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Abstract: Among vegetable oils, virgin olive oil (VOO) has nutritional and sensory 
characteristics that to make it unique and a basic component of the Mediterranean diet. The 
importance of VOO is mainly attributed both to its high content of oleic acid a balanced 
contribution quantity of polyunsaturated fatty acids and its richness in phenolic 
compounds, which act as natural antioxidants and may contribute to the prevention of 
several human diseases. The polar phenolic compounds of VOO belong to different 
classes: phenolic acids, phenyl ethyl alcohols, hydroxy-isochromans, flavonoids, lignans 
and secoiridoids. This latter family of compounds is characteristic of Oleaceae plants and 
secoiridoids are the main compounds of the phenolic fraction. Many agronomical and 
technological factors can affect the presence of phenols in VOO. Its shelf life is higher than 
other vegetable oils, mainly due to the presence of phenolic molecules having a catechol 
group, such as hydroxytyrosol and its secoiridoid derivatives. Several assays have been 
used to establish the antioxidant activity of these isolated phenolic compounds. Typical 
sensory gustative properties of VOO, such as bitterness and pungency, have been attributed 
to secoiridoid molecules. Considering the importance of the phenolic fraction of VOO, 
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high performance analytical methods have been developed to characterize its complex 
phenolic pattern. The aim of this review is to realize a survey on phenolic compounds of 
virgin olive oils bearing in mind their chemical-analytical, healthy and sensory aspects. In 
particular, starting from the basic studies, the results of researches developed in the last ten 
years will be focused. 
 
Keywords: Phenols; Virgin olive oil; Sensory properties; Antioxidant activity; Analytical 
techniques. 

 
 
Phenolic molecules in virgin olive oil 

 
Oleuropein belongs to a specific group of coumarin-like compounds, the secoiridoids, which are 

abundant in Oleaceae. Secoiridoids are compounds that are usually glycosidically bound and produced 
from the secondary metabolism of terpenes. The secoiridoids, found only in plants belonging to the 
family of Olearaceae that includes Olea europaea L., are characterised by the presence of elenolic 
acid in its glucosidic or aglyconic form, in their molecular structure. In particular, they are formed 
from a phenyl ethyl alcohol (hydroxytyrosol and tyrosol), elenolic acid and, eventually, a glucosidic 
residue. Oleuropein is an ester of hydroxytyrosol (3,4-DHPEA) and the elenolic acid (EA) glucoside 
(oleosidic skeleton common to the secoiridoid glucosides of Oleaceae) [1-5]. Secoiridoids of VOO in 
aglyconic forms arise from glycosides in olive fruits by hydrolysis of endogenous β-glucosidases 
during crushing and malaxation. These newly formed substances, having amphiphilic characteristics, 
are partitioned between the oily layer and the vegetation water, and are more concentrated in the latter 
fraction because of their polar functional groups. During storage of VOO hydrolytic mechanisms that 
lead to release of simple phenols, such as hydroxytyrosol and tyrosol, from complex phenols as 
secoiridoids may be involved [6-8]. The most abundant secoiridoids of VOO, identified for the first 
time by Montedoro et al. [1-3, 9] and confirmed also by other authors [10-13], are the dialdehydic 
form of elenolic acid linked to hydroxytyrosol or tyrosol (p-HPEA) respectively termed 3,4-DHPEA-
EDA and p-HPEA-EDA, and an isomer of the oleuropein aglycon (3,4-DHPEA-EA) (Table 1). In 
1999 another hydroxytyrosol derivative, hydroxytyrosol acetate (3,4-DHPEA-AC) was found in virgin 
olive oil [14]. 

Phenolic acids are secondary aromatic plant metabolites that are widely spread throughout the 
plant kingdom [15-17]. These naturally occurring phenolic acids contains two distinguishing 
constitutive carbon frameworks, namely the hydroxycinnamic and hydroxybenzoic structures. 
Elucidation of their roles in plant life is only one of the many ongoing investigations regarding 
phenolic acids: one vast area of interest lies in food quality [18-20]. Phenolic acids have been 
associated with color and sensory qualities, as well as with the health-related and antioxidant 
properties of foods [21-22]. One impetus for analytical investigations has been the role of phenolics in 
the organoleptic properties (flavor, astringency, and hardness) of foods [23-24]. Additionally, the 
content and profile of phenolic acids, their effect on fruit maturation, prevention of enzymatic 
browning, and their roles as food preservatives has been evaluated [25]. Recent interest in phenolic 
acids stems from their potential protective role, through ingestion of fruit and vegetables, against 
diseases that may be related to oxidative damage (coronary heart disease, stroke, and cancers) [26-28]. 



Molecules 2007, 12                       1681 
 
In particular, several phenolic acids such as gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, 
syringic, p- and o-coumaric, ferulic and cinnamic acid have been identified and quantified in VOO (in 
quantities lower than 1 mg of analyte kg-1 of olive oil). In this regard two research groups have 
extensively analyzed samples of VOO for these types of compounds [29-32]. In one of these 
mentioned articles, for instance, the authors found that trans-cinnamic acid, sinapinic acid, caffeic acid 
and 3,4-dihydroxyphenylacetic acid were present in several monovarietal VOO of the six Spanish 
olive cultivars analyzed [31]; therefore, these compounds might be potential markers of geographical 
origin or the olive fruit variety. 

(+)-Pinoresinol is a common component of the lignan fraction of several plants such as Forsythia 
species [33] and Sesamum indicum seeds, whereas (+)-1-acetoxypinoresinol and (+)-1-hydroxy-
pinoresinol and their respective glucosides have been detected in the bark of the olive tree (Olea 
europaea L.). According to Owen et al. [34], the quantity of lignans in VOO may be up to 100 mg kg-1, 
but as with the simple phenols and SIDs, considerable inter-oil variation exists. As suggested by 
Brenes et al. [35], the amount of lignans may be used as varietal marker, and they reported a method to 
authenticate VOO produced by Picual olives based on the very low content of the lignan (+)-1-
acetoxypinoresinol in these oils. 

A few years ago, Bianco et al. [36] investigated the presence of hydroxy-isochromans in VOO. In 
fact, during the malaxation step of VOO extraction, hydrolytic processes through the activity of 
glycosidases and esterases augment the quantity of hydroxytyrosol and carbonylic compounds, thus 
favouring the presence of all compounds necessary for the formation of isochroman derivatives. Two 
hydroxy-isochromans, formed by the reaction between hydroxytyrosol and benzaldehyde or vanillin, 
have been identified by HPLC-MS/MS technique and quantified in commercial VOOs. 

Flavonoids are widespread secondary plant metabolites. During the past decade, an increasing 
number of publications on the health beneficial effects of flavonoids have appeared, such those related 
to cancer and coronary heart diseases [37-40]. Flavonoids are largely planar molecules and their 
structural variation comes in part from the pattern of modification by hydroxylation, methoxylation, 
prenylation, or glycosylation. Flavonoid aglycones are subdivided into flavones, flavonols, flavanones, 
and flavanols depending upon the presence of a carbonyl carbon at C-4, an OH group at C-3, a 
saturated single bond between C-2 and C-3, and a combination of no carbonyl at C-4 with an OH 
group at C-3, respectively. Several authors have reported that flavonoids such as luteolin and apigenin 
are also phenolic components of VOO [41-46]. Luteolin may originate from rutin or luteolin-7-
glucoside, and apigenin from apigenin glucosides. There are also several interesting studies in which 
several flavonoids have been found in olive leaves and fruits [47-50]. 
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Table 1. Phenolic compounds in virgin olive oil: compounds name, general chemical structure and 
molecular weight. 

 

Compound Substituent (MW) Structure 
Benzoic and derivatives acids 

COOH
1

23

4

5 6

 

3-Hydroxybenzoic acid 3-OH (138) 

p- Hydroxybenzoic acid 4-OH (138) 

3,4-Dihydroxybenzoic acid 3,4-OH (154) 

Gentisic acid 2,5-OH (154) 

Vanillic acid 3-OCH3, 4-OH (168) 

Gallic acid 3,4,5-OH (170) 

Syringic acid 3,5-OCH3, 4-OH (198)

Cinnamic acids and derivatives 

COOH

1

23

4

5 6

 

o-Coumaric acid 2-OH (164) 

p-Coumaric acid 4-OH (164) 

Caffeic Acid 3,4-OH (180) 

Ferulic Acid 3-OCH3, 4-OH (194) 

Sinapinic Acid 3,5-OCH3, 4-OH (224)

Phenyl ethyl alcohols 

OH

1

23

4

5 6

 

Tyrosol [(p-hydroxyphenyl)ethanol] or p-HPEA 4-OH (138) 

Hydroxytyrosol [(3,4-dihydroxyphenyl)ethanol] 

or 3,4-DHPEA 

 

3,4-OH (154) 

Other phenolic acids and derivatives 

COOH
1

23

4

5 6

 

p-Hydroxyphenylacetic acid 4-OH (152) 

3,4-Dihydroxyphenylacetic acid 3,4-OH (168) 

4-Hydroxy-3-methoxyphenylacetic acid 3-OCH3, 4-OH (182) 

3-(3,4-Dihydroxyphenyl)propanoic acid (182) 
OH

OH COOH

 

Dialdehydic forms of secoiridoids 
O

CHO

CHO

O dialdehydic form of 
Elenolic Acid (EDA) 

R*

 

Decarboxymethyloleuropein aglycon  

(3,4-DHPEA-EDA) 
R1-OH (304) 

Decarboxymethyl ligstroside aglycon  

(p-HPEA-EDA) 
R1-H (320) 
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Table 1. Cont. 

Compound  Substituent (MW) 

Secoiridoid Aglycons  

Oleuropein aglycon or 3,4-DHPEA-EA R1-OH (378) 

Ligstroside aglycon or p-HPEA-EA R1-H (362) 

Aldehydic form of oleuropein aglycon  R1-OH (378) 

Aldehydic form ligstroside aglycon  R1-H (362) 

Structure 

Elenolic Acid (EA)

OR1

OH

O

O

C

OCH3
O

OH

p-HPEA or 3,4-DHPEA

Elenolic Acid (EA)

R*
O

O CH3
aldehydic form of 

 

Compound  Substituent (MW) Structure 

Flavonols 

O

OOH

HO

OH

OH

OH

 

(+)-Taxifolin (304) 

Flavones 

O

OR1

HO

R2

OH

H

 

Apigenin R1-OH, R2-H (270) 

Luteolin R1-OH, R2-OH (286) 

Lignans 

O

O

RH

OCH3

H3CO

HO

OH

 

(+)-Pinoresinol R-H (358) 

(+)-1-Acetoxypinoresinol R-OCOCH3 (416) 

(+)-1-Hydroxypinoresinol R-OH (374) 

Hydroxyisochromans O

HO

OH

R1

R2

 

1-Phenyl-6,7-dihydroxyisochroman R1,R2-H (242) 

1-(3’-Methoxy-4’-hydroxy)phenyl-

6,7-dihydroxyisochroman 
R1-OH,R2-OCH3 (288) 
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Why are the phenolic compounds present in virgin olive oil so important? Why is their 
determination so interesting and difficult? 

 
Last year, Boskou published an interesting review [51] wherein the sources of natural phenolic 

antioxidants were discussed, and the following idea was highlighted: “Widely distributed in the plant 
kingdom and abundant in our diet, plant phenols are today among the most talked about classes of 
phytochemicals”. To answer to the question of “why are phenolic compounds so interesting?”, the 
author of the review summarized several issues which have been studied in depth during the last 
decade: 

– The levels and chemical structure of antioxidant phenols in different plant foods, aromatic plants 
and various plant materials. 

– The probable role of plant phenols in the prevention of various diseases associated with oxidative 
stress such as cardiovascular and neurodegenerative diseases and cancer. 

– The ability of plant phenols to modulate the activity of enzymes, a biological action not yet 
understood. 

– The ability of certain classes of plant phenols such as flavonoids (also called polyphenols) to bind 
to proteins. Flavonol–protein binding, such as binding to cellular receptors and transporters, involves 
mechanisms which are not related to their direct activity as antioxidants. 

– The stabilization of edible oils, protection from formation of off-flavors and stabilization of 
flavours. 

– The preparation of food supplements. 
Focusing on phenolic compounds of virgin olive oil and bearing in mind the reasons for being so 

important, attention must be paid to the fact that this class of compounds has not been completely 
characterized due to the complexity of their chemical nature and the complexity of the matrix in which 
they are found. Moreover, one of the current problems for developing rapid and reproducible analysis 
of phenolic compounds is the absence of suitable pure standards, in particular secoiridoid molecules 
and lignans. 

 
Health aspects linked to phenols in VOO 

 
VOO is an integral ingredient of the Mediterranean diet and accumulating evidence suggests that it 

may have health benefits which include reduction of risk factors of coronary heart disease, prevention 
of several types of cancers, and modification of immune and inflammatory responses. VOO can be 
considered as example of a functional food, with a variety of components that may contribute to its 
overall therapeutic characteristics [52]. Its nutritional and healthy values and pleasant flavour have 
contributed to an increase in consumption of VOO which has fostered cultivation of olives outside the 
traditional olive oil producing region of the Mediterranean basin into newer areas such as Australia, 
Argentina and South Africa. The nutritional value of VOO arises from high levels of oleic acid, and 
from minor components such as phytosterols, carotenoids, tocopherols and hydrophilic phenols [53].  

VOO contains at least 30 phenolic compounds. The major phenolic compounds are oleuropein 
derivatives, based on hydroxytyrosol which are strong antioxidants and radical scavengers. Recently 
there has been a surge in the number of publications that has investigated their biological properties. 
Bisignano et al. [54] found that hydroxytyrosol and oleuropein have antimicrobial activity against 
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several bacterial strains that are causal agents of intestinal or respiratory tract infections in humans. In 
a more recent in-vivo study, Glatzle and co-workers [55] demonstrated that enteral immunonutrition 
with VOO more effectively reduced septic pulmonary dysfunction compared to a fish oil-enriched 
lipid formula at the same concentration.  

It has recently been found that hydroxytyrosol is renally excrete: while some of hydroxytyrosol is 
unchanged, some is also metabolized to the following metabolites: glucuronide conjugate, sulphate 
conjugate, homovanillic acid, homovanillic alcohol, 3,4-dihydroxyphenylacetic acid and 3,4-
dihydroxyphenylacetaldehyde [56-57]. The radical scavenging potencies of these metabolites of 
hydroxytyrosol have also been investigated using the radical assay DPPH. The glucuronide conjugate 
was more potent than hydroxytyrosol while the sulphate conjugate was nearly devoid of radical 
scavenging activity. When phenol-rich VOO characterized by increasing concentrations of catecholic 
compounds were administered to human volunteers, Visioli and co-authors [58] observed a dose-
dependent urinary excretion of hydroxytyrosol and its metabolite homovanillic alcohol. In a later study, 
the same authors [59] noticed that the urinary levels of unconjugated tyrosol and hydroxytyrosol 
correlated with their intake, except at the highest dose, which increased the quantity of glucuronide 
conjugate. Tuck et al. investigated the in vivo fate of hydroxytyrosol and tyrosol after intravenous and 
oral dosing of these tritium labelled compound to rats [60]. No significant differences in the amount of 
phenolic compounds eliminated in urine between the intravenous dosing method and the oral oil-based 
dosing method for either tyrosol or hydroxytyrosol were found. 

Phytochemical compounds such as oleuropein and oleuropein aglycon have been intensively 
studied for some promising results with respect to their effects on human health and their potential 
medicinal properties. It has been found that diets containing olive oil phenols may increase in vivo 
resistance of LDLs to oxidation; the effectiveness of oleuropein has been explained in part through its 
ability to act as an antioxidant and in part through a hypocholesterolaemic effect [61]. In an 
investigation by Coni et al. [62] it was found that when fed a diet rich in oleuropein to rabbits, the 
ability of LDL to resist to oxidation increased, thanks to its antioxidant capacity; moreover, they found 
a significant reduction of the plasmatic levels of total, free and ester-derivatives of cholesterol. 
Oleuropein aglycon, the bitter component of olives and olive oil, is among the first example of how 
selected nutrients from an VOO-rich “Mediterranean diet” can directly regulate HER2-driven breast 
cancer disease [63]. As oleuropein aglycon exhibits synergistic anti-tumor effects when concurrently 
given to breast cancer cells chronically exposed to trastuzumab (Tzb; Herceptin™) for several months, 
this further underscores the potential clinical relevance of these findings.  

On the basis of their shared throat irritant properties (pungency), Beauchamp et al. [64-65] 
examined whether p-HPEA-EDA, now referred to as “oleocanthal”, might mimic the pharmacological 
effects of ibuprofen, a potent modulator of inflammation and analgesia. It was found that, like 
ibuprofen, both enantiomers of p-HPEA-EDA caused dose-dependent inhibition of COX-1 and COX-2 
activities (cyclo-oxygenase enzymes that catalyze key steps in the biochemical inflammation pathways 
derived from arachidonic acid) but had no effect on lipoxygenase in vitro. These authors hypothesized 
that long-term consumption of oleocanthal may help to protect against some diseases by virtue of its 
ibuprofen-like COX-inhibiting activity (by reducing the risk of developing some cancers and by 
lowering platelet aggregation in the blood). However, as noted by Fogliano and Sacchi [66], no data is 
available about the concentration of the various aglycons, including oleocanthal in plasma and urine 
after VOO consumption; absorption and bioavailability studies indicate however that tyrosol and 



Molecules 2007, 12                       1686 
 
hydroxytyrosol are likely to be bio-available. It is worth mentioning that acid hydrolysis of oleocanthal 
would produce the elenolic acid, a dialdehyde compound even more similar to ibuprofen than 
oleocanthal itself.  

In the context of the Mediterranean diet and coronary heart diseases, it has also been shown that 
VOO rich in phenols increases the resistance of LDL to oxidation, both in vitro and ex vivo [67-69]. 
The study carried out by Bogani et al. [70] confirmed the anti-thrombotic and anti-inflammatory 
effects of VOO phenolic components, in a postprandial setting; in fact, the results showed significant 
reductions in serum concentration of inflammatory markers (TXB2 and LTB4) at 2 and 6 h after 
consumption of VOO, but not after consumption of either olive oil or corn oil. They also evaluated the 
effects of these different oils on in vivo indexes of oxidative stress (plasma antioxidant capacity and 
urinary hydrogen peroxide levels) and showed the antioxidant activity of VOO phenolics after 
ingestion (increased plasma antioxidant capacity after 2 h of VOO consumption).  

Foods containing high amounts of lignans such as flaxseed have been found to be protective against 
breast cancer, and in particular, to exert an anti-estrogenic effect; this latter observation might be 
explained by considering the structural similarities between the lignans and the synthetic antiestrogen 
tamoxifen [71]. 

Two hydroxy-isochromans, 1-(3'-methoxy-4'-hydroxyphenyl)-6,7-dihydroxyisochroman and 1-
phenyl-6,7-dihydroxyisochroman, are formed by reaction between hydroxytyrosol and vanillin and 
benzaldehyde, respectively, (under very mild conditions). They have only recently been discovered in 
VOO [36] and are active in inhibited platelet aggregation and thromboxane release evoked by agonists 
(sodium arachidonate and collagen) that induce reactive oxygen species-mediated platelet activation 
[72]. 

A large number of studies, mainly experimental models, have been performed on certain minor 
components of olive oil. However, as commented in an excellent review by Covas et al. [73], the 
precepts of evidence-based medicine require high-level scientific evidence to be provided before 
nutritional recommendations for the general public can be formulated. Scientific evidence required is 
provided by randomized, controlled, double-blind clinical trials (level I evidence), and to some extent 
by large cohort studies (level II evidence). Basic research, despite its usefulness in permitting adoption 
on a mechanistic approach, does not provide evidence for nutritional recommendations. Of course, the 
level of evidence of a particular study depends not only on its design, but also on its quality (external 
and internal validity, homogeneity of the sample, and statistical power). Finally, evidence is built by 
the agreement of the results of several similar studies. In the same review, the authors highlighted that 
in experimental studies, olive oil phenols have been shown to: 

1) have antioxidant effects, greater than those of vitamin E, on lipid and DNA oxidation [74-77]; 
2) prevent endothelial dysfunction by decreasing the expression of cell adhesion molecules [78], 

increasing nitric oxide (NO) production and inducible NO synthesis [79] and quenching vascular 
endothelium intracellular free radicals [80]; 

3) inhibit platelet-induced aggregation [81];  
4) enhance the mRNA transcription of the antioxidant enzyme glutathione peroxidase (GSH-Px). It 

should be mentioned however that to regard this last point controversial results have been obtained 
depending on the tissue in which the gene expression was evaluated [75, 82]. 

Other potential activities of VOO phenolic compounds include chemopreventive activity [77]. The 
anticarcinogenic activity of phenols may be due not only to their antioxidant properties, but also to 
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their ability to reduce the bioavailability of food carcinogens and to inhibit their metabolic activation 
[83-84]. There are several mechanistic considerations of the role of phenolic compounds as 
anticarcinogens, as reviewed by Yang et al. [85]. 
 
Phenols as related to oxidative stability of VOO 

 
Oxidation is an inevitable process that starts after the VOO has been extracted and leads to 

deterioration that becomes more pronounced during oil storage. Initially lipids are radically oxidised to 
hydroperoxides, which are odourless and tasteless [86] and do not account for sensory changes. 
However, decomposition occurs through homolytic cleavage of the hydroperoxide group with 
production of various volatile compounds, known as secondary oxidation products, which are 
responsible for typical unpleasant sensory characteristics. Oxygen, light, temperature, metals, pigments, 
unsaturated fatty acid composition, as well as the quantity and kind of natural antioxidants, are all 
factors that can influence the free radical mechanism of the autoxidation process in a different manner 
[87-88]. 

Natural antioxidants exhibit complex properties between air-oil and oil-water interfaces that 
significantly affect their relative activities in different lipidic systems. The presence of hydrophilic 
phenolic compounds in VOO and their high antioxidant activity can be explained by the so-called 
“polar paradox” [89] which dictates that “polar antioxidants are more effective in non polar lipids, 
whereas non-polar antioxidants are more active in polar lipid emulsions”. According to Frankel [90] in 
a bulk oil system the hydrophilic antioxidants, such as polar phenols, are oriented in the air-oil 
interface (a low quantity of air is always trapped in the oil) and become more protective against 
oxidation than the lipophilic antioxidants, like tocopherols, which remain in solution in the oil.  

In a study carried out by Paiva-Martins and co-workers [91] it was found that when food is 
processed with VOO in the presence of water, olive phenolic extracts with higher quantities of 3,4-
DHPEA-EA and 3,4-DHPEA-EDA would be better than VOO extracts with higher quantities of 
hydroxytyrosol, despite the higher antioxidant activity of hydroxytyrosol in bulk oil.  

Moreover, the orientation of phenolic compounds in the oil-water interface and the active surface of 
water droplets influence the protection against the oxidation of oil. Recently, some researchers [92-95] 
have determined that VOO contains a low quantity of water (ranging from 450 mg kg-1 to 3,000 mg 
kg-1 depending on the extraction technology), that increases when samples were not filtered. Part of the 
total water content presents in VOO is free and available for chemical and enzymatic reactions and 
also keeps hydrophilic phenols in solution. This can explain the hydrolytic process that occurs both to 
phenols (by esterases) and triacylglycerols (by lipase) during prolonged VOO storage. Thus, more 
rapid oxidation of the unfiltered oil could be expected. Instead, according to Gomez-Caravaca et al. 
[95] and Tsimidou et al. [96], stability of unfiltered samples, when measured in terms of resistance to 
accelerated oxidation (value by OSI or Rancimat instruments) was in all cases significantly higher than 
that of the corresponding filtered oils. This coincided with a higher total phenolic content in unfiltered 
VOO. Undoubtedly, a loss of a significant fraction of phenols during filtration is related to the 
reduction of oxidative stability.  

Chain-breaking antioxidants, such as phenolic compounds, react with lipid radicals to form non-
reactive radicals, interrupting the propagation chain. In fact, these compounds are able to donate an 
electron or a hydrogen atom to the lipid radical formed during the propagation phase of lipid oxidation 
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and stabilize the resulting phenoxyl radical by delocalizing the unpaired electron [97-100]. Phenolic 
compounds exert their antioxidant abilities in VOO by scavenging peroxyl and alkoxyl radicals, and 
by chelation of transition metals ions present in trace quantities [101]. Paiva-Martins and Gordon [102-
103] have studied the antioxidant effects of pure phenolic compounds (hydroxytyrosol, hydroxytyrosol 
acetate, oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA) by both the diphenylpicrylhydrazyl 
(DPPH) assay and the ferric reducing antioxidant potential (FRAP) assay in bulk oil and in emulsions 
(both with and without ferric ions). The compounds showing the best antioxidant activity in oil in 
water emulsions in the presence of iron were 3,4-DHPEA-EA and 3,4-DHPEA-EDA, which in 
contrast to hydroxytyrosol and oleuropein did not show pro-oxidant activity. However, when the 
radical scavenging activity was measured for these compounds, 3,4-DHPEA-EA showed a much 
higher activity than 3,4-DHPEA-EDA, suggesting that chelation of iron was of major significance in 
determining the antioxidant activity of these compounds in the presence of iron and water. According 
to this latter behaviour, Bendini et al. [104] showed evidence that 3,4-DHPEA-EDA has the ability to 
chelate copper in bulk oil.  

The stability of VOO is improved by synergistic interactions between various antioxidants present 
(both phenolic and non-phenolic) and the lipid composition. Such cooperative activity seems to 
explain the antioxidant synergism observed when α-tocopherol and ascorbic acid or ubiquinol are used 
in combination. Recent investigations have also demonstrated an antioxidant synergism between α-
tocopherol and some phenolics (green tea catechins and quercetin) [105-106]. Bendini et al. [104] 
hypothesized that phenols having an ortho-dihydroxyl structure, and in particular an isomer of 3,4-
DHPEA-EDA, were able to reduce the oxidized forms of tocopherols (tocopheryl radicals and 
quinones). This was substantiated by Pazos et al. [107] who demonstrated that phenols, as well as 
several benzoic acids and epicatechin gallates, were potentially active in the regeneration of α-
tocopherol via reduction of α-tocopheroxyl radical. Moreover this capacity was found to be directly 
proportional to the ability of phenolic compounds to transfer a single H atom. 

There have been numerous studies on the relative antioxidant potency of the individual olive oil 
phenols, although it may vary depending on the methods used for evaluation. Many authors have 
frequently studied the ability of antioxidant molecules or extracts to scavenge some free radicals, and 
in this regard, several stable, coloured free radicals (DPPH and ABTS) are widely used due to their 
intense absorbance in the visible region. In this case, the hydrogen-donating activity can be determined. 

However, as a general guide to their potency, oleuropein and hydroxytyrosol have been shown to be 
more effective than vitamin E [108] and butylated hydroxytoluene (BHT) or other synthetic 
antioxidants approved for use in foods [109-111]. 

From comparison with the principal phenolic constituents of VOO, it has been claimed that 
hydroxytyrosol is the most active antioxidant compound [112]. Both hydroxytyrosol and oleuropein 
have been shown to be scavengers of superoxide anions, and inhibitors of the hypochlorous acid-
derived radicals, but hydroxytyrosol was more effective than oleuropein in this regard [113]. Both 
compounds also scavenged hydroxyl radicals, but in this case oleuropein showed greater activity [114]. 
Gordon et al. [115] investigated the antioxidant activity of hydroxytyrosol acetate by scavenging of 
DPPH radicals in comparison with that of the phenolic extract from VOO and the pure components 
hydroxytyrosol, oleuropein, 3,4-DHPEA-EA, and α-tocopherol in bulk oil and oil-in-water emulsions. 
In this study the authors showed that hydroxytyrosol acetate had a weaker DPPH radical scavenging 
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activity than hydroxytyrosol and 3,4-DHPEA-EA was slightly less effective than hydroxytyrosol 
acetate in oil but was the most effective hydroxytyrosol derivative in an emulsion oil in water. 

It is well known that the high oxidative stability of VOO is primarily due to o-diphenols such as 
hydroxytyrosol and its oleosidic forms [108]. Aparicio et al. [116], using statistical analysis of data 
relative to 79 VOO of olives cv. Hojiblanca and Picual, measured correlations between oxidative 
stability (valued by Rancimat) and several compositional variables. The phenols (R2=0.87), o-
diphenols (R2=0.77), and the oleic/linoleic ratio (R2=0.71) had the highest values, followed by 
chlorophylls (R2=0.68), total tocopherols (R2=0.65) and carotenoids (R2=0.59). Principal components 
analysis confirmed that phenols, oleic/linoleic ratio, and tocopherols had the maximum correlation 
with oxidative stability. From these results, the phenolic content would contribute around 51% of the 
stability of VOO, and particularly 30% for phenols and 21% for o-diphenols whereas, the oleic/linoleic 
ratio would account for only 27%. Since a hypothetical synergy effect was detected between these 
chemical variables, it is more prudent to conclude that 78% of the stability is due to the combined 
effect of both variables. The authors surmised that the contribution of total tocopherols was around 9%, 
whereas the remaining percentage of 13% could be attributed to chlorophylls and carotenoids.  

In experiments carried out by Carrasco-Pancorbo and co-authors [117], the antioxidant activity of 
several single phenolic compounds of VOO (hydroxytyrosol, tyrosol, elenolic acid, 3,4-DHPEA-EDA, 
(+)-pinoresinol, (+)-1-acetoxypinoresinol, oleuropein aglycon and ligstroside aglycon) was evaluated 
by different chemical approaches: radical assay (DPPH), accelerated oxidation in a lipid model system 
(OSI, oxidative stability index), and an electrochemical method (flow injection analysis FIA-
amperometry and cyclic voltammetry). These authors verified that, as is generally assumed, the 
presence of a single hydroxyl group on benzenic ring conferred only limited antioxidant activity. On 
the other hand, the presence of a catechol moiety enhances the ability of the phenolic compounds to act 
as antioxidants. The results obtained in all three tests showed that hydroxytyrosol, 3,4-DHPEA-EDA 
and oleuropein aglycon were the strongest in terms of antioxidant power. Elenolic acid, which does not 
have a phenolic ring, was one of the compounds that presented the weakest antioxidant activity, as also 
reported by Briante et al. [118]; this compound together with (+)-pinoresinol, tyrosol, ligstroside 
aglycon and (+)-1-acetoxypinoresinol showed pro-oxidant effect when tested by OSI. Similar results 
were found by Nenadis et al. [119]: tyrosol, hydroxytyrosol and their secoiridoid derivatives were 
examined calculating the bond dissociation enthalpy (BDE) of phenolic hydroxyl groups and the 
ionization potential (IP) as descriptors to predict the H-atom-donating and electron-donating abilities 
of antioxidants, respectively. Catechol derivatives had the lowest BDE values (77.7-80.1 kcal mol-1), 
whereas the lignans, pinoresinol and 1-acetoxypinoresinol, and other monophenols had much higher 
BDE values (85.1-88.0 kcal mol-1), which suggested a lower potential for radical scavenging. 

In a recent work, Lorenz et al. [120] investigated the antioxidant and radical scavenging properties 
of several phenolic isochromans. All hydroxy-isochromans tested exceeded the scavenging effect of 
trolox (an hydrophilic analogue of α-tocopherol). They found excellent ROS/RNS (reactive species of 
oxygen/nitrogen) scavenging features of the hydroxy-isochromans and also concluded that their simple 
synthesis added to their  interest as candidates for pharmaceutical interventions that protect against the 
deleterious action of ROS/RNS. 



Molecules 2007, 12                       1690 
 

Figure 1 Correlations among OSI values (in hours), phenolic amounts and antioxidant 
activity (DPPH test) by spectrophotometric assays. a, OSI vs Total Phenols (mg gallic 
acid kg-1 VOO); b, OSI vs DPPH (mmol trolox kg-1 VOO); c, OSI vs o-diphenols (mg 
gallic acid kg-1 VOO). Analyses were carried out over three years; in each figure the 
number of samples is reported (N). Three replicates were prepared and analyzed for each 
sample. 
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Franconi et al. [121] tested the antioxidant activity of two VOO (Seggianese and Taggiasca 
characterized by different quali-quantitative phenolic profiles) on human LDL by measuring 
malondialdehyde and conjugate diene generation induced by copper ions. In both tests antioxidant 
potency correlated with total phenols; moreover, reduction of malondialdehyde and generation of 
conjugate diene was dependent on the amount of total phenols. High levels of secoiridoids enhance the 
antioxidant activity, suggesting that VOO rich in these compounds could have health-protecting 
properties consistent with a low extent of LDL oxidation. 

Recently, the interest in oxidized forms of VOO phenols has significantly increased, especially in 
relation to determination of freshness/ageing status [122-123]. Moreover, characterization of these 
oxidized phenolics could represent an analytical instrument to investigate the thermal processes of the 
oils during refinement [124]; this could also provide the means to verify fraudulent practices such as 
"gentle deodorization" (under soft refining conditions) or blending of VOO with other oils. In 2005 
Rios et al. [122] compared the performance of HPLC-APCI-MS and GC-IT-MS analytical techniques 
to evaluate the oxidation products of elenolic acid, oleuropein and ligstroside aglycons. Five oxidation 
phenols were identified with gas-chromatography. Armaforte et al. [125] showed that SPE procedure 
(usually used to extract the phenolic fraction from VOO) may be a not appropriate analytical step 
when VOO contains significant polar oxidation products (from phenols or lipids); in fact, these latter 
compounds could interfere with the retention mechanism of phenols during their extraction. These 
authors also proposed an index to establish the degree of freshness of VOO. This value, or TPAR 
(ratio between total peak area of reduced and oxidized forms of phenols) is close to 1 for fresh samples 
whereas it decreases rapidly in VOO with an increasing content of oxidized phenols.  

Carrasco-Pancorbo and co-authors [124] by studying the phenolic profiles of the oils after a drastic 
heating treatment (at 180°C) found several “unknown” compounds, (by using HPLC-UV, HPLC-MS 
and CE-UV) that were probably linked to phenol oxidation. In particular, seven peaks significantly 
increased when the thermal treatment was longer (from 1 to 3 h) and their presence was also confirmed 
in refined olive oils. The concentration of hydroxytyrosol, elenolic acid, 3,4-DHPEA-EDA and 3,4-
DHPEA-EA decreased more quickly with the thermal treatment than other phenolic compounds 
present in olive oil, confirming their high antioxidant power; moreover 3,4-DHPEA-AC and p-HPEA-
EA were more resistant to heat treatment, whereas the amount of (+)-pinoresinol and (+)-1-
acetoxypinoresinol were almost unchanged. 
 
Sensory properties elicited by phenols in VOO  

 
Virgin olive oil is a natural fruit juice obtained directly from olives without any further refining 

process. Its flavour is characteristic and is markedly different from those of other edible fats and oils. 
The combined effect of the taste, odor (directly via the nose or indirectly through the retronasal path 
via the mouth) and chemical responses (pungency, astringency, metallic, cooling or burning) gives rise 
to the sensation generally perceived as “flavor” [126]. VOO, when extracted from fresh and healthy 
olive fruits (Olea europaea L.) and properly processed and stored, is characterized by an unique 
combination of aroma and taste that is highly appreciated [127-128]. The sensory aspect, due to the use 
of VOO as a seasoning on cooked and especially raw foods, has great repercussions on its 
acceptability. Thus, since sensory quality plays an important role in directing the preference of 
consumers, many attempts have been made to clarify the relationships between the sensory attributes 
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in a VOO as perceived by assessors and its volatile and phenol profiles, which are responsible for 
aroma and taste, respectively [128].  

Few individuals, except for trained assessors of VOO, know that bitterness and pungency perceived 
by taste are positive attributes for a VOO. These two sensory characteristics are strictly connected by 
the quali-quantitative phenolic profile of the product. An example of the positive correlations between 
amount of phenols and bitter and pungent intensities is shown in Figures 2a and 2b. 

Some phenols mainly elicit the tasting perception of bitterness; however, other phenolic molecules 
can stimulate the free endings of the trigeminal nerve located in the palate and also in the gustative 
buds giving rise to the chemesthetic perceptions of pungency, astringency and metallic attributes. Thus, 
the intensity of bitterness and pungency is mainly related to the olives cultivar and the ripening stage 
and, as reported by many authors, are especially abundant in oils obtained from unripe fruits. For 
instance, Caponio et al. [129] showed that in Coratina and Oliarola Salentina VOO, oleuropein and its 
aglycon form both decrease as ripening of the olives progressed. From this data, the bitter to pungent 
taste would appear to be mainly ascribable to oleuropein aglycon since greater amounts of this 
phenolic compound are present in the Coratina oils with respect to O. Salentina oils, which are known 
to have a sweet taste. In order to attenuate such these taste sensations, the authors suggested the need 
to postpone harvesting of Coratina olives.  

 
Figure 2 Sensory profile and phenolic content of two different VOO (HPh, high phenols 
oil and LPh, low phenols oil). a, sensory profiles of samples by Quantitative Descriptive 
Analysis (QDA); the intensity of each descriptor is evaluated on a 0-5 points scale; 
different perception routes: (1) orthonasal, (2) retronasal. b, single and total phenolic 
content of samples; A, hydroxytyrosol; B, tyrosol; C, vanillic acid; D, unknown phenolic 
compound with a retention time of 30.69 min; E, unknown phenolic compound with a 
retention time of 36.27 min; F, 3,4-DHPEA-EDA; G, (+)-pinoresinol; H, (+)-1-
acetoxypinoresinol + p-HPEA-EDA; I, 3,4-DHPEA-EA; L, p-HPEA-EA. 
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A Quantitative Descriptive sensory Analysis (QDA) carried out by Rotondi et al. [130] confirmed 
a decreasing trend of the positive olive oil descriptors, such as bitterness and pungency, when 
Nostrana di Brisighella olives ripened. The highest statistically significant intensity was at the 
beginning of fruit skin pigmentation. The decrease in bitterness and pungency was also related to a 
reduction in total phenols and o-diphenols levels. In particular, a positive correlation between the 
secoiridoids content and bitterness and pungency was observed.  

With the aim of reducing the bitterness intensity in VOOs, disfavored by many consumers when 
present at high intensity, some authors [131] developed postharvest technology based on hot-water 
treatments of olive fruits (cultivars Manzanilla, Picual, and Verdial) in the temperature range of 60-
68°C or [132] with air-heating (40°C during 24, 48, and 72 h). These treatments promote a reduction 
in bitterness that is directly related to the time and temperature of treatment, probably due to a partial 
inhibition of glycosidases and esterases; in fact, these enzymes are involved in the release of 
secoiridoid derivatives from oleuropein during the crushing malaxation process. However, this heat 
treatment also affected other quality traits such as oxidative stability and color and could produce a 
change in the aroma profile of the VOO as well. 

The standard method of analyzing the bitter taste of olive oil is by sensory analysis using a panel of 
tasters [133]. However, an analytical panel is often not likely to be available, since a permanent staff of 
trained tasters and a highly specialized panel chief is necessary. Many consumers from extra-European 
countries are not accustomed to the typical high intensity of bitterness or pungency of fresh VOO and, 
consequently, must be blended with less bitter VOO. For this reason, methods for the evaluation of the 
bitterness level based on physical-chemical determinations would be very useful for the industry. 
Several authors have found a strong relationship between these sensory attributes and the content of 
phenolic compounds in the olive oils. In 1992 Gutiérrez et al. [134] proposed an analytical method for 
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measurement of bitterness, based on solid phase extraction (SPE) of phenols and their 
spectrophotometric detection at 225 nm; this parameter termed IB or index of bitterness, was highly 
correlated to the sensory intensity of bitterness and is still the most widely used for its determination. 
Some years later, Mateos and co-workers [135] showed that several non-bitter phenolic compounds 
could also absorb at 225 nm; consequently, they asserted that this index was not appropriate for 
comparing bitterness of VOO obtained from blend of olive varieties characterized by very different 
phenolic profiles (e.g. Picual and Arbequina). Moreover, Mateos suggested that evaluation of the 
bitterness level of a VOO could be described by the experimental equation obtained from the 
regressions between intensity of bitterness and the concentrations of oleuropein aglycon using a Panel 
test and chromatographic analysis, respectively.  

Some researchers suggest that secoiridoid derivatives of hydroxytyrosol are the main contributors to 
olive oil bitterness. Recently, a procedure called taste dilution analysis (TDA) was reported by Frank 
and co-authors to underlie the sensory threshold of bitter for oleuropein derivatives [136]. Bitterness 
was assessed by preparing serial dilutions of samples in water and then tasting in order of increasing 
concentration until the concentration at which the diluted sample can be differentiated from water as 
judged in a triangle test is found. When an isomer (or isomers) of oleuropein aglycon was prepared by 
β-glucosidase hydrolysis of oleuropein isolated from olives and evaluated by assessors, it was found to 
be bitter with a threshold of 50 μmol. Using the same evaluation technique, no bitterness was observed 
for hydroxytyrosol or elenolic acid.  

Andrewes et al. [137] assessed the relationship between polyphenols and olive oil pungency. p-
HPEA-EDA was the key source of the burning sensation found in many olive oils. In contrast, 3,4-
DHPEA-EDA, tasted at an equivalent concentration, produced very little burning sensation. This is a 
clear example of the different sensory properties of a secoiridoid derivative of hydroxytyrosol and 
tyrosol. In 2005, Beauchamp and co-authors [64] measured the pungent intensity of p-HPEA-EDA 
isolated from different VOO confirming this molecule is the principal agent in VOO responsible for 
throat irritation. These researchers also tested the throat-irritant properties of its synthetic form (named 
“oleocanthal”, with oleo- for olive,-canth- for sting, and -al for aldehyde) dissolved in non-irritating 
corn oil. They found an effect comparable to that of the purified compound from VOO and a dose-
dependent activity. 

In 2003, Gutierrez-Rosales and co-authors [138] isolated the major peaks found in the phenolic 
profile of VOO using preparative HPLC; after dissolving in water these molecules purified were then 
tasted to evaluate the intensity of bitterness. It was concluded that the peaks corresponding to the 3,4-
DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA were those mainly responsible for the bitter taste 
of VOO. As previously reported, Mateos et al. [135] verified the better correlation between the 
aldehydic form of oleuropein aglycon and bitterness.  

Recently some researchers [139] have studied the temporal perception of bitterness and pungency in 
monovarietal VOOs; analyses were performed by a trained sensory panel utilizing a time–intensity 
(TI) evaluation technique; bitterness curves had a faster rate of rising and declining than pungency 
curves: the curves for bitterness reached a maximum after approximately 16–20 s, whereas the 
maximum of the perception of pungency is registered between 26 and 29 s and is independent of the 
maximum intensity of the perception.  

As already discussed, several authors have associated some phenols with bitterness, thus obtaining 
models and relationships between individual phenols separated by HPLC and bitterness intensity [135, 
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138,140]. In these reports, bitterness was measured by a panel test or calculated from K225 values. 
Moreover tyrosinase- and peroxidase-based biosensors are being developed for the bitterness 
assessment [141], and are showing interesting possibilities. However, HPLC is often not available in 
many olive oil mill laboratories because of economic reasons, as well as specialized technical staff and 
biosensors. As an alternative, Beltrán and co-authors [142] proposed that measurement of phenol 
content can be used. This is a simple analytical method that involves liquid-liquid extraction and 
colorimetric measurement using Folin-Ciocalteau reagent [143]. In their experimental work, the 
authors analyzed the relationship between phenol content and K225 for oils from four of the most 
important olive cultivars worldwide (Frantoio, Hojiblanca, Picual, Arbequina); 360 samples were used 
to develop the model. As a practical application, bitterness intensities were evaluated by sensory 
analysis of 25 VOO samples, and were then estimated by applying the prediction model. In order to 
provide an easy tool for bitterness estimation, VOO bitterness was classified by its phenol content into 
four categories (results expressed as mg of caffeic acid per kg of oil and intensity of bitterness between 
0 and 5 values): phenol contents equal or lower than 220 mg kg-1 corresponded to non-bitter oils or oils 
with almost imperceptible bitterness (intensities 0–1.5); slight bitterness corresponded to 220–340 mg 
kg-1 (intensities 1.6–2.5); bitter oils have a phenol contents ranging from 340 to 410 mg kg-1 
(intensities 2.5–2.99); and a phenol contents higher than 410 mg kg-1 corresponds to quite bitter or 
very bitter oils (intensities higher than 3). In general, the authors determined that the oils were 
classified correctly into the same bitterness categories by both methods at 92%, achieving 100% of 
correct classification for the lowest and highest bitterness categories. 
 
New analytical approaches to characterization of the phenolic profile and applied studies during 
the last decade 

 
In order to utilize VOO as a source of phenolic compounds, to develop complete compositional 

databases and to obtain more accurate data about the intake of antioxidants further chemical 
characterization is needed. Identification and quantitation, based traditionally on HPLC (with different 
detectors, such as UV, fluorescence, coulometric electrode array detection, amperometric detector) 
[144-150], GC-FID [151-154] and, more recently CE-UV, can be aided today by MS and NMR, which 
is a focus of the present review. 

Liquid chromatography/mass spectrometry (LC-MS) has been widely accepted as the main tool in 
identification, structural characterization and quantitative analysis of phenolic compounds in olive oil. 
Using a mass spectrometer for detection offers some undoubted advantages, such as independence of a 
chromo- or fluorophore, lower LOD than UV in most cases [155], the possibility to obtain structural 
information and easy separation of coeluting peaks using the information about mass as a second 
dimension. 

The sensitivity of response in MS is clearly dependent on the interface technology employed. In 
LC-MS analysis of phenolic compounds, atmospheric pressure ionization interfaces, i.e. APCI and 
electrospray ionization (ESI), are used almost exclusively today, and both positive and negative 
ionization are applied. In general, phenolic compounds are detected with a greater sensitivity in the 
negative ion mode, but the results from positive and negative ion modes are complementary, and the 
positive ion mode shows structurally significant fragments [156]. 
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On the other hand, optimal ionization depends not only on the interface parameters, but also on the 
mobile phase of the liquid chromatography. As a first rule, the use of non-volatile salts in the mobile 
phase (common in other chromatographic methods) should be avoided, as they would interfere with 
the ionization source. The mobile-phase composition and its pH need also careful optimization as they 
may influence the ionization efficiency of the analytes. 

The selection of the analyzer, apart from its accessibility, is determined by the required sensitivity 
and selectivity and the general objectives. LC-atmospheric pressure ionization (API)-MS typically 
only yields a single strong ion, which reduces its ability to make analyte accurate identifications. In the 
most cases, single-stage MS is used in combination with UV detection to facilitate the identification of 
phenolic compounds in olive oil samples with the help of standards and/or reference data. Ion Trap or 
QqQ provide the possibility of doing MS/MS or MSn, which can be used for structure elucidation or 
for additional selectivity to gain sensitivity by reducing the chemical noise [157]. MS/MS and MSn 
involve two (or more) stages of mass analysis, separated by a fragmentation step. TOF MS, which is 
one of the most advanced MS analyzers, provides excellent mass accuracy [158] over a wide dynamic 
range if a modern detector technology is chosen. The latter, moreover, allows measurements of the 
correct isotopic pattern [159], providing important additional information for the determination of 
elemental composition [160]. 

Table 2 provides an overview of methodologies based on LC-tandem mass spectrometry used for 
the analysis of phenolic compounds in olive oil. The table does not include several publications in 
which the analysis of olive fruit, leaves, pulp and pomace, olive tree wood, as well as olive oil waste 
waters were carried out by using HPLC-MS [14, 49, 156, 161-168]. Other important issues are the 
presence of phenolic metabolites of VOO in the human low density lipoprotein fraction [169-170]. 

High-resolution spectroscopic techniques, and particularly NMR spectroscopy, are finding 
interesting applications in the analysis of complex mixtures of various food extracts that contain 
phenols. 

During the past decade proton nuclear magnetic resonance spectroscopy (NMR) has been 
successfully used in olive oil analysis [171-172]. Currently available high-resolution spectroscopic 
techniques, coupled with the facilities of computerized mathematical or other treatment of data have 
found interesting applications in the field of agricultural and food science without the necessity for a 
separative technique coupled with NMR, as commented by Gerothanassis [173]. Additionally the 
usefulness of 1H NMR spectroscopy has been increasingly recognized for its non-invasiveness, 
rapidity, and sensitivity for a wide range of compounds in a single measurement. However, difficulties 
may arise in relation to the information obtained from spectra of multicomponent mixtures such as 
olive oil. Strong signal overlap, dynamic range problems, diversity of intensities due to various 
concentrations of the food constituents, and the inherent lack of scalar coupling information between 
different moieties lead to ambiguous or incomplete assignments, thus hindering detection even with 
the use of multidimensional NMR [174]. One possible approach to these problems involves the 
combination of the advantages of NMR spectroscopy with those of chromatography. Coupled 
techniques such as LC-NMR or LC-NMR/MS may provide information on overall composition and 
enable the identification of individual phenols in complex matrices. Moreover, on-line solid phase 
extraction (SPE) in LC-NMR for peak storage after the liquid chromatography separation prior to 
NMR analysis or similar techniques have been recently applied. 
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Table 2. Summary of separation of phenolic compounds in the polar fraction of VOO using HPLC-MS 
methods. 

 
 
 

Time of 

analysis 
Mobile phase 

Stationary 

phase 

Type of 

elution 
Extraction System 

Detection 

System 
Observations References

120 min 
A: H2O 

B: MeOH 

Spherisorb ODS 

25 cm x 4.6 mm 

i.d.; 10μm 

Gradient 
Combination between 

LLE [42] and SPE 

UV in HPLC. 

MS off-line 

Separation of the polar 

fraction of VOO in two 

parts. Antioxidant 

activity assessment 

 [175] 

93 min 

A: H2O + 

CH3COOH 

0.5% 

B: MeCN 

Spherisorb ODS 

2, 25 cm x 4.6 

mm i.d. 

Gradient 

LLE with 

methanol/water (80:20 

v/v) 

UV; MS (ESI) in 

positive ion mode

Flavonoids such as 

luteolin and apigenin 

were detected as 

phenolic components of 

VOO 

[41] 

25 min 

H2O:CH3CN 

(82:18 v/v) + 

CH3COOH 

0.02% 

Nucleosil ODS, 

25 cm x 2.1 mm 

or 25 cm x 1.1 

mm i.d. 5 μm 

Isocratic 

LLE with buffer; SPE 

with phenyl cartridges 

(acidification) 

UV, 

fluorescence, 

MS, MS/MS 

HPLC-APCI 

(negative ion 

mode) 

Phenolic acids [30] 

60 min 

approx. 

A: H2O + 

HCOOH 

0.045% 

B: MeOH + 

HCOOH 

0.045% 

Nucleosil ODS, 

25 cm x 2.1 mm 

i.d. 5 μm 

Gradient 

-Phenolic acids as 

Cartoni [30] 

-HYTY and TY: 

3 g oil across cartridge 

phenylic 

MS; MS/MS 

Olives and VOOs. 

MS/MS using Multiple 

Reaction Monitoring 

(MRM) (high specificity 

and sensitivity in MS 

spectra) 

[176] 

HPLC method and 

conditions of Cortesi et 

al. [177] 

C18 column (RP) 

Alltech 25 cm x 

4.6 mm i.d.  

Gradient 

LLE: Montedoro et al. 

[1] 

using butylated 

hydroxytoluene (BHT)

 

MS; MS/MS 

Analysis of oleuropein 

aglycon by APCI-MS. 

Phenolic compound 

profile 

[178] 

HPLC method of 

Romani et al. [179] 

Lichrosorb RP18, 

25 cm x 4.6 mm 

i.d. 5 μm 

Gradient 

LLE with EtOH/water 

(70:30 v/v), the water 

was acidified with 

formic acid (pH 2.5) 

DAD; MSD 

HPLC analysis of 

phenolic acids, 

secoiridoids and 

flavonoids 

[180] 

60 min 

A: H2O + 

CH3COOH 

2mM 

B: MeOH + 

CH3COOH 

2mM 

 

Nucleosil ODS, 

25 cm x 2.1 mm 

i.d. 5 μm 

 

 

Gradient 

LLE with 

methanol/water (80:20 

v/v), acidification and 

passed through a C18 

cartridge 

MS and MS/MS 

(API/MS in 

negative ion 

mode) 

Identification of a new 

class of phenolic 

compounds in olive oils: 

hydroxy-isochromans 

  

[35] 
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Table 2. Cont. 

Time of 

analysis 

Mobile 

phase 
Stationary phase 

Type of 

elution 

Extraction 

System 
Detection System Observations References 

HPLC method and conditions of Brenes et al. [44] 

UV; 

electrochemical, 

fluorescence, MS. 

Use of a lignan (1-

acetoxypinoresinol) to 

authenticate Picual 

VOOs. Use of GC too. 

[35] 

50 min or  

70 min 

A: H2O + 

H3PO4 

0.5% 

B: MeOH/ 

MeCN 

(50:50 v/v) 

Lichrospher 100 

RP18, 25 cm x 

4.0 mm i.d. 5 μm 

Gradient 
SPE (diol-bound 

phase) 

UV, 

HPLC-MS in 

ESI(positive ion 

mode) 

Dialdehydic and 

aldehydic forms of 

oleuropein aglycon and 

ligstroside aglycon 

[181] 

65 min 

A: H2O + 

CH3COOH 

2%  

B: MeOH/ 

MeCN 

(50:50 v/v) 

C18 Luna 

column, 25 cm x 

3.0 mm i.d. 5 μm  

Gradient 

Comparative 

study of 5 

extraction 

methods 

 (LLE and SPE) 

UV, DAD; MS 

 

HPLC and CE 

methods. (HYTY, TY, 

oleuropein, ligstroside 

aglycon and 

decarboxymethyl 

oleuropein aglycon) 

[182] 

65 min 

A:  H2O  + 

CH3COOH 

2%  

B: EtOH 

Phenomenex 

Luna (phenyl-

hexyl)phase; 25 

cm x 4.6 mm i.d. 

5 μm 

Isocratic 

LLE with 

methanol/water 

(80:20 v/v) 

Montedoro et al. 

[1] 

UV; MS (ESI in 

negative ion mode)

Isolation of individual 

polyphenols to study 

sensory properties 

[137] 

60 min 

approx. 

A: H2O  + 

HCOOH 

0.09% 

B: MeOH 

+ HCOOH 

0.09% 

Nucleosil ODS, 

25 cm x 2.1 mm 

i.d. 5 μm 

Gradient 

Separation of 

phenolic 

compounds in two 

fractions after C18 

cartridge.  

Group A: 12 g oil 

Group B. 3 g oil 

UV; fluorescence; 

MS; MS/MS 

Improve of extraction 

system of [176]. 

Determination of 

isomer of dihydroxy- 

and dimethoxybenzoic 

acids. Comparison 

among LOD in HPLC-

UV, HPLC-FL and 

HPLC-MS/MS 

[183] 

75 min 

A: H2O + 

CH3COOH 

0.5%  

B: MeCN 

C18 Luna 

column, 25 cm x 

3.0 mm i.d. 5 μm 

Gradient 

LLE with 

methanol/water 

(60:40 v/v) 

DAD; MS (ESI in 

negative ion mode)

Effect of olive ripening 

degree on the oxidative 

stability and 

organoleptic properties 

of olive oil 

[184] 

HPLC method of Rotondi et al. [184] 

 
Gradient 

LLE with 

methanol/water 

from olive oil. 

SLE from olive 

fruits. 

DAD; MS (ESI in 

positive and 

negative ion mode)

HPLC and CE 

analysis. 

3 simple phenols, a 

secoiridoid derivative 

and 2 lignans 

[185] 
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Table 2. Cont 

Time of 

analysis 

Mobile 

phase 
Stationary phase 

Type of 

elution 

Extraction 

System 
Detection System Observations References 

60 min 

A: H2O + 

0.2% 

acetic acid  

B: MeCN 

Lichrospher 100, 

12.5 cm x 4.0 mm 

i.d. 5 μm 

Gradient 

LLE with 

methanol (500 mg 

of oil) 

Refractive index 

detector; MS 

TY, Vanillic acid,  

Lut and Apig. 

Squalene (with 

Refractive Index 

detector). 

Quantitation in 7 

samples. 

[45] 

45 min 

A: H2O + 

0.2% 

acetic acid  

B: MeCN 

Inertsil ODS-3, 

15 cm x 4.6 mm 

i.d. 5 μm 

Gradient 

LLE with 

methanol/water 

(80:20, v:v) (45 g 

of oil) 

UV; ESI-MS 

Antioxidant activity of 

olive pulp and olive of 

Arbeq. cv 

[46] 

40 min 

A: H2O + 

0.2% 

acetic acid  

B: MeCN 

C18 Luna 

column, 15 cm x 

2.0 mm i.d. 5 μm 

Gradient 
Diol cartridge (3 g 

of oil) 

UV (DAD); MS; 

MS/MS (QqQ) 

Quantification of 23 

compounds in 3 olive 

oils. 

Possible models of 

derived secoiridoids 

(nine basic models of 

Lig and Ol aglycons 

found in bibliography) 

[186] 

70 min 

A: H2O + 

0.5% 

acetic acid 

B: MeCN 

C18 Luna 

column, 25 cm x 

4.6 mm i.d. 5 μm 

Gradient  

LLE with 

methanol/water 

(60:40, v:v) (60 g 

of oil) 

UV (DAD); MS 

Isolation of several 

phenolic compounds 

and study of their 

antioxidants properties 

(DPPH, OSI and 

electrochemical 

method) 

[117] 

50 min 

A: H2O + 

HCOOH 

(pH 3.2) 

B: MeCN 

C18 Luna 

column, 25 cm x 

3.0 mm i.d. 5 μm 

Gradient 

LLE with 

ethanol/water 

(7:3, v:v) (25 ml 

of oil) 

UV (DAD); ESI-

MS 

Evaluation of lignans 

free and linked HYTY 

and TY in VOO. TLC 

to determine the 

presence of lignans. 

[187] 

30 min 

A: H2O + 

0.1% 

acetic acid 

B: MeCN 

RP C18 2.1 x 100 

mm, 3.5 mm 

particle size; 

XTerra MS 

Gradient 
SPE-Diol (60 g of 

oil) diluted 1:10 
ESI-TOF (TOF) 

Determination of all 

the well-known 

phenolic compounds of 

oil and more than 25 

“new” compounds 

[188] 
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One of the pioneers in this field was Montedoro [3] who identified four new phenolic compounds 
in olive oil in 1993. This paper reported the NMR, UV and IR characterization of the compounds 
under study, and finally, concluded that the newly identified compounds were an isomer of oleuropein 
aglycon, the dialdehydic from of elenolic acid linked to hydroxytyrosol, and the dialdehydic from of 
elenolic acid linked to tyrosol. The results obtained by Limiroli [189] and Bariboldi [190] were useful 
in contributing to a more in-depth understanding of the secoiridoid fraction of VOO. Following these 
results, several authors have used NMR to analyze phenolic compounds in olive oils, which summarize 
the reports which include methodologies combining HPLC and NMR (Table 3). 

 
Table 3. Summary of separation of phenolic compounds in the polar fraction of VOO 
using HPLC-NMR (as coupled techniques or by NMR as off- line technique after HPLC). 

 
Time of 

analysis 
Mobile phase 

Stationary 

phase 

Type of 

elution 
Extraction System 

Detection 

System 
Observations References 

45 min 

A: H2O + 

CH3COOH 2% 

(pH 3.1) 

B: MeOH 

Erbasil C18, 

15  cm x 4.6 

mm i.d. 

Gradient 
LLE with 

methanol/water 

UV; NMR 

and IR 

Spectroscopic 

characterization of 

secoiridoid 

derivatives 

[3] 

60 min 

A: H2O + 

CH3COOH 

0.2% 

B: MeOH 

Spherisorb 

ODS 2, 25 

cm x 4.6 mm 

i.d. 

Gradient 
Same as Montedoro 

et al. [1] 

Photodiode 

array; MS; 

NMR 

Simple phenols, 

flavonoids, 

secoiridoids 

[44] 

HPLC method of 

Montedoro et al. [1] 

Column 

RP18 Latex; 

25 cm x 4.0 

mm i.d. 5 μm 

Gradient 
LLE with methanol 

(500 g of olive oil) 

UV; MS 

(ESI) in 

negative and 

positive ion 

mode; NMR 

Identification of 

lignans as major 

components in polar 

fraction of olive oil. 

Preparative thin-layer 

chromatography 

(PLC). 

[34] 

HPLC method of 

Montedoro et al. [1-3] 

Column 

RP18 Latex; 

25 cm x 4.0 

mm i.d. 5 μm 

Gradient 

LLE with absolute 

methanol and 

methanol/water 

(80:20 v/v) 

UV; MS 

(ESI) in 

negative and 

positive ion 

mode; NMR 

Use of TLC, GC, GC-

MS 

Study of 

antioxidant/anticancer 

capacity 

[191] 

50 min 

A: H2O + 

CH3COOH 

3%  

B: 

MeCN:MeOH 

(50:50 v/v) 

Lichrosphere 

100 RP18, 25 

cm x 4.0 mm 

i.d. 5 μm 

Gradient 

Comparative studies 

of LLE and SPE 

using diol-phase 

cartridges; unwanted 

substances washed 

out with hexane and 

hexane/ethyl acetate 

(90:10, v/v) 

UV; DAD 

NMR (for 

ligstroside 

aglycon) 

Phenols, flavones  

and lignans. 

Colorimetric 

determination of  

o-diphenols. 

GC-MS 

[192] 
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Table 3.  Cont,  

 
Recently, Christophoridou et al. [174] reported the first application of the hyphenated LC-SPE-

NMR technique using postcolumn solid-phase extraction to direct identification of new phenolic 
compounds in the polar fraction of VOO. The addition of a post-column SPE system to replace of the 
loop system of the LC-NMR, resulted in higher sensitivity (significant increase of the signal to noise 
[S/N] ratio); in fact, S/N improvements by up to a factor of 4 could be demonstrated with this new 
technology [16]. The spectra recorded were one dimensional (1D) 1H-NMR and two dimensional (2D) 
NMR. The presence of phenols was confirmed from the respective LC-SPE-NMR spectra, which were 
assigned on the basis of existing 1H-NMR databases and with total correlation spectroscopy (TOCSY). 
The most interesting findings of this study were the verification of the presence of the lignan 
syringaresinol, the presence of two stereochemical isomers of the aldehydic form of oleuropein and the 
detection of homovanillyl alcohol. 

As commented above the researches that studied olive mill waste, brines olive drupes, tissues of 
olive cultivars, alperujo, olives, olive leaves were not included in Table 3 [49, 161, 194-199]. Servili et 
al. [200] in a HPLC investigation of the phenols present in olive fruit, VOO, vegetation waters and 
pomace, and subsequently by 1D- and 2D-NMR achieved the complete spectroscopic characterization 
of demethyloleuropein and verbasoside extracted from olive fruit. 

There are also several interesting reports describing the analysis of olive oil by ionspray ionization 
tandem mass spectrometry (IS-MS/MS) and ESI-MS/MS with NMR, without the use of a previous 
separative technique [201-203]. For the purposes of this review it is important to include a recent 
publication by Christophoridou et al. [204], where the authors demonstrate the potential of 31P-NMR 
spectroscopy to detect and quantify a large number of phenols in VOO extracts. This novel analytical 
method is based on derivatization of the hydroxyl and carboxyl groups of phenolic compounds with 2-
chloro-4,4,5,5 tetramethyldioxaphospholane and the identification of the phosphitylated compounds on 
the basis of the 31P chemical shifts.  

Even if the characterization and quantification of phenolic compounds have been successfully 
carried out by GC and HPLC, the use of faster analytical techniques and screening tools, allowing a 
rapid screening of phenolic compounds from VOOs, is strongly recommended. Although compared 
with GC or HPLC, CE is a relatively new technique in food analysis. A large variety of foods have 

60 min 

A: H2O + 

CH3COOH 

0.5%  

B: MeOH/ 

MeCN (50:50 

v/v) 

Lichrospher 

100 RP18, 25 

cm x 4.0 mm 

i.d. 5 μm 

Gradient 

Comparative study of 

LLE and SPE (diol 

and C18-phase) 

Photodiode 

array 

detector; MS, 

NMR. 

Simple phenols, 

secoiridoids and 

lignans 

[193] 

30 min 

A: H2O + 

0.1% 

trifluoroacetic 

(TFA-d) 

B: MeCN+ 

0.1% (TFA-d) 

Phenomenex 

RP-C18, 25 

cm x 4.6 mm 

i.d. 5 μm 

Gradient 

LLE  with 

methanol/water 

(80:20 v/v) (50 g of 

oil) 

LC-SPE-

NMR system 

Complete 

characterization of 27 

phenolic compounds 

in olive oil. 7 

compounds not 

detected in the past 

[174] 
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already analyzed by this technique, as CE can represent a good compromise between analysis time and 
satisfactory characterization for same classes of phenolic compounds in VOO. 

CE is characterized by high separation efficiency, small sample and electrolyte consumption, and 
the separation requires only several minutes. This last characteristic is the main advantage versus 
chromatographic methods, which makes CE useful for routine analysis as well as for controlling and 
monitoring processes in a number of industrial fields [205-213]. Moreover, CE is relatively well suited 
to analysis of samples with complex matrices, like VOO. 

CE technique can be coupled with different detectors (UV, FIL, electrochemical detectors, MS…). 
To date, for the analysis of phenolic compounds in VOO, there are several papers reporting the use of 
CE with ultraviolet detection; it is possible to study results obtained by using CE-MS in only two 
papers (Table 4). 

Along these lines, the use of CE as an analytical separation technique coupled with mass 
spectrometry as a detection method can provide important advantages in the analysis of phenolic 
compounds of olive oil because of the combination of the high separation capabilities of CE and the 
power of MS for identification and confirmation method. 

Using mass spectrometric detection, differences in optical detection must be considered. First, the 
separation electrolyte has to be volatile, reducing the choice of buffering system primarily to ammonia, 
acetate, or formate. While there are reports documenting nonvolatile buffers from UV-CE, only low 
buffer concentrations can be used and thus lower sensitivity must be accepted. Generally, nonaqueous 
solvents are well-suited for hyphenation with MS and add another parameter to modify selectivity. 

As commented before for HPLC coupled with MS, CE can also be coupled with different MS 
analyzers (i.e., with quadrupole, ion trap, time-of-flight, etc.) and use several ionization methods 
(APCI, ESI, MALDI). ESI is one of the most versatile ionization methods and is the natural method of 
choice for the detection of ions separated by capillary zone electrophoresis. Regarding the analyzers, 
ion trap (IT) and TOF systems are the two analyzers more common in the lab of food analysis [214], 
although single-quadrupole MS is still often used as an easy and affordable detector. 

Of particular interest is the coupling of CZE to ESI-TOF-MS. This coupling combines the 
abovementioned benefits of CZE separation with the high selectivity due to mass accuracy of 5 ppm, 
which opens the possibility of determining elemental compositions. The analysis of the true isotopic 
pattern by ESI-TOF-MS has recently been shown to provide an additional analytical dimension for 
identification [160]. 

During the last decade, concerning phenolic compounds present in VOO, it is possible to find 
reports in which applicative work is carried out, as well as other where a new analytical method is 
developed. Herein, the publications including CE-UV and CE-MS are summarized (see Tables 4 and 
5). 
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Table 4. Summary of optimized conditions of capillary electrophoresis methods where 
VOO samples are analyzed. V, voltage; T, temperature, i. d., internal diameter of 
capillary; Lef, effective length of capillary; [Buffer]; buffer concentration. 

 
 Instrumental Variables Experimental Variables 

References λd [nm] V [kV] T [ºC] 
i. d. 

[μm] 

Lef 

[cm] 
tinj [s] 

Type of 

Buffer 

[Buffer] 

[mM] 
pH 

Organic 

modifiers and 

other 

variables 

[182] 200 27 30 50 40 
3 s (0.5 

p.s.i) 

Sodium 

Tetraborate 
45 9.6 - 

[215] CZE method of Bendini et al.[182] 

[185] CZE method of Bendini et al.[182] 

[31] 210 25 25 75 50 
8 s (0.5 

p.s.i) 

Sodium 

Tetraborate 
25 9.6 - 

[29] 200 18 25 50 36 
2 s (1.5 

p.s.i) 

Sodium 

Tetraborate 
40 9.2 - 

[32] 210 -25 25 75 50 
8 s (0.5 

p.s.i) 

Sodium 

Tetraborate 
50 9.6 

20% 2-

propanol 

[216] 214/250 25 25 75 100 
8 s (0.5 

p.s.i) 

Sodium 

Tetraborate 
30 9.3  

[217] 
214/MS 

(ESI-IT) 
25 25 50 100 

10 s 

(0.5 

p.s.i) 

NH4OAc 60 9.5 

5% 2-propanol 

Sheath liquid 

(60:40 v/v  

2-propanol/ 

water and 

0.1% v/v of 

TEA at a flow 

rate of 0.28 

mL/h) 

[218] 
200/240/

280/330 
28 22 50 40 

8 s (0.5 

p.s.i) 

Sodium 

Tetraborate 
45 9.3  

[219] CZE method of Carrasco-Pancorbo [218] 

[188] 
MS 

(ESI-
TOF) 

30 25 50 85 10 s (50 
mBar) 

Ammonium 
hydrogen 
carbonate 

25 9.0 

Sheath liquid 
(2-propanol/ 
water 50:50 
v/v at a flow 

rate of 4 
μL/min) 
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Table 5. Summary of extraction systems used and compounds detected in VOO samples with the 
application of each method. HYTY, hydroxytyrosol; TY, tyrosol; DHPE, 2,3-dihydroxyphenylethanol; 
VA, vanillic acid; DOA, decarboxymethyloleuropein aglycon (3,4-DHPEA-EDA); Ac Pin, (+)-1-
acetoxypinoresinol; Lig Agl, ligstroside aglycone; Ol Agl, oleuropein algycone; EA, elenolic acid 

References 

Initial quantity of oil→Final quantity of solvent 

(MeOH/H2O (50:50 v/v) ) in the extraction process 

(kind of extraction) 

Detected compounds in 

olive oil 
Other relevant aspects 

[182] 2 g → 1 mL (LLE [220]) 
HYTY, TY, unidentified 

secoiridoids compounds 

1st paper where CE is used for 

the analysis of phenolic 

compounds from oils 

[215] 2 g → 1 mL (LLE [220]) 

HYTY, TY, DHPE, 

unidentified oleuropein 

aglycone derivatives 

 

 [185] 2 g → 0.5 mL (LLE [220], as modified in [184]) 
HYTY, TY, VA, DOA, Ac 

Pin 

 

[31] 60 g → 0.5 mL (LLE [31]) 
13 phenolic acids + 

taxifolin (flavanonol) 

Potent extraction system 

which permits detection of 

small quantities of phenolic 

acids 

[29] 10 g → non specified (Combination of LLE-SPE [29]) 5 phenolic acids  

[32] 60 g → 0.5 mL (LLE [31]) 
13 phenolic acids + 

taxifolin (flavanonol) 

Co-electroosmotic CE 

[216] 60 g → 2 mL (SPE-Diol [216]) 
TY, Pin, Ac Pin, DOA, Lig 

Agl, HYTY, Ol Agl, EA 

Use of standards obtained by 

semipreparative-HPLC 

[217] 60 g → 2 mL (SPE-Diol [216]) 

11 phenols (simple phenols, 

lignans, complex phenols 

and EA) 

1st paper in which CZE-ESI-IT 

MS is used for the analysis of 

phenolic compounds from oils

[218] 60 g → 2 mL (SPE-Diol [216]) 

26 compounds belonging to 

all the different families of 

phenolic compounds 

present in olive oil 

26 compounds in less than 10 

min. 1st paper in which 

flavonoids are detected by CE, 

and 1st “multicomponent” 

method for the determination 

of  olive oil phenols  

[219] 60 g → 2 mL (SPE-Diol [216]) 
Applicative work using a 

previously  method [218] 

Interesting from a quantitative 

and applicative point of view 

[188] 60 g → 2 mL (SPE-Diol [216]) and diluted 1:10 

All the “well-known” 

phenolic compounds and 28  

other analytes  

1st paper in which CZE-ESI-

TOF MS is used for the 

analysis of phenolic 

compounds from oils. TOF 

permits the “identification” of 

new compounds in the  oil’s 

profile  
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Concluding remarks and future outlook 
 

The amount of phenolic compounds is a very important parameter when evaluating the quality of 
VOOs. Phenols are closely related with both the resistance of the oil to oxidation and the typical bitter 
and pungent tastes. Furthermore, some studies have shown that the amount of phenols, particularly 
those with a catecholic structure, together with a favorable monounsaturated to polyunsaturated fatty 
acid ratio, is related to several healthy attributes. These different aspects make VOO a very valuable 
and appreciated dietary lipidic condiment, and add importance to the determination of its phenolic 
compounds, both qualitative and quantitatively. The most commonly methods used for phenolic 
determination in VOO are based on GC and HPLC, and more recently on CE, coupled with different 
detector systems (UV, FLD, amperometric or coulometric). If the literature regarding phenolic 
compounds of VOO is analyzed in detail, it is evident that this class of compounds has not been 
completely studied, because of the complexity of their chemical nature and the complexity of the 
matrix in which they are found. During the last ten years, MS and NMR have become indispensable to 
study the quali-quantitative profiles of phenols and their oxidative forms, and detectors with the power 
to identify compounds and provide the analyst with information about the molecular structure are 
essential. 

Apart from the interest on knowing in composition of the polar fraction of VOO, the determination 
of these compounds also helps to understand their health benefits that include reduction of risk factors 
of coronary heart disease, prevention of several varieties of cancer and modification of immune and 
inflammatory responses. It is also of interest to distinguish what phenolic molecules are responsible for 
bitterness, pungency, astringency and metallic sensations and to evaluate the antioxidant activities of 
the polar fraction.  

Although excellent progress has already been made, it is expected that the use of different 
methodologies of potent techniques coupled with rapid, reliable and sophisticated detectors will 
become more common in the near future; there are still many “unknown” compounds present in the 
polar fraction of olive oil and it is very important to carry out collaborative studies to join the efforts of 
the scientific community.  

 
Abbreviations: 3,4-dihydroxyphenyl-ethanol or hydroxytyrosol (3,4-DHPEA); 3,4-dihydroxyphenyl-
ethanol acetate or hydroxytyrosol acetate (3,4-DHPEA-AC); 3,4-dihydroxyphenyl-ethanol linked to 
elenolic acid (3,4-DHPEA-EA); 3,4-dihydroxyphenyl-ethanol linked to dialdehydic form of elenolic 
acid (3,4-DHPEA-EDA); 1-acetoxypinoresinol (Ac Pin); buthylated hydroxytoluene (BHT); Capillary 
Electrophoresis (CE); cyclooxygenase (COX); diphenylpicrylhydrazyl (DPPH); elenolic acid (EA); 
electrospray ionization mass spectrometry (ESI-MS); Flame Ionization Detector (FID); gas 
chromatography (GC); High Performance Liquid Chromatography (HPLC); HPLC-atmospheric 
pressure chemical ionization mass spectrometry (HPLC-APCI-MS); ion-trap mass spectrometry (IT-
MS); low-density lipoprotein (LDL); Liquid-Liquid- extraction (LLE); limit of detection (LOD); mass 
spectrometry (MS); tandem mass spectrometry (MS/MS); multiple-stage mass spectrometry (MSn); 
nuclear magnetic resonance (NMR); Oxidative Stability Instrument (OSI); p-hydroxyphenyl-ethanol or 
tyrosol (p-HPEA); p-hydroxyphenyl-ethanol linked to elenolic acid (p-HPEA-EA); p-hydroxyphenyl-
ethanol linked to dialdehydic form of elenolic acid (p-HPEA-EDA); pinoresinol (Pin); triple 
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quadrupole (QqQ); Solid-Phase Extraction (SPE); virgin olive oil (VOO); secoiridoid (SID); time of 
flight mass spectrometry (TOF-MS); Total Peak Area Ratio (TPAR); ultraviolet (UV). 
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