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Abstract

This work analyses the dynamic response of high-speed railway (HSR)
bridges through a case study: the viaduct over the Almonte River on
the HSR line from Madrid to Lisbon. The main objective is to develop
a methodology for the dynamic analysis of HSR arch bridges based
on the semi-analytic method proposed by Martinez-Castro et al. and
analyze their specific behavior.

Firstly, it is refered the way the dynamic study of HSR bridges is
treated in instructions. Also the semi-analytic method is described.

Secondly, five different finite element models of the Almonte bridge
are developed, including one considering the soil-structure interac-
tion.

Finally, the dynamic response of the bridge is analysed through the
different models and conclusions are drawn on the suitability of the
different models.

Keywords: high-speed railway bridges, dynamic analysis, semi-analytic

method, dynamic impedances, Finite Element models.
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Resumen

El presente trabajo se encarga de analizar la respuesta dinámica de
puentes de ferrocarril para alta velocidad (AV) a través del estudio de
un caso práctico: el viaducto sobre el rı́o Almonte de la lı́nea de AV
Madrid-Lisboa. El objetivo principal es desarrollar una metodologı́a
para el análisis dinámico de puentes arco de ferrocarril para AV basa-
da en el método semi-analı́tico propuesto por Martı́nez-Castro et al. y
analizar su comportamiento especı́fico.

En primer lugar se resume cómo se aborda en la normativa el estu-
dio dinámico de puentes de ferrocarril y se describe el método semi-
analı́tico.

En segundo lugar se realizan cinco modelos diferentes de elementos
finitos del puente sobre el rı́o Amonte, incluido uno considerando la
interacción suelo-estructura.

Por último se analiza la respuesta dinámica del puente a través de los
diferentes modelos y se sacan conclusiones sobre la idoneidad de los
diferentes modelos.

Palabras clave: Puentes de ferrocarril para alta velocidad, análisis

dinámico, método semi-analı́tico, impedancias dinámicas, modelos

de Elementos Finitos.
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CHAPTER

1
Introduction

1.1 Introduction

Motivation

Since the origin of railways in Europe during the Industrial Revolution at the
beginning of the 19th century, the speed of passenger trains became an essential
argument for companies and countries to compete. After some significant speed
records in Europe, in October 1964 Japanese national railways started the opera-
tion of the Tokaido Shinkansen line, from Tokio Central to Shin Osaka. This line
was designed to operate at 210 km/h and it also had modern control systems. This
can be considered the birth of the High Speed Rail (onwards HSR).

Shortly after the success of the Shinkansen line, innovations and new tech-
nologies developed in several European countries established the basis for the
“passenger railway of the future”. It was in 1981 when the national French rail-
way company started the operation of the first high speed line between Paris and
Lyons: the TGV. During the journey, the train reached a maximum speed of 260

1



1.1 Introduction

km/h. It was the birth of the European HSR. The main difference between the
Shinkansen and the European HSR lines was that the first one was a fully brand
new line while the second was fully compatible with existing railways. Thats’s
why the HSR suffered a great further development in most European countries
and each one looked for the new generation of competitive long and medium dis-
tance passenger rail services.

Figure 1.1: Main events in the HSR history. Source: http://uic.org/

High-Speed-History.

Here in Spain the HSR was introduced in the late ’80s, taking inspiration from
French model. The first project so-called N.A.F.A. (the acronym in Spanish of
Nuevo Acceso Ferroviario a Andalucı́a) was opened up in april 1992, matching
with the Universal Exposition of Seville (Expo ’92). This HSR line named AVE
(Alta Velocidad Española) allowed to get in Seville from Madrid in just three
hours. From then on, the number of HSR lines in Spain has been increased a lot
and nowadays it exists a very functional radial network as it can be seen in the
figure 1.2.

The High Speed Rail changes the concept of long travel, greatly reducing
travel times. Therefore, HSR lines represent one of the most important infrastruc-
tures in development plans. In fact, in the last transportation planning called Plan

de Infraestructuras, Transporte y Vivienda 2012-2024, railway transport count on
more than 60.000 million euros, that represents 44% of the plan’s budget.

2
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1.1 Introduction

Figure 1.2: Map of the Spanish high-speed railway network. Source: https://
es.wikipedia.org/wiki/Archivo:HighSpeedSpain.svg.

On the other hand, to achieve a useful railway transport and make it more
comfortable for passenger and functional in freight transport the regulation called
IAPF-07 was pass in 2007. This document establishes some dynamic limitations
in vertical accelerations, maximum deflection and warping in ballasted decks of
high speed railway bridges. To checkup this restrictions, it is necessary to solve
the dynamic problem considering a moving load. The traditional way to solve this
kind of problems is by using a numerical integration method, usually Newmark-
Beta method. The problem is that numerical integration algorithms have an incre-
mental formulation so its precision depends on the temporal discretization. Nev-
ertheless there is a revolutionary semi-analytic method to solve the moving load
problem proposed by the advisor of this Master Thesis that allows to carry out all
the load cases imposed in the instruction by not discretizing the time domain.

For all this reasons, the main motivation of this document is to perform a

3
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1.1 Introduction

practical dynamic computation using the semi-analytic method and show its ad-
vantages. Besides, the case study chosen consist in a concrete arch bridge of a
high speed line built in Spain. This type of bridge is interesting from an engineer-
ing point of view because there are not many of them in the high speed railways in
Europe. Furthermore, spatial arch bridges have significant out-of-plane behavior
so its dynamic response can be decisive for its own design.

Special features of railway arch bridges

Ideally, an arch is an structure that is only subject to compressive stress, free
of any bending moments and shear stress. If so, the arch is absolutely efficient
because every part of its cross sections is subject to the same stress and there
are no wasted parts. In order to obtain an ideal arch free of bending moments,
the arch shape must coincide with the line of thrust caused by loads acting on it.
But in real arch bridges there is no single line of thrust because all the different
load cases. And what’s more, moving loads causes changes in the line of thrust.
Hence differences between the arch axis and the line of thrust are unavoidable and
there are always bending moments that could be important in some cases. Thus
it is important to ensure enough bending resistance but also checking bucking
problems derived from the compressive stress.

Usually arch bridges are classified into three types namely:

- Deck arch bridges: the arch is located below the deck.

- Through or tied arch bridges: the arch is situated above the deck.

- Half-through arch bridges: there are parts of the arch below and above the
deck.

Another important issue of arch bridges is how to carry loads to the ground.
Deck bridges usually require a very competent foundation to support the high
vertical and horizontal forces transmitted by the arch. This issue is less important

4



1.2 Objectives and main contributions

in through and half-through arch bridges because the deck tie the horizontal thrust
of the arch.

Arch bridges for HSR are deck arch bridges and they usually are pointed
arches. The use of this type of arch started to be used in the Middle Ages with the
gothic style. A concentrated load on top of the key is needed to maintain its struc-
tural efficiency. The HSR bridges have much more requirements than highway
bridges. First of all, train loads are higher than traffic loads and they are many
types of trains with different arrangement of load axles. This makes it more diffi-
cult to obtain an accurate inverse funicular curve for the arch thus higher bending
moment could appear. Secondly, the dynamic effect caused by the high speed
trains could also be limiting. Finally, the limitations for service deflections and
acceleration stablished in the instruction are very strict.

Recently, three outstanding deck bridges have been built in Spain: Contreras
Reservoir Bridge, Alcántara and Almonte River Bridge. The three are deck arches
erected by the cable-stayed cantilever method, and the last one represents the case
study of this document.

1.2 Objectives and main contributions

The main objectives of this Master Thesis may be summarized at the following
items:

- Development of a methodology for the dynamic analysis of HSR arch bridges
based on the semi-analytic method proposed by Alejandro Martı́nez Castro
et al., which includes all verifications established in the current regulation
(IAPF-07).

- Analysis of the specific behavior of HSR arch bridges taking into account
dynamics effects: arch-deck low-frequency modes, torsion modes derived
from the off-centered moving load over the deck, continuos and maximum
deflections and accelerations induced by high speed trains,...

5



1.3 Organization of this document

- Elaboration of different finite element models (onwards FE models), in-
cluding isolated arch models by using 1D and 2D elements and complete
models, to get the suitable one for this kind of problems.

- Incorporation of soil-structure interaction models (onward SSI models) to
ponder the way its effects attenuate the dynamic response of the arch bridge.

1.3 Organization of this document

This document is organized by independent chapters, in order to present sep-
arately the review of the state of the art, the formulation used, the case study and
the conclusions. References to general methods, such as Finite Element Method
or Boundary Element Method have been omitted. The reader can look for the
selected lectures on each chapter to find information about this topics.

The first chapter after this introduction is focused on the available methods to
perform dynamic analysis of railway bridges. Some simplified methods proposed
in the instruction are presented and also other traditional step by step methods.

The Chapter 3 is about the semi-analytic method proposed by the advisor of
this Master Thesis. The formulation and solution method is exposed. Also nu-
merical test are shown to confirm the adequate implementation of the theoretical
development.

At Chapters 4 and 5 the dynamic analysis of the HSR bridge over the Almonte
river is develop. For this propose all tools presented in previous chapters are used
and results are analyze.

Finally Chapter 6 presents the main conclusion of this work and also points
out some future works related with this research.

6



CHAPTER

2
Dynamic analysis of railway

bridges

2.1 Introduction

Generally all brand new structures and specifically railway bridges tend to be
more and more slenderness. Thus dynamic effects become very important, even
more in HSR bridges because the high speed moving loads. Therefore, national
regulations are concerned about dynamic problems.

This dynamic effects can affect the passengers comfort, but also could en-
danger the ballasted track. In some cases, dynamic effects could condition the
structural design.

7



2.2 The dynamic problem in Spanish regulation

2.2 The dynamic problem in Spanish regulation

Current Spanish legislation called IAPF-07 poses several methods to evaluate
dynamic effects. Articles and formulas indicated in this section can be found in
the text of the instruction [2] .

Dynamic effects are not taken into account directly. For this propose, so-called
impact coefficient Φ is defined and it is used to increase static loads. The general
formula for this coefficient is expressed by equation 2.1.

Φ =
max(Sdin,real)

Sest,tipo
(2.1)

where:

max(Sdin,real): Maximum dynamic load derived from all kind of real trains
running at any speed.

Sest,tipo: Static load owing to UIC71 train defined in 2.3.1.1 placed in the
most adverse position.

To calculate Φ coefficient, the following two cases may be considered. This
methods are detailed in next section.

1. Trains running at speed v <= 220 km/h

- For conventional bridges satisfying the frequency limitation defined in
B.4, it can be used a simplified method known as enveloped of impact

coefficients method.

- In another case, it is necessary to employ the impact coefficient method

for the actual trains.

2. Trains running at speed v > 220 km/h:

- For isostatic bridges the dynamic signature method can be used.

- In another case it is necessary to carry out a dynamic analysis, using
the general time domain integration method for moving loads.

8



2.2 The dynamic problem in Spanish regulation

2.2.1 Enveloped of impact coefficients method

This is the most simplified method. The impact coefficient can be compute
by using expressions B.5 or B.6 in the instruction. This coefficient represents an
enveloped of coefficients obtain for many problems of different actual bridges.
Therefore, the use of this method is limited to conventional structures. In this
cases it is also assume there isn’t resonant phenomenas and accelerations don’t
overcome the allowable limit.

2.2.2 Actual trains impact coefficient method

Whereas the above method provide a single impact coefficient for all trains and
speeds, this method provides an impact coefficient for each actual train, which is
more accurate. There are two options to obtain this coefficients:

a) By using analytical expession B.13.

b) Carrying out a general dynamic analysis for trains defined in annexed C.3
of the instruction. Any of the following methods could be used to develop
the dynamic analysis.

2.2.3 Dynamic signature method

This is also a simplified method, so it only can be used for isostatic bridges and
other special structures. Maximum dynamic response can be obtain as the product
of two functions with analytical expressions. There are two different methods:
DER and LIR. Information of this methods can be found in documents working
out by ERRI (European Rail Research Institute) and also in [3].

9



2.2 The dynamic problem in Spanish regulation

2.2.4 General time domain integration method

This method characterizes trains as moving loads to define a general time do-
main dynamic problem. Hence, is the most general approach and it is valid for all
singular problems.

The aim is to determine the most unfavorable loading situation (enveloped),
simulating the traffic at different speeds, from 20 km/h to 1.2 times the design
speed. The increase of speed between each step will be less than 10 km/h. Th
HSLM (High Speed Load Model) defined in the Eurocode 1 [4] is used for this
propose.

Finally the impact coefficient can be compute using the following equation:

Φ =
δidealdin,real

Sest,tipo
· (1 + rφ′′)

where:

r: coefficient which depends on the track maintenance, defined by expres-
sion B.11 in the instruction.

φ′′: coefficient which represents the track irregularities, defined by expres-
sion B.12 in the instruction.

This method can be completed including vehicle-structure interaction. In this
kind of models, the load is considerate variable to take into account the train
suspension system. It can be useful in some special situations or as a part of a
research work, but in practice this models are too much complex. The coefficients
obtain with this models are usually lower in isostatic bridges, but the interaction
has no much effect in hyperstatic structures.

10
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2.3 Approaches to moving load problems

2.3.1 Research and recent papers

The dynamic behaviour of structures under moving loads is a problem of in-
terest in the field of railway and highway bridges design. In this problems, traffic
load are represented as constant concentrated loads moving on a line at constant
speed.

The first time this models were proposed was at the beginning of the 20th
century, when first steps towards HSR were come about in Europe [5, 6]. It is a
complex problem whereby exact solution only exists for some simple cases such
as isostatic structures [7, 8, 9].

It is more difficult to find some papers about exact solutions for hyperstatic
structures. Some examples are the research by Hayashikawa and Watanbe for
multispan nonuniform beams and the work by Chen and Li for specific exponen-
tial loads [10]. Another remarkable work is the one realized by Henchi [11], who
obtained the frequency domain solution.

Over time the dynamic problem have been faced with approximate methods.
For general loads over a general structure, step-by-step methods are the popular
ones (see [12] for more informations about this topic). Particularly the integration
method so-called Newmark-Beta is the most used one in dynamics of structures
[13].

Since the definition of Newmark-Beta technique in 1959, it has been employed
in many applications. Among the large number of papers using this method, the
work made by Liu et al. [14] about Sesia viaduct must be taken into account. It
is a very complete research in which vehicle-structure interaction is considered
in the numerical model and it also includes in situ test results after construction.
Paper conclusions about damping of this type of structures are very interestig.

The main problem of direct integration technique is because of the time dis-

11



2.3 Approaches to moving load problems

cretization. Time step have to be very small to obtain accurate solutions, so the
computational cost is too much large in many cases. To overcome this problem,
some other methods have been proposed.

Dugush and Eisenbeg [15] presented in 2002 a new approach to the problem.
The propose consists on describing vibration modes by infinite polwer series.
Thereby the spatial problem is solved exactly by using dynamic direct stiffness
method and the temporal solution is analytical.

Another semi-analytic alternative method was proposed in 2003 by Martinez-
Castro et al. [16, 17, 18]. In this methodology structure is spatially discretized
using the conventional finite elements. Then, the (approximate) mode shapes and
natural frequencies are computed using standard eigensolution procedure. Finally,
the equivalent modal loads are expressed analytically in terms of the previously
computed mode shapes. This leads to the mathematical expression of the time
domain solution for each mode in a straightforward manner. For this reason, errors
due to temporal discretization are avoid. The semi-analytic method have been
encourage by the scientific community and it has been successfully used in the
design of the Santa Ana bridge [19]. Chapter 3 of this document is focused on the
formulation of the semi-analytic method.

2.3.2 Theoretical background: time domain integration meth-
ods

A general dynamic problem solution of a moving load is obtained using nu-
merical integration. There are two different methodologies:

- Direct methods:

This are the most general methods because they allow non-linear beha-
viour. This techniques consists in the direct integration of the equilibrium
equations for all degrees of freedom (DOF) of the structure at every time.

12



2.3 Approaches to moving load problems

Some popular direct methods are step-by-step algorithms such as Newmark-
Beta, Hughes or Wilson method. Some references about this topic are
[13, 20, 21, 22].

- Indirect methods:

On the other hand, indirect methods use the superposition principle so they
are only useful for linear behaviour. This technique consists in the use of
modal analysis to decouple the DOF and to separate the spatial and temporal
variables. Except for very simple load cases, it will not possible to solve
the temporal problem analytically, so the use of a step-by-step method is
unavoidable.

2.3.3 Step-by-step integration methods

Step-by-step methods have different formulations but all are based on the di-
vision of the load and the system response in a set of sequential time steps. The
response at the current step is compute from the response in the previous steps in
a certain way.

The initial equation for a first order temporal integration algorithm, also known
as Cauchy problem is:

ẏ(t) = f(t, y(t)), y(y0) = y0; t ∈ [t0, tf ]

However to solve a dynamic problem it is necessary to use second order tem-
poral integration algorithms. In this case, the initial equation is:

M · ẅ = F (w, ẇ, t)

where array F and matrix M are generally non-linear functions of (w, ẇ, t). To
transform this second order problem in a first order one it is used the next conver-
sion:

y =
w

ẇ
−→ ẏ =

ẇ

M−1 · F (w, ẇ, t)
= F (t, y(t))

13



2.3 Approaches to moving load problems

Temporal integration methods estimate the current solution from information
at previous steps. In this way, solution yn (n = 0, 1, ..., N) at time step tn is
obtained from solution in preceding k steps.

k∑
j=0

αjyn+j = h · Φ(yn+k, yn+k−1, yn+k−2, ..., yn, tn+k;hn+k) (2.2)

Equation 2.2 is the most general form of a step-by-step method. This methods
can be classified according to different criteria:

- One step and multistep methods:

One step methods are those which obtain the response at step tn from the
information in the step tn−1 = tn − ∆tn−1. The most popular one is the
classical Runge-Kutta method.

Instead multistep methods are those which obtain the response at step tn
from the information in several previous steps. The most used are Adams
methods.

- Explicit and implicit methods:

Explicit methods pose the differential equation at step tn+1 to estimate the
solution at step tn. Consequently solution yn+k can be expressed separately
from previous solutions yn−j (j = 0, 1, ...k − 1). All explicit methods are
conditionally stable in terms of time step. That means it is necessary to fix
a small enough time step to obtain an stable solution. An example of this
numerical integration technique are explicit Runge-Kutta method.

On the other hand, implicit methods solve the differential equation at step
tn only after the solution in step tn−1 has been found. In this case, solu-
tion yn+k can’t be expressed separately from previous solutions yn−j (j =

0, 1, ...k−1) and a linear equation system must be solve at every step. How-
ever this methods can be conditionally or unconditionally stable, so higher
time sept can be used. Some examples are one step implicit Adams method
(known as trapezoidal rule) and Newmark-Beta algorithm.
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2.3 Approaches to moving load problems

- Fixed-step and variable-step methods:

In fixed-step methods the value of time step ∆tn is constant throughout all
the performance. All methods designate before are fixed-step methods.

Otherwise in variable-step methods time step ∆n can be different at each
step. The embedded Runge-Kutta methods or Runge-Kutta-Fehlberg method
implement this technique.

2.3.3.1 Disadvantages

Step-by-step methodology is based on incremental numerical integration in
time domain so this domain is thus approximated. In actual structures this meth-
ods are not applicable because it is necessary very small time steps to obtain an
accurate solution. In this conditions, numerical performances have an excessive
computational cost so only not very large numerical models or detail models can
be analyzed by using this technique.
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CHAPTER

3
Semi-analytic solution for moving

load

3.1 Introduction

The dynamic behaviour of beams under moving loads is of great importance
in several fields of engineering, for instance, the design of railway bridges. This
topic has become a particular focus area of research because of the appearance
of ballast destabilization problems in some European HSR lines. The committee
D-214 of the ERRI looked after to analyse these problems and pointed out that the
occurrence of intense resonance phenomena associated with flexural oscillations
needs further investigation.

With the goal of developing this issue, semi-analytic method was proposed by
A. Martı́nez Castro, P.Museros and A. Castillo-Linares (University of Granada).
It was published in Journal of Sound and Vibration in 2006 [1]. In this paper,
authors present an alternative method to step-by-step techniques to carry out the
analysis of the response of Bernoulli-Euler beams subjected to flexural vibrations
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3.2 Formulation and semi-analytic solution for beams

under the presence of concentrated moving forces. Applying this methodology
the structure is discretized and the mode shapes are computed using standard pro-
cedure. The moving load is represented by a unitary Dirac Delta function, and the
modal loads are obtained in terms of cubic Hermitian polynomials. This leads in
a straightforward manner to the closed-form solution for the unit load in the time
domain. The solution is expressed in terms of 10 coefficients per element and
per mode, the values of which are independent of the speed of the moving load.
Finally, the response to a series of loads is built simply by adding the contribution
of each. The overall procedure is fast and accurate, depending only on the spatial
discretization and the time step selected for evaluating the solution without the
need of any integration step.

Next paragraphs are focus on the formulation of the semi-analytic solution for
beams, but also it is presented a generalized methodology. To finish the chapter,
some numerical test have been included in order to show the efficiency of this
technique.

3.2 Formulation and semi-analytic solution for beams

In order to expose this new approach to dynamic problems with moving loads,
the methodology follow the next items:

1◦) Approach to governing equation for non-uniform beams.

2◦) Weak and Matrix formulation for a single element.

3◦) Assembled formulation.

4◦) Solution of the matrix equation system.

5◦) Uncoupling the system and solving the equations of motion.

6◦) Solution for a set of moving loads.

17



3.2 Formulation and semi-analytic solution for beams

3.2.1 Governing equation

Let x ∈ [0, L] be the domain of a Bernoulli-Euler non-uniform beam with a
single concentrated load traversing the beam at the constant speed v. This moving
load is idealized by means of Dirac Delta function δ(x). Thus, p(x, t) = p0δ(x−
vt) represents the effect of a concentrated moving load p0.

Figure 3.1: Non-uniform beam traversed by a moving load.

At this point, two time intervals are considered: [0, L/v] or forced vibrations,
when the load is acting upon the beam, and [L/v,∞) or free vibrations. Dur-
ing the forced vibration period, the governing differential equation for this beam
neglecting damping effects is given by:

m(x) · ∂
2w(x, t)

∂t2
+

∂2

∂x2
[EI(x) · ∂

2w(x, t)

∂x2
] + p0 · δ(x− vt) = 0 (3.1)

where m(x) stands for the mass per unit length, E is the modulus of elasticity,
and I(x) is the variable second moment of area of the cross-section.

Figure 3.2 shows the positive sign of the distributed load, shear force, and
bending moment. The displacement function w(x, t) is positive in the upward
direction.
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3.2 Formulation and semi-analytic solution for beams

Figure 3.2: Sign convention for the shear force V (x, t), bending moment M(x, t)

and load p(x, t). Source: [1].

The boundary conditions for this problem are:

w(x, t)|t=0 = 0 ∀x ∈ [0, L] ;
∂w(x, t)

∂t
|t=0 = 0 ∀x ∈ [0, L] (3.2)

3.2.2 Spatial discretization

Weak formulation for a single element

The weak formulation of the problem defined by equation 3.1 with the bound-
ary conditions given in equation 3.2 is obtained by multiplying the first one of
them by a generic test function u∗(x) following a double integration by parts.
Particularly, if a conventional finite element approach is adopted, the domain
x ∈ [0, L] is subdivided into elements of length le and Hermitian polynomials
are used both as test functions as well as interpolating functions. Subsequently,
the integration by parts of 3.1 is carried out over each element. This technique is
widely known and is treated extensively in a number of works, see for instance
the monograph by Zienkievick or Bathe [23, 24].
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3.2 Formulation and semi-analytic solution for beams

Regarding the element shown in figure 3.3, the function w(x, t) is approxim-
ated by a cubic polynomial using the four Hermitian polynomials hn(x), (n =

1− 4):

w(xe, t) =
4∑
n=i

yen(t)hen(xe) (3.3)

where the physical meaning of the time-varying coefficients is the usual one, i.e.
the transverse displacement and slope at the nodes:

ye1(t) = yi(t), ye2(t) = θi(t),

ye3(t) = yj(t), ye4(t) = θj(t)

Figure 3.3: Positive nodal forces and moments in the linear element. Source: [1]

The approximate velocity and acceleration are obtained by differentiation of
w(xe, t) with respect to time:

ẇ(xe, t) =
4∑
n=i

ẏen(t)hen(xe), ẅ(xe, t) =
4∑
n=i

ÿen(t)hen(xe), (3.4)

where overdot denote time derivatives. Using also the four Hermitian polynomials
as test functions, and approximating the spatial variables by means of equations
3.3 and 3.4, weak form of equation 3.1 is obtaining integrating within the ele-
ment. The moment-curvature relationship in Bernoulli-Euler beams and Dirac
delta function identities have been applied to finally obtain:
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3.2 Formulation and semi-analytic solution for beams

∫ le

0

m(xe)

4∑
n=1

[ÿen(t)h
e
n(x

e)]he
m(xe)dxe +

∫ le

0

4∑
n=1

[
yen(t)

d2he
n(x

e)

d(xe)2

]
EI(xe)

d2he
m(xe)

d(xe)2
dxe

= F e
j (t)h

e
m(le) + F e

i (t)h
e
m(0) +Me

j (t)
dhe

m(xe)

dxe
|le +Me

i (t)
dhe

m(xe)

dxe
|0 − p0h

e
m(vt) (3.5)

with m = 1, 2, 3, 4. The variables F e
i (t), F e

j (t) and M e
i (t),M e

j (t) are forces and
bending moments in nodes i and j of element e, whose sign criterion is shown in
figure 3.3.

Matrix formulation for a single element

After evaluation of the integrals contained in equations 3.5, the solution can
be expressed in matrix form as follows:

me
11 me

12 me
13 me

14

me
21 me

22 me
23 me

24

me
31 me

32 me
33 me

34

me
41 me

42 me
43 me

44



ÿi(vt)

θ̈i(vt)
ÿj(vt)

θ̈j(vt)

+


ke11 ke12 ke13 ke14
ke21 ke22 ke23 ke24
ke31 ke32 ke33 ke34
ke41 ke42 ke43 ke44



yi(vt)
θi(vt)
yj(vt)
θj(vt)



=


F e
i (vt)

M e
i (vt)

F e
j (vt)

M e
j (vt)

− p0

he1(vt)
he2(vt)
he3(vt)
he4(vt)


which can also be rewritten in a more compact form as:

Meÿe(t) + Key(t) = f e(t)− p0he(vt) (3.6)

The elements of the matrices in equations 3.6 are given by:

me
rs =

∫ le

0

m(xe)her(x
e)hes(x

e)dxe,

kers =

∫ le

0

d2her(x
e)

d(xe)2
EI(xe)

d2hes(x
e)

d(xe)2
dxe (3.7)

where r and s run from 1 to 4.
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3.2 Formulation and semi-analytic solution for beams

Assembled formulation

Assembling the element equations 3.6, the differential equation of motion of
the finite element model of the beam is obtained:

Mÿ(t) + Ky(t) = −p0h(vt) (3.8)

It can be seen, the load term is a vector with an analytic, polynomial expres-
sion for t ∈ [xei/v, x

e
j/v). In what follows it will be assumed that the load has

moved to the next element when t = xej/v. In order to solve equation 3.8 , the
boundary conditions need to be prescribed. After applying the boundary condi-
tions, the new reduced mass and stiffness matrices define the problem to be solved.
For simplicity, in what follows the reduced matrices will be referred to using the
same symbols as the non-reduced ones, and distinction will be made when it is
necessary.

3.2.3 Semi-analytic solution

Solution of the equations of motion

Equation 3.8 is a matrix system of linear differential equations with con-
stant coefficients and an analytical right-hand term. This equation can be solved
through a change of basis given by the generalized eigenvalue problem described
by:

(−ω2M + K)y(t) = 0 ⇒ det (K− ω2M) = 0 (3.9)

being ω the eigenvalue. Let q(t) be time-dependent modal amplitude vector, re-
lated to y(t) though the matrix C:

y(t) = Cq(t) (3.10)
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3.2 Formulation and semi-analytic solution for beams

where each column of C contains the corresponding eigenvector which are known
as modes. Premultiplying 3.8 by CT and changing from y(t) to q(t) it is obtain:

CTMq̈(t) + CTKq(t) = −p0CTh(vt) (3.11)

The matrix product in the left-hand terms of equation 3.11 are both diagonal as a
result of the orthogonality property of the modes. Therefore, 3.11 becomes:

MDq̈(t) + KDq(t) = −p0CTh(vt) (3.12)

The problem can now be solved for a unitary load p0 = 0 and, assuming
linear behaviour of the system, the solution for a different load can be computed
multiplying the unitary solution by the actual value of p0. Premultiplying equation
3.12 by the inverse of the diagonal mass matrix, and letting p0 = 1:

q̈(t) + M−1
D KDq(t) = Gh(vt) (3.13)

where:
G = −M−1

D CT (3.14)

Solution for each mode

With the exception of the time intervals when the load is applied in one ele-
ment having a restrained degree of freedom, the elements of vector h(vt) in the
right-hand term of equation 3.13 are zero in all but four rows. These four rows
correspond precisely to the degrees of freedom of the i and j nodes belonging to
the element e where the moving load is applied. Thereby, the differential equation
for the nth mode can be expressed as:

q̈n(t) + ω2
nqn(t) =

4∑
m=1

Ge
nmh

e
m(vt) (3.15)

At this point it is possible to include the damping effects by means of a modal
damping ratio ζn. In this way equation 3.15 transforms into:

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) =

4∑
m=1

Ge
nmh

e
m(vt) (3.16)

23



3.2 Formulation and semi-analytic solution for beams

The solution of equation 3.16 can be obtained in closed-form, but the ana-
lytic expression needs to be defined piecewise for every different time interval
[xei/v, x

e
j/v]. Every time the load crosses from one element to the next one, the

closed-form expression of the solution is redefined. Consider that the load is mov-
ing in element e, having initial and final nodes i and j. In order to solve equation
3.16, a change of the origin of the time variable is introduced. Let t be the time
relative to the instant when the load passes over the initial node i τ = t− xei/v.
Then, the initial conditions can be specified in the form:

qn(τ = 0) = q0n, q̇n(τ = 0) = q̇0n (3.17)

with τ ∈ [0, le/v).

The solution can now be expressed as the sum of the solution of the homogen-
eous equation plus a particular solution:

qn(τ) = qhn(τ) + qpn(τ)

During the time interval in which the load traverses the structure, the particular
and homogeneous solutions will have to be added, giving rise to the forced vi-
bration and free vibration contributions, respectively. Conversely, after the load
has reached the last node of the beam only the contribution of the homogeneous
solution will remain.

The mathematical expressions of the homogeneous solution is:

qhn(τ) = e−ζnωnτ
(
An cos(ωdnτ) +Bn sin(ωdnτ)

)
(3.18)

with ωdn = ωn
√

1− ζ2n.

On the other hand, the particular solution can be expressed by:

qpn(τ) = α(0)
n + α(1)

n vt+ α(2)
n (vt)2 + α(3)

n (vt)3 (3.19)

where coefficients α(i)
n (i = 0− 3) can be obtained solving the equations below:

α(0)
n = v3α(01)

n + v2α(02)
n + vα(03)

n + α(04)
n

α(2)
n = v2α(11)

n + vα(12)
n + α(13)

n

α(3)
n = vα(21)

n + α(22)
n

α(4)
n = α(31)

n (3.20)
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3.2 Formulation and semi-analytic solution for beams

In the above expressions, the dependence of the speed v has been isolated using
the following 10 coefficients:

α(01)
n = −24ζn(2(ζn)2 − 1)(2Ge

n1 − 2Ge
n3 + (Ge

n2 +Ge
n4)l

e)

(le)3(ωn)5

α(02)
n = −2(4ζ2n − 1)(3Ge

n1 − 3Ge
n3 + (2Ge

n2 +Ge
n4)l

e)

(le)2(ωn)4

α(03)
n = −2Ge

n2ζn
(ωn)3

α(04)
n =

Ge
n1

(ωn)2

α(11)
n =

6(4(ζn)2 − 1)(2Ge
n1 − 2Ge

n3 + (Ge
n2 +Ge

n4)l
e)

(le)3(ωn)4

α(12)
n =

4ζn(3Ge
n1 − 3Ge

n3 + (2Ge
n2 +Ge

n4)l
e)

(le)2(ωn)3

α(13)
n =

Ge
n2

(ωn)2

α(21)
n = −6ζn(2Ge

n1 − 2Ge
n3 + (Ge

n2 +Ge
n4)l

e)

(le)3(ωn)3

α(22)
n = −3Ge

n1 − 3Ge
n3 + (2Ge

n2 +Ge
n4)l

e

(le)2(ωn)2

α(31)
n =

2Ge
n1 − 2Ge

n3 + (Ge
n2 +Ge

n4)l
e

(le)3(ωn)2
(3.21)

At this point, it should be emphasized that this ten coefficients together with
the speed of the moving load define the particular solution. Furthermore, coeffi-
cients of equations 3.21 can be computed and stored initially for the entire mesh.

On the other hand, coefficients of the homogeneous solution (equation 3.18)
are obtained from the initial conditions(equations 3.17) as follows:

An = q0n − α(0)
n

Bn =
q̇0n + ζnωnAn − α(1)

n v

ωdn
(3.22)

The complete closed-form solution is built piecewise from a set of analytic
functions, one per element. For the initial time,t = 0 , at-rest conditions are
normally imposed:

qn(τ = 0) = 0, q̇n(τ = 0) = 0
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3.3 Generalization of the formulation

For the following elements, the initial conditions for element e + 1 are given by
the end values of element e.

Solution for a set of moving loads

For a set or series of concentrated loads moving at a constant speed v, which
represent in more realistic way HSR bridges problems, the solution can be ob-
tained by superposition.

3.3 Generalization of the formulation

Semi-analytic solution is expressed trough the sum of homogeneous solution
(equation 3.18) plus a particular solution (3.19) per each mode n. As it can be
seen in this equations, parameters that define this solutions such as Cn, ωn or
Gn are obtained in the modal analysis. In fact the temporal solution is defined
analytically. In any moment geometrical restriction, such as section type or inertia,
are imposed. Unlike, geometrical information is indirectly include in the modal
solution. Therefore, equation 3.1 can be replaced by the general one that follows:

L{u(x̄, t), v(x̄, t), w(x̄, t)} = −p0δ(s− vt) (3.23)

being L a differential operator and s the curvilinear coordinate of the load line.

A general governing equation 3.23 can be solve using separation variables
technique and the system can then be decoupled by modal analysis. The only im-
position observed is that load line must be classC1 so that the spatial discretization
by the Hermite polynomials allows a smooth transition avoiding the existence of
discontinuities that could introduce fictive acceleration peaks.

To sum up, the methodology presented herein follow the next scheme for a
moving load problem with any geometry:
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3.4 Advantages of the method

- Computation of ωn, C and G using any FE software by modal analysis.

- Estimation of the ten coefficients αn.

- Carrying out the temporal integration of the solution using the semi-analytic
algorithm.

- Evaluating the solution (accelerations and displacements) in post-processing
points previously selected.

As it can be seen, the overall procedure depends only on the spatial discretiza-
tion and the time step selected for evaluating the solution without the need of any
integration step.

Figure 3.4: Line load and post-processing points scheme.

3.4 Advantages of the method

This semi-analytic method have been successfully tested by the authors in
some different geometries. Paper [1] is focused on 1D structures, specifically non-
uniform Bernoulli-Euler beams. This document presents four different examples.
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3.4 Advantages of the method

On one side, paper sections 5.1 to 5.3 show three different comparisons of
the results obtained using the semi-analytic method and a classic time-stepping
procedure: the linear acceleration version of the Newmark method. The aim is
to validate the new approach. The three analyzed structures are: a three-span
continuous stepped beam under a single moving load, a three-span continuous
haunched beam also under a single moving load and the same three-span continu-
ous haunched beam under a train of moving loads.

On the other side, paper section 5.4 presents a practical application of the
semi-analytic method to the dynamic analysis of a three-span bridge according to
Eurocode 1 [4].

Another reference is [25], which was part of the Eurodyn 2005 program (In-
ternational Conference on Structural Dynamics). In this case, the paper is focus
on the semi-analytic solution for Kirchhoff plates traversed by moving loads.

Furthermore, this methodology has been used in the design of a bridge on
the high speed line Córdoba-Málaga close to the town of Santa Ana (Antequera).
After the accomplishment of a laborious dynamic study using the semi-analytic
algorithm, a bow-string bridge was finally decided. The process is explained in
[19].

In view of the excellent testing results, the semi-analytic solution seems to be
a very proper approach to dynamic problems. The main advantages of the method
are:

- Apart from numerical roundoff errors, the only approximation introduced in
the procedure comes from the spatial discretization of the structure, which
is inherent to any Finite Element model. Any geometry is permitted.

- The time-dependent modal equations are solved in closed-form, and there-
fore, the method is highly accurate and robust, circumventing the main dis-
advantages of time-stepping schemes.

- A time step is required in order to evaluate the solution and obtain a repres-
entation of the response time- history. Nevertheless, the equations of motion
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3.4 Advantages of the method

are integrated analytically, and therefore the response computed at any given
time instant is not affected by the size of the step. This fact directly affects
to computational cost, since step-by-step methods require much more cal-
culation in order to obtain a solution as accurate as semi-analytic method.
So, the method has proved to be computationally efficient.

- The solution is obtained in terms of 10 coefficients per element and per
mode. These coefficients are independent of the speed of the moving loads,
and therefore, need not be recalculated if an analysis for different values of
speed is to be carried out.

- This saving of time makes it particularly useful for the design of actual
bridges, allowing structural engineers to evaluate and compare the perform-
ance of different alternatives quickly and efficiently. It becomes a practical
and realistic tool to evaluate bridges applying IAPF-07, whose main re-
quirements are:

a) Considering more than 10 different trains.

b) Circulation speeds from 20 km/h to 400 km/h approximately, with speed
step of 1 km/h to analyze the complete range of accelerations. Thus it
would be analyzed around 380 circulation speeds.

c) At least three load cases are analyzed, considering three different val-
ues of the ballast weight.

Accordingly to this estimation, in a general dynamic problem it must be
done over 10 × 380 × 3 = 11400 algorithm iterations. So the reduction of
the process time gets by the semi-analytic method is very valuable.
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CHAPTER

4
Case study: Almonte river viaduct

4.1 Introduction

Madrid-Lisbon high-speed rail line is a proposed high speed line between the
Iberian capitals. It forms part of the Trans-European high-speed rail network,
which is one of the Trans-European transport networks (TEN-T), and was defined
by the Council Directive 96/48/EC of 23 July 1996.

In 2012 the project was cancelled officially on the Portuguese side due to
not being financially viable. Despite that fact, Spanish high speed infrastructure
manager ADIF Alta Velocidad is continuing work. In 2016 the European Regional
Development Fund (FRDF), gave Spain e205.1m towards the e312.1m needed
for the track between Navalmoral de la Mata and Mérida, Spain. Two capital
structures have been built as a part of this HSR line: the viaduct over the Tajo
river and the viaduct over the Almonte river, both concrete arch bridges solutions
located nearby the Alcántara reservoir.

The Almonte bridge (see figure 4.1) have been selected to perform a dynamic
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4.1 Introduction

study of it, because of its singularity. The aim of this study is to analyze the
specific behavior of HSR arch bridges, such as arch-deck low-frequency modes,
torsion modes derived from the off-centered moving load over the deck, continuos
and maximum deflections and accelerations induced by high speed trains,...

To accomplish this objective the semi-analytic methodology is used in order
to reduce computational time and thus be able to perform the analysis of differ-
ent models. In total, five different models of the viaduct have been developed,
considering soil-structure interaction in one of them.

Figure 4.1: The viaduct over the Almonte river in construction phase. Source: FCC
Construccion, S.A. official website (http://www.ciudadfcc.com/).
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4.2 About viaduct over the Almonte river

4.2 About viaduct over the Almonte river

The Almonte river viaduct is part of the HSR line Madrid-Extremadura. Trains
crossing the bridge may reach speeds of up to 350 kilometers per hour. It is loc-
ated in the Alcántara Reservoir in the western region of Cáceres. The viaduct has
a main arch span of 384 meters, and a total length of 998 meters and at its apex
the arch rises 70 meters above the river. Its main arch span makes this project
the largest HSR arch in the world and the largest railway bridge in Spain. The ap-
proach spans of the bridge range from 36 to 45 meters. The bridge uses reinforced
and prestressed high-strength concrete. It was designed by Guillermo Capellán,
Héctor Beade, Javier Martı́nez and Emilio Merino from Spanish Engineering firm
Arenas&Asociados. To sum up, in table 4.1 are included main characteristics of
the Almonte river viaduct.

Table 4.1: Data sheet of the Almonte river bridge.

Location Alcántara Reservoir, Cáceres, Spain
Design engineers Arenas&Asociados

Owner Adif Alta Velocidad
Contractor FCC Constructions&Conduril Engineering
Completed 2016
Main span 384 m

Total length 996 m
Structural system Deck arch bridge pointed

The mechanism for taking the longitudinal forces from trains braking is the
fixed point located on top of the key of the arch, as it can be seen in figure 4.2. At
the center of the bridge there is a 42 m long fixed point connecting the arch and the
deck. Horizontal loads due to the train braking are transferred through the fixed
point from the deck to the arch and then into the foundation. All of the horizontal
forces present are transmitted to the fixed point, as the columns are connected to
the deck with elastomeric bearings, allowing the deck to move longitudinally with
respect to the columns.
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4.2 About viaduct over the Almonte river

The simplest initial design for the supporting piers of this bridge would use
a rectangular cross-section with constant width along the height of the column.
However, by making two simple adjustments to the conventional pier shape, the
designers were able to lessen the wind effects. First, the cross-section of each
column is octagonal, which leads to better airflow around the columns, mitigating
lateral wind forces. Additionally, the columns narrow towards the top. This design
is efficient because piers are massive in the places where bending moments are
higher.

Figure 4.2: Perspective drawing of the Almonte bridge. Source: construction blue-
prints.

Like the columns, the cross-section of the arch varies throughout the structure
trying to be exclusively under compressive stresses. The arch section widens to-
wards the foundation (see figure 4.3). The arch splits into two legs which provide
the lateral support necessary to resist wind and other transversal loads acting on
the bridge.

The bridge has a continuous prestressed concrete box girder deck with con-
stant cross-section with almost 3 m depth and a total width of 14 m (figure 4.5).
The bridge deck over the arch is composed by 7 spans 42 m long supported by the
arch. Access spans are 45 m long, except first and last one which are 36 m long.
Each span was provided with one diaphragm at each end.

33



4.2 About viaduct over the Almonte river

Figure 4.3: Main view, bird’s-eye view and arch cross-sections of the Almonte
bridge. Source: construction blueprints.

Figure 4.4: Deck cross-section type. Source: construction blueprints.
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4.3 Numerical models

Construction on the Almonte River Viaduct began in 2011 and was managed
by Adif. The contractor was FCC Construction&Conduril Engeneering, a tem-
porary consortium of this two companies. A system of movable formwork on the
piers was used to construct the deck. The arch was constructed using a cantilever
method with temporary cables attached to the piers and to temporary steel towers.

(a) Phase 1: arch construction by cantilever method.

(b) Phase 2: deck construction using movable formwork.

Figure 4.5: Main construction phases of the viaduct. Source: construction blue-
prints.

4.3 Numerical models

The first step to perform a time-domain dynamic analysis using semi-analytic
method is to develop a numerical model to obtain natural frequencies and modes
of the structure. The most extended method in bridge engineering to develop nu-
merical models is the Finite Element Method (FEM). Using a FE free software as a
tool, several numerical models of the Almonte river viaduct have been developed.
This models are:

- Model 1: Isolated arch using 1D elements

In this model only the main span is represented. That includes the arch, and
pies and deck over it. All the model is made with linear elements.

- Model 2: Complete viaduct using 1D elements
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4.3 Numerical models

This is Model 1 including access spans and abutments. The model is also
made with linear elements.

- Model 3: Isolated arch using 2D elements

Only the main span is represented like it occurs in Model 1, but in this case
the deck is modeled by shell elements.

- Model 4: Complete viaduct using 2D elements

It is similar to model 2 except for the deck, which is modeled by 2D ele-
ments.

- Model 5: Isolated arch using 2D elements and considering soil-structure

interaction

This is Model 3 with mass matrix and stiffness matrix located in the arch
foundation to represents more realistically the behaviour of the structure,
including soil-structure interaction.

Models with 1D elements (Models 1 and 2) are simpler so the are easier to
develop. However situations such as a eccentric load or deck torsion modes can
not be represented with them. Actually this models have been developed as a
reference to compare the results obtain with 2D elements models.

On the other hand, the aim of developing an isolated arch model is to prove if
this simplify model can represent appropriately the behaviour of the whole struc-
ture. If so, computational time can be reduced because the model is not so heavy
than the complete one.

Finally Model 5 has been implemented to analyze how soil-structure interac-
tion can affect the dynamic response of an structure and if it is a good practice to
include this features on design models.

The five models are represented in figure 4.6 and details of them are described
below.
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4.3 Numerical models

(a) Model 1.

(b) Model 2.

(c) Model 3.

(d) Model 4.

(e) Model 5.

Figure 4.6: Models of the viaduct over the Almonte river.
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4.3 Numerical models

4.3.1 Geometry and finite element mesh

The geometry of the model have been obtain from the construction blueprints
of the viaduct, politely provided by the contractor.

Arch

The main element of the viaduct, the arch, have been modeled by two nodes
beam elements (1D or linear elements) in all models. In order to represent the
variable cross-section of the arch, sections between piers have been divided into
three and appropriate properties of the middle cross-sections have been introduced
manually. The mesh size has been set to 1 m.

The connection between arch and deck (fixed point) are modeled as a rigid
constrain between nodes. This union is plot in figure 4.7 in pink color.

Figure 4.7: Model of fixed point at the key of the arch.

Piers

The piers of the access spans don’t have been modeled directly. Instead, they
have been replace by boundary conditions.

Nevertheless, the piers over the arch have been also modeled by two nodes
beam elements. In this case, a preintegrated square hollow cross-section with
linear variation has been introduce. The mesh size has also been set to 1 m. The
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4.3 Numerical models

connection between arch and piers is also rigid ant it is shown in pink color in
figure 4.8. Moreover, the cap of this piers have been modeled by rigid beams
forming a ‘V’ shape, whose ends would coincide with the points where bearings
are placed (see figure 4.11).

Figure 4.8: Model of connection between piers and double arch.

Deck

Two versions of the deck have been developed.

The first of them uses two nodes beam elements to represent the girder. Prop-
erties of a hollow box cross-section have been set in all spans sections. Also at
each span end properties of the full box cross-section have been introduced to
represents the presence of diaphragms.

The second one uses four nodes shell elements (2D elements) to form the
shape of the cross-section, which is divided in four parts: the top flange that sup-
ports the track structure, the two webs, the bottom flange and diaphragms.
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4.3 Numerical models

- Flanges:

At the same time the top flange is divide in two different parts: the central
part of constant thickness with added mass due to track structure and the
cantilever verge of variable thickness without added mass. The value of the
added mass is obtain from data in table 4.4.

The bottom flange is modeled by shell elements of constant thickness without
added mass.

- Webs:

The beam cross-section to be modeled with shells is a typical example of
in-plane bending-dominated problems. In this kind of problems, reduced
integration (the most used one) would require refined meshes. For example,
some geometries require several elements through the thickness to get an
accurate solution. In order to avoid such a refined mesh, full integration
is employed. However, bilinear elements, when fully integrated, are too
stiff in in-plane bending. In this cases the method of incompatible modes is
usually employed to enhance the accuracy.

The webs of the box girder in the Almonte river represent an in-plane
bending-dominated problem. Therefore, full integration with incompatible
modes is implemented in the shell elements of the webs and thus an unre-
fined mesh is enough.

- Diaphragms:

They are modeled using shell elements of constant thickness of 1.25 m at
the ends of each span, with a gap. It is shown in figure 4.11.

Figure 4.9 displays the shape of flanges and webs. The part of the top flange
in which it is assumed an added mass because of the track, elements are dark blue.
Also a beam at the edge of the top flange (violet element) is considered to model
the effect of the fencing and to avoid unrealistic flapping modes of high frequency
in modal analysis performance.
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4.3 Numerical models

Figure 4.9: Model with elements 2D of the deck.

Bearing and abutments

Connection between deck and piers is bearing supported. There are two dif-
ferent types of guided POT bearings in each pier cap: type PU and type PL. The
same support system is placed on abutments, so that train braking loads are only
supported by the fixed point at the center of the arch, where deck and arch meet.
The bearings have the next characteristics:

PU


- Allows longitudinal displacement.
- Constraints transversal displacement.
- Bears horizontal transversal loads.

PL

{
- Allows longitudinal and transversal displacement.
- Does not resist any horizontal load (except friction).

(a) Type PU (b) Type PL

Figure 4.10: Guided POT bearing scheme.
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4.3 Numerical models

In models with 1D elements forming the deck, only one point of the deck is
supported, so the most restrictive POT bearing (PU type) is defined at this node.
In this sense, it is defined a constraint equation relating different degrees of free-
dom to model this connections between pier caps and deck (see figure 4.11). On
the other hand, in the access spans, bearings are modeled by degree-of-freedom
constraints at corresponding deck nodes.

Figure 4.11: Deck cross-section type. Source: construction blueprints.

Foundation

In actual viaduct, piers number 6 and 15 and the two legs of the arch are under-
pinned in the same mass concrete block at each river side. It has been developed
two different models of this foundation. The first model is that which do not con-
sider soil-structure interaction. In this case, the ends of this elements have all
degrees-of-freedom constrained.
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4.3 Numerical models

On the other hand, there is a model which includes soil-structure interaction.
In this case the ends of this elements are defined as a rigid region. Furthermore
there is defined a node in the center of mass of the concrete block connected with
the previous rigid region. The soil-structure interaction is thus modeled with a
mass matrix and a stiffness matrix located at this node.

The mass matrix is a diagonal matrix containing concentrated mass compon-
ents in coordinate directions and rotary inertias about the coordinate axes. To
compute this values, a model of the foundation have been plot in a CAD soft-
ware to obtain the volume (V ) and the rotary inertias of the mass concrete block
(Ĩxx, Ĩyy, Ĩzz). Considering a concrete density of ρ = 2500 kg/m3, the mass com-
ponents (Mx,My,Mz) and dimensionally correct rotary inertias (Ixx, Iyy, Izz) can
be computed to express the mass matrix below:

M =



Mx

My 0
Mz

Ixx

0 Iyy
Izz


(4.1)

Mass components in coordinate directions has been considered to be the same,
i. e.:

Mx = My = Mz = ρ · V (4.2)

And dimensionally correct rotary inertias can be obtain as:

Iii = ρ · Ĩii (4.3)

where i = x, y, z.

Stiffness matrix represents the foundation behaviour due to soil-structure in-
teraction. The definition of the stiffness matrix is not so immediate because the
response of the soil foundation depends on the deformed shape of the structure and
this response in turn depends on the load case. Scientific community have been
studied this problem since the end of the past century, trying to obtain impedance
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4.3 Numerical models

functions not only for static loads but also for dynamic problems. There exist
both analytical and numerical methods to estimate dynamic impedance functions
associated with a rigid but massless foundation [26, 27, 28]. In [29] G. Gazetas
presents a complete review of formulas and charts for impedances of surfaces and
embedded foundations.

The general problem statement consider an arbitrary basement shape founda-
tion on an homogeneous or even multilayer half-space. For a particular harmonic
excitation, the dynamic impedance is defined as the ratio between force (or mo-
ment) and the resulting steady-state displacement (or rotation) at the centroid of
the base of the massless foundation. For example, the vertical impedance is obtain
as the solution of the problem shown in figure 4.12 and it can be expressed as:

Sy =
Ry(t)

Uy(t)
(4.4)

where Ry(t) and Uy(t) are the harmonic vertical load and the harmonic vertical
displacement of the foundation respectively. This two functions have the next
expressions:

Ry(t) = Rye
(iωt) (4.5)

Uy(t) = Uye
(iωt) (4.6)

Figure 4.12: Vertical impedance problem statement.
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4.3 Numerical models

Similarly the following impedances are defined:

Sz : lateral swaying impedance.

Sx: longitudinal swaying impedance.

Sθx : rocking impedance for rotation about x axis.

Sθz : rocking impedance for rotation about z axis.

Sθy : torsional impedance for rotation about vertical axis.

Furthermore, mainly in embedded foundations horizontal forces along prin-
cipal axes induce rotational oscillations (in addition to translational); hence, two
more ’cross-coupling’ horizontal-rotational impedances are considered: Sx−θz

and Sz−thetax .

Because of the presence of radiation and material damping, R and U are gen-
erally out of phase and the impedances can be expressed in complex notation as
follows:

S = Kreal + iKim = K̂ + iωC (4.7)

in which both K̂ and C depend on frequency ω. This two components, the real
one and the imaginary, can be interpreted as:

K̂ → ’Dynamic stiffness’: it represents the stiffness of the foundation for
dynamic loads.

C → ’Damping coefficient’: it reflects the radiation and material damping
generated in the system due to energy carried by waves spreading away from
the foundation and energy dissipated in the soil by hysteretic phenomena.

Equation 4.7 suggests that the soil-structure interaction can be modeled, for
each frequency, as a set of springs ( stiffness matrix K) and dampers (damping
matrix C) with the characteristic values of K̂ and C computed for each direction.
So finally the stiffness matrix that represents the soil-structure interaction in the
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4.3 Numerical models

FE model can be expressed in the cartesian axes (with vertical axis y) placed at
the centroid of the foundation as follows:

K =


Kx 0 0 0 0 Kx−θz
0 Ky 0 0 0 0
0 0 Kz Kz−θx 0 0
0 0 Ky−θx kθx 0 0
0 0 0 0 Kθy 0

Kx−θz 0 0 0 0 Kθz

 (4.8)

In order to include SSI in the FE model of the Almonte bridge, the Boundary
Elements Method (BEM) is used to obtain the solution of a embedded found-
ation in half-space subject to a particular harmonic excitation. Particularly, the
approach of Guzina, Pak and Martı́nez-Castro [30] of the singular boundary ele-
ments are use to solve the dynamic problems. As it is refers on the previous paper,
it is advisable use non-dimensional parameters of the problem in order to obtain
an accurate solution. Thus, in this case study a rectangular foundation of a repres-
entative dimension and a medium limestone soil foundation are considered. The
main characteristics of the limestone is shown in table 4.2. Furthermore, the fre-
quency considered in the problem is for the first vertical mode of the bridge (ω1).
As it can see, it is a recurrent problem. First, a dynamic load of frequency ω1 ob-
tain with a modal analysis of the FE model without SSI is considerer to obtain the
stiffness matrix expressed by equation 4.8. Secondly, a brand-new modal analysis
is developed for the FE model including SSI and the load frequency ω1 is updated.

Table 4.2: Geotechnical parameters of the foundation limestone.

E (MPa) 80
ν 0.3

G (MPa) 30
ρ (kg/m3) 2200
vs (m/s) 115

On the other hand, also the damping effect of the foundation is considered in
the dynamic analysis of the viaduct. The BEM code also provides the imaginary
components of the impedances Kim, so the damping ratio for each mode i can be
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4.3 Numerical models

obtained as the sum of the ratio of each two foundations:

ζi =
ΦT
i CΦi

2ωi
|C1 +

ΦT
i CΦi

2ωi
|C2 (4.9)

where

ζi: damping ration for mode i.

Φi: modal displacements and rotation at the foundation for mode i.

ωi: natural frequency of mode i.

C: damping matrix computed using BEM. The components of the matrix
can be obtain as C = Kim/ω1.

4.3.2 Materials and dead loads

The only material present in the viaduct is the concrete. There are considered
several concrete types to form the bridge:

- HP-40/B/20/IIa→ in access spans deck.

- HP-60/B/20/IIa→ in spans over the arch desk.

- HA-80/AC/12/IIa→ in the arch.

- HA-40/B/20/IIa→ in piers (except piers 6 and 15).

- HA-50/B/12/IIa→ in piers 6 and 15.

For all this materials, there value of density considered is ρ = 2500 kg7m3 and
the poisson coefficient ν = 0.2. The value of the elastic modulus depends on the
characteristic strength of the concrete. To asses this value, the formula of article
39.6 of the EHE-08 [31] is used. The values obtained are present in table 4.3.
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4.4 Dynamic analysis in time domain

Table 4.3: Concrete parameters.

Concrete fck (MPa) Ecm (GPa)

HP-40 or HA-40 40 31
HA-500 50 31
HP-60 60 35
HA-80 80 38

On the other hand, the lineal weight of the elements of the track are list below
in table 4.4.

Table 4.4: Dead load due to track elements.

Ballast 13437 kg/m
Rails and railway sleepers 1280 kg/m

Ballast boards 500 kg/m
Fencing 900 kg/m

4.4 Dynamic analysis in time domain

Here most remarkable aspects of the dynamic performance are point out.

4.4.1 Traffic loads on bridges

The dynamic analysis has been done following the instructions of the IAPF-
07. In particular, analysis type defined in appendix B of the instruction is ap-
plied, so the ten trains defined in appendix C.1 (Universal Dynamic Train) are
considered.

The design speed of the line is vd = 350 km/h, so train speeds from 20 km/h
to 420 km/h (1.2vd) have been considered in the calculation.
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4.4 Dynamic analysis in time domain

4.4.2 Serviceability limit state requirements

Main checks stablished by the instruction IAPF-07 are:

- Maximum deflection to check the serviceability limit state (SLE).

- Maximum vertical acceleration to assure comfort and ballast stability.

- Maximum rotation at the abutments.

The points of the deck in which previous magnitudes are compute are:

- Deflection:

In spans over the arch, in centre span cross-sections and quarter span cross-
sections, at the rail axis.

In access spans there is any post-processing point.

- Vertical acceleration:

In spans over the arch, in centre span cross-sections and quarter span cross-
sections, at three points for each section: at longitudinal axis of the deck, at
right edge of the ballast and at left edge of the ballast.

In access spans, in centre span cross-sections, at right edge of the ballast.

4.4.3 Settings of the modal analysis

A modal analysis determines the vibration characteristics, natural frequencies
and mode shapes, of a structure. It can also serve, as in the case here, as a starting
point for a more detail dynamic analysis such a transient dynamic analysis.

The mode extraction method use in this work is the so-called Block Lanczos.
The Block Lanczos eigenvalue solver uses the Lanczos algorithm where the Lanczos
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4.4 Dynamic analysis in time domain

recursion is performed with a block of vectors. In the computation, consistent
mass matrix is considered and modes with a value of frequency lower than 30 Hz
are obtain.

4.4.4 Settings of the semi-analytic method

Basis of the semi-analytic method have been developed in Chapter 3, so here
only the main parameters of the method are exposed.

Modes and natural frequencies are obtain from a modal analysis of a FE model
of the bridge. For the modal superposition analysis, modes whose frequency is
lower than 30 Hz are considered, as it was said previously.

Time step chosen to evaluate the vibration time solution of the viaduct is one
tenth of the lowest period of vibration. Thus been the highest frequency 30 Hz,
the time step is about ∆t = 3e−3 s.

Free vibrations in the bridge are computed for over a total time of 6 times the
period of the fundamental mode, which is considerate enough time to obtain the
maximum oscillations of the structure.

Damping ratio due to material is considered the same for all of modes, with
a value of 2%. In model with SSI, additional damping ratios defined by equation
4.9 are included.
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CHAPTER

5
Results

5.1 Introduction

The main aim of this research is to develop a methodology for dynamic ana-
lysis of HSR bridges based on the semi-analytic method. In addition, another goal
is to get the suitable one FE model for this kind of problems by analyzing differ-
ent options. In order to achieve these objectives there have been developed several
dynamic analysis of the five FE models.

Particularly, a previous and needed modal analysis of all models is performed.
The results of this study is presented in next section.

Afterward some dynamic analysis have been performed to compare different
models. First of all, some temporal series have been obtain in order to analyze
bridge behaviour. Three cases have been considered:

- The passage of an isolated moving load at a speed of 50 km/h.
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5.2 Modal analysis

- The passage of the train A1 defined in appended C.1 of the IAPF-07, at a
speed of 50 km/h.

- The passage of the train A1 at a speed of 300 km/h.

Lastly, for models with 2D elements deck the complete dynamic analysis of
the Universal Dynamic Train defined in the IAPF-07 has been performed. This
analysis include the passage of the ten trains so-called A1 to A10 at a speed from
20 km/h to 420 km/h, with a speed step of 1 km/h.

To sum up all the performances carried out are shown in table 5.1.

Table 5.1: Dynamic performances of different FE models.

Model1 Model2 Model3 Model4 Model5

Modal analysis * * * * *

Isolated moving load * *

Train A1 at 50 km/h * *

Train A1 at 300 km/h * * *

Universal Dynamic Train * *

5.2 Modal analysis

There have been developed five modal analysis, one for each different model.
The main results of the first five vertical bending arch modes are shown below.
As it can be seen in table 5.2 and figure 5.1, frequencies of the vertical bending
modes and mode shapes of different models mainly coincide. This is good news
because it means that five FE models show the same behaviour and probably they
represent the viaduct vibrations characteristics.
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5.2 Modal analysis

Table 5.2: Comparative of the first five frequencies for models 1-5.

Natural frequency (Hz)
Model 1 Mode 2 Model 3 Model 4 Model 5

Mode 1 0.3037 0.2861 0.3069 0.2889 0.3058
Mode 2 0.6153 0.6190 0.6167 0.6199 0.5975
Mode 3 0.9616 0.9456 0.9768 0.9553 0.9644
Mode 4 1.2725 1.2714 1.2836 1.2819 0.9846
Mode 5 2.0329 1.8701 2.0699 2.1076 1.9805

Modes < 30 Hz 193 297 335 681 339

(a) Model 1

(b) Model 2

(c) Model 3

(d) Model 4

(e) Model 5

Figure 5.1: First vertical bending arch modes.
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The total number of modes under < 30 Hz increase according to the complex-
ity of the model. Models with finite elements 2D present a greater number of
modes. Anyway, in all modal analysis first modes are longitudinal bending modes
of the arch as it can be seen in figure 5.2. In models with access spans, also the
arch response governs the problem. After this arch modes, the longitudinal bend-
ing modes of the deck appear, as well as the torsional and lateral bending coupled
modes. In models with elements 2D, the last modes are bending modes of the
edge flanges.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5

Figure 5.2: Mode shapes of the first five vertical bending modes of model 1.

5.3 1D model Vs 2D model

This section presents the temporal series obtain in the analysis of two of the
five models: model 1 and model 3. In both models only the arch is represented.
Model 1 deck is represented with beam elements whereas model 3 deck is formed
with shell elements. Therefore, the aim of this section is compare 1D and 2D
models.
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There have been developed three different analysis:

- The passage of a simple moving load at a speed of 50 km/h.

- The passage of the train A1 at a speed of 50 km/h.

- The passage of the train A1 at a speed of 300 km/h.

In three cases the load is applied over the longitudinal axis of the bridge, that
means at the central point of the deck cross-section. This is because in model 1
the deck is represented as a beam, so it is difficult to apply a eccentric load in this
situation.

It is also necessary to mention that in this three analysis, only the contribution
of the first vibration mode is considered. The reason for doing this is to validate
the models carefully and to assure that the first mode, which as an important effect
on the response, is correct.

Next three figures show the temporal solution in terms of acceleration and
displacement.

Two first load cases considered are quasi-static and the figures 5.3 and 5.4
represent time response at central point of the bridge. This point is the most rigid
one due to the deck-arch connection. For all this, the displacement solution shown
in figures 5.3b and 5.4b is almost not oscillating.

On the other hand, the third load case represent a dynamic problem due to
the high speed imposed. In this case, the response represented in figure 5.5 is
calculated at central point of the span placed next the keystone of the arch. As it
can be seen in figure 5.5b, now the displacement response is oscillating and it has
a great value.

In the light of the results it can be said that both responses of 1D and 2D
models are very similar.
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Figure 5.3: Results at center point of the arch due to the passage of an isolated
moving load.
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Figure 5.4: Results at center point of the arch due to train A1 passing at 50 km/h.
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(b) Temporal series of displacement.

Figure 5.5: Results at the span before the central one due to train A1 passing at
300 km/h .
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5.4 Arch model Vs Complete model

This section presents the temporal series and the maximum vibration response
obtain in the analysis of two of the five models: model 3 and model 4. In this case
both models have a deck formed with 2D elements. Then the difference between
them lies in the geometry: model 3 is a model of the isolated arch and model 4
represents the complete viaduct. Therefore, the aim of this section is compare a
simplify model of the bridge with the complete one.

There have been developed two different analysis:

- The passage of the train A1 at a speed of 300 km/h.

- The passage of the Universal Dynamic Train (ten trains so-called A1 to
A10) at a speed from 20 km/h to 420 km/h, with a speed step of 1 km/h.

In this two cases the load is applied over the right rail, in order to represent
real train loads. Also it is remarkable to say that in these analysis the contribution
of all vibration modes with a frequency lower than 30 Hz are considered.

The temporal solution represented in figures 5.6, 5.7, 5.8 and 5.9 for models
3 and 4 are not overlapped because of the time variable do not coincide in both
analysis. This is because in model 4 the load travels through the bridge’s access
spans but this is not the case in model 3. Anyway, at the light of this plots it can
be said that responses of simplified and complete models are almost equal both in
terms of values and shape.

Figures 5.6 and 5.7 represent the temporal solution at the keystone of the arch.
Comparing these graphs with figures 5.8 and 5.9 it can be observe the effect of the
fixed point at the center or the bridge.
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Figure 5.6: Acceleration at center point of the arch due to the passage of train A1 at
300 km/h.
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Figure 5.7: Displacement at center point of the arch due to the passage of train A1
at 300 km/h.
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Figure 5.8: Acceleration at span after the central one due to the passage of train A1
at 300 km/h.
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Figure 5.9: Displacement at span after the central one due to the passage of train A1
at 300 km/h.
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On the other hand, the complete dynamic analysis have been developed. In
this analysis, the enveloped curves of displacement and acceleration are obtain at
each post-processing point. These enveloped curves represent the maximum ac-
celeration (or displacement) due to the passage of a specific train as a function of
the train speed. Analyzing all this data, the maximum maximorum values of ac-
celeration and displacement are obtain. This results are resumed in tables 5.3 and
5.4 and the corresponding enveloped curves are shown in figures 5.10, 5.12,5.11
and 5.13.

Analyzing acceleration data of model 4 (the complete model) the maximum
value of acceleration obtain is 1.5624 m/s2 at first post-processing point due to
the passage of the train A3. This solution should be taken with caution because
it can be the result of the impact of the train load when entering the bridge. So,
the next maximum acceleration is obtain for train A2 at span number 12, the one
situated next to the keystone. The location of this point of maximum acceleration,
and also the train, coincide in the analysis of both models 3 and 4. The value
of the maximum acceleration is near in both cases: 1.2986 m/s2 and 1.1426 m/s2

respectively.

Table 5.3: Maximum vertical acceleration information.

Model 3 Model 4

Value 1.2986 m/s2 1.1426 m/s2

Train A2 A2
Post-procesing Point span 12 span 12
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Figure 5.10: Acceleration envelope curves at post-processing point on span 12 for
model 3.
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Figure 5.11: Acceleration envelope curves at post-processing point on span 12 for
model 4.
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In the case of the maximum displacement, the value is even closer: 9.69 cm
for model 3 and 9.55 cm for model 4. This value is a bit high in relation to the
restrictions of the IAPF-07. However, the value of elastic modulus of concrete
considered in the FE models is prudent for a HP-80 MPa. Probably even for a more
restrictive value of the concrete properties the value of the maximum displacement
would be lower. Anyway the value obtain in both analysis is almost the same, for
the same train and in the same location.

Table 5.4: Maximum vertical displacement information.

Model 3 Model 4

Value 9.69 cm 9.55 cm
Train A2 A2

Post-procesing Point span 13 span 13
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Figure 5.12: Displacement envelope curves at post-processing point on span 12 for
model 3.
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Figure 5.13: Displacement envelope curves at post-processing point on span 12 for
model 4.

Finally table 5.5 shows the details of the computation. Mainly due to the
difference in the number of modes, but also in the number of nodes of the line
load, the performance time for the simplified model is more than five times shorter
than for the complete model.

Table 5.5: Performance information.

Model 3 Model 4

Line load nodes 87 219
Post-procesing points 108 122

Modes < 30 Hz 335 681
Performance time (CPU real time) 11h 8’ 9.88” 57 h 31’ 3.68”
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5.5 Model with SSI Vs Model without SSI

This section also presents the temporal series obtain in the analysis of two
of the five models: model 3 and model 5. In this case both models have a deck
formed with 2D elements and both are simplified models. Then the difference
between them lies in the foundation: model 3 is a model of the isolated arch in
which the foundation is represented by an embedding and model 5 represents the
soil-structure interaction. Therefore, the aim of this section is compare a model
considering SSI with the same model without SSI.

There have been developed the analysis of the the passage of the train A1 at
a speed of 300 km/h. In this case the load is applied over the right rail, in order
to represent real train loads. Also it is remarkable to say that in these analysis
the contribution of all vibration modes with a frequency lower than 30 Hz are
considered.

Figure 5.14 shows the temporal solution in terms of acceleration and displace-
ment for models 3 and 5. Actually the difference between both solutions are
negligible. The temporal series of acceleration for model with soil-structure in-
teraction is a little more dampened in the free vibration zone. In the case of the
temporal series of displacement, even the curve for model 5 present moderately
higher peak values.

Model 5 consider additional damping ratios because of the soil-structure in-
teraction. This variable ratios are added to the 2% damping ratio assigned to the
material. Therefore, the expected solution should be smaller in amplitude and
damped earlier in time than the solution of the model without SSI. However, if the
stiffness assigned to the foundation is to much restrictive and it does not moves
during the passage of the load, the additional damping is minimal and it has al-
most no effect. Maybe this is the reason why the response of models 3 and 5 are
so much similar.

To conclude, in this case more detailed characterization of the parameters that
model the foundation is needed, and also a sensitivity study of these parameters.
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(a) Temporal series of acceleration.
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(b) Temporal series of displacement.

Figure 5.14: Results at center point of the arch due to train A1 passing at 300 km/h.
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CHAPTER

6
Conclusions and future works

6.1 Concluding remarks

This document presents a detailed analysis of the dynamic problem of railway
arch bridges through a case study. The semi-analytic method have been used as a
tool and several FE models have been developed with the aim of get the suitable
one for this kind of problems. The following points summarize the conclusions
and contributions reached throughout the development of this work:

About the semi-analytic method

- The semi-analytic method has proven advantages in terms of precision and
performance time compared to incremental step-by-step integration meth-
ods to solve moving load problems.

- This methodology allows to face, in a realistic way, the load steps of 1 km/h
recommended by the Eurocode, which is a necessary step to determine with
precision the dynamic response of HSR bridges. This method allows to per-
form a complete dynamic analysis of the ten trains defined in the instruction
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6.1 Concluding remarks

for all speeds in a few days, for a large FE model. Time required by a step-
by-step approach to solve these problems could be prohibitive.

About HSR arch bridges

- Behaviour of the viaduct is totally conditioned by the response of the arch.

- Arch modes are uncoupled from the rest of the viaduct modes. Furthermore,
this arch modes appear first, so they are low frequency modes.

- High frequency modes are flapping modes of the edge flanges that are un-
realistic because of the presence of the fencing at this location.

About different FE models

- Models with elements 1D are accurate and a good starting point. Although
it is difficult to represent the real location of the moving load (eccentric
load) in a beam deck, this kind of models are lighter and make it possible to
obtain solutions quite close to those obtained with more complex models.
Due to this, they are useful models in the early stages of design, to fit the
main characteristics of the structure.

- Isolated arch models are a good election to represent the behaviour of via-
ducts such as the Almonte bridge. They are lighter than complete models
and the vibration response obtain with them is quite accurate in relation to
the complete model one. The relative error between both displacement solu-
tion is less than 1.5%. In addition, in this case, the performance time (CPU
real time) for the complete dynamic analysis of the arch model is 5 times
smaller than the time spent in the complete model analysis. For all these
reasons, it can be concluded from this analysis that the isolated arch models
are the most suitable ones for the study of this type of dynamic problems.

- The implementation of the soil-structure interaction in FE models is an in-
teresting issue. In this work initial steps have been taken to address the prob-
lem. Stiffness matrix and damping ratios have been obtain, but a sensitivity
analysis of its values must be carry out in order to obtain more informed
conclusions of the SSI effects in HSR bridges.
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6.2 Future works

The work presented in this document represents an advance on how to carry
out dynamic analysis of HSR bridges. Nevertheless, much remains to be done in
this area. Next, some future works are presented:

- It would be important to develop more dynamic analysis of arch bridges
because there is not so many of them in the literature. This kind of bridges
are a suitable solution for HSR bridges, so knowing its dynamic response is
important. Perhaps a better understanding of them would help to improve
their design.

- Once proven that the semi-analytic method is a very appropriated tool for
the complete dynamic analysis of bridges, its use should be more wide-
spread. That’s include the analysis of other kind of bridges such as cable-
stayed bridges or suspension bridges. In these examples the semi-analytic
method could once again prove its advantages.

- A future work that is suggested directly from this work would be to carry out
the performance of the complete dynamic analysis of the model that include
soil-structure interaction. This would serve to conclude how long the effect
of SSI affects on the maximum vibration experienced by the bridge over the
Almonte river.

- Another line of future research could be the mathematical modeling of the
soil-structure interaction itself. Although there are many scientific papers
dedicated to impedances issue, maybe it would be interesting to complete
the study developing a model updating of a foundation. In other words, to
validate mathematical models that define the impedance values by testing a
real foundation.
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