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Abstract

Despite the outstanding progress made on automatic speech recognition (ASR) through-
out the last decades, noise-robust ASR still poses a challenge. Tackling with acoustic
noise in ASR systems is more important than ever before for a twofold reason: 1) ASR
technology has begun to be extensively integrated in intelligent mobile devices (IMDs)
such as smartphones to easily accomplish different tasks (e.g. search-by-voice), and 2)
IMDs can be used anywhere at any time, that is, under many different acoustic (noisy)
conditions.

On the other hand, with the aim of enhancing noisy speech, IMDs have begun to
embed small microphone arrays, i.e. microphone arrays comprised of a few sensors close
each other. These multi-sensor IMDs often embed one microphone (usually at their
rear) intended to capture the acoustic environment more than the speaker’s voice. This
is the so-called secondary microphone. While classical microphone array processing
(also known as beamforming) may be used for noise-robust ASR purposes, it is reported
in the literature that its performance is quite limited when considering very few sensors
close each other, one of them being a secondary microphone.

As a result, the main goal of this Thesis is to explore a new series of dual-channel
algorithms exploiting a secondary sensor to improve ASR accuracy on IMDs being used
in everyday noisy environments.

First, three dual-channel power spectrum enhancement methods are developed to
circumvent the limitations of related single-channel feature enhancement methods when
applied to such a dual-microphone set-up. These proposals have been referred to
as DCSS (Dual-Channel Spectral Subtraction), P-MVDR (Power-Minimum Variance
Distortionless Response) and DSW (Dual-channel Spectral Weighting, based on Wiener
filtering). In particular, DSW starts from a simple formulation in which it is assumed
that the secondary microphone only captures noise and the existence of a homogeneous
noise field. Since it is known that both assumptions are not accurate, the Wiener filter
(WF)-based weighting is modified through 1) a bias correction term (to rectify the
resulting spectral weights when a non-negligible speech component is present at the
secondary channel), and 2) a noise equalization (inspired by MVDR beamforming)
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applied on the secondary channel before spectral weight computation. All of these
techniques require knowledge of the relative speech gain (RSG) which relates the clean
speech power spectra at the two channels. To obtain the RSG, a two-channel minimum
mean square error (MMSE)-based estimator is also developed for this task in this
Thesis.

In addition, the vector Taylor series (VTS) approach for noise-robust ASR has been
widely applied over the last two decades in a successful manner. Then, VTS feature
compensation is extended to be performed on a dual-channel framework in a similar
fashion to the aforementioned power spectrum enhancement methods. The overarching
element of this dual-channel VTS method is the stacked formulation. From this, an
MMSE-based estimator for the log-Mel clean speech features, which relies on a VTS
expansion of a dual-channel speech distortion model, is developed. The superiority of
our dual-channel approach with respect to the single-channel one is also shown in this
Thesis.

To conclude, two dual-channel deep learning-based contributions are presented to
deal with the development of two complex (from an analytical point of view) tasks of
a noise-robust ASR system. These tasks are missing-data mask and noise estimation,
which are faced by taking benefit from the powerful modeling capabilities of deep neu-
ral networks (DNNs). More specifically, these DNNs exploit the power level difference
(PLD) between the two available channels to efficiently obtain the corresponding esti-
mates with good generalization ability. While missing-data mask and noise estimates
can be employed in various ways for noise-robust ASR purposes, in this Thesis they
are applied to spectral reconstruction and feature compensation, respectively.

It should be highlighted that our contributions broadly showed an outstanding per-
formance at low signal-to-noise ratios (SNRs), which makes them promising techniques
to be used in highly noisy environments such as those where IMDs might be employed.
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Notation

Typographical conventions
x scalar variable
x vector
X matrix
x̂ estimation of x

Symbols and operators
≈ approximately equal to
∝ proportional to
� element-wise vector multiplication
∗ convolution
argminx f(x) value of x that minimizes f(x)
∇ gradient
L Lagrangian function

Vectors and matrices
x column vector
1 all-ones vector
0 zero vector
A matrix
A> transpose of A
A−1 inverse of A
I identity matrix
diag(x) diagonal matrix with main diagonal x
log(x) logarithm applied element-wise
ex exponential function applied element-wise
C DCT matrix
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Probability distributions
P (·) probability
p(·) probability density function
p(x, y) joint density function of x and y
p(x|y) conditional density function of x given y
N (x|µ, σ) Gaussian distribution of mean µ and variance σ2

p(x) multivariate probability density function
N (x|µ,Σ) multivariate Gaussian distribution of mean µ and covariance Σ
E[x] expected value of x

Signals
x clean speech feature vector
y noisy speech feature vector
n additive noise feature vector
h convolutive noise vector

Indices
t time frame index
f frequency bin index
T number of frames in an utterance
·x clean speech subscript
·y noisy speech subscript
·n additive noise subscript
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CHAPTER 1
Introduction

1.1 Motivation and overview

Intelligent mobile devices (IMDs) such as smartphones or tablets have revolution-
ized the way we live. They allow us to carry out a large variety of tasks that make

our lives easier, e.g. communicating with other people anywhere at any time or search-
ing for information instantaneously. These devices are pervasively used in our society
in such a way that a large percentage of population from all around the world has at
least one IMD. Indeed, this is reflected by the IMD sales growth year after year. For
example, Figure 1.1 indicates the global smartphone sales in million units from 2010
to 2015. The sales increase over the last years has been spectacular, from less than 300
million smartphones sold in 2010 to nearly 1500 million in 2015.
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Figure 1.1: Global smartphone sales (in million units) from 2010 to 2015 [171].
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1. Introduction

Because of both the facts described above and the extraordinary computational
power of recent IMDs, automatic speech recognition (ASR) has experienced a new up-
swing. ASR is a mature technology which has begun to be extensively integrated in
IMDs in order to accomplish different tasks such as search-by-voice, dictation, voice
control, and many other speech-enabled services. Despite this, ASR systems are still
somewhat far from the speech recognition accuracy that the human being exhibits. At
this respect, let us consider a small-vocabulary task consisting of the recognition of se-
quences of digits. In this case, while humans present an error rate below 0.009% [117],
some of the best ASR systems achieve a rate not less than 0.55% [207]. Furthermore,
such error rates as well as the performance gap between humans and machines are even
higher for more complex and larger vocabulary tasks. For instance, in a telephonic con-
versation context, humans show an error rate around 4%, while ASR systems go up to
12% [25]. Several issues contribute to this performance gap between humans and ma-
chines and they are essentially related with the introduction of mismatch between the
training and testing conditions of the ASR system (this will be further clarified during
the next chapter). One of the most important factors contributing to the performance
degradation of an ASR system is acoustic noise and, in particular, background (i.e.
additive) noise. Thus, while human beings exhibit a high degree of robustness against
noise when recognizing speech, this type of distortion can make ASR systems unusable
even when integrating specific techniques to deal with it [117].

Mobile devices can be employed anywhere at any time, in such a way that coping
with a wide variety of noisy environments is mandatory to ensure a good user experience
when running speech recognition-based applications on these devices. In summary,
precisely because of the proliferation of IMDs integrating ASR technology, tackling
with noise is more important than ever before.

Over the recent years, with the aim of enhancing noisy speech, these devices have
begun to embed small microphone arrays, i.e. microphone arrays comprised of a few
sensors close each other. For example, Figure 1.2 illustrates a commercial smartphone
embedding two microphones. Apart from the microphone located at the bottom of
the device in order to be next to the speaker’s mouth when having a conversation,
a secondary sensor is placed at the rear of the smartphone. When the speaker talks
on the phone, the latter sensor looks towards the environment to capture valuable
information that can be used to perform noise cancellation in an easy and efficient
manner.

According to the reasons discussed above, the main goal of this Thesis is therefore
to design proper techniques to make ASR systems performing on IMDs robust to noise.
More precisely, we will exploit the multi-channel information from the small microphone
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1.2. Automatic speech recognition

Figure 1.2: Example of smartphone embedding two microphones the location
of which is marked with red circles. Front (left) and back (right) sides of the
smartphone are drawn.

arrays embedded in the latest IMDs to outperform related single-channel noise-robust
methods. While classical microphone array processing may be used for this purpose,
it is shown in the literature that its performance is quite limited under certain small
microphone array frameworks [179, 180]. Hence, exploring new approaches in this
context seems preferable to better exploit the features of IMDs with several sensors.
Finally, it must be pointed out that we will focus on tackling additive/background
noise, while convolutive noise due to reverberation and other channel effects is out of
the scope of this Thesis.

1.2 Automatic speech recognition
Automatic speech recognition (ASR) refers to a process, conducted by a machine,
consisting of the conversion of spoken words into a machine-readable transcription.
This transcription can be further manipulated for example to provide to the end user
a written version of the sequence of words recognized from the input speech. A very
brief introduction to the basics of ASR systems is given in this section.

It can be considered that an ASR system is comprised of two differentiated main
modules: front-end and back-end. The front-end is devoted to the extraction of speech
features that are appropriate for later recognition. This module is reviewed in Subsec-
tion 1.2.1. On the other hand, the back-end, which is introduced in Subsection 1.2.2,
is responsible for carrying out the actual speech recognition process from the speech
features extracted by the front-end.
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CHAPTER 2. HIDDEN MARKOV MODEL SPEECH RECOGNITION 6

2.2 Front-end Processing
The front-end processes audio to produce or “extract” features that ideally are optimal for
speech recognition and invariant to extraneous factors such as different speakers, microphones
or environmental noise. The front-end stage may also be divided into two steps: segmenta-
tion and feature extraction [27]. The first involves isolating relevant speech segments from
the background. For example, in dialogue systems a speech detector, or end-pointer, senses
the beginning and end points of speech from the background. Or in broadcast news transcrip-
tion, a segmentation stage may precede the front-end to remove the opening titles, musical
interludes and commercials [131]. Once these segments are identified, they are processed to
yield salient features for classification.

In the feature extraction stage, the speech signal captured by the microphone is sampled
and digitised into discrete samples over time. A popular feature representation is mel fre-
quency cepstrum coefficients (MFCC) [20], which arise from a homomorphic transform of the
short-term spectrum expressed on a mel frequency scale. Figure 2.2 shows how they may be
computed. Their use is motivated by both perceptual and performance aspects. In speech
production, the vocal tract may be viewed as a filter acting on a sound source, such as the
glottis—this is the source-filter model [57, 72, 125]. In continuous speech, it has been noted
that the vocal tract changes shape slowly in continuous speech; therefore at small enough
time scales, on the order of 10 ms, it may be considered a filter of fixed characteristics [125].
Hence, a short-time Fourier transform is applied, converting the time domain signal into the
frequency or spectral domain. A first-order pre-emphasis filter is usually applied to accen-

Figure 2.2: Front-end processing for MFCC. Speech waveform converted to smoothed short-
term log spectrum every 10 ms. Discrete cosine transform is applied and dynamic terms
appended to produce the complete feature vector st.

Figure 1.3: Diagram of a typical feature extractor for ASR purposes [112].

1.2.1 Speech feature extraction

The purpose of the front-end stage is to extract a series of parameters useful for speech
recognition. These parameters, known as speech features, must meet certain desirable
properties. Thus, they should represent the most relevant speech characteristics that
allow us discriminating among the variety of linguistic units with the less amount of
coefficients as possible. In other words, they should be both discriminative and com-
pact, respectively. Moreover, as much as possible, these parameters should be robust
(namely insensitive) to different acoustic variations, e.g. ambient noise or inter-speaker
variabilities. Several types of speech parameterizations meeting the aforementioned re-
quirements have been proposed in the literature over the years. In fact, some of them
such as PNCCs (Power-Normalized Cepstral Coefficients) [101] or PLP (Perceptually-
based Linear Prediction) [74] will be commented later in Subsection 2.2.1. Neverthe-
less, to this day, the most widely used type of speech features are the so-called MFCCs
(Mel-Frequency Cepstral Coefficients) [32], which will also be employed throughout the
development of this Thesis. Because of this, let us briefly examine how MFCCs work
from the diagram shown in Figure 1.3.
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1.2. Automatic speech recognition

First, the speech signal being captured by a microphone is digitized to be converted
into a discrete-time signal. Since most of the significant speech energy is concentrated
below 5 kHz, it is typical to make use of a sampling rate of 8 kHz or 16 kHz. Then, the
discretized speech signal is segmented into overlapping frames of time length between
20 ms and 30 ms, in such a manner that the signal in each frame can be assumed
quasi-stationary. To enhance the high frequency components of speech, a pre-emphasis
filtering is applied to the signal. The resulting filtered signal is typically windowed
by means of a Hamming window, and then transformed into the frequency domain by
application of the discrete Fourier transform (DFT). Based on the Mel scale [173] which
approximates the frequency resolution of the human ear, a Mel filterbank is employed to
transform the magnitude or power spectrum of the speech signal to the Mel-frequency
domain. To model the perceptual sensitivity of the human ear, the dynamic range of
each filterbank output is compressed by application of the natural logarithm. Since
these speech features are still highly correlated, their discrete cosine transform (DCT)
is computed to get a more compact representation. This set of coefficients is what we
know as MFCCs. This highly decorrelated speech representation is very appropriate to
implement the acoustic models of the recognizer in an efficient way involving relatively
few parameters. In particular, it is usual to employ 13 MFCCs per each time frame.
Finally, if Gaussian mixture models (GMMs) are considered for acoustic modeling,
the first and second derivatives of these coefficients are appended to them in order to
form a 39-dimensional speech feature vector, which is then used for recognition. These
derivatives try to capture the non-stationary behavior of the speech signal over time,
something convenient to overcome the limited temporal modeling of hidden Markov
models (HMMs) [112]. Alternatively, if artificial neural networks (ANNs) are employed
for acoustic modeling, a temporal context is appended to each 13-dimensional MFCC
feature vector to allow us learning the speech dynamics.

1.2.2 Back-end

The speech recognition problem can be stated as follows. First, let X = (x0,x1, ...,xT−1)
be a T long sequence of feature vectors extracted from a speech signal. Then, the ob-
jective in ASR is to find the most likely sequence of words W = (w1, w2, ..., wm) from
the set of features X. This can be formulated as a maximum a posteriori (MAP) esti-
mation problem. More precisely, the goal of the back-end stage is to find the sequence
of words Ŵ that maximizes the probability P (W|X). In practice, this is achieved by
the application of the Viterbi algorithm [189], which allows us the decoding of W from
the observations X. This MAP estimation problem can be expressed using the Bayes’
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rule in the following way:

Ŵ = argmaxW P (W|X)

= argmaxW
p(X|W)P (W)

p(X)

= argmaxW p(X|W)P (W),

(1.1)

where p(X|W) and P (W) are known as the acoustic and language scores, respectively.
To find out p(X|W), which gives us the probability of observing the set of features X
given the phrase W, we require both the lexicon (i.e. the mapping between the written
words that can be recognized and the word phonetic transcriptions) and the acoustic
model of the recognizer. In addition, P (W) is the prior probability of the sequence of
words W. This probability is given by the language model of the recognizer. Some
comments on both language and acoustic modeling are given immediately below.

1.2.2.1 Language modeling

As aforementioned, the prior probability of the word sequence hypothesis W involved
in (1.1), P (W), can be determined through the language model of the recognizer.
According to its definition, we can see that this probability does not depend on the
observed speech signal but only on the language characteristics and, more in particular,
on the linguistic task taken into account by the ASR system. The N -gram statistical
approach has traditionally been the most popular to deploy language modeling. In
an N -gram context, the probability of a word wi is modeled given the known N − 1
preceding words (wi−1, ..., wi−N+1). Thus, P (W) can be computed as

P (W) =
m∏
i=1

P (wi|wi−1, ..., wi−N+1), (1.2)

where it is assumed that the sequence W is comprised of a total of m words. In
practice, it is usual to employ bigram (N = 2) or trigram (N = 3) language models.

Over the last years, there has been a transition from standard N -gram techniques
to connectionist approaches for language modeling. For instance, recurrent neural
networks (RNNs) are nowadays widely used to fit a probabilistic model to compute
P (W). Connectionist language models have shown to be superior to standard N -gram
approaches except for their higher computational complexity [135].
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1.2 Isolated Word Recognition 4

assumed, then estimation from data is possible since the problem of estimating the class conditional
observation densities P (O|wi) is replaced by the much simpler problem of estimating the Markov
model parameters.

Speech
Waveform

Speech
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Concept: a single word

Parameterise
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w
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Fig. 1.2 Isolated Word
Problem

I n HMM based speech recognition, it is assumed that the sequence of observed speech vectors
corresponding to each word is generated by a Markov model as shown in Fig. 1.3. A Markov model
is a finite state machine which changes state once every time unit and each time t that a state j
is entered, a speech vector ot is generated from the probability density bj(ot). Furthermore, the
transition from state i to state j is also probabilistic and is governed by the discrete probability
aij . Fig. 1.3 shows an example of this process where the six state model moves through the state
sequence X = 1, 2, 2, 3, 4, 4, 5, 6 in order to generate the sequence o1 to o6. Notice that in HTK, the
entry and exit states of a HMM are non-emitting. This is to facilitate the construction of composite
models as explained in more detail later.

The joint probability that O is generated by the model M moving through the state sequence
X is calculated simply as the product of the transition probabilities and the output probabilities.
So for the state sequence X in Fig. 1.3

P (O, X|M) = a12b2(o1)a22b2(o2)a23b3(o3) . . . (1.4)

However, in practice, only the observation sequence O is known and the underlying state sequence
X is hidden. This is why it is called a Hidden Markov Model.

a12 a23 a34 a 45 a56

a22 a33 a44 a55

1 2 3 4 5 6

a24 a35

o1 o2 o3 o4 o5 o6

b2 o1( ) b5 o 6( )b2 o 2( ) b3 o 3( ) b4 o 4( ) b4 o 5( )

Markov 
Model 

M

Observation
Sequence

Fig. 1.3 The Markov Generation Model

Given that X is unknown, the required likelihood is computed by summing over all possible
state sequences X = x(1), x(2), x(3), . . . , x(T ), that is

P (O|M) =
∑

X

ax(0)x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1) (1.5)

Figure 1.4: Example of hidden Markov model (HMM) [204].

1.2.2.2 Acoustic modeling

The acoustic model is responsible for providing p(X|W), which explains the likelihood
of the set of speech features X given the word sequence hypothesis W. To this end,
every word wi ∈ W, i = 1, ...,m, is usually decomposed into simpler acoustic units
such as monophones or triphones from the lexicon of the recognizer. In the current
state-of-the-art ASR systems, each of these basic units is typically modeled by means
of an HMM with continuous density functions. It must be noticed that HMMs are very
appropriate to model time-varying signals. Therefore, each word is represented by the
concatenation of several HMMs modeling the corresponding sequence of basic acoustic
units contained in the word.

An example of HMM can be seen in Figure 1.4. An HMM is defined by the following
elements:

• A set of S states interconnected, (s1, ..., sS). For example, when an HMM is
employed to model a monophone, that is often comprised of S = 5 states.

• A set of transition probabilities {aij; i, j = 1, ..., S}. Each aij models the proba-
bility of moving from state si to state sj.

• A set of output observation distributions {bj(o); j = 1, ..., S}, where the observed
variable o is the speech feature vector xt within an ASR context. Each distribu-
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tion bj(o = xt) express the probability that the feature vector xt is observed at
state sj.

The HMM of Figure 1.4 has a total of S = 6 states, and the beginning and ending
states emit no output symbol. The topology of this HMM is referred to as Bakis, where
only left-to-right transitions between states are permitted (the rest of transitions aij
are forced to be zero). Due to the temporal dynamics of the speech signal, the Bakis
topology is the one considered for ASR purposes. Another well-known HMM topology
is that known as ergodic (i.e. fully-connected), where each state shares a connection
with each other.

In practice, the underlying assumption of HMM modeling is that the speech signal
is a first-order Markov stochastic process. As a result, the probability of being in state
sj at time t only depends on the state visited at time t− 1, si, that is,

P (qt = sj|qt−1 = si, ..., q1 = sk) = P (qt = sj|qt−1 = si). (1.3)

Thus, q = (q0, ..., qT−1) is the sequence of states of the model visited over time. These
probabilities are required to compute p(X|W) as specified below.

Again for simplicity, it is assumed in practice that the probability of observing the
speech feature vector xt only depends on the current state qt = sj. Until a few years
ago, GMMs were widely employed to model the output observation distributions of the
HMM states. In the case of using GMMs, the probability density function (PDF) of
state sj, bj(xt|sj), is expressed as

bj(xt|sj) =
K∑
k=1

P (k|sj)N
(
xt
∣∣∣µ(k)

sj
,Σ(k)

sj

)
, (1.4)

where K is the total number of Gaussian components, and P (k|sj) is the prior probabil-
ity of the k-th Gaussian component N

(
xt
∣∣∣µ(k)

sj
,Σ(k)

sj

)
with mean vector and covariance

matrix µ(k)
sj

and Σ(k)
sj
, respectively. Nevertheless, over the recent years, the use of ANNs

in replacement of GMMs for acoustic modeling has become pervasive because of the
better modeling capabilities of the former [82]. Hence, nowadays, it is preferred to
employ deep learning architectures such as deep feedforward neural networks instead
of GMMs to produce the state emission likelihoods.

The parameters of the HMMs, namely the transition probabilities of (1.3) and the
parameters of the generative model of (1.4) (in the case of using GMMs), are then
estimated from a training dataset. Such an estimation is iteratively performed by
means of the Baum-Welch algorithm [16] to generate the acoustic model for speech
recognition. Once done, p(X|W) can be calculated by summing over all the possible
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1.3. Objectives of this Thesis

state sequences q = (q0, ..., qT−1) able to produce the word sequence W, that is,

p(X|W) =
∑

q

T−1∏
t=0

p(xt|qt)P (qt|qt−1). (1.5)

Finally, we must point out that a macromodel λ is defined from the integration
of the acoustic and language models. This macromodel is then used to estimate, by
means of the Viterbi algorithm [189], the optimal state sequence q̂ as

q̂ = argmax
q

p(q,X |λ) , (1.6)

from which the word sequence W of the utterance is recovered.

1.3 Objectives of this Thesis
As we have introduced, ASR systems still suffer from accuracy issues when deployed
in noisy environments. Currently, this problem is more important than ever before
because of the pervasive use of ASR-based applications running on mobile devices,
which can be employed anywhere, at any time. Indeed, tackling with background
noise is mandatory to provide a good user experience. Since noise-robust ASR is still
an open issue despite all the progress made over the last decades, the key objective
of this Thesis is to make further advances on that topic while focusing on a mobile
device scenario. Because many IMDs embed small microphone arrays (i.e. arrays
comprised of a few number of sensors very close each other), we want to exploit the
multi-channel information from them in order to outperform the classical single-channel
noise-robust ASR approaches. Moreover, we also know that the performance of classical
beamforming with small microphone arrays is limited [179, 180] and, therefore, it is
important to develop specific solutions to work successfully in this scenario. More
precisely, we can highlight the following objectives:

1. To carry out a literature review about single-channel noise-robust ASR as well
as about those multi-channel noise-robust speech processing methods especially
targeted at mobile environments.

2. IMDs often embed one microphone (usually at their rear) intended to capture
the acoustic environment more than the speaker’s voice. This is the so-called
secondary microphone. Hence, another objective is to develop a new series of
dual-channel algorithms exploiting a secondary sensor to improve the ASR accu-
racy on IMDs being used in everyday noisy environments.

9



1. Introduction

3. To generate new speech resources under a dual-channel mobile device framework
for experimental purposes.

4. To evaluate our developments and comparing them with other state-of-the-art
techniques to draw conclusions in order to make further progress.

1.4 Thesis organization
This Thesis is comprised of a total of seven chapters, one of them being the present
introduction, along with three appendices. In particular, the last appendix is a compre-
hensive summary written in Spanish in order to meet with the requirements imposed
by the University of Granada regarding the drafting of the doctoral dissertation. The
theoretical foundations of this Thesis are stated in Chapter 2. Then, Chapters 3, 4
and 5 are intended to describe our contributions on multi-channel noise-robust ASR
on IMDs. The organization of such contributions into three different chapters has been
done accounting for both the type of noise-robust approach and the working domain.
Finally, in Chapters 6 and 7 the experimental evaluation and the conclusions are shown,
respectively. More specifically:

• In Chapter 2, a literature review is carried out to present the theoretical funda-
mentals that justify our developments. In turn, this chapter is composed of five
sections. The speech distortion model serving as a basis to develop a variety of
approaches for noise-robust ASR purposes and the effects of the acoustic noise on
the speech distribution are presented in the first section. Then, the fundamentals
of single-channel robust speech recognition and noise estimation are described.
To conclude, apart from a summary, the foundations of multi-channel robust
speech processing on IMDs are reviewed. We will focus on beamforming since
microphone array processing is typically used along with single-channel noise-
robust processing techniques to provide robustness against noise in ASR systems
performing on IMDs with several sensors. Additionally, the dual-channel power
level difference (PLD) concept is discussed as it is a driving principle of our
noise-robust contributions.

• Three dual-channel power spectrum enhancement proposals are formulated in
Chapter 3: DCSS (Dual-Channel Spectral Subtraction), P-MVDR (Power-Mini-
mum Variance Distortionless Response) and DSW (Dual-channel Spectral Weight-
ing). DCSS and P-MVDR are basic enhancement methods relying on spectral
subtraction (SS) and MVDR principles, respectively. On the other hand, DSW
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is based on Wiener filtering and it integrates a noise equalization procedure also
based on the MVDR principle. All of them assume that the mobile device has
only one front (primary) sensor, as well as a rear microphone to better capture the
acoustic environment. Hence, a combinatorial strategy integrating beamforming
is presented to be followed in the case of an IMD with more than one front sensor
in order to condense the multi-channel information into only two channels. Fi-
nally, since all these enhancement proposals require knowledge about the relative
speech gain (RSG) between the two available channels, a complex MMSE-based
RSG estimation method is also developed.

• In Chapter 4, a dual-channel vector Taylor series (VTS) feature compensation
(i.e. enhancement) technique is set out. Once the dual-channel distortion model
is properly revisited, the formulae derived from a stacked scheme are shown.
Besides this scheme, a more robust alternative approach for the calculation of the
posterior probabilities is studied, in which the distortion model at the secondary
channel is conditioned to the noisy observation from the primary channel.

• The use of deep learning for dual-channel noise-robust ASR on IMDs is explored
in Chapter 5. This chapter begins with a brief revision of applied deep learning
procedures. While this overview is focused on speech processing, its inclusion
at this point was preferred as we briefly review some deep learning architectures
that have nothing to do with the fundamentals of noise-robust speech processing.
Then, dual-channel deep neural network (DNN)-based missing-data mask and
noise estimation techniques are described. These exploit the dual-channel infor-
mation in synergy with the powerful modeling capabilities of DNNs to provide
accurate estimates in an efficient manner.

• Thereafter, in Chapter 6 the experimental evaluation is presented. Apart from
the summary, this chapter contains two more sections: one about the experimen-
tal framework and another containing the experimental results. In the first one,
the multi-channel speech resources employed for experimental purposes, namely
the AURORA2-2C-CT/FT and CHiME-3 databases, are described along with
the feature extraction process and the back-end setup of the recognizer. In par-
ticular, we must highlight the AURORA2-2C-CT/FT corpora as another contri-
bution of this Thesis. The AURORA2-2C-CT/FT databases emulate the acqui-
sition of noisy speech in everyday environments by means of a dual-microphone
smartphone. Then, the word accuracies and/or word error rates achieved by our
contributions and comparison techniques are shown. These results are properly
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discussed and organized by considering the same contribution chapter structure
of this dissertation.

• Finally, the conclusions of this Thesis are presented in Chapter 7 along with a
summary of our contributions and future work.

1.5 List of publications and awards
The following publications have been produced as a result of the work in this Thesis
(in reverse chronological order):

1. I. López-Espejo, A. M. Peinado, A. M. Gomez and J. A. Gonzalez: Dual-Channel
Spectral Weighting for Robust Speech Recognition in Mobile Devices. Submitted
to Digital Signal Processing.

2. I. López-Espejo, A. M. Peinado, A. M. Gomez and J. A. González: Dual-Channel
VTS Feature Compensation for Noise-Robust Speech Recognition on Mobile De-
vices. IET Signal Processing, 11:17–25, 2017.

3. I. López-Espejo, A. M. Peinado, A. M. Gomez and J. M. Martín-Doñas: Deep
Neural Network-Based Noise Estimation for Robust ASR in Dual-Microphone
Smartphones. Lecture Notes in Computer Science, 10077:117–127, 2016.

4. I. López-Espejo, J. A. González, A. M. Gómez and A. M. Peinado: DNN-
Based Missing-Data Mask Estimation for Noise-Robust ASR in Dual-Microphone
Smartphones. In Proceedings of UKSpeech, July 2–3, Norwich (UK), 2015.

5. I. López-Espejo, J. A. González, A. M. Gomez and A. M. Peinado: A Deep Neu-
ral Network Approach for Missing-Data Mask Estimation on Dual-Microphone
Smartphones: Application to Noise-Robust Speech Recognition. Lecture Notes in
Computer Science, 8854:119–128, 2014.

6. I. López-Espejo, A. M. Gomez, J. A. González and A. M. Peinado: Feature En-
hancement for Robust Speech Recognition on Smartphones with Dual-Microphone.
In Proceedings of 22nd European Signal Processing Conference, September 1–5,
Lisbon (Portugal), 2014.

Moreover, we must highlight that the quality of two of these publications has been
endorsed by two international awards:
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1.5. List of publications and awards

• Best paper award at IberSPEECH 2016 for the work Deep Neural Network-Based
Noise Estimation for Robust ASR in Dual-Microphone Smartphones.

• Best student paper award at EUSIPCO (European Signal Processing Confer-
ence) 2014 for the work Feature Enhancement for Robust Speech Recognition on
Smartphones with Dual-Microphone.
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CHAPTER 2
Fundamentals of Single- and

Multi-Channel Robust Speech
Processing

In the introductory chapter we outlined that the performance of every automatic
speech recognition (ASR) system can be severely degraded when there exists mis-

match between the training and testing conditions. A possible source of mismatch
is that referred to the variability inherent to different speakers. In this regard, some
factors increasing the variability of the speech signal are gender, age, mood, presence
of illness, etc. For instance, these factors have a direct impact on the inter-speaker
variability and, therefore, considering a different set of training and testing speakers
is an important mismatch source. Furthermore, differences in the length and shape of
the vocal tract, dialect or pronunciation are other features that have influence in that
sense [145]. Another source of degradation of the ASR system performance might be
the channel (as well as the speech coding scheme) used to transmit the speech signal,
which is likely to distort the signal as it behaves as a filter the response of which is often
far from being flat. A related practical example where this might occur is in the case
of network-based speech recognition (NSR) [149], a block diagram of which is depicted
in Figure 2.1. For instance, let us think about carrying out ASR by means of a mobile
device for search-by-voice purposes. Assuming that an NSR scheme is followed, first,
the mobile device captures the voice of the speaker. Then, this is compressed by a
speech codec and transmitted through the channel. Finally, the speech features are
extracted and used for recognition both on the network side [149], so that the speech
coding scheme and the transmission channel potentially introduce mismatch in ASR.
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4 Speech Recognition Over Digital Channels

1.2 RSR over Digital Channels

There are several possibilities for the implementation of an RSR system over a digital

channel. In the first approach, usually known as network speech recognition (NSR), the

recognition system resides in the network from the client’s point of view. In this case,

the speech is compressed by a speech codec in order to allow a low bitrate transmission

and/or to use an existing speech traffic channel (as in the case of mobile telephony).

The recognition is usually performed over the features extracted from the decoded signal,

although it is also possible to extract the recognition features directly from the codec

parameters. Figure 1.3 shows a scheme of this system architecture. In the case where

implementation is over an IP network, a VoIP (Voice over IP) codec can be employed.

However, the approach that has received more attention during the last few years is

the one known as distributed speech recognition (DSR). In this case, the client includes

a local front end that processes the speech signal in order to directly obtain the specific

features (usually cepstrum) used by the remote server (back end) to perform recognition,

thus avoiding the coding/decoding process required by NSR. The conceptual scheme of

DSR is shown in Figure 1.4. DSR has several advantages over NSR:

• It avoids the use of a speech codec, which can reduce the recognition performance

because of compression.

• The bitrate involved in DSR is usually smaller than that of NSR.

• In mobile environments, DSR allows the increase of the system robustness. First, the

front end located at the client can carry out some type of acoustic noise compensation.

Also, the transmission can be carried out over a data channel instead of over a voice

channel, so that the system is more robust against channel errors.

• It naturally enables multimodal interfaces by sending the speech features along with

other information through a data channel.

On the other hand, the main advantage of NSR is that there is no need for modifying the

existing clients in the case of mobile telephony networks.

In the same way as speech codecs are standardized for mobile telephony or VoIP,

it is advised that a standardized feature extractor and encoder be used in DSR clients.

The implementation of RSR systems over heterogeneous networks can also be eased by

using DSR standards. Figure 1.5 shows two possible scenarios that mix mobile and IP

Recognition
engine

Speech
coder

Speech

channel

Transmission Recognized

text

Features

Decoding and/or
feature extraction

Figure 1.3 Scheme of a network speech recognition (NSR) system

Recognition
engine

Speech

channel

Recognized

text

Transmission
Feature
extractor

Features

Figure 1.4 Scheme of a distributed speech recognition (DSR) system

Figure 2.1: Block diagram of a network-based speech recognition scheme [149].

Reverberation and acoustic (background) noise are another well-known sources of
speech distortion. In particular, because of its pervasiveness, background noise, which
is overlapped to the speech signal in an additive manner, is one of the ASR mismatch
sources that has been faced the most over the last decades. In fact, providing robust-
ness against noise in ASR is of particular importance nowadays due to the wide use
of intelligent mobile devices (IMDs) such as smartphones or tablets, which are also
employed for ASR purposes [107] as introduced in Chapter 1. Mobile devices can be
employed anywhere at any time, in such a way that coping with a wide variety of noisy
environments is mandatory to provide a good user experience. For example, some
typical mobile usage scenarios are streets (where we can find a range of noise sources
such as traffic, construction works or babble), offices (e.g. air-conditioning system and
computer noises) or inside vehicles (e.g. engine noise). Many techniques have been
proposed to improve ASR robustness against environmental noise and this chapter
tries to give an overview of them while introducing the foundations of noise-robust
processing for both single- and multi-channel ASR. This will serve as a presentation of
the theoretical basis from which the different noise-robust contributions of this Thesis
are built upon.

The rest of this chapter is structured as follows. First, the general speech distor-
tion modeling, considered as the basic mathematical framework both to review the
noise-robust state-of-the-art approaches and to develop our contributions throughout
the following chapters, is explained in Section 2.1. Then, in Section 2.2, the single-
channel robust speech recognition fundamentals required to understand our techniques
are presented. The revisited approaches in this section have roughly been categorized
into four different classes: feature-space, model-based and missing-data approaches,
and distortion modeling by vector Taylor series (VTS). For some of these noise-robust
methods, a module that accurately estimates the background noise that contaminates
speech is necessary. Since this is an important related task, a brief overview of the
noise estimation algorithms is provided in Section 2.3. The basis of multi-channel ro-
bust speech processing to be considered for ASR purposes on IMDs (the main scope of
this Thesis) is given in Section 2.4. As shall be seen, in accordance with the literature,
multi-channel robust ASR is mainly based on the combined use of microphone array
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2.1. Speech distortion modeling

Figure 2.2: Block diagram of a speech distortion model including convolutive and
additive noise as environmental distortions.

processing and single-channel noise-robust approaches. This kind of solutions jointly
exploits the various embedded microphones in order to further improve the recognition
performance regarding the classical single-channel strategies. For this reason, this sec-
tion emphasizes on beamforming techniques, including post-filtering to mitigate their
shortfalls. Finally, the dual-channel power level difference (PLD) concept is discussed
as it is a driving principle of our noise-robust methods to be applied on IMDs with
several sensors. To conclude the chapter, a summary is presented in Section 2.5.

2.1 Speech distortion modeling
In order to design analytical solutions to be applied for noise-robust ASR purposes, it
is necessary to define a mathematical framework whereby we model the interactions
between the speech signal of interest and the environmental distortions affecting that
signal. For the past two decades, the linear speech distortion model first reported in
[5] has been widely adopted as a standard mathematical framework to develop noise-
robust methods for ASR. This speech distortion model will be considered from now on
and it is represented in Figure 2.2. It consists of the clean speech signal of interest as
produced by the speaker, x(m), which is convolved by h(m) representing the channel
distortion plus the additive background noise n(m). This defines the speech distortion
model

y(m) = h(m) ∗ x(m) + n(m), (2.1)

where y(m) is the resulting noisy speech signal, and m and ∗ refer to the discrete-time
index (i.e. sample index) and the convolution operator, respectively. First, h(m) may
eventually characterize the channel impulse response (including the response of the
microphone) and/or reverberation. Additionally, n(m) models the total background
noise as captured by the system and shaped as the sum of the different contributions
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produced by the environmental noise sources. In the case of multiple microphones
simultaneously recording a noisy speech signal, a subscript, k, will be used to differen-
tiate which sensor a signal comes from. For example, if we have an array comprised of
N microphones, the noisy signal coming from the k-th sensor is denoted as

yk(m) = hk(m) ∗ xk(m) + nk(m), k = 1, ..., N, (2.2)

where, admittedly, the different variables hk(m), xk(m) and nk(m) depend on the cor-
responding sensor. Without loss of generality and for the sake of clarity, the reference
to the sensor that captures the signal is omitted in the rest of this section.

As we said in the previous chapter, the most popular type of speech parameter-
ization for ASR is Mel-frequency cepstral coefficients (MFCCs) [32]. Therefore, the
speech distortion model in (2.1) is developed in the following until obtaining a relation
between the clean speech and the distortions in terms of MFCCs.

First of all, the short-time discrete Fourier transform (STDFT) is applied on (2.1)
to express this model in the linear frequency domain as

Y (f, t) = H(f, t)X(f, t) +N(f, t), (2.3)

where f and t refer to the frequency bin and time frame index, respectively. It must be
noticed that Eq. (2.3) implicitly assumes that the length of h(m) is shorter than that
of the analysis window. Because of this reason, that equation in the linear frequency
domain is not valid when h(m) represents a filter modeling long reverberation times
and, therefore, it is a source of modeling errors which impacts on the ASR system per-
formance [6, 107]. From (2.3), it is straightforward to characterize the speech distortion
model in the linear power spectral domain as

|Y (f, t)|2 = |H(f, t)X(f, t) +N(f, t)|2

= |H(f, t)|2|X(f, t)|2 + |N(f, t)|2 + 2 cos (αf,t) |H(f, t)||X(f, t)||N(f, t)|,
(2.4)

where αf,t is the relative phase between H(f, t)X(f, t) and N(f, t). While there exist
some research works successfully exploiting the term αf,t for noise-robust ASR purposes
such as [35, 48], the common practice is to neglect it [6, 65, 108, 137, 138, 176]. This
can be considered a compromise since the potential degradation of the ASR system
performance as a result of neglecting αf,t might compensate the difficulty in manipu-
lating this term. Furthermore, another argument in favor of such a simplification is
that the expected value of cos (αf,t) is zero. Hence, (2.4) can be simplified as

|Y (f, t)|2 = |H(f, t)|2|X(f, t)|2 + |N(f, t)|2. (2.5)

18



2.1. Speech distortion modeling

Then, a filterbank distributed in frequency in accordance with a human perceptual scale
is employed to mimic the human auditory system. In particular, MFCCs consider the
perceptual Mel scale proposed by S. S. Stevens et al. in [173]. As a result, we have a
set of L filters with triangular-shaped frequency windows each, which are equidistant
in Mel-frequency domain. Let Wlf be the frequency response of the l-th filter with
Wlf ≥ 0 and ∑f Wlf = 1 (l = 1, ..., L), Eq. (2.5) is transformed into the Mel power
spectral domain as

|Ỹ (l, t)|2 = ∑
f Wlf |Y (f, t)|2

= ∑
f Wlf (|H(f, t)|2|X(f, t)|2 + |N(f, t)|2)

= ∑
f Wlf |H(f, t)|2|X(f, t)|2 +∑

f Wlf |N(f, t)|2,

(2.6)

where |Ỹ (l, t)|2 is the noisy speech Mel power spectrum bin at channel l and time
frame t. From defining the clean speech, noise and channel Mel power spectrum bins,
respectively, as

|X̃(l, t)|2 = ∑
f Wlf |X(f, t)|2;

|Ñ(l, t)|2 = ∑
f Wlf |N(f, t)|2;

|H̃(l, t)|2 =
∑
f Wlf |H(f, t)|2|X(f, t)|2

|X̃(l, t)|2
,

(2.7)

the speech distortion model in the Mel power spectral domain is expressed as follows:

|Ỹ (l, t)|2 = |H̃(l, t)|2|X̃(l, t)|2 + |Ñ(l, t)|2. (2.8)

Then, the natural logarithm is applied to (2.8) in order to mimic the amplitude reso-
lution of the human ear. First, let us define the following vectors containing log-Mel
power spectrum coefficients:

y =
(
log |Ỹ (1, t)|2, ..., log |Ỹ (L, t)|2

)>
;

x =
(
log |X̃(1, t)|2, ..., log |X̃(L, t)|2

)>
;

h =
(
log |H̃(1, t)|2, ..., log |H̃(L, t)|2

)>
;

n =
(
log |Ñ(1, t)|2, ..., log |Ñ(L, t)|2

)>
.

(2.9)
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These are defined for a particular time frame while, for the sake of simplicity, an explicit
reference to t has been omitted for the variables y, x, h and n. From the vectors in
(2.9), Eq. (2.8) can be written in the log-Mel power spectral domain as

y = x + h + log
(
1 + en−x−h

)
, (2.10)

where it must be noticed that the operators log(·) and e(·) are applied element-wise
and 1 is an L-dimensional vector filled with ones. Finally, the MFCCs widely used for
ASR are obtained by application of the discrete cosine transform (DCT) to the log-Mel
coefficients of (2.10). This is achieved by means of the DCT matrix C:

yc = xc + hc + C log
(
1 + eC−1(nc−xc−hc)

)
, (2.11)

where C−1 is the pseudoinverse of C as the DCT involves a dimensionality reduction
and, therefore, C is not a square matrix. Thus, the noisy speech, clean speech, channel
and noise cepstral vectors are respectively obtained from the corresponding log-Mel
coefficient vectors as

yc = Cy;

xc = Cx;

hc = Ch;

nc = Cn.

(2.12)

The speech distortion model that has been developed above is the basis from which
a great number of noise-robust ASR methods is formulated. Indeed, depending on
the type of approach, that distortion model is considered in a particular domain. For
example, the model as in (2.5) or (2.10) might typically be taken into account as a
starting point when formulating spectral subtraction (SS) enhancement (see Subsec-
tion 2.2.1) or vector Taylor series (VTS) feature compensation (see Subsection 2.2.3),
respectively.

To conclude this section, let us take a look at how the statistical distribution of
the speech energy is altered in the presence of ambient noise by means of the following
simple but illustrative simulation. Hereafter, we only consider a particular filterbank
channel, l, after the application of the logarithmic compression. For simplicity, it will
be assumed that both clean speech and noise follow Gaussian distributions at that
channel in the log-Mel power spectral domain. In this context, if we also assume that
there is no channel distortion (i.e. h = 0), (2.10) can be written for the l-th filterbank
channel as

yl = xl + log
(
1 + enl−xl

)
= log (exl + enl) . (2.13)
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Figure 2.3: Noisy speech, clean speech and noise log-Mel power histograms rep-
resenting how the statistical distribution of the speech energy is affected in the
presence of ambient noise at a particular channel. It is assumed that both clean
speech and noise follow Gaussian distributions. The mean and the standard de-
viation of the clean speech are set to µx = 8 and σx = 8, respectively. In the
case of the noise, four mean values are considered, µn = −4, 2, 8, 14, while the
standard deviation is fixed to σn = 2.

In this example we set p(xl) = N (µx = 8, σx = 8), while the standard deviation of the
noise density function p(nl) is fixed to σn = 2 and the noise mean shall be variable.
Figure 2.3 shows how the noise affects the statistical distribution of the speech energy
when considering different noise mean values, namely µn = −4, 2, 8, 14. To create the
histograms plotted in this figure, first, clean speech and noise log-Mel power samples
were generated by sampling p(xl) and p(nl), respectively. Then, such samples were
evaluated as in (2.13) to obtain yl samples and the corresponding noisy speech his-
tograms from them. As can be observed from Figure 2.3, at high signal-to-noise ratios
(SNRs), that is, when µx � µn, the speech distribution remains almost unchanged. As
the noise energy increases (i.e. the SNR goes down), the speech Gaussian distribution
is right skewed. Finally, if noise energy tends to be comparable to or greater than
speech energy (low SNRs), the statistical distribution of the noisy speech tends to be
similar to that of the noise, i.e. speech is masked by noise.
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2.2 Single-channel robust speech recognition
We have seen that the presence of environmental distortions such as convolutive or
additive noise has an impact on the statistical distribution of speech. If we think
about an ASR system the acoustic models of which have been trained by means of clean
speech data, we are able to state that such distortions might drastically increase the
mismatch between the training and testing conditions leading to a severe degradation
of the ASR system performance. One immediate approach to face this issue is to
rely on multi-condition training, that is, to train the acoustic models of the recognizer
by employing distorted speech data similar to those that are expected to be found
when using the ASR system in adverse conditions. Unfortunately, this strategy poses
a twofold problem: 1) the acoustic model distribution is largely broadened while 2) it
is really difficult to predict all the adverse conditions in which the ASR system will be
used in order to properly train it in advance [107]. Because of these reasons, a number
of scalable techniques have been proposed over the past decades to strengthen the ASR
systems against distortions in an effective way under a variety of conditions.

While various taxonomies of the noise-robust methods for ASR can be found in the
literature [33, 60], below we will present a classification which constitutes a variation
of the one reported in [107] in order to concisely discuss only those approaches that are
relevant for understanding both our contributions and our experimental evaluation.
The categories described in this section are feature-space approaches, model-based
approaches, distortion modeling by vector Taylor series (VTS) and missing-data ap-
proaches. They are briefly introduced in the following:

• Feature-space approaches: This type of methods tries to compensate the speech
distortions on the front-end side. Indeed, the feature-space methods do not mod-
ify the acoustic model parameters. For example, if a GMM-HMM-based back-end
is employed, these methods do not change neither the Gaussian nor the HMM
parameters. The same three feature-space approach subcategories as in [107]
are considered down below: noise-robust features (which are characterized by a
certain degree of insensitivity to distortions), normalization of one or several sta-
tistical moments of the features, and feature enhancement. The latter is about
suppressing the noise that contaminates the speech features and is the preferred
approach in this Thesis mainly due to its versatility and high computational
efficiency.

• Model-based approaches: Speech distortions can also be compensated on the back-
end side or, more precisely, by either estimating or adapting the acoustic model
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parameters in a proper way. Two distinct model-based approaches will be dis-
cussed later: model adaptation, where the acoustic model parameters are tuned
up to explain the speech distortions, and adaptive training, which will be widely
used during our experimental evaluation. In contrast to the feature-space ap-
proaches, the model-based ones are featured by relatively high computational
complexity. Nevertheless, as an advantage, the latter approaches are often more
robust against speech distortions than the former ones.

• Distortion modeling by vector Taylor series: This approach is formulated from the
speech distortion model developed in the previous section in order to compensate
the additive and/or the channel noise either on the front-end or the back-end side.
That is, this noise-robust strategy may be used for either feature compensation
or model adaptation and both schemes will be presented down below in this
section. Unlike the classical model adaptation techniques which typically perform
linear corrections on the acoustic model parameters, the VTS approach is more
accurate and powerful as it employs a physical model that explicitly explains how
it is the (non-linear) interaction between the speech signal and the environmental
distortions.

• Missing-data approaches: This kind of methods is based on handling uncertainty
on the feature space. Firstly, spectro-temporal regions of the noisy speech signal
which are unreliable because of the presence of distortions are determined. Then,
different approaches can be followed, e.g. marginalization or data imputation.
While the former ignores those unreliable spectro-temporal regions during the
decoding stage (i.e. at the back-end), the latter is based on the reconstruction
of such unreliable spectral regions from a statistical point of view [31] (i.e. at
the front-end). A critical part of these methods consists of the estimation of
missing-data masks to identify the aforementioned unreliable spectro-temporal
regions of the noisy speech signal. Particular attention is paid to this issue in the
literature since the performance of the missing-data approaches depends heavily
on the quality of these masks.

For concision, a number of relevant noise-robust methods for ASR will fall outside
of the revision in this section as they will not be taken into account in this doctoral
dissertation. Some of the most outstanding of these methods are the stereo data
learning-based techniques, which work from learning a mapping function between cor-
rupted and clean speech data during a training phase. One of the most representative
methods that falls into this category is SPLICE (Stereo-based Piecewise LInear Com-
pensation for Environments) [34, 36]. Briefly, SPLICE is a minimum mean square error
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(MMSE)-based estimator of the clean speech features using a simple non-parametric
linear distortion model which is trained from stereo data, i.e. pairs of corrupted and
clean speech feature vectors. Moreover, deep learning architectures such as DNNs
(Deep Neural Networks) are becoming very popular in order to learn the mapping
function between the corrupted and clean speech from stereo data supervised train-
ing [201, 202]. In fact, we will account deep learning in Chapter 5 to develop two
dual-channel stereo data learning-based methods to estimate missing-data masks and
additive noise from dual-channel noisy speech. Nevertheless, a major constraint of
this kind of techniques is the difficulty in obtaining stereo data in real-life conditions,
conferring these methods a limited interest.

Another category of techniques that will not be discussed in depth is the exemplar-
based approaches and, more in particular, non-negative matrix factorization (NMF)
for source separation, widely studied over the recent period [11, 58, 197]. They work
by modeling the noisy speech features as a linear combination of clean speech and
noise exemplars coming from a dictionary. In particular, the dictionary of clean speech
exemplars is often defined from the corresponding training dataset of the ASR system.
Then, the goal of these techniques is to estimate the set of non-negative linear com-
bination weights that typically minimize the Kullback-Leibler divergence [58] between
the noisy observation and the combination of exemplars. Additionally, to represent
the noisy speech features by means of a small set of exemplars, a sparsity constraint
is normally integrated into the objective function [107]. The calculated weights can
be used to estimate the clean speech (and also the noise) features for noise-robust
ASR purposes. Notice that these techniques are highly related with the stereo data
learning-based methods mentioned above since the former depend on a dictionary of
exemplars.

The categories of noise-robust approaches introduced above are revisited with more
detail throughout the rest of this section. Ultimately, the selection of a particular
noise-robust technique will depend on the requisites and design criteria of our ASR
system. For example, as outlined above, if high recognition accuracy is mandatory
while a lot of computational and data resources are available, a model-based approach
might be chosen. On the contrary, if higher computational efficiency is required while
still achieving a good recognition performance, a more flexible option is to deploy a
feature-space method [107].

2.2.1 Feature-space approaches
In this subsection we will review those noise-robust methods that compensate the
speech distortions solely on the front-end side, i.e. by properly extracting or adapting
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the speech features. In turn, the feature-space approaches can be classified into three
different subcategories, namely noise-robust features, feature normalization and feature
enhancement. In fact, as shall be seen, feature enhancement is the noise-robust scheme
mainly followed by our contributions as it simultaneously provides good recognition
accuracy in noisy environments and high computational efficiency. Indeed, this same
attribute applies to all the feature-space approaches to a greater or lesser extent as, in
general, there is a trade-off between recognition accuracy and computational complex-
ity for noise-robust techniques. The aforementioned subcategories are reviewed down
below.

2.2.1.1 Noise-robust features

Noise-robust features are characterized by a certain degree of insensitivity to speech
distortions. We can further distinguish between two types of them: auditory- and
neural network-based features.

Auditory-based features. This kind of features is inspired by the human auditory
system to lead to more noise-robust ASR. Despite the large number of auditory-based
features, perhaps, the most popular are those derived from the PLP (Perceptually-
based Linear Prediction) [74] and RASTA (RelAtive SpecTrAl analysis) [75] processing.

PLP starts by computing the STDFT of the signal by also considering the Hamming
window. The result is filtered by means of a filterbank based on the psychoacoustic
Bark scale first proposed by E. Zwicker in [212]. Such a filterbank processing is quite
similar to that applied for the computation of the MFCCs. In fact, both the perceptual
Bark and Mel scales are closely related. The output of the Bark filterbank is pre-
emphasized to mimic the equal-loudness characteristic of the human auditory system.
Then, the auditory spectrum is approximated by an autoregressive all-pole model [74].
As a consequence, PLP processing fits better with the human hearing system than the
traditional linear predictive (LP) analysis.

On the other hand, RASTA features employ an IIR (Infinite Impulse Response)
bandpass filter (again inspired by the human auditory system) to remove, per frequency
bin, the mean value of the auditory-like spectrum coefficients in a similar way to cepstral
mean normalization (CMN) [10], which will be described later. Therefore, RASTA
processing is especially appropriate to compensate the effects of channel distortions.
This method can be used along with PLP coefficients, resulting in the so-called RASTA-
PLP features [75].

Another popular noise-robust auditory-based features are Gammatone frequency
cepstral coefficients [164], which are a biologically-inspired variant of MFCCs using
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Gammatone filters, and PNCCs (Power-Normalized Cepstral Coefficients) [101]. The
latter is a computationally efficient feature extraction approach where Gammatone
filters are also used for frequency analysis. A thorough overhaul of the auditory-based
feature extraction methods is available in [172]. While the auditory-based features
often provide better recognition accuracies than MFCCs, their more difficult generation
process makes them of limited interest [107]. Thus, MFCCs is still the most used type
of parameterization and, as mentioned above, this will be considered when developing
and deploying our contributions.

Neural network-based features. Although DNNs are pervasively used nowadays
as replacement of GMMs for acoustic modeling in HMM-based ASR back-ends, various
types of ANNs (Artificial Neural Networks) have also been used to generate noise-robust
features for GMM-HMM-based ASR systems. First, it must be stated that this is a
different kind of approach with respect to the followed by the methods presented above,
as ANN-based feature extraction does not exploit any psychoacoustic knowledge. One
of the best-known techniques that can be classified into this category is the tandem
connectionist feature extraction method of [73] (TANDEM). In TANDEM, an ANN is
first discriminatively trained to estimate the posterior probabilities of every subword
class given the acoustic observations. Instead of using these probabilities for decoding,
TANDEM removes the non-linear activation at the output of the ANN and uses these
data, after decorrelating them by PCA (Principal Component Analysis), as features.
This method demonstrated its robustness by achieving high error rate reductions on
the Aurora-2 [148] noisy continuous digit recognition task [73]. Different variants of
TANDEM appeared later in the literature [57]. At this respect, for example, the use of
bottleneck neural networks has been explored over the last years [57, 70]. Let us recall
that a bottleneck neural network is a feedforward ANN with one of its intermediate
hidden layers containing fewer neurons than the rest. This bottleneck layer performs
the dimensionality reduction previously tackled by PCA or LDA (Linear Discriminant
Analysis) in the conventional tandem methods, leading to better performance [57, 70].

2.2.1.2 Feature normalization

To ensure a higher degree of ASR robustness by reducing the mismatch between the
training and test data, the feature normalization methods normalize one or several
statistical moments of the speech features. The most well-known feature normalization
methods are CMN (Cepstral Mean Normalization) [10] and CMVN (Cepstral Mean
and Variance Normalization) [185], which will be used for experimental purposes in this
Thesis, and HEQ (Histogram EQualization) [136, 181]. CMN and CMVN normalize the
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first and the first two statistical moments, respectively. In addition, HEQ normalizes
all the statistical moments of the speech features.

CMN. As introduced, this technique simply normalizes the first statistical moment
by subtracting the cepstral mean, usually per utterance, to the cepstral features as
follows. Let us assume that a noisy speech utterance is comprised of T frames and
its t-th cepstral feature vector is yct (t = 0, ..., T − 1). Then, the cepstral mean µy is
computed for this utterance as

µy = 1
T

T−1∑
t=0

yct . (2.14)

From (2.14), the resulting cepstral features after the application of CMN, ȳct , are

ȳct = yct − µy, t = 0, ..., T − 1, (2.15)

and E[ȳct ] ≈ 0, where E[·] denotes mathematical expectation.
Speech distortion model Eqs. (2.10) and (2.11) in the log-Mel and cepstral domains,

respectively, can be rewritten when there is no additive noise, i.e. n = nc = −∞, as

y = x + h + log
(
1 + en−x−h

)
= x + h (2.16)

and
yc = xc + hc + C log

(
1 + eC−1(nc−xc−hc)

)
= xc + hc. (2.17)

As a result, since the channel effects are additive in both the log-Mel and cepstral
domains, it becomes clear that CMN compensates for convolutive (channel) distortions
when additive noise is absent. Moreover, it has been shown that even when no channel
distortion is present, CMN is able to improve the performance of an ASR system
affected by background noise [40]. Besides this, from (2.15) we can guess that this
approach makes sense for offline applications or, at least, when a sufficient number
of frames is available. Hence, for real-time applications, an alternative to CMN could
consist of the use of the IIR bandpass filter of RASTA in accordance with the discussion
above.

CMVN. CMVN not only normalizes the first statistical moment of the speech fea-
tures, but also the second one. This is accomplished by also normalizing the set of
cepstral feature vectors in (2.15), {ȳct ; t = 0, ..., T − 1}, by its standard deviation

σy =

√√√√ 1
T − 1

T−1∑
t=0

(yct − µy)2, (2.18)
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where both the square root
√
· and power (·)2 operators are applied element-wise.

Therefore, the result of the application of CMVN is

ỹct = ȳct
σy

= yct − µy

σy
, t = 0, ..., T − 1, (2.19)

where the division operator ÷ is also applied element-wise, E[ỹct ] ≈ 0 and the variance
of every component of ỹct is approximately 1.

While CMVN additionally decreases the second-order moment mismatch between
the training and test data, we cannot draw a parallel between this fact and the com-
pensation of a particular type of distortion as in the case of CMN. Nevertheless, it is
evident that such a statistical normalization affects both the convolutive and additive
distortions. Indeed, CMVN has been proven to be superior to CMN when used as
normalization technique [107].

HEQ. Finally, this method, which can be applied in either the log-Mel or cepstral
domains, works by performing histogram equalization on the test speech features to
normalize all the statistical moments [136]. The core idea behind this approach is to
transform the statistical distribution of the test data in order to be similar to that of
the training data, thereby reducing the mismatch between them. For instance, if we
assume that yc corresponds to a component of the cepstral feature vector yc, HEQ is
applied element-wise as

f(yc) = C−1
x (Cy(yc)) , (2.20)

where Cy(·) is the cumulative distribution function (CDF) of the test data and C−1
x (·)

is the inverse CDF of the training data. In practice, both CDFs are approximated from
the cumulative histograms correspondingly calculated from the available training and
test speech data. The equalization principle reflected by (2.20) has been considered
over time to develop a variety of feature normalization methods achieving different
improvements, e.g. [39, 78].

2.2.1.3 Feature enhancement

In this subcategory, within the feature-space approaches, we include those methods
that try to improve the recognition performance by removing the distortions affecting
the speech signal. To do so, this type of methods typically handles the speech distortion
model developed in Section 2.1 from a statistical point of view. As aforementioned,
feature enhancement is the preferred approach in this Thesis (see Chapters 3 and 4)
mainly due to both its versatility and high computational efficiency. Hence, since this
is a very broad topic, we only focus here on those approaches that serve as a basis of our
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contributions of Chapter 3: spectral subtraction (SS) [22] and Wiener filtering [114].
Moreover, despite vector Taylor series (VTS) feature enhancement/compensation is
considered in Chapter 4, its fundamentals are discussed in a later subsection as VTS
can also be applied to model adaptation.

Spectral subtraction is a straightforward method that mitigates the additive noise
by subtracting, in the frequency domain, an estimate of the noise to the noisy spectrum.
This method assumes that the speech and noise signals are uncorrelated. This way, by
also assuming that there is no channel distortion, i.e. |H(f, t)|2 = 1, Eq. (2.5) can be
simplified as

|Y (f, t)|2 = |X(f, t)|2 + |N(f, t)|2. (2.21)

Then, a noise estimate, |N̂(f, t)|2, is required. This one may be computed in a simple
way by averaging those frames of the spectrum where speech is absent, or by using one
of the many noise estimation algorithms available in the literature and briefly reviewed
in Section 2.3. Once we have |N̂(f, t)|2, SS estimates every clean speech power spectrum
bin, |X̂(f, t)|2, as

|X̂(f, t)|2 = |Y (f, t)|2 − |N̂(f, t)|2. (2.22)

SS as defined in (2.22) poses a hurdle since it permits negative power spectrum bins.
In practice, an additional function, typically the max operator, is employed to avoid
that:

|X̂(f, t)|2 = max
(
|Y (f, t)|2 − |N̂(f, t)|2, η|Y (f, t)|2

)
, (2.23)

where η ∈ (0, 1) is a thresholding factor which establishes a lower bound η|Y (f, t)|2.
SS can alternatively be rewritten as a linear filtering problem, that is,

|X̂(f, t)| = GSS(f, t)|Y (f, t)|, (2.24)

where GSS(f, t) would correspond to the SS filter transfer (gain) function, the definition
of which is, taking into account the integration of the max operator as in (2.23),

GSS(f, t) =

√√√√√max
 ξ̂(f, t)
ξ̂(f, t) + 1

, η

, (2.25)

where ξ̂(f, t) =
(
|Y (f, t)|2 − |N̂(f, t)|2

)
/|N̂(f, t)|2 is an approximation of the instanta-

neous a priori SNR. Thus, from (2.25), SS might be construed as an SNR-dependent
attenuator. Therefore, the higher (lower) the SNR, the less (greater) the attenuation
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applied to the noisy observation. In particular, when the SNR tends to infinite (zero)
GSS(f, t)→ 1 (GSS(f, t)→ 0), as speech (noise) dominates in that spectral bin.

The following limitations concerning this method can be highlighted:

• The hard thresholding required to avoid negative power spectrum bin estimates
can severely affect the performance of the ASR system.

• No knowledge about the speech statistics is considered, in such a way that the
performance of SS heavily relies on the accuracy of the noise estimation. In fact,
the performance of this method might be seriously degraded in the presence of
non-stationary noise.

• Concerning the above items, these facts tend to favor the appearance of “musical
noise” [18], which distorts the speech signal and consists of annoying (i.e. audible)
short bursts of noise [144, 183].

It has been proven that oversubtraction of the noise estimate helps to mitigate the
“musical noise” effect [149], thereby leading to better speech recognition performance
[18, 100]. If β > 1 is the oversubtraction factor, (2.23) can be rewritten by taking into
consideration this improvement as

|X̂(f, t)|2 = max
(
|Y (f, t)|2 − β|N̂(f, t)|2, η|Y (f, t)|2

)
. (2.26)

Finally, it must be remarked that SS can be alternatively formulated in the magni-
tude spectral domain [149, 183].

Wiener filter. Feature enhancement is among the most important applications of
this well-known type of linear filter, which is closely related to SS as we will see in
the following. With this aim, we first establish that the clean speech signal can be
estimated in the time domain from the noisy speech signal by filtering as

x̂(m) = h(m) ∗ y(m) =
p−1∑
k=0

h(k)y(m− k), (2.27)

where h(m) is a (p− 1)-order FIR (Finite Impulse Response) filter. Then, the Wiener
filter (WF) approach seeks for the linear filter h(m) that minimizes the mean square
error (MSE) between the estimate x̂(m) and the actual clean speech signal x(m). It
is straightforward to show that such a strategy leads to the following filter in the
frequency domain:

H(f, t) = Sxy(f, t)
Sy(f, t)

, (2.28)
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where Sxy(f, t) corresponds to the cross-PSD (Power Spectral Density) between clean
and noisy speech while Sy(f, t) refers to the noisy speech PSD. By assuming again that
the speech and noise signals are uncorrelated as well as there is no channel distortion,
(2.28) can be expressed as [114]

H(f, t) = Sx(f, t)
Sx(f, t) + Sn(f, t) , (2.29)

where, similarly, Sx(f, t) and Sn(f, t) are the PSDs of clean speech and noise, respec-
tively.

If we now define the a priori SNR in terms of PSDs as ξ(f, t) = Sx(f, t)/Sn(f, t),
the WF in (2.29) can be rewritten as follows:

H(f, t) = ξ(f, t)
ξ(f, t) + 1 . (2.30)

From the WF definition in (2.30) and the gain function GSS(f, t) in (2.25) we can
remark the similarities between this method and SS. Thus, H(f, t) can again be un-
derstood as an SNR-dependent attenuator and the same discussion as for the SS case
is valid here.

Advanced front-end. This feature enhancement method was standardized and re-
leased by the STQ ETSI (Speech and multimedia Transmission Quality, European
Telecommunications Standards Institute) Aurora working group in 2002 with reference
ETSI ES 202 050 [3]. Since then, it has been considered a quite relevant method among
the state-of-the-art techniques as well as a reference for experimental comparison pur-
poses. Indeed, the ETSI advanced front-end (AFE) will be evaluated in Chapter 6 to
this end. Briefly, the core of AFE consists of a two stage Mel-warped Wiener filter
[9] to reduce the effect of the environmental noise. Additionally, AFE also integrates
SNR-dependent waveform processing and blind equalization to compensate the possi-
ble convolutive (channel) distortion [3, 149]. This blind equalization approach is a good
candidate to be used instead of CMN if online channel compensation is required. It
has been shown in the literature that AFE is able to achieve high error rate reductions
on the Aurora-2 [148] noisy continuous digit recognition task [126].

2.2.2 Model-based approaches
The model-based noise-robust approaches mitigate the mismatch between the train-
ing and testing conditions at the back-end side by properly estimating or adapting
the acoustic model parameters of the recognizer. As also aforementioned, this kind of
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approaches offers a high level of robustness against noise and other sources of variabil-
ity at the expense of relatively high computational complexity [107]. In turn, these
model-based approaches can be classified into two different categories, namely model
adaptation and adaptive training, which are shortly revised down below.

2.2.2.1 Model adaptation

Model adaptation is about transforming the acoustic model parameters in order to
account for the testing acoustic conditions during recognition. Therefore, every source
of acoustic mismatch can be compensated, e.g. ambient noise, channel distortion,
inter-speaker variability, etc. MAP (Maximum A Posteriori) adaptation [56] is among
the most popular model adaptation techniques and consists of the calculation of those
acoustic model parameters Λ̂ that correspond to the mode of the posterior distribution
p(Λ|Y,H), that is,

Λ̂ = argmax
Λ

p(Λ|Y,H) = argmax
Λ

p(Y|Λ,H)p(Λ), (2.31)

where p(Λ) is the prior distribution of the model parameters Λ, and Y and H refer
to the adaptation data and the corresponding transcriptions, respectively. To find the
optimal set of parameters Λ̂, (2.31) is iteratively solved by means of the expectation-
maximization (EM) algorithm.

A model adaptation technique is said to be supervised if the transcriptions of the
adaptation utterances are available to guide the process. On the other hand, when such
an information is not available, the model adaptation method is unsupervised. For the
latter, a two-pass decoding strategy is followed. First, a hypothesis or transcription H
is generated by decoding the adaptation utterance using the initial model Λ. Then,
that hypothesis is (often) considered good enough to estimate the new model Λ̂ by
means of adaptation.

The performance of MAP adaptation can be severely affected when carried over few
data available, since this scheme only modifies the model parameters of the acoustic
units that are observed in the adaptation dataset. Despite there is a number of MAP-
based variants in the literature that try to alleviate this problem, e.g. [165, 167, 168],
it might be preferable to follow an MLE (Maximum Likelihood Estimation) scheme
[55, 104] under such conditions. In other words, the MLE-based adaptation techniques
produce more accurate adapted models than the MAP-based ones when the amount
of data for adaptation is limited [66].

The most popular model adaptation methods, such as MLLR (Maximum Likelihood
Linear Regression) [104], take into account this MLE criterion. MLLR proposes to
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adapt the mean vectors of the acoustic model Gaussian PDFs by means of a class-
dependent affine transformation:

µ(k)
y = Arµ

(k)
x + br, (2.32)

where the mean vector of the new model µ(k)
y is obtained from rectifying the mean vec-

tor µ(k)
x corresponding to the k-th Gaussian component of the initial model. Further-

more, Ar and br are the parameters (matrix and vector) of the affine transformation
(to be estimated) belonging to the r-th regression class. The MLE of these parame-
ters is again carried out by application of the EM algorithm relying on the auxiliary
Q-function

Q =
∑
t

∑
k

γ
(k)
t log pΛ̂(yct |k), (2.33)

where γ(k)
t is the posterior probability for the k-th Gaussian component at time t. By

setting derivatives of Q with respect to Ar and br to zero, the optimal values of the
transformation parameters are finally found.

On the other hand, since various acoustic factors such as the environmental dis-
tortions have an impact on the signal variance, we should also modify the covariance
matrices of the acoustic model Gaussians for higher robustness. Their adaptation can
be accomplished as follows [55]:

Σ(k)
y = HrΣ

(k)
x H>r , (2.34)

where Σ(k)
y is the covariance matrix of the new model while the covariance matrix

Σ(k)
x corresponds to the k-th Gaussian component of the initial model. Hr is the

transformation matrix belonging to the r-th regression class. In this context, the mean
correction is first estimated as aforementioned given the initial covariance matrix Σ(k)

x .
Then, given the new mean vector µ(k)

y , Hr is computed, and Σ(k)
y from (2.34). The

described process is repeated as many times as needed until convergence.
In [55], the so-called CMLLR (Constrained MLLR) method was proposed, which is

a variant of MLLR adaptation where the mean vector and covariance matrix transfor-
mation matrices are constrained to be equal, namely

µ(k)
y = Arµ

(k)
x − br,

Σ(k)
y = ArΣ

(k)
x A>r .

(2.35)

A major advantage of CMLLR is the reduced number of parameters to be estimated
along with substantially lower computational complexity with respect to the standard
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MLLR adaptation. Furthermore, CMLLR can be alternatively formulated and imple-
mented in a more efficient manner in the feature space. In this case, CMLLR is referred
to as fMLLR (feature-space MLLR) and the feature vector yc is modified as

xcr = A−1
r yc + A−1

r br. (2.36)

During our experimental evaluation in Chapter 6, fMLLR will be employed.
In the next subsection, a more powerful model adaptation approach in compar-

ison with the above techniques, and based on distortion modeling by vector Taylor
series (VTS), will be explained. Unlike the above model adaptation techniques which
perform linear corrections on the acoustic model parameters, VTS considers a physi-
cal model that exploits the non-linear interactions between the speech signal and the
environmental distortions [61]. PMC (Parallel Model Combination) [54] is another
well-known method for adapting the acoustic model parameters which also uses an
explicit speech distortion model in a similar way to VTS, though the latter is still more
accurate [6].

2.2.2.2 Adaptive training

Many of the noise-robust ASR algorithms assume that the recognizer has been trained
by means of clean speech data. Nevertheless, training the ASR system with only clean
data is not always possible, as it may be difficult to collect enough amount of speech
data under clean acoustic conditions. Therefore, if the acoustic models of the recog-
nizer are trained from a mixture of speech data collected in different acoustic (noisy)
conditions, those feature enhancement methods might fail. The adaptive training strat-
egy helps to overcome this hurdle by applying the same processing at the training and
testing phases in order to consistently compensate the same mismatch sources.

Most of these adaptive techniques are based on noise adaptive training (NAT)
[34]. The simplest NAT approach is called fNAT (feature-space NAT) and it can be
understood as an obvious extension of the multi-condition training. This popular as
well as quite robust approach simply consists of training the ASR system with noisy
speech data previously compensated by using the same feature enhancement method
as during the testing phase. This way, the same sources of mismatch are consistently
removed at both the training and testing stages to provide great recognition accuracy
in a very straightforward manner. This scheme is also known as multi-style training
and the resulting acoustic models are referred to as multi-style acoustic models. For
the reasons given above, fNAT will be widely employed in this Thesis during the
experimental evaluation.
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We can distinguish between two different subcategories within the adaptive training
methods, namely the feature- and the model-space joint model training methods. While
fNAT belongs to the former, within the latter subcategory we can find some techniques
like speaker adaptive training (SAT) [7], and mNAT (model-space NAT) methods such
as joint adaptive training (JAT) [113] or irrelevant variability normalization (IVN) [92].
This type of techniques jointly train a canonical acoustic model and a set of transforms
typically under an MLE criterion [107]. On the one hand, the canonical acoustic model
is a compact HMM model which captures the desired speech variability regardless
the acoustic condition (i.e. ambient noise, speaker, etc.). On the other hand, each
transform maps the canonical model to another one adapted to the particular acoustic
condition that such a transform represents. As an example, let us briefly review how
SAT works, as it will also be employed during our experimental evaluation.

SAT is a technique proposed to mitigate the impact of the inter-speaker variability
on the recognition performance by adapting the acoustic models to each particular
speaker. This method emerged as a better alternative to MLLR and CMLLR for the
mentioned purpose. At the training stage, SAT jointly computes a speaker-independent
(canonical) acoustic model Λ from multi-speaker training data and a set of transforms
by following an MLE criterion. Let us suppose that we have a multi-speaker training
dataset obtained from a total of S different speakers. SAT estimates that set of trans-
forms T =

(
T (1),T (2), ...,T (S)

)
(one per speaker) by maximizing the likelihood of the

training data as (
Λ̂, T̂

)
= argmax

Λ,T

S∏
s=1

p
(
Y(s)

∣∣∣H(s),Λ,T (s)
)
, (2.37)

where Y(s) represents the training data coming from the s-th speaker, being H(s) the
corresponding transcriptions. Thus, the s-th transform derived from (2.37) maps the
model Λ̂ to another one adapted to the s-th training speaker. The same speaker-
dependent adaptation would be applied during the test phase by properly estimating
transforms for the test speakers.

Again, the optimization problem in (2.37) is solved by application of the EM al-
gorithm. First, the transforms are estimated given an initial compact model. Second,
given the new transforms, the canonical acoustic model parameters are updated. The
described process is repeated as many times as needed until convergence.

2.2.3 Distortion modeling by vector Taylor series

The vector Taylor series (VTS) approach [137, 138] is a powerful strategy which ex-
hibits an outstanding robustness since it relies on a physical distortion model that
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explicitly explains how it is the non-linear interaction between the speech signal and
the environmental distortions in the log-Mel or cepstral domain. In particular, VTS is
used to linearize such a speech distortion model in order to find analytically tractable,
closed-form expressions for either model adaptation or feature compensation. Because
VTS model adaptation is still more accurate than VTS feature compensation at the
expense of higher computational cost (all the acoustic model parameters need to be
updated every time the testing acoustic conditions change) [110], the trade-off between
these two variables will determine which scheme (i.e. adaptation or compensation) is
more suitable to be deployed [107].

To begin with, let us rewrite the non-linear speech distortion model in the cepstral
domain of (2.11) as follows:

y = x + h + C log
(
1 + eC−1(n−x−h)

)
︸ ︷︷ ︸

g(x,h,n)

, (2.38)

where g(x,h,n) is the so-called mismatch function and the superscript c denoting cep-
stral domain has been omitted for the sake of clarity. This model can be approximated
linearly by computing its first-order VTS expansion around the point

(
µ(k)
x ,µh,µn

)
,

which results
y ≈ µ(k)

x + µh + g
(
µ(k)
x ,µh,µn

)
+J(k)

x

(
x− µ(k)

x

)
+ J(k)

h (h− µh) + J(k)
n (n− µn) .

(2.39)

The choice of the expansion point
(
µ(k)
x ,µh,µn

)
in particular will be justified later,

while we can anticipate that µ(k)
x , µh and µn are cepstral mean vectors of clean speech,

convolutive and additive noises, respectively. The corresponding Jacobian matrices,
namely J(k)

x , J(k)
h and J(k)

n , are respectively defined as

J(k)
x = ∂y

∂x

∣∣∣∣∣
µ

(k)
x ,µh,µn

= G(k);

J(k)
h = ∂y

∂h

∣∣∣∣∣
µ

(k)
x ,µh,µn

= G(k);

J(k)
n = ∂y

∂n

∣∣∣∣∣
µ

(k)
x ,µh,µn

= I−G(k) = F(k),

(2.40)

where I is the identity matrix and

G(k) = C diag

 1

1 + e
C−1

(
µn−µ(k)

x −µh
)
C−1, (2.41)
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in which diag(·) indicates a diagonal matrix the main diagonal of which corresponds
to the argument, and division ÷ is applied element-wise.

Now, the linear speech distortion model of (2.39) is easier to manipulate analytically
than that of (2.38) in order to perform either HMM adaptation or feature compensation.
Both types of VTS-based approaches are explained immediately below. Finally, it
should be noticed that the VTS approach can be applied in different domains, and not
only in the cepstral one. In fact, the most usual alternative domain of application is
the log-Mel one [62] and, in Chapter 4, we will extend the VTS feature compensation
to a dual-channel mobile device framework in this domain.

2.2.3.1 VTS model adaptation

From now on, let us assume a GMM-based acoustic model comprised of K Gaussian
components and described by the set of parameters

{
µ(k)
x ,Σ(k)

x ; k = 1, 2, ...,K
}
trained

in clean acoustic conditions. Thus, the goal of VTS model adaptation is to compute
a new set of acoustic model Gaussian parameters, i.e.

{
µ(k)
y ,Σ(k)

y ; k = 1, 2, ...,K
}
,

to adapt the acoustic model to some particular adverse acoustic conditions. From
the linearized model of (2.39), this is easily accomplished since a linear combination
of Gaussian variables follows another Gaussian distribution [150] and it can also be
assumed that both h and n follow Gaussian distributions. In this way, the expansion
around the set of mean vectors

(
µ(k)
x ,µh,µn

)
is justified.

Then, it is easy to show that the parameters of each adapted Gaussian component
p(y|k) = N

(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
can be approximated from (2.39) as

µ(k)
y ≈ µ(k)

x + µh + g
(
µ(k)
x ,µh,µn

)
(2.42)

and

Σ(k)
y ≈ G(k)Σ(k)

x G(k)> + F(k)ΣnF(k)>, (2.43)

where the VTS model adaptation approach typically assumes that the channel term h
is constant over time. Furthermore, (2.43) is often diagonalized for efficiency purposes,
which is justified when VTS is developed in the cepstral domain, where features are
more uncorrelated.

Apart from the above static parameters, the model velocity (∆) and acceleration
(∆2) dynamic parameters can be adapted as well by using a continuous-time approxi-
mation [54]. Thus, the mean vectors and covariance matrices of the dynamic parame-
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ters can be approximated in the following way [6]:

µ
(k)
∆y ≈ G(k)µ

(k)
∆x + F(k)µ∆n,

µ
(k)
∆2y ≈ G(k)µ

(k)
∆2x + F(k)µ∆2n,

Σ
(k)
∆y ≈ G(k)Σ

(k)
∆xG(k)> + F(k)Σ∆nF(k)>,

Σ
(k)
∆2y ≈ G(k)Σ

(k)
∆2xG(k)> + F(k)Σ∆2nF(k)>.

(2.44)

Again for the same reason as for (2.43), Σ(k)
∆y and Σ

(k)
∆2y are typically made diagonal.

As we can observe, to apply VTS model adaptation we only need to estimate a few
convolutive and additive noise statistical parameters. There are plenty of techniques
to do this, being very popular those methods based on the EM algorithm [61, 108].

Several improvements to the above VTS-based model adaptation strategy have
been published in the literature over the last two decades. For instance, in [24] it is
explored (with success) the use of second-order VTS, which significantly outperforms
the first-order version in terms of recognition accuracy on the Aurora-4 [146] noisy
medium-vocabulary task. In addition, when developing the speech distortion model in
Section 2.1, we simplified the expression in (2.4) by neglecting the term αf,t modeling
the relative phase between the speech and the noise. Nevertheless, in [109] it is shown
that formulating VTS model adaptation from a phase-sensitive speech distortion model
contributes to achieve higher recognition accuracy.

2.2.3.2 VTS feature compensation

Alternatively, we can follow a parallel scheme to VTS model adaptation but on the
feature space. In this case, a K-component GMM p(x) is employed to model the clean
speech features on the front-end side as

p(x) =
K∑
k=1

P (k)N
(
x
∣∣∣µ(k)

x ,Σ(k)
x

)
, (2.45)

where P (k) is the prior probability of the k-th Gaussian component. Then, assuming
that the acoustic models of the recognizer are trained with clean speech data, the VTS
approach can be embedded in an MMSE estimator for the clean speech features. In
general, the MMSE estimation of the clean speech feature vector x given the noisy
observation y is defined as

x̂ = E [x|y] =
∫

xp(x|y)dx. (2.46)
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By taking into account both the K-component GMM-based modeling of the clean
speech features in (2.45) and the speech distortion model of (2.38), the MMSE estima-
tion of (2.46) can be rewritten as follows:

x̂ = y− h−
K∑
k=1

P (k|y)
∫

C log
(
1 + eC−1(n−x−h)

)
p(x|y, k)dx, (2.47)

where P (k|y) is the k-th posterior probability, which can be expressed in the following
way by using the Bayes’ theorem:

P (k|y) =
P (k)N

(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
∑K
k′=1 P (k′)N

(
y
∣∣∣µ(k′)

y ,Σ
(k′)
y

) . (2.48)

It must be noticed that the posterior P (k|y) can be easily computed given the clean
speech model of (2.45) from just evaluating Eqs. (2.42) and (2.43) to obtain values for
the Gaussian parameters.

The MMSE estimation of (2.47) is still difficult to evaluate, so the integration of
VTS allows us to approximate it and to make it analytically tractable. Thus, by consid-
ering a zero-order VTS approach, the MMSE estimation of (2.47) can be approximated
by [137]

x̂ = y− h−
K∑
k=1

P (k|y)C log
(

1 + e
C−1

(
µn−µ(k)

x −µh
))

. (2.49)

Similarly, in [176] it is proposed the use of a first-order VTS to approximate the MMSE
estimation of the clean speech features by also assuming that the joint probability
distribution for x and y is Gaussian, that is,

x̂ =
K∑
k=1

P (k|y)
(
µ(k)
x + Σ(k)

x G(k)>Σ(k)
y

−1 (y− µ(k)
y

))
. (2.50)

As for VTS model adaptation, different improvements have been reported in the
literature to the above VTS-based feature compensation scheme over the last years.
Similarly to the model adaptation case, in [175], significant benefits in terms of recogni-
tion accuracy are achieved by using a second-order VTS expansion of a phase-sensitive
speech distortion model. It is well worth highlighting at this point another well-known
feature compensation method called ALGONQUIN [51], which can be considered as an
alternative to a phase-sensitive VTS approach since ALGONQUIN inherently models
the phase term.
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2.2.4 Missing-data approaches

The missing-data approaches take advantage of the spectro-temporal redundancy char-
acteristic of the speech signal to achieve good ASR performance in the presence of noise.
In other words, this type of methods states that it is not necessary to have the en-
tire speech spectrogram for successful recognition. Therefore, these methods need first
to identify which regions of the noisy speech spectrogram are unreliable due to the
pervasiveness of noise (i.e. the set of time-frequency spectral bins where noise dom-
inates). Once done, one of two missing-data paradigms can be followed, namely the
modification of the recognizer to ignore those unreliable elements during recognition
or data imputation. The former paradigm is based on the recognition of incomplete
speech spectra as an alternative to model adaptation. The core idea is that the way
the observation probabilities is computed at the decoding stage accounts for the reli-
able and unreliable parts of the spectrogram. Two techniques that can be classified
within this category are marginalization [31] and SFD (Speech Fragment Decoding)
[13]. In particular, one extreme and widely used kind of marginalization is that where
only the reliable elements are used during recognition [107]. On the other hand, data
imputation (also known as spectral reconstruction) employs reliable spectro-temporal
regions in order to estimate values from a statistical point of view for the unreliable
parts of the noisy spectrogram [65, 155].

One of these data imputation algorithms is the TGI (Truncated-Gaussian based
Imputation) technique of [65], which will be used for comparison purposes in this
Thesis. TGI is based on the well-known log-max model [158], which is a simplified
version of the speech distortion model in the log-Mel domain of (2.10):

y ≈ max(x,n). (2.51)

It can be shown that the log-max model is quite accurate despite its simplicity [66].
This model states that if the speech energy is greater than that of the noise, speech
dominates the scene masking the noise, and vice versa. Thus, y is an upper bound for
the masked clean speech energy, i.e. x ∈ (−∞,y]. This fact is exploited by the TGI
method to achieve accurate clean speech feature estimates. The algorithm operates
on a frame-by-frame basis. At every time frame t, the noisy observation is segregated
into reliable and unreliable components, i.e. y = {yr,yu}. Clean speech estimates
for reliable elements are the observations themselves, namely x̂r = yr, while unreliable
elements are estimated using MMSE estimation. Taking into account that clean speech
is again modeled by means of a GMM with K components in the log-Mel domain, for
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those features labeled as unreliable the clean speech estimate is

x̂u =
K∑
k=1

P (k |yr,yu) x̂(k)
u , (2.52)

where x̂(k)
u corresponds to the mean of a right-truncated Gaussian distribution defined

in the interval (−∞,yu] given the k-th Gaussian of the clean speech model. The
posterior P (k |yr,yu) can be understood as the weight of the partial estimate x̂(k)

u . It
should be noticed that correlations between the different elements in the feature vector
can be exploited in a precise way, since yr conditions the value of x̂u according to the
posterior probabilities.

A critical issue concerning the missing-data approaches is to accurately segregate a
noisy speech spectrogram into its reliable and unreliable regions. Such a segregation is
typically accomplished by means of the so-called (binary) missing-data masks, which
label each time-frequency (T-F) bin of a noisy speech spectrogram (pixel) as reliable
(speech dominates) or unreliable (noise dominates). These masks are used for both
types of missing-data paradigms (i.e. the modification of the recognizer to ignore those
unreliable elements during recognition and data imputation) and their performance
depend heavily on the quality of those masks. In this regard, a remarkable missing-
data mask is the oracle one. The oracle missing-data mask perfectly segregates a noisy
speech spectrogram into its reliable and unreliable regions with no errors. Therefore,
this type of mask allows us to find out the upper limit a missing-data method performs.
Unfortunately, in a real-life scenario, masks must be estimated and the estimation pro-
cess hopelessly leads to estimation errors. Thus, an unreliable T-F bin can be classified
as reliable and that is kept during the application of a missing-data method. On the
other hand, classifying a reliable T-F bin as unreliable means that a reliable element is
distorted by missing-data processing. Since those missing-data methods that operate
by modifying the recognizer are more powerful than the data imputation techniques
at the expense of higher computational complexity (similarly to what happened with
the model adaptation and feature enhancement paradigms), better performance will be
achieved by using a method belonging to the former category (such as marginalization)
if a well estimated binary mask is available and the other way round [63, 66]. Instead
of making a hard decision about the reliability of every T-F bin, another possibility is
to give a soft measure of the reliability of the noisy spectrum regions to be exploited
by the missing-data technique. In this case, the corresponding continuous mask in the
[0, 1] interval is called soft missing-data mask or soft-mask. The values of such a type
of mask can be understood as speech presence probabilities (SPPs). Thus, the closer
to 1 (0) the mask value is, the more reliable (unreliable) the T-F bin is since speech
(noise) tends to dominate. In fact, it has been shown that when the missing-data mask
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Figure 2.4: A comparison between binary and soft missing-data masks obtained
from an a priori SNR estimate [14].

has to be estimated, it is preferable to follow a soft missing-data approach for better
performance [14]. Some brief comments on missing-data mask estimation are given
immediately below.

2.2.4.1 Missing-data mask estimation

Mask estimation is a critical part of the missing-data approaches as their performance
heavily relies on the accuracy of such masks. Several approaches for missing-data mask
computation can be found in the literature, like the SNR-dependent strategy, which is
a popular and straightforward scheme. For instance, let us suppose that we have an
estimate of the noise in the Mel power spectral domain |N̂(l, t)|2. Then, the a priori
SNR for the corresponding T-F bin, ξ(l, t), can be calculated by means of the maximum
likelihood estimator of [43] as

ξ̂(l, t) = 10 log10

(
max

(
|Ỹ (l, t)|2

|N̂(l, t)|2
− 1, 0

))
, (2.53)

where |Ỹ (l, t)|2 is the related noisy power spectrum bin. To obtain every binary missing-
data mask value, mb(l, t), the above a priori SNR estimate can be simply thresholded
as follows:

mb(l, t) =
{

1 if ξ̂(l, t) ≥ γm;
0 otherwise, (2.54)

where γm is the SNR threshold in dB. The value of γm is often experimentally chosen
taking into account the trade-off between false positives and false negatives.
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2.2. Single-channel robust speech recognition

On the other hand, the same a priori SNR term of (2.53) may be employed to get
a soft-mask ms(l, t) through the application of the sigmoid function as

ms(l, t) = 1
1 + e−αs(ξ̂(l,t)−βs)

, (2.55)

where αs and βs are the slope and center parameters of the sigmoid function, respec-
tively. It should be noticed that this type of function is quite appropriate for this
purpose as it maps the SNR estimate to the [0, 1] interval. Large αs values approxi-
mate the sigmoid function to a unit step function, which degenerates to binary mask
as illustrated in Figure 2.4. On the contrary, as αs → 0, all the mask values tend to
be 1/2, representing a maximum uncertainty context. On the other hand, βs plays a
similar role to γm as it sets the turning point between the dominance of speech or noise.
Properly adjusting these parameters is crucial to achieve proper masks, and such an
adjustment will depend, in turn, on the quality of the SNR estimate. This SNR-based
approach intended to compute soft-masks is followed in [91], where, additionally, the
resulting masks are improved by treating them as images in which we can exploit the
time-frequency correlation of speech. Moreover, the coefficients of this SNR-dependent
mask can be used to weight the noisy spectrum in order to perform imputation in a
very simple manner.

Another possibility is the use of SVMs (Support Vector Machines) as in [192, 193]
to classify each T-F bin as reliable or unreliable. Because a key point of this kind
of classifiers is the features that are used as input, in [192] this issue is explored by
comparing different types of them. In that work it was determined that some auditory-
based features such as GFCC and RASTA-PLP yield a robust classification as shown
by their accuracy experiments. More precisely, both RASTA-PLP and pitch-based
features improve the generalization ability of the classifier to unseen acoustic conditions
during the training stage. In [193], linearly separable and discriminative features are
extracted by means of a DNN to boost the performance of the SVM-based classification.

In addition, the use of deep learning has become relevant over the recent years
to estimate missing-data masks because of the powerful modeling capabilities of that
type of architectures. For example, for noise-robust ASR purposes, a similar set of
features is used in [139] and [194] to estimate soft-masks by means of a DNN and
a CNN (Convolutional Neural Network), respectively. Unfortunately, a comparison
between both methods is not provided in the literature. In addition, a very powerful
deep learning architecture called BLSTM (Bi-directional Long Short-Term Memory)
network, which is able to exploit long temporal correlations, is considered in [76] to also
estimate soft-masks for noise-robust ASR purposes through beamforming. Since mask
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estimation is a quite difficult task, we will also jointly exploit DNNs and multi-channel
information in Chapter 5 to efficiently obtain binary masks for data imputation.

2.3 Noise estimation
A noise estimation stage is required by a number of algorithms intended to provide
robustness against noise in ASR. As an example of the latter, we have some feature
enhancement methods such as Wiener filtering or VTS feature compensation. More-
over, we have seen that some missing-data mask estimation approaches may also need
a noise estimate to work. Again, the performance of all these methods relies on the
accuracy of the noise estimates. Because of this reason, despite it seems that the atten-
tion has moved over the last years towards other noise-robust solutions which do not
require any explicit noise estimation, this issue has traditionally been important in the
scientific literature. Hence, in this section we briefly review some prominent classical
noise estimation techniques.

This overview will distinguish between different noise estimation categories, namely
recursive averaging, minimum statistics and MMSE noise estimation, which are de-
scribed in the following. Of course, while these are considered the most relevant
paradigms, we can find a variety of approaches. For instance, one of the simplest
noise estimation techniques consists of averaging the first frames of an utterance since
it is often reasonable to assume that no speech is present in these frames. Nevertheless,
it is clear that this approach will fail miserably in the presence of non-stationary noise.
On the other hand, we also mentioned in Section 2.2 that NMF for source separation
has become popular in recent times. Indeed, this approach has also been successfully
explored for noise estimation purposes [177].

Recursive averaging. This is one of the oldest and simplest noise estimation paradigms.
The recursive averaging philosophy is stated by the formula

|N̂(f, t)|2 =

 α|N̂(f, t− 1)|2 + (1− α)|Y (f, t)|2 if
∑

f
|Y (f,t)|2∑

f
|N̂(f,t−1)|2 < β;

|N̂(f, t− 1)|2 otherwise,
(2.56)

where α is a smoothing parameter (0 < α < 1) and β is a threshold to control the above
recursion. When the noisy observation ∑f |Y (f, t)|2 is less than β∑f |N̂(f, t− 1)|2, it
is assumed that speech is absent and the noise power spectrum estimate is updated by
taking into account an energy fraction of the current noisy observation. On the other
hand, when ∑f |Y (f, t)|2 ≥ β

∑
f |N̂(f, t− 1)|2, it is considered that speech is present,
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so the recursion is stopped and the last noise estimate is kept. It should be noticed
that

γ(t) =
∑
f |Y (f, t)|2∑

f |N̂(f, t− 1)|2
(2.57)

can be understood as an estimation of the a posteriori SNR. Indeed, different criteria
to decide if speech is absent or present can be used instead, e.g. SPP-based criteria. A
typically suitable assumption is considering that the first frames of a noisy utterance
contain only noise energy. Therefore, the initialization of this algorithm can be carried
out as |N̂(f, 0)|2 = |Y (f, 0)|2. Moreover, this recursive averaging philosophy can be
alternatively applied to estimate the spectral magnitude of the noise instead of its
power.

The above approach exhibits poor performance when tackling with non-stationary
noise. For instance, if noise energy considerably increases in a particular time frame,
the method will believe that speech is present. As a consequence, the noise estimate will
not be updated, leading to noise being underestimated. This issue was partially solved
by Cohen in 2002 [29] in an efficient way in terms of computational complexity. His
algorithm was called MCRA (Minima Controlled Recursive Averaging), which is able
to track rapid shifts in the noise spectra. Unlike the above basic recursive averaging
approach, MCRA does not stop updating the noise estimate when speech is present.
Instead, a soft estimation is carried out based on an SPP, p(f, t), as

|N̂(f, t+ 1)|2 = α̃(f, t)|N̂(f, t)|2 + (1− α̃(f, t))|Y (f, t)|2, (2.58)

where
α̃(f, t) = α + (1− α)p(f, t) (2.59)

is a time-varying smoothing parameter. The SPP is computed from a kind of a poste-
riori SNR estimate defined as Sr(f, t) = S(f, t)/Smin(f, t), where S(f, t) is a smoothed
measure of the local noisy speech energy and Smin(f, t) is the minimum of S(f, t) within
a window of length D. Thus, the proposed recursive SPP estimator is given by

p(f, t) = αpp(f, t− 1) + (1− αp)I(f, t), (2.60)

where αp ∈ (0, 1) is another smoothing parameter and

I(f, t) =
{

1 if Sr(f, t) > δ;
0 otherwise. (2.61)

It must be noted that δ is a new threshold to be experimentally determined. Therefore,
if Sr(f, t) is greater than δ, it is considered that speech is present and vice versa.
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An improved version of MCRA (IMCRA) was also published by Cohen in 2003 [28].
IMCRA differentiates itself from MCRA in two main aspects: a factor to compensate
the bias of the MCRA estimator is introduced and the SPP is now computed in a more
robust way. Hence, let B be a factor that compensates the bias of the noise estimation
in (2.58), the resulting noise estimate in IMCRA is

|Ñ(f, t+ 1)|2 = B · |N̂(f, t+ 1)|2 = |N(f, t)|2

E
[
|N̂(f, t)|2

]
∣∣∣∣∣∣
ξ(f,t)=0︸ ︷︷ ︸

B

·|N̂(f, t+ 1)|2. (2.62)

Additionally, the SPP p(f, t) is calculated following a Bayesian approach by also as-
suming that the noisy speech STFT (Short-Time Fourier Transform) coefficients can
be modeled by a complex Gaussian distribution.

Other upgrades to recursive averaging-based noise estimation were reported later in
the literature, such as MCRA-MAP (MCRA-Maximum A Posteriori) [102] or EMCRA
(Enhanced MCRA) [46], which will not be discussed here for the sake of brevity.

To conclude this part, let us make some comments about the noise estimation
algorithm published by Rangachari et al. in 2006 [156]. This method is strongly based
on MCRA. According to its authors, their algorithm exhibits a greater adaptation
speed to changes in the noise dynamics than the previous MCRA-based methods.
Rangachari’s algorithm starts by computing a smoothed noisy speech periodogram as
follows:

P (f, t) = αP (f, t− 1) + (1− α)|Y (f, t)|2. (2.63)

Then, P (f, t) is employed to get the corresponding SPP as in MCRA (see Eq. (2.60)).
A kind of a posteriori SNR is again estimated as Sr(f, t) = P (f, t)/Pmin(f, t), where
Pmin(f, t) is obtained by means of the following non-linear rule:

Pmin(f, t) =
{
γPmin(f, t− 1) + 1−γ

1−β (P (f, t)− βP (f, t− 1)) if Pmin(f, t− 1) < P (f, t);
P (f, t) otherwise,

(2.64)
where β and γ are heuristic parameters to be experimentally set. As for MCRA, if
Sr(f, t) > δ(f) speech is present and I(f, t) = 1. Otherwise, speech is absent and
I(f, t) = 0. Therefore, the only difference between Rangachari’s algorithm and MCRA
at this point is that the threshold δ(f) is frequency-dependent. Finally, the noise power
spectrum is recursively estimated as in (2.58).

Minimum statistics. This method, that was proposed by Martin in 2001 [130],
is intended to give noise estimates in the linear power spectral domain. It works by
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tracking through time the minimum value, Pmin(f, t), of the smoothed noisy speech pe-
riodogram P (f, t) within a window of length D. In other words, Pmin(f, t) corresponds
to the noise estimate in this method.

The smoothed noisy speech periodogram required to derive Pmin(f, t) is computed
as

P (f, t) = α(f, t)P (f, t− 1) + (1− α(f, t))|Y (f, t)|2, (2.65)

where α(f, t) is a smoothing parameter, which changes across time and frequency to
improve the noise estimation accuracy. This smoothing parameter is calculated by
minimizing the MSE between P (f, t) and the actual noise power σ2

N(f, t) when speech
is absent, that is,

α̂(f, t) = argmin
α(f,t)

(
E
[(
P (f, t)− σ2

N(f, t)
)2
∣∣∣∣P (f, t− 1), σ2

X(f, t) = 0
])
, (2.66)

in which σ2
X(f, t) refers to the actual clean speech power. Since the minimum value

of a set of random variables is smaller than its mean for non-trivial distributions,
the above noise estimation, Pmin(f, t), is necessarily biased. Hence, the minimum
statistics method introduces a bias compensation factor, Bmin(f, t), to get the final
noise estimation σ̂2

N(f, t) as follows:

σ̂2
N(f, t) = 1

E[Pmin(f, t)]
∣∣∣σ2
N (f,t)=1︸ ︷︷ ︸

Bmin(f, t)

·Pmin(f, t) = Bmin(f, t) · Pmin(f, t). (2.67)

MMSE noise estimation. This category refers to those algorithms that estimate
the noise power spectrum through an MMSE criterion. Two well-known methods
belonging to this classification are those developed by Yu in [208] and Hendriks in
[72]. In fact, the Hendrik’s estimator is based on the previous Yu’s work, so we will
only focus on describing the former method hereunder.

The MMSE noise estimation method of Hendriks proceeds from the following as-
sumptions:

• An additive noise distortion model (i.e. there is no convolutive distortion).

• The noisy speech STFT coefficients are i.i.d. (independent and identically dis-
tributed) zero-mean complex random variables.

• Speech and noise are statistically independent.

47



2. Fundamentals of Single- and Multi-Channel Robust Speech
Processing

Thus, |N(f, t)|2 is estimated from an MMSE criterion as the second-order moment of
the noise spectral magnitude, that is,

|N̂(f, t)|2 = E
[
|N(f, t)|2 |Y (f, t)]

=
∫ +∞

0

∫ 2π

0
|N(f, t)|2p (|N(f, t)|,∆(f, t)|Y (f, t)) d∆(f, t)d|N(f, t)|,

(2.68)

where ∆(f, t) is the corresponding noise phase term. Then, the conditional PDF
p (|N(f, t)|,∆(f, t)|Y (f, t)) is determined by means of the Bayes’ theorem as

p (|N(f, t)|,∆(f, t)|Y (f, t)) = p (Y (f, t)| |N(f, t)|,∆(f, t)) p(|N(f, t)|,∆(f, t))
p(Y (f, t)) , (2.69)

where, assuming that both the speech and noise STFT coefficients follow complex
Gaussian distributions,

p (Y (f, t)| |N(f, t)|,∆(f, t)) = 1
πσ2

X(f, t)e
2|N(f,t)||Y (f,t)| cos(∆(f,t)−Θ(f,t))−|Y (f,t)|2−|N(f,t)|2

σ2
X

(f,t)

(2.70)
and

p(|N(f, t)|,∆(f, t)) = |N(f, t)|
πσ2

N(f, t) exp
(
−|N(f, t)|2
σ2
N(f, t)

)
. (2.71)

It must be noticed that Θ(f, t) is the phase term of the noisy speech. Additionally, the
a priori distribution of the noisy speech can be computed by marginalizing as follows:

p(Y (f, t)) =
∫ +∞

0

∫ 2π

0
p(Y (f, t), |N(f, t)|,∆(f, t))d∆(f, t)d|N(f, t)|

=
∫ +∞

0

∫ 2π

0
p(Y (f, t)||N(f, t)|,∆(f, t))p(|N(f, t)|,∆(f, t))d∆(f, t)d|N(f, t)|.

(2.72)
By combining (2.72) and (2.69) with (2.68), the MMSE estimation of the noise power
spectrum can be rewritten as
|N̂(f, t)|2 = E

[
|N(f, t)|2|Y (f, t)

]

=

∫ +∞

0

∫ 2π

0
|N(f, t)|2p(Y (f, t)||N(f, t)|,∆(f, t))p(|N(f, t)|,∆(f, t))d∆(f, t)d|N(f, t)|∫ +∞

0

∫ 2π

0
p(Y (f, t)||N(f, t)|,∆(f, t))p(|N(f, t)|,∆(f, t))d∆(f, t)d|N(f, t)|

.

(2.73)

It can be shown that the above equation can be alternatively expressed in an easier
way in terms of the a priori and a posteriori SNRs, ξ(f, t) and ζ(f, t), as

|N̂(f, t)|2 =
(

1
(1 + ξ(f, t))2 + ξ(f, t)

(1 + ξ(f, t))ζ(f, t)

)
|Y (f, t)|2. (2.74)
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Despite the estimation in (2.74) is unbiased, in practice it can exhibit a bias as a result
of the used a priori SNR estimate. Then, the noise PSD estimate is derived from
properly compensating the SNR-dependent bias of (2.74). Furthermore, the latter
unbiased estimate is smoothed by application of a first-order recursion to decrease the
estimation variance.

An illustrative comparison between all these noise estimation algorithms in terms
of the mean and variance of the estimation error is given in [178]. In this work, it is
concluded that, in general, the evaluated noise estimation algorithms perform better at
lower than at higher SNRs. Only minimum statistics and the MMSE noise estimation
algorithm of Hendriks exhibit a more stable performance regardless the SNR value.
Furthermore, this latter method is the most robust one in the presence of rapid shifts
of the noise spectra, while all of them perform very well when tackling with stationary
noise.

2.4 Multi-channel robust speech processing on
IMDs

Since multi-channel robust speech processing is an immensely vast topic, we focus in
this section on its application to IMDs as this is the scope of this Thesis. In particular,
most of this review focuses on multi-channel speech enhancement approaches because
they have widely been considered for multi-channel noise-robust ASR in a successful
way. Multi-channel robust speech processing on IMDs has gained popularity over the
recent years due to both its potential regarding the single-channel solutions and a
decrease in the price of hardware.

The rest of this section is organized as follows. First, an overview of multi-channel
robust ASR on IMDs is presented. Since beamforming is a basic cornerstone of multi-
channel robust ASR, some of its fundamentals are also discussed. Despite beamforming
(or spatial filtering) exhibits some important constraints when performing on arrays
comprised of a few sensors close each other (as it is the case of IMDs), such an approach
is typically followed in the literature. Nevertheless, it is fair to say that we can find that
the beamforming shortcomings are overcome in some way by post-filtering, i.e. by ad-
ditional processing at the output of the spatial filter. Then, we give some comments on
the most well-known fixed beamformers, delay-and-sum and MVDR (Minimum Vari-
ance Distortionless Response), as well as on adaptive array processing. Post-filtering
is later revisited in Subsection 2.4.3. To conclude this section, the dual-channel power
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level difference (PLD) principle is discussed. As we will see, this principle explains the
spatial particularities of the speech and noise signals in a dual-microphone set-up where
the secondary microphone is usually placed in an acoustic shadow. We cannot forget
that the dual-microphone set-up can be widely found in many portable devices such
as smartphones. Since beamforming does not account for the particularities of this
scenario, the PLD scheme is often a more reasonable choice for designing noise-robust
ASR solutions in this context. In general, the PLD principle will be taken into account
when developing the contributions presented in the subsequent chapters of this Thesis.

2.4.1 Overview of multi-channel robust ASR on IMDs

First research works on multi-channel noise-robust ASR were based on the use of
features extracted from an enhanced waveform in terms of SNR by means of beam-
forming [93, 143]. However, increasing the speech signal quality does not necessarily
mean better accuracy of the speech recognizer since this one works on a feature-level
basis. Because of this reason, the improvements that could be achieved by following a
classical beamforming approach were limited in the first instance [160]. Thus, the sci-
entific community in this area began to move towards designing specific multi-channel
noise-robust ASR techniques. For example, in [161], a filter-and-sum beamformer is
optimized in order to produce a sequence of features which maximizes the likelihood
of generating the correct hypothesis. This technique, specifically intended to speech
recognition, and called LIMABEAM (LIkelihood-MAximizing BEAMforming), defini-
tively outperformed the classical beamforming scheme at that time. Several improve-
ments to LIMABEAM were reported later in the literature and a remarkable one is
S-LIMABEAM (Subband LIMABEAM) [162]. In contrast to the basic approach of
[161], S-LIMABEAM uses subband processing principles to define an algorithm that
can be successfully applied to highly reverberant environments.

Apart from the well-known beamforming techniques (commented later in Subsection
2.4.2) applied to noise-robust ASR, there are many different and creative solutions
depending on the characteristics of the microphone array (i.e. a set of microphones
spatially distributed). For instance, it was proposed in [142] an algorithm to select the
signal from one microphone of the available ones in the array to be used for feature
extraction and recognition. This makes sense since the relative position between the
speaker and the sensors of the array can be variable, and therefore the quality of the
signals captured by the microphones. This technique works by selecting the channel
that produces the least mismatch when comparing speech recognition hypothesis made
from compensated and noisy feature vectors. It has been shown that the use of one
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selected channel can even produce less word error rates than the use of delay-and-sum
beamforming [99].

As we know, a particular case of interest is the small microphone array, composed
by a few sensors close each other. As also introduced, small microphone arrays have
experienced a wide spreading over the last years as they are being embedded in the
latest IMDs, such as smartphones or tablets. To take advantage of this small array
feature, in [134] it was proposed to enhance the output waveform from a filter-and-sum
beamformer by Wiener post-filtering to carry out an estimation of the a priori SNR.
Then, this is mapped to a soft missing-data mask by means of a sigmoid function
for noise-robust ASR purposes on small microphone arrays. This scheme showed to be
effective by outperforming related single-channel approaches in terms of word accuracy.

A major step in multi-channel noise-robust ASR on IMDs was the occurrence of
the 3rd CHiME Speech Separation and Recognition Challenge (CHiME-3) [15]. This
challenge allowed the researchers making further developments in noise-robust ASR
on IMDs with several sensors. More precisely, CHiME-3 encouraged to deal with
speech distortions present when using a tablet with six microphones in everyday, noisy
environments. A number of solutions were submitted by the participants and those
benefited from a combination of single- and multi-channel techniques. While a large
proportion of word error rate reduction came from exploiting the power of deep learning
for both acoustic and language modeling [169, 190, 203, 210], multi-channel processing
also played its part. In this regard, we can find several works that integrate, on the
front-end side, a beamformer followed by additional processing at its output to mitigate
the shortfalls of the spatial filtering [12, 76, 125, 153, 210].

A good example of a system that combines several single- and multi-channel ap-
proaches to achieve an outstanding performance is that of the challenge winners [203].
In this work, MVDR beamforming is applied to the previously dereverberated array
signals in order to enhance speech. However, it must be pointed out that the baseline
performance is critically improved by using convolutional and recurrent neural net-
works for acoustic and language modeling, respectively. Recurrent neural networks
(RNNs) for language modeling and MVDR beamforming are also used in [190] along
with fMLLR for inter-speaker variability compensation. Indeed, a beamforming stage is
integrated by many of the challenge participants, e.g. [12, 76, 90, 95, 125, 153, 190, 210].
Apart from MVDR beamforming [12, 90, 95, 153, 190, 210], the use of delay-and-sum
beamforming is also explored in a successful manner [12, 95, 125, 153]. Additionally, a
quite robust type of beamforming with remarkable performance is studied in [76]. This
beamformer, called GEV (Generalized EigenValue), is based on maximizing the SNR
of the beamformer output in each frequency bin separately. GEV requires knowledge
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about the speech and noise PSDs, which are computed from soft-masks estimated by
means of a BLSTM neural network. At the output of the beamformer, a post-filtering
stage is appended to improve its performance. Post-filtering is also considered in other
works submitted to the challenge, e.g. [12, 125, 153, 210], and more details about it are
given in Subsection 2.4.3. Adaptive beamforming was considered in this challenge as
well through the use of MCA (Multi-Channel Alignment) in [174], which demonstrates
to be simple and effective at the same time. Moreover, multi-channel Wiener filtering
(MCWF) is explored in [191] obtaining significant improvements.

Following the success of the CHiME-3 Challenge, the CHiME-4 Challenge [187]
constitutes a step forward in terms of difficulty as the participants are additionally
constrained to only use one and two microphones (i.e. one of those that face forward
plus the one that faces backwards) of the tablet apart from the six available. By using
the six microphones in the tablet, the winners of the CHiME-4 Challenge [41] achieved
an impressive performance with a word error rate around 2% on the corresponding
medium-vocabulary recognition task. This was achieved by again combining single- and
multi-channel techniques: 1) beamforming-based enhancement, 2) diversified training
data using the noisy data of each channel, and the multiple beamformers’ outputs
data of 6 channels and 2 channels, 3) deep convolutional neural networks (DCNNs)
for acoustic modeling, and 4) LSTM-based language modeling. Another interesting
contribution to this challenge with nice results is that of [199], where the beamforming
weights are calculated in different manners by either employing neural networks or via
MLE.

Apart from the case of the tablet described above, we should also consider the
smartphone scenario because of its relevance. Smartphones rarely embed more than
two or three sensors due to their reduced size. Moreover, classical beamforming exhibits
poor performance in this case because there are only two or three sensors very close
each other, and one or two of them are often placed in an acoustic shadow regarding
the speaker’s mouth [179, 180]. In this situation, it will be shown that it is better
to follow different strategies, such as the PLD principle. Thus, noise-robust speech
processing on dual-microphone smartphones will be reviewed in Subsection 2.4.4.

2.4.2 Beamforming
Spatial filtering, better known as beamforming, is a mature technology the origin of
which is in narrowband signal processing intended to applications such as RADAR
(RAdio Detection And Ranging). Beamforming is also extended to broadband signals
such as speech, in such a way that this technology can be applied to enhance a distorted
speech signal captured by a microphone array. In summary, beamforming is about
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2.3. Apertures 15
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Figure 2.2: Incoming signal received by a linear aperture.

1. Aperture function is constant over all frequencies.

2. The signal is assumed to arrive from the far-field, thus

|p| >
2L2

λ
(2.11)

The aperture function may be written as

AR(xa) = rect(xa/L) (2.12)

where rect(.) is the rectangular function. In this case, the resulting directivity

pattern simplifies to

DR(f, αx) = F{rect(xa/L)} = Lsinc(αxL) (2.13)

where

sinc(x) ≡ sin(x)

x
(2.14)

The plot of directivity pattern corresponding to a uniform aperture function is

shown in Figure 2.3. The directivity pattern covers the area of −λ/L ≤ αx ≤ λ/L

is referred to as the main lobe and its extent is termed the beam width. From the

pattern plot, the zeros are located at αx = mλ/L. Note that the beam width of

Figure 2.5: Depiction of a passive and continuous linear aperture receiving from
two different sources [79].

exploiting propagation physical principles in order to design spatial filters that “look”
towards the target source direction while attenuating the undesired signals coming
from other directions. To do this, a set of spatially distributed sensors (namely array)
is employed.

First, an introduction about beamforming explaining some of its fundamentals is
given along with an overview of noise fields. Then, two of the most popular fixed
beamforming techniques which are widely used in the literature, i.e. delay-and-sum
and MVDR, are reviewed. To conclude this subsection, brief comments on adaptive
beamforming are provided. It must be pointed out that the writing of this subsection
has been mainly based on the references [79, 132, 160].

2.4.2.1 Fundamentals and noise fields

A notion about what beamforming is has been given immediately above. To further
deepen, let us define an aperture as a space region receiving (passive aperture) or
emitting (active aperture) propagation waves. Microphones and loudspeakers are good
examples of passive and active apertures, respectively. Moreover, a microphone array
might be understood as a passive and continuous aperture which is sampled at a finite
number of discrete points [132]. Figure 2.5 depicts a passive and continuous linear
aperture receiving from two different sources. As can be observed, the amount of
signal seen by the aperture depends on the direction of arrival.

For illustrative purposes as well as for simplicity, let us suppose a linear micro-
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phone array comprised of N isotropic sensors receiving a signal y(m) from an arbitrary
source. The N sensors are linearly distributed and the distance between each pair
of adjacent sensors is d. Furthermore, the total length of the array is L. Again for
illustrative purposes and for the sake of simplicity, we will assume that y(m) arrives to
the microphone array from a far-field source, that is,

ρ >
2L2

λ
, (2.75)

where ρ is the distance between the emitting source and the array, and λ is the wave-
length of the signal received by the array. Despite the wavefront is spherical, under
the far-field assumption it is reasonable to approximate that the source propagates as
a plane wave at a sufficient distance. The far-field framework leads to simpler mathe-
matical derivations regarding the near-field source case as it can be assumed that the
same signal amplitude is observed by every element of the array. Indeed, the following
formulae could be adapted to account for near-field sources (spherical wavefronts) by
just taking into consideration that the signal amplitude attenuates proportionally to
the increase of the distance.

By taking into account all the considerations above as well as assuming that all the
sensors exhibit the same frequency response, at the output of the microphone array we
observe the signal

x(m) =
N∑
n=1

y(m− (n− 1)τ), (2.76)

where
τ = d cos(θ)

cs
(2.77)

is the time difference of arrival (TDoA) between two adjacent sensors, and θ and cs are
the angle of incidence of the arriving wave and the speed of sound, respectively. The
latter variable depends on different factors such as the pressure and temperature of
the fluid where the sound propagates. In the air, cs ≈ 340 m/s. The impulse response
of the microphone array can be computed by just replacing y(m) by the Dirac delta
function δ(m) in (2.76):

h(m) =
N∑
n=1

δ(m− (n− 1)τ). (2.78)

The above equation can alternatively be expressed in the frequency domain by appli-
cation of the discrete-time Fourier transform (DTFT) as

H(f, θ) =
N∑
n=1

e−j2πf((n−1)τ) =
N∑
n=1

e−j2πf((n−1) d cos(θ)
cs

), (2.79)
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Figure 2.6: Beampatterns of two microphone arrays with 3 and 6 sensors at four
different frequency values: 425 Hz, 850 Hz, 1275 Hz and 1700 Hz. In both arrays,
the inter-element spacing is d = 0.1 m.

where f means (normalized) frequency and H(f, θ) corresponds to the microphone
array response in the frequency domain. As we can see, the system response depends
on both the frequency and the direction of arrival of the signal. Figure 2.6 shows polar
plots of H(f, θ) drawn at four different frequency values for two different microphone
arrays with 3 and 6 sensors, and d = 0.1 m in both cases. These plots are known as
directivity patterns or beampatterns, and they represent the response of the aperture
as a function of the direction of arrival of the signal, θ. As we can see, the greater
the frequency or the number of sensors, the greater the directivity of the array. More
precisely, now we can state that beamforming is about designing a desired shaping and
steering of the array directivity pattern [132] to direct its main lobe towards the look
direction, i.e. where the target source is.

According to the Nyquist-Shannon sampling theorem, temporal aliasing appears
when a signal the maximum frequency of which is fmax, is sampled below a fs = 2fmax
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Figure 2.7: Example of spatial aliasing (right) for the microphone arrays of Figure
2.6.

sampling rate. Analogously, this concept is extended to the spatial filtering scenario.
Thus, it can be shown that to avoid spatial aliasing it is required that

d <
λmin

2 , (2.80)

where λmin is the minimum wavelength of the target signal. This is known as the spatial
sampling theorem [99]. If (2.80) is not guaranteed, the target signal is undersampled
in the spatial domain and large sidelobes appear looking toward undesired directions.
This is illustrated by Figure 2.7.

Noise fields. A noise field refers to a space region where noise propagates. Noise
fields are characterized by the so-called coherence function, Γkl(f), which is defined as
[30]

Γkl(f) = Φkl(f)√
Φkk(f)Φll(f)

, (2.81)

where, on the one hand, Φkl(f) is the cross-PSD between the noise observed at two
different spatial points k and l. Similarly, Φkk(f) and Φll(f) are PSDs of noise at each
point (k and l). From (2.81), we can see that the coherence function |Γkl(f)| ∈ [0, 1]
measures the degree of correlation of two noise signals observed at different spatial
points. In microphone arrays, sometimes it is useful to define a noise coherence matrix
for calculation purposes as follows:

Γ(f) =


Γ11(f) · · · Γ1N(f)

... . . . ...
ΓN1(f) · · · ΓNN(f)

 , (2.82)
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where k, l = 1, ..., N refer to the sensors of the microphone array comprised of N
elements.

The most representative types of noise fields are the coherent, incoherent and diffuse
noise fields. These are briefly described down below.

In a coherent noise field, signals arrive to the microphone array with no reflec-
tions, dispersion or dissipation caused by the acoustic environment. Noise signals at
any two spatial points are strongly correlated in such a manner that |Γkl(f)| ≈ 1 ∀f .
A coherent noise field often corresponds to open areas with no obstacles.

At any two different spatial points, noise signals are completely uncorrelated in an
incoherent noise field. Therefore, Γkl(f) ≈ 0 ∀f and Γ(f) ≈ IN , where IN is an
N × N identity matrix. The incoherent noise is also known as spatially white noise,
and it is difficult to find in real-life conditions.

Finally, a diffuse noise field, which is also called spherical isotropic noise field,
exhibits two main features: homogeneity (namely the same noise PSD is observed at
any two spatial points) and isotropy (i.e. the incident intensity distribution of noise
is uniform). A diffuse noise field is quite appropriate to describe real-life reverberant
environments such as offices or vehicle interiors. The coherence function is given by

Γkl(f) = sinc
(

2πfdkl
cs

)
, (2.83)

where sinc(x) = sin(x)/x and dkl is the distance between the spatial points k and l.
From (2.83), we can determine that for very close spatial points the coherence tends to
be high at low frequencies. As both dkl and f increase, the coherence sharply decreases.
The main diagonal of Γ(f) is an all-ones vector and |Γkl(f)| < 1 ∀k 6= l and f > 0.

2.4.2.2 Delay-and-sum beamforming

Delay-and-sum is the simplest beamforming method. It consists of the compensation of
the time differences of arrival of the target signal to the microphone array. Intuitively,
delay-and-sum produces a target signal constructive interference while expecting some
degree of noise destructive interference. In fact, if the noise signals captured by the
array microphones are uncorrelated to each other and to the target signal, delay-and-
sum yields a 3 dB increase of the SNR at its output for every doubling of the number of
sensors in the array [99]. The way that delay-and-sum beamforming works is illustrated
by Figure 2.8.
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Figure 2.8: Diagram on how delay-and-sum beamforming works [69].

Let yn(m) be the signal observed by the n-th (n = 1, ..., N) sensor of the microphone
array, at the output of a delay-and-sum beamformer we obtain the signal

x(m) =
N∑
n=1

w̄nyn(m− τn), (2.84)

where typically {w̄n = 1/N ; n = 1, ..., N} is the set of weights chosen to average the
time-aligned signals yn(m− τn) and

τn = dn
cs

= (n− 1)d cos(θ)
cs

(2.85)

is the TDoA between the reference sensor (n = 1) and the n-th one. For TDoA
computation, a variety of methods can be found in the literature and many of them are
based on cross-correlation [160]. For instance, in [21], several clustering- and angular
spectrum-based methods for TDoA computation are evaluated and compared. In that
work, it is concluded that an SNR-based angular spectrum method and GCC-PHAT
(Generalized Cross-Correlation with PHAse Transform) perform the best for small and
larger spacing between microphones, respectively.

Alternatively, the set of weights in (2.84) can be selected to attribute more or less
importance to each sensor. In such a case, the resulting beamformer is called weighted
delay-and-sum. For example, the weighted delay-and-sum beamformer reported in [8]
was used by several participants of the CHiME-3 Challenge, e.g. [12, 125], due to the
good results provided by this technique with low computational complexity.
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In general, beamforming is often directly applied in the frequency domain as

X(f) = wH(f)y(f), (2.86)

where x(m) is obtained by taking X(f) back to the time domain by application of
the inverse Fourier transform (IFT). Moreover, the superscript H denotes Hermitian
transpose, and w(f) and y(f) are, respectively, vectors of weights and observations:

w(f) = (W1(f), ...,WN(f))> ;

y(f) = (Y1(f), ..., YN(f))> .
(2.87)

For unweighted delay-and-sum it is clear that

Wn(f) = 1
N
e−j2πfτn , n = 1, ..., N. (2.88)

Delay-and-sum can be understood as a particular case of a more general type of
beamforming known as filter-and-sum. In filter-and-sum beamforming, every array
sensor is associated with a filter hn(m), in such a manner that at the output of the
beamformer we have the signal

x(m) =
N∑
n=1

p−1∑
l=0

hn(l)yn(m− l − τn). (2.89)

Of course, filter-and-sum beamforming can be alternatively performed directly in the
frequency domain. Generally, a beamformer weight in this domain is expressed in
terms of its gain and phase, parameters that are designed to shape the beampattern
and to direct the main lobe towards the desired look direction, respectively. Several
additional criteria can be followed to design beamforming weights and MVDR [79] is
one of the most popular, which is presented later in this subsection.

Because delay-and-sum can be considered a filter-and-sum beamformer comprising
zero-order FIR filters (only one filter coefficient per array microphone) according to
(2.89), it is clear that it is not able to deal with reverberant environments. To cir-
cumvent this issue, a matched filter approach was proposed in [50]. Nevertheless, in
practice, this variant provides small improvements in terms of recognition accuracy
over the conventional delay-and-sum beamforming [59].

2.4.2.3 Minimum variance distortionless response beamforming

Minimum variance distortionless response (MVDR) beamforming is a particular type
of filter-and-sum beamforming which looks for minimizing the noise power at its output
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under an MSE criterion, while ensuring that the target signal is not distorted. Without
loss of generality, the discussion below is particularized to a speech enhancement task.
For notational convenience, let us rewrite the additive noise distortion model presented
in Section 2.1 as

yn(m) = sn(m) + νn(m) = ans(m− τn)︸ ︷︷ ︸
sn(m)

+νn(m), (2.90)

where yn(m), sn(m) and νn(m) are the noisy speech, clean speech and noise signals as
captured by the n-th sensor of the microphone array. Additionally, s(m) is the speech
signal emitted by the source, an is a gain factor and, in this case, τn represents the
time that the signal takes to travel from the source to the array sensor n. Eq. (2.90)
can be expressed in the frequency domain as follows:

Yn(f) = Sn(f) + Vn(f) = anS(f)e−j2πfτn + Vn(f). (2.91)

By employing the definition in (2.87) for y(f) along with

d(f) =
(
a1e
−j2πfτ1 , ..., aNe

−j2πfτN
)>

;

ν(f) = (V1(f), ..., VN(f))> ,
(2.92)

it is clear that (2.91) can be rearranged in vector notation in the following way:

y(f) = S(f)d(f) + ν(f), (2.93)

where d(f) is the so-called steering vector. The steering vector allows us to spatially
locate the target source with respect to the microphone array (it also accounts for the
different speech gains due to the different amplitudes of the captured speech signals).
Then, if we defineΦν(f) = E

[
ν(f)νH(f)

]
, MVDR calculates the beamforming weights

by solving
w(f) = argminw(f) wH(f)Φν(f)w(f),

subject to wH(f)d(f) = 1.
(2.94)

It must be noticed that the constraint wH(f)d(f) = 1 ensures a distortionless response
for the target signal when applying the weights to (2.93). The optimization problem
stated in (2.94) is solved by Lagrange multipliers yielding

w(f) = Φ−1
ν (f)d(f)

dH(f)Φ−1
ν (f)d(f) . (2.95)
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MVDR beamforming is quite sensitive to estimation errors of the noise spatial corre-
lation matrix Φν(f) and the steering vector. In fact, due to a bad estimation of the
latter parameter, the MVDR beamformer provided by the organizers of the CHiME-3
Challenge yields a drop in performance regarding a simple multi-condition training.
For this reason, a simple delay-and-sum highly outperformed that MVDR beamformer
[95]. Nevertheless, this issue was solved by some participants [203, 210] by integrating
more robust steering vector estimation methods based on eigenvalue decomposition of
the clean speech spatial covariance matrix, which is a popular scheme for this purpose.

The MVDR weights in (2.95) can be rewritten in terms of the noise coherence
matrix as

w(f) = Γ−1
ν (f)d(f)

dH(f)Γ−1
ν (f)d(f) . (2.96)

Thus, it is interesting to see that an MVDR beamformer operating within an incoherent
noise field, i.e. Γν(f) = IN , matches delay-and-sum beamforming, that is,

w(f) = I−1
N d(f)

dH(f)I−1
N d(f)

= d(f)
‖d(f)‖2 . (2.97)

On the other hand, when considering a diffuse noise coherence matrix in (2.96), the
resulting weights correspond to the so-called superdirective beamformer. Let us define
the array gain as the ratio between the SNR at the output of the beamformer and that
at the array reference sensor. Then, while MVDR maximizes the array gain for the
estimated noise field, superdirective beamforming aims at maximizing the array gain
in a diffuse noise field.

All of the previously discussed beamformers are fixed in the sense that their pa-
rameters (e.g. weights) do not change along time. In contrast, adaptive beamforming
is able to dynamically adapt its parameters to particular acoustic conditions (e.g. type
of noise, particular speaker, etc.), which may make it more versatile. Adaptive beam-
forming is very briefly introduced down below.

2.4.2.4 Adaptive beamforming

Adaptive beamforming is able to dynamically modify the beamformer parameters in
order to adapt it to particular acoustic (e.g. noise or speaker) conditions. The most
paradigmatic example of this type of beamforming is GSC (Generalized Sidelobe Can-
celler) [71]. A block diagram of GSC beamforming is depicted in Figure 2.9. This
is comprised of two differentiated stages: a fixed beamforming block and an adaptive
stage. First, the fixed beamforming block may be implemented as any of the beamform-
ers seen above, e.g. delay-and-sum or MVDR. Second, the adaptive stage is intended
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Figure 2.9: Block diagram of the Griffiths-Jim GSC beamformer [42].

to sidelobe cancellation. As we can see from Figure 2.9, a blocking matrix (BM) is
placed preceding the adaptive part in order to cancel the target signal in the lower
branch of the GSC beamformer. This way, the set of adaptive filters is designed to
minimize the power at the output of the beamformer while ensuring that the desired
signal is not affected.

A major limitation of adaptive beamforming is that it might lead to target signal
cancellation because the BM permits target signal leakage, especially in reverberant
environments [132]. This issue has prevented the generalized use of this type of beam-
forming for speech recognition purposes [160].

2.4.3 Post-filtering

As introduced above, post-filtering refers to the additional processing applied at the
output of the beamformer to mitigate its shortfalls, e.g. low directivity at low frequen-
cies, inaccurate estimation of the steering vector and the spatial correlation matrices,
inability to remove noise coming from the look direction, etc.

One of the earliest post-filters was the proposed by Zelinski, and it is based on
Wiener filtering [132]. This post-filter is computed from the cross-PSDs derived from
the different array sensors, in such a way that the knowledge for frequency filtering
also includes spatial information. Indeed, this frequency filtering complements and
enhances the spatial filtering. Furthermore, it can be shown that concatenating MVDR
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beamforming and Wiener post-filtering is equivalent to multi-channel Wiener filtering
(MCWF) [94, 103]. Formally, let wopt(f) = Φ−1

Y Y (f)φY X(f) be the corresponding
MCWF weights (where φY X(f) is the cross-PSD vector between the array inputs and
the target signal and ΦY Y (f) is the PSD matrix of the array inputs), it can be shown
that these weights can be alternatively expressed as [103]

wopt(f) = Sx(f)
Sx(f) + Sn(f)︸ ︷︷ ︸

hpost(f)

· Φ−1
ν (f)d(f)

dH(f)Φ−1
ν (f)d(f)︸ ︷︷ ︸

MVDR beamforming

, (2.98)

where hpost(f) is the Wiener post-filter, and Sx(f) and Sn(f) are the speech and noise
PSDs at the output of the beamformer, respectively.

Later, Marro et al. studied in [127] the interaction between the Zelinski post-filter
and the beamformer, determining that the former depends on the input SNR as well
as on the degree of noise reduction achieved by the beamformer. Then, McCowan pro-
posed in [133] an improvement to the Zelinski post-filter. First, we should recall that
the latter method is formulated by assuming incoherent noise (the noise signals from
any two different sensors are uncorrelated). In contrast, since this assumption is espe-
cially inaccurate for those arrays the sensors of which are close each other, McCowan
assumes knowledge of the noise coherence function to estimate the Wiener post-filter
from the auto- and cross-PSDs of the microphone array noisy inputs. More precisely,
a diffuse noise field model is considered by [133]. In turn, in [103], Lefkimmiatis et
al. improved the McCowan post-filter by taking advantage of the noise reduction per-
formed by the MVDR beamforming to achieve a more accurate estimation of the noise
PSD at the output of the beamformer. Then, this estimation is used to define the
Wiener post-filter transfer function.

While the classical Wiener post-filtering approach reviewed above can be useful
for speech enhancement, it may not be adequate for noise-robust ASR purposes. For
example, in [153], it is shown that the use of Zelinski [118] and Simmer [166] post-filters
may yield a drop in performance of the delay-and-sum beamforming when employed
for noise-robust ASR on a multi-microphone tablet. Fortunately, there is a number
of nice strategies recently explored for multi-channel noise-robust ASR on IMDs. For
instance, the aforementioned GEV beamformer of [76] is further improved by a single-
channel post-filter called BAN (Blind Analytic Normalization), which is intended to
obtain a distortionless response in the target direction. Furthermore, for MVDR, a
multi-channel noise reduction (MCNR) post-filter depending on the steering vector,
and based on the noise-to-signal plus noise ratio (NSNR), was proposed in [210]. One
of its major advantages is that MCNR does not need knowledge of the noise field type.
Besides this, several neural network-based post-filters have also been reported in the
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Figure 2.10: Example of noisy speech signal captured with a dual-microphone
smartphone employed in close-talk position. Channels 1 and 2 refer to the pri-
mary and secondary microphones located at the bottom and rear of the device,
respectively.

literature [12, 125, 151]. For example, in [12], a DNN-based spectral mapper is used to
predict the clean speech filterbank features from an enhanced version of the beamformer
output. Such an enhanced version is computed by means of the application of a model-
based source separation mask to the beamformed signal. In [151], a DNN is employed
to derive the post-filter weights. To do this, the DNN is fed with the beamformed signal
along with an estimation of the residual noise present at the beamformer output. Also
in this work, a quite simple but effective post-filter is explored, which is referred to as
MaxPower post-filter. It simply consists of backprojecting the beamformer output to
the array microphones by using the steering vector. Then, for each T-F bin, the output
of the post-filter is the maximum value among the different channels. These post-filters
are applied in [151] after three types of GSC beamforming: GSC with sparse BM as well
as with ABM (adaptive BM) both using delay-and-sum as fixed beamformer, and GSC
with ABM using MVDR as fixed beamformer. The latter proved to be the superior
architecture among those evaluated.

2.4.4 Dual-channel power level difference

In this subsection, let us consider a dual-microphone smartphone as the one depicted
in Figure 1.2. This device has two sensors, one of them located at its bottom and the
other at its rear. These will be referred to as the primary and secondary microphones,
respectively. The primary microphone is purposely placed to ensure a direct and short
path between the sensor and the speaker’s mouth. In other words, the primary micro-
phone is intended to capture the voice of the speaker. On the other hand, because of its
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Figure 2.11: Clean speech PSDs obtained from a dual-microphone smartphone
employed in close- (left) and far-talk (right) conditions. Channels 1 and 2 refer
to the primary and secondary microphones located at the bottom and rear of the
device, respectively.

location, the secondary sensor is intended to get information about the acoustic envi-
ronment more than capturing the speaker’s voice. Hence, when the device is employed
in close-talk position (i.e. the loudspeaker of the smartphone is placed at the ear of
the user), speech is much attenuated at the secondary microphone with respect to the
primary one. Coupled with this, it is expected that both microphones observe similar
noise signals. This is because it is likely that the device is used within a diffuse noise
field and the two microphones are very close each other. Both issues can be observed
in the example of Figure 2.10, which represents a noisy speech signal captured by a
dual-microphone smartphone used in close-talk position. In addition, to reinforce these
ideas as well as for further clarity, Figures 2.11 and 2.12 depict clean speech and car
noise PSDs, respectively, derived from the same mobile set-up. In close-talk conditions
(left side), it is clear that the clean speech PSD is generally greater at the primary
microphone than at the secondary one across the whole frequency range. While the
speech PSD level difference between both microphones is smaller in far-talk condition
(namely when the user holds the smartphone in one hand at a certain distance from
her/his face) than in the close-talk scenario, the secondary sensor is still in an acoustic
shadow and the speech PSD is greater at the primary than at the secondary chan-
nel. As expected, regardless the use scenario, the noise PSD is quite similar at both
channels because of the homogeneity property of diffuse noise fields.

Thus, because there are only two microphones and one of them is located in an
acoustic shadow regarding the speaker’s mouth, classical beamforming exhibits poor
performance when applied to the configuration here described [179, 180]. Therefore,
it might be preferable to exploit the speech power level difference (PLD) between the
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Figure 2.12: Car noise PSDs obtained from a dual-microphone smartphone em-
ployed in close- (left) and far-talk (right) conditions. Channels 1 and 2 refer to
the primary and secondary microphones located at the bottom and rear of the
device, respectively.

two microphones as a principle to design dual-channel algorithms for noise-robust ASR
purposes in this context. Indeed, this PLD principle will be considered throughout the
next chapters to develop the different contributions in this Thesis.

As can be found in the literature, speech enhancement has taken benefit from the
PLD [52, 97, 205, 209]. In particular, the work reported in [97] is broadly representa-
tive, where it is proposed a Wiener filter (WF)-based speech enhancement exploiting
the information from a dual-microphone smartphone in close-talk position. Addition-
ally in the same work, a dual-channel recursive averaging noise PSD estimator called
PLDNE (PLD-based Noise Estimation) is also proposed. This estimator is formulated
by assuming both a homogeneous noise field as well as speech is much more attenuated
at the secondary microphone than at the primary one. In fact, such assumptions are
also employed to compute a WF for enhancement, which is applied to the primary mi-
crophone (as the SNR is higher at that sensor than at the secondary one). Evidences
on the convenience of following this scheme in comparison with different single-channel
strategies are provided in the paper. The same authors extended this work in order
to operate in hands-free/far-talk conditions [140]. In this new case, to compute the
spectral gain for enhancement, the noise PSD is obtained from a single-channel algo-
rithm based on SPP as well as on a dual-microphone technique exploiting the coherence
properties of the speech and noise signals.

Furthermore, the dual-channel speech enhancement method of [209] is highly in-
spired by [97]. In [209], a measure known as power level ratio (PLR) is considered to
obtain a kind of SPP for the primary microphone which is then adjusted by means of
a sigmoid function to achieve the spectral gain for enhancement. This method shows
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very competitive results in terms of PESQ (Perceptual Evaluation of Speech Quality)
with low computational complexity, something very important in portable electronic
devices. Moreover, in [52], an inter-microphone noisy speech PSD relation, similar to
the PLD, is used to compute an SPP involved in the estimation of a spatial noise
correlation matrix. Such a matrix is then used in an MVDR filter applied to enhance
the noisy speech captured by the dual-microphone smartphone. To conclude, we could
refer the case of [26], where the PLD principle is exploited to design a voice activity
detector (VAD) for dual-channel mobile phones. This technique proves to outperform
conventional single-microphone VAD methods, as well as the dual-microphone ones
based on the well-known magnitude-squared coherence [23].

2.5 Summary
As we know, the performance of every ASR system is severely degraded when there
exists mismatch between the training and testing conditions. There is a number of
mismatch sources, and one of the most significant is background noise because of its
pervasiveness. Because providing robustness against noise in ASR on IMDs is the scope
of this Thesis, in this chapter we have introduced the foundations of the noise-robust
processing for both single- and multi-channel ASR. This has served as a presentation of
the theoretical basis from which the different noise-robust contributions of this Thesis
are built in later chapters.

In the first instance, it was explained the general speech distortion modeling consid-
ered as the basic mathematical framework both to review noise-robust state-of-the-art
approaches and to develop our contributions throughout the following chapters. Along
with this, we analyzed how the statistical distribution of the speech energy is altered
in the presence of ambient noise.

Then, the single-channel robust speech recognition fundamentals were presented.
This was done through revisiting some of the most relevant noise-robust approaches,
according to our purposes, categorized into four different classes: feature-space ap-
proaches, model-based approaches, distortion modeling by vector Taylor series (VTS)
and missing-data approaches. Moreover, we highlighted different advantages and draw-
backs of these four classes, so the selection of the most adequate approach in each case
depends on the ASR use scenario. For example, we mentioned that, in contrast to
the feature-space approaches, the model-based methods are characterized by relatively
high computational complexity. However, as an advantage, the latter methods are of-
ten more robust against speech distortions. Also, we saw that the VTS strategy, which
may be used for either feature enhancement or model adaptation, is more accurate
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for the latter purpose than the classical model adaptation techniques because VTS
employs a physical model that explicitly explains how it is the non-linear interaction
between the speech signal and the environmental distortions. Regarding the missing-
data approaches, it was argued that a critical part of those methods is the estimation
of masks identifying the unreliable spectro-temporal regions of the noisy speech signal.

For some noise-robust methods, a module estimating the background noise that
contaminates speech is required (e.g. for Wiener filtering or VTS feature enhancement).
Indeed, the performance of those methods often relies on the accuracy of such noise
estimates. On this basis, despite the attention moved over the last years towards
other noise-robust solutions which do not require any explicit noise estimation, we
briefly reviewed some prominent classical noise estimation techniques as this issue is
still important.

In the second part of this chapter we focused on multi-channel robust speech pro-
cessing applied to IMDs. We stated that multi-channel robust speech processing has
gained popularity over the last years due to both its potential regarding the single-
channel solutions and the decrease in the price of hardware. First, we provided an
overview of multi-channel robust ASR on IMDs. We focused on the recent CHiME
challenges devoted to noise-robust ASR on a multi-microphone tablet and we observed
that an outstanding recognition performance is achieved by combining single- and
multi-channel algorithms. At this respect, a widely used multi-channel scheme consists
of microphone array processing followed by some kind of post-filtering to overcome the
shortcomings of beamforming. Therefore, since beamforming is a fundamental pillar of
multi-channel robust ASR, some of its basics were presented along with the main noise
fields. Next, we have commented the most well-known fixed beamformers, namely
delay-and-sum and MVDR, as well as adaptive array processing. Then, we reviewed
different classical Wiener post-filters along with the most recent approaches specifically
intended to multi-channel noise-robust ASR. To conclude, the dual-channel power level
difference (PLD) principle was presented. As we saw, this principle explains the spatial
singularities of the speech and noise signals in a dual-microphone IMD set-up. Essen-
tially, we determined that clean speech energy is greater at the primary than at the
secondary microphone, while similar noise PSDs are observed by both microphones.
Finally, we pointed out that this knowledge will be taken into account when developing
our contributions as beamforming presents severe limitations in this context.
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CHAPTER 3
Multi-Channel Power Spectrum

Enhancement

As it has been presented in Chapter 2, one of the most popular approaches over
the years to provide robustness in automatic speech recognition (ASR) is feature

enhancement, which can be considered a subcategory of the feature-space approaches.
While feature enhancement has been extensively studied within a single-channel con-
text, the same progress has not been made for a multi-channel framework. Although we
can find specific multi-channel feature enhancement techniques such as multi-channel
Wiener filtering (MCWF), most of the robust solutions in this topic consists of the
concatenation of beamforming and single-channel feature enhancement methods which
behave as a sort of post-filter. Even in the case of MCWF, we should remind that this
technique can be decomposed into the concatenation of MVDR (Minimum Variance
Distortionless Response) beamforming and single-channel Wiener filtering. It becomes
clear that single-channel feature enhancement methods cannot properly exploit all the
existent particularities in a multi-channel framework, so its potentials are wasted.

This chapter details our contributions to multi-channel feature enhancement by
presenting three power spectrum enhancement methods which specifically take advan-
tage of the spatial properties of speech and noise in a dual-microphone configuration.
As it was introduced in the previous chapters, the dual-microphone configuration is
especially interesting since it can be widely found in the latest mobile devices, where
the main purpose of the secondary microphone is to get clearer information about the
acoustic environment than the primary one. Hence, our power spectrum enhancement
methods take benefit from this characteristic to circumvent the limitations of the single-
channel feature enhancement methods when applied to such a dual-microphone set-up.
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Figure 3.1: Power spectrum enhancement scheme followed when the IMD has
more than one front sensor.

The contributions developed in this chapter have been denominated as DCSS (Dual-
Channel Spectral Subtraction), P-MVDR (Power-MVDR) and DSW (Dual-channel
Spectral Weighting, based on Wiener filtering). It will be shown that all of these tech-
niques require knowledge of the relative speech gain (RSG) which relates the clean
speech power spectra at both channels. To obtain this parameter, a two-channel min-
imum mean square error (MMSE)-based estimator is also developed for this task in
this Thesis and presented in Section 3.4.

It has to be mentioned that, without loss of generality, several issues will be illus-
trated throughout this chapter by considering a dual-microphone smartphone employed
in either close- or far-talk conditions. It is considered that this set-up constitutes a per-
fect scenario (as well as realistic and common) to exemplify different concepts, avoiding
at the same time distractions coming from other more complex configurations.

3.1 Combinatorial strategy
Apart from embedding a microphone whose main mission is capturing information
about the acoustic environment, an intelligent mobile device (IMD) can easily integrate
more sensors that can be exploited to provide further ASR robustness. These sensors
are most of the time comparable to a primary microphone in case they are oriented
towards the speaker (front sensors). Since our methods are intended to take benefit
from a secondary sensor under the explained dual-channel framework, an additional
procedure should be established to be followed in the case of more than two sensors
were present in an IMD. Thus, we found it useful to follow the strategy considered in
the recent multi-channel noise-robust ASR literature consisting of the application of
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microphone array pre-processing (and, more in particular, beamforming) to compute a
related virtual primary channel to be used along with the secondary one by our dual-
channel techniques. In such a case, the contributions developed in the following behave
as post-filters. It must be remarked that beamforming for virtual primary channel
computation may be applied by either considering all the microphones in the IMD (i.e.
by also integrating the secondary sensor) or only the front ones, depending on what
is more advantageous in terms of ASR performance. Apart from providing a single
(virtual) primary channel, the use of beamforming presents an additional advantage,
which is that this virtual primary channel has a higher SNR (Signal-to-Noise Ratio)
than any other signal coming from a particular microphone in the IMD, being generally
increased the recognition accuracy of the ASR system. A block diagram showing this
combinatorial strategy can be seen in Figure 3.1, where an IMD has N+1 microphones:
N front microphones plus a secondary one.

3.2 Basic approaches
The two basic dual-channel power spectrum enhancement approaches DCSS and P-
MVDR are formulated in this section. On the one hand, DCSS is based on spectral
subtraction (SS), while P-MVDR is a power spectrum enhancement method based on
MVDR which discards the phase information to overcome the limitations of classical
MVDR beamforming when applied on the presented dual-microphone set-up.

Hereinafter it is considered a simplified version of the distortion model developed in
Section 2.1 in such a manner that the convolutive distortion is not taken into account.
Nevertheless, the latter type of distortion could be mitigated in a subsequent feature
normalization front-end stage that might be implemented, for instance, as CMN (Cep-
stral Mean Normalization). Hence, let us now suppose a noisy speech signal yk(m)
which can be expressed as the sum of a clean speech signal xk(m) and a noise nk(m),
i.e. yk(m) = xk(m)+nk(m), where k = 1, 2 indicates the microphone that captures the
signal, namely the primary and secondary ones, respectively1. Assuming that speech
and noise are independent, this additive model can be expressed in terms of power
spectra as,

|Y1(f, t)|2 = |X1(f, t)|2 + |N1(f, t)|2; (3.1)
|Y2(f, t)|2 = |X2(f, t)|2 + |N2(f, t)|2, (3.2)

where f = 0, 1, ...,M − 1 and t = 0, 1, ..., T − 1 denote the frequency bin and time
frame indices, respectively, M is the total number of linear frequency bins and T is

1In the case of multiple front sensors, k = 1 refers to the virtual primary channel obtained by
means of beamforming.
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the number of frames in an utterance. As the primary microphone is faced towards the
speaker, it is assumed that the signal captured by this microphone has a higher SNR
than the signal captured by the secondary sensor and, hence, the objective of both
DCSS and P-MVDR is to provide an estimate of the clean speech power spectrum at
the primary channel, |X̂1(f, t)|2, by taking advantage of the dual-channel information.

3.2.1 Dual-channel spectral subtraction
To formulate this alternative spectral subtraction (SS) approach, it is first assumed
that the clean speech power at the secondary channel is related with the clean speech
power at the first one through the so-called relative speech gain (RSG) term A21(f, t),
i.e. |X2(f, t)|2 = A21(f, t)|X1(f, t)|2. This factor can be interpreted as the target
speech signal transfer function between the two microphones. In this way, (3.2) can be
rewritten as,

|Y2(f, t)|2 = A21(f, t)|X1(f, t)|2 + |N2(f, t)|2. (3.3)

Along with the relationship defined in (3.3) we can also relate the noise power spectra
at the first and secondary channels as |N1(f, t)|2 = G12(f, t)|N2(f, t)|2. In such a case,
(3.1) can be rewritten as,

|Y1(f, t)|2 = |X1(f, t)|2 +G12(f, t)|N2(f, t)|2. (3.4)

Similarly to A21(f, t), factor G12(f, t) can be understood as the frequency response of
a new linear filter that relates the noise signals captured by the two available sensors.
As it has been explicitly remarked, both A21(f, t) and G12(f, t) are time-dependent.
On the one hand, for example, A21(f, t) might change over time due to variations on
the relative location between the speaker and the microphones or on the environment
acoustics. Different approaches can be considered for the computation of this term.
One way to calculate the RSG may be through the square of the ratio between the
speech gains for the secondary and primary sensors coming from the steering vector
used in beamforming. Nevertheless, an alternative MMSE-based method is developed
for this purpose in Section 3.4. On the other hand, G12(f, t) is subject to changes from
variations on the relative position between the noise sources and the microphones as
well as due to other environmental acoustic factors. A straightforward approach to
obtain G12(f, t) is explained below.

By combining Equations (3.4) and (3.3) we obtain the following dual-channel spec-
tral subtraction (DCSS) estimator for every frequency bin f and time frame t:

|X̂1(f, t)|2 = |Y1(f, t)|2 −G12(f, t)|Y2(f, t)|2
1−G12(f, t)A21(f, t) . (3.5)
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Then, the result in (3.5) is bounded below in order to avoid any possible negative power
spectrum bin:

|X ′1(f, t)|2 = max
(
|X̂1(f, t)|2, η|Y1(f, t)|2

)
, (3.6)

where η is a thresholding factor.
For every frequency bin f the relative noise gain factor G12(f, t) can be estimated

by minimizing the following mean square error (MSE):

Ef = E
[(
|N1(f, t)|2 −G12(f, t)|N2(f, t)|2

)2
]
. (3.7)

Let us first define

φN,f,t(k, l) = E
[
|Nk(f, t)|2|Nl(f, t)|2

]
, k, l = 1, 2, (3.8)

which is a noise cross-correlation coefficient. By solving ∂Ef/∂G12(f, t) = 0, we can
derive the desired estimate as,

Ĝ12(f, t) = φN,f,t(1, 2)
φN,f,t(2, 2) . (3.9)

Figure 3.2 depicts the actual G12(f, t) factor over time, at two different frequency bins,
obtained when recording bus noise with a dual-microphone smartphone employed in
close- and far-talk conditions. A great variety of real-life acoustic environments presents
the characteristic of homogeneity [182], i.e. same sound PSD (Power Spectral Density)
at any point of the space. This means that it would be typical to find G12(f, t) val-
ues around 1. Nevertheless, while the actual G12(f, t) curves plotted lie somewhere
at around 1, they are far from being the unit due to different reasons. One of the
most important is the distinct frequency responses that the sensors exhibit. In par-
ticular, the primary microphone often presents a better frequency characteristic with
a higher sensitivity than the secondary one, in such a way that it is likely to observe,
depending on the frequency bin, G12(f, t) values greater than 1. However, this issue is
also conditioned by the acoustic shadows that can be found in a mobile device usage
scenario. Thus, for instance, when using a dual-microphone smartphone in close-talk
position, the head of the speaker casts a stronger shadow over the primary microphone
than in the far-talk case. Hence, in close-talk conditions the greater sensitivity of the
primary microphone is offset by this fact and G12(f, t) might decrease its magnitude
when compared with far-talk conditions. Finally, it should be noticed that even in the
presence of an ideal homogeneous noise field, all the factors explained above plus many
others would make G12(f, t) likely to differ from the unit.

A straightforward possible approach to be used in practice for the estimation of the
cross-correlation coefficient φN,f,t(k, l) (k, l = 1, 2) and, therefore, for the estimation
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Figure 3.2: Actual G12(f, t) over time, at two different frequency bins, obtained
when recording bus noise with a dual-microphone smartphone employed in close-
(left) and far-talk conditions (right). G12(f, t) as in a homogeneous noise field is
also represented as a reference.

of the relative noise gain factor, G12(f, t), is the following. By assuming that the first
and last M frames of every noisy speech utterance are only noise, φN,f,t(k, l) can be
computed on an utterance basis per frequency bin f as the sample cross-correlation
over those frames. Indeed, this will be the approach considered for this Thesis.

3.2.2 Power-MVDR

Power-MVDR also estimates the clean speech power spectrum at the primary channel
and it is inspired by the MVDR beamformer [79]. P-MVDR discards the phase infor-
mation in order to overcome the limitations of the classical MVDR beamforming when
applied to the considered dual-channel framework. According to this, the proposed
linear estimator of the clean speech power spectrum at frequency bin f and time frame
t at the primary channel can be expressed as,

|X̂1(f, t)|2 = w>f,ty(f, t) = w>f,t

(
|Y1(f, t)|2
|Y2(f, t)|2

)
, (3.10)

where wf,t is a 2× 1 weighting vector that must be estimated from the dual signal. By
reusing Eq. (3.3), the estimator in (3.10) can now be expressed as,

|X̂1(f, t)|2 = w>f,t|X1(f, t)|2
(

1
A21(f, t)

)
+ w>f,t

(
|N1(f, t)|2
|N2(f, t)|2

)
. (3.11)
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Our goal now is to obtain the weighting vector that minimizes the mean square noise-
dependent term in (3.11), that is,

wf,t = argmin
wf,t

E
[(

w>f,tν(f, t)
)2
]
, (3.12)

where ν(f, t) = (|N1(f, t)|2, |N2(f, t)|2)>. By rearranging terms, (3.12) is now rewritten
as,

wf,t = argminwf,t
w>f,tE

[
ν(f, t)ν(f, t)>

]
wf,t

= argminwf,t
w>f,tΦN(f, t)wf,t,

(3.13)

in which ΦN(f, t) is the 2× 2 noise spatial correlation matrix

ΦN(f, t) =
(
φN,f,t(1, 1) φN,f,t(1, 2)
φN,f,t(2, 1) φN,f,t(2, 2)

)
, (3.14)

where ΦN(f, t) = Φ>N(f, t). Similarly to the case of DCSS, φN,f,t(k, l) is the noise
power correlation between channels k and l (k, l = 1, 2). In order to build the noise
spatial correlation matrix of (3.14), the cross-correlation coefficients are obtained as the
sample cross-correlation computed from the first and last M frames of each utterance
as in DCSS. The minimization in (3.13) must be subject to the distortionless speech
constraint

w>f,t

(
1

A21(f, t)

)
= 1 (3.15)

and, therefore, the optimization problem can be solved by Lagrange multipliers con-
sidering the cost function L(wf,t, λ) = w>f,tΦN(f, t)wf,t − λ

(
w>f,t(1,A21(f, t))> − 1

)
.

We can obtain the optimal weighting vector by solving ∇L(wf,t, λ) = 0. Since the
resolution procedure is completely analogous to that of MVDR beamforming, this is
not detailed here. Therefore, the final weighting vector results,

wf,t = Φ−1
N (f, t) (1,A21(f, t))>

(1,A21(f, t))Φ−1
N (f, t) (1,A21(f, t))>

. (3.16)

Once the weighting vector wf,t has been applied to the dual-channel noisy observation,
the estimate in (3.10) must also be bounded below as in (3.6) in order to prevent
negative power spectrum bins. As can be noted, Eq. (3.16) has the same form as
the MVDR beamforming weighting vector but in the linear power spectral domain,
where (1,A21(f, t))> plays a similar role to a steering vector referred to the primary
microphone.
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Figure 3.3: Example of logA21(f) histograms, at two different frequency bins,
obtained for a dual-microphone smartphone employed in close- (left) and far-
talk conditions (right). Two different acoustic environments are considered: an
anechoic chamber and a small furnished room.

3.2.3 Performance analysis
It is worth examining both DCSS and P-MVDR from a common perspective. Thus,
we can realize that both methods operate according to a linear combination of the
dual-channel noisy observation. First, by assuming that a pair of weights {w(1)

f,t , w
(2)
f,t}

is available at each frequency bin f and time frame t, we can express the clean speech
power spectrum bin estimate for both DCSS and P-MVDR as,

|X̂1(f, t)|2 = w
(1)
f,t |Y1(f, t)|2 + w

(2)
f,t |Y2(f, t)|2. (3.17)

For DCSS it can be shown (Eqs. (3.5) and (3.9)) that those weights are,

w
(1),DCSS
f,t = φN,f,t(2, 2)

φN,f,t(2, 2)−A21(f, t)φN,f,t(1, 2);

w
(2),DCSS
f,t = − φN,f,t(1, 2)

φN,f,t(2, 2)−A21(f, t)φN,f,t(1, 2) .

(3.18)

On the other hand, by expanding (3.16) as well as considering the symmetry of the noise
spatial correlation matrix ΦN(f, t) (i.e. φN,f,t(2, 1) = φN,f,t(1, 2)), it is straightforward
to derive the following expressions for the couple of weights obtained with P-MVDR:

w
(1),P-MVDR
f,t = φN,f,t(2, 2)−A21(f, t)φN,f,t(1, 2)

φN,f,t(2, 2)− 2A21(f, t)φN,f,t(1, 2) + A2
21(f, t)φN,f,t(1, 1)

;

w
(2),P-MVDR
f,t = A21(f, t)φN,f,t(1, 1)− φN,f,t(1, 2)

φN,f,t(2, 2)− 2A21(f, t)φN,f,t(1, 2) + A2
21(f, t)φN,f,t(1, 1)

.

(3.19)
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Before proceeding, let us take a look at Figure 3.3, which shows examples of
logA21(f) histograms for a dual-microphone smartphone employed in close- (left) and
far-talk conditions (right). The natural logarithm to the A21(f, t) samples has been
applied when computing these histograms for visual clarity. Additionally, notice that
in these examples A21(f, t) at every time frame t has been considered a realization of
the variable given a particular frequency bin f . The depicted histograms correspond
to the same two different frequency bins in two acoustic environments: an anechoic
chamber and a small furnished room. First of all, it is noticeable that the probability
mass of logA21(f) is wider in a far- than in a close-talk configuration. This can mainly
be explained by a greater variability in the relative position between the speaker and
the mobile device in far-talk conditions. Moreover, wider probability mass can also
be observed for the small furnished room with respect to the anechoic chamber due
to the acoustic variability of the former environment, which is more complex. Finally,
it should be noticed that the probability mass in far-talk conditions is shifted to the
right on the horizontal axis with respect to close-talk conditions. This indicates that
the relative speech energy attenuation between the two sensors of the mobile device
is greater in close-talk position than in a far-talk scenario. In this way, it is expected
that more information about the adverse acoustic environment can be obtained from
the secondary sensor in close- than in far-talk conditions, making the latter a more
challenging problem.

Therefore, in accordance with both Figure 3.3 and the discussion presented in the
above paragraph, A21(f, t) often has, relatively, a small magnitude, especially in close-
talk conditions. From (3.18) and (3.19), it is evident that as A21(f, t)→ 0 the couple
of weights for both DCSS and P-MVDR tend to be the same. Particularly, into the
limit,

lim
A21(f,t)→0

w
(1),DCSS
f,t = lim

A21(f,t)→0
w

(1),P-MVDR
f,t = 1;

lim
A21(f,t)→0

w
(2),DCSS
f,t = lim

A21(f,t)→0
w

(2),P-MVDR
f,t = −φN,f,t(1, 2)

φN,f,t(2, 2) .
(3.20)

In fact, when A21(f, t) = 0 speech is absent at the secondary channel and, therefore
(for both DCSS and P-MVDR),

w
(2)
f,t |Y2(f, t)|2 = −φN,f,t(1, 2)

φN,f,t(2, 2) |N2(f, t)|2

= −Ĝ12(f, t)|N2(f, t)|2

= −|N̂1(f, t)|2.

(3.21)
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Under these conditions, the secondary channel gives a noise estimate for the primary
channel and w

(1)
f,t = 1, so that (3.17) becomes a classical spectral subtraction, i.e.

|X̂1(f, t)|2 = |Y1(f, t)|2 − Ĝ12(f, t)|N2(f, t)|2 = |Y1(f, t)|2 − |N̂1(f, t)|2.
Hence, we can conclude that a very similar performance of both DCSS and P-MVDR

can be expected when A21(f, t) → 0, i.e. in close-talk conditions. On the contrary,
in a far-talk scenario the clean speech energy at the secondary sensor may sometimes
be comparable to that captured by the primary sensor, that is A21(f, t) ' 1. This
mainly occurs because of the following concurring two reasons: 1) the mobile device is
located in front of the speaker within the direct clean speech acoustic path, and 2) the
acoustic environment produces reflections of the clean speech signal that increase the
clean speech energy at the secondary microphone along with the speech diffraction at
the borders of the device. Of course, there also exist reflections and diffraction of the
clean speech signal in a close-talk scenario. However, in the latter situation the mobile
device (and, therefore, the secondary microphone) looks towards a direction which is
approximately orthogonal to that the voice is projected by the speaker, so little clean
speech energy is received at the secondary microphone by reflections or diffraction. As
the magnitude of A21(f, t) starts to increase, DCSS and P-MVDR show a different
performance (i.e. when applied to far-talk conditions).

A relevant weakness of DCSS comes from the numerical instability whenA21(f, t)→
φN,f,t(2, 2)/φN,f,t(1, 2) = Ĝ−1

12 (f, t). From (3.18), we can see that in such a situation
{w(1),DCSS

f,t , w
(2),DCSS
f,t } → {+∞,−∞}. For example, in the context of a homogeneous

noise field, we can expect Ĝ12(f, t) ≈ 1 since almost the same noise PSD is observed
by both microphones [205]. If the clean speech power at both sensors is comparable
(as could especially happen in far-talk conditions) and, therefore, A21(f, t) → 1, the
numerical instability might appear. On the other hand, in P-MVDR, the denominator,
according to (3.19), is only zero for

A∗21(f, t) = φN,f,t(1, 2)
φN,f,t(1, 1) ±

√√√√φN,f,t(2, 2)
φN,f,t(1, 1)

√
ρ2
N,f,t − 1, (3.22)

where
ρN,f,t = φN,f,t(1, 2)√

φN,f,t(1, 1)φN,f,t(2, 2)
(3.23)

is the Pearson’s correlation coefficient (i.e. ρN,f,t ∈ [−1, 1]). Unless ρN,f,t = ±1, it
is evident that the imaginary part of (3.22) is non-zero and, therefore, A∗21(f, t) ∈ C.
Since actually A21(f, t) ∈ [0,+∞), a numerical instability problem as in DCSS could
hardly appear in P-MVDR. In this regard, we can conclude that P-MVDR is a more
robust method than DCSS.
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3.3 Dual-channel spectral weighting based on
Wiener filtering

For this third power spectrum enhancement contribution, a dual-channel spectral
weighting approach based on Wiener filtering (widely used by many speech enhance-
ment methods [19, 115, 170]) is adopted. To estimate the a priori SNR required by
the WF, it is initially assumed in Subsection 3.3.1 that the secondary microphone cap-
tures no speech and that noise acquired by this microphone coincides with the one
captured by the primary microphone. Although these assumptions can be acceptable
in some situations (e.g., as we have seen, when the mobile device is used in close-talk
position and within a homogeneous noise field [97, 205]), in general, they will not be
satisfied. Hence, two modifications to the basic WF weighting are introduced, which
are intended to overcome the lack of realism of these two initial assumptions. First, a
bias correction term is introduced in Subsection 3.3.2 to rectify the resulting spectral
weights when a non-negligible speech component is present at the secondary channel.
Second, we develop a noise equalization procedure in Subsection 3.3.3 to be applied on
the secondary channel before spectral weight computation to make the noise PSDs at
both channels similar. Finally, a spectral weight post-processing and an overview of
the full enhancement system are provided in Subsection 3.3.4.

Firstly, it must be stated that the same dual-channel additive noise distortion model
in the power spectral domain as presented at the beginning of Section 3.2 is considered
from now onwards. As it is well-known, the Wiener filter (WF) is optimal in the sense
of minimizing the MSE between the target signal and the estimated one given the input
corrupted signal. Under our framework, the desired optimal non-causal filter in the
frequency domain is given by [114]

H1(f, t) = Sx1(f, t)
Sx1(f, t) + Sn1(f, t) , (3.24)

where Sx1(f, t) and Sn1(f, t) are the PSDs of the clean speech and the noise, respec-
tively, at the primary channel. Thus, the clean speech power spectrum bin |X1(f, t)|2
can be estimated as

|X̂1(f, t)|2 = H2
1 (f, t)|Y1(f, t)|2. (3.25)

It should be noted that H2
1 (f, t) ∈ [0, 1] may be seen as a WF-based spectral weight

such that H2
1 (f, t) → 1 (H2

1 (f, t) → 0) if speech (noise) dominates. The WF can be
alternatively expressed as

H1(f, t) = ξ1(f, t)
ξ1(f, t) + 1 , (3.26)
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where
ξ1(f, t) = Sx1(f, t)

Sn1(f, t) (3.27)

is the a priori SNR of the primary channel, which can be alternatively expressed as

ξ1(f, t) = Sy1(f, t)− Sn1(f, t)
Sn1(f, t) (3.28)

under our additive noise distortion model, namely,

Syk(f, t) = Sxk(f, t) + Snk(f, t) (k = 1, 2). (3.29)

A straightforward single-channel approach for obtaining ξ1(f, t) consists of directly es-
timating the noise PSD Sn1(f, t) from signal y1(m) [45]. As we know, this is often a dif-
ficult task since speech and noise overlap. In the following, we will alternatively exploit
the spatial characteristics of speech and noise under the considered dual-microphone
set-up to obtain estimates of ξ1(f, t) from the available signals y1(m) and y2(m).

3.3.1 Biased spectral weight estimation
Previous work on dual-channel noise reduction has shown that, when a mobile device is
used in close-talk position, the clean speech PSD is considerably greater at the primary
sensor than at the secondary one (as also discussed in Subsection 3.2.3) while a similar
noise PSD can be expected at both sensors (i.e. Sn1(f, t) ≈ Sn2(f, t) � Sx2(f, t))
[97, 205]. As was mentioned above, this is due to the geometry of the speaker-device
acoustic system (the secondary microphone is purposely placed in an acoustic shadow
with respect to the speech source) and the typical existence of a homogeneous noise
field. Under ideal conditions, we can consider that Sn1(f, t) = Sn2(f, t) and Sx2(f, t) =
0. Therefore, Sn1(f, t) = Sy2(f, t) and the a priori SNR of Eq. (3.28) can be expressed
as

ξ1,b(f, t) = Sy1(f, t)− Sy2(f, t)
Sy2(f, t) . (3.30)

Hence, by using the result in (3.30), the corresponding WF is

H1,b(f, t) = Sy1(f, t)− Sy2(f, t)
Sy1(f, t) . (3.31)

In our proposal, the PSDs of the two available noisy signals required by a priori
SNR computation in (3.30) are obtained by applying a two-dimensional 3 × 3 mean
smoothing filter over the spectrogram |Yk(f, t)|2 (k = 1, 2), that is,

Ŝyk(f, t) = 1
D

1∑
ν=−1

1∑
τ=−1

|Yk(f + ν, t+ τ)|2, (3.32)
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Figure 3.4: Result of applying the bias correction term on H1,b(f, t) for several
A21(f, t) values.

where we also assume |Yk(f, t)|2 = 0 for f, t < 0, f ≥ M and t ≥ T , and D is a
normalizing factor equal to 9 except in the borders (D = 6) and the corners (D = 4) of
the spectrogram. From these PSDs, the a priori SNR ξ1,b(f, t) is estimated in practice
as,

ξ̂1,b(f, t) = max
(
Ŝy1(f, t)− Ŝy2(f, t)

Ŝy2(f, t)
, ηξ

)
, (3.33)

where this expression is floored at ηξ in order to avoid negative values. Finally, the
estimated WF Ĥ1,b(f, t) is obtained by substituting (3.33) into (3.26).

The WF estimation described above strongly depends on the accuracy of the two
assumptions made, that is, a negligible speech component at the secondary sensor and
similar noise PSDs at both sensors. While these assumptions can be acceptable in
some specific cases, in general, they will not be accurate. In the next subsections we
will present two procedures that will allow us the application of the WF-based spectral
weighting to a wider range of situations.

3.3.2 Unbiased spectral weight estimation
The assumption of a negligible speech component at the secondary channel may be ap-
propriate, for instance, when a dual-microphone smartphone is employed in a close-talk
position [97], but it will clearly fail when the device is used in far-talk conditions [140],
as it was determined by the analysis in Subsection 3.2.3 supported by the logA21(f, t)
example histograms. Indeed, the rear-side microphone also captures a component of
speech mainly because of diffraction at the borders of the device and reflections from
the acoustic environment. In this case, Sy2(f, t) > Sn2(f, t) so that ξ1,b(f, t) and,
therefore, H1,b(f, t), will be underestimated, i.e. biased (indicated by subscript b in the
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3. Multi-Channel Power Spectrum Enhancement

above variables). In order to solve this issue, a bias correction term is introduced in
the following.

Let us consider that the clean speech PSD at the secondary channel is related to
that at the primary one by means of the relative speech gain (RSG) term A21(f, t),
i.e. Sx2(f, t) = A21(f, t)Sx1(f, t). Once again assuming a homogeneous noise field
(Sn1(f, t) = Sn2(f, t)), Eq. (3.29) for k = 2 can be written as

Sy2(f, t) = A21(f, t)Sx1(f, t) + Sn1(f, t)

= A21(f, t) (Sy1(f, t)− Sn1(f, t)) + Sn1(f, t).
(3.34)

This equation allows us to express the noise PSD at the primary channel in terms of
the PSDs of the available noisy signals, that is,

Sn1(f, t) = Sy2(f, t)−A21(f, t)Sy1(f, t)
1−A21(f, t) . (3.35)

By substituting this noise PSD into (3.28) we obtain the following expression for the
a priori SNR:

ξ1,u(f, t) = Sy1(f, t)− Sy2(f, t)
Sy2(f, t)−A21(f, t)Sy1(f, t) , (3.36)

where subscript u indicates an unbiased approach. The SNR expression in (3.36) yields
the following WF:

H1,u(f, t) = Sy1(f, t)− Sy2(f, t)
Sy1(f, t)(1−A21(f, t)) . (3.37)

By comparing this expression with that of Eq. (3.31), we observe that the WF bias
can be corrected by dividing (3.31) by B(f, t) = (1 − A21(f, t)). In other words, the
new WF can be obtained from the one in the previous subsection by applying the bias
correction term B−1(f, t) as

H1,u(f, t) = B−1(f, t)H1,b(f, t). (3.38)

Figure 3.4 shows the effect of the bias correction term on H1,b(f, t) for different values
of A21(f, t). As can be observed, if A21(f, t) = 0 (i.e. no speech is captured by the
secondary microphone), the assumption when calculating ξ1,b(f, t) through (3.30) holds
true, so that the WF is not modified. On the other hand, as A21(f, t) increases, the
initial underestimation of H1,b(f, t) due to a non-negligible speech component at the
secondary channel is rectified. It must be noted that, since H1,u(f, t) > 1 has no
physical sense, B−1(f, t)H1,b(f, t) has been bounded by 1 in Figure 3.4.
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3.3. Dual-channel spectral weighting based on Wiener filtering

Again from (3.32), the a priori SNR of (3.36), ξ1,u(f, t), is estimated in practice as,

ξ̂1,u(f, t) = max
(
Ŝy1(f, t)− Ŝn1(f, t)

Ŝn1(f, t)
, ηξ

)
, (3.39)

where, similarly to the case of (3.33), this expression is floored at ηξ to avoid negative
values. Moreover, the noise PSD Sn1(f, t) calculated through (3.35) is also thresholded
by ηn to avoid negative PSD bins, i.e.,

Ŝn1(f, t) = max
(
Ŝy2(f, t)− Â21(f, t)Ŝy1(f, t)

1− Â21(f, t)
, ηn

)
. (3.40)

Finally, the estimated WF Ĥ1,u(f, t) is obtained by substituting (3.39) into (3.26).

3.3.3 Noise equalization
The assumption Sn1(f, t) ≈ Sn2(f, t) used for deriving the WF-based weighting in Sub-
sections 3.3.1 and 3.3.2 could be acceptable when the mobile device is employed within
a homogeneous noise field (e.g., in a diffuse noise field as in interior spaces, urban streets
with high-rise buildings, etc. [182]). However, this assumption may not be satisfied
in several scenarios even in the presence of a homogeneous noise field. For instance,
this may happen in the case of two microphones with different characteristics (as ex-
emplified at the end of Subsection 3.2.1), or as a result of the use of a virtual primary
channel, since the application of beamforming modifies the spectral characteristics of
the original noise. In this subsection we describe a noise equalization procedure to be
performed before spectral weight computation. This procedure transforms the signal
at the secondary channel so that its noise component is forced to follow the one at the
primary channel while keeping the speech component untouched (this is a distortion-
less constraint similar to that of MVDR beamforming). Hence, we aim at obtaining a
new spectrum |Ȳ2(f, t)|2 = |X̄2(f, t)|2 + |N̄2(f, t)|2, where |X̄2(f, t)|2 ≈ |X2(f, t)|2 and
|N̄2(f, t)|2 ≈ |N1(f, t)|2, to be used instead of |Y2(f, t)|2 for the estimation of the PSD
Sy2(f, t) required in Eqs. (3.31) and (3.37) for the WF computation.

To make our equalization procedure more effective, we will additionally introduce
an overestimation of the noise power spectrum. This overestimation is inspired by the
oversubtraction typically applied in spectral subtraction (SS) which helps to reduce
the “musical” artifacts, yielding a better recognition performance [18, 100]. In our
case, since the PSD of the secondary channel carries the information about the noise
required in (3.31) and (3.37), we will consider an overestimation factor β(f, t) ≥ 1 so
that

|Ȳ2(f, t)|2 ≈ |X2(f, t)|2 + β(f, t)|N1(f, t)|2. (3.41)
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For computing β(f, t), we follow the same approach reported in [183], where

β(f, t) =
(

1 + std (|N1(f, t)|2)
|N1(f, t)|2

)
(3.42)

in which std (|N1(f, t)|2) is the standard deviation of |N1(f, t)|2 at frequency bin f and
time frame t. As a result, (3.41) can be rewritten as,

|Ȳ2(f, t)|2 ≈ |X2(f, t)|2 + |N1(f, t)|2 + std
(
|N1(f, t)|2

)
. (3.43)

In particular, and following a constrained beamforming-like strategy, we will obtain
|Ȳ2(f, t)|2 from the following linear combination of the dual-channel noisy observation:

|Ȳ2(f, t)|2 =g>f,t

(
|Y2(f, t)|2
|Y1(f, t)|2

)

=g>f,t

(
|X2(f, t)|2
|X1(f, t)|2

)
+ g>f,t

(
|N2(f, t)|2
|N1(f, t)|2

)
,

(3.44)

where gf,t is the weight vector to be estimated. To avoid any possible negative power
spectrum bin in (3.44), |Ȳ2(f, t)|2 is bounded below by η|Y2(f, t)|2, where 0 < η � 1
is the same thresholding factor of (3.6). By using the RSG A21(f, t) and ν̄(f, t) =
(|N2(f, t)|2, |N1(f, t)|2)>, (3.44) can be rewritten as

|Ȳ2(f, t)|2 = g>f,t

(
1

A−1
21 (f, t)

)
|X2(f, t)|2 + g>f,tν̄(f, t). (3.45)

Then, by comparing (3.43) and (3.45) we can observe that our goal is to estimate the
weight vector ĝf,t that transforms g>f,tν̄(f, t) into |N1(f, t)|2 + std (|N1(f, t)|2) with an
MMSE criterion plus a distortionless constraint for |X2(f, t)|2. In other words, if we
define α(f, t) =

(
1,A−1

21 (f, t)
)>

and

εf,t =
(
|N1(f, t)|2 + std

(
|N1(f, t)|2

))
− g>f,tν̄(f, t), (3.46)

we want to calculate
ĝf,t = argmingf,t E

[
ε2
f,t

]
;

subject to g>f,tα(f, t) = 1.
(3.47)

The optimization problem above is again solved by the Lagrange multipliers method,
yielding the weight vector estimate

ĝf,t = Φ̄−1
N (f, t)

γN(f, t)− α>(f, t)Φ̄−1
N (f, t)γN(f, t)− 1

α>(f, t)Φ̄−1
N (f, t)α(f, t)

α(f, t)
, (3.48)
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which, as can be seen, depends on the noise spatial correlation matrix Φ̄N(f, t) and the
overestimated noise spatial correlation vector γN(f, t). First, Φ̄N(f, t) is defined as

Φ̄N(f, t) =
(
φN,f,t(2, 2) φN,f,t(2, 1)
φN,f,t(1, 2) φN,f,t(1, 1)

)
, (3.49)

where it should be reminded that φN,f,t(k, l) = E [|Nk(f, t)|2|Nl(f, t)|2] (k, l = 1, 2) is a
cross-correlation coefficient as for the case of both DCSS and P-MVDR. Second, the
overestimated noise spatial correlation vector is

γN(f, t) = φ
(1)
N (f, t) + std

(
|N1(f, t)|2

)
µN(f, t), (3.50)

where
φ

(1)
N (f, t) =

(
φN,f,t(2, 1)
φN,f,t(1, 1)

)
(3.51)

is a noise spatial correlation vector and the noise mean vector is expressed as

µN(f, t) =
(

E [|N2(f, t)|2]
E [|N1(f, t)|2]

)
. (3.52)

Since the mathematical derivation of the noise equalization weighting vector is
considered of particular interest, it is detailed in Appendix A.

In practice, the required noise statistical parameters Φ̄N(f, t) and γN(f, t) may
be estimated during noise-only periods identified by means of a voice activity detector
(VAD). In particular, in this Thesis both the noise spatial correlation matrix Φ̄N(f, t) of
Eq. (3.49) and the overestimated noise spatial correlation vector γN(f, t) of (3.50) are
calculated as follows. First, two initial noise spatial correlation matrices as well as two
initial overestimated noise spatial correlation vectors are computed per utterance and
frequency bin f . One is obtained from the firstM frames (Φ̄(0)

N,f and γ
(0)
N,f , respectively)

and the other from the last M frames (Φ̄(e)
N,f and γ

(e)
N,f , respectively). It must be noted

that it is assumed that those first and last M frames of every utterance contain only
noise energy. Then, Φ̄N(f, t) (γN(f, t)) is calculated by means of linear interpolation
between Φ̄

(0)
N,f (γ(0)

N,f ) and Φ̄
(e)
N,f (γ(e)

N,f ). Indeed, the linear interpolation approach [159]
(as well as the one taken into account by both DCSS and P-MVDR for the calculation of
the cross-correlation coefficients of noise) is an offline noise estimation strategy. In this
respect, it has to be said that it is usual to find in the literature that the computation of
different types of parameters, such as noise statistics-related parameters, is performed
on an utterance-by-utterance basis. Thus, for instance, in [203], the clean speech spatial
covariance matrix, needed to derive the steering vector by eigenvalue decomposition
for MVDR beamforming, is computed per utterance and frequency bin by using all the
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Figure 3.5: Example of the developed noise equalization when applied on an
utterance from a dual-microphone smartphone used in close-talk position. Both
the estimated noise average power |N̄2(f, t)|2 (β(f, t) = 1) and its overestimated
version, |N̄2(f, t)|2 (β(f, t) ≥ 1 as in Eq. (3.42)), are represented by frequency
bin along with the actual noise average power from the two channels.

frames in each utterance. Additionally, in [90], the noise spatial covariance matrix for
MVDR beamforming is also calculated by employing the beginning and ending parts
of each utterance.

An application example of the noise equalization procedure developed above is
depicted in Figure 3.5. The figure shows the noise spectra obtained from a dual-
microphone smartphone in close-talk position averaged across time over the whole
utterance. It can be observed that the equalized noise |N̄2(f, t)|2 is much more similar
to |N1(f, t)|2 than the original |N2(f, t)|2. The effect of the noise overestimation factor
β(f, t) is also shown.

To conclude, it should be pointed out that by setting the constraint of Eq. (3.47)
as g>f,tα(f, t) = 0, the noise equalization procedure described in this subsection is
able to produce estimates of the noise power spectrum at the primary channel. Such
estimates might be used together with single-channel Wiener filtering to perform the
sought spectral weighting. Nevertheless, preliminary speech recognition experiments
revealed that the combination of the noise equalizer here described plus the unbiased
spectral weighting of Subsection 3.3.2 (to compensate for the presence of speech energy
at the secondary channel) is superior to that alternative.
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3.3. Dual-channel spectral weighting based on Wiener filtering

Figure 3.6: Block diagram of the full dual-channel spectral weighting system.

3.3.4 Post-processing and system overview
All the stages described above, plus the RSG estimation which will be formulated in
Section 3.4 and a post-processing block, are accordingly interconnected to define the
dual-channel spectral weighting system represented in Figure 3.6. This proposed post-
processing block carries out a series of operations on either the WF-based spectral
weights Ĥ2

1,b(f, t) or Ĥ2
1,u(f, t). For the sake of clarity let us consider only Ĥ2

1,u(f, t) for
the rest of this explanation. First, for speech recognition purposes, previous works have
shown that better results can be achieved by leaving a small fraction of noise energy in
the enhanced signal [18, 129]. Hence, Ĥ2

1,u(f, t) is bounded below in accordance with

H̄2
1,u(f, t) = max

(
Ĥ2

1,u(f, t), η
)
, (3.53)

where η is the same thresholding factor as in previous subsections (e.g. see Eq. (3.6)).
Indeed, thresholding Ĥ2

1,u(f, t) by η is equivalent to consider

ηξ =
√
η

1−√η (3.54)

in (3.39) in accordance with the WF definition of (3.26). So this thresholding enhance-
ment is directly accomplished by including (3.54) into (3.39).

Second, as in [91], we exploit the spectro-temporal correlation of speech in order to
refine H̄2

1,u(f, t) by applying a couple of two-dimensional filters in the time-frequency
domain. The first one is a median filter of size Mf ×Mt, that tries to remove those
high-valued H̄2

1,u(f, t) bins surrounded by low values. This procedure is justified by
the fact that it is more likely that those bins constitute artifacts rather than actual
isolated clean speech spectral bins. This kind of artifact often appears when the as-
sumption Sn1(f, t) ≈ Sn2(f, t) does not hold but instead Sn1(f, t) is significantly greater
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Figure 3.7: Example of spectral weighting by using the enhancement system of
Fig. 3.6 for the utterance “nine eight seven oh” obtained from a dual-microphone
smartphone in close-talk position. The utterance is contaminated with car noise
at 0 dB in the primary channel. From top to bottom: clean speech power spec-
trum in the primary channel, noisy versions at the 1st and 2nd channels, esti-
mated spectral weights and enhanced power spectrum.
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than Sn2(f, t). Then, in order to further increase the spectro-temporal coherence, the
spectral weights are smoothed by convolving them with a Gaussian kernel of standard
deviation σG and size Gf ×Gt.

Figure 3.7 shows an example of applying the estimated spectral weights by means
of the full enhancement system in Figure 3.6 to the primary noisy power spectrum of
an utterance captured by a dual-microphone smartphone used in close-talk position.
In this example, the noise reduction capability of our system can be visually inspected.

3.4 MMSE-based relative speech gain estimation
The relative speech gain (RSG)A21(f, t), required by all the enhancement contributions
developed above (i.e. DCSS, P-MVDR and DSW), can be obtained through an MMSE-
based estimation procedure, which is developed in this section. To this end, considering
that A21(f, t) is the RSG in the short-time Fourier transform (STFT) domain (i.e.
A21(f, t) = |A21(f, t)|2), let us define the following vectors with STFT coefficients for
a particular time frame t and k = 1, 2:

a21 = (A21(0, t), A21(1, t), ..., A21(M− 1, t))> ;

yk = (Yk(0, t), Yk(1, t), ..., Yk(M− 1, t))> ;

xk = (Xk(0, t), Xk(1, t), ..., Xk(M− 1, t))> ;

nk = (Nk(0, t), Nk(1, t), ..., Nk(M− 1, t))> .

(3.55)

It should be remarked that a reference to the time frame index t for the variables
a21, yk, xk and nk has been omitted for the sake of clarity. All the variables in
(3.55) can be decomposed into real and imaginary parts (e.g. a21 = ar21 + jai21, where
superscripts r and i denote real and imaginary parts, respectively). In order to develop
a straightforward estimator for a21, we will apply an ad-hoc model of the secondary
signal y2 for a specific primary one y1. Under this modeling, once y1 is observed, y2

is determined by the RSG vector a21 as well as by the noises affecting both channels
(see Eq. (3.59)). Then, the MMSE estimate of a21 can be expressed as,

â21 = E [a21|y2]

= E [ar21|yr2] + jE [ai21|yi2]

= âr21 + jâi21,

(3.56)
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Figure 3.8: Example histograms of A21(f) (left) and Y2(f) (right) given a value
of y1, at two different frequency bins, calculated from noisy speech data captured
with a dual-microphone smartphone used in far-talk conditions.

where it has been assumed that the real and imaginary parts of a21 (i.e. ar21 and ai21)
are statistically independent. It should be noticed that, for the sake of simplicity, a
similar assumption was previously adopted in [96, 131] for the real and imaginary parts
of the clean speech STFT coefficients. Since our estimator performs on a frame-by-
frame basis, it is able to cope with variations over time on the relative location between
the speaker and the microphones or the environment acoustics. It should also be noted
that although phase information provided by our method is finally discarded in this
Thesis, that could be exploited for different purposes, e.g. the definition of the steering
vector for beamforming.

All the formulation below is intended to provide an estimation of ar21. A simi-
lar procedure can be followed to obtain âi21, which is detailed in Appendix B. Vari-
ables ar21 and yr2 are assumed to be Gaussian-distributed (as well as ai21 and yi2), i.e.
ar21 ∼ N

(
µAr21

,ΣAr21

)
and yr2 ∼ N

(
ȳr2,ΣY r2

)
. The suitability of such an assumption is

deduced from Figure 3.8, which depicts example histograms of the real and imaginary
parts of two frequency components of a21 and y2. It should be noticed that a constant
typical value of y1 was chosen to compute the y2 example histograms according to the
aforementioned ad-hoc modeling (described below). Moreover, for the sake of simplic-
ity we will assume that ar21 and yr2 are jointly Gaussian and, as a result, the conditional
probability density function (PDF) p(ar21|yr2) is also Gaussian [20]. Thus,

âr21 = E [ar21|yr2]

=
∫

ar21p(ar21|yr2)dar21

= µAr21
+ ΣAr21Y

r
2
Σ−1
Y r2

(yr2 − ȳr2) .

(3.57)
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We consider that the parameters of the a priori distribution of ar21, µAr21
and ΣAr21

, are
known. Their estimation from the available data is discussed in Subsection 6.2.2. Thus,
we now focus on the estimation of the rest of required parameters, that is, ΣAr21Y

r
2
, ΣY r2

and ȳr2.
First, we will obtain the mean vector ȳr2 and the covariance matrix of the PDF

p(yr2) = N
(
ȳr2,ΣY r2

)
. In our ad-hoc modeling, y2 (and, therefore, yr2) could be fully

determined from the observation y1 of the primary channel if we had knowledge about
a21, n1, and n2, that is, y2 = h(a21,n1,n2; y1). In order to obtain this function, we
first adapt our additive distortion model for y2 to the STFT domain as,

y1 = x1 + n1;

y2 = x2 + n2 = a21 � x1 + n2,
(3.58)

where � stands for element-wise multiplication. The combination of both expressions
in (3.58) finally yields,

y2 = h(a21,n1,n2; y1)

= a21 � (y1 − n1) + n2,
(3.59)

where y1 is observable and the variables a21, n1 and n2 are unknown. From (3.59),
yr2 = Re(y2) can be modeled as

yr2 = hr (ar21, ai21,nr1,ni1,nr2; yr1,yi1)

= ar21 � (yr1 − nr1)− ai21 � (yi1 − ni1) + nr2.
(3.60)

We will also assume that the variables nrk and nik (k = 1, 2) follow multivariate
Gaussian distributions [44]. Since any linear combination of Gaussian variables follows
another Gaussian distribution [150], we linearize the distortion model in (3.60) as a
first step before describing yr2 by means of a multivariate Gaussian distribution. This is
carried out by means of the following first-order vector Taylor series (VTS) expansion
of (3.60) around (µAr21

,µAi21
,µNr

1
,µN i

1
,µNr

2
):

yr2 = hr (ar21, ai21,nr1,ni1,nr2; yr1,yi1)

≈ hr
(
µAr21

,µAi21
,µNr

1
,µN i

1
,µNr

2
; yr1,yi1

)
+ JrAr21

(
ar21 − µAr21

)
+JrAi21

(
ai21 − µAi21

)
+ JrNr

1

(
nr1 − µNr

1

)
+ JrN i

1

(
ni1 − µN i

1

)
+JrNr

2

(
nr2 − µNr

2

)
,

(3.61)
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where the M×M Jacobian matrices JrAr21
, JrAi21

, JrNr
1
, JrN i

1
and JrNr

2
have, respectively,

the following definitions,

JrAr21
= ∂yr2

∂ar21

∣∣∣∣∣
µNr1

= diag
(
yr1 − µNr

1

)
;

JrAi21
= ∂yr2

∂ai21

∣∣∣∣∣
µ
Ni1

= −diag
(
yi1 − µN i

1

)
;

JrNr
1

= ∂yr2
∂nr1

∣∣∣∣∣
µAr21

= −diag
(
µAr21

)
;

JrN i
1

= ∂yr2
∂ni1

∣∣∣∣∣
µ
Ai21

= diag
(
µAi21

)
;

JrNr
2

= ∂yr2
∂nr2

= IM,

(3.62)

where IM is an M×M identity matrix and diag(·) indicates a diagonal matrix whose
main diagonal corresponds to that from its argument. Then, by considering the lin-
earized distortion model of (3.61), the mean vector of the PDF p(yr2)1 can be approxi-
mated as,

ȳr2 = E [yr2]

≈ hr
(
µAr21

,µAi21
,µNr

1
,µN i

1
,µNr

2
; yr1,yi1

)
.

(3.63)

This mean can be considered as a predicted value for yr2 obtained from µAr21
, µAi21

,
µNr

1
, µN i

1
, µNr

2
and y1.

The covariance matrix of p(yr2) can be approximated by following a similar proce-
dure from (3.61) and assuming statistical independence between a21 and (n1,n2), as
well as between the real and imaginary parts of all the variables involved:

ΣY r2
= E

[
(yr2 − ȳr2)(yr2 − ȳr2)>

]
≈ JrAr21

ΣAr21
JrAr21

> + JrAi21
ΣAi21

JrAi21

> + JrNr
1
ΣNr

1
JrNr

1

>

+JrNr
1
ΣNr

1N
r
2
JrNr

2

> + JrN i
1
ΣN i

1
JrN i

1

> + JrNr
2
ΣNr

2N
r
1
JrNr

1

>

+JrNr
2
ΣNr

2
JrNr

2

>,

(3.64)

1Notice that, according to our ad-hoc model, this PDF is specifically built for the given observation
y1, although this dependency has been removed from our notation for the sake of simplicity.
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with ΣNr
1N

r
2

= Σ>Nr
2N

r
1

= E
[
(nr1 − µNr

1
)(nr2 − µNr

2
)>
]
.

Finally, taking into account the statistical independence between a21 and (n1,n2),
as well as between ar21 and ai21, the covariance matrix ΣAr21Y

r
2
can be approximated as,

ΣAr21Y
r
2

= E
[
(ar21 − µAr21

)(yr2 − ȳr2)>
]

≈ ΣAr21
JrAr21

>.

(3.65)

In Subsection 6.2.2 the estimation of the parameters of the a priori PDFs p(ar21) and
p(ai21) required to perform this method will be presented. In particular, µAr21

, ΣAr21
,

µAi21
and ΣAi21

must be obtained in advance for every mobile device. On the other
hand, the hyperparameters µNr

k
, ΣNr

k
, µN i

k
and ΣN i

k
, k = 1, 2, as well as ΣNr

1N
r
2
and

ΣN i
1N

i
2
, are calculated on an utterance-by-utterance basis. Once again, it is considered

that the first and last M frames from each utterance contain only noise energy. Then,
an initial noise estimation is obtained by linear interpolation between the averages of
the magnitude of the first and last M frames in the k-th channel of each utterance
in the STFT domain. This noise magnitude estimate is then used along with the
original noisy speech phase to shape an STFT noise estimate. Thus, the mean vectors
of the PDFs p(nrk) and p(nik), i.e. µNr

k
and µN i

k
(k = 1, 2), are updated at every time

frame t from the above complex noise estimate. The covariance matrices ΣNr
k
and

ΣN i
k
(k = 1, 2), and ΣNr

1N
r
2
and ΣN i

1N
i
2
, are estimated per utterance as the sample

covariance of the first and last M frames. Independence between frequency bins was
also assumed in practice, such that all types of noise covariance matrices are diagonal.
While for the sake of simplicity it is typical to find in the literature this independence
assumption across frequency bins (e.g. [65, 157]), our preliminary experiments also
showed that better speech recognition performance could be achieved by adopting this
assumption for our MMSE-based RSG estimator. In addition, it is worth to notice
that independence between frequency bins is just a practical assumption independent
of our method, so that, according to its formulation, it can deal with correlations across
frequency bins by just considering full covariance matrices.

3.5 Summary
The core of this chapter has been the presentation of three different power spectrum
enhancement contributions, which are intended to exploit the dual-channel noisy speech
signal coming from a mobile device for improved speech recognition: DCSS (Dual-
Channel Spectral Subtraction), P-MVDR (Power-MVDR) and DSW (Dual-channel
Spectral Weighting). While it is expected that a mobile device has no more than one
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3. Multi-Channel Power Spectrum Enhancement

secondary sensor (i.e. a microphone with the main purpose of getting information about
the acoustic environment which does not look towards the speaker), it is likely that
such a device integrates various front sensors. Under this scenario, a virtual primary
channel is defined by the application of beamforming from either the front sensors or
all the microphones in the device (namely by also taking into account the secondary
microphone). Then, this virtual primary channel can be used along with the secondary
one by the proposed dual-channel power spectrum enhancement methods, in such a
manner that they behave as post-filters.

The two basic approaches DCSS and P-MVDR have been presented in the first
place. DCSS extends spectral subtraction to a dual-channel framework to outperform
the single-channel spectral subtraction. Additionally, P-MVDR is based on MVDR
beamforming but discarding the phase information in order to overcome the limitations
when applied to a mobile device with a few microphones very close each other. Both
DCSS and P-MVDR exploit the spatial properties of speech and noise by means of
the relative speech gain factor and noise spatial correlation terms, respectively. Then,
through a comparative study it was determined that P-MVDR is more robust than
DCSS when a dual-microphone smartphone is used in far-talk conditions.

The third power spectrum enhancement contribution, DSW, consisted of a dual-
channel spectral weighting based on Wiener filtering. DSW starts from a simple formu-
lation in which it is assumed that the secondary microphone only captures noise and
the existence of a homogeneous noise field. Since it is known that both assumptions
are not accurate, the WF-based weighting is modified through 1) a bias correction
term (to rectify the resulting spectral weights when a non-negligible speech component
is present at the secondary channel) and 2) a noise equalization (inspired by MVDR
beamforming) applied on the secondary channel before spectral weight computation.

Finally, since all DCSS, P-MVDR and DSW require knowledge of the relative speech
gain between the secondary microphone and the primary one, a robust MMSE-based
estimator was developed at the end of this chapter to obtain this parameter in an
efficient way (as will be shown in our experimental evaluation).
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CHAPTER 4
Dual-Channel Vector Taylor Series

Feature Compensation

The vector Taylor series (VTS) approach for noise-robust automatic speech recog-
nition (ASR) has been widely studied over the last two decades. As we saw

in Chapter 2, the VTS strategy has traditionally been followed to accomplish either
model adaptation or feature compensation. In this chapter, VTS feature compensa-
tion is extended to be performed on a dual-channel framework in a similar fashion to
the power spectrum enhancement methods of Chapter 3. Of course, in the case of a
mobile device with more than one front sensor, or more than two sensors of any type,
the combinatorial strategy presented in 3.1 could be followed. It must be noted that
the feature compensation scheme is preferred here over model adaptation due to the
considerably lower computational complexity of the former.

In the following it is developed a minimum mean square error (MMSE)-based es-
timator of the log-Mel clean speech features that exploits the dual-channel noisy ob-
servations and relies on a VTS expansion of the dual-channel speech distortion model
stated in Section 4.1. Through this approach, the noisy speech statistics, needed for the
MMSE estimation, are easily derived in an analytical way from the clean speech, rela-
tive speech gain and noise statistics. Our dual-channel VTS contribution, explained in
detail throughout Section 4.2, mainly follows a stacked formulation that exploits clean
speech and noise correlations across the two available channels in order to achieve more
accurate clean speech estimates than a single-channel VTS scheme.

The general overview of the dual-channel MMSE-based estimation is given in Sub-
section 4.2.1. As will be seen, such an estimation is composed of two differentiated
components: a set of posterior probabilities and other set of clean speech partial es-
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4. Dual-Channel Vector Taylor Series Feature Compensation

timates. Thus, dual-channel posterior computation is developed in Subsection 4.2.2,
where, besides the posterior probabilities derived from the stacked formulation, an
alternative approach is also explored. This alternative strategy, unlike the stacked for-
mulation, models the conditional dependence of the noisy secondary channel given the
primary one. This leads to a different derivation where the correlations between the
two channels are exploited in a more robust way. Then, clean speech partial estimate
computation is presented in Subsection 4.2.3. Finally, the contributions described in
this chapter are summarized in Section 4.3.

Additionally, it should be mentioned that, as in Chapter 3, without loss of generality,
different issues will be illustrated throughout the present chapter by considering again
a dual-microphone smartphone employed in either close- or far-talk conditions.

4.1 Dual-channel distortion model for feature
compensation

Let us consider the speech distortion model introduced in Section 2.1 in the log-Mel
power spectral domain. It will be simplified by neglecting the convolutive distortion in
first instance, although this type of distortion can be tackled as explained down below.
Hence, if yi, xi and ni are noisy speech, clean speech and noise log-Mel feature vectors
coming from the i-th channel of the mobile device at a particular time frame (where
the time frame index t has been omitted in these variables for the sake of clarity), the
considered additive noise distortion model from now onwards is

yi = log (exi + eni) , (4.1)

where it should be reminded that the operators log(·) and e(·) are applied element-
wise, as well as i = 1 and i = 2 correspond to the primary and secondary channels,
respectively.

Besides the additive noise, we must also consider the acoustics involved in our
problem. Thus, we assume that the clean speech signal xi(m) is the result of filtering
the clean speech source x(m) by the acoustics hi(m) that affect sensor i, that is,
xi(m) = hi(m) ∗ x(m) or, in terms of log-Mel power spectra,

xi = hi + x
= ai1 + x1,

(4.2)

where hi and x are vectors of size M (namely the number of filterbank channels in this
chapter) similarly defined as in Eq. (2.9), and ai1 = hi − h1, i = 1, 2, represents the
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4.2. Dual-channel VTS feature compensation formulation

clean speech acoustic path from the source to sensor i relative to that of the primary
sensor. While a11 = 0M,1 is an M-dimensional zero vector by definition, it must be
observed that a21 is a relative speech gain vector in the log-Mel power spectral domain.
In this chapter, a21 will be referred to as the relative acoustic path (RAP) vector.

For speech recognition purposes, we are interested in the estimation of the clean
speech feature vector x1 derived from either the signal captured by the primary mi-
crophone or the virtual primary signal resulting from beamforming. As for the power
spectrum enhancement techniques of Chapter 3, this is a reasonable choice since a
clear line of sight between the source (i.e. speaker’s mouth) and the front (primary)
microphone/s can be assumed. Hence, we can expect that the primary signal y1(m) is
less (or equally, in the worst case) affected by the noise than the secondary one, y2(m).

Under the described framework, we can estimate the clean speech feature vector x
in two steps. First, x1 will be obtained by means of a dual-channel VTS estimation that
benefits from the dual-channel noisy observation. Then, x can be estimated through the
application of channel deconvolution on the clean speech estimate x̂1. For simplicity, in
this Thesis h1(m) is compensated by performing cepstral mean normalization (CMN)
[10] on both training and test data. This way, we are able to cancel or, at least, mitigate
the possible channel mismatches.

4.2 Dual-channel VTS feature compensation
formulation

In this section we develop an MMSE-based estimator of x1 that exploits the dual-
channel noisy observations and relies on a VTS expansion of the dual-channel speech
distortion model introduced in the previous section. Our method, that performs on a
frame-by-frame basis, follows a stacked formulation which exploits the spatial correla-
tions of clean speech and noise across the two channels.

4.2.1 MMSE estimation
First, we assume that the clean speech statistics at the primary channel can be accu-
rately modeled using a K-component Gaussian mixture model (GMM) defined as,

p(x1) =
K∑
k=1

P (k)N
(
x1

∣∣∣µ(k)
x1 ,Σ

(k)
x1

)
, (4.3)

where P (k) is the prior probability of the k-th multivariate Gaussian component N (·)
with mean vector and covariance matrix µ(k)

x1 and Σ(k)
x1 , respectively. By considering
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Figure 4.1: Example histograms of the variable a21(f) at two different frequency
bins for both close- and far-talk conditions. These histograms were obtained
from clean speech recorded with a dual-microphone smartphone in a small and a
medium-sized furnished rooms.

this speech model, the log-Mel clean speech features will be estimated at every time
frame t under an MMSE approach as [64],

x̂1 = E [x1|y] =
K∑
k=1

P (k|y)E [x1|y, k] , (4.4)

where y is a stacked vector defined as

y =
(

y1
y2

)
, (4.5)

and the k-th clean speech partial estimate E [x1|y, k] is weighted by the posterior P (k|y)
to be linearly combined. In the following subsection the estimation of the posteriors
{P (k|y); k = 1, 2, ...,K} is addressed while the computation of the clean speech partial
estimates is detailed in Subsection 4.2.3.

4.2.2 Calculation of the posterior probabilities

Let us rewrite the speech distortion model of Eq. (4.1) by taking into account the
relationship in (4.2) as

yi = f(x1, ai1,ni) = log (eai1+x1 + eni)

= x1 + ai1 + log(1M,1 + eni−x1−ai1),
(4.6)
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Figure 4.2: Example histograms of the variable ni(f) (i = 1, 2) at two different
frequency bins. These histograms are calculated for two types of noise recorded
with a dual-microphone smartphone: pedestrian street (left) and babble (right)
noise.

where f(x1, ai1,ni) : RM×M×M → RM and yi, x1, ai1 and ni are the log-Mel fea-
ture vectors at time frame t introduced in the previous section, and 1M,1 is an M-
dimensional vector filled with ones.

From now on, let a = (a>11, a>21)> = (0>M,1, a>21)> and n = (n>1 ,n>2 )> be an aug-
mented RAP vector and a stacked vector of noise, respectively, both of them 2M-
dimensional. By taking into account the couple of sensors in the mobile device, the
considered dual-channel distortion model is given by the following stacked vector:

y =
(

y1
y2

)
= F (x1, a,n) =

(
f(x1, a11,n1)
f(x1, a21,n2)

)
, (4.7)

where F(x1, a,n) : RM×2M×2M → R2M. We assumed in (4.3) that the clean speech
statistics at the primary channel are modeled by means of a K-component GMM.
To complete the generative model, we assume that the statistics for both the RAP
and noise in each channel can be modeled by Gaussian distributions [49, 138], i.e.
p(a21) = N (a21 |µa21 ,Σa21 ) and p(ni) = N (ni |µni ,Σni ) (i = 1, 2), respectively. To
support this, Figures 4.1 and 4.2 plot example histograms of a21(f) and ni(f) (i = 1, 2),
respectively, at two different frequency bins. From those figures, we can state that the
Gaussian assumption seems reasonable. Since any linear combination of Gaussian
variables follows another Gaussian distribution [150], by linearizing the dual-channel
distortion model in (4.7) we are able to describe the dual-channel noisy speech statistics
(required to compute the posteriors {P (k|y); k = 1, 2, ...,K}) by means of a GMM (at
every time frame t) as

p(y) =
K∑
k=1

P (k)N
(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
. (4.8)
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Then, we linearize y = F (x1, a,n) by means of a first-order VTS expansion around
the point

(
µ(k)
x1 ,µa,µn

)
, where

µa =
(

µa11

µa21

)
=
(

0M,1
µa21

)
(4.9)

and
µn =

(
µn1

µn2

)
(4.10)

are 2M× 1 vectors of stacked means. This procedure is accomplished by accordingly
linearizing the speech distortion model for each channel, f(x1, ai1,ni) (i = 1, 2), around
the point

(
µ(k)
x1 ,µai1 ,µni

)
, that is,

f(x1, ai1,ni) ≈ f
(
µ(k)
x1 ,µai1 ,µni

)
+ J(i,k)

x

(
x1 − µ(k)

x1

)
+J(i,k)

a (ai1 − µai1) + J(i,k)
n (ni − µni) ,

(4.11)

where J(i,k)
x , J(i,k)

a and J(i,k)
n are M ×M Jacobian matrices, the calculation of which

will be detailed later.
To finally characterize the probability density function (PDF) p(y) we need to

derive its mean vectors and covariance matrices. By taking into account (4.7) and
(4.11), it is straightforward to show that the mean vectors

{
µ(k)
y : k = 1, 2, ...,K

}
can

be obtained as

µ(k)
y =

(
E [y1|k]
E [y2|k]

)
=
 f

(
µ(k)
x1 ,µa11 ,µn1

)
f
(
µ(k)
x1 ,µa21 ,µn2

)  . (4.12)

On the other hand, the covariance matrices can be easily calculated in accordance to
their definition as

Σ(k)
y = E

[(
y− µ(k)

y

) (
y− µ(k)

y

)>]
, (4.13)

where y−µ(k)
y is defined in the following manner by again considering the approximation

in (4.11) as well as (4.12):

y− µ(k)
y =

 J(1,k)
x

(
x1 − µ(k)

x1

)
+ J(1,k)

a (a11 − µa11) + J(1,k)
n (n1 − µn1)

J(2,k)
x

(
x1 − µ(k)

x1

)
+ J(2,k)

a (a21 − µa21) + J(2,k)
n (n2 − µn2)

 . (4.14)

For notational convenience let us define the following block Jacobian matrices:

J(k)
x =

(
J(1,k)
x

J(2,k)
x

)
; (4.15)
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J(k)
a =

(
J(1,k)
a 0M,M

0M,M J(2,k)
a

)
; (4.16)

J(k)
n =

(
J(1,k)
n 0M,M

0M,M J(2,k)
n

)
, (4.17)

where J(k)
x is a 2M×M matrix, J(k)

a and J(k)
n are 2M× 2M matrices and 0M,M is an

M×M zero matrix. Then, (4.14) can be expressed in a more compact form as

y− µ(k)
y = J(k)

x

(
x1 − µ(k)

x1

)
+ J(k)

a (a − µa) + J(k)
n (n− µn) . (4.18)

Finally, by combining (4.18) and (4.13), as well as considering independence between
clean speech, the RAP and noise, an expression for the dual-channel noisy speech model
covariance matrix can be obtained as

Σ(k)
y = J(k)

x Σ(k)
x1 J(k)

x

> + J(k)
a ΣaJ(k)

a

> + J(k)
n ΣnJ(k)

n

>
, (4.19)

where
Σa = E

[
(a − µa)(a − µa)>

]
=
(

0M,M 0M,M
0M,M Σa21

)
(4.20)

and
Σn = E

[
(n− µn)(n− µn)>

]
=
(

Σn1 Σn12

Σn21 Σn2

)
(4.21)

are 2M × 2M spatial covariance matrices of the RAP and noise, respectively. In
addition, Σn12 = Σ>n21 = E

[
(n1 − µn1)(n2 − µn2)>

]
. The Jacobian matrices, which

are diagonal in accordance to the speech distortion model described by Eq. (4.6)
(independent frequency components), are easily calculated by employing the Jacobian
matrix mathematical definition as,

J(i,k)
x = ∂yi

∂x1

∣∣∣∣∣
µ

(k)
x1 ,µai1 ,µni

= diag
 1M,1

1M,1 + eµni−µ
(k)
x1 −µai1

 ;

J(i,k)
a = ∂yi

∂ai1

∣∣∣∣∣
µ

(k)
x1 ,µai1 ,µni

=
{

0M,M if i = 1
J(2,k)
x if i = 2 ;

J(i,k)
n = ∂yi

∂ni

∣∣∣∣∣
µ

(k)
x1 ,µai1 ,µni

= IM − J(i,k)
x ,

(4.22)

where diag(·) indicates a diagonal matrix whose main diagonal corresponds to its ar-
gument, division ÷ operates element-wise and IM is an M×M identity matrix.
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Figure 4.3: Example of noise spatial covariance matrix Σn estimated from 12
seconds of pedestrian street noise captured with a dual-microphone smartphone.

Finally, by using the Bayes’ rule and the previous derivations, in the knowledge
that p(y|k) = N

(
y
∣∣∣µ(k)

y ,Σ(k)
y

)
, the posteriors are obtained as

P (k|y) = p(y|k)P (k)∑K
k′=1 p(y|k′)P (k′)

, k = 1, 2, ...,K. (4.23)

On the one hand, since the computation of the parameters of the PDFs p(x1) and
p(a21), required to perform the calculations above, depends on the experimental dataset
(or mobile device), that issue is detailed later in Subsection 6.2.3. On the other hand,
the parameters of p(ni), i = 1, 2, along with Σn12 are obtained as follows. As for the
noise statistics calculation procedures considered throughout Chapter 3, we assume
again that the first and last M frames of each utterance contain only noise energy.
In this way, the mean vector of the PDF p(ni), µni (i = 1, 2), is computed for every
time frame t from a linear interpolation between the averages of the first and last M
frames in the i-th channel of each utterance in the log-Mel domain [65]. Additionally,
the noise covariance matrices Σni (i = 1, 2) and Σn12 are estimated per utterance as
the sample covariance of the first and last M frames as well [65]. Independence across
frequency bins is also assumed for the noise so thatΣni (i = 1, 2) andΣn12 are diagonal.
Figure 4.3 shows an example of a noise spatial covariance matrix Σn estimated from 12
seconds of pedestrian street noise captured with a dual-microphone smartphone. This
example illustrates the suitability of the diagonal assumption.
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4.2. Dual-channel VTS feature compensation formulation

4.2.2.1 Alternative approach

A main feature of the stacked formulation described above is that the secondary chan-
nel is treated in a parallel manner to the primary one, using similar distortion models.
Thus, as a result, the two-channel joint information is indirectly exploited by means
of the spatial covariance matrix of noise and a term modeling the clean speech RAP
between the two sensors of the device. However, as we know, clean speech will be eas-
ily masked by noise at the secondary channel, and, therefore, we can expect that the
relation between the secondary noisy observation and the clean speech be more uncer-
tain than that of the primary channel. We have found more robust conditioning this
distortion model at the secondary channel to the certain noisy observation from the pri-
mary channel since both channels are heavily correlated, decreasing the influence of the
clean speech variable. This is accomplished by replacing P (k|y) in (4.4) by P (k|y1,y2),
which is further decomposed as the product of an a priori and a conditional PDF. This
alternative posterior computation approach is formulated immediately below.

The posteriors {P (k|y1,y2) ; k = 1, 2, ...,K} can be calculated by employing again
the Bayes’ theorem as

P (k|y1,y2) = p (y1,y2|k)P (k)∑K
k′=1 p (y1,y2|k′)P (k′)

, (4.24)

where the PDF p (y1,y2|k) can be factored as

p (y1,y2|k) = p(y1|k)p(y2|y1, k). (4.25)

Then, by using a VTS approach [138], both p(y1|k) and p(y2|y1, k) will be similarly
modeled as Gaussian PDFs and their parameters are obtained as described in the
following.

First, the speech distortion model of (4.1) is adapted to the primary and secondary
channels, respectively, as

y1 = x1 + log (1M,1 + en1−x1) ; (4.26)

y2 = x1 + a21 + log (1M,1 + en2−x1−a21) , (4.27)

which are combined to define an alternative speech distortion model for the secondary
channel given y1, as,

y2(y1) = y1 + a21 + log
[

1M,1 + en2−x1−a21

1M,1 + en1−x1

]
. (4.28)

Assuming again that all a21 and ni (i = 1, 2) can be modeled by Gaussian distribu-
tions [49, 138], Eqs. (4.26) and (4.28) are linearized by means of a first-order VTS
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4. Dual-Channel Vector Taylor Series Feature Compensation

expansion to obtain the parameters (i.e. mean vectors and covariance matrices) of
p(y1|k) = N

(
µ(k)
y1 ,Σ

(k)
y1

)
and p(y2|y1, k) = N

(
µ

(k)
y2|y1

,Σ
(k)
y2|y1

)
, respectively. By follow-

ing a procedure similar to that from the stacked case, it is straightforward to demon-
strate that the M-dimensional mean vectors are given by

µ(k)
y1 = µ(k)

x1 + log
(

1M,1 + eµn1−µ
(k)
x1

)
;

µ
(k)
y2|y1

= y1 + µa21 + log
1M,1 + eµn2−µ

(k)
x1 −µa21

1M,1 + eµn1−µ
(k)
x1

 .
(4.29)

Analogously, it is easy to show that the covariance matrix of p(y1|k), considering
independence between clean speech and noise, can be approximated as

Σ(k)
y1 = J(1,k)

x1 Σ(k)
x1 J(1,k)

x1

> + J(1,k)
n1 Σn1J(1,k)

n1

>
. (4.30)

The M×M Jacobian matrices have the following definitions:

J(1,k)
x1 = ∂y1

∂x1

∣∣∣∣∣
µ

(k)
x1 ,µn1

= diag
 1M,1

1M,1 + eµn1−µ
(k)
x1

 ;

J(1,k)
n1 = ∂y1

∂n1

∣∣∣∣∣
µ

(k)
x1 ,µn1

= IM − J(1,k)
x1 .

(4.31)

Similarly, the covariance matrix of the conditional PDF p (y2|y1, k), assuming inde-
pendence between clean speech, the RAP and noise, is estimated as

Σ
(k)
y2|y1

= J(2,k)
x1 Σ(k)

x1 J(2,k)
x1

> + J(2,k)
a21 Σa21J(2,k)

a21

> + J(2,k)
n1 Σn1J(2,k)

n1

>

+J(2,k)
n2 Σn2J(2,k)

n2

> + J(2,k)
n1 Σn12J(2,k)

n2

> + J(2,k)
n2 Σn21J(2,k)

n1

>
.

(4.32)

The corresponding M ×M Jacobian matrices are calculated in a similar way as in
(4.31) as follows:

J(2,k)
x1 = diag

 e
µn1−µ

(k)
x1 −eµn2−µ

(k)
x1 −µa21(

1M,1+eµn1−µ
(k)
x1

)
�
(

1M,1+eµn2−µ
(k)
x1 −µa21

)
 ;

J(2,k)
a21 = diag

 1M,1

1M,1 + eµn2−µ
(k)
x1 −µa21

 ;

J(2,k)
n1 = −J(1,k)

n1 ;

J(2,k)
n2 = IM − J(2,k)

a21 .

(4.33)
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4.2. Dual-channel VTS feature compensation formulation

It should be reminded that, to perform the above calculations, the parameters
of both p(x1) and p(a21) depend on the experimental dataset (or mobile device), so
their estimation is detailed in Subsection 6.2.3. Additionally, the parameters of p(ni)
(i = 1, 2) plus Σn12 are obtained in the same manner as for the stacked case.

4.2.3 Clean speech partial estimate computation
The partial expected values in (4.4) are defined as

E [x1|y, k] =
∫

x1p(x1|y, k)dx1, k = 1, 2, ...,K. (4.34)

In order to compute them, it is again necessary to linearize the non-linear speech dis-
tortion model of (4.6) to make inference feasible. In this regard, two different proposals
for VTS feature compensation are considered in this Thesis.

In the first approach, we exploit the stacked dual-channel information as follows.
If we assume that the joint PDF p(x1,y|k) is Gaussian then the conditional PDF
p(x1|y, k) will also be Gaussian, so that the expected value of p(x1|y, k), E [x1|y, k],
can be approximated as [176]

E [x1|y, k] = µ(k)
x1 + Σ(k)

x1yΣ
(k)
y

−1 (y− µ(k)
y

)
, (4.35)

where the cross-covariance matrix Σ(k)
x1y is approximated by again considering a VTS

approach. Thus, by using the result in (4.18),

Σ(k)
x1y = E

[(
x1 − µ(k)

x1

) (
y− µ(k)

y

)>]
= Σ(k)

x1 J(k)
x

>
, (4.36)

where it should be reminded that independence between clean speech, the RAP and
noise was assumed.

In the second approach, only the information from the primary channel is used
to compute the clean speech partial estimates. For this second strategy, Eq. (4.6) is
rewritten as yi = x1 + g(x1, ai1,ni) [137, 159], where g(x1, ai1,ni) = ai1 + log(1M,1 +
eni−x1−ai1) is a distortion vector. Then, the k-th clean speech partial estimate is cal-
culated as

E [x1|y, k] ≈ E [x1|y1, k] = y1 − E[g(x1, a11,n1)|y1, k], (4.37)
where it is assumed that the function g(x1, ai1,ni) is smooth for each k such that
[137, 159]

E[g(x1, a11,n1)|y1, k] = g
(
µ(k)
x1 ,µa11 ,µn1

)
. (4.38)

Considering this latter strategy may be more appropriate in our case, since, generally,
the secondary microphone of the mobile device captures a much noisier signal than the
front (primary) one/s.
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4.3 Summary
An extension towards a dual-channel framework has been developed in this chapter
for VTS feature compensation. As for the previous dual-channel power spectrum en-
hancement techniques presented in Chapter 3, the beamforming-based combinatorial
strategy is considered when this dual-channel VTS feature compensation method is
applied on a mobile device with more than one front (primary) microphone, or more
than two microphones of any type.

The overarching element of this dual-channel VTS method has been the stacked
formulation. From this, an MMSE-based estimator for the log-Mel clean speech fea-
tures, which relies on a VTS expansion of a dual-channel speech distortion model, has
been developed. In particular, by taking advantage of the dual-channel information,
this method estimates the log-Mel clean speech features at the primary channel, since
it is expected that it is less affected by the ambient noise than the secondary one.

As we have seen, the MMSE-based estimator linearly combines a set of clean speech
partial estimates which are weighted by other set of posterior probabilities. Two dif-
ferent approaches have been studied for the computation of each set of parameters.
In the case of the posteriors, their VTS-based derivation from the stacked formulation
has been carried out in the first place. As a result of this scheme, the two-channel
joint information is indirectly exploited by means of the spatial covariance matrix of
noise and a term modeling the clean speech relative acoustic path (RAP) between the
two channels of the device. Then, a more robust strategy consisting of the modeling of
the conditional dependence of the noisy secondary channel given the primary one was
developed to explicitly exploit the correlations between the two channels. On the other
hand, a simpler scheme has also been raised for clean speech partial estimate compu-
tation. In contrast to the original stacked formulation, it only takes into account the
primary channel instead of the dual-channel information since it is expected that the
secondary signal is usually noisier and may degrade the partial estimates.
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CHAPTER 5
Dual-Channel Deep Learning-Based

Techniques

It is difficult to agree on a single definition for deep learning. Nevertheless, we can
consider deep learning as a branch of machine learning dealing with graph archi-

tectures called networks containing multiple layers of non-linear transformations which
are used for high-level data modeling purposes. In particular, this kind of models are
generally known as deep neural networks (DNN). In contrast to some other shallow
architectures employed in signal processing such as hidden Markov models (HMMs) or
artificial neural networks (ANNs) with only one hidden layer [206], it is implicitly es-
tablished that a neural network must have at least three hidden layers to be considered
as deep. Nonetheless, we can find some examples in the literature where ANNs with
only two hidden layers are referred to as DNNs, e.g. [139, 193]. Anyway, the most im-
portant thing is that a DNN architecture, along with the set of related methods (e.g.
supervised and unsupervised training methods), is able to learn complex non-linear
dependencies among the underlying data to overcome the modeling capabilities of the
classical analytical approaches.

The classical signal processing solutions have inherent constraints because they are
based on analytical functions and statistical models, which do their best to approxi-
mate the underlying natural phenomena. For instance, classical noise-robust automatic
speech recognition (ASR) and speech enhancement techniques make assumptions in or-
der to make the problem analytically tractable at the expense of a drop in performance.
As we know, it is usual that this kind of techniques relies on additive and convolutive
distortion models [149] which are not able to correctly model the complex relation-
ships between the human voice and the ambient distortions. Even so, those types
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5. Dual-Channel Deep Learning-Based Techniques

of distortion models are non-linear in different domains where the signal processing
methods can be applied (e.g. in the log-Mel power spectral domain), in such a way
that it is required to carry out linearization procedures to make the problem tractable
[138]. Indeed, this was the case of the dual-channel vector Taylor series (VTS) feature
compensation method developed in the previous chapter. Another typical assumption
is time or frequency bin independence, which highly constraints the performance of
the signal processing techniques. For instance, the spectral reconstruction technique in
[65] assumes independence between frequency bins in order to provide with an analyti-
cally tractable algorithm. Moreover, those assumptions were also made in several ways
when developing the dual-channel contributions presented in this Thesis throughout
Chapters 3 and 4. As an alternative to the use of simplifications, numerical methods
can be considered to tackle with analytically intractable problems. Thus, in [47], the
Monte Carlo methods were studied to perform feature compensation in replacement
of the VTS approach. Unfortunately, the use of numerical methods presents a twofold
disadvantage: the techniques still rely on imprecise analytical approximations while
the computational cost dramatically increases [195].

Unlike the classical signal processing solutions above mentioned, a main feature of
deep learning is that no assumptions on the problem to be addressed are required. The
powerful modeling capabilities of DNNs will be applied in this chapter to complex tasks
(from an analytical point of view) by also taking advantage of the available dual-channel
information. This synergy will allow us to achieve very accurate missing-data masks
and noise estimates, with no assumptions and in an efficient manner, to be used for
noise-robust ASR. Both the missing-data mask and noise estimation approaches here
developed follow a similar DNN-based scheme in the log-Mel power spectral domain
which exploits the power level difference (PLD) between the primary and secondary
channels of a mobile device. While missing-data masks and noise estimates can be
employed in multiple ways in order to provide robustness in ASR, we will use them
during the experimental evaluation for spectral reconstruction and feature compensa-
tion, respectively. It should be noticed that these are hybrid DNN/signal processing
architectures which will be extensively and successfully explored in the near future as
it can be foreseen [186]. Before describing these dual-channel deep learning-based tech-
niques, a brief overview of deep learning is given immediately below. This overview
is focused on the theoretical fundamentals of deep feedforward neural networks, as it
is the architecture considered in the following by our methods. Additionally, a brief
review of the literature covering the use of deep learning for signal processing applica-
tions, especially noise-robust ASR and speech enhancement applications, is also given
in the next section.

108



5.1. A brief overview of deep learning

5.1 A brief overview of deep learning

Over the last years, deep learning has become very popular mainly due to two land-
marks: the appearing of the so-called restricted Boltzmann machines (RBMs) in 2006
[83] and the possibility of exploiting the great computing capacities of the graphic
processing units (GPUs) [37]. In particular, RBMs have been a revolution since they
allow us having feature learning structures with multiple non-linear processing layers
(i.e. DNNs), the modeling capabilities of which are impressive. With these tools, the
great amount of parameters of a DNN can be properly set for modeling complex prob-
lems when a lot of data are available. Thus, several types of deep learning structures
are being successfully applied to problems that have traditionally been addressed by
the signal processing paradigm. One of them is acoustic modeling in ASR. In this
regard, acoustic modeling has clearly moved towards the use of DNNs, since they
outperform the modeling capabilities of traditional Gaussian mixture models (GMMs)
[82, 154, 196]. As it was introduced in Subsection 1.2.2, in DNN-HMM-based ASR sys-
tems, DNNs are employed to estimate the posterior probabilities of the HMM states
from several frames of speech feature coefficients [82]. Indeed, deep learning is applied
to manifold tasks such as classification, prediction or regression problems. It is also
applied to the obtainment of features [193] (as seen in Subsection 2.2.1) as well as it is
used in image (e.g. optical character and object recognition or inpainting [200]), audio
(e.g. transcription or music composition [98]) or text applications (e.g. semantic object
parsing [111]).

Deep learning architectures for signal processing applications can be used for the
resolution of either the whole problem or one of several of its parts, and in the literature
we can find examples of both types of approaches. In the following, let us take a look
at some deep learning-based methods for speech enhancement to illustrate both types
of approaches. Thus, in [124, 201, 202], deep architectures implement the whole speech
enhancement system by directly estimating the clean speech spectrum from its noisy
version within a single-channel context. While a denoising auto-encoder (DA) [188]
is used in [124] for this purpose, deep feedforward neural networks are considered
in [201, 202]. It is worth to note that in these latter works, apart from the noisy
speech spectrum, a noise estimate is also used as input to the DNN to improve the
performance. This noise-aware training (NAT) strategy first appeared in [163] for noise-
robust acoustic modeling purposes. In fact, we should emphasize the importance of
the features chosen as input for the deep learning approaches, since their success many
times depends on them. Additionally, [201, 202] also demonstrate how the modeling is
improved in terms of PESQ (Perceptual Evaluation of Speech Quality) when increasing
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the depth of the ANN. On the contrary, a quite interesting speech enhancement method
using deep learning to partially solve the problem is the one reported in [19]. In this
work, a weighted denoising auto-encoder (WDA) estimates the clean speech power
spectral density (PSD). Since one of the constraints of this kind of deep architectures
is their generalization ability to unknown data distributions, distinct WDAs are trained
under different noise conditions. Then, a GMM-based noise classifier selects the WDA
that fits the best to the inferred environmental condition. The clean speech PSD
estimated from this procedure is used along a noise PSD independently estimated by
means of a classical algorithm to finally define a Wiener filter (WF) for enhancement.
The philosophy of this work is based on keeping the knowledge framework provided by
the signal processing paradigm while integrating a machine learning approach for the
more complex system stages.

As was introduced in Chapter 2, a critical aspect of a number of ASR systems
is the calculation of time-frequency (T-F) masks to classify every T-F bin of a noisy
spectrum in one of two categories: one where speech dominates and another where noise
prevails. The computation of this kind of masks is highly difficult, and a great amount
of signal processing techniques depends on the accuracy of these masks to achieve an
appropriate performance. Hence, it is no wonder that a number of deep learning-
based solutions can be found in the literature to address T-F mask estimation. Let
us take a look at the following works which deal with mask estimation in a single-
channel context. In [106], the noisy spectrum at the output of a filterbank is used as
features for DNN-based soft-mask estimation. Then, this soft-mask weights the noisy
power spectrum to enhance it for noise-robust ASR. A similar strategy is considered
in [139], while a different set of features is employed. Of course, the choice of the type
of features is a fundamental issue in deep learning-based approaches. In this respect,
the mask estimation method reported in [193] is of special interest since a DNN is
only used to generate more discriminative and linearly separable features to be used
by an SVM (Support Vector Machine) which classifies every T-F bin as speech or
noise dominant. To improve the generalization ability of the network when exposed
to unseen conditions during training, this is fed with pitch-based features. Thus, the
constraints of the linear SVMs classifiers are overcome by integrating a deep learning
architecture. This hybrid strategy tries to exploit the best features of both paradigms to
achieve an outstanding system performance. This is the philosophy followed regarding
the contributions presented in this chapter as well, where two complex stages (from an
analytical perspective) of a noise-robust ASR system (i.e. missing-data mask and noise
estimation), are addressed by taking benefit from the powerful modeling capabilities
of DNNs.
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Figure 5.1: Structure of a neuron of an artificial neural network.

As it was reviewed throughout Section 2.4, multi-channel information can be ex-
ploited in synergy with deep learning for noise-robust ASR purposes. In this regard, let
us recall here the winner of the 3rd CHiME Speech Separation and Recognition Chal-
lenge [203], who employed for acoustic modeling a deep learning architecture called
NIN-CNN trained on the six available channels. NIN-CNN is a convolutional neural
network (CNN) based on the concept “network-in-network” proposed in [116] to im-
prove the performance of image classification applications. Additionally, a recurrent
neural network (RNN) was used for language modeling as well as, on the front-end
side, MVDR beamforming was applied for enhancing the multi-channel noisy signal.
A different approach was that reported in [125], where the output of a filter-and-sum
beamformer was enhanced by a DNN-based post-filtering to feed the recognition en-
gine. As we discussed in Section 2.4, these combinations produce excellent results in
terms of recognition accuracy.

The rest of this section is mainly devoted to describe the fundamentals of the
deep feedforward neural networks, as this is the architecture considered by our dual-
channel deep learning-based techniques. To conclude, a glimpse on both recurrent
neural networks (RNNs) and convolutional neural networks (CNNs) is also provided.

5.1.1 Deep feedforward neural networks

A deep feedforward neural network is a multi-layer perceptron with multiple hidden
layers. To understand what this means let us start by presenting the basic deep learning
unit: the neuron. Its structure is drawn in Figure 5.1, and it simply consists of a para-
metric non-linear transformation of the weighted sum of its input y(l) =

(
y

(l)
1 , ..., y

(l)
I

)>
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plus an offset, as,

y
(l+1)
j = f

(
x

(l+1)
j

)
= f

(
I∑
i=1

y
(l)
i W

(l+1)
ij + b

(l+1)
j

)
, (5.1)

where W (l+1)
ij is a weight and b

(l+1)
j is a bias coefficient. Furthermore, f(·) is the so-

called activation function. A set of neurons sharing the same input is referred to as
a layer, and multiple layers can be concatenated to shape an ANN as in Figure 5.2.
In this example, we have an ANN with an input, a hidden and an output layer with
three, four and two units, respectively. As aforementioned, that ANN would be deep,
i.e. a DNN, if it had at least two or three hidden layers (depending on the criterion
considered). On the basis of Eq. (5.1), if l = 1 corresponds to the input layer, l + 1
would refer to the first hidden layer. Thus, for l = 1, I = 3 in the example of Figure
5.2 and (5.1) would have to be computed for j = 1, ..., 4 in order to obtain the output
vector of the hidden layer. Typical activation functions, plotted in Figure 5.3, are the
sigmoid and rectifier functions, which are respectively defined as,

y
(l+1)
j = 1

1 + e−x
(l+1)
j

;

y
(l+1)
j = max

(
0, x(l+1)

j

)
.

(5.2)

It should be noticed that neurons using the rectifier activation function are also known
as ReLUs (Rectified Linear Units). The rectifier activation function is preferred over
the sigmoid mainly due to the vanishing gradient problem [88]. An activation function
of particular interest is the softmax function, which is used at the output layer of ANNs
intended to multiclass classification. For an ANN with a total of L layers and an output
layer with J neurons (i.e. classes), the softmax function can be expressed as,

y
(L)
j = ex

(L)
j∑J

j′=1 e
x

(L)
j′
, (5.3)

where y(L)
j (j = 1, ..., J) represents a categorical distribution. A popular example of

use of the softmax activation function is in DNN-based acoustic modeling, where those
are employed to estimate the posterior probabilities of the HMM states [82].

As mentioned above, one of the landmarks in deep learning was the integration
of restricted Boltzmann machines (RBMs), introduced by Hinton et al. in 2006 [83],
to overcome the weaknesses of discriminative training when trying to optimize deep
structures. Instead of randomly initializing the parameters of the DNN, these are
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Figure 5.2: Example of a neural network with one hidden layer [1].
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Figure 5.3: Comparison between the sigmoid and rectifier (ReLU) activation
functions.

greedily set up by performing an unsupervised generative pre-training by considering
each pair of layers as RBMs. This way, a much better starting point is achieved before
supervised training by application of backpropagation learning to jointly optimize all
the layers [84]. A similar alternative that can also be found in the literature is to
pre-train the DNN by considering each pair of layers as denoising auto-encoders [17].

To discriminatively train the DNN, a cost function C must be defined first. This cost
function measures the discrepancy between the output produced by the network from
the input training data and the corresponding target data. The derivatives of C are
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backpropagated through the network to optimize its parameters, namely weights and
biases. To do this, a stochastic gradient descent (SGD) method is iteratively applied to
random small sets of training examples called minibatches in order to minimize the cost
function. Given a minibatch t, the parameters of the DNN are updated proportionally
to the gradient by means of the rule

∆
(
W

(l)
ij (t+ 1), b(l)

j (t+ 1)
)

= ω∆
(
W

(l)
ij (t), b(l)

j (t)
)
− ε ∂C

∂
(
W

(l)
ij (t), b(l)

j (t)
) (5.4)

at every layer 2 ≤ l ≤ L, where ε is the learning rate and ω ∈ (0, 1) is the momen-
tum coefficient. Momentum smooths the gradient calculated for minibatch t, thereby
damping oscillations across ravines and speeding progress down them [82]. An epoch
is completed every time the parameters of the network are updated from all the mini-
batches composing the whole training dataset. After a number of epochs, this dis-
criminative training finishes in accordance with the chosen stopping criterion, e.g. the
cost function stops decreasing. Typical cost functions are mean square error (MSE)
and cross-entropy. While the former is especially suitable for regression purposes, the
cross-entropy cost function is usually considered when designing a DNN using the soft-
max activation function at its output layer for classification. Thus, if d = (d1, ..., dJ)>

is a vector of target probabilities (normally binary) and the output of the network,{
y

(L)
j ; j = 1, ..., J

}
, is as in (5.3), the cross-entropy cost function can be expressed as

C = −
J∑
j=1

dj log y(L)
j . (5.5)

Once the DNN is trained, it is ready to estimate new outputs by forward pass of new
input data through the network.

As aforementioned, the rectifier activation function is preferred over the sigmoid one
as a result of the vanishing gradient problem [87]. This problem occurs when adjusting
the parameters of the DNN by backpropagation. Since backpropagation calculates
gradients of the cost function according to the chain rule to update the values of the
parameters in each iteration (see Eq. (5.4)), these gradients can exponentially decrease
(i.e. vanish) at deep layers if the derivative of the activation function is typically near
zero, as it is the case of the sigmoid function. This makes very difficult to update
the values of the parameters at the deepest layers at each iteration, and, therefore,
to properly train the network. While this problem could be overcome by selecting a
trade-off value for the learning rate parameter, it might be more robust to use ReLUs,
since the derivative of the rectifier activation function is one as long as the unit is active
(see Figure (5.3)).
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Figure 5.4: The early-stopping strategy to avoid overfitting during backpropaga-
tion learning [128].

Since the DNNs, with their large number of parameters, are able to learn very
complex non-linear relationships between the input training and the output target data,
they can easily be affected by overfitting to the training data. This is an important
issue because the generalization ability of the DNNs to unseen examples during the
training phase is severely reduced, resulting in a drop in performance of the network.
While a solution to this fact may be to make use of very large training datasets [27],
this is not always possible, in such a way that other strategies might be followed to
avoid overfitting. Two non-exclusive popular strategies to do this are early-stopping
and dropout [85]. Early-stopping simply consists of stopping backpropagation learning
when the error on a validation dataset increases after successive training iterations, as
exemplified in Figure 5.4. On the other hand, dropout works by randomly deactivating
a percentage of neurons in each hidden layer, ρ, for each sample during the training
phase [163, 202]. This is similar to adding random noise to the training data so that the
DNN parameters are more robust to noise, namely the DNN improves its generalization
ability. During the test phase, neither dropping out any neurons nor using a random
combination of them is required, but only to properly scale the weights at every layer
by (1− ρ) while employing all the neurons.

5.1.1.1 Unsupervised pre-training by RBMs

A diagram of a restricted Boltzmann machine (RBM), that can be seen as a two-layer
neural network, is shown in Figure 5.5. RBMs are mainly used to initialize the set
of parameters of a DNN to avoid falling into local minima during backpropagation
learning. This could happen because of the complex error surface derived from the
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Figure 5.5: Example of a restricted Boltzmann machine.

large number of hidden layers [84]. An RBM consists of a visible layer with stochastic
units, that represent input data, which are only connected to the stochastic units
in the hidden layer. Hidden units are usually modeled by Bernoulli distributions.
On the other hand, visible units can be modeled with either Bernoulli or Gaussian
distributions. In the first case the resulting model is referred to as Bernoulli-Bernoulli
RBM (BRBM), while the second as Gaussian-Bernoulli RBM (GRBM). GRBMs are
very useful to model real-valued input data (e.g. input features), so that they are often
used as the first level of a multi-layer generative model built with stacked RBMs, also
known as deep belief network (DBN) [82].

Let v, h and θ be the visible units, the hidden units and the set of parameters
(namely weights and biases) of an RBM, respectively. The probability of a visible
vector given the set of parameters is obtained by summing over all hidden vectors as

P (v|θ) = 1
Z

∑
h
e−E(v,h|θ), (5.6)

where Z = ∑
v
∑

h e
−E(v,h|θ) is known as the partition function and E(v,h|θ) is an

energy function that defines the joint configuration of the visible and hidden units. For
a BRBM, the energy function is

EB(v,h|θ) = −
V∑
i=1

H∑
j=1

wijvihj −
V∑
i=1

aivi −
H∑
j=1

bjhj, (5.7)

and in the case of a GRBM,

EG(v,h|θ) = −
V∑
i=1

H∑
j=1

wijvihj + 1
2

V∑
i=1

(vi − ai)2 −
H∑
j=1

bjhj, (5.8)

where wij represents the symmetric weight between the visible, vi, and hidden, hj,
units, and ai and bj their respective bias terms. The total number of visible and
hidden units are V and H, respectively.
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The set of parameters θ is estimated by maximizing logP (v|θ) from training data.
This approach yields the following simple updating equation for the set of weights:

∆wij = ε·(Edata[vihj]− Emodel[vihj]), (5.9)

where ε is the learning rate and E[·] indicates expectation under the corresponding
distribution. To overcome the difficulties in getting samples of Emodel[vihj], Hinton
proposed in [80] a fast algorithm called contrastive divergence (CD). Briefly, this algo-
rithm performs alternating Gibbs sampling from visible units initialized to a training
data vector [82]. In order to perform the CD algorithm, the following conditional
probabilities are employed in the case of a BRBM:

PB(hj = 1|v, θ) = σ

(
V∑
i=1

wijvi + bj

)
(5.10)

and

PB(vi = 1|h, θ) = σ

 H∑
j=1

wijhj + ai

 , (5.11)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. For the case of a GRBM,
conditional probabilities can be calculated as

PG(hj = 1|v, θ) = σ

(
V∑
i=1

wijvi + bj

)
(5.12)

and

PG(vi = 1|h, θ) = N

 H∑
j=1

wijhj + ai, 1
 , (5.13)

where vi is real-valued in this case and N (·) denotes a normal distribution with mean∑
j wijhj + ai and unit variance. Before pre-training, input data should be normalized

in such a way that each coefficient has zero mean and unit variance according to the
assumptions of (5.13) and the energy function of Eq. (5.8). Such assumptions are
required to be adopted due to the difficulties in learning the standard deviation of a
GRBM as reported in [81].

5.1.2 Other deep architectures
Two types of deep learning architectures that are rapidly increasing their popularity
over the last years among the community of speech researchers are recurrent neural net-
works (RNNs) and convolutional neural networks (CNNs). They are briefly introduced
down below.
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Figure 5.6: Example of a CNN used for image classification [38].

5.1.2.1 Recurrent neural networks

A recurrent neural network (RNN) is a type of ANN which, unlike the classical DNNs
presented above, is able to model temporal dynamics. It can be considered that an
RNN has memory through time as its current internal state depends on all previous
internal states. This feature makes RNNs very appropriate for sequential data mod-
eling. Indeed, it is shown that better recognition performance can be achieved by
using RNNs instead of deep feedforward neural networks for ASR acoustic modeling
[68]. This makes sense since RNNs, that are also “deep in time”, are able to exploit
the temporal correlations present in the speech signal. Because of this distinguishing
characteristic, it is also possible to directly substitute a DNN-HMM-based acoustic
modeling architecture by an RNN just trained end-to-end for speech recognition [67].
While this approach still has little impact in the literature, it is better able to exploit
the temporal dynamics than HMMs, avoiding at the same time the problem of possi-
bly using incorrect alignments as target during the training phase [68]. Similarly to
the backpropagation algorithm to train classical DNNs, RNNs can be trained in a su-
pervised manner by using a variant of that algorithm called backpropagation through
time (BPTT) [198] in order to estimate the parameters of the recurrent network that
minimize the cost function. Nowadays, the most popular type of RNN is the so-called
long short-term memory (LSTM) recurrent network [89] which solves the vanishing
gradient problem as one of its main features.

5.1.2.2 Convolutional neural networks

A convolutional neural network (CNN) is another type of deep learning architecture
consisting of the stack of a convolutional layer followed by a subsampling step, often
known as pooling layer, and a series of fully-connected layers as in a typical DNN. This
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architecture is exemplified in Figure 5.6, where a CNN is employed for image classi-
fication. CNNs are very useful to take advantage of the two-dimensional structure of
the input data, e.g. images, since they are locally connected networks. More precisely,
connections are restricted in the convolutional layer in the sense that each hidden neu-
ron is just connected to a few input units. This makes the processing of large inputs
becomes feasible in relation with using DNNs. The convolutional layer performs the
convolution operation on feature maps through the use of filters or kernels [154], the
size of which determines the locally connected structure. A subsequent pooling layer
implementing the mean or max activation function is employed to reduce the dimen-
sion of the features coming from the convolutional layer. The concatenation of the
convolutional and pooling layers provides us with translation invariant features [141].
These pooled convolved features are then normally used for classification. CNNs can
be similarly trained in a supervised manner using the backpropagation algorithm. It
must be remarked that a CNN with the same amount of hidden neurons as a DNN has
a smaller number of parameters to be adjusted, which can be a benefit in terms of com-
putational complexity. CNNs have also been successfully applied to a number of tasks
related with speech processing, such as acoustic modeling [154], speaker identification
and speaker gender and phone classification [206].

5.2 DNN-based missing-data mask estimation
In this section we propose taking advantage of the learning capabilities of DNNs to
efficiently estimate missing-data masks from dual-channel noisy speech. This rather
simple and straightforward approach will supply quite accurate missing-data masks for
the primary channel by exploiting the PLD between the two available channels in accor-
dance with the dual-microphone set-up considered throughout this Thesis. Under this
scenario, it is clear that a missing-data mask can be easily derived from a comparison
between the noisy speech power present in both channels, where the secondary one is
a good noise reference since speech is much attenuated. While missing-data masks can
be employed in several ways for noise-robust ASR purposes (e.g. for marginalization
[31]), our method will be oriented to a spectral reconstruction technique, in particu-
lar, the truncated-Gaussian based imputation (TGI) already introduced in Subsection
2.2.4. Unlike other related works such as [139, 193], where a wide set of features (i.e.
amplitude modulation spectrogram, relative spectral transform and perceptual linear
prediction, pitch-based features, etc.) is extracted to feed the DNN, in our system
the DNN directly provides an estimation of the missing-data mask by just using dual-
channel log-Mel spectral features. Through this approach we can obtain a competitive
performance with less computation.
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Figure 5.7: An outline of the DNN as used for missing-data mask estimation
purposes.

Particularly, a feedforward neural network with two hidden layers is employed as in
[139, 193]. An outline of the DNN as used for missing-data mask estimation purposes
is shown in Figure 5.7. Missing-data mask estimation is performed in the log-Mel
domain, where many of the spectral reconstruction algorithms operate (as TGI does).
The proposed DNN works on a frame-by-frame basis, i.e. the DNN returns a missing-
data mask for each frame in the utterance. Let the dual-channel noisy speech log-Mel
features at time frame t be

y(t) =
(

y1(t)
y2(t)

)
, (5.14)

where yi(t) = (yi(0, t), yi(1, t), ..., yi(M− 1, t))>, i = 1, 2, is the noisy speech log-Mel
feature vector obtained from the signal acquired by the i-th microphone of the device
(channel i). Then, the input for the DNN at time t is the stacked vector

Y(t) =


y(t− L)

...
y(t+ L)

 , (5.15)

where L ≥ 0 determines the size of the temporal window around frame t, that is 2L+1.
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Thus, the dimensionality of the input vector is

dim (Y(t)) = 2M(2L+ 1), (5.16)

where, as before, M is the number of filterbank channels. On the other hand, the
target is an oracle missing-data mask vector corresponding to feature vector y1(t). In
this case, the size of each output vector is M×1. It must be noticed that oracle
masks are obtained by direct comparison between the clean and noisy utterances using
a threshold of ηO dB signal-to-noise ratio (SNR).

As aforementioned, the DNN training consists of an unsupervised generative pre-
training, where it is considered each pair of layers as RBMs, followed by a supervised
fine-tuning step. In particular, the input and first hidden layers form a GRBM (i.e. a
visible layer of Gaussian variables connected to binary units in a hidden layer) since
the input vector is real-valued. The successive pairs of layers form BRBMs (i.e. two
layers with connections between their binary units). Input data, i.e. Y(t), are used
to train the GRBM and the inferred states of its hidden units are employed to train
the following BRBM, and so on. Since the units in the visible layer of a GRBM are
assumed to be standard-normally distributed [81], input data are properly normalized,
per filterbank channel, to zero mean and unit variance. Indeed, to maintain the power
ratio between the two channels, both of them are jointly normalized. The parameters
resulting from this generative model consisting of the stack of RBMs (also known as
deep belief net) are used to initialize the DNN, which is then fine-tuned by performing
a supervised training by means of the backpropagation algorithm. The cross-entropy
criterion was chosen for backpropagation learning. Finally, it must be specified that
all the hidden and output layers employ sigmoid units. Therefore, the output of the
DNN is rounded to get the final mask values, i.e. 0’s and 1’s.

An example of the TGI spectral reconstruction of a dual-channel noisy utterance
by using this dual-channel DNN-based system is shown in Figure 5.8. The considered
utterance, contaminated with bus noise, was recorded by means of a dual-microphone
smartphone employed in close-talk conditions. As we can see, the DNN is able to
faithfully distinguish between T-F bins where speech dominates and those where noise
prevails. In this way, the resulting spectral reconstruction is clearly more similar to
the clean spectrum than the noisy spectrum at the primary channel.

In Subsection 6.2.4, the rest of practical details on the DNN setup as well as the
parameter values will be described.
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Figure 5.8: Example of the TGI reconstruction of an utterance recorded with a
dual-microphone smartphone in close-talk position. All the spectrograms are in
the log-Mel domain. From top to bottom: clean utterance (1st ch.), corrupted
by bus noise at 0 dB (1st & 2nd chs.), mask estimated by the dual-channel
DNN-based system and the resulting reconstruction (over the 1st ch.).
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Figure 5.9: Block diagram of the noise-robust ASR framework considered to test
the performance of the dual-channel DNN-based noise estimation method.

5.3 DNN-based noise estimation

A parallel approach to that developed in the above section is considered to efficiently
estimate noise from dual-channel noisy speech. Now, a DNN is used to find a mapping
function between the dual-channel noisy observation and the noise that contaminates
speech at the primary channel. While DNNs have been employed for many different
tasks from noise-robust ASR such as missing-data mask estimation [120, 139, 193],
surprisingly they had not yet been applied to directly estimate noise. Similarly to the
missing-data mask case, noise estimates can be employed in various ways for noise-
robust ASR purposes. While the quality of these estimates will be evaluated in Sub-
section 6.2.4 when combined with VTS feature compensation, in this section we will
focus on obtaining the estimates themselves. In this respect, the noise-robust ASR
framework considered to test the performance of this dual-channel DNN-based noise
estimation method is depicted in Figure 5.9. A dual-microphone smartphone is con-
sidered in this example. The noisy speech signal captured by the primary microphone
of the smartphone is denoted as y1(m). Similarly, y2(m) refers to the noisy speech
signal recorded by the secondary microphone of the device. As we can expect for our
dual-channel set-up, the noise components in y1(m) and y2(m) are assumed to be quite
similar while speech is much attenuated at the secondary sensor with respect to the
primary one since the former is placed in an acoustic shadow regarding the speaker’s
mouth. Then, log-Mel spectral features yi are extracted from the noisy signals yi(m),
i = 1, 2, which are employed by a DNN-based stage in order to provide a noise estimate
of the primary channel, n̂1. To obtain the clean speech log-Mel features at the primary
channel, x̂1, this noise estimate is used along with y1 by a VTS feature compensation
method. Finally, x̂1 is transformed into the cepstral domain by application of the
discrete cosine transform (DCT) prior to be used by the speech recognizer.

As in Section 5.2, a DNN is considered in the following to find a non-linear mapping
function between dual-channel noisy speech and noise log-Mel features at the primary
channel of the mobile device. This DNN-based method exploits the PLD between
the two microphones of the device to effectively provide accurate noise estimates. An
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Figure 5.10: An outline of the DNN as used for noise estimation purposes.

illustration on how the DNN is used to this end can be seen in Figure 5.10. Along with
yi(t), i = 1, 2, let

n1(t) = (n1(0, t), n1(1, t), ..., n1(M− 1, t))> (5.17)

be a noise log-Mel feature vector at time frame t coming from the primary channel.
Our DNN works on a frame-by-frame basis so that it gives a noise frame estimate
at each time t from the same input features as used for DNN-based missing-data
mask estimation (see Eq. (5.15)). Additionally, as expected, the corresponding M-
dimensional target vector is that of Eq. (5.17).

The DNN training is performed in the same way as for the missing-data mask esti-
mation of Section 5.2. In this case, the MSE criterion was chosen for backpropagation
learning. Furthermore, the activation function type considered for the hidden layers is
sigmoid while that it is chosen linear for the output layer, as could be expected for re-
gression purposes. It should be noticed that all input and target data are normalized to
zero mean and unit variance. Hence, the output of the DNN is properly denormalized
when used to perform the regression during the test phase. As for the missing-data
mask case, both channels are jointly normalized per frequency bin to keep the power
ratio between the two channels unchanged.

A comparative example between this dual-channel DNN-based noise estimation
approach and linear interpolation noise estimation, which demonstrates a very com-
petitive performance [122, 159], is shown in Figure 5.11. The latter noise estimation
approach, applied on the primary channel, consists of the linear interpolation between
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the averages of the first and lastM = 20 frames of the log-Mel utterance. The first and
last M frames are directly taken as part of the final noise estimate and this is bounded
above by the noisy spectrum for more consistency. From top to bottom the figure shows
the primary log-Mel spectrum of a noisy utterance captured with a dual-microphone
smartphone in close-talk conditions, the actual bus noise that contaminates it at 0
dB, the corresponding dual-channel DNN-based noise estimation and the noise esti-
mated by linear interpolation. As we can observe, the noise spectrum estimated by our
method better resembles the actual one than that from linear interpolation.

The values chosen for the DNN hyperparameters and the rest of details about the
DNN setup can be found in Subsection 6.2.4.

5.3.1 Noise-aware training
DNN noise-aware training (NAT) is a method first appeared in [163] to strengthen
the DNN-based acoustic modeling for ASR. It basically consists of appending a noise
estimate to the network’s input vector containing the noisy speech features in order to
improve word recognition rates when employing multi-style acoustic modeling. Since
then, NAT has been successfully applied to different tasks such as, for instance, DNN-
based speech enhancement [202]. We want to explore if the DNN-based noise estimation
approach presented above can be improved by increasing the awareness of the DNN
about the noise that contaminates speech in each case.

As mentioned above, a simple noise estimator, which has demonstrated to be quite
accurate [159], consists of the linear interpolation between the averages of the first and
last M frames of an utterance in the log-Mel domain. Inspired by this method, and
assuming that an utterance is T frames long, we propose an alternative NAT scheme
in which the initial input vector Y(t) is augmented by appending the aforementioned
averages,

n̄(0)
1 = 1

M

M−1∑
t=0

y>1 (t); n̄(1)
1 = 1

M

T−1∑
t=T−M

y>1 (t), (5.18)

as well as a time index to indicate the frame’s relative position within the utterance:

τ(t) = t

(T − 1) . (5.19)

Additionally, we also include noise variance information by computing and appending
the following sample quantities:

σ
(0)
1 = 1

M − 1

M−1∑
t=0

(
y>1 (t)− n̄(0)

1

)2
; σ

(1)
1 = 1

M − 1

T−1∑
t=T−M

(
y>1 (t)− n̄(1)

1

)2
, (5.20)
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Figure 5.11: A comparative noise estimation example generated from an utter-
ance captured with a dual-microphone smartphone used in close-talk position.
From top to bottom: primary channel log-Mel noisy spectrum, actual bus noise
that contaminates it at 0 dB, dual-channel DNN-based noise estimation and noise
estimated by linear interpolation.
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where (·)2 is applied element-wise. Thus, the final DNN input vector is

YNAT (t) =
(
Y>(t), n̄(0)

1 , n̄(1)
1 , σ

(0)
1 , σ

(1)
1 , τ(t)

)>
, (5.21)

with dimension

dim(YNAT (t)) = dim(Y(t)) + 4M + 1 = 4M
(
L+ 3

2

)
+ 1. (5.22)

5.4 Summary
In this chapter we have explored the use of deep learning applied to noise-robust ASR
on mobile devices with several sensors. In the first instance, we have tried to give a def-
inition of deep learning while mentioning its advantages when applied to the resolution
of problems that have traditionally been addressed from the classical analytical signal
processing paradigm. Among these advantages, we have highlighted the powerful mod-
eling capabilities of the deep learning architectures without the need for approximations
or assumptions on the underlying problem. Then, a brief review of the related literature
was made. More precisely, we focused on those deep learning-based approaches devised
for both ASR and speech enhancement purposes as well as emphasis was placed on the
hybrid DNN/signal processing architectures. Such architectures, instead of proposing
an end-to-end DNN-based solution, try to exploit the best features of both the deep
learning and signal processing paradigms to achieve outstanding system performances.
This philosophy, which is expected to be successfully explored in the near future, is the
one followed by our deep learning-based proposals. In particular, such contributions
make use of deep feedforward neural networks (DNNs), so the theoretical fundamen-
tals of this architecture was explained. Since backpropagation can get stuck into local
minima during the supervised training, a proper initialization of the DNN parameters
is required to avoid this issue. It was argued that such an initialization can be carried
out by performing an unsupervised generative pre-training of the DNN from consider-
ing each pair of layers as restricted Boltzmann machines (RBMs), so these were also
outlined. To complete our theoretical review, two types of deep learning architectures
that are rapidly increasing their popularity over the last years among the community
of speech researchers were briefly introduced: the recurrent neural networks (RNNs)
and the convolutional neural networks (CNNs).

To conclude the chapter, two dual-channel deep learning-based contributions were
presented to deal with the development of two complex (from an analytical point of
view) tasks of a noise-robust ASR system. These tasks are missing-data mask and
noise estimation, which are tackled by taking benefit from the powerful modeling ca-
pabilities of DNNs. More specifically, these DNNs exploit the power level difference
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(PLD) between the two available channels to efficiently obtain the corresponding esti-
mates with good generalization ability. While missing-data mask and noise estimates
can be employed in various ways for noise-robust ASR purposes, in this Thesis they
will be applied to spectral reconstruction by imputation and feature compensation,
respectively. Additionally, a noise-aware training (NAT) strategy was also developed
to explore if this dual-channel DNN-based noise estimation method can be improved
by increasing its awareness about the noise that contaminates speech in each case.
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CHAPTER 6
Experimental Evaluation

This chapter addresses the experimental evaluation of the different proposed noise-
robust methods to be performed on intelligent mobile devices (IMDs) with several

sensors. Such an evaluation is mainly carried out in terms of word recognition accuracy
and/or word error rate of the automatic speech recognition (ASR) system integrating
our contributions when employed in noisy environments. Related techniques are also
tested and properly compared and analyzed along with ours from the obtained ex-
perimental results. The chapter comprises three differentiated sections. Section 6.1 is
devoted to describe the experimental framework considered for evaluation. The experi-
mental results are shown and discussed in Section 6.2. Finally, a summary is presented
in Section 6.3.

6.1 Experimental framework
In this section we depict the experimental framework considered for evaluation, in-
cluding the description of the different noisy corpora employed in Subsection 6.1.1
along with their related set-up particularities, namely the feature extraction process
(Subsection 6.1.2) and the back-end configuration (Subsection 6.1.3).

6.1.1 Databases
The AURORA2-2C-CT/FT and the CHiME-3 corpora are the noisy speech databases
considered during our experimental evaluation. All of them are multi-channel corpora
reflecting the acquisition of speech with different types of IMDs employed in a vari-
ety of realistic noisy locations where the use of mobile devices is quite probable. In
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AURORA2-2C-CT/FT CHiME-3
Device Smartphone Tablet
# of mics 2 6
Secondary mic? Yes Yes

Task
Connected digits

(small-vocabulary)
WSJ0 5k

(medium-vocabulary)

Type of data
Synthetic noisy speech

(real noise)
Synthetic and

real noisy speech

Type of distortion Additive noise
Additive and

convolutive noise
# of environments 8 4
# of test speakers 104 12

Table 6.1: Comparative overview between the AURORA2-2C-CT/FT and
CHiME-3 corpora.

particular, while the CHiME-3 corpus is the result of the third edition of the CHiME
Speech Separation and Recognition Challenge series [15], the AURORA2-2C-CT/FT
corpora have been developed in our research group and must be highlighted as another
contribution of this Thesis. A comparative overview between these databases is shown
in Table 6.1. They are described with more detail in the following.

6.1.1.1 AURORA2-2C-CT/FT

The AURORA2-2C-CT (Aurora-2 - 2 Channels - Close-Talk) and the AURORA2-
2C-FT (Aurora-2 - 2 Channels - Far-Talk) databases are synthetic dual-channel noisy
speech databases generated from the well-known Aurora-2 corpus [148]. Aurora-2 is a
well-established and widely used standard for research and development in noise-robust
speech recognition. This framework, which the speech scientific community has em-
ployed for years to evaluate and compare its noise-robust developments, serves as the
basis for the creation of the AURORA2-2C-CT/FT corpora. Aurora-2 was released
by the working group STQ-AURORA, belonging to the European Telecommunica-
tions Standards Institute (ETSI), in order to evaluate the DSR (Distributed Speech
Recognition) standards [2]. This is a synthetic single-channel noisy speech database of
connected digits (small-vocabulary task) spoken by American English talkers. A total
of 8 different noisy environments are considered in such a way that noise signals from
them are artificially added to the clean speech signals coming from the TIDigits corpus
[105]. Before summation, all the noise and clean speech signals are filtered to simulate
the average response of a telecommunication terminal.
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Figure 6.1: Generation block diagram of the AURORA2-2C-CT/FT databases,
where x1(m) represents to the clean speech signals provided by the Aurora-2
database.

On the one hand, the AURORA2-2C-CT database tries to emulate the acquisition
of dual-channel noisy speech data by using a smartphone with a dual-microphone in
close-talk conditions (i.e. when the loudspeaker of the smartphone is placed at the ear
of the user). On the other hand, the AURORA2-2C-FT database is generated in a
similar way but emulating a far-talk scenario (i.e. when the user holds the device in
one hand at a certain distance from her/his face). Both corpora have been defined in
a similar manner, so that the rest of the description here presented is common to both
of them and their differences explicitly remarked.

The generation scheme is outlined in Figure 6.1. The clean speech produced by the
speaker, x(m), is received at the primary microphone of the device transformed by the
channel h1(m) as x1(m) = h1(m) ∗x(m). Similarly, x(m) is captured by the secondary
sensor once transformed by the corresponding acoustic path: x2(m) = h21(m)∗x1(m) =
(h21(m) ∗ h1(m)) ∗ x(m) where h2(m) = h21(m) ∗ h1(m). A noise gain factor G scales
a recorded stereo noise signal, {n′i(m); i = 1, 2}, in order to obtain a certain signal-
to-noise ratio (SNR) at the primary channel, y1(m). Moreover, a small component of
noise, ε2(m), is added to the secondary channel to account for the baseline noise, due
to hiss noise from the circuitry and other factors. This is necessary since the acoustic
path h21(m) may excessively attenuate the original baseline noise present in x1(m).
The noise component ε2(m) is properly generated from the statistical distribution of
the real baseline noise present in the primary channel.

It is assumed that the clean speech signals provided by Aurora-2 are the ones cap-
tured by the primary microphone of the device, x1(m), as indicated in Figure 6.1.
Then, the clean speech relative acoustic path between the two sensors of the device,
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Figure 6.2: Characteristics of the device used for the generation of the
AURORA2-2C-CT/FT databases.

h21(m), is estimated from stereo clean speech recorded in an anechoic chamber ac-
cording to the following discussion. Let us assume that the environment acoustics
corresponding to the acquisition of the Aurora-2 signals can be fully described by a
set of acoustic parameters A, so we will write x1(m;A) = h1(m;A) ∗ x(m), where
x(m) is the original speech signal as uttered by the speaker. In order to generate a
speech signal for the secondary sensor acoustically coherent with that of the primary
one, the former one should be acquired in the same acoustic conditions A, that is,
x2(m;A) = h2(m;A) ∗ x(m) = h21(m;A) ∗ x1(m;A). That is, filter h21(m) should
reflect the same acoustic conditions A in which Aurora-2 was recorded. According to
reference [105], which describes the recording conditions of the TIDigits corpus, this
can be approximately accomplished by estimating h21(m) in an anechoic chamber.

For the AURORA2-2C-CT, it is assumed that the speaker holds the device virtually
fixed with respect to herself/himself (although they can move as a whole). In this
way, the acoustic path h21(m) was modeled as a time-invariant finite impulse response
(FIR) filter with 1000 coefficients. Such a filter, ĥ21(m), was obtained from stereo clean
speech {x(tr)

1 (m), x(tr)
2 (m)} recorded in an anechoic chamber with a dual-microphone

smartphone in close-talk condition (see Figure 6.2) by means of the minimization of
the mean square error (MSE) between x(tr)

2 (m) and ĥ21(m) ∗ x(tr)
1 (m).

On the other hand, for the AURORA2-2C-FT it is assumed that the speaker can
hold the device at different positions but fixed with respect to herself/himself during
an utterance. This simplification is reasonable since, for short periods of use, it can be
expected that the speaker does not modify substantially the position of the smartphone
with respect to herself/himself. In this case, a total of Q = 35 time-invariant FIR
filters, {ĥ(q)

21 (m); q = 1, ...,Q}, were obtained also from stereo clean speech recorded in
an anechoic chamber with the same smartphone but in Q different far-talk positions.
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Figure 6.3: Power spectral densities of the noises used for the generation of the
test set A of the AURORA2-2C-CT/FT databases. Noise PSDs for both the
primary and secondary channels are plotted.

Every channel response ĥ(q)
21 (m) was estimated in a similar fashion to the AURORA2-

2C-CT database. Thus, given an utterance x1(m), its form in the secondary channel is
obtained as x2(m) = ĥ

(q)
21 (m) ∗ x1(m), where q is randomly chosen following a discrete

uniform distribution U (1,Q).

Actual stereo noise signals, {n′1(m), n′2(m)}, were recorded (using the same dual-
microphone smartphone) at different noisy places in close-talk position for the AURO-
RA2-2C-CT database and far-talk conditions for the AURORA2-2C-FT corpus. The
recorded noise signals correspond to bus, babble, car, pedestrian street, café, street and
bus and train stations. Their respective power spectral densities (PSDs) are depicted
in Figures 6.3 and 6.4 for both close- and far-talk conditions. As can be seen from
these figures, in general, noise PSDs are similar at both the primary and secondary
channels given a particular type of noise. This similarity is greater in far- than in
close-talk conditions due to the acoustic shadow produced by the head of the speaker
in the latter case. Finally, the noise gain factor G was computed by employing the
application FaNT (Filtering and Noise Adding Tool) [86].
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Figure 6.4: Power spectral densities of the noises used for the generation of the
test set B of the AURORA2-2C-CT/FT databases. Noise PSDs for both the
primary and secondary channels are plotted.

Two new test sets (A and B) were created for each database using the recorded
noise signals. Following the Aurora-2 structure, test set A is comprised of the noises
bus, babble, car and pedestrian street while test set B is comprised of the noises
café, street, bus station and train station. Signals of each kind of noise were used to
contaminate each Aurora-2 test subset at the SNRs (referred to the primary channel)
-5 dB, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. In addition, the clean case is included as a
seventh condition. Also, to enforce that speech and noise were recorded with a similar
equipment, both of them are filtered with the G.712 characteristic as Aurora-2 does
[148]. Each test set contains 28028 utterances, namely 1001 utterances per subset × 4
subsets × 7 SNRs, and the only difference between them is the type of noises in each
set.

For clean acoustic model training the clean training dataset of Aurora-2 comprising
8440 utterances is used. Finally, the multi-condition training datasets of AURORA2-
2C-CT/FT are also composed of 8440 utterances and created from the clean training
dataset of Aurora-2. Similarly to [148], these multi-condition training datasets consist

134



6.1. Experimental framework

Figure 6.5: Characteristics of the device used for the generation of the CHiME-3
database. Microphone number 2 faces backwards while the rest of them face
forward.

of dual-channel utterances contaminated with the types of noise in test set A at the
SNRs (referred again to the primary channel) of 5 dB, 10 dB, 15 dB and 20 dB as well
as the clean condition. As for the test sets, each combination of type of noise and SNR
value defines a multi-condition training subset comprising 422 dual-channel utterances.

6.1.1.2 CHiME-3

CHiME-3 [15] is a novel framework (part of the well-known CHiME challenge series)
specially intended for researching on multi-channel noise-robust speech recognition that
includes ASR baseline software which uses the Kaldi ASR toolkit [152]. CHiME-
3 database is comprised of both simulated and real noisy speech data. Real data
were recorded in noisy environments by 12 US English talkers using a tablet with
six microphones, the geometry of which is represented in Figure 6.5. Five of these
microphones face forward and one faces backwards (that numbered as 2 in Figure 6.5).
Simultaneously along with the tablet, a close-talk microphone was used to capture
speech. The usual distance between every speaker and the tablet was around 40 cm
(far-talk position). Similarly, simulated data were created by mixing clean speech
utterances with background noise recordings. In particular, the speech data in this
case correspond to utterances from the well-known speaker-independent medium (5k)
vocabulary subset of the Wall Street Journal (WSJ0) corpus [147].

Training data are composed by 8738 noisy utterances (1600 real plus 7138 simulated
from the standard WSJ0 training dataset) in the four different noisy environments
considered: public transport (BUS), café (CAF), pedestrian area (PED) and street
junction (STR). Furthermore, development and evaluation datasets are also defined
separately for the simulated and real cases. Thus, each development dataset contains
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Training Development Evaluation
Simulated 7138 1640 1320

Real 1600 1640 1320

Table 6.2: Number of utterances per dataset in CHiME-3.
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Figure 6.6: Average SNR as a function of the CHiME-3 channel estimated from
the real development dataset.

1640 utterances (410 from each noisy environment) while each evaluation dataset is
comprised of 1320 utterances (330 per noisy environment). The number of utterances
per dataset in CHiME-3 is summarized in Table 6.2. For a more detailed description
on the CHiME-3 framework the reader is referred to [15].

According to preliminary experiments, speech captured by the microphone that
faces backwards is quite attenuated and yields a lower SNR with respect to the rest
of sensors. This is reasonable as that microphone is placed in an acoustic shadow
regarding the speaker’s mouth. To show this, we have estimated the average SNR of
every channel from the real development dataset by also taking advantage of the close-
talk microphone data provided with CHiME-3 (see Figure 6.6). As can be observed,
the microphone numbered as 2, or secondary microphone, yields the lowest SNR.

6.1.2 Feature extraction
In this Thesis, the European Telecommunications Standards Institute front-end (ETSI
FE), ETSI ES 201 108, has been used to extract acoustic features from the speech
signals [2, 149]. This front-end is intended to the extraction of Mel-cepstral features
and briefly consists of the following steps. First, a signal coming from either the
AURORA2-2C-CT/FT databases (with a sampling rate of 8 kHz) or the CHiME-3
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corpus (with a sampling rate of 16 kHz) is filtered to remove its offset. Second, this
filtered signal is divided into overlapping frames of 25 ms each with a shift interval of 10
ms. A pre-emphasis filtering with a filter coefficient value of µ = 0.97 is applied to the
framed signal, which is then windowed by using a Hamming window. After increasing
the length of each windowed frame by zero-padding, the magnitude spectrum of the
signal is computed by application of the fast Fourier transform (FFT).

A Mel filterbank covering the frequency range from 64 Hz to 4 kHz or 8 kHz
(depending on the sampling frequency of the input signal) is employed to transform the
magnitude spectrum to the Mel-frequency domain. In particular, the frequency range is
divided into 23 equidistant channels (according to the Mel scale) with triangular-shaped
frequency windows each. A non-linear operation consisting of the natural logarithm
is applied to the Mel-filtered outputs and, then, 13 Mel-frequency cepstral coefficients
(MFCCs) are computed per frame through the discrete cosine transform (DCT).

For the case of the AURORA2-2C-CT/FT corpora, velocity and acceleration co-
efficients are calculated from the above 13 MFCCs in such a way that all of them
are stacked to form the 39-dimensional feature vector used by the recognizer. Finally,
to improve the robustness of the system against channel mismatches, cepstral mean
normalization (CMN) is applied.

In the case of CHiME-3, we should first distinguish between GMM- and DNN-based
acoustic models, since both types can be used for evaluation as detailed below. For
GMM-based acoustic modeling, three frames from the left and right temporal context
are appended to each frame, which defines an augmented 91-dimensional MFCC feature
vector. Then, a linear discriminant analysis (LDA) procedure (to reduce the number of
components of the augmented feature vector to only 40) as well as maximum likelihood
linear transformation (MLLT) and feature-space maximum likelihood linear regression
(fMLLR) with speaker adaptive training (SAT) are applied [15]. The result is then used
to train the GMM-HMM-based recognizer. Finally, for DNN-based acoustic modeling,
five frames from the left and right temporal context are appended to each frame, which
generates an augmented 143-dimensional MFCC feature vector that is directly used as
input to the DNN.

6.1.3 Back-end
The back-ends for all the AURORA2-2C-CT/FT and CHiME-3 corpora are based on
hidden Markov models (HMMs) trained with either clean or multi-style data. It should
be reminded that to train multi-style acoustic models (intended to strengthen the ASR
system against noisy conditions), the corresponding multi-condition training dataset
is first enhanced by means of the particular technique that shall be evaluated. The
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characteristics of each back-end depending on the database are explained immediately
below.

6.1.3.1 AURORA2-2C-CT/FT

For these databases, each digit is modeled by a left-to-right (i.e. Bakis) continuous
density HMM with 16 states plus beginning and ending states emitting no output.
Skips over states are avoided. Only GMM-based acoustic models are considered such
that a mixture of 3 Gaussians (with diagonal covariance matrices) per state is defined.
The pauses at the beginning and end of an utterance are similarly modeled by an
HMM silence model with 3 emitting states and 6 Gaussians per state. Moreover, the
short pauses between digits are modeled by an HMM with 1 emitting state with 6
Gaussians which is tied to the middle state of the silence model. Acoustic model
training is performed by means of several iterations of the Baum-Welch algorithm.
The implementation of this back-end is done by employing the HTK 3.4 toolkit [204].

6.1.3.2 CHiME-3

For CHiME-3 we employ the Kaldi toolkit [152]-based ASR system of [15], where both
GMM- and DNN-based acoustic models are considered for this task. Initially, 2500
different tied triphone HMM states, which are modeled by a total of 15000 Gaussians
[15], are trained. Then, for DNN-based acoustic modeling, the Kaldi recipe for Track
2 of the 2nd CHiME Challenge is followed [196]. A DNN with 7 hidden layers with
2048 neurons each is employed. A generative pre-training using restricted Boltzmann
machines (RBMs) as well as cross-entropy and sequence-discriminative training em-
ploying the state-level minimum Bayes risk (sMBR) criterion [184] are performed on
the DNN [15]. It should be noted that, in first instance, the DNN is trained from
the alignments generated by the above GMM-HMM-based ASR system. Then, once
the DNN is trained, realignments are done and the DNN is re-trained from these new
alignments. This procedure is repeated until completing four iterations.

6.2 Experiments and results
Different types of quality measures can be employed to determine the goodness or
usefulness of an ASR system in both absolute and relative (when compared with other
systems) terms. For sure, the most important performance metric is the accuracy of
the recognizer, which is usually measured through the word accuracy (WAcc) and/or
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the word error rate (WER) metrics. These are the ones chosen to evaluate our noise-
robust contributions when integrated in an ASR system, and they are presented in the
following subsection along with their confidence intervals. Furthermore, another issue
that may be interesting to be controlled in this kind of systems is the computational
complexity of the algorithms. However, we have found that this aspect is not so critical
as in the past, since it seems that the preferred mobile ASR architecture nowadays is
the NSR (Network-based Speech Recognition) one in contrast to the DSR architecture
or embedded systems. That is, unlike in DSR, signal processing is carried out on the
server side in NSR, where there are available more computational resources than in
the mobile terminals. Thus, Subsections 6.2.2, 6.2.3 and 6.2.4 present, by following
the same sequence as in the previous chapters, the word accuracy and word error rate
results obtained by our techniques and those for comparison, as well as an analysis on
such results.

6.2.1 Recognition accuracy and confidence intervals
As it is standard for the Aurora-2 corpus and the CHiME-3 database, the noise-robust
methods will be evaluated in terms of word recognition accuracy or word error rate
when considering the AURORA2-2C-CT/FT corpora or the CHiME-3 database, re-
spectively. Let us suppose that a reference sentence, the correct transcription of which
is known, contains a total of NT words. If an ASR system, when trying to recognize
and transcribe such a reference sentence, substitutes NS words, deletes ND words and
inserts NI words, the word recognition accuracy from that system is

WAcc = NT −NS −ND −NI

NT

. (6.1)

For its part, the word error rate metric is defined as

WER = 1−WAcc = NS +ND +NI

NT

. (6.2)

In order to find out the WAcc or WER given the transcription of the reference sentence
and that recognized by the ASR system, dynamic programming is used. It is common
to provide the WAcc or WER measures in terms of percentage. Moreover, due to the
insertion errors, WAcc (WER) may be even negative (over 100%).

When comparing two different ASR systems, it is very important to determine if
their differences in terms of the considered performance metric, e.g. WAcc or WER,
are statistically significant. For every database we are able to calculate a confidence
interval in such a way that we can assure that we are 100(1 − α)% confident that
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Figure 6.7: Amplitude of the 95% confidence interval as a function of WAcc for
the test sets of the AURORA2-2C-CT/FT databases (left) and WER for the real
data evaluation set of the CHiME-3 corpus (right).

the true value of either WAcc or WER is in that interval, where α is the significance
level. The amplitude of this confidence interval in terms of WAcc (it can be expressed
analogously for WER) is

∆ = z1−α/2

√
WAcc(1−WAcc)

N
, (6.3)

where N is the total number of different realizations of words to be tested, i.e. 13159
and 21409 for the AURORA2-2C-CT/FT and the CHiME-3 corpora, respectively. Fur-
thermore, z1−α/2 is the z-score for the 100(1−α/2)% percentile point, which is approx-
imately 1.96 for a typical significance level of α = 0.05 (equivalently, a 95% confidence
value). From (6.3), we can observe that the greater the number of tested words, N , the
smaller the amplitude of the confidence interval. Moreover, the greater (smaller) the
WAcc (WER), the smaller the amplitude of the confidence interval as well. In order to
serve as a reference along with the results presented throughout the following subsec-
tions, Figure 6.7 depicts the amplitude of the 95% confidence interval as a function of
WAcc, for the test sets of the AURORA2-2C-CT/FT databases, and WER, for the real
data evaluation set of the CHiME-3 corpus. In addition, some of these 95% confidence
interval amplitudes are shown in Table 6.3 for typical WAcc and WER values.

6.2.2 Power spectrum enhancement techniques
We should recall here that the primary channel in the AURORA2-2C-CT/FT databases
is identified with the primary microphone of the smartphone. On the contrary, in
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AURORA2-2C-CT/FT
(WAcc±∆, %) 95±0.37 90±0.51 85±0.61 80±0.68 75±0.74 70±0.78 65±0.82

CHiME-3
(WER±∆, %) 5±0.29 10±0.40 15±0.48 20±0.54 25±0.58 30±0.61 35±0.64

Table 6.3: 95% confidence interval amplitudes for some typical WAcc (for the
test sets of the AURORA2-2C-CT/FT databases) and WER (for the real data
evaluation set of the CHiME-3 corpus) values.

CHiME-3, a virtual primary channel is obtained by means of MVDR beamforming
from all the six microphones in the tablet. With this arrangement, our dual-channel
power spectrum enhancement techniques act as beamformer post-filters which help to
mitigate the beamformer weak points such as its poor performance at low frequencies
or the effect of noise sources placed along the steering direction [103]. The use of
MVDR in particular will be justified in the CHiME-3 results section.

In addition to our power spectrum enhancement contributions, DCSS, P-MVDR
and DSW, other single-channel and multi-channel noise-robust techniques are evalu-
ated for comparison purposes. First, the following three single-channel noise-robust
methods are tested on the primary channel: a soft-mask weighting (SMW) technique
in the log-Mel domain [91], the ETSI advanced front-end (AFE) [3] and a classical
Wiener filtering with the same post-processing as in Subsection 3.3.4 (Wiener+Int).
For Wiener+Int, the noise PSD Sn1(f, t) in Eq. (3.28) is approximated from noise
estimates obtained again by means of linear interpolation in the log-power spectral
domain. This interpolation uses the averages of the first and last M frames in each
utterance. Noise estimation by linear interpolation is selected for a fair comparison, as
the noise statistical parameters required by our techniques are obtained by following
this same approach (as explained throughout Chapter 3).

Moreover, two beamforming techniques are tested for comparison as well: delay-
and-sum (D&S) [211] and MVDR [77]. On the one hand, time difference of arrival
(TDoA) estimation for D&S is performed as explained in [15] and [21]. On the other
hand, the tested MVDR applies an eigenvalue decomposition-based technique, where
the clean speech spatial covariance matrix is derived from complex GMM-based time-
frequency (T-F) masks, to estimate the steering vector [77]. In addition, two post-
filtering methods are evaluated in CHiME-3 when applied after MVDR beamforming.
The first one consists of a multi-channel Wiener post-filter (Lefkimmiatis) [103] using a
noise coherence matrix estimated per utterance and frequency bin from the noise spatial
correlation matrix as computed for MVDR beamforming [77]. The second considered
post-filter is a multi-channel noise reduction post-filter as in [210] (MCNR-like) which
employs the steering vector from [77] for a fair evaluation. The baseline system uses
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Parameter M η ηξ ηn Mf Mt Gf Gt σG
Value 20 0.1 -3.35 dB 103 3 5 5 5 1

Table 6.4: Values chosen for the parameters used by our dual-channel power
spectrum enhancement contributions.

noisy speech features from the primary channel in the case of the AURORA2-2C-
CT/FT databases and from the fifth microphone in the case of CHiME-3 (as in [15]).
Finally, for comparison purposes, not only our MMSE-based RSG (Relative Speech
Gain) estimation method is considered but also the aforementioned method based on
eigenvalue decomposition (ED) [77]. The latter will only be combined with DSW as
this technique performs the best among our dual-channel power spectrum enhancement
developments. Thus, our biased WF-based spectral weighting approach (DSW-B) is
evaluated along with its unbiased version with noise equalization (DSW-(U+Eq)MMSE
and DSW-(U+Eq)ED) and without it (DSW-UMMSE and DSW-UED).

The parameters of the probability density functions (PDFs) p(ar21) = N
(
µAr21

,ΣAr21

)
and p(ai21) = N

(
µAi21

,ΣAi21

)
used to estimate the variable A21(f, t) in Section 3.4

are computed in advance for the AURORA2-2C-CT and AURORA2-2C-FT databases
(separately), and the CHiME-3 corpus. Furthermore, in the case of CHiME-3, such
parameters are obtained for the simulated and real cases independently. In this work
both p(ar21) and p(ai21) are assumed to be stationary distributions. Thus, the mean
vectors µAr21

and µAi21
, and the covariance matrices ΣAr21

and ΣAi21
, are obtained as

the sample means and sample covariances, respectively, from a21 samples. That is,
ar21 and ai21 at every time frame t are considered realizations of the variables. For all
the AURORA2-2C-CT/FT and CHiME-3 corpora, a21 samples are obtained from their
corresponding development datasets in the knowledge that a21 = x2�x1, where � sym-
bolizes element-wise division. In addition, statistical independence between frequency
bins was assumed so that ΣAr21

and ΣAi21
are diagonal covariance matrices.

The values of the parameters employed by our different dual-channel power spec-
trum enhancement contributions can be seen in Table 6.4. Thus, M corresponds to the
first and last 200 ms of the utterance, where it was considered that speech is absent.
Furthermore, η was selected by means of preliminary speech recognition experiments
over development datasets, what also fixes the value of ηξ in accordance with (3.54).
The value of ηn roughly corresponds to an SNR of 40 dB. Finally, the values for the
parameters of the filters intended to improve the spectro-temporal coherence of the
spectral weights in Subsection 3.3.4 were similarly chosen as in [91].
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 44.31 70.63 87.71 94.93 97.33 98.53 99.24 82.24 14.61

AFE B 27.31 60.29 82.61 92.67 96.58 98.13 99.24 76.27 16.78
Avg. 35.81 65.46 85.16 93.80 96.96 98.33 99.24 79.25 15.69

A 33.44 58.61 80.30 90.60 94.73 96.53 98.40 75.70 8.07
SMW B 19.02 44.91 73.75 88.37 93.64 95.64 98.40 69.22 9.73

Avg. 26.23 51.76 77.03 89.49 94.19 96.09 98.40 72.47 8.91
A 33.65 58.59 80.77 92.29 96.41 98.03 99.08 76.62 8.99

Wiener+Int B 19.72 40.04 70.16 88.00 95.11 97.39 99.08 68.40 8.91
Avg. 26.69 49.32 75.47 90.15 95.76 97.71 99.08 72.52 8.96

A 14.38 25.89 46.83 75.74 92.71 97.39 99.04 58.82 -8.81
D&S B 10.14 17.46 32.15 59.72 87.28 96.30 99.04 50.51 -8.98

Avg. 12.26 21.68 39.49 67.73 90.00 96.85 99.04 54.67 -8.89
A 16.86 34.30 64.47 89.24 96.35 98.31 99.05 66.59 -1.04

MVDR B 10.86 20.88 49.82 82.33 94.63 97.65 99.05 59.36 -0.13
Avg. 13.86 27.59 57.15 85.79 95.49 97.98 99.05 62.98 -0.58

A 29.88 55.22 79.69 92.52 96.61 97.85 98.63 75.30 7.67
DCSS B 18.42 37.02 69.14 87.93 95.11 97.40 98.63 67.50 8.01

Avg. 24.15 46.12 74.42 90.23 95.86 97.63 98.63 71.40 7.84
A 29.47 54.50 79.20 92.41 96.62 98.03 98.98 75.04 7.41

P-MVDR B 18.34 36.64 68.71 87.74 95.13 97.47 98.98 67.34 7.85
Avg. 23.91 45.57 73.96 90.08 95.88 97.75 98.98 71.19 7.63

A 35.62 62.47 83.94 93.76 96.97 98.17 99.05 78.49 10.86
DSW-B B 22.98 45.40 75.31 90.34 96.01 97.73 99.05 71.30 11.81

Avg. 29.30 53.94 79.63 92.05 96.49 97.95 99.05 74.89 11.33
A 35.76 62.50 83.69 93.63 96.89 98.13 98.99 78.43 10.80

DSW-UMMSE B 22.84 45.81 75.15 90.22 95.82 97.61 98.99 71.24 11.75
Avg. 29.30 54.16 79.42 91.93 96.36 97.87 98.99 74.84 11.28

A 39.46 67.07 87.28 95.28 97.42 98.44 99.02 80.83 13.20
DSW-(U+Eq)MMSE B 24.00 49.31 80.22 92.72 97.01 98.19 99.02 73.58 14.09

Avg. 31.73 58.19 83.75 94.00 97.22 98.32 99.02 77.20 13.64

Table 6.5: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals and comparison
techniques evaluated on the AURORA2-2C-CT (close-talk) database when using
clean acoustic models.

6.2.2.1 AURORA2-2C-CT/FT results

Tables 6.5 and 6.6 summarize the word accuracy results obtained for the AURORA2-
2C-CT database (close-talk) when clean and multi-style acoustic models are employed,
respectively. Results are broken down by SNR and averaged across all types of noise
in test sets A and B. As can be observed, the best result is obtained with multi-style
acoustic models by our unbiased spectral weighting with noise equalization considering
our RSG estimation method (DSW-(U+Eq)MMSE), yielding a relative average improve-
ment regarding the baseline of 6.73%. Moreover, this approach also presents the best
behavior at the most adverse acoustic condition tested (-5 dB) with an absolute word
accuracy of 53.95% and a relative improvement of 17.02% with respect to the baseline.

The word accuracy results obtained for the AURORA2-2C-FT database (far-talk),
when clean and multi-style acoustic models are employed, are shown in Tables 6.7
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6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 57.36 82.98 94.13 97.08 98.38 98.82 99.07 88.13 3.06

AFE B 39.06 73.74 90.35 95.99 97.83 98.49 99.07 82.58 6.29
Avg. 48.21 78.36 92.24 96.54 98.11 98.66 99.07 85.35 4.67

A 47.95 75.81 90.90 96.02 97.52 98.09 98.77 84.38 -0.69
SMW B 26.77 60.92 83.14 92.92 96.30 97.81 98.77 76.31 0.02

Avg. 37.36 68.37 87.02 94.47 96.91 97.95 98.77 80.35 -0.33
A 58.79 82.85 94.06 96.95 98.00 98.37 98.90 88.17 3.10

Wiener+Int B 35.70 69.70 89.30 95.60 97.33 98.20 98.90 80.97 4.68
Avg. 47.25 76.28 91.68 96.28 97.67 98.29 98.90 84.58 3.90

A 30.67 57.76 83.43 94.16 97.08 97.83 98.44 76.82 -8.25
D&S B 14.93 34.77 71.87 90.26 95.79 97.54 98.44 67.53 -8.76

Avg. 22.80 46.27 77.65 92.21 96.44 97.69 98.44 72.18 -8.50
A 34.00 67.85 90.33 97.05 98.23 98.79 98.79 81.04 -4.03

MVDR B 16.01 48.61 83.92 94.70 97.34 98.40 98.79 73.16 -3.13
Avg. 25.01 58.23 87.13 95.88 97.79 98.60 98.79 77.11 -3.57

A 57.29 84.51 95.08 97.78 98.47 98.63 98.49 88.63 3.56
DCSS B 36.04 70.95 90.90 96.24 97.99 98.72 98.49 81.81 5.52

Avg. 46.67 77.73 92.99 97.01 98.23 98.68 98.49 85.22 4.54
A 56.56 84.12 94.87 97.71 98.40 98.76 98.71 88.40 3.33

P-MVDR B 35.30 70.08 90.52 96.03 97.96 98.46 98.71 81.39 5.10
Avg. 45.93 77.10 92.70 96.87 98.18 98.61 98.71 84.90 4.22

A 63.05 87.00 95.47 97.75 98.27 98.70 98.87 90.04 4.97
DSW-B B 41.19 73.98 90.90 96.04 97.97 98.51 98.87 83.10 6.81

Avg. 52.12 80.49 93.19 96.90 98.12 98.61 98.87 86.57 5.89
A 62.89 86.87 95.46 97.78 98.21 98.62 98.59 89.97 4.90

DSW-UMMSE B 41.28 74.48 90.71 95.99 97.90 98.40 98.59 83.13 6.84
Avg. 52.09 80.68 93.09 96.89 98.06 98.51 98.59 86.55 5.87

A 65.02 88.15 95.84 97.88 98.43 98.60 98.65 90.65 5.58
DSW-(U+Eq)MMSE B 42.87 76.50 92.24 96.62 98.15 98.58 98.65 84.16 7.87

Avg. 53.95 82.33 94.04 97.25 98.29 98.59 98.65 87.41 6.73

Table 6.6: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals and comparison
techniques evaluated on the AURORA2-2C-CT (close-talk) database when using
multi-style acoustic models.

and 6.8, respectively. With a relative average improvement of 5.18% with respect to
the baseline system, DSW-(U+Eq)MMSE using multi-style models is again the best ap-
proach according to the results. In addition, with an absolute word accuracy of 53.11%
and a relative improvement of 14.69% regarding the baseline, DSW-(U+Eq)MMSE with
multi-style acoustic models is the best option at -5 dB as well.

While DSW-(U+Eq)MMSE with multi-style acoustic models achieves on average
the highest results, the AFE performs the best on AURORA2-2C-CT/FT when clean
acoustic models are employed. We should take into account that the AFE is shown
only as a reference as it involves multiple state-of-the-art strategies (e.g., a sophisti-
cated two stage Mel-warped Wiener filter approach which uses a voice activity detector
(VAD), and waveform processing and blind equalization stages [3, 149]), which are not
incompatible with our developments.

It is worth noticing that beamforming techniques do not provide a successful perfor-
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6.2. Experiments and results

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 26.01 43.52 66.77 88.41 96.23 98.18 99.10 69.85 -
Baseline B 16.24 26.54 51.14 81.06 94.43 97.81 99.10 61.20 -

Avg. 21.13 35.03 58.96 84.74 95.33 98.00 99.10 65.53 -
A 48.36 72.71 87.95 95.39 97.61 98.29 99.24 83.39 13.54

AFE B 30.38 63.40 85.37 93.79 96.99 98.38 99.24 78.05 16.85
Avg. 39.37 68.06 86.66 94.59 97.30 98.34 99.24 80.72 15.19

A 37.44 61.04 81.18 91.04 94.97 96.59 98.40 77.04 7.19
SMW B 20.67 45.62 74.36 87.99 93.32 95.60 98.40 69.59 8.39

Avg. 29.06 53.33 77.77 89.52 94.15 96.10 98.40 73.32 7.79
A 39.65 62.47 81.64 92.82 96.78 98.14 99.08 78.58 8.73

Wiener+Int B 21.78 44.83 74.13 90.50 96.16 98.11 99.08 70.92 9.72
Avg. 30.72 53.65 77.89 91.66 96.47 98.13 99.08 74.75 9.22

A 21.80 39.13 62.98 86.64 96.14 98.10 99.07 67.47 -2.38
D&S B 12.79 23.05 46.73 78.01 94.11 97.87 99.07 58.76 -2.44

Avg. 17.30 31.09 54.86 82.33 95.13 97.99 99.07 63.12 -2.41
A 24.86 48.15 77.26 93.32 97.73 98.63 99.17 73.33 3.48

MVDR B 13.59 27.95 66.09 89.54 96.58 98.37 99.17 65.35 4.15
Avg. 19.23 38.05 71.68 91.43 97.16 98.50 99.17 69.34 3.81

A 33.80 55.74 76.15 89.10 94.63 97.01 97.92 74.41 4.56
DCSS B 18.64 36.42 65.13 85.56 93.39 96.48 97.92 65.94 4.74

Avg. 26.22 46.08 70.64 87.33 94.01 96.75 97.92 70.17 4.64
A 32.01 54.28 76.24 90.24 95.70 97.79 98.88 74.38 4.53

P-MVDR B 18.01 34.09 63.38 85.80 94.54 97.29 98.88 65.52 4.32
Avg. 25.01 44.19 69.81 88.02 95.12 97.54 98.88 69.95 4.42

A 36.87 59.27 79.95 92.27 96.52 97.92 99.07 77.13 7.28
DSW-B B 21.00 39.16 69.05 88.59 95.50 97.79 99.07 68.52 7.32

Avg. 28.94 49.22 74.50 90.43 96.01 97.86 99.07 72.83 7.30
A 39.18 61.18 80.19 91.97 96.25 97.76 98.99 77.76 7.91

DSW-UMMSE B 21.87 41.15 70.35 88.67 95.36 97.71 98.99 69.19 7.99
Avg. 30.53 51.17 75.27 90.32 95.81 97.74 98.99 73.47 7.94

A 39.20 62.12 81.42 93.17 96.79 98.16 98.99 78.48 8.63
DSW-(U+Eq)MMSE B 22.17 43.83 73.73 90.55 95.84 97.86 98.99 70.66 9.46

Avg. 30.69 52.98 77.58 91.86 96.32 98.01 98.99 74.57 9.04

Table 6.7: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals and comparison
techniques evaluated on the AURORA2-2C-FT (far-talk) database when using
clean acoustic models.

mance. Indeed, D&S yields a drop in performance since it only aligns the target signals
from each channel leading to the primary channel being combined with a much noisier
secondary one. On the other hand, while MVDR beamforming additionally manages
both the speech gains (through the steering vector) and the noise signals, it is only
able to achieve a modest improvement, regarding the baseline, under clean acoustic
modeling in far-talk conditions. These results are coherent with the fact that poor
performance of the classical beamforming techniques can be expected with only two
microphones very close each other, one of them also placed in an acoustic shadow with
respect to the target signal (i.e. the secondary sensor) [179, 180]. Indeed, beamforming
results are especially poor in close-talk conditions and are, at the same time, coherent
with the fact that speech is much more attenuated at the secondary sensor in close-
than in far-talk position.

On average, DSW-(U+Eq)MMSE always outperforms both DCSS and P-MVDR,

145



6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 49.66 76.86 92.68 97.08 98.06 98.57 98.76 85.49 -
Baseline B 27.18 58.76 86.93 95.32 97.53 98.35 98.76 77.35 -

Avg. 38.42 67.81 89.81 96.20 97.80 98.46 98.76 81.42 -
A 59.61 83.33 94.03 97.52 98.41 98.69 99.06 88.60 3.11

AFE B 41.66 75.59 91.05 96.18 98.02 98.60 99.06 83.52 6.17
Avg. 50.64 79.46 92.54 96.85 98.22 98.65 99.06 86.06 4.64

A 47.67 75.96 91.38 96.16 97.67 98.40 97.23 84.54 -0.95
SMW B 25.12 57.58 83.99 93.28 96.62 97.72 97.23 75.72 -1.63

Avg. 36.40 66.77 87.69 94.72 97.15 98.06 97.23 80.13 -1.29
A 60.38 82.65 93.93 97.20 98.10 98.36 98.81 88.44 2.95

Wiener+Int B 37.27 71.11 89.98 95.92 97.48 98.27 98.81 81.67 4.32
Avg. 48.83 76.88 91.96 96.56 97.79 98.32 98.81 85.06 3.64

A 39.16 68.87 89.83 96.57 98.01 98.51 98.60 81.83 -3.66
D&S B 20.11 46.77 79.51 94.36 97.56 98.57 98.60 72.81 -4.54

Avg. 29.64 57.82 84.67 95.47 97.79 98.54 98.60 77.32 -4.10
A 42.20 76.51 93.66 97.60 98.52 98.76 98.85 84.54 -0.95

MVDR B 21.28 59.89 89.49 96.33 98.03 98.58 98.85 77.27 -0.08
Avg. 31.74 68.20 91.58 96.97 98.28 98.67 98.85 80.91 -0.51

A 59.27 83.25 94.35 97.37 98.14 98.51 98.45 88.48 2.99
DCSS B 35.63 70.13 89.74 95.75 97.45 98.28 98.45 81.16 3.81

Avg. 47.45 76.69 92.05 96.56 97.80 98.40 98.45 84.83 3.41
A 59.05 82.97 94.15 97.30 98.04 98.44 98.54 88.33 2.84

P-MVDR B 34.77 69.77 89.58 95.85 97.43 98.28 98.54 80.95 3.60
Avg. 46.91 76.37 91.87 96.57 97.74 98.36 98.54 84.64 3.22

A 60.22 83.49 94.38 97.51 98.25 98.65 98.79 88.75 3.26
DSW-B B 36.18 67.72 89.10 95.69 97.56 98.46 98.79 80.79 3.44

Avg. 48.20 75.61 91.74 96.60 97.91 98.56 98.79 84.77 3.35
A 62.05 84.45 94.49 97.35 98.21 98.73 98.69 89.21 3.72

DSW-UMMSE B 38.13 69.56 89.57 95.79 97.64 98.44 98.69 81.52 4.17
Avg. 50.09 77.01 92.03 96.57 97.93 98.59 98.69 85.37 3.95

A 65.11 86.19 95.00 97.59 98.27 98.70 98.57 90.14 4.65
DSW-(U+Eq)MMSE B 41.10 73.44 91.16 96.27 97.76 98.55 98.57 83.05 5.70

Avg. 53.11 79.82 93.08 96.93 98.02 98.63 98.57 86.60 5.18

Table 6.8: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals and comparison
techniques evaluated on the AURORA2-2C-FT (far-talk) database when using
multi-style acoustic models.

which can also be interpreted as spectral weighting techniques. As can be observed, on
average, P-MVDR outperforms MVDR in all conditions. It is interesting to see that,
as opposed to MVDR beamforming, the greatest relative improvements achieved by
P-MVDR are in close-talk conditions. Thus, we can consider P-MVDR as an ad-hoc
MVDR to be used with small microphone arrays. We also confirm that discarding
the phase information as used by MVDR beamforming is positive. In accordance with
the analysis presented in Subsection 3.2.3, DCSS and P-MVDR in general provide
very similar results since the term A21(f, t) has a relatively small magnitude. As can
be seen, this statement is valid not only for close-talk position, but also for far-talk
conditions. In this respect, we should recall that the clean speech secondary signals
for the AURORA2-2C-FT corpus were generated in an anechoic chamber environment,
where, theoretically, there are no signal reflections but only diffraction. Indeed, in this
context, A21(f, t) is still relatively small.
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6.2. Experiments and results

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 35.62 62.47 83.94 93.76 96.97 98.17 99.05 78.49 10.86

DSW-B B 22.98 45.40 75.31 90.34 96.01 97.73 99.05 71.30 11.81
Avg. 29.30 53.94 79.63 92.05 96.49 97.95 99.05 74.89 11.33

A 31.95 59.38 83.16 93.57 96.88 98.12 98.98 77.18 9.55
DSW-UED B 20.05 42.94 74.27 90.00 95.80 97.65 98.98 70.12 10.63

Avg. 26.00 51.16 78.72 91.79 96.34 97.89 98.98 73.65 10.09
A 35.76 62.50 83.69 93.63 96.89 98.13 98.99 78.43 10.80

DSW-UMMSE B 22.84 45.81 75.15 90.22 95.82 97.61 98.99 71.24 11.75
Avg. 29.30 54.16 79.42 91.93 96.36 97.87 98.99 74.84 11.28

A 33.01 61.26 85.54 95.06 97.47 98.48 99.04 78.47 10.84
DSW-(U+Eq)ED B 19.13 42.87 77.78 92.35 96.97 98.25 99.04 71.23 11.74

Avg. 26.07 52.07 81.66 93.71 97.22 98.37 99.04 74.85 11.29
A 39.46 67.07 87.28 95.28 97.42 98.44 99.02 80.83 13.20

DSW-(U+Eq)MMSE B 24.00 49.31 80.22 92.72 97.01 98.19 99.02 73.58 14.09
Avg. 31.73 58.19 83.75 94.00 97.22 98.32 99.02 77.20 13.64

Table 6.9: Comparison between an ED-based steering vector computation method
and our MMSE-based RSG estimation technique in terms of word accuracy
(%) when combined with our dual-channel spectral weighting evaluated on the
AURORA2-2C-CT (close-talk) database when using clean acoustic models.

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 63.05 87.00 95.47 97.75 98.27 98.70 98.87 90.04 4.97

DSW-B B 41.19 73.98 90.90 96.04 97.97 98.51 98.87 83.10 6.81
Avg. 52.12 80.49 93.19 96.90 98.12 98.61 98.87 86.57 5.89

A 55.35 84.26 95.07 97.70 98.20 98.62 98.68 88.20 3.13
DSW-UED B 34.09 70.59 90.14 95.87 97.81 98.39 98.68 81.15 4.86

Avg. 44.72 77.43 92.61 96.79 98.01 98.51 98.68 84.68 4.00
A 62.89 86.87 95.46 97.78 98.21 98.62 98.59 89.97 4.90

DSW-UMMSE B 41.28 74.48 90.71 95.99 97.90 98.40 98.59 83.13 6.84
Avg. 52.09 80.68 93.09 96.89 98.06 98.51 98.59 86.55 5.87

A 52.93 83.68 95.24 97.70 98.37 98.64 98.57 87.76 2.69
DSW-(U+Eq)ED B 30.59 69.44 90.82 96.13 98.03 98.48 98.57 80.58 4.29

Avg. 41.76 76.56 93.03 96.92 98.20 98.56 98.57 84.17 3.49
A 65.02 88.15 95.84 97.88 98.43 98.60 98.65 90.65 5.58

DSW-(U+Eq)MMSE B 42.87 76.50 92.24 96.62 98.15 98.58 98.65 84.16 7.87
Avg. 53.95 82.33 94.04 97.25 98.29 98.59 98.65 87.41 6.73

Table 6.10: Comparison between an ED-based steering vector computation
method and our MMSE-based RSG estimation technique in terms of word ac-
curacy (%) when combined with our dual-channel spectral weighting evaluated
on the AURORA2-2C-CT (close-talk) database when using multi-style acoustic
models.
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6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 26.01 43.52 66.77 88.41 96.23 98.18 99.10 69.85 -
Baseline B 16.24 26.54 51.14 81.06 94.43 97.81 99.10 61.20 -

Avg. 21.13 35.03 58.96 84.74 95.33 98.00 99.10 65.53 -
A 36.87 59.27 79.95 92.27 96.52 97.92 99.07 77.13 7.28

DSW-B B 21.00 39.16 69.05 88.59 95.50 97.79 99.07 68.52 7.32
Avg. 28.94 49.22 74.50 90.43 96.01 97.86 99.07 72.83 7.30

A 35.95 58.95 79.39 91.88 96.22 97.73 98.97 76.69 6.84
DSW-UED B 19.17 37.89 68.49 90.63 95.19 97.65 98.97 68.17 6.97

Avg. 27.56 48.42 73.94 91.26 95.71 97.69 98.97 72.43 6.90
A 39.18 61.18 80.19 91.97 96.25 97.76 98.99 77.76 7.91

DSW-UMMSE B 21.87 41.15 70.35 88.67 95.36 97.71 98.99 69.19 7.99
Avg. 30.53 51.17 75.27 90.32 95.81 97.74 98.99 73.47 7.94

A 35.29 59.28 81.79 93.71 97.17 98.28 99.00 77.59 7.74
DSW-(U+Eq)ED B 18.31 39.45 72.92 90.83 96.19 97.97 99.00 69.28 8.08

Avg. 26.80 49.37 77.36 92.27 96.68 98.13 99.00 73.44 7.91
A 39.20 62.12 81.42 93.17 96.79 98.16 98.99 78.48 8.63

DSW-(U+Eq)MMSE B 22.17 43.83 73.73 90.55 95.84 97.86 98.99 70.66 9.46
Avg. 30.69 52.98 77.58 91.86 96.32 98.01 98.99 74.57 9.04

Table 6.11: Comparison between an ED-based steering vector computation
method and our MMSE-based RSG estimation technique in terms of word accu-
racy (%) when combined with our dual-channel spectral weighting evaluated on
the AURORA2-2C-FT (far-talk) database when using clean acoustic models.

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 49.66 76.86 92.68 97.08 98.06 98.57 98.76 85.49 -
Baseline B 27.18 58.76 86.93 95.32 97.53 98.35 98.76 77.35 -

Avg. 38.42 67.81 89.81 96.20 97.80 98.46 98.76 81.42 -
A 60.22 83.49 94.38 97.51 98.25 98.65 98.79 88.75 3.26

DSW-B B 36.18 67.72 89.10 95.69 97.56 98.46 98.79 80.79 3.44
Avg. 48.20 75.61 91.74 96.60 97.91 98.56 98.79 84.77 3.35

A 55.67 81.87 94.22 97.35 98.23 98.73 98.68 87.68 2.19
DSW-UED B 31.16 64.49 88.46 95.68 97.51 98.44 98.68 79.29 1.94

Avg. 43.42 73.18 91.34 96.52 97.87 98.59 98.68 83.49 2.07
A 62.05 84.45 94.49 97.35 98.21 98.73 98.69 89.21 3.72

DSW-UMMSE B 38.13 69.56 89.57 95.79 97.64 98.44 98.69 81.52 4.17
Avg. 50.09 77.01 92.03 96.57 97.93 98.59 98.69 85.37 3.95

A 53.56 81.78 94.64 97.58 98.43 98.70 98.63 87.45 1.96
DSW-(U+Eq)ED B 29.46 66.48 90.01 96.07 97.82 98.50 98.63 79.72 2.37

Avg. 41.51 74.13 92.33 96.83 98.13 98.60 98.63 83.59 2.17
A 65.11 86.19 95.00 97.59 98.27 98.70 98.57 90.14 4.65

DSW-(U+Eq)MMSE B 41.10 73.44 91.16 96.27 97.76 98.55 98.57 83.05 5.70
Avg. 53.11 79.82 93.08 96.93 98.02 98.63 98.57 86.60 5.18

Table 6.12: Comparison between an ED-based steering vector computation
method and our MMSE-based RSG estimation technique in terms of word ac-
curacy (%) when combined with our dual-channel spectral weighting evaluated
on the AURORA2-2C-FT (far-talk) database when using multi-style acoustic
models.
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6.2. Experiments and results

The word accuracy results from the comparison between the ED-based steering vec-
tor computation method of [77] and our MMSE-based RSG estimation technique are
presented, for close-talk conditions, in Tables 6.9 and 6.10 when using clean and multi-
style acoustic models, respectively. Both approaches are evaluated in combination with
DSW-(U+Eq), which is our best dual-channel power spectrum enhancement contribu-
tion according to the results discussed above. As expected, since the speech component
at the secondary channel of a dual-microphone smartphone can be safely neglected in
close-talk conditions, both DSW-UMMSE and DSW-UED do not perform better than
DSW-B. However, while our MMSE-based RSG estimation approach barely affects in
this case, the ED-based one introduces a harmful mismatch. This is confirmed when
adding noise equalization, which also uses the RSG term. Thus, DSW-(U+Eq)MMSE
and DSW-(U+Eq)ED perform better and worse, respectively, than DSW-B.

Similarly, Tables 6.11 and 6.12 show, for far-talk position, the results from the
comparison between the same ED- and MMSE-based techniques when employing clean
and multi-style acoustic models, respectively. In this case, where the speech component
at the secondary channel is not negligible, the usefulness of our MMSE-based RSG
estimation procedure is confirmed (DSW-(U+Eq)MMSE performs better than DSW-
UMMSE which is also better than DSW-B) while the ED-based one still introduces a
harmful mismatch due to estimation errors.

6.2.2.2 CHiME-3 results

Tables 6.13 and 6.14 report, for all the methods indicated, the word error rates (WERs)
obtained on the CHiME-3 real data evaluation set when using multi-style GMM- and
DNN-based acoustic models, respectively. In all cases, WERs are broken down by type
of noise. Beamforming methods were also tested by using both the signals from only
the five microphones facing forward (5 ch.) and the total six microphones (6 ch.) in
the tablet (i.e. by also including the sensor that faces backwards). Similarly to what
happened with the AURORA2-2C-CT/FT corpora, considering the secondary sensor
for D&S yields a drop in performance while MVDR modestly improves with respect
to use only the five sensors facing forward. In this way, our best beamforming choice
is an MVDR with all the six microphones in the tablet. This justifies its use to obtain
our virtual primary channel for CHiME-3 as aforementioned. Of course, even better
results may be obtained using a more sophisticated beamforming technique (e.g. a
generalized sidelobe canceller (GSC) [151] or a post-filtered beamformer [127]) for the
virtual primary channel. It must be noted that, unlike for the AURORA2-2C-CT/FT
corpora, classical beamforming obtains significant improvements over the baseline in
this scenario due to the greater number of sensors more separated each other.
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Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 49.64 32.72 27.30 21.03 32.67 -

AFE 35.91 16.96 17.84 15.75 21.62 11.05
SMW 33.09 21.39 22.33 18.27 23.77 8.90

Wiener+Int 32.04 14.92 15.64 14.01 19.15 13.52
D&S (5 ch.) 32.08 22.60 25.82 15.13 23.91 8.76
D&S (6 ch.) 35.13 25.03 27.50 16.25 25.98 6.69

MVDR (5 ch.) 34.08 17.35 18.16 15.02 21.15 11.52
MVDR (6 ch.) 32.90 16.83 17.40 14.72 20.46 12.21
Lefkimmiatis 42.31 14.79 19.04 17.48 23.41 9.26
MCNR-like 33.60 15.92 17.31 15.14 20.49 12.18

DCSS 34.19 14.90 16.95 15.58 20.41 12.26
P-MVDR 33.18 15.58 16.78 14.76 20.08 12.59
DSW-B 34.51 17.24 17.69 14.85 21.07 11.60

DSW-UMMSE 34.42 16.70 17.73 14.70 20.89 11.78
DSW-(U+Eq)MMSE 29.07 12.63 15.64 13.39 17.68 14.99

Table 6.13: Word error rate results (in terms of percentage and per type of noise)
for our power spectrum enhancement proposals and comparison techniques eval-
uated with CHiME-3 when multi-style acoustic models are employed. Results are
from the real data evaluation set when considering GMMs for acoustic modeling.

Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 51.13 35.06 28.31 21.48 34.00 -

AFE 31.00 14.77 16.69 14.10 19.14 14.86
SMW 31.13 17.99 19.08 17.09 21.32 12.68

Wiener+Int 31.20 13.13 15.88 14.19 18.60 15.40
D&S (5 ch.) 30.90 21.16 25.52 14.61 23.05 10.95
D&S (6 ch.) 33.82 22.81 26.49 15.09 24.55 9.45

MVDR (5 ch.) 29.89 14.66 16.54 14.62 18.93 15.07
MVDR (6 ch.) 29.50 14.79 16.37 13.88 18.64 15.36
Lefkimmiatis 35.02 15.26 17.73 16.29 21.08 12.92
MCNR-like 29.40 14.82 16.95 14.96 19.03 14.97

DCSS 29.52 13.02 15.70 13.99 18.06 15.94
P-MVDR 29.50 13.09 16.12 13.39 18.03 15.97
DSW-B 30.57 13.95 16.52 13.78 18.71 15.29

DSW-UMMSE 30.72 15.05 16.91 14.96 19.41 14.59
DSW-(U+Eq)MMSE 26.96 11.88 15.06 13.02 16.73 17.27

Table 6.14: Word error rate results (in terms of percentage and per type of noise)
for our power spectrum enhancement proposals and comparison techniques eval-
uated with CHiME-3 when multi-style acoustic models are employed. Results are
from the real data evaluation set when considering DNNs for acoustic modeling.
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As expected, similar trends are obtained by employing GMMs and DNNs for acous-
tic modeling. Moreover, the baseline WER from GMM-based acoustic modeling is
1.33% lower than that from DNN-based acoustic modeling as a result of the more
sophisticated front-end used in the former case as explained in Subsection 6.1.2. Nev-
ertheless, all the tested techniques perform better by using DNN-based acoustic mod-
els than GMM-based ones. As can be seen, the best result is achieved by DSW-
(U+Eq)MMSE under DNN-based acoustic modeling, with an absolute WER of 16.73%
and a relative average improvement of 17.27% and 1.91% regarding the baseline and
MVDR (6 ch.), respectively. Though the secondary channel has already been (success-
fully) used to define the virtual primary one, these results reveal the convenience of
treating the secondary signal in a differentiated manner since it can be further exploited
to provide useful information about the acoustic environment. This is confirmed by
the results in both absolute and relative terms since, on average and considering DNN-
based acoustic models, the percentage change between MVDR (5 ch.) and MVDR
(6 ch.) is 0.36% while the percentage change between MVDR (6 ch.) and DSW-
(U+Eq)MMSE is 2.35%.

While there are meaningful improvements between DSW-(U+Eq)MMSE and DSW-
UMMSE, this latter approach slightly enhances the results of DSW-B under GMM-based
acoustic modeling (in fact, DSW-UMMSE worsens both DSW-B when using DNN-based
acoustic models and MVDR (6 ch.)). This is because MVDR beamforming yields a
strong dehomogenization of the noise at the virtual primary and secondary channels.
Under this circumstance, the homogeneity assumption underlying DSW-UMMSE is not
accomplished, so the substantial improvement only comes when bias correction and
noise equalization, which also relies on A21(f, t), are applied together.

Wiener+Int, which can also be considered a single-channel post-filter and unlike
both the multi-channel post-filters Lefkimmiatis and MCNR-like, is able to modestly
improve MVDR (6 ch.). Even in this case, DSW-(U+Eq)MMSE yields a relative average
improvement of 1.87% under DNN-based acoustic modeling with respect to Wiener+Int
as well, which confirms that the secondary microphone can provide more valuable in-
formation about the ambient noise than a single-channel noise estimation. Further-
more, unlike for the synthetic AURORA2-2C-CT/FT corpora, it should be noticed
that the AFE does not present a competitive performance on the CHiME-3 real data.
In addition, DSW-(U+Eq)MMSE is again clearly superior to both DCSS and P-MVDR.
Nevertheless, both DCSS and P-MVDR, which again exhibit a similar performance
in accordance with the analysis of Subsection 3.2.3, are ranked just behind DSW-
(U+Eq)MMSE, also outperforming the other post-filters tested.

Unlike for the AURORA2-2C-CT/FT corpora, in CHiME-3 the performance of the
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Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 49.64 32.72 27.30 21.03 32.67 -
DSW-B 34.51 17.24 17.69 14.85 21.07 11.60

DSW-UED 33.95 16.14 17.17 15.13 20.60 12.07
DSW-UMMSE 34.42 16.70 17.73 14.70 20.89 11.78

DSW-(U+Eq)ED 29.48 13.02 14.82 13.86 17.80 14.87
DSW-(U+Eq)MMSE 29.07 12.63 15.64 13.39 17.68 14.99

Table 6.15: Comparison between an ED-based steering vector computation
method and our MMSE-based RSG estimation technique in terms of word er-
ror rate (%) when combined with our dual-channel spectral weighting evaluated
with CHiME-3 when multi-style acoustic models are employed. Results are from
the real data evaluation set when considering GMMs for acoustic modeling.

Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 51.13 35.06 28.31 21.48 34.00 -
DSW-B 30.57 13.95 16.52 13.78 18.71 15.29

DSW-UED 29.73 13.78 16.27 14.27 18.51 15.49
DSW-UMMSE 30.72 15.05 16.91 14.96 19.41 14.59

DSW-(U+Eq)ED 26.94 11.80 14.63 13.69 16.77 17.23
DSW-(U+Eq)MMSE 26.96 11.88 15.06 13.02 16.73 17.27

Table 6.16: Comparison between an ED-based steering vector computation
method and our MMSE-based RSG estimation technique in terms of word er-
ror rate (%) when combined with our dual-channel spectral weighting evaluated
with CHiME-3 when multi-style acoustic models are employed. Results are from
the real data evaluation set when considering DNNs for acoustic modeling.

MMSE- and ED-based RSG estimation methods is comparable, as can be seen from
the WER results shown in Tables 6.15 and 6.16. Nevertheless, it should be borne in
mind that for the CHiME-3 real data evaluation it was needed to derive the RSG prior
statistics from estimated multi-channel clean speech, which still presents distortions,
by using the close-talk microphone data provided with CHiME-3. In addition, the
ED-based approach involves an expectation-maximization (EM) iterative procedure
while our MMSE-based method is applied straightforward, which makes it a much
more efficient approach. Thus, the execution time of both RSG estimation methods,
programmed in MatLab, was measured on a quad-core CPU with a clock speed of 3.4
GHz as a function of the utterance duration in seconds. This way it was determined
that the time complexity of both methods is linear and the slopes of these curves are
0.008 s/s and 27.208 s/s for the MMSE- and ED-based methods, respectively.
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6.2. Experiments and results

6.2.3 Vector Taylor series feature compensation

Dual-channel vector Taylor series (VTS) feature compensation based on the stacked
(S) formulation presented in Chapter 4 is evaluated by considering the two different ap-
proaches to compute the clean speech partial estimates of Subsection 4.2.3. These two
variants will be referred to as 2-VTSSa and 2-VTSSb , when using the dual-channel MMSE
approach of Eq. (4.35) and the straightforward single-channel strategy of Eq. (4.37),
respectively. As will be seen, this latter strategy leads to better performance. Because
of this, the alternative posterior computation scheme based on modeling the condi-
tional (C) dependence of the noisy secondary channel given the primary one is only
tested in combination with the clean speech partial estimates coming from (4.37). We
will refer to this scheme as 2-VTSCb . In addition to these dual-channel VTS techniques,
for convenience as well as for comparison purposes, the results of DSW-(U+Eq)MMSE
are again shown as this was the dual-channel power spectrum enhancement method
exhibiting the best performance in the previous subsection. Furthermore, the AFE
[3, 149] results are presented as a reference once again along with those obtained from
applying a single-channel VTS feature compensation algorithm [137, 138] on the pri-
mary channel. For the single-channel VTS compensation, the two types of clean speech
partial estimation described in Subsection 4.2.3 were considered as well. The corre-
sponding experiments are labeled as 1-VTSa (where y1 is employed instead of y) and
1-VTSb [159]. For a fair comparison, in these experiments the required hyperparam-
eters µn1 and Σn1 as well as the clean speech GMM were obtained as explained at
the end of Subsection 4.2.2 and down below, respectively. Finally, as in the previous
subsection, an ASR system employing noisy speech features from the primary channel
after mean subtraction is used as baseline.

We must recall that, once again, the primary sensor located at the bottom of the
dual-microphone smartphone is identified with the primary channel in the AURORA2-
2C-CT/FT corpora. On the other hand, MVDR beamforming is again applied over
all the six microphones in the tablet to generate the virtual primary channel for the
CHiME-3 database.

The GMM defined in (4.3) to describe the clean speech statistics at the primary
channel is comprised of K = 256 multivariate Gaussian components with diagonal co-
variance matrices. A GMM is computed for the AURORA2-2C-CT/FT databases by
performing the EM algorithm on the same dataset as the one used for clean acoustic
model training in those databases. Besides this, by also employing the EM algorithm,
two additional GMMs are generated for the CHiME-3 corpus: one from the 399 real
clean training utterances recorded in the booth and another from the 7138 clean ut-
terances used to define the simulated training dataset. This way, specific GMMs are
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6. Experimental Evaluation

available to be used with either real or simulated data to partially overcome the mis-
match between both types of data. Furthermore, it must be noticed that the real data
GMM is trained from the virtual primary channel computed by means of beamforming
from those 399 real clean training utterances.

The parameters of the PDF p(a21), µa21 and Σa21 , are a priori computed for the
AURORA2-2C-CT and AURORA2-2C-FT databases (separately), and the CHiME-3
corpus. Furthermore, in the case of CHiME-3, such parameters are obtained for the
simulated and real cases independently. This is again convenient due to the mismatch
between the simulated and real data. In this work we assume that p(a21) follows a
stationary distribution. In this way, we consider that a21 at every time frame t is a
realization of the variable. The mean vector µa21 and the covariance matrix Σa21 are
estimated as the sample mean and sample covariance, respectively, from a21 samples.
Moreover, we assume independence across frequency bins for a21 and, hence, a diagonal
covariance matrix Σa21 is used. For all the AURORA2-2C-CT/FT and CHiME-3
corpora we obtain a21 samples from their corresponding development datasets as a21 =
x2 − x1 (see Eq. (4.2)).

Finally, as indicated in Table 6.4, we consider that the first and lastM = 20 frames
of every utterance contain only noise energy. This is used to compute the required
noise statistics (i.e. µni , Σni (i = 1, 2) and Σn12) as described in detail in Subsection
4.2.2.

6.2.3.1 AURORA2-2C-CT/FT results

Tables 6.17 and 6.18 show the word accuracy results achieved on the AURORA2-
2C-CT database (close-talk) when clean and multi-style acoustic models are used,
respectively. Results are averaged across all types of noise in each test set as well as
broken down by SNR. Similarly, Tables 6.19 and 6.20 list the results obtained when
clean and multi-style acoustic models are employed, respectively, with the AURORA2-
2C-FT corpus (far-talk). Again, as expected, due to the minor mismatch between
training and test data, the use of multi-style instead of clean acoustic models leads
to better ASR accuracy results. Likewise, the results show that the approach for
clean speech partial estimate computation that only uses the information from the
primary channel, VTSb, provides better accuracy than VTSa. Additionally, in all
cases, the dual-channel VTS compensation approach (either the stacked version or the
alternative 2-VTSC) outperforms on average the single-channel one. This is expected
since the former can exploit the spatial properties of speech and noise signals by means
of the relative acoustic path (RAP) vector a21 and the spatial covariance matrix of
noise Σn. These parameters are directly involved in the definition of the noisy speech
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 44.31 70.63 87.71 94.93 97.33 98.53 99.24 82.24 14.61

AFE B 27.31 60.29 82.61 92.67 96.58 98.13 99.24 76.27 16.78
Avg. 35.81 65.46 85.16 93.80 96.96 98.33 99.24 79.25 15.69

A 39.46 67.07 87.28 95.28 97.42 98.44 99.02 80.83 13.20
DSW-(U+Eq)MMSE B 24.00 49.31 80.22 92.72 97.01 98.19 99.02 73.58 14.09

Avg. 31.73 58.19 83.75 94.00 97.22 98.32 99.02 77.20 13.64
A 51.95 77.17 91.31 96.04 97.85 98.61 99.09 85.49 17.86

1-VTSa B 34.17 66.55 86.79 94.42 97.53 98.39 99.09 79.64 20.15
Avg. 43.06 71.86 89.05 95.23 97.69 98.50 99.09 82.57 19.01

A 58.66 81.97 93.25 96.79 98.07 98.64 99.04 87.90 20.27
2-VTSSa B 42.81 74.30 90.22 95.84 97.99 98.44 99.04 83.27 23.78

Avg. 50.74 78.14 91.74 96.32 98.03 98.54 99.04 85.59 22.03
A 53.09 77.89 92.24 96.36 97.86 98.59 99.09 86.01 18.38

1-VTSb B 35.41 67.61 87.13 94.51 97.55 98.38 99.09 80.10 20.61
Avg. 44.25 72.75 89.69 95.44 97.71 98.49 99.09 83.06 19.50

A 59.10 82.52 93.48 97.14 98.14 98.72 99.04 88.18 20.55
2-VTSSb B 43.61 74.14 90.08 95.77 98.04 98.49 99.04 83.36 23.87

Avg. 51.36 78.33 91.78 96.46 98.09 98.61 99.04 85.77 22.21
A 60.46 83.09 93.49 97.19 98.25 98.80 99.09 88.55 20.92

2-VTSCb B 45.99 75.09 89.77 95.72 98.03 98.51 99.09 83.85 24.36
Avg. 53.23 79.09 91.63 96.46 98.14 98.66 99.09 86.20 22.64

Table 6.17: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our VTS feature compensation proposals and comparison
techniques evaluated on the AURORA2-2C-CT (close-talk) database when using
clean acoustic models.

PDFs p(y) and p(y2|y1), determining more accurately the importance of each clean
speech partial estimate in the final estimation of (4.4) from either (4.23) or (4.24) in
the case of the alternative approach 2-VTSC .

As can be seen, 2-VTSCb is, on average, our best VTS approach under both close-
and far-talk conditions as well as by employing either clean or multi-style acoustic
models. Moreover, in all cases and on average, 2-VTSCb obtains the best performance
at the SNRs of -5 dB and 0 dB, making it a suitable approach for challenging low-SNR
environments (as those where mobile devices may be used). While 2-VTSS strongly
outperforms 1-VTS, 2-VTSCb is clearly superior to 2-VTSSb as well. We should recall
that a main feature of 2-VTSS is that the secondary channel is treated in a paral-
lel manner to the primary one, using equivalent distortion models. Nevertheless, we
determined that the relation between the secondary noisy observation and the clean
speech is more uncertain than that of the primary channel since clean speech is easily
masked by noise at the secondary channel. Thus, to decrease the influence of the clean
speech variable, 2-VTSC conditions that distortion model at the secondary channel to
the certain noisy observation from the primary channel since both channels are heavily
correlated. As a consequence, 2-VTSC is a more robust estimator than 2-VTSS, which
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 57.36 82.98 94.13 97.08 98.38 98.82 99.07 88.13 3.06

AFE B 39.06 73.74 90.35 95.99 97.83 98.49 99.07 82.58 6.29
Avg. 48.21 78.36 92.24 96.54 98.11 98.66 99.07 85.35 4.67

A 65.02 88.15 95.84 97.88 98.43 98.60 98.65 90.65 5.58
DSW-(U+Eq)MMSE B 42.87 76.50 92.24 96.62 98.15 98.58 98.65 84.16 7.87

Avg. 53.95 82.33 94.04 97.25 98.29 98.59 98.65 87.41 6.73
A 54.83 79.82 93.07 96.42 97.95 98.37 98.84 86.74 1.67

1-VTSa B 35.74 69.62 89.09 95.51 97.58 98.28 98.84 80.97 4.68
Avg. 45.29 74.72 91.08 95.97 97.77 98.33 98.84 83.86 3.18

A 62.19 85.31 94.81 97.14 98.32 98.54 98.73 89.39 4.32
2-VTSSa B 45.69 77.56 92.36 96.57 98.22 98.43 98.73 84.81 8.52

Avg. 53.94 81.44 93.59 96.86 98.27 98.49 98.73 87.10 6.42
A 57.17 80.76 93.00 96.78 98.20 98.58 98.79 87.42 2.35

1-VTSb B 38.79 71.37 89.43 95.22 97.62 98.39 98.79 81.80 5.51
Avg. 47.98 76.07 91.22 96.00 97.91 98.49 98.79 84.61 3.93

A 63.65 85.44 94.71 97.19 98.40 98.66 98.82 89.68 4.61
2-VTSSb B 47.51 77.93 92.18 96.51 98.13 98.56 98.82 85.14 8.85

Avg. 55.58 81.69 93.45 96.85 98.27 98.61 98.82 87.41 6.73
A 65.31 86.07 94.98 97.32 98.42 98.84 98.88 90.16 5.09

2-VTSCb B 49.57 78.62 92.19 96.41 98.09 98.61 98.88 85.58 9.29
Avg. 57.44 82.35 93.59 96.87 98.26 98.73 98.88 87.87 7.19

Table 6.18: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our VTS feature compensation proposals and comparison
techniques evaluated on the AURORA2-2C-CT (close-talk) database when using
multi-style acoustic models.

is confirmed by the presented word recognition results.
While there are small differences in terms of WAcc between dual-channel VTS fea-

ture compensation and DSW-(U+Eq)MMSE when employing multi-style acoustic mod-
els, this is not the case when using clean acoustic models. In the latter scenario, as can
be seen from the tables, the performance of the dual-channel VTS feature compensa-
tion regarding our best power spectrum enhancement contribution is far greater. This
indicates that while both approaches have the ability to reduce the mismatch gener-
ated by the acoustic noise, VTS feature compensation is much more able to precisely
estimate the actual clean speech features. Anyway, it must be taken into account that
both types of approaches work in different domains (i.e. linear power spectral and
log-Mel domains), so that they are not incompatible and, therefore, they can be jointly
applied in synergy as presented later in this subsection.

6.2.3.2 CHiME-3 results

The WER results achieved on the CHiME-3 database by single-channel VTS feature
compensation and the methods selected for comparison are shown in Tables 6.21 and
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 26.01 43.52 66.77 88.41 96.23 98.18 99.10 69.85 -
Baseline B 16.24 26.54 51.14 81.06 94.43 97.81 99.10 61.20 -

Avg. 21.13 35.03 58.96 84.74 95.33 98.00 99.10 65.53 -
A 48.36 72.71 87.95 95.39 97.61 98.29 99.24 83.39 13.54

AFE B 30.38 63.40 85.37 93.79 96.99 98.38 99.24 78.05 16.85
Avg. 39.37 68.06 86.66 94.59 97.30 98.34 99.24 80.72 15.19

A 39.20 62.12 81.42 93.17 96.79 98.16 98.99 78.48 8.63
DSW-(U+Eq)MMSE B 22.17 43.83 73.73 90.55 95.84 97.86 98.99 70.66 9.46

Avg. 30.69 52.98 77.58 91.86 96.32 98.01 98.99 74.57 9.04
A 53.81 77.83 91.42 96.62 98.12 98.55 99.09 86.06 16.21

1-VTSa B 36.47 68.53 87.76 95.09 97.41 98.37 99.09 80.61 19.41
Avg. 45.14 73.18 89.59 95.86 97.77 98.46 99.09 83.34 17.81

A 58.31 80.46 92.74 96.86 98.23 98.64 99.04 87.54 17.69
2-VTSSa B 40.29 72.17 88.53 95.78 97.60 98.46 99.04 82.14 20.94

Avg. 49.30 76.32 90.64 96.32 97.92 98.55 99.04 84.84 19.31
A 54.97 78.77 91.52 96.71 98.26 98.67 99.09 86.48 16.63

1-VTSb B 38.12 69.95 88.00 95.34 97.57 98.27 99.09 81.21 20.01
Avg. 46.55 74.36 89.76 96.03 97.92 98.47 99.09 83.85 18.32

A 58.91 81.34 92.86 97.08 98.31 98.70 99.05 87.87 18.02
2-VTSSb B 41.95 72.92 88.84 95.76 97.67 98.34 99.05 82.58 21.38

Avg. 50.43 77.13 90.85 96.42 97.99 98.52 99.05 85.23 19.70
A 61.25 82.66 93.46 97.32 98.49 98.81 99.11 88.67 18.82

2-VTSCb B 43.71 74.52 89.49 96.09 97.74 98.53 99.11 83.35 22.15
Avg. 52.48 78.59 91.48 96.71 98.12 98.67 99.11 86.01 20.48

Table 6.19: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our VTS feature compensation proposals and comparison
techniques evaluated on the AURORA2-2C-FT (far-talk) database when using
clean acoustic models.

6.22 when considering GMMs and DNNs for acoustic modeling, respectively. These
results, obtained from the real data evaluation set when employing multi-style acoustic
models, are broken down by type of noise. Once again, as expected, similar trends are
achieved by employing GMMs and DNNs for acoustic modeling. Then, it should be
reminded that all AFE, DSW-(U+Eq)MMSE and 1-VTSb are applied using the virtual
primary channel generated by means of beamforming, i.e. after MVDR (6 ch.). With
this in mind, the first thing that strikes us is that 1-VTSb considerably deteriorates
the results derived from directly using the virtual primary channel without additional
processing. In other words, when testing 1-VTSb under the current conditions, the
WER increases 7.74% and 2.83% with respect to MVDR (6 ch.) for GMM- and DNN-
based acoustic modeling, respectively.

The poor performance of the VTS feature compensation under multi-style acoustic
modeling has already been reported in the literature [53]. In this paper, single-channel
VTS feature compensation yields a drop in performance under this circumstance. Un-
fortunately, while it is evident that VTS feature compensation increases the mismatch
in this scenario, a more precise explanation to this fact is not given. In [53], it is also
reported that VTS feature compensation, which is intended to precisely estimate the
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 49.66 76.86 92.68 97.08 98.06 98.57 98.76 85.49 -
Baseline B 27.18 58.76 86.93 95.32 97.53 98.35 98.76 77.35 -

Avg. 38.42 67.81 89.81 96.20 97.80 98.46 98.76 81.42 -
A 59.61 83.33 94.03 97.52 98.41 98.69 99.06 88.60 3.11

AFE B 41.66 75.59 91.05 96.18 98.02 98.60 99.06 83.52 6.17
Avg. 50.64 79.46 92.54 96.85 98.22 98.65 99.06 86.06 4.64

A 65.11 86.19 95.00 97.59 98.27 98.70 98.57 90.14 4.65
DSW-(U+Eq)MMSE B 41.10 73.44 91.16 96.27 97.76 98.55 98.57 83.05 5.70

Avg. 53.11 79.82 93.08 96.93 98.02 98.63 98.57 86.60 5.18
A 56.16 80.18 92.95 97.07 98.21 98.54 98.84 87.19 1.70

1-VTSa B 39.11 72.01 89.51 95.72 97.74 98.50 98.84 82.10 4.75
Avg. 47.64 76.10 91.23 96.40 97.98 98.52 98.84 84.65 3.23

A 61.44 83.21 93.95 97.37 98.32 98.50 98.78 88.80 3.31
2-VTSSa B 43.66 75.49 90.73 96.35 97.87 98.43 98.78 83.76 6.41

Avg. 52.55 79.35 92.34 96.86 98.10 98.47 98.78 86.28 4.86
A 58.94 81.92 92.96 97.11 98.22 98.57 98.88 87.95 2.46

1-VTSb B 42.98 74.38 90.42 95.89 97.83 98.48 98.88 83.33 5.98
Avg. 50.96 78.15 91.69 96.50 98.03 98.53 98.88 85.64 4.22

A 62.85 84.10 93.81 97.40 98.28 98.55 98.82 89.17 3.68
2-VTSSb B 46.48 76.78 91.22 96.22 97.94 98.53 98.82 84.53 7.18

Avg. 54.67 80.44 92.52 96.81 98.11 98.54 98.82 86.85 5.43
A 65.57 85.33 94.45 97.67 98.40 98.67 98.87 90.02 4.53

2-VTSCb B 49.47 78.23 91.96 96.48 97.95 98.63 98.87 85.45 8.10
Avg. 57.52 81.78 93.21 97.08 98.18 98.65 98.87 87.74 6.32

Table 6.20: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our VTS feature compensation proposals and comparison
techniques evaluated on the AURORA2-2C-FT (far-talk) database when using
multi-style acoustic models.

Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 49.64 32.72 27.30 21.03 32.67 -

AFE 35.91 16.96 17.84 15.75 21.62 11.05
MVDR (6 ch.) 32.90 16.83 17.40 14.72 20.46 12.21

DSW-(U+Eq)MMSE 29.07 12.63 15.64 13.39 17.68 14.99
1-VTSb 38.12 28.60 26.66 19.42 28.20 4.47

Table 6.21: Word error rate results (in terms of percentage and per type of
noise) for VTS feature compensation and comparison techniques evaluated with
CHiME-3 when multi-style acoustic models are employed. Results are from the
real data evaluation set when considering GMMs for acoustic modeling.
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6.2. Experiments and results

Type of noise
Method BUS CAF PED STR Average Rel. improv.
Baseline 51.13 35.06 28.31 21.48 34.00 -

AFE 31.00 14.77 16.69 14.10 19.14 14.86
MVDR (6 ch.) 29.50 14.79 16.37 13.88 18.64 15.36

DSW-(U+Eq)MMSE 26.96 11.88 15.06 13.02 16.73 17.27
1-VTSb 29.44 19.93 20.98 15.54 21.47 12.53

Table 6.22: Word error rate results (in terms of percentage and per type of
noise) for VTS feature compensation and comparison techniques evaluated with
CHiME-3 when multi-style acoustic models are employed. Results are from the
real data evaluation set when considering DNNs for acoustic modeling.

actual clean speech features as aforementioned, improves the baseline when considering
clean acoustic models. This is our experience with CHiME-3 as well. In this regard,
it is worth to note that the following average WER results are achieved on the real
data evaluation set when using clean GMM-based acoustic models: 80.17% as baseline,
46.03% for MVDR (6 ch.) and 40.37% for 1-VTSb. However, 40.37% WER is still too
high in comparison with a simple multi-condition training (32.67% WER). In addition,
this leads us to the conclusion that multi-condition training is an essential element to
be integrated in an ASR system whenever possible in order to provide a good start-
ing point in terms of robustness against noise. Thus, while VTS feature compensation
provides improvements on AURORA2-2C-CT/FT when employing multi-style acoustic
models, this is not the case with CHiME-3 (medium-vocabulary task and real data).
Finally, we must notice that no additional VTS feature compensation results (either
dual- or single-channel) have been included in Tables 6.21 and 6.22 since the discussed
poor performance is the norm.

In conclusion, our power spectrum enhancement contribution DSW-(U+Eq)MMSE
behaving as a post-filter of MVDR beamforming is still the best approach among the
evaluated to provide robustness in CHiME-3.

6.2.3.3 Power spectrum enhancement as pre-processing

Here, our power spectrum enhancement contributions and VTS feature compensation
are jointly applied in synergy, working both types of approaches in different domains
(i.e. power spectral and log-Mel domains). The key idea is as follows: since the
higher the SNR of the speech data, the higher the recognition accuracy provided by
VTS feature compensation, power spectrum enhancement can be used to increase the
starting SNR of the noisy speech. In other words, power spectrum enhancement can
be employed as pre-processing before VTS feature compensation to further improve
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6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 53.09 77.89 92.24 96.36 97.86 98.59 99.09 86.01 18.38

1-VTSb B 35.41 67.61 87.13 94.51 97.55 98.38 99.09 80.10 20.61
Avg. 44.25 72.75 89.69 95.44 97.71 98.49 99.09 83.06 19.50

A 63.24 84.85 94.18 97.21 98.24 98.62 98.78 89.39 21.76
DCSS+(1-VTSb) B 49.26 77.23 90.55 95.87 98.01 98.48 98.78 84.90 25.41

Avg. 56.25 81.04 92.37 96.54 98.13 98.55 98.78 87.15 23.59
A 63.18 84.89 94.18 97.25 98.30 98.68 98.94 89.41 21.78

(P-MVDR)+(1-VTSb) B 49.10 77.20 90.58 95.85 98.02 98.53 98.94 84.88 25.39
Avg. 56.14 81.05 92.38 96.55 98.16 98.61 98.94 87.15 23.59

A 66.01 85.03 94.38 97.04 98.16 98.74 99.01 89.89 22.26
(DSW-(U+Eq)MMSE)+(1-VTSb) B 53.52 78.91 91.33 95.89 97.94 98.45 99.01 86.01 26.52

Avg. 59.77 81.97 92.86 96.47 98.05 98.60 99.01 87.95 24.39
A 60.46 83.09 93.49 97.19 98.25 98.80 99.09 88.55 20.92

2-VTSCb B 45.99 75.09 89.77 95.72 98.03 98.51 99.09 83.85 24.36
Avg. 53.23 79.09 91.63 96.46 98.14 98.66 99.09 86.20 22.64

A 65.51 86.07 94.68 97.48 98.35 98.81 98.85 90.15 22.52
DCSS+(2-VTSCb ) B 51.10 78.22 91.48 96.32 98.11 98.54 98.85 85.63 26.14

Avg. 58.31 82.15 93.08 96.90 98.23 98.68 98.85 87.89 24.33
A 65.39 86.12 94.72 97.56 98.41 98.85 98.96 90.18 22.55

(P-MVDR)+(2-VTSCb ) B 51.29 78.25 91.41 96.37 98.18 98.61 98.96 85.69 26.20
Avg. 58.34 82.19 93.07 96.97 98.30 98.73 98.96 87.94 24.38

A 68.93 86.91 94.69 97.26 98.27 98.83 99.00 90.82 23.19
(DSW-(U+Eq)MMSE)+(2-VTSCb ) B 56.65 80.20 91.92 96.03 98.01 98.43 99.00 86.87 27.38

Avg. 62.79 83.56 93.31 96.65 98.14 98.63 99.00 88.85 25.29

Table 6.23: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals as pre-processing
of VTS evaluated on the AURORA2-2C-CT (close-talk) database when using
clean acoustic models.

the recognizer performance by removing the remaining residual noise after the first
enhancement.

Tables 6.23 (under clean acoustic modeling) and 6.24 (under multi-style acous-
tic modeling) report the word accuracy results obtained on the AURORA2-2C-CT
database (close-talk) when DCSS, P-MVDR and DSW-(U+Eq)MMSE are used as pre-
processing techniques for 1-VTSb and 2-VTSCb . As usual, results are averaged across
all types of noise in each test set as well as broken down by SNR. 1-VTSb and 2-
VTSCb were chosen for this combined approach as they showed above the best single-
and dual-channel VTS feature compensation performance, respectively. Analogously,
Tables 6.25 and 6.26 list the corresponding joint results when employing clean and
multi-style acoustic models, respectively, on the AURORA2-2C-FT corpus (far-talk).
It should be remarked that, on the one hand, the enhanced primary spectrum from
DCSS, P-MVDR or DSW-(U+Eq)MMSE is used as input for 1-VTSb. In addition, the
input for 2-VTSCb consists of this enhanced primary spectrum along with the original
noisy spectrum from the secondary channel. This time, results for CHiME-3 are not
included since, as it has been previously discussed, VTS feature compensation yields a
drop in performance on that task.
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6.2. Experiments and results

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 57.17 80.76 93.00 96.78 98.20 98.58 98.79 87.42 2.35

1-VTSb B 38.79 71.37 89.43 95.22 97.62 98.39 98.79 81.80 5.51
Avg. 47.98 76.07 91.22 96.00 97.91 98.49 98.79 84.61 3.93

A 68.11 87.57 95.36 97.50 98.35 98.64 98.73 90.92 5.85
DCSS+(1-VTSb) B 55.10 80.57 92.73 96.77 98.13 98.44 98.73 86.96 10.67

Avg. 61.61 84.07 94.05 97.14 98.24 98.54 98.73 88.94 8.26
A 68.19 87.47 95.37 97.46 98.34 98.64 98.82 90.91 5.84

(P-MVDR)+(1-VTSb) B 54.96 80.83 92.83 96.70 98.21 98.50 98.82 87.01 10.72
Avg. 61.58 84.15 94.10 97.08 98.28 98.57 98.82 88.96 8.28

A 70.94 88.16 95.75 97.48 98.28 98.60 98.72 91.54 6.47
(DSW-(U+Eq)MMSE)+(1-VTSb) B 58.22 82.48 93.23 96.69 97.98 98.39 98.72 87.83 11.54

Avg. 64.58 85.32 94.49 97.09 98.13 98.50 98.72 89.69 9.01
A 65.31 86.07 94.98 97.32 98.42 98.84 98.88 90.16 5.09

2-VTSCb B 49.57 78.62 92.19 96.41 98.09 98.61 98.88 85.58 9.29
Avg. 57.44 82.35 93.59 96.87 98.26 98.73 98.88 87.87 7.19

A 71.32 89.06 96.04 97.70 98.43 98.67 98.71 91.87 6.80
DCSS+(2-VTSCb ) B 58.15 82.15 93.42 97.04 98.32 98.47 98.71 87.93 11.64

Avg. 64.74 85.61 94.73 97.37 98.38 98.57 98.71 89.90 9.22
A 71.22 88.89 95.79 97.75 98.45 98.68 98.83 91.80 6.73

(P-MVDR)+(2-VTSCb ) B 57.86 81.97 93.17 97.01 98.27 98.51 98.83 87.80 11.51
Avg. 64.54 85.43 94.48 97.38 98.36 98.60 98.83 89.80 9.12

A 72.62 89.17 95.94 97.68 98.27 98.60 98.67 92.05 6.98
(DSW-(U+Eq)MMSE)+(2-VTSCb ) B 61.22 83.42 93.83 96.81 98.12 98.42 98.67 88.64 12.35

Avg. 66.92 86.30 94.89 97.25 98.20 98.51 98.67 90.35 9.67

Table 6.24: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals as pre-processing
of VTS evaluated on the AURORA2-2C-CT (close-talk) database when using
multi-style acoustic models.

While 2-VTSCb clearly outperforms 1-VTSb when they are applied in isolation, dif-
ferences become smaller when they are combined with DCSS, P-MVDR and DSW-
(U+Eq)MMSE, as can be observed from the corresponding tables. In this sense, it must
be noted that when DCSS, P-MVDR or DSW-(U+Eq)MMSE is combined with 1-VTSb,
the same spatial information as in the case of 2-VTSCb is being used, since all DCSS, P-
MVDR and DSW-(U+Eq)MMSE already exploit the relative acoustic path information
(through the term A21(f, t)) and noise spatial correlations. Therefore, it is reasonable
to expect small improvements when these are combined with 2-VTSCb . Nevertheless,
as can be seen, 2-VTSCb is still better able to improve on average DCSS, P-MVDR
and DSW-(U+Eq)MMSE than 1-VTSb, with either clean or multi-style acoustic models
under both close- and far-talk conditions. Additionally, while 2-VTSCb exhibits a very
good performance over the whole SNR range considered (when applied either isolatedly
or jointly with DCSS/P-MVDR/DSW-(U+Eq)MMSE), it particularly stands out at low
SNRs. This is a remarkable result, since, as we know, mobile devices are often used in
highly noisy environments such as crowded streets or other public venues.

On average, DSW-(U+Eq)MMSE and P-MVDR are the best pre-processing tech-
niques for 2-VTSCb in close- and far-talk conditions, respectively. Indeed, these are the
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6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 26.01 43.52 66.77 88.41 96.23 98.18 99.10 69.85 -
Baseline B 16.24 26.54 51.14 81.06 94.43 97.81 99.10 61.20 -

Avg. 21.13 35.03 58.96 84.74 95.33 98.00 99.10 65.53 -
A 54.97 78.77 91.52 96.71 98.26 98.67 99.09 86.48 16.63

1-VTSb B 38.12 69.95 88.00 95.34 97.57 98.27 99.09 81.21 20.01
Avg. 46.55 74.36 89.76 96.03 97.92 98.47 99.09 83.85 18.32

A 62.36 83.38 92.89 96.86 98.20 98.53 98.79 88.70 18.85
DCSS+(1-VTSb) B 44.11 73.33 89.56 95.60 97.45 98.36 98.79 83.07 21.87

Avg. 53.24 78.36 91.23 96.23 97.83 98.45 98.79 85.89 20.36
A 63.08 83.89 93.57 97.14 98.38 98.65 98.99 89.12 19.27

(P-MVDR)+(1-VTSb) B 44.99 75.22 90.27 96.26 97.65 98.44 98.99 83.81 22.61
Avg. 54.04 79.56 91.92 96.70 98.02 98.55 98.99 86.47 20.94

A 62.64 82.20 92.51 96.77 97.98 98.50 98.94 88.43 18.58
(DSW-(U+Eq)MMSE)+(1-VTSb) B 46.77 73.41 89.22 95.81 97.31 98.26 98.94 83.46 22.26

Avg. 54.71 77.81 90.87 96.29 97.65 98.38 98.94 85.95 20.42
A 61.25 82.66 93.46 97.32 98.49 98.81 99.11 88.67 18.82

2-VTSCb B 43.71 74.52 89.49 96.09 97.74 98.53 99.11 83.35 22.15
Avg. 52.48 78.59 91.48 96.71 98.12 98.67 99.11 86.01 20.48

A 62.98 83.67 93.27 96.98 98.04 98.50 98.70 88.91 19.06
DCSS+(2-VTSCb ) B 44.00 73.31 89.62 95.83 97.42 98.19 98.70 83.06 21.86

Avg. 53.49 78.49 91.45 96.41 97.73 98.35 98.70 85.99 20.46
A 64.66 84.74 93.92 97.31 98.34 98.63 98.90 89.60 19.75

(P-MVDR)+(2-VTSCb ) B 46.97 76.33 90.69 96.24 97.73 98.44 98.90 84.40 23.20
Avg. 55.82 80.54 92.31 96.78 98.04 98.54 98.90 87.00 21.47

A 64.20 83.40 92.71 96.92 97.97 98.47 98.91 88.95 19.10
(DSW-(U+Eq)MMSE)+(2-VTSCb ) B 47.98 73.70 89.46 95.70 97.37 98.25 98.91 83.74 22.54

Avg. 56.09 78.55 91.09 96.31 97.67 98.36 98.91 86.35 20.82

Table 6.25: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals as pre-processing
of VTS evaluated on the AURORA2-2C-FT (far-talk) database when using clean
acoustic models.

best word accuracy results obtained so far on the AURORA2-2C-CT/FT databases
thanks to the synergy generated by the combination of two different dual-channel
noise-robust ASR approaches.

6.2.4 Deep learning-based techniques

The dual-channel deep learning-based techniques described in Chapter 5 are evaluated
on the AURORA2-2C-CT corpus hereunder. While these deep learning-based methods
could also be applied to a far-talk scenario, word accuracy results are solely presented
for the close-talk case as these methods specifically exploit the power level differences
(PLDs) between the two available channels. Hence, the strengths and potential of these
deep learning-based techniques can really be appreciated under a close-talk scenario.
As it was mentioned in Chapter 5, the quality of the missing-data masks estimated
by means of a DNN is tested in terms of word recognition accuracy when employed
by a spectral reconstruction technique (namely truncated-Gaussian based imputation,
TGI [65]). Similarly, the quality of the noise estimates obtained from using a DNN
is evaluated when they are applied to single-channel VTS feature compensation, i.e.
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6.2. Experiments and results

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 49.66 76.86 92.68 97.08 98.06 98.57 98.76 85.49 -
Baseline B 27.18 58.76 86.93 95.32 97.53 98.35 98.76 77.35 -

Avg. 38.42 67.81 89.81 96.20 97.80 98.46 98.76 81.42 -
A 58.94 81.92 92.96 97.11 98.22 98.57 98.88 87.95 2.46

1-VTSb B 42.98 74.38 90.42 95.89 97.83 98.48 98.88 83.33 5.98
Avg. 50.96 78.15 91.69 96.50 98.03 98.53 98.88 85.64 4.22

A 68.45 87.18 94.71 97.47 98.24 98.54 98.66 90.77 5.28
DCSS+(1-VTSb) B 52.52 79.83 92.12 96.58 97.71 98.43 98.66 86.20 8.85

Avg. 60.49 83.51 93.42 97.03 97.98 98.49 98.66 88.49 7.07
A 66.76 85.78 94.48 97.59 98.21 98.58 98.74 90.23 4.74

(P-MVDR)+(1-VTSb) B 51.09 79.27 91.86 96.50 97.96 98.41 98.74 85.85 8.50
Avg. 58.93 82.53 93.17 97.05 98.09 98.50 98.74 88.04 6.62

A 67.32 86.32 94.61 97.40 98.06 98.50 98.77 90.37 4.88
(DSW-(U+Eq)MMSE)+(1-VTSb) B 52.87 79.16 91.92 96.24 97.96 98.34 98.77 86.08 8.73

Avg. 60.10 82.74 93.27 96.82 98.01 98.42 98.77 88.23 6.81
A 65.57 85.33 94.45 97.67 98.40 98.67 98.87 90.02 4.53

2-VTSCb B 49.47 78.23 91.96 96.48 97.95 98.63 98.87 85.45 8.10
Avg. 57.52 81.78 93.21 97.08 98.18 98.65 98.87 87.74 6.32

A 69.88 87.70 95.08 97.65 98.12 98.47 98.54 91.15 5.66
DCSS+(2-VTSCb ) B 53.80 79.98 92.51 96.66 97.89 98.37 98.54 86.54 9.19

Avg. 61.84 83.84 93.80 97.16 98.01 98.42 98.54 88.85 7.43
A 69.77 87.26 94.89 97.62 98.25 98.56 98.65 91.06 5.57

(P-MVDR)+(2-VTSCb ) B 53.49 80.95 92.71 96.84 97.95 98.54 98.65 86.75 9.40
Avg. 61.63 84.11 93.80 97.23 98.10 98.55 98.65 88.91 7.49

A 68.59 87.27 94.62 97.47 98.01 98.47 98.73 90.74 5.25
(DSW-(U+Eq)MMSE)+(2-VTSCb ) B 54.35 79.24 92.10 96.24 97.78 98.35 98.73 86.34 8.99

Avg. 61.47 83.26 93.36 96.86 97.90 98.41 98.73 88.54 7.12

Table 6.26: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our power spectrum enhancement proposals as pre-processing
of VTS evaluated on the AURORA2-2C-FT (far-talk) database when using multi-
style acoustic models.

1-VTSb. To do this, as before, the primary channel in the AURORA2-2C-CT database
is identified as the primary microphone of the smartphone, while the sensor at its rear
is set as the secondary channel.

For both types of approaches and as a reference, we show once again the results
obtained by the ETSI AFE [3]. In addition, the baseline, corresponding to the results
obtained when the noisy speech features from the primary channel are employed, is
again presented.

6.2.4.1 Missing-data masks for spectral reconstruction

The binary masks estimated by our DNN-based proposal are compared with those
calculated by thresholding an estimation of the a priori SNR of the primary channel
(T-SNR) and then used by the TGI algorithm [65]. The a priori SNR for each T-F bin,
ξ1(f, t), is approximated by using the following maximum likelihood (ML) estimator
[43]:

ξ̂1(f, t) = max
(
|Y1(f, t)|2

|N̂1(f, t)|2
− 1, 0

)
, (6.4)
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6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 44.31 70.63 87.71 94.93 97.33 98.53 99.24 82.24 14.61

AFE B 27.31 60.29 82.61 92.67 96.58 98.13 99.24 76.27 16.78
Avg. 35.81 65.46 85.16 93.80 96.96 98.33 99.24 79.25 15.69

A 84.79 95.43 98.03 98.73 98.95 99.07 99.13 95.83 28.20
TGI+Oracle B 74.15 91.11 96.77 98.38 98.80 99.06 99.13 93.05 33.56

Avg. 79.47 93.27 97.40 98.56 98.88 99.07 99.13 94.44 30.88
A 44.22 65.92 83.96 92.62 96.24 97.75 98.88 80.12 12.49

TGI+(T-SNR) B 25.15 54.37 77.11 89.40 94.74 97.14 98.88 72.99 13.50
Avg. 34.69 60.15 80.54 91.01 95.49 97.45 98.88 76.56 13.00

A 54.80 79.42 92.67 97.08 98.45 98.93 99.13 86.89 19.26
TGI+DNN B 32.29 60.24 84.12 94.38 97.54 98.38 99.13 77.83 18.34

Avg. 43.55 69.83 88.40 95.73 98.00 98.66 99.13 82.36 18.80

Table 6.27: Word accuracy results (in terms of percentage and for different SNR
values) obtained for TGI+DNN and comparison techniques evaluated on the
AURORA2-2C-CT (close-talk) database when using clean acoustic models.

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 57.36 82.98 94.13 97.08 98.38 98.82 99.07 88.13 3.06

AFE B 39.06 73.74 90.35 95.99 97.83 98.49 99.07 82.58 6.29
Avg. 48.21 78.36 92.24 96.54 98.11 98.66 99.07 85.35 4.67

A 84.76 95.36 98.20 98.86 99.01 99.03 99.06 95.87 10.80
TGI+Oracle B 72.66 90.59 96.66 98.40 98.86 99.06 99.06 92.71 16.42

Avg. 78.71 92.98 97.43 98.63 98.94 99.05 99.06 94.29 13.61
A 49.44 75.57 90.06 95.32 97.15 97.76 98.32 84.22 -0.85

TGI+(T-SNR) B 28.75 62.09 84.81 93.56 96.24 97.40 98.32 77.14 0.85
Avg. 39.10 68.83 87.44 94.44 96.70 97.58 98.32 80.68 0.00

A 57.89 82.18 94.12 97.50 98.46 98.85 98.61 88.17 3.10
TGI+DNN B 35.75 65.88 87.15 95.02 97.41 98.02 98.61 79.87 3.58

Avg. 46.82 74.03 90.64 96.26 97.94 98.44 98.61 84.02 3.34

Table 6.28: Word accuracy results (in terms of percentage and for different SNR
values) obtained for TGI+DNN and comparison techniques evaluated on the
AURORA2-2C-CT (close-talk) database when using multi-style acoustic models.
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6.2. Experiments and results

where |Y1(f, t)|2 is the filterbank output power spectrum of the noisy speech coming
from the primary channel at frequency bin f and time frame t, being |N̂1(f, t)|2 the
corresponding noise power spectrum estimate. As in [65], as well as it has been usual
throughout this Thesis, noise estimates are obtained by linear interpolation between
the averages of the first and last M = 20 frames in the log-Mel domain. Finally, each
T-F bin of the mask, m̂(f, t), is calculated as

m̂(f, t) =
{

1 if 10 log10 ξ̂1(f, t) ≥ γm;
0 otherwise, (6.5)

where γm = 0 dB is the SNR threshold. This value was experimentally chosen by
means of the corresponding development dataset.

TGI with oracle masks (TGI+Oracle) is also evaluated as a reference. It must be
reminded that oracle masks are obtained by a direct comparison between the clean
and noisy utterances using a threshold of ηO = 7 dB signal-to-noise ratio (SNR).
TGI is performed using a 256-component clean speech GMM with diagonal covariance
matrices. GMM training is performed by the EM algorithm on the same dataset
used for clean acoustic model training (so this GMM is the same as the employed for
VTS feature compensation on the AURORA2-2C-CT database). Moreover, it should
be recalled that for all the comparison techniques, only the signals from the primary
channel were used.

The DNN was trained using 19200 sample pairs of input-target vectors. Training
input data consisted of a mixture of samples contaminated with the noises of test
set A (i.e. bus, babble, car and pedestrian street) at several SNRs (-5 dB, 0 dB,
5 dB, 10 dB, 15 dB and 20 dB). Noises of test set B are reserved to evaluate the
generalization ability of the DNN when exposed to unseen noises during the training
phase (namely café, street, bus station and train station). 100 epochs per each RBM
were used during the unsupervised pre-training phase, while 1000 epochs were used
for the backpropagation algorithm. A learning rate of 0.1 was established and the
training dataset was divided into minibatches (small subsets of training data) of 10
samples by following the recommendations in [81]. Preliminary experiments revealed
that increasing L (the number of look-forward and look-backward frames) from zero
to a few units provides a better performance. Finally, L = 2 was chosen (i.e. temporal
window size of 2L + 1 = 5 frames). Thus, the input layer has 230 units or nodes
according to Eq. (5.16), both hidden layers have 460 nodes and the output layer has
M = 23 nodes. The DNN implementation was carried out using Python along with
the library Theano [4].

In Tables 6.27 and 6.28, the word accuracy results achieved on the AURORA2-2C-
CT corpus (close-talk) are detailed for the different test sets and techniques evaluated
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when employing clean and multi-style acoustic models, respectively. Results, which
are averaged across all types of noise in each test set, are broken down by SNR. First
of all, we must take into account that TGI+Oracle is an upper reference, that is,
the best that TGI may perform (from using ideal missing-data masks). Under clean
acoustic modeling, the dual-channel DNN-based system outperforms, on average for
all the SNR values but for the clean case, AFE and TGI+(T-SNR). However, under
multi-style acoustic modeling, while TGI+DNN is clearly superior to TGI+(T-SNR),
the best results are obtained by AFE (excluding TGI+Oracle, of course). In addition,
and according to the results for the test set B, we can observe that the DNN exhibits
some generalization abilities.

As aforementioned, the DNN could exploit temporal correlations by increasing the
frame context through the number of look-forward and look-backward frames, L. The
relative improvements in terms of word accuracy (average) over L = 0 were 1.43%,
3.17% and 3.47% for L values of 1, 2 and 3, respectively, when considering clean
acoustic models. As we experimentally checked, the performance tends to saturate for
L = 2 and greater values. Because of this fact, one can guess that the DNN is mainly
exploiting the PLD between the primary and secondary channels. Since most of the
information required to provide a PLD-based estimate at frame t is close to that frame,
the proposed DNN approach does not benefit of further increasing the length of the
analysis window.

Another issue is that the performance of those methods that try to precisely es-
timate the clean speech features can be severely limited when employing multi-style
acoustic models, as it seemed to be the case of VTS feature compensation and now
TGI. At this respect, while TGI+(T-SNR) significantly improves the baseline under
clean acoustic modeling, that method provides the same average result than a simple
multi-condition training when considering multi-style acoustic models. Furthermore,
as can be seen, TGI+Oracle performs, in absolute terms and on average, even worse
with multi-style than with clean acoustic models. We previously established that multi-
condition training is an essential element to be integrated in an ASR system whenever
possible in order to provide a good starting point in terms of robustness against noise.
On this basis, we can additionally conclude that spectral reconstruction relying on
clean speech GMM models and similar approaches are dead ends for noise-robust ASR
if a competitive performance under real (i.e. complex) conditions is desired.

6.2.4.2 Noise estimates for feature compensation

Taking into account the speech recognition task as well as the different noise conditions
considered in the AURORA2-2C-CT corpus, for the sake of efficiency and to avoid data
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 44.31 70.63 87.71 94.93 97.33 98.53 99.24 82.24 14.61

AFE B 27.31 60.29 82.61 92.67 96.58 98.13 99.24 76.27 16.78
Avg. 35.81 65.46 85.16 93.80 96.96 98.33 99.24 79.25 15.69

A 54.80 79.42 92.67 97.08 98.45 98.93 99.13 86.89 19.26
TGI+DNN B 32.29 60.24 84.12 94.38 97.54 98.38 99.13 77.83 18.34

Avg. 43.55 69.83 88.40 95.73 98.00 98.66 99.13 82.36 18.80
A 41.69 67.21 85.56 93.09 96.28 96.92 97.59 80.13 12.50

DNN1 B 20.72 45.81 73.57 88.56 94.36 96.50 97.59 69.92 10.43
Avg. 31.21 56.51 79.57 90.83 95.32 96.71 97.59 75.03 11.47

A 63.02 85.74 94.53 97.72 98.59 98.94 99.02 89.76 22.13
DNN2 B 40.87 71.09 90.20 96.21 98.17 98.77 99.02 82.55 23.06

Avg. 51.95 78.42 92.37 96.97 98.38 98.86 99.02 86.16 22.60
A 41.93 71.02 90.03 96.62 98.32 98.82 98.83 82.79 15.16

DNNNAT
1 B 22.70 54.18 82.11 93.61 97.37 98.49 98.83 74.74 15.25

Avg. 32.32 62.60 86.07 95.12 97.85 98.66 98.83 78.77 15.21
A 52.85 78.76 92.06 96.70 98.23 98.84 98.60 86.24 18.61

DNNNAT
2 B 33.04 63.17 86.74 94.51 97.34 98.40 98.60 78.87 19.38

Avg. 42.95 70.97 89.40 95.61 97.79 98.62 98.60 82.56 19.00

Table 6.29: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our DNN-based noise estimation approaches in combination
with VTS feature compensation, and comparison techniques, evaluated on the
AURORA2-2C-CT (close-talk) database when using clean acoustic models.

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 57.36 82.98 94.13 97.08 98.38 98.82 99.07 88.13 3.06

AFE B 39.06 73.74 90.35 95.99 97.83 98.49 99.07 82.58 6.29
Avg. 48.21 78.36 92.24 96.54 98.11 98.66 99.07 85.35 4.67

A 57.89 82.18 94.12 97.50 98.46 98.85 98.61 88.17 3.10
TGI+DNN B 35.75 65.88 87.15 95.02 97.41 98.02 98.61 79.87 3.58

Avg. 46.82 74.03 90.64 96.26 97.94 98.44 98.61 84.02 3.34
A 48.14 72.91 89.29 95.19 97.59 98.16 98.49 83.55 -1.52

DNN1 B 24.10 51.93 78.73 91.96 96.04 97.68 98.49 73.41 -2.88
Avg. 36.12 62.42 84.01 93.58 96.82 97.92 98.49 78.48 -2.20

A 67.05 87.95 95.39 97.93 98.60 98.79 98.99 90.95 5.88
DNN2 B 44.37 75.02 91.57 96.84 98.34 98.65 98.99 84.13 7.84

Avg. 55.71 81.49 93.48 97.39 98.47 98.72 98.99 87.54 6.86
A 46.73 75.01 91.91 96.73 98.24 98.63 98.89 84.54 -0.53

DNNNAT
1 B 26.40 60.24 85.33 94.32 97.15 98.29 98.89 76.96 0.67

Avg. 36.57 67.63 88.62 95.53 97.70 98.46 98.89 80.75 0.07
A 58.21 82.77 93.80 97.44 98.30 98.72 98.74 88.21 3.14

DNNNAT
2 B 38.17 69.69 88.99 95.36 97.56 98.31 98.74 81.35 5.06

Avg. 48.19 76.23 91.40 96.40 97.93 98.52 98.74 84.78 4.10

Table 6.30: Word accuracy results (in terms of percentage and for different SNR
values) obtained for our DNN-based noise estimation approaches in combination
with VTS feature compensation, and comparison techniques, evaluated on the
AURORA2-2C-CT (close-talk) database when using multi-style acoustic models.
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redundancy, our DNN intended to noise estimation was trained using 25600 pairs of
input-target vectors (∼1 second of audio per noisy condition). As for missing-data mask
estimation, training input data consisted of a mixture of samples contaminated with
the noises of test set A at the SNRs of -5 dB, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. This
way, the noise types of test set B are useful to test the generalization capability of the
DNN to unseen noise conditions during training. On the one hand, for the unsupervised
pre-training stage the number of epochs in each RBM was 40 and the learning rate
was set to 0.0005. On the other hand, for the fine-tuning step the number of epochs
was 100 and a learning rate of 0.1 was employed. The momentum rate used was 0.9.
Once again, by following the tips from the Hinton’s report in [81], the minibatch size
was 10 sample pairs. To improve the generalization capability of the network, early-
stopping was adopted as a regularization strategy to avoid overfitting during training.
Moreover, since the missing-data mask estimation task addressed above is similar to
that tackled in this point, and assuming that noise has weak temporal correlations, L
was again set to 2. Since M is set to 23 bins, the input layer has dim(Y(t)) = 230
(in accordance with Eq. (5.16)) and dim(YNAT (t)) = 323 (see Eq. (5.22)) neurons
for the DNN without and with NAT (Subsection 5.3.1), respectively. For both DNN
configurations the output layer has M = 23 neurons and five hidden layers were set up,
according to preliminary recognition experiments, with 512 neurons each. For NAT,
M = 20 was considered once more. Finally, as for missing-data mask estimation, the
implementation of the DNN was done using Python along with the library Theano [4].

Tables 6.29 and 6.30 present a comparison in terms of WAcc between our DNN
approach without NAT in combination with 1-VTSb (DNN2) and other reference tech-
niques when employing clean and multi-style acoustic models, respectively. These tech-
niques are a single-channel DNN-based noise estimator in combination with 1-VTSb
(DNN1) as well as the previous spectral reconstruction approach using DNN-based
missing-data masks (TGI+DNN), which shares many similarities with the current ap-
proach. It should be noticed that the only difference between DNN1 and DNN2 is that
Eq. (5.14) is redefined as y(t) = y1(t) for the former one. Additionally, DNNNAT

1 and
DNNNAT

2 refer to DNN1 and DNN2 when integrating the NAT approach of Subsection
5.3.1, respectively. For both types of acoustic models, the best results are achieved
by DNN2, which makes it a better choice than TGI+DNN to provide robustness for
ASR in dual-microphone smartphones. Also by a large margin (11.13% and 9.06% on
average under clean and multi-style acoustic modeling, respectively) DNN2 is clearly
superior to DNN1 as it exploits the information from the secondary channel, which
is a good noise reference since, as we know, speech is much attenuated in it. Once
again, better WAcc results are generally obtained by employing multi-style instead of
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SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 21.14 38.19 64.60 87.71 95.99 98.13 99.13 67.63 -
Baseline B 15.15 25.50 47.61 77.84 93.44 97.38 99.13 59.49 -

Avg. 18.15 31.85 56.11 82.78 94.72 97.76 99.13 63.56 -
A 46.50 69.51 85.78 93.10 95.49 96.48 96.48 81.14 13.51

Rang B 29.80 59.19 80.82 91.34 95.35 96.31 96.48 75.47 15.98
Avg. 38.15 64.35 83.30 92.22 95.42 96.40 96.48 78.31 14.75

A 44.03 69.43 87.11 94.78 97.53 98.42 99.01 81.88 14.25
IMCRA B 26.10 57.33 80.08 91.30 96.44 97.99 99.01 74.87 15.38

Avg. 35.07 63.38 83.60 93.04 96.99 98.21 99.01 78.38 14.82
A 44.45 70.26 87.36 94.68 97.47 98.40 98.90 82.10 14.47

MS B 26.57 57.32 80.25 91.27 96.25 98.14 98.90 74.97 15.48
Avg. 35.51 63.79 83.81 92.98 96.86 98.27 98.90 78.54 14.98

A 47.56 71.86 88.30 95.02 97.71 98.42 99.08 83.15 15.52
MMSE+NE B 30.17 60.68 82.83 92.28 96.57 98.24 99.08 76.80 17.31

Avg. 38.87 66.27 85.57 93.65 97.14 98.33 99.08 79.97 16.41
A 53.09 77.89 92.24 96.36 97.86 98.59 99.09 86.01 18.38

Int B 35.41 67.61 87.13 94.51 97.55 98.38 99.09 80.10 20.61
Avg. 44.25 72.75 89.69 95.44 97.71 98.49 99.09 83.06 19.50

A 46.49 72.90 88.16 94.69 97.17 98.16 98.95 82.93 15.30
PLDNE B 34.64 65.74 85.94 93.75 96.97 98.00 98.95 79.17 19.68

Avg. 40.57 69.32 87.05 94.22 97.07 98.08 98.95 81.05 17.49
A 63.02 85.74 94.53 97.72 98.59 98.94 99.02 89.76 22.13

DNN2 B 40.87 71.09 90.20 96.21 98.17 98.77 99.02 82.55 23.06
Avg. 51.95 78.42 92.37 96.97 98.38 98.86 99.02 86.16 22.60

Table 6.31: Word accuracy results (in terms of percentage and for different SNR
values) obtained for different noise estimation methods in combination with VTS
feature compensation evaluated on the AURORA2-2C-CT (close-talk) database
when using clean acoustic models.

clean acoustic models, since the mismatch between training and test data is lower. In
addition, test set B baseline results are substantially worse than those of test set A.
Nevertheless, DNN2 exhibits some generalization capabilities to noise conditions not
seen during training.

By taking a look at the results achieved by DNNNAT
1 , we can observe that DNN1 has

experienced an average relative improvement of 3.74% and 2.27% in terms of WAcc
when employing clean and multi-style acoustic models, respectively. On the other
hand, NAT degrades the performance of DNN2. This could be explained because
the secondary channel serves as a better noise reference itself than the information
considered in our NAT-based approach, which introduces a greater uncertainty.

To conclude this experimental evaluation, DNN2, which has exhibited the best per-
formance so far, is compared with different single-channel noise estimation algorithms
when applied on the primary channel in combination with 1-VTSb: Rangachari’s al-
gorithm (Rang) [156], improved minima controlled recursive averaging (IMCRA) [28],
minimum statistics (MS) [130], MMSE-based noise estimation (MMSE-NE) [72] and
linear interpolation in the log-Mel domain (Int) as repeatedly used throughout this
Thesis with, once again, M = 20 (see Section 2.3 for details). Furthermore, power

169



6. Experimental Evaluation

SNR (dB)
Method Test set -5 0 5 10 15 20 Clean Avg. (-5 to 20) Rel. improv.

A 47.64 76.99 92.36 96.94 97.98 98.49 98.77 85.07 -
Baseline B 26.22 56.39 85.33 94.52 97.14 98.12 98.77 76.29 -

Avg. 36.93 66.69 88.85 95.73 97.56 98.31 98.77 80.68 -
A 56.17 79.03 91.38 96.41 97.59 98.34 98.40 86.49 1.42

Rang B 35.35 67.48 88.05 94.82 97.28 98.10 98.40 80.18 3.89
Avg. 45.76 73.26 89.72 95.62 97.44 98.22 98.40 83.34 2.66

A 51.33 77.26 91.23 96.32 97.94 98.53 98.88 85.44 0.37
IMCRA B 32.23 65.72 86.36 94.32 97.44 98.41 98.88 79.08 2.79

Avg. 41.78 71.49 88.80 95.32 97.69 98.47 98.88 82.26 1.58
A 52.07 77.81 91.35 96.52 98.07 98.62 98.89 85.74 0.67

MS B 47.22 65.61 86.57 94.46 97.42 98.43 98.89 81.62 5.33
Avg. 49.65 71.71 88.96 95.49 97.75 98.53 98.89 83.68 3.00

A 53.63 77.82 90.83 96.25 97.87 98.62 99.01 85.84 0.77
MMSE-NE B 36.34 67.88 87.60 94.51 97.28 98.36 99.01 80.33 4.04

Avg. 44.99 72.85 89.22 95.38 97.58 98.49 99.01 83.09 2.41
A 57.17 80.76 93.00 96.78 98.20 98.58 98.79 87.42 2.35

Int B 38.79 71.37 89.43 95.22 97.62 98.39 98.79 81.80 5.51
Avg. 47.98 76.07 91.22 96.00 97.91 98.49 98.79 84.61 3.93

A 55.76 82.30 94.09 96.94 98.25 98.68 98.71 87.67 2.60
PLDNE B 40.46 73.10 91.27 96.35 97.85 98.37 98.71 82.90 6.61

Avg. 48.11 77.70 92.68 96.65 98.05 98.53 98.71 85.29 4.61
A 67.05 87.95 95.39 97.93 98.60 98.79 98.99 90.95 5.88

DNN2 B 44.37 75.02 91.57 96.84 98.34 98.65 98.99 84.13 7.84
Avg. 55.71 81.49 93.48 97.39 98.47 98.72 98.99 87.54 6.86

Table 6.32: Word accuracy results (in terms of percentage and for different SNR
values) obtained for different noise estimation methods in combination with VTS
feature compensation evaluated on the AURORA2-2C-CT (close-talk) database
when using multi-style acoustic models.

level difference noise estimation (PLDNE) [97], which is a dual-channel noise estima-
tion algorithm based on recursive averaging, is also tested in combination with 1-VTSb.
PLDNE is especially interesting since it is intended for dual-microphone smartphones
employed in close-talk conditions by assuming both a homogeneous diffuse noise field
and that clean speech at the secondary channel is much attenuated with respect to the
primary one. The corresponding WAcc results obtained when clean and multi-style
acoustic models are used can be seen in Tables 6.31 and 6.32, respectively. As can be
observed, on average and for all the SNRs considered but (marginally) the clean case,
DNN2 shows the best performance among the noise estimation algorithms evaluated.
In particular, thanks to the powerful regression capabilities of DNNs, DNN2 is able to
achieve a much greater performance than PLDNE with no other assumptions than just
exploiting the PLD between the two channels of the device.
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6.3 Summary
In this chapter we have evaluated and compared the recognition performance of the
contributions presented along this Thesis for noise-robust ASR on IMDs with several
sensors. In the first half of the chapter we have introduced the experimental framework,
that is, the speech data resources used along with the feature extraction process and
the back-end configuration of the ASR system. More precisely, the AURORA2-2C-
CT/FT and the CHiME-3 corpora were considered for evaluation as these databases are
intended for research on multi-channel noise-robust ASR. While the CHiME-3 is a novel
framework that is part of the well-known CHiME challenge series, the AURORA2-2C-
CT/FT corpora have been developed in our research group and these were highlighted
as another contribution of this Thesis. On the one hand, CHiME-3 concerns the
use of a tablet with six microphones in everyday, noisy environments. On the other
hand, the AURORA2-2C-CT/FT databases are generated as extensions to the well-
known Aurora-2 corpus and emulate the acquisition of noisy speech by means of a
dual-microphone smartphone employed in close- and far-talk conditions. These mobile
devices (i.e. the tablet and the smartphone) have a rear microphone to better capture
the acoustic environment which was equated with the so-called secondary microphone.

Then, the comparative experimental results in terms of word accuracy and/or word
error rate were shown. While the primary channel in the AURORA2-2C-CT/FT
databases was identified with the primary microphone located at the bottom of the
smartphone, a virtual primary channel was obtained for CHiME-3 by means of MVDR
beamforming from all the six microphones in the tablet. In other words, since CHiME-
3 embeds more than one front sensor, the strategy illustrated in Figure 3.1 was followed
in such a manner that our contributions act as beamformer post-filters. Of course, for
all the corpora the secondary channel was identified with the aforementioned rear (sec-
ondary) microphone. The presentation of the recognition accuracy results was struc-
tured bearing in mind the type of noise-robust approach, as in the previous chapters:
power spectrum enhancement, VTS feature compensation and deep learning results.

Regarding the power spectrum enhancement experiments, for all the corpora, the
best results were obtained under multi-style acoustic modeling when using our unbiased
spectral weighting with noise equalization, DSW-(U+Eq)MMSE. Our RSG estimation
method based on MMSE estimation provides similar or better results with respect to
a state-of-the-art technique based on eigenvalue decomposition. As an advantage, our
method is a much more efficient way in terms of computational complexity. In addition,
it was also shown that the performance of classical beamforming is quite poor when
applied to a microphone array comprised of only two sensors very close each other and
one of them placed in an acoustic shadow regarding the target (clean speech) signal. In
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the case of CHiME-3, classical beamforming obtained significant improvements over the
baseline because of the greater number of sensors more separated each other. On the
other hand, the secondary sensor for D&S yielded a drop in performance and MVDR
modestly improved with respect to use only the five sensors facing forward (similarly
to the case of AURORA2-2C-CT/FT). In short, the experimental results revealed the
convenience of treating the secondary signal in a differentiated manner to provide useful
information about the acoustic environment.

On the other hand, while VTS feature compensation provided major improvements
on AURORA2-2C-CT/FT, this was not the case with CHiME-3 (medium-vocabulary
task and real data) under multi-style acoustic modeling. A related bad behavior of VTS
feature compensation was already reported in the literature [53]. Under such condi-
tions, DSW-(U+Eq)MMSE behaving as a post-filter of MVDR beamforming was finally
the best technique among the tested in CHiME-3. Beyond this, for the AURORA2-2C-
CT/FT corpora, we showed the substantially better performance of the dual- versus the
single-channel VTS feature compensation approach. As mentioned, this was expected
since the former is able to exploit additional (spatial) information: the RAP vector a21

and the spatial covariance matrix of noise Σn. Moreover, a joint scheme was again ex-
ploited by employing power spectrum enhancement as pre-processing in synergy with
VTS feature compensation to further improve the recognizer performance. In fact,
this strategy provided the best results of the chapter for the AURORA2-2C-CT/FT
databases.

Thereafter, the results achieved by the dual-channel deep learning-based methods
from Chapter 5 were shown. These methods were only evaluated on the AURORA2-2C-
CT database (close-talk) as they specifically exploit the power level differences (PLDs)
between the two available channels. Missing-data masks and noise log-Mel spectra were
estimated for spectral reconstruction and VTS feature compensation, respectively, the
accuracy of which was reflected through the obtained recognition results. This could
be achieved in a very efficient manner, as well as with no assumptions, by jointly
exploiting the dual-channel noisy information and the powerful modeling capabilities
of DNNs. Since the secondary channel is a good noise reference, the DNN exhibited, for
both tasks, some generalization ability to noise conditions unseen during the training
phase. Moreover, because of this same reason, it was shown that the use of noise-aware
training (NAT) for DNN-based noise estimation leads to a drop in performance as the
information considered by our NAT-based approach introduces uncertainty.

Finally, let us mention two general conclusions derived from the overall results.
First, we confirmed that better recognition accuracy results are generally obtained by
employing multi-style instead of clean acoustic models in our dual-channel context,
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since the mismatch between training and test data is lower. Therefore, we conclude
that multi-condition training is also an essential component to be incorporated in a
dual-channel ASR system whenever possible in order to provide a good starting point
in terms of robustness against noise. In second place, it must be highlighted that our
contributions broadly showed an outstanding performance at low SNRs (especially at
-5 dB and 0 dB), which makes them promising techniques to be used in highly noisy
environments such as those where mobile devices might be used.
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CHAPTER 7
Conclusions

In this work we have carried out a study on noise-robust automatic speech recognition
(ASR) on multi-channel intelligent mobile devices (IMDs), which has recently be-

come a popular topic. The conclusions drawn from all the work developed in this Thesis
are presented in Section 7.1. Finally, Sections 7.2 and 7.3 are devoted to summarize
the contributions and future work, respectively.

7.1 Conclusions
A number of conclusions can be drawn from all the work developed in this Thesis.
Some of the most relevant are listed down below:

• Intelligent mobile devices (IMDs) such as smartphones or tablets have perme-
ated our society and this is reflected by a sustained growth of sales of IMDs
year after year. Due to this fact, ASR has experienced a new upswing, as this
technology has begun to be extensively integrated in IMDs to comfortably ac-
complish many different tasks by means of speech. Since mobile devices can be
employed anywhere at any time, tackling with acoustic noise is more important
than ever before so that we can ensure a good user experience when running
speech recognition-based applications on these devices.

• Due to the decrease in the price of hardware over the recent years, IMDs have
begun to embed small microphone arrays (i.e. microphone arrays comprised of
a few sensors close each other) in order to mainly perform speech enhancement
through noise cancellation. It has been proven both in the literature and by us
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that the multi-channel information coming from this type of IMDs can also be ex-
ploited for noise-robust ASR purposes, thereby outperforming the single-channel
approach. More precisely, we have developed a series of contributions intended to
operate in a dual-microphone set-up. This dual-microphone set-up, which can be
found in many of the latest IMDs, consists of a primary microphone to capture
the voice of the speaker plus a secondary sensor aimed at obtaining information
about the acoustic environment. Moreover, the secondary sensor is likely placed
in an acoustic shadow regarding the speaker’s mouth. As we proved in this work
as well as previously reported in the literature [179, 180], classical beamforming
exhibits poor performance in this dual-microphone scenario. Therefore, design-
ing ad-hoc solutions is mandatory to achieve high recognition accuracy on this
kind of IMDs.

• We checked that the statistical distribution of the speech energy is altered in
the presence of ambient noise, thereby producing mismatch between the training
and testing conditions if the speech recognizer, trained with clean speech data,
is employed in noisy environments. This mismatch leads to poor recognition
results. A number of single- and multi-channel methods intended to mitigate
the effects of noise has been proposed in the literature in order to improve the
recognition performance. It has been proven that outstanding ASR results on
multi-microphone IMDs can be achieved by combining robust single- and multi-
channel algorithms. In this regard, the preferred multi-channel enhancement
scheme consists of microphone array processing followed by some kind of post-
filtering to overcome the weaknesses of beamforming.

• A couple of noisy speech databases (i.e. the AURORA2-2C-CT/FT corpora) were
generated as part of this Thesis to carry out evaluations under a dual-microphone
mobile device scenario. To the best of our knowledge, until the appearance of
the CHiME-3 corpus throughout year 2015, a database for noise-robust ASR
experimental purposes on multi-microphone IMDs was not available.

• Our unbiased dual-channel spectral weighting with noise equalization based on
our relative speech gain (RSG) estimation method, DSW-(U+Eq)MMSE, showed
to leverage multi-condition training especially in comparison with other related
enhancement methods. Thus, DSW-(U+Eq)MMSE with multi-style models ex-
hibited quite a competitive performance and consistent results on all the ex-
perimental corpora considered in this Thesis. Furthermore, it was proven that
our MMSE-based RSG estimation method provides similar or better results re-
garding a state-of-the-art technique based on eigenvalue decomposition with a
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fraction of the computational complexity. Besides this, the experimental results
achieved by P-MVDR in comparison with those obtained by MVDR beamform-
ing demonstrated that discarding the phase information is beneficial to overcome
the limitations of classical MVDR beamforming when applied on a mobile device
with only two microphones very close each other.

• Thanks to exploiting the spatial properties of speech and noise signals through
the relative acoustic path (RAP) vector a21 and the spatial covariance matrix
of noise Σn, our dual-channel vector Taylor series (VTS) feature enhancement
proposal has shown to be clearly superior to the single-channel VTS approach.
More specifically, as a consequence of the stacked formulation, the two-channel
joint information is indirectly exploited by means of a21 and Σn. Then, it was
proved to be more robust modeling the conditional dependence of the noisy sec-
ondary channel given the primary one in order to explicitly take advantage of the
correlations between the two channels. Additionally, for clean speech partial es-
timate computation, it was experimentally proven that taking into account only
the primary instead of the dual-channel information is better, as the secondary
signal is usually noisier than the primary one in our dual-microphone set-up.

• The hybrid DNN/signal processing architectures exploit the best features of both
the deep learning and signal processing paradigms. They are expected to continue
to be successfully investigated in the near future. In this regard, we explored two
dual-channel deep learning-based approaches to address the design of two com-
plex stages, from an analytical point of view, of a noise-robust ASR system.
DNNs can be trained to efficiently obtain missing-data mask and noise estimates
from dual-channel information with good generalization ability by means of ex-
ploiting the power level difference (PLD) between the two available channels.
In accordance with our experiments, these estimates clearly outperform differ-
ent analytical techniques when used for missing-data and feature compensation
purposes, respectively. Since speech is much attenuated at the secondary sensor
of a dual-microphone smartphone employed in close-talk conditions, that sensor
seems a very good noise reference. Because of this, the integration of the devised
noise-aware training (NAT) strategy introduces greater uncertainty, leading to a
drop in performance. While noise estimation algorithms are able to deal with
stationary noise very well, the same does not apply to more complex types of
noise. In fact, the use of the secondary sensor itself can be understood as a more
robust kind of NAT strategy.
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• It has also been presented the so-called combinatorial strategy. Thus, in the
case of several front sensors in the IMD, a higher quality primary signal can be
generated from these front sensors by means of microphone array processing. In
addition, a joint scheme has been developed to take advantage of different noise-
robust methods performing at different stages (i.e. domains) of the front-end. It
has been experimentally shown the effectiveness of such an approach. Indeed,
the best CHiME-3 results were obtained by concatenation of beamforming plus a
kind of dual-channel post-filtering, namely MVDR+(DSW-(U+Eq)MMSE). Apart
from this, on the AURORA2-2C-CT/FT corpora, the best accuracy results were
achieved by dual-channel feature enhancement followed by dual-channel VTS
feature compensation, i.e. (DSW-(U+Eq)MMSE)+(2-VTSCb ). These combinations
allow us to get outstanding performance at low signal-to-noise ratios (SNRs),
which is a promising result as mobile devices are often used in highly noisy
environments.

• Multi-condition training is an essential element to be incorporated in a dual-
channel ASR system whenever possible in order to provide a good starting point
in terms of robustness against noise. Unfortunately, we experienced that the
performance of those methods that try to precisely estimate the clean speech
features is severely limited when employing multi-style acoustic models, especially
in the real-life scenario. Hence, we consider that spectral reconstruction relying
on clean speech GMM models and similar approaches can turn out into dead
ends for noise-robust ASR if competitive performance under actual (i.e. complex)
conditions is desired.

7.2 Contributions
The different technical contributions resulting from our work are summarized in the
following:

• Two basic dual-channel power spectrum enhancement techniques devised from
the spectral subtraction (SS) and MVDR principles, named DCSS and P-MVDR,
respectively [119].

• A dual-channel spectral weighting (DSW) in the power spectral domain including
two new ways of estimating the a priori SNR in a dual-channel context for Wiener
filter (WF) computation as well as a noise equalization procedure [121].
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• A complex MMSE-based relative speech gain (RSG) estimation method which
can be used to linearly model the channel between two sensors. While this method
might be used for several purposes such as the definition of the steering vector
for beamforming, it has been applied in combination with the three dual-channel
power spectrum enhancement contributions presented in this Thesis.

• A dual-channel VTS feature compensation method based on a stacked formula-
tion [122] along with an alternative and more robust way to compute the poste-
riors required by that VTS method.

• Two dual-channel DNN-based methods to similarly estimate missing-data masks
[120] and noise [123] in the log-Mel domain. These DNNs exploit the power
level difference (PLD) between the two available channels to efficiently obtain, in
close-talk conditions, accurate missing-data mask and noise estimates with good
generalization ability.

• Two different corpora generated as extensions to the well-known Aurora-2 database
[148] to experiment with a dual-microphone smartphone used in both close-
and far-talk conditions: the AURORA2-2C-CT (Aurora-2 - 2 Channels - Close-
Talk) [119] and the AURORA2-2C-FT (Aurora-2 - 2 Channels - Far-Talk) [121]
databases.

7.3 Future work
The different contributions presented in this Thesis were devised to take advantage of
a dual-microphone set-up consisting of a primary microphone intended to capture the
voice of the speaker plus a secondary sensor aimed at getting clearer information on
the acoustic environment. Hence, as future work it would be interesting to investigate
how the different proposals reported in this dissertation can be extended in order to
operate on different portable electronic devices with other small microphone array
configurations. In the first instance, the integration of more than one front sensor into
the corresponding enhancement framework to replace beamforming would be explored.

On the other hand, it is reminded that the multi-channel information is being only
exploited by dual-channel VTS feature compensation during the calculation of the
posteriors P (k|y) or P (k|y1,y2) (depending on the selected approach), which behave
as weights in order to combine the clean speech partial estimates. Therefore, we would
like to take advantage of the multi-channel noisy observation also for the clean speech
partial estimation procedure, since, at the moment, the approach in Eq. (4.37), only
based on the primary channel, performs better than the one in (4.35).
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With respect to the DNN-based proposals of Chapter 5, an exhaustive search re-
garding the architecture and training configuration of the DNNs could further improve
their performance. For example, to better exploit temporal correlations of the speech
signal, the application of recurrent neural networks (RNNs) could be investigated.
Also, the use of additional or different kind of features (e.g. pitch-based features to
further improve the generalization ability of the DNNs) could be an interesting re-
search topic. Finally, our objective is to extend these methods in order to deal with
a hands-free/far-talk scenario. This scenario is more challenging, as the PLD assump-
tions taken into account are not completely valid since both speech and noise sources
might be in far-field conditions.
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APPENDIX A
Derivation of the Noise

Equalization Weight Vector

The goal of the noise equalization procedure described in Subsection 3.3.3 is to force
that the noise field homogeneity assumption becomes true, namely Sn1(f, t) ≈

Sn2(f, t). Thus, it was desired to obtain a signal |Ȳ2(f, t)|2 = |X̄2(f, t)|2 + |N̄2(f, t)|2,
where |X̄2(f, t)|2 ≈ |X2(f, t)|2 and |N̄2(f, t)|2 ≈ |N1(f, t)|2, to be used instead of
|Y2(f, t)|2 for the estimation of the power spectral density (PSD) Sy2(f, t) required
in Eqs. (3.31) and (3.37) for Wiener filter (WF) computation. As established in Sub-
section 3.3.3, |Ȳ2(f, t)|2 is obtained from the linear combination of the dual-channel
noisy observation as in (3.44). Inspired by MVDR beamforming, the required weight-
ing vector to perform this method, gf,t, was calculated as

ĝf,t = argmingf,t E
[
ε2
f,t

]
;

subject to g>f,tα(f, t) = 1,
(A.1)

where

εf,t =
(
|N1(f, t)|2 + std

(
|N1(f, t)|2

))
− g>f,tν̄(f, t), (A.2)

as well as α(f, t) =
(
1,A−1

21 (f, t)
)>

and ν̄(f, t) = (|N2(f, t)|2, |N1(f, t)|2)>.
The minimization problem above is solved by introducing a Lagrange multiplier,

λ, in order to incorporate the distortionless constraint, which defines the following
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Lagrangian function:

L (gf,t, λ) = E
[(

(|N1(f, t)|2 + std (|N1(f, t)|2))− g>f,tν̄(f, t)
)2
]

+λ
(
g>f,tα(f, t)− 1

)
.

(A.3)

The MMSE solution is then obtained by operating ∇L(gf,t, λ) = 0 as follows:
∂L (gf,t, λ)

∂gf,t
= −2E

[((
|N1(f, t)|2 + std

(
|N1(f, t)|2

))
− g>f,tν̄(f, t)

)
ν̄(f, t)

]
+ λα(f, t) = 02;

∂L (gf,t, λ)
∂λ

= g>f,tα(f, t)− 1 = 0,

(A.4)

where 02 is a 2-dimensional zero vector. First of all, we expand the partial derivative
∂L (gf,t, λ) /∂gf,t = 02 in order to find the weighting vector gf,t:

∂L (gf,t, λ)
∂gf,t

= −2 E
[
|N1(f, t)|2ν̄(f, t)

]
︸ ︷︷ ︸

φ
(1)
N (f, t)

−2std (|N1(f, t)|2) E [ν̄(f, t)]︸ ︷︷ ︸
µN (f, t)

+2 E
[
ν̄(f, t)ν̄>(f, t)

]
︸ ︷︷ ︸

Φ̄N (f, t)

gf,t + λα(f, t) = 02.

(A.5)

Then, (A.5) can be written in further compact form as,

∂L (gf,t, λ)
∂gf,t

= −φ(1)
N (f, t)− std

(
|N1(f, t)|2

)
µN (f, t)︸ ︷︷ ︸

−γN (f, t)

+Φ̄N (f, t)gf,t + 1
2λα(f, t)

= −γN (f, t) + Φ̄N (f, t)gf,t + 1
2λα(f, t) = 02.

(A.6)

From (A.6), the weighting vector is expressed as,

gf,t = Φ̄−1
N (f, t)

(
γN(f, t)− 1

2λα(f, t)
)
. (A.7)

The result in (A.7) is substituted into the partial derivative ∂L (gf,t, λ) /∂λ = 0 to find
an expression for the Lagrange multiplier λ. First,

∂L (gf,t, λ)
∂λ

= α>(f, t)Φ̄−1
N (f, t)

(
γN(f, t)− 1

2λα(f, t)
)
− 1 = 0, (A.8)

from which we determine that λ results

λ = 2α
>(f, t)Φ̄−1

N (f, t)γN(f, t)− 1
α>(f, t)Φ̄−1

N (f, t)α(f, t)
. (A.9)
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To conclude, (A.9) is integrated into (A.7) to obtain the final estimate of the noise
equalization weighting vector already presented in Subsection 3.3.3:

ĝf,t = Φ̄−1
N (f, t)

γN(f, t)− α>(f, t)Φ̄−1
N (f, t)γN(f, t)− 1

α>(f, t)Φ̄−1
N (f, t)α(f, t)

α(f, t)
. (A.10)
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APPENDIX B
MMSE Derivation of the Relative

Speech Gain Imaginary Part

In Section 3.4, an MMSE-based estimator for the relative speech gain (RSG) in the
short-time Fourier transform domain (STFT), a21, was presented. It was stated

that the RSG vector could be decomposed into real and imaginary parts as

a21 = ar21 + jai21. (B.1)

Additionally, it was assumed statistical independence between the real and imaginary
parts ar21 and ai21 in such a manner that the final estimation of a21 could be decomposed
into the sum of the estimates for the real and imaginary parts independently as â21 =
âr21 + jâi21. For the sake of clarity, and due to the parallelism between the estimation
of the real and imaginary parts of the RSG, only the equations for the obtainment of
âr21 where presented in Section 3.4. In the following, the mathematical procedure to
get âi21 is described.

As for the case of ar21 and yr2, we also assumed that ai21 and yi2 were Gaussian-
distributed, i.e. ai21 ∼ N

(
µAi21

,ΣAi21

)
and yi2 ∼ N

(
ȳi2,ΣY i2

)
. Furthermore, we will

assume that ai21 and yi2 are jointly Gaussian and, hence, the conditional probability
density function (PDF) p(ai21|yi2) is also Gaussian [20]. As a consequence,

âi21 = E [ai21|yi2]

=
∫

ai21p(ai21|yi2)dai21

= µAi21
+ ΣAi21Y

i
2
Σ−1
Y i2

(yi2 − ȳi2) .

(B.2)
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Since it is considered that the parameters of the a priori distribution of ai21, µAi21
and

ΣAi21
, are known, we concentrate on the estimation of ΣAi21Y

i
2
, ΣY i2

and ȳi2 from now
onwards.

First, we calculate the mean vector ȳi2 and the covariance matrix of the PDF p(yi2) =
N
(
ȳi2,ΣY i2

)
. From (3.59), yi2 is

yi2 = hi (ar21, ai21,nr1,ni1,ni2; yr1,yi1)

= ar21 � (yi1 − ni1) + ai21 � (yr1 − nr1) + ni2.
(B.3)

Since it was assumed that the variables nrk and nik (k = 1, 2) follow multivariate
Gaussian distributions [44], as well as any linear combination of Gaussian variables
follows another Gaussian distribution [150], we similarly linearize the distortion model
in (B.3) as a first step before describing yi2 by means of a multivariate Gaussian dis-
tribution. This is carried out by means of the following first-order vector Taylor series
(VTS) expansion of (B.3) around (µAr21

,µAi21
,µNr

1
,µN i

1
,µN i

2
):

yi2 = hi (ar21, ai21,nr1,ni1,ni2; yr1,yi1)

≈ hi
(
µAr21

,µAi21
,µNr

1
,µN i

1
,µN i

2
; yr1,yi1

)
+ JiAr21

(
ar21 − µAr21

)
+JiAi21

(
ai21 − µAi21

)
+ JiNr

1

(
nr1 − µNr

1

)
+ JiN i

1

(
ni1 − µN i

1

)
+JiN i

2

(
ni2 − µN i

2

)
,

(B.4)

where the M×M Jacobian matrices JiAr21
, JiAi21

, JiNr
1
, JiN i

1
and JiN i

2
have, respectively,

the following definitions,

JiAr21
= ∂hi

∂ar21

∣∣∣∣∣
µ
Ni1

= −JrAi21
= diag

(
yi1 − µN i

1

)
;

JiAi21
= ∂hi

∂ai21

∣∣∣∣∣
µNr1

= JrAr21
= diag

(
yr1 − µNr

1

)
;

JiNr
1

= ∂hi
∂nr1

∣∣∣∣∣
µ
Ai21

= −JrN i
1

= −diag
(
µAi21

)
;

JiN i
1

= ∂hi
∂ni1

∣∣∣∣∣
µAr21

= JrNr
1

= −diag
(
µAr21

)
;

JiN i
2

= ∂hi
∂ni2

= JrNr
2

= IM.

(B.5)
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It is interesting to observe the symmetry between the real and imaginary cases. Then,
by considering the linearized distortion model of (B.4), the mean vector of the PDF
p(yi2) can be approximated as,

ȳi2 = E [yi2]

≈ hi
(
µAr21

,µAi21
,µNr

1
,µN i

1
,µN i

2
; yr1,yi1

)
.

(B.6)

This mean can also be considered as a predicted value for yi2 obtained from µAr21
, µAi21

,
µNr

1
, µN i

1
, µN i

2
and y1.

The covariance matrix of p(yi2) can be approximated by following a similar pro-
cedure from (B.4) and assuming once again statistical independence between a21 and
(n1,n2), as well as between the real and imaginary parts of all the variables involved:

ΣY i2
= E

[
(yi2 − ȳi2)(yi2 − ȳi2)>

]
≈ JiAr21

ΣAr21
JiAr21

> + JiAi21
ΣAi21

JiAi21

> + JiNr
1
ΣNr

1
JiNr

1

>

+JiN i
1
ΣN i

1N
i
2
JiN i

2

> + JiN i
1
ΣN i

1
JiN i

1

> + JiN i
2
ΣN i

2N
i
1
JiN i

1

>

+JiN i
2
ΣN i

2
JiN i

2

>
,

(B.7)

with ΣN i
1N

i
2

= Σ>N i
2N

i
1

= E
[
(ni1 − µN i

1
)(ni2 − µN i

2
)>
]
.

Finally, taking into account the statistical independence between a21 and (n1,n2),
as well as between ar21 and ai21, the covariance matrix ΣAi21Y

i
2
can be approximated as,

ΣAi21Y
i
2

= E
[
(ai21 − µAi21

)(yi2 − ȳi2)>
]

≈ ΣAi21
JiAi21

>
.

(B.8)
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APPENDIX C
Resumen

En el presente apéndice se recoge un resumen en castellano de la Memoria de Tesis
con el objeto de cumplir con la normativa de elaboración proveniente de la Es-

cuela de Posgrado de la Universidad de Granada. Este resumen se estructura en las
siguientes secciones. En primer lugar, las secciones Introducción, Objetivos y Estructura
de la memoria se corresponden con el Capítulo 1. A continuación, las secciones Funda-
mentos de procesamiento robusto de voz monocanal y multicanal, Realce del espectro de
potencia multicanal, Compensación de características basada en VTS bi-canal, Técnicas
bi-canal basadas en aprendizaje automático, Evaluación experimental y Conclusiones y
contribuciones corresponden a los Capítulos 2, 3, 4, 5, 6 y 7, respectivamente.

C.1 Introducción

Los dispositivos móviles inteligentes (DMIs), tales como smartphones o tabletas, han
revolucionado la manera en que vivimos. Estos dispositivos nos permiten llevar a cabo
una gran variedad de tareas que hacen nuestra vida más fácil, como, por ejemplo,
comunicarnos con otras personas en cualquier lugar y en cualquier momento o buscar
información de forma instantánea. Los DMIs han permeado nuestra sociedad de tal
modo que un gran porcentaje de la población alrededor del globo dispone de, al menos,
un DMI. Por supuesto, esto tiene su reflejo en un crecimiento sostenido de las ventas
de DMIs año tras año. Por ejemplo, la Figura 1.1 muestra, en millones de unidades, el
número de smartphones vendidos en todo el planeta para el rango comprendido entre
los años 2010 y 2015. Como se observa, el incremento de las ventas acontecido a lo largo
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de los últimos años ha sido espectacular: de algo menos de 300 millones de smartphones
vendidos en el año 2010 se ha pasado a cerca de 1500 millones para el año 2015.

Debido a lo anterior junto a la extraordinaria potencia computacional de los más
recientes DMIs, el reconocimiento automático del habla (RAH) ha experimentado un
nuevo auge. El RAH es hoy día una tecnología madura que ha comenzado a ser
integrada de forma extensiva en los DMIs con el fin de ejecutar diferentes tareas, tales
como búsqueda por voz, dictado, control por voz y muchas otras. A pesar de esto,
los sistemas de RAH se encuentran aún lejos de la precisión de reconocimiento del
habla que demuestra el ser humano. A este respecto, considérese una tarea de pequeño
vocabulario consistente en el reconocimiento de secuencias de dígitos. En este caso,
mientras que el ser humano presenta una tasa de error por debajo del 0.009% [117],
algunos de los mejores sistemas de RAH no logran bajar del 0.55% de tasa de error
[207]. Por supuesto, la diferencia de rendimiento entre humanos y máquinas crece
conforme lo hace la complejidad del vocabulario. Por ejemplo, en un contexto de
conversación telefónica, los seres humanos exhiben una tasa de error en torno al 4%,
mientras que los sistemas de RAH llegan fácilmente en esta situación a una tasa en
torno al 12% [25]. Diferentes factores intervienen en esta diferencia de rendimiento
entre humanos y máquinas, estando básicamente relacionados con la introducción de
discrepancias entre las condiciones de entrenamiento y evaluación del sistema de RAH
(esta cuestión es discutida con más detalle a lo largo del Capítulo 2). Uno de los
factores más importantes que contribuyen a la degradación del rendimiento de un
sistema de RAH es el ruido acústico. Así, mientras que el ser humano demuestra un
alto grado de robustez frente al ruido cuando se trata de reconocer el habla, esta clase
de distorsión puede llegar a hacer inutilizables los sistemas de RAH aun cuando estos
integren soluciones específicas para enfrentar el ruido acústico [117].

Los dispositivos móviles pueden ser empleados en cualquier lugar y en cualquier
momento, por lo que hacer frente a una amplia variedad de entornos ruidosos se con-
vierte en obligatorio con el fin de asegurar una buena experiencia de usuario cuando se
usan aplicaciones basadas en RAH en estos dispositivos. En resumen, precisamente por
la proliferación de DMIs que integran tecnología de RAH, combatir el ruido acústico
es más importante que nunca.

A lo largo de los últimos años, con la intención de realzar la voz ruidosa, los DMIs
han comenzado a integrar pequeños arrays de sensores, es decir, arrays de micrófonos
compuestos de pocos sensores próximos entre sí. Por ejemplo, la Figura 1.2 ilustra
un smartphone que integra dos micrófonos. Aparte del sensor localizado en la parte
baja del dispositivo con el fin de estar próximo a la boca del hablante cuando emplea
el dispositivo en posición de conversación, un sensor secundario se sitúa en la parte
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posterior del smartphone. Cuando el usuario habla por teléfono, este último sensor se
encuentra orientado hacia su entorno, pudiendo así capturar valiosa información que
puede ser usada para llevar a cabo cancelación de ruido de manera sencilla y eficiente.

De acuerdo con las razones discutidas anteriormente, el objetivo principal de esta
Tesis es, en consecuencia, el diseño de técnicas que hagan robustos al ruido a los sis-
temas de RAH que corren sobre DMIs. Más en concreto, aprovecharemos la información
multicanal procedente de pequeños arrays de sensores embebidos en los más recientes
DMIs con el fin de superar el rendimiento de métodos robustos al ruido monocanal.
Si bien se podrían emplear técnicas clásicas de procesamiento de arrays de micrófonos
para este propósito, se ha demostrado en la literatura que su rendimiento se encuentra
sustancialmente limitado bajo ciertas configuraciones de pequeños arrays de micrófonos
[179, 180]. Por tanto, la exploración de nuevas aproximaciones en este contexto parece
preferible con el fin de aprovechar de un mejor modo las peculiaridades de los DMIs con
varios sensores. Finalmente, nótese que nos centraremos en el tratamiento del ruido
emitido por otras fuentes sonoras, normalmente modelado como aditivo, mientras que
el tratamiento del ruido de carácter convolutivo debido a reverberación y otros efectos
de canal se encuentra fuera del objetivo de la presente Tesis.

C.2 Objetivos
Tal y como hemos introducido, los sistemas de RAH aún sufren de problemas de pre-
cisión cuando son desplegados en ambientes ruidosos. Actualmente, este problema es
más importante que nunca debido al uso generalizado de aplicaciones basadas en RAH
que corren sobre dispositivos móviles, los cuales pueden ser usados en todo momento y
lugar. En efecto, hacer frente al ruido acústico se ha convertido en algo imprescindible
con el fin de garantizar una buena experiencia de usuario. Puesto que el RAH robusto
al ruido es aún hoy día un tema abierto a pesar de todo el progreso llevado a cabo
durante las últimas décadas, el objetivo clave de esta Tesis es lograr avances en el men-
cionado tema a la par que nos enfocamos en un escenario de dispositivo móvil. Dado
que muchos DMIs embeben pequeños arrays de sensores, querremos aprovechar la in-
formación multicanal procedente de ellos con el fin de superar aproximaciones clásicas
monocanal de RAH robustas al ruido. Además, también sabemos que el rendimiento de
las técnicas clásicas de beamforming con pequeños arrays de sensores es notablemente
limitado [179, 180] y, por tanto, resulta crucial el desarrollo de soluciones específicas que
funcionen satisfactoriamente en este escenario. Más específicamente, podemos destacar
los siguientes objetivos:
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1. Llevar a cabo una revisión de la literatura sobre RAH robusto al ruido mono-
canal así como sobre aquellos métodos de procesamiento de voz robustos al ruido
multicanal especialmente pensados para entornos móviles.

2. Los DMIs incorporan con frecuencia un micrófono (normalmente en su parte pos-
terior) destinado a la captura de información del entorno acústico más que a la
obtención de la voz del hablante. Este es el conocido en este trabajo como mi-
crófono secundario. En consecuencia, otro objetivo es el desarrollo de una nueva
serie de algoritmos de doble canal que aprovechen la información proporcionada
por un micrófono secundario con el fin de mejorar la precisión de RAH en DMIs
que son empleados en entornos ruidosos cotidianos.

3. Generar nuevos recursos de voz bajo un marco de trabajo de dispositivo móvil de
doble canal con propósitos experimentales.

4. Evaluar nuestros desarrollos y compararlos con otras técnicas del estado del arte
con el fin de extraer conclusiones que permitan continuar progresando.

C.3 Estructura de la memoria
Esta Tesis se compone de un total de siete capítulos más tres apéndices, correspon-
diendo el último de estos apéndices al presente resumen en castellano. Tras la introduc-
ción recogida en el Capítulo 1, los fundamentos teóricos de esta Tesis son presentados
en el Capítulo 2. A continuación, los Capítulos 3, 4 y 5 están enfocados a describir
nuestras contribuciones en RAH multicanal robusto al ruido sobre DMIs. La diferen-
ciación de nuestras contribuciones en tres capítulos independientes se ha hecho a cuenta
del tipo de aproximación y del dominio de operación. Finalmente, en los Capítulos 6
y 7 se presentan la evaluación experimental y las conclusiones, respectivamente. Más
en concreto:

• En el Capítulo 1 se exponen las tres primeras secciones de este apéndice junto
con una breve introducción al problema del reconocimiento automático del habla.

• En el Capítulo 2, se lleva a cabo una revisión de la literatura con el fin de
presentar los fundamentos teóricos que justifican nuestros desarrollos posteriores.
A su vez, este capítulo se compone de un total de cinco secciones. El modelo
de distorsión de la voz que sirve de base para el desarrollo de una variedad
de aproximaciones de RAH robusto al ruido y los efectos que produce el ruido
acústico sobre la distribución de la energía de la voz se presentan en la primera
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sección. Seguidamente son descritos los fundamentos tanto del reconocimiento
del habla monocanal robusto al ruido como de la estimación del ruido. Para
concluir, aparte de un resumen, se revisan los fundamentos del procesado de la
voz multicanal robusto al ruido sobre DMIs. En dicha revisión nos enfocamos
en el estudio del beamforming, puesto que el procesado de array de micrófonos
es típicamente empleado junto con técnicas de procesamiento monocanal para
proveer de robustez frente al ruido a los sistemas de RAH que corren sobre DMIs
con varios sensores. Adicionalmente, se desarrolla el concepto de diferencia de
niveles de potencia (PLD, Power Level Difference) de doble canal, puesto que
éste es un principio conductor de nuestras contribuciones.

• Tres propuestas de realce del espectro de potencia de doble canal son formuladas
en el Capítulo 3: DCSS (Dual-Channel Spectral Subtraction, es decir, sustracción
espectral de doble canal), P-MVDR (Power-Minimum Variance Distortionless
Response, o respuesta sin distorsión de mínima varianza en potencia) y DSW
(Dual-channel Spectral Weighting, es decir, pesado espectral de doble canal).
DCSS y P-MVDR son métodos básicos de realce sustentados en los principios
de sustracción espectral y MVDR, respectivamente. De otro lado, DSW se fun-
damenta en un filtrado de Wiener e integra un procedimiento de ecualización de
ruido también basado en el principio de respuesta sin distorsión de mínima va-
rianza. Todas estas técnicas asumen que el dispositivo móvil dispone únicamente
de un sensor frontal (primario), así como de un micrófono en su parte posterior
con el fin de capturar mejor la información procedente del entorno acústico. Por
ello, se establece una estrategia combinatoria que integra beamforming que puede
ser tenida en cuenta en el caso de un DMI con más de un sensor frontal, con-
densando así la información multicanal en sólo dos canales. Finalmente, dado
que todas estas propuestas requieren conocer la ganancia de voz relativa entre los
dos canales disponibles, también se desarrolla un método de estimación de dicho
factor fundamentado en un criterio de minimización de error cuadrático medio
aplicado en el dominio de la transformada de Fourier de tiempo reducido.

• Por su parte, en el Capítulo 4 se describe una técnica de compensación (es decir,
realce) de características basada en un desarrollo en serie de Taylor vectorial de
doble canal. Una vez recordado el modelo de distorsión de voz de doble canal,
se expone la formulación del método, la cual se deriva de un esquema de api-
lamiento. Además de dicho esquema, también se estudia una aproximación alter-
nativa más robusta para el cálculo de las probabilidades a posteriori requeridas
por el método. En el marco de dicha alternativa, el modelo de distorsión co-

193



C. Resumen

rrespondiente al canal secundario se condiciona a la observación ruidosa y cierta
procedente del canal primario.

• El uso de aprendizaje profundo para RAH robusto al ruido sobre DMIs de doble
canal se explora en el Capítulo 5. Este capítulo comienza con una breve revisión
de aprendizaje profundo aplicado. Si bien esta perspectiva se centra en el proce-
samiento de la voz, se prefirió su inclusión en este punto de la Tesis dado que
también se realiza un breve repaso de arquitecturas de aprendizaje profundo que
no presentan una relación directa con los fundamentos del procesamiento de la
voz robusto al ruido. A continuación son descritas técnicas de estimación de
ruido y máscaras de datos perdidos fundamentadas en el uso de redes neuronales
profundas. Estas técnicas se encargan de explotar la información de doble canal
en sinergia con las potentes capacidades de modelado de las redes neuronales
profundas con el fin de proveer de estimaciones precisas también de un modo
eficiente.

• Tras la presentación de las contribuciones anteriores, en el Capítulo 6 se expone
la evaluación experimental. Aparte del correspondiente resumen, este capítulo
contiene dos secciones más: una sobre el marco experimental y otra referente a
los resultados experimentales. En la primera de ellas se describen los recursos
de voz multicanal empleados con propósitos experimentales, es decir, las bases
de datos AURORA2-2C-CT/FT y CHiME-3. Junto con ellas, también se ex-
plican el procedimiento de extracción de características y la configuración del
motor de reconocimiento. En particular, debemos destacar los corpus de voz
AURORA2-2C-CT/FT como una contribución más de esta Tesis. Las bases de
datos AURORA2-2C-CT/FT emulan la adquisición de voz ruidosa en entornos
ruidosos cotidianos por medio de un smartphone de doble micrófono. Seguida-
mente, se muestran los resultados experimentales obtenidos tanto por nuestras
contribuciones como por los métodos comparativos considerados en términos de
precisión de reconocimiento y/o tasa de palabras erróneas. Estos resultados son
discutidos y organizados apropiadamente de acuerdo con la estructura de capí-
tulos de esta disertación.

• Finalmente, las conclusiones de esta Tesis se recogen en el Capítulo 7 junto con
un resumen de nuestras contribuciones y el trabajo futuro que podría ser llevado
a cabo.
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C.4 Fundamentos de procesamiento robusto de
voz monocanal y multicanal

Tal y como sabemos, el rendimiento de todo sistema de RAH se puede ver sustancial-
mente degradado cuando existen discrepancias entre las condiciones de entrenamiento
y evaluación. Existe una gran cantidad de fuentes de discrepancia, y una de las más
relevantes debido a su omnipresencia es el ruido acústico. Dado que proveer de robustez
a los sistemas de RAH que corren sobre DMIs es el objetivo principal de esta Tesis,
en este capítulo se introducen los fundamentos del procesamiento robusto al ruido en
RAH tanto desde una óptica monocanal como multicanal. Ello sirve de presentación de
las bases teóricas a partir de las cuales se definen, a lo largo de los próximos capítulos,
las diferentes contribuciones de robustez frente al ruido.

En primera instancia se formula el modelo general de distorsión de la voz consi-
derado como el marco de trabajo básico tanto para revisar las aproximaciones de ro-
bustez frente al ruido del estado del arte como para desarrollar nuestras contribuciones
a lo largo de los siguientes capítulos. Junto con esto, analizamos cómo se modifica la
distribución estadística de la energía de la voz en presencia de ruido ambiente.

A continuación se exponen los fundamentos del RAH monocanal robusto al ruido.
Esto se lleva a cabo a través de la revisión de algunas de las aproximaciones robustas
al ruido más significativas de acuerdo con nuestros propósitos, categorizadas estas en
cuatro clases distintas: aproximaciones del espacio de características, aproximaciones
basadas en los modelos acústicos del reconocedor, modelado explícito de la distorsión
mediante series de Taylor vectoriales (VTS, por sus siglas en inglés) y aproximaciones
de datos perdidos. Además, destacamos diferentes ventajas e inconvenientes propias
de estas cuatro clases. Así, la selección de la aproximación más adecuada depende en
cada caso del escenario de uso del sistema de RAH. Por ejemplo, al contrario que las
aproximaciones del espacio de características, los métodos basados en los modelos acús-
ticos del reconocedor se caracterizan por una complejidad computacional relativamente
alta. Como ventaja, estos últimos métodos son con frecuencia más robustos frente a
distorsiones de la voz que las aproximaciones del espacio de características. También,
se observa que la estrategia de VTS, la cual puede emplearse indistintamente para
realce de características o adaptación de los modelos del reconocedor, es más precisa
con este último propósito que las técnicas clásicas de adaptación de modelos dado que
VTS hace uso de un modelo físico que explica cómo es la interacción no lineal entre
la señal de voz y las distorsiones ambientales. Respecto a las aproximaciones de datos
perdidos, se argumenta que una parte crítica de estas es la estimación de máscaras que
identifiquen las regiones espectro-temporales no fiables de la señal de voz ruidosa.
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Algunos métodos robustos al ruido, p.ej. filtro de Wiener o realce de características
de VTS, requieren de un módulo que estime el ruido acústico de fondo que contamina
la señal de voz. En efecto, el rendimiento de esta clase de métodos queda fuertemente
supeditado a la precisión de tales estimas de ruido. En consecuencia, a pesar de que a
lo largo de los últimos años el foco se ha puesto sobre otras soluciones robustas al ruido
que no requieren de una estimación de ruido explícita, brevemente se revisan algunas
de las técnicas clásicas más prominentes de estimación de ruido dado que esta cuestión
ha sido tradicionalmente muy importante.

La segunda parte de este capítulo se concentra en el procesamiento de voz robusto
al ruido multicanal aplicado a DMIs. Afirmamos que el procesamiento de la voz mul-
ticanal robusto al ruido ha ganado popularidad a lo largo de los últimos años gracias
a su potencial con respecto a las soluciones monocanal así como a la disminución en
el precio del hardware. En primer lugar, se proporciona una visión general del RAH
multicanal robusto al ruido sobre DMIs. Nos enfocamos en los recientes retos CHiME
sobre RAH robusto al ruido sobre una tableta multi-micrófono y observamos que se
puede lograr un excelente rendimiento de reconocimiento a partir de combinar algorit-
mos robustos de tipo monocanal y multicanal. A este respecto, el esquema multicanal
preferido consiste en procesamiento de array de micrófonos seguido de algún tipo de
post-filtrado para solventar las deficiencias del beamforming. Por lo tanto, dado que el
beamforming es un pilar fundamental del RAH multicanal robusto al ruido, algunos de
sus fundamentos son presentados junto con los principales campos de ruido. Seguida-
mente, se comentan los beamformers fijos más conocidos, es decir, delay-and-sum y
MVDR, así como el procesamiento adaptativo de arrays. Luego se revisan diferentes
post-filtros clásicos de Wiener junto con aproximaciones más recientes específicamente
destinadas a RAH multicanal robusto al ruido. Para concluir, se presenta el principio
de diferencia de niveles de potencia de doble canal. Como se comprueba, este principio
explica las particularidades espaciales de las señales de voz y ruido en un contexto de
configuración de micrófono dual. En esencia, se determina que la energía de voz limpia
es mayor en el micrófono primario que en el secundario, mientras que las densidades de
potencia espectral de ruido observadas por ambos sensores son similares. Finalmente,
se señala que este principio será tenido en cuenta a la hora del diseño de nuestras con-
tribuciones destinadas a tal escenario de doble micrófono mientras que el beamforming
exhibe importantes limitaciones en este contexto.
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C.5 Realce del espectro de potencia multicanal
El núcleo de este capítulo es la presentación de tres métodos diferentes para el realce del
espectro de potencia, los cuales están destinados a aprovechar la señal de voz ruidosa
de doble canal procedente de un dispositivo móvil con el objetivo de mejorar la tasa de
reconocimiento de palabras: DCSS, P-MVDR y DSW. Si bien es normal esperar que
un dispositivo móvil no posea más de un sensor secundario (es decir, un micrófono cuyo
propósito principal es obtener información acerca del entorno acústico dado que no se
encuentra orientado hacia el locutor), es probable que tal dispositivo sí integre varios
sensores frontales. Bajo este escenario definimos un canal primario virtual a través
de la aplicación de beamforming, bien a partir únicamente de los sensores frontales o
empleando todos los micrófonos del dispositivo (es decir, teniendo en cuenta asimismo
el micrófono secundario). Así, este canal primario virtual es usado en conjunción con
el canal secundario por los métodos de realce del espectro de potencia de doble canal,
de tal manera que estos se comportan como post-filtros. En ello consiste la conocida
en esta Tesis como estrategia combinatoria.

Las dos aproximaciones fundamentales DCSS y P-MVDR son presentadas en primer
lugar. De un lado, DCSS se ocupa de extender la sustracción espectral a un marco de
trabajo de doble canal para superar así el rendimiento de la sustracción espectral mono-
canal. Adicionalmente, la técnica P-MVDR está basada en beamforming MVDR con
la salvedad de que la información de fase de la señal se descarta con el fin de solventar
algunas de las limitaciones del clásico beamforming MVDR cuando es aplicado sobre
un dispositivo móvil con pocos micrófonos muy cercanos entre sí. Tanto DCSS como P-
MVDR aprovechan las propiedades espaciales de la voz y el ruido mediante un factor de
ganancia relativa de voz y términos de correlación espacial de ruido, respectivamente.
Seguidamente, a través de un estudio comparativo se determina que P-MVDR es más
robusto que DCSS, así como que cuanto menor es la energía de voz limpia en el canal
secundario (como por ejemplo en el caso de hacer uso de un smartphone de doble
micrófono en posición de conversación) más se asemeja el funcionamiento de ambos
métodos.

La tercera contribución de realce del espectro de potencia, DSW, consiste en un
pesado espectral de doble canal sustentado en filtrado de Wiener. DSW parte de
una formulación sencilla por la cual se asume que el micrófono secundario únicamente
captura ruido, así como también se presupone la existencia de un campo de ruido ho-
mogéneo. Puesto que ambos supuestos no son siempre precisos, este pesado basado en
filtrado de Wiener se modifica mediante 1) la introducción de un término de corrección
del sesgo (para rectificar los pesos espectrales resultantes cuando una componente no
despreciable de voz está presente en el canal secundario) y 2) una ecualización del ruido
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(inspirada en beamforming MVDR) que se aplica sobre el canal secundario antes del
cómputo de los pesos espectrales.

Finalmente, puesto que DCSS, P-MVDR y DSW precisan conocer la ganancia de
voz relativa entre los micrófonos secundario y primario, con el cometido de obtener el
mencionado parámetro, se desarrolla un estimador eficiente (tal y como se demuestra
en el capítulo dedicado a la evaluación experimental) de mínimo error cuadrático medio
(MMSE, por sus siglas en inglés) al final del capítulo.

C.6 Compensación de características basada en
VTS bi-canal

En este capítulo se desarrolla una extensión a un marco de trabajo de doble canal de
la compensación (realce) de características de voz basada en VTS. Al igual que para el
caso de las técnicas de realce del espectro de potencia de doble canal presentadas en el
Capítulo 3, se ha propuesto considerar la estrategia combinatoria basada en beamform-
ing cuando este método de compensación de características de VTS bi-canal necesite
ser aplicado sobre un dispositivo móvil con más de un micrófono frontal (primario), o
más de dos micrófonos de cualquier clase.

El hilo conductor de este método VTS de doble canal es el esquema de formulación
apilada. A partir de éste, se desarrolla un estimador MMSE de las características de voz
limpia en el dominio log-Mel. A su vez, dicho estimador se sustenta en una expansión
VTS de un modelo de distorsión de voz de doble canal. En concreto, a partir de
aprovechar la información de doble canal, este método estima las características de voz
limpia log-Mel en el canal primario, puesto que se espera que la señal de este canal
no se encuentre más afectada por el ruido ambiente que la señal procedente del canal
secundario.

Como se observa en el capítulo, este estimador MMSE se formula como una com-
binación lineal de un conjunto de estimaciones parciales de voz limpia, las cuales son
correspondientemente pesadas por otro conjunto de probabilidades a posteriori. Se
estudian dos aproximaciones diferentes para el cálculo de cada conjunto de parámetros
del estimador. En el caso de las probabilidades a posteriori, en primer lugar se procede
a su derivación a través del esquema de formulación apilada. Como consecuencia de
este proceder, la información conjunta de doble canal es aprovechada indirectamente
por medio de la matriz de covarianza espacial de ruido y de un término que modela
el camino acústico relativo de voz limpia entre los dos canales del dispositivo. A con-
tinuación se desarrolla una estrategia más robusta consistente en el modelado de la
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dependencia condicional del canal secundario ruidoso dado el primario, aprovechando
así explícitamente las correlaciones entre los dos canales (y no de un modo indirecto
como en el caso del esquema de formulación apilada). Además, para el cálculo de las
estimas parciales de voz limpia, aparte de una aproximación MMSE basada en el es-
quema de formulación apilada, se explora una estrategia más sencilla y directa. Esta
última consiste en únicamente tener en consideración el canal primario en lugar de la
información de doble canal dado que la señal secundaria es típicamente más ruidosa
que la primaria en nuestro escenario de trabajo.

C.7 Técnicas bi-canal basadas en aprendizaje
automático

En este capítulo se explora el uso de aprendizaje profundo aplicado a RAH robusto
al ruido sobre dispositivos móviles con varios sensores. En primera instancia, se trata
de proporcionar una definición de aprendizaje profundo a la vez que se mencionan sus
ventajas cuando se aplica a la resolución de problemas que han sido tradicionalmente
abordados desde el paradigma analítico del procesado de señal clásico. Entre estas
ventajas, se destacan las enormes capacidades de modelado de las arquitecturas de
aprendizaje profundo sin necesidad de llevar a cabo aproximaciones o asunciones refe-
rentes al problema subyacente que se trata. Seguidamente se elabora una breve revisión
de la literatura con respecto al aprendizaje profundo aplicado. Más en concreto, nos
enfocamos en aquellas aproximaciones basadas en aprendizaje automático pensadas
tanto para RAH como para realce de la señal de voz, haciendo hincapié en las arqui-
tecturas híbridas de procesado de señal-redes neuronales profundas (DNNs, por sus
siglas en inglés). Tales arquitecturas tratan de aprovechar las mejores características
de los paradigmas de procesado de señal y aprendizaje profundo para lograr excelentes
rendimientos de los sistemas. Esta filosofía, la cual se espera que sea explorada am-
plia y satisfactoriamente en el corto plazo, es la seguida por nuestras contribuciones
basadas en aprendizaje profundo. Dado que tales contribuciones hacen uso de DNNs,
sus fundamentos teóricos son explicados. Además, puesto que el algoritmo de retro-
propagación puede quedar “atrapado” en un mínimo local durante el entrenamiento
supervisado de la red debido a la compleja superficie de error derivada del alto número
de capas ocultas, se requiere de la apropiada inicialización de los parámetros de la DNN
para evitar este indeseable hecho. Así, se argumenta que tal inicialización puede lle-
varse a cabo por medio de un pre-entrenamiento generativo no supervisado de la DNN
a partir de considerar cada par de capas como máquinas de Boltzmann restringidas
(RBMs, por sus siglas en inglés). Por tanto, las RBMs son también brevemente des-
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critas. Para completar esta revisión teórica, se introducen dos tipos de arquitecturas
de aprendizaje profundo cuya popularidad se ha incrementado rápidamente a lo largo
de los últimos años entre la comunidad de investigadores en tecnologías del habla: las
redes neuronales recurrentes (RNNs, por sus siglas en inglés) y las redes neuronales
convolucionales (CNNs, por sus siglas en inglés).

Para concluir el capítulo, se presentan dos contribuciones basadas en aprendizaje
profundo de doble canal que abordan el desarrollo de dos tareas complejas (desde un
punto de vista analítico) dentro de un sistema de RAH robusto al ruido. Estas tareas
son estimación de máscaras de datos perdidos y estimación de ruido, las cuales son
enfrentadas a raíz de aprovechar las excelentes capacidades de modelado de las DNNs.
Específicamente, estas DNNs explotan la diferencia de niveles de potencia entre los
dos canales disponibles (obsérvese la sinergia) para obtener de un modo eficiente las
correspondientes estimas con una buena capacidad de generalización a condiciones no
vistas durante el entrenamiento de las DNNs. Si bien las estimaciones de máscaras de
datos perdidos y las de ruido pueden emplearse de diferentes maneras en un contexto de
RAH robusto al ruido, durante la fase experimental de esta Tesis dichas estimaciones
son usadas para reconstrucción espectral y compensación de características de voz, res-
pectivamente. Adicionalmente, también se desarrolla una estrategia de entrenamiento
con consciencia del ruido con el objetivo de explorar si este método de estimación
de ruido de doble canal basado en DNN puede mejorarse a partir de incrementar su
conocimiento acerca de la distorsión que contamina aditivamente la voz en cada caso.

C.8 Evaluación experimental

El objetivo de este capítulo es el de evaluar y comparar el rendimiento de las con-
tribuciones presentadas en esta disertación cuando son empleadas para RAH robusto
al ruido sobre DMIs con varios sensores. En la primera parte del capítulo se introduce
el marco experimental, esto es, los recursos de datos de voz usados junto con el proceso
de extracción de características y la configuración del motor de reconocimiento del sis-
tema de RAH. Concretamente, las bases de datos AURORA2-2C-CT/FT y CHiME-3
son consideradas para evaluación dado que dichas bases de datos se encuentran des-
tinadas a investigación en RAH multicanal robusto al ruido. Mientras que CHiME-3
es un marco de trabajo novedoso perteneciente a la famosa serie de retos CHiME, los
corpus de voz AURORA2-2C-CT/FT han sido desarrollados en nuestro grupo de inves-
tigación y pueden destacarse como otra de las contribuciones de esta Tesis. De un lado,
CHiME-3 abarca el uso de una tableta con seis micrófonos en entornos ruidosos coti-
dianos. De otra parte, las bases de datos AURORA2-2C-CT/FT son generadas como
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extensiones del corpus bien conocido Aurora-2 y emulan la adquisición de voz ruidosa
por medio de un smartphone de doble micrófono empleado en condiciones de habla
cercana (posición de conversación) y lejana (el dispositivo se sostiene en una mano a
cierta distancia de la cara del locutor). Estos dispositivos móviles (es decir, tanto la
tableta como el smartphone) tienen un micrófono en su parte posterior para capturar
mejor la información procedente del entorno acústico, siendo estos considerados los
correspondientes micrófonos secundarios durante la fase experimental.

A continuación se recogen los resultados experimentales comparativos en términos
de precisión de reconocimiento y/o tasa de palabras erróneas. Mientras que el canal
primario en las bases de datos AURORA2-2C-CT/FT se identifica con el micrófono
primario localizado en la parte baja del smartphone, en el caso de CHiME-3 se obtiene
un canal primario virtual por medio de aplicar beamforming sobre los seis micrófonos
de la tableta. En otras palabras, puesto que CHiME-3 incorpora más de un sensor
frontal, se sigue la estrategia combinatoria ilustrada en la Figura 3.1, de tal manera
que nuestras contribuciones actúan como post-filtros del beamformer. Por supuesto,
en todas las bases de datos consideradas el canal secundario se identifica con el micró-
fono secundario mencionado anteriormente. La presentación de los resultados de re-
conocimiento se estructura teniendo presente el tipo de aproximación robusta al ruido,
como en los capítulos previos: resultados de realce del espectro de potencia, resultados
de compensación de características de VTS y resultados de aprendizaje profundo.

Con respecto a los experimentos de realce del espectro de potencia, para todas las
bases de datos, los mejores resultados se obtienen bajo modelado acústico multi-estilo
cuando se emplea nuestro pesado espectral de sesgo corregido con ecualización de ruido
considerando a su vez nuestro método de estimación MMSE del término de ganancia de
voz relativa, DSW-(U+Eq)MMSE. Además, se prueba que nuestro método de estimación
MMSE de ganancia de voz relativa proporciona similares o mejores resultados de un
modo mucho más eficiente en términos de complejidad computacional que una técnica
del estado del arte basada en descomposición en valores singulares. También se prueba
que el rendimiento de las técnicas clásicas de beamforming es notablemente bajo cuando
se aplican sobre un array de micrófonos compuesto únicamente de dos sensores muy
cercanos entre sí y estando uno de ellos localizado en una sombra acústica con respecto
a la fuente de señal objetivo. En el caso de CHiME-3, si bien las técnicas de beam-
forming clásicas logran mejoras significativas de rendimiento dado el mayor número
de sensores más separados entre sí, considerar el sensor secundario para delay-and-sum
conlleva un empeoramiento del rendimiento mientras que MVDRmejora modestamente
en relación a sólo usar los cinco sensores orientados hacia el locutor (similar a lo ocu-
rrido en AURORA2-2C-CT/FT). En resumen, estos resultados experimentales revelan
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la conveniencia de tratar la señal secundaria de una manera diferenciada con el objetivo
de proporcionar información útil acerca del entorno acústico.

De otro lado, mientras que la compensación de características de VTS produce im-
portantes mejoras en AURORA2-2C-CT/FT, este no es el caso en CHiME-3 (tarea
de complejidad media y datos reales) bajo modelado acústico multi-estilo. De he-
cho, un pobre rendimiento de la compensación de características de VTS en similares
condiciones ya fue documentado en la literatura [53]. Bajo tales condiciones, DSW-
(U+Eq)MMSE comportándose como post-filtro del beamforming MVDR es finalmente la
mejor técnica de entre las evaluadas en este capítulo para proveer de robustez frente al
ruido en CHiME-3. Más allá de esto, para las bases de datos AURORA2-2C-CT/FT,
mostramos la superioridad de la aproximación de compensación de características de
VTS de doble canal frente a la monocanal. Tal y como se menciona, este hecho era
esperado, dado que la estrategia bi-canal es capaz de aprovechar información adicional
de carácter espacial: el vector que modela el camino acústico relativo de voz a21 y
la matriz de covarianza espacial de ruido Σn. Además, se hace uso de nuevo de la
estrategia combinatoria a partir de emplear el realce del espectro de potencia como
pre-procesamiento en sinergia con la compensación de características de VTS para así
mejorar aún más el rendimiento del reconocedor del habla. De hecho, esta estrate-
gia proporciona los mejores resultados de todo el capítulo para las bases de datos
AURORA2-2C-CT/FT.

Después, se muestran los resultados obtenidos por los métodos basados en apren-
dizaje profundo de doble canal definidos en el Capítulo 5. Estas técnicas son evaluadas
únicamente sobre el corpus AURORA2-2C-CT (smartphone en posición conversacional)
puesto que están destinadas a explotar específicamente la diferencia de niveles de poten-
cia entre los dos canales disponibles. Así, de acuerdo con los resultados, se determina
que de forma precisa se estiman máscaras de datos perdidos y ruido en el dominio log-
Mel para reconstrucción espectral y compensación de características de voz de VTS,
respectivamente. Ello puede ser logrado de un modo eficiente así como sin realizar
ninguna clase de asunción a partir de explotar conjuntamente la información ruidosa
de doble canal y las enormes capacidades de modelado de las DNNs. Puesto que el
canal secundario es una buena referencia del ruido acústico existente, la DNN exhibe,
para ambas tareas de estimación, una significativa capacidad de generalización a condi-
ciones de ruido no vistas durante la fase de entrenamiento. Adicionalmente, debido a
esta misma razón, se demuestra que el uso de una estrategia de entrenamiento con
consciencia del ruido en el contexto del estimador de ruido basado en DNN lleva a
una degradación del rendimiento del método dado que la información considerada por
dicha estrategia introduce incertidumbre.
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Finalmente, nos ocupamos de mencionar dos conclusiones generales derivadas del
conjunto de resultados. En primer lugar, confirmamos que, en general, se obtienen
mejores resultados de reconocimiento cuando se emplean modelos acústicos multi-estilo
en lugar de modelos entrenados con voz limpia, ya que la discrepancia entre los datos
de evaluación y entrenamiento es menor en el primero de los casos. En consecuen-
cia, concluimos que el entrenamiento multi-condición es un componente esencial que
incorporar en un sistema de RAH multicanal siempre que sea posible con el fin de pro-
porcionar un buen punto de partida en términos de robustez frente a distorsiones. En
segundo lugar, debe destacarse que nuestras contribuciones muestran por lo general un
rendimiento muy notable a bajas SNRs (especialmente a -5 dB y 0 dB), hecho que las
hace muy apropiadas para ser usadas en entornos altamente ruidosos, como aquellos
en los que los dispositivos móviles son susceptibles de usarse, p. ej. calles abarrotadas
u otros lugares públicos.

C.9 Conclusiones y contribuciones
Diferentes conclusiones pueden ser extraídas a partir de todo el trabajo desarrollado
en esta Tesis y algunas de las más importantes se listan a continuación:

• Los dispositivos móviles inteligentes (DMIs), tales como smartphones o tabletas,
han permeado nuestra sociedad y ello, como no podía ser de otra forma, se ve
reflejado en un crecimiento sostenido de las ventas de DMIs año tras año. Debido
a este hecho, el RAH ha experimentado un nuevo auge, dado que esta tecnología
ha comenzado a integrarse de un modo extensivo en los DMIs para llevar a cabo
cómodamente diversas tareas por medio de la voz. Puesto que los dispositivos
móviles pueden emplearse en cualquier momento y lugar, el tratamiento del ruido
acústico es más importante que nunca con el objetivo de asegurar una buena
experiencia de usuario cuando se usan aplicaciones basadas en RAH en estos
dispositivos.

• Debido a la disminución del precio del hardware, los DMIs han comenzado a inte-
grar pequeños arrays de sensores a lo largo de los últimos años con el fin principal
de llevar a cabo realce de la voz mediante cancelación de ruido. Tanto en la lite-
ratura como en esta Tesis se demuestra que la información multicanal procedente
de esta clase de DMIs puede ser también aprovechada con propósitos de RAH
robusto al ruido, mejorando el rendimiento de la aproximación monocanal. Más
en concreto, hemos desarrollado una serie de contribuciones destinadas a operar
sobre una configuración de doble micrófono. Dicha configuración, la cual puede
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encontrarse en muchos de los últimos DMIs, consiste en un micrófono primario
para capturar la voz del locutor más uno secundario pensado para obtener infor-
mación sobre el entorno acústico. Además, este sensor secundario se emplaza típi-
camente en una sombra acústica con respecto al locutor. Como también se prueba
en este trabajo aparte de haber sido previamente documentado en la literatura
[179, 180], las técnicas clásicas de beamforming exhiben un pobre rendimiento
en este escenario de micrófono dual. Por tanto, el diseño de soluciones ad-hoc
resulta crucial con el fin de lograr una alta precisión de reconocimiento en esta
clase de DMIs.

• Hemos comprobado que la distribución estadística de la energía de voz se ve
modificada en presencia de ruido ambiente, apareciendo así discrepancias entre las
condiciones de entrenamiento y evaluación si el reconocedor del habla, entrenado
con datos de voz limpia, es empleado en entornos ruidosos. Estas discrepancias
conducen a pobres resultados de reconocimiento. Entonces, revisamos diversos
métodos monocanal y multicanal destinados a mitigar los efectos del ruido con
el fin de mejorar el rendimiento del reconocedor. Se ha probado que combinar
algoritmos robustos monocanal y multicanal es la manera de obtener resultados
sobresalientes de RAH en DMIs multi-micrófono. A este respecto, el esquema de
realce multicanal preferido consiste en procesado de array de micrófonos seguido
de alguna clase de post-filtrado para solventar las debilidades del beamforming.

• Dos bases de datos de voz ruidosa (es decir, AURORA2-2C-CT/FT) fueron ge-
neradas como parte de esta Tesis para experimentar bajo un escenario de dis-
positivo móvil de doble micrófono. Por lo que sabemos, hasta la aparición del
corpus CHiME-3 a lo largo del año 2015, no había disponible una base de datos
con propósitos de experimentación en RAH robusto al ruido sobre DMIs multi-
micrófono.

• Nuestro pesado espectral de doble canal no sesgado con ecualización de ruido, el
cual también considera nuestro método de estimación de la ganancia relativa de
voz, DSW-(U+Eq)MMSE, demostró potenciar un entrenamiento multi-condición,
especialmente en comparación con otros métodos de realce similares. Así, DSW-
(U+Eq)MMSE con modelos multi-estilo evidenció un rendimiento altamente com-
petitivo y resultados consistentes sobre todas las bases de datos experimentales
empleadas en esta Tesis. Además, se probó que nuestro método de estimación
MMSE de la ganancia relativa de voz proporciona resultados similares o mejores,
de un modo mucho más eficiente en términos de complejidad computacional, con
respecto a una técnica del estado del arte basada en descomposición de valores
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singulares. Aparte de esto, los resultados experimentales logrados por P-MVDR
en comparación con aquellos obtenidos por un beamforming MVDR demostraron
que descartar la información de fase es beneficioso para superar las limitaciones
del beamforming MVDR clásico cuando se aplica sobre un dispositivo móvil con
sólo dos micrófonos muy cercanos entre sí.

• Gracias al aprovechamiento de las propiedades espaciales de las señales de voz
y ruido a través del vector de camino acústico relativo a21 y de la matriz de
covarianza espacial de ruido Σn, nuestra propuesta de realce de características
VTS bi-canal ha demostrado claramente ser superior a la correspondiente aprox-
imación VTS monocanal. Más en concreto, como consecuencia del esquema de
formulación apilada, la información conjunta de dos canales es explotada indi-
rectamente por medio de a21 y Σn. Entonces se mostró que resulta más robusto
modelar la dependencia condicional del canal ruidoso secundario dado el primario
con el fin de aprovechar explícitamente las correlaciones entre los dos canales.
Adicionalmente, para el cálculo de las estimas parciales de voz limpia se probó
experimentalmente que únicamente tener en consideración el canal primario en
lugar de la información bi-canal es mejor, dado que la señal secundaria es con
frecuencia más ruidosa que la primaria en nuestra configuración de micrófono
dual.

• Las arquitecturas de procesado de señal-redes neuronales profundas explotan las
mejores características de los paradigmas de procesado de señal y aprendizaje
profundo. De hecho, se espera que estas continúen siendo investigadas en el fu-
turo inmediato de un modo satisfactorio. A este respecto, hemos explorado dos
aproximaciones basadas en aprendizaje profundo de doble canal para afrontar el
diseño de dos etapas complejas (desde el punto de vista analítico) de un sistema de
RAH robusto al ruido. Así, fueron entrenadas redes neuronales profundas para
obtener eficientemente estimaciones de máscaras de datos perdidos y de ruido
con una buena capacidad de generalización a través de explotar la diferencia de
niveles de potencia entre los dos canales disponibles. De acuerdo con nuestros
experimentos, estas estimaciones superan con claridad diferentes técnicas analíti-
cas cuando son usadas, respectivamente, en conjunción con métodos de datos
perdidos y de compensación de características. Además, puesto que la señal de
voz se encuentra altamente atenuada en el canal secundario de un smartphone de
doble micrófono empleado en posición de habla cercana, dicho canal es una muy
buena referencia del ruido acústico presente. Por esta razón, la integración de la
estrategia diseñada para el entrenamiento con consciencia del ruido introduce una
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mayor incertidumbre, llevando así a una degradación del rendimiento. Si bien los
algoritmos de estimación de ruido son capaces de tratar con el ruido estacionario
de forma satisfactoria, esto mismo no ocurre en el caso de tipos de ruido más
complejos. De hecho, la utilización de la información procedente del sensor se-
cundario puede ser entendida como una clase de estrategia de entrenamiento con
consciencia del ruido más robusta.

• Se ha presentado la que se ha venido en denominar estrategia combinatoria. Por
ella, en el caso de que el DMI integre varios sensores frontales, se genera una señal
primaria de calidad superior (para usarse junto con la señal procedente del sensor
secundario) a partir de estos sensores frontales por medio de procesamiento de
array de micrófonos. Esta noción combinatoria se ha extrapolado en el sentido
de la aplicación de diferentes métodos robustos al ruido a lo largo de distintas
etapas (es decir, dominios) del extractor de características. Experimentalmente
ha sido demostrada la efectividad de tal aproximación. Los mejores resultados
sobre el corpus CHiME-3 fueron obtenidos a través de la concatenación de beam-
forming más un tipo de post-filtrado, es decir, MVDR+(DSW-(U+Eq)MMSE).
Aparte, sobre las bases de datos AURORA2-2C-CT/FT, los mejores resultados
fueron logrados por medio de realce de características de doble canal seguido de
compensación de características VTS bi-canal, esto es, (DSW-(U+Eq)MMSE)+(2-
VTSCb ). Estas combinaciones permiten alcanzar un excelente rendimiento a bajas
SNRs, siendo este un resultado reseñable puesto que los dispositivos móviles son
usados con frecuencia en entornos altamente ruidosos, p. ej., calles multitudina-
rias u otros espacios públicos.

• El entrenamiento multi-condición es un elemento esencial que incorporar en un
sistema de RAH multicanal siempre que sea posible con el fin de proporcionar
un buen punto de partida en términos de robustez frente al ruido. Desafortu-
nadamente, experimentamos que el rendimiento de aquellos métodos que intentan
estimar con precisión las características de voz limpia se ve seriamente limitado
cuando se hace uso de modelos acústicos multi-estilo, especialmente en un esce-
nario real de uso. Así, se prevé que aproximaciones de reconstrucción espectral
basadas en modelos de mezcla de gaussianas de voz limpia y similares caigan en
“vía muerta”.

Diversas contribuciones al RAH robusto al ruido en dispositivos móviles con varios
sensores han sido reunidas en esta Tesis como resultado de varias publicaciones cientí-
ficas. Además, debemos destacar que la calidad de dos de estas publicaciones ha sido
reconocida mediante la concesión de dos premios internacionales:
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• Premio al mejor artículo de estudiante en EUSIPCO (European Signal Process-
ing Conference) 2014 por el trabajo “Feature Enhancement for Robust Speech
Recognition on Smartphones with Dual-Microphone” [119].

• Premio al mejor artículo en IberSPEECH 2016 por el trabajo “Deep Neural
Network-Based Noise Estimation for Robust ASR in Dual-Microphone Smart-
phones” [123].

Las diferentes contribuciones técnicas resultantes de nuestro trabajo son sintetizadas a
continuación:

• Dos técnicas fundamentales de realce del espectro de potencia de doble canal dis-
eñadas a partir de los principios de sustracción espectral y MVDR, denominadas
DCSS y P-MVDR, respectivamente [119].

• Un pesado espectral de doble canal en el dominio de potencia espectral, DSW,
el cual incluye dos nuevos modos de estimar la SNR a priori en un contexto de
doble canal para el cálculo de un filtro de Wiener así como un procedimiento de
ecualización de ruido [121].

• Un método de estimación MMSE de la ganancia relativa de voz que puede ser
usado con el objetivo de modelar linealmente el canal entre dos sensores. Si
bien esta técnica podría usarse con diferentes propósitos tales como la definición
del vector de dirección en beamforming, en nuestro caso se ha considerado en
combinación con las tres contribuciones de realce del espectro de potencia de
doble canal presentadas en esta Tesis.

• Un método de compensación de características VTS bi-canal basado en un es-
quema de formulación apilada [122] junto con un modo alternativo más robusto
de calcular las probabilidades a posteriori requeridas por este método VTS.

• Dos métodos de doble canal basados en DNNs que, de un modo similar, es-
timan máscaras de datos perdidos [120] y ruido [123] en el dominio log-Mel.
Dichas DNNs explotan la diferencia de niveles de potencia entre los dos canales
disponibles para obtener, de forma eficiente y con buena capacidad de general-
ización, estimaciones precisas de máscaras de datos perdidos y ruido.

• Dos bases de datos de voz generadas como extensiones del corpus bien conocido
Aurora-2 [148] para experimentar con un smartphone de micrófono dual usado
tanto en condiciones de habla cercana como lejana: AURORA2-2C-CT (Aurora-2
- 2 Channels - Close-Talk) [119] y AURORA2-2C-FT (Aurora-2 - 2 Channels -
Far-Talk) [121], respectivamente.
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