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Abstract: The Skyrme force parameters can be uniquely determined by coarse graining the
Nucleon-Nucleon (NN) interactions at a characteristic momentum scale. We show how exact
Vlowk potentials to second order in momenta are saturated with physical NN scattering threshold
parameters at Center of Mass (CM) cut-off scales of about Λ = 250 MeV for the S-waves and
Λ = 100 MeV for the P-waves. The pattern of Wigner and Serber symmetries unveiled previously
and suggested by Quantum Chromodynamics (QCD) large Nc contracted symmetry emerges at
these scales.
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1. Introduction

The derivation of effective interactions from NN dynamics has been a major task in Nuclear
Physics ever since the pioneering works of Moshinsky [1] and Skyrme [2]. The use of those effective
potentials, referred to as Skyrme forces, in mean field calculations can hardly be exaggerated due to
the enormous simplifications that are implied as compared to the original many-body problem [3–6].
Similar ideas advanced by Moszkowski and Scott [7] (see also [8] for an udated view) have become
rather useful in shell model calculations [9,10]. The Skyrme (pseudo)potential is usually written
in coordinate space and contains delta functions and its derivatives [2]. In momentum space, it
corresponds to a power expansion in the CM momenta (p′ and p), corresponding to the initial and
final state, respectively. To second order in momenta, the potential reads

V(p′, p) =
∫

d3xd3x′e−ix′ ·p′+ip·xV(x′, x),

= t0(1 + x0Pσ) +
t1

2
(1 + x1Pσ)(p′2 + p2) + t2(1 + x2Pσ)p′ · p + iW0(σ1 + σ2) · (p′ ∧ p)

+
tT
2

[
σ1 · p σ2 · p + σ1 · p′ σ2 · p′ −

1
3

σ1 · σ2(p′
2
+ p2)

]
(1)

+
tU
2

[
σ1 · p σ2 · p′ + σ1 · p′ σ2 · p−

2
3

σ1 · σ2p′ · p
]
+O(p4, p′4, p2p′2),

where Pσ = (1 + σ1 · σ2)/2 is the spin exchange operator with eigenvalues Pσ = −1 for spin singlet
S = 0 and Pσ = 1 for spin triplet S = 1 states, and σ1 and σ2 are the Pauli matrices. For a local
potential V(x), our convention is such that V(x′, x) = V(x)δ(3)(x− x′). In practice, these effective
forces are parameterized in terms of a few constants which encode the relevant physical information
and should be deduced directly from the elementary and underlying NN interactions. Unfortunately,
there is a huge variety of Skyrme forces depending on the fitting strategy employed (see e.g., [11,12]).
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This lack of uniqueness may indicate that the systematic and/or statistical uncertainties within
the various schemes are not accounted for completely. Interestingly, the natural units for those
parameters have been outlined in Ref. [13,14] yielding the correct order of magnitude. A microscopic
basis [15,16] for the Density Functional Theory (DFT) approach has also been set up, but uncertainties
still remain. Conversely, while this is a two-body interaction, the connection with the free NN-force is
not obvious. Therefore, Skyrme forces, while extremely useful in practice are neither uniquely defined
nor obviously related to NN-scattering. A recent work discriminates positively 16 out of 240 sets of
Skyrme parameters from nuclear matter constraints [17]. Energy density functionals implying density
dependent parameters have been derived from chiral low two- and three nucleon interactions [18,19].

The Skyrme pseudo-potential in Equation (2) may and has been taken literally in mean field
calculations, a procedure that makes sense due to the finite extension of the nucleus and, of course,
under the assumption that such an extension is sufficiently large as not to unduly amplify short distance
components of the pseudo-potential. However, its interpretation in the simplest two-body problem
requires some regularization to give a precise meaning to the Dirac delta interactions. The standard
view of a pseudo-potential (in the sense of Fermi) is that it corresponds to the potential,which, in the
Born approximation, yields the real part of the full scattering amplitude. This is a prescription which
implements unitarity of the S-matrix, but necessarily fails at low energies when the scattering length is
unnaturally large as it is the case for NN interactions. The reason is that the Born approximation is no
longer valid.

On the contrary, the Wilsonian viewpoint corresponds to a coarse graining of the NN interaction
to a certain energy scale. There are several schemes to coarse grain interactions in Nuclear Physics.
The traditional way has been by using the oscillator shell model, where matrix elements of NN
interactions are evaluated with oscillator constants of about b = 1.4 − 2 fm [10]. A modern
way of coarse graining nuclear interactions is represented by the Vlowk method [20] (for a review,
see [21,22]) where all momentum scales above 2 fm−1 are integrated out. The recent Euclidean Lattice
Effective Field Theory (EFT) calculations (for a review see e.g., [23]), although breaking rotational
symmetry explicitly, provide a competitive scheme where coarse grained interactions allow ab initio
calculations combining the insight of EFT and Monte-Carlo lattice experience, with lattice spacings
as large as a = 2 fm. These length scales match the typical inter-particle distance of nuclear matter
d = 1/ρ

1
3 ∼ 2 fm. Actually, the three approaches feature energy-, momentum- and configuration space

coarse graining, respectively, and ignore explicit dynamical effects below distances ∼ b ∼ 1/Λ ∼ a
(These are qualitative relations. A more quantitative determination is discussed in Ref. [24], where
it is found that, at low energies, the CM cut-off Λ can be related with a short distance cut-off rc by
the relation Λ = π/2rc.), which advantageously sidesteps the problems related to the hard core and
confirms the modern view that ab initio calculations are subjected to larger systematic uncertainties
than assumed hitherto. Clearly, any computational setup implementing the coarse graining philosophy
yields by itself a unique definition of the effective interaction. However, there is no universal effective
interaction definition. For definiteness, we will follow here the Vlowk scheme to determine the effective
parameters because, within this framework, some underlying old nuclear symmetries, namely those
implied by Wigner and Serber forces, are vividly displayed [25–28].

A particular implementation of the coarse graining idea [29] has facilitated benchmarking partial
wave analyses of the NN interaction and has also provided an alternative way to define the effective
couplings as a function of the maximal fitting CM momentum p ≤ ΛFit [30], including different One
Pion Exchange (OPE) and Chiral Two Pion Exchange (χTPE) [31,32] and an evaluation of uncertainties
of both statistical and systematic origin [33].

In the present paper, we want to show that, in fact, these parameters can uniquely be determined
from known NN scattering threshold parameters by rather simple calculations where the interaction is
just coarse grained over all wavelengths larger than the typical ones occurring in finite nuclei. As we
will show, this introduces a momentum scale Λ in the nine effective parameters t0,1,2, x0,1,2 and tU,T,V
(tV = W0), which allow for connecting the two body problem to the many body problem. Of course,
for a finite nucleus, higher order corrections to the two body interaction as well as few body forces will
be needed, and just stopping to second order in momenta will not be sufficient (see e.g., Ref. [34] for



Symmetry 2016, 8, 42 3 of 20

a calculation to O(p6)). However, going beyond Equation (2) requires further information than just
two-body low energy scattering, in particular knowledge about three and four body forces and their
scale dependence consistently inherited from their NN counterpart. The finite kF situation relevant for
heavy nuclei and nuclear matter involves mixing between operators with different particle numbers
and, in principle, could be conveniently tackled with the method outlined in Ref. [35], where the lack
of genuine medium effects is manifestly built in.

The method we will be using is the implicit renormalization approach described already in
Ref. [36–38], which has been positively tested for a simple toy model with just S-waves with the Block
Diagonal (BD) formulation of the Similarity Renormalization Group (SRG) [39], which is an upgraded
version of the Vlowk-approach (see also [40] for a review). In previous work [36–38], it has explicitly
been shown that the scale dependence deduced for the parameters of Equation (2) is not expected to
change when higher orders in the expansion are included in a wide range of cut-offs Λ. This is our
motivation to pursue the present analysis.

The paper is organized as follows. In Section 2, we review the Vlowk approach, with a particular
stress on the low energy expansion and the connection to the threshold parameters in the relevant
partial waves. In Section 3, we clarify the important distinction between pesudopotentials and Vlowk
potentials as well its significance in coordinate space. In Section 4, we provide the pertinent partial
wave decomposition of the Skyrme interaction, Equation (2), which becomes suitable to simplify the
solution of the scattering problem. The analysis of the counterterms, and hence on the dependence of
the Skyrme force parameters on the scale, is carried out in Section 4.2. Finally, in Section 5, we come to
the conclusions. Further results are presented in the Appendix.

2. The Vlowk Approach

For completeness, we review here the Vlowk approach [21] in a way that our points can be easily
stated. The starting point is a given phenomenological NN potential, V, and usually denominated
bare potential, whence the scattering amplitude or T matrix is obtained as the solution of the
Lippmann–Schwinger (LS) coupled channel equation in the CM system

T JS
l′ ,l(p′, p; k2) = V JS

l′ ,l(p′, p)

+∑
l′′

∫ ∞

0

MN

(2π)3
dq q2

k2 − q2 V JS
l′ ,l′′(p′, q)T JS

l′′ ,l(q, p; k2), (2)

where J is the total angular momentum, S the total spin and l, l′ are orbital angular momentum
quantum numbers, p, p′, q are CM momenta, MN is the Nucleon mass, and k2/MN is the CM energy.
Solutions can be obtained just from the half off-shell T-matrix, taking, for instance, k = p.

For later reference, we also quote our convention for the relation with a local potential V JS
l′ l (r)

with the momentum space case,

V JS
l′ ,l(p′, p) = (4π)2

∫ ∞

0
dr r2 jl′(p′r)jl(pr)V JS

l′ l (r), (3)

where jl(x) are spherical Bessel funcions. Using the Bessel function expansion for small argument
jl(x) = xl/(2l + 1)!![1− x2/2(2l + 3) + . . . ], we get a low momentum expansion of the potential
matrix elements. We keep up to total order O(p4, p′4, p2 p′2) corresponding to S-, P- and D-waves as
well as S-D and P-F mixing parameters,

V JS
00 (p′, p) = C̃ JS

00 + C JS
00 (p2 + p′2) + D1

00
JS(p4 + p′4) + D2

00
JS p2 p′2 + · · · ,

V JS
11 (p′, p) = pp′C JS

11 + pp′(p2 + p′2)D JS
11 + · · · ,

V JS
22 (p′, p) = p2 p′2D JS

22 + · · · (4)

V JS
20 (p′, p) = p′2C JS

20 + p′2 p2D1
20

JS + p′4D2
20

JS + . . . ,

V JS
31 (p′, p) = p′3 pD JS

31 + · · · .
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To facilitate comparison, we will use below the usual spectroscopic NN notation 2S+1LJ for diagonal
channels and EJ for off-diagonal channels. We will call the coefficients in the expansion counterterms,
although, properly speaking, the name is justified when the potential v(p′, p) is used to solve the
problem in a restricted Hilbert space p, p′ ≤ Λ, which means, in particular, fitting scattering data up
to CM momentum p ≤ Λ [36] and providing a prescription to ensure hermiticity of the interaction.
If a is the range of the interaction, only under these conditions is a truly universal behavior of the
counterterms guaranteed for Λ ∼ 1/a as will be shown below.

The unitary (coupled channel) S-matrix is obtained as usual:

SJS
l′ ,l(p) = δl′ ,l − i

pMN

8π2 T JS
l′ ,l(p, p). (5)

Using the matrix representation SJS = (MJS − i1)(MJS + i1)−1 with (MJS)† = MJS, a hermitian
coupled channel matrix (also known as the K-matrix), at low energies, the effective range theory for
coupled channels reads

pl+l′+1MJS
l′ ,l(p) = −(α−1)JS

l,l′ +
1
2
(r)JS

l,l′ p
2 + (v)JS

l,l′ p
4 + . . . , (6)

which, in the absence of mixing and using Sl(p) = e2iδl(p), reduces to the well-known expression

p2l+1 cot δl(p) = − 1
αl

+
1
2

rl p2 + vl p4 + . . . . (7)

An extensive study and determination of the low energy parameters for all partial waves has
been carried out in Ref. [41] for both the NijmII and the Reid93 potentials [42] and also the AV18 [43]
and the six modern Granada potentials in Ref. [33], yielding similar numerical results. Dropping these
coupled channel indices for simplicity, the Vlowk potential is then defined by the equation:

T(p′, p; p2) = Vlowk(p′, p)

+
∫ Λ

0

MN

(2π)3
dq q2

p2 − q2 Vlowk(p′, q)T(q, p; p2) , (8)

where (p, p′) ≤ Λ. We use here a sharp three-dimensional cut-off Λ to separate between low and
high momenta since results are not sensitive to the specific form of the regularization. Note, however,
that the sharp function separates explicitly the model space from the rest in terms of orthogonal
projection operators P and Q fulfilling P2 = P and Q2 = Q and PQ = QP = 0, which is only
fullfilled by the step functions P = θ(Λ− p) and Q = 1− θ(Λ− p), and hence the total Hilbert space
separates asH = HP ⊕HQ. Moreover, this definition does not provide a hermitean Vlowk potential,
and usually a specific choice is made in order to restore hermiticity. Note that, in this context, such
a prescription is equivalent to fulfill off-shell unitarity for the two body problem, a condition which
proves essential for the three-body unitarity. However, there is generally an ambiguity in defining
a restricted model space potential. The lack of uniqueness is not sufficiently emphasized in most
Vlowk works. The Block Diagonal formulation of the Similarity Renormalization group (BD-SRG) [39]
provides a suitable implementation of hermiticity at any stage of the calculation. In our case, and
to the level of approximation of Equation (2), we will explicitly see that there is no ambiguity. Thus,
eliminating the T matrix, we get the equation for the effective potential, which evidently depends on
the cut-off scale Λ and corresponds to the effective interaction which nucleons see when all momenta
higher than the momentum scale Λ are integrated out. It has been found [21] that high precision
potential models, i.e., fitting the NN data to high accuracy and incorporating One Pion Exchange (OPE)
at large distances and describing the deuteron form factors, collapse into a unique self-adjoint nonlocal
potential for Λ ∼ 400− 450 MeV. This is not an unreasonable result since all the potentials provide
a rather satisfactory description of elastic NN scattering data up to the pion production threshold
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p ∼
√

MNmπ ∼ 360 MeV. Note that this universality requires a marginal effect of off-shell ambiguities
(beyond OPE off-shellness), which is a great advantage as this is a traditional source for uncertainties
in nuclear structure.

Actually, in the extreme limit when Λ→ 0, one is left with zero energy on-shell scattering yielding
T0(p, p) → (4π)2α0/MN . Moreover, for sufficiently small Λ, the potential which comes out from
eliminating high energy modes can be accurately represented as the sum of the truncated original
potential and a polynomial in the momentum [44]. However, as discussed in [26], a more convenient
representation is to separate off all polynomial dependence explicitly from the original potential:

Vlowk(p′, p) = V̄NN(p′, p) + V̄Λ
CT(p′, p) , (9)

with (p, p′) ≤ Λ, so that, if V̄Λ
CT(p′, p) contains up to O(pn), then V̄NN(p′, p) starts off at O(pn+1),

i.e., the next higher order. This way, the departures from a pure polynomial may be viewed as true and
explicit effects due to the potential, and, more precisely, from the logarithmic left cut located at CM
momentum p = im/2 at the partial wave amplitude level due to particle exchange with mass m. Thus,
the coefficients in Equation (5) universally include all contributions to the effective interaction at low
energies. Although we cannot calculate them ab initio, we may relate them to low energy scattering
data for any value of Λ, in harmony with the expectation that off-shell effects are marginal in this
energy regime. Not surprisingly, the physics encoding the effective interaction in Equation (5) will be
related to the threshold parameters defined by Equation (6). Thus, the relevance of specific microscopic
nuclear effective (coarse grained) forces has to do with the extent to which these threshold parameters
are described by the underlying forces and not so much with their detailed structure. We will discuss
below the limitations to this universal pattern.

In Ref. [45], an interesting study was conducted regarding the saturation of the short distance
contributions due to heavy resonance exchange, namely σ, ρ, ω, δ, η. While this approach is, in principle,
very appealing, it does not specify what the relevant scale is. Quite generally, the coefficients are scale
dependent and this separation is scale dependent. In fact, the method used in Ref. [45] retains only
the leading perturbative contribution in the resonance exchange. This procedure would be legitimate
for peripheral waves, but certainly not for central S-waves where non-perturbative effects become
crucial. As we will see, the Wilsonian renormalization point of view befits the situation in a more
satisfactory manner.

A further objection to attempt the separation explicitly concerns the long distance pionic physics
(see also [25–28]). Actually, we may separate the pionic contributions as follows:

CTotal(Λ) = CShort(Λ) + C1π + C2π + . . . . (10)

There is the subtle issue on how to define numerically the pionic contribution. For instance, in
Refs. [31,32], this separation is made in coordinate space as a function of the short distance cut radius rc

in the range where the pionic contributions are proven to be indispensable when the fit is undertaken
up to a maximum CM momentum, ΛFit. Thus, the separation is done as

CTotal(ΛFit) = CShort(r < rc) + C1π(r > rc) + C2π(r > rc) + . . . . (11)

The potentials diverge like powers at large momenta, and, therefore, they become singular at
short distances. Besides these extreme cases, the region around rc ∼ 2 fm and ΛFit ∼ 300 MeV does not
map so easily. In fact, the numerical values quoted in [31,32,45] are not very similar when separations
implied by either Equation (10) or Equation (11) are invoked, respectively.

3. Vhighr vs. Vlowk Potentials

The most astonishing feature of the original Vlowk approaches, which made them so popular,
was the universality of all potentials which have an OPE potential tail and simultaneously fit the
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phase-shifts up to pion production threshold with a χ2/dof ∼ 1. It is important to address here why the
Vlowk approach works, i.e., why there is a universal and approximately scale independent behavior at
Λ ∼ 2.1 fm−1. As we see, such a situation corresponds to a model space where particles do not interact,
i.e., where Vlowk = 0, for CM momenta p, p′ > Λ whence the original Lippmann–Schwinger equation
directly reduces to the Vlowk equation. If we think of the 1S0 channel, the traditional interpretation
is that the vanishing of the phase shift at p ∼ 300 MeV is an indication of the core of the interaction.
Of course, an additional interpretation of a vanishing phase is that the interaction is weak. As already
mentioned, in the BD-SRG version of the Vlowk approach, the Hilbert space is separated into the P and
Q orthogonal subspaces, and hence both components of the Hilbert space are kept and thus phase
equivalence is preserved. However, if we choose Λ such that δ(Λ) = 0 and neglect the Q space, we
expect some stability against variations in Λ. As a matter of fact, much of the usefulness of the Vlowk
approach has to do with the relative insensitivity to the change of the separation scale between the
P and the Q spaces.

While renormalization issues are often posed in momentum space, one can provide an equivalent
and insightful point of view in coordinate space [46] keeping the Wilsonian spirit (see also [47] for a
nice presentation within the context of power counting). Actually, these features were anticipated in
coordinate space long ago by the separation method of Moszkowski and Scott [7] (see a contextualized
view in Ref. [8]). Indeed, while the standard view is that NN potentials present a repulsive core below
a certain distance, r ≤ acore ∼ 0.5− 0.6 fm, the basic observation is that there is a given length scale,
the separation distance, d > acore below which one can instead replace the NN-interaction by a small
potential. The typical values that one finds are in the range d ∼ 1 fm. Let us see how this happens in
the particular case of the 1S0-channel where the core effects become more visible. Higher partial waves
are already suppressed due to the centrifugal barrier, so we expect them to become less sensitive to
short range repulsion of the central force.

In coordinate space, one has to look for regular solutions at the origin of the Schrödinger equation
for positive energy states with scattering boundary conditions:

−u′′p(r) + U(r)up(r) = p2up(r), (12)

up(r) →
sin(pr + δ0(p))

sin δ0(p)
, r � a, (13)

up(r) → A(p)r , r → 0, (14)

where U(r) = 2 µV(r) = MV(r) is the reduced NN-potential, a ∼ 3 fm is the range of the interaction
and A(p) is a constant which is fixed by the long distance normalization. Let us consider first the zero
energy wave function, which corresponds to take p→ 0 and δ0(p)→ −α0 p, fulfilling

−u′′0 (r) + U(r)u0(r) = 0, (15)

u0(r) → 1− r
α0

, r � a. (16)

As is well-known, the scattering length is defined by the intersection with the x-axis of the
asymptotic zero energy wave function. For an interaction which is attractive at long distances,
U(r) < 0, we have that u′′0 (r)/u0(r) = U(r) < 0, meaning that the function is concave in the attractive
regime. The regular non interacting solution at the origin behaves as u0,free(r) ∼ r, and it may happen
that there is a distance d where the integrated-in full wave function matches a free solution, which
means

u′0(d)
u0(d)

=
u′0,free(d)
u0,free(d)

=
1
d

. (17)
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If this d exists, one can replace the zero energy scattering problem by the truncated original
potential, which, following [25–27], we denote as the Vhighr potential. The corresponding reduced
potential, Uhighr(r) = MVhighr(r), reads

Uhighr(r) = U(r)θ(r− d) . (18)

The situation is illustrated in Figure 1 for the Granada Gauss–OPE potential [48]. As we see, the
inflexion point u′′(ri) = 0 corresponds to the vanishing potential value U(ri) = 0, ri ∼ 0.8 fm, before
the short distance repulsion sets in. Of course, this will generally not be true for finite momenta, and
the picture gets somewhat modified. We will analyze, for illustration purposes, two possible schemes
that we label as UI

highr and UII
highr and treat the short distances differently.

The simplest possibility is to make the separation distance d, below which the interaction can be
taken to be zero, depending on p. This can be done by means of the modified relation:

u′p(d(p))
up(d(p))

=
u′p,free(d(p))

up,free(d(p))
= p cot(pd(p)), (19)

where we have taken, up to an irrelevant normalization, up,free(r) = sin(pr). Actually, we expect
this change to be very small for pd� 1, as can be seen in Figure 2 (left panel). The resulting Vhighr
potential becomes

U I
highr(r, p) = U(r)θ(r− d(p)). (20)

As we see, the d(p) → ∞ for the critical value p = 1.78 fm−1, which is the value where the 1S0

phase vanishes.
In another alternative scheme, one may keep the value of d at zero energy and add a (small)

constant short distance square well potential

UII
highr(r, p) = U(r)θ(r− d) + Ushort(p)θ(d− r) , (21)

where we have the condition Ushort(0) = 0. The result is shown in Figure 2 (right panel), where we
compare the computed values with a fit VShort(p) = −8.75557p2 − 0.676744p4 (V in MeV, p in fm−1).
As we see from Figure 2, the short distance contribution of the effective potential Ushort(p) remains
moderate over the values of p compared to the core displayed by the original potential (see Figure 1).
Note that the two different representations of the Vhighr interaction, Equations (18) and (21), produce
exactly the same phase-shifts by construction.

The existence of this separation scale and the smooth dependence on the energy at low energies
is ubiquitous for NN interactions, but not a general feature of any potential; it depends on whether
Equation (17) admits a solution. Integrating in from large distances to short distances, one finds for the
1S0 channel and different potentials, the following separation distances:

dNijmII = 1.2fm , dχTPE = 1.14fm , dGauss−OPE = 1.05fm. (22)

As a matter of fact, the coarse grained potentials used to make the most recent combined pp+np
partial wave analyses allow taking vanishing potentials at distances numerically around these d
values [49–51].

Once we have the Vhighr interaction, we can compute the integrals and compare Equation (3) with
the low momentum expansion, Equation (27) for p′ = p,

V1S0
(p, p) = (4π)2

∫ ∞

0
r2drVhighr(r, p) [j0(pr)]2 , (23)

= C̃1S0
+ 2p2C1S0

+ . . . , (24)
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and similarly for the 3S1 state. We get the values (C̃1S0
, C̃3S1

) = (−0.15,−0.13) × 104 GeV−2 and
(C1S0

, C3S1
) = (4.26, 4.08)× 104 GeV−4 in fair agreement with the results of Table 1. For the coefficients

C1S0
and C3S1

, the Vshort(p) contribution is negligible. As we see, at the separation scale, the Wigner
symmetry is well reproduced as a long distance effect, i.e., for r > d. This is a general pattern which has
been found in recent fits [31] in the Skyrme parameters and the counterterms contributions for distances
larger than rc = 1.8 fm. This pattern will reappear in our Vlowk analysis below, where Λ ∼ π/2d
roughly marks the onset of the reported universality regime unveiled in the early works [21].
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Figure 1. (Color on-line) The separation method illustrated for the 1S0 channel. (Left panel): Full (red
solid line) and Truncated (blue dotted line) Potentials. (Right panel): Zero energy wave function.
We show the free and regular solution u0(r) = ar (black thin solid line), the full regular solution (red
solid line) and the equivalent solution (blue dotted line) corresponding to the truncated potnential.
The matching point d = 1.05 fm corresponds to the joining of the inner free wave function with the
integrated-in wave function from the full potential. We take the Granada Gauss-OPE potential [48].
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Figure 2. (Color on-line) The separation method illustrated for the 1S0 channel for two equivalent
methods. (Left panel): The separation distance as a function of the CM momentum p. Below this
distance the interaction vanishes. (Right panel): The short distance potential below the zero energy
separation distance d = 1.05 fm as a function of the CM momentum. We take the Granada Gauss–OPE
potential [48].
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Table 1. Counterterms obtained from the low energy threshold parameters compiled in Ref. [33] and
compared with the corresponding potential integrals in different partial waves compiled in Ref. [52]
for six different potentials which fit 6713 np and pp scattering data up to TLAB ≤ 350 MeV. Errors
quoted for each potential are statistical; errors in the last column are systematic and correspond to the
sample standard deviation of the six previous columns. See main text for details on the calculation
of systematic errors. Units are: C̃’s are in 104 GeV−2, C’s are in 104 GeV−4. Λ is the renormalization
scale, Λlowk the Vlowk cut-off and ΛFit the maximum CM fitting momentum used to determine the
interaction (all in fm−1).

Λ Λ Λ Λ Λ ΛVlowk = 2.1 ΛVlowk = 2.1 ΛFit < 2 ΛFit < 1.25
0.25 0.5 0.75 1 1.25 N3LO AV18 6 Gr χ TPE

C̃1S0
–0.3825 –0.241 –0.198 –0.178 –0.174 –0.168 –0.164 –0.13 (1) –0.15 (1)

C1S0
–28.06 1.08 2.538 2.436 2.333 4.105 3.997 4.15 (6) 4.20 (8)

C̃3S1
0.795 –0.381 –0.297 –0.243 –0.214 –0.168 –0.164 –0.045 (19) –0.006 (19)

C3S1
–450 –15.6 0.588 1.767 1.843 3.689 3.851 3.7 (2) 3.34 (4)

CE1 8.530 –3.905 –2.297 –1.714 –1.468 –7.912 –7.716 –8.42 (7) –8.72 (6)
C1P1

6.233 6.690 8.353 16.18 –29.63 6.092 5.939 6.47 (6) 6.45 (3)
C3P0

–5.248 –4.962 –4.323 –3.457 –2.599 –4.296 –4.456 –4.89 (5) –4.94 (1)
C3P1

3.324 3.449 3.844 4.946 9.376 3.452 3.411 3.68 (6) 3.72 (3)
C3P2

–0.617 –0.612 –0.602 –0.581 –0.551 –0.559 –0.556 –0.43 (1) –0.486 (8)

4. Skyrme Forces from Renormalization

4.1. Partial Waves Decomposition

Using the partial wave projection [53], we get the potentials in different angular momentum
channels. These parameters can be related to the spectroscopic notation used in Ref. [45,54] (we
call here E1 their ε1). Our identifications with Equation (5) are C̃1S0

= C̃00
00 , C̃3S1

= C̃11
00 , C1S0

= C00
00 ,

C3S1
= C11

00 , CE1 = C11
02 , C3P0

= C01
11 , C3P1

= C11
11 , C3P2

= C21
11 , C1P1

= C10
11 and similar identificatons hold

with the threshold parameters α and r in the coupled channel effective range expansion, Equation (6).
The S-wave potentials are

V1S0
(p′, p) = C̃1S0

+ C1S0
(p′2 + p2),

V3S1
(p′, p) = C̃3S1

+ C3S1
(p′2 + p2), (25)

VE1(p′, p) = CE1 p2,

whereas the P-wave potentials read

V3P0
(p′, p) = C3P0

p′p,

V3P1
(p′, p) = C3P1

p′p, (26)

V3P2
(p′, p) = C3P2

p′p,

V1P1
(p′, p) = C1P1

p′p.
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The nine effective parameters depend on the scale Λ and can be related to the effective force
representation t0,1,2, x0,1,2 and tU,T and W0 of Equation (2) by the following explicit relations:

t0 =
1

8π

(
C̃3S1

+ C̃1S0

)
,

x0 =
C̃3S1
− C̃1S0

C̃3S1
+ C̃1S0

,

t1 =
1

8π

(
C3S1

+ C1S0

)
,

x1 =
C3S1
− C1S0

C3S1
+ C1S0

,

t2 =
1

32π

(
9C1P1

+ C3P0
+ 3C3P1

+ 5C3P2

)
, (27)

x2 =
−9C1P1

+ C3P0
+ 3C3P1

+ 5C3P2

9C1P1
+ C3P0

+ 3C3P1
+ 5C3P2

,

tT = − 3
4
√

2π
CE1 ,

W0 =
1

32π

(
2C3P0

+ 3C3P1
− 5C3P2

)
,

tU =
1

16π

(
−2C3P0

+ 3C3P1
− C3P2

)
.

The result for W0 can already be found in Ref. [55] and finite density corrections to it compare
favorably with “empirical” estimates.

4.2. Analysis of Counterterms

The corresponding T-matrices are conveniently solved by factoring out the centrifugal terms that
reduce the LS equation to a finite set of algebraic equations that are analytically solvable (see e.g.,
Ref. [24] and references therein). In the appendix, we show how this is readily done. In the simplest
case, where only the lowest order coefficients are taken into account, the explicit solutions for S- and
P-waves are,

C̃S(Λ) =
16π2α0

MN(1− 2α0Λ/π)
,

CP(Λ) =
16π2α1

MN(1− 2α1Λ3/3π)
, (28)

where α0(α1) is the scattering length (volume) defined by Equation (7). The Equation (28) illustrates the
difference between a Fermi pseudo-potential and a coarse grained potential as the former corresponds
to α0Λ � 1, where C̃S(Λ) ∼ 16π2α0/MN . In the case of α0Λ � 1, one has instead C̃S(Λ) ∼
−8π/(MΛ). Full solutions including the Cs are also analytical, although a bit messier, so we do not
display them explicitly. They rely on Equation (6), with α1S0

, α3S1
being the S-wave scattering lengths

in the 1S0 and 3S1 channels, respectively, α3P0
, α3P1

, α3P2
, α1P1

being the P-waves scattering volumes
in the 3P0, 3P0, 3P1, 3P2 and 1P1, respectively, αE1 being the mixing scattering volume in the 3S1 −3 D1

channel, and r3S1
and r1S0

the effective ranges in the 1S0 and 3S1 channels, respectively. We refer to
Ref. [41] for useful formulas and for numerical values for NijmII and Reid93 potentials and [33] for the
six Granada potentials. At the order considered here, we just mention that, while all P-waves constants
run independently of each other, with Λ, the spin-singlet parameters C̃1S0

, C1S0
on the one hand and

the spin-triplet parameters C̃3S1
, C3S1

and CE1 , on the other hand, are intertwined.
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4.3. Numerical Results

We now turn to our numerical results. As can be seen from Figure 3 (see also Table 1 for numerical
values), the comparison of contact interactions using threshold parameters with Vlowk results evolved
to Λ = 420 MeV [21] (note the different normalization) from the Argonne-V18 bare potential [43]
are saturated for Λ = 250MeV for S-waves and for much lower cut-offs for P-waves. Note that this
holds regardless of the details of the potential, as we only need the low energy threshold parameters
as determined e.g., in Ref. [41]. The strong dependence observed at larger Λ values just reflects
the inadequacy of the second order truncation in Equation (27). This also reflects in the 25%–50%
inaccuracy off the exact Vlowk of the Ds themselves despite showing plateaus, and thus will not be
discussed any further.
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Figure 3. (Color on-line) Counterterms for the S- (in MeVfm3, upper panel) and P-waves (MeVfm5,
lower panel) as a function of the momentum scale Λ (in fm−1). Cs from Equation (27) solving
Equation (8) including the Ds using just the low energy threshold parameters from Ref. [41] (thick
solid). Cs extracted from the diagonal Vlowk(p, p) potentials [21] at fixed Λ = 420MeV for the
Argonne-V18 [43] (dashed). Cs for P-waves including D-terms without mixings (thick dotted).

The close identities C̃1S0
(Λ) ∼ C̃3S1

(Λ) and C1S0
(Λ) ∼ C3S1

(Λ) for Λ ≥ 250 MeV feature the
appearance of Wigner symmetry as pointed out in Ref. [25], but now we see that this does not depend on
details of the force. Actually, the effect of the 3S1−3 D1 wave mixing represented by a non-vanishing off
diagonal potential VE1(p′, p) becomes essential to achieve this identity (a fact disregarded in Ref. [56]).
As can be seen from Figure 3, there is a large mismatch at values of Λ ∼ 200− 300 MeV when CE1 is
set to zero (and hence αE1 = 0) as compared with the case CE1 6= 0.

The scale dependence of the Skyrme interaction parameters (not involving the Ds) can be
seen in Figure 4 in comparison with the Vlowk potentials [21] deduced from the Argonne-V18 bare
potentials [43]. The plateaus observed in the different partial waves are corroborated here as well as a
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remarkable accuracy in reproducing the exact Vlowk numbers. Moreover, the weak cut-off dependence
of the spin orbit interaction observed in Figure 4 suggests taking Λ→ 0, in which case:

W0 =
π

2MN

(
2α3P0

+ 3α3P1
− 5α3P2

)
, (29)

which, upon using Ref. [41], yields W0 = 72 MeVfm5. This numerical value reproduces within less
than 10% the exact Vlowk value, which illustrates the scale saturation. Nonetheless, it is 40% smaller
than nuclear structure mean field calculations based on Skyrme forces, which are generally rather
stable and yield W0 = 120± 10 MeVfm5 (see e.g., [55] for a compilation). As can be seen from Figure 4,
the effective range correction r1 provides, via additional D coefficients, the missing contribution. This
is a bit lower than what it is found in phenomenological approaches from the p3/2− p1/2 level splitting
in 16O [6]. In any case, the comparison with phenomenological approaches based on mean field
calculations may be tricky since, as already mentioned, not all the terms are always kept, and selective
fits to finite nuclear properties may overemphasize the role played by specific terms.
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Figure 4. (Color on line) Skyrme force parameters as a function of the scale Λ (in MeV). We compare
with the Argonne-V18 [43] exact Vlowk values evaluated at Λ = 420 MeV [21]. See also Figure 3 and
main text.
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It has been argued that counterterms are fingerprints of long distance symmetries [25–27]. This
remarkable result holds regardless of the nature of the forces and applies, in particular, to both Wigner
and Serber symmetries. We confirm that, to great accuracy, x0 = 0 (Wigner symmetry) and x2 = −1
(Serber symmetry). The astonishing large-Nc (Nc is the number of colors in QCD) relations discussed
in Refs. [25–28] provide a direct link to the underlying quark and gluon dynamics and [57] suggests a
1/N2

c accuracy of the Wigner symmetry in even-L partial waves. Wigner symmetry has proven crucial
in nuclear coarse lattice (a ∼ 2 fm) calculations [23] in sidestepping the sign problem for fermions. As
we see for the scales typically involved there, this works with great accuracy already at Λ ∼ 250 MeV.
Taking into account that we are dealing with low energies, it is thus puzzling that chiral interactions to
N3LO [58] having chiral cut-offs Λχ ∼ 600 MeV tend to violate Wigner symmetry in the Vlowk sense,
i.e., Cχ

1S0
6= Cχ

3S1
, whereas smaller values Λχ ∼ 450 MeV [26] are preferred. We also note that SRG

studies do find accurate verification of Wigner symmetry [59–61].
On a more phenomenological level, there exist recent N3LO calculations (including terms to

sixth order in momenta) [34,62,63] where the Skyrme parameters have been determined within a
DFT framework. Typically, the number of terms is so large that additional symmetries have been
implemented to reduce them. As we mentioned in the introduction, results vary depending on the
calculational scheme and the fitting strategy. According to our view, the scale dependence of these
higher order contributions in the two-body sector is intertwined with the scale dependence of three and
higher nucleon forces. Error and correlation analyses may prove essential to gain further information
from this viewpoint [64,65]. Our interpretation not only provides a unique definition of the DFT
parameters but also indicates that they depend on the renormalization scale Λ, which clearly varies for
different nuclei and neutron and nuclear matter. Density dependence of the parameters can only be
regarded within our framework as many body interactions, a point emphasized within DFT recently
in Ref. [66]. Extending our calculation to include many body interactions would be possible but
numerically cumbersome and is left for future research.

5. Conclusions

In the present paper, we have provided a Wilsonian renormalization scale argument on how the
much used effective interaction parameters of the venerable Skyrme interaction can be understood as
coarse grained NN interactions over the suitable wavelengths. A mapping of these scale dependent
parameters to counterterms usually employed in the NN interaction scattering analyses becomes
possible. This view befits the idea that, even in the lightest nuclei, where density effects are negligible,
nucleons interact with each other in an average fashion, sampling only the low energies relevant
for nuclear binding or equivalently resolving only the physical effects for distances above the
corresponding de Broglie wavelength. The typical momentum scales increase as one goes to heavier
nuclei and nuclear and neutron matter where density effects become more visible. We have seen
that, regarding the renormalization group, when running the parameters, there is scale saturation,
i.e., above a certain scale, the effective interaction parameters do not depend strongly on the scale
in a regime where most of the strength can be deduced from low energy NN scattering information
regardless of the underlying forces. The fulfillment of the previously reported and well fulfilled Wigner
and Serber symmetries in the effective interactions is reassuring and indicates that many of the main
features of the effective interaction are kept. Of course, for heavier nuclei, many-body effects set
in, and the number of terms in the effective interaction, and hence the number of parameters, grow
rapidly. At the same time, explicit finite range effects such as pion exchange corrections will become
relevant for higher dimensional terms beyond the second order in momenta analyzed here. The weak
scale dependence not only provides a rationale for fitting strategies in mean field nuclear structure
calculations, but also shows that, for Λ ∼ kF, one should distinguish between density effects due to
many body forces and scale dependence due to finite wavelength resolution. We expect that a more
clear disentanglement of both properties might provide further insight into the modern DFT approach
to nuclear physics.
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Our results can be improved and extended in several ways. Within the low energy expansion, we
have neglected terms O(p′4, p4, p′2p2), which correspond to P-waves and S-wave range corrections.
In configuration space, this corresponds to a dimensional expansion, since δ(~r12) = O(Λ3) and
{P2, δ(~r12)} = O(Λ5), {P4, δ(~r12)} = O(Λ7). Within such a scheme, going to higher orders also
requires including three-body interactions, ∼ δ(r12)δ(r13) = O(Λ6). Actually, at the two-body level,
there are more potential parameters than low energy threshold parameters. For instance, in the 1S0

channel, one has two independent hermitean operators, p′4 + p4 and 2p′2p2 (which are on-shell
equivalent), but only one v1S0

threshold parameter in the low energy expansion (see Equation (6)). As
it was shown in Ref. [67] (see also Ref. [68]), these two features are interrelated since this two body
off-shell ambiguity is cancelled when a three body observable, like e.g., the triton binding energy,
is fixed. An intriguing aspect of the present investigation is the modification induced by potential
tails due to e.g., pion exchange, which cannot be represented by a polynomial since particle exchange
generates a cut in the complex energy plane. The important issue, however, is that the low scale
saturation unveiled in the present paper works accurately just to the second order as long as the
low energy parameters determined from on-shell scattering are properly reproduced. Along these
lines, we also expect that higher order two-body derivative terms accounting for higher energies will
become more sensitive to the long range features of the interaction, and more specifically to pion
exchanges. Finally, it would be very interesting to check this behavior of the counterterms by the
explicit renormalization method based on the Block-Diagonal Similarity Renormalization Group, as
was done in a toy model in Ref. [36,37], as the problem becomes extremely stiff and computationally
expensive for Λ � 1 fm−1. There, it was found that the simple analytical formulas overlap in the
physically interesting Λ ∼ 1 fm−1 region and allow for sidestepping the stiff equations for lower
values. Work along these lines is in progress.
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Appendix: Derivation of Analytical Results

General Considerations

Firstly, we introduce the cut-off integrals over powers,

In(p) =
∫ Λ

0
dq

qn

p2 − q2 ≡ Gn(p)(2π)3/MN . (A1)

The discontinuity across the cut according to the prescription p2 → p2 + i0+ is given by

DiscIn(p) = 2iImIn(p) = −2iπpn+1θ(Λ− p)θ(p), (A2)

which means that

In(p)− pn I0(p) = Pn(p, Λ) (A3)

is a polynomial in p and Λ. Only even powers of n appear. The lowest cases are

{P2, P4, P6, P8} =
{
−Λ3

3
,− p2Λ3

3
− Λ5

5
,− p4Λ3

3
− p2Λ5

5
− Λ7

7
,− p6Λ3

3
− p4Λ5

5
− p2Λ7

7
− Λ9

9

}
. (A4)
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Then, we get

I0(p) = p tanh
Λ
p
−Λ = −Λ− iπ

2
p +O(Λ−1), (A5)

where, in the second line, we take Λ � p > 0. For a general potential expanded in powers of
momenta, we may guess the form of the scattering amplitude by analyzing the second order Born
approximation. The problem looks more symmetric if we make a difference between energy E = k2/2µ

with wavenumber k and momenta p and p′, so that

T JS
l′ ,l(p′, p) = V JS

l′ ,l(p′, p) + ∑
l′′

∫ Λ

0

MN

(2π)3 dq V JS
l′ ,l(p′, q)

q2

k2 − q2 V JS
l′ ,l(q, p) + . . . (A6)

If we factor out the kinematical factors due to the centrifugal barrier as

T JS
l′ ,l(p′, p) = (p′)l′ pltJS

l′ ,l(p′, p), (A7)

V JS
l′ ,l(p′, p) = (p′)l′ plvJS

l′ ,l(p′, p), (A8)

we get

tJS
l′ ,l(p′, p) = vJS

l′ ,l(p′, p) + ∑
l′′

∫ Λ

0

MN

(2π)3 dq vJS
l′ ,l′′(p′, q)

q2+2l′′

k2 − q2 vl′′ ,l(q, p) + . . . . (A9)

If we insert the power series expansion for the potential as

V JS
l′ ,l(p′, p) = (p′)l′ pl ∑

n′ ,m
C JS

l′ ,l;n′ ,m(p′)n′ pm, (A10)

we obtain,

tJS
l′ ,l(p′, p) = ∑

n′ ,m
C JS

l′ ,l;n′ ,m(p′)n′ pm + ∑
l′′

∑
n′ ,n′′

∑
m′ ,m

C JS
l′ ,l′′ ;n′ ,n′′C

JS
l′′ ,l;m′ ,m(p′)n′ pmG2l′′+n′′+m + . . . , (A11)

= ∑
n′ ,m

tJS
l′ ,l;n′ ,m(k)(p′)n′ pm, (A12)

where

tJS
l′ ,l;n′ ,m(k) = C JS

l′ ,l;n′ ,m + ∑
l′′

∑
n′′ ,m′

C JS
l′ ,l′′ ;n′ ,n′′C

JS
l′′ ,l;m′ ,mG2l′′+n′′+m(k) + . . . , (A13)

= C JS
l′ ,l;n′ ,m + ∑

l′′
∑

n′′ ,m′
C JS

l′ ,l′′ ;n′ ,n′′G2l′′+n′′+m(k)t
JS
l′′ ,l;m′ ,m(k), (A14)

which can formally be re-written and solved as an LS equation. If we truncate the low momentum
expansion, we end up with a finite rank separable interaction that can be solved by algebraic means
(see e.g., [69]). Once we have the solution, we obtain the on-shell T-matrix as

T JS
l′ l (p) ≡ ∑

n,m
pn+m+l+l′ tJS

l′ ,l;n,m(p). (A15)

The problem is matching from this solution the constants C JS
l′ ,l;n′ ,n with the low energy threshold

parameters αJS
l′ ,l , r JS

l′ ,l , vJS
l′ ,l , etc. Of course, since the cut-off Λ appears in the master integrals In, and the

low energy threshold parameters are physical quantities, the LECs C JS
l′ ,l;n′ ,n, must depend on Λ.
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For the uncoupled wave with angular momentum l, the NLO the result holds

rl = Al +
Bl
αl

+
Cl

α2
l

, (A16)

where the case l = 0 can be looked up in [70] and the l = 1 case reads

A1 = −
16
(
d2

1 + 80π3d1 + 3600π6)
9π (d1 + 40π3)

2 , (A17)

B1 = −
20
(
d2

1 + 80π3d1
)

3 (d1 + 40π3)
2 , (A18)

C1 = −π

4
B1. (A19)

This B1-C1 correlation for P-wave coincides with the S-wave, which was noted already in [70],
and reflects the shape of the cut-off function. For instance, if instead of the cut-off function θ(Λ− p),
we take a Gaussian regulator e−p2/Λ2

, the ratio becomes 2Λ
√

π, which is opposite sign. Note that the
sharp function separates explicitly the model space from the rest in terms of orthogonal projection
operators P and Q fulfilling P2 = P and Q2 = Q and PQ = QP = 0, which is only fullfilled by the step
functions P = θ(Λ− p) and Q = 1− θ(Λ− p).

Explicit Analytical O(p2) Results

Similarly to the counterterms, we use the following identifications of the in the coupled channel
effective range expansion parameters αJS

l,l′ and r JS
l,l′ appearing in Equation (6) for the coupled channel

K-matrix: α1S0
= α00

00, α3S1
= α11

00, r1S0
= r00

00, r3S1
= r11

00, αE1 = α11
02, α3P0

= α01
11, α3P1

= α11
11, α3P2

= α21
11,

α1P1
= α10

11.
To solve the equations, it is convenient to introduce the dimensionless variables:

C̃i =
4π

MΛ
c̃i , i =1 S0,3 S1, (A20)

Ci =
4π

MΛ3 ci , i =1 S0,3 S1, E1,1 P1,3 P0,3 P1,3 P2. (A21)

• Uncoupled 1S0 wave

− 1
α1S0

Λ
=

2
(

90π2
(

c̃1S0
+ 2π2

)
− 4c2

1S0
+ 60π2c1S0

)
9π
(
−10π2 c̃1S0

+ c2
1S0

) , (A22)

1(
c1S0

+ 6π2
)

2
=

(
−3Λ2α2

1S0

(
πΛr1S0

− 16
)
− 36πΛα1S0

+ 9π2
)

324π4
(

π − 2Λα1S0

)
2

. (A23)

The second equation has a solution provided the numerator is positive definite(
−3Λ2α2

1S0

(
πΛr1S0

− 16
)
− 36πΛα1S0

+ 9π2
)
> 0. (A24)

• Waves 1P1, 3P0, 3P1 and 3P2.

− 1
αPΛ3 =

8
(
350π3 (cP + 24π3)− d2

P + 420π3dP
)

75π
(
d2

P − 56π3cP
) , (A25)

rP/Λ =
16
(
98000π6 (d2

P − c2
P
)
+ 140π3d2

P(25cP + 14dP)− 19d4
P + 1568000π9dP

)
125π

(
d2

P − 56π3cP
)2 . (A26)
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• Coupled channels 3S1 −3 D1, E1.

− 1
α3S1

Λ
=

2
(

90π2
(

c̃3S1
+ 2π2

)
− 9c2

E1
− 4c2

3S1
+ 60π2c3S1

)
9π
(
−10π2 c̃3S1

+ c2
E1

+ c2
3S1

) , (A27)

cE1 =
2Λ3

(
c3S1

+ 6π2
)

αE1

3
(

π − 2Λα3S1

) , (A28)

1(
c3S1

+ 6π2
)

2
=

(
−4Λ6α2

E1
− 3Λ2α2

3S1

(
πΛr3S1

− 16
)
− 36πΛα3S1

+ 9π2
)

324π4
(

π − 2Λα3S1

)
2

. (A29)

The third equation has a solution provided the numerator is positive definite(
−4Λ6α2

E1
− 3Λ2α2

3S1

(
πΛr3S1

− 16
)
− 36πΛα3S1

+ 9π2
)
> 0. (A30)

When the S-D wave mixing through the parameter αE1 vanishes, we have cE1 = 0 and the
remaining equations reduce to the uncoupled 1S0 channel case.
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