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We study the most general solution for affine connections that are compatible with the variational 
principle in the Palatini formalism for the Einstein–Hilbert action (with possible minimally coupled 
matter terms). We find that there is a family of solutions generalising the Levi-Civita connection, 
characterised by an arbitrary, non-dynamical vector field Aμ . We discuss the mathematical properties 
and the physical implications of this family and argue that, although there is a clear mathematical 
difference between these new Palatini connections and the Levi-Civita one, both unparametrised 
geodesics and the Einstein equation are shared by all of them. Moreover, the Palatini connections are 
characterised precisely by these two properties, as well as by other properties of its parallel transport. 
Based on this, we conclude that physical effects associated to the choice of one or the other will not be 
distinguishable, at least not at the level of solutions or test particle dynamics. We propose a geometrical 
interpretation for the existence and unobservability of the new solutions.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

In the standard picture of General Relativity, gravitational 
physics is interpreted as physics occurring in a pseudo-Riemannian 
spacetime. From a mathematical point of view, spacetime is de-
scribed as a D-dimensional,1 time-orientable Lorentzian manifold, 
equipped with a metric gμν and its corresponding Levi-Civita con-
nection,

�
ρ
μν = {ρμν} ≡ 1

2 gρλ
(
∂μgλν + ∂ν gμλ − ∂λgμν

)
. (1)

This connection is defined as the unique connection that is both 
torsionless and metric compatible,

T ρ
μν ≡ �

ρ
μν − �

ρ
νμ = 0, ∇μgνρ = 0, (2)
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where ∇ denotes the covariant derivative with respect to �ρ
μν . The 

metric, in its turn, is a dynamical quantity, as it obeys the Einstein 
equations,

Rμν(g) − 1
2 gμν R(g) = −κ Tμν, (3)

a set of second order differential equations for gμν , which can be 
derived through a variational principle from the so-called Einstein–
Hilbert action, minimally coupled to matter,

S =
∫

dD x
√|g|

[ 1

2κ
gμν Rμν(g) +LM(φ, g)

]
. (4)

In these equations, Rμν(g) is the Ricci tensor of the metric gμν , 
R(g) the Ricci scalar, LM(φ, g) the minimally coupled matter La-
grangian and Tμν its energy–momentum tensor. In a given space-
time, characterised by a metric gμν which is a solution of (3) for a 
given Tμν , free test particles will follow geodesic curves, described 
by the geodesic equation

ẍμ + {μνρ} ẋν ẋρ = 0, (5)

where ẋμ ≡ dxμ(τ )/dτ denotes derivation with respect to the 
proper time τ of the test particle. In this set-up, the metric com-
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ponents gμν are the only gravitational degrees of freedom of the 
theory, as parallel transport, and hence also the curvature tensors, 
are completely determined by the metric through the Levi-Civita 
connection (1). Traditionally, differential geometry in manifolds 
equipped with the Levi-Civita connection is referred to as (pseu-
do-)Riemannian geometry.

However, in general in differential geometry, the metric and the 
affine connection are two independent quantities, that in princi-
ple play two different roles. The metric defines distances between 
points in the manifold and angles between vectors in the tangent 
space, while the affine connection provides a way of performing 
parallel transport of vectors and tensors along curves and hence 
defines the intrinsic curvature of the manifold. Only when the con-
nection is chosen to be Levi-Civita (1), both properties are fully 
determined by the metric, which becomes the only dynamical 
quantity in the theory.

One could therefore ask whether there is a reason for the priv-
ileged status of the Levi-Civita connection in standard General Rel-
ativity and whether other choices for the connection are consistent 
and/or physically relevant.

There are clear mathematical reasons to choose the Levi-Civita 
connection. Absence of torsion and metric compatibility (2) are 
attractive mathematical features, which tend to simplify tensor 
identities considerably. Furthermore, the fact that the Levi-Civita 
connection is the only connection that combines these two prop-
erties yields it some kind of preferred status.

At first sight, there are also physical reasons that seem to jus-
tify this choice of connection. The Equivalence Principle, the cor-
nerstone of General Relativity, which states that the gravitational 
force can be locally gauged away by a convenient choice of coor-
dinates, is sometimes summarised mathematically as the property 
that, at any point p of the manifold, coordinates can be found such 
that the affine connection in that point vanishes,2 �

ρ
μν(p) = 0. 

However, it is clear that due to the tensorial character of the non-
metric part of the connection K ρ

μν = �
ρ
μν − {ρμν}, this property can 

only be accomplished if K ρ
μν vanishes identically.

Another feature of non-Levi-Civita connections is that affine 
geodesics and metric geodesics do not (necessarily) coincide and, 
since both types of geodesics have different mathematical mean-
ings, general connections might give rise to potential difficulties as 
it comes to their physical interpretation. Affine geodesics describe 
the straightest possible lines in a given geometry and represent 
the trajectory of unaccelerated particles (particles with covariantly 
constant four-velocities). On the other hand, metric geodesics de-
scribe the critical curve between two points (in the timelike case, 
locally longest for the proper time) and can easily be related to 
the trajectories of minimal action in absence of external forces. If 
both curves do not coincide, it is not clear which trajectory to ad-
scribe to a free particle, but choosing the Levi-Civita connection 
the problem disappears naturally.

As convincing as some of these arguments might sound, the 
Levi-Civita connection (1) still seems to appear as a convenient 
choice, not as a necessary tool. It would therefore be nice if there 
was a more rigorous, mathematical procedure that selects the Levi-
Civita connection amongst other potential candidates.

Such a procedure does in fact exist and is called the Palatini 
formalism3 [2] (as opposed to the metric formalism, which sim-
ply assumes the Levi-Civita connection from the beginning). In 
the Palatini formalism, the connection is assumed to be a general 

2 See, for example, the discussion in [1], pp. 74–75, which uses formula (3.3.7) 
and, thus, (taking into account the version of the principle of equivalence in p. 74), 
arrives at a symmetric connection; however, other approaches allow the existence 
of torsion explicitly, see for example [3, Ch. 4].

3 As stressed in [3, p. 23], such a name is unfortunate, recall [4,5].
affine connection �ρ
μν and hence independent of the metric. The 

starting point of the Einstein–Hilbert–Palatini theory is then the 
Einstein–Hilbert action (4), where now the Ricci tensor is written 
purely in terms of the general connection. On the one hand, the 
Euler–Lagrange equation for the metric yields the Einstein equa-
tion, though in terms of a yet unknown connection, while on the 
other hand the Palatini equation, the equation of motion for the 
�

ρ
μν , imposes conditions on the connection, which are clearly com-

patible with the Levi-Civita connection. The Levi-Civita connection 
arises thus in the Palatini formalism, not as a mere choice, but as 
a solution to the equations of motion, obtained from a variational 
principle, much in the same way as the Einstein equation.

The Palatini formalism has been widely studied in different 
contexts, such as f (R)-gravity, Ricci-squared gravities and other 
extensions of standard General Relativity. For general Lagrangians, 
the Palatini formalism usually admits connections other than Levi-
Civita, with different physics, which might yield alternatives to 
dark matter and/or dark energy or resolution of singularities 
[6–17]. On the other hand, it has also been proven [18–20] that 
within the class of gravity theories with Lagrangians of the form 
L(gμν, Rμνρ

λ) (i.e. Lagrangians that are functionals of metric and 
the curvature tensors, but not of its derivatives), the Palatini for-
malism yields the Levi-Civita connection as a solution only for 
those Lagrangians that are Lovelock gravities (and their equivalent 
Palatini counterparts). In other words, for Lovelock gravities, metric 
formalism is a consistent truncation of the Palatini formalism.

It is sometimes claimed that the Levi-Civita connection is the 
only solution of the Palatini formalism, at least for the Einstein–
Hilbert action. However, this assertion assumes implicitly either 
the symmetry or the metric compatibility of the connection. In 
fact, it has been known [21] (though it is often overlooked) that 
the Einstein–Hilbert action is invariant under the projective sym-
metry

�
ρ
μν → �

′ρ
μν = �

ρ
μν +Aμ δ

ρ
ν , (6)

for an arbitrary vector field Aμ , yielding the latter a gauge charac-
ter. Yet it is [22] that deals with the problem we are interested in: 
the “traditional” Palatini problem of finding the most general con-
nection allowed by the variational principle of the Einstein–Hilbert 
action and its physical and mathematical properties.

As shown in [22], the most general solution for the Palatini 
equation of the Einstein–Hilbert action is given by a family of con-
nections we will refer to as the “Palatini connections”,4

�̄
ρ
μν = {ρμν} +Aμ δ

ρ
ν . (7)

It is clear that the Palatini connections include the Levi-Civita 
connection as a special case, but are generically non-metric com-
patible and non-symmetric. From the physical point of view, the 
connections contain a non-dynamical degree of freedom Aμ , but 
it can easily be shown [22] that the (symmetric part of) the Ricci 
tensor and hence the Einstein equation are not affected by the 
presence of this vector field. Based in this property, the authors 
of [22] argue the vector field Aμ is undetectable and hence that 
the Palatini and the Levi-Civita connections are indistinguishable 
from a physical point of view.

4 For completeness, we point out that the Palatini connection (7) has also been 
studied in [23,24], though in different contexts and with different conclusions to 
ours. Indeed, in [23] a specific quadratic curvature term is added to the Einstein–
Hilbert term, which induces a particular, non-trivial dynamics for the connection, 
while in [24] the Palatini connection is introduced as an auxiliary field in the con-
text of non-symmetric gravity theories. See also [25] for relevant results in the 
context of Massive Topological Gravity.
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Even though we agree with most of interpretation of [22], we 
think that the invariance of the Einstein equation alone is insuffi-
cient to prove the undetectability of Aμ . Indeed, each member of 
the Palatini family not only provides an Einstein equation, but also 
a specific parallel transport and its corresponding geodesics. As 
timelike and null geodesics are the trajectories of free-falling test 
particles, any difference between Levi-Civita and Palatini geodesics 
would be physically observable. Hence, the physical indistinguisha-
bility of the Palatini connection from the Levi-Civita one can only 
be claimed if one succeeds in proving that the (timelike and null) 
geodesics of both connections coincide.

The aim of this paper is to show that the Palatini connections 
are indeed physically indistinguishable from Levi-Civita, not only 
in their Einstein equation, but also in their geodesics. As we will 
see, the parallel transport of the new Palatini solutions is different 
to the Levi-Civita one, but they differ only in a path-dependent ho-
mothety. Precisely this homothety makes that the Palatini and the 
Levi-Civita connections share the same pre-geodesics, i.e. they have 
the same geodesics, up to reparametrisations. As we will show, 
this property is unique for the Palatini connections and provides 
a strong support to the claimed undetectability. At the same time, 
the homothetic difference between the geodesics of both connec-
tions suggests an interpretation for the projective symmetry of the 
Einstein–Hilbert action and the Einstein equations observed on [21,
22] as an unphysical degree of freedom, related to the freedom of 
reparametrisation of the geodesics.

The organisation of this paper is as follows: in Section 2 we 
derive the equations of motion of the Einstein–Hilbert–Palatini 
theory and, for the sake of completeness, we deduce the most 
general solution for the Palatini equation, generically non-metric 
compatible and non-symmetric. In Section 3 we discuss the geo-
metrical properties of the solutions, pointing out the mathematical 
differences between the Palatini and the Levi-Civita connection. In 
Section 4, we argue that the Palatini connections have no observ-
able effects on the physics of solutions and test particle dynamics 
and hence turn out to be indistinguishable from the Levi-Civita 
connection. Finally in Section 5 we propose a physical interpreta-
tion of the Palatini connections and elaborate on what remains of 
the preferred status of the Levi-Civita connection in General Rela-
tivity.

2. The solution

Consider the D-dimensional Einstein–Hilbert action in the Pala-
tini formalism, minimally coupled to a generic matter field φ,

S(g,�) =
∫

dD x
√|g|

[
1

2κ gμν Rμν(�) +LM(φ, g)
]

(8)

where the metric gμν and the connection �ρ
μν are treated as in-

dependent variables. We assume the connection to be completely 
general, without imposing neither symmetry, nor metric compati-
bility, such that the Ricci tensor, in our conventions given by

Rμν(�) ≡ Rμλν
λ(�) = ∂μ�λ

λν − ∂λ�
λ
μν + �λ

μρ �
ρ
λν − �λ

λρ �
ρ
μν,

(9)

is completely independent of the metric. Note that the action (8)
is first order in the connection and zeroth order in the metric 
(in contrast to the metric formalism, where (4) is second order 
in gμν ). In the Palatini formalism it is therefore not necessary 
to include a Gibbons–Hawking–York term [26,27], as there are no 
boundary terms coming from the variation of second order terms.

The Palatini formalism prescribes that the physics of the above 
action is given by the Euler–Lagrange equations of the metric, the 
connection and the matter fields. However, as we assume the mat-
ter Lagrangian to be minimally coupled, the matter equations of 
motion do not couple to the connection and hence, for the pur-
poses we are interested in, in this letter, the matter sector will not 
play any relevant role. Except for its energy–momentum tensor in 
the Einstein equation, we will omit all references to the matter 
fields from now on.

The Einstein equation, the variation of the action with respect 
to the metric, is given by

0 = 2κ√|g|
δS

δgμν
= R(μν)(�) − 1

2 gμν R(�) + κ Tμν, (10)

where R(μν) indicates the symmetric part of the Ricci tensor. On 
the other hand, the variation of the action (8) with respect to 
the connection can be easily done by first computing the Palatini 
Identity, the variation of the Ricci tensor with respect to the con-
nection,

δRμν(�) = ∇μ(δ�λ
λν) − ∇λ(δ�

λ
μν) + T ρ

μλ(δ�
λ
ρν), (11)

where we use ∇ and T ρ
μν to denote the covariant derivative and 

the torsion associated to the connection �ρ
μν respectively. The vari-

ation of (8) is obtained by substituting the Palatini Identity and 
integrating by parts, yielding the Palatini equation (compare with 
[28])

∇λ gμν − ∇σ gσν δ
μ
λ + 1

2 gρτ ∇λgρτ gμν − 1
2 gρτ ∇σ gρτ gσν δ

μ
λ

− T ρ
ρλ gμν + T ρ

ρσ gσν δ
μ
λ + T μ

σλ gσν = 0. (12)

Both the Einstein equation (10) and the Palatini equation (12)
can be simplified: substracting the trace of (10) and the δλ

μ and 
the gμν traces of (12), these equations reduce respectively to

R(μν)(�) = −κ
[
Tμν − 1

D−2 gμνT
]
, (13)

∇λ gμν − T σ
νλ gσμ − 1

D − 1
T σ
σλ gμν − 1

D − 1
T σ
σν gμλ = 0. (14)

The idea is now to solve the Palatini equation for �ρ
μν and sub-

stitute this solution in the Einstein equation to determine the ge-
ometry of the spacetime. Note that the Palatini equation is not a 
dynamical equation for �ρ

μν , but just an algebraic constraint. This 
is due to the fact that there are no kinetic terms for the connection 
in the Einstein–Hilbert action, which in turn is intimately related 
to the fact that the (metric) Einstein–Hilbert action is the first or-
der Lovelock Lagrangian [19].

It is trivial to see that the Levi-Civita connection (1) is a so-
lution of the Palatini equation, as each term in (14) is identically 
zero, due to the necessary conditions (2). It is also straightforward 
to see that (14) forces any symmetric connection to be metric-
compatible and vice versa. Hence assuming any of the two con-
ditions (2) is sufficient in the Einstein–Hilbert–Palatini formalism 
for the connection to be Levi-Civita, as the other one will be auto-
matically imposed by the Palatini equation. However, the question 
remains whether there exist non-symmetric and non-metric com-
patible connections that are solutions of (14).

The Palatini equation (14), being an algebraic equation, is easy 
to solve. In fact, the general solution can be found in the same 
way as the expression (1) for the Levi-Civita connection is deduced 
from the conditions (2). Writing (14) explicitly in terms of the con-
nections and cyclically permuting the free indices, we find

∂λgμν − �σ
λμgσν − �σ

νλ gμσ − 1
D−1 T σ

σλ gμν − 1
D−1 T σ

σν gμλ = 0,

∂μgνλ − �σ
μν gσλ − �σ

λμgνσ − 1 T σ
σμ gνλ − 1 T σ

σλ gνμ = 0,
D−1 D−1
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∂ν gλμ − �σ
νλgσμ − �σ

μν gλσ − 1
D−1 T σ

σν gλμ − 1
D−1 T σ

σμ gλν = 0.

(15)

Adding up the last two equations and subtracting the first one, 
we find that the connection �ρ

μν can be expressed in terms of the 
trace of its torsion and the Levi-Civita connection:

�
ρ
μν = {ρμν} − 1

D−1 T σ
σμ δ

ρ
ν . (16)

Using group-theoretical arguments, it is easy to see that the trace 
of the torsion can be fully represented by a D-dimensional vector, 
T σ
σμ = −(D − 1) Aμ . We conclude therefore that the most general 

solution of the Palatini equation (14) can be written in the form 
(see also [21–24])

�
ρ
μν = �̄

ρ
μν ≡ {ρμν} +Aμ δ

ρ
ν , (17)

with Aμ an arbitrary, non-dynamical vector field. Note that the 
Levi-Civita connection is trivially recovered, choosing Aμ = 0. 
From the construction it is clear that (17) is indeed the most gen-
eral solution to the Palatini equation (14).

3. Geometrical properties

Now that we have found the most general solution (17) to 
the Palatini equation, we will study in this section its geometri-
cal properties and give a physical interpretation in the next one.

As we mentioned in the construction, the (non-trivial, i.e. non-
Levi-Civita) Palatini connections (17) are neither symmetric, nor met-
ric compatible, the generalisation of (2) being

T̄ ρ
μν = Aμ δ

ρ
ν −Aν δ

ρ
μ, ∇̄μgνρ = −2Aμ gνρ. (18)

The corresponding curvature tensors are given by

R̄μνρ
λ = Rμνρ

λ(g) + Fμν(A) δλ
ρ,

R̄μν = Rμν(g) + Fμν(A), R̄ = R(g), (19)

where Rμνρ
λ(g), Rμν(g) and R(g) are respectively the Riemann 

tensor, the Ricci tensor and the Ricci scalar with respect to the 
Levi-Civita connection, R̄ = gμν R̄μν the Ricci scalar associated to 
R̄μν and Fμν(A) = ∂μAν − ∂νAμ .5 Note that the Riemann and 
Ricci tensors (19) do not satisfy the symmetry properties of their 
Levi-Civita counterparts, due to (18). Yet it is interesting to notice 
that the symmetric part of the Ricci tensor, the one determined by 
the Einstein equations, coincides precisely with the Ricci tensor of 
the Levi-Civita connection: R̄(μν) = Rμν(g).

A remarkable property of the Palatini connections (17) is that 
affine geodesics turn out to be pregeodesics of the Levi-Civita connection
(i.e. they describe the same trajectories in the manifolds, though 
with a different parametrisation). Indeed, the affine geodesic equa-
tion for the Palatini connections, ẋρ ∇̄ρ ẋμ = 0, written in terms of 
{ρμν} and Aμ , take the form

ẋρ∇(g)
ρ ẋμ = −Aρ ẋρ ẋμ, (20)

where ∇(g) denotes the covariant derivative with respect to the 
Levi-Civita connection. The equation of all (non-lightlike) pre-
geodesics can be derived as an extremum of the arc length func-
tional

5 The way the vector field Aμ appears in the curvature tensors reminds strongly 
of the electromagnetic field strength tensor Fμν = ∂μ Aν − ∂ν Aμ in Maxwell theory, 
as the curvature tensors are invariant under the transformation Aμ → Aμ + ∂μ�. 
This is the reason why Aμ is interpreted as a U (1) gauge field in [23], even though 
the torsion and the parallel transport are not. We will show that Aμ is not a 
Maxwell-like gauge field, but that the whole of Fμν is undetectable.
s(λ) =
λ∫

0

√
|gμν ẋμ ẋν |dλ′, (21)

where ẋμ ≡ dxμ(λ′)/dλ′ denotes derivation with respect to an ar-
bitrary parameter λ′. Extrema of this functional in general take the 
form

ẋρ∇(g)
ρ ẋμ =

( s̈

ṡ

)
ẋμ, (22)

but the equation (20) can be recovered with the specific parameter 
choice

s(λ) =
λ∫

0

e−G(λ′) dλ′ with G(λ) =
λ∫

0

ẋρAρ dλ′. (23)

This observation proves the two points mentioned above: first 
of all that (20) can be interpreted as both the equation of 
the geodesics of ∇̄ and the equation of a particular type of 
reparametrisations of the Levi-Civita geodesics. Secondly, that the 
right-hand side of (20) can be absorbed in a conveniently chosen 
(though geodesic-dependent) reparametrisation of the geodesics. 
In particular, (20) can be transformed into the geodesic equation 
of the Levi-Civita connection (5) through the change of parameter

dxμ(λ)

dλ
= dxμ(τ )

dτ

dτ

dλ
with

dτ

dλ
= e−G(λ). (24)

Summing up, the curves described by (5) and by (20) yield the 
trajectories of the geodesics, with different parametrisations con-
trolled by (24).

The Palatini connections (17) are not the only connections that 
have the same pregeodesics as {ρμν}. Indeed, affine connections 
with the same pregeodesics are called projectively related and any 
affine connection projectively related to Levi-Civita’s has the form 
�̃

ρ
μν = {ρμν} +Aμδ

ρ
ν +Bνδ

ρ
μ [29]. However it is interesting to notice 

that the curvature tensors coming from this connection have more 
complicated expressions than the ones given in (19). For example, 
the Riemann tensor associated with �̃ρ

μν is given by

R̃μνρ
λ = Rμνρ

λ(g) + Fμν(A) δλ
ρ + (∇μBρ − BμBρ) δλ

ν

+ (∇νBρ − BνBρ) δλ
μ. (25)

Notice in particular, that the symmetric part is of the Ricci tensor 
in general does not coincide with the Levi-Civita Ricci tensor.6

Since the Palatini geodesics are pregeodesics of the Levi-Civita 
ones, it should be clear that they have the same geodesic deviation 
(modulo the pointwise direction of the velocity of the geodesic), 
as their trajectories in the spacetime manifold coincide. However 
this can also be made explicit, starting from the geodesic devia-
tion equation for the arbitrary connections (see for example [30]), 
applied to the Palatini connections (17),

∂xμ

∂λ
∇̄μ

[
∂xν

∂λ
∇̄ν

∂xα

∂η

]
+ R̄μνρ

α ∂xμ

∂η
∂xν

∂λ
∂xρ

∂λ
− ∂xν

∂λ
∇̄μ

[
T̄ α
νρ

∂xν

∂λ
∂xρ

∂η

]

= 0, (26)

and seeing that its maps to the geodesic deviation equation for the 
Levi-Civita connection,

6 It does if and only if Bμ satisfies the condition ∇μBν = BμBν . This a well-
known condition of recurrence, see [31] or [32]. However this particular condition 
breaks the generic character of the projectively related connections. Indeed, it is not 
difficult to show that such a Bμ implies the existence of a parallel (covariantly con-
stant) 1-form Pμ , pointwise proportional to Bμ . We will briefly comment on this 
case later in this paper.
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∂xμ

∂τ ∇μ

[
∂xν

∂τ ∇ν
∂xα

∂σ

]
+ Rμνρ

α ∂xμ

∂σ
∂xν

∂τ
∂xρ

∂τ = 0, (27)

under the reparametrisation

∂xμ

∂λ
= ∂τ

∂λ

∂xμ

∂τ
,

∂xμ

∂η
= ∂τ

∂η

∂xμ

∂τ
+ ∂xμ

∂σ
, (28)

where τ = τ (λ, η) is defined as

τ (λ,η) =
λ∫

0

e−G(λ′,η)dλ′ with G(λ,η) =
λ∫

0

ẋρAρ dλ′.

(29)

Hence, the Palatini and the Levi-Civita connections have the same 
geodesic deviation, as solutions of (26) are also solutions of (27)
and vice versa.

Another remarkable property of the Palatini connections is that 
its parallel transport becomes homothetic with respect to the Levi-Civita 
connection. From the very definition of the Palatini connections 
(17), it is clear that the difference between parallel transport of 
a vector V μ along a curve xμ = xμ(λ) according to �̄ρ

μν and ac-
cording to {ρμν} is proportional to the vector itself:

ẋρ∇̄ρ V μ − ẋρ∇(g)
ρ V μ = ẋρAρ V μ. (30)

Concretely this means that the result of parallelly transporting vec-
tors with the Levi-Civita or with the Palatini connections leads to 
different results, but the resulting vectors only differ in their norm 
(or, more properly for the lightlike case, in a proportionality coef-
ficient). Indeed, if V μ

g (λ) is the result of parallel transport along 
a curve xμ = xμ(λ) according to {ρμν}, then the result of parallel 
transport along the same curve according to �̄ρ

μν is given by

V μ

�̄
(λ) = e−G(λ) V μ

g (λ), (31)

with G(λ) given by (23). Note that the proportionality coefficient 
depends on the curve xμ = xμ(λ), but not on V μ . We therefore 
have that Palatini transport is equal to Levi-Civita transport, com-
posed by a homothety of ratio e−G(λ) .

The property of non-constant norm under parallel transport is a 
consequence of the fact that the Palatini connections are not met-
ric compatible. A general feature of non-metric compatible connec-
tions is that parallel transport does not conserve the scalar product 
of vectors. For the Palatini transport of two vectors V μ and W μ , 
we have that

ẋρ∇̄ρ(gμν V μW ν) = ẋρ∇̄ρ gμν V μW ν = 2 ẋρAρ VμW μ

= 2 G ′(λ) VμW μ. (32)

The Palatini connections (17) are the only connections yielding 
this homothety property under parallel transport for all vectors along 
any curve.7 Indeed, an arbitrary connection �ρ

μν = {ρμν} + K ρ
μν with 

an arbitrary tensor K ρ
μν yields homothetic parallel transport with 

respect to Levi-Civita if and only if

ẋν K μ
νρ V ρ = f (λ) V μ, (33)

for some function f (λ), which may depend on the curve followed. 
The above expression is true for all vectors V μ , if and only if 

7 It is worth pointing out that Palatini connections present some formal analo-
gies with the standard volume-preserving connections, exhibited in [33, sections 3.10, 
3.12] as a natural example of connections arising from a decomposition in “Rieman-
nian and post-Riemannian pieces”. However, ours are allowed to have a non-volume 
preserving transport and a non-symmetric Ricci tensor.
ẋν K μ
νρ = f (λ)δ

μ
ρ . The homothety condition (33) can therefore be 

written as

ẋν K μ
νρ = ẋνAν δ

μ
ρ . (34)

Then it is easy to see that, in order for this identity to be true 
for all curves xμ = xμ(λ), we must have that K μ

νρ = Aν δ
μ
ρ and 

hence that �ρ
μν = �̄

ρ
μν . In particular, the Levi-Civita connection can 

be characterised as the unique symmetric connection such that its 
parallel transport becomes a metric homothety (which turns out 
trivial, i.e., a isometry). As a last remark, notice also that to take 
only curves xμ that are timelike is enough to prove all these char-
acterisations regarding homotheties.

4. Physical observability

Let us briefly summarise the main results of the previous sec-
tions. We found that the most general solution to the Palatini 
equation (14) is given by the family of Palatini connections (17),

�̄
ρ
μν = {ρμν} +Aμ δ

ρ
ν , (35)

yielding curvature tensors (19) that only differ from the Levi-Civita 
tensor by terms involving Fμν(A). In particular, the symmetric 
part of the Ricci tensor is identical to the Levi-Civita Ricci tensor,

R̄(μν) = Rμν(g). (36)

Furthermore, we have found that the Palatini connections (35)
are unique in two ways:

• �̄
ρ
μν are the only connections that, for a given metric gμν have 

the same pregeodesics as {ρμν} and at the same time satisfy the 
relation (36) between its Ricci tensor and Rμν(g).8

• �̄
ρ
μν are the only connections whose parallel transport of any 

vector along timelike curves (and, then, along any curve) is 
homothetic to the Levi-Civita transport.

Given that the Palatini connections are mathematically clearly 
different from the Levi-Civita connection, one wonders whether it 
would also lead to different physics and, in case it does, whether 
(any of) these connections describe correctly our universe. The 
question is especially important in the light of the issue about the 
preferred status of the Levi-Civita connection in General Relativ-
ity. If the Palatini connections have physically observable effects, 
then the question remains why Levi-Civita is singled out, as there 
seems to be no experimental or observational evidence that sup-
ports the existence of a non-trivial vector field Aμ . On the other 
hand, if the Palatini connections turn out to be physically indistin-
guishable from the Levi-Civita connection, then there seems to be 
a surprising “duality symmetry” (rather than the commented U (1)

gauge invariance pointed out in [23]), that relates mathematically 
different spaces as physically equivalent.

In our opinion, the first uniqueness property of the Palatini con-
nections stated above, suggests the latter possibility, namely, the 
physical indistinguishability of all the Palatini connections at least 
in “rough” physics, i.e. at the level of the solutions of the Einstein 
equations and the dynamics of test particles.

8 With the exception of the connection �̃ρ
μν = {ρμν } +Bνδλ

μ with ∇μBν = BμBν , 
as explained in footnote 6. These connections appear only when there exists a par-
allel Pμ and, then, one can write locally Pμ = dx and Bμ = dx/(1 − x). When Pμ

is not lightlike then the spacetime decomposes as a product N × R and x can be 
regarded as a natural coordinate on R. When it is lightlike, then the spacetime be-
comes a Brinkmann space (see [34]) and x can be regarded as a natural lightcone 
coordinate u. This shows the exceptionality of these connections “physically indis-
tinguishable to Levi-Civita, but not Palatini.”
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First of all, the fact that the symmetric part of the Ricci tensor 
of the Palatini connection coincides exactly with the Ricci tensor 
of the Levi-Civita connection implies that the explicit form of the 
Einstein equation is independent of the choice of Aμ: any metric 
gμν that, for a given minimally coupled Tμν , is a solution of the 
Einstein equations (13) with �ρ

μν = �̄
ρ
μν , is also a solution of the 

same Einstein equations with �ρ
μν = {ρμν}, and vice versa. Further-

more, these solutions coincide with the solutions of the Einstein 
equation (3) in the metric formalism, which proves the complete 
equivalence of both formalisms at the level of the solutions.

The invariance of the Einstein equation was already pointed out 
in [22]. However, under our viewpoint, this property alone is not 
enough to ensure the undetectability of Palatini connections, as 
it does not take into account an important issue in gravitational 
physics: the dynamics of test particles. Notice that if the arguments
of [22] were sufficient, one should consider as physically indis-
tinguishable from Levi-Civita all the affine connections that leave 
the symmetric part of the Ricci tensor invariant, whether they are 
solutions to the Palatini equation (14), or not. However, such con-
nections would have their own geodesics, which may be very dif-
ferent to Levi-Civita ones. A trivial counterexample in Minkowski 
spacetime would be the affine connection whose components �̂ρ

μν

in natural coordinates all vanish except �̂1
00 = 1. Obviously, this 

connection is flat (and hence has the same Ricci tensor as the Levi-
Civita connection). Yet, the curve xμ(λ) = λ δμ

0 , being a geodesic for 
the Levi-Civita connection but not for �̂ρ

μν , would represent two 
physically clearly distinguishable situations (free fall and acceler-
ated motion) depending of the choice of the connection.

It is therefore necessary to consider not only the invariance of 
the Einstein equations, but also the equivalence of the geodesic 
motion of both connections. As we have shown, this is indeed the 
case, thanks to the fact that the (timelike) geodesics of the Pala-
tini connection are pregeodesics of the Levi-Civita connection. In 
other words, the spacetime trajectories of free-falling test parti-
cles for the Palatini connection are the same as the ones described 
for Levi-Civita. As the latter respect the Equivalence Principle, so 
does the former: for any of the two connections considered, the 
outcome of any local experiment in a free falling system will 
be independent of the velocity and the location of the system 
in spacetime. Furthermore, also all non-local effects, which show 
up in tidal forces, will be the same for both connections, as the 
pregeodesic deviation equations for the two cases are equivalent. 
Hence we find that also at the level of the motion of test particles, 
the physics of the Palatini connections is indistinguishable from 
standard physics.9

On the other hand, the second characterisation of the Pala-
tini connections needs a subtler analysis. One might argue that 
there must be physical effects that become visible in the parallel 
transport of vectors: as in general the results of parallel trans-
port according to the Palatini and the Levi-Civita connection do not 
agree, the comparison of vectors in different points of the space-
time manifold will lead to different results, when performed with 
one connection or the other. In particular, one can think of con-
figurations that would be static according to one connection, but 
not according to the other. A vector field V μ(λ), representing some 
physical magnitude that evolves according to the equations of mo-
tion of the system with initial conditions V μ(λ0), is said to be 
unchanged by the evolution of the system if its value V μ(λ1) for 
that magnitude at a given time λ1 is identical to the parallel trans-

9 In this light, it can be argued that the mathematical formulation of the Equiv-
alence Principle should not be, as stated in the introduction, that the connection 
should be Levi-Civita, but rather that the connection should have the same pre-
geodesics as Levi-Civita.
port of V μ(λ0) to λ1. Now, let V μ
g (λ) and V μ

�̄
(λ) be the results of 

parallel transport of V μ(λ0) according to the Levi-Civita and the 
Palatini connections respectively. As in general V μ

g (λ) and V μ

�̄
(λ)

will be different, V μ
g (λ1) − V μ(λ1) and V μ

�̄
(λ1) − V μ(λ1) will not 

be simultaneously zero. The concept of staticity is therefore as 
much related to the choice of connection, as it is to the dynam-
ics of the system. So, in principle, one could think that the parallel 
transport should be observable.10 However, we believe that it is 
precisely the homothetic property of the Palatini connection that 
turns the Palatini and the Levi-Civita parallel transports indistin-
guishable.

As we have seen in Section 3, the Palatini and the Levi-
Civita transports are homothetic, such that in general V μ

g (λ1) and 
V μ

�̄
(λ1) only differ by a (curve-dependent) overall factor, as shown 

in (31). Configurations that are static according to one connection, 
would with respect to the other also appear static, up to a homo-
thety. In other words, there are no additional “curvature effects” 
associated to the Palatini transport, except for a change of norm of 
the transported vector. Traditionally, the latter would be of course 
interpreted as non-staticity, but that is due to the fact that we are 
used to work with metric compatible connections, where the in-
variance of the norm under parallel transport is guaranteed. The 
real question is whether the norm of a parallel transported vector 
can be physically detected in an experiment, or whether it is just 
a (useful) mathematical construction to understand the theory.

Traditionally, in General Relativity it assumed that one can de-
fine a unit measure in any point, by defining it in one point and 
then transporting the measurement instrument (say a rod), us-
ing the Levi-Civita connection. The rod is assumed to maintain 
its length, as the different particles constituting the rod do not 
obey the geodesic deviation equation, as they feel the electromag-
netic or nuclear forces of the neighbouring particles, which, except 
for the cases of extreme tidal forces, are much stronger than the 
curvature effects. When on the other hand, the Palatini connec-
tion is used, it seems reasonable to argue that the same physical 
arguments hold: the main forces acting on the individual parti-
cles of the instruments are not the geometrical ones, but the ones 
created by neighbouring particles.11 Since the non-gravitational 
physics is unaffected as long as we are working with minimally 
coupled matter Lagrangian’s, as we argued above, it seems rea-
sonable to conclude that the homothetic character of the Palatini 
parallel transport, rather than an experimentally measurable prop-
erty, becomes a mathematical issue to be taken into account when 
counting the descriptions of the same mensurable system.

Finally, one could wonder whether the Palatini connection 
could give rise to observable quantum effects. A well-known ex-
ample in quantum mechanics is the Aharonov–Bohm effect, where 
topologically distinct gauge fields Aμ give rise to physically dif-
ferent situations, even though they yield the same field strength 
tensor Fμν(A). However we believe that in our case there are 
no observable quantum effects associated to the vector field Aμ: 
any field configuration for Aμ can be reabsorbed in a geodesic 
reparametrisation (23), independently of its field strengths Fμν(A)

and independently of the topological class the specific field config-
uration belongs to. In other words, in contrast to Maxwell theory, 
any choice of Fμν(A) is a gauge choice.

10 Weyl connections (introduced from different physical grounds, see [35]) also 
leaded to a parallel transport different to Levi-Civita’s. The detectability of this 
transport was essential in that theory, and its consequences were criticised by Ein-
stein. Notice, however, that Weyl tried to unify electromagnetism and gravity, while 
Palatini connections emerge even when only the gravitational interaction is taken 
into account.
11 Note this important difference with Weyl’s connections cited in footnote 10.
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5. Interpretation and conclusions

The most general affine connection allowed by the Palatini for-
malism in the Einstein–Hilbert action (allowing also minimally 
coupled matter terms) is given by the non-symmetric and non-
metric compatible connection

�̄
ρ
μν = {ρμν} +Aμ δ

ρ
ν , (37)

with Aμ an arbitrary non-dynamical vector field. We have shown 
that the family of Palatini connections is furthermore unique in 
two ways, first of all because it is the only connection (up to the 
exceptional case of footnote 8) that has the same pregeodesics as 
Levi-Civita and at the same time conserves the form of the Einstein 
equations and secondly because it is the only connection that pro-
vides a parallel transport of vectors that is homothetic to the Levi-
Civita transport along any curve. We have proven in the previous 
sections that this connection does not lead to physically observable 
effects at the level of the Einstein equations or the trajectories of 
test particles and we have argued that most likely neither it does 
when comparing the results of parallel transport of vectors. As the 
Palatini connections are the unique ones that preserve this basic 
physics (Einstein equations and pregeodesics), the Palatini approach 
yields an exact variational characterisation of such basic physics.

So, if our interpretation is correct and the Palatini connections 
indeed turn out to be unobservable in all physical situations, then 
this would hint to a kind of duality (beyond the gauge symmetry 
as stated in [23] or the invariance of the Einstein equation in [22]) 
between spacetimes with different geometrical properties, as these 
would all display the same physics. In mathematical terms, this 
would mean that for every (pseudo-)Riemannian geometry that is 
a solution of the minimally coupled Einstein equations, there is 
a family of non-(pseudo-)Riemannian geometries that are mathe-
matically distinct, but physically indistinguishable.

Probably the best way to see the geometrical origin of the Pala-
tini connection is looking at the geodesic equation (22) and its 
functional (21). When λ is chosen to be an affine parametrisa-
tion (proper time, in physics language), then the geodesic equation 
acquires its standard form (5). But when any other parametrisa-
tion is chosen, extra parametrisation-dependent terms appear in 
the equation for the pregeodesics. We have shown that these extra 
terms can be written as a scalar product ẋρAρ between the veloc-
ity of the curve and some specific vector field Aρ , independent of 
the curve, which in turn can be combined with the Levi-Civita con-
nection and be interpreted as a new, mathematically inequivalent 
connections �̄ρ

μν . It is therefore as if the Palatini formalism allows 
its users to freely choose the parametrisation of their geodesics, 
providing as solutions of the variational principle those connec-
tions that under reparametrisation yield the standard Levi-Civita 
geodesics with affine parametrisation (5). However, notice that dif-
ferent non-symmetric connections have the same geodesics (as the 
latter only depend on the symmetrised part of the former) and 
then not all connections projectively related to Levi-Civita are al-
lowed. Indeed, in order for the physics to be invariant, it is not 
enough that the new connection has the same pregeodesics, but 
also that the curvature tensors change in such a way that the 
Einstein equations are invariant. And as we have seen, the only 
connections that can do this, are precisely those selected by the 
Palatini formalism.12

Summing up the answer to our original problem is a bit subtler 
than expected: not only the Levi-Civita connection, but the entire 

12 With the noteworthy exception of the connection �̃
ρ
μν = {ρμν } + Bνδ

ρ
μ with 

∇μBν = BμBν . We do not have a clear interpretation of this specific case and leave 
the matter for future investigation.
family of Palatini connections are singled out by the variational 
principle and from a mathematical point of view, so there is no 
reason to assign a preferred status to Levi-Civita. However, since 
all Palatini connections lead to the same “rough” physics, the Levi-Civita 
connection has the virtue of being the simplest representative of a class 
of physically indistinguishable connections.

We wish to emphasise that strictly speaking we can only make 
a hard statement about the observability of the vector field Aμ

in the realm of “rough” physics, not excluding completely that the 
presence of Aμ might acquire a physical meaning in subtler situ-
ations. However, if this were the case, we can not stop wondering 
why there is no experimental evidence for the existence of this 
vector field in our universe. We leave these possible effects for fu-
ture investigations.

There are a number of ways the results of this letter can be ex-
tended. In the first place, it would be interesting to see whether 
the presence of Aμ could be detected in more complicated situ-
ations, such as for example non-minimal couplings, higher curva-
ture terms or in a Jordan frame. Secondly, an obvious question is 
whether the Palatini connection as the most general solution to 
the variational principle is limited to the Einstein–Hilbert actions, 
or whether it also appears in different theories. It is well known 
that the metric and the Palatini formalisms are equivalent for Love-
lock gravities, in the sense that the Levi-Civita connections appear 
as a solution to the Palatini equation for these theories. However, 
it is not clear whether it is a unique solution and, if not, whether 
the Palatini connections appear also as an allowed solution by the 
variational principle (as far as we know, the only results in this di-
rection appear in [21,22]). Answering this question would also give 
hints on whether there are physically observable effects associated 
with the Palatini connections. Work on these topics by some of the 
authors is in progress.
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