-Implications: such as Kleen-Dienes, Reichenbach and Lu-
kasiewicz or Largest S-implications.

• R-Implications: as Gödel, Goguen, Lukasiewicz and Lar-
gest R-implications.

• QL-Implications: as those by Zadeh, Klir and Yuan (1 and
2) and Kleen-Dienes.

Fuzzy inference is the process of obtaining a consequence (which
can be a fuzzy set or a crisp number) from a set of fuzzy antece-
dents, based on a set of fuzzy rules. Although there are several
options to perform the fuzzy inference process (such as the Gen-
eralised Modus Tollens), they are not widely used in engineering
[67], and it is usually preferred the Generalised Modus Ponens,
which is subsequently introuced:
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Premise 1: IF x is A THEN y is B

Premise 2: x is A ′

Conclusion: y is B ′

Where A, A ′, B and B ′ are linguistic labels, represented by
fuzzy sets. Intuitively, this inference process can be described as
follows: Premise 1 is a standard fuzzy rule; nonetheless, Premise
2 states that x is not A, but rather A ′, which is not exactly A but
close to it, it is, A ′ is A to some degree. Hence, our conclussion is
that y is B ′, which is not exactly B, but rather B to a certain extent.
Consequently, the closer A ′ is to A, then the closer B ′ will be to B.

To obtain the fuzzy set B ′ within the conclusion, the following
operation has to be performed:

B ′ = A ′ ◦ R (2.3.6)

Where ◦ denotes fuzzy composition, and R represents the fuzzy
relation expressed by Premise 1. To define fuzzy composition,
we need to previously define the operations of projection and
cylindrical extension [101].

Definition 2.3.1. Projection: Let R be a fuzzy relation in the
space given by X =

∏n
i=1 Xi = X1 x X2 x ... x Xn, and let {i1, i2, ...,

ik} be a subsequence of {1, 2, ...,n}. Hence, the projection of R on
Xi1 x Xi2 x ... x Xik =

∏k
m=1 Xim ≡ XI is a fuzzy relation RPr(XI)

in XI and is defined as follows:

proj(R)onXI =

∫
XI

sup
(xj1∈Xj1 ,...,xjn−k∈Xjn−k)

µR(x1, ..., xn)/(xi1 , ..., xik)

(2.3.7)

Where {j1, ..., jn−k} is the complementary subsequence of {i1, ...,
ik} with respect to {1, ...,n}. That projection is characterised by its
membership function, which is given by:

µRPr(XI)
(xi1 , xi2 , ..., xik) = arg max

(xj1∈Xj1 ,...,xjn−k∈Xjn−k)
µR(x1, ..., xn)

(2.3.8)

We can particularise this general definition to the case of bi-
nary fuzzy relations, which is more intuitive. If R is a binary
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fuzzy relation in X x Y, then the projection of R on X, denoted
by RPr(X), is a fuzzy set defined on X, represented by Equation
(2.3.9) and characterised by its membership function as in Equa-
tion (2.3.10):

proj(R) on X =

∫
X

sup
y

µR(x,y)/x (2.3.9)

µRPr(X)(x) = arg max
y∈Y

µR(x,y) (2.3.10)

It is worthwhile to highlight that Equations (2.3.8) and (2.3.10)
are valid even when R is a crisp relation.

Definition 2.3.2. Cylindrical extension: Let RXI be a fuzzy rela-
tion in Xi1 x Xi2 x ... x Xik =

∏k
m=1 Xim = XI, and {i1, ..., ik} be a

subsequence of {1, 2, ...,n}. Hence, the cylindric extension of RXI to
X1 x X2 x ... x Xn =

∏n
i=1 Xi = X is a fuzzy relation REx(X) in X

and is defined as follows:

cyl(RXI) on X =

∫
X

µRXI (xi1 , ..., xik)/(x1, ..., xn) (2.3.11)

That cylindrical extension is characterised by its membership
function, which is given by:

µREx(X)(x1, ..., xn) = µRXI (xi1 , ..., xik) (2.3.12)

As a special situation for binary relations, if RX is fuzzy set in
X, then the cylindric extension of RX to X x Y is a fuzzy relation
REx(X,Y) in X x Y represented by Equation (2.3.13) and charac-
terised by its membership function as in Equation (2.3.14):

µEx(X,Y)(x,y) =
∫
XxY

µRX(x)/(x,y) (2.3.13)

µREx(X,y)(x,y) = µRX(x) (2.3.14)

Once again, it is worthwhile mentioning that Equations (2.3.13)
and (2.3.14) are also valid for crisp relations.

After introducing Definitions 2.3.1 and 2.3.2, we can introduce
the concept of fuzzy composition, which is needed in order to ob-
tain the set B ′ in Equation (2.3.6).
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Definition 2.3.3. Fuzzy composition: Let A ′ be a fuzzy set de-
fined on X, and let R be a fuzzy relation on X x Y. Then, the
composition of A ′ and R, denoted as A ′ ◦ R, is a fuzzy set B ′ on
Y given by:

B ′ = A ′ ◦ R = proj((cyl(A ′) on Y)∩ R) on Y (2.3.15)

Let us focus on a single explanation of Equation (2.3.15) step
by step:

1. The cylindrical projection cyl(A ′) on Y is a fuzzy relation
defined in X x Y, say S = S(X, Y).

2. The intersection S∩ R = S(X, Y)∩ R(X, Y) is a fuzzy relation
defined in X x Y.

3. Finally, S ∩ R is projected on Y to obtain B ′. This final set
could be thought as how much of A ′ goes to B ′ through the
relation R.

Expressing Equation (2.3.15) in terms of the membership func-
tions involved, we obtain the following equation for the fuzzy
sup-star composition:

µB ′(y) = sup
x

µB ′(x) ? µR(x,y) (2.3.16)

Where ? denotes a given T-norm. If we choose ? to be the min-
imum T-norm, then Equation (2.3.16) becomes the original infer-
ence rule proposed by Zadeh given in Equation (2.3.17), whereas
if we set ? to be the product T-norm, the retrieved Equation is as
in (2.3.18):

µB ′(y) = sup
x

min(µA ′(x),µR(x,y)) (2.3.17)

µB ′(y) = sup
x

(µA ′(x) · µR(x,y)) (2.3.18)

If conjunctive premises are used in the generalised modus po-
nens, then the fuzzy inference process would be as follows:

Premise 1: IF x is A AND y is B THEN z is C

Premise 2: x is A ′ AND y is B ′
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Conclusion: z is C ′

In this case, the rule given in Premise 1 can be expressed as a
ternary relation R given by R = A x B → C (instead of A → B

when premises where not conjunctive), where R = R(x,y, z),
A ′ = A ′(x), B ′ = B ′(y) and C ′ = C ′(z). Thus, generalising Equa-
tions (2.3.6) and (2.3.15) to ternary relations, we have:

C ′ = (A ′ x B ′) ◦ R (2.3.19)

Assuming we use the same T-norm ? for implication, intersec-
tion and conjunction, it leads us to:

µC ′(z) = sup
x,y

{[µA ′(x) ? µB ′(y)] ? [(µA(x) ? µB(y)) ? µC(z)]}

= sup
x,y

{µA ′(x) ? µB ′(y) ? µA(x) ? µB(y)} ? µC(z)

=

(
sup
x

{µA ′(x) ? µA(x)}

)
?

(
sup
y

{µB ′(y) ? µB(y)}

)
? µC(z)

= (αA ?αB) ? µC(z) = αRule ? µC(z)

(2.3.20)

In Equation (2.3.20) the term αA indicates how similiar A ′ is
to A, whereas term αB measures the same between B ′ and B;
jointly, αRule represents the final rule firing strength.

Real FLSs have multiple rules within their rule base, and each
rule will produce a fuzzy set, similar to the one described in
Equation (2.3.20). All those sets have to be combined using a T-
conorm. Once combined, the final fuzzy set is the final result of
the inference process.

2.4 TYPE-1 FUZZY LOGIC SYSTEM AS UNIVERSAL APPROXI-
MATORS

Rule-based fuzzy logic systems have been found to be very use-
ful in engineering applications for a number of reasons. On the
one hand [101], their IF-THEN rule-based structure can be spec-
ified using linguistic labels, which allows system designers to
implement control strategies described using natural language.
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On the other hand, functionally they are able to represent highly
non-linear input-output mappings. Hence, they are useful for
control applications, function approximation, decision making,
pattern recognition among many other applications.

One interesting question to pose when dealing with non-linear
mappings (such as neural networks or FLSs themselves) is to
what extent are they able to approximate other non-linear func-
tions. More precisely, it would be interesenting to know if FLSs
can approximate other non-linear mappings defined over closed
and bounded intervals to any extent, i.e., with arbitrary accuracy.
In such case, rule-based FLSs would be universal approximators.

Many authors have dedicated their efforts to prove that certain
types of FLSs are universal approximators:

• One of the first works approaching this topic was done by
Wang [99] in 1992, where he proved that FLSs with prod-
uct inference, product conjunction, centre of area defuzzi-
fication and Gaussian membership functions are able to
approximate a real continuous function defined in a com-
pact set with arbitrary accuracy. His proof was based in the
Stone-Weierstrass Theorem [85].

• Later in 1992 [9] and 1993 [8] Buckley proved that a modi-
fied version of Sugeno type FLSs were universal controllers.

• In the same year, Wang and Mendel [100] extended their
previous results using a fuzzy basis function representation
for FLSs, crisp numbers as consequents and an orthogonal
least-squares learning algorithm.

• In 1994 [53], Kosko based his proof for additive fuzzy sys-
tems using the concept of fuzzy patch, properly using enough
MFs for each input.

• In 1995 [17] Castro extended this property to other FLSs,
having triangular or trapezoidal MFs, conjunction modelled
by any T-norm, and both implication and defuzzification
need to satisfy some weak conditions.

• In 1999 [54] Kreinovich extended the function approxima-
tion capacity not only to the function itself, but also for its
derivatives, for smooth functions.

Nevertheless, this universal approximation ability of FLSs has
not been without criticism. In [51], Klement et al. posed a criti-
cal reflection on such previous claims by other authors, arguing
that some crucial features are neglected (e. g. a boundary for
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the number of rules) and, hence, «fuzzy systems can only be
universal approximators in a rather reduced sense». For more
information about this argumentation, please refer to [51].

Moreover, it is important to highlight that all mentioned pre-
vious works provide a justification for using FLSs: no matter how
complex a given input-output relation is, certain FLS having
enough complexity can approximate it to any accuracy. However,
these proofs only demonstrate the existence of those systems, but
do not provide any practical algorithm to actually obtain such
systems; this is why design methodologies regarding FLSs is a
topic that still attracts attention nowadays.

Existence theorems are not the only relevant work that has
been developed around the ability of type-1 fuzzy logic sys-
tems (T1FLSs) to perform as universal approximators. Other re-
search has focused on studying their approximation accuracy
[121] [122], necessary conditions [24] [110] and sufficient approx-
imation conditions [57] [108] [109] [120].

2.5 STRUCTURE OF A TYPE-1 FUZZY LOGIC SYSTEM

Some of the main contributions of this dissertation are directly
related to fuzzy logic systems and their structure. For instance,
Chapter 4 presents two new theorems for the join and meet oper-
ations on general type-2 fuzzy sets, which are key to define the
inference engine. In addition, Chapter 5 presents the structure
of the general forms of interval type-2 fuzzy logic systems, in-
cluding fuzzification, inference and type-reduction. Hence, it is
important to introduce the simpler structure of type-1 FLSs, and
later in Section 2.9, the more complex structure of type-2 FLSs,
in order to properly contextualise our work.

In this section we intend to review the structure of a type-
1 fuzzy logic system, describing all the blocks involved in the
process of mapping each crisp input value into a crisp output.
We focus our attention on multiple-input-single-output (MISO)
FLSs. The reason to do so is that any multiple-input-multiple-
output (MIMO) system can be decomposed into several MISO
systems.

The structure of such a FLS is presented in Figure 2.5.1.
Each of the following subsections will focus on one specific

part or block within the system, providing a detailed description
about them.
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Figure 2.5.1
Structure of a type-1 fuzzy logic system.

2.5.1 Crisp inputs to the system

Each input to the sistem, denoted as xi, will be defined in its
own universe of discourse, Xi. Thus, the universe of discourse
for the whole input space, considering p inputs, is given by the
Cartesian product of all subspaces, as in the following equation:

X = X1 x X2 x...x Xp =

p∏
i=1

Xi (2.5.1)

Hence, the input to the system, which is denoted as ~x, is an
element of X, i. e., ~x ∈ X. Although, in general, Xi (and thus X)
can be any set, in engineering problems all inputs are frequently
related to numerical variables. Thus, usually X is a subset of IRn,
X ⊆ IRn.

2.5.2 The fuzzifier

As it was introduced in Section 2.3, the fuzzy inference process
within a T1FLS operates on type-1 fuzzy sets; nonetheless, the
inputs to the system are usually real numbers. Hence, the func-
tion of the fuzzifier is to map each possible crisp input vale ~x ∈ X
into a T1 fuzzy set A in X.

Depending on the type of fuzzy set each component xi of the
input vector ~x is mapped to, two different fuzzifiers can be dis-
tinguished:

• On the one hand, the singleton fuzzifier maps each input
value xi into a fuzzy singleton, which is a type-1 fuzzy set
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having a non-null membership value only at one point in
the domain, xi = x ′i; it is, if Ai is a fuzzy singleton in Xi,
then its membership function µAi(xi) would be as:

µAi(xi) =

 1 if xi = x
′
i

0 otherwise
(2.5.2)

• On the other hand, the non-singleton fuzzifier maps each in-
put component into an arbitrary fuzzy set. However, in real
world applications those fuzzy sets are usually fuzzy num-
bers: if the crisp input value is x ′i, then the associated input
MF µAi(xi) has a membership value equal to 1 at x ′i, and it
decreases as xi moves away from x ′i.

Some examples of input fuzzy sets, both singleton and non-
singleton, are depicted in Figure 2.5.2.

Figure 2.5.2
Different types of fuzzy inputs: (a) Fuzzy singleton. (b) Triangular MF. (c) Gaus-
sian MF.

Once every single input has been fuzzified into a fuzzy set
(whether it is singleton or non-singleton fuzzification) the result-
ing sets take a step forward to the inference engine. But firstly,
we will take a look at the rule base.

2.5.3 The rule base

As it was introduced in Section 2.3, fuzzy logic systems (as hu-
man knowledge) can be specified by means of a set of IF-THEN
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rules, as in Equation(2.3.1), where p is the antecedent fuzzy propo-
sion, and q is the fuzzy consequent, and both p,q can be com-
pound fuzzy propositions built by means of logical connectives
as explained in Section 2.3. For instance, assume a FLS having
three inputs x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3, and one output
y ∈ Y; let A1, A2, A3 and C be fuzzy sets in X1, X2, X3 and Y, re-
spectively. Thus, an example of a fuzzy rule using both the AND
(intersection) and OR (union) connectives could be as follows:

IF x1 is A1 AND x2 is A2 OR x3 is A3 THEN y is C (2.5.3)

However, in engineering applications it is customary to ex-
press the rule base using only the AND operator in the antece-
dents; hence, a FLS having p inputs, and a given rule base with
M rules, the m-th rule (denoted as Rm), m = 1, ...,M, would be
expressed in a standard format as:

Rm : IF x1 is A
m
1 AND x2 is A

m
2 AND ... AND xp is Amp THEN y is Cm

(2.5.4)

Where xi ∈ Xi, i = 1, ...,p are each of the inputs to the system;
Ami , m = 1, ...,M, is the antecedent related to input i for rule m;
and Cm is the consequent for that rule.

It is worthwhile mentioning that different types of type-1 FLSs
can be specified depending on the type of consequents used
within the rules: Mamdani FLSs [66] use fuzzy sets as conse-
quents (including fuzzy singletons), whereas Takagi-Sugeno-Kang
(TSK) [91] systems use as consequents a polynomial function of
the inputs. Hence, a rule from a TSK FLS would be as:

Rm : IF x1 isA
m
1 AND x2 isA

m
2 AND ... AND xp isAmp THEN yisF(x1, ..., xp)

(2.5.5)

A TSK is said to be of order N if F(x1, ..., xp) is a polynomial
of order N in the input variables. It is intuitive to see that a
zero-order TSK FLS and a Mamdani FLS using crips sets as con-
sequents are completely equivalent.

2.5.4 Inference engine

The inference engine (IE) is the core part within a fuzzy logic
system, as it is in charge of mapping the input fuzzy sets (com-
ing from the fuzzification stage) into the output fuzzy set. This
inference process is performed for each rule, and is comprised
of two different steps:
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1. Firstly, a matching process is carried out, to obtain the acti-
vation degree of each antecedent Ami . This operation basi-
cally consists of finding the intersection between the input
fuzzy sets and their correspondint antecedents. Afterwards,
those antecedent activation degrees are combined by means
of a T-norm (implementing the AND operation) in order to
obtain the rule firing strength, similarly to Equation (2.3.20).

2. Secondly, the rule firing strength is used along with the con-
sequent set to perform the implication operation, as described
in Section 2.3.

The result of the inference process is a fuzzy set (including
fuzzy singletons or crisp numbers) per fired rule, usually de-
noted as Bl and characterised by its membership function µBl(y).
Those sets are later combined in the defuzzification stage before
choosing a representative crisp number as the output of the sys-
tem.

2.5.5 Defuzzification

As it has been discussed in the previous Section, the output of
the inference engine is a fuzzy set per rule Bl, which is the result
of applying the approximate reasoning process. However, real
world systems usually require a crisp value as its output; hence,
one more step is required in order to map these output T1 fuzzy
sets into a crisp number, which is representative of the whole
inference process. That operation is known as defuzzification.

The defuzzification operation produces a crisp output from
the rule output fuzzy sets, and thus, it completes the input-
output mapping performed by the fuzzy logic system. How these
sets are combined to produce a single number which is repre-
sentative of the whole inference process depends on the chosen
defuzzification strategy.

Many different defuzzification procedures have been defined
in the literature, many of them summarised in [56], also in [78]
and [101], and itemised in the following in alphabetical order of
acronyms:

• Adaptive integration (AI).

• Basic defuzzification distributions (BADD).

• Bisector of area (BOA).

• Constraint decision defuzzification (CDD).
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• Centre of area (COA).

• Centre of gravity (COG).

• Extended centre of area (ECOA).

• Extended quality method (EQM).

• Fuzzy clustering defuzzification (FCD).

• Fuzzy mean (FM).

• First of maximum (FOM).

• Generalised level set defuzzification (GLSD).

• Indexed centre of gravity (ICOG).

• Influence value (IV).

• Last of maximum (LOM).

• Mean of maxima (MeOM).

• Middle of maximum (MOM).

• Quality method (QM).

• Random choice of maximum (RCOM).

• Semi-linear defuzzification (SLIDE).

• Weighted fuzzy mean (WFM).

According to [56], the maxima methods are good choices for
fuzzy reasoning systems, as the point chosen is always one hav-
ing the highest membership value, whereas on the other hand,
distribution and area methods are more suitable for fuzzy con-
trol as they provide good propoerties in terms of continuity and
smooth output surface. In our context we are mostly interested
in the application of fuzzy logic systems to general engineer-
ing; hence, we are usually interested in defuzzification meth-
ods with one requirement: computational simplicity. In this regard,
TSK FLSs usually implement the weighted sum and weighted aver-
age methods, wheras for Mamdani systems, some of the most
relevant defuzzifiers are introduced subsequently.
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2.5.5.1 Centroid defuzzifier

The centroid defuzzifier [78] combines the rule output fuzzy sets
Bm using the fuzzy union, implemented by a given T-conorm, to
provide the final output fuzzy set B, as in the following equation:

B =

M⋃
m=1

Bm ⇐⇒ µB(y) = SMm=1µBm(y) (2.5.6)

The fuzzy set B, described by its membership function µB(y),
is then discretised in its domain into N points, and the output
provided by the centroid defuzzifier is as follows:

yc(~x) =

N∑
i=1

yiµB(yi)

N∑
i=1

µB(yi)

(2.5.7)

Nonetheless, the centroid defuzzifier is computationally ex-
pensive as it requires to previously compute the fuzzy union
given by Equation (2.5.6), which has led researchers to use differ-
ent defuzzifiers.

2.5.5.2 Centre-of-sums defuzzifier

This method combines the rule output fuzzy sets by adding them
(using fuzzy addition), i.e.:

µB =

M∑
m=1

µBm(y) (2.5.8)

And then computes the centroid of such set, using Equation
(2.5.7). The final expression of this method can be presented as
follows:

ya(~x) =

M∑
m=1

cBmaBm

M∑
m=1

aBm

(2.5.9)

Where cBm and aBm are the centroid and the area of the set
Bm, respectively.
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2.5.5.3 Height defuzzifier

The height defuzzifier replaces each rule output set by a single-
ton ym at the point having maximum membership value (if there
are more than one point having the maximum value, their mean
can be taken as ym). Afterwards, the centroid of the fuzzy set
comprised by these singletons is provided as the final output:

yh(~x) =

M∑
m=1

ymµBm(y
m)

M∑
m=1

µBm(y
m)

(2.5.10)

2.5.5.4 Centre-of-sets defuzzifier

This method replaces each rule consequent Cm by its centroid
cm (an operation that can be done ahead of time), and then the
centroid of the fuzzy set comprised by these singletons is pro-
vided as the output:

ycos(~x) =

M∑
m=1

cmT
p
i=1µAmi (xi)

T
p
i=1µAmi (xi)

(2.5.11)

Where T represents the given T-norm chosen for the intersec-
tion operation.

2.6 INTRODUCTION TO TYPE-2 FUZZY LOGIC

One of the main criticisms that type-1 fuzzy sets theory received
since it was firstly proposed by Zadeh was related to type-1
membership functions and how they are created. Despite the
theory’s efforts were mainly focused on the concepts of uncer-
tainty and imprecission, many authors argued that assigning a
crisp number (which is extremely precise) to a membership de-
gree was not a proper way of representing uncertainty.

In [78], Mendel provides several plausible sources of uncer-
tainties that can occur in a FLS:
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• Fuzzy rules can be described by means of linguistic terms,
i.e., words, which are inherently imprecise or vague, a fact
that is well collected in the adage words mean different things
to different people. This vagueness affects both antecedents
and consequents.

• Uncertainty is also present during the measurement pro-
cess to obtain the input values. This uncertainty is related
both with input noise and errors associated with the mea-
surement process itself.

• The last source of uncertainty is related to the data used
to train or tune a FLS, which might be noisy, polluted or
corrupted.

Also in [78] type-1 fuzzy logic systems are stated to be unable
to handle uncertainty, in the sense of modelling and minimising
its effect. Hence, in order to overcome all this limitations and
criticisms about type-1 fuzzy sets theory, Zadeh introduced in
[113] the concept of type-2 fuzzy sets, whose main characteristic
is that their membership values are themselves fuzzy. These sets,
their definitions and related concepts are extensively discussed
in the subsequent subsections.

2.6.1 The concept of type-2 fuzzy sets

In [113] Zadeh firstly introduced "fuzzy sets with fuzzy member-
ship functions". In his own words, considering these sets "is mo-
tivated by the close association which exists between the concept
of a linguistic truth with truth-values" and "fuzzy sets in which
the grades of membership are specified in linguistic terms". Hav-
ing this thoughts in mind, he provided the first notion of a type-n
fuzzy set [113]:

Definition 2.6.1. Type-n fuzzy set: a fuzzy set is of type n, n =
2, 3, ... if its membership function ranges over fuzzy sets of type
n− 1. The membership function of a fuzzy set of type-1 ranges
over the interval [0, 1].

Nevertheless, more modern and formal definitions have been
proposed to introduce the concept of type-2 fuzzy sets, as the
one given by Karnik and Mendel in [46]:

Definition 2.6.2. A T2FS A is characterised by a type-2 member-
ship function µA(x,u), where x ∈ X, u ∈ Jx ⊆ [0, 1]:

A = {(x,µA(x,u)) | x ∈ X, u ∈ Jx ⊆ [0, 1]} (2.6.1)
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Where x is the primary variable, u is the secondary variable, Jx is
the primary membership of x, and µA(x,u) is referred to as the
secondary membership of x.

Or the one provided by Bustince et al. in [10]:

Definition 2.6.3. Type-2 fuzzy set: let X be a non-empty universe
of discourse, and let FS([0, 1]) be the class of all type-1 fuzzy sets
defined over the unit interval [0, 1]. Hence, a type-2 fuzzy set A
defined over X is a mapping as:

A : X 7→ FS([0, 1]) (2.6.2)

All these notions and definitions lead to the same idea: type-2
fuzzy sets assign to each element in the universe of discourse
x ∈ X a fuzzy membership value in [0, 1]. Other representations
of type-2 fuzzy sets can be found in the literature, such as:

A =
∑
i

µA(xi)/xi (2.6.3)

A =

∫
x∈X

µA(x)/x =

∫
x∈X

∫
u∈Jx

µA(x,u)/(x,u) (2.6.4)

Equation (2.6.3) is used for discrete universes of discourse,
whereas Equation (2.6.4) is preferred when X is continuous. The
operands

∑
and

∫
denote union over all admisible values, re-

spectively, and ·/· represents ordered pairs.

2.6.2 Concepts and definitions related to type-2 fuzzy sets

In this subsection attention is focused on other definitions re-
lated to type-2 fuzzy sets:

Definition 2.6.4. Secondary membership function: let A be a
T2FS represented by its membership function µA(x,u). Then, at a
given x = x ′, the function µA(x = x ′,u), which depends only on
u, i.e., µA(x = x ′)(u) = fx ′(u), is called the secondary membership
function at x = x ′.

µA(x = x
′,u) = µA(x ′) =

∫
u∈J ′x

fx ′(u)/u J ′x ⊆ [0, 1] (2.6.5)

Where 0 6 fx ′(u) 6 1. This secondary membership function is
usually referred to as a vertical slice of A at x = x ′.
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Definition 2.6.5. Secondary grade: a secondary membership func-
tion µA(x = x ′,u) evaluated at a given u = u ′ ∈ Jx is called a
secondary grade at (x ′,u ′), it is, the membership function evalu-
ated at µA(x = x ′,u = u ′). Secondary grades are also called
frequently secondary membership values.

Definition 2.6.6. Footprint Of Uncertainty (FOU): let A be a
T2FS defined over a universe of discourse X. Hence, the footprint
of uncertainty of A, denoted as FOU(A), is the union of the pri-
mary memberhips ∀x ∈ X, i.e.:

FOU(A) =
⋃
x∈X

Jx (2.6.6)

Where the primary membership is as introduced in Definition
2.6.2.

The FOU is a very descriptive element of a T2FS, as it pro-
vides a very convenient representation of how the uncertainty is
distributed within a set in terms of the support of the fuzzy set.

Definition 2.6.7. Embedded type-2 fuzzy set: let A be a T2FS de-
fined over a universe of discourse X. Hence, an embedded type-2
fuzzy set of A, denoted as Ãe, is as in Equation (2.6.7) and Equa-
tion (2.6.8) for continuous and discrete universes of discourse,
respectively.

Ãe =

∫
x∈X

[µA(x, θ)/θ]/x θ ∈ Jx ⊆ [0, 1] (2.6.7)

Ãe =
∑
i

[µA(xi, θ)/θ]/x θ ∈ Jx ⊆ [0, 1] (2.6.8)

It is, at each value x, Ae has only one primary membership,
namely θ, and one secondary grade associated, µA(x, θ). Note
that both Equations (2.6.7) and (2.6.8) do not perform the union
over all admisible values in the primary membership. Besides, it
is worhtwhile mentioning that Ae is a T2FS which is embedded
(included) in A.

Definition 2.6.8. Embedded type-1 fuzzy set: let A be a T2FS de-
fined over a universe of discourse X. Hence, an embedded type-1
fuzzy set of A, denoted as Ae, is as in Equation (2.6.9) and Equa-
tion (2.6.10) for continuous and discrete universes of discourse,
respectively.

Ae =

∫
x∈X

θ/x θ ∈ Jx ⊆ [0, 1] (2.6.9)



48 fundamentals of fuzzy logic

Ae =
∑
i

θ/xi θ ∈ Jx ⊆ [0, 1] (2.6.10)

Again, it is worthwhile to highlight that both Equations (2.6.9)
and (2.6.10) do not perform the union over all admisible values
of x ∈ X. Besides, it is easy to see that Ae is a T1FS.

Embedded type-1 and type-2 fuzzy sets are very useful to
obtain some theoretical results regarding operations on type-2
fuzzy sets [78].

Definition 2.6.9. Type-1 fuzzy set represented as a type-2 fuzzy
set: let A be a T1FS defined as in Equation (2.1.3) and charac-
terised by its membership function µA(x). Hence, A can be rep-
resented as a type-2 fuzzy set as follows:

A =

∫
x∈X

[1/µA(x)]/x x ∈ X (2.6.11)

Or, in the discrete case:

A =
∑
i

[1/µA(xi)]/xi x ∈ X (2.6.12)

It is, A is a type-2 fuzzy set having at each x one single point
as the primary membership, given by µA(x), at which the sec-
ondary grade is equal to 1.

Definition 2.6.10. Type-2 singleton: a T2FS is said to be a single-
ton if it has only one point with non null membership value, i.e.,
µA(x) = 1/1 if x = x ′ and µA(x) = 1/0 elsewhere.

Definition 2.6.11. Interval type-2 fuzzy set: let A be a T2FS as
described in Equation (2.6.1). Hence, if µA(x,u) = 1 ∀x ∈ X,
∀u ∈ Jx, then A is an interval type-2 fuzzy set (IT2FS) [78].

A = {(x,µA(x,u)) | x ∈ X, u ∈ Jx ⊆ [0, 1], µA(x,u) = 1} (2.6.13)

IT2FSs can be viewed as a particular case of T2FSs, which
are usually referred to as "General T2FSs" in order to make ex-
plicit difference between the former and the latter. These IT2FSs
have at each x ∈ X a secondary membership function consist-
ing of a closed and connected interval with height equal to 1.
This interval represents that uncertainty is uniformly distributed
across the primary membership. As the secondary grades are al-
ways equal to unity, it is redundant, and such an interval can be
uniquely represented by its two extreme points, namely [lx, rx].
Hence, this interval representation of the primary membership
leads us to the following definitions:
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Definition 2.6.12. Upper and lower membership functions of
an IT2FS: let A be an IT2FS as described in Equation (2.6.13),
having at each x a primary membership given by an interval as
[lx, rx]. Hence, the upper membership function of A (denoted as
UMF(A) or µ(x)) is given by Equation (2.6.14), whereas the lower
membership function of A (denoted as LMF(A) or µ(x)) is given
by Equation (2.6.15)

UMF(A) = µ(x) = {rx | x ∈ X} (2.6.14)

LMF(A) = µ(x) = {lx | x ∈ X} (2.6.15)

The fact that the secondary grades of IT2FSs are always either
0 or 1 (depending whether the point belongs or not to the pri-
mary membership) significantly reduces the amount of compu-
tation effort required to operate with them. This has motivated
researchers to focus their attention on IT2FLSs, to the detriment
of their GT2 counterparts. Nonetheless, in this dissertation both
GT2 and IT2 FLSs are considered.

Figure 2.6.1 depicts some of the T2FSs defined along this sub-
section. It is worthwhile mentioning that in Figure 2.6.1(d), as
it represents an IT2FS, the third dimension is always equal to 1
and has not been plotted.
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Figure 2.6.1
Different types of T2FSs: (a) T1FS represented as a T2. (b) T2 singleton. (c) Arbi-
trary T2FS. (d) IT2FS.

And last but not least, the definition of the α-plane of a T2FS
is presented, which was introduced in [61] and later slightly cor-
rected in [70]. This concept is an extension of the α-cut for T1FSs
as presented in Definition 2.1.9, and is as follows:
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Definition 2.6.13. α-plane: let A be a T2FS defined over a uni-
verse of discourse X and characterised by its membership func-
tion µA(x), x ∈ X, and let α be a real number such that α ∈ [0, 1].
Hence, the α-plane of A, denoted as Aα, is the union of all pri-
mary membership whose secondary grades are greater than or
equal to the specific value of α, i.e.:

Aα =
⋃
x∈X

(x,u) | µA(x,u) > α (2.6.16)

For the specific case in which α = 0, then A0 is defined as the
FOU of A, it is:

A0 = FOU(A) (2.6.17)

It is worthwhile to highlight that A0 is also the closed support
of A.

Each of these α-planes have associated a T2FS, which is as
follows:

Definition 2.6.14. Associated type-2 fuzzy set of the α-plane
Aα: let IAα(x,u) be the indicator function of the α-plane Aα, i.e.:

IAα(x,u) =

 1 if (x,u) ∈ Aα
0 if (x,u) /∈ Aα

(2.6.18)

Hence, the associated type-2 fuzzy set of the α-plane Aα is given
by:

A(α) = (x,u), µAα(x,u) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1] (2.6.19)

Where µAα(x,u) = αIAα(x,u).

Definition 2.6.13 is quite important because type-2 fuzzy sets
can be represented in terms of their α-planes through the α-plane
representation theorem, which is as follows:

Theorem 2.6.1. α-plane Representation Theorem: a T2FS A can
be represented as the union of its associated type-2 fuzzy sets A(α) as:

A =
⋃

α∈[0,1]

A(α) (2.6.20)

In which

µA(x,u) = arg max
α∈[0,1]

{µA(α)(x,u)} (2.6.21)
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For a complete proof ot Theorem 2.6.1, please refer to [61].
A concept similar to the α-planes are the zSlice based type-2

fuzzy sets, introduced in [95] and later extended in [97], where
FLSs based on zSlices were also presented. These zSlices aim to
represent type-2 fuzzy sets by slicing the third dimension (the
z-axis).

2.7 OPERATIONS ON TYPE-2 FUZZY SETS

As it was introduced in the previous Section, type-2 fuzzy sets
are an extension of type-1 fuzzy sets. Hence, in the same way
operations on type-1 fuzzy sets were extended from their crisp
counterparts, the same process can be taken one step further,
and set theoretic operations on type-2 fuzzy sets can be extended
from their type-1 analogues.

Zadeh provided a mathematical tool in order to obtain the set
theoretic operations on T2FSs as an extension of their equiva-
lent T1 operations. Such a tool is named the Extension Principle,
which is introduced in the following, before tackling the union
and intersection on T2FSs.

2.7.1 The Extension Principle

The Extension Principle is one of the most basic concepts and most
useful mathematical tools in fuzzy sets theory. It can be used to
generalise crisp mathematical concepts and operations to fuzzy
sets. A vague notion was proposed by Zadeh in his original pa-
per [117], which was later formalised and modified in [113], [119]
and [27]. Its formal definition is as follows [124]:

Definition 2.7.1. The Extension Principle: let X be a universe
of discourse given by the Cartesian product X1 x ... x Xr, and let
A1, ... , Ar be fuzzy sets in X1 x ... xXr, respectively. Moreover, let
f : X 7→ Y be a mapping such that f(x1, ..., xr) = y ∈ Y. Hence, the
Extension Principle allows us to induce a fuzzy set B on Y through
f, i.e., B = f(A1, ...,Ar) as:

B = {(y,µB(y)) | y = f(x1, ..., xr), (x1, ..., xr) ∈ X} (2.7.1)
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Such that:

µB(y) =


sup

(x1,...,xr)∈f−1(y)

(min{µA1
(x1), ...,µAr

(xr)}) if f−1(y) 6= ∅

0 otherwise

(2.7.2)

Where f−1(y) denotes all points x1 ∈ X1, ..., xr ∈ Xr such that
y = f(x1, ..., xr), and the suprema is usually implemented with
the maximum t-conorm. It is worthwhile mentioning that the Ex-
tension Principle has been modified using sumation rather than
suprema, and product rather than minimum in [27]. Nonetheless,
it is usually used as in Definition 2.7.1.

The Extension Principle as presented above, when using the
maximum operation to implement the suprema, and a general
t-nom ? instead of the minimum, can be written as follows:

f(A1, ...,Ar) =
∫
x1∈X1

...
∫
xr∈Xr

µA1(x1)? ...?µAr(xr)/f(x1, ..., xr)

(2.7.3)

This principle in Equation 2.7.3, allows us to extend the set
theoretic operations of union and intersection to T2FSs. To do so,
two new operators, named join and meet, are introduced, which
are intensively described in [49].

In the following subsections, two T2FSs are considered, F1(x),
and F2(x), both defined over the same universe of discourse X
such that x ∈ X. Their membership values are given by Equations
(2.7.4) and (2.7.5), respectively:

µF1(x) =

∫
v

f1(v)/v (2.7.4)

µF2(x) =

∫
w

f2(w)/w (2.7.5)

In the specific case of IT2FSs, Equations (2.7.4) and (2.7.5) be-
come Equations (2.7.6) and (2.7.7), respectively.

µF1(x) =

∫
v∈[lF1 ,rF1 ]

1/v (2.7.6)

µF2(x) =

∫
w∈[lF2 ,rF2 ]

1/w (2.7.7)
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2.7.2 Intersection operation on type-2 fuzzy sets

Using the Extension Principle as in Definition 2.7.1, the intersec-
tion between two T2FSs can be defined as follows:

Definition 2.7.2. Intersection of type-2 fuzzy sets: let F1 and
F2 be two type-2 fuzzy sets as in Equations (2.7.4) and (2.7.5),
respectively. Hence, the intersection of F1 and F2, denoted as
F1 ∩ F2 and characterised by its membership function µF1∩F2(x),
is given by [49]:

F1 ∩ F2 ⇐⇒ µF1∩F2(x) = µF1(x)u µF2(x) =
∫
v

∫
w
(f1(v) ? f2(w))/(v ?w)

(2.7.8)

Where u denotes the meet operator, ? represents a given t-norm,
and integrals indicate logical union over all admisible values.

A special case of Definition 2.7.2 arises when we consider the
particular case of IT2FSs. For those sets, the intersection opera-
tion is obtained as:

Definition 2.7.3. Intersection of interval type-2 fuzzy sets: let F1
and F2 be two interval type-2 fuzzy sets as in Equations (2.7.6)
and (2.7.7), respectively. Hence, the intersection of F1 and F2, de-
noted as F1 ∩ F2 and characterised by its membership function
µF1∩F2(x), is given by:

F1 ∩ F2 ⇐⇒ µF1∩F2(x) = µF1(x)uµF2(x) =
∫
u=v∧w∈[lF1

?lF2
,rF1

?rF2
]
1/u

(2.7.9)

Equation (2.7.9) reveals that performing the intersection oper-
ation on IT2FSs only requires to do simple operations between
intervals, significantly reducing the computational complexity
when compared with GT2FSs.

2.7.3 Union operation on type-2 fuzzy sets

Similarly to the intersection, the union operation on type-2 fuzzy
sets can be defined via the Extension Principle, as subsequently
presented:

Definition 2.7.4. Union of type-2 fuzzy sets: let F1 and F2 be
two type-2 fuzzy sets as in Equations (2.7.4) and (2.7.5), respec-
tively. Hence, the union of F1 and F2, denoted as F1 ∪ F2 and
characterised by its membership function µF1∪F2(x), is given by
[49]:

F1 ∪ F2 ⇐⇒ µF1∪F2(x) = µF1(x)tµF2(x) =
∫
v

∫
w
(f1(v) ? f2(w))/(v∨w)
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(2.7.10)

Where t denotes the join operator, ? represents a given t-norm,
∨ depicts the maximum operation and integrals indicate logical
union over all admisible values.

Definition 2.7.4 can be particularised to IT2FSs, in which case
the union operation is as follows:

Definition 2.7.5. Union of interval type-2 fuzzy sets: let F1 and
F2 be two interval type-2 fuzzy sets as in Equations (2.7.6) and
(2.7.7), respectively. Hence, the union of F1 and F2, denoted as
F1 ∪ F2 and characterised by its membership function µF1∪F2(x),
is given by:

F1 ∪ F1 ⇐⇒ µF1∪F2(x) = µF1(x)tµF2(x) =
∫
u=v∨w∈[lF1

∨lF2
,rF1

∨rF2
]
1/u

(2.7.11)

As in the intersection case (given in Equation (2.7.9)), the union
between IT2FSs represented in Equation (2.7.11) only requires
performing simple operations between intervals, which is the
reason why researchers have favoured IT2FLSs in detriment of
their GT2 counterparts.

2.7.4 Negation operation on type-2 fuzzy sets: complement

The last operation on type-2 fuzzy sets that will be defined in this
work using the Extension Principle is the negation, as presented
below:

Definition 2.7.6. Negation of a type-2 fuzzy set: let F1 be a type-
2 as in Equation (2.7.4). Hence, the negation (or complement) of
F1, denoted as c(F1), ¬F1 or F1 is given by [49]:

c(F1) = ¬F1 = F1 ⇐⇒ µc(F1)(x) = µ¬F1(x) = µF1(x) =

∫
u

f1(u)/(1−u)

(2.7.12)

Once again, when dealing with the simpler version of IT2FSs,
the negation reduces to:

Definition 2.7.7. Negation of an interval type-2 fuzzy set: let F1
be an interval type-2 fuzzy set as in Equation (2.7.6). Hence, the
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negation (or complement) of F1, denoted as c(F1), ¬F1 or F1 is
given by:

c(F1) = ¬F1 = F1 ⇐⇒ µc(F1)(x) = µ¬F1(x) = µF1(x) =

∫
u

1/(1−u)

(2.7.13)

2.8 TYPE-2 FUZZY LOGIC SYSTEMS AS UNIVERSAL APPROX-
IMATORS

As introduced in Section 1.1, and summarised in [10], although
T2FLSs were defined and theoretically studied since 1971, they
did not gain significant relevance until the early 2000s, when
Karnik and Mendel [46] [78] focused their efforts on devolp-
ing the theory and practical implementations of IT2FLSs. Hence,
studying the properties of these systems as universal approxi-
mators has not been widely addressed. In words of Hao Ying
[107], "an approximation theory for T2 fuzzy systems is still in
its infancy".

Ying himself presented the first approach to this field in 2008

[106], where he proved that a general class of Mamdani IT2FLSs
are universal approximators, in the sense that they can uniformly
approximate any real continuous function defined on a com-
pact domain to any degree of accuracy. In 2009, in [107], he
also proved the same properties on IT2 Takagi-Sugeno (TS) FLSs
having linear rule consequents. And last but not least, in 2010

[111] You and Ying provided the same proof for interval type-
2 boolean fuzzy systems. Moreover, the same properties have
been studied for some hybrid paradigms, such as interval type-2
fuzzy neural networks as in [14].

Nonetheless, there is still a need to further develop a formal
approximation theory of T2FLSs as universal approximators.



56 fundamentals of fuzzy logic

2.9 STRUCTURE OF A TYPE-2 FUZZY LOGIC SYSTEM

In this section we present a general overview on the structure of
type-2 fuzzy logic systems, describing all the blocks comprising
them and paying special attention to those which present sig-
nificant differences with their type-1 counterparts as presented
in Secton 2.5. Once again, we focus our attention on multiple-
input-single-output (MISO) FLSs. The general structure of such
systems is depicted in Figure 2.9.1.

Figure 2.9.1
Structure of a type-2 fuzzy logic system.

In the following subsections we provide a detailed itemisation
of each component within the system.

2.9.1 Crisp inputs to the system

Each input to the T2FLS, denoted as xi, i = 1, ...p, is defined over
its own universe of discourse, Xi, but are usually represented by
a single vector as follows:

~x = (x1, ..., xp) ∈ X = X1x...xXp (2.9.1)

Generally, from a theoretical point of view, each Xi can be any
kind of set or universe of discourse; nevertheless, in engineering
problems each xi is usually associated with a real number, thus
leading to X being a subset of IR, i.e., X ⊆ IRn. The vector ~x is the
input to the fuzzifier block.



2.9 structure of a type-2 fuzzy logic system 57

2.9.2 The fuzzifier

As in their type-1 counterpart described in Section 2.5.2, the
fuzzifier is the element in the system in charge of mapping each
component xi from the input vector ~x into a fuzzy set, usually
denoted as µXi(xi), as required by the inference engine. Depend-
ing on which kind of fuzzy set we chose to map the inputs to,
we can distinguish among different kinds of fuzzifiers in T2FLSs,
which are presented in the following definitions:

Definition 2.9.1. A T2FLS is said to be a singleton type-2 fuzzy
logic system if the fuzzifier block maps each input component
xi into a type-2 singleton as described in Equation (2.6.10) and
depicted in Figure 2.6.1(b).

Definition 2.9.2. A given T2FLS is said to be a type-1 non-singleton
type-2 fuzzy logic system when the fuzzifier block maps each
component xi from the input vector into a type-1 fuzzy set as
described in Equation (2.1.3).

Definition 2.9.3. When the fuzzifier block within a T2FLS maps
each input component xi into an arbitraty type-2 set, which is
neither a type-2 singleton or a type-1 fuzzy set (as described
in Equation (2.6.1)), then it is said to be a type-2 non-singleton
type-2 fuzzy logic system. A special case of type-2 non-singleton
fuzzifier is the interval type-2 non-singleton case.

After the fuzzification process, the resulting sets, whether the
are singletons, type-1 or type-2 fuzzy sets, move forward to the
inference engine, whose operation is closely connected with the
rule base.

2.9.3 The rule base

The structure of the rule base describing a T2FLS is identical to
the one discribing a T1FLS, introduced in Section 2.5.3, where
each rule Rm, m = 1, ...,M, is as stated in Equation (2.5.4). The
only difference is that some or all the involved fuzzy sets, either
in the antecedents and/or the consequents part, are of type-2
instead of type-1.

2.9.4 The inference engine

The inference process in T2FLSs is analogous to the one pre-
sented in Section 2.5.4 for T1FLSs, the main differences being
that the involved sets are of type-2, and the operators used to
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implement the union, intersection and implication are the meet
and join operations, rather than T-norms and T-conorms.

Consider a rule from the rule base as described in Equation
(2.5.4), which is repeated here for the convenience of the reader:

Rm : IF x1 is A
m
1 AND x2 is A

m
2 AND ... AND xp is Amp THEN y is Cm

The inference process is performed on each rule in two steps:

1. In order to obtain the activation degree of each antecedent
Ami , a matching process is performed by means of the meet
operation between the input fuzzy set for input i and the
given antecedent, as follows:

µFmi (xi) = µXi(xi)u µAmi (xi) (2.9.2)

Where µFmi is the antecedent activation degree, µXi is the
input fuzzy set for input i and µAmi is the antecedent for
input i in rule m. Afterwards, all the antecedent activation
degrees within a rule are combined in order to obtain the
rule firing strength, denoted as Fm:

µFm(~x) = µFm1 (x1)u ...uµFmp (xp) =
pl

i=1

[
µXi(xi)u µAmi (xi)

]
(2.9.3)

2. Afterwards, the rule firing strength obtained in the previ-
ous step is combined with the rule consequent Cm with the
implication operator, which is also usually implemented
with the meet operation, to obtain the rule output fuzzy set,
denoted as µBm(y):

µBm(y) = µFm(~x)u µCm(y) =

=

pl

i=1

[
µXi(xi)u µAmi (xi)

]
u µCm(y)

(2.9.4)

After the inference process is applied on each rule, all the re-
sulting rule output fuzzy sets as in Equation (2.9.4) are provided
to the output processing block, which will combine them some-
how depending on the chosen type reduction and defuzzifica-
tion strategy.
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2.9.5 Type reduction

The output of the inference engine, as explained above and as de-
tailed in Equation (2.9.4), is a T2FS per fired rule; however, a FLS
usually requires its output to be a crisp number, in order to im-
plement an input-output mapping and to be useful in real world
applications. In the T1 counterpart, the output of the inference
engine is a T1FS per rule, which are combined in the defuzzifi-
cation stage, and the resulting set is mapped into a crisp output.
Hence, when dealing with T2FLSs, and as depicted in Figure
2.9.1, one extra block is required before the defuzzification stage:
the type-reducer.

This block is in charge of combining the rule ouput fuzzy sets
Bm into a single T2FS B, and then mapping the latter into a
T1FS which is representative of it. Actually, the type-reduction
operation can be viewed as an extension [47] of the defuzzifica-
tion process, via the Extension Principle. Hence, a type-reduction
method can be specified for each defuzzification method de-
fined.

For theoretical purposes, the most extended type-reduction
method is the centroid type-reducer, which is an extension of the
centroid defuzzifier; it was introduced in [48] and extensively de-
tailed in [78]. This method combines each rule output set Bm, by
means of the join operation, into a single output fuzzy set B as
follows:

B =

M⋃
m=1

Bm ⇐⇒ µB(y) =

M⊔
m=1

µBm(y) (2.9.5)

Subsequently, the centroid of B is obtained. Nevertheless, this
method is computationally very expensive as it requires to ob-
tain the centroid of a huge number of enumerated embedded
type-2 fuzzy sets (as in Definition 2.6.7). This drawback has mo-
tivated researchers to propose different type-reduction methods,
some of which are enumerated in the following. Most of them
are described in [46]:

• Height type-reduction and modified height type-reduction:
these methods replace each rule output fuzzy set by a sin-
gleton, placed at the point having maximum primary mem-
berhisp. The modified version includes a scaling factor to
weigh those singletons according to the rules’ firing strengths.
Although they are computationally quite simple, both present
problems when just one rule is fired [78].
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• Centre-of-sums type-reduction: this type-reducer first uses
fuzzy addition to combine all rule output fuzzy sets, and
then the centroid is obtained. Its computational complexity
is very similar to the centroid type-reducer.

• Centre-of-sets (COS) type-reduction: in this method, each
rule consequent (which is in general a type-2 fuzzy set) is re-
placed by its centroid, an operation that can be done ahead
of time. Then these centroids are combined with their re-
spective rule firing strengths to obtain the type-1 reduced
set. It has a reasonable computation complexity and, thus,
it is widely used in FLSs’ implementations.

It is worthwhile mentioning that the type-reduction operation
significantly simplifies when dealing with IT2FLSs. Both the cen-
troid of an IT2FS and the COS type-reducer use the well-known
Karnik-Mendel (KM) algorithm, which was originally introduced
in [48] and later improved in many works as [102], [87] and [72],
among others.

The output of the type-reduction block is a T1FS, which is
provided as the input to the final block.

2.9.6 Defuzzification

The defuzzification process is very similar to the stage within
T1FLSs. The main difference is that this block in T2FLSs does
not have to combine the rule output fuzzy sets Bm as this task
has been performed in the type-reduction block. Hence, the only
task needed to provide the final output of the system is choos-
ing a crisp number which is representative of the whole type-1
reduced set. To do so, any defuzzification method, as those ex-
plained in Section 2.5.5, can be selected.

Special attention should be paid on the defuzzification stage
when dealing with IT2FLSs. Whatever type-reduction method is
chosen, the output of that block will be a T1FS consisting in an
interval, characterised by its two endpoints [yl,yr]. Hence, the
most used defuzzification method in such systems is taking the
midpoint of that interval as the output, i.e.:

y =
yl + yr
2

(2.9.6)
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2.10 SUMMARY

In this Chapter, the main concepts and definitions related to both
type-1 and type-2 fuzzy logic, sets and systems that are required
in order to fully comprehend the rest of this dissertation have
been introduced.

Each of the following Chapters will have its own introduc-
tion, in order to further contextualise the specific work presented
within them; nonetheless, all related concepts and required defi-
nitions are contained here in Chapter 2.





Part II

D I S C U S S I O N : I S T Y P E - 2 F U Z Z Y L O G I C
F U L LY J U S T I F I E D ?





3E F F E C T S O F E X T R A T Y P E - 1 F U Z Z Y S E T
PA R A M E T E R S O N T H E P E R F O R M A N C E O F A
F U Z Z Y S Y S T E M

Fuzziness is probability in disguise. I can design a controller with
probability that could do the same thing that you could do with fuzzy

logic.

— Professor Myron Tribus, on hearing of the fuzzy-logic control
of the Sendai subway system IEEE Institute, May 1988

Many works have shown that IT2FLSs perform better than their
type-1 counterparts, due to their ability to better handle and

model encountered uncertainties. This has led to some contro-
versy, in which it is argued that one reason for the superior per-
formance of an IT2FLS over a T1FLS is that type-2 fuzzy sets
have more parameters (design degrees of freedom) than do type-
1 fuzzy sets. The associated hypothesis with this argument is that
if the type-1 fuzzy sets were allowed to have the same number
of parameters (and hence the same number of design degrees of
freedom) as the type-2 fuzzy sets, and if both type-2 and type-1
fuzzy sets were given equal opportunities of optimisation, then
both type-2 and type-1 FLSs should end up with equal perfor-
mances. In this part of the dissertation, we address this claim
in a novel way by investigating whether or not providing type-
1 fuzzy sets with one extra parameter enables them to improve

65
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their function approximation and uncertainty handling perfor-
mance totally within the framework of T1FLSs, because if the
claim is not valid in that framework it cannot be valid for the
IT2 versus T1 FLSs framework. We show, by means of extensive
simulation studies for several function approximation problems,
that adding one parameter to each of the antecedent fuzzy sets
in a type-1 FLS (so that triangle membership functions become
trapezoid membership functions) does not enable that FLS to im-
prove its function approximation and uncertainty handling per-
formances. In light of these results, it seems reasonable to con-
clude that the ability of IT2FLSs to perform better than their T1

counterparts is due to the way these systems handle uncertainty,
rather than the number of degrees of freedom available in the
system.

3.1 INTRODUCTION

Type-1 and type-2 fuzzy sets have been widely used in many
different areas since their introduction by Zadeh [113]. Type-2
Fuzzy Logic Systems (FLSs), introduced by Karnik, et al. [50] and
further explained in [78], include interval type-2 FLSs (IT2FLSs)
and general type-2 FLSs (GT2FLSs). Although there is no formal
definition for ”GT2FLSs”, the term is widely used to differentiate
IT2FLSs (which use interval type-2 fuzzy sets) and the rest of
type-2 FLSs, which use general (non-interval) shapes of type-2
fuzzy sets.

In recent years, T2FLSs have received increasing attention [75],
[81], [18], [30], [43], [15], [16], [41], [60], [63], [68], [79] and have
been applied successfully in many fields, due to their better abil-
ity to model and handle uncertainties than their type-1 counter-
parts. Although it has been shown in numerous simulation stud-
ies that IT2FLSs outperform their T1 counterparts, the reason for
this superior performance has not been established mathemat-
ically. This has led to some controversy, in which it is argued
that one reason for the superior performance of an IT2FLS over
a T1FLS is that type-2 fuzzy sets have more parameters (design
degrees of freedom) than do type-1 fuzzy sets. The associated hy-
pothesis with this argument is that if the type-1 fuzzy sets were
allowed to have the same number of parameters (and hence the
same number of design degrees of freedom) as the type-2 fuzzy
sets, and if both the type-2 and type-1 fuzzy sets were given
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equal opportunities of optimisation, then the type-2 and type-
1 FLSs should end up with equal performances. The reasoning
behind this argument is that there is a common thinking that in-
creasing the number of available parameters to be optimised in a
system always implies an improvement in system performance.

In previous work [11] Cara et al. compared a singleton IT2FLS
with a non-singleton T1FLS for several function approximation
problems (using multi-objective optimisation and genetic algo-
rithms (GA)), and allowed both FLSs to have the same num-
ber of parameters to be optimised. They showed that, in spite
of optimising the same number of parameters for the singleton
IT2FLS and non-singleton T1FLS, the singleton IT2FLS outper-
formed the non-singleton T1FLS. Consequently, they concluded
that the better performance of IT2FLSs is due to their structure
and ability to model and handle uncertainties rather than the
number of degrees of freedom available for optimisation [11].

In this Chapter, in order to plenty justify the use of T2FLSs in
detriment of T1FLSs, we address this controversy further by in-
vestigating whether or not providing type-1 fuzzy sets with one
extra parameter enables them to improve their function approx-
imation and uncertainty handling performance. To do this, we
use single and multi-objective GAs and optimise two different
kinds of T1 FLSs for nine function approximation problems. The
first T1FLS uses normal triangle membership functions (MFs) for
the antecedents, whereas the second T1FLS uses normal trape-
zoid MFs for the antecedents.

The choice of GAs has not been without reason: we intended
to use a semi-random search algorithm to optimise each FLS
whose implementation would not favour any specific model, in
order to guarantee impartiality in the comparison between sys-
tems. As we are comparing different systems uniquely repre-
sented by their parameters, the use of chromosomes to represent
systems/individuals arises naturally, hence GAs where chosen
over other bio-inspired algoritms.

The rest of the Chapter is organised as follows: Section 3.2
presents a brief overview of the T1FLSs that are used in the
sequel; Section 3.3 describes the single and multi-objective ex-
periments; Section 3.4 explains the procedure used to obtain the
centroid consequent’s parameters; Section 3.5 presents the exper-
iments and results; and Section 3.6 presents conclusions and rec-
ommendations for future work. Details about our GA algorithms
are in Appendix A.
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3.2 A BRIEF OVERVIEW OF THE EMPLOYED TYPE-1 FUZZY

LOGIC SYSTEMS

The T1FLSs used in this Chapter are Takagi-Sugeno-Kang (TSK)
A1 − C0 systems [65], which means that type-1 fuzzy sets are
used for the antecedent MFs, whereas singletons (crisp numbers)
are used for the consequents. This structure is the same as using
a Mamdani T1FLS with centre-of-sets or height defuzzifiers. Two
different types of A1−C0 FLSs are used: triangle and trapezoid,
which employ triangle and trapezoid fuzzy sets, respectively. In
the sequel, the T1FLS that uses triangle [trapezoid] MFs is re-
ferred to as a triangle [trapezoidal] T1FLS.

The triangle FLS uses normal triangle MFs in its rule-antecedents.
These MFs are described by three parameters, because normality
constrains the height of the triangle to be unity. Given a universe
of discourse X ⊆ IR, a triangle MF describing a type-1 fuzzy set
A in X is described by three real numbers, (a,b, c), such that
a 6 b 6 c, i.e.:

µA (x;a,b, c) =



0 if x 6 a

x−a
b−a if a 6 x 6 b

c−x
c−b if b 6 x 6 c

0 if x > c

(3.2.1)

For the trapezoid FLS, the normal MF µA(x) is described by
four real numbers (a,b, c,d), such that a 6 b 6 c 6 d, i.e.:

µA (x;a,b, c,d) =



0 if x 6 a

x−a
b−a if a 6 x 6 b

1 if b 6 x 6 c

d−x
d−c if c 6 x 6 d

0 if x > d

(3.2.2)

In the sequel,
(
a
j
i,b

j
i, c
j
i

) [(
a
j
i,b

j
i, c
j
i,d

j
i

)]
denote the MF pa-

rameters of the i-th antecedent (i = 1, ...,p) and j-th rule (j =
1, ...,Nr) when triangle [trapezoid] MFs are used. A T1FLS with
p inputs andNr rules that uses triangle MFs has 3pNr design pa-
rameters, whereas such a FLS that uses trapezoid MFs has 4pNr
design parameters.



3.3 single-objective and multi-objective experiments 69

To complete the description of the T1FLS, we have to define the
operations for the intersection, union and implication within the
inference engine, as well as the defuzzifier. In this study, we used
product T-norm as intersection, probabilistic OR for union, product
implication and a weighted average (centre-of-sets) defuzzifier.
Because the consequents are crisp numbers (as explained above),
the probabilistic OR and the OR operations are equivalent, and
thus we can express the output of the T1FLS as the following
well-known equation:

y =

Nr∑
j=1

[
p∏
i=1

µ
j
i(xi)

]
· cj

Nr∑
j=1

[
p∏
i=1

µ
j
i(xi)

] (3.2.3)

In Equation (3.2.3), xi is the i-th input, µji(xi) is the antecedent
MF of the i-th input in the j-th rule, and cj are the crisp rule con-
sequents. One benefit for using such consequents is [84] that they
can be easily optimized by using least-squares, and do not have
to be included in the GA portion of the optimizations, thereby
reducing the dimension of the parameter vector that is used in
the GA portion.

3.3 SINGLE-OBJECTIVE AND MULTI-OBJECTIVE EXPERIMENTS

In this Chapter we performe five experiments (simulations) for
the nine functions that were used in [11] and are shown in Table
1.

Our comparison framework is based in nine function approx-
imation problems, gathered in Table 3.3.1. Such functions will
be approximated by two different types of FLSs: one using tri-
angular MFs in the antecedents, and the other using trapezoidal
MFs. These systems use antecedents (which will be optimised by
the GA) that are essentially identical (piecewise linear functions),
but use a different number of parameter per MF (triangular sys-
tems use three, whereas trapezoidal systems use four). For those
two types of systems, we will compare their function approxi-
mation and uncertainty handling ability. By doing so, we intend
to prove or disprove if providing a MF an extra parameter (i.
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Table 3.3.1
Functions to be approximated by the FLSs.

Function Input range

f1(x1 ,x2) = sin (x1x2) x1 ,x2 ∈ [−2,2]

f2(x1 ,x2) = exp (x1 sin(πx2)) x1 ,x2 ∈ [−1,1]

f3(x1 ,x2) =
a

b+ c
a = 40 · exp

[
8 ·
(
(x1 − 0.5)2 +(x2 − 0.5)2

)]
b = exp

[
8 ·
(
(x1 − 0.2)2 +(x2 − 0.2)2

)]
c = exp

[
8 ·
(
(x1 − 0.7)2 +(x2 − 0.7)2

)] x1 ,x2 ∈ [0,1]

f4(x1 ,x2) =
1+sin(2x1+3x2)
3.5+sin(x1−x2)

x1 ,x2 ∈ [−2,2]

f6(x1 ,x2) = 1.33[1.5(1−x1)+ exp(2x1 − 1) sin
(
3π(x1 − 0.6)2

)
+

+ exp (3(x2 − 0.5)) sin
(
4π(x2 − 0.9)2

)
]

x1 ,x2 ∈ [0,1]

f7(x1 ,x2) = 1.9
[
1.35+ exp(x1) sin

(
13(x1 − 0.6)2

)
exp(−x2) sin(7x2)

]
x1 ,x2 ∈ [0,1]

f8(x1 ,x2) = sin
(
2π
√
x21 +x22

)
x1 ,x2 ∈ [−1,1]

y2(x1 ,x2) = 0.5+ 64 · (x1−0.5)(x2−0.5)(x1+0.2)

1+(4x1−2)2+(4x2−2)2
x1 ,x2 ∈ [0,1]

y5(x1 ,x2) = 0.5 · [1+ sin(2πx1) cos(2πx2)] x1 ,x2 ∈ [0,1]

e., using trapezoidal system rather than triangular) allows the
FLS to improve its performance: if it is improved, then we it will
be proved that the number of parameters (or degrees of freedom)
available in a FLS is key to enhance the FLSs; if it is not improved,
then the number of parameters is not determinant. Hence, if the
claim is not valid in T1FLSs’ framework, then it cannot be valid
when comparing IT2FLSs versus T1FLSs. This way we intend to
shed some light on the controversial discussion presented at the
beginning of the chapter.

The framework is based in five different experiments, each of
them having its own goal, which will be explained in their cor-
responding subsection. Some of these experiments focus on a
single-objective optimisation, in which a GA algorithm was used
to optimise the antecedent MF parameters on noise-free mea-
surements, by minimizing a normalized RMSE (NRMSE) func-
tion so as to obtain the best possible approximation to each func-
tion. Other experiments focused on a multi-objective optimisation,
in which a GA algorithm was used to optimise MF parameters
on noise-free measurements by simultaneously minimising the
NRMSE and maximising the FLS’s interpretability through re-
ducing the number of rules (the size of the FLS’s rule base). Ad-
ditionally, one experiment used noisy measurements so as to as-
sess the robustness of results in the presence of uncertain data.
How the consequent parameters were optimized is explained in
Section 3.4. Because there are many details associated with our
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GA algorithms, they are collected at the end of this paper in
Appendix A.

Recall that, in function approximation problems, when differ-
ent MFs are allowed to be placed anywhere across the input
space (not necessarily covering all of it), they are said to use
a scattered input space, i.e., MFs are placed where they contribute
the most to reducing the error. Consequently, some parts of the
input space might not be covered. In all experiments, apart from
experiment 4 and part of 5, scattered input space was used. On
the other hand, when the input space is divided into some kind
of grid, a MF is ensured in each delimited region within the grid,
in which case the MFs are said to use a partitioned input space,
i.e., the input space is divided into several subsets/grids, which
cover the whole input space. In partitioned input space, we use a
fixed number of MFs per input,NMAX, so that the rules were de-
termined by combining all possible MFs for each input, leading
to a system comprised of (NMAX)

p rules, where p is the number
of inputs to the system. The partitioned input space was used for
Experiment 4 and partially in 5.

3.4 COMPUTING OPTIMAL CONSEQUENTS

It is clear from Equation 3.2.3 that the output of the T1FLS, y, can
be expressed as a linear combination of the scalar consequents,
c1, c2, ..., cNr . A set of K pairs of inputs and outputs, is expressed
here as (~xi,yi), with i = 1, ...,K. Calling βji the firing degree of
the j-th rule for the i-th input-output pair (j = 1, ...,Nr), the K
outputs can be collected in the following vector-matrix equation:

β · ~C =


β11(~x1) · · · βNr1 (~x1)

β12(~x2) · · · βNr2 (~x2)
...

. . .
...

β1Np(~xK) · · · β
Nr
Np

(~xK)




c1

c2
...
cNr

 =


y1

y2
...
yK


(3.4.1)

Where β is the coefficient matrix for the K input points and ~C
is a vector with the consequents. When K > Nr, Equation (3.4.1)
is an over-determined system of linear equations, which can be
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solved to find the optimal consequents using different methods,
including the Cholesky method [32] or the Singular Value De-
composition [105]. The method we used to obtain the optimal
consequents, is described in Section A.2 of Appendix A. These
optimal consequents were used in our evaluation functions to
obtain the fitness of each individual when the GA described in
Appendix A was used to optimize the MF parameters.

3.5 EXPERIMENTS AND RESULTS

This section explains the experimental setup used to establish if
providing the T1FSs with one extra parameter per MF enables
them to deliver improved performances for function approxima-
tion and uncertainty handling.

As mentioned in Section 3.3, we performed five experiments,
whose explanations are given below and whose results are pre-
sented summarised in tabular format.

Due to the stochastic nature of the GA, each of the nine func-
tion approximation (FA) problems for each experiment was run
20 times, so that a statistical analysis could be performed to
establish if there are significant differences between the perfor-
mances of the triangle and trapezoidal FLSs. Statistical compar-
isons were done using the Kruskal-Wallis (KW) test for two classes
(also known as the Wilcoxon test), which was chosen over its
parametric counterpart ANOVA because the normality and ho-
moscedasticity requirements [23] of ANOVA were not met by
our data.

In our scenario, the KW test is used to compare two groups or
populations (i.e., the scores obtained by triangular or trapezoidal
FLSs in the 20 runs) and decide whether they belong to different
distributions; it is, the KW test compares the means of these two
groups and decides if such obtained means are different with sta-
tistical significance. Each comparison between two populations
(20 triangular runs and 20 trapezoidal ones) is given a score, the
p-value, which is compared with the chosen significance level α.
If p-value p > α, then the test cannot conclude the groups are dif-
ferent with statistical significance (for that given α); on the other
hand, if the p-value p 6 α, the test concludes both populations
belong to different distributions with statistically significant dif-
ferences. Hence, we can conclude if one system performs better
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than the other one. To decide if the differences are significant or
not, we used a significance level of α = 0.05 (5%).

In Experiments 1− 4, after the execution of each FA problem,
the best triangle FLS and trapezoidal FLS individuals were tested
using a different set of testing data points. We used a test dataset
formed by 2025 noise-free points, randomly selected from a 45×
45 grid division of the input space. In Experiment 5, noise was
added to the testing data.

When using a single-objective, the cost function for evaluating
each FA problem was the NRMSE, as is explained in Section A.2.
On the other hand, when using a multi-objective GA the number
of rules along with the NRMSE were optimised by comparing
Pareto Fronts and (as in [11]) using a Quality Indicator (QI) that
mapped each Pareto Front into a real number. The QI used in
this work was the hypervolume measure [125], which is the por-
tion of the objective space that is dominated by the Pareto Front
(given a reference point); hence, the higher a QI, the better the
Pareto Front which generated it. Although there is an equation
for the hypervolume, presenting it here would require introduc-
ing many concepts and definitions that are out of the scope of
this work, so for further information, please refer to [125].

3.5.1 Experiment 1

Experiment 1 is a single-objective scenario, and compared the
triangle and trapezoidal T1FLSs in which the number of rules
were fixed; thus, the measure to score the quality of each system
is the NRMSE computed using a given set of testing points. This
experiment was run for 5, 10, 15, 20, 25 and 30 rules, and its
results are summarized in Table 3.5.1, in which:

1. Its first column gives the number of rules in each FLS.

2. Its second column states the three possible conclusions that
can be drawn when comparing the triangle and trapezoidal
FLSs.

3. Its third column gives the number of FA problems for which
each conclusion occurred.

4. Its last column, for each of the first two possible conclu-
sions (triangular better than trapezoidal or trapezoidal bet-
ter than triangular), the % of improvement is shown.

5. The acronym "NA" in Table 3.5.1 and the rest of subsequent
tables stands for "Not Applicable".
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Table 3.5.1
Summary of results for Experiment 1

Rules Possible conclusions # of FA problems % improvement

5

Triangle FLS better than trapezoid FLS 0 NA

Trapezoid FLS better than triangle FLS 4 2.7(f1), 30.32(f2), 43.53(f3), 29.99(y5)

No significant difference 5 NA

10

Triangle FLS better than trapezoid FLS 0 NA

Trapezoid FLS better than triangle FLS 2 7.49(f7), 28.3(y5)

No significant difference 7 NA

15

Triangle FLS better than trapezoid FLS 1 5.8(f1)

Trapezoid FLS better than triangle FLS 1 24.25(y5)

No significant difference 7 NA

20

Triangle FLS better than trapezoid FLS 1 7.88(f1)

Trapezoid FLS better than triangle FLS 1 4.72(f4)

No significant difference 7 NA

25

Triangle FLS better than trapezoid FLS 1 8(f1)

Trapezoid FLS better than triangle FLS 0 NA

No significant difference 8 NA

30

Triangle FLS better than trapezoid FLS 0 NA

Trapezoid FLS better than triangle FLS 1 10.25(f6)

No significant difference 8 NA

3.5.2 Experiment 2

Experiment 2 is a multi-objective scenario in which the NRMSE
and the number of rules were simultaneously optimised, in order
to consider the trade-off between accuracy and complexity (i.e.,
interpretability) in the T1FLSs. Results from this experiment are
summarised in Table 3.5.2. Observe that results are quite even:
triangle FLSs perform better in three FA problems, trapezoidal
FLSs perform better in no FA problems, and there are no statis-
tically significant differences in six FA problems. According to
these results, it seems reasonable to conclude that using an extra
parameter per MF for a T1FLS does not guarantee a better Pareto
Front in the final solution.

This experiment has not included how much better one FLS
is than the other because it is dependent on the reference point
used to obtain the QI. In this work the chosen reference point is
[NRMSE = 1, #Rules = 20]. The reason for this is as follows: if a
given function is replaced by its mean value, a NRMSE = 1 wo-
uld be obtained; hence, any optimized FLS would be expected
to have a value below unity. On the other hand, the maximum
number of rules allowed for a system is 20; hence, it is not possi-
ble a higher value. This criterion ensures that the scores obtained
by the best FLSs will be below these values in the two objectives.

These results demonstrate that in the multi-objective scenario
it does not seem to matter which kind of MF is chosen, and
hence, it seems natural to choose the one with fewest number of
parameters, i.e., the triangle MF.
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Table 3.5.2
Summary of results for Experiment 2

Possible conclusion # of FA problem

Triangle FLS better than trapezoid FLS 3(f2, f8,y5)
Trapezoid FLS better than triangle FLS 0

No significant difference 6

Table 3.5.3
Summary of NRMSE results for the testing data in Experiment 3

5 rules Scenario 1 Scenario 2

Mean 0.41 0.41

STD 0.03 0.01

p-value
0.89

3.5.3 Experiment 3

Experiment 3, is a single-objective scenario that focused on FA
problem #1 (function f1) and used five-rule FLSs. Its goal is to see
if one can obtain a significantly better result than was obtained
in Experiment 1 (in which all individuals for the trapezoidal five-
rule FLSs were initialized randomly) by first obtaining the opti-
mal triangle five-rule FLS, and then smartly initializing the GA
for the trapezoidal five-rule FLS, using the best solution from the
optimal triangle five-rule FLS, Xbest (encoded as a trapezoid).
Speed of convergence is also examined.

Scenario 1 (Table 3.5.3) is for independently designed five-
rule triangle and trapezoidal FLSs. Scenario 2 is for an initially-
designed five-rule triangle FLS whose best solution is then in-
cluded in the initial population for the five-rule trapezoidal FLS.
In that Table, ”Mean” and ”STD” are the mean and standard
deviations of the NRMSE over the 20 runs of this experiment.
Observe, from Table 3.5.3, that neither the trapezoidal nor the
triangular systems NRMSEs change significantly. As in both pre-
vious experiments, these 20 runs were tested using the KW test,
in order to check if the difference in the means in Table 3.5.3 are
statistically significant. As it can be observed, including the best
triangular individual in the trapezoidal initial population does
not improve the quality of the final solution obtained, as the
p-value obtained when comparing the trapezoidal FLSs in Sce-
narios 1 and 2 is far greater than the significance level α = 0.05.
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Figures 3.5.1(a) and 3.5.1(b) depict the evolution of the best
fitness for each generation of Scenario 1, for both triangle and
trapezoidal FLSs, whereas Figures 3.5.1(c) and 3.5.1(d) depict
the same for Scenario 2. Observe that including a very good in-
dividual in the initial trapezoidal FLS population does not sig-
nificantly reduce the best NRMSE, although it does speed up
finding the optimal solution.

Figure 3.5.1
Evolution of the best fitness. (a) Triangle FLS, Scenario 1; (b) Trapezoidal FLS,
Scenario 1; (c) Triangle FLS, Scenario 2; and, (d) Trapezoidal FLS, Scenario 2

3.5.4 Experiment 4

This experiment used a partitioned input space unlike the other
experiments that used a scattered input space. The goal of this
experiment is to find out if using a scattered or partitioned input
space has significant impact on the quality of the final solution.
In this experiment NMAX = 7 and p = 2, so that there are Nr =
72 = 49 rules. We have repeated the setup of Experiment 2 for
all nine FA problems but with the partitioned input space of
49 rules and the results are summarized in Table 3.5.4. Observe,
that once again, the results indicate that there is no statistically
significant difference in the performance between triangle and
trapezoidal FLSs.
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Table 3.5.4
Summary of results for Experiment 4 (the partitioned input-space scenario)

Possible conclusion # of FA problem % improvement (FA problem)

Triangle FLS better than trapezoid FLS 0 NA

Trapezoid FLS better than triangle FLS 1 18.82%(f1)

No significant difference 8 NA

3.5.5 Experiment 5

Experiment 5 compared the performance of the triangle and
trapezoidal FLSs, using both fixed and varying number of rules,
when noise was added to the testing points (as in [11]). In this
experiment, noise power was specified as a fraction of the testing
point’s variance, σtest, i.e., σnoise = k · σtest, where k is a real
number in (0, 1].

The best individuals obtained in Experiments 2 (varying num-
ber of rules) and 4 (fixed number of rules, 49) were used accord-
ing to the following two-step procedure:

1. For each FA problem, the FLSs associated with the best in-
dividual/Pareto fronts obtained in these two experiments
were retrieved.

2. Using these FLSs, the NRMSE was re-computed, using the
set of noisy testing points for k = {0.01, 0.02, 0.05, 0.1, 0.2}.

Figure 3.5.2 and Table 3.5.5 summarize the results obtained for
this experiment in the single objective setup followed in Experi-
ment 1. In Figure 3.5.2, each point in each of its sub-figures repre-
sents the mean NRMSE obtained in 20 runs, for both the triangle
FLS (solid line with circle markers) and trapezoidal FLS (dotted
line with cross markers). A quick look at the figures reveals that
both systems perform almost equally when dealing with noisy
data. When the noise level increases, the performance of both
T1FLSs deteriorates in the same way. This demonstrates that pro-
viding the T1FLS with one extra parameter does not enable it to
deliver better performance when the data are noisy.

For all points in Figure 3.5.2, the respective p-values are pre-
sented in Table 3.5.5, so as to test if there are statistically signif-
icant differences between both FLSs. Each p-value in Table 3.5.5
represents the comparison between the 20 runs from each kind
of system, triangular or trapezoidal (the same applies for Table
3.5.6). For instance for function f3 and k = 0.02, the p-value is
p = 0.1; hence, when comparing the 20 runs of both systems,
the KW test concluded there are no statistically significant differ-
ences between them. For all 45 possible p-values, only four dif-
ferent cases are below the significance level of α = 0.05. They are
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Figure 3.5.2
Structure of a type-1 fuzzy logic system.

Table 3.5.5
P-values for each 20 runs of each FA problem using different levels of noise

P values

Noise fraction

power
f1 f2 f3 f4 f6 f7 f8 y2 y5

k = 0.01 0.05 0.13 0.21 0.11 0.15 0.55 0.50 0.53 0.70

k = 0.02 0.02 0.10 0.39 0.27 0.19 0.32 0.53 0.91 0.43

k = 0.05 0.39 0.70 0.57 0.01 0.81 0.89 0.39 0.43 0.01

k = 0.1 0.73 0.79 0.81 0.15 0.68 0.23 0.24 0.57 0.18

k = 0.2 0.08 0.52 0.19 0.52 0.32 0.33 0.59 0.27 0.83

shown in bold-face in Table 3.5.5, and are for function f1, using
k = 0.01 and k = 0.02 (in both these cases, trapezoidal FLSs per-
formed slightly better than did the triangle FLSs), for function f4,
using k = 0.05 (in this case, the triangle FLSs performed better
than the trapezoidal FLSs), and function y5 with k = 0.05 (tri-
angular FLS better than trapezoidal). In the 41 remaining cases,
the statistical analysis demonstrates that there are no statistically
significant differences between the performances of both types of
FLSs when different amounts of noise corrupt the testing points.

Table 3.5.6
P-values for each 20 runs of each FA problem using different levels of noise

P values

Noise fraction

power
f1 f2 f3 f4 f6 f7 f8 y2 y5

k = 0.01 0.22 0.05 0.74 0.05 0.02 0.41 0.00 0.62 0.01

k = 0.02 0.07 0.02 0.24 0.07 0.05 0.40 0.00 0.20 0.01

k = 0.05 0.50 0.23 0.35 0.11 0.07 0.59 0.98 0.78 0.01

k = 0.1 0.84 0.49 0.03 0.08 0.28 0.07 0.04 0.04 0.16

k = 0.2 0.44 0.23 0.09 0.14 0.05 0.39 0.00 0.87 0.51

Figure 3.5.3 and Table 3.5.6 summarise the results obtained for
this experiment in the multi objective setup followed in Experi-
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Figure 3.5.3
Structure of a type-1 fuzzy logic system.

ment 2. The only difference to Figure 3.5.2 and Table 3.5.5 is that
the NRMSE is replaced by the quality indicator (QI), for which a
higher value means better performance.

For all points in Figure 3.5.3, the respective p-values are pre-
sented in Table 3.5.6, so as to test if there are statistically signifi-
cant differences between both FLSs. For all 45 possible p-values,
15 of them (shown bold-faced) have a p-value below α = 0.05, in-
dicating statistically significant differences. In five of them trian-
gle FLSs performed better than the respective trapezoidal FLSs
(f2, using k = 0.01 and k = 0.02; f3, using k = 0.1; f4, using
k = 0.01; and, y2 using k = 0.1), whereas in ten of them trape-
zoidal FLSs performed better (f6, using k = 0.01,0.02 and 0.2;
f8, using k = 0.01, 0.02, 0.1 and 0.2; and, y5, using k = 0.01,
0.02 and 0.05). The remaining 30 cases showed no performance
differences.

An examination of Figure 3.5.3 reveals that the QI deteriorates
in the same way and at about the same level for both the triangle
and trapezoidal FLSs. This again shows that giving the T1FLS
one extra parameter usually does not enable the T1FLS to deliver
better performance when noise is present.

3.6 CONCLUSIONS AND FUTURE WORK

This Chapter has examined the claim that one reason for the bet-
ter performance of T2FLSs is their use of the extra parameters
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that describe type-2 fuzzy sets. Those who make this claim hy-
pothesize that if the type-1 fuzzy sets were allowed to have the
same number of parameters (and hence the same number of de-
sign degrees of freedom) as the type-2 fuzzy sets, and if both
the type-2 and type-1 fuzzy FLSs were given equal opportuni-
ties of optimisation, then the type-2 and type-1 FLSs should end
up with equal performances. In this work, we have addressed
this claim in a novel way by investigating whether or not provid-
ing type-1 fuzzy sets with one extra parameter enables them to
improve their function approximation and uncertainty handling
performance totally within the framework of T1FLSs, because if
the claim is not valid in that framework it cannot be valid for the
IT2 versus T1FLS framework.

We have shown, by means of extensive simulation studies for
nine function approximation problems, that adding one parame-
ter to each of the antecedent fuzzy sets in a type-1 FLS does not
enable that FLS to improve its function approximation and un-
certainty handling performances. These findings are consistent
with those in [11]. In light of these results, it seems reasonable to
conclude that the ability of T2FLSs to perform better than their
T1FLS counterparts is due to the way these systems handle un-
certainty, rather than the number of degrees of freedom available
in the system.

Future work relating this topic should focus on extending the
approach that has been taken in this work to IT2FLSs. More
specifically, suppose, e.g., that the FOU of an IT2FS is for a Gaus-
sian primary MF with certain mean µ, and uncertain standard
deviation, i.e., σ ∈ [σ1,σ2], so that it is described by three param-
eters. This FOU can be allowed to have one extra parameter by,
for instance, letting the mean also be uncertain, i.e., µ ∈ [µ1,µ2].
The question to be studied is: does this extra parameter for the
FOU (applied to all of the antecedents in an IT2FLS) allow an
IT2FLS to improve its function approximation and uncertainty
handling performances?
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4J O I N A N D M E E T O P E R AT I O N S F O R T Y P E - 2

F U Z Z Y S E T S W I T H N O N C O N V E X S E C O N D A RY
M E M B E R S H I P S

Fuzzy set theory has certainly been used to solve problems, but the
fuzzy set theorists have failed to prove the existence of uncertain

events which cannot be represented probabilistically.

— Michael Laviolette, John W. Seaman

Previously in this dissertation (more precisely in Part ii, Chap-
ter 3), we approached a discussion about type-1 and type-2

fuzzy logic, and whether their abilities of modelling and han-
dling uncertainties lied on the number of parameters each of
them have or not. We shed some light on that discussion, and
concluded that the number of parameters is not just the only key
to improve the performance of fuzzy logic systems. Hence, type-
2 fuzzy logic is plenty justified, and we shall focus our efforts on
it from now on, trying to further improve fuzzy sets and fuzzy
logic systems theory.

In order to contribute to the development of type-2 fuzzy logic
theory, having a close look at the state of the art seems to be
a good idea. Recent works have broadened the perception the
research community had about IT2FSs. In [89], Bustince et al.
proved that IT2FSs are actually more general than IVFSs, and,

83
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in addition, that some of these sets might have nonconvex sec-
ondary grades. This fact posed two new needs: on the one hand,
the classic join and meet operations on IVFSs required the sec-
ondary grades to be closed and connected intervals, a condition
that does not necessarily hold any more; hence, in order to be
able to operate on these sets, new equations for the join and
meet operations should be obtained. On the other hand, these
new IT2FSs can help us represent uncertainty and imprecission
on ways the classic IVFSs cannot, and thus, it is important to also
explore FLSs using these sets, paying special attention to those
blocks presenting significant differences with other well-known
FLSs in the literature.

In this Chapter, our efforts are focused on the first need, and
we will present two theorems for the join and meet operations
for general type-2 fuzzy sets with arbitrary secondary member-
ships, which can be nonconvex and/or nonnormal type-1 fuzzy
sets. These results will be used to derive the join and meet oper-
ations of the more general descriptions of interval type-2 fuzzy
sets presented in [89], where the secondary grades can be non-
convex. Hence, this study will help to explore the potential of
type-2 fuzzy logic systems which use the general forms of inter-
val type-2 fuzzy sets which are not equivalent to interval-valued
fuzzy sets. Several examples for both general type-2 and the
more general forms of interval type-2 fuzzy sets are presented.

4.1 INTRODUCTION

General type-2 fuzzy sets (GT2FSs) are characterized by sec-
ondary memberships, which take any value between 0 and

1 (unlike interval type-2 fuzzy sets (IT2FSs), whose secondary
memberships are either 0 or 1). The meet and join operations
for GT2FSs, which represent the intersection and union for these
sets (as presented in Sections 2.7.3 and 2.7.2), respectively, are
based on the Extension Principle by Zadeh [113] as a general-
ization of the intersection and union for type-1 fuzzy sets (Sec-
tion 2.7.1). In 2001, the initial work by Karnik and Mendel pre-
sented in [49] a simplified procedure to compute these opera-
tions for GT2FSs, although it depended on the condition that the
secondary grades of type-2 fuzzy sets were normal and convex
type-1 fuzzy sets. This work was later generalized by Coupland
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and John [20] to incorporate nonnormal sets by borrowing some
methods (Weiler-Atherton, Modified Weiler Atherton, Bentley-
Ottmann Plane Sweep Algorithm, etc.) from the field of compu-
tational geometry; yet, convexity remained a necessary condition.
More recent works [71] [92] [73] studied the geometrical proper-
ties of some GT2FSs to find closed formulas or approximations
for the join and meet operations in some specific cases. However,
to the best of the authors’ knowledge, considering arbitrary sec-
ondary grades, which can be nonconvex, has not been addressed
to date.

Recent developments in type-2 fuzzy logic have changed the
perception researchers have of IT2FSs. IT2FSs are type-2 fuzzy
sets whose uncertainty is equally distributed in the third dimen-
sion (also called secondary membership), and thus, these sec-
ondary membership are either 0 or 1, unlike GT2FSs, whose un-
certainty in the third dimension is not equally weighted and the
distribution can be an arbitrary type-1 fuzzy set. When IT2FSs
were initially defined in [58], all the theory and operations were
based on the specific case where IT2FSs are equivalent to interval-
valued fuzzy sets (IVFSs). However, it has been recently shown
that IT2FSs are more general than IVFSs [89]. Hence, in order to
derive the theory of these general forms of interval type-2 fuzzy
logic systems (gfIT2FLSs) (which employ IT2FSs which are not
equivalent to IVFSs), it is necessary to develop the meet and join
operations of GT2FSs with nonconvex secondary memberships
and, then, particularize it to the case of IT2FSs, which have sec-
ondary grades equal to either 0 or 1.

Hence, in this Chapter, we will be finding the join and meet
operations for GT2FSs where secondary memberships are arbi-
trary type-1 sets and, hence, can be nonconvex and/or nonnor-
mal. This will be used to derive the join and meet operations of
IT2FSs where the secondary grades are nonconvex sets.

The structure of this Chapter is as follows: Section 4.2 will
present preliminaries in order to provide some basic background.
Section 4.3 will present two theorems for the join and meet oper-
ations for GT2FSs making no assumptions about their normality
or convexity. In Section 4.4, we will apply our results to the gen-
eral forms of IT2FSs presented in [89]. Section 4.5 will present
examples of the two theorems applied to GT2FSs with normal
and convex secondary memberships, GT2FSs with nonconvex
and nonnormal secondary memberships, and all general forms
of IT2FSs (including type-1 sets and IVFSs) as presented in [89].
Conclusions and future work are presented in Section 4.6.
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Note that, along this chapter, we will usually refer to type-1
fuzzy sets with capital letters, whereas type-2 fuzzy sets will be
denoted by capital letters with tilde.

4.2 PRELIMINARIES

Part of the content of this Section was discussed in Chapter
2, and will be briefly repeated here for the convenience of the
reader.

Type-2 fuzzy sets are an extension of type-1 fuzzy sets. While
a type-1 fuzzy set F is characterised by a type-1 MF µF(x) (where
x ∈ X and µF(x) ∈ [0, 1]), a type-2 set F̃ is characterised by a
type-2 MF µF̃(x,u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e. [58] [78]:

F̃ = {((x,u),µF̃(x,u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (4.2.1)

The set F̃ can also be expressed as follows [58]:

F̃ =

∫
x∈X

∫
u∈Jx

µF̃(x,u)/(x,u) Jx ⊆ [0, 1] (4.2.2)

Where the integrals denote aggregation over all admisible x
and u. Jx is called the primary membership of x in F̃. At each
value of x, say x = x ′, the 2-D plane whose axes are u and
µF̃(x

′,u) is called a vertical slice of F̃, as introduced in Definition
2.6.4. A secondary MF is a vertical slice of F̃. It is, µF̃(x = x ′,u),
for x ′ ∈ X and ∀u ∈ Jx ′ ⊆ [0, 1], [113], i.e.:

µF̃(x = x
′,u) ≡ µF̃(x

′) =

∫
u∈Jx ′

fx ′(u)/u Jx ′ ⊆ [0, 1] (4.2.3)

Because ∀x ′ ∈ X, the prime notation on µF̃(x
′) is dropped

and µF̃(x) is referred to as a secondary MF [58], [78] (see); it is
a type-1 fuzzy set which is also referred to as a secondary set
[58]. If ∀x ∈ X, the secondary MF is an interval type-1 set, where
fx(u) = 1 ∀u ∈ Jx, (i.e., µF̃(x,u) = 1) , the type-2 set F̃ is referred
to as an IT2FS (see Definition 2.6.11). It should be noted that the
notation we use here does not imply that Jx should only consider
the values where fx(u) is greater than zero. In this study, we
consider Jx = [0, 1] to simplify the representation.
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4.3 JOIN AND MEET OPERATIONS FOR GT2FSS WITH NON-
CONVEX SECONDARY MEMBERSHIPS

In this section, two theorems for the join and meet operations on
GT2FSs with nonconvex secondary memberships are presented.

4.3.1 Join operation

Definition 4.3.1. Let F̃1 and F̃2 be two type-2 fuzzy sets in a uni-
verse of discourse X. Let µF̃1(x) and µF̃1(x) denote membership
grades of F̃1 and F̃2, respectively, at x ∈ X. Then, for each x ∈ X,
using minimum T-norm and maximum T-conorm, the union set F̃1∪
F̃2, which is characterised by its membership grade µF̃1∪F̃2(x, θ),
is given by the join operation on µF̃1(x) and µF̃2(x) and is as
follows1:

µF̃1∪F̃2(x, θ) =
(
µF̃1(x)t µF̃2(x)

)
(θ) =

= sup
v∈[0,θ]

{f1(v)} ∧ (f1(θ)∨ f2(θ))∧ sup
w∈[0,θ]

{f2(w)}

(4.3.1)

Such that v∨w = θ.

Theorem 4.3.1. The union operation on type-2 fuzzy sets defined in
[49] using minimum T-norm is equivalent to the union defined in Equa-
tion (4.3.1).

Proof. Let the join operation be performed on two type-2 fuzzy
sets, denoted F̃1 and F̃2, in a universe of discourse X. The mem-
bership grades at x ∈ X of F̃1 and F̃2 are denoted as µF̃1(x) and
µF̃2(x), respectively, which are fuzzy sets defined in V ,W ⊆ [0, 1],
and are as in Equation (4.2.3). According to [49], the union of two
type-2 fuzzy sets, denoted as F̃1 ∪ F̃2, is given by the join opera-
tion as follows:

F̃1 ∪ F̃2 ⇐⇒ µF̃1tF̃2(x) =

=

∫
v∈V

∫
w∈W

(f1(v) ? f2(w)) /(v∨w) x ∈ X
(4.3.2)

Where ? indicates the minimum T-norm (hence, ? will be re-
placed by ∧ in the rest of the Chapter) and ∨ indicates the max-
imum T-conorm.

1 It should be noted that Equation (4.3.1) has some similarity to Equation (10)
in [98] (see also [39]) as both equations refer to the join operation on GT2FSs.
However, the representation of Equation (4.3.1) is quite different to simplify
the computations and analysis
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Thus, any element θ = (v∨w) in the primary membership of
F̃1 ∪ F̃2 can be obtained by any of the following cases.

1. Case 1: If v is any value between 0 and θ, and w = θ, i.e.,
{(v,w) | v 6 θ and w = θ} → (v∨w) = (v∨ θ) = θ. This
condition is equivalent to state that v ∈ [0, θ] and w = θ.

2. Case 2: If w is any value between 0 and θ, and v = θ, i.e.,
{(v,w) |w 6 θ and v = θ} → (v∨w) = (θ∨w) = θ. This
condition is equivalent to state that w ∈ [0, θ] and v = θ.

The membership value associated with θ can be obtained by
applying the minimum T-norm on the secondary grades f1(v)
and f2(w), where v and w are as described in Cases 1 and 2;
hence, µF̃1∪F̃2(x, θ) = f1(v)∧ f2(w).

It is important to note that if more than one pair {v,w} result
in the same θ = (v∨w) but with different membership grade
µF̃1∪F̃2(x, θ) = f1(v)∧ f2(w), then we keep the maximum mem-
bership grade obtained from all {v,w} pairs. Hence, µF̃1∪F̃2(x, θ) =
f1(v)∧ f2(w) is obtained by the following steps:

1. Step 1: Calculate φ1(θ), where:

φ1(θ) = sup
v∈[0,θ]

{f1(v)∧ f2(θ)} (4.3.3)

According to the notation used in [98], Equation (4.3.3) wo-
uld be fL1(θ)∧ f2(θ). See [98] for this notation.

2. Step 2: Calculate φ2(θ), where:

φ2(θ) = sup
w∈[0,θ]

{f1(θ)∧ f2(w)} (4.3.4)

According to the notation used in [98], Equation (4.3.4) wo-
uld be f1(θ)∧ fL2(θ).

3. Step 3: Calculate µF̃1∪F̃2(x, θ), where:

µF̃1∪F̃2(x, θ) = φ1(θ)∨φ2(θ) (4.3.5)

f1(θ) and f2(θ) are fixed as θ is fixed. Hence, f1(θ) and f2(θ)
will not be considered in the suprema calculation. Consequently,
we can rewrite Equations (4.3.3) and (4.3.4) as Equations (4.3.6)
and (4.3.7), respectively, and combine them in Equation (4.3.8):

φ1(θ) = sup
v∈[0,θ]

{f1(v)} ∧ f2(θ) (4.3.6)
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φ2(θ) = f1(θ)∧ sup
w∈[0,θ]

{f2(w)} (4.3.7)

µF̃1∪F̃2(x, θ) =

(
sup
v∈[0,θ]

{f1(v)} ∧ f2(θ)

)
∨

(
f1(θ)∧ sup

w∈[0,θ]
{f2(w)}

)
(4.3.8)

Using four labels denoted as A1, B1, C1 and D1 as illustrated
in Equation (4.3.9), Equation (4.3.8) can be rewritten as Equation
(4.3.10).

µF̃1∪F̃2(x, θ) =

 sup
v∈[0,θ]

{f1(v)}︸ ︷︷ ︸
A1

∧ f2(θ)︸ ︷︷ ︸
B1

∨

f1(θ)︸ ︷︷ ︸
C1

∧ sup
w∈[0,θ]

{f2(w)}︸ ︷︷ ︸
D1


(4.3.9)

µF̃1∪F̃2(x, θ) = (A1 ∧B1)∨ (C1 ∧D1) (4.3.10)

The distributive property of minimum and maximum opera-
tions allows us to rewrite the right-hand side of Equation (4.3.10)
as follows:

(A1 ∧B1)∨ (C1 ∧D1) =

= (A1 ∨C1)∧ (A1 ∨D1)∧ (B1 ∨C1)∧ (B1 ∨D1)

(4.3.11)

By substituting Equation (4.3.11) into (4.3.10) and replacing
the labels denoted as A1, B1, C1 and D1, Equation (4.3.11) can
be written as follows:

µF̃1∪F̃2(x, θ) =

(
sup
v∈[0,θ]

{f1(v)} ∨ f1(θ)

)
∧

∧

(
sup
v∈[0,θ]

{f1(v)} ∨ sup
w∈[0,θ]

{f2(w)}

)
∧

∧ (f2(θ)∨ f1(θ))∧

(
f2(θ)∨ sup

w∈[0,θ]
{f2(w)}

)
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(4.3.12)

Using four labels denoted as A2, B2, C2 and D2 as illustrated
in Equation (4.3.13), (4.3.12) can be rewritten as Equation (4.3.14):

µF̃1∪F̃2(x, θ) =

(
sup
v∈[0,θ]

{f1(v)} ∨ f1(θ)

)
︸ ︷︷ ︸

A2

∧

∧

(
sup
v∈[0,θ]

{f1(v)} ∨ sup
w∈[0,θ]

{f2(w)}

)
︸ ︷︷ ︸

B2

∧

∧ (f2(θ)∨ f1(θ))︸ ︷︷ ︸
C2

∧

(
f2(θ)∨ sup

w∈[0,θ]
{f2(w)}

)
︸ ︷︷ ︸

D2

(4.3.13)

µF̃1∪F̃2(x, θ) = A2 ∧B2 ∧C2 ∧D2 (4.3.14)

It is worthwhile to analyse two of the terms in Equation (4.3.13),
which are A2 and D2, separately:

A2 = sup
v∈[0,1]

{f1(v)} ∨ f1(θ) (4.3.15)

In the term A2 shown in Equation (4.3.15), it is important to
note that the value f1(θ) is included in the value sup

v∈[0,1]
{f1(v)},

as the value v = θ belongs to the interval v ∈ [0, θ]. Hence, the
maximum f1(θ)∨ sup

v∈[0,1]
{f1(v)} will always be represented in the

value sup
v∈[0,1]

{f1(v)}, regardless of the value of θ and the shape

of the function f1(v). Consequently, term A2 in Equation (4.3.15)
can be written as A ′2 as shown below:

A2 = sup
v∈[0,θ]

{f1(v)} ∨ f1(θ) = sup
v∈[0,θ]

{f1(v)} = A
′
2

→ f1(θ) ∈ {f1(v) | v ∈ [0, θ]}→ f1(θ) 6 sup
v∈[0,θ]

{f1(v)}
(4.3.16)
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Similarly, we will use the aforementioned approach for the
term D2 in Equation (4.3.13):

D2 = f2(θ)∨ sup
w∈[0,θ]

{f2(w)} (4.3.17)

Analogously, D2 is equivalent to D ′2:

D2 = sup
w∈[0,θ]

{f2(w)} ∨ f2(θ) = sup
w∈[0,θ]

{f2(w)} = D
′
2

→ f2(θ) ∈ {f2(w) |w ∈ [0, θ]}→ f2(θ) 6 sup
w∈[0,θ]

{f2(w)}
(4.3.18)

By using A ′2 instead of A2, and using D ′2 instead of D2 in
Equation (4.3.14), we have Equation (4.3.19) as follows:

µF̃1∪F̃2(x, θ) = A ′2 ∧B2 ∧C2 ∧D
′
2 (4.3.19)

Substituting each label A ′2, B2, C2 and D ′2 with their corre-
sponding content, we obtain:

µF̃1∪F̃2(x, θ) = sup
v∈[0,θ]

{f1(v)}∧

∧

(
sup
v∈[0,θ]

{f1(v)} ∨ sup
w∈[0,θ]

{f2(w)}

)
∧

∧ (f2(θ)∨ f1(θ))∧ sup
w∈[0,θ]

{f2(w)}

(4.3.20)

In order to simplify the notations, we will again label each
term in (4.3.20) separatedly as shown below:

µF̃1∪F̃2(x, θ) = sup
v∈[0,θ]

{f1(v)}︸ ︷︷ ︸
A3

∧

∧

 sup
v∈[0,θ]

{f1(v)}︸ ︷︷ ︸
A3

∨ sup
w∈[0,θ]

{f2(w)}︸ ︷︷ ︸
B3

∧

∧ (f2(θ)∨ f1(θ))︸ ︷︷ ︸
C3

∧ sup
w∈[0,θ]

{f2(w)}︸ ︷︷ ︸
B3

(4.3.21)
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Using three labels denoted as A3, B3 and C3 as illustrated in
Equation (4.3.21), Equation (4.3.20) can be expressed as:

µF̃1∪F̃2(x, θ) = A3 ∧ (A3 ∨B3)∧C3 ∧B3 (4.3.22)

We will focus on the partial expressionA3∧ (A3 ∨B3) in (4.3.22).
Using the fact that a∧ (a∨ b) = a for any real numbers a and b,
then A3 ∧ (A3 ∨B3) = A3, and Equation 4.3.22 becomes 4.3.23.
Substituting each label by its content, we have 4.3.24:

µF̃1∪F̃2(x, θ) = A3∧ (A3 ∨B3)∧C3∧B3 = A3∧C3∧B3 (4.3.23)

µF̃1∪F̃2(x, θ) = sup
v∈[0,θ]

{f1(v)} ∧ (f1(θ)∨ f2(θ))∧ sup
w∈[0,θ]

{f2(w)}

(4.3.24)

Equation (4.3.24) is the same as Equation (4.3.1), and this con-
cludes the proof of Theorem 4.3.1. This equation is the final re-
sult for the join operation performed on two type-2 fuzzy sets,
F̃1 and F̃2, for each x ∈ X. It is important to note that this result
is obtained without any assumption regarding the normality or
convexity of the secondary grades, denoted f1(v) and f2(w), that
belong to the fuzzy sets F̃1 and F̃2, respectively.

4.3.2 Meet operation

Definition 4.3.2. Let F̃1 and F̃2 be two type-2 fuzzy sets in a
universe of discourse X. Let µF̃1(x) and µF̃2(x) denote the mem-
bership grades of F̃1 and F̃2, respectively, at x ∈ X. Then, using
minimum T-norm, the intersection set F̃1 ∩ F̃2, which is charac-
terised by its membership grade µF̃1∩F̃2(x, θ), is given by the meet
operation on µF̃1(x) and µF̃2(x) and is as follows2:

µF̃1∩F̃2(x, θ) =
(
µF̃1(x)u µF̃2(x)

)
(θ) =

= sup
v∈[θ],1

{f1(v)} ∧ (f1(θ)∨ f2(θ))∧ sup
w∈[θ,1]

{f2(w)}

(4.3.25)

Such that v∧w = θ.

2 It should be noted that Equation (4.3.25) has some similarity to Equation (11)
in [98] as both equations refer to the meet operation on GT2FSs. However, the
representation of (4.3.25) is different to simplify the computation and analysis
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Theorem 4.3.2. The intersection operation on type-2 fuzzy sets defined
in [49] using minimum T-norm is equivalent to the intersection defined
in Equation (4.3.25).

Proof. Proof of Theorem 4.3.2 is very similar to the proof of Theo-
rem 4.3.1. In this case, any element θ in the primary membership
of F̃1 ∩ F̃2 is of the form θ = (v∧w), and can be obtained by any
of the following two cases:

1. Case 1: v ∈ [θ, 1] and w = θ.

2. Case 2: w ∈ [θ, 1] and v = θ.

The rest of the proof is exactly the same as the one for the join
operation, but changing the intervals v ∈ [0, θ] and w ∈ [0, θ] by
v ∈ [θ, 1] and w ∈ [θ, 1], respectively. The final result will be as in
Equation (4.3.25).

4.4 JOIN AND MEET OPERATIONS FOR THE GENERAL FORMS

OF INTERVAL TYPE-2 FUZZY SETS

In this section, we will focus on the particular case where f1(v)
and f2(w) are either 0 or 1 and their supports are non-empty closed
sets. In other words, we will focus on the general forms of IT2FSs,
as presented in [89]. We will obtain specific versions of Equations
(4.3.1) and (4.3.25) when sets are gfIT2FSs. It is important to note
that all examples in [89] satisfy that the supports of f1(v) and
f2(w) are non-empty closed sets.

Let g1(θ) = sup
v∈[0,1]

{f1(v)}. For a given value of θ, g1(θ) is the

maximum value that the function f1(v) has attained for all values
of v lower than or equal to θ, i.e., ∀v 6 θ. Let v1 be the infimum
of the support of f1. Hence, for all θ < v1:

g1(θ) = sup
v∈[0,θ]

{f1(v)} = sup
v∈[0,θ]

{0} = 0 ∀θ < v1 (4.4.1)

For values θ > v1, as f1(v1) = 1, the following stands:

g1(θ) = sup
v∈[0,θ]

{f1(v)} = f1(v1)∨ sup
v∈[0,θ],v6=v1

{f1(v)} =

= 1∨ sup
v∈[0,θ],v6=v1

{f1(v)} = 1
(4.4.2)
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Hence, combining Equations (4.4.1) and (4.4.2):

g1(θ) = sup
v∈[0,θ]

{f1(v)} =

 0 ∀θ < v1
1 ∀θ > v1

(4.4.3)

Analogously, let g2(θ) = sup
w∈[0,1]

{f2(w)} and let w1 be the infi-

mum of the support of f2. Hence:

g2(θ) = sup
w∈[0,θ]

{f2(w)} =

 0 ∀θ < w1
1 ∀θ > w1

(4.4.4)

Let g(θ) = g1(θ) ∧ g2(θ). Combining Equations (4.4.3) and
(4.4.4):

g(θ) =

 0 ∀θ < max(v1,w1)

1 ∀θ > max(v1,w1)
(4.4.5)

Considering the definition of g(θ), we can rewrite Equation
(4.3.1) as:

µF̃1∪F̃2(x, θ) =

 0 ∀θ < max(v1,w1)

f1(θ)∨ f2(θ) ∀θ > max(v1,w1)
(4.4.6)

Let vend andwend be the supremum of the supports of f1 and
f2, respectively. Hence, f1(v) = 0 ∀v > vend and f2(w) = 0 ∀w >
wend. Consequently, we can rewrite Equation (4.4.6) as:

µF̃1∪F̃2(x, θ) =

{
f1(θ)∨ f2(θ) ∀θ ∈ [max(v1,w1), max(vend,wend)]

0 elsewhere

(4.4.7)

Now, let us consider the case of the meet operation. In this case,
let g1(θ) = sup

v∈[θ,1]
{f1(v)}. Given a value of θ > vend:

g1(θ) = sup
v∈[θ,1]

{f1(v)} = sup
v∈[θ,1]

{0} = 0 ∀θ > vend (4.4.8)
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For values θ 6 vend, as f1(vend) = 1, the following stands:

g1(θ) = sup
v∈[θ,1]

{f1(v)} = f1(vend)∨ sup
v∈[θ,1],v6=vend

{f1(v)} =

= 1∨ sup
v∈[θ,1],v6=vend

{f1(v)} = 1

(4.4.9)

Hence, combining Equations (4.4.8) and (4.4.9):

g1(θ) = sup
v∈[θ,1]

{f1(v)} =

 1 ∀θ 6 vend

0 ∀θ > vend
(4.4.10)

A similar expression can be found for g2(θ) = sup
w∈[θ,1]

{f2(w)}.

g2(θ) = sup
w∈[θ,1]

{f2(w)} =

 1 ∀θ 6 wend

0 ∀θ > wend
(4.4.11)

Let g(θ) = g1(θ)∧ g2(θ). We can rewrite Equation (4.3.25) as:

µF̃1∩F̃2(x, θ) = g(θ)∧ (f1(θ)∨ f2(θ)) (4.4.12)

Considering g(θ) = g1(θ)∧ g2(θ) and using Equations (4.4.10)
and (4.4.11), we can rewrite (4.3.25) as follows:

µF̃1∩F̃2(x, θ) =

 f1(θ)∨ f2(θ) ∀θ 6 min(vend,wend)

0 ∀θ > min(vend,wend)

(4.4.13)

By definition of v1 and w1, f1(v) = 0 ∀v < v1 and f2(w) =
0 ∀w < w1. Therefore, the term f1(θ) ∨ f2(θ) will be 0 ∀θ <
min(v1,w1). Consequently, we can rewrite Equation (4.4.13) as:

µF̃1∩F̃2(x, θ) =

{
f1(θ)∨ f2(θ) ∀θ ∈ [min(v1,w1), min(vend,wend)]

0 elsewhere

(4.4.14)

It is worthwhile to highlight that Equations (4.4.7) and (4.4.14)
lead to the well-known results of the join and meet when the
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involved sets are type-1 sets or IVFSs. For the join in type-1 sets,
as v1 = vend and w1 = wend, then θ is nonzero only when
θ = max(v1,w1); therefore, f1(θ)∨ f2(θ) is a singleton placed at
this value θ = max(v1,w1). An analogous reasoning for the meet
operation, given θ = min(v1,w1), leads to a singleton placed at
this θ = min(v1,w1).

For the case of IVFSs, as f1 and f2 have continuous supports,
then f1(θ)∨ f2(θ) will also be continuous in θ ∈ [max(v1,w1),
max(vend,wend)] for the join, and θ ∈ [min(v1,w1), min(vend,
wend)] for the meet, regardless of the relative positions of v1,
w1, vend and wend, thus leading to the well-known equations
for IVFSs:

µF̃1∪F̃2(x, θ) =

 1 θ ∈ [max(v1,w1), max(vend,wend)]

0 elsewhere

(4.4.15)

µF̃1∩F̃2(x, θ) =

 1 θ ∈ [min(v1,w1), min(vend,wend)]

0 elsewhere

(4.4.16)

4.5 EXAMPLES OF THE JOIN AND MEET OPERATIONS

In this section, we will present several examples of the join and
meet operations on different kinds of type-2 fuzzy sets.

4.5.1 Examples of the join and meet operations for general
type-2 fuzzy sets with normal and convex secondary
memberships

In this section, we will show that our approach for the join and
meet operations on two GT2FSs presented in Equations (4.3.1)
and (4.3.25) give consistent results when compared with the ex-
isting approaches where secondary grades are normal and con-
vex type-1 fuzzy sets. We have used as a benchmark the exam-
ples presented in [95] (Figure 5, p. 493), which are shown in
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Figure 4.5.1
Vertical slices of three GT2FSs to perform the join operation.

Figure 4.5.1, so that we can compare the results achieved by The-
orems 4.3.1 and 4.3.2 to the results achieved in [95].

First of all, we will perform the join operation on the first two
sets given in Figure 4.5.1(a) and 4.5.1(b); second, we will perform
the join operation on the resulting set and the set given in Figure
4.5.1(c).

Let g1(θ) = sup
v∈[0,θ]

{f1(v)}. It can be proven that, for any convex

and normal secondary grade f1 having its maximum value at
v = vmax, the associated g1(θ) = sup

v∈[0,θ]
{f1(v)} is as follows:

g1(θ) = sup
v∈[0,θ]

{f1(v)} =

 f1(θ) ∀θ 6 vmax

1 ∀θ > vmax
(4.5.1)

Analogously, we can obtain the term g2(θ) = sup
w∈[0,θ]

{f2(w)}:

g2(θ) = sup
w∈[0,θ]

{f2(w)} =

 f2(θ) ∀θ 6 wmax

1 ∀θ > wmax
(4.5.2)

These terms are illustrated in Figures 4.5.2 and 4.5.3, respec-
tively. The only term in Equation (4.3.1) yet to be analysed is
(f1(θ)∨ f2(θ)), which is depicted in Figure 4.5.4, along with
f1(θ) and f2(θ). The final join result, which is as in Equation
(4.3.1), is illustrated in Figure 4.5.5 as dashed line. It is important
to note that the resulting µF̃1∪F̃2(x, θ) is identical to f2. Although
this result may be surprising, we can get to the same conclusion
using the equations by Karnik and Mendel in [49].

We now repeat operations between the resulting set (depicted
in Figure 4.5.5 as dashed line) and the set illustrated in Figure
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Figure 4.5.2
f1(v) and g1(θ).
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Figure 4.5.3
f2(w) and g2(θ).

4.5.1(c). We obtain g2(θ), g3(θ), (f2(θ)∨ f3(θ)), and the mini-
mum of all these quantities. Results are illustrated in Figures
4.5.6, 4.5.7, 4.5.8 and 4.5.9.

It is important to note that the final result displayed in Figure
4.5.9 is the same as he one presented in [95] (Figure 5, p. 493), and
thus, Equation (4.3.1) is consistent with the specific case where
secondary grades are normal and convex type-1 sets.

Now, we will perform the meet operation on the same three
sets depicted in Figure 4.5.1. Doing a similar analysis to the one
that led to Equations (4.5.1) and (4.5.2), it can be proven that:

g1(θ) = sup
v∈[θ,1]

{f1(v)} =

 1 ∀θ 6 vmax

f1(θ) ∀θ > vmax
(4.5.3)
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Figure 4.5.4
f1(θ), f2(θ) and f1(θ)∨ f2(θ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Primary membership

S
e
c
o
n
d
a
ry

 m
e
m

b
e
rs

h
ip

 

 

f
1
(θ) ∨ f

2
(θ)

g
1
(θ)=sup

v ∈ [0,θ]
{f

1
(v)}

g
2
(θ)=sup

w ∈ [0,θ]
{f

2
(w)}

Join of f
1
(v) and f

2
(w)

Figure 4.5.5
All terms and join result.

g2(θ) = sup
w∈[θ,1]

{f2(w)} =

 1 ∀θ 6 wmax

f2(θ) ∀θ > wmax
(4.5.4)

These terms are depicted in Figure 4.5.10 and 4.5.11. The only
term in Equation (4.3.25) yet to be analysed is the second one,
(f1(θ)∨ f2(θ)), which is the same as in the join operation and
is depicted in Figure 4.5.12, along with f1(θ) and f2(θ). The fi-
nal meet result, which is as in Equation (4.3.25), is illustrated in
Figure 4.5.13.

It is important to note that the resulting µF̃1∩F̃2(x, θ) is identi-
cal to f1. Although this result may be surprising, we can get to
the same conclusion using the equations by Karnik and Mendel
in [49]. We now repeat all operations between the resulting set
(depicted in Figure 4.5.13) and the set illustrated in Figure 4.5.1(c).
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Figure 4.5.6
f2(w) and g2(θ).
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Figure 4.5.7
f3(u) and g3(θ).

We obtain g1(θ), g3(θ), f1(θ) ∨ f3(θ), and the minimum of all
these quantities. Results are illustrated in Figures 4.5.14, 4.5.15,
4.5.16 and 4.5.17. It is important to note that the final result dis-
played in Figure 4.5.17 is the same as the one presented in [95]
(Figure 7, p. 495), and thus, Equation (4.3.25) is consistent with
the specific case where secondary grades are normal and convex
type-1 sets.

4.5.2 Examples of the join and meet operations for gen-
eral type-2 fuzzy sets with nonnormal nonconvex
secondary grades

In this section we will apply our approach presented in Equa-
tions (4.3.1) and (4.3.25) to type-2 fuzzy sets whose secondary
grades are arbitrary, i.e., secondary grades are neither convex
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f2(θ), f3(θ) and f2(θ)∨ f3(θ).
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All terms and join result.

nor normal. The chosen secondary grades to perform this oper-
ation are illustrated in Figure 4.5.18 and 4.5.19, respectively, as
solid lines, along with their terms g1(θ) = sup

v∈[0,θ]
{f1(v)} and

g2(θ) = sup
w∈[0,θ]

{f2(w)}. It is important to note that these terms

g1(θ) and g2(θ) cannot be computed using Equations (4.5.1) and
(4.5.2) as the sets are not convex. Figure 4.5.20 depicts the term
(f1(θ)∨ f2(θ)). Figure 4.5.21 illustrates all terms involved along
with the final join result.

The procedure to obtain the meet result for the same sets is
analogous, but changing the definitions of g1(θ) = sup

v∈[θ,1]
{f1(v)}

and g2(θ) = sup
w∈[θ,1]

{f2(w)}. All figures related to the meet opera-
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Figure 4.5.10
f1(v) and g1(θ).
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Figure 4.5.11
f2(w) and g2(θ).

tion on the sets depicted in Figure 4.5.22 and 4.5.23 are illustrated
in Figures from 4.5.22 to 4.5.25.

4.5.3 Examples of the join and meet operations for the gen-
eral forms of interval type-2 fuzzy sets

In this section we will focus on the particular case where f1(v)
and f2(w) are either 0 or 1 and their supports are closed sets. In other
words, we will focus on the general forms of IT2FSs, as presented
in [89]. We will use Equations (4.4.7) and (4.4.13) [which are spe-
cific versions of (4.3.1) and (4.3.25)] to compute the join and meet,
respectively, when the secondary grades are either 0 or 1, to all
the cases of gfIT2FSs. For simplicity, as in [89], we are going to
work with a finite referential set X of cardinal m. However, our
approach will also be valid for non-finite referential sets. In all
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Figure 4.5.12
f1(θ), f2(θ) and f1(θ)∨ f2(θ).
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Figure 4.5.13
All terms and meet result.

cases, we will present both gfIT2FSs, and will perform the join
and meet operations on the vertical slices placed at x = x4.

1. Case A: primary memberships are singletons (type-1 fuzzy
sets): the sets to perform the join and meet operations are
depicted in Figures 4.5.26(a) and 4.5.26(b), respectively. The
vertical slices we are going to operate with are depicted
in Figures 4.5.27(a) and (b); Figure 4.5.27(c) illustrates the
join operation as given by Equation (4.4.7), whereas Fig-
ure 4.5.27(d) illustrates the meet operation as in Equation
(4.4.13).

2. Case B: primary memberships are intervals (IVFSs): the
sets to perform the join and meet operations are depicted
in Figures 4.5.28(a) and 4.5.28(b). The vertical slices we are
going to operate with are depicted in Figures 4.5.29(a) and
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f1(v) and g1(θ).
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Figure 4.5.15
f3(u) and g3(θ).

(b); Figure 4.5.29(c) illustrates the join operation as given
in Equation (4.4.7), whereas Figure 4.5.29(d) illustrates the
meet operation as in Equation (4.4.13).

3. Case C: primary memberships are several singletons: the
sets to perform the join and meet operations are depicted
in Figures 4.5.30(a) and 4.5.30(b), respectively. The vertical
slices we are going to operate with are depicted in Figures
4.5.31(a) and (b); Figure 4.5.31(c) illustrates the join opera-
tion as given in Equation (4.4.7), whereas Figure 4.5.31(d)
illustrates the meet operation as in Equation (4.4.13).

From [89], it is stated that this example may correspond to
a setting in which anonymous users from a website score
different objects and/or services within it. In this situation,
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Figure 4.5.16
f1(θ), f3(θ) and f1(θ)∨ f3(θ).
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Figure 4.5.17
All terms and meet result.

and considering both anonymity and that not every user
will score every object, we would obtain sets as in case C.

4. Case D: primary memberships are several intervals: the
sets to perform the join and meet operations are depicted
in Figures 4.5.32(a) and 4.5.32(b), respectively. The vertical
slices we are going to operate with are depicted in Figures
4.5.33(a) and (b); Figure 4.5.33(c) illustrates the join opera-
tion as given in Equation (4.4.7), whereas Figure 4.5.33(d)
illustrates the meet operation as in Equation (4.4.13).
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f1(v) and g1(θ).
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f2(w) and g2(θ).

Several intervals could be used as follows: consider we have
a fuzzy logic system (FLS), which contains the following
rules for inputs x1 and x2:

Rl : IF x1 is HIGHANDx2 is HIGH THENy is Y

Rp : IF x1 is HIGHANDx2 is LOW THENy is Y
(4.5.5)

Where, e.g., HIGH = [0.9, 1] and LOW = [0, 0.1]. This could
be modelled using a nonstandard rule:

Rl
′
: IF x1 is HIGHANDx2 is HIGHor LOW THENy is Y

(4.5.6)
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Figure 4.5.20
f1(θ), f2(θ) and f1(θ)∨ f2(θ).
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Figure 4.5.21
All terms and join result.

Or by using a standard rule with a set EXTREME = [0, 0.1]∪
[0.9, 1] as follows:

Rl
′
: IFx1 isHIGHANDx2 isEXTREMETHENyisY (4.5.7)

This way, the complexity of the FLS can be reduced and
remain having a standard rule base.

5. Case E: primary memberships are combinations of single-
tons and intervals: the sets to perform the join and meet
operations are depicted in Figures 4.5.34(a) and 4.5.34(b), re-
spectively. The vertical slices we are going to operate with
are depicted in Figures 4.5.35(a) and (b); Figure 4.5.35(c)
illustrates the join operation as given in Equation (4.4.7),
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Figure 4.5.22
f1(v) and g1(θ).
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Figure 4.5.23
f2(w) and g2(θ).

whereas Figure 4.5.35(d) illustrates the meet operation as
in Equaton 4.4.13.

Considering again the scoring system in a website, we could
use these type of sets when the number of scores provided
increases significantly; hence, those regions of the interval
[0, 1], which are very crowded could be replaced by an in-
terval, whereas the most isolated values could remain as
singletons.
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Figure 4.5.24
f1(θ), f2(θ) and f1(θ)∨ f2(θ).
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All terms and meet result.

Figure 4.5.26
Sets F̃1 and F̃2 when gfIT2FSs are equivalent to type-1 sets.
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Figure 4.5.27
(a) f1(v). (b) f2(w). (c) Sets and join result. (d) Sets and meet result.

Figure 4.5.28
IVFSs to perform the join and meet operations.

Figure 4.5.29
(a) f1(v). (b) f2(w). (c) Sets and join result. (d) Sets and meet result.
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Figure 4.5.30
Multisingleton IT2FSs to perform the join and meet operations.

Figure 4.5.31
(a) f1(v). (b) f2(w). (c) Sets and join result. (d) Sets and meet result.

Figure 4.5.32
Multi-IVFSs IT2FSs to perform the join and meet operations.
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Figure 4.5.33
(a) f1(v). (b) f2(w). (c) Sets and join result. (d) Sets and meet result.

Figure 4.5.34
Sets to perform the join and meet operations.

Figure 4.5.35
(a) f1(v). (b) f2(w). (c) Sets and join result. (d) Sets and meet result.
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4.6 CONCLUSIONS AND FUTURE WORKS

In this Chapter, we have presented two theorems to perform
the join and meet operations on any GT2FSs having arbitrary
secondary grades, where the restrictions about the normality or
convexity on the secondary grades are no longer required. These
results have allowed us to deal with both GT2FSs and the gen-
eral forms of IT2FSs as presented in [89]. Hence, the Chapter
will help to explore the potential of gfIT2FLSs that use gfIT2FSs,
which are not equivalent to IVFSs.

To complete all the framework related to FLSs using these gen-
eral forms of IT2FSs, the next chapter will focus on the definition
of such FLSs, paying special attention to the type reduction oper-
ation, when the sets involved are IT2FSs that are not equivalent
to type-1 sets or IVFSs. We will also explore possible applications
that will benefit from using more general forms of IT2FSs.





5T O WA R D S A F U Z Z Y L O G I C S Y S T E M B A S E D O N
G E N E R A L F O R M S O F I N T E RVA L T Y P E - 2 F U Z Z Y
S E T S

Probability is the only satisfactory measure of one’s personal
uncertainty about the world and I put forward the challenge that

anything that can be done by alternatives to probability can be better
done by probability.

— D. V. Lindley

The recent years have witnessed a widespread in the use of in-
terval type-2 fuzzy logic systems (IT2FLSs) in real world appli-

cations. It has been shown recently that interval type-2 fuzzy sets
(IT2FSs) are more general than interval-valued fuzzy sets (IVFSs)
in [89] (and introduced in Chapter 4). Hence, there is a need to
explore the capabilities of the more general forms of IT2FSs (be-
yond IVFSs) and the applications areas they will be more suit-
able for. In addition, there is a need to develop the theory of
the general forms of IT2FLSs (gfIT2FLSs), which employ IT2FSs
which are not equivalent to IVFSs and can have non-convex sec-
ondary membership functions. Although these systems could be
considered within the scope of General Type-2 Fuzzy Logic Sys-
tems (GT2FLSs), the practical implementation of GT2FLSs has
traditionally required the secondary membership functions to
be convex type-1 fuzzy sets (T1FSs); to overcome this drawback,

115
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the theory of the join and meet operations on type-2 fuzzy sets
having arbitrary secondary grades was developed in Chapter 4.
In addition, the type-reduction operation still presents a chal-
lenge for GT2FLSs because of its computational complexity. In
this Chapter, we present a complete framework for a type-2 FLS
(gfIT2FSs) that uses general forms of interval type-2 fuzzy sets,
which can be non-convex type-1 fuzzy sets. We will introduce the
various operations employed within the gfIT2FLSs, from fuzzi-
fication (including singleton and non-singleton) to inference to
type-reduction and defuzzification. We will also present some
application areas where the use of gfIT2FSs can be beneficial.

5.1 INTRODUCTION TO GFIT2FLSS

Type-1 (T1) and type-2 (T2) FLSs have been widely and suc-
cessfully used in many real world applications, such as robotics
[38], [96], control [12], [83], image processing [123], network traf-
fic control [44], function approximation [84], pattern recognition
[42] and many others.

Although GT2FLSs were defined as soon as 1999, their prac-
tical application has been limited due to their higher computa-
tional complexity, favouring the simpler version of IT2FLSs. Al-
though traditionally IT2FSs have been considered to be equiva-
lent to IVFSs [78], it has been recently shown in [89] and exten-
sively discussed in Chapter 4 that IT2FSs are more general than
IVFSs. In addition, some of these IT2FSs have secondary grades
which are non-convex T1FSs. Hence, although there is a big liter-
ature in both IT2 and GT2FLSs, most of the existing work focuses
either on IVFSs or GT2FSs with convex secondary grades. In this
Chapter, we consider the gfIT2FSs where the secondary grades
are not equivalent to IVFSs and can be non-convex.

GfIT2FSs can easily capture the faced uncertainty without in-
troducing unneeded and unrealistic uncertainty to the IT2FS. For
example, a typical method to obtain IVFSs [76] for the antece-
dents or consequents involve a survey from different people (who
know about fuzzy logic) to provide the person type-1 fuzzy set
MF which represents a given concept from the person’s point
of view, as shown in Figure 5.1.1(a). These type-1 fuzzy sets are
then aggregated to develop upper and lower MFs, which can em-
bed the various type-1 fuzzy sets obtained within the resulting
footprint of uncertainty (FOU) as shown in Figure 5.1.1(b).
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Figure 5.1.1
(a) Type-1 MFs from a given survey about a certain concept. (b) IVFS obtained
via embedding the various obtained type-1 fuzzy sets.

Nevertheless, if the different T1 MFs provided are sparse (which
might happen in most cases, as shown in Figure 5.1.1(a)), a very
wide FOU can be obtained, which implies that a higher level of
uncertainty is modelled than what might be present in real world
situations. In addition, the obtained FOU in Figure 5.1.1(b) might
include huge number of emerging non triangular embedded sets
which might not represent the surveyed population opinion.

This problem can be naturally solved by using a specific shape
of the general forms of IT2FSs, which we called multi-singleton
IT2FSs, whose secondary membership is comprised of several
singletons at each point within the X-domain (as shown in Fig-
ure 5.1.2). These sets can easily represent all sets gathered in the
survey to model the faced uncertainty without adding extra un-
needed and/or unrealistic uncertainty to the final type-2 fuzzy
set.

In Chapter 4 the theory for the join and meet operations on
GT2FSs with non-convex/arbitrary secondary grades was pre-
sented; in addition, special attention was drawn to the case of
non-convex IT2FSs, which we have been referring to as general
forms of IT2FSs (gfIT2FSs). Once these set theoretic operations
are available, the fuzzy inference engine for the gfIT2FLSs can
be defined. This work aims to present the whole structure of
gfIT2FLSs as many of the elements are analogous to those in
other kinds of FLS (i.e. IVFLSs and GT2FLSs).

The rest of the Chapter is organised as follows: In Section 5.2 a
new way of representing the gfIT2FSs is introduced, which will
be very useful in the notations during this Chapter. Section 5.3
presents two new theorems related with the join and meet oper-
ations on gfIT2FSs. Section 5.4 presents the structure of the sin-
gleton and non-singleton gfIT2FLSs. Section 5.5 presents experi-
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Figure 5.1.2
A multi-singleton IT2FS to model the uncertainty amongst the type-1 fuzzy sets
in Figure 5.1.1(a).

mental analysis with worked examples explaining the operation
of the gfIT2FLSs, and a summary of the operation of a gfIT2FLS,
whereas Section 5.6 introduces conclusions and future works.

5.2 REPRESENTING GFIT2FSS

In [89] and also n Chapter 4 (Section 4.5) the different types of
gfIT2FSs were introduced; in this Section a new way of represent-
ing such sets is introduced, which will be useful for the notations
used in this dissertation.

If we consider that a singleton can be represented as an inter-
val having the same extreme points, then all cases of IT2FSs, from
A to E in Section 4.5, can be represented as the union of a finite
number of closed intervals, say NX̃(x). It is worthwhile to high-
light that NX̃ depends on the primary variable x, as not all the
secondary grades may have the same number of disjointed sin-
gletons/intervals. Hence, a gfIT2FS X̃ whose memebership func-
tion is µX̃(x), which is defined over a universe of discourse X
(with x ∈ X), can be written as follows:

µX̃(x) =

NX̃(x)⋃
i=1

µi
X̃
(x) =

NX̃(x)⋃
i=1

1/
[
li
X̃
(x), ri

X̃
(x)
]

(5.2.1)
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Where each of the closed intervals µi
X̃
(x) =

[
li
X̃
(x), ri

X̃
(x)
]

com-
prising µX̃(x) will be referred to as the subintervals of µX̃(x). As
we are dealing with gfIT2FSs, all the non-zero secondary mem-
bership values will be equal to one, hence the 1 in Equation 5.2.1
is redundant and sometimes we will drop it from the notation
for the sake of simplicity. Moreover, in Equation 5.2.1 we have ex-
plicitly indicated the dependency of NX̃, li

X̃
and ri

X̃
with x, also

for the sake of simplicity, we may not always indicate so. Hence,
Equation 5.2.1 can be simplified as:

µX̃(x) =

NX̃⋃
i=1

µi
X̃
(x) =

NX̃⋃
i=1

[
li
X̃

, ri
X̃

]
(5.2.2)

At this point it would be a good idea to revise the concepts
of lower membership function (LMF) and upper membership
function (UMF). In [58] Liang and Mendel defined the LMF and
UMF of an IVFS as the bounds for the footprint of uncertainty
(FOU); however, in their definition the FOU was a closed and
connected region. When dealing with gfIT2FSs, the FOU may
have several boundaries; thus, to avoid any kind of ambiguity,
we will redefine the LMF and UMF of a gfIT2FS:

Definition 5.2.1. Let X̃ be a gfIT2FS and let µX̃(x) be a vertical
slice placed at each x, µã(x) = f(x, θ)), θ ∈ [0, 1]. For each f(x, θ),
let v1 = v1(x) be the infimum of the support of f(x, θ). Hence,
the lower membership function (LMF) of X̃ is:

LMF(X̃) = LMF(µX̃(x)) = µX̃(x) = {v1(x) | x ∈ X} (5.2.3)

Definition 5.2.2. Let X̃ be a gfIT2FS and let µX̃(x) be a vertical
slice placed at each x, µã(x) = f(x, θ)), θ ∈ [0, 1]. For each f(x, θ),
let vend = vend(x) be the supremum of the support of f(x, θ).
Hence, the upper membership function (UMF) of X̃ is:

UMF(X̃) = UMF(µX̃(x)) = µX̃(x) = {vend(x) | x ∈ X} (5.2.4)

Definitions 5.2.1 and 5.2.2 can also be applied to every single
subinterval µi

X̃
(x) comprising a gfIT2FS. Hence, we will distin-

guish between the LMF/UMF of a gfIT2FS µX̃(x) and the LM-
F/UMF of a subinterval µi

X̃
(x) within a gfIT2FS, which will be

denoted as LMF
(
µi
X̃
(x)
)

= µi
X̃
(x) and UMF

(
µi
X̃
(x)
)

= µi
X̃
(x),



120 towards a fls based on general forms of interval type-2 fuzzy sets

respectively, with i = 1, ...,NX̃. Once the LMF and UMF for subin-
tervals have been defined, Equation 5.2.2 could be rewritten as
follows:

µX̃(x) =

NX̃⋃
i=1

µi
X̃
(x) =

NX̃⋃
i=1

[
µi
X̃
(x),µi

X̃
(x)
]

(5.2.5)

It is worthwhile to highlight that for the sake of simplicity, we
will drop (x) from the notation of µi

X̃
(x) and µi

X̃
(x) and they will

be written as µi
X̃

and µi
X̃

.

5.3 NUMBER OF SUBINTERVALS PRESENT IN THE JOIN AND

MEET RESULTS FROM TWO GFIT2FSS

The join and meet operations on the gfIT2FSs were extensively
discussed in Chapter 4; firstly, these operations were introduced
for GT2FSs having arbitrary secondary grades (Section 4.3) ob-
taining the results given by Equations (4.3.1) and (4.3.25); later,
in Section 4.4, specific versions of those equations were found
when the involved sets were all kinds of gfIT2FSs, from A to E,
as described in Section 4.5.3. These Equations, (4.4.7) and (4.4.14),
describe the join and meet operations on the gfIT2FSs, which will
be useful when defining the inference engine of the gfIT2FLSs.
As this topic was extensively discussed in Chapter 4, it will not
be repeated here. For further information, please refer to that
Chapter.

Nonetheless, in this section two new theorems new results are
introduced by two new theorems, regarding the number of subin-
tervals the join and meet operation result will have.

5.3.1 Number of subintervals in the final meet result

Theorem 5.3.1. Let X̃1, X̃2 be two IT2FSs, defined in a universe of
discourse X, and characterised by their respective membership functions
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µX̃1(x) and µX̃2(x), with x ∈ X. Let µX̃1(x) and µX̃2(x) be represented
by the union of their respective finite number of subintervals, i.e.:

µX̃1(x) =

NX̃1⋃
i=1

[
li
X̃1

, ri
X̃1

]
=

NX̃1⋃
i=1

[
µi
X̃1

,µi
X̃1

]

µX̃2(x) =

NX̃2⋃
j=1

[
l
j

X̃2
, rj
X̃2

]
=

NX̃2⋃
j=1

[
µ
j

X̃2
,µj
X̃2

] (5.3.1)

Then, at a given x ∈ X, the meet operation µX̃1(x) u µX̃2(x) on the
two vertical slices µX̃1(x) and µX̃2(x) will be a T1FS comprised by a
finite number of closed, connected and disjointed intervals between 1
and NX̃1 +NX̃2 − 1.

Proof. Before starting the proof, it is worthwhile to highlight that
both quantities NX̃1 and NX̃2 are really dependent with x, it is,
NX̃1 = NX̃1(x) and NX̃2 = NX̃2(x), as every single vertical slice
within X̃1 and X̃2 may have different number of subintervals.
However, for the sake of simplicity, we will dropthe dependecy
with x of these quantities during the proof.

Let us represent both µX̃1(x) and µX̃2(x) as in Equation (5.3.1).
It is important to note that the quantities referred to as v1, vend,

w1 and wend correspond to l1
X̃1

, r
NX̃1
X̃1

, l1
X̃2

and r
NX̃2
X̃2

, respec-
tively. By the definition of subinterval (i.e., each of the closed,
connected and disjointed intervals within a gfIT2FS), at a given
x ∈ X, the following is trivial:

µi1
X̃1

(x)∩ µi2
X̃1

(x) = ∅ ∀i1, i2 = 1, ...,NX̃1 i1 6= i2

µ
j1
X̃2

(x)∩ µj2
X̃2

(x) = ∅ ∀j1, j2 = 1, ...,NX̃2 j1 6= j2
(5.3.2)

Let us also remember the equation for the meet operation on
two gfIT2FSs, which is as in Equation (4.4.14) and is repeated
here for the convenience of the reader:

µF̃1∩F̃2(x, θ) =

{
f1(θ)∨ f2(θ) ∀θ ∈ [min(v1,w1), min(vend,wend)]

0 elsewhere

(5.3.3)

Where v1 and vend are the infimum and supremum of the sup-
port of f1, and w1 and wend are the infimum and the supremum
of the support of f2, as introduced in Section 4.4).

By definition of v1 and w1, the lower bound min (v1,w1) 6 θ

does not truncate the term f1(θ)∨ f2(θ) as f1(θ) and f2(θ) are
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equal to 0 ∀θ < min (v1,w1). Hence, we can rewrite Equation
(5.3.3) as Equation (5.3.4):

µF̃1∩F̃2(x, θ) =

 f1(θ)∨ f2(θ) ∀θ 6 min(vend,wend)

0 elsewhere

(5.3.4)

Part 1: let us assume that all the subintervals from µX̃1(x) and
µX̃2(x) are disjointed except the last one from each of them, it is:

µi
X̃1

(x)∩ µj
X̃2

(x) = ∅ ∀i = 1, ...,NX̃1
∀j = 1, ...,NX̃2

(5.3.5)

Considering that vend ∈ µ
NX̃1
X̃1

(x) and wend ∈ µ
NX̃2
X̃2

(x), then
we can assure that µX̃1(x) u µX̃2(x) will have, at least, NX̃1 +
NX̃2 − 2 subintervals (it is, all subintervals except the last one
from each vertical slice). Now let us see what happens depend-

ing on the relative position of µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x).

Part 1.1: µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x) do not overlap (I).
In this case, as in Figure 5.3.1, vend < wend → min (vend,wend) =

vend, hence, the term θ 6 min (vend,wend) in Equation (5.3.4)

truncates µ
NX̃2
X̃2

(x) completely, and just µ
NX̃1
X̃1

(x) remains in the
resulting µX̃1(x)u µX̃2(x). That situation leads to NX̃1 +NX̃2 − 1
subintervals in µX̃1(x)u µX̃2(x).
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Figure 5.3.1
Final subintervals do not overlap (I).

Part 1.2: µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x) do not overlap (II).
This situation (depicted in Figure 5.3.2) is completely analo-

gous to the one described in Part 1.1, but interchanging the order
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of µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x). Now,wend < vend → min (vend,wend) =
Wend, hence, the term θ 6 min (vend,wend) in Equation (5.3.4)

truncates µ
NX̃1
X̃1

(x), and just µ
NX̃2
X̃2

(x) remains in µX̃1(x) u µX̃2(x),
thus leading to NX̃1 +NX̃2 − 1 subintervals.
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Figure 5.3.2
Final subintervals do not overlap (II).

Part 1.3: µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x) do overlap (I).
In this case, illustrated in Figure 5.3.3, the term θ 6 min (vend,wend) =

vend just truncates the section
(
r
NX̃1
X̃1

, r
NX̃2
X̃2

]
= (vend,wend]. The

result is one single interval that will remain in µX̃1(x) u µX̃2(x),
again leading to NX̃1 +NX̃2 − 1 subintervals.
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Figure 5.3.3
Final subintervals do overlap (I).

Part 1.4: µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x) do overlap (II).
Analogous to Part 1.3 (as in Figure 5.3.4), now the term θ 6

min (vend,wend) = wend just truncates the section
(
r
NX̃2
X̃2

, r
NX̃1
X̃1

]
=

(wend, vend]. The result is again one single interval, and thus
µX̃1(x)u µX̃2(x) will have NX̃1 +NX̃2 − 1 subintervals.
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Figure 5.3.4
Final subintervals do overlap (II).

Part 1.5: µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x) are contained one within the
other.

As it can be seen from Figures 5.3.5 and 5.3.6, no matter if

µ
NX̃2
X̃2

(x) ⊆ µ
NX̃1
X̃1

(x) or µ
NX̃1
X̃1

(x) ⊆ µ
NX̃2
X̃2

(x), the result is one inter-
val and µX̃1(x)u µX̃2(x) will have NX̃1 +NX̃2 − 1 subintervals.
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Figure 5.3.5
Subintervals are contained one within another (I).

Hence, to summarise, Part 1 proves that µX̃1(x) u µX̃2(x) can
have, at most, NX̃1 +NX̃2 − 1.

Part 2: now let us assume a slightly different version of Equa-
tion (5.3.5), as in Equation (5.3.6):

µi
X̃1

(x)∩ µj
X̃2

(x) = ∅ ∀i = 1, ...,NX̃1 ∀i 6= i1
∀j = 1, ...,NX̃2 ∀j 6= j1

(5.3.6)

It is, there is a given i1 and a given j1 for which µi1
X̃1

(x) ∩
µ
j1
X̃2

(x) 6= ∅. Hence, repeating the reasoning presented in Part 1

but considering Equation (5.3.6) instead of (5.3.5) would lead us
to µX̃1(x)u µX̃2(x) having NX̃1 +NX̃2 − 2 subintervals.
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Figure 5.3.6
Subintervals are contained one within another (II).

Part 3: the reasoning presented in Part 2 can be generalised,
and it is easy to think of any distribution of µi

X̃1
(x) and µj

X̃2
(x),

some of them overlapping and some other not, that would lead
to a µX̃1(x)uµX̃2(x) having any number of subintervals between
1 and NX̃1 +NX̃2 − 1.

5.3.2 Number of subintervals in the final join result

Theorem 5.3.2. Let X̃1, X̃2 be two IT2FSs, defined in a universe of
discourse X, and characterised by their respective membership func-
tions µX̃1(x) and µX̃2(x), with x ∈ X. Let µX̃1(x) and µX̃2(x) be
represented by the union of their respective finite number of subinter-
vals, as in Equation (5.3.1). Then, at a given x ∈ X, the join operation
µX̃1(x)tµX̃2(x) on the two vertical slices µX̃1(x) and µX̃2(x) will be a
T1FS comprised by a finite number of closed, connected and disjointed
intervals between 1 and NX̃1 +NX̃2 − 1.

Proof. The proof ot Theorem 5.3.2 is completely analogous to that
of Theorem 5.3.1, but in this case the term truncating f1(θ) ∨
f2(θ) is θ > max (v1,w1), instead of θ 6 min (vend,wend), and
the involved subintervals in the reasoning presented in Parts 1

to 3 are µ1
X̃1

(x) and µ1
X̃2

(x) instead of µ
NX̃1
X̃1

(x) and µ
NX̃2
X̃2

(x), re-
spectively.
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5.4 STRUCTURE OF THE GFIT2FLSS

In this section we will review the structure of a gfIT2FLS, which
is depicted in Figure 5.4.1

Figure 5.4.1
Structure of an gfIT2FLS.

5.4.1 The fuzzifier: singleton and non-singleton gfIT2FLSs

The fuzzifier block maps each component within the input vector
~x = (x1, ..., xp) into a gfIT2FS, which will be the input fuzzy sets
for the inference engine, denoted as µX̃i(xi), i = 1, ...,p.

5.4.1.1 Shapes of the input FSs for singleton and non-
singleton fuzzification

When using singleton fuzzification, each input xi is mapped into
a fuzzy singleton, i.e., a fuzzy set having a single point of non-
zero membership, placed at xi; both the primary and the sec-
ondary memberships are equal to unity. An example of this kind
of sets is depicted in Figure 5.4.2(a). On the other hand, when
using non-singleton fuzzification, each input xi will be mapped
into a gfIT2FS; an example is plotted in Figure 5.4.2(b). It is im-
portant to highlight that the secondary grade/third dimension of
Figure 5.4.2(b) has not been plotted in order to make the gfIT2FS
easier to visualise.

5.4.1.2 Modelling inputs as gfIT2FSs

In this subsection we introduce a general method to fuzzify crisp
input values into gfIT2FSs. We assume we have a given input, say
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Figure 5.4.2
Examples of input fuzzy sets for: (a) Singleton fuzzification. (b) Non-singleton
fuzzification.

Xi, which is measured in the presence of several sources of un-
certainty, say Sj, providing an input value of xi. This modelling
has to be done ahead of time and will lead to a multi-interval
IT2FS, which could be summarised as:

1. For a given source of uncertainty, Sj, j = 1, ..., J, which will
provide some input uncertainty σSj , force the input variable
to have a certain value, say Xi, i = 1, ...,V , where V is the
number of real values selected for the input variable. Per-
form M measurements for Xi to have Xmi , m = 1, ...,M, in
the presence of noise σSj .

2. Obtain the histogram H1 of the M measured values Xmi for
the real input value Xi.

3. Normalise the previous histogram to its maximum value,
in order to scale it within the range [0, 1], obtaining the nor-
malised histogram HN1.

4. Repeat steps 1-3 K times, in order to obtain K different nor-
malised histograms HNk, k = 1, ...,K, for the real input
value Xi and uncertainty source Sj.

5. For each measured value within the histogram xi, assign
the minimum of the histograms at that xi as the lower mem-
bership value, and the maximum of the histograms as the
upper membership value. This will lead to an IVFS repre-
senting uncertainty from source Sj.

6. Repeat steps 1-5 for every source of uncertainty considered.
This will lead to a total of J IVFSs available.
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7. Create a multi-interval IT2FS by overlapping the J IVFSs
obtained; the resulting set will be a gfIT2FS representing
uncertainty from all sources considered.

This process (summarised as a diagram in Figure 5.4.3) has to
be done for each possible real input value Xi, which can actually
require a huge amount of work. This drawback can be solved
by doing the modelling just for a finite number of input values,
say X1,X2,X3, etc. Hence, the gfIT2FS corresponding to a value
verifying Xi < X − Xi+1 can be obtained by interpolating the
closest sets from both left and right, i.e., interpolating Xi and
Xi+1. A detailed example about how to apply this method is
presented in Section 5.5.

Figure 5.4.3
Diagram of the method to model input noise from different sources as gfIT2FSs.

5.4.2 The rule base

As in the T1 and GT2 versions, the rule base of a multiple-input
single-output (MISO) gfIT2FLS is comprised by a set of M IF-
THEN rules, where the l-th rule, l = 1, ...,M, is denoted as Rl

and is as follows:

Rl : IF x1 is F̃
l
1 AND x2 is F̃

l
2 AND ... AND xp is F̃lp THEN yis Ỹ

l

(5.4.1)
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Where xis are the inputs to the system, F̃li is the antecedent of
the i-th input (i = 1, ...,p) of the l-th rule (l = 1, ...,M), y is the
output of the system and Ỹl is the consequent set for that rule.
As we are considering gfIT2FLSs, all the fuzzy sets involved in
each rule (both antecedents and consequents) are assumed to be
gfIT2FSs.

5.4.3 The inference engine

Once the inputs have been fuzzified, the fuzzifier block provides
the input gfIT2FSs to the inference engine, which is described by
a fuzzy rule-base. The inference engine, which is comprised ofM
IF-THEN rules, is activated and each fired rule provides an out-
put fuzzy set, resulting from combining all the antecedents in the
rule for the given inputs with their corresponding consequent
fuzzy sets. The output fuzzy set for that rule B̃l, l = 1, ...,M,
which is characterised by its membership function muB̃l(y), is
given by [78]:

µB̃l(y) =

 pl

i=1

 ⊔
xi∈Xi

µX̃i(xi)u µF̃li(xi)

u µỸl(y) (5.4.2)

Where X̃i is the gfIT2FS associated with the input xi, F̃li is the
antecedent of the i-th input of the l-th rule and Ỹl is the conse-
quent set. Equation (5.4.2) is valid in the general non-singleton
input fuzzification for GT2FLSs; when using the simpler single-
ton fuzzification, the input fuzzy X̃i is a singleton type-2 fuzzy
set, the term µX̃i(xi) u µF̃li(xi) reduces to µF̃li(xi), and Equation
(5.4.2) is significantly simplified and becomes Equation (5.4.3):

µB̃l(y) =

[
pl

i=1

µF̃li
(xi)

]
u µỸl(y) (5.4.3)

The term

[
pd

i=1

( ⊔
xi∈Xi

µX̃i(xi)u µF̃li(xi)

)]
in Equation (5.4.2)

and
[
pd

i=1

µF̃li
(xi)

]
in Equation (5.4.3) are called the rule firing

strength, a term which is usually denoted as Fl(~x):

Fl(~x) =

 pl

i=1

 ⊔
xi∈Xi

µX̃i(xi)u µF̃li(xi)

 (5.4.4)



130 towards a fls based on general forms of interval type-2 fuzzy sets

Fl(~x) =

[
pl

i=1

µF̃li
(xi)

]
(5.4.5)

When the IT2FSs involved have just one interval (which have
been previously called IT2FSs, but are referred as IVFSs in this
Chapter), Mendel provides a graphical interpretation to obtain
the firing strength [78]. According to Equation (5.4.2), when deal-
ing with IVFSs, after meeting the fuzzy input µX̃i(xi) with its cor-
responding antecedent µF̃li(xi), we will obtain an interval, which
we will denote as Ãli =

[
ali,a

l
i

]
. The extremes of this interval can

be obtained from the graphical intersection of the plotted sets as
depicted in Figure 5.4.4:

Figure 5.4.4
Graphical interpretation of the antecedent activation when using IV non-
singleton IVFLSs.

The lower firing strength extreme is the supremum of the inter-
section of the LMFs, whereas the upper firing strength extreme
is the supremum of the intersection of the UMFs.

Using both Definition 5.2.1 and 5.2.2 in Section 5.2, we can
reinterpret the antecedent activation when the involved sets are
gfIT2FSs. An example is provided in Figure 5.4.5. The result of
this operation, also described in Equation (5.4.4), will be a T1FS
comprised of one or more closed and connected intervals. Simi-
lar to the interpretation of Figure 5.4.4, the infimum v1 and the
supremum vend of the support of the resulting set will be the
supremum of the intersection of the LMF and UMF of both
µX̃i(xi) and µF̃li

(xi), respectively; however, some gaps are ex-
pected to appear between these two values as the delimited re-
gion is not continuous. Hence, all the present intervals between
v1 and vend will arise from the several intersections occurring in
Figure 5.4.5 from the UMF and LMF of each of the subintervals
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comprising µX̃i(xi) and µF̃li(xi), i.e., from all the intersections of

µ
q

X̃i
(xi), µ

q

X̃i
(xi), µ

j

F̃li
(xi) and µj

F̃li
(xi), which are highlighted with

red markers in Figure 5.4.5. Figure 5.4.6 is the same as Figure
5.4.5 but zooming in the intersection region.

Figure 5.4.5
Graphical interpretation of the antecedent activation for gfIT2FLSs.

Figure 5.4.6
Region with the intersections of each of the involved subintervals that will com-
prise the antecedent activation degree.

From Figure 5.4.6 it can be easily deduced that the antecedent
activation degree for this example, which we will denote as µÃ(x),
will be as:

µÃ(x) =

NX̃i⋃
q=1

N
F̃l
i⋃

j=1

tx∈X
([
µ
q

X̃i
(x),µq

X̃i
(x)
]
u
[
µ
j

F̃li
(x),µj

F̃li
(x)
])

=

=

NÃ⋃
i=1

[
µi
Ã
(x),µi

Ã
(x)
]
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(5.4.6)

It is, for every combination of subintervals
[
µ
q

X̃i
(x),µq

X̃i
(x)
]

and
[
µ
j

F̃li
(x),µj

F̃li
(x)
]
, q = 1, ...,NX̃i and j = 1, ...,NF̃li , an interval

will be obtained, whose left-most point will be the supremum
of the minimum of the LMFs of those subintervals, and whose
right-most point will be the supremum of the UMFs of those
subintervals. The final set will be the union of all the intervals
obtained for q = 1, ...,NX̃i and j = 1, ...,NF̃li .

Equation (5.4.6) can be generalised to any antecedent belong-
ing to a general rule, as those specified in Equation (5.4.1). Hence,
for a given non-singleton input µX̃k(xk) will be as in Equation
(5.4.7):

µÃl
k
(xk) =

NX̃k⋃
i=1

N
F̃l
k⋃

j=1

txk∈Xk

([
µi
X̃k

(xk),µiX̃k
(xk)

]
u
[
µ
j

F̃lk
(xk),µ

j

F̃lk
(xk)

])
=

=

N
Ãl

k⋃
i=1

[
µi
Ãl

k

(xk),µiÃl
k

(xk)
]

(5.4.7)

Back to the example depicted in Figure 5.4.6, the subintervals
arising from the intersection between µi

X̃k
(xk) and µj

F̃lk
(xk), i =

1, ...,NX̃k , j = 1, ...,NF̃lk , will be denoted as:

I
ij

Ã
= txk∈Xk

([
µi
X̃k

(xk),µiX̃k(xk)
]
u
[
µ
j

F̃lk
(xk),µ

j

F̃lk
(xk)

])
=
[
l
ij

Ã
, rij
Ã

]
(5.4.8)

Hence, from Figure 5.4.6 it can be easily deduced that NX̃k =
NF̃lk

= 2 ∀xk ∈ Xk, and Equation (5.4.6) can be written for that
specific example as follows:

µÃ(xk) =

2⋃
i=1

2⋃
j=1

txk∈Xk

([
µi
X̃k

(xk),µiX̃k
(xk)

]
u
[
µ
j

F̃lk
(xk),µ

j

F̃lk
(xk)

])
=

=

2⋃
i=1

2⋃
j=1

I
ij

Ã

(5.4.9)

Those four intersections have been highlighted with red dots
in Figure 5.4.6, and each Iij

Ã
is properly indicated within the same

figure.
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Let us explain these computations via a worked example. Set
X̃1 is described by the UMF and LMF of each subinterval com-
prising it, and are gathered in Equation (5.4.10), whereas set F̃l1
is described analogously in Equation (5.4.11). For simplicity, we
write x instead of x1 in the subsequent equations.

µX̃1(x) =

2⋃
i=1

[
µi
X̃1

,µi
X̃1

]
µ1
X̃1

(x) = exp
(
−
(x− 2)2

2 · 0.5

)
; µ1

X̃1
(x) = exp

(
−
(x− 2)2

2 · 0.65

)
µ2
X̃1

(x) = exp
(
−
(x− 2)2

2 · 1.35

)
; µ2

X̃1
(x) = exp

(
−
(x− 2)2

2 · 1.6

)
(5.4.10)

µF̃l1
(x) =

2⋃
j=1

[
µ
j

F̃l1
,µj
F̃l1

]
µ1
F̃l1
(x) = exp

(
−
(x− 5)2

2 · 0.5

)
; µ1

F̃l1
(x) = exp

(
−
(x− 5)2

2 · 0.9

)
µ2
F̃l1
(x) = exp

(
−
(x− 5)2

2 · 1.4

)
; µ2

F̃l1
(x) = exp

(
−
(x− 5)2

2 · 1.9

)
(5.4.11)

Hence, the intersection intervals will be:

I11
Ã

= tx∈X
([
µ1
X̃1

(x),µ1
X̃1

(x)
]
u
[
µ1
F̃l1

(x),µ1
F̃l1

(x)
])

= [0.1054, 0.2320]

I12
Ã

= tx∈X
([
µ1
X̃1

(x),µ1
X̃1

(x)
]
u
[
µ2
F̃l1

(x),µ2
F̃l1

(x)
])

= [0.2838, 0.3895]

I21
Ã

= tx∈X
([
µ2
X̃1

(x),µ2
X̃1

(x)
]
u
[
µ1
F̃l1

(x),µ1
F̃l1

(x)
])

= [0.2758, 0.3992]

I22
Ã

= tx∈X
([
µ2
X̃1

(x),µ2
X̃1

(x)
]
u
[
µ2
F̃l1

(x),µ2
F̃l1

(x)
])

= [0.4412, 0.5252]

(5.4.12)

These are the Y-coordinate values of the points marked in red
in Figure 5.4.6. Hence, the final result, according to Equation
(5.4.9), will be:

µÃ(x) =

2⋃
i=1

2⋃
j=1

I
ij

Ã
=

= [0.1054, 0.2320]∪ [0.2838, 0.3895]∪ [0.2758, 0.3992]∪ [0.4412, 0.5252]
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(5.4.13)

It is important to highlight that intervals I12
Ã

and I21
Ã

do over-
lap, as [0.2838, 0.3895] ∪ [0.2758, 0.3992] = [0.2758, 0.3992]; hence,
the final result will be:

µÃ(x) = [0.1054, 0.2320]∪ [0.2758, 0.3992]∪ [0.4412, 0.5252] =

=

NÃ⋃
i=1

[
µi
Ã
(x),µi

Ã
(x)
]

(5.4.14)

Finally, we plot the antecedent activation degree described in
Equation (5.4.14) in Figure 5.4.7.

Figure 5.4.7
Antecedent activation degree for the example in Figure 5.4.6 as described in
Equation (5.4.14).

As stated in Equation (5.4.4), for a given rule l, each antecedent
activation has to be obtained, each of them leading to a T1FS
comprised of several closed, connected and disjointed intervals,
similar to the one depicted in Figure 5.4.7. To obtain the firing
strength for that rule, the meet operation between these antece-
dents activation degrees has to be performed according to Equa-
tion (5.4.4).

Fl(~x) =

[
pl

i=1

(
txi∈XiµX̃i(xi)u µF̃li(xi)

)]
=

pl

i=1

[
µÃli

(xi)
]

(5.4.15)

Hence, the final rule firing strength Fl(~x) will be a T1FS, ac-
cording to Theorem 5.3.1. The number of disjointed intervals
within Fl(~x) will depend on the number of inputs of the sys-
tem, the number of disjointed intervals each antecedent has and
whether these intervals overlap.
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5.4.4 Type reduction

In this dissertation a new type-reduction procedure is proposed,
named modified centre-of-sets type reducer, which can be applied to
any gfIT2FLS.

5.4.4.1 Preliminaries: approximating fuzzy quantities

Defuzzification is a procedure used to choose a crisp number
as representative of the whole fuzzy set, and is provided as an
output of the FLS. However, it could be argued that this process
causes a significant loss of information. Hence, some authors de-
fend that some less radical solutions should be adopted and have
proposed other approaches, such as interval, triangular or trape-
zoidal approximations. This topic has attracted significant atten-
tion from many researchers [6], [36], [64] relating fuzzy numbers
(which are normal and convex type-1 fuzzy sets). This approx-
imation is done by defining a distance between a given fuzzy
number and an interval, triangle or trapezoid, and then finding
the interval, triangle or trapezoid minimising that distance. In
[2], a similar procedure is proposed for not necessarily convex
and normal T1FSs (which are called "fuzzy quantities"), where
the authors proved that, for fuzzy quantities, each α-cut is a fi-
nite set of closed, connected and disjointed intervals with height
equal to α, and each set of intervals is approximated by another
interval minimising a given distance. Here, we will use the same
approximation of the union of disjointed intervals and apply it
to the type-reduction operation.

5.4.4.2 Approximating a union of disjointed intervals

LetN be a positive integer, and let A be the union ofN disjointed
intervals, each interval named Ai and characterised by its two
endpoints, Ai =

[
aiL,aiR

]
, such that aiL 6 aiR, i = 1, ...,N. It

is important to note that if aiL = aiR, that interval reduces to a
singleton. Hence, A could be expressed as:

A =

N⋃
i=1

Ai =

N⋃
i=1

[
aiL,aiR

]
(5.4.16)

In order to obtain the interval C = [cL, cR] that best approxi-
mates the set A, we first have to define a distance between two
closed intervals B = [bL,bR] and D = [dL,dR]. If we denote
mid(b) = (bL + bR)/2 the midpoint of an interval, and spr(B) =
(bR − bL) its spread, then the distance between two intervals B
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and C (introduced in [94]) could be defined as follows according
to [94]:

dθ (B,D) =

√
(mid(B) −mid(D))2 + θ (spr(B) − spr(D))2

(5.4.17)

Where θ ∈ (0, 1] is a parameter to weigh the relative impor-
tance of the spreads against the midpoints. Now let us consider a
set of N weights p = {pi}i=1,...,N, such that pi > 0 and

∑N
i=1 pi =

1, which allow us to weigh the different intervals comprising
the set A. Hence, given the distance between two intervals as in
Equation (5.4.17), the set of weights p and the parameter θ, we
could define the distance function between a given set of intervals
A and a given closed interval C as [2]:

J
(
C;A,p, θ

)
=

N∑
i=1

d2
θ
(C,Ai)pi (5.4.18)

Thus, the interval C∗ =
[
c∗L, c∗R

]
that best approximates the

union of a set of disjointed intervals A is defined as the one that
minimises the function in Equation (5.4.18). In the same work [2],
it is proven that the interval C∗ is given by:

C∗(A) = [c∗L, c∗R] =

[
N∑
i=1

aiLpi,
N∑
i=1

aiRpi

]
(5.4.19)

It is important to note that the result given in Equation (5.4.19)
is independent of the parameter θ. In this work we will consider
all the weights pi to be equals; hence, pi = 1/N and Equation
(5.4.19) becomes Equation (5.4.20).

C∗(A) = [c∗L, c∗R] =

[
1

N

N∑
i=1

aiL,
1

N

N∑
i=1

aiR

]
(5.4.20)

This closed interval C∗ is the one that best approximates the
set A, which is the union of a finite number N of closed, con-
nected and disjointed intervals.

5.4.4.3 Approximating a gfIT2FS by an IVFS

Once a method to approximate the union of a finite number of
closed, connected and disjointed intervals is defined, we propose
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a new type-reduction method based on it. It is important to note
that all different kinds of gfIT2FSs presented in [89] and Sec-
tion 4.5 can be considered as a particular case of D or E, which
are the most general: a combination of intervals and singletons
(which can, in fact, be considered intervals with the same ex-
treme points). Hence, we will assume that our FLS has gfIT2FSs
as consequents, and T1FSs comprised of several subintervals (as
shown in Equation (5.4.7)) as the rule firing strengths. Thus, the
proposed type-reduction is as follows:

1. For each consequent set Ỹl, which is a gfIT2FS, perform
the approximation described in Section 5.4.4.2 for every sin-
gle vertical slice. This operation will transform the gfIT2FS
into an IVFS where every crisp value y will have an inter-
val approximating the primary membership value. We will
denote the resulting set as Ỹlapprox.

2. Once we have Ỹlapprox, we can apply the well-known KM
algorithm [48] to obtain the centroid of Ỹlapprox, which we

will denote as C
(
Ỹlapprox

)
=
[
yL
Ỹl

,yR
Ỹl

]
.

3. For each rule firing strength F̃l, obtain the interval that best
approximates it, which we will denote CF̃l =

[
cL
F̃l

, cR
F̃l

]
.

4. Once we have an interval per rule firing strength and per
rule consequent, the centre-of-sets type-reduction for IVFLSs
[48] is applied.

The result will be an interval T1FS, which we will denote by
Y = [yL,yR]. This output from the type-reduction block will be
the input of the defuzzification block.

5.4.5 Defuzzification

As in other works dealing with IVFLSs [58], [78], [74], the out-
put of the type-reduction block is a T1FS comprised of a single
interval; thus, the most used defuzzification method consists in
taking the midpoint of the interval as the output of the system:

y =
yL + yR
2

(5.4.21)
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5.5 EXPERIMENTAL ANALYSIS AND WORKED EXAMPLES FOR

THE OPERATION OF THE GFIT2FLSS

In this Section, we will present two different methods that can
be applied in real world applications to obtain gfIT2FSs. As an
example, across this section we will consider the following illus-
trative scenario: a mobile robot controlled by a FLS. The inputs
will be the distances measured by two sonar sensors: one placed
at the front, the other at the rear; the outputs will be the speed to
be applied to both wheels, so the robot can navigate and avoid
obstacles. This speed is specified to the robot as an integer num-
ber between 0 and 400. The first method will be used to model
sensor input noise coming from different sources, and the result-
ing sets can be used as non-singleton inputs; the second method
will be used to obtain gfIT2FSs from the survey method, using
knowledge from different expert, to model both antecedents and
consequents of the FLS.

5.5.1 Modelling sensor input noise from different sources:
non-singleton fuzzification

The main difference between the singleton and non-singleton
fuzzification is the process of obtaining a fuzzy set from an in-
put value (which is usually a single number) in order to rep-
resent the uncertainty associated with it. When using linguistic
labels, the uncertainty is associated with imprecision of human
language and perception while when using numerical values or
signals, the uncertainty is usually related to input noise or input
uncertainties coming from sensors. In this work, we will asso-
ciate each input value with a multi-interval gfIT2FS, which will
be modelled from data gathered from the sensors.

The proposed method is similar to the one presented in [86],
but in our case we will be eliminating some of the restrictions
imposed in that work, and the resulting set will not be an IVFS,
but a multi-interval gfIT2FS. This method will consist of gath-
ering the data provided by the sonar sensor under different un-
certainty sources. For each of these conditions we will obtain an
IVFS; hence, when overlapping all IVFSs, we will obtain a multi-
interval gfIT2FS, which will represent the input when a certain
combination of conditions is present during the sensor measure-
ment process. We will apply the algorithm presented in Section
5.4.1 to obtain such sets, which could be used as non-singleton
inputs to a gfIT2FLS.
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Three different conditions will be considered in our example
to separately generate uncertainty in the sonar sensor measure-
ment. These conditions will be heat (provided by a hand held
electric heat gun), wind (provided by two fans) and sound noise
(generated from a hoover being moved around the sensor).

The sonar sensor assumes the speed of sound to be a constant;
however, it is well known that temperature is a variable affecting
the speed of sound; more precisely, a widely used approximation
to express that dependency is represented in Equation (5.5.1):

v = 20.05 ·
√
T +

e

p
(5.5.1)

Where v is the speed of sound, T is the absolute temperature
in Kelvin, e is the partial pressure of water vapour, and p is the
barometric pressure [86].

Secondly, wind is another factor affecting the propagation of
the sonar ping signal, changing the physical media the sound
wave uses to propagate which produce a refraction phenomenon
and thus changes the direction of the sound wave. This prevents
the sonar signal from following a completely straight trajectory,
thus measuring a different distance value or even not receiving
a ping signal back [86].

Last but not least, sonic noise is also to be considered as a
source of disturbance for the sonar sensor. Relatively high fre-
quency sound noise sources are more probable to create ultra-
sonic waves, which may in fact interfere with the ones emitted
by the sonar sensor and affect the obtained measurement [55].

In the following section we will explain how data was col-
lected to model such uncertainty and how gfIT2FSs can be in-
ferred from these data to model faced uncertainties.

5.5.1.1 Experimental setup

The experimental setup to model multi-interval gfIT2FSs is as
follows: a mobile robot having one front sonar sensor is used
to measure the distance to an obstacle; such obstacle will con-
sist of two joint wooden boxes offering a flat surface. The sonar
sensor measures the distance in millimetres, thus providing an
unsigned integer from 50 mm to 5000 mm (5 metres).

To precisely obtain the positions of both the sonar sensor and
the obstacle, and hence the real distance between them, the VI-
CON Tracking System (VTS) will be used. This system consists of
a set of eight high-resolution cameras which are able to locate a
set of markers (small reflective spheres) fixed all around both the
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robot and the obstacle. By detecting those markers, the VTS can
create a 3D model of the robot and the obstacle, and measure
distances between them with millimetre accuracy. An example
of these 3D models created using several markers is depicted in
Figure 5.5.1.

Figure 5.5.1
A screenshot of the VICON Tracking System, showing the 3D models for
the robot and the obstacle. The 3D model to the left represents the obstacle,
whereas the one to the right represents the robot.

The robot and the sonar sensor are then roughly placed at a
given set of distances: using measuring tape, they are placed at
the following approximated distances: 500 mm, 1000 mm, 1500
mm, 2000 mm, 2500 mm, 3000 mm, 3500 mm, 4000 mm and 4500
mm. For those distances, the VTS provided the following exact
distances from the sonar sensor to the obstacle: 504 mm, 1009
mm, 1511 mm, 2013 mm, 2514 mm, 3014 mm, 3517 mm, 4014
mm and 4516 mm, respectively.

For each of those distances, the three disturbances mentioned
in the previous subsection are introduced separately: the heat is
provided by a heat gun properly attached to the robot (Figure
5.5.2(Left)); the wind was created by two fans along the path
of the sonar ping (Figure 5.5.2(Right)), whereas the noise was
created using a hoover and moving it around the robot.

For each distance value and each of the conditions mentioned above
to introduce noise and uncertainty, the algorithm introduced in Sec-
tion 5.4.1 was used to obtain each histogram from 10000 mea-
surements.

5.5.1.2 Results: obtained sets and interpolation

Figure 5.5.3 shows an example of sets obtained for 2514mm. Let
us focus on the four sets depicted in Figure 5.5.3. Figures (a)-(c)
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Figure 5.5.2
(Left) A heat gun attached to the robot to provide heat through the ping signal
path. (Right) Two fans create wind which will affect the sonar measurements.

are the classic representation of an IVFS; however, the set repre-
sented in Figure (d) can be trickier as it shows a gfIT2FS. It can
be seen that three different shades of grey (not fifty) have been
used, but this is only to emphasize that the set was created by
overlapping three different IVFSs. The three overlapped FOUs
combined create one gfIT2FS; more precisely, one belonging to
Case D as explained in Section 4.5.3 and in [89]. That means
that, for every value within the domain (0-5000 mm, in our case),
every primary membership is a multi-interval set; i.e., their sec-
ondary grades are T1FSs consisting of one or several subintervals
in [0, 1] (remember a singleton can be represented as an interval
having the same left and right end points).

Figure 5.5.3
Example of a multi-interval gfIT2FS by overlapping three IVFSs. (a) IVFS ob-
tained from heat. (b) IVFS obtained from wind. (c) IVFS obtained from noise. (d)
Multi-Interval gfIT2FS modelling all uncertainties.
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As an example, we will plot several secondary grades from the
set depicted in Figure 5.5.3(d). As it can be seen in that figure, the
values below 2510 mm (as shown for the case of measurement of
at 2505 mm, which is plotted in Figure 5.5.4(a)) just have one sin-
gle interval as primary membership, as in that domain’s region
only the uncertainty related to temperature is present; hence, its
secondary grade will be a single interval. The second example
will be some value in the domain between 2520 and 2525 mm
(as shown for the measurement of 2524 mm depicted in Figure
5.5.4(b)); the vertical slices placed at these points have the uncer-
tainty related to the three sources (heat, wind and noise) in such
a way that the sets do not overlap; thus, the vertical slice will be
comprised of three different disjointed intervals. A third case is
shown for measurements between 2515 and 2520 as shown for
the measurement of 2518 mm depicted in Figure 5.5.4(c)); for
those points, all three IVFSs modelling the three uncertainties
perfectly overlap, having no gaps between them, thus creating
again one single interval as its secondary grade.

Figure 5.5.4
Several examples of vertical slices within the set in Figure 5.5.3(d) for: (a) 2505
mm. (b) 2524 mm. (c) 2518mm.

Figure 5.5.5
Multi-interval IT2FS obtained for 4014 mm. Observe how all sets in (a), (b) and
(c) naturally merge in (d), forming almost an IVFS.
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However, overlapping can happen not only for a given set of
values, but also along all the fuzzy set. This fact is more pro-
nounced in the set obtained for 4014 mm, which is depicted in
Figure 5.5.5. It can be seen from Figure 5.5.5(d) that nearly every
value in the X-domain has a secondary membership of a sin-
gle interval as the three IVFSs overlap almost perfectly. This fact
shows the flexibility of the proposed non-singleton fuzzification
method: even when a multi-interval scheme is supposed to be
obtained, a classic IVFS can be obtained if the uncertainty to be
modelled requires it.

To properly model the sensor behaviour within all its possible
measuring range, it would be required to perform the algorithm
described in the previous section for every single possible value
the sensor can measure. However, this would require an enor-
mous amount of work, and besides, most of the sets would be
somehow redundant, as it is reasonable to expect the sensor wo-
uld behave in a very similar way when measuring 3122 and 3123
mm. For this reason, it is reasonable to obtain measurements just
for distinct values (in our case: 504mm, 1009mm, 1511mm, 2013
mm, 2514 mm, 3014 mm, 3517 mm, 4014 mm and 4516 mm); the
multi-interval gfIT2FSs for the rest of values will be obtained by
interpolation using the two closest sets.

The equation to obtain an interpolated set for a given measure-
ment d, from the two closest measurements neighbours placed
at d1 (left) and d2 (right) (thus verifying d1 6 d 6 d2) is as
follows:

µd(i) =
d2 − d

d2 − d1
µd1 (i− (d− d1))+

d− d1
d2 − d1

µd2 (i+ (d2 − d))

(5.5.2)

Where µd(i) is the interpolated membership value at sample
i and µd1(i), µd2(i) are the membership functions of the left
and right neighbours at sample i, respectively. It is important to
note that µd1(i) and µd2(i) are multi-interval gfIT2FSs; µd1(i−
(d− d1)) is a version of µd1(i) shifted (d− d1) to the right; and
µd2(i+ (d2−d)) is a version of µd2(i) shifted (d2−d) to the left.
It is worthwhile mentioning that, when d = d1, Equation (5.5.2)
reduces to µd(i) = µd1(i), and when d = d2, then it reduces
to µd(i) = µd2(i). An example of such interpolation process is
depicted in Figure 5.5.6.
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Figure 5.5.6
An interpolation example to obtain the multi-interval IT2FS for 2750 mm from
2514 mm and 3014 mm.

5.5.2 Obtaining antecedents and consequents using the
survey method

In this section we present a method to infer gfIT2FSs from data,
to model both the antecedents and the consequents of the FLS
that could control the autonomous mobile robot. Table 5.5.1 shows
a simple rule base to control the robot obstacle avoidance be-
haviour.

Table 5.5.1
Rule base used to control the right wheel speed.

Front sonar
distance

Back sonar distance
CLOSE MEDIUM FAR

CLOSE Low Low Low

MEDIUM Low Fair High

FAR High High High

Mendel introduced in [69] the term type-2 fuzzistics to refer
to the process of collecting data from a group of subjects and
then mapping that data into an FOU. We will use fuzzistics to
obtain gfIT2FSs from a group of subjects. In [69], two different
approaches are described to perform the fuzzistics process: the
person MF approach, and the interval end-points approach. The for-
mer requires the surveyed people to know about fuzzy logic, as
each of them provides a FOU for the given word/set to be mod-
elled. We will follow a similar approach, where we have asked a
group of twelve Msc students (who studied fuzzy logic) to draw
a T1 MF for each of the previously stated labels. Figure 5.5.7 de-
picts all the sets proposed by the students for the labels in Table
5.5.1.

5.5.2.1 Example 1: obtain multi-singleton gfIT2FSs

The first option that naturally arises from the data collected is to
use them with almost no further processing. As it was explained
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Figure 5.5.7
All T1FSs obtained by survey for the labels close, medium and far for distance,
and low, fair and high for wheel speed.

in Section 4.5.3, a multi-singleton gfIT2FS is one of the specific
versions of gfIT2FSs where the membership functions involved
in the rule set described in Table 5.5.1 will look exactly like Fig-
ure 5.5.7.

5.5.2.2 Example 2: obtain IVFSs

This second proposal aims to obtain regular IVFSs antecedents
from a group of T1FSs. This process can be done just by aggre-
gating all the sets and define the UMF and LMF of the resulting
set as in Equation (5.5.3) [62]:

µ
LABEL

(x) = arg min
x∈X

{µiLABEL(x) | i = 1, ...,Nst}

µLABEL(x) = arg max
x∈X

{µiLABEL(x) | i = 1, ...,Nst}
(5.5.3)

Where Nst is the number of students surveyed. This results in
the MFs in Figure 5.5.8. This process consisting in inferring IVFSs
from data is better known as fuzzistics and has been previously
tackled in the literature, as in [62], [78], [76], [69] and [77].

5.5.2.3 Example 3: obtain multi-interval gfIT2FSs

In this section we will provide a brief example on how to obtain
a multi-interval gfIT2FS from T1 MFs, based on the notion of
uncertainty and its relation with the FOU; however, the example
presented here just has illustrative purposes. Formally defining
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Figure 5.5.8
Antecedent IVFSs inferred from T1 MFs.

a complete algorithm to obtain multi-interval gfIT2FSs from T1

MFs is out of the scope of this dissertation.
When introducing the concepts of type-2 fuzzy sets, some au-

thors [78] state that an IVFS can be obtained by blurring a T1 MF,
hence obtaining an FOU. Hence, it seems intuitive to think that
a greater FOU represents greater uncertainty associated to the
concept represented by the set, as the T1 MF has been blurred a
greater quantity.

When inferring an IVFS from several T1 MFs by taking their
maximum and their minimum as UMF and LMF, respectively (as
in the previous section and as represented in Figure 5.5.8), if the
T1 MFs are sparsely distributed across the domain, a great area
will be covered when obtaining the FOU’s boundaries, and a lot
of uncertainty will be unnecessarily and artificially introduced in
the set. A very good example of this situation can be seen com-
paring Figures 5.5.7(c) and 5.5.8(c). This drawback can be nat-
urally solved using multi-interval gfIT2FSs as MFs: the system
designer can detect and decide which T1 MFs are close enough
to be gathered in a subinterval, and which are separated enough
to introduce a gap in the primary membership. Moreover, if a T1

MF is isolated and has no other T1MFs around to be gathered
with, it can remain as a singleton in the inferred gfIT2FS. Exam-
ples of these situations are depicted in Figure 5.5.9, where (a), (b)
and (c) depict the T1 MFs obtained from the survey for the labels
CLOSE, FAR and HIGH; and (d), (e) and (f) show an example of
inferred gfIT2FSs, where gaps are present in the primary mem-
bership. It should be noted that the sets in Figure 5.5.9 (d) and
(f) are comprised by two subintervals, whereas the set in (e) has
one interval and one singleton.
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Figure 5.5.9
Sets of T1MFs for the labels CLOSE, FAR and HIGH, and their corresponding
inferred multi-interval IT2FSs.

5.5.3 A Numerical Example summarising the operation of
the gfIT2FLSs

In this section, we will provide an example to summarise the
steps involved in a gfIT2FLS. We consider the illustrative exam-
ple introduced in this section of a 2-input-1-output system con-
trolling an autonomous mobile robot with obstacle avoiding be-
haviour. The inputs to the system are the noisy measurements
(with uncertainty arising from temperature, wind and sound
noise) coming from two sonar sensors (one placed at the front
and another at the back), and the output is the wheel speed.
We assume the sensors behaviour have been modelled as de-
scribed in Section 5.5.1 ahead of time, and thus the gfIT2FSs for
some given input measurements are available. Hence, the whole
gfIT2FLS would work as follows:

1. The fuzzifier block receives the input vector ~x = (x1, x2),
which are the noisy measures coming from the sonar sen-
sors. Assume x1 = 580 mm, which is a singleton as in Fig-
ure 5.5.10(a). The fuzzifier block will map this crisp input
into a multi-singleton gfIT2FS, obtained from the interpola-
tion of the two closest sets modelled ahead of time. In this
example, the sets to perform the interpolation are placed at
d1 = 504 mm and d2 = 1009 mm. The resulting set is ob-
tained applying Equation (5.5.2), considering in that Equa-
tion d is the input, x1. Thus, the resulting set would be as
in Equation 5.5.4 and as in Figure 5.5.10(b).

µ580mm(i) = 0.8495µ̇504mm(i−76)+0.1505 ·µ1009mm(i+429)

(5.5.4)
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2. For each rule within the system:

A. The antecedent activation degree is obtained, for each
input, as in Equation (5.4.7), by meeting the antecedent
fuzzy set with the input gfIT2FS from Step 1. An illus-
trative antecedent is plotted in Figure 5.5.10(c), whereas
the points in which the fuzzy input set meets the an-
tecedent are depicted in Figure 5.5.10(d). The final an-
tecedent activation is plotted in Figure 5.5.10(e).

B. The rule firing strength is obtained, as in Equation
(5.4.15), by meeting the antecedent activation degrees
from both inputs. This rule firing strength will be a
T1FS consisting of several subintervals, as in Figure
5.4.7 and similar to Figure 5.5.10(e).

3. For each consequent of each rule (an illustrative example
is plotted in Figure 5.5.10(f), with two intervals and one
singleton), which is a gfIT2FS, we apply the following steps
ahead of time:

A. The approximation method described in Section 5.4.4.3
is applied at each point within the output domain, in
order to obtain the IVFS that best approximates the
consequent. The resulting IVFS approximating the con-
sequent in Figure 5.5.10(f) is depicted in Figure 5.5.11(a).

B. The centroid operation is applied to the resulting IVFS,
to obtain as the consequent a single interval defined in
the output domain, as described also in Section 5.4.4.3.
The resulting interval is shown in Figure 5.5.11(b).

4. The modified COS Type Reduction is applied as in Section
5.4.4, which consist of the following steps:

A. For each rule firing strength, which is a T1FS com-
prised of several subintervals, the approximation method
described in Section 5.4.4.2 is applied, in order to ob-
tain a single interval. For instance, the interval that best
approximates the set in Figure 5.5.10(e) is depicted in
Figure 5.5.11(c).

B. Once we have a single interval per rule firing strength
(as in Figure 5.5.11(c)) and per rule consequent (as in
Figure 5.5.11(b)), the classical COS type reduction is
applied, as explained in Section 5.4.4.3.

C. The result is a single interval, which is the output of the
type reduction block, defined in the output domain.
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5. The midpoint of the interval is obtained as in Equation
(5.4.21) and provided as the output of the system.

Figure 5.5.10
(a) Input singleton x1 = 580 mm. (b) Non-singleton input for x1 = 580 mm
obtained by interpolation. (c) Antecedent for input 1 in a given rulen. (d) Meet
on the non-singleton input and the antecedent. (e) Antecedent activation degree.
(f) Consequent of a rule.

Figure 5.5.11
(a) IVFS approximating the consequent. (b) Centroid of the IVFS in (a) approx-
imating the consequent in Figure 5.5.10(f). (c) Interval approximating the rule
firing strength.
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5.6 CONCLUSIONS AND FUTURE WORK

In this Chapter, the general forms of Interval-Type 2 Fuzzy Logic
Systems (gfIT2FLSs) have been introduced, which use IT2FSs
which are more general than IVFSs, and can actually have non
convex secondary membership functions. These sets, which were
introduced in [89], allow us to represent uncertainty in forms
which cannot be represented by IVFSs. Hence, there was a need
to develop the theoretical framework of such systems. All blocks
within the FLS have been tackled across this chapter, includ-
ing fuzzification, inference and type-reduction. The most gen-
eral case of non-singleton fuzzification has been considered, and
equations for the inference engine have been provided; in ad-
dition, a new method for type-reduction operation, which has
been called modified centre-of-sets type reducer, has been proposed.
Moreover, examples to use gfIT2FSs in real world applications
have been presented, for both non-singleton inputs (using the
histogram method) and antecedents modelling (using type-2 fuzzis-
tics). Finally, a complete step by step example of how a gfIT2FLS
operates was provided.

For our current and future work, we intend to apply the gfIT2FLSs
for several real world applications. Besides, it is worthwhile to ex-
plore the relation between the gfIT2FSs/FLSs and non-stationary
FSs/FLSs, formally introduced in [33]. These sets are T1FSs whose
membership function is time dependant, aiming to model how
uncertainty changes over time, which might be perceived as a
way of blurring the T1MF. This notion motivated the authors
to provide an initial insight into the relationship between non-
stationary FSs and IVFSs; hence, as the gfIT2FSs are a natu-
ral generalisation of IVFSs, it seems reasonable to also explore
the relationship between the gfIT2FSs/FLSs and non-stationary
FSs/FLSs.
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6C O N C L U S I O N S , M A I N C O N T R I B U T I O N S A N D
L I S T O F P U B L I C AT I O N S

What is useful in fuzzy logic theory is not particularly new and what
is new is not particularly useful.

— Susan Haack

The work presented in this dissertation represents a contribu-
tion to the fields of fuzzy logic theory and type-2 fuzzy logic sys-
tems. The main contributions and future work were introduced
at the end of Chapters 3, 4 and 5. These conclusions are sum-
marised again here, linking them with the initial motivations and
goals presented in Chapter 1. Moreover, a list of publications and
work in progress is provided.
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6.1 CONCLUSIONS AND CONTRIBUTIONS

6.1.1 Discussion regarding type-1 and type-2 fuzzy logic
systems

In Chapter 1, and using a brief historical overview about fuzzy
logic as a guiding thread, we introduced a controversial debate
that has been discussed since the dawn of type-2 fuzzy logic.
This controversy faced the opinions of different authors: it is
well known that type-2 fuzzy logic systems, both general and
interval, outperform their type-1 counterparts, in terms of their
ability to handle, model and minimise uncertainty and its ef-
fects. Regarding this topic, some authors argued that this ability
lied in the higher number of free parameters (or degrees of free-
dom) available in type-2 MF when compared with the type-1
case; those who make this claim hypothesize that if the type-1
fuzzy sets were allowed to have the same number of parameters
(and hence the same number of design degrees of freedom) as
the type-2 fuzzy sets, and if both the type-2 and type-1 fuzzy
FLSs were given equal opportunities of optimisation, then the
type-2 and type-1 FLSs should end up with equal performances.
On the other hand, other authors stated that most of this abil-
ity is due to how those type-2 systems use those parameters to
model such uncertainty.

Although previous work has been done relating this topic (as
in [13], [31], [38], [59]), they usually compare different classes of
type-1 and type-2 FLSs; nonetheless, we considered some more
light could be shed on this regard.

In Chapter 3 the claim for the better performance of T2FLSs is
their use of extra parameters to describe MFs was examined. If
this controversy revolves around the number of free parameters as
the key to obtain a better performance, then we proposed a novel
approach in which we only compare the number of available pa-
rameters per MF in different types of FLSs. Using nine different
function approximation problems, we compared two different
kinds of type-1 FLSs using different types of MFs (triangular
and trapezoidal), which are essentially the same (piecewise lin-
ear functions) but differ in the number of parameters per MF
they require to be described. Such a framework aimed to verify
if there exist statistically significant differences between the per-
formances of these kinds of systems, in terms of their function
approximation and uncertainty handling ability. We intended to
find out whether the number of free parameters is the keystone
to improve the performance of a FLS or not, because if the claim
is not valid in this framework, it cannot be valid for the IT2 ver-
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sus T1FLS framework. This would help us to prove of disprove
if there are some other factors involved.

We showed in five differente experiments, using nine function
approximation problems, that allowing type-1 FLSs to have one
extra parameter per antecedent MF during the optimisation pro-
cess does not enable them to deliver improved function approxi-
mation ability and uncertainty handling. It was also highlighted
that these findings are consistent with those in [11]. In light of
these results, it seems reasonable to conclude that the ability of
T2FLSs to perform better than their T1 counterparts is due to
the way the former make use of their free parameters, rather
than the number of degrees of freedom available in the system.
Hence, the use of type-2 fuzzy logic is completely justified.

6.1.2 Extending the join and meet operations on type-2
fuzzy sets

Conclusions from Part ii allowed us to completely justify the
use of type-2 fuzzy logic systems and hence, we focused our
efforts on further developing it. In order to do so, in Chapter
1 we introduced two important facts about GT2 and IT2 fuzzy
logic, which motivated the rest of our research.

Firstly, IT2FSs were proved to be more general than IVFSs, as
shown in [89] and introduced in Chapter 4. This new perception
of IT2FSs (which we have been calling "general forms of IT2FSs")
evinced that some of these sets might actually have non-convex
secondary grades, which posed significant trouble when trying
to utilise FLSs using these sets: on the one hand, the set the-
oretic operations on IVFSs, which are needed to define the in-
ference engine, required the secondary grades to be closed and
connected intervals, a condition that is no longer met. Secondly,
although these operations could be approached from the GT2

framework, the previous existing literature and closed formulas
for the join and meet operations required the secondary grades
to be normal and convex type-1 fuzzy sets, which does not hold
any more. Hence, a need to develop the set theoretic operations
on GT2FSs with arbitrary secondary grade emerged, in order to
later expand the theory of the gfIT2FLSs.

This need was tackled in Chapter 4, in which we presented
and proved two new theorems providing closed formulas for the
join (union) and meet (intersection) operations on GT2FSs hav-
ing arbitrary secondary grades, i.e., T2FSs in which the restric-
tions regarding the normality and convexity of the secondary
grades are no longer required. Those theorems were also partic-
ularised for the more specific case of gfIT2FSs as presented in
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[89], and closed formulas were also obtained for these sets. Sev-
eral examples were provided, including the cases of secondary
grades being convex and normal, non-convex and non-normal
and either 0 or 1.

Hence, the work presented in Chapter 4 allowed us to explore
the potential of the gfIT2FLSs which use gfIT2FSs that are not
equivalent to IVFSs, which was performed in Chapter 5. In ad-
dition, it could help to explore the potential of GT2FLSs using
T2FSs with non-convex and/or non-normal secondary grades.

6.1.3 Further developing the theory of the gfIT2FLSs

The appearance of the new perception of the gfIT2FSs loomed up
two new needs: on the one hand, to further develop the set the-
oretic operations on these sets (which was tackled in Chapter 4);
on the other hand, to completely define the fuzzy logic systems
using the gfIT2FSs, which we have called gfIT2FLSs. To do so, a
brand new theoretical framework for these FLSs was required, as
some of the involved fuzzy sets might actually have non-convex
secondary grades. This second need was tackled and solved in
Chapter 5.

The whole structure of the gfIT2FLSs was overviewed, and es-
pecial attention was drawn to those blocks presenting significant
differences with other well-known FLSs. We focused our efforts
in the following blocks:

• Fuzzification stage: For the block mapping the crisp input
values into fuzzy sets, both singleton and non-singleton
schemes were considered, and the mathematical equations
to perform this operation were provided. In addition, an al-
gorithm to create non-singleton fuzzy input sets to model
noisy measurements coming from real world sensors was
presented. To finalise, an example on how to use that algo-
rithm was performed in order to obtain gfIT2FSs to model
the noisy measurements from a sonar sensor affected by
several sources of uncertainty, such as temperature, wind
and sonic noise.

• Inference engine: The mathematical framework required
to define the inference engine was revisited, where the re-
sults from Chapter 4 were used in order to allow the FLS
to use the gfIT2FSs in both antecedent and consequents. In
addition, an example to obtain gfIT2FSs as antecedents was
provided, in which we made use of the survey method to
model them.
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• Type-reduction: As we are dealing with the gfIT2FSs, which
can actually have disconnected regions in their secondary
grades, a new type-reduction method was required. To do
so, we used a partial result presented in [2], in order to ap-
proximate a finite set of closed, connected and disjointed
intervals or singletons by one single interval. Using that
result, both the rule firing degrees from the inference en-
gine and the rule consequents can be approximated, so that
the classical centre-of-sets type-reducer can be applied after-
wards. We called this new method the modified centre-of-sets
type-reducer.

In Chapter 5, the general forms of Interval-Type 2 Fuzzy Logic
Systems (gfIT2FLSs) were introduced, which use IT2FSs that are
more general than IVFSs, and can actually have non convex sec-
ondary membership functions, allowing us to represent and model
uncertainty in a way the classical IVFSs cannot.

Hence, the need to develop the theoretical framework of FLSs
using these gfIT2FSs has been covered, closing the initial moti-
vations and covering all the goals proposed at the beginning of
this dissertation.

6.2 LIST OF PUBLICATIONS

This section gathers a list of the publications derived from the
research of the work presented in this dissertation, as well as
other related research.

Journal publications

1. G. Ruiz, H. Hagras, H. Pomares, I. Rojas and H. Bustince,
Join and Meet Operations for Type-2 Fuzzy Sets With Noncon-
vex Secondary Memberships, in IEEE Transactions on Fuzzy
Systems, vol. 24, no. 4, pp. 1000-1008, Aug. 1 2016. doi:
10.1109/TFUZZ.2015.2489242

2. A. Olivares, G. Ruiz-Garcia, G. Olivares and J. M. Gorriz,
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13, no. 9, pp.11797, 2013. doi: 10.3390/s130911797.
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6C O N C L U S I O N E S , P R I N C I PA L E S
C O N T R I B U C I O N E S Y L I S TA D E
P U B L I C A C I O N E S

Lo que es útil en la lógica difusa no es especialmente nuevo y lo que es
nuevo no es especialmente útil.

— Susan Haack

El trabajo presentado en esta tesis es una contribución a los
campos de la teoría de la lógica difusa y los sistemas difusos
tipo-2. Las principales contribuciones y los trabajos futuros se
presentaron al final de los Capítulos 3, 4 y 5. Dichas conclusiones
se resumen aquí de nuevo, enlazándolas a su vez con las motiva-
ciones y objetivos iniciales expuestos en el Capítulo 1. Además,
se incluye una lista de publicaciones y trabajos en proceso.
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6.1 CONCLUSIONES Y CONTRIBUCIONES

6.1.1 Discusión sobre los sistemas difusos tipo-1 y tipo-2

En el Capítulo 1, y haciendo uso de una revisión histórica como
hilo conductor, se introdujo un polémico debate que ha sido dis-
cutido desde la misma aparición de la lógica difusa tipo-2. Esta
controversia enfrentó las opiniones de distintos autores: es bien
sabido que los sistemas difusos tipo-2, tanto generales como in-
tervalo, presentan mejor rendimiento que sus homólogos tipo-1,
en términos de su capacidad para gestionar, modelar y mini-
mizar la incertidumbre y sus efectos. Sobre este tema, algunos
autores argumentan que dicha capacidad reside en el mayor
número de parámetros (o grados de libertad) disponibles en una
función de pertenencia de tipo-2 comparada con la tipo-1; aque-
llos que reivindican esto hipotetizan que si a los conjuntos di-
fusos tipo-1 se les permitiera disponer del mismo número de
parámetros (y por tanto el mismo número de grados de liber-
tad en el diseño) que a los conjuntos tipo-2, y si a ambos sis-
temas difusos se les concedieran las mismas oportunidades de
optimización, entonces tanto los sistemas tipo-1 como los tipo-
2 deberían tener el mismo similar. Por otra parte, otros autores
manifiestan que la mayor parte de esa capacidad se debe a cómo
los sistemas tipo-2 utilizan esos parámetros para modelar dicha
incertidumbre.

A pesar de que existen trabajos previos relacionados con este
tema (como [13], [31], [38] y [59]), estos normalmente comparan
distintas clases de sistemas difusos tipo-1 y tipo-2; no obstante,
se ha considerado que puede arrojarse algo más de luz a este
respecto.

En el Capítulo 3 dicha reivindicación sobre que el rendimiento
de los sistemas difusos tipo-2 se debe al uso de parámetros ex-
tra en la descripción de sus funciones de pertenencia fue puesta
a examen. Si la controversia gira en torno al número de paráme-
tros libres como pieza clave para obtener un mejor rendimiento,
entonces se propuso un nuevo enfoque en el que solamente se
compara el número de parámetros disponibles por cada función
de pertenencia en distintos tipos de sistemas difusos. Utilizando
nueve problemas de aproximación funcional diferentes, se com-
pararon dos tipos de sistemas difusos tipo-1, que utilizan dis-
tintos tipos de funciones de pertenencia (triangulares y trape-
zoidales), que son esencialmente iguales (funciones lineales a tro-
zos) pero que difieren en el número de parámetros por función
de pertenencia que necesitan para describirse. Dicho marco de
referencia aspiraba a verificar si existen diferencias estadística-
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mente significativas entre los rendimientos de estos tipos de sis-
temas, en términos de su capacidad de aproximación funcional y
gestión de la incertidumbre. Se pretendía averiguar si el número
de parámetros libres es la clave para mejorar el rendimiento de
un sistema difuso o no, porque si la reivindicación no es válida
para este marco de referencia, entonces no puede serlo en el
marco comparativo entre sistemas difusos tipo-1 y tipo-2 inter-
valo. Este enfoque nos ayudaría a probar o refutar si hay otros
factores involucrados.

Se mostró en cinco experimentos diferentes, utilizando nueve
problemas de aproximación funcional, que permitir a los sis-
temas difusos tipo-1 tener un parámetro extra por cada fun-
ción de pertenencia en los antecedentes durante el proceso de
optimización no les permite ofrecer mejor capacidad de aproxi-
mación funcional ni de gestión de la incertidumbre. También se
señaló que estos hallazgos son consistentes con los presentados
en [11]. A la luz de estos resultados, parece razonable concluir
que la capacidad de los sistemas difusos tipo-2 de ofrecer mejor
rendimiento que sus homólogos tipo-1 se debe a la forma en que
los primeros hacen uso de sus parámetros libres, más que en
el número de grados de libertad disponibles en el sistema. Por
tanto, el uso de la lógica difusa tipo-2 está plenamente justifi-
cado.

6.1.2 Extendiendo las operaciones join y meet sobre con-
juntos difusos tipo-2

Las conclusiones extraídas de la Parte ii nos permitieron justi-
ficar plenamente el uso de la lógica difusa tipo-2 y, por tanto,
centrar nuestros esfuerzos en desarrollarla. Para ello, en el Capí-
tulo 1 se introdujeron dos hechos importantes sobre la lógica di-
fusa tipo-2, tanto general como intervalo, que motivaron el resto
de nuestra investigación.

En primer lugar, se probó que los conjuntos difusos tipo-2
intervalo (IT2FSs) son más generales que los de valores inter-
valados (IVFSs), como se mostró en [89] y se introdujo en el
Capítulo 4. Esta nueva percepción de estos conjuntos IT2FSs (a
los que nos hemos referido como "formas generales de IT2FSs")
puso en evidencia que algunos de estos conjuntos pueden tener
grados secundarios no convexos, lo que planteaba dificultades
significativas al utilizar sistemas difusos que hicieran uso de di-
chos conjuntos: por una parte, las operaciones entre conjuntos
IVFSs, necesarias para definir el motor de inferencia, requerían
que los grados secundarios fuesen intervalos cerrados y conexos,
una condición que ahora no siempre se cumple. Por otra parte,
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pese a que estas operaciones podían enfocarse desde el marco
de referencia de los conjuntos difusos tipo-2 generales, la litera-
tura previa y las fórmulas existentes para las operaciones join
y meet requerían que los grados secundarios fuesen conjuntos
difusos tipo-1 normales y convexos, lo cual tampoco se cumple.
Por tanto, emergió la necesidad de desarrollar las operaciones en-
tre conjuntos tipo-2 generales con grados secundarios arbitrarios,
para posteriormente expandir la teoría de las formas generales
de sistemas difusos tipo-2 intervalo (gfIT2FLSs).

Tal necesidad se abordó en el Capítulo 4, en el que se pre-
sentaron y demostraron dos nuevos teoremas que proporcionan
fórmulas cerradas para las operaciones join (unión) y meet (inter-
sección) sobre conjuntos difusos tipo-2 generales con grados se-
cundarios arbitrarios, es decir, conjutos tipo-2 en los que no son
necesarias las restricciones relacionadas con su convexidad y su
carácter normal. Estos teoremas también se particularizaron para
los casos más específicos de gfIT2FSs tal y como se presentaron
en [89], y también se obtuvieron fórmulas cerradas para dichos
conjuntos. Se proporcionaron varios ejemplos, incluyendo los ca-
sos de grados secundarios normales y convexos, no normales y
no convexos, y con valores iguales a únicamente 0 o 1.

Por tanto, el trabajo presentado en el Capítulo 4 nos permitió
explorar el potencial de los sistemas gfIT2FLSs, que utilizan con-
juntos gfIT2FSs que no son equivalentes a los IVFSs, lo que se
llevó a cabo en el Capítulo 5. Adicionalmente, podría ayudarnos
a explorar el potencial de los sistemas difusos tipo-2 generales
que hagan uso de conjuntos difusos con grados secundarios no
normales y/o no convexos.

6.1.3 Desarrollando la teoría de los sistemas gfIT2FLSs

La aparición de la nueva percepción sobre los gfIT2FSs hizo sur-
gir dos nuevas necesidades: por una parte, desarrollar las ope-
raciones entre estos conjuntos (lo cual se abordó en el Capí-
tulo 4); por otra parte, definir de forma completa los sistemas
difusos que utilizan dichos conjuntos, y a los cuales hemos lla-
mado gfIT2FLSs. Para realizar esto último se requerÃa un marco
de referencia completamente nuevo para estos sistemas difusos,
puesto que algunos de los conjuntos involucrados podían tener
grados secundarios no convexos. Esta segunda necesidad se aco-
metió y resolvió en el Capítulo 5.

Se revisó la estructura completa de estos gfIT2FLSs, y se prestó
especial atención a aquellos bloques que presentan diferencias
significativas con otros sistemas difusos bien conocidos. Nues-
tros esfuerzos se centraron en los siguientes bloques:
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• Etapa de fuzzificación: Para el bloque encargado de ma-
pear los valores numéricos de entrada en conjuntos difusos,
se consideraron tanto esquemas singleton como no single-
ton, y se proporcionaron las ecuaciones matemáticas para
realizar dicha operación. Adicionalmente, se presentó un
algoritmo para crear conjuntos difusos de entrada para mo-
delar medidas ruidosas procedentes de un sensor real. Para
finalizar, se realizó un ejemplo sobre cómo utilizar dicho al-
goritmo a fin de obtener conjuntos gfIT2FSs para modelar
las medidas ruidosas de un sensor sónar afectado por diver-
sas fuentes de incertidumbre, tales como alta temperatura,
viento y ruido sónico.

• Motor de inferencia: Se revisó el marco de referencia nece-
sario para definir el motor de inferencia, en el que se uti-
lizaron los resultados procedentes del Capítulo 4, a fin de
permitir que los sistemas difusos puedan utilizar los con-
juntos gfIT2FSs tanto en los antecedentes como en los con-
secuentes. Además, se mostró un ejemplo para obtener di-
chos conjuntos en los antecedentes, en el que se utilizó el
método de la encuesta para modelarlos.

• Reducción de tipo: Dado que estamos tratando con con-
juntos gfIT2FSs, que pueden de hecho tener regiones in-
conexas en los grados secundarios, se requería un nuevo
método de reducción de tipo. Para ello, se utilizaron re-
sultados parciales del trabajo presentado en [2], a fin de
aproximar un conjunto finito de intervalos cerrados, conec-
tados y disjuntos o singletons mediante un único intervalo.
Haciendo uso de dicho resultado, tanto los grados de ac-
tivación de las reglas en el motor de inferencia como los
consecuentes pueden ser aproximados, de tal manera que
el método clásico centro de los conjuntos (centre-of-sets) pueda
utilizarse a posteriori. Este nuevo método fue bautizado
como reductor de tipo centro de los conjuntos modificado (modi-
fied centre-of-sets type-reducer).

En el Capítulo 5 se introdujeron los sistemas difusos gfIT2FLSs,
que utilizan conjuntos IT2FSs que son más generales que los
IVFSs, y pueden tener funciones de pertenencia secundarias no
convexas, permitiéndonos representar y modelar la incertidum-
bre de nuevas formas que los conjuntos IVFSs no podrían.

Por lo tanto, la necesidad de desarrollar el marco de referen-
cia teórico de los sitemas difusos que utilizan estos gfIT2FSs ha
sido cubierto, cerrando así las motivaciones iniciales y cubriendo
todos los objetivos propuestos al inicio de esta tesis.
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In this Appendix we extensively describe the details of the GA
employed in all experiments through Chapter 3.

A.1 SOLUTION ENCODING

When using a scattered input space, each fuzzy system will be
represented by a (NMF · p)×Nr matrix, where NMF is the num-
ber of parameters per MF, p is the number of inputs to the
system, and Nr is the number of rules in the system/chromo-
some. Thus, the MF associated with the i-th input in the j-th
rule, µji(xi), will be described by three parameters [aji,b

j
i, c
j
i]
T in

the case of triangular MFs, and four [aji,b
j
i, c
j
i,d

j
i] in the case of

trapezoid MFs. It is important to note that in both cases, these
descriptions of the MFs consider the parameters are ordered in
ascending order, such that aji 6 b

j
i 6 c

j
i for triangular MFs and

a
j
i 6 b

j
i 6 c

j
i 6 d

j
i for the trapezoidal case.

All parameters of all MFs of a given rule are grouped in the
same column, i.e., the j-th rule of a given chromosome Cind,
noted as Cjind, will be presented as Equation (A.1.1) for triangu-
lar MF, and as Equation (A.1.2) for trapezoid MFs.

C
j
ind = [aj1,bj1, cj1, ...,ajp,bjp, cjp] (A.1.1)

C
j
ind = [aj1,bj1, cj1,dj1, ...,ajp,bjp, cjp,djp] (A.1.2)

A given chromosome will be formed by Nr columns. For the
case of single objective function, we choseNr = 5, 10, 15, 20, 25, 30,
and for the case of a multi-objective function, because the num-
ber of rules is one of the objectives to minimise, the number of
rules is different for each chromosome, so each individual chro-
mosome has a different number of columns Nr, always lying
within a given range [Nminr ,Nmaxr ] ≡ [5, 20].

When using a partitioned input space (experiments 4 and part
of 5) the chosen solution encoding is quite different. In this case,
each individual within the population is described by a NMF ×
(NMAX · p) matrix, where NMAX is the number of MFs per in-
put. In that matrix, columns from 1 to p will be as shown in
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Equation (A.1.1) and (A.1.2), and will describe the MFs associ-
ated with input 1; columns from p + 1 to 2p will describe the
MFs from input 2; in general, columns from (i− 1) · p+ 1 to i · p
describe the MFs of input i, with i = 1, ...,p. In this work, we
have chose NMAX = 7, thus leading to a partitioned input space
using 72 = 49 rules.

A.2 FITNESS EVALUATION

As in [11], we will use nine function approximation problems
in Table 3.3.1 from [19]. In all experiments, for each function
approximation problem, a data set of 400 training data is used.
These points are obtained by dividing the input space into a 20×
20 grid, and choosing a random point from each zone delimited
by that grid. For the training process, a two-fold cross validation
method is adopted, in which the 400 data points are divided
into two groups by means of the NNO-CFA algorithm [32]. This
algorithm divides the data set into two roughly balanced and
equally sized subsets that can be used for training and validation
(by balanced we mean that both subsets are created in such a way
that two very close points will belong to different subsets, so
both of them will roughly cover the same input space). Because
both subsets are balanced, there is no need for a five-fold or ten-
fold cross-validation procedure, thus significantly reducint the
computation time.

After dividing the 400 data into two subsets by means of the
NNO-CFA algorithm, the NRMSE is computed as follows: for a
given chromosome (it is, a given antecedents’ MF parameters):

1. The first 200 data are used to obtain the optimal conse-
quents for those antecedents, and the second 200 data are
used for validation.

2. We use the second set of points to obtain the optimal con-
sequents and the first one to validate.

3. We compute the mean between the two NRMSE as the final
NRMSE value.

In the case of the multi-objective scenario, the NRMSE is one
of the two objectives to minimise, and is calculated in the same
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exact way as in the single-objective case. The second objective
to minimise is the number of rules (i.e. the number of columns
in the matrix representing the system/chromosome). The cost
function for the second objective is just Nr, which is the number
of rules of the chromosome.

A.3 INITIAL POPULATION

The population is initialised differently in the single-objective
(experiments 1, 3, 4 and 5) and the multi-objective (experiments
2 and 5) situations: in the former, all individuals are randomly
initialised, ensuring that the parameters representing each MF
and each rule are properly ordered. Besides, the columns defin-
ing a rule are ordered in groups, where each group represents
a MF; i.e., if we consider a system with two inputs, then the j-
rule will be as

(
a
j
1,bj1, cj1,aj2,bj2, cj2

)
in the triangular case and(

a
j
1,bj1, cj1,dj1,aj2,bj2, cj2,dj2

)
in the trapezoidal one.

Random initialisation is frequently used in the literature [1],
[37]; however, for the multi-objective case, we chose the following
initialisation approach [11]:

1. For each possible number of rules within the range [Nminr ,Nmaxr ],
one chromosome is created; using a set of 400 data as ex-
plained previously, the centres of the antecedent MFs are
located by means of the K-means method [63], whereas the
spread is obtained using the K-nearest neighbours (KNN)
algorithm [21]. It was chosen a value of K = 2 neighbourghs,
at it seemed to be reasonable to avoid the MFs to have ex-
cessive overlapping. Calling Ceji and Sji to the centre and
spread, respectively, of the i-th input of the j-th rule, then
the parameters for that given MF are initialised as follows:

a Triangular case:(
a
j
i,b

j
i, c
j
i

)
=
(
Ce
j
i − S

j
i,Ce

j
i,Ce

j
i + S

j
i

)
b Trapezoidal case:

(
a
j
i,b

j
i, c
j
i,d

j
i

)
=

(
Ce
j
i − S

j
i,Ce

j
i −

S
j
i

2
,Ceji +

S
j
i

2
,Ceji + S

j
i

)
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2. If necessary, more randomly generated individuals are in-
troduced in the population to introduce diversity.

The reason why this approach has not been adopted in the
single-objective case is very simple: because the number of rules
is fixed, the K-means and KNN algorithms would always obtain
the same solutions for a given set of training points, and thus
the initial population would lack the proper diversity. Hence,
random initialisation has been chosen in that case.

It is important to highlight that, apart from the random ini-
tialisation, in experiment 3 we also introduce the best triangular
individual into the initial trapezoidal population.

A.4 GENETIC OPERATORS

For an evolutionary algorithm to perform properly and to be
able to find an optimal solution, it is important to find a proper
balance between the exploration of new zones in the solution
space and the exploitation of the promising areas already found.
The genetic operators chosen for this work aim to achieve this
balance.

The GA implementation used in this work needs a parame-
ter named ”Crossover Fraction”, which indicates the fraction of
the offspring that are generated by crossover. The rest of the off-
spring are generated by the mutation operator. In this work, we
set this parameter to 0.8, which means that the 80% of the off-
spring are generated by crossover, whereas the remaining 20%
are created by the mutation operator.

A.4.1 The cross-over operator in single-objective and scat-
tered input space scenario

In the crossover operation, the genetic material of two parents
are combined to produce one child or offspring. In our T1FLSs
scenario, the genetic material are combined at two different lev-
els: interchanging information at MF level (i.e. combining the
MFs’ parameters) and interchanging complete MFs and/or rules.
How these operations are performed is different for each experi-
ment.
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When using a scattered input space and single-objective op-
timisation (Experiments 1 and 3), the crossover operator com-
bines genetic material from two parents to produce one child
or offspring. We use a hybrid operator to combine the classical
single-point crossover [40] with the BLX-α operator [40].

For each pair of parents, with probability Pmod (0.5 in our
work), the single-point crossover is applied; for the rest of the
parents, the BLX-α crossover is used.

The single-point crossover operator works as follows:

1. Select a random integer in the range SP ∈ [1,Nr], where Nr
is the number of rules of each chromosome.

2. Create a child by taking rules 1, ...,SP−1 from parent 1, and
rules SP, ...,Nr from parent 2, i.el:

Child = [P1 (1 : (SP− 1)) | P2 (SP : Nr)] (A.4.1)

On the other hand, those pairs of parents that have not been
affected by the single-point crossover operator will be combined
using the well-known BLX-α [40] operator with α = 0.5, in which
each gene zi of the child, which must lie within the range [ai,bi],
is a combination of the genes in the same position from the two
parents, xi and yi. Hence, zi is generated as a random value in
[li, ri], where:

li = max (ai, cmin − I ·α)
ri = min (bi, cmax + I ·α)

(A.4.2)

In which cmin = min (xi,yi), cmax = max (xi,yi) and I =
cmax − cmin. This operator may cause the resulting parameters
within the same MF to be disordered; if this happens, the result-
ing parameters are reordered accordingly.

A.4.2 The cross-over operator in multi-objective scenario

In the multi-objective scenario (Experiments 2 and 5), which uses
a scattered input space, the genetic material from the two par-
ents are combined to produce two children. Let Nr1 and Nr2 be
the number of rules of parent 1 and parent 2, respectively. The
crossover function for the multi-objective scenario operates as
follows:

1. Select a random integer in the range SP ∈ [1,min (Nr1,Nr2)].
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2. Create child 1 by taking rules 1, ...,SP−1 from parent 1, and
rules SP, ...,Nr2 from parent 2, i.e.:

Child1 = [P1 (1 : (SP− 1)) | P2 (SP : Nr2)] (A.4.3)

3. Create child 2 by taking rules 1, ...,SP−1 from parent 2, and
rules SP, ...,Nr1 from parent 1, i.e.:

Child2 = [P2 (1 : (SP− 1)) | P1 (SP : Nr1)] (A.4.4)

This operator creates two offspring from two parents (unlike
the previous scenario), in such a way that child 1 has the same
number of rules as parent 2, and child 2 has the same number of
rules as parent 1.

Those pairs of parents which have not been affected by the
single-point crossover operator are combined using the BLX-α
operator, with α = 0.5. Each gene zi of the child, which must
lie within the range [ai,bi], is a combination of the genes in
the same position from the two parents, xi and yi. Hence, zi is
generated as a random value in [li, ri], where:

li = max (ai, cmin − I ·α)
ri = min (bi, cmax + I ·α)

(A.4.5)

In which cmin = min (xi,yi), cmax = max (xi,yi) and I =
cmax − cmin. This operator may cause the resulting parameters
within the same MF to be disordered; if this happens, the result-
ing parameters are reordered.

So, the whole BLX-α crossover is as follows: let Nr1, Nr2 be
the number of rules of parents 1 and 2, respectively. Let G1 =
min (Nr1,Nr2) and G2 = max (Nr1,Nr2).

1. The first child will have G1 rules that will be obtained by
combining the parents’ rules with the BLX-α.

2. The second child will have G2 rules; the first G1 are ob-
tained with the BLX-α operation; the remaining rules are
copied directly from the parent with the greater number of
rules.

Although previous works [11] have only considered the sec-
ond option as the procedure to apply the BLX-α operator, there
is a reason to use this new two step method. Consider the follow-
ing example: let Nr1 = 7 and Nr2 = 14; if only the second way to
crossover the two parents is considered, an offspring with Nr3 =
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14 will always be created. Before the crossover was performed,
the mean number of rules per individual was (7+ 14) /2 = 10.5.
After the crossover, the mean is (7+ 14+ 14) /3 = 11.67. Hence,
this combination contributes to increase the mean of rules per in-
dividual in the population, exploring more intensively the part
of the Pareto Front corresponding to higher number of rules. By
generating two offspring with both G1 or G2 rules, the mean of
rules per individual remains unchanged, thus allowing the GA
to explore the Pareto Front in an equitable way.

A.4.3 The crossover operator in single-objective and parti-
tioned input space scenario

When using a partitioned input space (Experiments 3 and 5), so-
lution encoding is quite different from the scattered input space
scenario (Experiment 4) and was explained in Section A.1. Hence,
in this case, the split point operator will work as follows:

1. For each input i, with i = 1, ...,p, a random integer SP is
selected in the range SP ∈ [1,NMAX].

2. The child’s MFs for input i are crafted by taking the rules
from parent 1 ranging from 1 so SP− 1, and the rules from
parent 2 ranging from SP to NMAX.

Hence, the whole crossover operator for Experiment 4 works
as follows: for each pair of parents, with probability Pmod =
0.5, the single-point crossover is applied; and for the rest of the
parents, the BLX-α crossover is applied.

A.4.4 The mutation function in single-objective scenario

The mutation operator creates new individuals or chromosomes
by randomly changing their genetic material. In our approach,
we use an operator that randomly changes some genes within
the chromosome.

When using single-objective optimisation, the mutation will
change a given gene zi in such a way that it is within the range
[ai,bi]. If the change causes the chromosome to lose the proper
order, as explained previously, then the parameters are reordered.
The probability of changing each gene is Pm = 1/Nparams,
where Nparams is the number of parameters in the system. With
this value, each individual affected by the mutation operator
changes on average one single parameter.
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A.4.5 The mutation function in multi-objective scenario

The mutation operator for using multi-objective optimisation cre-
ates new individuals or chromosomes by randomly changing
their genetic material. In our approach, we use a combination
of two mutation operators.

A.4.5.1 Mutation by adding/substracting rules

The first mutation operator modifies the number of rules in the
chromosome, with a given probability Pmod (0.5 by default).
If the chromosome is changed, a random integer in the range
[1,Rmax] is chosen; then, addition or subtraction of rules is cho-
sen in an equally probable manner. If addition is chosen, the
rules are randomly generated and appended to the chromosome;
on the other hand, if subtraction is chosen, some rules of the in-
dividual are randomly chosen and removed. The final number
of rules must always lie within the range [Nminr ,Nmaxr ] = [5, 20].
In our work Rmax = 3.

A.4.5.2 Mutation by adding/substracting rules

The second mutation operator, as in the single-objective case, ran-
domly changes a given gene zi in such a way that it lies within
the range [ai,bi]. If the change causes the chromosome to lose
the proper order in its parameters, then they are reordered. The
probability of changing each gene is Pm. Previous works [11]
have considered Pm to be a fixed value; however, we consider
that this decision favours introducing diversity (changes) in indi-
viduals having greater number of rules/parameters, because if
Pm is the probability to change a given gene, then 1− Pm is the
probability of not changing it. If the probability of changing two
different genes is independent (which seems to be reasonable),
then the probability of not changing any gene, and thus to let
the chromosome unchanged, is:

Punchanged = (1− Pm)N (A.4.6)

HereN is the number of parameters in the chromosome. Hence,
the probability of actually changing the chromosome, with at
least one modified gene, is:

Pchange = 1− (1− Pm)N (A.4.7)
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As an example, for triangular MFs, N = NMF · p ·Nr = 3 · p ·
Nr, and assume Pm = 0.02; then, for p = 2 inputs, the function
Pchange(Nr) is depicted in Figure A.4.1(a):
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Figure A.4.1
Probability of changing a chromosome as a function of the number of rules, for
a fixed Pm.

Figure A.4.1(a) clearly shows that it is far more probable to in-
troduce changes in chromosomes with higher number of rules/-
parameters; thus, the changes introduced by the mutation oper-
ator using a fixed Pm makes the exploration of the Pareto Front
corresponding to greater number of rules more intensive than
the part corresponding to lower number of rules. To resolve this
problem, we use a value of Pm that varies with the number of
rules, i.e.:

Pm =
k

N
(A.4.8)

The probability to change an individual is then given by:

Pchange(Nr) = 1− (1− Pm)N = 1−

(
1−

k

N

)N
=

= 1−

(
1−

k

NMF · p ·Nr

)NMF·p·Nr (A.4.9)

As an example, for k = 0.5, then the function Pchange(Nr) is
depicted in Figure A.4.1(b). Observe that, although the probabil-
ity of changing a chromosome is not strictly constant, it remains
almost unchanged in the range [Nminr ,Nmaxr ] = [5, 20] and, thus,
is a more equitable way of implementing the mutation operator.
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