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Abstract: Based on their composition, marine algae, and namely red seaweeds, are good 

potential functional foods. Intestinal mucosal barrier function refers to the capacity of the 

intestine to provide adequate containment of luminal microorganisms and molecules. Here, 

we will first outline the component of seaweeds and will summarize the effects of these  

on the regulation of mucosal barrier function. Special attention will be paid to unique 

components of red seaweeds: proteins and derived peptides (e.g., phycobiliproteins, 

glycoproteins that contain “cellulose binding domains”, phycolectins and the related 

mycosporine-like amino acids) together with polysaccharides (e.g., floridean starch and 
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sulfated galactans, such as carrageenans, agarans and “DL-hybrid”) and minerals. These 

compounds have been shown to exert prebiotic effects, to regulate intestinal epithelial cell, 

macrophage and lymphocyte proliferation and differentiation and to modulate the immune 

response. Molecular mechanisms of action of peptides and polysaccharides are starting to 

be elucidated, and evidence indicating the involvement of epidermal growth factor receptor 

(EGFR), insulin-like growth factor receptor (IGFR), Toll-like receptors (TLR) and signal 

transduction pathways mediated by protein kinase B (PKB or AKT), nuclear factor-κB  

(NF-κB) and mitogen activated protein kinases (MAPK) will also be summarized. The 

need for further research is clear, but in vivo experiments point to an overall antiinflammatory 

effect of these algae, indicating that they can reinforce membrane barrier function. 

Keywords: red seaweeds; sulfated galactans; bioactive peptides; Rhodophyta; mucosal 

barrier function; immunomodulation; cell differentiation; cell proliferation; NF-κB; MAPK 

 

1. Introduction 

Seaweeds represent a considerable part of the ocean biomass (mainly located on the coastline) and 

their use as food dates back to 2700 BC in China [1]. This practice remains widespread currently in 

Eastern countries such as China, Japan, Korea, etc. [2]. However, in Western countries, direct human 

consumption is unusual due to cultural reasons and consumer habits. In this regard, the main use in 

these countries is as source of hydrocolloids and their subsequent application as thickeners and gelling 

agents in the food industry [3]. The potential production of bioactive compounds is another use, 

introduced in the market by the pharmaceutical and/or cosmetic industry [4]. 

Recently, it has been shown that the consumption of seaweed in Asian countries is associated with  

a low incidence of cancers compared to European and North American countries [5]. Furthermore, 

other putative beneficial health effects have been identified, such as decreased blood pressure and 

blood sugar, anti-inflammatory, immunomodulatory and neuroprotective effects, among others. A 

mechanistic link has been proposed due to the presence in algae of different bioactive compounds, 

including sulfated polysaccharides, polyphenols, carotenoids, amino acids, proteins/peptides and  

lipids [6]. Because of their substantial diversity and composition, red seaweeds (i.e., Rhodophyta) have 

aroused significant interest in the food and the pharmaceutical industry for the search of new natural 

nutrients and bioactive compounds. It is noteworthy that, among seaweeds, red algae contain high 

amounts of carbohydrates, proteins and minerals [7]. Specific functional properties have been 

attributed to Rhodophyta proteins/peptides and polysaccharides because of their unique composition. 

Indeed, these polysaccharides have chemical structures and physicochemical properties that differ 

substantially from those of land plants [8]. 

Recently, the concept of intestinal mucosal barrier function (MBF) has gained much attention. 

Intestinal MBF is the capacity of the intestine to provide adequate containment of luminal microorganisms 

and molecules while preserving the ability to absorb nutrients. The link between alterations in the 

intestinal MBF and intestinal diseases has been known for a while. For instance, increased intestinal 

permeability or dysbiosis (alterations in the composition of the intestinal microbiota, itself a component 
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of the mucosal barrier) have been related to irritable bowel syndrome (IBS) or inflammatory bowel  

disease [9,10]. Interestingly, recent advances have also shown that systemic diseases, like metabolic 

syndrome, allergy, chronic kidney disease or hepatic inflammation, can be related to modifications in 

intestinal MBF [11–14]. Therefore, MBF could be an important target to prevent or treat these 

diseases. Based on their prebiotic, antioxidant or immunomodulatory properties, red seaweeds and 

their components may be considered as functional foods that can modify MBF components in  

an advantageous way. Here, we discuss red seaweed composition and summarize recent advances in 

the study of functional properties of red seaweeds, focusing on those related to modulation of intestinal 

MBF. Special attention is paid to red seaweed proteins and polysaccharides because of their specific 

structure and composition. 

2. Red Seaweed Composition 

Red seaweeds or Rhodophyta (from the Greek rhodo- “rose” and -phyta “plant”), are 

phylogenetically very old organisms, having many peculiarities in morphology and mode of 

reproduction [15]. They are classified as non-vascular plants from the Primoplantae clade and belong 

to a group of around 6100 species with a wide variety of shapes and sizes. Rhodophyta are 

photosynthetic, lack flagella and contain chlorophyll a and d, as well as accessory pigments such as 

carotenoids and phycobiliproteins (phycoerythrin, phycocyanin, and allophycocyanin) [16]. As noted, 

red seaweeds have a unique polysaccharide composition and do not have starch in chloroplasts, using 

floridean starch from cytoplasm as reserve [17]. 

Although red seaweeds are found in all latitudes, there is a marked abundance in equatorial regions. 

There are few species in polar and sub-polar regions, where brown and green algae predominate. 

Larger species of red algae with massive thalli appear in cold and temperate areas, while in tropical 

seas red algae are mainly small filamentous plants. Rhodophytas have greater ability to live at great 

depths than other algae groups and they can grow at up to 200 m deep, a skill related to the presence of  

accessory pigments [18]. 

3. Red Algae Cell Wall Components 

The cell wall of red seaweeds accounts for up to 65% (w/w) of dry matter and comprises three 

domains: fibrillar wall, amorphous matrix and glycoprotein domain. The fibrillar polysaccharides and 

glycoprotein domains form a reticulated cell wall which is embedded in the amorphous matrix. 

Fibrillar polysaccharides are the most inert and resistant cell wall component, with cellulose being the 

most important element. The backbone of cellulose is D-glucose units linked by β-(1→4) bonds. In 

some cases cellulose may be substituted by polymers containing β-D-mannose or β-D-xylose units 

linked by β-(1→4) or β-(1→3) bonds, respectively [19]. The glycoprotein domain is little known, but 

it is constituted by glycoproteins that contain “cellulose binding domains” which promote crosslinking 

of polysaccharide fibers. Finally, the amorphous matrix consists of sulfated galactans, polysaccharides 

that contain multiple units of the monosaccharide galactose with sulfate ester, such as carrageenans, 

agarans and “DL-hybrid” [20], and usually extends to intercellular spaces between adjacent cells. These 

polysaccharides are named phycocolloids for their ability to form aqueous gels [21]. The sulfated 

galactans that form the amorphous matrix have a structure based on the repetition of two different 
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subunits, A and B. The A unit is formed by β-galactose residues with D-conformation, while the B unit 

consist of α-galactose residues with D and L conformation in carrageenans and agarans, respectively. 

Both form a linear backbone of alternating 3-linked β-D-galactopyranose and 4-linked α-galactopyranose 

residues. In some cases, the B unit may exist in the form of 3,6-anhydrogalactopyranose. Various 

hydroxy groups may be substituted by ester sulfate, methyl groups, pyruvic acid acetal and sometimes 

by additional monosaccharides [20,22]. 

Carrageenans are mainly synthesized by read algae of the Gigartinales order (Gigartina, Chondrus 

crispus, Eucheuma and Hypnea), although they also appear in other Rhodophyta species [23]. They 

have a β-D-galactopyranose repetitive basic structure (A unit) and an α-D-galactopyranose (B unit)  

(Figure 1A). The degree of sulfation is higher than that of agarans [20]. The carrageenans structure is 

defined by the number and position of sulfate groups, the presence of 3,6-anhydro-D-galactose and  

the pyranosidic ring conformation [24]. There are about 15 prototypic carrageenan structures 

traditionally identified by Greek letters, of which the ones with the largest commercial interest are 

kappa (κ)-, iota (ι)- and lambda (λ)-carrageenan [20]. Their differences in chemical composition and 

configuration are responsible for their interesting rheological properties which make them useful as 

gelling, stabilizing and thickening agents in the food, pharmaceutical and cosmetics industry [21].  

It is noteworthy that the red seaweed carrageenans may be chemically modified with one or more 

substitutions in the same molecule in different ratios, resulting in new types of carrageenans called 

“hybrid carrageenans”. 

 

Figure 1. Carragenan (A), porphyran (B) and mycosporine-like amino acid structure. 

All carrageenans are water soluble, and insoluble in organic solvents, oil or fats. Water solubility is 

modulated to a great extent by the amount of sulfate groups present in the molecule, which augment 

hydrophilicity, and by their associated cations. The main cations found in carrageenans are sodium, 

potassium, calcium and magnesium, but other ions can also occur at lower frequency. The proportion 

of sulfate fractions and the equilibrium of cations in the water solution determine the viscosity of 
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solutions or strength of gels formed by carrageenans [23]. Therefore, these are important factors for 

food and pharmaceutical industries that, as stated above, use carrageenans as thickening, gelling, and  

stabilizing agents. 

Agarans are mainly synthesized by red seaweeds belonging to the Pyropia, Gelidium, Gracilaria and 

Pterocladia genera [3]. Agarans are composed mainly of the alternating 3-linked-β-D-galactopyranose unit 

(A unit) and the 4-linked-3,6-anhydro-α-L-galactopyranose unit (B unit) [3]. Structural variability is 

provided by the presence of substituent groups such as sulfate, methoxy and pyruvic [25]. Agarans 

synthesized by the Pyropia, Porphyra and Bangia genera are generically called porphyrans [26].  

Their basic structure is similar to that of agarose, where the A unit can be formed by β-D-galactose  

and 6-O-methyl-β-D-galactose, while the B unit may be α-L-galactose, α-L-galactose-6-sulfate or  

3,6-anhydro-α-L-galactose (Figure 1B) [27]. Thus porphyrans are characterized by a high substitution 

pattern in the A unit and at least a 50% B unit substitution [28]. These polysaccharides comprise the 

hot water soluble portion of the cell wall and are the main components of marine red algae [27]. 

4. Cytoplasm and Chloroplasts Components 

4.1. Mycosporine-Like Amino Acids 

Mycosporine-like amino acids (MAAs) are secondary metabolites of low molecular weight (<400 Da) 

which are composed by a cyclohexenone or cyclohexenimine chromophore conjugated with the 

nitrogen substituent of an amino acid or its imino alcohol. MAAs have a high denaturation temperature 

and are water soluble due to their ampholyte nature, and display absorption maxima ranging from  

310 to 362 nm [29,30]. Generally, the ring system contains a glycine subunit linked to the third carbon 

atom. Some MAAs also contain sulfate esters or glycosidic linkages through the imine substituents. 

Differences between the absorption spectra of MAAs are due to the attached side groups and nitrogen 

substituents. They also have high photostability and low fluorescence emission [31]. 

Up to 23 MAAs from different marine organisms have been described, such as deoxygadusol, 

asterina-330, mycosporine-glycine, porphyra-334, mycosporine-2-glycine, etc. (Figure 1C) [32]. The 

biosynthesis has been predicted to occur via the first part of the shikimate pathway, but conclusive 

evidence is lacking. It has been found that 3-dehydroquinate, which is formed in the central steps of 

the shikimate pathway, acts as a precursor for the synthesis of fungal mycosporines and MAAs via 

gadusols. The primary MAA mycosporine-glycine, synthesized in the shikimate pathway, is then 

transformed into other secondary MAAs [33]. It is important to note that red seaweeds biosynthesize 

MAAs while other marine organisms acquire MAAs through the diet or by symbiotic or bacterial 

associations [30]. 

4.2. Proteins 

It is well known that red seaweeds have high protein levels [34]. Reports have shown that these 

seaweeds have almost 47% w/w of dry matter [35]. In contrast, green algae contain moderate amounts 

(9–26 g protein 100 g−1 dry weight), while brown algae display much lower protein contents (3–15 g 

100 g−1 dry weight) [36]. In this regard, the crude protein content of genera Pyropia and Porphyra is 
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comparable with that of high protein plant foods such as soy [37]. It is noteworthy that the protein 

content of seaweeds varies not only between species [38] but also among seasonal periods [39]. 

The physiological effects of dietary proteins depend on the capacity of the gastrointestinal tract to 

digest protein intake. Digestibility of red algae proteins has been found to be moderate when compared 

to that of animal proteins. In vitro protein digestibility for P. columbina was studied and found to be 

74.3% [40]. This value agrees with that reported by Misurcova et al. [41] for Palmaria palmata and is 

similar to the protein digestibility of plant proteins, but lower than that of animal proteins. This lower 

digestibility may be due to a high fiber content of red algae in general, and of P. columbina in 

particular (48.02% ± 1.13%), which could block the access of digestive enzymes to substrates and also 

decrease directly the activity of proteolytic enzymes. In vivo digestion has also been shown to be lower 

for red seaweeds. In fact, in a study in which Wistar rats were fed a diet containing similar amounts  

of dietary fiber (5%), protein (14%) and ash (5%), the apparent protein digestibility was lower for 

seaweed-fed rats and showed lower values for wakame (Undaria pinnatifida) than nori (Porphyra 

tenera) [8]. These data are in agreement with those found in an in vitro study in which the digestible, 

fermentable and unavailable protein fractions of these red algae were characterized and compared to 

that of brown seaweeds [42]. Results showed that P. tenera had the highest digestible protein fraction 

(69% vs. % for 28% U. pinnatifida), and a very small fraction of unavailable protein (3% vs. 17% for 

U. pinnatifida) while, when incubated with intestinal bacteria, U. pinnatifida fermentable fraction was 

higher than that of P. tenera (55% vs. 28%). Variable data were found for brown algae [42]. 

Although the structure and biological properties of algal proteins are still relatively poorly 

documented, the amino acid composition corresponding to several species of algae is known [43]. 

Most seaweeds contain all the essential amino acids and are a rich source of the acidic residues aspartic 

and glutamic acid [36]. In this regard, Cian et al. [40] found that the amount of aspartic + glutamic 

acid was 22.7 g 100 g−1 of proteins. Similar results were obtained for other red seaweeds such as 

Pyropia acanthophora (27 g 100 g−1 of proteins), Hypnea charoides (20.8 g 100 g−1 of proteins), 

Palmaria palmata (24.8 g 100 g−1 of proteins) and Laurencia species (15.5–27.4 g 100 g−1 of  

proteins) [34,44]. On the other hand, Munda [45] reported that these two amino acids can represent 

between 22 and 44 g 100 g−1 of proteins. The predominance of acidic over basic amino acids is typical 

of red seaweeds [34], their high levels being responsible for seaweed special flavor and taste [46]. 

Threonine, lysine, tryptophan, cysteine, methionine and histidine have been shown to be present at 

low levels in seaweeds proteins. However, research has shown that in general the concentration of 

these amino acids is still higher than that found in terrestrial plants [47]. Overall, the concentration of 

each amino acid varies to a large extent from one phylum to another, within each phylum, and even 

from one species to another within the same genus [43]. Amino acid levels vary with the season. Such 

fluctuations have been linked to a number of variables, including nutrient supply. These in turn are 

related to several environmental factors, such as water temperature, available light, salinity, types of 

proteins present and carbohydrate level [43]. Thus, Galland-Irmouli et al. [34] found that the glutamic 

acid, serine and alanine content from P. palmata appeared at high levels during late winter and spring, 

but were extremely low when harvested in July and November to January. 

Lectins are a structurally diverse group of carbohydrate binding proteins of non-immune origin 

found in a wide range of organisms [33]. Lectins interact with specific glycan structures which are part 

of soluble and membrane bound glycoconjugates, and it is these protein-carbohydrate interactions that 
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are responsible for lectin involvement in numerous biological processes such as host-pathogen interactions,  

cell-cell communication, induction of apoptosis, cancer metastasis and cell differentiation [48,49]. 

Compared to lectins characterized from animal and terrestrial plant sources, little is known about  

the biochemical and structural properties of phycolectins [33]. Of those that have been characterized, 

nearly all have been shown to be low molecular weight monomeric thermostable protein molecules 

that have affinity for oligosaccharides or glycoproteins, but not for monosaccharides, and which do not 

appear to require divalent cations for structural integrity or biological activity [50]. 

Phycobiliproteins are the main proteins of the red seaweeds, representing up to 50% of the total 

protein content. They are a family of fluorescent proteins covalently linked to tetrapyrrole groups, 

known as bilins, as prosthetic group [51]. These proteins act as antennae, absorbing energy in the 

visible spectrum portions where chlorophyll barely does [52]. Unlike carotenoids and chlorophylls, 

phycobiliproteins are not part of the photosystems located in the lipid bilayer, but constitute a structure 

attached to the cytoplasmic surface of thylakoid membranes named phycobilisomes. 

Phycobiliproteins within phycobilisomes are weakly fluorescent. However, when they are released 

from the cells, they become highly fluorescent in a region of the spectrum that is well separated from 

the autofluorescence of other biological cell matter. 

Major phycobiliproteins include phycoerythrin, phycocyanin, allophycocyanin, and 

phycoerythrocyanin. R-phycoerythrin (phycoerythrin from Rhodophyta) is an oligomeric water-soluble 

chromoprotein characterized by an absorption spectrum with three peaks or shoulders at 499, 545 and 

565 nm [16]. It has three protein subunits: α, β and γ, whose apparent molecular weights are 18, 20 and 

30–33 kDa, respectively [53]. These subunits tend to aggregate to form a basic unit that can have 

different arrangements. The apparent molecular weight of R-phycoerythrin is approximately 240 kDa. 

This reddish-pink pigment is of great interest because it possesses original spectral properties. 

Purification of this protein is performed by different techniques such as ammonium sulfate 

precipitation and chromatographic techniques (ion exchange, gel filtration, etc.). R-phycoerythrin is 

used commonly not only for applications in immunology, cell biology and flow cytometry, but also as 

a dye in the cosmetics industry and in natural foods. Also R-phycoerythrin subunits isolated from red 

algae can be used as a photosensitizer in photodynamic therapy of carcinoma cells [54]. The two main 

organisms used for the production of phycobiliproteins are the blue-green microalga Spirulina for 

phycocyanin and the unicellular red seaweed Porphyridium for phycoerythrin [52]. 

R-phycocyanin has a maximum absorbance at 615 nm, but also has a secondary peak at 555 nm. 

This peak is due to the presence of the phycoerythrobilin β subunit. The alpha subunit has phycocyanobilin 

as chromophore. The apparent molecular weight of R-phycocyanin is 110 kDa. 

R-allophycocyanin is a phycobiliprotein found in smaller proportions in red algae. It displays  

an absorbance maximum at 650 nm and a shoulder at 620 nm. Its basic structure is a trimer consisting 

of α and β subunits (α2β) [55]. 
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5. Red Seaweeds and Intestinal Mucosal Barrier Function 

5.1. Intestinal Mucosal Barrier Function 

The intestinal mucosa is the outermost layer of the four constituting the gastrointestinal tract and 

represents the largest body area in contact with the external environment. In addition to food digestion 

and absorption, serving as a mucosal barrier is one of its crucial functions. A mucus layer, consisting 

of a gel formed by mucin proteins and oligosaccharide chains, covers the apical surface of the intestinal 

mucosa. Under the mucus, the intestinal epithelium is a cell monolayer constituted by four main cell 

types, including columnar cells (enterocytes), goblet cells (that are the main producers of mucus), 

antimicrobial peptide (AMP)-producing Paneth cells and hormone producing enteroendocrine cells.  

In addition, the intestinal epithelium includes M cells and tuft cells. All these cell types are derived 

from pluripotent crypt cells located at the base of the intestinal villi. In addition, intraepithelial 

lymphocytes (IEL) are interspersed among the above mentioned intestinal epithelial cells. Underneath 

the epithelium lays the lamina propria, a layer of connective tissue that supports the epithelium and 

contains a range of immune cells including dendritic cells, macrophages and lamina propria lymphocytes. 

Finally, the lamina propria is surrounded by a smooth muscle layer called muscularis mucosae. 

The central element of the barrier is the epithelium, which provides the fundamental physical limit 

of the mucosa, but a number of additional members contribute significantly to barrier function, 

including immune cells, the mucus layer, secretory immunoglobulin (Ig) A produced by plasma cells, 

and antimicrobial peptides. Even the intestinal microbiota can be considered a part of the mucosal 

barrier, since it is increasingly clear that there is a tight relationship between its presence and 

composition in the lumen, host immunity and overall mucosal biology. For example, the host modifies 

through the production of mucus, IgA or antimicrobial peptides the intestinal microbiota, while the 

latter is able to shape the immune response, interacting with receptors located in the intestinal epithelial 

cells, dendritic cells or macrophages. These receptors were initially called pathogen-recognition 

receptors (PPRs) and they bind pathogen-associated molecular patterns (PAMPs), i.e., not specific 

molecules but rather types of molecules whose structure differs substantially from those in eukaryotic 

cells. TLRs are outstanding PPRs because of their functional relevance. Their intracellular signal 

transduction pathway includes the activation of nuclear factor-κB (NF-κB) and mitogen activated 

protein kinases (MAPKs), which result in heightened production of proinflammatory cytokines, the 

inhibition of apoptosis and the increase of cell proliferation [9,10]. 

5.2. Red Seaweeds and Intestinal Bacteria 

Intestinal dysbiosis has increasingly been observed in a variety of intestinal and systemic diseases, 

and maintaining an adequate bacteria profile may be a key point to a healthy MBF [56]. Seaweed 

components can be used by the intestinal microbiota so as to result in prebiotic effects, potentiating  

the growth of beneficial bacteria in detriment of harmful microbiota [57–60]. In this regard, the 

administration of whole red seaweeds (Sarcodiotheca gaudichaudii and Chondrus crispus) to chicken 

has been described to affect the intestinal mucosa, enhancing villus height and villus surface area, as 

well as the intestinal microbiota, increasing the abundance of beneficial bacteria (e.g., Bifidobacterium 

longum and Streptococcus salivarius) and, importantly, reducing the prevalence of Clostridium 
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perfringens. These microbiota modifications were accompanied by higher short chain fatty acid 

concentrations, pointing to an overall prebiotic effect of the seaweeds [57]. 

Red seaweeds have been shown to affect not only the relative abundance of bacterial species, but 

also bacterial translocation. Pseudomonas aeruginosa is an opportunistic pathogen whose translocation 

to the extraluminal domain is an important pathogenic phenomenon and a cause of systemic infections. 

A water extract from the cultivated red seaweed C. crispus, rich in κ-carrageenan, was administered as 

a food supplement to Caenorhabditis elegans, resulting in upregulation of the innate immune genes of 

the host and a decreased infection rate [61]. 

Both the degradation and fermentation of red seaweed oligosaccharides by the intestinal microbiota 

have been objects of study. In general, these compounds are poorly fermented/degraded both in humans 

and other mammals. As stated in the introduction, red seaweed polysaccharides contain unique 

structures and sulfate esters that are absent in terrestrial plants. Therefore, the intestinal bacteria are 

possibly not prepared or adapted to metabolize them, for instance by lacking the needed fermentative 

enzymes. This is well exemplified in a study in which nori and wakame, red and brown seaweeds, 

respectively, were given to rats, showing that their oligosaccharides are indeed degraded but poorly 

fermented [62]. However, it induced a bacterial adaptation that brought about a higher fermentation  

of these substrates over time. In spite of the above, some outstanding studies have documented the 

presence of red seaweed carbohydrate degrading enzymes in human gut microbiota, as well as their 

origin [63–67]. In one of these studies, the enzymes that specifically hydrolyze extracts from the 

agarophytic red algae Gelidium, Gracilaria and Porphyra, (but were inactive degrading agarose) were 

isolated and characterized. Notably, a search of these enzymes in the human gut metagenome indicated 

their presence in Japanese but not in North American individuals [65]. Of course, Japanese populations 

consume seaweeds in their daily diet (14.2 g per person per day), and Porphyra spp. (nori) is the most 

important nutritional seaweed, traditionally used to prepare sushi. Additional studies have further 

demonstrated the presence of several seaweed carbohydrate metabolizing enzymes in the microbiota of 

North American [63] and Spanish [64] populations. Horizontal gene transfer of enzymes to gut 

microbiota from marine bacteria associated to, and ingested with, these algae has been shown to be the 

way for these enzymes to reach the intestinal bacteria [65,66]. 

To discern whether polysaccharides from red seaweeds are degraded or not is important not only for 

their prebiotic effect but also because many of their functional properties have been shown to depend 

on the molecular weight of the colloid and the amount of sulfations along the polysaccharide chain. 

This is illustrated by a study in which the hydrolysis of porphyran alpha-1,3 linkages brought about 

free radical scavenging capacity, whereas the hydrolysis of beta-1,4 linkages did not increase the 

antioxidant activity markedly [68]. The importance of sulfations is exemplified in a study in which a 

polysaccharide acid soluble fraction of Porphyria yezoensis was obtained and the activation of 

macrophages was tested. Desulfation of this fraction decreased macrophage activation, while the 

digestion with β-agarase increased it [69]. 

Although not directly related to intestinal bacteria or with intestinal epithelial barrier function,  

it is worthy to comment on some articles in which antiviral effects of red algae ι-carrageenan were 

described [70–72]. These articles are valuable because they were carried out in humans and because 

common cold producing viruses alter airway MBF as some viruses do with the intestinal MBF.  

In these double blind, randomised, placebo-controlled studies, ι-carrageenan was administered to either 
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adults [70,71] or children [72] with acute symptoms of the common cold. The results indicate that the 

administration of the carrageenan diminished the viral load in nasal secretions. Furthermore, in adults 

it reduced the duration of cold symptoms [70,71] and the relapses [70], while in children the incidence 

of secondary infections was reduced [72]. In a similar study with 35 adults suffering from early 

symptoms of common cold, ι-carrageenan showed comparable effects, diminishing viral load in nasal 

secretions, and also reducing the mucosal levels of the pro-inflammatory mediators fibroblast growth 

factor (FGF)-2, fractalkine, chemokine (C-X-C motif) ligand 1 (CXCL-1 or GROα), granulocyte  

colony-stimulating factor (G-CSF), interleukin (IL)-8, IL-1α, interferon (IFN) γ-induced protein 10  

(IP-10), IL-10, and IFN-α2 [73]. Other antiviral effects of carrageenans have been described and 

reviewed elsewhere [74]. 

5.3. Red Seaweeds and the Intestinal Epithelium 

The equilibrium among epithelial cell proliferation, differentiation and death is an important  

feature of the intestinal MBF [21]. In pathologic processes like inflammatory bowel disease apoptosis 

of intestinal epithelial cells is markedly increased [75]. Challenges to the epithelial monolayer by 

microorganisms, inflammation, toxic luminal substances, and so forth, impose the need for appropriate 

mechanism to preserve MBF despite the occurrence of gaps [10]. 

Food derived bioactive peptides have been shown to modulate intestinal epithelial cell differentiation 

and cytokine production [76]. Among these, a bioactive peptide derived from Porphyra yezoensis, 

termed PY-PE or PYP1, whose sequence is A-L-E-G-G-K-S-S-G-G-G-E-A-T-R-D-P-E-P-T, has been 

shown to induce the proliferation of IEC-6 cells, a rat intestinal epithelial cell line [77,78]. The 

stimulation of two different molecular signaling pathways has been found to be involved in this effect. 

Epidermal growth factor (EGF) is an important factor in the regulation of MBF, as it stimulates 

epithelial cell growth, proliferation and differentiation by binding to its receptor (EGFR) and the 

subsequent activation of several signaling pathways. PY-PE has been shown to increase the expression 

of EGFR and the adaptor molecules Shc, growth factor receptor bound 2 (Grb2) and Son of Sevenless 

(SOS), and to activate the Ras/Raf/mitogen activated protein kinase (MAPK)-ERK kinase 

(MEK)/extracellular signal-regulated kinases (ERK) pathway (Ras/Raf/MEK/ERK) [77]. The final 

effect is the recruitment of cells into G1 phase, with an increased expression of cyclins D and E, cyclin 

dependent kinase (CDK) 2, 4 and 6, and a decrease in the expression of cell cycle inhibitors p21 and 

p27. Peptide PY-PE also stimulates the expression of type I IGFR, which is involved in the promotion 

of cell proliferation and the inhibition of apoptosis [77], and of the adaptor molecules insulin receptor 

substrate-1 (IRS-1) and Shc. As a result PY-PE stimulates the phophatidylinositol 3-kinase 

(PI3K)/protein kinase B (PKB or AKT) pathway, ERK, and the expression of AP-1 proteins c-Jun and 

c-Fos [78]. Therefore PY-PE induces cell proliferation through the stimulation of different receptor 

and signal transduction pathways in IEC-6 cells [77,78]. 

Other peptides and proteins derived from P. yezoensis have been shown to have effects on cell 

proliferation and apoptosis that vary depending on the cell/animal used for the study and the 

experimental conditions. For example, peptide PPY, whose sequence is KKAAE, induces cell cycle 

arrest and activates apoptosis in a mammalian cancer cell line (MCF-2), decreasing the expression 

level of type I IGFR in a concentration dependent manner [79]. On the other hand, a 14 kDa protein 
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isolated from this red alga has been shown to reduce caspase-3 activity in rats with acetaminophen 

induced liver injury [80]. 

Although native carrageenans are thought to be harmless (see above). In vitro, non-degraded 

carrageenans have been shown to exert inhibitory effects on epithelial proliferation at very low 

concentrations (1–10 mg/mL, lower than luminal concentrations expected from a Western diet). These 

effects included the induction of cell death and cell cycle arrest in the intestinal epithelial cell line 

NCM460 [81]. However, some studies have shown that carrageenans can produce inflammatory 

effects. In general, it is important to point out that controversial reports may be the consequence of 

studies carried out with commercially available products that contain mixtures of carrageenan of 

various sources and types, and of various degrees of purity and/or fractionation [61,82]. 

Degradation as a result of ex vivo treatments or of exposure to gastric and intestinal digestion or gut 

bacteria degradation after ingestion may produce in turn harmful forms of carrageenan. In fact, acid 

treatment at high temperature (80 °C) triggers carrageenan hydrolysis to lower molecular weight  

(<50 kDa) compounds known as poligeenan or degraded carrageenans. These degraded carrageenans 

induce inflammation and have been actually used as models of colitis in several species, including  

rats [83,84], rabbits [85] and guinea pigs [86]. In fact, the Scientific Committee on Food of the 

European Commission advised and the European Commission adopted the recommendation that  

the content of carrageenan of size less than 50,000 Da in food products should not exceed 5%, if  

feasible [87]. Not all degraded carrageenans are harmful, however. For example, a 10 kDa carrageenan 

fraction obtained from native ι-carrageenan from Euchema spinosum by acid hydrolysis at high 

temperature did not induce colitis in rats while a 50 kDa fraction was colitogenic [84]. Inhibition of 

cell proliferation and induction of apoptosis was shown by a hydrocholic acid degraded κ-carrageenan 

in intestinal epithelial (Caco-2 and FHs 74 Int) and liver (HepG2 and Fa2N-4) cell lines [88]. 

In vitro experiments have shown that carrageenans (native and degraded) may also affect epithelial 

cell immune response. Thus commercial carrageenans (λ, ι and κ) induce an increase in IL-8 

production in intestinal epithelial cells [89,90]. A further study of the lambda form revealed a 

stimulation pathway that involved the activation of the BCL (B-cell lymphoma/leukemia)10-NF-κB 

signaling pathway, not only in the human normal colonic mucosal epithelial cell line (NCM460), but 

also in ex vivo human colonic tissue, and in primary human colonic epithelial cells [89]. Similar results 

have been obtained for enzyme degraded carrageenans, although the effects depend on the particular 

type of degradation [91]. This in vitro study with the NCM460 cell line showed that hydrolysis of 

carrageenan with the enzyme α-1→(3,6)-galactosidase significantly reduced the increase in IL-8 and 

BCL10, while specific κ- or ι-carrageenases, which hydrolyze the β-1,4-galactosidic bonds, induce  

IL-8 and BCL10 production, presumably because they increase the exposure of the immunogenic  

α-1→3-galactosidic epitope of carrageenan to Toll like receptor (TLR) 4, with the subsequent stimulation 

of NF-κB [91]. Together, the above results indicate a pathway that involves TLR4/BCL10/NF-κB and 

results in modulation of IL-8 production in intestinal epithelial cells. The participation of this signal 

transduction pathway in the induction of proinflammatory cytokines by carrageenans has been confirmed 

in other studies with intestinal epithelial cells and macrophages (see below) [90,92]. 

In vitro studies have shown that the contact of κ-carrageenan with macrophages stimulates the 

immune response and induces epithelial cell pro-inflammatory cytokine production, apoptosis, and the 

disruption of the intestinal epithelium. In fact, in an interesting in vitro experiment with cocultures of 
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macrophages (THP-1 cells) and Caco-2 cells (an intestinal epithelial cell line), treatment with  

κ-carrageenan increased the secretion of tumor necrosis factor (TNF)-α, IL-1β, and IL-6 and resulted 

in apoptosis and reduced transepithelial electrical resistance of the epithelial layer [93]. When the 

TNF-α receptor 1 was blocked with antibodies, changes in IL-1β and IL-6 levels, apoptosis and 

transepithelial electrical resistance were attenuated, indicating that macrophage produced TNF-α in 

response to κ-carrageenan was contributing to Caco-2 monolayer damage. 

In general, an increase in proinflammatory cytokine production is viewed as a factor tilting  

the balance toward inflammatory state. Nevertheless, growing evidence suggests that inducing 

proinflammatory cytokine production in intestinal epithelial cells, secondary to the activation of TLR 

and NF-κB, may be of physiological importance to maintain an adequate state of basal immune 

activation and epithelial proliferation that allows the intestine to be protected. An important piece of 

evidence that supports this theory is the fact that the absence of TLRs or their related transducing 

proteins in knock-out mice results in a spontaneous colitis or in a higher susceptibility to it [9,10]. 

Furthermore, increased IL-1β, IL-6 and TNF-α production appears to have protective effects in 

experimental colitis induced by the administration of dextran sulfate sodium, which has been attributed 

to a proliferative effect on epithelial intestinal cells [94–96]. 

In general, cancerous cells and adenomatous polyp cells, the latter recognized as potential precursors 

of colorectal cancer, have characteristic features including increased proliferative activity with 

concomitant reduced differentiation phenotype and reduced apoptotic ability [97]. Interestingly, red 

seaweed algae multimineral extracts from different Lithothamnion species have been shown to inhibit 

polyp formation in animal models (see below). Although the mechanism of action is not well defined, 

in vitro studies indicate that an extract from Phymatolithon calcareum (formerly L.calcareum) inhibits 

Ki67 antigen (a proliferation marker) and promotes differentiation (increased E-cadherin staining) in 

human colon tissue in organ culture [98]. Similar antiproliferative and pro-differentiation effects were 

observed in human colon carcinoma cell lines when cultured with an extract that contained 12% Ca2+, 

1% Mg2+, and detectable amounts of 72 trace elements [99]. Although calcium may be in part 

responsible for the observed effects, some of the trace elements (lanthanides in particular) have been 

proposed to enhance the growth control properties of calcium. In this sense, it has been shown  

that gadolinium increases the growth inhibitory properties of calcium on intestinal epithelial cells, 

without affecting calcium-induced differentiation [100]. Mechanisms involved in this effect remain to 

be elucidated. 

5.4. Red Seaweeds, Oxidative Stress and Macrophage Stimulation 

The effects of red seaweeds on macrophage activation depend on the alga species and on the 

composition of the preparation studied. In general red seaweed proteins, peptides and polysaccharides 

exert antiinflammatory and antioxidant effects on macrophages. 

Pyropia columbina (formerly Porphyra columbina) has been studied as a source of protein and 

bioactive peptides [54,101]. A protein hydrolysate from this seaweed that resulted from the sequential 

digestion of an extract with fungal proteases and flavourzyme was found to induce IL-10 expression 

(an anti-inflammatory cytokine) in splenocyte preparations, which mainly contain splenic antigen 

presenting cells (with a high percentage of macrophages) and lymphocytes. Inhibition of 
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proinflammatory cytokines (TNF-α when stimulated with LPS and IFN-γ in basal conditions and under 

concanavalin A (ConA) stimulation) was also observed in these cells. When macrophages and 

lymphocytes were isolated from the spleen and studied separately there was again an increased 

production of IL-10, both in basal conditions and after the activation of macrophages with LPS and of 

lymphocytes with ConA [101]. A decrease in proinflammatory cytokine production (IL-6 and TNF-α) 

in LPS stimulated macrophages was also observed, while IFN-γ secretion was diminished in isolated 

lymphocytes both under basal and stimulated conditions. IL-10 is an anti-inflammatory cytokine 

mainly produced by monocytes/macrophages and to a lesser extent by lymphocytes (Th2 and T 

regulatory) and mastocytes. The effects of IL-10 include the inhibition of lymphocyte differentiation to 

Th1 cells, which produce IFN-γ, which is consistent with the observed results. The effects of the P. 

columbina hydrolysate were mediated by MAPK p38 and NF-κB, which are involved in IL-10 

induction [102]. 

Notably, full protein fractions of P. columbina have been shown to exert similar effects, namely 

induction of rat splenocyte proliferation and IL-10 secretion, observed also in isolated macrophages 

and specially T lymphocytes [54]. Furthermore, these effects were not attributable to either  

R-phycoerytrhrin or C-phycocyanin, phycobiliproteins from red seaweeds that are known to have 

immunomodulatory effects, since both markedly diminished IL-10 production. Again in this study the 

involvement of JNK/p38 MAPK and NF-κB dependent pathways in macrophages and lymphocytes  

was established. 

Other red seaweed proteins may exert antiinflammatory effects on macrophages. PGP, a glycoprotein 

isolated from P. yezoensis, has been shown to inhibit proinflammatory cytokine (TNF-α and IL-1β) 

production in LPS stimulated RAW 264.7 mouse macrophages. This effect was accompanied by the 

inhibition of NO and ROS production and of the expression of iNOS and COX2. Mechanistic studies 

showed that, in accordance with the studies with P. columbina peptides and proteins, this glycoprotein 

inhibited the stimulation of TLR4, NF-κB and MAPK (ERK1/2 and JNK) signal transduction 

pathways by LPS to produce these effects [103]. 

Inhibition of macrophage proinflammatory cytokine production was also induced by a methanolic 

extract of Gracilaria changii that contained chlorophyll proteins, methyl 10-hydroxyphaeophorbide 

and 10-hydroxypheophytin, and several other unidentified molecules. This extract significantly reduced 

the expression of TNF-α and IL-6 in U937 cells treated with phorbol myristate acetate (PMA). Of 

note, no cytotoxic effects were recorded for cells treated with the 10 μg/mL of this extract [104]. 

Interestingly, a protective effect was also observed in vivo, reducing absolute ethanol-induced gastric 

lesion sizes by >99%, when fed to rats. This effect was associated to increased stomach pH and 

augmented non protein sulfhydryl (NP-SH) levels. A lowered gastric pH has been associated both to 

ethanol-induced acute gastric mucosal injury and to alterations in the intestinal microbiota potentially 

leading to diarrhea and oxidative damage. In fact, the amount of NP-SH (together with antioxidants 

like reduced glutathione) is decreased in models of gastric injury [105]. Of note, G. changii has been 

reported to have free radical scavenging properties [106,107]. 

Porphyran has antioxidant activities, as demonstrated by its free-radical and anti-inflammatory 

activities. P. yezoensis is a good source of porphyran with high scavenging activity toward superoxide 

anion and hydroxyl radical. Some studies have shown that P. yezoensis porphyran inhibits the 

expression of nitric oxide synthase. However, the effect on the production of nitric oxide varies 
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depending on the porphyran studied [108,109]. In two studies from the group of Oda, porphyran from 

normal nori (the sheeted food stuff used in sushi) and porphyran prepared from a discolored waste nori 

(dc-porphyran) were used. The latter is characterized by having a greatly reduced molecular mass. 

While both types inhibit the expression of nitric oxide synthase, only dc-porphyran inhibits the 

consequent production of nitric oxide in LPS-stimulated RAW264.7 cells [88]. Likewise, dc-porphyran 

showed a slightly higher antioxidant activity. These results are in accordance with the idea that the 

molecular size is important for the effects of phycocolloids in general, and porphyran in particular. 

Different strategies have been successfully used to decrease the molecular weight of porphyran with 

the final goal of increasing the antioxidant activity, including ultrasonic treatment [110] or enzymatic 

hydrolysis [68]. The latter has shown that when alpha-1,3 linkages are hydrolyzed the antioxidant 

activity with regard to free-radical-scavenging capacity and, specifically, superoxide radical anion 

scavenging activity, is increased, whereas the hydrolysis of beta-1,4 linkages has little effect [68]. 

In contrast to the inhibitory effects of proteins and peptides on macrophage activity, porphyran 

enriched fractions from P. yezoensis induce macrophage activation [69,88]. As we indicated above, the 

sulfations are important in the effect of red seaweed oligosaccharides on the activation of 

macrophages. In this regard, an acid-soluble polysaccharide fraction of P. yezoensis was obtained and 

the activation of macrophages was tested. Desulfation of this fraction decreased macrophage activation 

while the digestion with β-agarase increased their activation [69]. 

5.5. In Vivo Effects of Red Algae Derived Products 

Sulfated polysaccharide fractions from different Gracilaria species have been shown to be 

beneficial in animal models characterized by direct alterations in MBF and inflammation. These 

include the model of colitis induced by the administration of trinitrobenzenesulfonic (TNBS) acid to 

rats [111] and models of damage induced by naproxene [112] or ethanol [113]. The inhibition of 

inflammatory cell infiltration, cytokine release and lipid peroxidation have been proposed as molecular 

mechanisms of action [104]. 

Related to antiallergic activity, porphyran has been found to be effective against different allergic 

responses. According to Ishihara et al. [114], oral administration of porphyran (2% in drinking water) 

from the red algae Pyropia tenera (formerly Porphyra tenera) and P. yezoensis are capable to inhibit 

the contact hypersensitivity reaction induced by 2,4,6-trinitrochlorobenzene, decreasing the serum 

level of IgE in BALB/c mice. 

Lithothamnion muelleri is a red alga that, when fed to mice, has been shown to have 

antiinflammatory effects in several models of disease, including arthritis [115] and graft versus host 

disease [116]. Mineral extracts from other species of Lithothamnion have been found to ameliorate the 

spontaneous development of colitis and the severity of disease in IL-10 knockout mice on a C57BL/6J  

background [117] and to reduce colonic inflammation and polyp formation in the gastrointestinal tract 

of C57BL/6 mice fed a high-fat diet [118,119]. Finally, as commented above, the methanolic extract of 

G. changii has gastroprotective properties in rats, an action attributed to antioxidant mechanisms [106,107]. 
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6. Functional Foods Incorporating Red Seaweeds 

To date, there is no standard definition for functional foods. According to the Food and Agriculture 

Organization [120], functional foods are those foods similar to conventional foods in appearance, 

intended to be consumed as part of a normal diet containing biologically active compounds which offer 

potential for enhanced health or reduced risk of disease. For nutraceutical and/or dietary supplements, 

no consensual definition is found either and there is still ambiguity about the regulatory requirements 

related to nutraceuticals [121]. Nevertheless, a common aspect is that in all of these products the main 

focus is on improving health and reducing disease risk through prevention towards improvement of 

quality of life and well-being contributing to an increased health and longevity [122]. Nowadays, 

consumers are increasingly aware of the relationship between diet, health and disease prevention. 

The terrestrial environment (e.g., fruits, vegetables, cereals and mushrooms) as a reservoir of 

bioactive compounds is by far more explored than the marine counterpart (e.g., fish, sponges,  

macro- and microalgae). Although many functional marine ingredients are presently known, it is 

believed that multiple other marine ingredients remain to be evaluated and new sources to be 

discovered. Thus, the marine environment is a major reservoir of bioactive compounds that have the 

potential to be applied in several phases of food processing, storage and fortification [123]. The 

variable characteristics of marine environments such as degree of salinity, temperature, pressure and 

illumination, impart particular interest on compounds derived from marine organisms. 

Red seaweeds are a very interesting natural source of compounds with biological activity that may 

be used as functional ingredients, and considering their great taxonomic diversity, research on the 

identification of biologically active compounds from algae can be seen as an almost unlimited source. 

Moreover, such extracts are virtually fat and calorie-free, making them increasingly sought for 

commercial purposes. For instance, macroalgae, e.g., Pyropia ternera, have been found to be good 

sources of dietary fiber associated with changes in microbial activity that involve a decrease in 

reductive and hydrolytic enzymatic activities implicated in the conversion of procarcinogens into 

carcinogens in rats. In this regard, the combination of the effect on the gut flora and a more rapid 

transit of feces would be expected to reduce exposure to potential carcinogens and may have health 

implications in human nutrition [62]. On the other hand, carrageenans and agar have been known to act 

as modulators of coagulation as well as to display antithrombotic, anti-inflammatory, antioxidant, 

anticancer and antidiabetic activities, among others. These soluble polysaccharides from red algae 

have tremendous potential as dietary fiber for human nutrition and are being evaluated as new possible 

prebiotic compounds [124]. 

In addition to their potential use as fiber/prebiotics, enhancement of antioxidant activity and 

immunity stimulation are the most studied health benefits and have driven consumers to be more aware 

that diet can serve both nutrition and health promoting goals. Food products containing marine derived 

oils rich in omega-3 fatty acids, chitin, chitosan, etc. are some among the ones commercialized in 

several markets around the world including the United States, Japan and some countries in Europe [125]. 

Besides the scientific interest in the use of algae functional ingredients, there are various challenges 

ahead that have to be overcome to use them in new functional foods. Foods should have good sensorial 

characteristics in order to be accepted by the consumers since very few of them are willing to 

compromise taste for healthiness in food [126]. To our knowledge, there is still a lack of research in 
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the application of such functional/bioactive ingredients in foods as well as the scientific validation of 

their technological and biological feasibility. The design of functional foods based on the incorporation 

of algae ingredients has been more successful in bakery, pasta and extruded maize products. In this 

regard, Prabhasankar et al. [127] found that the addition of edible seaweed wakame (U. pinnatifida) up 

to 20% had sensorial acceptance and resulted in improved amino acid and fatty acid profiles, increased 

antioxidant activity, and a higher content of fucoxanthin and fucosterol in seaweed pasta [127].  

Cian et al. [128] developed an extruded maize product added with a red seaweed Pyropia columbina 

(3.5%) and evaluated in vitro the presence and resistance to gastric digestion of bioactive compounds 

(angiotensin-converting enzyme inhibitors and antioxidants). This study suggests that the bioavailability 

of bioactive compounds is enhanced in snacks added with algae. Additionally, these authors studied 

the effect of the extruded maize product added with the red seaweed P. columbina on colonic health, 

lipid metabolism and oxidative status in growing Wistar rats. They found that addition of red seaweed 

had antioxidative effects on the liver, reducing thiobarbituric acid reactive substances (TBARS) and 

oxidized glutathione and increasing the redox index and catalase levels. Also, the researchers found  

a reduction in bacterial mucinase activity and in cyclooxigenase-2 (COX-2) and inducible nitric oxide 

synthase (iNOS) expression, and an increase in cecal IgA levels. 

It is noteworthy that the introduction of seaweeds in the human diet will always be a complex 

subject due to several types of constraints, such as diet type and habits, which are related to cultural 

and ethnic aspects of the population, consumer ideas and fears about sea pollution, and also legislation 

itself. For example there are different views with respect to marine sources as functional foods; edible 

seaweeds are a product with a very long tradition in human diet in Japan, China and Korea, and also in 

the USA as a consequence of the East to West migration phenomenon, whereas in Europe, although 

France has placed great effort in getting these products approved for human consumption, some 

countries still present legal obstacles that may delay approval [47]. Taking all this into account, 

consumer acceptance of new functional foods with seaweeds will certainly be dependent on the 

balance between habits and traditions, their perception about the real health benefits of functional 

foods and, as previously mentioned, organoleptic issues. Additionally, the commercialization of 

bioactive compounds or functional foods with health claims implies an extensive scientific dossier 

providing sufficient scientific evidence, which is highly expensive and burdensome, and the niche 

market targeted may not be large enough to cover the economical investment [129]. 

7. Conclusions 

Based on their composition, marine algae, and specifically red seaweeds, are good potential 

functional foods. Among their unique components, proteins and derived peptides together with 

polysaccharides and minerals have the ability to balance the MBF, acting as prebiotics, regulating 

intestinal epithelial cell, macrophage and lymphocyte proliferation and differentiation, and modulating 

the immune response. Although molecular mechanisms of action are starting to be elucidated, evidence 

indicates the involvement EGFR, IGFR, TLRs and signal transduction pathways mediated by AKT, 

NF-κB, and MAPKs. The need for further research is clear, but in vivo experiments point to an overall 

antiinflammatory effect of these algae, indicating that they can reinforce the MBF. 
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