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The research was carried out within the framework of a scholarship supported financially by Ministerio

de Educación y Ciencia under research Grant FPU12/02712 and MINECO under research Project

TEC2013-47283-R.





Acknowledgements

This thesis has been possible thanks to the contribution of many people who gave me the support

necessary at each moment. I want to show all my gratitude to all those people who have meant a lot to

me.

I would like to make a special gratitude to my director, Prof. Juan Antonio Jiménez Tejada, for
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Abstract

Organic solar cells (OSCs) are promising devices in the field of solar energy. Their many advantages

are intrinsic of the organic/polymeric technology, such as light weight, flexibility and low manufacturing

costs. However, the degradation of OSCs hinders a predictable and a stable performance. In order to

improve the device performance, accurate physics-based models, including boundary conditions, are

needed. In this thesis, a model that relates the charge carrier density at the metal-organic boundaries

with the current density in OSCs is considered for simulation and modeling purposes. The model is

proposed after initial studies on single-carrier and bipolar organic diodes in darkness.

The work begins with the proposal of a model for the current-voltage characteristics of organic and

polymeric single-carrier diodes. The model unifies two different mechanisms in the structure, the injection

and transport of charge, and includes a proper boundary condition for the free charge density at the

metal-organic interface and a temperature and electric-field dependent mobility model. The results of

the model highlight the importance of the boundary condition at the interface, which is used to explain

different trends and their transitions in experimental current–voltage characteristics: linear, quadratic

and a higher than quadratic trend at high electric fields.

The importance of this boundary condition leads to a model that relates the boundary values of the

charge concentration at the interface with the current density. This relation follows a power-law function

with the current in drift-dominated transport. In diffusion-dominated transport, at low bias close to the

diode’s built-in voltage, the charge density at the contact is almost constant with the current. This

boundary condition, initially proposed in single carrier diodes, is tested positively in bipolar devices.

Then, the model is adapted to OSCs, where the power law relation is valid not only in darkness but

under illumination. The model is verified by comparing experimental current-voltage characteristics with

numerical simulation. The numerical simulations of the current-voltage characteristics of OSCs consider

well-established models for the main physical and optical processes which take place in the device: light

absorption, generation of excitons, dissociation into free charge carriers, charge transport, recombination

and injection-extraction of free carriers. Our analysis provides a general picture of the influence of the

metal-organic interfaces in the global performance of OSCs.

In an effort to extend the applicability of our study to other devices and physical mechanisms, the

work includes a study of the contact effects in organic thin film transistors (OTFTs) and the study of

ferroelectric aspects in solar cells. In the first case, we propose a compact model for the current-voltage

characteristics of OTFTs. This model includes the effects of the contact regions in which the current-
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voltage model developed in organic diodes is incorporated. The model explains successfully two trends

observed in current-voltage curves of the contacts of different OTFTs (linear and non linear) which so

far were explained with different models. A characterization technique to determine the value of the

parameters of the model from experimental data is also developed.

The second case is the inclusion of ferroelectricity to the study of solar cells. Ferroelectricity as-

sists a permanent electrical polarization which may enhance the charge transport and may modify the

electrical behavior of interfaces improving the efficiency of solar cells. Theoretically, the ferroelectric

polarization affects the transport in semiconductors by means of shifts in the band bending. The control

the polarization with an external field allows to electrically tuning charge transport and hence reaching

unidirectional electric conduction. We have included ferroelectric effects in the physical model of a so-

lar cell. Our analyses provide a general picture of the influence of ferroelectric effects on the power

conversion efficiency of the solar cell device, and we are able to assess whether these effects or their

combinations are beneficial or counterproductive.
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10.Resumen en español/Spanish summary 163

10.1. Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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14 1. Introduction and background

1.1. Motivation

Currently, our daily needs of energy are mainly provided by fossil fuels. However, fossil fuels have a

limited supply and are the main source of environmental contamination. Based on the world’s population

growth trend and the increment of technology devices, the worldwide energy demand will continue

increasing every year. Under this scenario, we need to look for a clean and long lasting renewable source

of energy.

Solar energy has been the most promising alternative for decades. The earth receives approximately

1.74× 1017 W power from the sun whereas the current worldwide electric energy consumption is appro-

ximately 18 TW, which is 10.000 times smaller. That means that the earth receives from the sun more

energy in one hour than the world’s energy demand for a whole year[1]. Among the different methods

to extract and convert the solar energy in electrical energy, the solar cells or photovoltaic cells are in

the spotlight of all researchers.

There is a wide variety of solar cells which are typically classified based on the absorber semiconductor

layer. They are grouped into the so called: first, second and third generation cells. The efficiencies

of these solar cells are also different as is reported by the National Renewable Energy Laboratory

(NREL) [2] (Fig. 1.1). Currently, the most efficient solar cells are the multijunction cells with almost

a fifty percent. The first generation cells are made of crystalline and polycristalline silicon (c-Si, p-Si).

The second generation cells are thin film solar cells, that include amorphous silicon (a-Si), Cadmium

Telluride (CdTe) and Gallium Arsenide (GaAs) cells. Finally, the third generation cells include emerging

photovoltaic devices. Most of them have not yet been commercially applied and are still under research or

development. This category includes solar cells based on organic dyes, dye sensitized materials, organic

or polymeric materials, quantum dots and perovskite materials.

Figure 1.1: Best research-cell efficiencies reported by [2]

Silicon-based solar cells dominate the photovoltaic market. Silicon is abundant in the nature and has
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a broad absorption spectrum. However, the main problem of silicon solar cells is the production costs

due to the requirements of the clean-room and the high temperature processes. For this reason, the

prices of electricity produced by photovoltaic silicon devices are still very high compared to electricity

produced by the conventional power industry [3]. Cheaper photovoltaic-electricity is possible by a trade-

off between efficiency and cost. In this regard, organic-polymeric solar cells (OSCs) are suitable in the

future of photovoltaic-market as they can achieve higher power conversion efficiencies for large-scale

manufacture with low fabrication costs [3, 4].

Organic solar cells have the intrinsic advantages of the organic technology, such as simplicity of

the production processes, low processing temperatures, affinity for chemical modification, flexibility,

large area printing, low weight, and low environmental impact. OSCs are also compatible with other

applications such as clothing, flexible screens, or recharging cell phones. This opens a whole new range

of possibilities which traditional solar cells cannot offer. Nevertheless, their efficiency levels are still

below the ones provided by standard solar cells. Another drawback is the degradation of OSCs due

to air and light exposure that decrease their operational lifetimes [5]. In order to commercialize this

technology, research and development efforts to enhance the efficiency and to achieve long-life devices

are thus necessary [4, 5].

Sensitive regions of the OSCs are the contacts between the metal electrodes and the organic material.

On the one side, the contacts control the flux of the current. The carriers that are photogenerated

inside the semiconductor must be extracted at the metal-organic interfaces. On the other side, the

contact region is sensitive to degradation. The formation of an insulating layer close to the metal-

organic interface or the decrease of recombination velocity at the contact are detrimental effects that

can reduce the efficiency of the OSCs [6, 7]. In order to optimize the performance of these devices, a

detailed physical description and proper modeling and simulation of the metal-organic structure are

necessary.

The modeling of organic solar cells is supported by a previous long-standing experience of our group

in the field of simulation and modeling of inorganic and organic electronic devices. It is worth mentioning

previous works in the development of a unified model for injection and charge transport in organic diodes,

which is the basis of the present work [8–11]. The main feature of this model is that it incorporates

together drift, diffusion, thermionic and tunnel injection, and oxidation-reduction mechanisms in the

study of a metal-organic interface. This model allows relating the charge density at the interface with

the applied voltage and current density. Later, this analytic model was successfully introduced in a

compact model for organic thin film transistors with the objective of characterizing the contact regions

of these transistors [12–15].

1.2. Objectives and methodology

This thesis is focused on the modeling and simulation of organic solar cells. The transport equations

in semiconductors combined with opto-electrical models have been used extensively in the literature to

model the generation and transport of charge carriers in OSCs. However, there are particular aspects

that differ among different researchers, such as the models used for the charge-carrier generation and
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recombination, the mobility, or the boundary values for the free charge density, the last one being the

main objective of this work.

For this purpose, a proper model that defines the free charge density at the contact will be proposed

and later integrated with the optical and electrical models in the simulation. The way to achieve this

objective is through several steps or secondary objectives with increasing difficulty.

1. The boundary values of the free charge density at a metal-organic interface are determined in the

first place in metal-organic-metal structures with the following features: single carrier transport in

the organic material in order to avoid the complexity of bipolar transport; symmetric and ohmic

contacts in order to avoid injection limited current regime and to reduce the transport to drift

processes; and darkness in order to neglect optical phenomena.

2. In a second step, the boundary values of the free charge density at the interfaces are determined

in symmetric single-carrier metal-organic-metal structures with high barriers. The effect of the

injection through the barriers on the boundary values is analyzed. The injection limited current

(ILC), space-charge limited current (SCLC), and diffusion regimes are compared and their effects

integrated in the boundary condition model.

3. Asymmetric single-carrier organic diodes in dark are studied in the third place.

4. A new step in complexity is added with the study of bipolar conduction in organic diodes and

OSCs in darkness. The model for the the charge carrier density at the metal-organic interfaces is

adapted to this new situation.

5. Finally, the model is completed for organic solar cells under illumination. A characterization pro-

cedure is also given to determine the value of the model parameters from the comparison of

experimental data with numerical results.

6. The model developed in metal-organic-metal structures is applied in the modeling and simulation of

organic thin film transistors (OTFT). The idea is to extend the validity of the boundary condition

model to other organic devices.

7. A different type of solar cells is studied: a ferroelectric solar cell. Different physical mechanisms

and materials are incorporated in the simulation and the results checked with experimental data.

The main tool to develop these steps is a computational program. The transport equations, the

opto-electrical models, the proposed boundary condition model and the procedures to characterize the

parameters of the model are implemented in this program. The particular aspects related with the

aforementioned steps are detailed in each chapter of the work.

1.3. Structure of the Thesis

Throughout this memory, we focus on the modeling of physical mechanisms of organic solar cells,

although we pay special attention to the modeling of the contact regions of these devices.
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This work is divided in seven main chapters that follow this introduction (Chapters 2-8). Although

they are written in sequence order, each one can be read independently from the others. For this reason,

the terminology can change among them and notation is always defined in each chapter.

The first four chapters are focused on the study of injection and transport mechanisms in metal-

organic-metal structures. They lead in sequence to the modeling of OSCs, which is the main purpose of

the thesis and is treated in Chapter 6. Chapter 7 focuses on compact modeling of TFTs. Although the

topic may seem different, the problem of the contact is common in both devices. We make use of the

studies of the contacts in organic diodes to propose a compact model for TFTs including the contact

effects. Finally, in Chapter 8, the numerical simulator is tested in other kind of solar cell: the ferroelectric

solar cell.

In Chapter 2, a model for the charge transport in organic diodes is proposed. It provides a physical

explanation of the transition from ohmic to space-charge limited current (SCLC) regimes. It also explains

internal transitions in the SCLC regime when high electric fields are applied. The model is based on

two established models: a unified model for the injection and transport of charge in organic diodes,

including a proper boundary condition for the free charge density at the metal–organic interface; and

a temperature and electric-field dependent mobility model. Organic diodes with low energy barriers at

the interfaces are studied over a wide range of applied voltages, or electric fields.

Chapters 3 and 4 combine the study of the injection-limited-current (ILC) and SCLC regimes. Diffe-

rent energy-barrier heights at the interfaces are analyzed and the resulting current density is modeled. A

model that relates the charge density at the interface with the current density is proposed unifying both

SCLC and ILC regimes. At high current densities, the model is described with a power-law function

between the charge density at the interface and the current flowing through the metal-organic contacts.

The unified model allows characterizing metal–organic contacts subjected to controlled technological

treatments or unintentional degradation processes. This boundary condition model is the first step to

introduce the contact effects in the simulation of organic devices.

Chapter 5, studies the boundary conditions for the charge density at the metal-organic contacts of

symmetric and asymmetric organic diodes with unipolar and bipolar conduction. From the analysis of

experimental current-voltage curves, an analytical model that relates the value of the charge density at

the contacts with the current density is proposed. The relation between charge and current for injecting

electrodes, extracted from the analysis of single-carrier diodes, can be used as boundary condition in

bipolar devices.

In Chapter 6, the boundary condition model, initially developed for single-carrier and bipolar diodes,

is finally adapted to OSCs. The model captures both the optical and electrical effects in the OSC. The

verification of this model is done by comparing experimental results with numerical results. The numeri-

cal simulator is developed which combines the transfer matrix method to study the optical propagation,

the Onsager-Braun theory to describe the exciton disociation and the drift-diffusion transport equations

with the boundary condition model, which is the main achievement of this thesis.

In Chapter 7, we apply a current-voltage model, initially proposed in organic single-carrier diodes, in

the modeling of organic thin film transistors (OTFT). The model that relates the current in the transistor

with the voltage drop at the contacts is introduced in a generic analytical model for the current–voltage of
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OTFTs. The resulting compact model can describe anomalies produced by the contacts on experimental

current–voltage curves of OTFTs.

In Chapter 8, we have included ferroelectric effects in the physical model of a solar cell. The idea is

to extend the validity of the simulator to other type of solar cells as in this case, a ferroelectric solar cell.

Different physical mechanisms and materials are incorporated in the simulation and the results checked

with experimental data. The simulator includes effects associated to both the ferroelectric polarization

surface polarization charges and the spatial dependent polarization, which are necessary in order to

interpret experimental current-voltage curves obtained so far.

The memory is ended with concluding remarks and recommendations for future work.

1.4. Background

In this last section of the introductory chapter, we present basic concepts that will be treated

throughout this work. They are related to the electric conduction in organic semiconductors and will

help in the understanding of the transport mechanisms in OSCs.

1.4.1. Organic Semiconductor

Organic electronics is a very promising complement to silicon-based technology, providing the oppor-

tunity of using flexible and low-cost substrates for large-area applications by simple and low-temperature

fabrication. The main disadvantage of the organic materials is the low value of the charge carrier mo-

bility. Organic semiconductors are carbon-based semiconductors with a certain number of functional

groups that are attached to it. Conductivity in organic semiconductors is due to conjugation, the alter-

nation of single and double bonds between the carbon atoms that leads to delocalization of the charges

which allows the free movement of the electrons in such region. Based on the conjugation length, the

organic semiconductors can be classified in two groups: the small molecule, or organic semiconductor

and the polymeric semiconductor. Polymeric semiconductors are constituted by a long chain of similar

smaller molecules, and therefore, they tend to have a long conjugation length, while small molecules,

have a shorter one. Both types present very similar electrical characteristics.

In spite of the good conduction within the molecule, the organic semiconductors (hereafter, we use

organic to mean both organic and polymeric) are formed by a system of molecules and the macroscopic

conduction depends not only on the motion of the charge within the molecule but also on the transfer

of charge between molecules. The organic molecules are held together by a weak bonding Van der Waals

interaction, and therefore the transfer of charges between molecules is not as easy as in a covalent crystal.

Transport in Organic Semiconductor

In general, the organic semiconductor is assumed to be constituted by two delocalized “energy bands”

commonly characterized by the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO). By analogy with inorganic semiconductor, the HOMO and LUMO are as-

sociated with the valence and conduction bands, respectively. HOMO and LUMO are separated by a
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“bandgap” in the order of typically two to three electron volts. The transition between these two levels

can be excited by light in the visible spectrum. This makes conjugated organics a very interesting choice

for photovoltaic applications.

The validity of a band theory (Figure 1.2 (b)) is open to debate [16]. A better approach for the

conduction in organic semiconductors is the charge transport via hopping over the barriers between

molecules from one localized state to the next[17] (Figure 1.2 (a)). The percolation or hopping theory is

used to describe the electronic behavior of devices [16]. Evidence for hopping transport mostly relies on

the fact that the field effect mobility of organic semiconductor is thermally activated and electric field

dependent. This will be treated in Chapter 2.

Figure 1.2: (N-type) transport models. a) Hopping/percolation conduction which consists of jumps from one
localized state to another in the Gaussian energy distribution of the LUMO for electrons and of the HOMO
for holes. The injected (or photogenerated) charge carriers can be generated at higher energies, followed by
a relaxation of the charge carriers to a quasi-equilibrium transport energy. The steady-state charge transport
takes place around the effective transport energy, which depends mainly on temperature and disorder. At low
temperature, the charge carriers relax to the deepest states where they remain trapped. b) Crystal/band theory.
Conduction occurs in the conduction band, EC , (for electrons) and in the valence band, EV , (for holes). The
dashed line is the Fermi level EF .

Injection and Extraction of charge

The injection and extraction of charge through metal-organic interfaces are present in any organic

devices and the OSCs are no exception. The current that flows through this interface is the result of

different factors such as the height of the injection barrier, the applied electric field, the temperature,

chemical reactions leading to interface dipoles, and band bending or Fermi level pinning (Chapter 3).

For a small energy barrier, the contact imposes no restriction to the flow of charges. The performance

of the device is limited by the transport in the organic semiconductor bulk. In this case, the current is

space charge limited and follows the usual quadratic dependence with the voltage, the well known Mott-

Gurney model [8, 18]. In the opposite case, that correspond to a high energy barrier, the performance

of the device is mainly limited by the injection through this barrier. The current is said to be limited
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by injection mechanisms. The typical injection models are the thermionic emission model employed

for lower barriers and low electric fields and the Fowler-Nordheim tunneling injection model for higher

barriers.

1.4.2. Organic Solar Cells

A typical organic solar cell is a multilayer structure with a transparent and conductive electrode

(usually an ITO anode), a transparent substrate, an hole transport layer HTL or electron blocking layer

(such as PEDOT: PSS), an active organic polymer layer (monolayer, bilayer or bulk heterojunction)

and a cathode (typically Al or Ca/Al). The general performance of OSCs is the following (Fig. 1.3).

Light (1), coming through the transparent substrate, propagates in the OSC structure, and the absorbed

energy generates excitons (2) (optically excited electron-hole bound pairs). The stored potential energy

is not enough to dissociate immediately the excitons into electron-hole pairs. Some excitons are lost

by recombination and others diffuse (3) until they reach a dissociation site (usually a region with

high electric field or the interface between two different materials). There, free electrons and holes are

separated (4). These separated charges are transported in opposite directions towards their respective

electrodes (5) where they are extracted (6).

Organic Solar Cells Architectures

The first generation of OSCs was based on a single active layer. This type of solar cell is constituted

by an organic semiconductor layer between two metals with different work functions. Fig. 1.3 (a) shows

the energy diagram and the different mechanisms that take place in a single-layer solar cell. In this

configuration, one of the contacts is ohmic and the other one is a Schottky contact. The Schottky

barrier creates a strong electric field close to the contact, which is able to dissociate excitons. In this

device, the power conversion efficiency is very poor. This fact gave rise to the second generation of OSCs

based on a bilayer structure (Fig. 1.3 (b)). The concept behind a bilayer OSC is to create an interface

between two different materials (called donor and acceptor) at which exciton dissociation takes place

more efficiently. The efficiency of the bilayer OSCs is still low due to the high exciton recombination

rate, which is attributed to the short exciton diffusion length in organic semiconductors (around 10

nm). The efficiency was enhanced with the introduction of the bulk heterojunction (BHJ) architecture

(Fig. 1.3 (c)), in which the donor and acceptor phases are intermixed on the nanometer scale to form a

much larger interface area throughout the photoactive layer. These distributed interfaces help excitons

to be dissociated before recombination events occur. Figure 1.3 shows the energy diagram and the main

physical mechanisms that appear in (a) single-layer, (b) bilayer and (c) bulk-heterojunction solar cells.

All these architectures established the ground for the design of new structures, such as the pseudo-

bilayer solar cells [19] or the test of different morphologies. Several works analyze different textures

and geometries to improve the optical properties of the device [20, 21]. In the search for an optimal

morphology in BHJ solar cells, these authors focused on different ways of intermixing donor and acceptor

materials, such as the creation of “islands” of one material surrounded by the other. These inclusions

can act as charge traps and may influence the local charge densities and charge transport.
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Figure 1.3: The energy diagram and the main physical mechanisms that appear in (a) a single layer, (b) bilayer
and (c) bulk heterojunction solar cell.

Numerical Models

In order to describe the performance of OSCs, different physical models have been proposed. The

numerical simulations of OSCs consider the main physical-chemical mechanisms which govern OSC

performance. Several excellent works pay attention to the understanding of each mechanism and to the

interactions between them. These mechanisms can be classified in three groups: optical, electrical and

opto-electrical.

The optical mechanisms treat the light as an electromagnetic wave and consider the reflection,

refraction and interference effects in a multilayer structure. They are commonly modeled using the

Transfer Matrix Method (TMM) [22–26], which provides a low computational cost and their results

agree quite well with experimental data. Other works use finite element method (FEM) simulations

[21, 27] to solve the electromagnetic wave equation on the whole estructure. TMM and FEM, coupled

with the drift-diffusion equations, allow to estimate the optimum thickness of the active layer [21, 24–27].

The optical models provide the exciton generation rate, which is used as input in opto-electrical models.

The opto-electrical models take into account the processes that take place from the creation until

the dissociation of the exciton at the donor-acceptor interface of OSCs [28, 29]. They include the exciton
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formation and dissociation and the geminate and nongeminate recombination. In general, the models

are based on Onsager-Brown theory [30],[31] which may partly be due to the availability of an analytic

expression. These models determine the value of the free charge that appears after the dissociation of

the excitons which is incorporated in the electrical model.

The electrical models complete the set of models necessary for simulation of OSCs. With them,

current-voltage characteristic curves can be calculated. In the literature, two different computational

models are found: drift-diffusion (DD) and Monte Carlo (MC) models [32]. The main difference is that

drift-diffusion equations focus on the macroscopic quantities, while the Monte Carlo model focuses on

the behavior of a microscopic particle [33], or to study realistic blend morphologies [34].

The drift-diffusion model is a common technique for semi-classical modeling of semiconductor devices

over a generic geometry in 1, 2 or 3 dimensions. A large number of publications have studied the

charge transport in organic solar cells, using the DD model. They apply this method to simulate the

organic photovoltaic devices and study the influence of doping levels [35, 36], temperature [37], type of

recombination, traps [38], space charge, lifetime and/or mobility [39, 40] in the performance of OSCs.

Modifications of the DD model are also proposed in order to investigate the impact of the interface

morphology and of exciton dissociation on device performance [41].

DD model comprises the differential equation system of Poisson, drift-diffusion and continuity equa-

tions. In this work, DD equations are used. Their computational requirements are low, their numerical

results provide a good agreement with experimental data, and offer strategies for further improving the

device efficiency. The use of the DD model in OSCs is combined with a common approximation called

the effective medium approach, in which the blend of donor and acceptor materials is treated as one

effective material [42, 43].

Compact Models

To speed up the simulation the use of compacts models is recommended. The compact models can

be easily integrated in more complex circuits. A compact model is defined by three important parts: an

analytical expression to describe the current-voltage characteristic, an extraction parameter procedure

with a defined range of physical-meaningful parameter values and a final step of verification of the

proposed model. There are two kind of compact models, models that are described with an equivalent

circuit model [44], and the ones extracted from the analytical solution of the drift-diffusion equations

using specific approximations [45, 46]. In this last group, there are different analytical studies that

describe the J − V characteristics of BHJ solar cells [42, 47, 48]. The way to distinguish one from the

other is by their specific assumptions, such as the spatial generation profile [47, 49], the recombination

model [45, 48, 50], the dissociation efficiency model for bound electron-hole pairs, or a particular carrier

trapping model. In general, they are a powerful tool to design and optimize OSCs without dealing with

numerical computational complexities [48, 50].
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2.1. Introduction

Devices based on organic and polymeric materials are being researched by many groups because

of the advantages associated to these materials, such as flexibility, low fabrication costs and weight

[51, 52]. These researches are motivated by the promise of low-cost, easy-to-fabricate or flexible con-

sumer products that include light-emitting diodes, flexible integrated electronics, sensors or displays.

For these and other applications, it is vital to understand and model the key mechanisms that deter-

mine the current–voltage (j—V) characteristics of a given device structure [53–56], in order to improve

the performance of organic devices (OLEDs, OFETs, and organic solar cells), to design and synthesize

appropriate materials, and to improve the efficiency and lifetime of devices.

The current–voltage characteristics of metal–organic–metal devices are mainly controlled by two

basic processes: injection of charge carriers, and transport of charge in the organic bulk. In both these

processes, the connection between the metallic contact and the polymer is of crucial importance. Injection

barriers can be difficult to estimate using only the metal work-function and the energy levels of the

semiconductor. The atmosphere in which the samples are fabricated also affects the interfacial electronic

structure [57]. The actual injection barrier height is attributed to chemical reactions between the metal

and the organic semiconductor leading to interface dipoles [56, 58], band bending [59] or Fermi pinning

[60–62].

It has been shown [63–65] that if the barrier at a metal–organic interface is greater than 0.3 eV at

zero electric field, then the current is limited by injection (injection-limited current, ILC). If the barrier

is less than 0.3 eV, the injection barrier is small and charges can be injected efficiently into the device.

Thus, the limiting factor to the flow of charge through the device is imposed by the transport of charge

through the bulk. In this chapter, we pay special attention to the charge transport. Many investigations

have addressed the mobility µ of charge carriers in order to optimize the device performance, for example

[54, 66, 67], and to explain different trends that are observed in the current–voltage characteristics. Three

regions can be distinguished in a typical current–voltage curve:

(a) a linear or ohmic region at low voltages,

(b) a quadratic region when the voltage is increased, and

(c) a region showing a higher than quadratic relation at high voltages.

The ohmic region is observed when the amount of injected carriers is low compared to the existing

thermally generated carriers and impurities. Regions (b) and (c) correspond to the so-called space charge

limited current (SCLC) where the electrode injects more carriers than the material can transport.

The study of transport and mobility in organic devices is often performed using different models and

sometimes even different physical descriptions, despite the fact that similar (or even identical) materials

are being used [54][68]. There exist simple models that can be used to explain the ohmic and quadratic

regions [69–72], and also some discussions on contact effects [12, 73, 74]. However, they cannot explain

the transition from one region to the other. More complex models have been suggested in order to

interpret the high voltage region. They include dependences with the temperature T , the electric field
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E, and the free charge density p. However, these models also fail to connect the SCLC regime with

the linear region [75, 76]. In spite of this progress, a model that links all the different regions in a

current-voltage curve is lacking. The objective of this chapter is to propose such a model.

In order to tackle the issue of different regions in the current–voltage characteristics, we use a unified

model, developed previously in our research group [8–10], which considers all the key phenomena that

occur inside the organic diodes: carrier injection, redox mechanisms and charge transport. This model

was initially developed for a temperature-dependent mobility. It is the aim of the current chapter to

incorporate the dependence on the electric field in order to extend the validity of the model to high

voltages, as well as to explain the low voltage region including the transition from ohmic to quadratic

regimes.

The proposed model assumes a finite boundary condition for the free charge density at the me-

tal–organic interface that is controlled by redox reactions[8]. There are researchers that question the

use of an infinite charge density at the contact [56–62, 77]. An overestimation of the charge density in

diodes might lead to an underestimation of the value of the mobility extracted from experimental cu-

rrent–voltage curves. This would explain different values extracted for the mobility in the same material

by different authors [78–82].

With this in mind, Sec. 2.2 reviews the progress in mobility models. It also includes a summary of

our unified model. In Sec. 2.3, we propose a model that links our unified model with an electric-field and

temperature dependent mobility model. In Sec. 2.4, the model is applied to published current-voltage

characteristics measured at different temperatures in organic diodes with different lengths. We interpret

the transitions among different regions in a current-voltage curve: linear, quadratic at low injection, and

a higher than quadratic region at high injection. The parameters employed in the mobility are analyzed

and compared with those obtained in previous works. In Sec. 2.5, we provide an expression that relates

the free charge density at the metal-organic interface in the SCLC regime. The main conclusions are

provided in Chapter 9.

2.2. Theory

In this section, we focus on transport in organic diodes with Gaussian disorder. We review mobility

models and analize their advantages and disadvantages, including some aspects of our unified model for

injection and transport of charge [8] that are important for a better understanding of this work.

2.2.1. Mobility models

Charge transport in a disordered organic film is regarded as a hopping or thermally-assisted tunneling

process between two molecular localized sites through the Gaussian density-of-states GDOS = g(ε) =

(2πσ2)−1/2 exp[−ε2/(2σ2)], where σ is the width of the distribution and ε is the site-energy. The hopping

transport in disordered organic semiconductors is electric-field dependent and thermally activated. The

dependence of mobility on temperature T and electric field E has been studied extensively by different

authors, for example, [83–86]. The electric field dependence of mobility described by Eq. (2.1) stems



26 2. Modeling the ohmic-SCLC transition

from the reduction of barriers by charge transport in the field direction by the applied electrostatic

potential. The well-known Poole-Frenkel (PF) relation includes such dependences [84]:

µ(E, T ) = µ(0, T )exp(γ(T )
√
E) (2.1)

where µ(0, T ) and γ(T ) are the temperature dependent zero field mobility, and the field activation of the

mobility, respectively. Expressions for µ(0, T ) and γ(T ) have evolved in the course of time. From time-of-

flight (TOF) experiments, Gill proposed : γ(T ) = B[1/(kBT )−1/(kBT0)] and an Arrhenius temperature

dependence for the mobility µ(0, T ) = µ∞ exp[−∆/(kBT )] [83]. In these expressions, kB is the Boltzmann

constant, µ∞ is the mobility in the limit T → ∞ and ∆ is the activation energy. Also, T0 and B are fitting

parameters that depend on the molecular dopant density [78]. Later, Monte-Carlo simulations of hopping

transport in Gaussian site energies were performed by Bässler et al. [87], rendering the Gaussian disorder

model (GDM). This model exhibits a non-Arrhenius temperature dependence and a Poole–Frenkel

behavior. An important limitation of this model is that it only reproduces the experimental currents

in a rather limited range of electric field values. However, a Poole–Frenkel behavior occurs in a broad

range of electric-fields, as observed in TOF measurements. In [88] and [89] the applicability of a PF

relation over a wide range of electric fields was shown to require a spatial correlation among hopping

sites, leading to what is now known as the correlated Gaussian disorder model (CGDM also so-called

CDM) [85] that is given by:

µCGDM (T,E) = µ∞ exp

{
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(2.2)

where a is the intersite spacing (natural measure for the length scale involved in the charge transport

process) and q is the unit of electric charge. Also, Kreouzis et al. [90] found that CGDM is more successful

than the GDM in explaining experimental data.

Recently, different authors have studied the dependence of the mobility with the free charge-carrier

density p, for example [91]. Such studies have been motivated, on the one hand, by experiments in

diodes and FETs with the same organic semiconductor as active material, where µ can differ up to 3

orders of magnitude between devices [92]. On the other hand, models that include a free carrier density

dependent mobility have been used to explain the dependence of j–V curves with the device length. At

room temperature, mobility models depending only on the free charge density have been proposed [91].

However, such models fail to reproduce experimental j–V curves at low temperatures and high voltages,

and it is necessary to introduce a dependence with the electric field [93].

In order to describe the dependence of the mobility on the electric field and charge carrier density,

extended disorder models were introduced. Schuster et al. [94] commented that the extended Gaussian

disorder model (EGDM) is applicable to polymeric systems [93, 95], while the extended correlated disor-

der model (ECDM) can also be used for molecular materials [54]. In this regard, it is worth mentioning
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the proposed models by van Mensfoort et al. (a combination of EGDM plus diffusion) [75, 76] and by

Torricelli et al. [96].

In this chapter, we want to stress the importance of the charge density as a boundary condition

when solving the Poisson and drift equations, instead of enhancing the importance of this variable in

the mobility. In fact, the mobility in (2.2) depends on the electric field, which at the same time is

related to the charge density by the Poisson equation (see (2.3) below). In this regard, we exclude the

dependence of the free charge density from the mobility model by using the CGDM (2.2). Apart from

cited above advantages of this model, it maintains the simplicity needed for compact modeling, not

found in other more complex models.

2.2.2. Transport equations

The j − V curve of a hole-only device without charged impurities is characterized by the transport

equations (2.3)-(2.5) given below. The Poisson equation, which describes the relationship between the

electric-field E and the local charge density p(x), is given by:

dE

dx
=

q

ǫ0ǫr
p(x) (2.3)

where ǫr and ǫ0 are the relative permittivity and the permittivity of free space, respectively, q is the

magnitude of the electron charge, and x is the distance from the injected electrode. Charges injected

from the electrode into the organic region move through it due to the electric field. The drift current

density is given by:

j = qµ(T, p(x), E(x))p(x)E(x). (2.4)

In general, µ(T, p(x), E(x)) can be one of the mobility models previously described. The dependence

of the mobility with position through E(x) or p(x) requires the numerical solution for (2.3) and (2.4)

for a given hole current density j and a boundary condition for the electric field in the metal-organic

interface, E(x = 0). The related voltage for this current is given by:

V =

∫ L

0

E(x)dx (2.5)

where L is the length of the organic material.

2.2.3. Unified model for the injection and transport of charge

In a previous work, we proposed a unified model for injection and transport of charge in organic diodes

[8]. Specifically, our model assumes that three phenomena take place in a generic metal–organic–metal

structure:

1. injection from the metal electrode towards the organic material,

2. redox mechanisms at the interface and
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3. charge transport in the organic bulk.

Associated with these three physical mechanisms, we consider that the applied voltage V is shared

by the respective voltages: Vinjection, Vredox and Vtransport. Therefore:

V = Vtransport(j) + Vredox(j) + Vinjection(j) (2.6)

In that former work [8], we detailed regions where any of these mechanisms are dominant. In this chapter,

we pay main attention to the charge transport. For this reason, the barrier height in studied organic

devices is considered low, which results in small injection voltages (V ≈ Vtransport(j) + Vredox(j))[10].

The redox voltage is usually small and is related to the charge density at the interface p(0) by using the

Nernst equation:

Vredox = φ+ Vt(T ) ln(p(0)/ρm) (2.7)

where φ is a constant which depends on the material involved in a given redox reaction, ρm is the

molecular density of the organic material, and Vt(T ) ≡ kBT/q is the thermal voltage.

The redox voltage is usually smaller than the transport voltage. However, both terms can be com-

parable at very low voltages. If Vredox(j) is assumed constant (Vredox(j) = Vredox0), then the j − V

curve given by V = Vtransport(j) + Vredox0, would not cross the origin (j, V ) = (0, 0) but the point

(j, V ) = (0, Vredox0). The redox voltage can be estimated if the j–V curve in the low voltage regime is

extended by a straight line towards the V -axis. The crossing of this extrapolated line with the x-axis gi-

ves an estimation of the redox voltage. Except for this consideration at low voltages, the applied voltage

can be approximated by the drift voltage (V ≈ Vtransport(j)). The voltage required for the transport

across the contact region is calculated assuming that the charge transport is due to the drift of positi-

ve charges with a charge density at the interface p(0). This condition at the interface is equivalent to

expressing the electric field at this point as:

E(0) =
j

qµp(0)
(2.8)

In the formulation of this model, we initially considered a constant mobility at a given temperature,

µ = µ(T ) [8]. This leads to the following analytical solution for the set of equations (2.3)-(2.5):

Vtransport(j) =
2

3

(

2j

ǫrǫoµ

)1/2

×
{

[L+ xc(j, p(0))]
3/2 − [xc(j, p(0))]

3/2
}

(2.9)

xc(j, p(0)) =
jǫrǫo

2q2µ (p(0))
2 (2.10)

E(x)2 = E(0)2 + 2jx/(ǫrǫoµ) (2.11)
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where the characteristic length xc is defined as the point from the contact interface towards the organic

film, at which the charge density p(xc) decays to p(0)/
√
2. In our model, we assume that finite values

for p(0) or non-zero values for the electric field at the interface are reasonably valid. This characteristic

differs from other assumptions that necessarily impose E(0) = 0 or p(0) = ∞. By extending the

possible range of values for the charge density at the interface, our model is able to reproduce linear and

quadratic j–V relations (ohmic and SCLC regimes, respectively). One of these situations is found when

the characteristic length is much smaller than the length of device. In other words, it is represented

by a large p(0) where the contact delivers a large amount of charge into the bulk. In this case, (2.9) is

reduced to the Mott-Gurney’s equation:

j =
9

8
µǫrǫ0

V 2

L3
(2.12)

The other limit is found when a relatively small amount of charge exists in the device. In this case,

the characteristic length is larger than the length of device xc ≫ L, and expanding (2.9) in Taylor series

[10], this reduces to Ohm’s law:

johmic = qµp
V

L
(2.13)

Therefore, it is noted that an electric-field dependent mobility such as (2.2) does not lead to the

analytical solutions (2.9)-(2.11). Instead, a numerical solution should be used to solve (2.2)-(2.5). Our

main objective is to demonstrate that Eqs. (2.9)-(2.11) are still a good alternative to interpret the j−V

curves, even in the high electric field region.

2.3. Determination of the free charge density at the metal-

organic interface

An analytical j − V curve can be deduced from (2.9)-(2.11) when both p(0) and µ can be expressed

as a function of the applied voltage or the current density. As mentioned above, models that link the

mobility with the electric field exist. Therefore, a first step forward is already achieved in relation to

the mobility. However, so far, a relation of the free charge density at the metal–organic interface is

not known. Our goal is to extract this relation from experimental data. Fundamental parameters that

appear in a mobility model are extracted as well.

The free charge density is determined from experimental j − V curves following an iterative scheme

with three steps. First, an initial guess value for the mobility at zero electric field is proposed by analyzing

the ohmic region. Second, we use an analytical approach. The electric field is assumed to be uniform with

distance, and the charge density at the metal–organic interface and the parameters of the mobility model

are determined by minimizing the differences between the experimental j − V curves and predictions

using (2.9)-(2.11). Third, we use a numerical approach. Now, the value of p(0) obtained in step two

is used as a boundary condition to solve numerically the transport Eqs. (2.2)-(2.5). The values of the

variables obtained from the numerical approach are compared with the ones obtained in the analytical

approach in step two. If they are different, a new iteration is performed. The full details are given below.
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The final solution provides a distribution of the free charge density at the metal–organic interface as a

function of the current density.

2.3.1. Analysis of the ohmic region. Defining the initial guess value.

The ohmic region is analyzed in order to establish an initial value for the mobility at zero electric

field. At low fields, the mobility can be assumed constant µ = µ(E, T ) ≈ µ(0, T ) [86, 97, 98] and

E(x) = V/L gives the average value of spatial electric field distribution. Therefore, the slope of the drift

Eq. (2.4) (that in this case reduces to (2.13)) is proportional to the product of the free charge density

and the mobility (µ × p ≈ µ × p(0)). The value of p(0) can be obtained from (2.7) and the estimation

of Vredox0 proposed in the previous section is used, whenever experimental data are measured in a low

enough voltage range. In the case V ≫ Vredox, we have seen that the condition xc ≫ L must be fulfilled

in the linear region of the j − V curve. Combining this inequality with (2.10) and (2.13), we obtain:

p(0, V ) ≪ εV

2qL2
, V ≫ Vredox (2.14)

The condition in (2.14) imposes an upper limit for the free charge density at the metal–organic interface

in the ohmic regime.

This maximum also limits the range of possible values that the mobility can take. The slope k

measured from an experimental j−V curve in the ohmic region defines this range (j = k×V ; k ≡ qpµ/L):

µ(E ∼= 0, T ) ≫ L3

ε0εrV
× k (2.15)

This result indicates that if the slope of the j − V curve in the ohmic region is known, then a lower

limit for the mobility can be established. This expression also provides a way to limit the possible range

of realistic mobility values. In some cases, a broad range of experimental values of the mobility for

the same material and temperature can be found in the literature. This is the case of poly(pphenylene

vynilene) (PPV) where values of the mobility are found in the range 10−7 − 10−5 cm2/Vs [78–81].

2.3.2. Analytical solution

Once limits for the mobility at low electric fields µ(0, T ) and the free charge density p(0) are es-

tablished in the low voltage regime, a second approach to the solution is performed. In this step, the

dependence of the mobility on the electric field is considered. For the reasons mentioned above, the

CGDM model (2.2) is considered in this chapter. For the sake of simplicity, it can be expressed as a

function of its fundamental parameters as µ = µ(µ(0, T ), a, σ).

Initially, a uniform electric field E(x) ≈ E0 = V/L is incorporated in (2.2). Neglecting the dependence

of the electric field with the distance allows for the use of the analytical expression (2.9). This assumption

is later examined. A value for µ(0, T ) between one and ten times the value imposed by condition (2.15)

in the ohmic region is introduced in (2.2). Values for parameters a and σ must also be introduced in

(2.2). Some authors [99] find that σ should be in the range between 50 and 150 meV by the central limit
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theorem in typical molecular doped polymers. Other authors [92, 100] confirm values for σ inside this

range. The value of a is typically of the order of 1 nm [75]. However, some other authors [54, 65, 93]

have found values for a in the range 0.3-2 nm.

This resulting mobility is introduced in (2.9), and a relation V = V (j, p(0)) is established. Then,

pairs of experimental data jexp−Vexp are introduced in this relation, and the following set of equations is

obtained: Vexp = V (jexp, p(0)). From this set of equations, p(0) is extracted as a function of the current

density jexp or applied voltage Vexp. The values for p(0) must fulfill different physical criteria.

i A uniform distribution of p(0) with the applied voltage should be expected in the ohmic region, and

it must fulfill condition (2.14).

ii In the transition from the ohmic to the SCLC regime, once space charge starts being created in the

organic material, an increment of p(0) with the applied voltage should be expected.

iii If p(0) is determined from j − V curves measured at different temperatures, an increment of p(0)

with temperature should also be expected.

iv The values of p(0) at low voltages should be consistent with the value estimated from the redox

voltage Vredox (2.7).

v Organic diodes fabricated in the same conditions but with different lengths should show similar

p(0)− j relations.

vi Finally, the electric field obtained from (2.8) and (2.11) is checked and compared with the initial

assumptions. The electric field is then averaged along the organic material and the result must be

consistent with the uniform value considered initially.

Failure to comply any of these criteria leads to a modification of parameters a and σ or the mobility

at low electric fields; a new iteration is repeated and a new distribution of p(0) with the current density

is provided.

2.3.3. Numerical solution.

Once convergence is achieved in the analytical step, the transport Eqs. (2.2)-(2.5) are solved nume-

rically. For a given value of j, the values of parameters a and σ and the boundary condition p(0), or

E(0), obtained in the previous step are introduced in these equations. The numerical solution provides

a value for the applied voltage. The process is repeated until a current–voltage curve is completed and

can be compared to the experimental data. In this step, parameters a and σ are varied until a good

fitting is obtained. The convergence is fast as the values of the parameters obtained in the previous step

are close to the final solution. In any case, a new examination of the initial hypothesis is done.

The solution for p(0) as a function of j, obtained in the analytical step, comes from the initial

consideration of a uniform with distance electric field. Thus, the average value of the electric field

obtained in the numerical solution should be consistent with this assumption. If they are not the same,

then the numerical average value of the electric field should be used in the analytical step and the process
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is repeated until convergence is achieved. No iteration was necessary with any of the experimental data

analyzed in this work, showing that the analytical procedure gives a very close solution to the final one.

2.4. Results and discussions

In this section, we apply our proposed model to hole-only organic diodes. We extract the values of

the free charge density at the metal–organic interface from experimental data and perform a detailed

quantitative analysis of the dependence of the current density with voltage, temperature and length of the

organic-layer. We use current voltage characteristics taken from literature. Fig. 2.1 shows a comparison

between experimental data (circles) [76] and our numerical results (solid line). The experimental j − V

curve depicted in this figure corresponds to a glass/ITO/PEDOT:PSS/LEP/Pd organic diode. The

result of such a fitting is a finite value for the free charge density at the anode-organic interface. It is

represented as a function of the current density in the inset of Fig. 2.1. Parameters σ = 50 meV and

a = 1.2 nm are used in the mobility model (2.2). Both are within acceptable physical ranges defined

above [54, 65, 75, 92, 93, 99, 100].

Figure 2.1: Experimental current–voltage characteristics for a glass/ITO/PEDOT:PSS/LEP/Pd organic diode
taken from [76] at 295 K (open circles) (L = 122 nm and εr = 3.2). Our numerical results are shown in solid
line using the parameters σ = 50 meV, a = 1.2 nm and µ∞ = 1.28× 10−6 cm2/Vs. Inset: free charge density at
the metal–organic interface extracted with our analytical procedure and employed as a boundary condition in
the numerical analysis.

The experimental data in Fig. 2.1 shows a transition from linear to quadratic regions. Our model

explains this transition by means of the finite charge density at the metal– organic interface (inset in

Fig. 2.1). At low voltages, the amount of injected carriers is low, compared to the existing thermally

generated carriers; for this reason, the charge at the contact is constant. When the voltage is increased,

the charge density increases, the electrode injects more holes than those that the material can transport

and a space charge region is formed, limiting the current.

As mentioned in Section 2.2.1, different models have been proposed to interpret the quadratic region

in the j—V curves of organic diodes and its transition at high voltages towards a I−V n relation (n > 2).

However, these models pay less attention to the linear-quadratic transition. The simplest way to treat
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this transition is by considering two expressions with constant mobility as in [69]: use (2.13) for the

linear regime and (2.12) for the SCLC regime. Both expressions intercept at the inflection point:

Vx =
qp0L

2

ε0εr
(2.16)

where p0 is the background concentration of thermal free carriers. This inflection point can be defined

as the voltage at which the average concentration of the injected charge is equal to the concentration

of the thermally generated carriers [101, 102]. In Fig. 2.1, this inflection point is Vx = 1.21 V, and

p0 = 1.44× 1016 cm−3 and it is deduced from (2.16). Such a value contradicts the initial hypothesis

from which (2.12) is deduced, i.e. a zero electric field at the interface, which is equivalent to an infinite

charge density at this point [18]. Our model solves this contradiction as it considers a finite boundary

condition at the interface for the free charge density. Our model imposes a limit for the free charge

density at the interface for the ohmic region depicted in Fig. 2.1: p(0) << 1015 cm−3. Values for the

free charge density around or lower than 1014 cm−3 have been proposed previously [96]. The analysis

of the experimental data in Fig. 2.1 with our model provides a value for the free charge density at the

interface in the linear region around 1014 cm−3.

In order to check the value of the free charge density, it is also determined from an estimation of the

redox voltage. In the previous section, we have proposed how to estimate this voltage by determining

the intercept of the linear region with the voltage axis and equating this to the redox voltage. For the

data in Fig. 2.1, Vredox = 0.02 ± 0.01 V. Introducing this value in (2.7), and assuming typical values

for φ = 0.35 V [8] and ρm = 1.8× 1020 cm−3 [76], we find p(0) = (4± 2)× 1014 cm−3. Thus, the order

of magnitude of the free charge density calculated by extrapolation of the j − V curve to zero current

agrees with the one obtained at low voltages (inset of Fig. 2.1).

At high voltages, a transition from a quadratic j − V 2 relation to a j − V n (with n > 2) relation

is observed in Fig. 2.1. This transition has been observed previously and reproduced with electric-field

dependent mobility models [76]. We reproduce this region with our calculations using a mobility at

low electric fields µ(0, 295K)=3.2×10−7 cm2/V s and a finite value of the free charge density at the

interface. This value of the mobility is larger than the one obtained in [76]. A problem associated with

an overestimation of the free charge density is an underestimation of the mobility. Different values of

the mobility extracted in diodes and transistors with the same material are usually reported in the

literature. One reason of this difference might be attributed to this overestimation of the free charge

density in organic diodes. Our main contribution is to provide a plausible link between the free charge

density at the interface with bias and that is valid over the entire applied voltage range.

2.4.1. Length of organic-material

An additional test for our method is to apply it to j−V curves measured in organic diodes with the

same material, but with different lengths. The j − V curves measured with different lengths are repro-

duced with our model. These curves are depicted in Fig. 2.2. The symbols represent the experimental

data from [76] and the solid lines show our calculations. The experimental data correspond to the same
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diodes analyzed in Fig. 2.1. The values of the parameters used in our calculations are also the same.

Fig. 2.3 shows the free charge density at the interface obtained in our calculations as a function of the

current density. The results for the three lengths converge, showing no dependence with the length.

Figure 2.2: Comparison between experimental current–voltage curves [76] (symbols), measured at tempera-
ture of 295 K in glass/ITO/PEDOT:PSS/LEP/Pd diodes with different length (67, 98 and 122 nm), and our
calculations. The parameters employed in the calculations are the same as in Fig. 2.1.

Figure 2.3: Free charge density at the interface as a function of the current density employed in the fitting of
Fig. 2.2.

Fig. 2.4 shows a comparison between another set of experimental data measured in ITO/CuPc/Al

diodes at 320 K [85] and our results. The curves correspond to devices with different lengths. In the

simulation, σ = 50 meV and a = 2 nm are used for all devices. Both are within acceptable physical
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Figure 2.4: Experimental current–voltage characteristics (symbols) measured at 320 K in ITO/CuPc/Al diodes
with different lengths: 100, 200 and 400 nm [85]. Our fitting results are represented with solid lines. Parameters
µ(0,T = 320 K) =2× 10−6 cm2/Vs, σ = 55 meV and a = 2 nm are used in our calculations for all the curves.

Figure 2.5: Free carrier charge density at the metal organic interface as a function of the current density used
as a boundary condition in our calculations in order to fit the experimental data of Fig. 2.4.

ranges defined above [54, 65, 75, 92, 93, 99, 100].

In Fig. 2.5, the values of the free charge density at the interface p(0) that are used in our calculations,

are represented as a function of the current density. The three curves superimpose on each other,

eliminating any dependence with the length of the organic material. In Figs. 2.3 and 2.5, we can observe

a strong dependence of the free charge carrier density at the contact with the current. More specifically,

a linear relation between log(p(0)) and log(j) is found.

2.4.2. Temperature effects.

Fig. 2.6a shows another comparison between experimental data (symbols) of the same diodes analy-

zed in Fig. 2.1 and our calculated results (solid lines). Fig. 2.6b shows the free charge density at the
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interface as a function of the current density used in this fitting. In this case, a linear behavior was not

reported in [76], since the SCLC regime was the only one under test. Although the ohmic regime is not

shown, the curves of the free charge density at different temperatures tend to converge at low injection,

meaning that the ohmic regime is close to these values. It is interesting to observe that during the fitting

procedure, different values of σ and a inside the range mentioned above are tested. Good fittings are

also observed between the experimental data and our calculations with these different values. However,

anomalous dependences of the free charge density curves with the temperature are observed. Therefore,

non-physical solutions are ignored until a solution with physical meaning, such as the one observed in

Fig. 2.6 is obtained.

Figure 2.6: (a) Comparison between experimental current–voltage characteristics for a
glass/ITO/PEDOT:PSS/LEP/Pd organic diode measured at T = 150, 171, 193, 213, 233, 253, 271 and
295 K from bottom to top (symbols) [76], and our numerical results (solid lines). L = 122 nm. (b) Free charge
density at the metal organic interface as a function of the current density used in the fitting of (a).
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Figure 2.7: Comparison between experimental current–voltage characteristics (symbols) measured at different
temperatures in ITO/CuPc/Al diodes (from 170 to 320 K in 30 K steps) [85] and our fitting results (solid lines).
Parameters σ = 55 meV, a = 2 nm and µ(0, 320K) = 2× 10−6 cm2/V s are used in our calculations.

Fig. 2.7 shows another comparison between experimental current–voltage characteristics (symbols)

measured at different temperatures in ITO/CuPc/Al diodes [85] and our numerical results (solid lines).

Using parameters σ = 50 meV, a = 2 nm and µ(0, 320K) = 2 × 10−6 cm2/V s in our calculations,

we obtain an excellent agreement with the experimental data. Fig. 2.8 shows the free carrier charge

density at the metal organic interface as a function of the current density extracted from our analytical

procedure to fit the experimental data of Fig. 2.7. In Fig. 2.7, a small region at low voltages shows a

linear behavior. This is reflected in Fig. 2.8 with an also small region of constant free charge density. The

charge that is injected into the organic material is smaller than the existing thermally generated carriers

and impurities. Due to the reduced range where the linear behavior is observed, the determination of

the redox voltage produces a large error and the value of the charge density extracted by this method

is not significant. Nevertheless, the transition from ohmic to SCLC regime can be observed in Fig. 2.8.

We observe an increment of the whole p(0) curve with temperature, meaning that more carriers are

available when the temperature increases.

Another interesting remark is the fact that log(p(0)) is a linear function of log(j) once space charge

effects dominate. This behavior is also observed in Figs. 2.3 and 2.5.

2.5. Model for the space charge limited conduction - SCLC

In Figs. 2.3, 2.5 and 2.8, a linear relation between the logarithm of the free charge density and the

logarithm of the current density is observed in the SCLC regime. This linear relation between logarithms

is equivalent to writing:

p (0) =

(

j

m

)
1

n

(2.17)
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Figure 2.8: Free carrier charge density at the metal organic interface as a function of the current density used
in our calculations to fit the experimental data of Fig. 2.7.

where m and n are empirical fitting parameters. When these two parameters were known, the initial

estimation of p(0) by our numerical procedure could be avoided and an analytical expression could be

used instead by combining (2.2), (2.9) and (2.17).

By way of illustration, we have extracted m and n in (2.17) from the experimental data of Fig. 2.7.

The result is n = −2.269× 10−4T + 1.329 and m = −1.739× 10−25T + 6.786× 10−23. If we introduce

these values in (2.17), combine the result with (2.9), and assume E ≈ V/L in (2.2), analytical j − V

curves are obtained. The resulting curves are represented in Fig. 2.9 in solid lines and compared with

the experimental data (symbols). The result of this model is valid only in the SCLC regime, where an

excellent fitting is obtained. However, this is a promising result as an analytical model can reproduce

experimental j−V curves. A complete model that reproduces the complete curve is desirable and is under

research. This model could help to incorporate the effects of the metal–organic contact in previously

developed compact models of other organic devices, such as organic thin film transistors [12, 72, 73].

Further work is also necessary in order to determine whether this result can be extended to other devices

employing the same organic material and whether it can be generalized to other materials, defining a

link between m and n and the organic material.
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Figure 2.9: Comparison between experimental current–voltage characteristics (symbols) measured at different
temperatures in ITO/CuPc(100 nm)/ Al diodes (from 170 to 320 K in 30 K steps) [85] and our results (solid
lines) from (2.9), (2.10) and (2.17). The mobility model (2.2) is used assuming E = V/L and µ(V/L, T ); the
model (2.17) is used with n = −2.269 × 10−4T + 1.329 and m = −1.739 × 10−25T + 6.786 × 10−23.
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3.1. Introduction

Research and technology development of organic/polymeric devices (hereafter the term organic is

used for both) is now evolving rapidly due to some key advantages for niche applications [4, 51]. These

advantages stem from the features of the organic materials and their low-cost manufacturing technology

[4]. Some niche applications include low-cost, large-area, flexible and/or light weight electronics, displays

or e-paper [98, 103]. However, more technological effort is required to improve the stability, reliability

and performance of the organic semiconductor systems. In order to achieve this goal, a proper theoretical

understanding of the electrical conduction mechanism in these materials and interfaces is needed. With

this understanding, further improvements using better and more stable organic materials, interfacial

layers and technological innovations become feasible.
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Figure 3.1: Sandwich-type device with two different metal-organic contacts. a) Contacts with a high energy
barrier at the interface (ILC regime, V < 0). b) Contacts with low energy barriers (SCLC regime, V > 0) c)
Typical current density vs. voltage curve for this structure. d) Our proposed unified relation between the current
density and the free charge density at the interface. The physical meaning of parameters m, K1 and K2 is defined
in the text.

For many organic devices, the metal-organic interfaces and contacts limit charge injection and trans-

port [12, 104, 105]. Here, the injection of charge depends on different factors such as the height of the

injection barrier, the applied electric field, the temperature, chemical reactions leading to interface dipo-

les, and band bending or Fermi level pinning [57, 61, 106, 107]. Devices operating under such a limitation

are said to work in the injection-limited current (ILC) regime (Fig. 1(a) with V < 0). In other cases,

the performance of the devices is not controlled by the injection barrier, but rather by the transport
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of charge through the organic semiconductor [55, 68, 108]. The resulting current of this mechanism is

referred as space-charge-limited current (SCLC) (Fig. 3.1b with V > 0).

In the past, ILC and SCLC regimes have been analyzed and modeled separately. There are models

that study charge injection through a metal-organic interface [64, 109, 110] and models that treat the

transport of charge along the organic material, basically by means of mobility models [67, 76, 85].

These models interpret the dependence of current density-voltage (j − V ) curves on the electric field,

the temperature and the kind of contact. Each model is able to reproduce current-voltage curves in

the device while one of these mechanisms is dominant over the other [85, 110]. What is missing is a

procedure that models the transition between these regimes. Moreover, even in situations where SCLC

or ILC regimes are well established, the respective models fail to reproduce the low-voltage regime in

the current-voltage curves, where an Ohmic relation is usually found [76, 111].

In the previous chapter, we proposed a single model to interpret the whole range of current-voltage

curves in organic diodes operating under the SCLC regime [112]. This whole range includes the following

regions and their respective transitions (Fig. 3.1c for V > 0):

an Ohmic region observed at low voltages and usually described by Ohm’s law [69];

a quadratic relation at moderate electric fields usually described by Child’s law [18]; and

a higher than quadratic regime, usually described with mobility models where the dependences

with temperature, electric field and/or charge carrier concentration are introduced.

Our model solves the transport equations in the semiconductor by considering a finite and unique value

for the free charge density at the metal-organic interface (named qpf(0)SCLC in Fig. 3.1b). It establishes

a relation between the current-density j and the value of this boundary condition.

In this chapter, we extend this SCLC model to the ILC regime (Fig. 3.1c for V < 0), providing a

unified treatment of all the different conduction modes that take place in the transport of charge in

organic diodes. Our first objective is to reduce all the physical mechanisms included in the injection

through the metal-organic interface to a specific value of the free charge density at the interface (named

qpf (0)ILC in Fig. 3.1a). Our second goal is to propose a relation between the current density and the

free charge density similar to the one obtained for the SCLC mechanism. The only difference should

be the value of a parameter associated to the height of the energy barrier at the interface. The model

we are developing in this chapter is depicted in Fig. 3.1d. The meaning of the model parameters are

described throughout the work.

In the past, injection models have been developed by considering the essential physical me-

chanisms that take part during the charge injection from a metal into a random hopping sys-

tem [17, 55, 64, 106, 109, 110]. One attractive model was proposed by Arkhipov and collaborators

[17, 106, 110]. They succeeded in interpreting the weak temperature dependence of the injection cu-

rrent, observed in experimental data and not explained by the classical thermionic injection model. This

model has been used to interpret the field and temperature dependence of charge injection in organic

diodes [68, 111, 113]. Despite its success with researchers, the model shows certain limitations. Its deve-

lopers showed that it failed to reproduce current-voltage curves in organic diodes with lower than 0.2 eV
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energy barriers [110]. Other authors have failed to apply it to the low voltage range of current-voltage

curves [74, 85, 111]. In circuit simulation, a much more compact model with less number of parameters

would also be preferable. It would also reduce the computing time necessary to extract the value of

these parameters from sets of experimental data. In this chapter, we present such a model.

3.2. Modeling the SCLC and ILC regimes

The transition from SCLC to ILC regimes has been studied in the past by combining models for

injection with the transport equations. An example of this can be found in [106], where the authors

propose a two-step procedure to reproduce j − V curves in an organic diode. In one step, the model

relates the injection current and the parameters associated with the injection mechanisms to a boundary

value for the electric field at the interface, F (0). In the second step, this value is used as boundary

condition in order to solve the transport equations, which provide a value for the voltage drop along

the device. The pair of values thus obtained with this model -injection current and voltage drop, should

match experimental j − V data. The evaluation of the electric field at the interface requires that the

charge injection process is described as thermally-assisted tunneling from the delocalized states of the

metal into the localized states of the organic semiconductor. The injection process depends on the mean

barrier height, the image potential, the energetic disorder and the applied electric field.

In this chapter, we make use of the transport equations exclusively, independent of the value of the

energy barrier at the interface, even in the cases where the conduction mechanisms are dominated by

charge injection. This, in turn, will affect the value of the electric field at the interface [106]. In our

case, we aim to find a relation between the free charge density at the interface and the experimental

current. We study this relation in devices with different organic materials, different metal contacts and

at different operating temperatures. We analyze how this boundary value for the free charge density

evolves with these variables.

Our model emerges from the main ideas developed in a previous work [8]. In order to reproduce

current voltage curves measured in organic diodes, we demonstrated the importance of considering a

finite value for the free charge density at the metal-organic interface, instead of an infinite value as

assumed in Child’s law. Initially, this value was considered constant throughout an entire j − V curve.

Later, we demonstrated that this value should vary with the current density [112]. Otherwise, the widely

observed transition from ohmic to SCLC regimes in j − V curves could not be explained.

The idea of considering different mechanisms that contribute to the flow of charge through the diode,

such as injection, transport of charge and redox reactions at the interface, also comes from our earlier

publication [8]. Originally, we estimated the relative contribution of all of them from the analysis of

j − V curves. In the present chapter, we derive a more robust model in which the information of all

these mechanisms is encapsulated in the value of the free charge density at the metal-organic interface.

The advantage is that it provides a continuity between the different regimes observed in a current-voltage

curve.

We also incorporate other improvements to the first idea, such as an electric field dependent mobility

model, which allows for the interpretation of the SCLC regime at high electric fields [112]. Finally, the
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comparison with the thermionic injection model is not necessary. In addition, we compare our results

with Arkhipov’s model allowing for the interpretation of j−V curves at much lower temperatures [106].

With this in mind, we consider the transport of charge from the interface into the bulk of the organic

material. The origin of the free charge density at the interface can be diverse: injected from the metal,

generated thermally from doping impurities (natural or introduced), or created by redox mechanisms

[8]. The volume density of free charges is termed pf (x) (holes in a hole-only device) and its value at the

interface is pf (0). These free charges are transported through the organic material mainly by the action

of an electric field F (x). The drift current density is given by:

j = qµ[T, F (x), pf (x)]pf (x)F (x) (3.1)

where q is the absolute value of the electron charge, x is the distance from the injecting electrode and

µ[T, F (x), pf (x)] is a mobility model with a generic dependence on the temperature, electric field and

charge concentration. Due to the lack of long-range order in the organic semiconductors, the electrical

transport mostly takes place by hopping from one localized state to the next. A correlated Gaussian

disordered model (CGDM) was proposed to explain the electrical transport [89], where spatial and

energy disorders depend on each other, with the idea that a changing environment for a given molecule

will have an influence on its energetic position [89, 114]. This model, given in the expression below, has

been widely used because it includes the effects of varying temperatures and electric fields [85, 89]:

µCGDM(T, F ) = µ(T, 0) exp(γ
√
F )

µ(T, 0) = µ∞ exp{−[3σ/(5kBT )]
2} (3.2)

γ = 0.78{[σ/(kBT )]3/2 − Γ}[qa/σ]1/2

where a is the intersite spacing, kB is the Boltzmann’s constant, T is the temperature, σ is the width of

the Gaussian density of states (GDOS) caused by the electrostatic coupling of a charged site to neigh-

boring dipoles, Γ is related to the positional disorder, and usually Γ ≈ 2. Recently, several authors have

studied the dependence of the mobility with the carrier concentration, which they termed the enhanced

Gaussian disordered model (EGDM) [76, 96]. In this chapter, we consider the CGDM, neglecting the

explicit dependence of the carrier concentration on the mobility. Nevertheless, we stress the importance

of the carrier concentration as a boundary condition when solving the Poisson’s equation, which relates

this variable with the electric field:
dF

dx
=

q

ε0εr
p(x) (3.3)

where εr and ε0 are the relative permittivity and the permittivity of the free space, respectively. The

free charge density is a fraction θ of the total charge density: qpf = θqp(x). The free carriers hop

around the so called transport energy. Charge carriers below this energy mostly do not contribute to

the conductivity. Thus, the total carrier concentration p(x) can be described as the sum of mobile, free

charge carriers pf (x) and immobile charge carriers pt trapped in the tails of the Gaussian or exponential

density of states or other traps present in the semiconductor [115]. With the parameter θ, we implicitly
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incorporate the concept associated to the carrier concentration dependent mobility found in the EGDM:

the filling of the Gaussian density of states, where lower states act as charge traps.

The set of transport equations is completed with the integral of the electric field to find the voltage

along the device:

V =

∫ L

0

F (x)dx (3.4)

3.2.1. Extraction of pf(0) from experimental j − V curves

Here, we propose a procedure to extract the values of pf (0) as a function of the current density j and

the parameters of the mobility model (3.2) from experimental j − V curves. It is an iterative procedure

that is applied to all the experimental data (j, V ) in the curve. In the first place, (3.1) and (3.3) are

combined into the integral:
∫ F (x)

F (0)

µθεrε0FdF

j
=

∫ x

0

dx (3.5)

with F (0) = j/[qµpf(0)]. If the values of the parameters of the mobility model are known or initial

guessed values are provided, the determination of pf (0) or F (0) as a function of j or V can be obtained

easily with a typical root-finding method. The experimental values of V and j are introduced in (3.4)

and (3.5), respectively. An initial guessed value F ∗(0) is introduced in (3.5) to obtain a distribution of

the electric field F ∗(x):
∫ F∗(x)

F∗(0)

F exp(γ
√
F )dF = jx/(µ(T, 0)θεrε0) (3.6)

The resulting distribution is introduced in (3.4) to obtain the value of the voltage V ∗,

V ∗ =

∫ L

0

F ∗[F ∗(0), x)]dx (3.7)

The value of F ∗(0) is iteratively modified until the relative difference is less than a certain tolerance.

In our calculations, we have considered a tolerance of 0.1%.

The solution pf (0) as a function of j depends on the values of the parameters of the mobility model

(3.2) [µ(T, 0), a and σ] and the free to total charge ratio θ. Thus, different solutions can be obtained, but

only physically-based ones are acceptable. In order to optimize these parameters we used the following

criteria.

Except in situations where instabilities are present, the value of θ can be considered as a constant.

The initial guess value is θ = 1. The final value for θ is obtained by the comparison of the total charge

density qp(0) = qpf (0)/θ determined with the above iterative procedure with the value qp, where p is

determined from the density of localized carriers [17, 106]:

p(x) =

∫ Etr

−∞

dE
g(E)

1 + (qµNtF/j) exp (E/kBT )
(3.8)

with F = F (0) and j is substituted with the experimental current density. The integral in (3.8) is



3.2. Modeling the SCLC and ILC regimes 47

evaluated up to the transport energy, which can be estimated as Etr = 1.2kBT [6γ
′3/(πNt)]

1/3 [17],

for typical values for the volume density of sites Nt = 1019 − 1021 cm−3, and the inverse localization

radius γ′ = 4 nm−1; g(E) is the Gaussian density of states. The value of θ is iteratively modified until

|[p(0)− p∗(0)]/p(0)|, evaluated for the entire j − V curve, is less than a certain tolerance.

The value of the parameters of the mobility model must fulfill some conditions. In the case of

the CGDM, σ and a must be in the range between 40-150 meV [92, 99] and in the range 0.3-2 nm

[54, 75, 100], respectively. The values of µ(T, 0) must be consistent with the ones found in the literature.

The convergence procedure is very sensitive to the parameters a and σ because they affect the value of

the integral in (3.6), mainly in the high electric field region. It is convenient to split the j − V curve

into two regions to accelerate the fitting. At low electric fields, we can neglect the effect of parameter a.

Thus, µ(T, 0) and σ can be found. Then, the high electric field region is analyzed to determine a. Even

in these conditions, different pf (0)− j relations can be found, being necessary the next step.

The value of pf (0) is studied as a function of current density, temperature, and/or energy barrier

height. The study of the evolution of pf (0) vs. j curves with the temperature for the same metal contact

or the evolution of these curves extracted for the same organic material with different metal contacts

helps in finding a physically acceptable solution. Erroneous values for these parameters can lead to

anomalous behaviors of the free charge density, such as a decrease of the free charge density when

temperature increases or when the energy barrier height decreases, or anomalous non-constant values of

the free charge density in the Ohmic region. In these cases, the values of the mobility model parameters

are varied and the process of finding a different pf(0)− j relation is repeated.

The objective of this study is to apply this procedure to j − V curves measured in different organic

diodes, in order to establish a correlation between the different pf (0) − j relations with the organic

material, the height of the energy barrier and doping impurities in the material. Then, a model for

the current density as a function of the free charge density at the interface, in which the parameters

depend on the organic material, the height of the energy barrier and doping impurities in the material,

is proposed. Finally, in order to validate our model, we compare the extracted values of the free, pf (0),

and total, pf (0)/θ, charge density with well-established and widely used models [17, 106, 110].

3.2.2. Validation with injection models

In Arkhipov’s model, given a current density j = jinj , a boundary condition for the electric field

Fo = F (0) is estimated from the charge injection rate [110]:

jinj = qν0

∫

∞

a′

dx0exp (−2γ′x0)wesc(x0)× (3.9)

∫

∞

−∞

dE′Bol(E′)g[∆− qFoxo − q2/(16πε0εrxo)− E′]

where ν0 is the frequency of a hop, a′ is the distance from the electrode to nearest hopping sites (∼ 1

nm), γ′ is the inverse localization radius, Nt the volume-density of sites, σ is the width of the Gaussian

distribution, Bol(E′) is the Boltzmann’s function, g(E) is the Gaussian distribution, ∆ the height of
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barrier and E is the energy. This model considers the injection of the charge from the electrode’s Fermi

level into localized states of the Gaussian distribution of hopping sites of the organic semiconductor. To

apply this equation, the condition of weak injection must be fulfilled. It requires the potential energy

next to the contact to be positive relative to the Fermi level of the metal, yielding ∆ > 0.2 eV, and

imposing a limit in the application of this model [110].

The value of Fo, extracted from (3.9), is introduced in the transport equations (3.1), (3.3) and (3.4)

to find the voltage drop in the device. In the formulation in [17, 106], the total carrier density, p(x),

introduced in the Poisson’s equation (3.3) is practically equal to the density of localized carriers (3.8).

This expression is frequently used with a constant mobility, although these authors recognized that this

is an approximation that is not valid for a strong dependence of the mobility on the electric field [106].

In order to be consistent, throughout this chapter, we employ the CGDM for the mobility in (3.8),

µ = µCGDM(T, F ).

In the following section, we compare the values of the total charge-carrier density and the free or

mobile charge-carrier density at the interface, p(0) and pf (0), respectively, extracted with our unified

treatment and this injection model. To do this, published experimental j − V curves of organic diodes

with different energy barriers at the interface, under the ILC regime, are considered.

3.3. Results

In this section, our procedure is applied to experimental j − V curves operating in the ILC regime.

The results of our procedure are compared with Arkhipov’s injection model. A compact relation between

the charge-carrier density at the metal-organic interface and the current density is proposed after this

validation. Then, this compact model is verified with a study of organic semiconductors with different

barriers. SCLC and ILC are analyzed under our unified treatment. Finally, a study of the static electrical

characteristics with the temperature is given.
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Figure 3.2: a) Comparison between experimental current density vs. voltage curves (symbols), measured at
320 K in ITO/CuPc/Al diodes [85] with different lengths, and Arkhipov’s model (solid lines) (the injection is
from Al). Our model fits the experimental data within the 0.1% (not shown). b) Free and c) total charge-carrier
density at the metal-organic interface as a function of the current density extracted from the experimental data
of Fig. 3.2a with Arkhipov’s model (solid lines) and with our model (symbols).
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3.3.1. Validation of the procedure

We apply our procedure to the experimental j−V curves shown with symbols in Fig. 3.2a. They were

measured in ITO/Copper phthalocyanine(CuPc)/Al diodes with different lengths (L = 100, 200 and 400

nm), and with Al as the injecting contact [85]. The height of the injection barrier is 0.6 eV. Our model

[(3.2),(3.4) and (3.5)] is used to determine the values of pf (0) and p(0) (symbols in Fig. 3.2b and Fig. 3.2c,

respectively) to exactly reproduce the experimental j − V curves. When we say exactly throughout the

chapter, we mean that the relative difference between our calculations and the experimental data is less

than a certain tolerance (0.1% in this work). To avoid cluttering the graphs, we do not superimpose our

calculations over the experimental data. The values of the parameters of the mobility model employed

in our calculation are σ = 55 meV, a = 2 nm and µ(320 K, 0) = 2 × 10−6 cm2/Vs. The experimental

curves in Fig. 3.2a are also treated with Arkhipov’s model [106] (solid lines in Fig. 3.2a). The fit to the

data at small currents is not too good due to the reduced accuracy of the measurements [85]. The values

of pf(0) and p(0) extracted from (3.8) and (3.9) are shown with solid lines in Fig. 3.2b and Fig. 3.2c.

The parameters employed in this model are: σ = 55 meV, µ(320 K, 0) = 2 × 10−6 cm2/Vs, a = 2 nm,

ν0 = 1012 Hz, T = 320 K, εr = 2.1, ∆ = 0.6 eV, Nt = 1019 cm
−3, γ′ = 4 nm−1, Etr = 0.8 eV, a′ = 0.5

nm for L = 100 nm, and a′ = 0.9 nm for L = 200 and 400 nm. These parameters are consistent with

values reported in the literature [17, 52, 106, 110, 113]. An excellent agreement is observed between our

model and Arkhipov’s model. The advantages of our method are the reduced computational time, it

is around 600 times faster than Arkhipov’s model, and the reduced number of parameters employed,

basically the ones associated to the mobility model and the free to total charge ratio θ, that in this

case is θ = 0.3. In Arkhipov’s model, the total charge-carrier density p(0) is evaluated from (3.8) and

additional parameters to model the transitions from the metal to the organic material are needed (see

eq. (3.9) above). Our model does not intend to substitute this or other injection models that has, on

many occasions, successfully linked experimental data with the physical mechanisms that take part

during injection [55, 64, 109, 110]. Our objective is to provide a more compact and less computing-

time alternative to previously developed injection models. At the same time, we aim to interpret the

transitions among the three cases - SCLC, ILC and Ohmic regimes.

3.3.2. Barrier height effects

In Fig. 3.3a, we analyze again experimental data measured in the ITO/CuPc/Al diodes with different

lengths [85]. In this case, we study the effect of the injecting contact. The j−V curves represented with

open symbols correspond to Al as the injecting contact. The curves measured by injecting from the ITO

are represented with crosses. In this last case, the height of the barrier is low, 0.05 eV. Injection models

are not valid for a typical SCLC regime like this. Our procedure extracts the free charge-carrier density

in both regimes using the same set of parameters for the fitting in Fig. 3.2. The result is seen in Fig.

3.3b. The open symbols correspond to the high barrier contact (Al) and the crosses to the low barrier

contact (ITO). As expected, the amount of free charges at the interface is higher for the lower-barrier

case.

All the curves in Fig. 3.3b show a flat region at low current densities, corresponding to the existing
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Figure 3.3: a) Comparison between experimental current-voltage curves (symbols), measured at 320 K in
ITO/CuPc/Al diodes with different lengths [85], and our model (3.10) with parameters in Table 3.1 (solid
lines). b) Free charge-carrier density at the metal-organic interface (symbols) extracted with our procedure to
reproduce exactly the experimental data of Fig. 3.3a. The dashed lines follow the empirical model (3.10) with
the parameters of Table 3.1. The injection from the Al and ITO electrodes is represented with open symbols
and crosses, respectively.

Table 3.1: Fitting parameters used in (3.10), (3.4) and (3.5) to reproduce the experimental data in Fig. 3.3a.

Electrode K1 m K2

(cm2m−3/Am) (-) (cm−3)

ITO(100 nm) 1.7× 1018 0.8 4.0× 1011

ITO(200 nm) 1.7× 1018 0.8 4.0× 1011

ITO(400 nm) 1.7× 1018 0.8 2.0× 1011

Al(100 nm) 3.9× 1017 0.8 9.0× 1011

Al(200 nm) 2.4× 1017 0.8 1.5× 1011

Al(400 nm) 2.4× 1017 0.8 1.0× 1010

thermally generated carriers in the semiconductor. The effect of these charges is seen as a linear or

Ohmic trend on the j − V curves. At higher current densities, the amount of injected charges surpasses

this threshold, making a transition from Ohmic to ILC or SCLC (Al or ITO cases, respectively). In the

SCLC case, the relation pf (0)− j is independent of the length of the organic material. In the ILC case,

the curves diverge at low current densities, but tend to converge at high current densities to the dashed

line drawn in Fig. 3.3b. The reason of this divergence is due to one of the mechanisms that control

the injection regime: the reduction of the energy barrier due to the Poole-Frenkel effect, being more

important for short lengths, thus increasing the injected charge.

At high current densities, the pf (0)−j relations in both regimes are linear and parallel, when plotted

on a logarithmic scale (Fig. 3.2b). We propose to model the complete relation as (Fig. 3.1d):

pf (0) = K1j
m +K2 (3.10)

where m is the slope in the logarithmic scale of the pf (0) − j relation at high currents, the parameter

K1 controls the parallel displacement of the pf (0) − j relation and K2 controls the flat region at low
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currents. In Fig. 3.3b, the model (3.10) with the values of the parameters of Table 3.1 is represented in

dashed lines. The parameter K1 is greater for the low barrier case. It depends on an effective barrier

seen by the carriers at the metal-organic interface. The parameter m is the same for the different curves

represented in Fig. 3.3b. This slope is unaffected by the energy barrier at the interface or the thermal

carriers, which can be detected at low current densities and do affect the parameter K2. Thus, only

intrinsic properties of the organic material may alter parameter m. Combining this model (3.10) and

the parameters of Table 3.1, with (3.4) and (3.5), the solid lines in Fig. 3.3a are obtained, showing very

good agreement with the experimental data. Only, for the low barrier case and length greater than 200

nm is the fitting not so good. One reason may be the large sensitivity of the current density to the value

of the free carrier density at the interface. The relative difference between the free carrier density shown

as symbols in Fig. 3.3b), which correspond to the exact fitting to the experimental data in Fig. 3.3a,

and the model (3.10) (dashed lines) is no greater than 10% for all the points. However, the relative

difference between the experimental and theoretical j − V curves in Fig. 3.3a can increase to 30% in

some cases. This means that an uncontrolled modification of the free charge density at the interface can

greatly affect the value of the current density along the device.

In order to check whether our proposed pf(0) − j relation (3.10) can be applied to other materials

and contacts, we analyze the experimental j − V curves (symbols) in Fig. 3.4a [116]. The experimental

data were measured at 300 K and correspond to dendrimer-based diodes with different contacts: ITO,

Pt and Au. In this case, all the diodes have the same length, L = 100 nm. Dendrimers are novel forms

of organic molecules. Their properties of solubility and light emission color can be tuned separately due

to the spatial separation of their functional properties. The dendrimer core controls the color of light

emission and the electron affinity and the surface groups control the solubility. The studied dendrimer

has cores of fac-tris(2-phenylpyridine) iridium, [(Irppy)3], with phenylene dendrons covalently bonded

to it [116].
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Figure 3.4: a) Comparison of experimental j − V curves in dendrimer-based diodes with different contacts
(ITO, Pt and Au) [116] (symbols) with Arkhipov’s model (solid lines) and our calculation (dashed lines) using
(3.10) and the parameters of Table 3.2. b) Free charge-carrier density at the metal-organic interface to reproduce
exactly the experimental data of Fig. 3.4a (symbols); determined from Arkhipov’s model (solid lines); and from
our empirical model (3.10) (dashed lines) with the parameters of Table 3.2.

As the energy barrier is high in the three cases, we again compare our procedure to determine the

boundary value pf (0) (symbols in Fig. 3.4b) with Arkhipov’s model (solid lines). Our pf (0) (symbols),
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Table 3.2: Fitting parameters used in (3.10), (3.4) and (3.5) to reproduce the experimental data in Fig. 3.4a.

Electrode ∆ K1 m K2

(eV) (cm2m−3/Am) (-) (cm−3)

ITO 0.40 2.4× 1017 0.6 -

Pt 0.61 7.1× 1015 0.6 8× 1011

Au 0.69 1.9× 1015 0.6 2× 1010

extracted from the transport equations (3.4) and (3.5) to exactly fit the experimental data of Fig. 3.4a,

was obtained with γ(300 K)= 3.4× 10−3 V−1/2 cm−1/2 and the mobility at low electric field µ(300 K,

0)= 9.3×10−7 cm2/Vs. These values of the mobility coincide with the ones obtained from time-of-flight

(TOF) measurements [117]. The parameters used in Arkhipov’s model are: µ(300 K, 0)= 9.3 × 10−7

cm2/Vs, ν0 = 1013 Hz, εr = 3, a′ = 0.7 nm, Nt = 1019 cm−3, σ = 50 meV, γ′ = 4 nm−1 and Etr = 0.71

eV. The height of the energy barriers ∆ is shown in Table 3.2 [116]. The pf (0)− j relations, extracted

with both procedures (symbols and solid lines in Fig. 3.4b, respectively), are in good agreement. In

addition, the dashed lines in Fig. 3.4b correspond to our model (3.10) with the parameters of Table

3.2. Introducing this relation in (3.4) and (3.5), the dashed lines in Fig. 3.4a are derived. This excellent

agreement with the experimental data is controlled with the three parameters of (3.10). The dependence

with the electrode or the energy barrier at the interface is controlled with the parameter K1. K1 reflects

the fact that the lower the height of the energy barrier is, the greater the value of pf(0) is obtained. The

parameter K2 controls the region of low voltages, where the thermal carriers dominate over the injected

charge. Thus, we can establish a correlation betweenK2 and the sources of these thermal carriers, such as

doping impurities, traps or defects. Finally, the parameter m is constant for the three cases represented

in the figure. In this case, a correlation can be assumed between the kind of organic semiconductor and

this parameter m.

3.3.3. Temperature effects

In this section, we check our procedure with experimental data taken at different temperatures. We

also show how our procedure can be adapted to other mobility models necessary to interpret the trans-

port of charge in certain organic semiconductors. This is the case of pentacene, in which the mobility of

charge carriers shows a dual behavior. Increasing mobilities around room temperature and decreasing

mobilities at low temperatures, when the temperature increases, have been detected in different expe-

rimental results [118]. Hopping and band theory models, [119–121] respectively, have been employed to

interpret these two different trends. In this regard, other authors proposed to model the mobility as the

sum of two contributions, µ = µhop + µband , [118, 122, 123] where µband is related to the coherent elec-

tron transfer that dominates at low temperatures and µhop is related to hopping transport (incoherent

electron transfer) that dominates at higher temperatures. Different experimental measurements show

that below a fixed temperature, the mobility follows a power-law and decreases with temperature [124].
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Combining these ideas, we propose to model the mobility for these kinds of material as:

µ = µCGDM(T, F ) + µ0T
−n (3.11)

in which we consider the CGDM model for the mobility as the hopping model. We introduce this idea

in our procedure to determine the evolution with temperature of the pf (0)− j relation from the j − V

curves shown in Fig. 3.5a. If we used only the CGDM as in the other experimental data of the chapter,

we would obtain an increment of the concentration of free charges when the temperature decreases,

which lacks any physical meaning. These measurements on Ag/Pentacene(Pn)(L = 100 nm)/Ag diodes

at different temperatures were measured in both forward and reverse modes [125]. An asymmetry in

the curves was detected, despite using the same contact material. This asymmetry was attributed to

interfacial differences during the fabrication process. The authors distinguished between pentacene-on-

Ag interfaces, that form an ordered ”thin film phase” structure with a hole injection barrier of 0.6 eV

(circles in Fig. 3.5a), and the Ag-on-pentacene interface, in which the Ag is directly evaporated on

pentacene, forming a nearly Ohmic Ag/Pentacene barrier (crosses in Fig. 3.5a). They also commented

that their experimental data could not be explained with a field-dependent mobility model used for

similar observations [126–130]. They suggested to incorporate the anisotropic band formation in the

organic material into the hopping model.
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Our model exactly matches the j − V curves shown in Fig. 3.5a by using the values represented in

Fig. 3.5b as a boundary condition for the free charge-carrier density at the interface, and the values of

the mobility shown in the inset of this figure. The solid lines in the inset show the two different trends

in the mobility model (3.11). The values of the parameters introduced in the mobility model (3.2) and

(3.11) are µ∞ = 3 × 10−5 cm2/Vs, σ = 30 meV, a = 0 nm and µ0T
−n = 3 × 10−3T−1.2 cm2/Vs with

T in K. The value of σ is small, but in agreement with a small activation energy and the low energetic

disorder in pentacene, which is significantly lower than in other solution-processed organic devices [120].

The values of pf (0) in Fig. 3.5b can be reproduced with model (3.10) and the parameters of Table 3.3.
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Table 3.3: Fitting parameters used in (3.10), (3.4) and (3.5) to reproduce the experimental data in Fig. 3.5a.

Temperature K1 m K2

(cm2m−3/Am) (-) (cm−3)

20 K (F) 4.31× 1014 0.55 -

20 K (R) 4.31× 1014 0.55 -

40 K (F) 2.03× 1015 0.55 -

40 K (R) 1.47× 1015 0.55 -

60 K (F) 3.88× 1015 0.55 -

60 K (R) 2.80× 1015 0.55 -

80 K (F) 6.89× 1015 0.55 5.00× 1012

80 K (R) 3.45× 1015 0.55 5.00× 1012

120 K (F) 1.51× 1016 0.55 7.00× 1012

120 K (R) 8.62× 1015 0.55 7.00× 1012

280 K (F) 3.67× 1016 0.55 4.00× 1013

280 K (R) - 0.55 4.00× 1013

Introducing the results of (3.10) in (3.4) and (3.5), the solid lines of Fig. 3.5 are obtained.

The authors in [125] observed experimentally the ILC-to-SCLC transition in Ag/pentacene/Ag dio-

des as a function of temperature. The crossover from an ILC to SCLC with decreasing temperature,

irrespective of the injection barrier height, was theoretically predicted before [106]. This transition is

confirmed with our unified treatment of both regimes and the analysis of Table 3.3 and Fig. 3.5. At high

temperatures, the two regimes are clearly visible in the forward and reverse j − V curves of Fig. 3.5a

and in the pf (0)− j representation: more charges can be transported in the semiconductor than injected

through a 0.6 eV barrier. As the temperature decreases, the free charge-carrier density decreases in both

forward and reverse biasing. The parameter m in model (3.10) is again the same for all the curves, indi-

cating that it depends only on the material. Parameter K2 decreases when the temperature decreases,

but it is the same for forward and reverse regimes. This parameter reflects the existence of thermal

carriers, detected only at low voltages. Parameter K1 decreases when the temperature decreases.

The parameters’ values for forward and reverse biasing are different at high temperatures, but con-

verge at low temperatures. This means that the parameter K1 depends, on the one side on an effective

barrier seen by the carriers at the metal-organic interface, which increases when the temperature de-

creases. On the other side, K1 depends on effective barriers seen by the carriers in the hopping processes

across the organic material, which also increase when the temperature decreases. The convergence of

the values of K1 for forward and reverse regimes at low temperature means that at low temperatures,

the mechanism that imposes a limit to the current is the capability of the organic semiconductor to

transport the injected charges, not the height of the barrier at the interface [106]. Actually, there is no

barrier at the interface in the forward regime.

Throughout this chapter, we have analyzed experimental j−V curves in metal-organic-metal struc-
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tures with different interface energy barriers. We have studied the dependence with the temperature

and the length of the organic material. We have also considered situations in which the carrier mobility

follows different trends. All the current voltage curves have been interpreted by means of a common

relation between the current density and the free carrier density at the metal-organic interface. This

relation (3.10) includes three parameters. A constant value of the parameter m has been obtained for

each of the cases studied throughout this chapter. The values of m in all the materials studied vary

from 0.55 to 0.85. We have observed that this value is independent on the energy barrier at the inter-

face, doping impurities or defects. Thus, parameter m must depend on the molecular organization of

the organic material. We leave as an open question for future works to find a correlation between the

internal parameters of the organic semiconductor and this parameter m. The effects of the interface

energy barrier and the temperature reside in parameter K1. K1 controls the parallel displacement of

the pf (0) − j relation and depends on the effective barrier seen by the carriers at the metal organic

interface or effective barriers seen by the carriers in the hopping processes across the organic material.

K2 controls the flat region at low currents corresponding to the existing thermally generated carriers in

the semiconductor, thus providing information about the doping atoms, traps or defects in the material.

The usefulness of our model will be seen in the following chapter, in which metal-organic contacts sub-

jected to controlled technological treatments or unintentional degradation processes are characterized.

In these cases, we will show the importance of the evaluation of the free charge density in the organic

semiconductor, in particular its value at the metal-organic interface.
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4.1. Introduction

Organic/Polymeric semiconductors are a group of materials characterized by their flexibility and

low-cost manufacturing. They can be used in a wide range of niche applications such as smart windows,

electronic paper, large-area displays or radio-frequency identification tags [131, 132]. These applications

that require a combination of devices such as the organic light emitting diodes (OLEDs), organic thin film

transistors (OTFTs) and organic solar cells (OSCs) constitute highly promising technologies. The fast

advance towards functional devices is occurring despite some limitations. Among the main limitations

that the research community face are the low carrier mobility, long-term stability [5], device integrity in

ambient operating conditions [133] and the effect of the contacts acting as a limitation to the electrical

performance of the devices.

Coping with these research challenges often means focusing on the effects of the contact region of the

device [134, 135]. The addition of doping impurities to enhance the carrier mobility is accompanied by

a modification of the electrical characteristics of the contacts [136]. The degradation of a device under

exposure to ambient is often related to the contacts rather than the active layer of the device [137].

The technological treatment and control of the contacts and their interfaces is then necessary. Different

options to improve the performance of the contacts are doping itself [136], and the use of self-assembled

monolayers (SAMs) [135] or grafted dipolar molecules [104] at the interfaces. A scheme with different

ways of modification of metal-semiconductor interfaces is depicted in Fig. 4.1.

Figure 4.1: Scheme of different ways of modification of metal-semiconductor interfaces and their effects on
current voltage curves and the value of the free charge carrier density at the interface.

The analysis of the improvement or degradation of the contacts requires a proper characterization

tool that links a change in the electrical behavior of the structure with its physical and technological

origins. However, it is difficult to separate the changes in the current density (Fig. 4.1) produced by

changes in the free charge carrier concentration, in the mobility or in the injection barrier at the in-

terface. The separation of this information from electrical characteristics of the contacts is a topic of

continuous debate. In the literature, there are different characterization techniques or modeling proce-

dures to evaluate and quantify the origin of such electrical changes. In some cases, the experimental
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configurations can alter the device under test. The concentration of introduced molecules in a diode can

be determined by Fourier transform infrared (FTIR) spectroscopy [104]. Capacitance measurements in

metal-insulator semiconductor (MIS) structures are used to determine the free charge carrier density,

and consequently the doping concentration [133, 138]. However, the use of a MIS structure to charac-

terize a contact region can be questioned. The carrier mobility has been determined in the past with

different techniques, such us the time-of-flight (TOF) method [139], the Charge Extraction by Linearly

Increasing Voltage (CELIV) technique [140], the use of different organic diodes with different lengths

(’electric potential mapping by thickness variation’ POEM method) [141]. Once again, the use of extra

structures is necessary to employ these techniques.

In order to avoid using additional structures, current-density vs. voltage j − V curves and/or capa-

citance voltage (C − V ) curves measured in the device-under-test should be studied. Even the analysis

of these curves must be considered with caution. On the one side, the use of the classical Mott-Schottky

method to determine doping densities from C −V curves imposes a threshold for doping densities to be

detected [142]. On the other side, the modeling of the curves in organic diodes requires some considera-

tions, as different regimes can be found and modeled differently: ohmic [133], injection limited current

(ILC) [8, 55, 110] and space charge limited current (SCLC), with distinction of low and high electric

fields [112].

In the first part of this study [[143] , Sec. 3], we have described a compact model in which all these

regimes are included and affect the value of the free charge-carrier density at the interface pf (0). The

model relates the current density j with pf (0) as:

pf (0) = K1j
m +K2 (4.1)

where the parameter K1 depends on the barrier height at the interface, m depends on the organic

material and K2 controls a flat zone at low currents to include the dependence with thermal carriers

and impurities. The purpose of this chapter is to provide a detailed electrical characterization of metal-

organic contacts subjected to some kind of modification, so that the effects can be recognized and

quantified from the current-density vs. voltage characteristics (Fig. 4.1). The study of the evolution

of these parameters in metal-organic contacts provides a quick view of the physical origin of such

modifications.

Our main goal is to determine this information in a low computational time. We do not propose to

substitute any of the previous techniques, but to propose a fast and easy to use method by researchers.

The objective is to detect modifications of the energy barrier at the interface or the presence of added

impurities or traps in the organic material. Once these modifications are detected, a further quantification

of these effects can be obtained with other techniques as needed.

In the following section, we summarize the procedure employed to characterize metal-organic con-

tacts. In section 4.3, we analyze current voltage curves measured in contacts that underwent some kind

of controlled technological treatment: the use SAMs or grafting with dipole molecules, doping, or even

forced degradation. In section 4.4, a discussion on how to improve metal-organic contacts is made using

the results of the previous sections. The main conclusions are provided in Chapter 9.
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4.2. Characterization procedure

The details of the procedure employed to characterize metal-organic contacts can be seen in [[143] ,

Sec. 3]. Here, we provide the basic scheme of the method. The fundamental idea of our procedure is that

any physical mechanism occurring close to the metal-organic interface (such as the injection through

the energy barrier or the presence of impurities or traps) is reflected in the boundary value of the free

charge density at the metal-organic interface pf(0) (Fig. 4.1). Thus, the main objective is to find and

analyze the pf (0)− j relation extracted from experimental j − V curves. The procedure consists of two

main steps. First, the boundary value of the free charge density at the metal-organic interface pf(0) is

extracted from j − V curves measured in the organic diode. The relation pf (0) − j is obtained by an

iterative method based on the combination of the transport equations:

j = qµ[T, F (x)]pf (x)F (x), (4.2)

dF

dx
=

q

ε0εr
p(x), (4.3)

V =

∫ L

0

F (x)dx, (4.4)

where q is the absolute value of the electron charge, x is the distance from the injecting electrode,

F (x) is the electric field, εr and ε0 are the relative permittivity and the permittivity of the free space,

respectively, and p(x) is the total charge density. The free charge density is a fraction θ of p(x): qpf (x) =

θqp(x). In these equations, we use the correlated Gaussian disordered model (CGDM) for the mobility

[89]:

µCGDM(T, F ) = µ(T, 0) exp(γ
√
F )

µ(T, 0) = µ∞ exp{−[3σ/(5kBT )]
2} (4.5)

γ = 0.78{[σ/(kBT )]3/2 − Γ}[qa/σ]1/2

where a is the intersite spacing, kB is the Boltzmann constant, T is the absolute temperature, σ is the

width of the Gaussian density-of-states (GDOS) caused by the electrostatic coupling of a charged site

to neighboring dipoles, and Γ is related to the positional disorder, usually Γ ∼ 2.

Second, the pf (0)− j relation is modeled with (4.1) and the parameters K1, K2 and m are extracted

from this model. The analysis of the variation of these parameters with the controlled treatment of the

contacts will give clues about the physical origin of the changes produced in the structure.

4.3. Controlled and unintentional modification of the contacts

In this section, we analyze different cases that demonstrate the importance of determining the value

of the free charge density in the organic semiconductor, and in particular its value at the interface.
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This variable sheds light on different problems that affect the organic devices, such as the effect and

treatment of the metal-organic contacts, the controlled or unintentional doping of the material or the

instabilities.

4.3.1. Effects of self-assembled monolayers on the contact

There are different ways to diminish the detrimental effect of the contacts on the performance of an

organic device [105, 144, 145]. One of them is by assembling monolayers at the metal-organic interface

[135, 146, 147]. A self-assembled monolayer (SAM) consists of a well-organized single layer of molecules

chemisorbed or grafted on a surface [148]. It has been demonstrated that charge injection in organic

electronic devices can be controlled with the use of SAMs. SAMs allow for tuning the injection barriers

for holes and electrons into the semiconductor through the formation of dipoles on the metal surface.

The fabrication of self-assembled monolayers with modified doped molecules can further improve the

properties of electronic devices [135]. Depending on the material used as monolayer, the Schottky energy

barrier can decrease (or increase) and then the charge injection into the polymer can be improved (or

degraded) [134, 149, 150]. SAMs are extensively used in many organic device such as OTFTs [147, 151],

OLEDs [149, 150] or OSCs [152]. SAMs can be used to design single carrier devices with ohmic contacts

by suppressing the contribution of electrons or holes to the current [149]. Monolayers are assembled to

the most common electrodes such as ITO, Cu, Al, Au or Ag. In the cases of gold and silver, the metal

work functions can vary over 1.4 and 1.7 eV, respectively, with the use of SAMs [134, 149]. Consequently,

the hole current in a OLED can be tuned by more than six orders of magnitude.

The molecules used in SAM are mostly based on long alkyl chains that tend to self-arrange to

form highly ordered single layers. One end of the chain is substituted with a group capable of inducing

chemisorptions on the surface, while the other one can be used to control the properties of the modified

surface [147]. A frequently investigated system of SAMs is formed by thiols on gold surfaces [134, 149, 153]

and by the use of different aromatic and aliphatic compounds. [148, 154]. The advantages of thiols and

aromatic compounds are their high selectivity of mainstay groups to suitable surfaces, which lead to a

direct assembly on predefined metal electrodes without doping the bulk of the organic semiconductor.

Alkane-thiols are large energy gap molecules that can block charge injection at the metal/polymer

interface [134].

There are different reasons that explain the improvement of the injection with the use of SAMs. The

change of the interface dipole between the electrode and the semiconductor [57, 155] can be accompanied

with the alignment of the work function of the metal and the transport levels of the semiconductor. As

the growth of a SAM layer is self-limited to a monolayer thickness, charge carrier tunneling between the

metal and the semiconductor through the interfacial SAM layer is also feasible [156]. Furthermore, when

the surface of a contact is modified with a self-assembled monolayer, the growth of organic semiconductor

enhances the degree of organization for the entire deposition process, including the Al-Pentacene contacts

[147, 152]. Unless this reorganization of the organic molecules is located in the close-vicinity of the

SAM [150], the carrier mobility can even be improved. The combination of all these different reasons

(interfacial, energetic and morphology) make the understanding of the SAM-modified electrodes in
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organic devices more complex [157].

Now, we analyze j − V curves measured in diodes treated with SAMs from two techniques. In the

first one, the layer of molecules is formed by chemisorptions and in the second example by synthesis and

grafting. We monitor the changes on the injection barrier and on the thermal generated free carriers

produced by the layer of molecular dipoles. We distinguish each of these two effects by the inspection

of the relation between the charge carrier density and the current density.
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Figure 4.2: a) Comparison of experimental j − V characteristics for ITO/V2O5/CBP(100 nm)/Hg (squares)
and ITO/PEDOT/CBP(100 nm)/Hg diodes (circles) [146] with our calculations (solid lines) using the values
of the free charge-carrier density at the interface shown in dashed lines in Fig. 4.2b and the CGDM mobility
model. b) Charge-carrier density at the interface as a function of current density to fit exactly the experimental
data of Fig. 4.2a (symbols). The dashed lines correspond to model (4.1).

In Fig. 4.2a, we compare experimental j − V curves measured on ITO/4,4’-Bis(N-carbazolyl)-1,1’-

bipheny (CBP) diodes treated with self-assembled monolayers [146] (symbols) with our procedure

(solid lines). These authors used as monolayers a hole-injection layer of polyethylene dioxythiophe-

ne:polystyrene (PEDOT:PSS) (circles) and vanadium pentoxide (V2O5) (squares). They observed a

clear increase of the current for the latter case. They proposed that the formation of an interface dipole

and band bending results in a decrease in the effective barrier height of V2O5. This fact can be con-

firmed by the analysis of the evolution of the free charge-carrier density with the current density (Fig.

4.2b). The symbols in this figure are the values of the free charge-carrier density at the interface used

in the transport equations (4.2)-(4.5) to reproduce, within 0.1%, the experimental data of Fig. 4.2a.

The values of the parameters of the CGDM model (5) are εr = 3, σ = 60 meV, θ = 0.14, µ(T = 300

K, 0)= 5× 10−7 cm2/Vs, and a = 1 nm. The dashed lines in Fig. 4.2b correspond to model (4.1), with

pf (0) = 4.74×1017j0.7+8×1011 cm−3 for the V2O5 layer and pf (0) = 4.30×1016j0.7+8×1011 cm−3 for

the PEDOT:PSS layer. Introducing this model in (4.2)-(4.4) with the mobility model parameters given

above, the solid lines of Fig. 4.2a are obtained. (Note: The “noisy” data at low voltages are ignored). At

high currents, the two curves in Fig. 4.2b are parallel. This displacement is controlled by the different

value of K1 in (4.1) and indicates different heights of the energy barrier for the two cases [[143] , Sec.

3]. The parameters m and K2 are the same in both cases. Parameter m symbolizes the relationship

with the organic layer and parameter K2 with the thermally-generated carriers. Thus, no doping effects

are observed. The change in the molecules used in the monolayer treatment only modifies the energy

barrier at the interface, confirming the technological predictions. The effects produced by SAMs on
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the electrical characteristics of the contacts depend on the organic material, electrode and fabrication

technology [135, 148]. The following case is an example in which the treatment with molecular dipoles

also affects the concentration of thermal generated carriers.

Another technique to modify the metal-organic contact is by the synthesis and subsequent grafting

of dipolar molecules on the surface of the metal electrode. Sigaud et al. [104] used grafting of dipolar

molecules with the purpose of increasing hole injection from the indium-tin oxide (ITO) electrode of

ITO/poly-(9-vinylcarbazole) (PVK)/Al diodes. In order to relate the change of the energy barrier with

the amount of grafted molecules at the metal-organic interface, they combined the study of j-V curves

with other experimental techniques, such as the Fourier transform infrared (FTIR) spectroscopy [104].

We show here that the increase of the current density observed after grafting is not entirely due to a

change in the energy barrier, but to a change in the thermal generated carriers. This information is

obtained by the analysis of the free charge density at the interface that is extracted from the j − V

curves.
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Figure 4.3: a) Comparison of experimental j−V characteristics for ITO/PVK(L = 150 nm)/Al diodes measured
at different grafting times at room temperature (symbols) [104] with our model (solid lines). b) Free charge-
carrier density at the metal-organic interface as a function of the current density, extracted with our numerical
procedure to reproduce the experimental data in Fig. 4.3a within 0.1% (symbols) and modeled with (4.1) (solid
lines).

Fig. 4.3a shows the comparison of experimental current density versus voltage curves (symbols),

of ITO/PVK/Al diodes measured at different grafting times (0 to 18 h) [104], with the results of our

model. Our procedure extracts the values of the charge-carrier density at the interface (symbols in Fig.

4.3b) to fit the experimental data within 0.1% with the transport equations (4.2)-(4.4), and the value of

the parameters of the CGDM model (4.5): µ(T = 300 K, 0)= 2.3× 10−7 cm2/Vs, εr = 3, σ = 50 meV,

θ = 0.45 and a = 1 nm. Subsequently, the extracted values of the free charge density at the interface

are modeled with (4.1) (solid lines in Fig. 4.3b). The combination of (4.1) with (4.2)-(4.5) results in the

solid lines of Fig. 4.3a. The parameter K2 varies from 5.0 × 1013 cm−3, 1.0 × 1014 cm−3 to 2.0 × 1015

cm−3 after 0, 3 and 18 hours of grafting time, respectively, in correlation with FTIR spectroscopy results

that showed an increment of the surface concentration of grafted molecules with time: 1.5× 1013 cm−2

and 5.7 × 1013 cm−2 after 3 and 18 hours of grafting time, respectively [104]. This corresponds to the

increment of the charge-carrier density observed at low currents in Fig. 4.3b, confirming the existence of

impurities that release free charges. The advantages of our method are not restricted to the low injection
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regime. The high injection regime also provides information about the interfaces. The parameter m is

0.93 for the three curves, meaning that no structural change has been produced in the bulk of the organic

material. The parameter K1 slightly varies from 0.6× 1019, 0.9× 1019 to 1.2× 1019 cm2m−3/Am after 0,

3 and 18 hours of grafting time, respectively. We have observed that diodes with different barrier heights

at the metal-organic interface produce parallel displacements of the pf (0)− j curves [[143] , Sec. 3]. In

Fig. 4.3b, when the amount of injected charge is higher than the charge released from the impurities,

the three curves tend to coincide. The values of the parameter K1, related to the height of the energy

barrier, are in the same order of magnitude. On the contrary, the values of parameter K2, related to the

thermal generated carriers, vary more than one order of magnitude. This result allows us to conclude

that the height of the energy barrier at the interface in the samples of Fig. 4.3 is only slightly modified.

Unlike the experiments of Fig. 4.2, these grafted molecules act mainly as dopant molecules.

4.3.2. Semiconductor doping

One common way to improve the performance of electronic devices is by doping the organic semi-

conductor. The addition of doping molecules is widely used to improve the efficiency of OLEDs [158]

and OSCs [159]. These molecules donate free charge carriers to the host material and hence increase the

conductivity of the organic semiconductors. Mobility changes have been detected when measuring the

change in conductivity upon doping with inert salts, which produce anion–cation pairs without intro-

ducing extra mobile charges in the organic film [136]. They confirmed previous similar findings about

the dependence of this doping dependent mobility [160–162]. Bulk-limited or contact-limited transports

have been observed in devices with different doping levels, giving an indication of the effect of doping

on the injection barrier [163]. Energy diagrams derived from ultraviolet and X-ray photo-emission spec-

troscopy (UPS and XPS) for undoped ZnPc on ITO and ZnPc doped with F4-TCNQ detect in both

cases a rather large energy barrier for holes of about 1.2 eV. However, the electrical properties of such

contacts distinguish between blocking and ohmic contacts, respectively [164]. They conclude that the

basic mechanism of forming an Ohmic contact by thin tunnel barriers works as well as in inorganic se-

miconductors. Other authors have investigated the effect of redox inactive ionic species on the dielectric

properties of conjugated polymers. They examined the corresponding impact that salt doping has on

the optical and electrical properties of films of the conjugated polymers and their corresponding blends

with electron accepting fullerene molecules [165]. Electrical characterization methods and time-resolved

infrared (TRIR) spectroscopy [166] are combined to demonstrate that the charge carrier density and die-

lectric permittivity of the conjugated polymer can be significantly enhanced by the addition of Lithium

Bis(Trifluoromethanesulfonyl)Imide (LITFSI) .

The doping treatment of an organic device has similar effects to those produced with SAMs: changes

in the thermal generated carriers, mobility or interface injection barrier. As in the previous section, we

again analyze current-voltage curves of organic diodes that have undergone any kind of doping change.

In particular, we pay our attention to the transition from contact to bulk limited current in doped

samples. Anjaneyulu et al. [167] studied the role of carrier density dependence in conduction mechanism,

in particular in the transition from contact to bulk limited current. They stated that a single model
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Table 4.1: Fitting parameters used in (4.1) in combination with (4.2)-(4.5) to reproduce the experimental data
in Fig. 4.4a.

Diode K1 m K2

(cm2m−3/Am) (-) (cm−3)

D1 (F) 8.0× 1017 0.85 7.0× 1012

D2 (F) 9.0× 1017 0.85 1.0× 1012

D3 (F) 1.1× 1018 0.85 3.0× 109

D1 (R) 4.5× 1017 0.85 1.1× 1013

D2 (R) 4.5× 1017 0.85 1.0× 1012

D3 (R) 4.5× 1017 0.85 3.0× 109

cannot explain the j−V data for the entire range of applied voltages. In order to find such a dependence,

they combined current-voltage, impedance and capacitance measurements of poly(3-methylthiophene)

(P3MeT) devices in stainless steel (SS)/P3MeT/silver (Ag) sandwich geometry at various doping levels.

Fig. 4.4a shows a comparison of their experimental measurements taken at room temperature (crosses

for forward bias and other symbols for reverse bias) with our procedure (solid lines). Three diodes, with

a decreasing doping level from D1 to D3, were analyzed. These devices have electrodes with asymmetric

work functions, that is, SS ∼ 4.9 eV, (P3MeT) HOMO ∼ 4.35− 4.5 eV, and Ag ∼ 4.2− 4.6 eV.
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Figure 4.4: a) Comparison of current-voltage curves measured in doped P3MeT diodes (SS/P3MeT/Ag with
Ag being positively biased) at room temperature (symbols) [167] with our numerical results (solid lines). b) Free
charge-carrier density at the interface extracted with our procedure to reproduce the experimental j −V curves
of Fig. 4.4a within 0.1% (symbols). The dashed lines follow the empirical model (4.1) with the parameters given
in Table 4.1.

The boundary values of the free charge-carrier density at the interface used in the transport equations

to reproduce within 0.1% the whole set of experimental data in Fig. 4.4a are shown with their respective

symbols in Fig. 4.4b. In the fitting, the following values of the CGDM model parameters are also used:

θ = 0.6, σ = 40 meV, a = 3 nm, εr = 3, and a doping dependent mobility µD1(300 K, 0)= 2.0 × 10−4

cm2/Vs, µD2(300 K, 0)= 1.1 × 10−4 cm2/Vs, µD3(300 K, 0)= 3.3 × 10−5 cm2/Vs. We confirm past

results about the dependence of a doping dependent mobility [160–162]. The values of the mobility has

been chosen in such a way that the distributions of pf (0) for D1, D2 and D3 overlap at high currents
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in the forward regime. The diode curves in the forward regime are space-charge limited. Thus, there is

no barrier at the Ag/P3MeT interface. If we considered the same value of mobility for each diode, the

free carrier density would decrease with the amount of doping. It would mean that the energy barrier at

the interface increases when the doping increases. This situation would be possible if the typical j − V 2

relation had not been observed in the forward regime for the three diodes. On the contrary, if we used

an increasing value of the mobility when the doping decreases, the free carrier density would increase

with the amount of doping in the high-current region. This would mean that the height of the energy

barrier is reduced when the doping increases. This solution contradicts the fact that the diode curves

in the forward regime are space-charge limited. We cannot reduce a barrier that does not exist. The

free charge-carrier density at the interface is modeled with (4.1) and the parameters given in Table I

(dashed lines in Fig. 4.4b). This model is introduced in (4.2)-(4.5) with the mobility model parameters

given above, and finally, the solid lines of Fig. 4.4a are obtained, providing an excellent agreement with

the experimental data.

The evolution of the free charge-carrier density with the current for the three diodes of Fig. 4.4b

shows two different regions. At low positive or negative voltages (or low currents), pf(0) remains constant

and independent on the injecting electrode. This flat region reflects a background of thermally generated

charge carriers. The larger the doping, the greater is the value of this flat region. The second region

is seen at high currents. In a logarithm scale, the pf (0) − j relation follows a straight line. The three

forward curves (crosses) tend to coincide at high current corresponding to a SCLC regime for every

measurement. The reverse regimes split from their respective forward regimes but run parallel. The

separation between each two of the three pairs of curves is smaller as the doping increases (see also the

values of K1 in Table 4.1). This means that the doping not only affects the background of thermally

generated carriers, but also affects the height of the energy barrier of the SS/P3MeT contact due to

a realignment of quasi-Fermi level produced by a variable number of carriers at the interface. The

constant value of the slope m for all the curves means that the doping variation does not affect any

other morphological aspect of the organic semiconductor.

The strength and merits of our procedure can be checked by comparing our results with other

experimental determinations. The values obtained for the free charge-carrier density in Fig. 4.4b are

also in agreement with the values extracted from frequency-dependent capacitance measurements [167].

These authors obtained the following values for the free charge-carrier density at 4 V: 1.8 × 1015 and

6 × 1014 cm−3 for diodes D1 and D2, respectively and provided an approximated value 1011 cm−3

for diode D3. For these same diodes at the same voltages, we obtained free charge-carrier densities

of 0.9 × 1015, 3 × 1014 and 1012 cm−3, respectively. The values obtained for diodes D1 and D2 agree

quite well. The difference for diode D3 can be attributed to the small sensitivity of their capacitance

measurements in the low-doped diode [142].

4.3.3. Instabilities

The importance of the study of the free charge density as a function of the current in the organic

semiconductor is now checked for j−V curves with hysteresis. In particular, we can determine the number
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of traps filled during a hysteresis cycle caused by trapping and de-trapping in the semiconductor. Fig.

4.5a shows j − V curves with hysteresis measured in the same three diodes studied in the previous

section [167] (symbols). A larger hysteresis cycle is seen for the low-doped diodes D3. However, this does

not mean that the doping effect is crucial to interpret these curves with hysteresis. These curves can

be reproduced with our procedure (solid lines) by solving the transport equations with the values of

the free charge-carrier density at the interface shown in Fig. 4.5b and the following assumptions for the

evolution of the total charge in (4.3), p(x) = pf (x) + pt(x), where pt is the density of the filled traps.
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Figure 4.5: a) Comparison between j−V curves with hysteresis for the diodes of Fig. 4.4a (symbols) [167] and
our procedure (solid lines). b) Values of the free charge-carrier density at the metal-organic interface used in the
transport equations to reproduce within the 0.1% the experimental j − V curves of Fig. 4.5a. c) Variation of
the trapped charge during the hysteresis cycles of Fig. 4.5a.

In order to estimate the variation of traps filled during the hysteresis cycle, we consider the follo-

wing assumptions and steps. We consider that at a constant voltage, the distribution of charge in the

semiconductor is the same in the forward and backward scans [pf (x)+pt(x)]B = [pf (x)+pt(x)]F . Thus,

any variation in the number of filled traps is compensated by a variation of the free charges, and then

by a variation in the current density.

In a first step, we estimate the variation of the free charge during the hysteresis cycle, assuming that

all the traps are filled during the forward scan (FS) and emptied during the backward scan (BS). In the

FS, we consider the model proposed by Mark and Helfrich [102] for the maximum density of filled traps:

pt(x) = Ntrap

(

pf (x)F
Nt

)1/l

(4.6)

where Ntrap is the total trap concentration, l = Tc/T , Tc is the characteristic temperature of the trap

level distribution in the sample and Nt is the effective density of the trap states. In the BS, we consider

pt(x) ≪ pf (x). The transport equations are solved in order to fit, within 0.1%, the hysteresis data. The

evolution of the free charge-carrier density at the interface is provided as solution, and thus its variation,

[pfB(0)− pfF (0)].

In a second iteration, we consider that all the traps are filled during the FS, following (4.6). In the

BS, the traps are not considered empty but following the trend ptB(x) = ptF (x) − [pfB(0) − pfF (0)],

where [pfB(0) − pfF (0)] is calculated in the first step, and ptF (0) in the FS of the second step. The



68 4. Characterization of modified metal–organic contacts

Table 4.2: Fitting parameters used in (4.1) in combination with (4.2)-(4.5) to reproduce the experimental data
in Fig. 4.6.

Temperature K1 m K2

(cm2m−3/Am) (-) (cm−3)

280 K 3.5× 1017 0.85 3.5× 1012

260 K 3× 1017 0.85 2× 1012

240 K 2.8× 1017 0.85 1.2× 109

220 K 2.5× 1017 0.85 7.5× 1011

200 K 2.3× 1017 0.85 5× 1011

180 K 2.2× 1017 0.85 3.5× 1011

use of model (4.6) introduces additional fitting parameters. The most sensitive parameter is Ntrap. The

convergence is achieved when the final variations of the free charge-carrier density and the trapped-

carrier density tend to coincide, [pfB(0) − pfF (0)] ≈ [ptF (0) − ptB(0)]. In the fitting of Fig. 4.5a, we

have used Ntrap = 2 × 1016 cm−3, Nt = 1019 cm−3 and Tc = 400 K. The values of the parameters of

the mobility model (4.5) are the same as in the fitting of Fig. 4.4a.

The variation of the filled traps thus obtained during the hysteresis cycles is represented with symbols

in Fig. 4.5c. The number of filled traps increases with the current density, following a trend that is

independent of the doping. Actually, there are common current ranges in the three diodes where the

number of filled traps is similar. This means that the effect of the doping on the hysteresis is only the

modification of the free carriers in the organic semiconductor. However, a modification of the number

of free carriers can also be achieved with the variation of the applied voltage to the structure.
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Figure 4.6: a) Comparison of current-voltage curves of the doped P3MeT D1 diode measured at different
temperatures [167] (symbols) with our model (solid lines) and the trap-controlled SCLC model (4.7) (dashed
lines). b) Values of the free charge-carrier density at the metal-organic interface used in the transport equations
to reproduce the experimental j − V curves of Fig. 4.6a (symbols). The solid lines represent the fitting with
model (4.1) and K1, K2 and m given in the Table 4.2.

The values of these fitting parameters can be checked with an additional study at different tempera-

tures in the same samples. Fig. 4.6a shows with symbols the evolution of j−V curves with temperature

measured by the same authors in diode D1 [167]. In solid lines, we represent the result of including our
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model (4.1) in the transport equations. The values of the free charge-carrier density at the interface

obtained from (4.1) are depicted with solid lines in Fig. 4.6b and compared with the symbols, which

correspond to the values extracted by the fitting within 0.1% of the experimental j − V curves in Fig.

4.6a. The values of the parameters in the CGDM mobility model are the same as in the fitting of Fig.

4.4a. The free charge-carrier density can be reproduced with our model (4.1) and the values of the

parameters shown in Table 4.2 (solid lines). The free charge-carrier density shows a uniform increment

with the temperature. It is important to note that the slope of the j − V curves increases when the

temperature increases. However, the slope of the log[pf (0)] − log(j) representation [parameter m in

(4.1)] does not depend on the temperature. Once more, this result confirms that m depends only on the

organic material, making (4.1) more general.

As noted in [167], the thermally activated behavior of the j − V curves is an indication of a trap-

limited SCLC mechanism. This behavior was modeled in the past for an exponential distribution of

traps in energy space [102]:

J = q1−lµNt

(

2l+ 1

l+ 1

)l+1(
l

l + 1

εrε0
Ntrap

)

V l+1

L2l+1
(4.7)

This model assumes a zero electric field at the interface (or an infinite free charge density at the same

point). This means that it can reproduce only the high current regime, as can be seen in Fig. 4.6a with

dashed lines. Unlike our model, the transition towards the Ohmic regime is not reproduced with (4.7).

In any case, this model is still useful to estimate the trap concentration from the fitting at high voltages.

The results of this fitting are Ntrap = 1016 cm−3, Tc = 480 K, µ = 0.45×10−6 cm2/Vs, Nv = 1019 cm−3.

The values of these parameters are similar to those obtained with our model applied to the hysteresis

curves in Fig. 4.5a, thus validating our procedure. The only exception is the value of the mobility, which

is lower. The reason is the assumption of an infinite charge density at the interface in model (4.7). The

overestimation of the charge density is compensated with an underestimation of the mobility [133].

4.3.4. Unintentional doping degradation

Degradation is one of the main problems that affect the performance of organic devices. It limits their

reliability and operating lifetime. Some of the causes of degradation are exposure of oxygen (O2), water,

other atmospheric contaminants or the diffusion of atoms of the metal into the organic material [168, 169].

Therefore, the characterization of these effects is important in order to find technological solutions that

minimize the degradation, and thus achieve more efficient and stable materials. The degradation can be

seen as an uncontrolled doping process with all its associated problems: the penetration of impurity traps

in the semiconductor creating shallow/deep trapping levels [170] (which may produce a variation of the

value of mobility as well as the free charge density) and the modification of the height of the energy barrier

at the metal-organic interface [137]. Thus, investigation has been focused on transport mechanisms in

organic semiconductor films and in the injection mechanisms in the metal-organic interfaces present

in each organic device, with the metal-organic interface being one of the most sensitive regions of the

devices [137, 171].
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Table 4.3: Fitting parameters used in (4.1) in combination with (4.2)-(4.5) to reproduce the experimental data
in Fig. 4.7

Ambient K1 m K2

(cm2m−3/Am) (-) (cm−3)

Under HV 2.5× 1017 0.7 7.0× 1014

O2-doped 2.5× 1017 0.7 1.2× 1013

Air-doped 0.9× 1017 0.7 2.0× 1011

Our characterization method is applied to ITO/ endcapped sexithiophene (EC6T) (200 nm)/Al

diodes measured under high-vacuum (HV) (triangles in Fig. 4.7a), after O2-doping (squares), and after

doping with air (circles) at 300 K [133]. Fig. 4.7a shows the comparison of these experimental j − V

curves (symbols), with the results of our model (solid lines). The boundary values of the free charge-

carrier density at the interface, used in the transport equations to reproduce within 0.1%, the whole set

of experimental data in Fig. 4.7a (symbols), are shown with their respective symbols in Fig. 4.7b. In the

fitting, the CGDM model is approximated with a constant mobility µ = 5 × 10−6 cm2/Vs, as no high

electric-field effects are detected. The value of theta is different for each diode: θ = 0.4, 0.34 and 0.3,

under HV, O2 and ambient air, respectively. As expected, the number of traps is higher with ambient

exposure. The free charge-carrier density at the interface is modeled with (4.1) and the parameters

given in Table 4.3 (solid lines in Fig. 4.7b). This model is introduced in (4.2)-(4.5) with the value of

the mobility shown above, and finally, the solid lines of Fig. 4.7a are obtained, providing an excellent

agreement with the experimental data. There is only a small disagreement with the air-doped data at

low current densities. In this case, the authors noted the existence of leakage currents affecting this

region [133].
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Figure 4.7: (a). Comparison of experimental j − V characteristics for ITO/EC6T/Al diodes measured under
air doped, oxygen doped and under high vacuum HV (symbols) [133] with our model (solid lines). (b) Charge
density at the interface as a function of current density extracted from Fig. 4.7a (symbols). The solid lines
represent the fitting with model (4.1) and K1, K2 and m given in the Table 4.3.

The exposure to air or O2 produces a decrease of the charge density at low currents, confirming the

existence of traps that capture the free charges. Based on our previous study [[143] , Sec. 3], diodes with

different barrier heights at the interface produce a parallel displacement of the relation pf (0)− j at high
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currents. In this regard, we can consider that the barrier height at the interface is not affected by the

degradation processes of O2. The only effect is the introduction of new traps, monitored with a change

in the parameters K2 and θ in our model (Table 4.3). The pf (0) − j curve for the air-doped sample is

displaced and parallel to the others. In this case, a change of the energy barrier height is deduced from

this displacement or from the change in the value of K1. This effect is added to the introduction of traps

that reduce the free carrier concentration.

4.4. Discussion. Improvement of the contacts

The improvement of the contacts is a topic that can be tackled in different ways depending on the kind

of organic devices and their applications. In general, a proper contact requires good adhesion properties,

it must present no barrier to the injection of charge carriers, and it must prevent the penetration of

undesired impurities that give rise to trapping mechanisms and hysteresis. In particular cases, such as the

organic solar cells, the optimization of their optical performance adds new requirements to the contacts.

In this regard, researchers try to minimize the reflections of the light with several layers of different

permittivity introduced above the metal contact. Simultaneously, they try to control the injection of

charge in the metal-organic interface by tuning the height of the metal-organic energy barrier.

The electrical control of the interfaces is one of the most studied topics in order to improve the contact

region. The fabrication of SAMs at the metal-organic interface, by chemisorptions or grafting, allows for

controlling of the height of the energy barrier. However, in some situations, the introduced molecules

act as dopant molecules, reducing their effects on the modification of the energy barrier. Theoretically,

grafting and chemisorptions of SAMs change the energy barrier at the metal/organic interface by an

amount proportional to the dipole moment µ′ and the surface concentration of the molecules N attached

to the metal electrode. According to Coulomb’s law, the expected change in the barrier height induced

by the layer of dipoles is: [144, 149, 172]

∆φ =
qNµ′

εrε0
(4.8)

In some cases, the attachment of grafted or chemisorbed molecular dipoles at the surface of an ITO

anode leads to an insignificant lowering of the injection barrier [149, 172]. The barrier is not as large

as expected in (4.8). In this chapter, we have studied situations in which SAMs reduce the energy

barrier, not affecting the thermal generated carriers (Fig. 4.2). In other cases, they affect mainly the

number of thermal generated carriers (Fig. 4.3), confirming the results in [172]. The analysis of these

two situations with model (4.1) shows that an increment in the thermal generated carriers enhances the

current density only in the low current regime. They increase the range of voltage corresponding to the

Ohmic region. However, the decrease of the energy barrier at the interface increases the current density

in the entire j−V curve. Evidently, this situation is preferable. In this last case, the attached molecules

act as molecular dipoles. In the former case, only a fraction of N does contribute in (4.8), the rest act

as dopant elements. Thus, the procedure to attach the molecules to the electrode must guarantee that

most of them contribute to the dipole moment. Sigaud et al. [172] suggested to increase the density of

packed dipoles as a way to increase N in (4.8).
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The control and use of the dopant molecules in the metal-organic contact is also a necessity. We

have studied cases in which the dopant molecules increase the free carrier concentration (Fig. 4) and

others where they act as traps (Fig. 4.7), decreasing the free carrier concentration. These variations are

detected mainly in the low current regime. In these same figures, we have detected how these molecules

can increase, decrease or leave the interface energy barrier unaltered. The variation of the interface

energy barrier affects the entire j − V as it produces parallel displacements in the pf (0) − j relation.

Nevertheless, in the situations studied in these figures, the effect of the doping on the barrier (injected

carriers) is not as important as its effect on the thermal free carriers. In this regard, we would suggest

the compensation of traps with doping molecules. It is expected that this effect would be noticeable

only at low currents.

The effects of doping on hysteresis have been analyzed in Fig. 4.5. In this case, we have shown that

additional doping does not modify the effects of hysteresis. The doping neither enhances nor reduces

the hysteresis mechanism. At least, in these experiments, the effect of doping has served only to analyze

different current ranges where the hysteresis is detected, being more noticeable at low current regimes.

In this regard, the reduction of the hysteresis effect can come not by modifying the contact itself or

compensating with doping molecules, but by avoiding different combinations of materials employed in

the metal organic contact [173].

From an experimental point of view, the use of j − V measurements to gain information about

the contacts and the way to get a better design is still valid. The ability to determine charge carrier

densities can aid in the interpretation of current-voltage curves. In some situations, neglecting the role

of the charge carrier density can divert to over- or under- estimating the role of other variables such as

the carrier mobility. We suggest the analysis the carrier density as a function of the current density as a

powerful and rapid tool to analyze the effects of controlled or undesired treatments of contact interfaces.

More precise and costly experimental techniques can use this information as the starting point.
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5.1. Introduction

The metal-organic-metal (MOM) structure is an intrinsic part of organic devices such as organic so-

lar cells (OSC), organic light emitting diodes (OLEDs) and organic thin film transistors (OTFTs). Both

symmetric and asymmetric MOM structures are used, and the asymmetric one is the typical structure

in OSCs and OLEDs. The extraction-injection of charge is one of the most important physical mecha-

nisms that take places in organic devices [174]. At the same time, the metal-organic contact introduces

detrimental effects on the performance of these devices. Therefore, to optimize the performance of these

devices, a detailed physical description and the proper modeling and simulation of the metal-organic

structure are necessary.

A key requirement in the simulation of the MOM structure, although frequently mishandled, is the

selection of proper boundary conditions at the metal-organic interface. In this regard, a comprehensive

understanding of the contacts is necessary [6, 73]. Recently, we focused on the contacts of organic thin

film transistors [12, 13, 70, 71, 171]. In this chapter, we address the simulation and modeling of the

organic diode or MOM structure, in particular, the effects of the contacts on the boundary conditions

for simulation.

To develop the model, an important prerequisite is a proper understanding of the dark current of

the MOM structure. The dark current in a diode provides insights into the injection mechanisms, charge

transport, and trapping and recombination processes, which play important roles in the characteristics

and parameters of organic devices [55, 175]. The electrical conduction in organic diodes is described by

the drift-diffusion equations. The solutions of these equations depend on the boundary conditions (BCs)

at the contacts. The charge transport equations in organic devices are similar to those used for inorganic

semiconductor structures [176]. However, the boundary conditions for organic diodes are quite different

[10, 177].

For simplicity, some authors use Boltzmann statistics to determine the value of free charge density at

the interface [32, 43]. In this case, the charge density is constant, dependent only on the energy barrier

height at the interfaces and independent of the current transferred through the contacts. However, there

are multiple effects at the interfaces that can modify the value of the concentration of the electrons and

holes [6]. Also, anomalous S-shaped current-voltage J−V curves in organic solar cells under illumination

are interpreted as due to the effect of the contacts [6]. The existence of doping introduced by oxygen

and the presence of traps, impurities, and energy barriers for the extraction or injection of free charges

can reduce the velocity at which the carriers are extracted or injected. In [6, 7], a recombination with

constant velocity and low extraction/injection rates is used for numerical reproduction of such S-shapes.

A constant interface recombination velocity results in a linear relation between the current density and

the free charge density at the contact interface. In this regard, the charge density at the interface can

be assumed as the result of the current flow from the metal to the semiconductor and vice-versa.

Other recombination models exist in organic diodes, such as the Langevin or direct recombination,

Onsager-Braun model, Shockley-Read-Hall (SRH) and tail-state recombination [178–180]. Each mecha-

nism is characterized by a particular recombination rate, R(n, p), that actually provides a different

relation with the electron or hole densities, n and p, respectively. A simple transformation of the conti-
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nuity equation can provide an estimation of the relation of the current density J with the free charge

density. Assuming steady state and no generation rate, the continuity equation of charge carriers can

be transformed into

Jn,p = q

∫

R(n, p)dx (5.1)

Therefore, different relations with the carrier density will appear, but the question, ”what is this rela-

tion”, remains. Different recombination models are used to analyze the injection of charge from electrodes

into an organic material. The Langevin recombination model is combined with the thermionic emission

model to provide a relation between the current density and the electric field at the interface [177]. For

higher injection barriers, the Onsager-recombination is used to consider the escape probability from the

organic material back to the electrode, in combination with other effects such as the reduction of the ba-

rrier height by the image charge effect [110]. The Langevin and Onsager models provide a relation of the

current density with the electric field at the interface. In these models, the computational requirement

is high and its validity is not extended to low barriers or Ohmic contacts [110].

In recent studies [10, 112, 143], we developed a relation between the current density J flowing through

a metal-organic contact and the free charge density at the interface. We found that in symmetric diodes,

controlled by the drift mechanism, the free charge density at the interface, p(0), follows a power function

of the current density: p(0) = KJm, where K and m are device related parameters. This relation is

valid for different energy barrier heights at the contact. It is also valid for different regimes observed

in the current-voltage curves of single-carrier metal-organic-metal structures, such as the Ohmic, the

space-charge-limited or the injection-limited current regimes. The model was presented in [143]. There,

the diffusion current was neglected as devices with very low built-in voltage Vbi were considered. The

exclusion of the diffusion currents does not introduce considerable errors except when the device operates

at low currents, as may be the case in photovoltaic devices [178]. The use of our model [143] in asymmetric

structures, such as OSCs, is challenged by the presence of diffusion and also the presence of both

electrons and holes in the current density. For these different situations, we explore the link between

charge concentrations at contact interfaces and current in organic diodes.

This chapter is organized as follows. In Section 5.2, we present the drift-diffusion equations used for

the simulation of organic diodes. In Section 5.3, we analyze symmetric MOM diodes with single-carrier

conduction and propose analytical methods to extract the value of the charge density at the metal-

organic interface from J−V experimental data, confirming the power-law function of the charge-current

relation proposed in [143, 181]. In Section 5.4, we validate our charge-current model also for asymmetric

devices, in which charge diffusion takes place. For validation of the power law dependence with model

parameters K and m, we compare diodes with symmetric and asymmetric contacts, different energy

barriers at the contacts, and at different operating temperatures. We also study the physical significance

of K and m. In Section 5.5, we finally extend our model to bipolar-conduction MOM structures.
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5.2. Theory

The total current that flows in an organic semiconductor is determined by the electric field (drift)

and the presence of carrier concentration gradients (diffusion). The following equations describe the

drift-diffusion model of a diode:

Jp = qpµpF − qDp
dp

dx
(5.2)

Jn = qnµnF + qDn
dn

dx
(5.3)

dF

dx
=

q

εrε0
(p− n) (5.4)

dV

dx
= −F (5.5)

dp

dt
= 0 = −1

q

dJp
dx

−R(x) +G(x) (5.6)

dn

dt
= 0 =

1

q

dJn
dx

−R(x) +G(x) (5.7)

R(x) = qnp(µn + µp)/(εrε0) (5.8)

JAC = Jp + Jn (5.9)

where subscript p refers to holes and subscript n to electrons. In the above equations, q is the electron

charge, Dp and Dn are the diffusion coefficients for holes and electrons, respectively, F is the electric

field, V is the electrostatic potential, εr is the relative permittivity (dielectric constant) of the of the

organic material and ε0 is the vacuum permittivity. Equations (5.2) and (5.3) are the hole Jp and

electron Jn current densities described by the drift-diffusion transport of charge. The electric field F

is calculated according the Poisson’s equation (5.4) and (5.5). Equations (5.6) and (5.7) are hole and

electron continuity equations describing the generation and recombination of free charge carriers. The

Langevin model is used in (5.8) for the recombination rate R of free electrons and holes in organic

materials [182, 183]. The total current density from the anode to the cathode, JAC , is given by (5.9).

The diffusion coefficient Dp,n is assumed to follow the Einstein relation Dp,n/µp,n = VT , where

VT ≡ kBT/q is the thermal voltage, T is the absolute temperature, kB is Boltzmann’s constant and µp,n

is the charge-carrier mobility. The mobility may depend on the temperature, electric field and charge

concentration. A widely used model for the mobility that includes the effects of varying temperature

and electric field is the correlated Gaussian disordered model (CGDM) [67, 85, 89] given by

µ(T, F ) = µ(T, 0) exp(γ
√
F ) (5.10)
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where γ is a parameter that describes the enhancement of the mobility with electric field and µ(T, 0) is

the mobility at zero electric field.

Equations (5.2) to (5.9) describe bipolar conduction in organic diodes and are usually solved nu-

merically by predetermined boundary conditions at the interfaces of the anode and cathode contacts.

These equations can be simplified in some cases, such as for unipolar conduction and symmetric diodes.

For example, the majority of organic semiconductors are with hole-only conduction [123]. Toward our

objective of the bipolar conduction, we initially consider a hole-only MOM structure, in order to iden-

tify the factors that determine its behavior, and set up an analytical model. Then, we will show what

adjustments in the model and extraction techniques are necessary for MOM structures with bipolar

conduction.

5.3. MOM diodes with single-carrier conduction

In this section, we consider MOM structures with hole-only conduction in the organic semiconductor.

Energy diagrams and J −V curve of a MOM diode are shown in Figure 5.1a. The hole injecting contact

is the anode at x = 0. The hole collecting contact is the cathode at x = L. The anode and cathode

conductors have different work functions which creates a built-in voltage, Vbi = (ΦA − ΦC)/q. In the

figure, Φ1 and Φ3 are the barriers observed by the holes and electrons from the anode towards the organic

semiconductor, respectively. Φ2 and Φ4 are the barriers observed by the holes and electrons from the

cathode towards the organic semiconductor, respectively. The barriers Φ3 and Φ4 are assumed large

enough to prevent injecting electrons from contacts to the conduction band of the semiconductor. Also,

the organic semiconductors are usually wide band-gap materials. Therefore, the thermal generation of

carriers is negligible and so is not considered.

There are situations, especially at low electric fields, in which the mobility can be assumed constant.

This is the case of the low voltage region in a current-density voltage curve (JAC − VAC). Here, VAC

is the applied voltage between anode and cathode and JAC is the density of the current flowing from

anode to cathode. A complete JAC − VAC curve, shown schematically in Figure 5.1d, has two different

regions. Each region is dominated by one transport mechanism. At low voltages, diffusion is dominant

(Figure 5.1b), while at high voltages, drift prevails (Figure 5.1c). First, we consider the regions where one

mechanism is dominant, and for which simplified methods and proposals can be found in the literature

[143, 184]. Second, we treat the region around the built-in voltage where neither diffusion nor drift is

negligible.

5.3.1. Symmetric organic diodes

A study of symmetric organic diodes was presented in [143]. For the sake of completeness, we include

this study in this section, in which we add an analytical method to extract the value of the charge

density at the metal-organic interface. This method complements the numerical method proposed in

[143]. The procedure is validated with experimental data from publications of different groups.

In symmetric organic diodes, the built-in voltage Vbi is zero, and the charge transport of holes is
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Figure 5.1: Energy band diagram of a hole-only MOM diode with asymmetric contacts that create a built-in
potential, (a) at thermal equilibrium, (b) at an applied voltage smaller that the built-in voltage and (c) at an
applied voltage larger that the built-in voltage. (d) Typical JAC − VAC voltage characteristic with indication of
the above regimes.

given by eq. (5.2) [112]. Also, Poisson’s equation (5.4) uses only the hole concentration p. In darkness,

the charge generation and recombination are ignored, which simplifies eq. (5.6). Thus, eqs. (5.3), (5.7)

and (5.8) are irrelevant for hole-only MOM diodes, and are not considered in our numerical simulations.

The total current density JAC is given only by the hole current density (5.9), so JAC = Jp. When a

variable mobility is considered, then the mobility is given by eq. (5.10).

With the objective to relate interface charge density with current density, we use boundary conditions

for potentials and experimental data for JAC − VAC , in order to obtain charge density profiles. The

values for carrier mobility are adopted from the literature. Analytical models provide profiles for the

product (charge density × mobility), and by dividing by the mobility, the charge profiles are determined.

The charge profiles are immediately available from numerical simulation. From the charge profiles, we

determine the charge density p(0) = pA at the anode interface (x = 0).

The experimental data for a symmetric MOM structure are for a glass /ITO /PEDOT:PSS /LEP

/Pd organic diode at 295 K. The semiconducting layer is polyfluorene-based light-emitting polymer

(LEP) of length L = 122 nm and relative permittivity εr = 3.2 [76]. We extract pA by several methods.

One method uses numerical simulation, considering drift-only charge transport. The second method uses

numerical simulation, considering drift-diffusion charge transport. The third group of methods is based

on an analytical model with constant or field-enhanced mobility, taking also the electric field with either

an average value or with values at the anode interface, as explained later.

In the first method of numerical simulation with drift-only charge transport, we reduce the char-

ge concentration in the equations. Taking Dp = 0, then p = JAC/qµF from eqs. (5.2) and (5.9) is
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substituted in (5.4). Thus, the system of differential equations for drift-only transport becomes

dF

dx
=

JAC

εrε0µF
,
dV

dx
= −F (5.11)

where the current JAC is the experimental current Jexp. Equation (5.11) is solved numerically with

the boundary conditions for potentials V (0) = 0 and V (L) = −VAC , because Vbi = 0 for a symmetric

MOM. Since the charge concentration is reduced in the equations, then the interface charge density is

determined from the current density and the electric field by

pA =
JAC

qµ(T, 0)F0 exp(γ
√
F0)

(5.12)

where Fo = F (0) is the electric field at the interface. Using γ = 9.206 × 10−5 (cm/V)1/2 and µo =

1.28 × 10−6 cm2/Vs in the numerical simulation [112], the result for the interface charge by drift-only

charge transport is shown with squares in Figure 5.2a.

Figure 5.2: (a) Hole concentration at the anode as a function of current density JAC in a symmetric organic
diode with hole-only conduction, extracted from (b) the experimental current-voltage data [76]. In (a) symbols
from numerical simulations with variable mobility, using drift-only charge transport (squares) and drift-diffusion
transport (small circles), are practically superimposed. Lines are from the analytical model, considering constant
mobility (dotted line) and enhanced mobility (dashed line).

In the second method of numerical simulation with drift-diffusion charge transport, we solve eqs.

(5.2), and (5.4) to (5.6) with n = 0, a field-dependent mobility given in (5.10), with boundary conditions

for the potentials V (0) = 0, V (L) = −VAC , and equal charge densities at the cathode p(L) = pC and

anode p(0) = pA = pC , since the MOM structure is symmetric. The current at the anode is set equal to

the experimental current JAC(0) = Jexp. The interface charge pA is found from the numerical solver at

x = 0, as before, and shown with small circles that match the squares in Figure 5.2a. Thus, the overlap

between numerical simulations with drift-only and drift-diffusion transport indicates that the carrier

diffusion has a marginal impact on the interface charges in symmetric devices.

The third group of simulation methods corresponds to an analytical model that considers drift-

diffusion transport and given (although unknown in value) hole densities at the interfaces, pA and pC .

The derivation of the analytical model also assumes a constant value for the mobility and a linear

evolution of the potential along the organic material. The analytical model [42, 184, 185] and the

procedure to extract the value of pA from experimental data are detailed in Appendix I. For zero
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Table 5.1: Parameters K1, K2 and m of the power-law model (5.14) extracted from the analysis of different
organic diodes.

built-in voltage in a symmetric MOM diode, the interface charge density is:

pA = JAC/(qµFAV G), with FAV G = VAC/L (5.13)

The result for the interface charge considering constant mobility µ ≈ µo = 1.28× 10−6 cm2/Vs is shown

with dotted line in Figure 5.2a. The result for an enhanced mobility at the interface evaluated from

(5.12) with Fo ≈ FAV G = VAC/L and µ(T, 0) = µo = 1.28× 10−6 cm2/Vs is shown with dashed line in

Figure 5.2a. Fo is the electric field at the charge injecting interface, here at the anode contact, and Fo

is approximately equal to the average electric field FAV G, when space charge effects are negligible. The

full relation between Fo and FAV G is given in II.1.

Note in Figure 5.2a that the interface charge density pA follows the recent model [143] of a power-law

functional relation with the current density JAC :

pA = K1J
m
AC +K2 (5.14)

where the values of the parameters m, K1 and K2 are in Table 5.1. As detailed in [143, 181], the

parameter K1 depends on the barrier height at the interface and the temperature, m depends on the

organic material, and K2 describes the flat zone at low currents. K2 depends on concentrations of

thermally generated carriers and impurities. In the region of high currents in the JAC − VAC curve, the

parameter K2 is not significant.

While the power-law behaviors of the different data series are similar in Figure 5.2a, there are also

differences in the values of pA when extracted by the different models and conditions. For example,

relation (5.14) was developed for organic diodes considering drift-only charge transport, while diffusion,

electric field and variable mobility may affect values of K1, K2 and m. The data in Figure 5.2a can

be used to determine the impact of different factors under different transport conditions. Among the

different factors that affect the values of pA, the most important is the electric field at the interface. The

next important is the mobility enhancement, which provides a better fit of JAC−VAC and p−JAC curves

simultaneously at higher currents. The least important factor is the carrier diffusion, because, as seen



5.4. Asymmetric organic diodes with single-carrier conduction 81

in Figure 5.2a, the values of pA are approximately the same for drift-only (squares) and drift-diffusion

(small circles) numerical models.

The differences in Figure 5.2a, between the analytical model with constant mobility (dotted line)

and the numerical result (symbols), are due to the fact that the constant mobility in the analytical

simulation is lower than the enhanced variable mobility in the numerical simulations. In the first case,

we use µ = µ(0, T ), and in the second µ = µ(0, T )× exp(γF 1/2). From eq. (5.13), a higher concentration

of charge is expected at lower mobility. This explains the almost parallel displacement.

The differences in Figure 5.2a between the analytical simulations with average electric field (dashed

line, Fo ≈ FAV G = VAC/L) and using the numerical value of the interface electric field (circles, Fo = F (0)

from the numerical simulation with the drift-diffusion model) are explained with Figure 5.3. Figure 5.3a

compares the average electric field (dashed lines, FAV G = VAC/L) to the actual distribution of the

electric field (solid lines) obtained from the numerical simulation with the drift-diffusion model. At low

voltages, the electric field is almost constant and equal to the average electric field. Thus, the charge

density for both methods is the same at low JAC in Figure 5.2a. At higher bias voltages, the electric

field at the interface is lower than the average electric field in Figure 5.3a, causing the extracted values

for pA from both methods to be different in Figure 5.2a, according to eqs. (5.12) and (5.13).

Figure 5.3: Evolution of the spatial distributions of the (a) electric field, (b) hole concentration and (c) potential
in a MOM with the applied anode-cathode voltage VAC = (0.25, 1.30, 2.21, 3.96, 9.69) V.

The reduction of the interface electric field (as compared to the average value) is due to the space

charge shown in Figure 5.3b. Both the space charge and the interface charge increase at high currents.

Space charge limited conduction (SCLC) [186] takes place at high currents, whereas the conduction

is ohmic at low currents. It is seen in Figure 5.3c that the spatial distribution of potential evolves

from linear at low biases to quadratic at higher biases. Since the interface electric field Fo is the most

important factor for the accurate determination of the interface charge, but Fo is unavailable in the

analytical model, then eq. (B.7) in II.1 provides for the relation between the interface field, Fo, the

average electric field, FAV G = VAC/L, and the electric field from the space charge, FSCLC .

5.4. Asymmetric organic diodes with single-carrier conduction

In this section, we validate of the power-law function (5.14) between charge and current for asym-

metric MOM devices. In asymmetric organic diodes, the built-in voltage is different from zero, Vbi > 0.

The charge transport of holes is given by the drift-diffusion transport by eq. (5.2). Since the MOM
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structure is a hole-only device and smiliar to the previous case, we use only the hole concentration p

and Poisson’s equation (5.4). We again use both numerical and analytical methods to determine the free

charge density at the injection interface p(0) as a function of the current density.

In the numerical simulation with drift-diffusion charge transport, we solve eqs. (5.2), (5.4)-(5.6) with

n = 0 and the field-dependent mobility eq. (5.10), with boundary conditions for the potential V (0) = 0,

V (L) = −VAC + Vbi = −Vexp + Vbi with the experimental voltage Vexp and the current at the anode

JA(0) = JAC = Jexp is equal to the experimental current Jexp. The charge density at the cathode is

taken to be zero, considering that the barrier for holes at the cathode is larger than the barrier at the

anode. Under these boundary conditions, the solution of the above equations provides a value of p(0)

for the experimental point (Jexp, Vexp). In the simulation, the initial value of the built-in voltage is the

difference of the work functions of the electrodes. Occasionally, the value for Vbi needed to be modified

until physically meaningful solutions for p(0) are obtained. In particular, if Vbi has an incorrect value,

then an anomalous solution of abrupt increase of the value of p(0) at very low current densities can be

observed in numerical simulations. In general, Vbi often deviates from the guess made from the difference

of the work functions of the contact materials [187].

In the analytical procedure, we employ a simplified extraction method for the charge density at the

interface, using asymptotic expressions (A.10) and (A.12) in Appendix I when VAC > Vbi and VAC < 0,

respectively. These expressions follow from the analytical model (A.4) in Appendix I. Equations (A.10)

and (A.12) provide relations between the charge density at the injecting interface (pA for holes at anode

or pC for electrons at cathode) as a function of the derivative dJ/dV of the experimental current-voltage

curve, assuming that the mobility is known. In that way, the hole charge concentrations are directly

extracted without imposing the problem of an unknown value of the built-in voltage.

For an asymmetric MOM diode with moderate built-in voltage, we consider the experimental current-

voltage curve from [85] for ITO/CuPc (copper phthalocyanine)/Al diode. The length of the CuPc layer

is L = 100 nm. The squares in Figure 5.4 show the experimental J − V curve measured at 320 K,

both in forward and reverse bias. The ITO electrode provides an Ohmic contact to CuPc (barrier∼ 0.05

eV). The difference between the aluminum work function and the LUMO of CuPc is approximately 0.6

eV. The values of the other parameters used in calculations and simulations are: relative permittivity

εr = 2.1; constant mobility µp = 2× 10−6 cm2/Vs [143]; and built-in voltage Vbi = 0.55 V.

For another asymmetric MOM diode with high built-in voltage, we analyze data from [43] for a

MoO3/PFO(poly(9,9-dioctylfluorene))/ZnO diode (triangles in Figure 5.4). The length of the PFO layer

is L = 180 nm. The J−V curve was measured at 295 K. The HOMO level of PFO is ∼ 5.8 eV. The work

function of the MoO3 anode is ∼ 5.8 eV and provides an Ohmic contact to PFO. The ZnO cathode is

a hole-collecting contact with a lower work function of approximately 4 eV. The difference between the

work functions of the electrodes is 1.8 V, but the built-in voltage of the MOM is Vbi = 2 V, as deduced

from the analysis of pA extracted from the experimental J − V curves. The discrepancy of 0.2 V can

be attributed to several factors, e.g., pinning Fermi level at interfaces, band bending at the injecting

contacts due to accumulation of charge carriers [188], and energy shifts due to interface dipoles [57–62].

The other PFO parameters used in calculations and simulations are εr = 3, µp = 5.85× 10−6 cm2/Vs,

and γ = 9.2× 10−5 (cm/V)1/2.
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Figure 5.4: Experimental current-voltage curves for asymmetric diodes. The triangles are for a MoO3/PFO/ZnO
diode at 295 K [43]; the squares are for an ITO/CuPc/Al diode at 320 K [85]; and the dashed lines indicate the
diodes’ built-in voltages.

For the analyzed MOM diodes, the evolution of the hole concentration at the injecting interface (pA

at the anode or pC at the cathode) are shown in Figure 5.5 as a function of JAC . The open and filled

squares are for the ITO/CuPc/Al diode, and the open and filled triangles are for the MoO3/PFO/ZnO

diode. The filled symbols refer to the analytical model (eqs. (A.10) and (A.12)). The open symbols are

after numerical simulations of the drift-diffusion transport. The dot-dashed lines illustrate the power-law

dependence between the charge density and the current density in eq. (5.14). The values of the parame-

ters of this model that fit the forward and reverse curves of the ITO/CuPc/Al diode and the forward

curve of the MoO3/PFO/ZnO diode are in Table 5.1. The vertical dashed and dotted lines indicate the

values of the built-in voltages of the ITO/CuPc/Al and MoO3/PFO/ZnO diodes, respectively. In order

to compare the results of these asymmetric diodes with symmetric MOM, we add the circles in Figure

5.5. The circles correspond to the data set in Figure 5.2a obtained from the numerical calculation of

symmetric MOM diode. The first observation is that all the data in Figure 5.5 tend to follow a power

law of p ∝ Jm
AC , with m ≈ 0.75, see again eq. (5.14).

An interesting observation in Figure 5.5 is that the p− J dependences for different diodes virtually

overlap at high forward biases, when VAC > Vbi. In the case of the PFO diode, the filled triangles

(analytical derivation) and the open triangles (numerical simulation) at higher currents follow almost the

same power-law function. In the case of CuPc, the ratio between the full squares (analytical derivation,

eqs. (A.10) and (A.12)) and the empty squares (numerical simulation) is almost two. This difference is

attributed to the difference observed between the average of the electric field and the numerical electric

field at the interface, as was discussed in the previous section.

In the transition region, 0 < VAC < Vbi, since J ∝ exp(V ), the analytical calculation with eqs. (A.10)

and (A.12) is no longer valid, as seen from the results shown in Figure 5.5. Instead, the results from

numerical simulation must be considered. At low currents, the charge concentrations deviate from the

power-law trend, tending to a particular ”constant” value, which corresponds to K2 in eq. (5.14). The

values of K2 are different for different diodes and probably correspond to the charge emission through
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Figure 5.5: Hole concentrations at the anode pA and the cathode pC as function of current density JAC in
asymmetric organic diodes with hole-only conduction. Squares are for the ITO/CuPc/Al diode and the triangles
are for MoO3/PFO/ZnO diode. The open and filled symbols correspond to the numerical and the analytical
simulations, respectively. The dot-dashed lines illustrate the power law dependence (5.14). The vertical lines
indicate the value of Vbi as in Figure 5.4. The circles correspond to the numerical results of the symmetric MOM
diode of Figure 5.2a.

the contact barriers.

Comparing the JAC − VAC curves in Figure 5.2b and Figure 5.4, the current-voltage characteristics

are very different for different organic diodes. The current density in the JAC − VAC curves spans the

range from a fraction of nA/cm2 to tens of mA/cm2, but the transitions from low to high currents

are at apparently different ranges of bias voltages. In asymmetric diodes (Figure 5.4), the current rises

around Vbi. Therefore, changing the materials for the anode and the cathode in MOM structures, one

varies the differences between the work functions and Vbi changes. Consequently, the JAC −VAC curves

shift “horizontally” with Vbi along the voltage axis. The larger is the shift from zero, the larger is the

difference (actually the ratio) between forward and reverse currents.

Another effect related to the built-in voltage is the slope of the transition region from low to high

currents between VAC = 0 and VAC = Vbi. The transition is an exponential function of VAC , with a

steep slope of approximately 2.3kBT/q V/dec in diodes with high Vbi, but the slope changes, and the

JAC − VAC curves become nearly linear when Vbi = 0. These variations in the JAC − VAC curves as

function of Vbi are present in the numerical simulations, as well as in the analytical model of eq. (A.4).

The non-linear J − V curves outside the transition region are due to the increment of the interface

charge density, as explained above.

When VAC is outside the transition region from 0 to Vbi, eqs. (A.9) and (A.11) predict a linear relation

between VAC and JAC both for VAC > Vbi and VAC < 0, if the charge concentrations and mobility are

with constant values. However, as shown in Figure 5.2a and Figure 5.5, the charge concentrations vary

as a power law function of the current.

The exponent m in the power law in eq. (5.14) can be seen as a parameter with information from

the charge transport in the bulk of the organic material and from the recombination mechanism that

is present at the metal-organic interface. In all cases shown in Figure 5.5, the exponent in the power

law function is m ∼ 0.75. This value of m ∼ 0.75 is between the values corresponding to space-charge

limited conduction (SCLC) and interface recombination with constant velocity, as described below.
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Combining the typical JAC − VAC relation for the SCLC,

JAC = 9εrε0µV
2
AC/(8L

3) (5.15)

with JAC = qµpF and considering the approximation of F ≈ VAC/L, then the applied anode-cathode

voltage is VAC ≈ JACL/(qµp). From these equations, the charge density at the interface is related to

the current density through a power-law function with m = 0.5:

pA ≈ K1J
m
AC , with K1 =

√

9εrε0
8q2µL

and m = 0.5 (5.16)

At metal-organic contacts, an interface recombination process can be present [189]. The charges from

the organic material move in the contact with a particular velocity, or opposite-polarity charges move in

the semiconductor and ”recombine” with the carriers in the semiconductor. The interface recombination

process also provides a power law relation between the current density and the charge density, but the

value of m might differ from 0.5. A generic recombination rate R = c1 × (n, p)c2 , with c1 and c2 as

constants [190], can be introduced in (5.1) resulting in

Jn,p = qc1

∫ d

0

(n, p)c2dx = qc1(n, p)
c2d (5.17)

where the integral is evaluated along a short distance d for the interface (usually a few nanometers) and

the charge concentrations (n and p) are assumed constant in this short distance.

Interface recombination can be described by means of the recombination velocity at the contacts.

For a constant value of the surface recombination velocity S, the charge density at the interface and

the charge flow through the interface are related by a linear dependence [6, 174, 177]. For a constant

value of S, the relation between the charge density and the current becomes a power-law function with

m = 1, since

JAC = qS(pA,C − p0) or pA,C = JAC/(qS) + p0 (5.18)

where K1 = 1/(qS), m = 1, K2 = p0

where p0 is given by Boltzmann statistics at the contact.

For comparison, the ideal contact (a far from realistic situation in organic-metal interfaces) is follo-

wing Boltzmann statistics, and the hole and electron densities at the metal-organic interface depend on

the values of the corresponding energy barriers at the interface. (The barriers were illustrated in Figure

5.1a, being the differences between the HOMO and LUMO energy levels and the metal work functions).

Thus, the charge density does not depend on the current and m = 0 in an ideal contact.

Returning to the cases analyzed in Figure 5.5, the exponent in the power law function, m ∼ 0.75,

indicates a combined contribution from space-charge limited conduction and recombination effects at

the interfaces. The effect of other variables, such as the temperature or the energy barrier height at the

interface, on the value of the parameters of our model (5.14) is studied in the following section.
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5.4.1. Study of the relation pA − JAC with Temperature

In this section, we study the dependence of the parameters of our model (5.14) with the temperature.

Figure 5.6a shows a set of current density vs. voltage curves measured at different temperatures in an

electron-only ITO/ PEDOT:PSS/ PCBM/ Au device with thickness L = 170 nm [111]. Figure 5.6b

shows the free charge density concentration at the cathode interface as a function of the current density.

The charge density is extracted from the experimental data with the numerical procedure detailed in

Sec. 5.3.1. The estimated built-in voltage is Vbi = 0.75 V. The dielectric constant of PCBM is εr = 3.9,

having electron mobility µ = 2× 10−3 cm2/Vs at room temperature [111].

Figure 5.6: (a) Experimental current-density vs. voltage curves as a function of the temperature for an electron-
only ITO/PEDOT:PSS/PCBM/Au device with thickness L = 170 nm taken from the reference [111]. The
estimated built-in voltage is Vbi = 0.75 V. (b) Electron concentration at the cathode as a function of current
density JAC extracted from (a).

The dependence of the electron density on the current density at the cathode interface follows the

model (5.14). The values of the parameters K1, K2 and m are in Table 5.1. The parameters K1 and K2

are temperature dependent with K1 = 100.009T+13.048 cm2m−3/Am and K2 varying from 2.0 × 1010 to

7.5× 1010 cm−3 when T increases from 240 to 290 K.

The value of the parameter m = 0.75 is independent of the temperature, indicating that m depends

only on the organic material. The parameter K1, related to the energy barrier at the interface, shows

the increase of the number of carriers injected through the barrier when elevating the temperature. The

increase of K2 with temperature indicates a larger number of thermally generated carriers at higher

temperatures.

5.4.2. Study of the relation pA − JAC with the Energy Barrier height at the

injecting contact

In this section, we study the dependence of the parameters of our model (5.14) on the height of

the energy barrier of the injecting interface. We consider the following asymmetric hole-only single-layer

copper-phthalocyanine (Cu-Pc) based diodes: (1) ITO/CuPc/Al, (2) ITO/CuPc/Cu, (3) Cu/CuPc/ITO,

and (4) Al/CuPc/ITO, where (4) is the reverse of (1) and (3) is the reverse of (2). For the sake of clarity,

the first metal is always considered as the anode. Thus, there are three injecting interfaces (ITO/CuPc,

Cu/CuPc and Al/CuPc) with different injection barriers (φ1 = 0.05, 0.2 and 0.6 eV respectively),
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and three different collecting cathodes (CuPc/Al, CuPc/ITO and CuPc/Cu). The length of the organic

material is L = 200 nm. Figure 5.7a shows the experimental JAC−VAC characteristics of these structures

measured at room temperature [191]. Figure 5.7b depicts the hole concentration at the anode and cathode

as a function of current density JAC extracted from the current voltage curves of Figure 5.7a, following

the numerical method described in Sec. 5.3.1. The values of the parameters K1, K2 and m are in Table

5.1.

Figure 5.7: (a) Experimental current-voltage curves measured at room temperature for four hole-only diodes
(ITO/CuPc/Al, ITO/CuPc/Cu, Cu/CuPc/ITO and Al/CuPc/ITO, where the first metal is always the anode)
taken from [191]. (b) Hole concentration at the anode as a function of the current density JAC extracted from
(a). Inset: Parameter K1 (in cm2m−3A−m) as a function of the energy barrier height φ (in eV) of the injection
electrode.

In Figure 5.7a, we observe that when the energy barrier is increased, the current is reduced. The

only anomaly is found in the curve 1 (ITO/CuPc/Al) diode at low currents because this diode is the one

with the highest built-in voltage (0.6 V). The representation of the hole density at the anode in Figure

5.7b is useful to understand the exact relation between the current density and the energy barrier.

The first observation is that the slope of the four curves (parameter m) is approximately the same,

confirming the strong relation ofm with the organic semiconductor. The second observation is the inverse

relation between the parameter K1 and the energy barrier of the injecting electrode φ. K1 decreases

exponentially when φ increases (see inset of 5.7b). The current density of the diodes with the same anode

interface (ITO/CuPc) but with different values of Vbi (curves 1 and 2 in Figure 5.7a), are clearly not

the same. However, from curves 1 and 2 in Figure 5.7b, the relations pA − JAC of both diodes converge

within numerical or experimental errors, once the drift mechanism is dominant.

The flat region for the charge density at low current densities is observed in all the diodes. In

symmetric diodes, this flat region is associated with an ohmic behavior in the JAC − VAC curves.

In asymmetric diodes, the flat region corresponds to the transition region 0 < VAC < Vbi, where

the exponential dependence in the J − V curves is controlled by the diffusion charge transport. The

existence of this constant region with charge concentration K2 can be related to thermally generated

carriers, dopants or traps [181].
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5.5. MOM diodes with bipolar-carrier conduction in darkness

In this section, we apply the previous procedures to bipolar diodes with the objective of checking

whether the electron and hole densities can be considered as independent of each other, while functions

of the interface values of the respective charge densities at injecting contacts. To do this, we analyze two

sets of experimental curves. The first set of data was measured by Parker et. al in MEH-PPV (poly(2-

methoxy, 5-(2’-ethyl-hexoxy)-1,4-phenylenevinylene)) based diodes (symbols in Figure 5.8a) [192]: a

bipolar ITO/MEH-PPV/Ca diode (circles), an electron-only Nd/MEH-PPV/Ca diode (triangles) and

a hole-only ITO/MEH-PPV/Au diode (squares).

Figure 5.8: (a) Experimental current-density voltage curves of hole-only ITO/MEH-PPV/Au, electron-only
Nd/MEH-PPV/Ca and bipolar ITO/MEH-PPV/Ca diodes, with a length of 120 nm, and measured at room
temperature [192] (symbols). The grey solid line is the fitting of our model. (b) Extracted values from (a) of the
hole and electron densities at the anode and cathode, respectively, as a function of current density JAC . The
mobility values used in the simulation are: µn = µp = 10−7 cm2/Vs.

In a first step, we apply the procedure described in the previous sections to determine the values of

pA as a function of the hole current density Jp in the hole-only diode (ITO anode in the ITO/MEH-

PPV/Au diode); and the values of nC as a function of the electron current density Jn in the electron-only

diode (MEH-PPV/Ca cathode in the Nd/MEH-PPV/Ca diode). The values of the mobility used in the

simulation are: µn = µp = 10−7 cm2/Vs [193, 194]. The values of pA that make the transport equations

matching the experimental data (squares in Figure 5.8a) are shown also with squares in Figure 5.8b.

The squares in Figure 5.8b follow our power-law model pA = K1pJ
mp
p (Jp is the current density flowing

through the hole-only diode) with mp and K1p given in the Table 5.1. In the same way, the values of nC

extracted from the experimental data (triangles in Figure 5.8a) are shown also with triangles in Figure

5.8b, nC follows our model nC = K1nJ
mn
n (Jn is the current density flowing through this electron-only

diode) with mn and K1n given in the Table 5.1. The identical values of mn = mp = 0.81 confirm our

previous conclusion that m depends only on the organic material, and not on the contact metal. Similar

values K1n ≈ K1p (see Table 5.1) are also found for the electron-only and hole-only diodes. This implies

similar energy barrier heights at the injecting contacts in both single-carrier diodes. Moreover, both

diodes are symmetric with Vbi = 0 V. Therefore, no value for K2 is extracted, because no diffusion or

ohmic region is found in the experimental J − V curves at low voltages.

In a second step, the models for the electron and hole densities at the injection interfaces extracted
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for single-carrier diodes are used. The expressions nC = K1nJ
mn
exp and pA = K1pJ

mp
exp are employed as

boundary conditions in the numerical solution of the transport equations of the bipolar ITO/MEH-

PPV/Ca diode. An essential note is that the total current Jexp that flows in the bipolar diode is

used in the charge-current models of the injecting electrodes, (nC = K1nJ
mn
exp and pA = K1pJ

mp
exp for

cathode and anode), instead of summing the current densities of electron-only and hole-only diodes,

Jexp = Jn&p 6= Jn−only + Jp−only. As observed by the authors who measured the data, the sum of the

currents of the electron-only and hole-only devices is much lower than the current in the two-carrier

device. The authors explained the increase of the current in two-carrier devices with the reduction of

the net space charge in the organic semiconductor by the existence of polarons. The net charge of which

is zero, since positive and negative charges are of the same amount in polarons. Consequently, and

compared to unipolar diodes, the electric field due to space charge is reduced in the bipolar device,

allowing for higher currents densities.

Thus, taking the total current Jexp of the bipolar diode in the power-law charge-current models

from unipolar diodes, we use the models for the injecting electrodes as boundary conditions in the

numerical simulation of the bipolar device, and obtained the J−V curve shown with solid line in Figure

5.8a. All other parameters of the single carrier devices (e.g., mobility, permittivity, injection barriers,

etc.) are kept unchanged by solving the transport equations of the bipolar device. Observe that the

simulated J − V curve (solid line) perfectly matches the experimental data (circles), confirming that

the charge carrier densities at the injection interfaces follow the power-law dependence on the current

density, and the dependence is on the total current through the device, but not on one or another

component of the current. The values of electron and hole densities at the collecting interfaces (nA and

pC , respectively) are small and not affecting our results. Therefore, they are taken independent of the

current, considered to obey Boltzmann statistics and follow the relations nA = NC exp(−qφ3/kBT ) and

pC = NC exp(−qφ2/kBT ), where the barriers φ3 and φ2 are defined in Figure 5.1, and NC is the density

of states in the organic material.

To ensure that our results are systematic, but not fortuitous, a second set of measurements on

unipolar and bipolar diodes were taken from Woudenbergh et. al [195]. The experimental data are

shown with symbols in Figure 5.9a and are for devices with 240 nm spin-coated layer of the polymer

OC1C10-PPV sandwiched between three sets of electrodes. The ITO/PPV/Ca diode is a bipolar diode

(circles), the Yb/PPV/Ca is an electron-only diode (triangles) and the ITO/Ag/PPV/Ag is a hole-only

diode (squares). We apply the same procedure as in the previous set of data: we extract the values of

the parameters of our model (5.14) for the electron and hole densities from the analysis of single-carrier

diodes (triangles and squares in Figure 5.9b) and use the model for the injection electrodes to reproduce

the JAC −V curve of the bipolar diode. The mobility used in the simulation is µn = µp = 10−6 cm2/Vs

[111]. The values of the model parameters for the single carrier diodes are given in Table 5.1. The value

of the parameter m for the electron (mn = 0.78) and hole cases (mp = 0.76) are again almost the same.

The small difference can be attributed to numerical or experimental uncertainties. There is also a small

difference in the values of the parameters K1, which may be attributed to uncertainty for the effective

value of the injection barriers. We have observed in the previous section that even a small variation in

the energy barrier can noticeably change in K1.



90 5. Contacts of Symmetric and Asymmetric Organic Diodes

Figure 5.9: (a) Experimental current-density voltage curves at room temperature for electron-only Yb/PPV/Ca,
hole-only ITO/Ag/PPV/Ag and bipolar ITO/Ag/PPV/Ca diodes with a length of 240 nm, measured at room
temperature [195]. The solid line represents our numerical results for the bipolar diode. (b) Extracted values from
(a) of the hole and electron densities at the anode and cathode, respectively, as a function of current density.
The mobility values used in the simulation are: µn = µp = 10−6 cm2/Vs.

The carrier-density vs. current-density models extracted from the single-carrier diodes are introduced

as boundary condition in the simulation of the two-carrier diode. The solid line in Figure 5.9a shows

the simulated JAC − V characteristics, which is again in a good agreement with the experimental data

(circles). This agreement confirms that the above conclusions are systematic, and not fortuitous. Thus,

the charge-current models extracted from unipolar devices hold the information for the injection of

charge also in bipolar devices. These models, when used as boundary conditions for the carrier density

at injecting electrodes, are reliably predicting the JAC − V curves of bipolar-conduction diodes. Also,

summation of currents of unipolar diodes grossly underestimates the current in bipolar devices. The

relation between unipolar and bipolar devices is through the charge density at the charge injecting

contacts, and the charge density at these interfaces are a power-law function of the total current through

the device, as given in our model (5.14).
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6.1. Introduction

Faced with the need of energy, solar light has been the most promised alternative source of energy

for decades. Among the different methods to extract and convert the solar energy in electrical energy,

the solar cells are in the spotlight of all researchers. However, the prices of electricity produced by

photovoltaic devices are still uppermost compared to electricity produced by the conventional power

industry [3]. Cheaper photovoltaic-electricity is possible by enhancing the power conversion efficiency

(PCE) while keeping photovoltaic-material costs the same, or by reducing the costs with moderate

efficiency photovoltaic materials. In this regard, organic-polymeric (hereafter, we use organic to mean

both organic and polymeric) solar cells can play an important role in the future of photovoltaic-market as

they can achieve higher power conversion efficiencies with low fabrication costs [3, 4]. Organic solar cells

(OSCs) have the intrinsic advantages of the organic materials, such as the simplicity of the production

processes, the low processing temperatures, printing over large and flexible substrates, low weight, and

low environmental impact. Nevertheless, the current efficiency of OSC is still not economically attractive

enough to use OSC in the energy industry. Thus, further research and development efforts are necessary

to bring this technology up to the required level. Currently, the study and research on OSCs are focused

not only in the enhancement of the efficiency but also in the need of stable and long-life devices [4, 5, 137].

This chapter is devoted to the modeling and simulation of organic solar cells. Device modeling

allows for the reduction of technology development time and costs. The numerical simulations of OSCs

consider the main physical-chemical mechanisms which govern OSC performance: light propagation in

the materials, creation and dissociation of excitons into electrical charges, and drift-diffusion transport

of the charge carriers. Several excellent works pay attention to the understanding of each mechanism

and to the interactions between different mechanisms [22, 32, 43, 174, 189, 196–199]. In some cases, these

studies are focused on finding analytical expressions that can be used in compact models [42, 45]. The

analytical models provide a quick insight into the working performance of the solar cell and they are easy

to implement in circuit simulators. The backbone of these models is the set of transport equations, which

is constituted by the continuity, Poisson and drift-diffusion current equations. Drift-diffusion modeling of

OSCs is a powerful tool used to describe the influence of every physical effect on the device performance

and to determine the current-voltage characteristics of photovoltaic devices [6, 19]. The application of

this set of differential equations (DE) to OSCs requires the use of proper values of physical parameters

of the organic semiconductors. Moreover, the metal-organic (MO) interfaces in these models also require

special attention. Actually, the aforementioned simulation studies differ mainly in the choice of the

boundary conditions for the electron and hole concentrations at the material interfaces.

The charge carrier density at the MO interface can be controlled by several physical-chemical me-

chanisms (Fig. 6.1). These mechanisms can be classified in two groups: those that favor the injection

of charge and those that favor the extraction[8, 63]. The main injection mechanisms are thermionic

emission and tunneling. The dominance of any of them depends on the relation between the energy

barrier seen from the metal ΦB and the thermal voltage kBT , where kB is the Boltzmann constant

and T is the temperature. Thermionic emission is dominant when kBT > ΦB. In the opposite case,

tunneling is dominant. Other mechanisms can also control the flux of charge carriers through the inter-
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face, such as reduction-oxidation (redox) reactions, trap-assisted recombination, or band bending, which

can be caused by effects such as Fermi-level pinning or dipoles at the interface. These different effects

and mechanisms make the task of modeling the MO interfaces more complex. Different models for the

extraction and injection of charge have been developed in order to find proper boundary conditions for

the free charge density or the electric field at the MO interface [17, 109, 110, 200–202]. In practice,

these models are not commonly used due to the numerical complexity, and approximations are preferred

instead.

Figure 6.1: Charge extraction and injection mechanisms that take place at metal-organic interfaces.

In OSC modeling and simulation, typical boundary conditions at the material interfaces consider

either constant charge density, determined by Boltzmann statistics in thermionic emission over energy

barriers [54, 75], or constant surface recombination velocity, which establishes a linear relation between

the variation of the interface charge density with the current density J [6, 174]: n(, p) = −J/S+p0(, n0),

where n, p are the electron and hole densities, n0, p0 are their respective values at equilibrium and S is

the recombination velocity, commonly used to incorporate recombination losses at the interfaces. These

simple approximations provide a first quick step in the modeling of OSCs. Although sometimes, they

cannot provide precise information when OSCs operate far from ideal conditions.

Recently, we have proposed a more accurate and general relation between the free charge density

at the MO interfaces and the current density flowing through them. This model was initially proposed

in single-carrier and bipolar organic diodes in order to interpret their current-voltage characteristics

(Chapter 5) [203]. We have observed that the free charge density at the injecting contact of a single-

carrier diode (n(0) or p(0)) is related to the current density following a power-law function,

n(0)[, p(0)] = K1J
m +K2, (6.1)

where m is a parameter that depends on the organic material, K1 is a parameter related to the energy

barrier at the injecting contact and K2 is a parameter that models a flat region for the charge density

at the interface at low values of the current density. In diffusion-dominated transport, at low bias close

to the diode’s built-in voltage, the charge density at the contact is almost constant with the current.

The value of this charge is controlled with the parameter K2. K2 also provides information about the
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existence of thermal carriers, the doping of the semiconductor or traps close to the interface (Chapter

5) [143, 181]. The power-law expression incorporates the above mentioned Boltzmann and linear J −
n(, p) approximations, with m = 0 and m = 1, respectively. It also takes into account intermediate

situations that can describe a limited recombination velocity at the contacts or the contribution from

space charge limited conduction (SCLC) in the organic semiconductor bulk. Experimental observations

in OSCs [204, 205] also agree with our power law expression (6.1), initially proposed in organic diodes.

In particular, a power-law relation between the charge stored in the active layer of an OSC with the

current density in darkness, and with the current losses at open circuit (J ∝ n2.6) is found in these

authors’ work.

Our aforementioned analyses of experimental data established that the power-law model for the

interface charge as a function of the current density is very consistent with experimental data for J −V

curves of organic diodes, including OSCs in dark. However, as we will see in this chapter, the extraction

procedures developed in these analyses also indicated that direct use of power-law model is not accurate,

when OSC is under illumination. In particular, it will be shown that K2 is different and higher under

illumination. In this chapter, we study the effect of the illumination on the power-law model (6.1)

for the charge-current dependence at metal-organic interfaces od OSCs. We also assess the impact of

this interface effects on the J − V curves of the OSCs. The objective is to find a proper model for

the values of the free charge carrier densities at the anode and cathode of OSCs that can be used in

simulators of these devices. Bearing this in mind, Section 6.2 describes the optical and electrical models

used for the simulation of OSCs [23, 43]. In Section 6.3, we adapt the boundary conditions at the

metal-organic interfaces, initially proposed for organic diodes, to OSCs. In Section 6.4, numerical J −V

curves are simulated and comparisons with experimental data are developed. A procedure to extract

the values of our model parameters from these comparisons is also proposed. In darkness, J − V curves

are analyzed both in forward and reverse regimes, corresponding to the injection from both contacts.

In these situations, our previously developed model for single carrier diodes is completely valid. Under

illumination, the power-law function used in darkness is modified considering previous experimental

observations [204, 205] and suggestions for boundary conditions in simulation [206]. A definite proposal

is given, in which the charge density at the interface increases when the intensity of the incident light

increases, following again the power-law function. The main conclusions are provided in Chapter 9.

6.2. Theory

A typical organic solar cell is a multilayer structure with a metallic cathode with a low work function,

an anode with a high work function, an organic active layer where the light is absorbed, and a substrate

that supports the entire structure. The active layer is composed of an acceptor layer, usually a fullerene

that transports photo-generated electrons, and of a donor layer, usually a polymer that transports

photo-generated holes. These two layers can be separated by a well-defined interface, giving rise to the

so called bilayer OSC, or can be blended together in the case of the bulk-heterojunction (BHJ) solar

cell. The later case achieves greater efficiencies than the former one. For this reason, this structure is

analyzed in this chapter.
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For simulation purposes, the active layer is considered as a uniform material, which can be modeled

with an effective band gap EG defined as the energy difference between the lowest unoccupied molecular

orbital (LUMO) of the acceptor material and the highest occupied molecular orbital (HOMO) of the

donor layer. This assumption is commonly denoted as effective medium approach (EMA). A schematic

energy-level diagram of a BHJ solar cell is shown in Fig. 6.2(a). The different value of the work functions

of the contacts creates an internal built-in voltage Vbi which facilitates the transport of the photogenera-

ted charge carriers. The asymmetry of the structure creates an asymmetry in the current-voltage curves

in forward and backward operation under dark condition. The energy injector barriers that electrons

and holes see from the contacts towards the organic semiconductor are higher in backward operation

than in forward operation.

Figure 6.2: (a) Schematic energy diagram of a BHJ solar cell. (b) Mechanisms that take place in an organic
BHJ for the transformation of the sunlight.

Under illumination, the current-voltage characteristic of an OSC is the result of different optical and

electrical mechanisms (a scheme is seen in Fig. 6.2(b). These mechanisms can be grouped in:

i) Optical Mechanisms, which include (1a) optical propagation, described with the electric field com-

ponent of the electromagnetic wave of the light [22]; and (1b) photon absorption. In order to

estimate the photocurrent in an OSC, the absorbed light power density must be determined in the

first place.

ii) Opto-Electrical conversion, which creates free electron-hole pairs from the photons absorbed in the

semiconductor. This requires several steps: (2) exciton (or bound electron-hole pair) formation, (3)

exciton migration and (4) exciton dissociation. The excitons are dissociated at the acceptor-donor

interfaces, impurities, defects or under the presence of high electric fields create free electron-hole

pairs. Thus, the free electron-hole pair generation rate is a function of the exciton generation rate.

iii) Electrical transport, which finally produces the current in the OSC. This electrical current is

controlled by drift-diffusion mechanisms (5) and recombination processes in the semiconductor

and by the features of the metal-organic extracting contacts (6).

In the literature, we can find different simulation models that describe the previous mechanisms. In
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the following sections, a more detailed description of these mechanisms with state-of-the-art optical and

electrical models are found. The sections are ordered following the above classification and the scheme

of Fig. 6.2(b).

6.2.1. Optical models

The photocurrent density in an OSC is controlled by the charge carriers generated in the active

layer of the device. Concurrently, the generated electron-hole pairs depend on the number of generated

excitons, which varies with the value of the optical electric field energy. When the thickness of the OSC

layers is below a critical value, optical interference can appear in the system. Under these conditions,

the distribution of the optical electric field energy, and the distribution of excitons along this stratified

system can be determined with the well-known Transfer Matrix Method (TMM) [22, 197, 207, 208].

Since the electric and the magnetic fields are connected by the Maxwell equations, it is sufficient

to determine only the electric field component F (x). It is decomposed into two electromagnetic waves,

one propagating in the positive direction (incident) F+(x) and another one in the opposite direction

(reflected) F−(x) (with F (x) = F+(x) + F−(x)). The positive direction of the x axis is taken from the

illuminated surface towards the bulk of the OSC.

In this method, structures with isotropic and homogeneous media and parallel-plane interfaces can

be described by 2 × 2 matrices. They describe how the vector (F+(x), F−(x)) is transformed due to

Fresnel reflections and transmissions at the interfaces, and phase changes and magnitude decays during

the propagation within the different layers. This formalism is justified due to the fact that the equations

governing the propagation of the electric field are linear and that the tangential component of the electric

field is continuous [209],[210].

The physical transformations that undergoes the electric field are described in the method with two

types of transfer matrices: the interface matrices I and the layer matrices L. The former ones describe

each interface in the structure and contain information of the Fresnel complex reflection and transmission

coefficients at each interface. The latter ones describe the phase changes the wave experiences as it

traverses each layer.

Each layer j has a thickness dj and its optical properties are described by its wavelength-dependent

refractive index nj = ηj + iκj; where the real part of the refractive index, η, describes the phase velocity

of light within the medium and κ is the extinction coefficient accounting for the attenuation of the

optical electric field due to photoexcitation.

An incident optical electric field from the air F+
0 (λ) is thus transformed by a sequence of reflections

and transmissions at the interfaces and propagation in the different layers. After all these transforma-

tions, the electric field at any point of the structure can be expressed as F (x, λ) = F+
0 (λ)f(x, λ) where

f(x, λ) is the transfer function, which contains information of the coefficients of the different interface

and layer matrices of the structure, and λ is the wavelength of the incident light.

The value of F+
0 (λ) depends on the light source. For solar energy applications, solar cells are tested

and compared following the standard AM 1.5G spectrum of the sun light. Its irradiance B(λ) is repre-

sented in Fig. 6.3. For numerical purposes, this spectrum can be treated as a set of tabulated values or
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approximated by the terrestrial black-body radiation spectrum with irradiance

BBB =
2πhc2

λ5

1

exp[hc/(λkBT )]− 1
, (6.2)

evaluated at a temperature of T = 5630K, and normalized to provide a maximum power density

Bmax = 1.5 W/m2/nm at λ = 515 nm (Fig. 6.3):

B(λ) ≈ BBB(λ)

BBB(λ = 515nm)
× 1.5 W/m

2
/nm (6.3)

where h is the Plank constant, kB is Boltzmann constant, c is constant light speed in free space and T

is the temperature.

Figure 6.3: Standard Solar Spectra AM1.5 and the normalized terrestrial black-body radiation spectrum at
T = 5630K

Using the Poynting vector formulation, the squared magnitude of the optical electric field in the air

is related to the irradiance as:

|F+
0 (λ)|2 =

2B(λ)

cε0
(6.4)

Once the value of the electric field F (x, λ) at normal incidence is known, the time average of the

energy dissipated per second at the same point can be determined. We have to bear in mind that the

number of excited states (excitons) at a given position in a structure is directly dependent on the energy

absorbed by the material. Based on the concept of the Poynting vector, the time-averaged energy-flow

dissipation per time unit at the same point is

Q(x, λ) = 2π
cε0
λ

ηjkj |F (x, λ)|2 (6.5)

This means that the energy absorbed at position x in the layered structure is proportional to the product

of the modulus squared of the electric field, the refractive index ηj , and the absorption coefficient

αj ≡ 4πκj/λ.

Assuming that one photon produces one exciton, the integration of the absorbed optical power
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density Q over the photon energies produces an exciton density, or exciton generation rate:

Gexciton =

∫ λmax

0

Q(x, λ)

hc/λ
dλ (6.6)

The exciton energy must be large enough to bring a localized electron from the HOMO to the

LUMO of the organic material. Note that the energy of the exciton is equal to the energy of the

absorbed photon hc/λ. Then, the photon energy hν > hνmin ≈ |LUMO − HOMO|, (reciprocally

λ < λmax ≈ hc/|LUMO−HOMO|) is larger than the energy difference between LUMO and HOMO at

the dissociation place. Thus, the exciton can be seen as a non-electromagnetic carrier with energy hc/λ

in the organic material. The transfer of the electromagnetic photon energy into the non-electromagnetic

exciton energy comprises the first step of the photo-electrical conversion.

6.2.2. Opto-Electrical Models

The exciton is considered a quasiparticle that is generated when an electron of the HOMO level

catches the energy from a photon. An exciton can also be seen as an electron with an increment of

its kinetic and potential energies. Figure 6.4 shows a scheme and a graphical representation of the

mechanisms and the principles on which the excitons are built up and dissociated in the blend of a

BHJ solar cell. In a donor-acceptor blend, the photon is absorbed mainly in the donor semiconductor

(polymer). Once photons are absorbed in the donor layer, excitons are created with a rate Gexciton.

Excitons diffuse through the donor material until they reach a donor-acceptor interface. Along the

diffusion path, excitons can decay to the ground state with a decay rate kf , and their energy can be

released as photons or phonons. At the donor-acceptor interface, the electron can be transferred to the

acceptor, thus forming a bound electron-hole pair or a polaron. This pair can either dissociate into

free carriers with a rate kdiss or decay again to the ground state with a recombination rate kf . At

the interface, the free carriers can recombine back into polarons with recombination rate R′. Thus,

the final separation into free carriers is a competition between dissociation (rate constant kdiss) and

recombination rate R′. The recombination rate R′ is assumed to be the bimolecular recombination rate

[182, 211, 212]:

R′ = k(np− n2
i ) (6.7)

where n and p are the electron and hole densities, respectively, and k is the bulk rate constant.

Langevin calculated the bulk rate constant by assuming that recombination between an electron and

a hole occurs when their separation is zero: k = q
ε0εr

(µn + µp), where µn and µp are the electron and

hole mobilities, respectively, and ε0 and εr are the vacuum and relative permittivity of the material,

respectively [182]. In an effort to reproduce experimental recombination rate constants in OSCs, not

predicted by Langevin theory, Hilczer and Tachiya proposed an extension of Langevin theory [211].

They considered the case in which an electron and a hole recombine at a nonzero separation with a

finite intrinsic recombination rate and in the presence of an external electric field (see Eqs. (14)-(16) in

[211]). In the Onsager-Braun theory [30, 31], the probability of electron-hole pair dissociation P is given
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by

P =
kdiss

kdiss + kf
(6.8)

where kdiss is the polaron pair dissociation rate. The aforementioned forward and backward transfor-

mations into bound electron-hole pairs can be grouped in a continuity equation. This equation describes

the evolution of the exciton density nexc with time:

dnexc

dt
= Gexciton − kfnexc − kdissnexc +R′ (6.9)

The existence of the exciton as an intermediate state between the free charges and the ground state

means that after bimolecular recombination, the carriers are not necessarily lost. This intermediate

bound electron-hole pair can either dissociate again into free carriers or decay to the ground state, in

which case the carriers are finally lost. In steady state, (6.9) is written as [43]

Gexciton − kfnexc = kdissnexc −R′ (6.10)

The second term of (6.10) is the net number of generated free carriers U = G− R, where G and R are

the respective generation and recombination rates of free carriers. Combining (6.8) and (6.10) results in

kdissnexc = PGexciton + PR′. Thus, the net number of generated free carriers can be written as

U = G−R = PGexciton −R′(1− P ) (6.11)

This theory identifies the generation term as G = PGexciton and the recombination term as R = R′(1−
P ), where P describes the probability of the dissociation of a charge transfer (CT) state. Hilczer and

Tachiya extended Onsager model of geminate recombination and calculated the dissociation probability

P = 1−κ [211], where κ is the recombination probability, which is given by Eqs. (5)-(7) in [211]. In this

calculation, they again considered that an electron and a hole can approach each other by Brownian

motion only up to a distance d which is not zero, and recombination occurs there by back electron

transfer with a finite rate constant.

A further study on the theory of charge pair generation can be seen in a recent review developed

by Few et al. [213]. They focus on electronic structure calculations, electrostatic models and approaches

to excited state dynamics. From studies on electrostatics, they point out how changes in the dielectric

constant, the static internal electric fields, and the structural disorder, all can influence the energetic

landscape close to the heterojunction, which in the end affects the dissociation efficiency. The detailed

information on the structure and the dynamic, the timescales of the main processes, are also relevant

for the charge transfer processes.

6.2.3. Electrical models

Once the free electrons and holes are created in the active layer of the OSC they must be transported

towards their respective extracting contacts. The electrical behavior of OSCs is governed by the drift-
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Figure 6.4: (a) Scheme and (b) graphical representation of the mechanisms and the principles that follow the
absorption of photons in the blend of the BHJ solar cell.

diffusion model, Poisson equation and the continuity equations for electrons and holes. The Poisson

equation is:

∂F

∂x
=

q

ε0εr
(p− n+ND −NA) (6.12)

where q is the electron charge, F is the electric field, ε0 and εr are the vacuum and relative permittivity

of the material, respectively,ND andNA are the concentrations of ionized donor and acceptor impurities,

respectively, and n and p are the free charge densities of electrons and holes, respectively.

The continuity equations for electrons and holes are:

∂n

∂t
= +

dJn
qdx

+G−R (6.13)

∂p

∂t
= −dJp

qdx
+G−R (6.14)

In this chapter, the organic solar cell is analyzed in the quasi-static limit, neglecting transient beha-

viors. In this case, the derivative of the hole and electron concentrations are zero (∂n/∂t = 0, ∂p/∂t = 0)

in (6.13)-(6.14).

The electron and hole current densities, Jn and Jp, respectively, are controlled by drift and diffusion:

Jn = qnµnF + qDn
∂n

∂x
(6.15)



6.2. Theory 101

Jp = qpµpF − qDp
∂p

∂x
(6.16)

where Dn and Dp are the diffusion coefficients for electrons and holes. The diffusion coefficients are

assumed to follow the Einstein relation Dn,p/µn,p = VT where µn and µp are the electron and hole

mobilities, respectively. In highly disordered systems or semiconductors with large values of the charge

carrier density and traps, this relation can be altered [214][215]. Several authors propose this relation

to be Dn,p/µn,p = nVT , where n is an ideality factor which is induced from trap assisted recombination

processes [174, 214]. Other authors use a carrier-density dependent diffusion-coefficient in the Einstein

relation for the transport in Gaussian or Exponential Density of State (DOS) systems [76][216].

The set of transport equations is completed with the relation between the electrostatic potential V

and the electric field:
∂V

∂x
= −F (6.17)

From (6.17), the difference of the electrostatic potential between anode and cathode is

V (0)− V (L) =

∫ L

0

Fdx = V − Vbi (6.18)

where V = Vanode−Vcathode is the external applied voltage between anode and cathode, L is the device

length, Vbi = (φA − φC)/q is the built-in voltage and φA and φC are the work-functions of the metallic

contacts of the anode and cathode, respectively.

The total current density in OSCs is given by:

J = Jn + Jp + Jd = Jn(x, t) + Jp(x, t) + ε0εr
∂E(x, t)

∂t
(6.19)

where the displacement current density Jd = ε0εr∂E(x, t)/∂t is equal to zero under the quasi-static

assumption. Furthermore, since the total current density is uniform in the device, then (for the same

quasi-static case)
∂J

∂x
=

∂Jn
∂x

+
∂Jp
∂x

= 0 (6.20)

The system of equations (6.12)-(6.17) has been used extensively in the literature to model the

transport in OSCs. However, there are particular aspects that differ among different researchers, such

as the models used for the charge-carrier generation and recombination, the mobility or the boundary

values for the charge carrier concentration, the last one being the objective of this chapter.

Regarding the generation rate G, which accounts for the optical illumination, this rate is ussualy

assumed constant for simplicity [217, 218]. In our case, the generation and the recombination rates

of free charge pairs follow Onsager-Braun theory: G = PGexciton and R = (1 − P )R′, respectively,

where Gexciton is the generation rate of bound electron-hole pairs defined in (6.6) in agreement with the

TMM and R′ is the bimolecular recombination rate (6.7). In darkness, excitons do not intervene in the

generation-recombination processes in the semiconductor, only non-geminate recombination appears in

the semiconductor. In this case, G = 0 and R = R′ .

The mobility can depend on variables such as the temperature, the electric field, the charge-carrier



102 6. Boundary condition model for OSCs

concentrations, or the density of states of the organic materials [95, 219, 220]. Nevertheless, there

exist large ranges of these variables in which the mobility can be assumed constant [7, 221, 222]. This

assumption simplifies complex numerical treatments as the ones found in OPV systems. In fact, the

mobility in OPV devices does not seem to vary much with bias, at low electric fields and low injection

of charge [223]. For these reasons, the mobility is assumed constant in this chapter. The third aspect

that also affects the solution of the transport equations (6.12)-(6.17) is the election of proper boundary

conditions, which is treated in the next section.

6.3. Boundary-condition model. Adaptation from organic dio-

des.

The boundary conditions at the OSC contacts represent known values for some physical quantities

at the edge of a spatial mesh, in which the integration of the differential equations is performed. At the

contacts, the boundary conditions reflect the physics of charge injection and extraction and must match

the biasing voltages. The boundary conditions must be chosen to guarantee a self-consistent solution

of the numerical model. The basic one-dimension (1-D) semiconductor equations are solved considering

the origin x = 0 at the anode-semiconductor interface and the end of the device x = L at the cathode-

semiconductor interface. We need as many boundary conditions as the number of differential equations

and physical variables. There are six differential equations (6.12)-(6.17) and the same number of physical

unknown parameters (V , F , n, p, Jn and Jp). Two of the boundary values correspond to the potential

at the contacts (anode- and cathode-organic interfaces). The origin of the potential is set at the anode,

and its value at the cathode comes from (6.18):

V (x = 0) = 0 V, V (x = L) = −V + Vbi (6.21)

The other four boundary conditions are related to the values of the free charge carrier densities at the

anode and cathode of the OSC. As mentioned in the introduction, simple approximations are commonly

used in the literature: constant values of the free carrier density, based on the Boltzmann approximation;

or constant values of the surface recombination velocity, which account for recombination mechanisms

at the interfaces, and determine the interface charge density as a linear function of the current density

J [6, 174]. More accurate models that relate the electric field at the metal-organic interface with the

current density can also be found, although their major inconvenience is the computational requirement

[200, 224].

A compromise between simplicity and accuracy can be found in previous studies we made in darkness

for the conduction in single-carrier and bipolar organic diodes [203]. We observed that the free charge

density at the injecting contact of single-carrier and bipolar diodes is related to the current density

following the power-law function (6.1). Fig. 6.5(a) captures the main conclusions of our previous studies

on bipolar organic diodes and its application to OSCs in darkness [203]. It shows the evolution of the

free charge density (electrons and holes) at the anode and cathode of an OSC as a function of the current

density. This scheme points out the following features:
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At forward bias, or positive current densities (J ≡ Jf ), the anode injects holes and the cathode

injects electrons, the values of the hole density pA = p(0) at the anode and electron desity nC =

n(L) at the cathode follow (6.1). The subscripts n, p, A, C indicate that the parameter belong

to electron, hole, anode and cathode, respectively. We consider that pA and nC are the same for

two reasons, both following pA = nC = K2pA +K1pAJ
m. The first one comes from experimental

observations, in which the extracted electron and holes densities at the injecting electrodes of

bipolar organic diodes were very similar [203]. The second reason comes from the meaning of the

parameters in (6.1) [143, 181], m depends on the organic material, being the same for the OSC; K1

is related to the energy barrier the charge carriers see when injected towards the organic material.

For a proper performance of an OSC, ohmic and similar energy barriers for electrons and holes

are expected at the cathode and anode, respectively. Thus, K1 is also expected to be the same

for both, K1 = K1pA = K1nC . The evolution of pA = nC is thus the following. At low current

densities, the carrier densities at the injecting contacts are constant (pA = nC = K2pA). Once a

threshold value of the current density JKf is surpassed, the charge density evolves with the current

density as K1pAJ
m.

At forward bias, the values of the charge densities at the extracting contacts (pC = p(L) and nA =

n(0)) are very small with no effect on the simulation results (pC = nA = K2pC). However, a relation

between pC and pA can be established at low current densities by imposing the condition J = 0 at

zero applied voltage V = 0 V. In analytical J −V relations for organic diodes (see (A.4) in [203]):

pC ≈ pA × exp(−Vbi/VT ), which at low current densities means K2pC ≈ K2pA × exp(−Vbi/VT ),

where K2pA and K2pC are the flat values of pA and pC , (see (6.1) and Fig. 6.5(a)).

At reverse bias, or negative current densities (J ≡ −Jr), the roles of the anode and cathode are

changed, the anode injects electrons and the cathode injects holes, the values of the hole density

pC = p(L) at the cathode and the electron desity nA = n(0) at the anode follow (6.1). For the same

reasons as in forward bias, nA and pC are considered the same (pC = nA = K2pC +K1pCJ
m
r ). The

only difference is that holes and electrons see a higher energy barrier at their injecting contacts.

The effect of these different energy barriers in forward or in backward is reflected in different values

of the parameter K1, being greater for forward bias (K1pA > K1pC). The value of m in (6.1) is

the same for positive and negative current densities as it only depends on the properties of the

organic material [143, 181, 203].

At reverse bias, the values of the carrier densities at the extracting contacts, pA = p(0) and

nC = n(L), are constant values and, for consistency, equal to their value in the flat region of these

same variables at J = 0.

The evolution of the charge densities in Fig. 6.5(a) shows sharp transitions at the threshold values

JKf and JKr. However, if we represent (6.1) a smoother transition is obtained. In order to control

this transition, which can affect the determination of current-voltage characteristics of OSC, the
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paramenter sharp is introduced in the power law model (6.1):

pA = nC = K2pA

{

1 +

[

max

(

0,
J

JKf

)m]sharp
}

1

sharp

(6.22)

where sharp = 1 for a smooth transition ((6.22) coincides with (6.1)) and sharp ≈ 10 for sharper

transitions. In any case, the power-law function is obtained at current densities larger than the

threshold current density JKf :

J ≫ JKf , pA = nC ≃ K2pA

(

J

JKf

)m

(6.23)

with JKf = (K2pA/K1pA)
(1/m). The flat region is also reproduced with (6.22) at current densities

lower than the threshold voltage JKf :

J ≪ JKf , pA = nC ≃ K2pA (6.24)

An identical relation to (6.22) can be written for the evolution of pC = nA with J , using subscripts

pC instead of pA, JKr instead of JKf and Jr = −J :

pC = nA = K2pC

{

1 +

[

max

(

0,
Jr
JKr

)m]sharp
}

1

sharp

(6.25)

The model for the boundary values of the free charge density at the anode and cathode of OSCs

((6.22) and (6.25) or Fig. 6.5(a)) reflects the main conclusions extracted from our previous works in

darkness [143, 181, 203]. In order to complete or adapt this model for illumination, ideas from other

researchers are incorporated. In studies of the compensation voltage in light emitting diodes and photo-

voltaic cells, Malliaras et al. proposed that the free charge densities at the anode and cathode interfaces

increase with the illumination [206]. The compensation voltage is the voltage at which the net photo-

current (the photocurrent minus the dark current) is zero. Other authors determined experimentally

in different solar cells a relation between the charge carrier density and the open-circuit voltage Voc

[204, 205, 225, 226]. Shuttle et al. measured the stored charge in the active layer in darkness and at

open circuit voltage for different illumination intensities [204]. They showed that the charge density

increases with Voc, and consequently with the illumination intensity. They evaluated the current density

in darkness and the current losses at Voc as a function of the charge density obtaining the same evolution

in both cases: J ∝ n2.6. This points out that the physical process governing both processes in dark and

illumination may be the same. Also, this relation is very similar to our power-law function between the

current density and the charge density at the interfaces.

These authors’ conclusions under illumination are related to the open circuit voltage region, or

current density close to zero. In this regard, we propose to increase the value of the charge density

at the contacts just in the low current region (close but below the open-circuit voltage). For applied
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Figure 6.5: (a) Model for the boundary values of the free charge densities at anode and cathode in an OSC in
darkness following the power-law function (6.22) and (6.25). (b) Adaptation of the model for the device working
under illumination. (c) Typical J − V curves in dark (solid line) and illumination (dashed lines).

voltages greater than Voc the current density is controlled by drift mechanisms. In this region, diffusion

and illumination play a minor role. Thus, the relation pA−J is expected to follow our power law function

found at high current densities (6.23). With these ideas, the values of the charge density at the contacts

under illumination can be redefined as:

pA = nC = K2phg(G)

{

1 +

[

max

(

0,
J

JKphg

)m]sharp
}

1

sharp

(6.26)

where K2phg(G) = K2pA +∆K2phg, ∆K2phg is the density of photogenerated electrons and holes, with

quite similar values, and JKphg(G) = (K2phg(G)/K1pA)
(1/m). The modification of our model under

illumination is depicted in the scheme of Fig. 6.5(b). In this figure, only the evolution of pA = nC with

the intensity of light is shown.

The representation of pC = nA is not depicted in Fig. 6.5(b) for the sake of clarity. The values of

the photogenerated carriers inside the active layer are distributed along the active layer according to

the TMM results. The values of the charge density at the extracting electrodes may be a little greater
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than their values at the opposite electrodes (pC � pA and nA � nC). In this regard, we can assume

pC = nA = K ′

2phg(G) ≤ K2phg(G), where K ′

2phg(G) is constant for each value of G.

The only question is how the photogenerated charge at the contact increases with the intensity

illumination, and how the values of K2phg(G), JKphg(G) and K ′

2phg(G) evolve accordingly. For the sake

of a better comprehension of our work, we prefer to leave these as open questions till the validity of our

model in darkness is checked. All this is done in the next section. In the first place, J − V curves in

darkness are calculated and compared with experimental data. In the second place, a procedure to extract

the parameters that define our model in dark is also proposed. Then, the model under illumination is

completed in order to find the evolution of K2phg(G), JKphg(G) and K ′

2phg(G) with the light intensity.

Finally, the complete model is validated under illumination conditions.

6.4. Boundary condition model. Final proposal and verifica-

tion.

6.4.1. Darkness

In order to validate the model in darkness [(6.22), (6.25) and Fig. 6.5(a)] for the boundary values

of the charge density at the MO interfaces of OSCs, current-voltage curves are calculated with the set

of differential equations (6.12)-(6.17). In order to reproduce an experimental current-voltage curve in

dark, the values of the parameters µn, µp, Vbi, n, K1pA
, K1pC

, m, and K2pA, must be introduced in

these equations. Most of them are extracted from the experimental J − V curves to be compared with.

In our calculation, we assume that the carrier mobility in the organic materials is well described

by constant values provided in the literature. The nominal value of the built-in potential Vbi is given

by the difference of the work functions of the electrodes. However, this value can be modified by dif-

ferent mechanisms such as Fermi-level pinning, spontaneous orientation polarization or band-bending

phenomena. There are light-irradiation techniques to estimate this value [187, 227, 228]. At a starting

point, we follow the method given by Mantri et al. [187], in which the value of Vbi is extracted from

the transition voltage at which the slope of the J − V curve changes (point K in Fig. 6.6). The ideality

factor of the Einstein relation n is considered initially as n = 1. The values of Vbi and n can be modified

slightly during the extraction of the rest of the parameters.

The extraction procedure depends on the existence or not of parasitic losses in the OSC, the second

case being the most frequent. A typical J −V curve of an OSC without parasitic losses in dark is shown

in dashed line in Fig. 6.6(a). The curve can be divided in three regions (I)-(III) in which the above

parameters can be extracted with the following steps. In each step, one parameter is varied until a good

agreement is obtained between our calculations and the experimental data.

Step i Regions I and II in the forward bias show different slopes and are separated at the point K (Vbi,

JKf). This corner region provides a first estimation of the values of Vbi and JKf . The parameter

K2pA can be extracted by iteration comparing the experimental data in region I with our numerical

results imposing pA = nC = K2pA and pC = nA = K2pC , where K2pC ≈ K2pA × exp(−Vbi/VT ) as
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mentioned in Sec. 6.2.3.

Step ii In this step, the parameters Vbi and n (initially n = 1) can be modified slightly to improve the

fitting. After that, the experimental and calculated curves should agree in region I. In region II,

the calculated curve differs from the experimental one. This difference is greater for larger values

of J . A more precise value for JKf can be defined at the point in which the experimental and

calculated curves differ 5% in value.

Step iii The parameters K1pA and m can be extracted from region II, as they control the high current

regime in forward bias. In this region, we use as boundary values pA = nC = K2pA + K1pAJ
m

with K1pA = K2pA/J
m
Kf and pC = nA = K2pC . After this step, the calculated curve should agree

with the experimental one in regions I and II.

Step iv The analysis of region III provides the value of the last parameter to be extracted: K1pC . The

rest of the parameters were extracted in the previous steps. Note that parameter m depends only

on the organic material and thus, the value extracted from the forward bias is employed. In the

comparison between the experimental and calculated curves in region III, pA = nC = K2pA and

pC = nA = K2pC +K1pCJ
m are used.

The existence of a parasitic current such as the one depicted with dotted line in Fig. 6.6(a) (charac-

terized with a typical shunt resistance and symmetric J −V behavior) can mask the low-current regime

of the intrinsic diode. This fact adds a new parameter to take into account in the extraction procedure,

the shunt resistance Rs. However, a new region also appears in the characteristic J −V curve, as shown

in Fig. 6.6(b) (region IV). This figure corresponds to a typical J − V curve of an OSC in dark with

parasitic losses.

The sequence of steps needed to extract the set of parameters of our boundary-value model for an

OSC in dark with parasitic losses is detailed next. The former case without losses is not frequent as

losses are difficult to avoid. However, it is useful to better understand the following extraction procedure.

Steps i’-iii’ These steps coincide with the respective steps i-iii above. The only difference is that the region I

is smaller, due to the parasitic losses. Regions I and IV are separated by the inflection point L in

Fig. 6.6(b).

Step iv’ In this step, region IV is analyzed. The loss current component is calculated and compared to the

experimental curve in the region IV, providing an initial value for Rs. Then, the loss current is

added to the current of the intrinsic OSC and compared to the complete J − V curve in forward

bias (regions I, II and IV). Some iterations may be needed to redefine the initial value of Rs and

obtain a good fitting.

Step v’ In this step, the reverse bias region (region III) is analyzed, similarly to Step iv. In the comparison

between the experimental and calculated curves, we use pA = nC = K2pA and pC = nA =

K2pC+K1pCJ
m, where the only unknown parameter to be modified in the fitting process is K1pC .

The rest of the parameters were extracted in the previous steps, including Rs. The total current
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density in reverse bias (intrinsic plus loss current) is compared to the experimental curve in this

region III. The effect of the intrinsic current density must be observed at high currents.

Figure 6.6: (a) Typical current-voltage curve for a OCS in dark (dashed line) with regions I-III in which the
parameters of our boundary model (Fig. 6.5(a)) can be extracted in sequence; and typical parasitic current
modeled with a shunt resistance (dotted line). (b) Typical current-voltage curve for a OCS in dark including
the parasitic current. In this case, four regions are distinguished, indicating the parameters of the model to be
determined in each one.

As a way of validation of our procedure, we analyze experimental J−V curves of a bulk heterojunction

(BHJ) solar cell based on the blend of poly(3-hexylethiophene) (P3HT) and phenyl [6,6] C61 butyric acid

methyl ester (PCBM) [42] and depicted with circles in Fig. 6.7. The blend is sandwiched between two

ohmic contacts, indium tin oxide ITO for holes, and aluminium, Al, for electrons. The complete configu-

ration is ITO/poly(ethylene dioxythiophene):poly styrene sulphonate (PEDOT:PSS)/P3HT:PCBM/Al.

Figure 6.7 shows the comparison of these experimental data with our numerical results (solid line). The

J − V characteristic shows clearly the four regions depicted in Fig. 6.6(b), including the loss-current

region IV. The values of the free charge-carrier density at the metal-organic interface used in the nu-

merical calculation are represented in Fig. 6.8. The exponent of the power-law lines in this logarithmic

representation is m = 0.35. The rest of the parameters used in the calculation are: Rs = 1.5 KΩ, T=295

K, Vbi =0.55 V, µn = µp =10−4 cm2/V s, n = 1.85, εr = 3 and L = 150 nm. A very good agreement is
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achieved between the experimental and the calculated curves in dark using our model detailed in Fig.

6.5(a).

Figure 6.7: Comparison of an experimental current-voltage curve measured at room temperature for an
ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark (symbols)[42] with our numerical results, including the ef-
fects of a shunt resistance (solid line) and without these effects (dashed line). The values of the free charge-carrier
density at the metal-organic interface used in the numerical calculation are represented in Fig. 6.8.

Figure 6.8: Hole and electron densities at the anode and cathode as a function of the current density, used in
the numerical calculation to reproduce the experimental data in Fig. 6.7. The evolution of pA = nC is described
with: m = 0.35, JKf = 10−4 A/cm2 and K2pA = 1.4 × 1015 cm−3. The evolution of pC = nA is described with:
m = 0.35, JKr = 10−8 A/cm2 and K2pC = 3× 1010 cm−3.

In order to show the effect of the leakage current, a curve without the effect of the shunt resistance

was calculated (dotted line in Fig. 6.7). The fitting is accurate in regions I and II, but not at low

voltages (regions III and IV). It is important to note that the high current range of region III cannot

be reproduced with the leakage current alone (dashed line in Fig. 6.7). Step v’ was necessary in order

to find proper values for K1pC .
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6.4.2. Illumination

In this second part, we apply our model to experimental J − V curves measured in an OSC under

different intensities of illumination. The generation of electron-hole pairs takes place in the entire active

layer. In BHJ solar cells, this includes the region close to the contacts, as the active layer coincides with

the whole bulk. Again, the solution of the set of differential equations (6.12)-(6.17) for the generated

charge is influenced by the charge at the edges. The question that was kept unanswered in the previous

section was how the photogenerated charge at the contact increases with the illumination intensity.

We also bear in mind two important proposals made by Shuttle and collaborators after experimental

observations on OSCs [204]. The first proposal is the existence of similar relations between the stored

charge density in the active layer of the solar cell with the current density in darkness and between

the stored charge density with the current losses at Voc [204]. That means that the physical process

governing both processes is the same. In both cases, holes flow across the anode, although in opposite

directions. The same occurs with the electrons through the cathode.

In an OSC, the holes cross the anode (and electrons the cathode) under three different situations.

(1) When the current density is positive, both in darkness and illumination, holes are injected from the

anode (and electrons from the cathode). In a typical OSC, these carriers see small barriers that impose

no limitation to the current. (2) In darkness, the negative or reverse current density is controlled by the

electron-injection barrier at the anode and the hole-injection barrier at the cathode. The asymmetry of

the OSC contacts means that these barriers are high, impose a constriction to the current, and thus the

resulting reverse current is lower than the forward current. The injected carriers travel trough the active

material and are extracted at the opposite contacts: holes are extracted at the anode and electrons at

the cathode. (3) Under illumination, the origin of the negative current density is different. The current

is composed of photogenerated carriers inside the bulk. These carriers are no longer constricted by these

high energy barriers the dark injected carriers see: the electron-injection barrier at the anode and the

hole-injection barrier at the cathode. The only limitation is the extracting barriers the electrons see at

the cathode and holes at the anode. For ideal OSCs, (i.e. ohmic contacts for injected electrons and holes

at cathode and anode, respectively, and no recombination effects during the extraction of these carriers

in the same electrodes), a symmetric behavior at the contact is expected: the injection should be similar

to the extraction. This would also agree with Shuttle’s second observation in which the relation between

the stored charge density with the current losses at Voc follows a the power-law function [204]. In this

regard, the value of pA = nC under illumination and at J < 0 should evolve the same as at J > 0. We

propose to model this symmetric behavior with the scheme of Fig. 6.9(b) and the following expression:

pA = nC = K2phg

{

1 +

[

max

(

J

JKfphg
,

J

JKephg

)m]sharp
}

1

sharp

(6.27)

where JKfphg = (K2phg/K1pA)
(1/m) and JKephg = −(K2phg/K1pAe)

(1/m) are the threshold values of

the current density at which the charge densities start to increase over the flat value K2phg, at injection

regime (positive current) and extraction regime (negative current), respectively. They define the limits
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of the flat region, in which the value of the charge density at the interfaces depends on the illumination:

JKephg ≤ J ≤ JKfphg, pA = nC ≃ K2phg(G) (6.28)

K1pA, K1pAe andm are independent of the illumination as they describe the power law trend at injection

and extraction, respectively (see the right and left high current regions in Fig. 6.9(b)):

J ≫ JKfphg, pA = nC ≃ K2phg

(

J

JKfphg

)m

= K1pAJ
m (6.29)

J ≪ JKephg, pA = nC ≃ K2phg

(

J

JKephg

)m

= K1pAe|J |m (6.30)

Under illumination, with the assumption of symmetric behavior for the injection and extraction

mechanisms (ideal contacts), then JKephg = −JKfphg and K1pA = K1pAe. We prefer to use different

notations for JKfphg and JKephg and K1pA and K1pAe in order to extend the model to other cases in

which the injection and extraction of charge are not necessarily symmetric. These cases will be treated

in the next section.

In order to determine the dependence of the flat region with the illumination intensity K2phg(G),

we analyze typical J − V curves under illumination, as depicted in Fig. 6.9(a). In OSCs, the negative

current density is limited by the maximum photogenerated current Jsat,i = −Jsat(G), where i is an

index the J − V curves under illumination are referred with. This maximum value Jsat,i is close to

current density at Voc, as the slope of the J −V curve in the third quadrant is low. In an ideal case, the

slope is zero and Jsat = Jsc. In this regard, we propose to relate the free charge density at the interfaces

under illumination with the maximum photogenerated current as:

K2phg(G) = K2pA +∆K2phg(G) = K2pA +K1pA (|Jsat(G)|)m (6.31)

At high illumination intensities, the total charge density can be approximated by the net photogenerated

charge density:

K2phg(G) ≃ ∆K2phg(G) = K1pA (|Jsat(G)|)m . (6.32)

In a similar way, a study of the evolution of the flat value of the free charge density with temperature

would lead to extend (6.31) to a similar relation: K2pA(T ) = K2pA(Tlow) +K1pA(Jsat(T ))
m, where T

is the temperature and Tlow is a reference value at low temperatures. The idea that lies beneath our

proposals is that the charge density at a contact interface is the one which supports a fixed current

through it, no matter the direction and no matter what is the origin. In other words, the absolute value

of the current density fixes the value of the charge density at the interface, and vice versa.

The relations (6.31) and (6.32) are represented with dotted line in Fig. 6.9(c). This scheme defines

the procedure to extract the values of the charge density at the extracting electrodes (pA = nC) from

experimental J−V curves under illumination. Basically, they are controlled by the parameter K2phg, as

the parameters m, K1pA and K2pA are extracted previously from the curve in darkness. For the curve

i, the value of K2phg is calculated by introducing in (6.31) the saturation current density Jsat,i. For
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Figure 6.9: (a) Typical current-voltage curves of an OSC under illumination. (b) Graphical representation of
(6.27) for the boundary values of the free charge density at the interfaces of an OSC under illumination. The
injected (right) and extracted (left) charge density follow a power-law function. The scheme shows a general case
in which injection and extraction of charge are not necessarily symmetric. (c) Particular symmetrical case of (b)
applied to typical OSCs under illumination.

the same curve i, the parameter K ′

2phg, which defines the value of the charge density at the opposite

electrodes (pC = nA), will be initially considered as K ′

2phg = K2phg. Although, this value will be reduced

in order to obtain a better fitting between the experimental data and our calculations, as was justified

in the previous section.

An example of validation of the model under illumination (6.27) and (6.31) for the boundary values

of the free charge density in OSCs is seen in Fig. 6.10. In this figure, we compare our numerical results

with experimental data measured in the same OSC analyzed in dark (Fig. 6.7) [42]. A perfect agreement

is achieved by introducing the boundary values for the electron and hole densities shown in Fig. 6.11

in the set of transport equations (6.12)-(6.17). The parameter K2phg, which controls the value of the

charge density at the extracting electrodes under illumination, follows the power-law relation (6.31)

with exponent m = 0.35, like in darkness (see Fig. 6.10(a)). The values of the parameter K ′

2phg, which

controls the value of the charge density at the opposite electrodes under illumination, are lower than the

values of K2phg. We have found the relation K ′

2phg ≃ K2phg − 2.4× 1015 cm−3, meaning that there is a
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correlation between the boundary values of the charge density under illumination in the two contacts.

At high illumination intensities, these parameters tend to the same value (see Fig. 6.10(b)). The rest of

the parameters coincide with the ones used in darkness.

Figure 6.10: Comparison of experimental current-voltage curves measured at room temperature for an
ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell under different radiation intensity (symbols)[42] with our nu-
merical results (solid lines). The values of the free charge-carrier density at the metal-organic interface used in
the numerical calculation are represented in Fig. 6.11.

In order to show that the comparison between the experimental data in Figs. 6.7 and 6.10 is not

fortuitous, we compare the value of the exponent of the power law extracted from this analysis (m = 0.35)

with the value proposed in Schuttle’s work [204]. They analyzed a similar structure to the one studied

in this work. They determined a relation between the stored photogenerated charge density in the bulk

and the current density of n ∝ J0.38 (or J ∝ n2.6). Our power-law model relates the current density with

the values of the free charge density at the interfaces. The similarity between these relations (current

density vs. charge density in the bulk or at the interfaces) highlight the importance of the use of proper

boundary conditions in simulation. The boundary values provide a clear picture of what is happening

in the active region of the solar cell.

6.4.3. Non-ideal blocking contacts

The existence of unintentional doping introduced by oxygen, the presence of traps and impurities

or the poor quality of interfacial layers can create energy barriers for the extraction of free charges and

then, they can reduce the velocity at which the carriers are extracted in an illuminated OSC [6, 7].

In these cases, an accumulation of charge at the extracting electrode takes place. This accumulation

of charge reduces the value of the photocurrent in the fourth quadrant, and gives rise to anomalous

S-shape J −V curves. These anomalous shapes have been interpreted in the past with low values of the

surface recombination velocity S in the boundary relation J = −S(pA − p0) [6, 7], where pA is the hole

density at the anode and p0 its value at equilibrium (a similar relation can be written for the extraction

of electrons at the cathode).

Our boundary-condition model as defined in (6.27) can also reproduce these anomalous S-shapes.
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Figure 6.11: Hole and electron densities at the anode and cathode as a function of the current density. They
are used in our numerical procedure to reproduce the experimental data in Fig. 6.10. (a) The evolution of
pA = nC is described with: m = 0.35, K1pA = K1pAe = 3.5 × 1016 cm2m−3A−m, JKf = 10−4 A/cm2, K2pA =
1.4 × 1015 cm−3, K2phg(80, 400, 800 W/cm2) = 2.9, 5.9, 7.2 × 1015 cm−3. (b) The evolution of pC = nA is
described with: m = 0.35, K1pC = 1.9 × 1013 cm2m−3A−m, JKr = 10−8 A/cm2, K2pC = 3 × 1010 cm−3,
K′

2phg(80, 400, 800 W/cm2) = 6× 1013, 3.5× 1015, 5.7× 1015cm−3

The accumulation of charge at the extracting electrodes is taken into account with a loss of symmetry

between injection and extraction. This asymmetric behavior is controlled in our model (6.27) with the

parameters JKephg and K1pAe, which must fulfill the condition JKephg 6= −JKfphg and K1pA 6= K1pAe.

The reduction of |JKephg| or the increase of K1pAe make the value of the extracted charge density at

the interfaces pA = nC to increase.

Figure 6.12 shows a study of the effect of the boundary values for the free charge density at the

interfaces pA = nC and pC = nA (Fig. 6.12(b)) on the J − V curves of OSCs under illumination (Fig.

6.12(a)). Four cases are considered: (i) constant values for pA = nC , typical of ideal ohmic contacts

using Boltzmann conditions (JKfphg → ∞, JKephg → ∞); (ii) an OSC with non-blocking extracting

contacts and symmetric behavior for the injection and extraction mechanisms (JKephg = −JKfphg and

K1pA = K1pAe); (iii) an OSC with blocking extracting contacts and asymmetric behavior for the injection

and extraction mechanisms (−JKephg < JKfphg and K1pA > K1pAe); and (iv) an OSC with much

greater blocking extracting contacts (−JKephg ≪ JKfphg and K1pA ≫ K1pAe). The value of pC = nA is
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considered constant and uniform for the four cases, fulfilling the condition pC = nA = K ′

2phg < K2phg,

where K ′

2phg and K2phg are the values of the flat region of pC = nA and pA = nC , respectively. This

condition is consistent with our observations of the previous section, although the value of K ′

2phg does

not alter the conclusions of this study.

In the first quadrant (V > VOC), the current density is controlled by the injection of holes and

electrons from the anode and cathode, respectively. Their densities at these interfaces are depicted on

the right hand side of Fig. 6.12(b). Case (i) is the only that differs from the rest (ii)-(iv). Case (i)

corresponds to constant pA = nC while cases (ii)-(iv) follow the power law at high J . Although these

differences seem to be small, the differences in the J − V curve are large (Fig. 6.12(a)). This result

confirms the importance of our power-law model in order to interpret the injection region of the current

voltage characteristics of OSCs (V ≥ VOC). Actually, the value of VOC can also be modified as seen in

Fig. 6.12(a).

The fourth quadrant of the J−V curve (Fig. 6.12(a)) is controlled by the extraction of photogenerated

carriers. Cases (i) and (ii) produce the same typical response of an OSC, similar to that studied in Fig.

6.10. Cases (iii) and (iv) show anomalous S-shape responses, more pronounced in (iv). The difference

is explained by the different value of pA = nC at J < 0 which is controlled by the parameter JKephg

(Fig. 6.12(b)). Case (i) imposes no limitation at all for the extracted charge with JKephg → ∞; case

(ii) does not impose any limitation either, it corresponds to contacts that show a symmetric increment

of the injected and extracted charge at high values of |J | (−JKephg = JKfphg = 1 mA/cm2), the

value of |JKephg| is in the limit to impose constrictions to the extracted charge; and cases (iii) with

JKephg = −10−5 mA/cm2 and (iv) with JKephg = −10−7 mA/cm2 consider the accumulation of charge

carriers at very low values of the photocurrent density. After this theoretical study, we conclude that

the S-shape can be explained by means of the accumulation of photogenerated charges at the extracting

interfaces (Fig. 6.12) and not by imposing limits to the injecting interfaces.
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Figure 6.12: (a) Current-voltage curves of an OSC under illumination generated with four different boundaries
values for the free charge density pA = nC and pC = nA (named (i)-(iv) in (b)). (b) (i) Ideal extracting contact
using Boltzmann conditions (JKfphg → ∞, JKephg → −∞); (ii) contacts with symmetric increment of the
injected and extracted charge at high values of |J | (|JKephg | = JKfphg); (iii)-(iv) contacts imposing limits to the
extracted charge. The common parameters used in the simulations are: T=295 K, Vbi =0.55 V, µn = µp =10−4

cm2/Vs, εr = 3, L = 150 nm and sharp = 10. The specific parameters are: (1) m = 0, K2phg = 1015 cm−3,
K′

2phg = 1014 cm−3; (2) m = 0.7, K2phg = 1015 cm−3, −JKephg = JKfphg = 1 mA/cm2 and K′

2phg = 1014 cm−3;
(3) m = 0.7, K2phg = 1015 cm−3, JKephg = −10−5 mA/cm2, JKfphg = 1 mA/cm2 and K′

2phg = 1014 cm−3; (4)
m = 0.7, K2phg = 1015 cm−3, JKephg = −10−7 mA/cm2, JKfphg = 1 mA/cm2 and K′

2phg = 1014 cm−3.
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7.1. Introduction

Emerging technologies, based on organic or polymeric materials [55]-[229], two-dimensional materials

such as graphene [230], semiconducting dichalcogenides, MoS2 or WSe2 [231], or nanowire (NW) devices

[232], are promising solutions in the fields of nanoelectronics, sensing and photonics. Apart from having

common applications, these materials share an additional common feature: the connection to the outer

world via metal contacts.

In order to treat this common contact problem, we focus on one of these emerging technologies and

one of its outstanding devices, the organic or polymeric (hereafter, the term organic is used for both) thin

film transistor (OTFT). These transistors are especially important as drive elements in niche applications

such as the displays of mobile devices and televisions using the Active-Matrix Organic Light-Emitting

Diode (AMOLED) technology. Sensors, smart labels, solar cells or smart clothing are other emerging and

innovative applications where these transistors work as the main or control element. These transistors,

and other organic devices, have received considerable attention because of the attractive properties of the

materials they use. One key advantage of the organic materials is that they can be solution processed

[233]. The combination of soluble deposition techniques such as drop casting, spin coating, layer-by-

layer, or roll-to-roll on flexible sheets with low-cost patterning equipment, such as ink-jet printers [234],

reduces both capital and manufacturing costs compared with conventional crystalline electronics [51].

Contact effects in OTFTs are affected by the materials used for substrates, electrodes or semiconduc-

ting films; the vertical and horizontal layout differences; the different processing steps such as vacuum

processing, spin coating, printing or stamping; the functionalization of interfaces; and the self assem-

bling of organic materials. Though important in all devices, the contact effects are even stronger at the

nanoscale [235]. To understand the effects of the contacts in OTFTs, the physical or geometrical origins

of these effects are treated jointly in nano-scale and organic-thin-film structures.

The prediction and optimization of the performance of integrated circuits is necessary. For practical

applications, compact models for electronic devices play an important role. Compact models must include

the effects of beneficial and detrimental mechanisms that affect the device performance. In this chapter,

we focus on the incorporation of the contact effects in compact models of OTFTs.

The chapter begins with the analysis of the properties of the contacts from a general point of view,

treating common effects at nano and large scale (Sec. 7.2). In Sec. 7.3, we analyse the advantages and

disadvantages of previously developed models that describe the current-voltage curves of OTFTs with

contact effects. In Sec. 7.4, we propose a compact model for the contact region of OTFTs that unifies

different trends found in the literature. This model is introduced in Sec. 7.5 in a previously developed

generic model for OTFTs. In the following sections, the resulting model is applied to describe recent

experimental data in OTFTs with contact effects.

7.2. Properties of metal contacts

Although the basic ideas of the metal-semiconductor contacts are reasonably well understood [216],

[236], there are many side effects that impact their electrical behaviour (Fig. 7.1). Here, we analyse the
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Figure 7.1: Bottom-gate (a) staggered and (b) coplanar configurations showing side effects that determine the
electrical behaviour of a metal-semiconductor structure. (c) Side contact. (d) End or edge contact. (e) Current
crowding modelled with a transmission line model.

role of metal contacts in general terms, distinguishing between physical and geometrical effects.

Metal and semiconductor work functions

According to the earliest and simplest models of the metal-semiconductor junction [237], [238],

the difference between the metal and semiconductor work functions determines the ohmic or rectifying

behaviour of the contact. As an example, in graphene, Pd and Ni have been shown to provide a relatively

low contact resistance. A higher contact resistance has been observed with Ti, Cr, and Al contacts [239]-

[240].

The doping level in the semiconductor, even in bulk metal-semiconductor junctions, determines the

position of the Fermi level in relation to the band edges, and thus the semiconductor work-function.

Graphene displays an even stronger effect known as metal doping. Since monolayer graphene is gapless,

re-alignment of the Fermi level due to the metal work function and the accompanying charge transfer

can produce p-type or n-type behavior. In fact, a very small amount of electron transfer shifts the Fermi

level significantly in graphene [241]. Thus, contacts in graphene can be chosen as n-type or p-type by

selecting a metal with the suitable work function. When the graphene layer is deposited on a bottom



120 7. Compact Modelling and Contact Effects in TFTs

gate, separated from it by a thin insulator layer, and then covered by a top contact, the bottom gate

bias has also been found to contribute to the metal-graphene contact resistance by changing the charge

density in the graphene layer [239], [242].

Quality of the contact and the near-interfacial region

The position of the Fermi level is also affected by the bond structure of the contact region, with

possible bond polarization [243] and/or a high interface state density in the semiconductor gap [244],

[245]. A charge neutrality level is defined at the position of the Fermi level at the interface for which

the net charge in the interface states is zero. The Fermi level is said to be pinned [246], [247]. It cannot

shift very much from this position without a huge charge transfer. Thus, the resulting barrier height

may be significantly different from that predicted by using the work functions of the separate materials.

There are approaches to de-pin the Fermi-level and tune the metal-organic contact behaviour such as

the introduction of ultrathin interfacial insulators (Si3N4) [248]; the treatment of the contacts with

a self-assembled monolayer (SAM) [249]; the introduction of a thin polyelectrolyte layer between the

electrodes and the semiconductor [250]; or using a solid electrolyte directly as dielectric layer [251].

These observed reductions in the contact resistance can be explained either by a decrease of the barrier

energy or by changes in the surface morphology [249].

Examples of this last effect can also be seen in different materials as graphene, MoS2 or nanowires.

Graphene can be subjected to strong modifications originated by charge inhomogeneities induced by

the metal [252], [253]. Questions have arisen as to whether the original work function of the graphene is

preserved after the contact [240]. Density functional theory calculations have shown that the energetic

separation between the Fermi level and the Dirac point in the contacts is a sensitive function of the

metal-graphene distance [241]. In [252], it was found that the metal-graphene coupling strength is

moderate, resulting in a modification of the graphene density of states (DOS) underneath the contacts

small enough so that Fermi level pinning does not occur due to a lack of screening of the gate field.

Furthermore, although capacitance-voltage measurements have shown that the original work function of

graphene is not preserved, but it is pinned to the work function of the metal when the coupling is strong,

the measurement of the quantum capacitance of graphene in the strong accumulation mode seems to

prove that the characteristic properties of the graphene density of states are maintained [240].

A further difference in behavior of graphene contacts has been proposed to distinguish between side-

bonded (Fig. 7.1(c)) and end- or edge-bonded (Fig. 7.1(d)) contacts [254]. While end contacts form

strong covalent bonds to the dangling bonds at the edges, top and bottom contacts form weaker van der

Waals bonds. In both cases, results show that Fermi-level pinning has a small influence in the barrier

height, in contrast with what happens in bulk metal-semiconductor junctions.

In the case of contacts to layered MoS2, the widely used Au contact has been proposed to form a

tunnel barrier and be the cause of the low values of the measured mobility [231], while metals with a low

work function would efficiently inject electrons into the conduction band and would solve this problem.

MoS2 transistors with Sc [255] and Ti ohmic contacts [256] have been demonstrated, but the quality of

the contacts should be improved in order to achieve the expected advantages of these materials.
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While metal-induced gap states often determine the barrier height in bulk contacts, they can have

a weaker impact in nanowires. The electrostatics at reduced dimensions prevents the Fermi-level from

being pinned since a strong band bending cannot be established due to the small size of these nano-

structures. The region of a nanowire under the metal has also been shown to change its electrical

properties after the application of a thermal treatment [232], [257].

In the case of OTFTs, the quality of the contacts also depends on the relative position of the

source/drain (S/D) contacts, dielectric and organic films. Bottom-gate OTFTs can be found in two

typical structures: top-contact (TC) or staggered configuration (Fig. 7.1(a)) and bottom-contact (BC)

or coplanar configuration (Fig. 7.1(b)). The BC configuration is known to give inferior performance to

the TC configuration for a range of deposition conditions and material thickness [258]. This can be

attributed to the different arrangement of molecules in the organic material in relation to the proximity

with other materials [258], [259].

Geometry of the contact

The size and geometry of the electrodes are other factors that affect the performance of the transistors

[260]. The description of the current flow through the contact region often requires a two-dimensional

analysis, in particular for the TC staggered configuration [261], since the electrodes, dielectric and

semiconductor channel are not adjacent to each other (Fig. 7.1(e)). A widely used model to deal with

these aspects is the transmission-line (or transfer length) model (TLM) [262]. According to this model,

instead of the physical length L, a contact transfer length, LT , can be defined as the effective length over

which injection occurs from the contact edge. In contacts to bulk and thin-film materials, LT =
√

ρc/Rs,

where, ρc is the contact resistivity and Rs is the sheet resistance under the contact. The transfer length

determines the contact resistance through the relation Rc =
√
ρcRstanh

−1(L/LT )/w [262], [263], where

w is the width of the contact.

The conventional expression of the TLM model has been applied to graphene [264]. To compute

the transfer length in this system, a phenomenological expression for the sheet resistance of graphene

under the contact [265] has to be used. This sheet resistance underneath the metal contact depends

on the mobility which in turn is strongly dependent on the deposition processes [235]. Experimental

values of the contact transfer length in graphene show a dependence with the type of electrode [262].

The dependence on the material can be explained by the strength of the coupling between the metal

and the semiconductor, since stronger coupling produces higher electron scattering and thus smaller LT

values. The TLM has also been applied to nanowires [266]. However, corrections are introduced due

to the small dimensions of these structures: the contact length in many nanowire devices is typically

comparable to the NW length; and the depth of the depleted or accumulated semiconducting region in

metal-NW interfaces is typically comparable to the NW radii [267].

Transition region

The region within the semiconductor in which the effects of the contact are still strong is called the

transition or access region (Figs. 7.1(a)-(b)). The band bending due to the contact can be extended
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on a length scale of tens of nanometers to micrometers. This region, called depletion layer in bulk

junctions, develops beneath the contact, but it can spread out laterally towards the channel in thin

films and nanostructures. If the thickness of the depletion layer, W , is greater than the film thickness

or the radii of the nanostructure, then W becomes size dependent and increases strongly at low doping

concentrations. A long-distance band bending has been observed in nanowires [268] and graphene [269].

A correct determination of W is important since its value strongly influences the charge-injection in the

contact [270]. As in bulk contacts, a heavy doping can be used in end-bonded nanowires to reduce W ,

thus allowing electrons to tunnel though the barrier. Nevertheless, this method cannot be used in the

case of side contacts since, for this to be useful, W has to be smaller than the section diameter and a

high doping level should be required when the nanowire diameter is reduced [270].

The change in the work function of graphene under metal also leads to band bending from the

contact edge towards the channel [269], [271]. In the application of the TLM model to graphene, the

contact resistance has been separated into two components: the actual contact resistance at the metal-

graphene contact, RCI , and the additional resistance due to the metal-contact doping, RCD [264]. This

component, RCD, arises in the transition region along which the Fermi level varies from the value pinned

by the metal due to metal doping to the value in the channel region. Thus, it depends on the type of

metal and differs significantly for each metal. The very small DOS around the Fermi level for graphene

increases the screening length. The resulting long charge transfer region is a unique characteristic of the

metal/graphene contact [235] and was reported to be ≃ 0.5 µm [271].

In the transition region of the contacts of OTFTs another mechanism takes place. The charges that

are created near the surface of the electrode move through the organic material due to the electric field

and the charge transport is space-charge limited. In the following sections, we discuss contact effects in

TFTs.

7.3. Contact effects in OTFTs

7.3.1. Models of contact effects

The objective, when modelling the contacts of OTFTs, is the reproduction of the current-voltage

curves in the contact (ID−VC), where VC is the voltage drop in the contact region, and their dependences

on bias voltages, temperature and material parameters [272], [273]. The incorporation of physical models

of the contacts, [216], [18], into the classical transistor models is not a trivial task because the contact

effects interfere with other dependences in OTFTs [55]. In the literature, there are different electrical

models that incorporate the voltage drop at the contacts (Fig. 7.2(a)). There are also associated methods

to extract this voltage drop from the output characteristics of a transistor [274], [275]-[10].

The low conductivity region close to the contact is usually modelled with a parasitic resistance RC

(Fig. 7.2(b)). Experimental investigations show that the magnitude of RC is dependent on the gate bias,

temperature and ambient gas environment [274], [260], [276], [277].

Non-linear behaviour, also observed in the literature, are treated with a drain-voltage dependent

resistance [278], [279]. The slope of the ID − VC curve increases with VD, thus decreasing the contact
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Figure 7.2: a) Separation of the channel of an OTFT in the active channel and the contact regions. Equivalent
circuits of an OTFT including: b) linear source and drain contact resistances; c) a non-linear model for the source
and drain contact regions [275]; and d) our unified ID −VC model for the source contact assuming negligible the
voltage drop at the drain contact [272].

resistance, being negligible in the saturation region [280]. This may be one reason for some authors to

extract the field-effect mobility from the saturation region using the ideal MOS model [278], [281], [282].

However, this way to model non-linear behaviour can lead to confusion as noted in [283], where a diode

was added in series with the contact resistance to model the non-linear response. A study of the error

made in the extracted values of the threshold voltage and mobility when considering the ideal MOS model

in saturation is given in Sec. 7.6-A and Fig. 7.3. Better approaches that considers highly non-linear drain

and source contact series resistances and a gate-voltage dependant mobility, (µ ∝ (VG − VT )
γ , γ > 0),

can be found in the literature [275], [283]-[71]. This mobility dependence is extracted from theories such

as the charge drift in the presence of tail-distributed traps (TDTs) [284] or variable range hopping

(V RH) [285], [286]. In order to simulate non-linear ID − VD output characteristics for organic bottom

contact TFTs, an equivalent bottom contact TFT circuit that consists of the TFT with linear source

and drain access resistances RD and RS , respectively, and a pair of anti-parallel leaky Schottky diodes

connected to each access resistor in series, see Fig. 7.2(c), was proposed [275]. Two diodes in parallel

are needed to obtain symmetric current-voltage characteristics. The diode non-ideality factor, η, which

is responsible for the steepness of the current-voltage characteristic, and the access resistances are the

fitting parameters [275].

Recently, Schottky barriers at both drain and source contacts and electric field dependent mobilities

have been incorporated in two-dimensional numerical simulations to provide a vision on how the current

spreads over the contact electrode [287], [288]. Although this model reproduces experimental data, the

authors noted the sub-optimal values of some of the model parameters, such as the barrier height [288]

or the diode non-ideality factor, η [275]. Our interpretation is that simple electrical models valid for
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crystalline structures are substituting the two main physical theories that describe the metal-organic

structure, injection and space-charge limited theories, thus providing suboptimal values for the model

parameters.

7.3.2. What is missing?

Linear or non linear contact behaviours are observed experimentally at low drain voltages in the

output characteristics of the transistor. Different physical mechanisms have been proposed to explain

such behaviour [8], [9]. However, many of the models used to interpret the effect of the contacts on these

I-V curves are reduced to finding a value for the contact resistance.

A suitable OTFT model should incorporate both linear and non-linear behaviours for the contact

I-V curves, with a method that unifies in some of its parameters the injection and transport mechanisms

present in the metal-organic contacts and that considers the dependence of the I-V curves with the gate

voltage and the temperature. In the following sections, we present such a model.

Also needed is a method that can be used to extract, from the I − V experimental data of a single

transistor, [289] the parameters of the transistor, including those associated with the contact region.

Many methods to extract the parasitic resistance are based on a set of transistors with different lengths,

or on more complex techniques such as the four-probe method or the sophisticated electrical scanning

probe microscopy techniques [290]-[291]. In this chapter, we combine the proposal of a compact model

for OTFTs including contact effects with a method to extract I-V curves at the contact from output

characteristics measured in a single transistor.

7.4. Compact model for the contact region of OTFTs

Different physical ways to inject charge from the metal contact (ohmic contacts, Schottky barriers,

tunnel injection) give way to linear or non-linear contact behaviour. Our method unifies all these physical

mechanisms and behaviours by considering them as part of the boundary value for the charge density at

the metal-organic interface, qp(0). Its value must contain information about the physical, morphological

and/or geometrical features of the contact region. Some of the charges get trapped, with no contribution

to the current. The rest, the free charge density qθp(0), where θ is the ratio of free to total charge density,

drifts through localized sites in the transition region of the contact, as mentioned at the end of Sec.

7.2. Independent of the value of p(0), or how this charge has appeared at the metal organic interface, a

relation between the current density j and the applied voltage VC can be found by solving the transport

equations in the semiconductor [10], [8]:

VC = (2/3) [2j/(εµθ)]1/2
[

(xC + xp)
3/2 − (xp)

3/2
]

xp ≡ jεθ/
{

2µ [θqp(0)]
2
}

(7.1)
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where j = ID/S, S is the cross section of the channel where current ID flows, xp is a characteristic length

defined as the point from the contact interface towards the organic film, at which the charge density

qp(xp) decays to qp(0)/
√
2, ǫ is the organic dielectric constant and xC is the length of the contact region

in the organic material, which may include the transition layer defined in Section II. Equation (7.1) was

demonstrated to have two asymptotic trends: a linear or Ohmic behaviour if the characteristic length

xp is a few times larger than the contact length xC ,

ID ≈ Sθqp(0)µVC/xC ≡ VC/RC (7.2)

and a quadratic behaviour (Mott-Gurney law) if the characteristic length xp is much smaller than the

contact length xC [10], [12],

ID ≈ 9

8
εµθSV 2

C/x
3
c ≡ MV 2

C (7.3)

The two asymptotic situations defined in (7.2) and (7.3) also define limit distributions of the free

charge density in the contact, qpcontact. In the case of linear characteristics, qpcontact is constant and

its value can be represented by the value this variable takes at x = 0, qpcontact = θqp(0), which is the

value that appears in (7.2). The effective area of the contact where the current flows can be expressed as

S = w × tC , where tC is an effective thickness, and w is the contact width. Considering the free-charge

surface density σcontact = θqp(0)tC , the following relation is obtained from (7.2):

σcontact = xC/(wµRC) (7.4)

In the case of quadratic behaviour, the distribution of the free charge density, not uniform along the

contact region [18], is given by:

qpcontact(x) = [(jεθ)/(2µx)]
1/2

(7.5)

If the parameter M is known (in Sec. 7.6 a parameter extraction method is proposed), pcontact can

be evaluated as a function of arbitrary values of the contact voltage VSC and the position x0 close

to the contact. This provides physical information about the extracted parameter M . In order not

to work with the unknown effective thickness tC , the free charge surface density is evaluated instead,

σcontact = qpcontact(x0) × tC . Thus, combining (7.3), (7.5) and j = M × V 2
SC/S, the following relation

results:

σcontact(x0) = (2MVSC)/(3µ)
[

(x3
C)/(x0w

2)
](1/2)

(7.6)

The inverse of the contact resistance RC in (7.4), and the parameter M in (7.6) are proportional

to the free-charge surface-density σcontact. Thus, whatever trend σcontact has with the gate voltage, the

parameters 1/RC and M will have the same trend, except for a multiplying factor.

7.5. Incorporation in an OTFT model.

The model for the contact region presented above is useful when integrated in a compact model for

OTFTs. For this reason, we consider a generic analytical model for the current-voltage characteristics
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of OTFTs [70], [71]. In that work, the authors related the drain current ID and the voltages at the

borders of the intrinsic transistor, VG, VD and VS (Fig. 7.2(c)):

ID
ko

=
[(VG − VT − VS)

γ+2 − (VG − VT − VD)γ+2]

γ + 2

ko = µoCiw/L (7.7)

where Ci = εi/ti is the gate insulator capacitance per unit area, εi is the insulator dielectric constant, ti

is the insulator thickness, VT is the threshold voltage, w is the transistor width and L the channel length.

The result is equivalent to the well-known and widely used generic FET model with a constant mobility.

This model is derived considering that the voltage drop at the drain contact is small in comparison to

the voltage drop at the source contact [272] (Fig. 7.2(a)). Thus, the contact voltage is reduced to the

voltage drop between the external source terminal and the internal source (VS ≡ VC) (Fig. 7.2(d)). It

also considers that the mobility µ is written according to the aforementioned common theoretical result

[284], [285], [67],

µ = µo(VG − VT − Vx)
γ , γ = 2To/T − 2 (7.8)

where Vx is the potential in the semiconducting film of the TFT , γ is the mobility enhancement factor,

To is the specific equivalent temperature that represents the steepness of the DOS exponential tail and

µo is the mobility-related parameter with dimensions cm2/(V1+γs). In order to provide a single value

for the voltage dependent mobility, the mobility is evaluated at VGT = VG − VT = 1 V [70], thus

µ(VGT = 1V)=µo in cm2/(Vs).

This model (7.7) is complemented with a model for the current-voltage curves in the contacts, as

defined in (7.2) or (7.3). A new parameter, RC (or M), not present in (7.7), is added to the set of

parameters of the model. The parameters RC and M are expected to depend on the gate voltage, as

many experiments have shown the dependence of the I − V curve at the contacts with the gate voltage

[274], [276], [292].

To describe this dependence, we analyse the two regions of different conductivity distinguished along

the channel of the organic transistor [229], [272], [293]: the low conductivity region close to the contact

defined by the free-charge surface-density σcontact and the high conductivity region in the intrinsic

channel defined by its counterpart free-charge surface-density, usually expressed as [294]:

σchannel = Ci(VG − VT ) (7.9)

The free charge density in the contact region can be considered a fraction of the last one: σcontact =

σchannel/K. Although K is an undetermined constant, there is no physical reason to believe that the

mobile charges in these two adjacent regions start appearing at very different gate voltages, or follow

very different trends, unless local non-uniformities were present just at the contact region. Therefore,

σcontact can be assumed proportional to (VG − VT ). Introducing this dependence and the gate voltage
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dependence of the mobility (7.8) in (7.4) and (7.6), we can write, respectively:

1/RC = [(wCiµo)/(KxC)](VG − VT )
(1+γ) (7.10)

M =
3Ciµo

2KVSC

[

x0w
2

x3
C

]1/2

(VG − VT )
(1+γ)

or by defining the parameters α1 and α2:

1/RC = α1(VG − VT )
(1+γ) (7.11)

M = α2(VG − VT )
(1+γ)

Thus, we can express (7.2) and (7.3) in a more compact way:

VC = α−1
m I

1/m
D (VG − VT )

−(1+γ)/m, 1 ≤ m ≤ 2 (7.12)

Although the range 1 ≤ m ≤ 2 includes all the cases covered by (7.1), the practical cases can be

restricted to the limit cases m = 1 and m = 2. The election of m = 1 or m = 2 is decided by a simple

linear regression study of the ID − VD curves at low values of VD.

The combination of (7.7) and (7.12) defines a compact relation between the drain current and the

external terminal voltages. This model has parameters that can be characterized relatively easily, or even

guessed, preventing unnecessary phenomenological fitting parameters or even the use of transistors with

different channel lengths. Our model is complemented with an extraction procedure of its parameters

VT , µo, γ and αm (or the equivalent M(VGS) or RC(VGS) from the current-voltage curves of an OTFT.

It follows the main ideas of the procedure proposed in [70], [71]. However, some modifications are made

in order to eliminate errors in the determination of the model parameters when large contact voltages

are present and to extend its application to output characteristics measured in single-length transistors.

As different models or different sets of values of our model can reproduce the experimental data, tests

are also provided in order to validate the physical meaning of the extracted values for the parameters.

7.6. Parameter extraction method

The objective of the extraction method is to determine the values of the parameters µo, γ, VT and αm

that define the compact model for the OTFT (7.7) including the contact effects (7.12). The independent

determination of M (or RC) for each VGS is preferred to the determination of the compact parameter

αm. It is slower but more general, since it can be applied to situations where instabilities or trapping

effects appear in the transistor [295]. In these cases, the evolution of σchannel with VG (7.9) can separate

from a straight line due to slight modifications in the threshold voltage.

We propose a five step procedure with several tests to check the physical meaning of the results. In

a previous work [12], we proposed a method to extract the parameters of this model from experimental

(ID − VD) curves including the voltage drop at the contact. It was applied and tested successfully in

an hypothetical p-type OTFT with known parameters [15]. It was adapted later to ID − VD curves
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with hysteresis [296]. In this chapter, we compile all the previous ideas to make the method completely

general and applicable to OTFTs.

7.6.1. Importance of a compact model with contact effects

Prior to the presentation of our characterization procedure, we highlight the importance of using a

proper compact model for OTFTs with contact effects in the determination of essential device parameters

such as the mobility µ and the threshold voltage VT . It is deduced from many of the references cited

in this chapter that the apparent mobility extracted from current-voltage curves with contact effects

is different from the real one. However, in many publications, the classical MOS model is still used to

characterize the mobility. In saturation, the effects of the contacts are lower than in the linear region of

operation. However, the saturation region is not free from errors. In the following, we determine such

errors. To do this, we create a set of output characteristics for a hypothetical transistor for which we

know all its parameters: k = µoCiw/L, γ, VT and M (or RC). We build the output characteristics of this

transistor by combining an intrinsic transistor modelled with the ideal MOS model plus a contact region

at the source (Fig. 7.2(d)). The classical MOS model can be easily deduced from (7.7) by assuming

VS = 0 V and γ = 0. The contact region is modelled by (7.2) or (7.3).

Once the output characteristics are created, the ideal MOS equations are used to extract the para-

meters of such a hypothetical transistor. Figure 7.3 represents the errors in this determination in the

saturation region. The test is done for different values of k, M and RC (M and RC are assumed inde-

pendent of the gate voltage; a dependence with the gate voltage would increase the error). Figure 7.3

defines the ranges of these parameters where the relative error is not negligible and the classical MOS

model is inaccurate. This figure is also useful since we can establish a relation between the values of M

and RC that produce the same effects.

Figure 7.3: Relative error in the determination with the ideal MOS model of the transconductance FET
parameter, δk (solid lines) and the threshold voltage δVT (dashed lines) in an OTFT with contact effects. The
error is evaluated as a function of the contact related parameters M and RC for different values of the transistor
transconductance parameter k.
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7.6.2. Our extraction method

The five steps of our extraction procedure are (Fig. 7.4) now presented:

Figure 7.4: Steps of the parameter extraction method indicating the models used (left) to analyse the experi-
mental data (right).

I) Initial estimation of µ and VT . The experimental data in the saturation region are fitted with the

classical MOS model ((7.7) with γ = 0 and VS = 0) to determine apparent values for the threshold

voltage and the mobility.

II) Initial estimation of M (or RC). The contact model is added to the drain voltage by combining

VD = VDS+VS and (7.3) (or (7.2)) and assuming VG = VGS (Fig. 7.4(II)). The resulting equations

are used to fit the whole experimental ID(VD, VG) curves to extract values of M(VG) (or RC(VG)).

Then, an averaged value for the contact voltage in saturation, VCaverage
, can be obtained.

III) Extraction of VT and γ with the HV G function [70], [297] applied to the experimental data in
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saturation. The HV G function is defined as

HV G(VG) =

∫ VG

<VT
IDdVG

ID(VG)
. (7.13)

The HV G function can be derived from the TFT generic model (7.7) in the linear and saturation

modes. In the saturation mode (VD > (VG − VT )), HV G is linear with VG [70]:

HV G(VG) =
(VG − VT − VS)

(γ + 3)
(7.14)

The values of γ and the threshold voltage VT can be extracted easily from the slope of HV G(VG)

and intercept with the VG axis, by assuming VS = VCaverage
in (7.14).

IV) Extraction of µo and M or RC (or αm ). Assuming the previous values of VT and γ as correct,

the parameters µo and M are iteratively modified until a good fitting is obtained between the

theoretical model (7.7) and (7.3) (or (7.2)) and the experimental data. As initial guessed values

for the parameters µo and M , the ones obtained in steps (I) and (II), respectively, can be used.

Since the experimental data are reproduced with a model that depends on several parameters

different solutions may be expected. Thus, some tests must be done to validate the solution.

V) Tests of the solution. A) The values of the parameters (µo, γ and VT ) and the experimental data

are introduced in the compact model (7.7). The ID − VC curves at the contact are extracted, and

must be consistent with the trends expected by (7.3) (or (7.2)). In case of a negative test, new

values of γ and VT must be proposed in part (IV). B) Parameters M (or 1/RC) are represented

as a function of VG. These parameters include information about the free charge density at the

contact region. Assuming that the free charge density in the channel and contact appears at the

same voltage, the evolution of M (or 1/RC with VG) must intercept the VG-axis at the value

obtained for VT . In case of a negative test, a new value of VT must be proposed in part (IV).

7.7. Results and discussions

To check the validity and applicability of our compact model with contact effects, (7.7) and (7.12),

and the extraction method, we analysed published ID − VD experimental curves from pentacene-based

OTFTs at different conditions. We analysed the effects of temperature, contact length, material length,

barrier height at the interface, TC and BC configurations, and linear or non-linear behaviour. We also

show a situation in which the parameters RC or 1/M do not follow the trend with VG indicated in

(7.11). This can be typical of OTFTs with trapping effects.

7.7.1. Effects of the size of the structure

Fig. 7.5(a) shows a comparison of experimental data (symbols) with the results of our model (solid

lines). They correspond to inverted-staggered OTFTs with thermally evaporated pentacene and Au
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Table 7.1: Fitting parameters used with different models to reproduce the data of Fig. 7.5

Model Ideal HV G (VS = 0) HV G Compact

VT (V ) −10.31 −0.79 −3.14 −3.14

γ 0 0.49 0.49 0.52

µo (cm2/V 1+γs) 0.65 - - 0.09

S/D contacts [298], two different channel lengths (L = 100 and 150 µm) and different thickness of

the pentacene semiconductor or contact lengths (xC = 50, 100 and 150 nm). The whole set of curves

is reproduced with our model with the same set of parameters: VT = −3.14 V, γ = 0.59, µo = 0.09

cm2/V1+γs, and α2 = 3.9 × 10−8 × (50 nm/xC) A/V
3+γ . A convergence test is made to validate these

parameters (Fig. 7.5(b)). Combining in (7.7) the above values of µo, γ and VT with the experimental

values (ID, VD) corresponding to xC = 50 nm of Fig. 7.5(a), then the current-voltage curves at the

contact can be obtained (symbols in Fig. 7.5(b)). In the same figure, the curves ID −VC calculated from

(7.3) and (7.11) with α2 = 3.9 × 10−8 A/V3+γare shown in solid lines. The matching of the symbols

and solid lines indicates that the solution is physically acceptable. Table 7.1 shows the values of the

parameters of the model extracted during the different steps of the fitting procedure. The value of the

threshold voltage is modified in the different steps. This value depends on the model employed and

whether contact effects are included or not. Actually, the value extracted from the HV G is valid only

when the averaged contact voltage (VS = VCaverage
) is considered in (7.14). The value of the mobility

is also altered during the fitting procedure, from a constant value with the ideal MOS model to a gate-

voltage dependent relation modelled by µo and γ. In the table, the value of the mobility obtained with

the ideal MOS model is greater than the one obtained for µo with the compact model. The value of µo

must be understood as the value of the mobility at VGT = 1 V. The value at VGT = 40 V is µ =0.61

cm2/Vs. For these samples, the value obtained with the compact model represents an averaged value,

since the averaged contact voltage is not too large VCaverage
≈ −2.4 V.

The value of µo is in agreement with the value reported in [298] for the mobility in the conducting

channel, in the range of 0.3-0.5 cm2/Vs. In [298], the path that the current follows from the top contact

down to the conducting channel is modelled with a factor about 3 lower mobility, attributed to an

anisotropic mobility. The anisotropic conduction in the contact region and in the intrinsic channel is

also compatible with our model. Assuming the same value for the mobility in the contact region and

in the conducting channel and introducing the value extracted for α2 and the geometrical parameters

of the OTFTs [298] in (7.3) and (7.11), the free to total charge ratio θ is found to be greater than one.

Thus, a lower value of the mobility is necessary to obtain values of θ with a physical meaning. A value

around 10−4 cm2/Vs, as provided in [298], results in values of θ in the range [0.001, 0.0071] for gate

voltages in the range [−20,−60] V.
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Figure 7.5: a) Comparison of output characteristics measured in pentacene-based OTFTs with Au S/D contacts
(symbols) [298] and our numerical results (solid lines). Transistors with different channel length L and organic
thickness xC are studied. b) ID −VC curves extracted by inserting in (7.7) the experimental data of Fig. (a) and
the fitting values VT = −3.14 V, γ = 0.59 and µo = 0.09 cm2/V1+γs (symbols); and by using (7.3) and (7.11)
with α2 = 3.9× 10−8 A/V3+γ (solid lines).

7.7.2. Transistors with instabilities

Figs. 7.6(a) and (b) show, with symbols, the output characteristics with hysteresis measured in a top

gate staggered pentacene OFET with Au S/D electrodes [299]. The gate dielectric is Poly(vinyl alcohol)

(PVA), known to produce hysteresis in OTFTs. The dielectric thickness is ti = 1µm, the channel length

L=100 µm, the transistor width w = 1 mm and the organic-film thickness to = 100 nm. These current-

voltage curves in the forward scan (FS) and the backward scan (BS) are compared with the compact

model (7.7) in combination with the linear model (7.2). Our numerical results are shown in solid lines in

Fig. 7.6(a) and (b). The parameters obtained from the fitting procedure are: µo = 0.0041 cm2/(V1+γs),

k0 = 1.4 × 10−10 A/V2+γ , γ = 0.05, VTFS
= 5.18 V and VTBS

= 3.55 V. The values of 1/RC in (7.2)

are represented as a function of VG for the FS and BS in Fig. 7.6(c). Since the charge density in the

contact is proportional to 1/RC , this figure shows how the threshold voltages of the charge density in the

contact (7.4) coincide with the values of VTFS
and VTBS

found in the fitting procedure. Thus, the values

of the fitting parameters are coherent among themselves and the solution can be considered physically

acceptable.

At higher voltages, the evolution of the charge density at the contact deviates from the linear trend.

The free charge density usually follows a linear trend with the gate voltage (7.9). However, in situations

where instabilities or trapping effects appear in the transistor, the threshold voltage can vary and σchannel

can deviate from this trend. In cases of slight modifications of the threshold voltage, our model is still

valid [296]. Instead of combining (7.7) and (7.12), (7.7) must be combined with (7.2) or (7.3). In these

cases, the independent determination of M or RC for each VGS is preferred to the determination of the

compact parameter αm. We have reported how information of the trapping processes during hysteresis

can be extracted with the analysis of the contact region of the transistor [296].
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Figure 7.6: (a), (b) Comparison of experimental output characteristics of a top gate staggered PVA / pentacene
/ Au OFET [299], with our compact model (solid lines). VG = 0 to −10 V from top to bottom with a −2 V
step (FS, circles; and BS, squares). (c) Extracted values of 1/RC in the FS (circles) and BS (squares). The
extrapolation of the data at low gate voltages intercept with the VG-axis at points close to VTFS = 5.18 V and
VTBS = 3.55 V.

7.7.3. Effects of the temperature

In Fig. 7.7, we analysed experimental data measured at different temperatures on bottom gate

evaporated-pentacene based OFETs with top Au S/D contacts, L = 100 µm and w = 700 µm [281].

The thickness of the SiO2 is 270 nm and the pentacene thickness, which is the same as contact length

xC , is 70 nm. The experimental curves have been reproduced with our model with the parameters shown

in Table 7.2. On the one side, the variation of the threshold voltage with temperature can be considered

large. This variation can be attributed to propagation of errors in the determination of the contact

voltage. In any case, the result improves the much greater variation obtained in [281]. Studies focusing

on OTFTs without contact effects obtain an even lower variation of the threshold voltage [300]. On the

other side, the parameter γ follows the trend with the temperature given in (7.8) with To = 373.8 K,

and µo also follows the trend with temperature proposed in expression (15) in [285] with σ0 = 108 S/cm

and α−1 = 0.31 Å, thus validating our results.

The average contact voltage is estimated from these parameters, resulting in VCaverage
=-1.8, -0.4,

-0.1 V at 300, 325 and 350 K, respectively. The contact effects decrease when the temperature increases.

Another way to analyse the effects of the contacts with the temperature is by evaluating the surface

free-charge density at the contact region. Assuming VSC = −1 V in (7.6), the surface concentration of

free charges at the contact can be compared with the surface concentration of free charges along the

channel. Fig. 7.7(d) shows this comparison evaluated at VG = −20 V. At 350 K the effect of the contact

region is almost negligible since the free charge density is almost uniform along the whole structure.

However, at 300 K, the free charge density in the contact region is almost four orders of magnitude

lower than in the channel.
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Figure 7.7: (a)-(c) Comparison of experimental output characteristics taken at different temperatures of a
bottom gate pentacene based OFET with Au top contacts [281] (symbols), with our compact model (solid
lines). VG = -10, -20, -30, -40 V from top to bottom. d) Surface concentration of free charges along the channel
of the OTFT at different temperatures for VG = −20 V.

Table 7.2: Fitting Parameters used to reproduced the experimental data of Fig. 7.7.

T VT γ k0 µo α2

(K) (V) (A/V2+γ) (cm2/V1+γs) (A/V3+γ)

300 0.3 0.49 3.4× 10−10 0.005 2.4× 10−9

325 0.44 0.3 1.3× 10−9 0.015 10−7

350 2 0.14 3.4× 10−9 0.042 5.0× 10−6

7.7.4. Effects of the energy barrier

In Fig. 7.8, we analysed the experimental data measured in a BC pentacene TFT with Au-Pd contacts

[274]. The dimensions of the transistor are L = 10 µm, w=220 µm, and the gate dielectric is SiO2 with

290 nm thickness. Fig. 7.8(a) corresponds to the configuration Au-source/Pd-drain, and Fig. 7.8(b),

to the configuration Pd-source/Au-drain. The solid lines in both figures show the results of our model

using the parameters: VT = 16 V, γ = 0.18 and µo = 0.47 cm2/V1+γs, (ko = 5.02× 10−8 A/V2+γ). The

effect of changing the electrode only affects the value of the parameter α2: α2(Au) = 2.61×10−9A/V 3+γ

and α2(Pd) = α2(Au)/5.19 = 5.04 × 10−10A/V 3+γ . However, the use of the classical MOS model to
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Figure 7.8: Comparison of experimental output characteristics measured in a BC pentacene based OFET with
Au-Pd contacts [274] (symbols), with our compact model (solid lines). VG = -10, -20, -30, -40 V from top to
bottom. (a) Au source/Pd drain. (b) Pd source/Au drain.

characterize the transistor in Fig. 7.8 gives different values for the mobility and the threshold voltage: µ =

0.63 and 0.42 cm2/Vs and VT = 15 and 14 V for Figs. 7.8(a) and (b), respectively [274]. The importance

of using a proper compact model that includes the contact effects of OTFTs is again demonstrated. On

average the voltage drop at the contacts is VCaverage = −9.64 V.

7.8. Ideas for future work

One of the strengths of our model is the capability to separate the charge density at the contact

region from the charge density in the channel. We have seen that changes in the temperature lead to

small changes in the free charge density in the channel but large changes in the contact region (Fig.

7.7(d)). Some of the niche applications where OTFTs play an important role are as sensors [301], [302]

or photodetectors [56], for example. Monitoring the free charge density in the contact region under the

presence of different atmospheres or irradiation might help to explain the sensing characteristics of these

devices. In this regard, our model is a potential tool for this task.

In fact, these suggestions agree with recent studies of chemical sensors [302] and phototransistors.

[56]. The generation of charges by different physical or chemical mechanisms and the trap charging

in the contact regions decrease the contact resistance. The chemical or irradiation effects on the TFT

parameters such as the off-current, threshold voltage, bulk mobility, and field-effect mobility can be

investigated using our model. A link between the contact resistance and the threshold voltage would

open the possibility of designing the source and drain contacts using different metals or incorporating

self-assembled monolayers to optimize RC and maximize the sensing effect in organic TFTs.

Another strength of our model is its applicability to OTFTs that differ in structure and morphology.

The parameter αm added to the generic drift MOS model is enough to quantify the effects of the

contacts. One step forward in the improvement of OTFTs would be to find the relation between this

parameter and structural variations in the active organic material, such as grain boundaries, interface

states or defects. This would help to achieve good reproducibility in the fabrication of OTFTs. We have
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seen in this chapter an example of what is found in the state-of-the-art OTFTs: a great variability in the

characteristics of similar OTFTs. Until the technology achieves good reproducibility in the fabrication

of OTFTs, simple and tunable compact models such as the one presented in this chapter must run in

parallel with high accuracy measurements [290], [303].
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8.1. Introduction

Ferroelectricity is an appealing property for PV applications as it allows the control of the internal

electric fields and injection barriers, which lie at the heart of the PV mechanism. When ferroelectric

materials are sandwiched between electrodes and illuminated, they can exhibit a variety of rich phe-

nomena including the generation of photo-excited charge carriers. The ferroelectric layer provides a

polarization-induced internal electric field, which can help in separating the photo-excited carriers, ge-

nerating effective built-in fields at the ferroelectric/electrode interface due to Schottky barriers that

can deplete the ferroelectric layers, etc. In addition, the ferroelectric materials give rise to unique PV

behavior based on atomistic asymmetry of current generation, the bulk PV effect.

The ferroelectric oxides are an intriguing class of photovoltaic materials, known to produce a very high

photovoltage, up to orders of magnitude larger than the bandgap, but rather a small photocurrent. Thus,

power conversion efficiencies have been orders of magnitude smaller than for classical photovoltaic devices

for many decades. However, in recent years there has been a significant enhancement in efficiencies

(Fig. 1 in [304]). The most significant advance has been obtained with Bi2FeCrO6 (BFCO), which is a

multiferroic material yielding a power-conversion-efficiency (PCE) from 3.3% in single layers to 8.1%

in a multi-absorber system based on BFCO, obtained by stacking three layers with different bandgaps

[305].

Building on this success, lower cost materials and device fabrication approaches for high efficiency

ferroelectric PV should be developed for practical and reliable applications. Attaining this objective

requires an in depth understanding of the operation mechanism of the ferroelectric PV effect in such

materials, which in turn will require close collaboration between experiment and theory. A variety of

interesting phenomena arise from the photoinduced effects in ferroelectrics, for example, the deformation

induced by irradiation of light, which can be explained as the combination of photovoltaic and piezo-

electric effects. The better understanding of these mechanisms should be in the focus of the community

in order to enhance the performance of ferroelectric solar cells. Nowadays, there is still an intense debate

regarding the mechanism which underpins the photovoltaic effect observed in ferroelectric materials and

how to improve the power conversion efficiency.

Ferroelectricity is characterized by permanent electric dipoles in the material that remain in the

absence of an applied electric field. In contrast to ordinary dipolar polarization, the material is always

in a polarized state in which a remnant polarization Pr exists even if the applied electric field F is

removed. Furthermore, the polarization direction can be reoriented (switched) by an applied field larger

than a certain value, which is denoted coercive field, Fc. From a theoretical point of view, the ferroelectric

polarization affects the transport behavior in semiconductors by means of changes in the band bending

and electrical field effects [306–308]. It has been observed in experimental and numerical works [309–311]

that polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces produce a switchable

rectifying behavior in a ferroelectric thin film. Thus, controlling the polarization with an external field

allows electrical tuning of charge transport and hence achieving unidirectional electric conduction.

The electrical current and voltage generated in ferroelectric solar cells has in fact two origins[312].

The first one is the conventional photovoltaic effect (sometimes called barrier photovoltaic effect), as in



8.2. Photovoltaic mechanisms in conventional solar cells 139

classical non-ferroelectric solar cells. It is due to an asymmetry in the real space, but it may be influenced

by polarization charges. The second effect is the bulk photovoltaic effect which arises from asymmetries

in k-space. In this chapter, we will focus our study on the first origin, the electrical current influenced by

the polarization charges. For the sake of clarity, we provide in Section 8.2, a study of the photovoltaic

mechanisms in classical solar cells, based on the mechanisms of charge separation and charge collection,

which can be obtained with normal non ferroelectric semiconductors. Then, in Section 8.3, we discuss

the actual phenomenology of ferroelectric solar cells, including the typical response of the solar cell,

as well as the best results obtained so far in terms of performance. Finally, in Section 8.4, we develop

a systematic evaluation of the different photovoltaic mechanisms that are influenced by ferroelectric

polarization, and we discuss systematic simulations based on numerical modeling to illustrate the effects

of these mechanisms.

8.2. Photovoltaic mechanisms in conventional solar cells

A number of general photovoltaic operation principles and general properties of solar cells [313–315]

are summarized here for later comparison with the ferroelectric photovoltaic devices (see [304] for a

detailed description).

Figure 8.1: Energy diagram for a metal/semiconductor/metal MSM structure. (a) Separate materials, a semi-
conductor with conduction band edge minimum Ec and valence band maximum Ev, and two contacts with work
function Φ1 and Φ2. (b) Energy diagram for a MSM after contact of electrode materials, showing the built-in
voltage given by the difference in work functions between both metals. (c) Photovoltage under illumination. The
Fermi levels are flat, and for each carrier the diffusion current equilibrates the drift current.

The photovoltaic model can be explained with the metal-semiconductor-metal structure of Fig. 8.1a.

By simplicity, the semiconductor bands are tilted as in an insulator. In Fig. 8.1a, we represent a light

absorbing semiconductor with valence and conduction band edges, Ev and Ec, respectively, that define

the semiconductor bandgap Eg = Ec − Ev. To produce electricity, the optically active semiconductor

layer needs to have suitable contacts. An asymmetry needs to be built in the device that will turn the

process of generation of electrons and holes into a photovoltage and photocurrent. This asymmetry is

realized by using contacts of different work functions. To simplify the present matter, we show in Fig.

8.1a a simple planar geometry, in which the semiconductor and the metals with work function Φ1 and

Φ2 are not yet in contact. In Fig. 8.1b, equilibration leads to a common Fermi level EF . The energy
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barrier for electron injection is defined as the difference between the energy level in the semiconductor

and the metal, namely ΦB,n = Ec − EF2, and the barrier for hole injection is ΦB,p = Ev − EF1. In the

model of Fig. 8.1a, the initial injection barriers of 8.1b are considered fixed, so that no surface dipole

is available for the Fermi levels to align. Therefore, the built-in voltage is distributed along the whole

absorbing layer, and is given by the difference of work functions:

Vbi =
Φ1 − Φ2

q
(8.1)

in terms of positive elementary charge q.

The electric field is related to the electrostatic potential distribution along a device Φ(x) as

dV

dx
= −F (8.2)

The voltage V , externally applied to the device, creates a separation of the Fermi levels of the contacting

materials [316]. If d is the thickness of the semiconductor and if the cathode is at x = 0 and the anode

at x = d, we have

qV = EFn(0)− EFp(d). (8.3)

In the case of MIM, the drift field has the value:

F =
Vbi − V

d
. (8.4)

Eqs. 8.2 and 8.4 indicate that an applied voltage also corresponds to the variation of V L across the full

device thickness. Under illumination, the drift field will be reduced as the Fermi levels of electrons and

holes are separated further away from their equilibrium position.

The displacement vector is a fundamental quantity for the description of the semiconductor elec-

trostatics. Such vector contains contributions from the electric field and the polarization vector P . The

dielectric displacement vector is given by:

D = ε0F + P (8.5)

where ε0 is the vacuum permittivity. The dielectric displacement is related to the free space charge

density as

dD/dx = ρf . (8.6)

Combining (8.5) and (8.6) results in
dD

dx
= ε0

dF

dx
+

dP

dx
(8.7)

dF

dx
=

1

ε0

dD

dx
− 1

ε0

dP

dx
=

1

ε0
(ρf + ρpol) =

ρf
ε0

(8.8)

where the polarization charge density is

ρpol = −dP

dx
(8.9)



8.2. Photovoltaic mechanisms in conventional solar cells 141

and ρT = ρf + ρpol. For the particular case of a semiconductor with space charges, then Eq. (8.8) would

read
dF

dx
=

ρT
ε0

=
ρf + ρpol

ε0
=

q

ε0
(p− n−N−

A +N+
D + ρpol) (8.10)

where the space-charge density, (p−n−N−

A +N+
D ) , includes the free electron, n , and hole p densities,

the fixed ionized donor density N+
D and the acceptor density N−

A . The total charge density across the

semiconductor, ρT , also includes the ρpol. For the general treatment of linear non-ferroelectric dielectrics

and ferroelectric materials, the relative dielectric permittivity is defined as

εr ≡ 1

ε0

dD

dF
. (8.11)

Combining Eq. (8.11) (dD/dx = ε0εrdF/dx), with Eqs. (8.7) and (8.9), the polarization charge density

is related to the free space-charge density as

ρpol = −dP

dx
= −

(

dD

dx
− ε0

dF

dx

)

= −(εr − 1)(ρpol − ρf ) = −εr − 1

εr
ρf . (8.12)

From Eq. (8.12), Eq. (8.6) can be written as:

dF

dx
=

ρf
ε0εr(P, F )

(8.13)

where the relative permittivity εr is given by the slope of the polarization curve in the linear regime,

beyond the coercive field (Eqs. (8.5) and (8.11)), as:

εr(P, F ) = 1 +
1

ε0

dP

dF
. (8.14)

In a linear non ferroelectric dielectric, the dielectric polarization is proportional to the electric field F

and εr is a constant, which can be defined as the effective relative permittivity in absence of spontaneous

polarization. Thus,

P (F ) = ε0(εr − 1)F (8.15)

and

D = ε0εrF. (8.16)

In a ferroelectric material, P is not linear with F , exhibiting a hysteresis cycle (Fig. 1 in ref. [317]).

For these materials, the relative permittivity follows the general expression (8.14). Depending on the

models used for the P − F relation, different effects can be described for a ferroelectric sandwiched

between two metal contacts, which will be discussed in detail in subsequent sections. In some cases,

the P − F hysteresis cycle is modeled by the switching between two constant values for the polariza-

tion when the coercive fields are surpassed. This means that the polarization is spatially independent

along the ferroelectric polarization direction with a discontinuity at the contacts. This situation creates

polarization-induced surface charges of opposite sign at the contact with the electrodes. Other models
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consider that the polarization is electric-field dependent, as shown in Fig. 1 in ref. [317], even at va-

lues different from the coercive fields. In this case, the polarization is spatially dependent giving rise

to the surface polarization charges plus a non-negligible distribution of polarization charges within the

ferroelectric bulk. In addition to the previous electrostatic features, the model of a solar cell requires

the knowledge of the charge carrier transport, through the current densities of electrons and holes Jn,p,

which include the drift and diffusion components:

Jn = qnµnF + qDn
dn

dx
(8.17)

Jp = qpµpF − qDp
dp

dx
. (8.18)

Here µn and µp are the charge carrier mobilities and Dn and Dp are the diffusion coefficients, for

electrons and holes, respectively. The diffusion coefficients and the mobilities are connected via the

Einstein relation Dn/µn = Dp/µp = kBT/q, where kB is the Boltzmann constant and T is the absolute

temperature. Electron and hole conductivities are defined as σn = qnµn, σp = qpµp. In general the total

current density of each type of carrier is directly related to the gradient of their Fermi level as follows

Jn =
σn

q
∇EFn (8.19)

Jp =
σp

q
∇EFp. (8.20)

The total current is:

J = Jn + Jp. (8.21)

Finally, the continuity equations relate the electron and hole current densities to the charge carrier

generation and recombination rates, G(x) and R(x), respectively:

Jn
dx

= −q[G(x) −R(x)] (8.22)

Jp
dx

= q[G(x) −R(x)]. (8.23)

Different expressions for the boundary conditions related to selective contacts are described below:

Jp(d) = qSp (p− p(d)) with p(d) = Nvexp(−qϕ1/kT ) (8.24)

Jn(0) = qSn (n− n(0)) with n(0) = Ncexp(−EG + qϕ2/kT ) (8.25)

Jp(0) = −qSp (p− p(0)) with p(0) = Nvexp(−qϕ2/kT ) (8.26)

Jn(d) = −qSn (n− n(d)) with n(d) = Ncexp(−EG + qϕ1/kT ) (8.27)

where the Nc and Nv are the density of sites for the conduction and valence bands, respectively. The
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Table 8.1: Fitting parameters used in the simulations for the metal-ferroelectric-metal.

ε0 (F/cm) 8.854×10−14 ND (cm−3) 0

έınf 10 NA (cm−3) 1018

µp,n (cm2/Vs) 10 Nc, Nv (cm−3) 1019

d (nm) 200 B (cm3/s) 10−6

Φ1 (eV) 0.06 EG (eV) 2

φ2 (eV) 1.4 kT/q (V) 0.026

Ec0 (eV) 2 Ev0 (eV) 0

Ψ0 (cm−4s−1) 1017 Fc (kV/cm) 100

Pr (µC/cm) 5 α (cm−1) 105

remaining two boundary values are related to the local potential φ(x), represented in Fig. 8.2, and are

defined as: φ(0) = Φ0/q and φ(d) = Vbi − V +Φ0/q. The values of the parameters used in this work for

the structure of Fig. 8.2 are shown in Table 8.1.

Figure 8.2: Electron energy diagrams of (a) the separate materials of a metal–semiconductor–metal structure
and (b) the complete structure in equilibrium with the parameters used in the model for numerical simulation.
Metal 1 is the cathode and metal 2 the anode. For the kinetic of the contacts, Sn and Sp are the interface
recombination velocities for electrons and holes, respectively.

The main figure of merit of a solar cell for the purpose of solar energy conversion is the current

density-voltage (J − V ) characteristic. From the J − V curve, one can extract an important parameter,

the solar to electric power conversion efficiency (PCE, also denoted η) which is the ratio between the

maximum generated electrical power and the incident power (Pin). The maximum power point (mp) is

usually written in term of the open-circuit voltage (Voc = V (J = 0)), the short-circuit current density
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(Jsc = J(V = 0) ), and the fill factor (FF ):

η =
JscVocFF

Pin
(8.28)

where, FF is related to the voltage and current density of maximum power generation as:

FF =
JmpVmp

JscVoc
. (8.29)

The standard reference for illumination is AM1.5G that simulates solar spectral irradiation with an

integrated power of 1000 W m−2 = 100 mW cm−2 (one sun intensity). Due to the very low efficiency of

ferroelectric solar cells, normally the detailed spectral characteristics of incident light are not reported

and simply it is labeled as monochromatic, white light or UV light.

Figure 8.3: (a) Band diagram for a Schottky barrier solar cell in the dark. (b) Corresponding current density-
voltage characteristic. The parameters used in the numerical simulation are reported in the Table 8.1.

An important PV model is based on the Schottky barrier formed at the contact. In Fig. 8.3, a p-

type semiconductor is shown with an ohmic contact for the majority carriers, at x = d, and a rectifying

contact for the minority carriers at x = 0. The built-in potential of the Schottky barrier in equilibrium is

given by the difference in work function between the metal contact, Φ1, and the one of the semiconductor,

Φsc = Φ2, where Φ2 is the work function of the metal at x = d:

Vbi =
Φ1 − Φsc

q
(8.30)

It is important to remark that Eq. 8.30 assumes vacuum level alignment after the formation of the

interface, that is, all the difference of work functions is established in the semiconductor space charge

layer.

Concerning the operation of the Schottky barrier solar cell shown in Fig. 8.3, a simple model approach

assumes fast charge separation in the space charge layer (SCL) [318], while in the neutral layer, collection
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is determined by the diffusion length as in Gärtner’s model [319]. At the rectifying junction, illumination

induces a separation of the minority carrier Fermi level from its equilibrium position, which gives rise

to the photovoltage. It should be remarked that Schottky barrier solar cells usually exhibit a low fill

factor, see Fig. 8.3 b, due to the fact that the increase of forward voltage reduces the extent of space

charge layer, increasing recombination exponentially while the photo-generated current drops.

8.3. Phenomenology of ferroelectric solar cells

In this section, we present a general overview of typical PV behavior observed in solar cells made

with a ferroelectric semiconductor as the central absorbing material. We describe the actual phenome-

nology and results that have been generally obtained so far, while specific physical mechanisms and

characteristics will be reviewed in the next section.

Figure 8.4 shows typical J − V curves of metal-ferroelectric-metal structure after poling in opposite

directions. In general, we define up, upward or positive poling when the remnant polarization points

to the top electrode and down, downward or negative poling when the remnant polarization points to

the bottom electrode (see Fig. 8.5, and 8.6). The behavior observed in Fig. 8.4a, consisting of a linear

J − V plot, is rather characteristic in many ferroelectric materials such as BFO and BaTiO3 [317, 320].

First of all, we remark the total inversion of the J − V curve by poling. This effect indicates that the

operation of these cells is very different from the picture established in the classical solar cell, in which

each contact has a fixed extraction property for either electrons or holes. Although the contacts in ref.

[317] are asymmetric (Pt and Ag), the charge extraction properties of the contacts of these devices are

not permanent but can be modified by the applied polarization, as shown in Fig. 8.4a providing a nearly

symmetric photovoltages. This is usually explained in terms of a model in which the contact Schottky

barriers are modified by poling, as shown in Fig. 8.5 and 8.6, and discussed in section 8.4.2.

Figure 8.4: Typical J − V characteristics of metal-ferroelectric-metal structure working under illumination
conditions: (a)ohmic characteristic and (b) rectifying behaviour as in the cases of refs. [317] and [321], respectively.

This linear characteristic have been observed in many ferroelectric solar cell material, which is in

contrast to the exponential diode characteristic that is typical of high performance solar cells. Howe-

ver, in recent years materials demonstrating rectifying behavior have been reported, as shown in the
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Figure 8.5: (a) Model of Schottky barriers modified by (b) positive or up and (c) negative or down ferroelectric
polarization.

Figure 8.6: Schematic description of the photovoltaic effect in a metal-ferroelectric-metal structure for (a) the
upward and (b) downward polarization states. The slope of the band edges at the interfaces can generate a
built-in field (Ebi). M1 and M2 are the bottom and top metal electrode, respectively.

J − V curves in [321] (schematically in Fig. 8.4b). In addition, the diode characteristic is completely

switchable by the applied electric field [322]. Yang et al. [323] showed that the J − V characteristic of

La2/3Sr1/3MnO3/BFO/ITO at one sun illumination could be switched by polarization. In the upward

direction, the curve is rectifying and the photocurrent is proportional to light intensity, while in the

downward state the curve is linear. The photocurrent is always opposite to the polarization direction.

These results are explained by a modification of Schottky barriers induced by polarization.

8.4. Ferroelectric mechanisms in solar cell devices

The photovoltaic performance of different materials and their combinations is controlled by a wide

variety of properties that must work in a beneficial way. Polarity and ferroelectricity affect fundamental

aspects of the operation mechanism, as we have highlighted in the previous section. They modify the
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overall energy diagram by affecting the band bending and the surface barriers.

Fig. 8.1 shows the energy diagram of an insulator capacitor with asymmetric contacts, which is also

a primitive model of a solar cell. At equilibrium, surface charges are present which are related to the

bound polarization charges at the metal-ferroelectric contact as σpol = P . Such density of charges can

be determined by Eq. (8.7). This charge is partially compensated by free charges accumulated at each

contact with surface density ±σf,eq, as depicted in Figure 8.7.

Figure 8.7: Polarization of a dielectric or ferroelectric, indicating the polarization vector P , the electric field
due to the bound charge Fp, and the electric field due to the free charge Ff .

In a solar cell device with selective contacts, we define as positive or forward bias a negative voltage

applied to the electron extraction contact (right contact in Fig. 8.1b), or a positive voltage applied to

the hole extraction contact (left contact in Fig. 8.1b). If electrodes are symmetric, the positive voltage

needs to be defined with respect to some geometry consideration, such as top or bottom electrode, as

mentioned earlier. The effect of the positive voltage is shown at the right of Fig. 8.1c: it tends to flatten

the conduction band, which counteracts the effect of Vbi.

8.4.1. Change of injection barriers and depolarization field

The specific mechanism of charge compensation at the external contacts has rather significant con-

sequences for the distribution of electrical field and heights of the injection barriers in a ferroelectric

solar cell. For this reason, we consider this point in some detail. When a ferroelectric material has been

poled by an applied electric field, the spontaneous polarization, P , needs to be considered in the charge

balance, as shown in Fig. 8.7. This polarization is assumed to be independent of the changes of voltage

as long as the coercive field is not exceeded. Under a larger voltage, the polarization direction can be
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reversed. The positive poling is achieved by applying a reverse bias voltage in excess of the coercive

voltage, while negative poling requires a forward voltage. In ferroelectric materials, the asymmetry of

the polarization curve is also due to the imprint, that is a preference for one polarized state in the

material [324].

For simplicity, we consider a Metal-Ferroelectric-Metal (MFM) junction with symmetric metal con-

tacts having the same work function, see Fig. 8.8. As the central layer is polarized, the vacuum level

(V L) is tilted even when the materials are separated, as shown in Fig. 8.8(a). Obviously, if the system

reaches equilibrium with flat Fermi level, the V L will be flattened and no electrical field exists within the

device. This is because the free charges coming to the electrodes exactly cancel the polarization field Fp.

However, one should take into account an important remark in [325]. The polarization bound charge is

not located in the metal contact but a distance δ away from it, which may be of atomic dimension. This

is due to the fact that ferroelectricity is suppressed gradually and not abruptly at the interface [326].

Therefore, surface dipole layers are formed, as indicated in Fig. 8.8(b) that modify the effective surface

injection barriers ΦB. If originally there is a built-in voltage due to different metal work functions, Vbi,

it is modified by polarization at each boundary. The modified built-in potential, V ′

bi, reads:

V ′

bi = Vbi ∓
Psδ

ε0εr
(8.31)

Figure 8.8: (a) Energy diagram of a MFM structure with ferroelectric polarization in the central layer, indicating
bound polarization charges at the edges of the layer. Two metals of same work function Φm are shown, and
also the preliminary height of the electron injection barrier ΦB,n is represented. (b) In equilibrium, free charges
appear in the metals achieving the alignment of the Fermi levels. Dipole layers at the contacts, created by the
spatial separation between the bound and the electrode charges, produce modifications of the initial injection
barriers. Note that Vbi = 0 is conserved along the V L.

The modification of the conduction band at a BiFeO3/metal interface can be estimated as

Psδ/ε0εr0 = ±0.6 V for Ps = ±65 µC cm−2, δ = 1 nm, and εr = 100 [321]. Fig. 2 in ref. [327]

shows how the change of injection barriers due to the inversion of polarization direction well explains

the switch of rectification in J − V curves. Using an important PV model [328, 329], we will note that
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this is the way in which the surface Schottky barriers are modified by poling.

In the following, we incorporate equations (8.1)-(8.3), (8.5)-(8.23) in a numerical simulator in order

to analyze the effects of the modification of contact energetics by polarization. A current-voltage curve

for a symmetric ohmic MFM structure with no ferroelectric polarization in the dark is represented in

Fig. 8.9(a). As expected, the simulation leads to a linear relation between the current density and the

applied voltage. When the ferroelectric layer is polarized, the energy barriers at the contacts are modified

accordingly, see Fig. 8.9(b). An effective barrier is developed with a rectifier behavior at the contact

on the left when an equivalent volume charge density ρpol = P/δ is placed at a distance δ from the

interface. A switchable behavior is obtained under the opposite polarization. Although the actual value

of Vbi is Vbi = 0, an effective built-in voltage V ′

bi is created along the MFM structure (compare Fig.

8.9(a) and (b)). The effective V ′

bi is shifted in the barriers with a value close to the order of Pδ/ε0εr, as

justified by the model of [325]. Fig. 8.9(f) shows the current-voltage curves under illumination. The loop

around the origin is created when switching from positive to negative polarization. For the negatively

poled samples, the short-circuit current and open-circuit voltage are positive and negative, respectively.

After the positive poling, the photocurrent direction is reversed showing the switchable ferroelectric

photovoltaic response.

Figure 8.9: Band Diagrams for a symmetric-ohmic MFM structure simulated under (a) no polarization in
dark, (b) positive polarization in dark, and (c) positive polarization with illumination. (d)-(f) Corresponding
current-voltage characteristics. The MFM is simulated using a doping concentration of NA = 1017 cm−3, and
an effective density of states NC = 1020 cm−3, a layer thickness of d = 100 nm, µ = 1 cm2/Vs, εr = 50 and
Pr = 6 µC/cm2. The ferroelectric effect is modeled with an effective localized charge at the interface related to
the bound and screening charges.

As discussed before, the polarization of a ferroelectric layer can be stabilized with compensation

charges, i.e. using conducting electrodes as in Fig. 8.7. The bound charge P at the contact with the
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electrode, is compensated by the same total charge −P at the electrode surface. The extent to which

the charge is spatially distributed at the interface is an important feature for PV properties, as already

mentioned in the model of [325]. Another important effect is that the charge in the conducting medium

may spread some distance from the interface, according to the screening length of the electrode material,

ls. Then, P is imperfectly screened, leading to a depolarization field [330], [331] with value

Fdp = − P

ε0εF

εF ls
εF ls + εed/2

= −P (1− θ)

ε0εF
(8.32)

where εe(εF ) is the relative dielectric constant of the electrode (ferroelectric layer), and θ is the compen-

sation ratio for polarization charge [332]. In the case of metal contacts with different relative dielectric

constants εe1 and εe2, the polarization field is [333] [334]:

Fdp =
P

ε0εF

εF (ls1/εe1 + ls2/εe2)

εF (ls1/εe1 + ls2/εe2) + d
(8.33)

where ls1 and ls2 are the respective screening lengths of the electrodes. Eq.(8.32) reduces to Eq. (8.31)

when εe1 = εe2 and ls1 = ls2. The depolarization field always exists in ferroelectrics and is responsible

for the instability of the spontaneous polarization. It becomes more important in the case of ultra-thin

films (few nm thickness), when these films are fully depleted. This is an important effect in memory

applications [335] and many studies indicate that the PV effect in ferroelectric materials is enhanced

by the depolarization field which separates charge carriers [336], [337] [338] [339]. [307] showed that

for a large dielectric constant material, the screening distance in the electrode material is considerably

enhanced which produces larger depolarization field and an increase of PV performance.

8.4.2. Schottky barrier models

It has been widely recognized that the formation of Schottky barriers at the ferroelec-

tric/semiconductor surface has a strong impact on PV properties. The modulation of the depletion

width by the ferroelectric polarization was shown by [306]. The state of polarization of the ferroelectric

contact layer can control the electronic state of the semiconductor at the surface, from depletion to

accumulation [328]. For a polarization parallel to the built-in field, the depletion width is small and

the resistance of the diode is low. Many publications have used a PV model based on the modification

of the Schottky barriers [340], and demonstrated the control of the depletion regions by altering the

polarization conditions [329, 340–342]. The model is also illustrated in Fig. 8.6. For such cases, the

current-voltage characteristic deviates from the classical diode like behavior and displays a hysteretic

diode like trend, due to the hysteretic nature of the polarization itself, see Fig. 4 in ref. [321]. The

large polarization charge detected at the BiFeO3/metal interface significantly modifies the size of the

Schottky barrier. Thus, for the upward polarization state, the Pt/BiFeO3 and BiFeO3/SrRuO3 interfaces

can have blocking and nearly non-blocking contacts, respectively, as shown in Fig. 8.6a. For downward

polarization the role of the barriers is reversed [321].

The characteristics of voltage switching have been amply described in the literature of ferroelectrics.
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The polarization of a symmetric Au/BFO/Au sample by [322] produces diode characteristics that are

completely switchable under reversal of polarization. The inversion of the diode characteristics depends

heavily on the poling temperature. The rectifying characteristics are explained in terms of a reduction

of the barrier height by the polarization charge that converts the initial Schottky barrier to an ohmic

contact, as mentioned earlier. The migration of positively charged oxygen vacancies is another effect

that often plays a dominant role. The migration of vacancies modifies the number of defects in the

depletion region and therefore the spatial extent of the depletion, which influences the charge collection

effectiveness of the barrier under illumination [323]. It is suggested that migration of oxygen vacancies

is a primary mechanism for the switchable PV effect [322, 343].

A series of publications from the 1970’s [344, 345] tackled modeling of the effect of ferroelectric

polarization on the voltage drop at the ferroelectric/photoconductor barrier. The authors could therefore

study the influence of a switch of polarization on the PV performances, usually at short-circuit. Using

numerical simulations, we now analyze in more details the Schottky solar cell shown in Fig. 8.3, including

the effective polarization charge density at the ferroelectric-metal interface. In the model, we assume an

asymmetric MFM structure with an ohmic contact on one side and a rectifier contact on the other side.

We solve the Poisson equation in the semiconductor material coupled to the continuity equation that

includes drift, diffusion and recombination processes. The polarization charges, including the screening

effects, are modelled with fixed effective charges of opposite sign located at a distance δ from both

metal-ferroelectric interfaces. They work as an effective dipole.

As shown in Fig. 8.10, the ferroelectric polarization affects the short-circuit current density and the

open-circuit voltage in opposite ways. In the case of the negative (positive) poling the effective built-in

voltage is higher (lower) than the initial built-in voltage. A higher built-in voltage produces a higher

open-circuit voltage. Thus, for negative poling the Voc is higher than the original Voc. The opposite trend

is observed with the value of Jsc. For negative poling, the injection barrier decreases but the barrier

at the extraction electrode increases which hinders the removal of the charge and Jsc decreases. In this

asymmetric device, no switching behavior is obtained. The positive and negative poling simply modify

the degree of asymmetry between the two contacts (a scheme of this idea is displayed in the bottom

file of Fig. 8.5 a,b,c). After the modification of the barrier heights with poling, the rectifier and ohmic

contacts still play the same role as rectifier and ohmic contacts, respectively.

In order to observe a switching behavior in the J − V curves a symmetric structure must be consi-

dered. The band diagram of a symmetric MFM structure with Schottky contacts and no ferroelectric

polarization under dark condition at zero applied voltage is represented in Fig. 8.11 a. In this case, the

current density both at positive and negative bias voltages is limited by the saturation current of the

Schottky diode, Fig. 8.11b. Under positive or negative polarization, the energy barriers are modified,

and subsequently, the symmetry of the J − V curve is broken. One contact plays the role of a rectifier

contact and the other one acts as ohmic contact (see the top file of Fig. 8.5a,b,c for illustration). The

J − V curves for these two poling cases are shown in Fig. 8.11c. When the MFM is illuminated, the

J − V curves show a hysteresis loop as depicted in Fig. 8.11d. We conclude here that in a ferroelectric

semiconductor device with ideal contacts, the polarization charge would be totally screened and no

PV effect at all would exist. However, real materials show a depolarization field, smooth termination
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Figure 8.10: Effect of the polarization charge at metal-ferroelectric interface: Current-voltage characteristic in
an asymmetric MFM structure under illumination with positive and negative poling and without poling.

of polarization, and other inhomogeneous features as Schottky barriers that do provide the control of

interface and bulk electric field by switchable spontaneous polarization.

One should realize that a large part of the reported ferroelectric solar cells have so far been dominated

by Schottky barrier effects, while in planar geometry, when the size of the absorber is in the range from

several micrometers to much larger (depending on the semiconductor optical absorption coefficient) in

order to harvest completely the solar spectrum, then the interfaces cease to play any role in deciding

the PV properties. However, in practice to grow micron to more thick film is quite challenging. To the

best of our knowledge there is no systematic study on the thickness dependence of the PV effect to

discriminate from interface and bulk effects. This seems a potential very interesting research to be done

in the future.

8.4.3. Spatially dependent polarization

The effect of considering the hysteresis P − F cycles as the switching between two constant values

of the polarization was treated in the previous section. In that case, a constant value of the polarization

along the ferroelectric with discontinuities at the contacts was modeled with the effective surface charge

at the interfaces. In this section, we analyze the effect of considering the hysteresis P − F cycles as the

switching between two polarization states in which P = P (F ) 6=constant.

The relation between the applied voltage and polarization in a ferroelectric material is obtained by

minimizing the total free energy of the system, W , which contains the contributions from the lattice,

Wlat, and the electronic contribution, Wel. There are different approaches to model the polarization-

field (P − F ) relation. The models based on Landau and Devonshire theories ([346],[347]), make use



8.4. Ferroelectric mechanisms in solar cell devices 153

Figure 8.11: (a) Electron energy scheme of a symmetric Schottky MFM structure with the following parameters
of the ferroelectric semiconductor: doping concentration of NA = 1017 cm−3, film thickness of d = 100 nm,
µ = 1 cm2/V s and εr = 10. The height of the energy barriers at the contacts are considered to be 0.8 eV.
(b) Current-voltage characteristic for this MFM structure in dark with no poling effects. The semiconductor is
considered ferroelectric (c), (d) Current-voltage characteristics in the MFM structure under positive and negative
(c) polarization without and (d) with illumination.

of the relation between the free energy W with the polarization W (P ) and relate the electric field

and the polarization as F = dW (P )/dP [346], [308]. An approximation of this model is based on the

hyperbolic tangent (tanh) function [346]. ([348], [349], [350]) also interpreted the device characteristics

for ferroelectric devices based on a tanh-function to reproduce the ferroelectric polarization hysteresis.

Finally, Preisach’s model includes a history-dependent electric field effect [351], [352]. The widely used

tanh-function [306], [353] , [350] is given by the expression:

P (F ) = ε0(εr∞ − 1)F ± tanh

(

Fc ± F

Fc

)

(8.34)

where Pr is the remnant polarization and Fc is the coercive electric field. Eq. (8.34) is an approximation
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that considers that the intrinsic polarization in a sample is the superposition of the polarization of all the

elementary dipoles [353]. This approach is simple but it models quite accurately the ferroelectric effect

on the performance of ferroelectric solar cells. Combining Eqs. (8.14) and (8.34) the relative permittivity

is:

εr = εr∞ ± Pr

ε0Fc
cosh−2

(

Fc ± F

Fc

)

(8.35)

where the positive sign corresponds to the forward scan and the negative one to the reverse scan. To

assess the effect of ferroelectric polarization on the PV performance of solar cells, we apply the previous

modeling equations to the Schottky barrier solar cell studied in Fig. 8.3.

Figure 8.12: Energy diagram along the device of Figure 8.3 and parameters defined in Table 8.1 for an ap-
plied voltage of 0.5 V (during the forward scan) and NA = 1018 cm−3 (a) without polarization and (b) with
polarization. In this example, the device length is L = 200 nm and is biased at 0.5 V.

In order to isolate the effect of this phenomenon, the effect of the polarization charges is neglected in

a first step, but is incorporated subsequently. Fig. 8.12 represents the energy diagrams along the device

without polarization (a) and with polarization in (b), both for a forward scan. The inclusion of the

ferroelectric polarization (8.35) in the Poisson equation (8.13) leads to a significant modification in the

depletion region of a semiconductor, as shown in Fig. 8.12. In ferroelectric materials, the existence of

ferroelectric polarization decreases the total density of charge ρT = ρ/εr, as inferred from section 8.2,

Eqs. (8.9) and (8.13). Thus, the polarization induces a deeper penetration of the electric field within the

bulk of the semiconductor and the depletion width increases. According to Eq. (8.14) a large dielectric

constant can be obtained at electric fields close to the coercive field Fc, where the slope is very large.

Around this value of the electric field, a large depletion region is obtained. The increment of the depletion

region with the polarization makes the length and doping of the active layer to play an important role

in the device characteristics.

In the last two sections, 8.4.2 and 8.4.3, we have studied separately the contribution of two ferroe-

lectric effects on the performance of MFM solar cells: the polarization charges at the interfaces, which

modify the effective injection barriers, and the spatially dependent polarization (or electric field depen-

dent permittivity), which modifies the extension of the effective depletion region in the semiconductor.

Now, we study both effects simultaneously in different MFM structures. In an asymmetric MFM solar

cell, none of both effects, separately (Fig. 8.10) or simultaneously (Fig. 8.13(a)) allow a switching beha-
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vior in the J − V curves. The reason is the initial strong asymmetry of the structure. The existence

of negative or positive poling only modifies the value of the effective built-in voltage (high value wit-

hout polarization), and yet it is not enough to create a switchable behavior (see right column of Fig.

8.5(a,b,c).

Figure 8.13: Combined effect of the spatially dependent polarization and the polarization charge density at
the MF interface on the performance of MFM solar cells, underillumination with positive and negative poling.
Current-voltage characteristic in an asymmetric (a) symmetric-Schottky (b) and symmetric-ohmic (c) MFM
structure.

In Figs 8.13(b) and (c), we include both effects in the simulation of symmetric-ohmic and symmetric-

Schottky MFM diodes. The symmetric-Schottky MFM diode shows a noticeable hysteresis loop in the J−
V curves, Fig. 8.13(b), as observed experimentally in the literature. In the case of ohmic-symmetric MFM

diodes, surface polarization charges create a small rectifier barrier at one of the contacts. Nevertheless,

its effect is diminished by the bulk effects associated to the electric field dependent permittivity in the

bulk reducing the hysteresis loop, Fig. 8.13(c).

As a first conclusion, symmetric Schottky MFM structures are thus necessary to obtain a noticeable

switchable behavior or a large hysteresis loop in the J−V curves under illumination. A second conclusion
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is that both effects associated to the ferroelectric polarization (surface polarization charges or bulk

polarization charges) are necessary in order to interpret experimental J − V curves obtained so far.
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We have developed a model for the charge transport in a symmetric single-carrier metal–organic-

metal device that incorporates a mobility model with dependences on the electric field and the tempe-

rature. The model describes current-voltage curves that show an ohmic regime and a region controlled

by space charge effects. The transition between these regions has not been reproduced previously by

using a single physical model. We have described the importance of considering a finite value of the

free charge density at the metal–organic interface in the formulation of the model and its results. We

have also described a procedure to evaluate the value of this boundary condition at the metal–organic

interface.

This model allows for the interpretation of a wide range of experimental data reported in publications

from several research groups. We have analyzed experimental data taken in samples of different lengths

and measured at different temperatures. From these analyses, we have observed a strong relation between

the free charge density at the interface with the current density and the temperature. However, no

dependence with the device thickness has been found. We have proposed an empirical expression that

relates the charge density at the contact with the current density and the temperature for ITO/CuPc/Al

diodes operating in the SCLC regime. This can be a first step towards a compact expression that is

valid for other organic material and interfaces.

In addition to the SCLC regime we have studied the ILC regime in a symmetric single-carrier

metal–organic-metal device. We have presented a unified procedure to interpret and model cu-

rrent–voltage curves of organic diodes with different barrier heights at the interface and measured

under different physical conditions. The procedure is applied to the Ohmic, space-charge and injection

limited regimes. The difference between these regimes is the value of the free charge density at the me-

tal–organic interface, which is related to the height of the energy barrier, the organic material, the doping

concentration and the temperature. The solution of the transport equations with this proper boundary

value for the charge density at the metal–organic interface allows for finding the current–voltage curves

of the structure. We have studied the evolution of the free charge density among the Ohmic, ILC and

SCLC regimes in different organic materials. This study has led to a compact model between the current

density and the free charge-carrier density at the interface. Our procedure can be potentially useful in

the characterization of technological aspects and problems that affect the performance of organic diodes

and can also be applied to shed light on the contact region of OTFTs.

In this regard, we have provided a simple and fast technique to detect changes in the energy barrier

at the interface or the presence of extra generated thermal carriers originating from the modification

of the contact region of an organic device. Our method analyzes experimental J − V curves measured

in metal–organic contacts, extracts the values of the free charge density at the interface and relates

this value with the current density. The evolution of the charge density vs. the current density with

the changes of the metal– organic contact allows for detecting the physical origin of these changes.

Our procedure has been applied to characterize technological aspects and problems that affect the

performance of organic diodes such as the presence of impurities, trapping effects, degradation or surface

treatment of the interfaces. We have corroborated our results with more complex experimental techniques

and have obtained similar conclusions. In this regard, our procedure provides a quick starting point in

the improvement and treatment of the contacts. It defines the initial clues after which more precise and
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costly experimental techniques can be employed for further analysis.

In addition to symmetric diodes, we have analyzed asymmetric structures. Analytical and numerical

methods have been developed to determine the value of the charge carrier concentration at the charge

injecting contacts in both cases as function of the device current density. We have studied the evolution

of the free charge density among the Ohmic, ILC and SCLC regimes in different organic materials. This

study has led to a compact model between the current density and the free charge-carrier density at the

interface. The carrier concentrations at the charge injecting interfaces were extracted from experimental

current-density vs. voltage curves, and are power-law functions of the total current density in organic

diodes at reverse bias V < 0 and at forward bias voltages greater than the built-in voltage V > Vbi. Under

these conditions, the drift charge transport is dominant. The power-law functional relation p(0) = K1J
m

was verified for symmetric diodes with different injection barriers, and for asymmetric diodes with

different built-in voltages and at different temperatures. The exponent in the power law function is

around m ∼ 0.75 for the investigated organic diodes. The proportional constant K1 in the power law

function follows an exponential dependence on the injection barrier.

The carrier-density vs. current-density relation extracted for single-carrier devices has been introdu-

ced as boundary condition for the charge at the injecting contacts in the simulation of double-carrier

devices, and immediately an excellent agreement has been achieved between the simulated and expe-

rimental current-voltage curves of the double-carrier devices. The significance of this characterization-

simulation approach is the establishment that the relation between unipolar and bipolar devices is

through the charge density at the charge injecting contacts, and the charge density at these interfaces

are a power-law function of the total current through the device.

We have completed the study of a metal-organic-metal structure with the incorporation of illumina-

tion effects. We have addressed the effect of the boundary values in the simulation of current voltage

curves of organic solar cells under illumination. A model for the boundary values of the free charge

densities at the anode and cathode interfaces has been proposed. The model is based on the previously

developed model for single-carrier and bipolar organic diodes and includes experimental observations

made by other authors in OSCs. The model relates the free charge density at the interfaces with the

current density flowing through the OSC by means of a power-law function. The power-law function

can describe both the injection of charge that occurs at voltages greater than the open circuit voltage

as well as the extraction of photogenerated charges at voltages lower than the open circuit voltage.

The model includes a set of parameters that take into account the operating conditions and features

of the OSCs. The model has been checked in darkness and under illumination conditions. A perfect

agreement between experimental data from other authors and our numerical results has been obtained.

The model also reproduces anomalous S-shape current-voltage curves, typical behavior of OCSs with

blocking contacts and interfaces with low recombination surface-velocities.

To extend the applicability of our study to other devices and physical mechanisms, the work ends with

the study of the contact effects in organic thin film transistors (OTFTs) and the study of ferroelectric

aspects in solar cells. We have proposed a compact model for the current-voltage characteristics of

organic thin-film transistors (OTFTs), which includes the effects of the contact regions.

By carefully inspecting past and current achievements in modeling the contact effects of OTFTs,
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we have proposed a model for the current–voltage curves at the contact region that unifies different

trends found in experimental data. This model, which is characterized by only one parameter, has been

embedded in a generic charge drift model that also includes a gate voltage-dependent mobility. The

model is easily reduced to the generic FET model with a constant mobility and no contact effects.

We have proposed a characterization procedure to extract the values of the parameters of the OTFT

model, which does not need major reassessment as compared to those for crystalline FETs. We have

obtained reliable and good fitting of the TFT generic model to experimental data. We have checked

the consistency in the bridge between physical origin of the contact effects and the parameters of the

model. The proposed model is a powerful tool to describe the large amount of different structures or

fabrication processes the same type organic material in an OTFT can be subjected to. The model cap-

tures, in a consistent and relatively simple way, the essential behavior of transistors when temperature,

channel length, and width and different energy barriers at the contact region are varied. It also provides

information about the free charge density along the transistor channel.

Finally, we have included ferroelectric effects in the physical model of a metal-ferroelectric-metal

(MFM) solar cell. Our analyses provide a general picture of the influence of ferroelectric effects on

the actual power conversion efficiency of the solar cell device, and we are able to assess whether these

effects or their combinations are beneficial or counterproductive. The ferroelectric polarization affects

the band bending and the surface barriers. We have analyzed phenomena relevant to device operation:

the polarization modulated Schottky barriers at metal-ferroelectric interfaces, depolarization fields, and

the switchable rectifying behavior of ferroelectric thin films. From numerical simulation, we concluded

that symmetric Schottky MFM structures are necessary to obtain a typical switchable behavior in

the current-voltage curves under illumination. Effects associated to both the ferroelectric polarization

surface polarization charges and the spatial dependent polarization are necessary in order to interpret

experimental current-voltage curves obtained so far.

9.1. Future Work

In this section, suggestions for future work are presented, as a continuation and extension of the

research described in this thesis. Some of the applications of this thesis have been recently addressed

and even some of them have been published [354].

Modeling Organic Solar Cells under degradation mechanisms as a function

of time

Organic solar cells can degrade under illumination as well as in the dark. The degradation of OSCs

modifies of the current-voltage J − V characteristics, reducing the efficiency of the solar cell. Many

works are devoted to the degradation slowdown of OSCs, testing novel active materials or encapsulation

[5]. Other works take advantage from this degradation to make sensors for air, humidity, oxygen, water

or other compounds. Different effects have been proposed as degradation mechanisms: the increase of

charge trapping in materials and at the contact interfaces, and the change of optical properties. A
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simulator that includes these degradation mechanisms would be desired (but not available) to predict

the behavior of the solar cell in relation to a wider range of materials and structures. Such a simulator

would be very useful in the solar cell design and manufacturing. It should be easy to adapt to new

problems and tasks that can arise in the future.

Modeling of Perovskites Solar Cells and Hybrid Solar Cells

The sharply increment of efficiency on perovskite solar cells in these years has captured the attention

of the photovoltaic’s researchers. To explain the hysteresis of the J − V curves, the experimentally

observed giant relative permitivity, and the capacitance measures, new mechanisms have been proposed:

the ferroelectricity, the ion migration and trapping and de-trapping of charge. Recently, the ion migration

have been proposed as the main mechanism which controls the performance of perovskite solar cells.

The ions move while the sweep of the applied voltage takes place to measure a J − V curve. A time

dependent simulator of solar cells that explains how the different ions, cations and anions, moves on the

semiconductor is essential to understand the experimental hysteresis loops observed in the literature.

Simulation of Multilayer structures

Perovskite solar cells have also emerged as attractive candidates to boost the performance of silicon

solar cells in perovskite/silicon multilayer solar cells. Recently, B. Niesen et al. [355] have presented

perovskite/silicon tandem cells in the mechanically stacked 4-terminal configuration with efficiencies of

up to 25%. On the other hand, a ferroelectric layer can help to control the performance of solar cells.

Thus, the combination of ferroelectric oxide perovskites with conventional (silicon) or emerging (organic,

lead halide perovskite) PV technologies would provide a greater performance. This is due to an improved

light harvesting, combined with a potentially higher generation yield afforded by the permanent dipole

of the ferroelectric material.
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10.1. Resumen

Hoy en d́ıa, nuestras necesidades diarias de enerǵıa están cubiertas principalmente por los combusti-

bles fósiles. Sin embargo, los combustibles fósiles tienen como hándicap ser un recurso limitado, además

de ser la fuente principal de contaminación del medio ambiente. Basándonos en la tendencia de creci-

miento de la población mundial junto con un incremento en el uso de los avances tecnológicos, es de

esperar que la demanda de enerǵıa aumente cada año. Ante este panorama, es necesario buscar fuentes

de enerǵıa duraderas y renovables.

La enerǵıa solar ha sido durante décadas una de las fuentes alternativas de enerǵıa más prometedoras.

La Tierra recibe aproximadamente 1.74 × 1017 W del Sol, mientras que el actual consumo de enerǵıa

es de unos 18 TW, es decir, 10.000 veces menos. Esto significa que la Tierra recibe del Sol más enerǵıa

en una hora que la demanda de enerǵıa en un año entero[1]. Entre los diferentes métodos para extraer

y convertir la enerǵıa solar en eléctrica, las células solares o fotovoltaicas acaparan la atención de

muchos investigadores. La intensa investigación en la ĺınea de dispositivos fotovoltaicos ha dado lugar

a una extensa variedad de células solares que suelen ser clasificadas por el tipo de capa semiconductora

fotoactiva utilizada. Éstas se clasifican en células solares de primera, segunda y tercera generación.

Las eficiencias de estas células solares son diferentes y su evolución con el tiempo están recogidas por

el Laboratorio Nacional de Enerǵıas Renovables (National Renewable Energy Laboratory (NREL) [2]).

Actualmente, las células solares más eficientes son las de multiunión que alcanzan un 50 por ciento. Las

células de la primera generación están constituidas por silicio cristalino (c-Si) o policristalino, (p-Si). La

segunda generación está formada por las células solares de lámina delgada, incluyendo las células solares

de silicio amorfo (a-Si), de teluro de cadmio (CdTe) y arseniuro de galio (GaAs). Finalmente, la tercera

generación engloba a las células solares emergentes. La mayoŕıa de las células de tercera generación no

se han comercializado y están en v́ıa de investigación o desarrollo. Esta categoŕıa incluye las células

solares orgánicas, de tinta, de puntos cuánticos y de perovskitas. El mercado fotovoltaico está dominado

por las células solares de silicio. El silicio es un material abundante en la naturaleza, además presenta

unas cualidades eléctricas muy deseables y un amplio espectro de absorción. Sin embargo, el principal

problema de las células solares de silicio es el coste de producción debido a importantes requisitos como

el uso tanto de salas blancas como de procesos realizados a altas temperaturas. Por esta razón, los

precios de la electricidad producida por las células solares son muy altos en comparación con los costes

de la enerǵıa convencional [3]. Abaratar la electricidad proveniente de células fotovoltaicas es posible a

través de un equilibrio entre la eficiencia y los costes requeridos para su fabricación. En este punto, las

células solares orgánicas-poliméricas (organic solar cell, OSC) son idóneas para el futuro del mercado

fotovoltaico ya que pueden alcanzar altas eficiencias de conversión con bajos costes de fabricación [3, 4].

Las células solares orgánicas presentan las ventajas propias de la electrónica orgánica: simplicidad

en los procesos de fabricación a bajas temperaturas, la afinidad por alteración qúımica, la flexibilidad,

su bajo peso, pueden imprimirse en áreas grandes y su bajo impacto medioambiental. Las células solares

orgánicas son compatibles con aplicaciones como la impresión de dispositivos fotovoltaicos en la ropa, su

uso en pantallas flexibles o en teléfonos recargables. Esto abre un nuevo abanico de posibilidades que las

células solares tradicionales no ofrecen. Sin embargo, los valores actuales de eficiencia están por debajo
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de la eficiencia de una célula solar estándar. Otra desventaja es la degradación que sufren las células

solares orgánicas debido a la exposición al aire y a la luz, disminuyendo su tiempo de vida media [5].

Para lograr la comercialización de esta tecnoloǵıa es necesario un esfuerzo conjunto entre desarrollo e

investigación para mejorar la eficiencia y el tiempo de vida de estos dispositivos [4, 5].

Una de las regiones más sensibles de una célula solar orgánica es la zona de contacto entre el

electrodo metálico y el material orgánico. Por un lado, los contactos controlan el flujo de la corriente. Los

portadores que son fotogenerados dentro del semiconductor deben de ser extráıdos en la interfaz metal-

orgánico. Por otro lado, la región del contacto es altamente sensible a la degradación. La formación de

una capa aislante cerca a la interfaz metal-orgánico o el decrecimiento de la velocidad de recombinación

en el contacto son efectos desfavorables que reducen la eficiencia de las células solares [6, 7]. Para

optimizar el rendimiento de estos dispositivos es requisito indispensable una detallada descripción de

los mecanismos f́ısicos que tienen lugar en la estructura metal-orgánico. El modelado y la simulación de

estas estructuras son herramientas muy adecuadas para conseguir este objetivo.

El modelado de las células solares orgánicas viene avalado por una extensa experiencia del grupo

en el campo de la simulación y el modelado de dispositivos electrónicos orgánicos e inorgánicos. Es de

destacar trabajos previos en los que se propuso un modelo unificado para la inyección y el transporte

en diodos orgánicos, y son la base del presente trabajo [8–11]. La idea principal de este modelo es que

incorpora juntos el arrastre, la difusión, la inyección termoiónica y túnel, y los mecanismos de oxidación

y reducción en el estudio de la interfaz metal-orgánico. Este modelo permite relacionar la densidad

de carga en la interfaz con el voltaje y la densidad de corriente. Más tarde, este modelo anaĺıtico fue

incorporado con éxito en un modelo compacto para transistores orgánicos de lámina delgada. El objetivo

era caracterizar la regiones de contacto en estos transistores [12–15].

10.2. Objetivos y metodoloǵıa

El tema central de esta tesis es el modelado y simulación de células solares orgánicas. En general,

para modelar la generación y el transporte de carga en células solares orgánicas, la comunidad cient́ıfica

utiliza las ecuaciones de transporte para semiconductores junto con modelos opto-eléctricos. Sin embargo,

hay aspectos particulares que difieren entre los investigadores, tales como los modelos utilizados para

la generación-recombinación de portadores de carga, para la movilidad, o las condiciones de contorno

empleadas para la densidad de carga, siendo este último aspecto el objetivo principal de este trabajo.

La idea fundamental es proponer un modelo que relacione la densidad de carga en la región de

contacto con la corriente que circula por dicha región. El objeto del modelo es combinarlo con los

modelos eléctricos y ópticos que se emplean en la simulación. Para alcanzar este objetivo se divide el

trabajo en retos secundarios con un aumento gradual del nivel de dificultad:

1. Determinación de la condición de contorno para la densidad de carga en la interfaz metal-orgánico.

En primer lugar se estudian estructuras metal-orgánico-metal (MOM) donde el transporte de

carga es unipolar, para evitar la complejidad del transporte bipolar; los contactos son óhmicos y

simétricos para evitar que la corriente esté limitada por el mecanismo de inyección y reducir aśı el
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transporte a procesos de deriva; y en oscuridad para despreciar los fenómenos ópticos.

2. En un segundo paso, se determina el valor de la densidad de contorno para la densidad de carga

libre en la interfaz en diodos MOM simétricos con altas barreras. Se analiza cómo afecta la inyección

a través de las barreras a los valores de las condiciones de contorno. Se comparan los reǵımenes

de corriente donde la corriente está limitada por inyección (injection limited current (ILC)), la

corriente está limitada por carga espacial (space-charge limited current (SCLC)), o por difusión,

y sus efectos en el modelo de la condición de contorno.

3. En tercer lugar, se estudian diodos unipolares asimétricos en oscuridad.

4. Estudio de la conducción bipolar en diodos orgánicos y en células solares orgánicas en oscuridad.

Se adapta el modelo para la densidad de carga en la interfaz para esta nueva situación.

5. Finalmente, el modelo se adapta a células solares orgánicas que trabajan bajo iluminación. Se pro-

porciona un procedimiento de caracterización de parámetros del modelo mediante la comparación

de datos experimentales con resultados numéricos.

6. El modelo desarrollado para estructuras MOM se aplica en el modelado y simulación de otros

dispositivos, en concreto transistores de lámina delgada (organic thin film transistor, OTFT). La

idea es extender la validez del modelo de la condición de contorno a otros dispositivos orgánicos o

afines a estos.

7. Estudio de las células solares ferroeléctricas. Se incorporan al simulador otros materiales y meca-

nismos f́ısicos, y se comparan los resultados con datos experimentales.

Para llevar a cabo estos objetivos se ha desarrollado en este trabajo un simulador computacional.

En este programa se implementan las ecuaciones de transporte junto con los modelos opto-eléctricos y

el modelo para las condiciones de contorno. En cada caṕıtulo se detallan los aspectos particulares de

cada uno de los pasos mencionados anteriormente.

10.3. Estructura de la Tesis

A lo largo de la memoria, nos centramos en el modelado de los mecanismos f́ısicos en las células solares

orgánicas, prestando especial atención al modelado de la región del contacto en estos dispositivos.

Este trabajo se divide en siete caṕıtulos principales a los que da paso esta introducción (Caṕıtulos

2-8). Aunque están escritos en un orden secuencial, cada uno de ellos se puede leer independientemente

del resto. Por esta razón la terminoloǵıa puede cambiar y la notación se define siempre en cada caṕıtulo.

Los primeros cuatro caṕıtulos se centran en el estudio de los mecanismos de inyección y transporte en

las estructuras metal-orgánico-metal. Estos caṕıtulos apuntan todos al modelado de las células solares

orgánicas, que es el principal objetivo de esta tesis y se trata en el caṕıtulo 6. El caṕıtulo 7 se centra

en el modelado compacto de los OTFTs. Aunque el tema puede parecer diferente, el problema de los

contactos está presente en ambos dispositivos. El modelo de contacto que desarrollamos en el estudio
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de los diodos orgánicos se utiliza dentro de un modelo compacto para TFTs. Finalmente, en el caṕıtulo

8, el simulador numérico se pone a prueba con otro tipo de célula solar: la célula solar ferroelectrica.

En el caṕıtulo 2, se propone un modelo para el transporte de carga en los diodos orgánicos. Este

proporciona una explicación f́ısica a la región de transición entre los reǵımenes óhmico y limitado por

carga espacial (SCLC). También explica las transiciones internas en el régimen SCLC que tienen lugar

cuando se incrementa el campo eléctrico aplicado al dispositivo. El modelo se basa en dos modelos bien

asentados: un modelo unificado para la inyección y el transporte de carga en diodos orgánicos, incluyendo

una apropiada condición de contorno para la densidad de carga libre en la interfaz metal-orgánico; y un

modelo de movilidad dependiente del campo eléctrico y de la temperatura. Se estudian diodos orgánicos

con bajas barreras de enerǵıa en la interfaz.

Los caṕıtulos 3 y 4 combinan el estudio de las corrientes limitadas por inyección (ILC) y por carga

espacial (SCLC). Se analizan diodos que presentan diferentes alturas de barrera de enerǵıa. Se propone

una unificación de los reǵımenes de SCLC e ILC a través de un modelo que relaciona la densidad de

carga de la interfaz con la corriente que circula a través de ella. A altas densidades de corriente, el

modelo de la densidad de carga en la interfaz sigue una función potencial con la densidad de corriente.

El modelo unificado permite la caracterización de contactos metal-orgánicos sujetos a diferentes trata-

mientos tecnológicos controlados o a diferentes procesos de degradación. Este modelo para la condición

de contorno es el primer paso para introducir los efectos de contacto en la simulación de dispositivos

orgánicos más complejos.

En el caṕıtulo 5 se estudian las condiciones de contorno para la densidad de carga en los contactos

metal-orgánico para diodos orgánicos tanto simétricos como asimétricos con conducción unipolar y

bipolar. A partir de un análisis de curvas experimentales de corriente-tensión, se propone un modelo

anaĺıtico que relaciona la densidad de carga en los contactos con la densidad de corriente. Se detalla

como el modelo que relaciona la densidad de carga en la interfaz metal-orgánico y la corriente, extráıda a

partir del análisis de diodos unipolares, puede ser utilizada como condición de contorno para dispositivos

bipolares.

En el caṕıtulo 6, se adapta el modelo de la condición de contorno, inicialmente desarrollado para

diodos unipolares y bipolares, a las células solares orgánicas. El modelo recoge información sobre los

efectos ópticos y eléctricos en las células solares orgánicas. La verificación de este modelo se ha hecho

mediante la comparación de datos experimentales con resultados numéricos. El simulador numérico

empleado para este fin combina el método de la función de transferencia para el estudio de la propagación

óptica, la teoŕıa de Onsager-Braun para describir la disociación del excitón y las ecuaciones de transporte

de arrastre y difusión junto con el modelo para la condición de contorno.

En el caṕıtulo 7, se aplica el modelo de corriente-tensión, inicialmente propuesto en diodos unipolares,

en el modelado de transistores orgánicos de lámina delgada (OTFT). El modelo que relaciona la corriente

en el transistor con el voltaje de cáıda en los contactos se introduce en un modelo anaĺıtico para curvas de

corriente-tensión para OTFTs. El modelo compacto resultante permite interpretar anomaĺıas en curvas

de corriente-tensión en OTFTs producidas por la región de los contactos.

En el caṕıtulo 8, se incluyen efectos ferroeléctricos en el modelo f́ısico de la célula solar. La idea es

extender la validez del simulador a otro tipo de células solares como es el caso de las células solares ferro-
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eléctricas. En el simulador se incorporan nuevos materiales y nuevos mecanismos f́ısicos y los resultados se

comparan con datos experimentales. En las simulaciones se estudian los efectos ferroeléctricos asociados

tanto a las cargas de polarización superficiales como a la dependencia espacial con la polarización. Se

verá como ambos efectos son necesarios para interpretar curvas de corriente-tensión experimentales.

Al final de la memoria están las conclusiones y las recomendaciones para trabajos futuros.

10.4. Conceptos generales usados en la tesis

En esta última sección del caṕıtulo introductorio, se presentan una serie de conceptos básicos que se

tratan en esta tesis. Están relacionados principalmente con la conducción eléctrica de los semiconductores

orgánicos y ayudan a entender los mecanismos de transporte en las células solares orgánicas.

10.4.1. Semiconductor Orgánico

La electrónica orgánica es un complemento muy prometedor a la tecnoloǵıa del silicio, pues extiende

las aplicaciones de la electrónica al campo de las grandes áreas, superficies flexibles y de bajo coste.

Todo ello gracias a procesos de fabricación relativamente sencillos realizados a baja temperatura. La

principal desventaja de los materiales orgánicos es el bajo valor de la movilidad de los portadores de

carga.

Los semiconductores orgánicos están basados en el carbono junto a un cierto número de grupos

funcionales que se encuentran adheridos a éste. La conductividad en los semiconductores orgánicos

depende de la conjugación, o alternancia de enlaces simples y dobles entre los átomos de carbono.

Esto origina la deslocalización de carga dentro de una molécula, permitiendo el movimiento libre de los

electrones en la misma. Basándose en la longitud de conjugación, los semiconductores orgánicos pueden

ser clasificados en dos grupos: de pequeña molécula, o semiconductores orgánicos y los semiconductores

de poĺımeros. Los semiconductores poliméricos están constituidos por una larga cadena de moléculas

pequeñas similares. Estos tienen una gran longitud de conjugación, al contrario que los semiconductores

de pequeña molécula, que tienen una longitud pequeña. Ambos tipos presentan unas caracteŕısticas

eléctricas muy similares, por ello que se estudian juntos.

A pesar de la buena conducción dentro de la molécula, los semiconductores orgánicos (de aqúı en

adelante, utilizaremos orgánicos para referirnos a orgánicos y a poliméricos) están formados por un

sistema de moléculas y la conducción entre diferentes moléculas por todo el material depende no solo

del movimiento de la carga dentro de cada molécula sino también de la transferencia de carga entre

moléculas. Las moléculas orgánicas están enlazadas por fuerzas débiles de Van der Waals, y por tanto,

la transferencia de carga entre moléculas no es tan sencilla como en un cristal covalente.

Transporte en Semiconductores Orgánicos

En general, los semiconductores orgánicos están constituidos por dos grupos de niveles energéticos

“bandas de enerǵıa” comúnmente caracterizadas por: el orbital molecular de mayor enerǵıa (highest oc-

cupied molecular orbital (HOMO)) y el orbital molecular de menor enerǵıa (lowest unoccupied molecular
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orbital (LUMO)). Por analoǵıa con los semiconductores inorgánicos, el HOMO y el LUMO están aso-

ciados respectivamente al máximo de la banda de valencia y al mı́nimo de la de conducción. El HOMO

y el LUMO están separados por una región energética no permitida “bandgap” de anchura t́ıpica entre

2 y 3 eV. Se puede conseguir una transición electrónica entre estos dos niveles por la excitación con

luz (radiaciones del espectro visible). Esto hace que los semiconductores orgánicos sean apropiados para

aplicaciones fotovoltaicas.

La validez de la teoŕıa de bandas (Figura 1.2 (b)) está abierta a debate [16]. Una mejor aproximación

para la conducción en los semiconductores orgánicos es el transporte por efecto túnel asistido térmica-

mente (hopping) sobre las barreras entre moléculas entre diferentes grupos de estados localizados [17]

(Figura 10.1 (a)). La teoŕıa de percolación o de hopping se utiliza para describir el comportamiento

de estos dispositivos [16]. Una de las evidencias principales de que el transporte es v́ıa hopping es el

hecho de que la movilidad depende del campo eléctrico y está activada térmicamente. Este tema se

abordará con más profundidad en el Caṕıtulo 2.

Figure 10.1: (Tipo-n) Modelos de transporte. a) Conducción por hopping/percolación que consiste en saltos
(efecto túnel asistido térmicamente) de un estado localizado a otro dentro de una distribución Gaussiana de
estados de enerǵıa en el LUMO para los electrones y en el HOMO para los huecos. Los portadores de carga
inyectados (o fotogenerados) pueden ser generados a altas enerǵıas, seguida por una relajación de portadores de
carga a la enerǵıa de transporte de cuasi-equilibrio. El transporte de la carga en estado estacionario tiene lugar
alrededor de la enerǵıa efectiva de transporte, que depende principalmente de la temperatura y el desorden. A
bajas temperaturas, los portadores de carga se relajan a los estados más profundos y permanecen atrapados. b)
Teoŕıa de bandas. En este caso, el transporte tiene lugar en la banda de conducción, EC , (para los electrones) y
en la banda de valencia, EV , (para los huecos). La ĺınea discontinua es el nivel de Fermi EF .

Mecanismos de inyección y Extracción de Carga

La inyección y la extracción de carga a través de una interfaz metal-orgánico están presentes en

cualquier dispositivo orgánico y en las células solares orgánicas sin excepción. La corriente que fluye

a través de esta interfaz es el resultado de diferentes factores tales como la altura de la barrera de

inyección, el campo eléctrico, la temperatura, reacciones qúımicas que dan lugar a dipolos interfaciales, y

la curvatura de bandas o el bloqueo (pinning) del nivel de Fermi (Chapter 3). Para pequeñas barreras, los
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contactos no imponen restricción al flujo de la corriente. El comportamiento del dispositivo está limitado

por el transporte en el volumen del semiconductor orgánico. En este caso, la corriente está limitada por

la carga espacial y sigue la t́ıpica dependencia cuadrática con el voltaje dada por el modelo de Mott-

Gurney [8, 18]. En el caso opuesto, que corresponde a altas de barreras de enerǵıa, el comportamiento

está principalmente limitado por la inyección a través de la barrera. En este caso se dice que la corriente

está limitada por los mecanismos de inyección. Los modelos de inyección tradicionales son el modelo

de emisión termiónica empleado para bajas barreras y el modelo de inyección por efecto túnel Fowler-

Nordheim para altas barreras.

10.4.2. Células Solares Orgánicas

Una célula solar t́ıpica es una estructura multicapa con un electrodo transparente y conductivo

(generalmente un ánodo de ITO), un substrato transparente, una capa de transporte por huecos o

bloqueador de electrones (tales como PEDOT: PSS), una capa activa orgánica (monocapa, bicapa o una

heterounión distribuida (mezcla)) y un cátodo (t́ıpicamente de Al o Ca/Al). El comportamiento general

de las células solares es el siguiente (Fig. 10.2). La luz (1), entra a través de un sustrato transparente, y se

propaga en la estructura de la célula solar orgánica, los electrones absorben la enerǵıa y generan excitones

(2) (pares electrón hueco excitados ópticamente). El potencial de enerǵıa almacenada no es suficiente

para disociar inmediatamente los excitones en pares electrón-hueco. Algunos excitones se pierden por

recombinación y otros se difunden (3) hasta que encuentran un punto de disociación (generalmente una

región con alto campo eléctrico o en la interfaz entre dos materiales diferentes), donde los electrones y

los huecos generados se separan (4). Estas cargas separadas son transportadas en direcciones opuestas

hacia sus respectivos electrodos (5) donde ellos son extráıdos (6).

Arquitecturas de Células Solares Orgánicas

La primera generación de células solares orgánicas se basaba en una capa activa. Este tipo de célula

solar está formada por una capa de semiconductor orgánico entre dos metales con diferente función

trabajo. La Fig. 10.2 (a) muestra el diagrama de enerǵıa con los diferentes mecanismos que tienen lugar

en una célula solar mono-capa. En esta configuración, uno de los contactos es óhmico y el otro es un

contacto Schottky. El contacto Schottky crea un fuerte campo eléctrico cerca del contacto, que es capaz

de disociar excitones. En este dispositivo, la eficiencia de conversión de enerǵıa es muy pobre. Este hecho

fue subsanado en la segunda generación de células solares orgánicas basadas en una estructura bicapa

(Fig. 10.2 (b)).

La idea fundamental que subyace en la bicapa es la de crear una interfaz entre dos materiales (donde

uno de ellos es donador y el otro aceptador) donde la disociación del excitón es más eficiente. La

eficiencia de la célula solar orgánica bicapa es todav́ıa baja debido a la alta tasa de recombinación del

excitón, que se atribuye a la pequeña longitud de difusión del excitón en los semiconductores orgánicos

(de aproximadamente 10 nm). La eficiencia fue mejorada con la introducción de las células solares de

mezcla (Fig. 10.2 (c)), en la que la fases de donador y aceptador están mezcladas a lo largo de toda la

capa fotoactiva. Estas interfaces distribuidas pueden ayudar a que los excitones se disocien antes de que
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la recombinación tenga lugar.

La figura 10.2 muestra el diagrama de enerǵıa de los principales mecanismos que aparecen en las

células solares orgánicas (a) mono-capa, (b) bicapa y (c) de mezcla. Todas estas arquitecturas establecen

la base para el diseño de nuevas estructuras, tales con las células solares pseudo-bicapa [19] o el test

de diferentes morfoloǵıas. Hay trabajos donde se han propuesto diferentes texturas y geometŕıas para

mejorar las propiedades ópticas del dispositivo [20, 21]. En la búsqueda de una óptima célula solar de

mezcla, hay investigadores que se centran en diferentes métodos de mezclar los materiales donador y

aceptador, evitando la creación de “islas” de un material alrededor del otro. Estas inclusiones pueden

actuar como centros de recombinación de trampas de carga que puede influenciar en la densidad de

carga local y el transporte de la carga.

Figure 10.2: Diagrama de enerǵıa y los principales mecanismos f́ısicos que tienen lugar en células solares(a)
monocapa, (b) bicapa y (c)de mezcla.

Modelos Numéricos

Para comprender y describir el funcionamiento de las células solares orgánicas, en la literatura se

encuentran diferentes modelos f́ısicos. Los simuladores numéricos de células solares orgánicas conside-

ran los principales mecanismos f́ısico-qúımicos que gobiernan el comportamiento del dispositivo. Hay
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una gran cantidad de trabajos excelentes que centran su atención en entender cada mecanismo y las

interacciones que tienen lugar entre estos. Estos mecanismos pueden clasificarse en tres grupos: ópticos,

eléctricos y opto-eléctricos.

Los mecanismos ópticos consideran la luz como una onda electromagnética que sufre reflexiones,

refracciones e interferencias en una estructura multicapa. Generalmente, estos mecanismos se modelan a

través del uso del método de la matriz de transferencia (Transfer Matrix Method (TMM))[22–26], que se

caracteriza por su bajo coste computacional y porque sus resultados reproducen con bastante fidelidad

los datos experimentales. Otros trabajos utilizan el método de elementos finitos (finite element method

(FEM))[21, 27] para solucionar las ecuaciones electromagnéticas en la estructura completa. El uso de

TMM y FEM, acopladas a las ecuaciones de arrastre-difusión permite, entre otras cosas, estimar los

espesores óptimos para la capa activa [21, 24–27]. Los modelos ópticos proporcionan de cómo salida la

tasa de generación de excitones, que se usa como parámetro en los modelos opto-eléctricos.

Los modelos opto-eléctricos tienen en cuenta los procesos que tienen lugar desde la creación hasta la

disociación de los excitones en la interfaz donadora-aceptadora de las células solares orgánicas [28, 29].

Estos incluyen la formación, recombinación y disociación del excitón. En general, los modelos están

basados en la teoŕıa de Onsager-Brown [30], [31], ya que facilita una expresión anaĺıtica. Estos modelos

determinan el valor de la densidad de carga libre que aparece después de la disociación de excitones que

se incorpora después al modelo eléctrico.

Los modelos eléctricos completan el conjunto de modelos necesarios para la simulación de células

solares orgánicas. Estos simuladores permiten calcular curvas caracteŕısticas de corriente-tensión. En

las publicaciones se puede encontrar dos tipos de modelos computacionales: el de deriva-difusión (drift-

diffusion (DD)) y el modelo de Monte Carlo (MC) [32]. La principal diferencia es que las ecuaciones

de DD se centran en las cantidades macroscópicas, mientras que el modelo de MC se centra en el

comportamiento de la part́ıcula a nivel microscópico [33], o del estudio realista de las morfoloǵıas de

mezcla [34].

La técnica de DD se usa de forma generalizada en el modelado de dispositivos semiconductores

sobre una geometŕıa genérica de 1, 2 o 3 dimensiones. Muchas publicaciones tratan el transporte de la

carga en células solares orgánicas utilizando el modelo de DD. Este método se emplea para simular los

dispositivos orgánicos y fotovoltaicos y permite estudiar, entre otros factores, la influencia del nivel de

dopado [35, 36], temperatura [37], tipo de recombinación, trampas [38], carga espacial, tiempo de vida

y/o movilidad [39, 40] sobre el rendimiento de las células solares orgánicas. También hay modificaciones

de las ecuaciones de DD para investigar el impacto de la morfoloǵıa de la interfaz y de la disociación

del excitón sobre la eficiencia del dispositivo [41].

El modelo DD engloba el sistema de ecuaciones diferenciales de Poisson, de deriva-difusión y las

ecuaciones de continuidad. En este trabajo, se utilizan ecuaciones de DD. Sus requisitos computacionales

son bajos, sus resultados numéricos proporcionan una buena concordancia con los datos experimentales,

y además ofrecen estrategias para mejorar la eficiencia del dispositivo. El uso del modelo de DD en

células solares orgánicas se combina con una aproximación, comúnmente llamada, enfoque del medio

efectivo, en el que la mezcla de materiales donador-aceptor se trata como un material nuevo efectivo

[42, 43].
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Modelo Compacto

Para acelerar el tiempo de coste computacional se recomienda el uso de modelos compactos. Un

modelo compacto se define mediante tres partes importantes: una expresión anaĺıtica que describe la

caracteŕıstica corriente-tensión, un procedimiento de extracción de parámetros con un intervalo definido

de valores de parámetros f́ısicos significativos y una etapa final de verificación del modelo propuesto.

Hay dos tipos de modelos compactos, modelos que son descritos a través de un modelo de circuito

equivalente [44], y otros extráıdos a partir de la solución anaĺıtica de las ecuaciones de DD utilizando

aproximaciones espećıficas [45, 46]. En este último grupo, hay diferentes estudios anaĺıticos que describen

las caracteŕısticas J − V en células solares de mezcla [42, 47, 48]. Se diferencian por el tipo particular

de aproximación empleada, como el perfil espacial de generación [47, 49], el modelo de recombinación

[45, 48, 50], el modelo de disociación de pares electrón-huevo, o un modelo particular de atrapamiento de

carga. En general, estos modelos son una herramienta muy deseable y útil para el diseño y la optimización

de células solares orgánicas sin tener que lidiar con las complejidades computacionales de la simulación

numérica [48, 50].

10.5. Conclusiones

A lo largo de esta tesis se han llegado a las siguientes conclusiones recogidas en esta sección:

Se ha desarrollado un modelo para el transporte de carga en diodos metal-orgánico-metal simétrico

con conducción unipolar, que incorpora un modelo de movilidad con dependencia con el campo eléctrico

y la temperatura. El modelo describe las curvas de corriente-tensión que muestran un régimen óhmico

y una región controlada por efectos de carga de espacial. La transición entre estas regiones no se hab́ıa

reproducido anteriormente mediante el uso de un único modelo f́ısico. Se destaca la importancia de

considerar un valor finito de la densidad de carga libre en la interfaz metal-orgánico en la formulación

del modelo y sus resultados. También hemos descrito un procedimiento para evaluar el valor de esta

condición de contorno en la interfaz metal-orgánico.

Este modelo permite la interpretación de una amplia gama de datos experimentales publicados

por varios grupos de investigación. Se han analizado datos experimentales tomados en muestras con

diferentes longitudes y medidos a diferentes temperaturas. A partir de estos análisis, se ha observado

una fuerte relación entre la densidad de carga libre en la interfaz con la densidad de corriente y la

temperatura. Se ha propuesto una expresión emṕırica que relaciona la densidad de carga en el contacto

con la densidad de corriente y la temperatura en diodos de ITO/CuPc/Al que operan en el régimen

de carga espacial. Esto fue un primer paso hacia una expresión compacta válida para otros materiales

orgánicos e interfaces.

Además del régimen de carga espacial se ha estudiado el régimen limitado por corriente en un diodo

unipolar simétrico. Se ha presentado un procedimiento unificado para interpretar y modelar las curvas

de corriente-voltaje de diodos orgánicos con diferentes alturas de barrera en la interfaz y medidos ante

diferentes condiciones f́ısicas. El procedimiento se aplica a distintas regiones: óhmicas y de corriente

limitada por carga espacial o por inyección. La diferencia entre estas regiones es el valor de la densidad
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de carga libre en la interfaz metal-orgánico, que está relacionada con la altura de la barrera de enerǵıa, el

tipo de material orgánico, la concentración de dopado y la temperatura. La solución de las ecuaciones de

transporte junto con este valor apropiado para la densidad de carga en la interfaz metal-orgánico permite

obtener las curvas de corriente-tensión del dispositivo. Se ha estudiado la evolución de la densidad de

carga libre en diferentes materiales orgánicos y diferentes tipos de contactos. Este estudio ha dado lugar

a un modelo compacto entre la densidad de corriente y la densidad de portadores de carga libres en la

interfaz metal-orgánico. Nuestro procedimiento puede ser potencialmente útil en la caracterización de

los aspectos tecnológicos y los problemas que afectan el rendimiento de los diodos orgánicos y también

se pueden aplicar para comprender la zona de contacto de los transistores orgánicos de lámina delgada

OTFTs.

En este sentido, se ha propuesto una técnica simple y rápida para detectar cambios en la barrera

de enerǵıa en la interfaz o de la presencia de portadores adicionales a los térmicos procedentes de la

modificación de la región de contacto de un dispositivo orgánico. Nuestro método de análisis de curvas

J−V experimentales medidas en los contactos metal-orgánicos, extrae los valores de la densidad de carga

libre en la interfaz para cada valor de densidad de corriente. Las variaciones de la evolución de la densidad

de carga frente a la densidad de corriente con los cambios del contacto metal-orgánico permiten detectar

el origen f́ısico de estos cambios. Nuestro procedimiento se ha empleado para caracterizar aspectos

tecnológicos y problemas que afectan al rendimiento de los diodos orgánicos, tales como la presencia de

impurezas, los efectos de atrapamiento, la degradación o el tratamiento de superficie de las interfaces.

Se han corroborado nuestros resultados con técnicas experimentales más complejas y se han obtenido

conclusiones similares. En este sentido, nuestro procedimiento proporciona un punto de partida rápida

en la mejora y el tratamiento de los contactos.

Además de diodos simétricos, se han analizado estructuras asimétricas. Se han desarrollado métodos

anaĺıticos y numéricos para determinar el valor de la concentración densidad de carga libre en los

contactos, expresado en función de la densidad de corriente del dispositivo. Se ha estudiado la evolución

de la densidad de carga libre entre las regiones: óhmicas, dominadas por inyección o por carga espacial

para diferentes materiales orgánicos. Este estudio ha dado lugar a un modelo compacto entre la densidad

de portadores de carga libres en la interfaz y la densidad de corriente que fluye a través de esta.

Las concentraciones de los portadores de carga en las interfaces se extrajeron a partir curvas J − V

experimentales, y siguen una función potencial con la densidad de corriente total en diodos orgánicos

en polarización inversa V < 0 y en polarización directa a tensiones superiores al voltaje barrera V <

Vbi. En estas condiciones, el transporte de carga de deriva es dominante. La función potencial p(0) =

K1J
m se verificó para los diodos simétricos con diferentes barreras de inyección, y para los diodos

asimétricos con diferentes voltajes aplicados y medidos bajo diferentes temperaturas. El exponente de

la función potencial es aproximadamente m ∼ 0.75 para los diodos orgánicos investigados. La constante

proporcional K1 muestra una dependencia exponencial con la barrera de inyección.

La relación entre la densidad de carga y la densidad de corriente extráıda para diodos unipolares

se introdujo como condición de contorno para la densidad de carga en los contactos inyectores en la

simulación de dispositivos bipolares, consiguiendo reproducir curvas de J − V en estos dispositivos.

Se ha completado el estudio de la estructura metal-orgánico-metal con la incorporación de los efectos
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de iluminación. Se ha abordado el efecto de los valores de las condiciones de contorno en la simulación

de curvas J − V en las células solares orgánicas bajo iluminación. Se ha propuesto un modelo para

los valores de las densidades de carga libres en las interfaces de ánodo y cátodo. El modelo se basa en

el modelo desarrollado en las primeras fases de la tesis para los diodos orgánicos de un solo portador

y bipolares e incluye observaciones experimentales realizadas por otros autores en las células solares

orgánicas. El modelo relaciona la densidad de carga libre en las interfaces con la densidad de corriente

que fluye a través de la célula solar por medio de una función potencial. La función potencial puede

describir tanto la inyección de carga que se produce con tensiones superiores a la tensión en circuito

abierto, como la extracción de los cargas fotogeneradas a tensiones inferiores a la tensión de circuito

abierto.

El modelo incluye un conjunto de parámetros que tienen en cuenta las condiciones de funcionamiento

y caracteŕısticas de las células solares orgánicas. El modelo ha sido comprobado en oscuridad y en

iluminación. Se ha obtenido un excelente ajuste entre datos experimentales de otros autores y nuestros

resultados numéricos. El modelo también reproduce curvas de corriente-tensión anómalas en forma de ‘S’,

comportamiento t́ıpico de las células solares con contactos bloqueantes e interfaces con bajas velocidades

de recombinación.

Nuestro modelo de contactos también se ha aplicado otros dispositivos y mecanismos f́ısicos, la tesis

finaliza con el estudio de los efectos de contacto en transistores orgánicos de peĺıcula delgada (OTFTs)

y el estudio de los efectos ferroeléctricos en las células solares.

Hemos propuesto un modelo compacto de las caracteŕısticas corriente-tensión de transistores orgáni-

cos de peĺıcula delgada (OTFTs), que incluye los efectos de los contactos. El modelo de contacto unifica

diferentes tendencias encontradas en datos experimentales. Este modelo, que se caracteriza por un so-

lo parámetro, se ha incorporado en un modelo genérico de deriva que incluye también una movilidad

dependiente de la tensión de puerta. El modelo se reduce fácilmente al modelo FET genérico con una

movilidad constante y sin efectos de contacto. Simultáneamente, se ha propuesto un procedimiento de

extracción de los valores de los parámetros del modelo para OTFTs. Con el modelo se han reproducido

una gran variedad de datos experimentales medidos en OTFTs. Se ha comprobado la consistencia entre

el origen f́ısico de los efectos de contacto y los parámetros del modelo. El modelo propuesto es una

herramienta muy útil para describir diferentes estructuras en OTFTs. El modelo incorpora efectos de

variación de la temperatura, la longitud y el ancho del canal, y contactos con diferentes barreras de

enerǵıa. El modelo también proporciona información sobre la densidad de carga libre a lo largo del canal

del transistor.

Por último, se han incluido efectos ferroeléctricos en el modelo f́ısico de una célula solar metal-

ferroeléctrico-metal (MFM). Nuestros análisis proporcionan una visión general de la influencia de los

efectos ferroeléctricos sobre la eficiencia de conversión de enerǵıa en células solares. Estos análisis per-

miten evaluar si estos efectos o sus combinaciones son beneficiosas o contraproducentes para el funcio-

namiento de la célula. La polarización ferroeléctrica afecta a la curvatura de bandas y a las barreras

en las interfaces metal-semiconductor. Se han analizado los fenómenos más relevantes en el funciona-

miento de estos dispositivos: la modulación de las barreras Schottky por la polarización en la interfaz

metal-ferroeléctrico, los campos de despolarización, y el comportamiento conmutable y rectificador de
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peĺıculas delgadas ferroeléctricas. De la simulación numérica, se concluye que las estructuras Schottky

MFM simétricas son las que reproducen el comportamiento conmutable en las curvas de corriente-voltaje

bajo iluminación observado de forma experimental. Efectos asociados tanto a las cargas superficiales de

polarización, como la polarización dependiente con el campo eléctrico (o lo que es lo mismo con el

espacio) son necesarios con el fin de interpretar las curvas experimentales de corriente-tensión.
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in molecularly doped polymers. Phil. Mag. Lett., 74:295, 1996.

[100] B. Bohnenbuck, E. von Hauff, J. Parisi, C. Deibel, and V. Dyakonov. Current-limiting mechanisms in
polymer diodes. J. Appl. Phys., 99(2):024506, 2006.

[101] Noam Rappaport. Research of physical processes of optical excitations and electric conduction in light
detection polymeric devices. Tesis, Technion Israel Institute of Technology, 2007.

[102] P. Mark and W. Helfrich. Space-charge limited currents in organic crystals. J. Appl. Phys., 33:205, 1962.

[103] CA. Di, F. Zhang, and D. Zhu. Multi-functional integration of organic field-effect transistors (OFETs):
Advances and perspectives. Adv. Mater., 25:313–330, 2013.

[104] P. Sigaud, J. N. Chazalviel, F. Ozanam, and K. Lahlil. Increased hole injection in organic diodes by
grafting of dipolar molecules on indium-tin oxide. Appl. Surf. Sci., 218:54–57, 2003.

[105] S. F. J. Appleyard, S. R. Day, R. D. Pickford, and M. R. Willis. Organic electroluminescent devices:
enhanced carrier injection using SAM derivatized ITO electrodes. J. Mater. Chem., 10:169–173, 2000.

[106] V. I. Arkhipov, H. von Seggern, and E. V. Emelianova. Charge injection versus space-charge-limited
current in organic light-emitting diodes. Appl. Phys. Lett., 83(24):5074–5076., 2003.

[107] L. Yan and Y. Gao. Interfaces in organic semiconductor devices. Thin Solid Films, 417(1-b2):101–106,
2002.



Bibliograf́ıa 183

[108] S. C. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, and M. Willander.
Injection- and space charge limited-currents in doped conducting organic materials. J. Appl. Phys., 89:3804,
2001.

[109] J. Campbell Scott. Metal-organic interface and charge injection in organic electronic devices. J. Vac. Sci.
Technol. A, 21:521–531, 2003.

[110] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bässler. Charge injection into light-emitting diodes:
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Appendix I

I.1. Analytical model for single-carrier organic diodes

The model considers drift-diffusion and known values for the hole densities at the interfaces, p(x =

0) = pA and p(x = L) = pC . It also assumes a constant value for the mobility and a linear evolution of

the potential along the organic material [42, 184, 356] given by,

V (x) = (Vbi − VAC)x/L (A.1)

where VAC is the anode-cathode voltage applied across the diode. Both sides of eq. (5.2) can be

multiplied by exp(qV (x)/kBT ) and integrated between x = 0 and x = L. Assuming a constant mobility,

the Einstein relation Dp/µ = VT , and since the current is also constant in the device, then

JAC

∫ L

0

exp(V/VT )dx = −qµ

∫ V (L)

V (0)

p exp(V/VT )dV (A.2)

−µqVT

∫ pC

pA

exp(V/VT )dp

We substitute (A.1) in the integral of the left-hand expression of (A.2) and integrate the right-hand

expression by parts by defining u ≡ p and v ≡ exp(V/VT ). The result after integrations is

JACVTL

(Vbi − VAC)
{exp[(Vbi − VAC)/VT ]− 1} = (A.3)

qµVT {pA − pC exp[(Vbi − VAC)/VT ]}

where V (0) = 0 and V (L) = Vbi − VAC were used for the anode and cathode potentials, respectively.

Canceling VT and multiplying by exp(VAC/VT ) and −q(VAC − Vbi)/L both sides of the equality, JAC

can be expressed as

JAC =
qµ(VAC − Vbi)

L

pA exp(VAC/VT )− pC exp(Vbi/VT )

exp(VAC/VT )− exp(Vbi/VT )
(A.4)
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Equation (A.4) is an analytical relation between the current density JAC and the applied voltage VAC

between the anode and the cathode of the diode.

Since in darkness JAC = 0 at zero applied voltage VAC = 0, then a relation between pA and pC is

established, as

pC = pA exp(−Vbi/VT ) (A.5)

With this relation, eq. (A.4) can be written as function of interface charge at the anode:

JAC =
qµ(VAC − Vbi)

L

pA[exp(VAC/VT )− 1]

exp(VAC/VT )− exp(Vbi/VT )
(A.6)

This model was used in [184] to reproduce experimental J − V curves at low voltages.

If we assume known values for the mobility and built-in voltage in the last equation, then the value

of pA can be related to experimental values of the current density JAC = Jexp and the applied voltage

VAC = Vexp as

pA =
JexpL

qµ(Vexp − Vbi)

exp(Vexp/VT )− exp(Vbi/VT )

exp(Vexp/VT )− 1
(A.7)

I.2. Extraction of the interface charge density in symmetric MOM diodes

For zero built-in voltage, eq. (A.7) reduces to

pA =
Jexp

qµFAV G
≈ Jexp

qµF0
, with FAVG = Vexp/L (A.8)

where Fo is the electric field at the charge injecting interface, and Fo is approximately equal to the

average electric field FAVG, when space charge effects are negligible. The relation between Fo and FAV G

is given in II.1.

I.3. Extraction of the interface charge density in non-symmetric MOM dio-

des (VAC < 0 and VAC > Vbi cases)

From the analytical expression (A.4) at positive-bias voltages higher than the built-in voltage VAC >

Vbi, the following asymptotical equation can be obtained

JAC = qµ(VAC − Vbi)pA/L (A.9)

The derivative of the current in eq. (A.9) as a function of the voltage is

dJAC

dVAC
= qµpA/L (A.10)
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In similar way, from the analytical expression (A.4) at negative-bias voltages lower than zero VAC < 0,

the following asymptotical equation can be obtained

JAC = qµ(VAC − Vbi)pC/L (A.11)

The derivative of the current in eq. (A.11) as a function of the voltage is

dJAC

dVAC
= qµpC/L (A.12)

Thus, eqs. (A.10) and (A.12) allow for extracting the values of pA and pC from experimental data

directly without knowing the value of the built-in voltage.
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Appendix II

II.1. Relation between average, interface and space-charge electric fields

In a semiconductor with constant mobility, assuming drift-only charge transport in eq. (5.2), the

current density is JAC = qµpF ; thus, p = JAC/(qµpF ). Substituting in Poisson’s eq. (5.4), the electric

field in presence of space charge qp is given by [10, 186]

dF

dx
=

qp

εrε0
=

q

εrε0

JAC

qµF
⇒ F

dF

dx
=

JAC

εrε0µ
⇒

dF 2

dx
=

2JAC

εrε0µ
(B.1)

Taking the anode contact at x = 0 and denoting the electric field at the anode contact with Fo ≡ F (0),

then

F 2(x) − F 2
0 =

2JACx

εrε0µ
⇒ F (x) =

√

F 2
0 +

2JACx

εrε0µ
(B.2)

Substituting eq. (B.2) in eq. (5.5) and integrating from the anode x = 0 to a position x in the device,

we obtain

−∆V = −(V (x)− VA) =

∫ x

0

√

F 2
0 +

2JACx

εrε0µ
dx (B.3)

where VA is the potential at the anode. Defining a new integration variable y ≡ F 2
o + 2JACx/(εrε0µ),

and integrating, then

−∆V =
εrε0µ

3JAC





(
√

F 2
0 +

2JACx

εrε0µ

)3

−
(

√

F 2
0

)3


 (B.4)

Rewriting eq. (B.4) for x = L (entire device), where −(V (L) − VA) = VAC , and dividing by L, one

gets

FAV G =
VAC

L
=

2

3F 2
SCLC

[

(

√

F 2
0 + F 2

SCLC

)3

−
(

√

F 2
0

)3
]

(B.5)
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where we have defined the electric field FSCLC due to space charge limited conduction (SCLC) as

F 2
SCLC = 2JACL/(εrε0µ) (B.6)

The relation (B.5) between the average electric field FAV G = VAC/L, the electric field at anode Fo and

the field FSCLC can be transformed into

3FAV GF
2
SCLC

2
+ F 2

0 =

(

√

F 2
0 + F 2

SCLC

)3

(B.7)

We have verified that this relation is correct for a symmetric MOM device, even when substituting

data from numerical simulations with the drift-diffusion model. This is expected since the drift charge

transport is dominant. The SCLC electric field is positive FSCLC > 0, although it might be very small;

in this case, FAVG ≈ Fo.
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A. B.Sancho Pareja, O. Marinov and M. J. Deen. HOPV15 -Hybrid and Organic Photovoltaics

Conference-, Meeting Abstracts, 2015.

13) Modeling Capacitive Effects on the Hysteresis of Perovskite Solar Cells P. López Va-

ro, L. Bertoluzzi, J. A. Jiménez Tejada, J. Bisquert. ABXPV, International Conference on Perovskite

Thin Film Photovoltaics, Meeting Abstracts, 2016.

14) Role of the Metal-Organic Interfaces in the Modeling of Organic Solar Cells J. A.
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