Research Article

Association of cardiovascular emerging risk factors with acute coronary syndrome and stroke: A case-control study

José Manuel Martínez Linares,1 Rafael Guisado Barrilao,2 Francisco Manuel Ocaña Peinado3 and Francisco Javier Salgado Parreño4
1Virgen de las Nieves University Hospital, School of Health Sciences, 2Pharmacy, University of Grenada and 3Hospital of Motril, Grenada, Spain

Abstract

In this study, we estimated the risk of acute coronary syndrome and stroke associated with several emerging cardiovascular risk factors. This was a case-control study, where an age- and sex-matched acute coronary syndrome group and stroke group were compared with controls. Demographic and clinical data were collected through patient interviews, and blood samples were taken for analysis. In the bivariate analysis, all cardiovascular risk factors analyzed showed as predictors of acute coronary syndrome and stroke, except total cholesterol and smoking. In the multivariate logistic regression model for acute coronary syndrome, hypertension and body mass index, N-terminal section brain natriuretic peptide and pregnancy-associated plasma protein-A were independent predictors. For stroke, the predictors were hypertension, diabetes mellitus, body mass index, and N-terminal section brain natriuretic peptide. Controlling for age, sex, and classical cardiovascular risk factors, N-terminal section brain natriuretic peptide and pregnancy-associated plasma protein-A were independent emerging cardiovascular risk factors for acute coronary syndrome, but pregnancy-associated plasma protein-A was not for stroke. High levels of cardiovascular risk factors in individuals with no episodes of cardiovascular disease requires the implementation of prevention programs, given that at least half of them are modifiable.

Key words
coronary syndrome, cardiovascular disease, case-control study, risk factor, stroke.

INTRODUCTION

Cardiovascular disease (CVD) means any condition whose origin is a vascular affection, including acute coronary syndrome, stroke, peripheral vascular disease, aortic atherosclerosis, and aortic aneurysms. The process which causes the vast majority of vascular damages is atherosclerosis.

In the USA, this was the leading cause of death in 2011, being responsible for nearly 30% of all deaths that occurred (Hoyert & Xu, 2012). In the European Union (EU), it also represents the primary cause of death, accounting for 39% of all deaths in 2010 (European Commission, 2012), which resulted in a cost of €192 billion for the whole of the EU (European Regional and Local Health Authorities, 2008). In Spain, CVD is also the leading cause of death; in 2012, it resulted in 30.3% of all deaths (Instituto Nacional de Estadística, 2015).

According to the World Health Organization, in 2012 an estimated 17.5 million people worldwide died from CVD, representing 31% of all global deaths. Of these deaths, an estimated 7.4 million were due to acute coronary syndrome and 6.7 million were due to strokes (World Health Organization, 2015). Therefore, both types of CVD are of paramount importance.

Cardiovascular risk (CVR) is defined as the probability of suffering a cardiovascular event in a given period, which is usually within 5–10 years, and cardiovascular risk factor (CVRF), which is likewise defined as that measurable trait that predicts an individual's likelihood of developing CVD. The most widely-accepted classification distinguishes between adjustable CVRF and not by lifestyle, thus adding a third group of emerging CVRF.

Literature review

A literature search was conducted in PubMed, Cochrane Library, EMBASE, ERIC, IME, and the Scielo, database with a maximum time limit of 5 years, except for those documents deemed relevant to the study or those which referred to certain related aspects that have not been published subsequently, regarding significant developments in this field of research. The descriptors used were cardiovascular diseases, risk factors, acute coronary syndrome, and stroke. The selection of studies was based on scientific quality items presented in its methodology and available in any language, as long as at least the summary of the most relevant data for evaluation was available in English. Almost two-thirds of the used references were journal articles or clinical practice guidelines published in the past 5 years. The material utilized was selected because the methodology used and the findings relating to emerging CVRF were relevant to this study, emphasizing the relationship between mentioned risk factors and both acute coronary
syndrome and stroke, and the clinical implications of these findings.

Pregnancy-associated plasma protein-A (PAPP-A) has been suggested as a biomarker that produces instability and rupture of atherosclerotic plaque (Bayes-Genis et al., 2001; Sangiorgi et al., 2006; You et al., 2010), and has also been observed in animal models (Conover et al., 2010). Some studies have demonstrated the association between PAPP-A and both ischemic and hemorrhagic stroke (Fialová et al., 2006). In other studies, PAPP-A is seen as a specific, sensitive, and early biomarker for acute coronary syndrome (Li et al., 2013). However, knowledge is lacking, both in relation to its method of action in different situations and with regard to other implicated co-substances, such as the insulin-like growth factor (Conover, 2012; Lawrence et al., 1999).

Homocysteine has been identified as an independent risk factor for acute coronary syndrome and stroke (Homocysteine Studies Collaboration, 2002), and the association between C-reactive protein (CRP) and homocysteine enables the prediction of long-term mortality in young ischemic stroke patients (Naess et al., 2013). Several randomized trials have attempted to decrease blood homocysteine levels with vitamin B dietary supplementation (Clarke et al., 2010; Martí-Carvajal et al., 2015).

Different applications have been assigned to N-terminal section brain natriuretic peptide (NT-proBNP) in several studies, and an acceptable diagnostic value in distinguishing ischemic stroke from other subtypes (Hajasadeghi et al., 2013) also predicts presumable cardioembolic stroke independent of coronary calcification (Kara et al., 2014; Yang et al., 2014). Moreover, it is a significant predictor of major adverse cardiovascular events in stable coronary disease, as well as a strong predictor of death and a wide range of cardiovascular events (Linssen et al., 2010; Mishra et al., 2014) and some non-cardiovascular causes (Ohuleye et al., 2013).

The high-sensitivity CRP (hsCRP) is presented in the scientific literature as a good long-term predictor of mortality in young ischemic stroke patients (Naess et al., 2013), and as a strong, independent predictor of outcome in patients with acute coronary syndrome (Fiechter et al., 2013). In addition, it is cited as a predictor of death, not just from CVD, but also from some non-cardiovascular causes (Ohuleye et al., 2013), and as an unfavorable long-term functional outcome in ischemic stroke patients (Van Gilder et al., 2014).

Aim

The aim of this study was to estimate the risk of CVD, through both acute coronary syndrome and stroke, associated with various emerging CVRF (homocysteine, NT-proBNP, PAPP-A, and hsCRP) in the town of Motril (Granada, Spain).

METHODS

Design

This case-control study was composed of 201 patients (67 acute coronary syndrome, 67 stroke, and 67 controls), who were age and sex matched. The patients were recruited from the emergency unit of the Santa Ana Hospital (Granada, Spain), and were diagnosed with acute coronary syndrome or stroke. Controls were also selected from those users who attended the unit due to ophthalmic conditions or minor trauma.

Inclusion criteria for participants were acute coronary syndrome admission diagnoses (acute myocardial infarction or angiina in whatever form) or stroke (hemorrhagic or ischemic), who remained as hospital inpatients and were not transferred to another referral hospital; people residing in the vicinity of the hospital; and carers of people who had disabilities. Likewise, the exclusion criteria were pregnant women; and those suffering from acute or chronic inflammatory process or cancer, acute or chronic kidney disease, acute or chronic lung disease, and acute infectious processes.

Sample

The sample size was obtained using Epidat software (version 3.0; SERGAS, Galicia, Spain) based on the prevalence contributed by previous studies on emerging CVRF included in this study. Homocysteine was the most representative variable in presenting a greater uniformity in the values in different studies. Thus, to achieve a power of 90% to detect differences in the null hypothesis, H0: μ1 = μ2, with a two-tailed t-test for two independent samples, considering the significance level was 5–15% over the number of patients for possible losses, it was necessary to include 67 experimental units in the acute coronary syndrome group, 67 in the stroke group, and 67 units in the control group, which resulted in a total of 201 enrolled participants.

The type of sample used for the selection of the acute coronary syndrome group, the stroke group, and controls was determined by systematic sampling, with a starting parameter of 320 and an interval parameter of 756. Thus, acute coronary syndrome and stroke were selected where the number of admissions most closely approached the boot parameter range and above, with a corresponding matched control starting from the first day of data collection to complete the necessary sample, which was from June 2011 to May 2013.

Ethical considerations

Approval was obtained from the Ethics Committee of the Southern Health Agency of Granada. Furthermore, informed consent from the patients before the collection of data from each patient was provided. This included guaranteeing the confidentiality of the obtained data. The study was conducted in accordance with the provisions of the Declaration of Helsinki.

Data collection

Data collection was conducted through interviews, during which information about age, sex, admission, diagnosis, and personal history of diagnosis of hypertension and diabetes mellitus was obtained. Height and weight were measured with a Seca 220 height–weight scale (Hamburg, Germany). Height was measured without shoes, and weight was measured with clothing on and empty pockets at hospital admission. The
smoking habits of individuals were categorized into “ex-smoker” if they had not utilized tobacco for at least 1 year, “smoker” if they were currently utilizing tobacco and had been doing so for at least 1 year, and “non-smoker” if they had never smoked.

Blood determinations

Blood samples for the determination of total plasma cholesterol and emerging CVRF under study were drawn using the peripheral venous puncture system Vacutainer (xxx, xxx, xxx) in the first 12 h after admission. They were then analyzed in an EDTA tube that was kept cold until analysis by *in-vitro* quantitative determination using an enzymatic photometric test in a Roche Elecsys analyzer (Roche Diagnostics, xxx, Spain). The measuring range was 3–750 mg/dL (0.08–19.4 mmol/L), with ≤200 mg/dL being desirable values and >240 mg/dL being high-risk values, and a stability of 20–25°C for 3 days, 7 days at 4–8°C, and 3 months at −20°C. The samples were centrifuged and analyzed within 2 h after extraction.

For the determination of NT-proBNP and PAPP-A, tubes with EDTA were utilized and immediately introduced into a cooler with ice and transported to the laboratory where an immunoassay for an *in-vitro* quantitative determination in human plasma electroquimuluminescencia immunoassay (ECLIA) (Roche Elecsys automated analyzer, Roche Diagnostics, Spain) was used. Elecsys proBNP contains two polyclonal antibodies that recognize epitopes located in the N-terminal proBNP (stretch), for which a sandwich technique is used with a total duration of 18 min. The measuring range of NT-proBNP was 5–35000 pg/mL, which is considered normal for values ≤100 pg/mL for men and ≤150 pg/mL for women. The samples had a stability of 3 days at 20–25°C, 6 days at 2–8°C, and 12 months at 20°C. Samples were centrifuged prior to testing, and possible effects due to the evaporation of samples, controls, and calibrators were determined within 2 h.

The same sandwich technique was used for the determination of PAPP-A, with a measuring range of 4–10,000 mIU/L.

The stability of the samples was 8 h at 15–25°C, 3 days at 2–8°C, and 3 months at −20°C.

In the case of hsCRP and homocysteine, an *in-vitro* quantitative determination in human plasma by photometry using the automatic analyzer Roche/Hitachi cobas c (Roche Diagnostics, Spain), which was used in this study, was performed on a blood sample collected in the tube with EDTA. The hsCRP test is based on the principle of immune-enhanced agglutination test particles. The measuring range in this case was 0.15–20 mg/L (1.43–190 nmol/L), with a stability of 3 days at 15–25°C, 8 days at 2–8°C, and 3 years at −15 to −25°C. The result considered normal is <0.1 mg/dL. Samples were kept cold and were centrifuged within 2 h. The samples were processed by homocysteine photometry based on a novel principle that evaluates the conversion product of the homocysteine cosubstrate. The measurement range was 2.5–50 mmol/L, with a stability of 4 days at 20–25°C, 4 weeks at 0–8°C, and 4 months at −20°C.

The normal range for adults is 5–100 pg/mL.

Data analysis

A descriptive analysis of the variables was performed by calculating measures of central tendency and dispersion for numeric variables, and absolute and relative frequencies for qualitative variables. With the intention of utilizing the parametric and/or non-parametric test, the normality of the variables prior to the bivariate analysis Shapiro–Wilk test was confirmed. To test whether there were differences between the three groups, for numeric variables, analysis of variance (ANOVA) test or Kruskal–Wallis test was used if the variables were not normal. The χ²-test was used to measure the differences between categorical variables, and a level of *P* < 0.05 was considered significant. The relationship between the various traditional and emerging biomarkers with the acute coronary syndrome group and stroke group separately was analyzed using a multivariate logistic regression analysis. Furthermore, the variable selection method was backward stepwise logistic regression, where a level of *P* < 0.10 was considered significant. Analyses were performed with free software R Project for Statistical Computing version 3.0.3 (R Core Team, 2014).

RESULTS

The study population consisted of 102 men (50.75%) and 99 women (49.25%), divided into 67 acute coronary syndrome, 67 stroke, and 67 controls. No statistically-significant differences in the characteristics were found when considering the matched characteristics between the three groups. The average age of the acute coronary syndrome and stroke groups was 70.47 (standard deviation [SD]: 11.74) and 70.55 (SD: 11.73) years, respectively. Both study groups had a body mass index (BMI) classified as overweight or pre-obesity grade II (BMI = 27–29.9 kg/m²), which was the most predominant value of BMI in acute coronary syndrome (25.37%), and the second most prevalent in stroke (23.88%). In the case of controls, the predominant group was the grade I overweight (BMI = 25–29.9 kg/m²) at 41.79%. Only 17.91% of the controls had a BMI corresponding to normal weight (BMI = 18.5-24.9 kg/m²) compared to 40.3% of the controls. The mean total cholesterol values of the controls was greater than the mean of the two study groups. In contrast, the levels of emerging CVRF in both study groups were higher than those of the controls (Table 1).

After controlling for age and sex, most CVRF considered in this study were significantly different between each study group and the control group. In the logistic regression analysis performed for each study group, all CVRF behaved as significant predictors of stroke or acute coronary syndrome, except smoking and total cholesterol levels for the stroke group (Table 2).

In the multivariate analysis, maintaining a significance level of *P* < 0.05, for the acute coronary syndrome group, blood pressure and BMI as adjustable CVRF, and NT-proBNP and PAPP-A as emerging CVRF, continued to be significant, independent predictors. For stroke, it was also the diabetes group, but not PAPP-A (Table 3).

The area under the ROC curve for the resulting model of multivariate analysis for the SCA group was 0.988, and 0.955 for the stroke group (Figs 1 and 2).

© 2016 John Wiley & Sons Australia, Ltd.
For stroke, it was also diabetes, but not PAPP-A (Table 3).

DISCUSSION

Using a matched case-control design to minimize the confounding effect, the hypertension, BMI, NT-proBNP, and PAPP-A variables remained as predictors of acute coronary syndrome. For stroke, it was also diabetes, but not PAPP-A (Table 3).

The high prevalence of hypertension in our elderly sample was consistent with national estimates for this age group (Mancia et al., 2013). In the control group, despite the lower prevalence of hypertension, nearly one-quarter presented a medium-high risk of CVD according to the SCORE risk scale.
enabled us to factor in the occurrence of future cardiovascular events over the next 10 years in the population, because CVRF are modifiable through healthy lifestyles (Martínez et al., 2014).

Likewise, the high prevalence of diabetes in our population is consistent with estimates by age and sex with the diabet.es Study on the prevalence of diabetes mellitus conducted in Spain in 2012 (Soriguer et al., 2011), where the prevalence in the control group was much lower here than in the acute coronary syndrome and stroke groups.

The means of the BMI show how the population of Motril suffering CVD can be classified as overweight or pre-obesity grade II, three-quarters of the aforementioned being above the normal weight. These numbers are higher than the mean of the Spanish population, among which nearly half present with obesity or might be defined as being overweight (Rodríguez et al., 2011). In addition, the average BMI of the control group can be classified as overweight, which enables us to anticipate future CVD events that could be avoided. Currently, there is no evidence to justify the replacement of BMI by any other form of measurement of overweight–obesity (European Society of Cardiology, 2012). One of the limitations of the SCORE risk scale is that it does not include the BMI in its algorithm, and given the independent association with CVD, this is an important consideration that must be taken into account when the CVR is evaluated.

In terms of total cholesterol, this does not appear as CVRF, with statistical significance in both study groups, and the means of the two study groups and the control group, being very similar. A similar occurrence takes place with smoking, which did not appear to be statistically significant in the case of the stroke group in the bivariate analysis, but was significant in the acute coronary syndrome group. This significance disappears in the multivariate analysis, because in the logistic regression analysis,
the categories of “smoker” and “ex-smoker” did not show statistical significance when compared with the “non-smoker” group.

As an emerging CVRF in the acute coronary syndrome group, NT-proBNP had a weak but statistically-significant association. Several studies have shown the relationship between NT-proBNP and CVD as well as other causes of mortality in the general population and in the population with coronary heart disease, particularly among the elderly, including stroke (Oulbye et al., 2013; Linssen et al., 2010; Mishra et al., 2014; Odden et al., 2014). In Niu et al.’s study, the plasma concentration of NT-proBNP was closely related to the size of the necrotic cardiac injury in patients with acute myocardial infarction and could be used to assess its size (Niu et al., 2014). However, in our study, NT-proBNP showed a weak statistical significance in the stroke group that disappeared on multivariate analysis. This could be explained by the presence of cardioembolic stroke caused by atrial fibrillation, which produces elevated NT-proBNP (Kara et al., 2014; Hajsadeghi et al., 2013). In their meta-analysis, Yang et al. suggests that NT-proBNP is a good useful diagnostic marker for distinguishing cardioembolic stroke from other categories, with the consequential benefit for these patients being the initiation of preventive anticoagulant therapy (Yang et al., 2014). Moreover, biochemical studies have indicated that cerebral ischemia generates NT-proBNP secretion by brain tissue (Nogami et al., 2001).

Our study demonstrates a relationship of PAPP-A to the specific cardiovascular outcomes of acute coronary syndrome, but not stroke, in the general population. PAPP-A has been shown to be present in advanced stages of atherosclerosis, and was significantly associated as CVRF with both study groups in the bivariate analysis, but lost this significance to stroke in the multivariate analysis (Li et al., 2013). Our results support the findings of previous studies that showed PAPP-A as a marker of unstable atherosclerotic plaques. PAPP-A is produced by many cell types, both in reproductive (testicles and endometrium) and non-reproductive tissues, including fibroblasts, vascular smooth muscle cells, and endothelial cells (Conover, 2012). Moreover, macrophages can contribute to PAPP-A overexpression due to the production of pro-inflammatory cytokines, interleukin-1β and tumor necrosis factor-α. Degradation of some of these cytokines makes PAPP-A help insulin-like growth factor-1 to carry out its action (Lawrence et al., 1999). Therefore, PAPP-A has a very important role in the development of atherosclerotic lesions in animal models (Conover, 2010).

In 2001, in one of the first studies conducted by Bayes-Genis et al., patients with coronary disease had levels of PAPP-A greater than those without this condition, which was then proposed as a new, emerging CVRF in unstable angina and acute myocardial infarction (Bayes-Genis et al., 2001). A meta-analysis conducted by Li et al. of 14 studies and 12,830 participants concluded that high levels of PAPP-A are associated with adverse events in patients with coronary heart disease (Li et al., 2013). PAPP-A has also been proposed as an early marker of atherosclerotic plaque rupture (You et al., 2013; Sangiorgi et al., 2006). Moreover, in our study, no statistically-significant association between levels of PAPP-A and stroke was found; it was noted that there is minimal scientific literature available regarding this. However, in studies, such as those of Fialova et al., PAPP-A levels were elevated in patients with intracranial hemorrhage or brain ischemia (Fialová et al., 2006). Nevertheless, in most of these studies, episodes of stroke occurred in patients with previous coronary disease that could generate thrombus. More studies are therefore needed.

In our study, the other emerging CVRF analyzed demonstrated no association with CVD. With regard to homocysteine, a large number of epidemiological studies and meta-analyses have shown that hyperhomocysteinemia is an independent risk factor of atherosclerosis and thrombosis that is relevant in both acute coronary syndrome and stroke (Homocysteine Studies Collaboration, 2002; Zylberstein et al., 2004). In the same way, treatment with folic acid to reduce levels of homocysteine, and thus prevent cardiovascular events, has been unsuccessful (Martí-Carvajal et al., 2015). However, other meta-analysis have given less importance to this substance as a CVRF due to the presence of confounding factors, such as metabolic nutritional aspects and lifestyle (Clarke et al., 2010). Further to this, hsCRP demonstrated a statistically-significant association with both acute coronary syndrome and stroke in the univariate analysis, an effect that disappeared in the multivariate analysis. At present, the mechanism by which this substance would be involved in CVD is not well clarified. However, its origin could reside both in the presence of a complicated atherosclerotic plaque and in a myocardial or cerebral necrosis. In this case, several studies have linked hsPCR with CVD, both coronary and cerebral, and as an independent predictor of CVRF in the evolution and outcome after suffering a cardiovascular event (Fiechter et al., 2013), (Naess et al., 2013). However, a series of systematic reviews and meta-analyses published in recent years have highlighted the need for more studies (van Gilder et al., 2014).

The strength of this study is mainly the case-control design used. This is the most appropriate for studying rare outcomes of disease processes that develop during prolonged periods (Argimón & Jiménez, 2013). It was the most suitable for studying the association between a number of emerging CVRF and CVD in its aspect of acute coronary syndrome and stroke, as CVD is a pathophysiological process that develops over many years, so transverse and longitudinal studies are inappropriate for this population. In addition, a study of this kind has not been conducted previously in the city of Granada (Spain). Other strengths of this study include matching of the sample by age and sex to minimize the important confounding effects of them, and the consideration of classic CVRF that could also have caused confounding effects.

Limitations

Despite careful design and analysis tailored to our working conditions and economic possibilities for carrying it out, our study has some limitations. First is its design as a case-control study, which could limit the ability to generalize the findings. However, our study could contribute to the design of studies with different methodologies and conducted in a multicenter way that serves to validate our results, generalize, and thus improve future clinical practice.
It is known that most CVD are caused by one or more factors known as CVRF, and in our study, we assumed that CVD were caused by these. However, we cannot absolutely conclude if they were caused by some other CVRF that were not included in this study. Besides this, we cannot ensure that the increase in blood levels of emerging CVRF, less well known than the classic CVRF, might have been high for unknown reasons, and consequently, might have had confounding effects. Classic CVRF were considered, and we corrected these, taking into account any possible confounding effects they could have had.

Although the samples were manipulated using standard procedures and following indications of the manufacturers of reagents used for analysis, it is possible that pre-analytical issues (i.e. storage) could have affected the stability of the substances analyzed in the blood.

Conclusions

In summary, when taking into account the control of the confounding effects of age, sex, hypertension, diabetes mellitus, BMI, smoking, and total cholesterol, only NT-proBNP was found to be an independent predictor for acute coronary syndrome and stroke. However, PAPP-A was only found to be a good independent predictor for acute coronary syndrome, but not for stroke. The high levels of CVRF, both classical and emerging, in individuals with no CVD episodes requires the implementation of prevention programs, given that least half of them are modifiable, thereby further contributing to economic savings for our public health system and society in general.

After controlling for age, sex, and classic CVRF, PAPP-A was found to be a good predictor and biomarker of the specific cardiovascular outcome acute coronary syndrome. Its etiology and mechanism of action require further investigation. Moreover, the existence of studies and meta-analyses with conflicting results on the use of emerging cardiovascular risk factors that were included in our study makes more research necessary. It could therefore be concluded that based on sufficient evidence, PAPP-A could be used for the determination of CVR, and possibly be included in the prediction algorithms of CVR.

ACKNOWLEDGEMENT

This research was conducted with funding from the Health Agency of Health South of Grenada, Spain, and was partially funded by the MTM2013-47929-P project from “Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad”, Spain.

CONTRIBUTIONS

Study Design: JMML, RGB, FMOM, FJSP Data Collection and Analysis: JMML, RGB, FMOM, FJSP Manuscript Writing: JMML, RGB, FMOM, FJSP

REFERENCES

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your proofs with the necessary changes/additions:

- If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
- If you intend to annotate your proof by means of hard-copy mark-up, please use the standard proofing marks. If manually writing corrections on your proof and returning it by fax, do not write too close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide additional clarification of answers to queries by entering your answers on the query sheet, in addition to the text mark-up.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please provide author qualifications (e.g. PhD).</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: Please provide a degrees.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Please provide English translation, as per journal style.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: Please provide English translation, as per journal style.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: The citation “Eurostat, 2012 ” (original) has been changed to “European Comission, 2012”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>AUTHOR: Please provide $US equivalent, as per journal style.</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>AUTHOR: The citation “Sangiori et al., 2006” (original) has been changed to “Sangiorgi et al., 2006”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>AUTHOR: Sentence has been modified for clarity. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>AUTHOR: Please provide name of manufacturer, city, state, and country of manufacture.</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>AUTHOR: Please define EDTA in the first instance.</td>
<td></td>
</tr>
<tr>
<td>Q11</td>
<td>AUTHOR: Please provide city name.</td>
<td></td>
</tr>
<tr>
<td>Q12</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>AUTHOR: Please confirm that this modification is correct.</td>
<td></td>
</tr>
<tr>
<td>Q14</td>
<td>AUTHOR: Please confirm that this modification is correct.</td>
<td></td>
</tr>
<tr>
<td>Q15</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Query No.</td>
<td>Query</td>
<td>Remark</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Q16</td>
<td>AUTHOR: Please spell out ROC.</td>
<td></td>
</tr>
<tr>
<td>Q17</td>
<td>AUTHOR: Please spell out SCA or should this be ‘acute coronary syndrome’?</td>
<td></td>
</tr>
<tr>
<td>Q18</td>
<td>AUTHOR: Please define ROC.</td>
<td></td>
</tr>
<tr>
<td>Q19</td>
<td>AUTHOR: Please define ROC.</td>
<td></td>
</tr>
<tr>
<td>Q20</td>
<td>AUTHOR: Please define SCORE in the first instance.</td>
<td></td>
</tr>
<tr>
<td>Q21</td>
<td>AUTHOR: The citation “Sans et al., 2006” (original) has been changed to “Sans et al., 2007”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q22</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q23</td>
<td>AUTHOR: The citation “Soriguer et al., 2012” (original) has been changed to “Soriguer et al., 2011”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q24</td>
<td>AUTHOR: “European Society of Cardiology, 2012” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q25</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q26</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q27</td>
<td>AUTHOR: The citation “Ouleye et al., 2013” (original) has been changed to “Ouleye et al., 2013”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q28</td>
<td>AUTHOR: The citation “Linssen et al., 2010” (original) has been changed to “Linssen et al., 2010”. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q29</td>
<td>AUTHOR: Please confirm that the definitions that I have inserted here are correct.</td>
<td></td>
</tr>
<tr>
<td>Q30</td>
<td>AUTHOR: “Conover, 2010” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q31</td>
<td>AUTHOR: Sentence has been modified for clarity. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q32</td>
<td>AUTHOR: Sentence has been modified for clarity. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q33</td>
<td>AUTHOR: “You et al., 2013” is cited in text but not given in the reference list. Please provide details in the list or delete the citation from the text.</td>
<td></td>
</tr>
<tr>
<td>Q34</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q35</td>
<td>AUTHOR: Sentence has been modified for clarity and sense. Please confirm that the meaning has been retained.</td>
<td></td>
</tr>
<tr>
<td>Q36</td>
<td>AUTHOR: Please provide English translation.</td>
<td></td>
</tr>
<tr>
<td>Q37</td>
<td>AUTHOR: Ref. Instituto Nacional de Estadística, 2012, Please indicate what language this is in.</td>
<td></td>
</tr>
<tr>
<td>Q38</td>
<td>AUTHOR: Ref. Martínez JM, et al. 2014, Please indicate what language this is in.</td>
<td></td>
</tr>
<tr>
<td>Query No.</td>
<td>Query</td>
<td>Remark</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Q39</td>
<td>AUTHOR: Reference “Quinto Grupo de Trabajo de la Sociedad Europea de Cardiología y otras Sociedades sobre la Prevención de la Enfermedad Cardiovascular en la Práctica Clínica (2012)” is not cited in the text. Please indicate where it should be cited; or delete from the reference list.</td>
<td></td>
</tr>
<tr>
<td>Q40</td>
<td>AUTHOR: Please indicate what language this is in.</td>
<td></td>
</tr>
<tr>
<td>Q41</td>
<td>AUTHOR: Please modify this reference accordingly.</td>
<td></td>
</tr>
<tr>
<td>Q42</td>
<td>AUTHOR: Ref: Rodríguez E, 2011. Please indicate what language this is in.</td>
<td></td>
</tr>
<tr>
<td>Q43</td>
<td>AUTHOR: Please indicate what language this is in.</td>
<td></td>
</tr>
</tbody>
</table>
Required software to e-annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or above). (Note that this document uses screenshots from Adobe Reader X)
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We’ve picked out some of these tools below:

1. **Replace (Ins)** Tool – for replacing text.
 - Strikes a line through text and opens up a text box where replacement text can be entered.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. **Strikethrough (Del)** Tool – for deleting text.
 - Strikes a red line through text that is to be deleted.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. **Add note to text** Tool – for highlighting a section to be changed to bold or italic.
 - Highlights text in yellow and opens up a text box where comments can be entered.
 - **How to use it**
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. **Add sticky note** Tool – for making notes at specific points in the text.
 - Marks a point in the proof where a comment needs to be highlighted.
 - **How to use it**
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

How to use it
- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

How to use it
- Click on the Add stamp icon in the Annotations section.
- Select the stamp you want to use. (The Approved stamp is usually available directly in the menu that appears).
- Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

How to use it
- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: