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Abstract

Image-based computer aided diagnosis (CAD) systems have significant poten-
tial for screening and early detection of brain diseases. In this sense, this PhD work
is motivated by the development and the implementation of novel CAD systems
based on several pattern recognition/classification techniques for the early detec-
tion of neurodegenerative diseases. In particular, the dissertation is focused on the
analysis of the most relevant one, the Alzheimer’s disease (AD), by the use of struc-
tural magnetic resonance imaging (sMRI) techniques. The proposed CAD systems
are based on several processing steps including segmentation of brain tissues (gray
matter and white matter tissues), feature selection techniques such as t-test model,
feature extraction techniques such as; Partial least squares (PLS), Principal Com-
ponent Analysis (PCA), Independent component analysis (ICA) and Non-Negative
Matrix Factorization (NNMF) techniques, and an automatic classification technique,
such as the support vector machine (SVM). Most of these thesis contributions are
included within the feature extraction techniques and its application to the devel-
opment of automatic CAD systems for early detection of AD.
The first proposed CAD system is based on the PLS approach that extracts the rele-
vant features to characterize the AD pattern. This technique decomposes two sets of
variables into the product of two matrices called scores and loadings according to a
criterion of covariance maximization. In this work, these variables are those formed
by the structural magnetic resonance images under study and the labels of these
images. After the decomposition of these sets, the scores are used as feature vectors
for the classification step.
The second proposed CAD system for AD detection is based on the PCA approach,
as a feature extraction technique for sMRI brain images. This approach reduces
the original high-dimensional space of the brain images to a lower dimensional
subspace. PCA generates a set of orthonormal basis vectors, known as Principal
components (PCs), that maximizes the scatter of all the projected samples, which
is equivalent to diagonalize the covariance matrix through the eigenvalue of these
components.
The third CAD system is based on the Independent component analysis (ICA) ap-
proach. At the beginning, a “template” image is computed as the average of healthy
subject images or as the difference between normal and pathological images. Then,
the ICA algorithm is applied to extract the maximally spatially independent com-
ponents (ICs) revealing patterns of variation that occur in the dataset under study.
The last method proposed is based on the NNMF approach, as a useful decomposi-
tion technique of multivariate data that solves the problem of finding non-negative
matrices. These feature extraction techniques successfully solved the small sample
size problem by obtaining only the relevant information related to AD. This process
is known as a dimensionality reduction and it improves the prediction accuracy of
CAD systems, specifically, in the early stage of AD. In this way, considering the fact
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that an early diagnosis of AD is crucial, classification experiments were performed
not only to distinguish Normal Control (NC) and AD subjects but also to differenti-
ate NC from a transitional phase between being cognitively normal and having an
AD diagnosis. This later phase is called Mild Cognitive Impairment (MCI).
The proposed feature extraction methods have been combined with SVM classifiers
and the accuracy rates of the resulting CAD systems have been estimated by means
of a sMRI database from the Alzheimer disease neuroimaging initiative (ADNI).
Furthermore, a kfold-cross validation technique was applied to these systems in or-
der to tune the classifier parameters and to estimate its performance. The obtained
results demonstrate the effectiveness and the robustness of the proposed CAD sys-
tems (with accuracy value around 90%) compared to previous approaches such as
the one based on Voxel-As-Features (VAF) technique.



Resumen

Los sistemas de diagnóstico asistido por ordenador (CAD, del inglés “Computer
Aided Diagnosis”) basados en imágenes tienen un potencial significativo para el
diagnóstico precoz y prognosis de enfermedades neurológicas. En este sentido,
este trabajo de doctorado está motivado por el desarrollo y la implementación de
nuevos sistemas CAD basados en varias técnicas de reconocimiento/clasificación
de patrones para la detección temprana de enfermedades neurodegenerativas. En
particular, la tesis se centra en el análisis de la más relevante, la enfermedad de
Alzheimer (EA), mediante el uso de técnicas de resonancia magnética estructural
(MRI, del inglés “magnetic resonance imaging”).
Los sistemas CAD propuestos se basan en varios pasos de procesamiento incluyendo
segmentación, selección de caracterı́sticas, extracción de caracterı́sticas y clasifi-
cación. Por ejemplo, en el paso de segmentación, el software SPM se utiliza para
separar los tejidos cerebrales en materia gris, materia blanca y CSF. Sin embargo,
nos preocupamos solamente en la materia gris y la materia blanca, ya que son las
regiones más afectadas en la EA. Además, se ha utilizado una técnica de selección
de caracterı́sticas basada en un test “t” para seleccionar la intensidad del voxel sig-
nificativa en las regiones de interés (ROI). Respecto a la etapa de extracción de ca-
racterı́sticas, el primer sistema CAD propuesto se basa en la técnica de los mı́nimos
cuadrados parciales (PLS, del inglés “Partial least squares”) para la extracción de
las caracterı́sticas relevantes que caracterizan la EA. Esta técnica transforma dos
conjuntos de variables en el producto de dos matrices llamadas “scores” y “loa-
dings” siguiendo un criterio de maximización de la covarianza. En este trabajo de
doctorado, los dos conjuntos de variables son las formadas por las imágenes es-
tructurales y las etiquetas de estas imágenes. Una vez que se establece la transfor-
mación, la matriz de “scores” estará formada por las proyecciones de los voxels que
se han obtenido teniendo en cuenta las etiquetas de las imágenes de diagnóstico.
Estas proyecciones, llamadas componentes PLS, se utilizan como vectores de carac-
terı́sticas para la etapa de clasificación.
El segundo sistema CAD propuesto para la detección de la EA se basa en el análisis
de componentes principales (PCA, del inglés “Principal Component Analysis”), co-
mo técnica de extracción de caracterı́sticas para las imágenes cerebrales de sMRI.
Este enfoque reduce la alta dimensión del espacio original de las imágenes cere-
brales mediante una transformación a un subespacio de menor dimensión. PCA
genera un conjunto de vectores de base ortonormal, conocidos como componentes
principales, que maximiza la dispersión de todas las proyecciones de las muestras,
lo que equivale a encontrar los valores propios de la matriz de covarianza.
El tercer sistema se basa en la técnica del análisis de componentes independientes
(ICA, del inglés “Independent component analysis”). En primer lugar, definimos
una “plantilla” de referencia para el sistema CAD con objeto de seleccionar las re-
giones de interés. Estas plantillas fueron definidas siguiendo dos aproximaciones:



2

la plantilla promedio de sujetos normales y la plantilla diferencia entre sujetos nor-
males y patológicos. Este enfoque se utiliza para extraer los componentes indepen-
dientes que revelan los patrones de variación del conjunto de datos.
El último sistema CAD se basa en la técnica de descomposición conocido como fac-
torización de matrices no negativas (NNMF, del inglés “Non-Negative Matrix Factor-
ization”) que extrae información significativa mediante un proceso de optimización
(minimización) de una función de error con el objectivo de reducir la dimensión.
Este enfoque representa el conjunto de datos no negativos como una transformación
lineal de variables con valores positivos. Después de la etapa de factorización, los
datos transformados tienen un rango inferior a los datos originales. Por tanto, un
conjunto pequeño de variables representa los datos de cada perfil en el nuevo espa-
cio de caracterı́sticas. Estas técnicas de extracción de caracterı́sticas resuelven con
éxito el problema del pequeño tamaño muestral mediante la extracción de la infor-
mación relevante relacionada con la enfermedad. Este proceso se conoce como la
reducción de la dimensionalidad y mejora la precisión de la predicción de los sis-
temas de diagnóstico asistido por ordenador, especialmente en la etapa temprana
de la enfermedad. Finalmente, los sistemas propouestos fueron validados mediante
una técnica de remuestreo (en inglés, K-fold cross-validation) con el fin de ajustar
los parámetros del clasificador y estimar su rendimiento. Teniendo en cuenta el he-
cho de que un diagnóstico precoz de la demencia es crucial, los experimentos de
clasificación se realizaron no sólo para distinguir sujetas normales y sujetos con EA,
sino también para diferenciar NC de una fase de transición entre esta clase y la de
los sujetos que padecen EA. Esta última clase se denomina deterioro cognitivo leve
(MCI, del inglés “Mild Cognitive Impairment”). Los resultados obtenidos demues-
tran la efectividad y la robustez de los sistemas CAD propuestos (con una precisión
superior al 87 %) en comparación con técnicas anteriores como el método basado en
los vóxeles como caracterı́sticas (VAF, del inglés, Voxels-As-Features).



Abbreviation

AD: Alzheimer’s Disease

ADAS-Cog: Alzheimer’s Disease Assessment Scale–Cognitive subscale

ADNI: Alzheimer’s Disease Neuroimaging Initiative

CAD: Computer Aided Diagnosis

CAD: Computer Aided Diagnosis

CDR: Clinical Dementia Rating Scale

CSF: Cerebrospinal Fluid

CV: Cross Validation

FP: False Positives

FN: False Negatives

FPP: False Prediction of Positive

FPN: False Prediction of Negative
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GDS: Global Dementia Scale

GM: Grey Matter

ICA: Independent Component Analysis

ICAm: Independent Component Analysis on means

KL: Kullback-Leibler

LSVM: Linear Support Vector Machine

LOO: Leave-One-Out

MCI: Mild Cognitive Impairment

MRI: Magnetic Resonance Imaging

MMSE: Mini Mental State Examination

MNI: Montreal Neurological Institute

MWW: Mann-Whitney-Wilcoxon

NMR: Nuclear Magnetic Resonance

NNMF: Non-Negative Matrix Factorization

NPV: Negative Predictive Value

NC: Control Subject
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PCA: Principal Component Analysis

PLS: Partial Least Squares

PPV: Positive Predictive Value

ROC: Receiver Operating Characteristic

ROI: Region of Interest

RBF: Radial Basis Function

sMRI: structural Magnetic Resonance Imaging

SNR: Signal-To-Noise Ratio

SPM: Statistical Parametric Mapping

SPM8: Statistical Parametric Mapping Software, version 8

SVM: Support Vector Machine

TN: True Negatives

TP: True Positives

VAF: Voxels-as-Features

VBM: Voxel Based Morphometry

WM: White Matter
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Chapter 1
Introduction

In this introductory chapter, we want to show, on the one hand, the need for deve-
loping automatic systems to aid the diagnosis of neurodegenerative dementia as a
principal motivation in this PhD work. In this sense, we present a brief description
of the state of the art of the disease under study as well as the computer aided
diagnosis (CAD) systems which help the specialist to establish an early diagnosis of
the disease. Developed CAD systems based on the selection of the region of inte-
rest in structural tomography imaging will be presented in detail in the following
chapters. On the other hand, the objectives and the contributions of this thesis are
cited in the following sections of this chapter, as well as, the organization of this
PhD report.
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1.1 General Introduction

Dementia is one of the most common neurodegenerative disorders among elderly
people and has dramatic health consequences and major socio-economic implica-
tions [1–3]. Due to the aging of the population in the developed countries, the
relevance of this disease increases every day [4, 5]. Statistical research demonstrates
that the number of patients is expected to double in 2020 and triple by 2050 [6, 7].
In recent years, the use of computer systems based on tomographic brain images
has made significant improvements in the diagnosis of the dementia. However, the
processing of tomographic images still has a large margin for improvement.
Recent research suggests that the neurodegenerative process associated with de-
mentia begins several years before patients have symptoms [9]. In the last decade,
the use of magnetic resonance imaging (MRI) is generalized for diagnosing diffe-
rent types of dementia. Typically, these images are evaluated by experts who visu-
ally assess the presence of the typical characteristics of the disease. However, visual
examination of the images remains a subjective process requiring experienced clini-
cians. For this reason, the development of CAD systems is one of the major research
subjects to help doctors in the analysis of tomographic medical imaging, specifi-
cally, in the early detection of neurodegenerative disease [10–12]. CAD system [13]
is performed through automated analysis techniques. It helps clinicians to take the
diagnostic decisions. Hence, CAD system provides additional information for an ac-
curate diagnosis [14–16] and eliminates the subjectivity inherent in the exploration
of visual images. In this sense, two widely used methods for the development of a
CAD system have been used in the literature for the analysis of neuroimaging data.
The first one is based on univariate statistical testing. Therefore, this later is per-
formed on Statistical Parametric Mapping (SPM) which compares the voxel values
of the image under study to the mean values of the normal subjects. However, its
application to distinguish between different groups reports poor classification re-
sults. The second one is based on the multivariate approach which considers all
voxels of the brain image as a single observation. Furthermore, most of these multi-
variate approaches use only a small set of voxels (or reduced regions) to distinguish
between pathological and normal control images [17, 18]. The classification step of
multivariate approach is done by defining feature vectors representing the different
images and training a classifier with a given set of known samples [19–21]. This
step is used to distinguish between normal control subjects and Alzheimer patients.
SVM classifier has been widely used successively in the pattern recognition field
such as in the medical imaging diagnosis application [21, 22]. The application of
the multivariate approach reports a high classification accuracy. Recently, this ap-
proach is widely used due to recent advances in defining the statistical classifiers
to build more reliable and more capable of generalization classifiers, able to better
address the problem of small sample size [23].
One of the simplest multivariate approaches for developing a CAD system for AD
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is the well-known Voxel-As Features (VAF) method [19], in which all voxels are
considered as features [19, 20], and then used as input to the classifier. However,
many more advanced CAD systems can be made by adding different combinations
of feature selection and feature extraction algorithms. In this way, the research
group of Signal Processing and Biomedical Applications (SIPBA) of the University
of Granada has made important advances in the study of early detection for neu-
rological disorders by developing preprocessing techniques, analysis and classifica-
tion of several types of biomedical imaging. Several optimization methods based
on Levenberg-Marquardt and Gauss-Newton models for spatial normalization of
functional brain images were tested in [24, 25]. In addition, novel voxel selection
models using the standard deviation and the Mann-Wilcoxon techniques were pro-
posed, as well as a method for calculating the regions of interest using the factor
analysis approach. Therefore, the work described in [70] optimized several intensity
normalization methods for neuroimaging data based on Gaussian Mixture Model,
mean square error and multivariate linear regression models. In [26], the PhD work
deepens into the Principal Component Analysis (PCA) and the Independent Com-
ponent Analysis (ICA) as feature extraction approaches. On the other hand, the
candidate developed the PCA approach by the introduction of the Karhunen-Lo’eve
transformation and the selection of eigenbrains by the criterion of Fisher. In addi-
tion, it delves into the development of learning methods such as the SVM classi-
fier. Furthermore, a clustering method based on Gaussian mixture model (GMM)
is proposed in [14]. The goal of this work is to extract the significant voxels that
define the regions of interest (ROI) for further classification. In addition, a partial
least squares (PLS) approach was introduced in the above reference to extract the
relevant features from functional PET and SPECT imaging. Thus, a significant im-
provement has been obtained for the classification.

The main contribution of this thesis is the development of new strategies to over-
come the small sample size problem in neuroimaging. This idea can improve the
accuracy rate of the CAD systems by reducing the number of false positives, increa-
sing the reliability of their results. On the one hand, the feature space reduction
is performed through the segmentation process in order to take into account the
structural change in gray matter (GM) and white matter (WM) brain tissues, during
the early stage of AD. On the other hand, the developed CAD systems are based
on the development and the evaluation of feature selection and feature extraction
approaches to extract only the relevant information related to AD. Thus, the main
goal of the PhD thesis is to improve the prediction accuracy of CAD systems, speci-
fically in the early stage of the disease. The pipeline of the developed CAD systems
is presented in figure 1.1. These CAD systems consist of three different stages: pre-
processing (spatial normalization, segmentation), post-processing (feature selection
and feature extraction) and validation. After all, the MRI raw images are blurred
and affected by several sources of artifacts and noise [27]. Thus, in order to correct
non-uniformities of the magnetic field, the source images need to be preprocessed.
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Figure 1.1: Flow chart of the classification process.

Moreover, in order to reduce the variability between subjects and allow meaningful
group analyses on a voxel by voxel basis, the spatial normalization is performed.
Afterwards, the segmentation process is realized for analyzing the change in each
brain tissue. Feature selection and feature extraction tasks identify the relevant
features that are used by pattern-recognition and machine-learning techniques for
disease identification and validation. In this sense, the classification step is imple-
mented using SVM to identify each subject image and the validation of the CAD
system was estimated through a k-fold cross-validation strategy.

1.2 Motivation

MRI is a medical imaging process-based on the phenomenon known as Nuclear
Magnetic Resonance (NMR), which is gaining widespread acceptance for a large
variety of medical exploration [28]. It is one of the most commonly used techniques
in radiology to visualize the body’s soft tissues with great contrast, including the
brain. Some reasons for this growing interest are:

• It is a non-invasive, based on non-ionizing radiation, imaging procedure.
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• The fast evolution of MRI imaging technique offers a wide list of pulse se-
quences that can easily be tuned to offer specific visualizations. MRI has be-
come a very flexible imaging tool.

• It has a high spatial resolution and provides a great deal of information on the
anatomical structure, allowing quantitative pathological or clinical studies.

More recently, a variety of MRI imaging modalities including structural and func-
tional MRI have shown characteristic changes in the brains of patients with AD, and
in prodromal and even presymptomatic states that can help rule-in the AD patho-
physiological process [29]. However, this work is focused only on sMRI. The latter
has a high spatial resolution and provides a large amount of information on the
anatomical structure.

This PhD thesis work is structured in two main parts. In the first part, the back-
ground of the work is introduced, as well as the pattern recognition technologies
that are based on the contributions in the field of statistical learning. Thus, we start
by describing the pathology under study, the Alzheimer’s disease, the effects of this
disease in our society and the importance of the early diagnosis. Then, the tomogra-
phy techniques are described, that provide us the “maps” of brain activation; keys
to diagnosis it with computer system known as the CAD systems. Following this, we
describe the state of the art in the field of neuroscience for the automatic diagnosis
and/or the quantitative evaluation of brain images. Finally, the databases on which
we will work are described, as well as the pre-processing step that is used to gain
information from them.
In the second part, four developed CAD systems are proposed and described to
improve the diagnosis of the disease, based on partial least squares (PLS), prin-
cipal components (PCA), independent component (ICA) and Non-negative matrix
factorization (NNMF) approaches. Moreover, the obtained experiment results are
presented in detail in this part of the thesis.

1.3 Goals

The main objectives of this work are aimed at the development of novel process-
ing and classification techniques for structural brain magnetic resonance imaging.
This leads to the construction of CAD systems to support decision making in the
clinical context of neurodegenerative diseases diagnosis with particular attention
to the Alzheimer’s disease. Furthermore, the specific objectives are summarized in
the development of advanced feature extraction techniques and automatic classifi-
cation of sMRI to identify patients affected by Alzheimer’s disease. The design and
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the evaluation of CAD systems are carried out by using the ADNI (Alzheimer’s di-
sease Neuroimaging Initiative) database, a multicenter study aimed to evaluate the
biomarkers that describe the progress of the AD. Thus, it provides sMRI biomarkers
of control subjects, patients with cognitive impairment (MCI) and AD patients for
detecting the disease in its early stage.

In this PhD work, new efficient processing and classification techniques of sMRI
are developed with double objectives to:

a) Improve the sensitivity value for AD pattern detection, specifically, in its early
stage through the development of systems that are based on previous image
labeling performed by clinical experts.

b) Reduce the computational time of the diagnostic by the implementing of ef-
ficient algorithms that overcome the limitations of the high dimensionality of
neuroimaging data.

1.4 Main contributions

The main scientific contributions of the thesis can be split into the development of
new CAD systems for early detection of AD and the improvement of the accuracy
rate. These CAD systems are based on standard approaches for selecting the region
of interest related to the disease. In the following section, the major scientific con-
tributions are briefly introduced. More details are given in the later chapters of this
thesis. The areas covered are:

• The description of the state of the art of the Alzheimer’s disease.

• The preprocessing steps to analyze the sMRI data (spatial normalization, smoo-
thing, segmentation).

• The application of feature selection and feature extraction techniques to the
segmented sMRI data.

• The application of classification approaches for early detection of AD based
on sMRI brain images.

• The validation of these developed CAD systems through k-fold cross valida-
tion methodology.
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We have proposed four CAD systems based on different feature extraction and se-
lection techniques in order to support the clinical diagnosis of Alzheimer’s disease.

• The first and the second proposed CAD systems are based on t-test feature
selection technique for selecting the region of interest, and on the PLS and the
PCA feature extraction techniques respectively to solve the small sample size
problem. The extracted features are combined with supervised classification
methods based on SVM to classify the segmented sMRI database.

• The third CAD system is based on two ICA models that are proposed to ex-
tract the relevant features related to AD. Thus, the first model is based on the
extraction of a low number of Independent Components (IC) which work as
feature vectors for each brain tissue image. The second one is based on the ex-
traction of highly representative features from each average brain image (NC,
MCI and AD) from each brain tissue. Then, the set of independent component
sources are used as input variables for the classification step of early detection
of the disease.

• The fourth CAD system is based on NNMF approach for finding reduced li-
near representations of non-negative data. Then, the resulting NNMF-transfor-
med sets of data, which contain the reduced relevant features, are classified by
means of different SVM-based classifiers.

1.5 Publications produced during the PhD thesis

Part of the work presented here has been published and is already available for the
research community.

Articles in International Magazines:

1. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and F. Segovia. Early diagnosis
of Alzheimer’s disease based on partial least squares, principal component
analysis and support vector machine using segmented MRI images. Journal of
Neurocomputing, 151 (1): 139–150, 2014, DOI:10.1016/j.neucom.2014.09.072.

2. L. Khedher, I. A. Illán, J. M. Górriz, J. Ramı́rez, A. Brahim and Anke Meyer-
Baese. Independent Component Analysis-Support Vector Machine-based Com-
puter - Aided Diagnosis System for Alzheimer’s with visual support. Journal
of Neural Systems, 27 (3): 1–19, 2016, DOI: 10.1142/S0129065716500507.
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International Conferences Proceedings:

1. L. Khedher, J. Ramı́rez, J. M. Górriz , A. Brahim. Automatic classification of
segmented MRI data combining Independent Component Analysis and Sup-
port Vector Machines. International Conference on Innovation in Medicine and
Healthcare (Inmed14), San Sebastian, Spain, 207: 271–279, 2014, ISBN: 978-1-
61499-473-2.

2. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and I.A. Illán. Independent
Component Analysis-Based Classification of Alzheimer’s Disease from Seg-
mented MRI Data. 6th. International Work-Conference on the Interplay between
Natural and Artificial Computation (IWINAC), Elche, Spain, 9107: 78–87, 2015,
ISBN: 978-3-319-18913-0.

Several papers were published with collaborations in different international maga-
zine and conference proceedings:

1. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher and D. Salas-Gonzalez. Com-
parison between Different Intensity Normalization Methods in 123I-Ioflupane
Imaging for the Automatic Detection of Parkinsonism. Journal of Plos One, 10
(6): 1–20, 2015, DOI:10.1371/journal.pone.0130274.

2. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher. Intensity normalization of
DaTSCAN SPECT imaging using a model-based clustering approach. Journal
of Applied Soft Computing, 37: 234–244, 2015, DOI/10.1016/j.asoc.2015.08.030.

3. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher. Linear intensity normalization
of DaTSCAN images using Mean Square Error and a model-based clustering
approach. International Conference on Innovation in Medicine and Healthcare
(Inmed14), San Sebastian, Spain, 207: 251–260, 2014, ISBN: 978-1-61499-473-
2.

4. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher. Linear intensity normaliza-
tion of DaTSCAN images using Mean Square Error and a model-based clus-
tering approach. IEEE International Conference on Image Processing (ICIP14),
Paris, France, 207: 3617–3621, 2014, ISBN: 978-1-4799-5751-4.

5. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher. Intensity Normalization of
123I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear
Regression Approach. 6th. International Work-Conference on the Interplay be-
tween Natural and Artificial Computation (IWINAC), Elche, Spain, 9107: 68–77,
2015, ISBN: 978-3-319-18913-0.
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1.6 Research project

During this thesis, the candidate has been part of several research projects which
are related to the contents of the PhD thesis.

1. Project Title: “Plataforma Abierta de Procesamiento de Imágenes para ayuda
al diagnóstico de Alteraciones Neurológicas (PAPI-ADAN)”. Excellence Re-
gional Project: P09-TIC-4530, 2012–2014. Ministry of Economy, Innovation,
Science and Employment (Spain).

1. Project Title: “Modelos estadı́sticos de neurodegeneracion para sistemas de
ayuda al diagnóstico (STM- NEUROCAD). Aplicación al diagnóstico precoz
de las enfermedades de Alzheimer y Parkinson”. Excellence Regional Project:
P11–TIC–7103, 2012–2016. Ministry of Economy, Innovation, Science and
Employment (Spain).

1.7 Structure of the document

Following the introduction, the PhD report is divided into three main parts. The
first part contains five chapters that present the medical imaging and its use for
the diagnosis of neurodegenerative diseases, such as AD. Moreover, the different
techniques of diagnosis and classification are presented:

• Description of the Alzheimer disease.

• Brief presentation of the tomographic techniques used in nuclear medicine,
focusing on structural imaging techniques.

• Details about the structural image database used in this work in order to vali-
date the proposed CAD systems.

• Description of the diagnostic criteria and the computerized techniques that
have been developed to date in order to obtain a CAD systems for AD.

• Classification and performance assessment: description of classification me-
thods and validation systems used in this work.

The second part includes five chapters:
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• Chapter 6, chapter 7, chapter 8 and 9 present the developed CAD systems pro-
posed for automatic detection of Alzheimer’s disease. These systems based on
reduction dimensionality and compression techniques to extract the relevant
features for the classification task.

• Finally, the performance of the developed image-based CAD systems are dis-
cussed in chapter 10. Moreover, several conclusions and possible paths for
future research are presented.

The third and the last part is a summary in Spanish of the presented PhD work.



Part I

Fundamental theory





Chapter 2
Alzheimer’s disease

Dementia, one of the most severe and frequent neurodegenerative disorders in the
elderly population, has important and dramatic health as well as socio-economic
implications [1]. Recently, Alzheimer’s disease (AD) is considered as one of the
most common cause of dementia. In this sense, the development of new methods for
analyzing tomographic images can improve the early diagnosis of AD. This chapter
provides an overview of this disease, its causes and its neuro-pathology evolution.
In addition, the different traditional diagnostic techniques used for the diagnosis of
the disease are presented in the end of the current chapter.



20 Chapter 2. Alzheimer’s disease

2.1 Alzheimer’s disease

AD is the most common cause of dementia in the elderly and is characterized by
a spectrum of clinical features and neuropathological assessment that appear pro-
gressively [30]. At the beginning of the 20th century, the German neurologist Max
Bielchowsky visualizes cellular components inside of the neurons that are called
neurofibrillary tangles. In 1906, using the Bielchowsky method, Dr. Alois Alzheimer
described the beginning of a new pathology in the brain of one of her patients: Au-
guste Deter, 51 years [31]. Series of clinical symptoms are presented in the patient,
including weakness of the memory skills, loss of orientation, deep agitation, a pro-
nounced psychosocial disability [39]. The rapidity of degeneration and the relative
youth of the patient motivate the Dr. Alzheimer to investigate her neuropathologi-
cal characteristics [32]. Hence, he found many abnormal clumps (now called amy-
loid plaques) and tangled bundles of fibers (now called neurofibrillary neurofibril-
lary tangles). These plaques and tangles in the brain are nowadays considered signs
of AD [32]. AD is a slow disease, starting with mild memory problems and ending
with severe brain damage. The evaluation and the progression of the disease vary
from person to person, although, Alzheimer’s patients live between 8 and 10 years
after the disease is detected [33].

Nowadays, AD is assumed to be the most common cause of dementia in the el-
derly. Besides, the World Health Organization estimated in 2005 that 0.379% of
people worldwide had dementia, and that the prevalence would increase to 0.441%
in 2015 and to 0.556% in 2030 [7, 34].
Figure 2.1 indicates an other recent statistical number of people will be affected by
AD in 2050. As shown in this figure, the number of people affected by the disease
will continue growing in the next decades. For this reason, it is important to better
understand the disease, to really understand the causes, and to develop treatments
that can stop the progression of the disease or even cure it.

2.1.1 Causes

Until now there are no consensus in the scientific community about the causes or
the risk factors of Alzheimer’s disease. In some cases (less than 2 %), the disease
is caused by genetic mutations in the family. In these cases, the symptoms begin
before the age of 60 and it progress rapidly [35]. All the known mutations involve
an overproduction of a protein that destroys the nerve cells. Also, it is known that
some genetic factors increase the chances that a person will develop the disease.
Specifically, the carriers of a variant of the ApoE gene, which promotes the creation
of preliminary proteins. This latter is more susceptible to developing the disease in
the brain [36, 37].
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Figure 2.1: Estimated number of people with dementia until 2050 in high, middle
and low income countries[8].

On the one hand, age is the most important risk factor. The number of people over
65 years with the disease doubles every 5 years [38]. On the other hand, people with
less education are more likely to suffer from this dementia. Other factors such as
environment or diet seem to have no influence, however, research studies still be
continued.

2.1.2 Neuro-pathology evolution

Until now, the real causes for AD still remain unclear, some is known about the
evolution of the pathology and its physical influence on the brain. The basis of
the pathology of this disease includes neuronal degeneration and the formation of
lesions in the brain. Figure 2.2 shows an example of brain pathology of subject with
AD and subject without dementia.

2.1.2.1 Causes

AD is mainly characterized by the appearance of lesions in the brain. These le-
sions, called amyloid plaques and neurofibrillary tangles, appear in some regions
and it gradually expand over most of the cortex. The formation of these lesions are
thought to contribute to the degradation of the neurons in the brain and the subse-
quent symptoms of Alzheimer’s disease (see figure 2.3).
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Figure 2.2: Structural differences between a brain affected by AD (left) and healthy
(right) [39].

The two major pathological features of AD are extracellular plaques and intracellu-
lar tangles, accumulated between neurons in the brain. Amyloid is a general term
for protein fragments that the body produces normally. In a healthy brain, these

Figure 2.3: Alzheimer’s disease neuropathology: Degeneration changes in
Alzheimer’s diseased brain. Apparition of amyloid plaques and neurofibrillary tan-
gles (left). Microscopic view in the cerebral cortex of an Alzheimer’s patient (right)
[39].



2.2. Mild cognitive impairment 23

protein fragments would be broken down and eliminated. In Alzheimer’s disease
brain, the fragments accumulate to form insoluble plaques. Neurofibrillary tangles
consist of insoluble twisted fibers that are found inside of the neurons. They pri-
mary consist of a protein called tau, which forms part of a structure called a micro-
tubule. The micro-tubule helps transport nutrients and other important substances
from one part of the neuron to another. In a patient with Alzheimer’s disease, the
tau protein is abnormal and the micro-tubule collapses.

2.2 Mild cognitive impairment

Many patients with memory impairment do not necessarily meet the clinical crite-
ria for dementia. The concept of mild cognitive impairment (MCI) is thought to be
a transitional phase between being cognitively normal and having an AD diagnosis.
Patients with MCI have a higher risk of developing AD than elderly with normal
cognitive function [40]. The concept of MCI is rather difficult to describe since it is
a very heterogeneous group. The diagnostic accuracy of the criteria today is low to
moderate [41]. For this reason it has been divided into different categories, namely
amnestic (having memory deficits) and non-amnestic (having no memory deficits,
but other cognitive problems). These categories can be further split into single and
multiple domains [42]. Single domain means that the subject has one cognitive
deficit and multiple domains involve several different cognitive deficits.
The common criterion for describing a subject with MCI states that the subject has
memory complaints and objective memory impairment but with overall preserva-
tion of the cognitive functions and handles daily life [43]. Thus, it can be difficult to
diagnose accurately since it may be mistaken for normal aging [44]. Nearly half of
the patients diagnosed with MCI progress to dementia within 3 or 4 years, and the
majority of these patients declines to AD [9].
The early diagnosis of MCI converts could have a significant impact on the course of
dementia, since it would allow an early therapeutic intervention and consequently a
delay in the progression of the symptoms. Besides, the clinical group of MCI is very
important for both preventive trials and evaluating MR markers for early diagnosis
and monitoring of disease progression [42, 45].

2.3 Clinical diagnostic techniques

Early diagnosis of this disease is crucial to improve and extend the life of the pa-
tient. Moreover, the early diagnosis can offer the best chance to treat the symptoms
of the disease.
Currently, the only definitive way to diagnose the Alzheimer’s disease is to re-
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search the existence of the plaques and the tangles in the brain tissue. Therefore,
the National Institute of Neurological and Communicative Disorders and Stroke
(NINCDS) and the Alzheimer’s disease and related Disorders Association (ADRDA)
outlined the clinical criteria of AD [46]. Thus, the NINCDS–ADRDA provides three
levels of certainty about the diagnosis of AD: ‘possible’, ‘probable’ or ‘definite’.
The criteria for possible AD is based on the observation of clinical symptoms and
the deterioration of some cognitive functions (e.g. memory, language, etc). For the
diagnosis of probable AD, dementia has been established by neuropsychological ex-
amination. Progressive cognitive impairment has to be present in two or more areas
of cognition. The onset of the deficits has occurred between the ages of 40–90 years.
There must be an absence of other diseases capable of producing dementia. Finally,
to make the diagnosis of certain AD (or ‘definite’), the identification of plaques and
tangles in the brain confirm that the brain is affected by Alzheimer’s disease demen-
tia.
The diagnosis of dementia is mainly based on the clinical evaluation that requires
a comprehensive assessment of cognitive function, specifically the memory, atten-
tion, perception, language, praxis. In addition, several other neuropsychological
tools used to support in the diagnostic procedure. The neuropsychological assess-
ment can be subdivided into two levels of complexity:

• The first level consists of the use of short, standardized and simple tests as the
Mini-Mental State Examination (MMSE) [47], which enables the diagnosis of
dementia.

• The second level of greater complexity in the assessment of the severity of the
impairment is refined, while the cognitive function domains that are affected
are established [48]. There are different scales that provide a standardized
according to the degree of functional impairment, as CDR (Clinical Dementia
Rating) [49] or GDS (Global Deterioration Scale) value [50].

In general, these scales allow to classify the dementia according to the classic clin-
ical criteria: mild, moderate or severe dementia. The questionnaires or the scales
have been designed to quantify certain cognitive functions, i.e, it do not establish a
diagnosis but it quantify the severity of the alteration of certain intellectual areas, it
is particularly valuable to discriminate between normal aging and mild dementia.
The diagnosis must always based on the clinical history of the patient and according
to the criteria established. In this sense, the questionnaires represent only an aid in
the process of the valuation of the disease.
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2.3.1 Mini mental state examination

The Mini Mental State Examination (MMSE) [47] is one of the most commonly used
tests for complaints of memory problems. The MMSE test is a 30-point question-
naire used for measuring severity and decline in cognition. It deals with function,
such as memory function, calculation, language abilities and attention. Gaining a
score of 24 –30 is considered as no dementia, 19 –23 as mild dementia and 13 –18
indicates moderate dementia.
In the dementia by the Alzheimer’s disease, the average rate of change in the score
of the MMSE is of 2-5 points per year, reason why the test shows its utility for the
pursuit of the affected patients. The MMSE has a limited ability to detect non-
Alzheimer’s dementias, such as post-stroke cognitive impairment, frontotemporal
or subcortical dementias in their early phases.
The essential characteristics which are evaluated as follows:

• Capacity of attention, concentration and memory.

• Capacity of calculation.

• Capacity of language and visoespacial perception.

• Direction space-time.

• Capacity to follow basic instructions.

This test provides an instrument for detecting cognitive impairment and can be
performed in a short time. According to the clinical experts, this is a specially im-
portant in the diagnosis of the dementia.

2.3.2 Global dementia scale

The Global Deterioration Scale (GDS) [51], developed by Dr. Barry Reisberg, pro-
vides an overview of the stages of cognitive function for those suffering from a pri-
mary degenerative dementia such as AD. It is broken down into 7 different stages
as shown in table 2.1.
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2.3.3 Clinical dementia rating

The Clinical dementia rating (CDR) [44] scale is also used for the evaluation of sta-
ging severity of dementia. This is a five point scale, rating six functional domains.
These are memory, orientation, judgment and problem solving, community affairs,
home and hobbies and finally personal care. The five point scale is as follows:

– CDR=0: no dementia

– CDR=0.5: very mild dementia

– CDR=1: mild dementia

– CDR=2: moderate dementia

– CDR=3: severe dementia

2.3.4 Alzheimer’s disease assessment scale

The Alzheimer’s Disease Assessment Scale (ADAS) is a two part scale designed to
assess cognitive and non-cognitive symptoms of AD. It is one of the most frequently
used scales in clinical trials but is quite time-consuming (taking on average 45 mi-
nutes to complete). The part which measures cognitive faculties is known as the
ADAS-Cog [50]. It is a subscale of ADAS, which was designed to measure the seve-
rity of the most important symptoms of AD. This subscale is a popular cognitive
testing instrument used in clinical trials. This test includes 11 tasks measuring co-
gnitive disturbances, language, attention and other cognitive abilities. Finally, brain
scan examinations are performed on routine bases to aid in the clinical evaluation.
MRI is today the first choice in many countries.

2.4 Conclusion

Neurodegenerative diseases are becoming increasingly prevalent with the aging of
general population. Alzheimer’s disease (AD) is most prevalent of neurodegene-
rative disease. An overview of this disease is presented in this chapter. Moreover,
the different traditional diagnostic techniques for AD is introduced in detail in this
chapter.





Chapter 3
Functional/Structural Imaging
modalities

Neuroimaging techniques provide a way for clinicians to examine the structural
and functional changes in the brain associated with the development of Alzheimer’s
disease (AD). Many imaging modalities are commonly used, such as, magnetic res-
onance imaging (MRI), X-ray computed tomography (CT), positron emission tomo-
graphy (PET), single-photon emission computed tomography (SPECT), and diffu-
sion tensor imaging (DTI) (figure 3.1). In the framework of this thesis, we focus
mainly on a structural MRI dataset which is described in this chapter.
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3.1 Fundamentals

Neuroimaging techniques allow to see images of the central nervous system in ge-
neral and of the brain in particular. These brain imaging techniques provide ad-
ditional information for diagnosis and treatment of patients with disorders of the
nervous system [53]. These techniques can be classified as functional or struc-
tural, according to functional brain information (ie. cerebral blood flow, glucose
metabolism, amyloid deposition) [54] and structural brain information (ie. tissue
and organ shape, texture) that offer [55]. The structural image, such as, structural
magnetic resonance imaging (sMRI), provides a view of the brain structure to al-
low the diagnosis of diseases on a large scale. Furthermore, structural MRI provides
information to describe the shape, size, and integrity of gray and white matter struc-
tures in the brain. On the other hand, functional neuroimaging techniques such as
functional magnetic resonance imaging (fMRI), PET and SPECT have the ability
to identify patho-physiological changes in the brain. These functional images are
based on the measure of brain activity.
In neuroimaging, the most extended is by far MRI, which provides intensity maps
that represent the internal structure of the brain. Particular attention has been paid
in this work to the sMRI due to it is widely used in the clinical evaluation of patients
with AD.

Figure 3.1: Schematic illustration of different classes of medical image modalities
[56].
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3.2 Magnetic resonance imaging

MRI is perhaps the most widespread imaging modality in neuroimaging [57], given
its ability to visualize both structural and functional properties of the brain. It has
become the most powerful and non-invasive tool for clinical diagnosis of diseases
[57]. MRI uses strong magnetic fields to excite certain atomic nuclei, that can absorb
and emit this energy. MRI combines a constant magnetic field with a radiofrequency
(RF) emission to excite the atomic nuclei present in corporal structure, resulting
in an image of the distribution of certain atoms in the body [58–60]. Most MRI
systems use hydrogen atoms, since they are present in water (which adds up to
around 70% of body mass) and the signal derived is stronger than other atoms,
increasing the Signal-To-Noise Ratio (SNR) and processed to obtain a 3D grey-scale
image. The procedure uses a strong magnetic field B0 to align the magnetic moment
of the hydrogen nuclei in parallel or anti-parallel (depending of their initial spin).
In this sense, the magnetic moment of all nuclei will increase up to a stable state, in
contrast to their null value in absence of the magnetic field B0 . Within this magnetic
field, the hydrogen atoms precess around an axis along the direction of the field. A
given nuclei has a resonance frequency which is proportional to the intensity of
B0, allow us to resonate hydrogen far below potentially damaging frequencies. The
precession frequency is known as the Larmor frequency in the MR community. The
Larmor equation expresses a connection between the resonance frequency and the
magnetic field, and it is said to be the most important equation in MR:

f = γB0 (3.1)

The equation tells us that the frequency f is proportional to the magnetic field, B0.
The proportionality factor is 42 MHz/T for protons. It is called “the gyromagnetic
ratio” or simply “gamma”. When a subject is introduced in the MRI scanner, it is
submitted to the magnetic field B0, so that the hydrogen nuclei are aligned to the
field, with a precession frequency f . Then, a RF pulse of the same frequency is ge-
nerated, which is then absorbed by the nuclei, forcing them to place perpendicular
to the field. Once the RF emission is interrupted, the nuclei return to its equilibrium
state by means of a procedure called relaxation. In this procedure, they emit part
of the absorbed energy, which is then captured by a RF receptor. Usually, position
information is encoded in the RF signal by varying B0 using gradient coils.

The RF signal is measured during the relaxation time, and two different relaxation
times are set: the T1 (spin-lattice) relaxation time and the T2 (spin-spin) relaxation
time. The T1 time is the time during which nuclei emit energy to the adjacent tissue
and realign to the longitudinal plane (z axis), whereas the T2 time refers to the time
when nuclei realign to the transversal plane (y axis). These times are used to create
T1-weighted and T2-weighted images (see figure 3.2). T1-weighted images allow to
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distinguish between grey matter (GM) and white matter (WM) in the cerebral cor-
tex, to identify fatty tissue, and generally, obtain structural information. However,
T2-weighed images are used to assess cerebro-spinal fluid (CSF) or to visualize and
identify WM lessions.

Figure 3.2: Example of MR data [61]. First row: high resolution T1-weighted image
(1 mm slice thickness); second row: low resolution T2-weighted image (3 mm slice
thickness).

3.2.1 Advantages

The MRI technique has several advantages compared to other neuroimaging tech-
niques:

• It is fast and it does not use ionizing radiation.

• It can be repeated several times on the patients because the absorbed radiation
is minimal.

• Its isotropic resolution is around 1mm3 with 3T MRI scanners, which outper-
forms the 8mm3 of PET.

• It has a high versatility, since it can be used to study structural and functional
brain features with different configurations.
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• It has the advantage of being able to visualize anatomy in all three planes:
axial, sagital and coronal.

• It is not affected by the hardening beam effect of CT [62, 63] because the range
of frequencies is small, and the attenuation coefficient of the tissues is almost
homogeneous.

3.2.2 Disadvantages

• It is an expensive and complex technique.

• There are many parameters that must be tuned up correctly in order to opti-
mize the image acquisition depending on the circumstances [63, 64].

• All the metal objects of the patients should be removed before the scanning
starts, which is impossible for some kind of surgical implants.

• This technique is only suited to analyze soft tissues because the bones have
not a significant contrast in the images.

3.3 The ADNI dataset

All the developed approaches in this PhD thesis have been validated by a structural
MRI dataset that was acquired for the study of AD. This dataset is labeled by ex-
perts. The labels have been assigned to distinguish between images of AD patients
(in different stages of the disease), images of people with mild cognitive impairment
(MCI) that could lead to Alzheimer (it can be considered an early stage of disease)
and images of people without the disease (NC; normal control subjects).
The structural MRI dataset was obtained from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) database. All details of the specific characteristics for this
database are described in the following subsection.

3.3.1 Description of the database

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance ima-
ging (MRI), positron emission tomography (PET), other biological markers, and
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clinical and neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early AD progression is in-
tended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. ADNI is the
result of efforts of many co-investigators from a broad range of academic institu-
tions and private corporations, and up to 1500 adults (ages 55 to 90) were recruited
from over 50 sites across the U.S. and Canada in ADNI and its following initiatives
ADNI-GO and ADNI-2 (see figure 3.3). Subjects had completed at least 6 years of
education, and were fluent in Spanish or English. For up-to-date information on
inclusion/exclusion criteria and other topics, see www.adni-info.org. In this the-

Figure 3.3: World wide Alzheimer’s Disease Neuroimaging Initiative.

sis we will use data belonging to the ADNI-1 initiative. In particular, the database
that we call adni-mri correspond to the MRI volumes from the ‘ADNI1: Screening
1.5T’ collection (subjects who have a screening data). It contains 818 T1-weighted
MRI images from Normal Control subjects (229), mild cognitive impairment sub-
jects (401; 312 stable MCI and 86 progressive MCI) and Alzheimer’s disease subjects
(188) (see demographic details at table 3.1). Information concerning the conversion
from MCI to AD is taken from clinical data available from ADNI. Those patients
whose clinical diagnosis suffer multiple conversions and reversions are considered
as not reliably labeled and discarded from the MCI-converters cohort. Depending
on the experiment, we may use spatially normalized T1-weighted MRI images, u-
sing the SPM8 software, and segmented GM and WM maps (see section 4.1). Seg-
mentation was performed using the SPM-VBM8 toolbox .

www.adni-info.org
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Table 3.1: Demographic data of patients in the database (ADNI 1075-T1).

Diagnosis Number Age Gender
(M/F)

MMSE

NC 229 75.97±5.0 119/110 29.00±1.0
MCI 401 74.85±7.4 258/143 27.01±1.8
AD 188 75.36±7.5 99/89 23.28±2.0

3.3.2 Labelling criteria

The selection criteria followed for accepting participants in the ADNI project is
based on a series of interviews and tests performed individually [46]. The results of
the candidates had to meet certain conditions for admission to the project. Below
are detailed criteria selection of patients for each of the classes of interest for the
study:

1. Normal control subjects: Mini-Mental State Examination (MMSE) ([47])
scores between 24 and 30 (inclusive), a Clinical Dementia Rating (CDR) of 0, non-
depressed, non-MCI, and non-demented. The age range of normal subjects was
roughly matched to that of MCI and AD subjects. Therefore, there should be mini-
mal enrollment of normals under the age of 70.

2. MCI subjects: MMSE scores between 24 and 30 (inclusive), a memory com-
plaint, objective memory loss measured by education adjusted scores on Wechsler
Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of im-
pairment in other cognitive domains, essentially preserved activities of daily living,
and an absence of dementia.

3. Mild AD subjects: MMSE scores between 20 and 26 (inclusive), CDR of 0.5
or 1.0, and meeting NINCDS/ADRDA [46] criteria for probable AD.

3.4 Conclusion

This chapter has provided an overview about the different imaging modalities used
in the filed of neuroimaging for the diagnosis of AD. Special attention has been
given in this chapter to the structural magnetic resonance imaging (sMRI) because
it is widely used in the clinical evaluation of patients with AD. Finally, the last
section of this chapter described the tomographic imaging dataset which is used in
this PhD thesis.





Chapter 4
Image analysis methods

Recent advances in neuroimaging have made possible to obtain three-dimensional
anatomical and metabolic information about the internal structure of the human
brain for the diagnosis step. The complexity of brain structures and the diffe-
rences between brains of different subjects make necessary a process known as pre-
processing to prepare the image dataset. Afterwards, a feature selection and feature
extraction approaches will be performed to extract the most relevant information
from these images before the application of classification process.
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4.1 Image pre-processing

4.1.1 Registration or spatial normalization

The raw sMRI images as collected are not yet ready for analysis. Since the analysis
methods so far are mostly based on the time series of voxels, the consistency of brain
volume position over time is very important. For instance, if the head of the sub-
ject moves during data collection, the time series of a voxel may actually consists of
several segments from different “real” voxels. Unfortunately, despite efforts on the
head fixation, there will always be head motion in sMRI experiments. The prepro-
cessing step to eliminate such motion effects is called “motion correction”. Another
problem is that the shape and the size of individual brains are different from per-
son to person. For inter-subject studies, we need to have a map from each individual
brain space to a standard reference space (template). This process of spatially trans-
forming data into a common space for analysis is known as inter-subject registration
or spatial normalization. The “Motion correction” and the “spatial normalization” pro-
cesses use similar technologies.

There exist a number of pieces of software widely used for registering images, such
as FreeSurfer [65] or FSL (in the FLIRT and FNIRT package) [66]. They perform li-
near, non-rigid and elastic transformations or a combination of these. In the studies
of this thesis, all the MRI images were registered and spatially normalized using the
Statistical Parametric Mapping (SPM) 8 Software [18] yielding a 121 × 145 × 121
voxel representation for each subject. This method; called “cost function”, assumes
a general affine transformation model with 12 parameters (3 translations, 3 rota-
tions, 3 shears and 3 zooms, as shown in figure 4.1) and a Bayesian framework that
maximizes the product of the prior function (which is based on the probability of
obtaining a particular set of zooms and shears) and the likelihood function, derived
from the residual squared difference between the template and the source image
[18]:

CF =
∑
i

(f (Mxi)− g(xi))
2 (4.1)

where f denotes the source image and g is the template. For each voxel x=(x1,x2,x3)
in an image, the affine transformation into the coordinates y=(y1, y2, y3) is expressed
by a matrix multiplication y = Mx [67, 68].
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
y1
y2
y3
1

 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

0 0 0 1



x1
x2
x3
1

 . (4.2)

This matrix multiplication is performed globally, as it transforms the whole image,
not accounting for local geometric differences. We give an example of the parame-
ters that are computed for scale, translation and shear in 3D, in the following equa-
tions:

Scale =


m11 0 0 0

0 m22 0 0
0 0 m33 0
0 0 0 1

 (4.3)

T ranslation =


1 0 0 ∆x1
0 1 0 ∆x2
0 0 1 ∆x3
0 0 0 1

 (4.4)

Shear =


1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

 (4.5)

In the studies of this thesis, all the MRI images were spatially normalized using
the SPM8 yielding a 121 × 145 × 121 three-dimensional structural map for each
subject and these images are co-registered to the Montreal Neurological Institute
(MNI) space [69].

Figure 4.1: Spatial normalization process to match the size and the position of the
brain image [70].

This latter is the most widely used coordinate system, recently adopted by the In-
ternational Consortium for Brain Mapping (ICBM) as its standard template. The
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three-dimensional coordinate system defined in MNI was intended to replace the
Tailarach space, an older system based on a dissected brain, that was used to com-
pose an atlas by Tailarach and Tournoux [71]. The current template is known as
ICBM152, and features the average of 152 normal MRI scans matched to a previous
version of the MNI template using a nine parameter affine registration.

4.1.2 Segmentation

Segmentation is an important task in medical image processing and computer aided
diagnostic with many applications like detection of morphology [72] or 3-D visua-
lizations for surgical planning [73, 74]. When using MRI images in this thesis, we
often refer to the different tissues (grey matter (GM) and white matter (WM) maps),
which are the result of the segmentation of the original image. The principal goal of
the MRI segmentation process is to partition the brain volume into the mayor tissue
classes: gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) [75].
In this thesis, we have used the voxel-based morphometry (VBM) toolbox of the
Statistical Parametric Mapping 8 (SPM8) software, which yields GM, WM and CSF
maps [76]. It features an Expectation-Maximization (EM) algorithm to model the
distribution of the tissue classes as a mixture of gaussians and, by combining this
distribution-based information with tissue probability maps using a bayesian rule,
the software produces joint posterior probability maps for each tissue. To clean up
the segmentation maps, a series of iterative dilations and erosions are used. Finally,
since brain regions are expanded or contracted at the spatial normalization step, we
can scale the segmented maps using modulation, producing final maps where the
total amount of grey matter is preserved.
Figure 4.2 and figure 4.3 show an example of healthy and AD brain GM and WM
images respectively. The histogram which is presented in each figure give an idea
about the intensity values in each subject according to the number of voxels.

4.2 Feature selection

Feature selection is crucial as a data preprocessing step. In particular when the
number of features highly exceeds the number of available samples. This situation
is commonly referred to the curse of dimensionality [77], which leads to the de-
crease of the accuracy rates for the considered learning algorithm. This curse of
dimensionality is a major obstacle in machine learning and data mining. Thus, the
goal of the feature selection step is to solve the sample size problem by selecting the
smallest subset of features that maximally increases the performance of the classi-
fication system [78–80]. Therefore, irrelevant features are discarded, and resultant
models are faster and more cost-effective.
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Figure 4.2: The first row: The average of healthy and AD brain images from GM
segmented sMRI images. The second row: histogram of the intensity values of each
subject according to the number of voxels.
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Figure 4.3: The first row: The average of healthy and AD brain images from WM
segmented sMRI images. The second row: histogram of the intensity values of each
subject according to the number of voxels.

Feature selection can be used before or after feature extraction. When using com-
putationally intensive algorithms such as PCA or ICA, the selection of best features
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prior to the decomposition is key to obtain high performance while keeping the
computation times small [81, 82]. This also removes noise in some cases where the
decomposition algorithm cannot correctly compute the variance. Several techniques
of feature selection exist in the literature, such as, t–test, Mann-Whitney-Wilcoxon
and relative entropy. However, in this work, only t–test technique is used.

4.2.1 t–test technique

The t-test is a statistical test technique, widely used as a feature selection method
[79, 83, 84]. In this thesis, the independent two-sample t-test [85] is used. It quan-
tifies the difference between two classes assuming independent variances. This
technique returns a t-value which computes the mean differences between the two
classes X̄f1 and X̄f2 . It uses a common estimation of variance for both classes and as-

sumes normal variables. Let Xfi a vector containing the f -th feature of all elements
in class i ([19, 86, 87]). The t-score of the f -th feature can be computed as:

tf =
X̄
f
1 − X̄

f
2√

σ2

X
f
2

+σ2

X
f
1

n

(4.6)

where σ2
x
f
i

is the variance and X̄fi is the average of the f-the feature within class i.

The t-test is extensively used in the neuroimaging community, and it is the basis for
the SPM and VBM analyses [18].
Figure 4.4 and figure 4.5 show the brain image tf of GM and WM levels, respectively,
with the statistical value of the t-test in each voxel. In these examples, normal and
AD images were considered in the calculation of the image tf . This technique gives
us information about voxel class separability. It selects the voxels that present a
t-statistic greater than a given threshold ε. After the t-test process, the voxels of the
brain images are ranked using the absolute t-value obtained by the t-test. A higher
t-value indicates significant differences between the mean of the healthy control
group and the pathological group (MCI or AD). Thus, the t-test selects the most
discriminative features between clinical groups. Then, those selected features will
be modeled using feature extraction strategies.

4.2.2 Mann-Whitney-Wilcoxon

Mann-Whitney-Wilcoxon (MWW) rank test, also known as U -test, assigns a rank to
all values in the vector corresponding to the f -th feature, Xf , without considering
any class. The method used to assign a rank is the ‘average’, which means that each
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Figure 4.4: Averaged differences in the probabilities of belonging to GM between
AD and Normal groups. Color bar represents these differences (maximal diffe-
rence= 0.5).
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Figure 4.5: Averaged differences in the probabilities of belonging to WM between
AD and Normal groups. Color bar represents these differences (maximal diffe-
rence= 0.3).

value is assigned with the average of the ranks that would have been assigned to all
the tied values. Calculation of U value is done by the following expressions [85]:
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U1 = R1 −
n1(n1 + 1)

2
(4.7)

where n1 is the number of elements in class 1, and R1 is the sum of the ranks in class
1. An equally valid formula for “U” using the sample set of class 2 is:

U2 = R2 −
n2(n2 + 1)

2
(4.8)

The sum of the two values is given by:

U1 +U2 = R1 −
n1(n1 + 1)

2
+R2 −

n2(n2 + 1)
2

(4.9)

By taking into account that R1 +R2 = N (N + 1)/2 and N = n1 + n2, we find that the
sum is:

U1 +U2 = n1n2 (4.10)

We obtain two different values from Eqs. 4.7 and 4.8: U1 and U2. The final value of
U is taken as the minimum between U1 and U2; U =min(U1,U2).
This statistical test measures the dissimilarity between two groups of values, and,
although is similar to t-test, is less likely than it to spuriously indicate significance
because of the presence of outliers.

4.2.3 Relative entropy

The relative Entropy (RE), also known the Kullback-Leibler (KL) divergence is a
non-symmetric measure of the difference between two probability distributions Ω1
and Ω2. Because of its non-symmetric property, we can make use of this to evaluate
the difference between two classes images for each voxel. RE can be calculated with
the following equation 4.11 [88]:

KLω1ω2
=
∫
V
ω1 log

ω1

ω2
dµ (4.11)

where µ is any measure of V , the set of all voxels that are placed on a certain brain
coordinate, in whichω1 = Ω1

dµ andω2 = Ω2
dµ exist. Ω1 and Ω2 are two discrete random

variables.
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4.3 Feature extraction

The feature selection algorithms presented above will perform a significant feature
reduction, from hundreds of thousands of voxels to a few thousands. These few
thousands voxels are considered the best in discriminating between healthy and af-
fected subjects. The feature selection strategy can be thought of as a mask, in which
only the most relevant regions according to the tests are selected. However, this
number of features is still large, and therefore, further feature extraction can be ap-
plied to extract the most features in the masked regions. In this sense, we have used
four algorithms in our CAD systems: principal component analysis, independent
component analysis, partial least square and non negative matrix factorization.

4.3.1 Principal Component Analysis

4.3.1.1 Basic concept

Principal component analysis (PCA) is a simple approach to extract the most rele-
vant information contained in image datasets and to use these information for en-
coding and comparing individual images. Therefore, PCA is applied to neurological
images in order to find the principal components (PCs) or, in other term, the eigen-
vectors of the covariance matrix of the dataset by treating each image as a vector in
a high dimensional space. Furthermore, the eigenvectors are ordered according to
the amount of variation between the representational images.

4.3.1.2 Mathematical details

The dataset consists of m brain images (of 3 Dimensions), whose typical size is
n = 121×145×121 voxels. It is understood in this context as a set of column vectors
Γi ∈ Rn, i = 1,2, ...,m, formed by concatenating the image voxels.
Thus, ΓTi = (Γ1,Γ2, ...,Γm)i , where Γj represents the value of the corresponding voxel
intensity j, j = 1,2, ...,m.

The Karhunen-Loeve transformation:

The Karhunen-Loeve Transform (KLT) (also known as Hotelling Transform and
Eigenvector Transform) is related to PCA and it is widely used for the analysis of
data in several fields, especially, for compressing data in image processing.
Let Γ ∈ Rn is n–dimensional vector, there is an accurate representation of this latter
(Γ) through a set of n linearly independent vectors ui ∈ Rn as:
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Γ =
n∑
i=1

ziui (4.12)

where it is assumed that ui vectors are subject to the condition of orthogonality:

uT
i uj = δij (4.13)

where δij is the Kronecker delta. Thus, the equation 4.12 does not describe another
thing but only a change of the coordinates to a new orthonormal basis of Rn where
the coordinates of the vector Γ in the new base are given by:

zi = uT
i Γ (4.14)

This coordinate zi call the i-th component in the new space generated by the base
ui . Let’s suppose that in case of a faithful representation of Γ as in eq. (4.12), we are
interested to approximate Γ using a small number (m < n) of basis vectors {ui}. In
this sense, some components zi whose values are not calculated, will be replaced by
random constants bi . So, the next approximation of Γ is constructed as follow:

Γ̂ =
m∑
i=1

ziui +
n∑

i=m+1

biui (4.15)

The approximation error of Γ is giving by the following equation:

∆Γ =Γ− Γ̂

=
n∑
i=1

ziui −
m∑
i=1

ziui −
n∑

i=m+1

biui =

=
n∑

i=m+1

(zi − bi)ui

(4.16)

In order to enhance the approximation error of this approach, a least squares crite-
rion to obtain an optimal solution is established by finding the value of the constant
bi that minimizes the mean square error (MSE):

MSE = E
{
∆Γ2

}
=

n∑
i=m+1

E
{
(zi − bi)2

}
(4.17)
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Therefore, the minimization of MSE is equivalent to finding a solution to:

∂
∂bi

E
{
(zi − bi)2

}
= −2(E{zi} − bi) = 0 (4.18)

which simply leads to:

bi = E{zi} = eTi E{Γ} (4.19)

By the determination of the constant bi (eq. 4.19), it can be obtained the expected
value of zi components. After that, the MSE can be rewriting as follow:

MSE =
n∑

i=m+1

E
{
(zi −E{zi})2

}
=

=
n∑

i=m+1

eTi E {(Γ−E{Γ})}E {(Γ−E{Γ})}
T ei =

=
n∑

i=m+1

eTi ΣΓei

(4.20)

where ΣΓ is the covariance matrix of Γ. It can be shown in [89, 90] that the optimal
choice for ui when the following equation is satisfied:

ΣΓui = λiui (4.21)

or in other words, when ui and λi are the eigenvectors and the eigenvalues of the
covariance matrix, respectively.

Dimensionality reduction by selection of CPs: Eigenbrains

In brain image datasets, the eigenvectors of the covariance matrix can be under-
stood as a set of vectors that characterize the variation between the images. The
location of each brain image contributes more or less to each eigenvector. Thus, this
latter can be represented each eigenvector as a self-image (the origin image). The
autovectors of the covariance matrix of a set of images can be understood as a set
of vectors that characterize the variation between the images. The location of each
image contributes more or less to each autovector, so that each autovector can be
represented as an own image.
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In the field of face recognition [91], the eigenfaces term are used to denote the eigen-
values of the covariance matrix, call “eigenbrains” for the eigenvectors ui ,i = 1, ...,N
[22]. Each brain image can be represented exactly in term of a linear combination

(a) First eigenbrain (b) Second eigenbrain

(c) Third eigenbrain (d) Fourth eigenbrain

Figure 4.6: The first four Eigenbrains extracted from the ADNI database. They
represent the principal components where original images will be projected onto to
obtain a dimension reduction.

of the eigenbrains. Furthermore, it can be also approximated using only the “best”
eigenbrains which are considered as those that explains most of the variance in the
brain image dataset.
Figure 4.6 shows the first four eigenbrains obtained with a segmented sMRI ref-
erence image (gray level) by the PCA technique. The best m eigenbrains extend a
subspace with m– dimensions of all the possible images. Therefore, each individ-
ual can be characterized by the small set of weights associated with the eigenfaces
needed to describe it and to rebuild it. This is an extremely compact representation
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when compared with the same eigenfaces.

• Effective computation of the Eigenbrains:

After the preprocessing step, we get a 3D representation of each subject with size
n = 121 × 145 × 121 voxels. I = [I1,I2, ...,IN] is the representation of all the dataset
that is rearranged in form of n vectors, where N is the number of samples.
The average of these vectors is defined as:

IM =
1
N

N∑
i=1

Ii (4.22)

After the subtraction of the averaged vectors from the segmented brain image vec-
tors, a new set of vectors is obtained; X = [x1,x2, ...,xN]. Where each xi represents a
vector of n-dimensions, xi = (xi1,xi2, ...,xin)T , i = 1,2, ...,N . The covariance matrix is
defined as follows:

∑
X =

1
N

N∑
i=1

xixi
T =

1
N

XXT (4.23)

∑
X is a matrix of n × n dimensions, and the determination of these n eigenvectors

and these n eigenvalues can become a difficult task due to the typical size n. How-
ever, there is a reliable method to find these eigenvectors. Note that if the sample
size N is smaller than the input space of n dimension, an exist only N-1 (in place of
n) significant eigenvectors. The resting eigenvectors will be associated with eigen-
values of zero value. Fortunately, the problem of eigenvectors can be solved by first
solving the eigenvectors of N ×N matrix and then by taking appropriate linear com-
binations of xi images. Consider that vi are the eigenvectors of the matrix X XT , that
is defined as follow:

XTXvi = µivi (4.24)

Multiplying both sides of the equation 4.24 by the matrix X, the following equation
is obtained

XXTXvi = µiXvi (4.25)

where Xvi are the eigenvectors of
∑

X = XXT . The matrix L = XTX of dimension
N × N , where Lji = XTi Xj , and the eigenvectors, vl are calculated from L. These
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vectors are determined by a linear combination of the set of N training images to
form ul eigenbrains.

ul =
N∑
k=1

vlkxk (4.26)

With the above analysis, the calculation are reduced in function of the number of
voxels n and in function of the number of the training set images N . The size of
the training set will be relatively small (N � n). Thus, the calculation will be more
manageable. In addition, the eigenvalues allow us to order their associated eigen-
vectors according to their utility to characterize the variation between images.

• The use of the eigenbrains for the classification step:

In practice, only a number M � N is sufficient for eigenbrains image classifica-
tion, since no accurate reconstruction is required. In this context, the classifica-
tion becomes a pattern recognition task. The m eigenbrains make up a subspace
of m-dimensions of the original input space of n-dimensions. The most significant
eigenvectors m of the L matrix are chosen in principle as those with higher asso-
ciated eigenvalues. A new image I is transformed into eigenbrains components or
coefficients PCA to project it into the “brain” space by a simple operation

wk = uTk (I− IM) (4.27)

where k = 1, ...,m, the Weight wk form a vector ΩT = [w1,w2, ...,wm] that describe the
contribution of each eigenbrain in the representation of the input image. Therefore,
the weight vector can be used within a set of predefined classes the best description
of the image, in a standard pattern recognition algorithm.

4.3.2 Independent Component Analysis

4.3.2.1 Basic concept

Independent Component Analysis (ICA) [92], is a statistical technique that repre-
sents a multidimensional random vector as a lineal combination of non-gaussian
random variables (the so-called “independent components”) to be as independent
as possible. ICA has been used widely on segmentation and clustering of medical
images [17, 93]. It can be considered as a non-gaussian version of Factor Analysis
(FA) [81]. This algorithm is used as a new strategy to avoid the small sample size
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problem [23]. This problem occurs when the number of input features to the classi-
fier is higher than the number of samples used to train this classifier.
In this current work, the number of samples is around 818 images, and the num-
ber of selected voxels N is around 8000. Thus, a reduction in the input vector is
desirable. Using ICA, we obtain a representation of the selected voxels in the IC
space, where the number of components K is equal to 8. This way, we ensure that
the system is not affected by the small sample size problem.

4.3.2.2 Mathematical details

Assume that we observe n lineal mixtures x1,x2, . . . ,xn of length N that can be mo-
deled as an expression of K independent components (IC). These independent com-
ponents are defined as S = (s1,s2, ...sK ), where each sK vector has a length of N . So,
each random vector xn can be described as a linear combination of K independent
components:

xn = a1ns1 + a2ns2 + . . .+ aKnsK (4.28)

Without loss of generality, we can assume that both the observed vectors and the
independent components are zero mean. If the previous conditions are not met, the
x variables can be centered by subtracting the sample mean. To use a vector-matrix
notation, more convenient in this case, we denote as matrix X the random vector
whose elements are x1, . . . ,xn. We also denote as A the matrix that contains all aKn
elements, the “mixing matrix” that projects each image into the space defined by
the IC. Using this notation, the mixing model above remains as follows:

X = AS (4.29)

Figure 4.7 presents the first four ICs obtained using this proposed method applied
to the segmented sMRI database when AD and NC subjects are considered. These
components have been spatially represented by assigning the brain coordinate of
each voxel to each of the values in these IC space. It can be observed that each
component highlights different zones that are usually related to AD. The starting
point of ICA is the assumption that all components sK are statistically independent.
To measure independence, we assume that all independent components have a non-
gaussian statistical distribution. It is assumed that a sum of independent signal
trends to gaussianity, so if non-gaussianity is maximized with any independence
criteria F, for instance, the kurtosis or negentropy, we obtain signals that are more
independent than the previous ones [92, 94]. After estimating the matrix A, we can
compute its inverse, W and obtain the projection S of the images in the dataset into
the IC space with:
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Figure 4.7: Representation of the first four components obtained by ICA in the
ADNI database.

S = WX (4.30)

• FastICA:

Adaptive algorithms based on gradient descend can be problematic when they are
used on an environment in which adaptation is not necessary, like this case. The
convergence is often slow, and depends on the choice of convergence parameters. As
a solution to this problem, block algorithms based on fixed-point iteration [95, 96]
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can be used. In [95], a fixed-point algorithm based on kurtosis is introduced. In
[96], this algorithm, known as FastICA, is generalized to general contrast functions.
The single unit FastICA algorithm has the following form:

w(k) = E{xg(w(k − 1)T x)} −E{g ′(w(k − 1)T x)}w(k − 1) (4.31)

where the loadings vector w is normalized to unit norm in each iteration, and the
function g(x) is a derivative of the contrast function G defined in [94]. The expected
values are estimated in practice by using the mean of a significantly high number of
samples of the input data. The speed of convergence of the fixed-point algorithms
is clearly superior to more neural algorithms. Improvements between 10 and 100
times in the speed are observed frequently [97]. FastICA has been used in this thesis
work to perform the ICA approach.

4.3.3 Partial Least Squares

4.3.3.1 Basic concept

The partial least squares (PLS) [98, 99] approach was developed in 1975 by Her-
man Wold statesman [100] for the treatment of material chains trices and economic
applications. Later, his son and other researchers extended the PLS idea to other
fields. In the recent years, the interest of PLS technique has increased specially in
Regression models such as Principal Component Regression (PCR) [101]. The effec-
tiveness of PLS has been studied theoretically in terms of its variance [102] and its
properties of contraction [103]. In the same way, the performance of PLS has been
studied in several papers [104–106].
In its general form, PLS creates orthogonal score vectors by maximizing the covari-
ance between the different sets of variables. This score vectors called also the latent
vectors or the components [107]. Furthermore, PLS can be naturally extended to
regression problems.

• The principal steps of the regression system are following:

First, the observed variables, X, are converted into an intermediate set of latent va-
riables and these new variables are used for the regression step with the taking into
account the criteria set Y . Furthermore, the most criteria used for the calculation of
the latent vectors is the covariance between the maximum scores in Y (or between
scores in X and scores in Y ). This approach combines the high variance of X and
the high correlation [98].
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• The main concepts of PLS are following:

– PLS can easily be extended as a linear regression method very powerful and it can
work with a large number of variables.

– The resulting model predicts one or more properties, Y, from the original depen-
dent variables, X.

– During the development, a small calculated number of PLS components are used
internally for the regression.

– The number of PLS components determine the complexity of the model and it
can be optimized to increase the predictability of the algorithm.

PLS can be also applied to solve the classification problems by using a coding ma-
trix of a vector belonging for a determinate class. A classifier based on PLS is, in
some ways, similar to a linear classifier [108]. Moreover, the powerful machinery of
kernels based learning can be also applied to PLS approach [109]. A general model
of PLS approach is applied in this work as a discriminatory tool and dimension re-
duction method by using the latent vectors as feature vectors. After the extraction
of the feature vectors, an appropriate classifier will be applied.

4.3.3.2 Mathematical details

PLS is often described as a numerical algorithm that maximizes an objective func-
tion under certain conditions. This objective function is the covariance between
the score vectors X and Y, while the condition is usually the orthogonality of these
vectors. Furthermore, the margins of the objective function which is used, distin-
guishes between two variants of PLS, known as PLS1 (when Y is a vector) and PLS2
(when both X and Y are multidimensional variables).
The PLS2 is a generalization of PLS1. It is assumed that both X and Y are matrices
of size (n ×m) and (n × q) respectively. Each row of X corresponds to an observa-
tion which is represented by characteristics m (predictor variables). For its part, the
matrix Y collected q properties of each one of the n observations. To facilitate the
notation, we will assume that the columns of X and Y are centered in the middle.
The goal of PLS2 regression is to find a linear relationship:

Y = XB + E (4.32)

between the variables in X and Y using a coefficient matrix, B, of size m × q and a
error matrix, E.
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In the case of PLS1, the problem is reduced to

y = Xb + e (4.33)

with coefficients b and error e.
In the case of searching the relationship directly, both, X and Y are modeled by la-
tent variables according to the following models Regression:

X = TPT + Ex (4.34)

and

Y = UQT + Ey (4.35)

With Ex and Ey are the error matrices. T and U (scores matrices) as well as the ma-
trices P and Q (loadings matrices) have columns, with a (inferior ou equal) min (m,
q, n) being the number of PLS components. The values of T are a linear combination
of the values of X, so it can be considered a good summary of X. In the same way, U
is a good summary of Y. Furthermore, tj , uj , pj and qj (j = 1, ..., n) will be used to
denote the jth column of T, U, P and Q respectively. In addition, the X-scores and
the Y-scores are referred to the values of T and U matrices respectively. Since, these
matrices represent the scores vectors X and Y.
The values of T and U are connected by the following linear relationship:

Uj = djTj + hj (4.36)

where hj is the residue and dj is the regression parameter.
If, for example, the linear relationship between T1 and U1 is strong (the elements of
h1 are small). Then, the X-scores of the first PLS components predict fairly well the
Y-scores and therefore also adequately predict the values of Y. However, in the most
cases, it used more than one component for modeling Y from X. The relationship
between the score matrices is therefore as follows:

U = TD + H (4.37)

where D is a diagonal matrix with d1, d2, ..., da elements and H is the matrix of
residues (with hj which refers to the columns of H).
PLS is motivated by the equation 4.37 as only part of the information X and Y is
used for the regression.
In the case of PLS1, the Y-scores are not available and the equation 4.37 is reduced to

y = Td + h (4.38)
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The objective of PLS2 is to maximize the covariance between the scores vectors of
X and Y, while for PLS1, the objective is to maximize the covariance between the
X-scores and Y. The covariance is used as a criterion for calculating the latent vari-
ables by combining the high variance of X and also the high correlation between X
and Y although this depends largely as estimated covariance. In the classic case, the
covariance between two vectors t and u is calculated as the sample covariance, tT

u/(n − 1), but also it can be used more robust estimators. Since, the maximization
problem can not be unique; a constant need on the score vectors and this is usually
||t|| = ||u|| = 1 (length 1). The score vectors are obtained from the projection of X and
Y matrices of loadings vectors. Although, it seems logical to use here loading vec-
tors forming the P and Q matrices (equations 4.34 and 4.34). For technical reasons,
we use other loading vectors, specifically, w for X and c for Y:

t = Xw (4.39)

u = Yc (4.40)

The constrained maximization problem is as follows:

cov(Xw,Yc)→
{

t = Xw = 1
u = Yc = 1

(4.41)

Note that the restriction may be that the length of the score vectors either 1 (as
has been chosen here) or the weight vectors, w and c are 1. The solution of the
maximization problem are the first score vectors, i.e, t1 and u1. For the following
score vectors, they have the same criteria, but with additional restrictions. Nor-
mally, these new restrictions are the orthogonality of the previous score vectors, ie,
tTj tl = 0 and uTj ul = 0 for 1 6 j 6 l < a. An alternative strategy is to require the or-
thogonality of the loading vectors which leads to non-orthogonal score vectors and
therefore correlated.
To find the first component and given that we use the sample covariance, the maxi-
mization problem can be rewritten as maximizing

tTu = XwTYc = wTXTYc→max (4.42)

Under the same length restriction vectors equal to 1. The solutions for w and c are
found easily by means of the decomposition in Securities Singular (SVD) [110] of
XTY. Accordingly, from all the possible directions of w and c, the maximum for the
equation 4.42 is obtained for the vectors w=w1 and c=c1 corresponding to largest
singular value of XTY [111].
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PLS algorithm:

Different algorithms have been proposed to solve the maximization problem posed
in equation 4.42. This section will describe one of the most used algorithms. It is
based on the strategy of requiring the orthogonality of vector scores, resulting in
score uncorrelated vectors.

• Description:

Proposed by Jung in 1993, this algorithm directly maximize the initial problem
(equation 4.41) under the constraint of orthogonality of the scores-t [112]. It was
actually derived to solve specific objective function, i.e. to maximize the covariance.
In this case, the covariance matrix is S = XTY.
A description of the PLS algorithm is shown in the following pseudo-code:

1- Initialize S0 = XTY and repeat the steps from 2 to 8 for j = 1, ..., a

2- If j = 1, Sj = S0, else Sj = Sj−1 −Pj−1(Pj−1
TPj−1)−1Pj−1

T Sj−1

3- Calculate wj as the first (left) singular vector of Sj.

4- wj =
wj
||wj||

5- tj = Xwj

6- tj =
tj
||tj||

7- pj = Xj
T tj

8- pj = [p1,p2, ...,pj−1]

The weights wj and the resulting scores tj are stored as the columns of the matrix
W and T respectively. Note that the matrix W differs from that obtained with other
algorithms because the weights are related directly with X and not with the reduced
matrices. Step 2 makes the constraint of orthogonality of the tj scores compared to
previous scores vectors given that the search is performed in the orthogonal com-
plement of Sj−1. Step 3 directly maximizes the initial problem (equation 4.41). The
scores obtained in step 5 by projecting X in the optimum direction and the loadings
matrices are obtained in step 7 by means of least squares (Equation 4.34). The final
coefficients of the equation 4.32 are:

B = WTTY (4.43)
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For PLS1 technique, the algorithm is simplified slightly. In this case, the orthogo-
nality in step 2 is achieved when using the following projection

Sj = Sj−1 −Pj−1(PT
j−1Pj−1)−1PT

j−1Sj−1 (4.44)

Dimensionality reduction by selection of the relevant PLS-brains:

Once the PLS algorithm is executed, the extraction of feature vectors is trivial. As
noted in section 4.3.3.2, PLS algorithm compose of two data sets, X and Y. Each
sets of them is as a product of two matrices which is known as loadings matrix and
scores matrix (equations 4.34 and 4.35).
In this work (the case of PLS1), the set X is defined as a matrix which contains the
tomographic images. While, the set Y is a vector that contains the labels of these
images. To build X from the corresponding three-dimensional matrices of images.
First, it is necessary to reduce the dimensionality of each image. Thus, the com-
putation time will be reduced and the effectiveness of the algorithm to eliminate
the redundant information will be improved because the marks of Alzheimer tomo-
graphic images are not in the voxels level but at the structural level (in the higher
level). In order to select only the high intensity voxels of the brain, a binary mask
is applied. This mask is constructed by taking the voxels with an intensity higher
than 10% of the maximum intensity. After applying the mask, the resulting voxels
of each image are put into a vector form remaining the set of all images as a two-
dimensional matrix.

The SIMPLS algorithm has been used in this work to carry out the decomposition
in scores and loadings matrices (equations 4.34 and 4.35). The input parameters
of the algorithm (matrices X and Y) are constructed as follows: The matrix X is
formed by the images (a row for each image and a column for each voxel) and the Y-
matrix is a vector with the labels of X-images. Thus, we can perform an interesting
analysis based on the concept of eigenbrains through the scores matrices and the
loadings matrices. That way, loadings would be viewed as elementary brain ima-
ges and scores would represent the quantity of loadings used for building a specific
image. The PLS-based methodology maximizes the covariance taking into account
the labels information, thus the PLS-brains contain the differences between the two
classes. In addition, most of the variance is gathered by the first components and
therefore, most of the differences are also gathered by the first components.
Figure 4.8 shows the representation of the first four PLS-brain obtained by the PLS
algorithm. Furthermore, the feature extraction approach has been performed by
the k-fold cross validation strategy in order to avoid the label of an image which is
taken into account in the extraction of features for this image. Therefore, for each
image of the database, it has implemented the algorithm with the remaining images
(X contains n-1 and the Y labels corresponding to the images in X). In each obtained
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(a) First PLSbrain (b) Second PLSbrain

(c) Third PLSbrain (d) Fourth PLSbrain

Figure 4.8: Representation of the four PLS-brain of an MRI reference image (gray
level) obtained by the PLS algorithm.

execution, in addition to the scores and loadings matrices, a weight matrix with a
score vector of the image under study is calculated. This scores vector is used as
feature vector.

4.3.4 Non-negative Matrix Factorization

4.3.4.1 Basic concept

Non-negative Matrix Factorization (NNMF) is a recently developed technique for
finding reduced linear representations of non-negative data [113–115], used for
finding the reduced decomposition tool for multivariate data. This technique is
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especially suitable for nonnegative data sets, where all the variables consist of posi-
tive values. It has been widely applied in the field of image processing [116, 117]
and in particular, it is used in brain image analysis [118].

4.3.4.2 Mathematical details

Mathematically, NNMF is a linear, non-negative approximate data representation
where the original database A = [A1,A2...,AN] (M by N elements), which consists
of N measurements of M non-negative scalar variables, is approximated by a non-
negative matrix product, as given:

A = WH (4.45)

where, the matrix W = [W1,W2...,WK] has dimension M × K, and the matrix H =
[H1,H2...,HN] has dimension K ×N. Thus, matrix A is decomposed as depicted in
equation 4.46.

Amn =
K∑
k=1

WmkHkn (4.46)

Thus, the NNMF method tries to approximate the data A by means of a product
of matrices WH, where W is the new space of representation and H is the repre-
sentation of the data in the transformed space, according to the space basis. As
a consequence, this transformation approach yields to reduce the matrix H which
represents A in terms of W. An appropriate decision on the value of K is critical
in practice, but the choice of K is very often problem dependent. In most cases,
K is chosen such that K � min(N, M) in which case WH can be thought of as a
compressed form of the data in A.

After NNMF factorization, the data contained in H (K by N elements) can be con-
sidered as a transformed database with lower number of features (k), than the origi-
nal database A. As a consequence, a few variables are representing the data of each
measure in the new representation.
The relative error of the factorization can be computed by means of the comparison
of matrix A and the approximation WH. The minimum number of vectors K in the
NNMF basis is selected so that a predefined level of relative error is not exceeded.

• Factorization Rule:

Given the data matrix, the optimal choice of matrices and are defined to be those
nonnegative matrices that minimize the reconstruction error between A and WH. A
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Figure 4.9: A transversal brain MRI feature extraction by means of NNMF for one
slice of a patient. Image of the k vectors of the new NNMF basis with k=3.

variety of error functions (Error) have been proposed in [113, 115]. One of the most
useful is given below, and applied in this work:

Error =
1
NM
||A−WH||2 =

1
NM

∑
nm

(Anm −WHnm)2 (4.47)

This error function is known as the Frobenius norm (reduction of the Euclidean
distance). Thus, the NNMF process is translated into an optimization problem,
through the minimization of the Error function.

4.4 Conclusion

Pre-processing and post-processing steps are a very critical steps to obtain mean-
ingful results. In this sense, several important processing steps, such us, anatomical
segmentation, feature selection and feature extraction techniques are applied in this
work.
t-test feature selection technique was used in this work to select the most relevant
regions related to AD. This technique is based on the computation of a feature rele-
vance score directly on the dataset. The relevance score is used to sort the relevant
features, discarding those with a lower score. The application of feature selection
technique before feature extraction technique is the key to obtain high performance
while reducing the computation time. Afterwards, several feature extraction tech-
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niques, such as, PLS, PCA, ICA and NNMF techniques, were used in the different
CAD systems developed in this work. These feature selection techniques were ap-
plied to decrease more the number of features by the decomposition of the selected
regions. All mathematic details about these techniques have been presented in this
chapter. SPM software [119] is applied to perform the MRI image segmentation,
which is described in detail in the appendix A.



Chapter 5
Classification and resampling methods
for validation

The final step of any pattern recognition system is to learn a model from the training
instances capable of correctly classifying future unseen data. As already mentioned
in the previous chapters, the high dimensionality of the feature vectors (even after
the feature selection and feature extraction steps) suggests the use of a discrimina-
tive model. The support vector machine (SVM) classifier [23] is frequently used for
classification in medical imaging including computer-aided diagnosis in magnetic
resonance brain imaging [120–123]. In this sense, SVM have been used in this work
as a discriminative tool for CAD systems to classify the images under study. A com-
prehensive description of its basic concepts and its mathematics forms will be given
in section 5.1. The performance metrics which are used to evaluate the classifier
will be presented in section 5.2. On a different topic, the assessment of any CAD
system is very important for obvious reasons. In this PhD work, the cross-validation
(CV) technique was used to estimate the performance measures such as the classi-
fication accuracy, sensibility or specificity. Section 5.3 will present the different CV
methods.
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5.1 Support Vector Machine

5.1.1 Basic concepts

The Support Vector Machine algorithm was first developed in 1963 by Vapnik and
Lerner [124] and Vapnik and Chervonenkis [125, 126] as an extension of the Gen-
eralized Portrait algorithm. This algorithm is firmly grounded in the framework of
statistical learning theory–Vapnik Chervonenkis (VC) theory, which improves the
generalization ability of learning machines to unseen data [126–128].
In the last few years, Support Vector Machines (SVM) have attracted attention from
the pattern recognition community [121, 129] owing to a number of theoretical and
computational merits derived from Statistical Learning Theory (SLT) [129]. SVM
[130] look for the set of support vectors that allow to build the optimal discrimi-
nating surface in the sense of providing the greatest margin between the classes
[131–133]. It separates a given set of binary labeled training data with a hyper-
plane that is maximally distant from the two classes (known as the maximal margin
hyperplane), as exemplified in figure 5.1.

5.1.2 Mathematics

The simplest support vector classifier assumes the data to be linearly separable.
Each sample of a given dataset is considered to be a p-dimensional vector. Therefore,
the objective is to separate a set of data, with binary labels, using a hyperplane (mul-
tidimensional plane) that maximizes the distance between the two classes. There-
fore, we must build a function f : Rp → ±1 that is able to assign a binary value (+1
or -1) to a new sample. This function is built using a set of training data x, which
contains p-dimensional vectors (samples) xi and their corresponding class yi, so that
f will correctly classify new examples (x,y):

(x1,y1), (x2,y2), ......, (xN,yN) ∈Rp ×±1 (5.1)

The linear support vector classifier defines a separation hyperplane in a multidi-
mensional space using the following function:

g(x) = wT x +ω0 = 0, (5.2)

where x denotes the feature vector, w is known as the weight vector and ω0 as the
threshold. The decision hyperplane position is determined by the vector w and ω0:
the vector w is orthogonal to the decision plane andω0 determines its distance to the
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Figure 5.1: Illustrative example of the outcome of an SVM algorithm on a linearly
separable binary problem. The optimal separating hyperplane maximizes the mar-
gin between the support vectors of each class.
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origin. Therefore, the optimization task consists of finding the unknown parameters
ωk , k = 1, ...,S (S= number of voxels) by minimizing the norm of the vector w subject
to some linear constraints defining the class belongings, that is:

argminw,ω0α≥0

1
2
‖ w ‖2 −

2∑
i=1

αi[yi(w.xi − b)− 1]

 (5.3)

where αi are some Lagrange multipliers in case of linear separable training data xi .

When no linear separation of the training data is possible, SVM can work effectively
in combination with kernel techniques using the kernel trick, so that the hyperplane
defining the SVM corresponds to a non-linear decision boundary in the input space
that is mapped to a linearized higher-dimensional space [129].
In this sense, the decision function can be expressed in terms of the support vectors
only:

f (x) =
NS∑
i=1

αiyiF((si ,x) +ω0) (5.4)

where F(si ,x) is the kernel function, αi are the solution for the optimization process,
solved by either Quadratic Programming (QP) or the well known Sequential Mini-
mal Optimization (SMO) [134], and si are the support vectors [129]. The chosen
kernel function in different kinds of SVM, and the choice of the appropriate kernel
for a specific application is a difficult task [88]. In this work, two different kernels
were tested: the linear kernel and the radial basis function (RBF) kernel.

• The linear kernel function is defined as:
K(xi ,xj) = 1 + xTi xj

• The RBF kernel is defined as:
K(xi ,xj) = exp(−γ |xi − xj |2)

where γ is a hyperparameter (also called the kernel bandwidth).

5.2 Evaluation of classifier performance

5.2.1 Performance metrics

The purpose classifier consists to assign correctly a label to an object defined by
feature vectors. For binary classification, in which data are divided into positive and
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Table 5.1: Possible test results depending on the label.

labels
Positive Negative

Test
Positive TP FP → Positive predictive value
Negative FN TN → Negative predictive value

↓
Sensitivity

↓
Specif icity

negative labels, there will be two possible errors can make the classifier: a pattern
that is classified as a positive, however, it was actually a negative or vice versa.
These possibilities are reflected in table 5.1, where the test result is compared with
the original label. Four possible test results can be obtained:

• True positive (TP) result when the two table parameters coincide positive value.

• False positive (FP) result when the test is positive while the original label was
negative.

• False negative (FN) result when the test is negative while the original label was
positive.

• True negative (TN) result when the two parameters coincide in negative value.

The sensitivity is defined as the ability of a classifier to detect the true positives and
is expressed as:

Sensitivity =
T P

T P +FN
(5.5)

So that a sensitivity of 100% correspond to a classifier which is able to correctly
classify all objects labeled as positive. Therefore, if a classifier with high sensitivity
gives a negative result, it will be very reliable, which, in the case of computer aided
diagnosis, can be used to discard the disease. The sensitivity is related to the error
of type I in statistical inference, which is to reject the null hypothesis when it is
actually true.
The specificity is defined as the ability of a classifier to detect the true negatives and
is expressed as:

Specificity =
TN

TN +FP
(5.6)
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So that a specificity of 100% correspond to a classifier which is able to correctly
classify all objects labeled as negative. In the case of computer aided diagnosis, a
classifier with high specificity is very useful to confirm the disease. The specificity
is related to the error of type II where the null hypothesis is accepted when it is
actually false.
A good diagnostic test is one has both high sensitivity and specificity. The accuracy
is defined as:

Accuracy =
T P + TN

T P + TN + TN +FP
(5.7)

It is possible that a classifier has near of 100% and 0% of sensitivity and specificity
values, respectively. This classifier does not have the capacity to discriminate be-
tween classes, as it would be a classifier to take any pattern as positive. This is
equivalent to a random classification, since their accuracy will be around 50% for a
sample without predominance of any of the two classes. The classifier is desirable
that have a high value of accuracy, sensitivity and specificity simultaneously.
Other parameters that can be interesting are the predictive values. These parame-
ters refer to the validity of a result of positive/negative classification (positive/nega-
tive predictive value). It can rely more on a classifier with high positive predictive
value (PPV) than one with lower PPV. However, the predictive values depend on
the preponderance of classes, called prevalence. This latter is a term of epidemi-
ology which determines the proportion of individuals in a population that, in our
case, have the disease. If the test set does not have an equal number of positive than
negative, the positive or negative fractions (FPP/FPN) probability shall be used:

FPP =
sensitivity

1− specif icity
(5.8)

and

FPN =
1− sensitivity
specif icity

(5.9)

5.2.2 ROC curves

A receiver operating characteristic (ROC), or ROC curve, is a graphical plot that
illustrates the performance of a binary classifier system as its discrimination thre-
shold is varied. ROC analysis has become a popular method for evaluating the
accuracy of medical diagnostic systems. The curve is created by plotting the true
positive rate (sensitivity) against the false positive rate (1-specificity) for different
cut-off points. Each point on the ROC curve represents a sensitivity/specificity pair
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corresponding to a particular decision threshold.
In figure 5.2, the ROC space is shown. The best possible classification method would
yield a point in the upper left corner or coordinate (0, 1) of the ROC space, re-
presenting 100% of sensitivity value and 100% of specificity value. Therefore, the
closer the ROC curve is to the upper left corner, the higher the overall accuracy of
the test [135].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
e
n
s
it

iv
it

y
ROC for classification by PLS−SVM

 

 

GM

WM

GM+WM

Figure 5.2: An example of a ROC Space. A ROC space is defined by (1 - speci-
ficity) and sensitivity as X and Y axes respectively, which depicts relative trade-offs
between true positive rate and false positive rate.

5.3 Cross-validation methods

Cross-validation [136–138] is a validation technique used to assess how the obtained
results of a statistical analysis will generalize to an independent dataset. It is mainly
used in settings where the goal is prediction, and one wants to estimate how accu-
rately a predictive model will perform in practice. A cross-validation technique is
based on the segmentation of all the data into complementary subsets, and perform
the analysis on a subset (called the training set) and validate this analysis in another
subset (called testing set)[139, 140].
To reduce the variation of the result values during the global evaluation of the pro-
posed system, multiple rounds of CV are performed using different partitions. In
addition, the validation results are averaged over the rounds [141]. As a conclusion,
CV method is based on averaging the measures of fit (prediction error) to derive a
more accurate estimate of model prediction performance. In CV methods, the test
set is not a “real” test, as the label elements set of test is known. In this sense, a com-
parison of the test result with the original label are performed to determine if it is
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a TP, FP, TN, or FN. Once the process iterates over each partition, you can calculate
any of the amounts defined in the previous section.

5.3.1 k-fold cross validation

k-fold cross validation is a common technique for estimating the performance of
a classifier. In k-fold cross-validation, the data is firstly partitioned into k equally
sized folds. Subsequently, k iterations of training and validation are performed
such that within each iteration a different fold of the data is held-out for validation,
while, the remaining k − 1 folds are used for learning (see figure 5.3) [142]. Data
is commonly stratified prior to being split into k folds. When, the stratification is
the process of rearranging the data as to ensure each fold is a good representative
of all information. For example, in a binary classification problem where each class
comprises 50% of the data, it is best to arrange the data such that in every fold, each
class comprises around half the instances.
The advantage of the k-fold cross validation method is that all the observations are
used for both training and testing. Besides, each observation is used for validation
only once. This method is often used when the number of elements in the sample is
very large, or when sorting algorithms are computationally costs. In this case, it has
control over the number of times that iterates through the validation number (k).

Figure 5.3: Scheme of k-fold cross validation.



5.3. Cross-validation methods 71

5.3.2 Leave-one-out cross validation

Leave-one-out cross-validation (LOOCV) is a particular case of k-fold cross-vali-
dation where k equals the number of instances in the data. In other words, in each
iteration nearly all the data except for a single observation are used for training and
the model is tested on that single observation (see figure 5.4). An accuracy estimate
obtained using LOOCV is known to be almost unbiased but it has high variance,
leading to unreliable estimates [143]. It is still widely used when the available data
are very rare, especially in bioinformatics where only dozens of data samples are
available. The advantage of LOO CV method is that the training set is larger than
the sample permits, increasing the statistical estimation of the parameters of the
classifier. In contrast, this method can be computationally expensive given the large
number of times that the validation process is repeated, if the number of elements
in the sample is large.

Figure 5.4: Leave-one-out cross-validation procedure.
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5.4 Conclusion

This chapter has provided details of the machine learning method applied in this
thesis work, namely, support vector machines. In addition, a description of their
performance metrics may be assessed. Furthermore, the proposed CAD systems
were carried out using the cross validation strategy which was also described in
this chapter. The following four chapters present the main contributions of the
thesis which detailed the results of the experimental development approaches. The
two later chapters present respectively the conclusions of this work and a Spanish
chapter which resume the work of this PhD thesis.



Part II

Experimental developments





Chapter 6
Structural MRI analysis based on
Partial Least Square

PLS is a statistical model which is widely used as a method for modeling the rela-
tion between the observed variables by means of the latent variables. It has been
a popular tool for dimensionality reduction techniques as well as the classification
task. The underlying idea of all PLS methods is that the observed data are generated
by a system which is running by a small number of latent variables [144].
PLS has received a great amount of attention of the scientific community due to its
successful application in several areas such as bioinformatics, medicine, pharma-
cology, social sciences and physiology [106, 145–148]. A developed CAD system
which is based on PLS approach have been proposed in this work for the early di-
agnosis of the disease. The mathematical details of this approach are presented in
chapter 4 and the obtained results of the developed CAD system are presented in
the following.
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6.1 Experiments

A combination between the PLS feature extraction approach and the SVM classi-
fier have been evaluated for different brain tissues from the segmented sMRI brain
images. All the experiments are carried out by the k-fold cross-validation strate-
gy, that is, the complete classification system is trained by taking into account all
the samples but one, which is used as test samples. This procedure is repeated as
many times as samples in the database, leaving each sample out in each iteration.
Finally, an average accuracy rate is computed. k-fold has been used to assess the dis-
criminative accuracy of the proposed CAD system applied to the discrimination of
frontotemporal dementia from AD [149] and in classifying atrophy patterns based
on sMRI images [150].
This experimental section is aimed to achieve two objectives. Firstly, by reducing
the dimensionality of the input images in order to solve the sample size problem.
The proposed methodology based on t-test feature selection and PLS feature extrac-
tion approaches demonstrates its effectiveness for segmented sMRI images mode-
ling without loss of relevant information. Secondly, it addresses to the ability of
the proposed CAD system which provides good results of accuracy, sensitivity and
specificity rates.
Figure 6.1 illustrates the pipeline of the proposed CAD system.

Figure 6.1: Schema of the proposed PLS-CAD system.

For the analysis of the proposed CAD system, the ADNI database that is used in this
PhD thesis, is arranged into three different groups:

• Group 1: only AD (positive) and Normal controls (negative) patient images
are considered.
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• Group 2: only MCI (positive) and Normal controls (negative) patient images
are considered.

• Group 3: only MCI (positive) and AD (negative) patient images are conside-
red.

6.2 Results

The classification results are summarized in table 6.1 with different experiments
(GM images, WM images and the combination of feature extracted from GM and
WM brain tissues), using PLS feature extraction approach and different SVM classi-
fiers.

Table 6.1: Statistical measures of performance of PLS feature selection method with
different SVM classifiers, for the three sample groups, and using eight components.

Group 1 Group 2 Group 3
Brain tissues Kernel Acc/Sens/Spec(%)Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Linear 87.53/88.65/86.17 77.57/76.76/71.9 77.03/74.59/79.46

RBF 87.29/87.77/86.7 76.22/81.62/70.8 76.22/74.59/77.84

WM
Linear 85.61/87.34/83.5 80.54/79.46/81.62 87.03/88.65/85.41

RBF 84.41/85.59/83 81.35/76.22/80.54 86/85.41/86.49

GM+WM
Linear 88.49/91.27/85.11 81.89/82.16/81.62 85.41/87.03/83.78

RBF 88.49/90.39/86.17 80.27/73.51/82.7 85.41/85.95/84.86

• Classification result of group 1

PLS + Linear SVM method yielded higher accuracy rates than RBF. Furthermore,
the combination of features extracted from GM and WM segmentation reported a
classification accuracy of 88.49% for PLS and linear SVM (sensitivity= 91.27% and
specificity= 85.11%) compared to 87.53% for GM only (sensitivity= 88.65% and
specificity= 86.17%) and 85.61% for WM only (sensitivity= 87.34% and specificity=
83.51%). As a conclusion, the combination between features extracted from both
GM and WM tissue distributions increases the classification rates of the classifier.
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Figure 6.2: SVM classification: Values of Accuracy (%) computed for ADNI database
in function of number of component for PLS feature extraction technique: with SVM
linear (left) and RBF (right): (a) and(b) are the results of group 1, (c) and (d) are the
results of group 2, (e) and (f) are the results of group 3.
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• Classification result of group 2

The most difficult classification task concerning the ADNI database is to distinguish
between NC and MCI patients, due to the wide range spanned by the features ex-
tracted from MCI patients. Using PLS and linear SVM, the combination of features
extracted from GM and WM brain tissues provided the highest accuracy, 81.89%
(sensitivity=82.16% and specificity=81.62%), whereas the features extracted from
GM or WM brain tissues alone reported a classification accuracy of 77.57% and
80.54% respectively. Overall, we note that combining features extracted from both
GM and WM brain tissues yielded the highest accuracy value.

• Classification result of group 3

Combining features extracted from GM and WM segmentation reported a classifi-
cation accuracy of 85.41% for PLS and linear SVM (sensitivity= 87.03% and speci-
ficity= 83.78%) compared to 77.03% for GM only (sensitivity= 74.59% and speci-
ficity= 79.46%) and 87.03% for WM only (sensitivity= 88.65% and specificity=
85.41%). These results showed that the most important change in the brain oc-
curs more in the white matter than in the gray matter brain tissues [151].
As shown in the table 6.1, the proposed and the analyzed method highlights that
the combination of features extracted from GM and WM brain tissues distributions
give better accuracy, sensitivity and specificity values than using different brain tis-
sues separately. As a result, combining the different features extracted from both
brain tissues (GM+WM) of patients with classification methods produces a valid
approach to perform a CAD system for AD.
The accuracy value of the proposed model depends on the size of the feature vector.
Therefore, the maximum size of the feature vectors is the number of brain image
database minus two. However, this number may be reduced by selecting only the
most important components. These components contain the most relevant informa-
tion related to AD.
Figure 6.2 shows the accuracy rates of the different groups achieved with PLS ap-
proach in function of number of components selected (number of components= 8).

6.3 Discussion

The proposed method which is analyzed in this chapter is valid approach to de-
velop CAD system for AD. In addition, this methodology achieves good values of
accuracy, sensitivity and specificity.
The successful rate of PLS based method reached 88.49% for group 1. However, it
is decreased for group 2 and 3 (78.92% ,85.4% respectively) when MCI images are
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Figure 6.3: Representation of all images of the database using only the two first
Scores of PLS.

included (see figure 6.2). This is probably due to the high variability of the MCI pat-
tern of each image. As a consequence, the classification task becomes more difficult
(see figure 6.3). As shown in the result of group 2 (NOR. vs. MCI), the classification
result using only WM brain tissue is better than using only GM. This result confirms
the previous study [152] in which the modification in the pattern of brain atrophy in
early study (MCI) of disease occurs in the WM brain tissue. Besides, elder subjects
are likely to have WM structural abnormalities caused by leucoaraiosis or other di-
seases [153]. This abnormality in the WM brain tissue for patients with AD or MCI
can make the structure very different from normal controls. Thus, the classification
result in the WM can be better than in GM of brain images. Furthermore, the clas-
sification results for group 3 (MCI. vs. AD) confirms that neurodegeneration starts
in the WM and spreads to GM with the progression of the disorder.
It is worth noting that CAD systems are reproducing current medical knowledge
since they have been trained with samples labeled by physicians. For this reason,
statistical measures reported in this chapter are an estimation about how a trained
system is able to reproduce a medical diagnosis performed by experts [154]. Thus,
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some possible errors in the labeling process can modify the decision hyperplanes
of the classifiers, specifically considering that the labels were assigned based on the
scores obtained by patients in cognitive tests (as MMSE and CDR).
In this work, we have previously shown that combining features extracted from GM
and WM segmentation gives a good classification accuracy using PLS approach. In
addition, PLS + Linear SVM model yields good classification results with smaller
computational time.
A more interesting approach consists of selecting only some components of fea-
ture extraction methods, such as FDR as it is described in [155] and the Out-Of-Bag
(OOB) error in [154]. This previous methods achieve that using the first PLS compo-
nents is optimal for classification purposes. In the development of our CAD system,
we have selected only the 8 first PLS components. A higher number of compo-
nents may worsen the classification results since it increases the input space. The
relevance of the classification results obtained is also confirmed by the receiver o-
perating characteristic (ROC) curves shown in figure 6.4. This figure gives us more
information about the SVM classifier performances: the SVM with linear kernel
reached the best trade-off between sensitivity and specificity. In addition, the closer
to the left upper corner values are the better [156] which is the case of the combina-
tion of brain tissues in this work.
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Figure 6.4: Comparison of the trade off between sensitivity and specificity. ROC
curves for the three cases analyzed: using only GM images, using only WM images
and using both GM images and WM images.
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6.4 Conclusion

In this chapter, a complete CAD system for the diagnosis of the early AD has been
presented. The proposed CAD system combines a feature extraction and a feature
selection approaches with classification technique to improve the analysis of the
segmented sMRI database to diagnosing AD. The proposed methodology based on
two approaches which allow to reduce the dimension of the feature vector in order
to surmount the small-size problem which arises in classification problems when
the dimension of the feature vector is very high compared to the number of available
samples.
The first approach uses t-test feature selection approach in order to extract the most
discriminant regions from the different brain tissues of the segmented sMRI images.
The second approach uses score vectors obtained through a Partial Least Squares
algorithm as features. Score vectors are chosen following a criterion of maximum
covariance between images and labels.
The proposed methodology has been tested, using two SVM kernels, the linear and
the nonlinear (RBF) kernels. The resulting CAD system was trained using sMRI
images from the ADNI database and the statistical performances of the novel aided
diagnosis system were estimated using a k-fold cross-validation methodology.



Chapter 7
Structural MRI analysis based on
Principal Component Analysis

PCA [157] is a standard technique to extract the most significant features from the
brain image. Moreover, PCA is based on the action of a linear transformation (also
known as the Karhunen-Loeve transformation) on a dataset of zero mean that dia-
gonalized the covariance matrix. Mathematically, PCA is defined as an orthogonal
linear transformation that transforms the initial correlated variables in a small num-
ber of uncorrelated variables, called Principal Components (PC). The first principal
component will contain the characteristics of the data that have a greater contribu-
tion to the variance, followed in descending order by its value of variance for the
second principal component, the third component, etc.
The PCA approach has been applied successfully in different image classification
problems [91, 158, 159], and in particular in neuroimaging classification [155]. An
automatic CAD system which is based on PCA approach has been developed in this
work. The mathematical details of this approach are presented in chapter 4. How-
ever, the results of this developed CAD system will be presented in detail in this
chapter.
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7.1 Experiments

The feature extraction technique based on the PCA approach in combination with
SVM classifier has been tested on the segmented sMRI images from the ADNI data-
base. Then, a binary mask for each tissue brain images (GM images and WM images)
is computed by averaging all the normal subject tissue images. Only the voxels that
have an intensity above 10% of maximum intensity in the average image will be
considered. Thus, the application of a binary mask reduced the voxel numbers; for
121× 145× 121 voxels (2,122,945 voxels) to 382,325 voxels. After that, a t-test fea-
ture selection approach is applied to select the most relevant features. Then, the
PCA approach is applied to reduce more the input space and to extract the princi-
pal component vectors which are used as input for a statistical classifier.

Figure 7.1: Schema of the proposed PCA-CAD system.

The main objective of these experiments is to determine at first the ability of PCA
analysis as a dimension reduction technique of the space and to determine discrimi-
nation features to distinguish between subjects labeled as normal, MCI or AD pa-
tients. Once the features are extracted and reordered according to the most con-
venient criterion (variance), it is intended to see how they are in accordance with
different classifiers, evaluating their performance by varying parameters inherent
in them. The maximum number of PCA coefficients that can be extracted from a
database of N samples is N-1. The experiments were performed by varying the
number of coefficients m used in training and testing tasks from m =1 to m = N-1,
to determine in each case the appropriate number of coefficients is necessary for
successful separation of classes. On the other hand, SVM classifiers with linear and
RBF kernels type are evaluated.
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The description of the groups on which all the process is applied are:

• Group 1: 360 subjects; 185 as NORMAL and 185 as AD.

• Group 2: 360 subjects; 185 as NORMAL and 185 as MCI.

• Group 3: 360 subjects; 185 as MCI and 185 as AD.

7.2 Results

Table 7.1 shows the statistical measures obtained using PCA approach. The perfor-
mance of this feature extraction technique was calculated by means of k-fold cross-
validation with a number of folds equal to 10 (k=10). Thus, this table presents the
values of the accuracy, sensitivity and specificity for the different brain tissues (GM,
WM, GM+WM) using the proposed PCA approach and the different SVM classifiers
(with linear and non linear kernels).

Table 7.1: Statistical measures of performance of PCA feature selection method with
different SVM classifiers, for the three sample groups, and using eight components.

Group 1 Group 2 Group 3
Brain tissues Kernel Acc/Sens/Spec(%) Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Linear 85.61/89.08/81.38 75.41/78.38/72.43 72.71/72.43/72.97

RBF 83.93/86.26/81.38 72.97/75.68/70.27 71.08/71.89/70.27

WM
Linear 81.77/84.28/78.72 75.14/77.3/72.98 79.19/82.16/76.22

RBF 81.29/83.41/78.72 72.7/64.86/80.54 74.86/74.05/75.68

GM+WM
Linear 87.77/89.96/85.11 78.92/80/77.84 81.89/84.86/78.92

RBF 87.55/90.39/84.04 73.24/71.89/74.59 76.77/74.59/78.92

• Classification results for group1

The classification results obtained using group1, which consisted on distinguishing
between NC and AD subjects, show a higher value of the accuracy rate.
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Figure 7.2: SVM classification: values of Accuracy (%) computed for ADNI database
in function of number of component for PCA feature extraction technique: with
SVM linear (left) and RBF (right): (a) and (b) are the results of group 1, (c) and (d)
are the results of group 2, (e) and (f) are the results of group 3.
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Figures 7.2.(a) and 7.2.(b) show that the linear-SVM yielded a higher accuracy rates
than RBF. Combining features extracted from GM and WM segmentation reported a
classification accuracy of 87.77% for PCA and linear SVM (sensitivity of 89.96% and
specificity of 85.11%) compared to 85.61% for GM only (sensitivity of 89.08% and
specificity of 81.38%) and 81.77% for WM only (sensitivity of 84.28% and specificity
of 78.72%). As a conclusion, combining features extracted from both GM and WM
tissue distributions increases the classification and accuracy of the classifier.

• Classification results for group2

The most difficult classification task in this work is to distinguish between NC sub-
jects and subject in the early asymptotes of the disease (MCI subjects), due to the
wide range spanned by the features extracted from MCI. Using PCA and linear SVM,
the combination of features extracted from GM and WM segmentation provided the
highest accuracy, 78.92% (sensitivity 80% and specificity 77.84%), whereas the fea-
tures extracted from GM or WM alone reported a classification accuracy of 75.41%
and 75.14% respectively. Overall, we note that combining features extracted from
both GM and WM tissue yielded the highest accuracy value. The classification re-
sults related to this experiment are shown in figures 7.2.(c) and 7.2.(d).

• Classification results for group3

Table 7.1, figures 7.2.(e) and 7.2.(f) show the classification results obtained in the
last experiment, which consisted on distinguishing between MCI and AD subjects
using different SVM classifiers. The Combination of features extracted from GM
and WM segmentation are given a classification accuracy value of 81.89% (sensitivi-
ty value of 84.86% and specificity value of 78.92%) compared to 72.71% for only GM
tissue brain images (sensitivity value 72.43% and specificity value of 72.97%) and
79.19% for WM only (sensitivity 82.16% and specificity of 76.22%). As shown in
the table 7.1, the PCA method analyzed in this work highlight that the combination
of features extracted from GM and WM tissue distributions gives better accuracy,
sensitivity and specificity than using different brain tissues separately. As a result,
combining the different features extracted from both brain tissues (GM and WM) of
patients with classification methods produces a valid approach to perform a CAD
system for AD.

7.3 Discussion

As shown in the above section that PCA is a valid approach to develop a CAD system
for AD. In addition, the developed CAD system achieve a good value of accuracy,
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sensitivity and specificity. From figure 7.2, we can note that the performance of the
CAD system improves with the number of PCA components used as input features
for classification which up to a maximum stable value.
The successful rate of PCA based method reached 87.77% for group1. However, it
is decreased for group 2 and 3 (78.92% and 81.89% respectively) when MCI images
are included (see figure 7.2.(c) and 7.2.(d)). This is probably due to the high vari-
ability of the MCI pattern of each image. As a consequence, the classification task
becomes more difficult (see figure 7.3).
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Figure 7.3: Representation of all images of the database using only the two first
Scores of PCA.

In order to evaluate the proposed CAD system, a receiver operating characteristic
(ROC) curves are used.
Figure 7.4 contains the sensitivity and 1-specificity values of the classification re-
sults in the ROC space considering the PCA technique. These plots show a trade-off
between the specificity and sensitivity of the CAD system when varying any of the
input parameters. In addition, the closer to the left upper corner values are the
better [156] (the combination of brain tissues, i.e. GM and WM).
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Figure 7.4: Comparison of the trade off between sensitivity and specificity. ROC
curves for the three cases analyzed: using only GM images, using only WM images
and using both GM images and WM images.

7.4 Conclusion

A CAD system for assisting the early detection of the Alzheimer’s disease was shown
in this chapter. The system was developed by combining the different brain tissues
and using the t-test and PCA as feature selection and extraction methods. Thus,
these approaches allow the dimensionality reduction of the feature vector in order
to surmount the small sample size problem. The classification task is performed
using an SVM classifier with linear and RBF kernels, and performance values are
obtained via k-fold cross-validation. The proposed system shows good classification
rates in the discrimination task between AD and NC images. Moreover, it yields a
peak value up to 88% for the accuracy, 90% for the sensitivity and 85% for the
specificity, when combining features extracted from GM and WM brain tissues, and
using linear SVM. When MCI brain images are included in the classification, the
accuracy value is slightly affected (79% and 82% for NC. vs. MCI and MCI. vs.
AD, respectively). As a conclusion, these obtained results reveal that the developed
system, improve the classification rates of sMRI ima-ges for an accurate diagnosis
of the early AD stage.





Chapter 8
Structural MRI analysis based on
Independent Component Analysis

The statistical independence is a desirable property in the field of pattern recogni-
tion, and Independent Component Analysis (ICA) approach provides the necessary
to obtain a set of independent sources from a data set. In signal and image proces-
sing field, the usual framework in which ICA arises is the problem of “cocktail party
effect”. Thus, its solution is to recover the information from the original sources that
produced a recorded signal mixture from the Blind Source Separation (BSS) process.
The resolution of this problem must be carried out without any knowledge about
the proportion source / noise generated by the recorded signal. Through ICA, see-
king the statistical independence of the original sources, you can obtain the set of
original sources, obtaining with ICA several advantages over other methods that
can solve the problem, as PCA. One of these advantages is that the noise sources
can be completely separated and removed with ICA approach, so that a separate set
of sources containing all the relevant information is obtained. A developed CAD
system based on ICA have been proposed in this work to allow us to extract highly
representative features, which are closely related to typical AD patterns, and to im-
prove the classification results in the early stage of AD.
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8.1 Experiments

Two different methodologies were realized with ICA approach and segmented sMRI
brain images:

• Method I: is based on a combination between t-test and ICA, as a feature se-
lection and extraction approaches.

• Method II: is based only on ICA feature extraction approach from the class
mean images.

For testing early diagnosis capabilities, MCI was considered as a pre-stage of AD
[150, 160, 161] and the following three groups were designed:

• Group 1: Only NC subjects and patients with probable AD are considered and
is referred to as “NC. vs. AD” in the following.

• Group 2: Only MCI and NC patient images are considered and is referred to
as “NC. vs. MCI”.

• Group 3: Only MCI and AD patient images are considered and is referred to
as “MCI. vs. AD”.

8.1.1 Method I

8.1.1.1 Application to the segmented sMRI database

In this work, we have a matrix X that contains all xn mixture vectors, each one con-
taining N values. Each vector represents the intensity values for each brain image.
An application of the t-test feature selection approach to the matrix X established
to reduce the dimensionality by selecting the first 8000 relevant feature voxels. Af-
ter that, an application of the FastICA algorithm is established to the new reduced
matrix for extracting the first K eigenvalues (k=8; the number of independent com-
ponents). Then, the independent components are extracted using the algorithm
described in chapter 4. From this algorithm, we obtain the mixing matrix A and its
inverse W for the complete database X. After that, classification experiments were
performed to distinguish between NC, MCI and AD. The pipeline of this proposed
methodology presents in the figure 8.1.
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Figure 8.1: Illustration of the system used in “method I”.

8.1.1.2 Results and Discussion

The classification results are summarized in table 8.1 with different experiments
(GM images, WM images and the combination of feature extracted from GM and
WM brain tissues), using ICA feature extraction approach and different SVM clas-
sifiers. It can be noted from this table that the highest accuracy value is obtained
for the group 1 and it is decreased in group 2 and 3 when MCI images are included;
this diminution of their performance metrics can be explained by the high variabil-
ity of the MCI pattern of each image. Second, it can be concluded from the measures
of performance metrics that the linear SVM classifier yields a higher accuracy rate
with ICA feature extraction approach than SVM-RBF (see figure 8.2). Thus, the
linear SVM might be the best technique to distinguish AD and MCI patients from
NC. Third, it is remarkable that when using the combination of feature extracted
from GM and WM images as input features and afterwards transformed them with
ICA coupled with linear SVM increase the accuracy of the classifier. Thus, adds a
valuable robustness to our system for distinguishing AD and MCI from NC subjects.

Table 8.1: Statistical measures of performance of ICA feature selection method with
different SVM classifiers, for the three sample groups, and using eight components.

Group 1 Group 2 Group 3
Brain tissues Kernel Acc/Sens/Spec(%)Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Linear 84.65/86.46/82.45 69.46/69.03/69.96 69.19/70.27/68.11

RBF 82.97/83.41/82.4568.38/68.65/68.11 64.05/61.62/66.49

WM
Linear 70.26/72.93/67.02 63.51/63.24/63.78 59.46/62.16/56.76

RBF 68.82/68.56/69.1561.08/56.22/65.95 53.51/51.89/55.14

GM+WM
Linear 86.37/88.34/83.98 70.19/72.89/67.49 69.83/73.43/66.24

RBF 78.66/75.11/82.9865.13/61.08/69.19 64.32/51.89/76.76
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Figure 8.2: SVM classification: Values of Accuracy (%) computed for ADNI database
in function of number of component with ICA feature extraction: (Above) the clas-
sification accuracy of group 1 (NOR versus AD), in (the middle) the classification
accuracy of group 2 (NC versus MCI) and (below) the results of group 3 (MCI versus
AD).
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8.1.2 Method II

In this section, a CAD system is proposed with special emphasis in the whole struc-
ture of the system, that is, not only relying on performance measures but also on
diagnosis support. Several pattern recognition and machine learning techniques
are combined to provide an accurate decision and a visual support.
Figure 8.3 gives an overview of the procedure used in this CAD system. The image
under analysis is decomposed into its class relevant patterns and a two-dimensional
(2D) scatter plot is used to represent the degree of class belongings according to
those patterns. To obtain class representative patterns, the sMRI segmented into
WM and GM tissues brain is used to grow 2D subspaces. The basis that spans these
subspaces, talking in algebraic terms, is made up of a basis of independent vec-
tors obtained by the ICA on means (ICAm) method. The images are orthogonally
projected onto this subspace and classified using the SVM classifier, furnishing the
classification output with a graphical interpretation.

Figure 8.3: Flow diagram of the procedure used in the proposed CAD system.

8.1.2.1 Projection onto representative subspaces

Consider a n dimensional vector space E in which each sMRI image of the brain is a
vector v. Additionally, each vector v has a corresponding label c, which typically can
only take two values {c1, c2}, forming a pair {v, c}. The coordinates of the vector vi ,
expressed in the standard orthonormal basis {e1, ...,en} on the space E, correspond
with the values the image takes on each voxel, ranging from 1 to n, the total number
of voxels in the image:

v = v1e1 + v2e2 + ...+ vnen (8.1)

The idea behind the projection onto representative subspaces is to find a subspace
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S ⊂ E with dimension m � n spanned by a basis of vectors {u1,u2, ...,um} and or-
thogonally project each image vector onto this subspace. The vectors ui are the
images that contain the most representative patterns of each class ci , whose extrac-
tion process is described below. In addition, the dimension m will correspond with
the number of classes. Therefore, each image projection onto S is expressed as:

v‖ = x1u1 + x2u2 + ...+ xmum (8.2)

It is assumed that the orthogonal complement of the subspace S, that is S⊥, contains
the information related to all the other variations in size and form and not related to
the classes. Therefore, this projection is considered as a feature extraction method,
and the resulting feature vector is made up of the coordinates xi . Since, the vectors
ui are not necessarily orthogonal, to calculate xi one needs to make use of the pro-
jector operator PA: Let {u1, ...,um} be a basis of the subspace S, and let A denote the
n-by-m matrix whose columns are u1, ...,um. Then, the projection is given by: [162]

PA = A(ATA)−1AT (8.3)

so that the application of that operator on a vector image:

v‖ = PAv (8.4)

gives the coordinates of equation 8.2. The procedure to determine the basis {u1, ...,um}
of the representing subspace is therefore crucial to successfully capture the class-
relevant information.

8.1.2.2 Extraction of a representative vector basis by ICA means (ICAm)

Figure 8.5 shows brain image patterns that represent the ICs of an image decompo-
sition; two vectors that span with a class-representative subspace. To obtain them
one should first compute the class mean images:

v̄i =
1
Nm

Nm∑
j=1

ηijvj , i = 1,2, ...,m. (8.5)

where Nm is the number of vectors belonging to the class ci and:
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ηij =

1 if vj ∈ ci
0 otherwise

i = 1,2, ...,m (8.6)

If X is a n-by-m matrix, whose columns are the v̄1, ...v̄m vectors, then ICA can be
applied to obtain a set of independent vectors. Let X be an observed random vector
and A is a full rank matrix such that:

X = AS (8.7)

where the source signals S contain the independent components: ps (S1, ...,Sn) = ps1
(S1)...psn (Sn). Thus, ICA recovers both the sources Sj and the mixing process using
the independence assumption.
In the linear case, this latter task consists of finding the mixing matrix A. A popular
approach is to find a demixing or separating matrix W so that variables uj in U=WX
are estimates of Sj up to scaling and permutation. In the deflationary approach, the
sources are estimated one by one, by finding a column vector wj (this will be stored
as a row of W) such that uj = wT

j X is an estimate of sj . Hence, W is an estimate
of the (pseudo) inverse of A up to scaling and permutation of the rows of W. In
this work, the estimation of the independent components and the mixing matrix is
done with the help of FastICA [95] in order to reduce the computational cost and
the choice of the parameters of convergence. The FastICA is an iterative fixed-point
algorithm that maximizes the non-gaussianity as a measure of independence, with
the following update for w:

w(k) = E{Xg(w(k − 1)TX)}− E{g ′(w(k − 1)TX)}w(k − 1) (8.8)

where w is one of the rows of the demixing matrix W, and g is the derivative of the
contrast function, chosen to be a cubic polynomial. After each iteration step, w is
normalized to have unit norm, ensuring that the rows wj of the demixing matrix
are orthogonal. The iteration is continued until the direction of w does not change
significantly. With this procedure, the basis {u1,u2, ...,um} is obtained and is used to
represent each image as in equation 8.2.

8.1.2.3 Results and Discussion

Three different experiments were performed considering the three different groups
to construct the representative subspace S described in equation 8.4. In addition,
the feature vector dimension (m) was determined by the number of the different a-
verage vectors classes.
Table 8.2 expands the classification results in the held out set for the case of m= 2
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(considering NC and AD average vectors, NC and MCI average vectors or MCI and
AD average vectors), once the described steps, projection, ICA has been applied to
the raw data.
All the experiments represent a high compression of brain image data to a small
number of features (m= 2 features). This proposed method represents a high com-
pression of the large amount of information (voxels) contained in the brain images
database to a small number of features. The results summarized in table 8.2 reveal
that the idea of using SVM with non-linear kernel and a small number of features
generalize better results than linear kernel. These obtained results confirm the the-
oretic reasons in [23, 129].
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In addition, these results demonstrate that the idea of finding some representative
images for the characterization AD is suitable.
Figure 8.4 represents the x1 and x2 values obtained when projecting each image into
the AD and NC mean images (eq. 8.2).
Figure 8.5, 8.6 and 8.7 show an SVM classifier with linear kernel and the training
vectors in the feature space (x1, x2), obtained by the projection of each image vector
into the independent component (ui) images space for the group 1, the group 2 and
the group 3 respectively.
From the slope of the classifier for each group, the number of support vectors and
the spread of the training data x1 and x2, a visual analysis can be performed to
deduce the relevance of each pattern of atrophy for each image.
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Figure 8.4: Projection of each GM image onto the NC and AD average image without
the feature extraction method.
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Figure 8.5: Separation of the two different classes for group 1 by projection of each
GM images (left) and WM images (Right) into the image space, using linear SVM
classifier.
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Figure 8.6: Separation of the two different classes for group 2 by projection of each
GM images (left) and WM images (Right) into the image space, using linear SVM
classifier.
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Figure 8.7: Separation of the two different classes for group 3 by projection of each
GM images (left) and WM images (Right) into the image space, using linear SVM
classifier.
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Regarding the results of SVM classifier for the three groups with the different brain
tissues, it can be noted that the separation of the GM tissue images in two classes is
more efficient. This could be justified according to the existence of the most relevant
information relies with the progress of the AD in the GM brain tissue. However, the
SVM classification provides also good results with the WM images. It means that
even in the early stage of the disease the WM images contain a discriminating fea-
tures of AD. For this reason, it is better to consider both brain tissue distribution in
analyzing the AD in the early stage.
The aims of this proposed methodology were, in the one hand, to compress the brain
image dataset to a small element image basis for characterizing the AD in order to
solve the problem of small sample size and to improve the computational time. On
the other hand, to develop the coherent work flow for a CAD system for early AD
with a meaningful decision support.
All the classification experiments were performed considering the three different
groups for k-fold cross validation. Results for NOR/AD, NOR/MCI and MCI/AD
classification are shown in table 8.2. In addition, group 1 shows more stable beha-
vior and higher accuracy values than groups 2 and group 3. Thus, accuracy values
up to 88% and sensitivity values up to 90% were obtained for group 1 with GM
images. On the other hand, the classification results between MCI and AD provide
84% of accuracy and 85% of sensitivity levels. This obtained result reflects that the
proposed CAD system has a good ability to distinguish between MCI subjects and
patients with advanced AD. However, group 2 (NC.Vs. MCI) shows a lower accu-
racy values than groups 1 and 3. These low accuracy values may be explained by the
use of imbalanced training data sets in group 2 (401 MCI and 229 NC). Therefore,
the performance parameters can be affected by the introduction in groups 2 of MCI
patients, whose image pattern of brain atrophy is complex and highly variable, and
it evolves in time as the disease progresses [150, 163–165] (see figure 8.8). However,
the introduction of MCI patients in group 3 (MCI. vs. AD) keep the stability of the
statical measures.
Figure 8.9 depicts the ROC curves obtained by the proposed CAD system for the
different brain tissues (GM, WM, GM+WM) of the sMRI database used in this thesis
work. All the curves are very close to the upper left corner, so we have a desirable
trade-off between sensitivity and (1 - specificity) in the area of interest. Further-
more, this figure confirms the higher accuracy of the proposed methodology and
shows that it provides an adequate trade-off between sensitivity and specificity.

The analysis of the ROC curves shows that the proposed CAD system based on
ICA model using GM images gives better result than the proposed approach using
the combination of GM and WM images, mostly in the case of group 1. A possible
interpretation of this difference may be that the atrophy in GM brain tissue is more
acute, and the loss of GM is starting to be more visible for AD patients than in cases
involving MCI subjects, where subtle differences may involve the whole GM and
WM brain tissues [166].
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Figure 8.9: Comparison of the trade off between sensitivity and specificity. ROC
curves for the three cases analyzed: using only GM images, using only WM images
and using both GM images and WM images.

• Visual support:
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The proposed CAD system is not only optimized in performance terms, but it also
provides a meaningful interpretation of the classification output by means of eigen-
basis projections onto 2D scatter plots. In figure 8.4, a two-dimensional basis formed
by mean images is taken as candidate for the representative subspace. The projec-
tion onto the corresponding spanned subspace does not offer a visual support for
classification. One needs to decompose each image by projecting it onto a more dis-
criminative subspace.
In this way, there are several approaches in which this decomposition can be achieved.
The most straightforward approach makes use of PCA [167]. But, as it occurs in the
face recognition problem, the true dimensionality of the complete subspace [168]
is typically not graphically representable. Moreover, in PCA, the basis of such sub-
space is not independent but uncorrelated.
To obtain an independent set of vectors or, at least, the most independent set of vec-
tors, one should make use of ICA. This approach has been successfully applied to
the problem of AD diagnosis with MRI [169], but the number of sources is again not
representable, with the additional drawback of not having a natural sorting criteria
and possible compensating scores.
Figures 8.5, 8.6, and 8.7 illustrate the representative patterns for each classifica-
tion, together with the scatter-plot. The independent sources that serve as basis for
equation 8.2 show a correspondence with previously reported patterns for the neu-
rodegeneration process in AD ([170–173]).
Therefore, regions as the parahippocampal gyrus, lingual gyrus, hippocampus, fron-
tal lobe, precentral gyrus, or the temporal lobe appear marked in the ICA-brain
images. This information allows to decompose the test image into its class - repre-
sentative patterns and to evaluate visually the amount of the atrophy of the image
under study, by its location on the subspace projection. It also allows to detect any
failure on the preprocessing steps, as normalization or segmentation, as the test i-
mage would appear as an outlier in the scatter-plot frame.
When average image of MCI are added to those of AD and NC, a 3-dimensional
feature vector is produced (m=3). The three independent components are obtained
in addition to u1 and u2 of figure 8.5.
Figure 8.8 demonstrates how the information of MCI is introduced in the classifica-
tion task and also its corresponding coordinates for the training vector of group 1
(NC.vs. AD). The availability of a visual interpretation allows for a deeper under-
standing of the MCI case. For example, it contradicts the hypothesis of the work by
Filipovych and Davatzikos [174], as it is shown that the MCI cases are not between
NC and AD, but includes a more complex pattern of atrophy.
Generalization performance has been shown to be overestimated by cross-validation
in many cases[175], and the appropriateness of an algorithm has been shown to rely
on external factors to the algorithm itself, as the database size or acquisition[176],
making controversial the direct comparisons between published results. In a recent
2016 work for the diagnosis of MRI[177], Harper and coworkers state that: “Visual
assessment remains the primary method of scan interpretation, but in the absence of
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a structured approach, diagnostically relevant information may be underutilized”.
In their work, a machine-learning approach is presented as an alternative to visual
assessment, in order to compare both. The proposed approach in this work, that is
an ICAm-SVM CAD, can be hardly evaluated under this premise, and uncertainly
better than other CAD systems that make use of other features. The main advantage
of the proposed CAD is that it produces a representable analysis of the classifica-
tion of unseen data, by situating them in context, relative to other known cases.
In contrast, other ICA-based CAD systems do not offer this structured approach to
scan interpretation, as is the case of [169], or [178], where only group patterns can
be visualized and unseen data are not related to them. Moreover, ICA used as fea-
ture extraction usually requires some feature selection criteria, in order to sort or
select the independent components, as in [169, 178, 179] or [180], and are exposed
to the randomness of ICA extraction. Feature selection may play a critical role in
these works, making it hard to evaluate the ICA extraction effect. Here, we propose
a solution to those problems by a modeled ICA extraction and projection, in the
framework of eigenbrain decomposition [22]. This point of view also opens the pos-
sibility of future studies in the same sense of Harper et. al. in which visual support
of CAD systems could be systematically evaluated.

8.1.3 Comparison between the both proposed methods

The results of the second proposed method are compared with the ICA model (me-
thod I), and also with the voxel-as-features (VAF) [181] baseline method, as showing
in table 8.3.
The VAF method uses all voxels in each image as a feature vector, which is used as
an input to the classifier. This approach is considered as a reference, because of its
simplicity and the accurate estimation of its performance: in the work by Kloeppel
et. al., [181] a pathological confirmed database was used to estimate a performance
superior to visual assessments by experts.
In these experiments, only SVM linear has been used in the VAF approximation to
compute the results, due to the large number of input features to the classifier, to
obtain more generalizable results and to avoid the small sample size problem.
In light of the results shown in table 8.3, the second proposed approach improves
the performance metrics of the analyzed CAD system, compared to VAF approach
and the ICA approach (method I).
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In table 8.2, group 1 shows more stable behavior and higher accuracy values than
groups 2 and 3. Thus, accuracy values up to 87% and sensitivity values up to 90%
were obtained for group 1 with GM images, outperforming the classification results
obtained when features are computed by means of VAF approach and the first pro-
posed ICA model. This result is comparable to best of 10 methods in Cuingnet et.
al.[121], in which their Voxel-Direct-D-GM reported best results in group 1, with
sensitivity 85% - specificity 91% and was tested in the same database. Besides, the
values of PL are more than the value considered to be a good class discriminant, and
the NL are less than 0.2, considered also a good value.

8.2 Conclusion

For early AD diagnosis, new CAD systems based on two models of ICA were deve-
loped in this chapter. The first one is based on the t-test and ICA, as a feature
selection and extraction techniques, respectively, to select the ROI and to extract a
low number of IC which represent the feature vector for each image. The second
model, called ICAm model, aims to extract the highly representative features from
each average brain image (NC, MCI and AD), related to typical AD patterns, for
classification and decision support. Thus, this model is implemented in a super-
vised way, such that an underlying model of the disease stages is used to extract
the ICs as an eigenbrain decomposition, making feature selection unnecessary. The
resulting CAD systems perform significantly well on the segmented sMRI images.
In addition, these systems demonstrate its ability and robustness in AD detection
and provide high accuracy values when using the first eight components. However,
the ICAm model outperforms several proposed methods, such us, the baseline VAF
approach and the first proposed ICA model.
As a conclusion, the developed ICA-based systems may be useful for computer aided
diagnosis of AD. However, the generalization capabilities of the methodology could
be overestimated and should be taken with caution. First, the ADNI is a multi-
center database (approximate 50 centers using different voxel sizes and acquisition
parameters). Second, scanner or center effects did not take into account in the ex-
perimental task. Third, potential brain vascular lesions in the subjects may be a
confounding factor. Finally, the factors of age and gender have not been taken into
account. All of these aspects may influence the final classification accuracy. [169].





Chapter 9
Structural MRI analysis based on
Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NNMF) is a recently developed technique for
finding reduced linear representations of non-negative data [113, 115, 182] being a
useful decomposition tool for multivariate data.
NNMF decomposes the input data as a product of two matrices that are constrained
by having nonnegative elements. It is firstly proposed by Lee and Seung [113] to
decompose human face images and they achieved meaningful part-based represen-
tation due to only additive, not subtractive combinations are allowed. Recently,
NNMF has been successfully applied to the biomedical applications and specifi-
cally in feature extraction and dimensionality reduction tasks.
The mathematical details of this approach are presented in chapter 4. Furthermore,
all the obtained results during this work with the different proposed experiments
are presented in the following.
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9.1 Experiments

The normalized and segmented sMRI database is selected as input data for the
NNMF + SVM CAD tool. Each patient has 125 × 145 × 125 voxels, which yields
2265625 voxels per patient. Then, a binary mask is applicable by computing the
average of all the normal subject brain images. Only the voxels that have an inten-
sity above 10% of the maximum intensity in the average image will be considered.
This step reduces the number of voxels in the input space. After that, the NNMF
approach is applied in order to select the most relevant features related to AD. Fi-
nally, the SVM classifier is applied to distinguish between NC, MCI and AD. The
pipeline of this developed CAD system is illustrated in the figure 9.1.

Figure 9.1: Illustration of the NNMF-CAD system.

9.2 Results

This section provides the experimental results of the evaluation of the developed
CAD system, along with its variants. The NNMF+SVM based CAD tool is deve-
loped with linear and non-linear SVM classifier. Thus, the classification results are
summarized in table 9.1 with different experiments (GM images, WM images and
the combination of feature extracted from GM and WM segmentation).
Figures 9.2, 9.3 and 9.4 show the NMF + SVM results in terms of accuracy (Acc),
sensitivity (Sens) and specificity (Spec), for the different tissue brain (GM, WM and
GM+WM) with the different SVM kernels. According to these figures, the best clas-
sification results are with linear SVM kernel. This proposed methodology using
NNMF as feature extraction technique yields a peak values of accuracy = 89.04%,
sensitivity = 88.23% and specificity = 89.83%.
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Figure 9.2: Performance of the NNMF-SVM CAD system with the segmented MRI
database, for different k values, only NOR/AD groups are considered.

9.3 Discussion

This work shows a CAD system for the early detection of the Alzheimer’s disease.
A NNMF + SVM analysis for segmented structural brain images is applied for the
proper classification of MRI images and AD detection. The proposed methodology
is based on NNMF for selection and extraction of the MRI image features of each
patient of the database, considered as source data for further classification through
an SVM-based method, considering different kernel functions.
In table 9.2, the developed CAD system that is presented in this chapter was com-
pared with other existing in the literature. The voxel-as-features (VAF) approach
results are reported as reference. In all the groups, the proposed methodology out-
performs the VAF approximation method [19]. As a conclusion, our methodology
can produce a valid approach to perform a CAD system for early diagnosis of AD.
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Figure 9.3: Performance of the NNMF-SVM CAD system with the segmented MRI
database, for different k values, only NOR/MCI groups are considered.
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Figure 9.4: Performance of the NNMF-SVM CAD system with the segmented MRI
database, for different k values, only MCI/AD groups are considered.
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The second experiment evaluates the classifier performance in terms of the Receiver
Operating Characteristic (ROC) curves, that evaluate the trade-off between the false
positive rate and the true positive rate of the ensemble.
Figure 9.5 reveals the ROC curves for increasing complexity classification tasks: NC.
vs. AD, NC. vs. MCI and MCI. vs. AD, considering NNMF technique.
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Figure 9.5: Comparison of the trade off between sensitivity and specificity. ROC
curves for the three cases analyzed: using only GM images, using only WM images
and using both GM images and WM images.
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9.4 Conclusion

In this chapter, a novel image-based computer system is developed for an automatic
detection and diagnosis of the early stages of AD. The proposed system is based
on the combination of NNMF, as a feature reduction technique and the SVM classi-
fier. The feature reduction step provides a reduced set of variables representing the
original data. This dimensionality reduction approach is suitable, specifically, for
machine learning techniques, such as, the SVM.
The NNMF-SVM CAD tool is validated on sMRI image database which provides
information about the structural change in the brain. The validation results of the
proposed NMF-SVM CAD system yields up to 89% classification accuracy with high
sensitivity and specificity values (upper than 88%) when we distinguish between
controls and AD classes. In performance terms, the developed system outperforms
several proposed methods from the bibliography, specifically the baseline VAF ap-
proach.



Part III

General discussion and conclusions





Chapter 10
General discussion, conclusions and
future work

The different contributions of this thesis have already been discussed in detail in
each chapter. However, in the first section of this chapter, we will discuss and com-
pare the diffe-rent image-based CAD systems, proposed for an accurate identifica-
tion of Alzhei-mer’s disease, specifically, in its early stage. Moreover, the majority
of the developed CAD systems have been published in [180, 183–185].
The second section shows the conclusions of this PhD thesis and highlights the sci-
entific contributions that have been made. These contributions are based on the
development of new algorithms to improve the accuracy of computer aided diagno-
sis systems for neurodegenerative diseases, such as, Alzheimer’s disease in its early
stage. Furthermore, these CAD systems aimed to solve the sample size problem in
neuroimaging. These proposed CAD systems achieve a satisfactory classification
performance, being capable of distinguishing between normal, MCI and AD pa-
tients successfully.
A series of proposals are made to continue this work and to open new lines of re-
search that will improve these methods, in the last section.
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10.1 Comparison and discussion between the developed
CAD systems

Different decomposition techniques for tackling the small sample size problem were
developed in this PhD thesis. These techniques (chapters 6, 7, 8 and 9) are based
on feature selection and feature extraction algorithms that perform a significant re-
duction of the number of features used in neuroimaging. The classification task is
performed using an SVM classifier with linear and RBF kernels, and performance
values are obtained via k-fold cross-validation.
Through the developed CAD systems, we obtained a very significant feature reduc-
tion, from hundreds of thousands of voxels to between 2 and 10 features, which
were the coordinates of each sample in the space defined by the components. All
the feature selection and feature extraction techniques which are used in this work
were able to detect the region of interest in the AD structural datasets, obtaining an
accuracy around 90%. These techniques make also our CAD systems better gene-
ralizable, since the features are no longer subject to the small sample size problem.
Thus, the samples are projected to a dense space, where the SVM are able to per-
form a reliable classification.

Results of the different developed CAD systems are shown in table 10.1, 10.2 and
10.3 for classifying NOR/AD, NOR/MCI and MCI/AD groups. These results were
compared to VAF technique, as a reference. Firstly, the segmentation process is
performed on sMRI in order to analyze the features extracted from GM and WM
images, separately. Afterwards, a combination of these features are realized to im-
prove the accuracy rates of these developed systems, specifically, in the early stage
of AD. Through the obtained results of the different proposed techniques, we have
shown that combining features extracted from GM and WM segmentation gives a
good classification accuracy than those using only GM brain tissue or WM brain
tissue separately. Thus, this idea adds a valuable robustness to our developed sys-
tems for distinguishing AD and MCI from NC subjects. Secondly, all the developed
systems were achieved the best accuracy results in the AD. vs. NC classification
(' 89%). When the intermediate state MCI is involved, the performances are af-
fected because of the complexity and the variability of brain atrophy patterns based
on MRI. PLS + LSVM achieved the best accurate rates for NC. vs. MCI (81.89%
of accuracy, 82.16% of sensitivity and 81.62% of specificity), and ICAm + LSVM
achieved the best accurate rates for MCI. vs. AD (86.4% of accuracy, 86.6% of sen-
sitivity and 86.1% of specificity). In light of these obtained results, the proposed
techniques improve the performance metrics of the CAD systems, specially in the
early stage of the AD, compared to VAF approach.

As a conclusion, we have proved the ability of all these developed CAD systems
in the differential diagnosis of AD. All these proposed methodologies perform ei-
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Table 10.1: Statistical measures of performance of the developed CAD systems with
linear SVM classifier, for NOR/AD group, and using k-fold cross validation (k=10).

Type of groups Brain tissues Method Accuracy Sensitivity Specificity

NOR.vs.AD

GM VAF 0.656 0.729 0.583
PLS-SVM 87.53 88.65 86.17
PCA-SVM 85.61 89.08 81.38
ICA-SVM 84.6 86.5 82.4

ICAm-SVM 88.1 90.9 85.1
NNMF-SVM 85.10 87.76 82.44

WM VAF 0.645 0.708 0.583
PLS-SVM 85.61 87.34 83.51
PCA-SVM 81.77 84.28 78.72
ICA-SVM 70.3 72.9 67.1

ICAm-SVM 78.6 78.6 78.6
NNMF-SVM 82.97 81.91 84.04

GM+WM VAF 0.657 0.751 0.562
PLS-SVM 88.49 91.27 85.11
PCA-SVM 87.77 89.96 85.11
ICA-SVM 86.4 88.4 83.9

ICAm-SVM 87.2 90.9 84.5
NNMF-SVM 89.03 88.23 89.82

ther a reduction of the feature space in order to reduce the amount of false posi-
tives currently found in neuroimaging studies. Other improvements, such as the
computational load reduction thanks to feature extraction techniques may also be
acknowledged.

10.2 Conclusions

In the first part of this work, different existing approaches for the diagnosis are re-
viewed. All the tools that will be used for further analysis and development of this
PhD research work are introduced. The characteristics of AD and also the different
clinical diagnostic methodologies for analyzing the structural tomographic images,
are described. A specific chapter is devoted to the detailed description of the data
used for validation of the developed diagnostic techniques. The fundamental con-
cepts of the theory of statistical learning are introduced with special interest to the
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Table 10.2: Statistical measures of performance of the developed CAD systems with
linear SVM classifier, for NOR/MCI group, and using k-fold cross validation (k=10).

Type of groups Brain tissues Method Accuracy Sensitivity Specificity

NOR.vs.MCI

GM VAF 0.552 0.551 0.583
PLS-SVM 77.57 76.76 71.9
PCA-SVM 75.41 78.38 72.43
ICA-SVM 69.5 69.1 69.9

ICAm-SVM 78.6 81.3 76.1
NNMF-SVM 73.67 75 72.34

WM VAF 0.448 0.511 0.395
PLS-SVM 80.54 79.46 81.62
PCA-SVM 75.14 77.3 72.98
ICA-SVM 63.5 63.3 63.8

ICAm-SVM 73.9 78.1 69.6
NNMF-SVM 76.32 79.78 72.87

GM+WM VAF 0.521 0.562 0.479
PLS-SVM 81.89 82.16 81.62
PCA-SVM 78.92 80 77.84
ICA-SVM 69.2 70.3 68.2

ICAm-SVM 77.6 81.3 73.9
NNMF-SVM 80.05 81.91 78.19

supervised learning methods applied to the small sample size problem compared
to the dimension of feature space. Furthermore, several analysis tools, such as, the
ROC curves and the cross validation method are implemented at the classification
stage to evaluate the performance of the developed CAD systems.
In this sense, this PhD work provides new contributions based on the development
and the implementation of new approaches for the analysis of segmented structural
magnetic imaging (sMRI) brain images. More specifically, four approaches are de-
veloped, which can improve the accuracy of the CAD systems used for the diagnosis
of AD.

The second part of this research work describes the main contributions through the
development of four novel CAD systems for the early diagnosis of AD. These CAD
systems are based on feature selection and feature extraction techniques to extract
the significant voxel’s intensity in the regions of interest (ROI). ROI was estimated
using an image model called “template”. This image model was computed as an
average of control subject images, which leads to define the ROI as those brain areas
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Table 10.3: Statistical measures of performance of the developed CAD systems with
linear SVM classifier, for MCI/AD group, and using k-fold cross validation (k=10).

Type of groups Brain tissues Method Accuracy Sensitivity Specificity

MCI.vs.AD

GM VAF 0.489 0.458 0.521
PLS-SVM 77.03 74.59 79.46
PCA-SVM 72.71 72.43 72.97
ICA-SVM 0.692 0.703 0.682

ICAm-SVM 0.858 0.856 0.861
NNMF-SVM 71.8 71.27 72.34

WM VAF 0.595 0.649 0.525
PLS-SVM 87.03 88.65 85.41
PCA-SVM 79.19 82.16 76.22
ICA-SVM 0.595 0.622 0.568

ICAm-SVM 0.813 0.841 0.786
NNMF-SVM 75.79 76.06 75.53

GM+WM VAF 0.611 0.667 0.534
PLS-SVM 85.41 87.03 83.78
PCA-SVM 81.89 84.86 87.92
ICA-SVM 0.698 0.734 0.663

ICAm-SVM 0.864 0.866 0.861
NNMF-SVM 79.52 79.25 79.78

that are most active in healthy people.

In Chapter 6, the first proposed methodology is presented, which makes use of the
t-test and partial least squares (PLS) approaches. The first approach is used to se-
lect the voxels, where the structural tissues differ from healthy and patient subjects.
The second approach decomposes the data in two sets of variables into the product
of two matrices, called scores and loadings. In our case, the two sets of variables
are those formed by the segmented structural images and by labels of these images.
After the decomposition of these sets, the score matrix corresponding to the set of
images contains the projection of voxels which were obtained considering the labels
of the images. These projections are known as PLS-brains which are used as feature
vectors. These later used as input parameters for the classifier.
In chapter 7, a linear decomposition of the segmented data in eigenvectors called
principal components (PCs) through the principal component analysis (PCA) tech-
nique were obtained. The combination of PCA, the support vector machines (SVM)
and the t-test selection criterion have proved to be a suitable technique for neu-
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rological image classification. Thus, it achieved a good classification result and it
solved the small sample size problem.
Chapter 8 presents the obtained results by the two proposed CAD systems based on
independent component analysis (ICA). The first CAD system uses a combination
of voxel selection and extraction techniques based on t-test and ICA respectively.
This combination allows us to extract the highly representative features, which are
closely related to typical AD patterns. The second CAD system is based also on
the ICA approach to extract the highly representative features, but from each ave-
rage brain image for the different classes (NC, MCI and AD), related to typical AD
patterns. However, this approach is implemented in a supervised way, such that
an underlying model of the disease stages is used to extract the ICs as an eigen-
brain decomposition, making feature selection process unnecessary. The last chap-
ter presents all the results of the last developed CAD system using non-negative
matrix factorization (NNMF) approach. This approach reduces the original data
through a linear representation of only the non-negative data of variables.
The analysis of the segmented structural MRI images using these proposed ap-
proaches, aims to extract reduced feature vectors from gray matter brain images
and white matter brain images, separately, to discriminate between AD, MCI and
elderly normal control (NC) subjects. These feature vectors were used separately or
together to train a statistical classifier. These approaches show a satisfactory over-
all performance with a classification accuracy of 89% when combining the features
extracted from gray matter and white matter tissue brain. In this way, these ap-
proaches allow us to improve the precision of the CAD systems for diagnosing the
AD in its different stages.
In the classification stage of proposed CAD systems, the SVM is used as a classifier
with linear and non linear kernel (RBF) due to its high robustness to the final de-
cision process. Therefore, the validation of these CAD systems has been estimated
using the k-fold cross validation technique. The obtained results are compared with
previous approaches like voxel-as-feature (VAF) approach. These results are de-
tailed in Chapter 6, 7, 8 and 9. The main goals of the PhD project were successfully
reached. This is confirmed by the fact that the works developed were published in
several international journals and presented at international conferences.

10.3 Future work

As future lines of the research developed throughout this work, we present the fol-
lowing proposals:

• The use of Multiclass classification (NC, MCI and AD) that allows us to cate-
gorize the images in more than two classes (NOR/AD, NOR/MCI, MCI/AD)
and therefore to distinguish the different stages of the Alzheimer’s disease in
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the same time.

• To investigate the case of discriminating “non converter-MCI” from “converter-
MCI” patients, since this is one of the most clinically interesting challenges.

• Multiple biomarkers may provide complementary information for the diagno-
sis of AD. It would be interesting to see if incorporating the various modalities
(clinical and neuropsycological assessment scores, longitudinal imaging, bio-
logical data) enables to improve between “non converter-MCI” and “converter-
MCI” patients.
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Chapter 11
Introducción

Este capı́tulo describe en primer lugar los objetivos y la organización de este re-
sumen. En segundo lugar, una introducción a la enfermedad neurológica que nos
ocupa en esta trabajo (Enfermedad de Alzheimer). Posteriormente, se explican
la obtención y el preprocesamiento de la base de datos utilizada en este trabajo.
En particular, utilizamos una base de datos sMRI de ADNI. Finalmente, la última
sección de este capı́tulo presenta un resumen de los resultados experimentales obte-
nidos en esta tesis doctoral.
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11.1 Objectivos y organización

Los objetivos principales de este trabajo se dirigen al desarrollo de técnicas nove-
dosas de procesado y clasificación de imágenes estructurales cerebrales de resonan-
cia magnética para la construcción de sistemas de ayuda a la toma de decisiones en
el contexto clı́nico del diagnóstico de Enfermedades neurodegenerativas con espe-
cial atención a la Enfermedad de Alzheimer.
Los objetivos concretos del trabajo se resumen en el desarrollo de técnicas avanzadas
de extracción de información y clasificación automática de imágenes estructurales
de resonancia magnética (sIRM) en el contexto de identificación de pacientes afec-
tados por la enfermedad de Alzheimer.
El diseño y la evaluación de los sistemas de diagnóstico asistido por ordenador
(DAO) desarrollados empleará las bases de datos ADNI (Alzheimer’s disease Neu-
roimaging Initiative).
Un estudio multicéntrico cuyo objetivo es evaluar los biomarcadores que describan
el progreso de la enfermedade de Alzheimer. Por lo tanto, se proporciona las sMRI
correspondientes a sujetos normales, pacientes con deterioro cognitivo (MCI) o de
enfermedad de Alzheimer para la detección de la enfermedad en su fase precoz.

El informe de doctorado empezó para la descripción de la enfermedad de Alzheimer,
los efectos en nuestra sociedad y la importancia del diagnóstico precoz.

El capituló 3 describe las bases de datos sobre las que vamos a trabajar, ası́ como
la etapa de pre-procesamiento que se utiliza para mejorar la calidad de la imagen
y también para mejorar los resultados de detección de la enfermedad en su fase
precoz.

En el capituló 6, 6, 6 y 6 se describen cuatro nuevas técnicas para desarrollar el
diagnóstico, basado en los mı́nimos cuadrados parciales (PLS), componentes prin-
cipales (PCA), técnicas de componentes independientes (ICA) y la matriz de factor-
ización no negativa (NNMF) enfoques. Las conclusiones y las perspectivas de futuro
se explican en el capı́tulo 10.

11.2 La Enfermedad de Alzheimer

La Enfermedad de Alzheimer (EA) es una de las enfermedades neurodegenerati-
vas más comunes entre las personas mayores y produce dramáticas consecuencias
socioeconómicas y para la salud [1]. Con el envejecimiento de la población en los
paı́ses desarrollados, la relevancia de esta enfermedad aumenta cada dı́a.

Los tratamientos disponibles actualmente minimizan el impacto de la enfermedad
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y se necesitan intervenciones más efectivas. Lograr esto requerirá una comprensión
sofisticada de su causa o causas. La definición de EA ha variado a lo largo de los
años. Inicialmente y varias décadas después, EA fue considerado una forma de de-
mencia presenil. Los individuos dementes mayores no fueron diagnosticados gen-
eralmente con EA, aunque sus cerebros con frecuencia contenı́an placas neurı́ticas
y enredos neurofibrilares. Posteriormente, la definición fue cambiada para incluir
a todos los pacientes que se consideraba que tenı́an una demencia relacionada con
las placas y los enredos, independientemente de la edad [186]. La EA es una enfer-
medad crónica y progresiva que dura muchos años y, desafortunadamente, los datos
controlados con placebo sobre los fármacos anti-EA son principalmente de estudios
a corto plazo [187]. Los tratamientos de la EA podrı́an dividirse en tratamientos
sintomáticos que mejoran los sı́ntomas sin afectar el proceso de la enfermedad sub-
yacente, y las terapias modificadoras de la enfermedad que afectan al transcuro de
la enfermedad ralentizando la evolución de la misma [188].

11.3 las imágenes por Resonancia Magnética

La Imagen por Resonancia Magnética (IRM) es un proceso de formación de imágenes
médicas, basado en el fenómeno conocido como resonancia magnética nuclear (NMR,
del inglés Nuclear Magnetic Resonance), que está ganando aceptación generalizada
para una gran variedad de exploraciones médicas [28]. Es una de las técnicas más
utilizadas en radiologı́a para obtener información sobre la estructura y composición
del cuerpo a analizar, incluyendo el cerebro. Algunas de las razones para este cre-
ciente interés son:

• No es invasivo, basado en la radiación no ionizante, procedimiento de imagen.

• La rápida evolución de las técnicas de imagen de resonancia magnética que
ofrecen un amplio repertorio de secuencias de pulsos que pueden ser fácilmente
configuradas para ofrecer visualizaciones especı́ficas. La IRM convertido en
una herramienta de imagen muy flexible.

• Tiene una alta resolución espacial y proporciona mucha información sobre la
estructura anatómica, lo que permite la cuantificación de la patológica y de los
estudios clı́nicos.

Recientemente, una variedad de modalidades de imagen de resonancia magnética,
incluyendo IRM estructural y funcional, han demostrado cambios caracterı́sticos en
el cerebro de pacientes con EA, en los estados prodrómicos e incluso los estados pre-
sintomáticos que pueden ayudar en el proceso fisiopatológico de EA. Sin embargo,
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este trabajo se centra únicamente en la IRM estructural. Este último tiene una alta
resolución espacial y proporciona mucha información sobre la estructura anatómica
del celebro.

11.4 Los sistemas de diagnóstico asistido por ordenador

En el inicio tardı́o de la EA, hay un déficit de perfusión mı́nimo en las etapas de la
enfermedad, y los cambios relacionados con la edad, que se ven con frecuencia en
las personas de edad sanos, tienen que ser discriminados de los cambios mı́nimos es-
pecı́ficos de la enfermedad. La detección de estos cambios mı́nimos en las imágenes
de diagnóstico visual es una tarea difı́cil que necesita clı́nicos experimentados. Con
el fin de mejorar la precisión de la predicción, especialmente en las primeras etapas
de la enfermedad cuando el paciente podrı́a beneficiarse más de los medicamen-
tos y tratamientos, los sistemas de diagnóstico asistido por ordenador (DAO) son
deseables. Varias tecnicas para el diseño de sistemas DAO de la EA se pueden en-
contrar en la literatura [21].
La metodologı́a univariada se basa en el análisis de las regiones de interés (ROI)
mediante algunas funciones discriminantes, mientras que el enfoque multivariable
está relacionado con las técnicas de análisis estadı́stico. Además, el primer enfoque
se basa en la herramienta de software Statistical Parametric Mapping (SPM) [18].
Este enfoque no fue desarrollado especı́ficamente para estudiar una sola imagen,
sino para comparar grupos de imágenes. Sin embargo, las técnicas multivariantes
se basan en una observación de todos los voxels en un único escaneo y requiere
un mayor número de muestras disponibles que el de caracterı́sticas. Por lo tanto,
el clasificador debe tener en cuenta los datos de imagen de todo el cerebro. Esta
metodologı́a reporta el conocido problema de pequeño tamaño de muestra que es
muy común en los estudios de medicina nuclear, ya que el número de imágenes es
limitado. En este contexto de trabajo y con el objetivo claro de resolver el problema
de dimensionalidad, varias técnicas propuestos para analizar las sMRI se utilizan
en esta trabajo con el fin de extraer las caracterı́sticas relevantes teniendo en cuenta
la distribución de la materia gris (GM, del inglés Gray matter) y los tejidos de la
sustancia blanca (WM, del inglés White matter) en la imagen del cerebro.

11.5 Descripción y preprocesamiento de base de datos

11.5.1 Base de datos utilizada: ADNI-MRI

Todos los sistemas desarrollados en esta tesis de doctorado han sido validados por
un conjunto de datos de sIRM que se adquirió para el estudio de la EA. Este conjunto
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de datos está etiquetado por expertos. Las etiquetas han sido asignadas para distin-
guir entre imágenes de pacientes con EA (en diferentes etapas de la enfermedad),
imágenes de personas con deterioro cognitivo leve (MCI) que podrı́an conducir al
Alzheimer (puede considerarse una etapa temprana de la enfermedad) y imágenes
de personas sin la enfermedad (NC, sujetos de control normal). El conjunto de datos
de sMRI se obtuvo de la base de datos de la Iniciativa de Neuroimagen de la Enfer-
medad de Alzheimer (ADNI) (ver su página web www.adni-info.org).

Criterios de etiquetado

Los criterios de selección seguidos para aceptar a los participantes en el proyecto
ADNI se basan en una serie de entrevistas y pruebas realizadas individualmente.
Los resultados de los candidatos tenı́an que cumplir con ciertas condiciones de ad-
misión al proyecto. A continuación, se detallan los criterios de selección de los
pacientes para cada una de las clases de interés para el estudio:

• Sujetos normales (NC): valores MMSE entre 24-30 (incluidos), CDR de 0, no
deprimido, no MCI, y no dementes. El ratio de edad de los sujetos normales
se asocian rara vez a la de los sujetos MCI y EA, que suele situarse por encima
de los 70 años.

• Deterioro Cognitivo Leve (MCI): valores MMSE entre 24 y 30 (incluidos), debe
presentar signos de péridida de memoria, tener una pérdida objetiva de memo-
ria medida en términos de su puntuación en el testc de Wechsler Memory Scale
Logical Memory II, un CDR de 0,5, ausencia de discapacidades en otros de la
función cognitiva en niveles significativos, conducta normal en las actividades
de la vida cotidiana, y ausencia de demencia.

• EA precoz: valores MMSE entre 20-26 incluidos, CDR de 0.5 o 1.0, y satisface
el criterio NINCDS/ADRDA [46]para EA probable.

En consecuencia, la base de datos estructural MRI se dividió en 3 clases diferentes:
NC, pacientes MCI y pacientes con EA. En nuestro estudio tenemos 818 imágenes
de diferentes sujetos, divididos en 229 NC, 401 MCI (312 MCI estable y 86 MCI
progresiva) y 188 AD. Los datos demográficos de los pacientes en la base de datos
se resumen en la tabla 11.1. La información relativa a la conversión de MCI a EA se
toma de los datos clı́nicos disponibles en ADNI.

11.5.2 Preprocesamiento de la base de datos de imágenes

Las imágenes IRM de la base de datos ADNI fueron preprocesadas, co-registradas
y segmentadas utilizando el software de mapa estadı́stico paramétrico (SPM) y la

www.adni-info.org


136 Chapter 11. Introducción

Table 11.1: Detalles demográficos de la base de datos (ADNI 1075-T1)

Diagnóstico Número Edad Sexo
(M/F)

MMSE

NC 229 75.97±5.0 119/110 29.00±1.0
MCI 401 74.85±7.4 258/143 27.01±1.8
EA 188 75.36±7.5 99/89 23.28±2.0

herramienta de morfometrı́a basada en vóxel (VBM8). En primer lugar, el preproce-
samiento se realizó mediante un campo de deformación no lineal utilizando los ma-
pas de probabilidad de tejido proporcionados por el “International Consortium for
Brain Mapping (ICBM)”. En segundo lugar, los datos se registraron en el instituto
neurológico de Montreal (INM) mediante transformaciones afines y se redimension-
aron en 121 × 145 × 121 voxels. Posteriormente, utilizando la normalización de
Dartel de alta dimensión con la plantilla Dartel estándar proporcionada por VBM8,
se realizó el co-registro. Finalmente, las imágenes fueron segmentadas utilizando
VBM8 de nuevo, produciendo mapas de probabilidad que consisten en valores en el
rango (0, 1) para cada voxel. Estos valores estiman la probabilidad de cada miembro
de voxel (WM, GM o CSF), aunque no se usaron mapas CSF en nuestros experimen-
tos.

Los datos se dividen en tres grupos diferentes:

• Group 1: se considera un subconjunto de los datos. No se tienen en cuenta los
sujetos MCI, por lo que se forman 2 imagenes representativas EA y NC.

• Group 2: se considera un subconjunto de los datos. No se tienen en cuenta los
sujetos EA, por lo que se forman 2 imagenes representativas MCI y NC.

• Group 3: se considera un subconjunto de los datos. No se tienen en cuenta los
sujetos NC, por lo que se forman 2 imagenes representativas MCI y EA.

11.6 Experimentos y resultados

11.6.1 Experimentos con las sMRI segmentadas

Hemos propuesto cuatro sistemas de diagnóstico asistido por ordenador (DAO) basa-
dos en diferentes técnicas de selección y de extracción de caracterı́sticas con el fin
de apoyar el diagnóstico clı́nico de la EA.
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• El primer y el segundo sistemas de DAO propuestos se basan en la técnica de
selección de caracterı́sticas “t-test” como reducción de dimensionalidad de las
imágenes, y en las técnicas de extracción de caracterı́sticas de “PLS” y “PCA”,
respectivamente, para resolver el pequeño problema de tamaño de la muestra.
Las caracterı́sticas extraı́das se combinan con métodos de clasificación super-
visado sy basados en “SVM” para clasificar la base de datos segmentada de
sIRM.

• El tercer sistema de DAO se basa en dos modelos de “ICA” propuestos para ex-
traer las caracterı́sticas relevantes relacionadas con EA. Por lo tanto, el primer
modelo se basa en la extracción de un bajo número de componentes indepen-
dientes (IC) que funcionan como vectores de caracterı́sticas para cada imagen
de tejido de cada cerebro. El segundo se basa en la extracción de rasgos al-
tamente representativos de cada imagen cerebral media (NC, MCI y EA) de
cada tejido de cerebro. A continuación, el conjunto de fuentes de IC se uti-
lizan como variables de entrada para el paso de la clasificación de la detección
temprana de la enfermedad.

• El cuarto sistema de DAO se basa en el enfoque “NNMF” para encontrar rep-
resentaciones lineales reducidas de datos no negativos. A continuación, los
conjuntos de datos NNMF transformados resultantes, que contienen las carac-
terı́sticas relevantes reducidas, se clasifican mediante diferentes clasificadores
basados en “SVM”.

11.6.2 Resultados y discusión de los sistemas DAO desarrollados

11.6.2.1 Resultados y discusión del sistema DAO desarrollado en base a las
técnicas PLS:

Los resultados de la clasificación se resumen en la tabla 11.2 con diferentes experi-
mentos (imágenes GM, imágenes WM y la combinación de caracterı́sticas extraı́das
de la segmentación GM y WM) utilizando la técnica de extracción de caracterı́sticas
PLS y diferentes clasificadores SVM.

• Resultado de clasificación del grupo 1

El método PLS + SVM lineal produjo tasas de precisión más altos que núcleo RBF.
Además, la combinación de caracterı́sticas extraı́das de la segmentación GM y WM
dió una precisión de clasificación de 88.49 % para PLS y SVM lineal (sensibilidad
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Grupo 1 Grupo 2 Grupo 3
Tejidos
cerebrales Kernel Acc/Sens/Spec(%) Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Lineal 87.53/88.65/86.17 77.57/76.76/71.9 77.03/74.59/79.46

RBF 87.29/87.77/86.7 76.22/81.62/70.81 76.22/74.59/77.84

WM
Lineal 85.61/87.34/83.51 80.54/79.46/81.62 87.03/88.65/85.41

RBF 84.41/85.59/82.98 81.35/76.22/80.54 85.95/85.41/86.49

GM+WM
Lineal 88.49/91.27/85.11 81.89/82.16/81.62 85.41/87.03/83.78

RBF 88.49/90.39/86.17 80.27/73.51/82.7 85.41/85.95/84.86

Table 11.2: Las medidas estadı́sticas del rendimiento de la técnica de selección
de caracterı́sticas PLS con diferentes clasificadores SVM, para los tres grupos de
muestra, y utilizando ocho componentes. (ACC=Precisión, Sens=Sensibilidad,
Spec=Especificidad)

= 91.27 % y especificidad = 85.11 %) comparado con 87.53 % sólo para GM (sen-
sibilidad = 88.65 % Y especificidad = 86.17 %) y 85.61 % sólo para WM (sensibil-
idad = 87.34 % y especificidad = 83.51 %). Como conclusión, la combinación de
caracterı́sticas extraı́das de GM y WM aumenta la clasificación y la precisión del
clasificador.

• Resultado de clasificación del grupo 2

La tarea de clasificación más difı́cil en relación con la base de datos ADNI es dis-
tinguir entre NC y pacientes MCI, debido a la amplia gama de las caracterı́sticas
extraı́das de los pacientes MCI. Utilizando PLS y SVM lineal, la combinación de
caracterı́sticas extraı́das de la segmentación GM y WM proporcionó la mayor pre-
cisión, 81.89 % (sensibilidad = 82.16 % y especificidad = 81.62 %), mientras que las
caracterı́sticas extraı́das de los tejidos cerebrales GM o WM solos informaron una
precisión de clasificación de 77.57 % y 80.54 % respectivamente. En general, obser-
vamos que la combinación de caracterı́sticas extraı́das de ambos tejidos cerebrales
GM y WM produjo el mayor valor de precisión.

• Resultado de clasificación del grupo 3

La combinación de caracterı́sticas extraı́das de la segmentación GM y WM pre-
sentaron una precisión de clasificación de 85.41% para PLS y SVM lineal (sensi-
bilidad = 87.03% y especificidad = 83.78%) comparado con 77.03% sólo para GM
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(sensibilidad = 74.59% y especificidad = 79.46%) y 87.03% sólo para WM (sensibil-
idad = 88.65% y especificidad = 85.41%). Estos resultados mostraron que el cambio
más importante en el cerebro ocurre más en la sustancia blanca que en los tejidos
cerebrales de la materia gris [151].
Como se muestra en la tabla 11.2, la metodologı́a desarrollada destaca que la com-
binación de caracterı́sticas extraı́das de las distribuciones de tejidos cerebrales GM
y WM dan mejores valores de precisión, sensibilidad y especificidad que el uso de
diferentes tejidos cerebrales por separado.

• Discusión

Esta metodologı́a logra buenos valores de precisión, sensibilidad y especificidad.
Por lo tanto, la metodologı́a propuesta es un enfoque válido para desarrollar el sis-
tema DAO para el diagnóstico precoz de la EA. La tasa de éxito del método basado
en PLS alcanzó 88.49% para el grupo 1. Sin embargo, se reduce para el grupo 2 y 3
(78.92%, 85.4% respectivamente) cuando se incluyen imágenes MCI. Esto se debe,
probablemente, a la alta variabilidad del patrón MCI de cada imagen. Como con-
secuencia, la tarea de clasificación se vuelve más difı́cil. Como se muestra en el
resultado del grupo 2 (NC vs MCI), el resultado de la clasificación utilizando sólo
tejido cerebral WM es mejor que el uso sólo de GM. Este resultado confirma el es-
tudio anterior [152] en el que la modificación en el patrón de atrofia cerebral en
el estudio temprano (MCI) de la enfermedad se produce en el tejido cerebral WM.
Además, es probable que los sujetos mayores tengan anomalı́as estructurales de la
WM causadas por leucoaraiosis u otras enfermedades [153]. Esta anomalı́a en el
tejido cerebral WM para los pacientes con EA o MCI puede hacer que la estructura
sea muy diferente de los controles normales. Por lo tanto, el resultado de la clasi-
ficación de las imágenes del cerebro en WM puede ser mejor que en GM. Además,
los resultados de la clasificación para el grupo 3 (MCI vs. EA) confirman que la
neurodegeneración comienza en el WM y se extiende a GM con la progresión del
trastorno.
Cabe señalar que los sistemas DAO están reproduciendo los conocimientos médicos
actuales, ya que han sido entrenados con muestras etiquetadas por los médicos.
Por esta razón, las medidas estadı́sticas presentadas en esta metodologı́a son una
estimación de cómo un sistema es capaz de reproducir un diagnóstico médico re-
alizado por expertos. Por lo tanto, algunos posibles errores en el proceso de eti-
quetado pueden modificar los hiperplanos de decisión de los clasificadores, con-
siderando especı́ficamente que las etiquetas fueron asignadas en base a las puntua-
ciones obtenidas por los pacientes en pruebas cognitivas (como MMSE y CDR).

En este trabajo, hemos demostrado anteriormente que la combinación de carac-
terı́sticas extraı́das de GM y WM segmentación da una buena precisión de clasi-
ficación utilizando PLS. Además, el modelo PLS + Linear SVM proporciona buenos
resultados de clasificación con menor tiempo computacional.
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Un enfoque más interesante consiste en seleccionar sólo algunos componentes de
los métodos de extracción de caracterı́sticas, tales FDR como se describe en [155]
y el error Out-Of-Bag (OOB) en [154]. Estos métodos previos consiguen que usar
los primeros componentes PLS sea óptimo para fines de clasificación. En el desar-
rollo de nuestro sistema DAO, hemos seleccionado sólo los 8 primeros componentes
PLS. Un mayor número de componentes puede empeorar los resultados de la clasi-
ficación ya que aumenta el espacio de entrada.

11.6.2.2 Resultados y discusión del sistema DAO desarrollado en base a las
técnicas PCA :

La tabla 11.3 presenta los valores de precisión, sensibilidad y especificidad de los
diferentes tejidos cerebrales (GM, WM, GM + WM) utilizando la técnica PCA prop-
uesta y los diferentes clasificadores SVM (con núcleo lineal y no lineal (RBF)). Además,
el rendimiento de este sistema se calculó mediante la validación cruzada de k veces
con un número de pliegues igual a 10 (k = 10)

Grupo 1 Grupo 2 Grupo 3
Tejidos
cerebrales Kernel Acc/Sens/Spec(%) Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Lineal 85.61/89.08/81.38 75.41/78.38/72.43 72.71/72.43/72.97

RBF 83.93/86.26/81.38 72.97/75.68/70.27 71.08/71.89/70.27

WM
Lineal 81.77/84.28/78.72 75.14/77.3/72.98 79.19/82.16/76.22

RBF 81.29/83.41/78.72 72.7/64.86/80.54 74.86/74.05/75.68

GM+WM
Lineal 87.77/89.96/85.11 78.92/80/77.84 81.89/84.86/78.92

RBF 87.55/90.39/84.04 73.24/71.89/74.59 76.77/74.59/78.92

Table 11.3: Las medidas estadı́sticas del rendimiento de la técnica de selección
de caracterı́sticas PCA con diferentes clasificadores SVM, para los tres grupos
de muestra, y utilizando ocho componentes. (ACC=Precisión, Sens=Sensibilidad,
Spec=Especificidad)

• Resultado de clasificación del grupo 1

Los resultados de clasificación aplicada al grupo1, que consistió en distinguir entre
sujetos NC y EA, muestran un mayor valor de la tasa de precisión. La combinación
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de caracterı́sticas extraı́das de la segmentación de GM y WM alcanzó una precisión
de clasificación de 87.77% para PCA y SVM lineal (sensibilidad 89.96% y especi-
ficidad 85.11%) en comparación con 85.61% sólo para GM (sensibilidad 89.08% y
especificidad 81.38%) y 81.77% sólo para WM (sensibilidad 84.28% y especificidad
78.72%). Como conclusión, la combinación de caracterı́sticas extraı́das de las dis-
tribuciones de ambos tejidos GM y WM aumenta la clasificación y la precisión del
clasificador.

• Resultado de clasificación del grupo 2

La tarea de clasificación más difı́cil en este trabajo es distinguir entre sujetos NC y
sujetos en las ası́ntotas tempranas de la enfermedad (sujetos MCI), debido a la am-
plia gama abarcada por las caracterı́sticas extraı́das de MCI. Utilizando PCA y SVM
lineal, la combinación de caracterı́sticas extraı́das de la segmentación GM y WM
proporcionó la mayor precisión, 78.92% (sensibilidad 80% y especificidad 77.84%),
mientras que las caracterı́sticas extraı́das de GM o WM solo proporcionaron una
precisión de clasificación de 75.41% y 75.14%, respectivamente. En general, ob-
servamos que la combinación de caracterı́sticas extraı́das de GM y WM produjo el
mayor valor de precisión.

• Resultado de clasificación del grupo 3

La tabla 11.3 presenta los resultados de clasificación obtenidos en el último experi-
mento, que consistió en distinguir entre sujetos MCI y EA usando diferentes clasifi-
cadores SVM. La combinación de caracterı́sticas extraı́das de la segmentación de GM
y WM tiene un valor de precisión de clasificación del 81.89% (sensibilidad 84.86%
y especificidad 78.92 %) comparado con 72.71% sólo para imágenes cerebrales de
tejidos GM (sensibilidad 72.43% y especificidad 72.97%) y 79.19% para WM sólo
(sensibilidad 82.16% y especificidad 76.22%). Como se muestra en la tabla 11.3, el
método PCA analizado en este trabajo resalta que la combinación de caracterı́sticas
extraı́das de las distribuciones de tejidos GM y WM proporcionan una mayor pre-
cisión, sensibilidad y especificidad que el uso de diferentes tejidos cerebrales por
separado. Como resultado, la combinación de las diferentes caracterı́sticas extraı́das
de con méthodo de clasificación ambos tejidos cerebrales (GM y WM) representa
una técnica válida para realizar un sistema DAO para EA. Como se muestra en la
sección anterior, el PCA es un enfoque válido para desarrollar un sistema DAO para
EA. Además, el sistema DAO desarrollado consigue un buen valor de precisión, sen-
sibilidad y especificidad. La tasa de éxito del método basado en PCA alcanzó 87.77%
para el grupo1. Sin embargo, se redujo para el grupo 2 y 3 (78.92% y 81.89%, re-
spectivamente) cuando incluyeron imágenes MCI. Esto se debe probablemente a la
alta variabilidad del patrón MCI de cada imagen. Como consecuencia, la tarea de
clasificación se vuelve más difı́cil.
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11.6.2.3 Resultados y discusión del sistema DAO desarrollado basado en las
técnicas ICA:

Se realizaron dos metodologı́as diferentes con la técnica ICA y las imágenes segmen-
tarias del cerebro sMRI:

• Método I: se basa en una combinación entre la técnica de selección de carac-
terı́sticas “t-test” y la técnica de extracción de caracterı́sticas ICA.

• Método II: se basa únicamente en la técnica de extracción de caracterı́sticas
ICA de la imagen media de cada clase.

1. Método I

Grupo 1 Grupo 2 Grupo 3
Tejidos
cerebrales Kernel Acc/Sens/Spec(%)Acc/Sens/Spec(%) Acc/Sens/Spec(%)

GM
Lineal 84.65/86.46/82.45 69.46/69.03/69.96 69.19/70.27/68.11

RBF 82.97/83.41/82.4568.38/68.65/68.11 64.05/61.62/66.49

WM
Lineal 70.26/72.93/67.02 63.51/63.24/63.78 59.46/62.16/56.76

RBF 68.82/68.56/69.1561.08/56.22/65.95 53.51/51.89/55.14

GM+WM
Lineal 86.37/88.34/83.98 70.19/72.89/67.49 69.83/73.43/66.24

RBF 78.66/75.11/82.9865.13/61.08/69.19 64.32/51.89/76.76

Table 11.4: Las medidas estadı́sticas del rendimiento de la técnica de selección
de caracterı́sticas ICA con diferentes clasificadores SVM, para los tres grupos de
muestra, y utilizando ocho componentes. (ACC=Precisión, Sens=Sensibilidad,
Spec=Especificidad)

Los resultados de la clasificación se resumen en la tabla 11.4 con diferentes experi-
mentos (imágenes GM, imágenes WM y la combinación de caracterı́sticas extraı́das
de los tejidos cerebrales GM y WM) utilizando el método de extracción de carac-
terı́sticas ICA y diferentes clasificadores SVM. Puede observarse en esta tabla que
el valor de precisión más alto obtenido para el grupo 1 se reduce en el grupo 2 y 3
cuando se incluyen imágenes MCI. Esta disminución de las métricas de rendimiento
puede explicarse por la alta variabilidad del patrón MCI de cada imagen. En se-
gundo lugar, se puede concluir a partir de las medidas métricas de rendimiento que
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el clasificador SVM lineal produce una tasa de exactitud más alta con el enfoque de
extracción de caracterı́sticas ICA que SVM-RBF. Por lo tanto, el SVM lineal podrı́a
ser la mejor técnica para distinguir los pacientes con EA y MCI de NC. En tercer
lugar, es notable que, al utilizar la combinación de caracteristicas extraidas de las
imágenes GM y WM como caracterı́sticas de entrada y posteriormente la transfor-
mación con ICA junto con SVM lineal, aumenta la precisión del clasificador y por lo
tanto añade robustez a nuestro sistema para distinguir EA y MCI de sujetos NC.

2. Método II
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Se realizaron tres experimentos diferentes considerando los tres grupos difer-
entes para construir el subespacio representativo S descrito en la ecuación 8.4.
Además, la dimensión del vector de caracterı́sticas (m) se determinó por el
número de las diferentes clases de vectores medios.

La tabla 11.6.2.3 muestra los resultados de la clasificación en el conjunto retenido
para el caso de m = 2 (considerando vectores medios NC y EA, NC y vectores
medios MCI o vectores medios MCI y EA), una vez que los pasos descritos,
proyección, ICA se ha aplicado a los datos brutos.

Todos los experimentos representan una alta compresión de los datos de ima-
gen cerebral a un peque ño número de caracterı́sticas (m = 2 caracterı́sticas).

Este método propuesto representa una alta compresión de la gran cantidad de
información (voxels) contenida en la base de datos de imágenes cerebrales a
un pequeño número de caracterı́sticas.

Los resultados resumidos en la tabla 11.6.2.3 revelan que la idea de usar SVM
con núcleo no lineal y un pequeño número de caracterı́sticas genera mejores
resultados que el núcleo lineal. Estos resultados obtenidos confirman las ra-
zones teóricas en [23, 129].

En cuanto a los resultados del clasificador SVM para los tres grupos con los
diferentes tejidos cerebrales, se puede observar que la separación de las imágenes
de tejido GM en dos clases es más eficiente. Esto podrı́a justificarse de acuerdo
con la existencia de la información más relevante que se basa en el progreso
de la EA en el tejido cerebral GM.
Sin embargo, la clasificación SVM también proporciona buenos resultados con
las imágenes WM. Ello significa que, incluso en la fase temprana de la enfer-
medad, las imágenes de WM contienen caracterı́sticas discriminantes de EA.
Por esta razón, es mejor tener consideración la distribución del tejido cerebral
en el análisis de la EA en la etapa temprana.

11.6.2.4 Resultado y discusión del sistema DAO desarrollado en base de las
técnicas NNMF:

En esta sección se presentan los resultados experimentales de la evaluación de los
DAO, junto con sus variantes. El systema DAO basado en NNMF + SVM se desar-
rolla con un clasificador SVM lineal y no lineal (RBF). Ası́, los resultados de clasi-
ficación se resumen en la tabla 11.6 con diferentes experimentos (imágenes GM,
imágenes WM y la combinación de caracterı́stica extraı́das de la segmentación GM
y WM). De acuerdo con esta tabla, los mejores resultados en la clasificación se ob-
servan con el kernel SVM lineal. Esta metodologı́a propuesta utilizando NNMF
como técnica de extracción de caracterı́sticas produce valores máximos de precisión
= 89.04%, sensibilidad = 88.23% y especificidad = 89.83%.
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11.7 Conclusiones

Las diversas contribuciones de esta tesis han sido probadas en una serie de experi-
mentos, de las cuales se obtienen las siguientes conclusiones:

• Hemos propuesto varios enfoques que se basan en la la técnica de selección de
caracterı́sticas y la técnica de extracción de caracterı́sticas para solucionar el
Small Sample Size problem en bases de datos de neuroimagen.

• Los sistemas DAO desarrollados que se presentan en los capı́tulos 6, 7, 8 y 9
alcanzan un alto rendimiento en el diagnóstico diferencial de enfermos y con-
troles, particularmente cuando se aplican a las bases de datos de Alzheimer.
El mayor reto es utilizar estos sistemas para estudiar la progresión de enfer-
medades neurodegenerativas, y en particular, la conversión de Mild Cognitive
Impairment (MCI) a demencia.

• Las técnicas de descomposición de imagen utilizadas son capaces de reducir
significativamente la carga computacional cuando analizamos imágenes médicas,
a la vez que mantienen o incluso incrementan el rendimiento de los sistemas
DAO propuestos, que han demonstrado sobradamente su capacidad de dis-
criminación en modalidades estructurales como MRI.
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Appendix A
Statistical Parametric Mapping

Statistical Parametric Mapping refers to the construction and assessment of spatially
extended statistical processes used to test hypotheses about imaging data [18, 189].
These ideas have been instantiated in software that is called SPM [190]. This soft-
ware is developed by the Wellcome Trust Centre Centre for Neuroimaging data
[191]. This chapter shows an overview of SPM and its possible application to CAD
systems.
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A.1 Statistical Parametric Mapping

SPM is a statistical technique created by Friston [18, 189] for examining the differ-
ences in brain activity recorded using neuroimaging data such as MRI. This soft-
ware is a complement tool in MATLAB [119]. In generally, it is used to identify
functionally specialized brain responses and it is the most prevalent approach to
characterizing the functional anatomy and the disease-related changes.
Since 1991, the College London University (UCL) provides an implementation of
SPM as free software. Nowadays, it has become a reference in medical image anal-
ysis thanks to the great flexibility in designing experiments that can be performed.
Thus, SPM is used in many different departments such as the department of neu-
rology, radiology, nuclear medicine, behavior and cognitive sciences, bio-statistics,
and biomedical physics worldwide [189].
In its version (SPM8), it allows to analyzing MRI images, positron emission tomog-
raphy (PET) images, single photon emission computed tomography (SPECT) im-
ages, electroencephalography (EEG) and magnetoencephalography (MEG) images.
Therefore, the analysis which are performed by SPM are univariate as its tests are
performed voxel to voxel.
A statistical study in SPM consists of two steps: analysis and statistical inference. In
addition, all images employed in the statistical study should be firstly preprocessed.

A.1.1 Preprocessing step in SPM

The preprocessing step is a fundamental step in CAD systems as it ensures that
the different images are comparable to each other. This step is usually applied af-
ter the acquisition and the reconstruction of the images. The preprocessing step
is divided in several processes, such as, the realign, the spatial normalization, the
intensity normalization and the segmentation. However, the number and the type
of procedures to follow in preprocessing step differ from one modality to another.
Therefore, the normalization and the segmentation processes are used in this PhD
work.

A.1.1.1 Realign

The realignment step is only applied when there are several images of the same sub-
ject. It estimated the difference of the position between the different images due to
the different placements of the head in the acquisition step. In order to compensate
the difference, a rotation and translation tasks are applied to these images [192].
The movement of patients could be related to the work carried out at the acquisi-
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Figure A.1: The main window of SPM8 for analyzing MRI images.

tion time. For this reason, it is interesting to include the estimate of movement as a
variable in the statistical analysis.
In the case of the images are from different patients, there will also be differences
among each other in terms of shape and size of the brain. These differences must be
corrected by the spatial normalization technique.

A.1.1.2 Spatial normalization or registration

The anatomy of every subject’s brain is slightly different in shape and size. In order
to compare brain images of different subjects, it is necessary to eliminate these par-
ticularities between them and transform the images so that the subsequent group
analysis or comparison can be performed. Thus, the source images are mapped
from their current space to a template that works as a common anatomical refer-
ence [193, 194] (See figure A.2). This procedure is known as spatial normalization
or registration. After this process, each cerebral region of each subject occupies a
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Figure A.2: An example of normalized brain image.

standard space. The Montreal Neurological Institute (MNI) space is the most widely
used space for brain registration and was recently adopted by the International
Consortium for Brain Mapping (ICBM) as its standard template [195]. It defines
a standard three-dimensional coordinate system which is used to map the location
of brain structures independently of the size and shape of each subject’s brain.
The spatial normalization allows the comparison voxel-by-voxel of images. Thus, it
can localize the regions of interest (ROI) related to the disease.
SPM does not cheek that the normalization is correct or not. For this reason, a visu-
ally cheek is necessary to show if the template image and the analyzed image have
the same size and the same shape or not. Therefore, it is important to note that
the spatial normalization equalizes the size and shape of the images under study.
However, it does not eliminate the differences between them due to the metabolic
characteristics of each subject.

A.1.1.3 Spatial smoothing filter

Spatial filter is a process by which the voxels are averaged with its neighbors yield-
ing a smoothing effect whose intensity depends on a parameter called FWHM (Full
Width at Half Maximum). This parameter is measured in units of space and it is
usually given a value equal to three times the size of the voxel.
This preprocessing step has two principal objectives. The first one is that the spatial
filter will enhance the signal-to-noise ratio (SNR) as it eliminates the image noise.
The second one, it ensures that the differences between patients are given higher
than a voxel so that the differences are significant ensuring sizes.
Figure A.3 presents an example of smoothed sMRI brain images.
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Figure A.3: An example of smoothed brain image.

A.1.1.4 Intensity normalization

The average brain metabolism varies significantly between different patients and
even in the same patient at different times. For this reason, an intensity normal-
ization process is required before to perform the statistical analysis on them. The
intensity normalization process can be done in several ways:

• Scaling: it consists of multiplying the intensity of each image by a factor to
equalize the average intensity of all the images. This approach is the simplest
and the most suitable for the imaging studies coming from different patients.

• Analysis of covariance (ANCOVA): it consists of including the average inten-
sity of each image in the statistical model in order to take into account the
difference of intensity during the analysis. This approach performs the scal-
ing additive which is better than the proportional scaling when the variance
between the different images is low (as it is the case of one patient studies).

These two procedures are implemented in SPM but there are not suitable when the
effects of interest affect sufficiently large areas to influence the average intensity
value of the image. In this case, it is preferable to use other approaches such as
those described below:

• Normalization to the maximum It consists of a division by a constant param-
eter. This later is often estimated as the average value of the 95th bin of the
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histogram of the image, that is, the average of the 5% higher-intensity values
[81, 193].

• Normalization based on regions This approach is similar to the proportional
scaling. It scales images by equalizing the average values of the regions not
affected by the pathology. Its main drawback is the need to identify and delin-
eate the unaffected regions.

A.1.1.5 Segmentation

Mostly of structural MRI images, involve a series of algorithms aimed to construct
maps of the distribution of different tissues. The general segmented approach is
to separate the image in three different maps containing grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) [196–198].

In SPM, the segmentation process uses an expectation-maximization (EM) algo-
rithm to obtain the parameters corresponding to a mixture of Gaussians that rep-
resents the different brain tissues. Afterwards, an affine transformation is applied
using tissue probability maps that are in the ICBM/MNI space to extract the GM,
WM and CSF maps.
Figure A.4 shows an orthogonal views of original and segmented medical image
modalities.

A.1.2 Statistical analysis

SPM can perform several statistical tests, such as regression, Student t-test, F-test
and analysis of variance (Anova) including variables and allowing the modeling of
interactions between them [18]. These types of tests can be grouped into a general
model known as the General Linear Model (GLM) which is based on two concepts:
the design matrix and contrasts [119]. GLM is used by SPM to perform the mathe-
matical calculations. Importantly, SPM did not looking for directly affect the images
but only to accept or reject a hypothesis defined a priori. Therefore, a SPM study
must have a hypothesis about the effects that produce the observed behavior. This
hypothesis is known as the null hypothesis and it is represented by the design ma-
trix.
Statistical studies that are performed by SPM can be divided into two types:

• Parametric or factorial studies.

• Categorical or subtractive studies.
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Figure A.4: Schematic illustration of different classes (AD images in the right,
healthy images in the left). Orthogonal views of original and segmented medical
image modalities.

The first type of studies analyzes the relationship between all images and a defined
parameter, such as the age of patients or their cognitive test result.
The second type of studies are used to highlight the differences between groups de-
fined by the categorical variables. For example, the hypothesis that age influences
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the metabolism brain can be accepted or rejected by a parametric test. This hypoth-
esis give a result in a design matrix with a row for each image included in the study
and a column for the age of each patient.
Once the model are established, SPM can now automatically estimate the contri-
bution of each effect separately. This latter allows to differentiate between effects
of “interest” (for example; the effect of group) and the correctors (for example; the
effect of age in parametric studies) as well as differences between the means of the
two factors. By GLM, this task is done by the definition of a “contrast” which is
defined as a vector.
The length of this vector is equal to the number of effects included in the design
matrix, so that each effect is weighted by its corresponding element. If the effect is
corrector then it is weighted with a zero vector in contrast.

In the case that the effect is parametric, the contrast determines if the desired cor-
relation is positive, by a ”1”, or negative by ”-1”, in the effect corresponding to that
position in the vector contrast. However, for categorical effects, the contrasts must
comply an important condition: the sum of all the weights on the contrast in the
columns of categorical effects should be equal to zero.
Finally, SPM performs the statistical test (a t-test or F-test), described by the design
matrix and the contrast in all image voxels independently. Thus, the obtained result
is an image whose value in each voxel is the result of statistical test and it called the
statistical parametric map.
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[117] D. Guillamet and J. Vitriá. Evaluation of distance metrics for recognition
based on non-negative matrix factorization. Pattern Recognition Letters, 24(9–
10):1599–1605, 2003.

[118] P. Sajda, S. Du, T. R. Brown, R. Stoyanova, D. C. Shungu, X. Mao, and L. C.
Parra. Nonnegative matrix factorization for rapid recovery of constituent
spectra in magnetic resonance chemical shift imaging of the brain. IEEE
Transactions on Medical Imaging, 23(12):1453–1465, 2004.

[119] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith, and R. S. J.
Frackowiak. Statistical parametric maps in functional imaging: a general
linear approach. Human brain mapping, 2(4):189–210, 1994.

[120] F. Falahati, E. Westman, and A. Simmons. Multivariate data analysis and
machine learning in alzheimer’s disease with a focus on structural magnetic
resonance imaging. Alzheimer’s Disease, 41(3):685–708, 2014.

[121] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehericy, MO. Habert,
M. Chupin, H. Benali, O. Colliot, and Alzheimer’s Disease Neuroimaging Ini-
tiative. Automatic classification of patients with Alzheimer’s disease from
structural MRI, a comparaison of ten methods using the ADNI database. Neu-
roImage, 56(2):766–781, 2011.

[122] J. Mour ao Miranda, A. L. W. Bokde, C. Born, H. Hampel, and M. Stetter. Clas-
sifying brain states and determining the discriminating activation patterns:
Support vector machine on functional MRI data. Neuroimage, 28(4):980–995,
2005.



Bibliography 169

[123] Z. Wang, A. R. Childress, J. Wang, and J. A. Detre. Support vector ma-
chine learning-based fMRI data group analysis. Neuroimage, 36(4):1139–
1151, 2007.

[124] V. N. Vapnik and A. Lerner. Pattern recognition using generalized portrait
method. Automation and Remote Control, 24(6):774–780, 1963.

[125] V. N. Vapnik and A. Chervonenkis. A note on class of perceptron. Automation
and Remote Control, 25, 1964.

[126] H. Selvaraj, S. Thamarai Selvi, D. Selvathi, and L. Gewali. Brain MRI slices
classification using least squares support vector machine. Intelligent Comput-
ing In Medical Sciences and Image Processing (ICMED), pages 21–33, 2007.

[127] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[128] A. J. Smola and B. Schölkopf. A Tutorial on Support Vector Regression. Neuro-
COLT2 Technical Report Series NC2-TR-1998-030, 1998.

[129] V. N. Vapnik. Statistical Learning Theory,. WILEY–Interscience, 1998.

[130] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–
297, 1995.

[131] B. Magnin, L. Mesrob, S. Kinkingnehun, M. Pelegrini-Issac, O. Colliot,
M. Sarazin, B. Dubois, S. Lehericy, and H. Benali. Support vector machine-
based classification of Alzheimers disease from whole-brain anatomical MRI.
Neuroradiology, 2009.
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[133] A. Ortiz, J. M. Górriz, J. Ramı́rez, and F. J. Martı́nez-Murcia. LVQ-SVM based
CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s dis-
ease. In Pattern Recognition Letters, volume 34, pages 1725–1733, 2013.

[134] J. C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 1999.

[135] M. H. Zweig and G. Campbell. Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry,
39(4):561–577, 1993.

[136] G. Seymour. Predictive inference. Chapman and Hall, 1993.



170 Bibliography

[137] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Conference of Artificial Intelligence, volume 2, pages
1137–1143. Morgan Kaufmann, 1995.

[138] Kittler J. Devijver, P. A. Pattern Recognition: A Statistical Approach. Prentice
Hall, 1982.

[139] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten. Data mining in
bioinformatics using weka. Bioinformatics, 20(15):2479–2481, 2004.

[140] H. Ian, E. Witten, F. Mark, and A. Hall. Data Mining: Practical Machine Learn-
ing Tools and Techniques (Third Edition). ELSEVIER, 2011.

[141] S. Giovanni and J. Elder. Ensemble methods in data mining: Improving accu-
racy through combining predictions. In Data Mining and Knowledge Discovery,
volume 2, pages 1–126, 2010.

[142] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. Encyclopedia of
Database Systems, pages 532–538, 2008.

[143] B. Efron. Estimating the error rate of a prediction rule: improve- ment on
cross-validation. American Statistical Association, 78(382):316–331, 1983.
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