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SYNOPSIS

During most of the 20th century, police districts were drawn by

police o�cers on road maps with markers, just by following the major

streets in the area, without making too much of an e�ort to accomplish

geographic or workload balance. Since 1972, a number of mathematical

optimization models have been proposed to serve this purpose and the

Police Districting Problem (PDP) was born. The PDP aims at parti-

tioning the territory under the jurisdiction of a Police Department in

the best possible way, with respect to several time, cost, performance,

and topological attributes. Only after the recent advancement of Ge-

ographic Information Systems (GIS) and computer technology, which

allowed for reasonable computational time and ease of representation

and manipulation, automatic methodologies for the de�nition of po-

lice districts gained popularity among practitioners. However, studies

integrating GIS and sophisticated mathematical modeling for police

districting remain a rarity, and the �map-and-marker� method is still

one of the most applied redistricting procedures. Nevertheless, the im-

portance of a balanced de�nition of the police districts is unquestioned

and the implementation of decision-aid tools for the allocation of police

resources has proven to be extremely bene�cial. In fact, all the works

report a dramatic improvement in workload distribution compared to

handmade districts which, in turn, results in enhanced performances
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and e�ciency.

In Spain, the security of towns is borne by the Spanish National

Police Corps (SNPC), usually sharing territory with other local secu-

rity forces. The SNPC is an armed Institute of civil nature, subordi-

nated to the Ministry of Home A�airs. Among its duties are: keeping

and restoring order and public safety and to prevent the commission

of criminal acts. The SNPC is one of the country's most valued insti-

tutions and is located at the global forefront in the �ght against crime,

with the aim of constant innovation.

To improve the e�ectiveness of patrolling operations and increase

the e�ciency in the use of resources, the SNPC has started to develop a

Decision Support System (DSS) comprising tools and models to assist

various public security tasks. One of the main objectives of the system

is the implementation of a predictive patrolling policy to increase the

presence of agents in the areas where they are most needed, to reduce

the probability of occurrence of crime. To this end, the author, in

collaboration with professionals from the SNPC, developed a Predictive

Policing tool for crime risk forecasting based on the statistical analysis

of spatio-tempooral crime patterns, and an optimization model for

the de�nition of patrolling sectors con�guration, tailored to suit the

requirements of the SNPC.

The �rst contribution of the investigation is a Multi-Criteria Po-

lice Districting Problem (MC-PDP) for the e�cient and e�ective design

of patrol sectors. The goal is to partition the territory under the juris-

diction of a district into patrol sectors in the best possible way. The

criteria for evaluating the goodness of the con�gurations of the patrol

sectors were identi�ed after interviewing several service coordinators
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and a number of agents involved in public safety operations. The result

is a mathematical optimization model which �nds an e�cient con�gu-

ration in terms of prevention service and attention to calls, distributing

the workload equitably among agents. The model proposed is multi-

criteria in nature. Given the non-linear nature of its restrictions, the

author proposes for its solution a local search heuristic algorithm. A

case study on the Central District of Madrid is presented and the per-

formance of the algorithm is assessed. The author shows empirically

that the algorithm generates rapidly patrolling con�gurations that are

more e�cient than those currently employed by the SNPC.

The second contribution is a Decision Support System (DSS)

that can help to optimize the e�cient use of the scarce human resources

available is investigated. A DSS that merges Predictive Policing capa-

bilities with a Patrolling Districting Model is presented, for the design

of predictive patrolling areas. The proposed DSS, developed in close

collaboration with the SNPC, de�nes partitions of the territory under

the jurisdiction of a district that are e�cient and balanced at the same

time, according to the preferences of a decision maker. To analyze the

crime records provided by the SNPC, a methodology for the descrip-

tion of spatially and temporally indeterminate crime events has been

developed. The results of the experiments show that the proposed DSS

clearly outperforms the patrolling area de�nitions currently in use by

the SNPC. To compare the solutions in terms of e�ciency loss, the

author discusses how to build an operational envelope for the problem

considered, which can be used to identify the range of performances

associated with di�erent patrolling strategies.

The third contribution is the extention of the MC-PDP to gen-
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erate e�cient convex partitions on generic graphs, which increases the

practical usefulness and applicability of the model. Also, the author

proposes and compares three local search algorithms and tests them

on real crime data from the Central District of Madrid. Local search

algorithms move from solution to solution in the space of candidate

solutions (the search space) by applying local changes, until certain

termination criteria are satis�ed, e.g., a solution deemed optimal is

found or a time bound is elapsed. One of the main advantages of local

search algorithms is that they are anytime algorithms, which means

that they can return a valid solution even if they are interrupted at

any time before they end. For this reason, they are often used to

tackle hard optimization problems in a real-time environment, such as

the MC-PDP. Di�erent implementations of termination criteria and

area of search in di�erent local search algorithms are described. For

Simple Hill Climbing (SHC) at each iteration, the algorithm explores

the neighborhood of the incumbent solution to �nd a better one. The

neighborhood of a solution is the set of solutions that can be obtained

from the current one by changing it slightly. The algorithm terminates

when no improving solution is found or the time limit is exceeded. The

Steepest Descent Hill Climbing (SDHC) algorithm is a variant of the

SHC that explores the whole neighborhood of the incumbent solution

and chooses the best solution belonging to it. A Tabu Search algorithm

(TS), similarly to the SDHC, explores the whole neighborhood of the

incumbent solution. However, the TS chooses for the next iteration

the best solution found that is not tabu. Also, the TS does not termi-

nate if an improving solution is not found. This allows the algorithm

to escape local optima. The criterion that is used to declare a certain
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point of the neighborhood as tabu is based on a short-term memory.

During the exploration of a neighborhood all the solutions found that

are already included in the short term memory are marked as tabu

and their expiration counter are reset to initial set. Finally, at the end

of the iteration, all the expiration counters are decreased by one and

the solutions whose counters have reached zero are removed from the

short term memory. The algorithm terminates when the time limit is

exceeded, when no non-tabu solution is found in the current neighbor-

hood, or after a �xed number of non-improving iterations. The results

of the computational analysis show that the TS presented in this part

produces solutions that are on average better than those identi�ed by

the SDHC or SHC algorithms. Here, the author o�ers new interesting

lines to be pursued. In terms of modeling, solving the MC-PDP on a

graph simpli�es the inclusion of demographic data in the model, such

as the racial composition of a census district. This makes the DSS

more practical and realistic and further suggestions for research are

provided.
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SINOPSIS

Durante la mayor parte del Siglo XX, los agentes de policía dibu-

jaban con rotuladores los distritos de policía en los mapas de carretera,

simplemente siguiendo las principales calles de la zona, sin hacer de-

masiado esfuerzo en lograr un equilibrio en la distribución de áreas de

patrulla o la carga de trabajo. Desde 1972, se propusieron una serie

de modelos matemáticos de optimización para servir a este propósito y

así fue como nació el Problema de Distribución de Distritos Policiales

(PDDP). El PDDP tiene como objetivo dividir el territorio bajo la ju-

risdicción de un departamento de policía de la mejor manera posible,

con respecto a variaciones en tiempo, coste, rendimiento y caracterís-

ticas topológicas. Sólo después del reciente avance en los Sistemas de

Información Geográ�ca (SIG) y la tecnología informática, que permi-

tió tener un tiempo razonable de cálculo, facilidad de representación y

manipulación; es cuando las metodologías automáticas para la de�ni-

ción de los distritos policiales comienzan a ganar popularidad entre

los profesionales. Sin embargo, los estudios que integran SIG y los

modelos matemáticos so�sticados para la división en distritos de la

policía siguen siendo extraños, y el método de mapa-y-rotulador sigue

siendo uno de los procedimientos de redistribución de distritos más

aplicados. En cualquier caso, la importancia de una de�nición equili-

brada de los distritos de policía es incuestionable y la implementación

xiii
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de herramientas de ayuda a la decisión para la asignación de recursos

de la policía ha demostrado ser muy bene�ciosa. De hecho, todos los

informes señalan una increíble mejora en la distribución de la carga de

trabajo en comparación con los distritos hechos a mano, que, a su vez,

se traduce en un mayor rendimiento y e�ciencia.

En España, la seguridad de los núcleos urbanos es responsabili-

dad del Cuerpo Nacional de Policía (CNP), generalmente compartiendo

territorio con otras fuerzas de seguridad locales. El CNP es un insti-

tuto armado de naturaleza civil dependiente del Ministerio de Interior.

Entre sus funciones están: mantener y restaurar el orden y la seguridad

pública y prevenir la comisión de actos delictivos. El CNP es una de

las instituciones más valoradas del país y se encuentra a la vanguardia

internacional en la lucha contra la delincuencia, con un objetivo de

innovación constante.

Para mejorar la e�cacia de las operaciones de patrullaje y au-

mentar la e�ciencia en el uso de los recursos, El CNP ha comenzado

a desarrollar un Sistema de Soporte a la Decisión (SSD) que com-

prende herramientas y modelos para ayudar a diversas tareas de se-

guridad pública. Uno de los principales objetivos del sistema es la

implementación de una política de patrullaje predictivo para aumen-

tar la presencia de los agentes en las zonas donde más se necesitan, y así

reducir la probabilidad de ocurrencia del delito. Para tal �n, el autor,

en colaboración con profesionales del CNP, desarrolló una herramienta

Policial Predictiva para el pronóstico de riesgo de delitos basado en el

análisis estadístico de los patrones de criminalidad espacio-temporal,

y un modelo de optimización para la de�nición de la con�guración de

sectores de patrullaje, adaptado a los requisitos del CNP.
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La primera contribución de la investigación es un (MC-PDDP)

Problema Multi-Criterio de División de Distritos Policiales para el dis-

eño e�ciente y e�caz de los sectores de patrulla. El objetivo es dividir

el territorio bajo la jurisdicción de un distrito en sectores de patrulla

de la mejor manera posible. Se identi�caron los criterios para evaluar

la bondad de las con�guraciones de los sectores de patrulla después de

entrevistar a varios coordinadores de servicio y un número de agentes

implicados en las operaciones de seguridad pública. El resultado es

un modelo de optimización matemática con el que se logra una con-

�guración e�ciente en términos de servicio y atención a la prevención

de las llamadas, así como la distribución de la carga de trabajo de

manera equitativa entre los agentes. El modelo propuesto es de natu-

raleza multi-criterio. Dada la naturaleza no lineal de sus restricciones,

el autor propone para su solución un algoritmo heurístico de búsqueda

local. Se presenta un caso de estudio en el Distrito Central de Madrid

y el rendimiento del algoritmo es evaluado. El autor demuestra em-

píricamente que el algoritmo genera rápidamente con�guraciones de

patrulla, que son más e�cientes que las actualmente empleados por

el CNP. La segunda contribución es un Sistema de Soporte a la De-

cisión (SSD) que puede ayudar a optimizar el uso e�ciente de los es-

casos recursos humanos disponibles. Se muestra un SSD que combina

las Capacidades Predictivas Policiales con un Modelo de Patrullaje en

Distritos, para el diseño de las zonas de patrullaje predictivo. El SSD

propuesto, desarrollado en estrecha colaboración con el CNP, de�ne

las divisiones del territorio bajo la jurisdicción de un distrito que sea

e�ciente y equilibrado al mismo tiempo, de acuerdo a las preferencias

de quien tome las decisiones. Para el análisis de los registros de deli-



xvi SINOPSIS

tos previstos por el CNP, se ha desarrollado una metodología para la

descripción de los eventos delictivos espacial y temporalmente inde-

terminados. Los resultados de los experimentos muestran que el SSD

propuesto mejora claramente las de�niciones de área de patrullaje que

actualmente son usadas por el CNP. Para comparar las soluciones en

términos de pérdida de e�ciencia el autor discute cómo construir una

solución operativa para el problema considerado que pueda utilizarse

para identi�car la gama de actuaciones relacionadas con diferentes es-

trategias de patrullaje.

La tercera contribución es la extensión del MC-PDDP para

generar divisiones convexas e�cientes en los grá�cos genéricos, lo que

aumenta la utilidad práctica y la aplicabilidad del modelo. Además,

el autor propone y compara tres algoritmos de búsqueda local, y los

pone a prueba con los datos reales de la delincuencia en el Distrito

Central de Madrid. Los algoritmos de búsqueda local se mueven de

solución a solución en el espacio de soluciones de candidatos (el es-

pacio de búsqueda) mediante la aplicación de cambios locales, hasta

que ciertos criterios de terminación estén satisfechos; por ejemplo, una

solución considerada óptima es encontrada o transcurre un período de-

terminado de tiempo. Una de las principales ventajas de los algoritmos

de búsqueda local es que son algoritmos en cualquier momento, lo que

signi�ca que pueden devolver una solución válida incluso si se inter-

rumpe en cualquier momento antes de que terminen. Por esta razón, a

menudo se utilizan para hacer frente a problemas de optimización difí-

ciles en un entorno en tiempo real, como el MC-PDDP. Se describen

diferentes implementaciones de criterios de terminación y el área de

búsqueda en diferentes algoritmos de búsqueda local. Para Simple Hill
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Climbing (SHC), en cada iteración, el algoritmo explora los alrededores

de la posible solución para encontrar una mejor. El vecindario de una

solución es el conjunto de soluciones que se pueden obtener a partir

de la actual, cambiándola ligeramente. El algoritmo termina cuando

no se encuentra solución de mejora o se excede el límite de tiempo. El

algoritmo del Steepest Descent Hill Climbing (SDHC) es una variante

del SHC que explora todo el vecindario de la posible solución y elige

la mejor solución perteneciente a la misma. Un algoritmo de búsqueda

tabú (BT), de manera similar al DSSC, explora todo el universo de la

solución posible. Sin embargo, el BT elige para la siguiente iteración

que la mejor solución encontrada que no sea tabú. Además, el BT no

termina si no se encuentra una solución de mejora. Esto permite al

algoritmo salir del óptimo local. El criterio que se utiliza para nombrar

un cierto punto del vecindario como tabú se basa en una memoria a

corto plazo. Durante la exploración de un vecindario todas las solu-

ciones encontradas que ya están incluidas en la memoria a corto plazo

se marcan como tabú y su contador de caducidad se restablece a la

con�guración inicial. Por último, al �nal de la iteración, todos los

contadores de caducidad se reducen uno solo y las soluciones cuyos

contadores han llegado a cero se eliminan de la memoria a corto plazo.

El algoritmo termina cuando se supera el límite de tiempo, cuando no

hay solución no tabú en el vecindario actual, o cuando después de un

número �jo de iteraciones no hay mejora. Los resultados del análisis

computacional muestran que el BT presentado en esta parte produce

soluciones que son, en promedio, mejor que las identi�cadas por el

SDHC o algoritmos de SHC. Aquí, el autor ofrece nuevas líneas de in-

terés para ser investigados. En cuanto a la modelización, la resolución
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de MC-PDDP en un grá�co simpli�ca la inclusión de datos demográ-

�cos en el modelo, como la composición racial de un distrito censal.

Esto hace el SSD más práctico y realista, y se proporcionan sugerencias

adicionales para la investigación.
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CHAPTER 1

INTRODUCTION

For most of the 20th century, police districts have been drawn by police

o�cers on a road map with a marker, by simply following the major streets in

the area, without making a signi�cant e�ort to accomplish geographic or workload

balance [14]. Since the seminal paper by Mitchell [71], a number of mathemati-

cal optimization models have been proposed and the Police Districting Problem

(PDP) was born. The PDP aims at partitioning the territory under the jurisdic-

tion of a Police Department in the best possible way, with respect to several time,

cost, performance, and topological attributes. Use of automatic methodologies

for the de�nition of police districts only became popular among the practitioners,

after the recent advances in Geographic Information Systems (GIS) and computer

technology, that enabled reasonable computational times and ease of representa-

tion and manipulation [105]. However, studies integrating GIS and sophisticated

mathematical modeling for police districting remain a rarity [14], and the �map-

and-marker method� is still one of the most widely used redistricting procedures.

Nevertheless, the importance of a balanced de�nition of the police districts is un-

questioned and the implementation of tools for aiding in making the decisions for

the allocation of police resources has proven to be extremely bene�cial, as shown

by the substantial academic literature on this topic in the last decades [31]. In

fact, all the works report a dramatic improvement in workload distribution com-

pared to hand-made districts which, in turn, results in enhanced performance and

e�ciency.

In Spain, the security of towns is the responsibility of the Spanish National

Police Corps (SNPC), usually sharing territory with other local security forces.

The SNPC is an armed institute of a civil nature, dependent on the Ministry of

Home A�airs. Among its duties are: keeping and restoring order and public safety

1



2 CHAPTER 1. INTRODUCTION

and preventing the commission of criminal acts. The SNPC is one of the country's

most valued institutions and is located at the global forefront of the �ght against

crime, with the aim of constant innovation. In recent years, the socio-economic

context in Spain has been that of a serious crisis, which has reduced the resources

and the number of police o�cers available to the SNPC. In order to continue

providing the same level of security, the SNPC is taking cutting-edge steps to

increase its competitiveness. Under the current system, the distribution of patrols

is the responsibility of the inspectors who, under normal conditions, locate the

agents according to the neighborhood borders de�ned more than 50 years ago.

To improve the e�ectiveness of patrolling operations and increase the e�ciency in

the use of scarce resources, the SNPC has started to develop a Decision Support

System (DSS) comprising tools and models to assist in various public security

tasks [17]. One of the main objectives of the system is the implementation of a

predictive patrolling policy to increase the presence of agents in the areas where

they are most needed, to reduce the probability of the occurrence of crime. To this

end, the author helped in developing, in collaboration with professionals from the

SNPC, an optimization model for the de�nition of patrolling sector con�gurations,

tailored to suit the requirements of the SNPC. Since the model is required to be

included in the DSS, it is expected to be interactive. Thus, we implemented

a heuristic algorithm that provides acceptable solutions quickly. By combining

the proposed algorithm with a crime risk forecasting model [80, 97], a predictive

patrolling system is obtained. For the SNPC, the implementation of a predictive

patrolling system also represents a paradigm shift, from detention to prevention,

resulting in reductions in the costs of detention and an improvement in the actual,

subjective, and social level of safety.

The remainder of this thesis is organizes as follows. Chapter 2 reviews the

literature on the PDP, presents the paradigm of Predictive Policing, and analizes

the development and use of new technological advances, including DSS, in the

SNPC. The problem of partitioning a territory represented as a matrix into homo-

geneous convex sectors is presented in Chapter 3. In Chapter 4 the optimization

model is embedded into a comprehensive DSS for the implementation of a Smart

Patrolling paradigm. Chapter 5 extends the original model to be solved on a

generic graph and proposes and compares more e�cient solution algorithms. The

proposed algorithms are tested on a real case study in Chapter 6. Finally, the the-

sis is concluded with Chapter 7 that presents a summary of the main contribution
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of this work, as well as some guidelines for future research.
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CHAPTER 1

INTRODUCCIÓN

Durante la mayor parte del Siglo XX, los agentes policiales dibujaban con

rotulador los distritos de policía en los mapas de carretera, siguiendo las principales

calles de la zona, sin poner demasiado esfuerzo en lograr un equilibrio geográ�co

o de carga de trabajo [14]. Desde el trabajo de Mitchell [71], se propuso una serie

de modelos matemáticos de optimización para servir a este propósito y así fue

como nació el Problema de Distribución de Distritos Policiales (PDDP). El PDDP

tiene como objetivo dividir el territorio bajo la jurisdicción de un departamento

de policía de la mejor manera posible, con respecto a variaciones en tiempo, coste,

rendimiento y características topológicas. Sólo después del reciente avance en los

Sistemas de Información Geográ�ca (SIG) y la tecnología informática, que permi-

tió un tiempo razonable de cálculo, facilidad de representación y manipulación; es

cuando las metodologías automáticas para la de�nición de los distritos policiales

comienzan a ganar popularidad entre los profesionales [105]. Sin embargo, los es-

tudios que integran SIG y modelos matemáticos so�sticados para la división en

distritos de la policía siguen siendo extraños [14], y el método de mapa-y-rotulador

sigue siendo uno de los procedimientos de redistribución de distritos más aplicados.

No obstante, la importancia de una de�nición equilibrada de los distritos de policía

es incuestionable y la implementación de herramientas de ayuda a la decisión para

la asignación de recursos de la policía ha demostrado ser muy bene�cioso, como

es re�ejado en la abundante literatura académica sobre este tema en las últimas

décadas [31]. De hecho, todos los informes señalan una increíble mejora en la dis-

tribución de la carga de trabajo en comparación con los distritos hechos a mano,

que, a su vez, se traduce en un mayor rendimiento y e�ciencia. En España, la se-

guridad de las ciudades es responsabilidad del Cuerpo Nacional de Policía (CNP),

generalmente compartiendo territorio con otras fuerzas de seguridad locales. El

5
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CNP es un instituto armado de naturaleza civil dependiente del Ministerio de In-

terior. Entre sus funciones están: mantener y restaurar el orden y la seguridad

pública y la de prevenir la comisión de actos delictivos. El CNP es una de las insti-

tuciones más valoradas del país y se encuentra a la vanguardia mundial en la lucha

contra la delincuencia, con el objetivo de innovación constante. En los últimos

años, el contexto socio-económico en España ha sido el de una grave crisis, que

ha reducido los recursos y el número de agentes de policía u o�ciales disponibles

para el CNP. Con el �n de continuar proporcionando el mismo nivel de seguridad

el CNP está tomando medidas de vanguardia para aumentar su competitividad.

Bajo el sistema actual, la distribución de las patrullas es responsabilidad de los

inspectores que, en condiciones normales, ubican a los agentes de acuerdo con las

fronteras de los barrios pautadas hace más de 50 años. Para mejorar la e�cacia

de las operaciones de patrullaje y aumentar la e�ciencia en el uso de los recursos

el CNP ha comenzado a desarrollar un Sistema de Soporte a la Decisión (SSD)

que comprende herramientas y modelos para ayudar a diversas tareas de seguridad

pública [17]. Uno de los principales objetivos del sistema es la implementación de

una política de patrullaje predictivo para aumentar la presencia de los agentes en

las zonas donde más se necesitan, y así reducir la probabilidad de ocurrencia del

delito. Para tal �n, el autor, en colaboración con profesionales del CNP, desar-

rolló una herramienta Policial Predictiva para el pronóstico de riesgo de delitos

basada en el análisis estadístico de los patrones de criminalidad espacio-temporal,

y un modelo de optimización para la de�nición de la con�guración sectores de

patrullaje, adaptado a los requisitos del CNP. Dado que el modelo es necesario

para ser incluido en el SSD, se espera que sea interactivo. Por lo tanto, hemos

implementado un algoritmo heurístico que proporciona soluciones aceptables ráp-

idamente. Al combinar el algoritmo propuesto con un modelo de predicción de

riesgo de crimen [80, 97], se obtiene un sistema de patrullaje predictivo. Para El

CNP, la implementación de un sistema de patrullaje predictivo también representa

un cambio de paradigma, desde la detención hasta la prevención, lo que resulta en

reducción en el coste de detención y una mejora en el nivel real, subjetivo y social

de la seguridad.

El resto de esta tesis se organiza de la siguiente manera. En el Capítulo 2 se

realiza una revisión de la literatura sobre el PDDP, se presenta el paradigma de la

Policía Predictiva, y analiza el desarrollo y uso de los nuevos avances tecnológicos,

incluyendo SSD, en el CNP. El problema de la división de un territorio representado
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como una matriz en sectores convexos homogéneos se desarrolla en el Capítulo 3.

En el Capítulo 4 el modelo de optimización se integra en un SSD integral para la

aplicación de un paradigma de patrullaje inteligente. En el Capítulo 5 se extiende

el modelo original para ser resuelto en un grafo genérico y se proponen y comparan

algoritmos de solución más e�cientes. Los algoritmos propuestos son probados en

un estudio de caso real en el Capítulo 6. Por último, la tesis se concluye con el

Capítulo 7 que presenta un resumen de la contribución principal de este trabajo,

así como algunas pautas para futuras investigaciones.
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CHAPTER 2

LITERATURE REVIEW

This chapter �rst presents the problem of de�ning districts and contex-

tualizes it in the framework of police resource allocation. Second, a conceptual

classi�cation of previous works according to attributes considered and methodolo-

gies adopted is presented and insights are provided. Also, the development and

use context of new technological advances in the Spanish National Police Corps is

described.

2.1. The Districting Problem

District design can be seen as the problem of grouping elementary units (or

atoms) of a given territory into larger districts (or clusters), according to relevant

attributes (or criteria). Depending on the problem faced, the attributes considered

might belong to di�erent contexts, including economic, demographic, geographic,

etc. In the last decades, the districting problem has been applied to a broad

number of �elds, including:

� Electric power districting [2, 3].

� Emergency service districting [51, 62].

� Internet networking [78].

� Health information systems [10].

� Police patrol districting.

� Political districting for the de�nition of electoral areas [9, 27, 68].

� Public transportation network districting [101, 102].

� Sales and service districting [7, 37].

9
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� School districting [20, 92].

� Social facilities districting [70].

� Solid waste disposal districting [44].

� Winter service districting [73, 74].

A uni�ed territorial design model that allows the formulation and solution of

districting problems in a variety of applications is the subject of Kalcsics and

Schröeder [53]. The authors also review the existing literature in territorial de-

sign, highlighting application �elds, criteria, and solution methodologies for solving

these types of problems.

2.2. The Police Districting Problem

In the United States, police departments partition the territory under their

jurisdiction according to a hierarchical structure: command districts (or precincts),

patrol sectors (or beats), and reporting districts (or r-districts). Each command

district hosts its headquarters where the commanding o�cer supervises the op-

erations. A command district is subdivided into patrol sectors, each having at

least one car assigned to patrol the area and attend to the calls originating from

it. Finally, r-districts constitute the atomic element in the hierarchy: the smallest

geographical unit for which statistics are kept. As reported by Sarac et al. [89],

r-districts can coincide with census block groups. In Europe, the territorial orga-

nizational structure of police departments depends on the country or the region

considered. Nevertheless, a hierarchal structure similar to the one adopted in the

United States is predominant.

The PDP concerns the optimal grouping of r-districts into externally �ho-

mogeneous� patrol sectors. In fact, the car assigned to the patrol sector should

attend to all the incidents taking place in the area. Normally, if the car is busy

responding to a call when another incident happens, a car from a neighboring area

has to attend to it. As Mayer [67] points out, this generally leads to a domino

e�ect, where cars are pulled from their area to another, leaving the patrol sector

unattended and, therefore, more susceptible to criminal incidents. In the light of

this scenario, a balanced workload among the districts and the enforcement of a

maximal response time become of primary importance.



2.2. THE POLICE DISTRICTING PROBLEM 11

The �rst paper on the PDP is presented by Mitchell [71], which proposes

a clustering heuristic for the redesign of patrol beats in Anaheim, California. The

author considers the total expected weighted distance to incidents, as well as a

workload measure de�ned as the sum of the expected service time and the ex-

pected travel time. Bodily [8] adopts a utility theory model that incorporates the

preferences of three interest groups, namely, the citizens, the administrators, and

the service personnel. A simple local search algorithm swaps patrol beats from

one sector to another to improve the value of the utility function. Benveniste [1]

was the �rst author to include workload equalization in the optimization process,

solving a non-linear stochastic model by means of an approximation algorithm.

D'Amico et al. [31] solve a police districting problem subject to constraints of

contiguity, compactness, convexity, and equal size. The novelty of the model lies

in the incorporation of queuing measures to compute patrol o�ce workloads and

response times to calls for service, computed by external software, PCAM [21, 22].

PCAM optimizes a queuing model for the deployment of police resources, pro-

viding the optimal number of cars per district. The authors solve the problem

by means of a simulated annealing algorithm that iteratively calls the PCAM

routine. At each step, the neighborhood is determined by a simple exchange pro-

cedure that takes into account the following constraints: the average response

time per district is bounded from above; the ratio of the size of the largest and

smallest districts is bounded from above; districts must be connected; the ratio

of the longest Euclidean path and the square root of the area in each district is

bounded from above to preserve compactness; districts must be convex. The al-

gorithm is applied to a real-world case for the Bu�alo Police Department, NY.

The following objectives were considered: minimize the maximum workload (by

decremental bounding constraining) and minimize the maximum average response

time. A di�erent approach is proposed by Curtin et al. [29], who apply a cov-

ering model to determine the police patrol sectors. The covering model de�nes

the centers of the police patrol sectors in such a way that the maximum number

of (weighted) incidents is covered. An incident is considered to be covered if it

lies within an acceptable service distance from the center of a patrol sector. The

model is integrated in a GIS and applied to a case study involving the City of

Dallas, TX. In a subsequent article, Curtin et al. [30] extend their covering model

to include backup coverage (e.g., multiple coverage of high priority locations). The

resulting model is bi-objective in nature. The authors propose a single objective
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model that maximizes the priority weighted coverage (i.e., a location is counted

separately each time it is covered), while ensuring a minimum covering level in

terms of the priority-weighted number of locations covered (each covered location

counted only once). The model is tested on the Dallas data and re�nements of

the model are proposed (e.g., maximum workload per patrol sector). Zhang and

Brown [114] propose a parametrized redistricting procedure for police patrols. The

methodology consists of a heuristic algorithm that generates alternative districting

plans. Next, the plans are evaluated in terms of the average response time and

workload. With this aim, an agent-based simulation model was implemented in

a GIS. The location and times of the incidents taking place in each district were

modeled by an empirical distribution based on real incident data. Finally, the pro-

cedure identi�es the set of non-dominated solutions. The methodology has been

tested on a case study based on the Charlottesville Police Department, VA. An

extensive annotated bibliography (Subsection 2.3) provides insights and detailed

information on the works presented in the literature.

2.2.1. Attributes

While analyzing the existing literature on the PDP, certain basic features

common to all the contributions could be identi�ed. In fact, all the applications

considered include measures for workload, response time, and the geometrical prop-

erties of the districts. Nevertheless, the implementations vary considerably. Unlike

Kalcsics and Schröeder [53], the term �attributes� has been adopted instead of �cri-

teria�, with the aim of providing a more generic framework that classi�es all the

relevant characteristics of a PDP solution, regardless of whether they are optimized

in the objective function, or expressed as constraints.

Workload Given the complex nature of police procedures and operations, and

the great variability of the tasks that an agent can undertake, de�ning the workload

could be complicated. Bruce [14] provided a set of questions that can help clarifying

what needs to be considered as part of workload. Albeit di�cult, an accurate

de�nition of workload is desirable, as it ensures homogeneity in terms of the quality

and speed of service, and equalizes the burden on police o�cers [8].

In the literature on the PDP, di�erent de�nitions of workload have been

adopted. In Mitchell [71], the workload is computed as the sum of the total
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expected service time and the total expected travel time. Curtin et al. [29, 30]

use the number (or frequency) of calls (or incidents) occurring at each district as

a proxy for the workload. As di�erent calls can have di�erent service times, some

authors consider this measure to be too naïve, as it might produce unbalanced

patrol districts. In Bodily [8] and D'Amico et al. [31], workload is de�ned as the

fraction of working time that an agent spends attending to calls. An equivalent

measure is proposed by Benveniste [1]. Given the stochastic nature of her model,

workload is measured in terms of the probability of a patrol car being busy. Once

the probability is known, the time spent attending and answering calls can be

easily calculated. More recently, workload has been de�ned as a combination of

di�erent characteristics. In Sarac et al. [89], the authors aggregate population and

call volume. Kistler [59] makes use of the convex combination of total hours worked

(i.e., from dispatch to call clearance), number of calls, and population. Finally,

Zhang and Brown [114] consider both the average travel time and the response

time.

Response Time Response time is an important performance measure: it is the

time between the arrival of a call for service and the arrival of a unit at the location

of the incident. According to Bodily [8], a reduction in the response time results

in a number of bene�cial e�ects, such as:

� Increased likelihood of intercepting a crime in progress.

� Deterrent e�ect on criminals.

� Increased con�dence in the police.

Generally speaking, most authors only take into consideration the travel times

[8, 59, 71, 114] or travel distances [1, 29, 30]. The only study considering the

queuing e�ect is D'Amico et al. [31], where the authors apply an external model,

PCAM [21, 22], to compute the total response time including the queuing time of

the calls and the travel time to the location of the incident.

Geometry In 1812, Albright Gerry, the Governor of the Commonwealth of

Massachusetts at the time, manipulated the division of his state and proposed

a salamander-shaped district to gain an electoral advantage, leading to the expres-

sion �gerrymandering� (resulting from merging �Gerry� and �salamander�). Since

then, designing electoral districts having certain geometric properties has been of
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primary importance to ensure neutrality and prevent political interference in the

districting process.

In the context of the PDP, geometric attributes are still relevant for e�-

ciency (e.g., establishing boundaries that would be easy to patrol and would not

frustrate the patrol o�cers) and for administrative reasons (e.g., coordinating with

other agencies). To the best of our knowledge, only three works have explicitly

included the geometric properties in the design process, such as the properties of

compactness [31, 59, 89], contiguity [31, 89], and convexity [31], which are gener-

ally obtained as a consequence of optimizing the travel distance or the travel time.

Also, the district area is considered in all the mentioned works. Additionally, in

Kistler [59], the total length of the streets in a district is included.

Other Attributes Recently, a number of attributes that do not fall into any of

the previous categories have been introduced. These attributes generally try to

capture complex real-world requirements. The Bu�alo Police Department needed

to redesign the r-districts in such a way that the existing district boundaries would

be respected, and the access to demographic data as well as their use by other

agencies would be easy [89]. The Tucson Police Department needed to consider

the boundaries of gang territories, city council wards, neighborhood associations,

and the Davis�Monthan Air Force Base [59]. Finally, in Curtin et al. [30], backup

coverage (i.e., multiple coverage) of incident locations is introduced.

2.2.2. Methodologies and Approaches

Many districting approaches have appeared in the literature. In this sub-

section, the contributions are categorized according to the methodology adopted,

and their main characteristics are presented.

Optimization Models According to Kalcsics and Schröeder [53], the �rst math-

ematical program for the Districting Problem was proposed by Hess et al. [47], and

considered a neutral de�nition of the political districts. Since then, a large number

of models have been proposed, mostly in the context of Location Analysis. Simi-

larly, in Curtin et al. [29, 30], maximal covering models are proposed. On the other

hand, Mitchell [71] presents a Set Partitioning model that considers minimizing

the expected distance inside of each subset and equalizing the workload of all the
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subsets. A di�erent perspective is adopted by Benveniste [1] and D'Amico et al.

[31], where patrol cars and agents are modeled as servers in a stochastic model.

Benveniste [1] proposes a Stochastic Optimization model, while D'Amico et al.

[31] include a queuing model inside of a simulated annealing algorithm to compute

response times that incorporate queuing e�ects.

Geographic Information Systems (GIS) Kistler [59] uses a GIS to redesign

the Tucson Police Department districts. Most commercial GIS can be extended to

integrate optimization routines. In Curtin et al. [29, 30], GIS are used in conjunc-

tion with a maximal covering model. Wang [105] presents the main application

areas of GIS in police practice. Among the various applications, Wang mentions

the possibility of using GIS as a police force planning tool. Namely, he refers

to hotspot policing and police districting. Concerning the latter, Wang identi�es

three main objectives: meeting a response time threshold, minimizing the cost of

operations, and balancing workload across districts. The author mentions that

future research in this area should explore other goals, such as minimizing the

total cost (response time), minimizing the number of districts (dispatch centers),

maximizing equal accessibility, or a combination of several goals. Finally, Zhang

and Brown [114] implement an agent-based simulation inside a GIS.

Other Methods Two studies have adopted approaches that do not fall into

any of the other categories. Bodily [8] devises a decision model based on utility

theory to achieve the best solution in terms of the surrogate utility of three interest

groups. The work by Sarac et al. [89] is an example of the proverbial expression

�simpler is better.� After attempting to redesign r-districts by using a multi-criteria

set partitioning model, the authors realized that census blocks satis�ed all the

requirements. It is important to notice that their approach is successful because

of the speci�c requirements the Bu�alo PD imposed on the r-district con�guration

(e.g., easy access to demographic data, suitable for use by other agencies).

2.2.3. Local Search Methods for the Multi-Criteria Police

Districting Problem

As explained by Sarac et al. [89], the use of a structure based on census

districts is desirable as it allows easy access to demographic data and, at the same
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time, it is suitable for use by other agencies. In terms of solution methodologies,

we propose three local search algorithms for the MC-PDP on a graph, including

a Tabu Search (TS). Thanks to its ability to escape from local optima and its

versatility, the TS has been successfully applied to a very wide breadth of con-

texts and problems, such as parameter optimization [46], vehicle routing [113],

hardware/software partitioning [66], and job shop scheduling [112]. We test the

proposed algorithms extensively on a real dataset based on a case study of the

Central District of Madrid and compare and analyze their performance statisti-

cally. Finally, we illustrate the best solutions found by the algorithms and draw

operational insights.

2.3. Annotated Bibliography on the Police Districting Problem

In the following, an annotated bibliography providing a description of the

most salient points, achievements, and characteristics of researches on the PDP

is given. The summaries are presented in chronological order. Next, Table 2.1

summarizes the most relevant aspects of the articles included in the bibliography

that propose a computational model for the PDP.

Mitchell [71]

In his seminal work, Mitchell presents a mathematical formulation for the

problem of designing police patrol sectors. The model is based on the assumption

that incident distribution is known and that each call is serviced by the nearest

available units. Multiple incident types are considered. Each type is characterized

by a service time and a vector of weights that de�ne the importance of the incident

being attended by a speci�ed number of units. The model minimizes the total

expected weighted distance. Also, the workload, de�ned as the sum of the expected

service time and the expected travel time, is equalized across the sectors. The

problem is solved by means of an adapted clustering heuristic and applied to

incident data for Anaheim, California. The solution improves the sector plan

adopted at the time.
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Bodily [8]

Decision model based on utility theory, which makes use of the preferences

of three interest groups in the design process of police sectors: citizens (minimize

travel time, equalize travel time), administrators (minimize travel time, equalize

travel time, and equalize workload), and service personnel (equalize workload).

The problem is solved by local search algorithm that transfers one atom from one

sector to another, so that the greatest improvement in terms of surrogate utility

is achieved. The algorithm stops when no improvement is possible.

Benveniste [1]

The author presents a stochastic optimization problem for the combined

zoning and location problem for several emergency units. Namely, the problem

involves the division of an area in sub-regions, the de�nition of location for the

servers, and a set of rules, assigning for service an alarm to a list of servers in order

of preference. The objective function considered minimizes the total expected

distance between the alarm and the �rst available server. Stochastic alarms rates,

alarms spatial density functions, and probabilities that the servers are busy are

considered. The resulting model is a non-linear program. The author proposes an

approximation algorithm. An equal workload case is also examined and solved.

Sarac et al. [89]

The authors describe a study undertaken to recon�gure the police reporting

districts used by the Bu�alo PD. The following districting criteria were considered:

homogeneity in terms of population, area and call volume; geometrical properties

such as compactness and contiguity; feasibility with respect to existing boundaries

of �ve police districts; easy access to demographic data for each district; suitability

for use by other agencies. Initially, the authors formulated the problem as a multi-

objective set partition problem which proved incapable to solve the real-world

size problem at hand. Subsequently, a practical approach has been proposed:

basically, the new districts were de�ned according to the census block groups that

intrinsically present most of the desired characteristics (homogeneity in terms of

population, compactness, contiguity, easy access to demographic data, and suitable

for use by other agencies). With minor modi�cations, this solution proved to be

very e�ective.
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D'Amico et al. [31]

The authors solve a police districting problem subject to constraints of con-

tiguity, compactness, convexity, and equal size. The novelty of the model lies in

the incorporation of queuing measures to compute patrol o�ces workloads and

response times to calls for service, computed by external software, PCAM. PCAM

optimizes a queuing model for deployment of police resources, providing the op-

timal number of cars per district. The authors solve the problem by means of a

simulated annealing algorithm that iteratively calls the PCAM routine. At each

step, the neighborhood is determined by a simple exchange procedure that takes

into account the following constraints: the average response time per district is

bounded from above; the ratio of the size of the largest and smallest districts is

bounded from above; districts must be connected; the ratio of the longest Eu-

clidean path and the square root of the area in each district is bounded from

above to preserve compactness; districts must be convex. The algorithm is applied

to a real-world case for the Bu�alo Police Department. The following objectives

were considered: minimize the maximum workload (by decremental bounding con-

straining) and minimize the maximum average response time.

Curtin et al. [29]

The authors apply a covering model to determine police patrol sectors. The

covering model de�nes the centers of police patrol sectors in such a way that the

maximum number of (weighted) incidents is covered. An incident is considered

to be covered if it lies within an acceptable service distance from the center of a

patrol sector. The model is integrated in a GIS and applied to a case study on

the City of Dallas, Texas. In the �nal part of this chapter, the authors present a

number of possible re�nements to their model, including a maximum workload (in

terms of number of weighted incidents) per patrol sector restriction.

Scalisi et al. [90]

The issue of Geography & Public Safety presents numerous articles by police

analysts describing their experiences with police redistricting in the jurisdictions

of their police department.
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� Bruce [14] (C. Bruce, President of the International Association of Crime

Analysts) poses some interesting questions that an analysts should answer to

determine how workload should be measured.

� Kistler [59] (A. Kistler, from the Tucson Police Department) devises a dis-

tricts evaluation measure built as the weighted sum of the following criteria:

total hours worked, number of call responses, average response time, total

length of all streets within the division, area of the division, and popula-

tion. TPD sta� used a GIS in combination with a software program called

Geobalance to manually design alternative redistricting options. Future eval-

uations of the implemented plan showed that the projected workload ratios

were reliable and realistic.

� Douglass [32] (J. Douglass, from the Overland Park Police Department) ex-

plains how the introduction of a new real-time deployment paradigm, based

on criminal hotspots identi�cation and treatment, had been implemented in

the department. Unfortunately, no long-term statistical analysis was avail-

able at the time the article was written.

� Mayer [67] (A. Mayer, from the East Orange Police Department) reports a

similar strategy. In fact, the East Orange Police Department implemented

a geographical technology called Tactical Automatic Vehicle Locator (TAC-

AVL). TAC-AVL allows for GPS tracking, visualization on a map, and record-

ing of information regarding patrol cars and incidents. This tool has been

coupled with a new deployment strategy that allows for the introduction

of Impact, Resource, Response, and Conditions cars to backup understa�ed

zones of the jurisdiction.

� Mielke [69] (P. Mielke, from Redlands Police Department) explains how to

use ESRI districting tool, a free extensions for ESRI ArcGIS that allows

creating new police districts in a city or region.

� Other successful applications of geographical technologies to police redistrict-

ing have been reported from Austin PD and Charlotte-Mecklenburg PD.

Curtin et al. [30]

Following Curtin et al. [29], the authors extend the covering model to in-

clude backup coverage (e.g., multiple coverage of high priority locations). The
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resulting model is bi-objective in nature. The authors propose a single objec-

tive model that maximizes the priority weighted coverage (each time a location is

covered is accounted for separately), while ensuring a minimum covering level in

terms of priority weighted number of locations covered (each covered location is

accounted for only once). The model is tested with the police geography of Dallas,

Texas, and re�nements on the model are proposed (e.g., maximum workload per

patrol sector).

Zhang and Brown [114]

In this work a parametrized redistricting procedure for police patrols is

proposed. The methodology consists of a heuristic algorithm that generates al-

ternative districting plans. Next, the plans are evaluated in terms of average

response time and workload. With this aim, an agent-based simulation model

was implemented in a GIS. The location and times of the incidents taking place

at each district were modeled by an empirical distribution based on real incident

data. Finally, the procedure identi�es the set of non-dominated solutions. The

methodology has been tested on a case study based on the Charlottesville Police

Department, VA, USA.

Wang [105]

The author takes us on a trip across the main application areas of GIS in

police practices. Among the various applications, Wang mentions the possibility of

using GIS as a police force planning tool. Namely, he refers to hotspot policing and

police districting. Concerning the latter, Wang identi�es three main objectives:

meeting a response time threshold, minimizing the cost of operation, and balancing

workload across districts. The author mentions the work by Curtin et al. [29,

30] and states that future works in this area should explore other goals, such as

minimizing total cost (response time), minimizing the number of districts (dispatch

centers), maximizing equal accessibility, or a combination of multiple goals.

2.4. Predictive Policing

The term Predictive Policing is relatively recent and refers to the application

of quantitative techniques to foretell where crimes will take place in the short-
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Table 2.1. Mapping of attributes considered and methodology adopted, by article.

Reference
Attributes

Methodology
Workload Response Time Geometry Other

Mitchell [71] Expected

service time,

expected travel

time

Expected

travel time

Modi�ed

clustering

heuristic

Bodily [8] Fraction of

time spent in

servicing calls

Average travel

time

Utility theory

Benveniste [1] Probability of

a server being

found busy

Total expected

station-alarm

distance

Stochastic

optimization

Sarac et al. [89] Homogeneity

in terms of

population and

call volume

Area,

compactness,

contiguity

Easy access to

demographic

data, suitable

for use by

other agencies,

and respect of

existing district

boundaries

Rede�nition

according to

census blocks

D'Amico et al. [31] Utilization of

servers

Queuing

response time

and travel time

Size,

compactness,

contiguity,

convexity

Queuing model

and simulated

annealing

Curtin et al. [29] Maximum

incident load

per sector

Maximum

service distance

GIS and

mathematical

programming

optimization

Kistler [59] Total hours

worked,

number of

calls,

population

Average travel

time

Area, total

length of

streets,

compactness

Boundaries of

gang

territories, city

council wards,

neighborhood

associations,

and Air Force

Base

GIS

Curtin et al. [30] Maximum

incident load

per sector

Maximum

service distance

Backup

coverage

GIS and

mathematical

programming

optimization

Zhang and Brown

[114]

Homogeneity

in terms of

average travel

time and

response time

Average travel

time

GIS and

agent-based

simulation
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term future. The National Institute of Justice (NIJ) de�ned it as taking data

from disparate sources, analyzing them, and then using the results to anticipate,

prevent, and respond more e�ectively to future crimes [75]. This technique is

based upon advances in criminology, such as Hot Spot theories [94, 108, 109], and

studies of the ecology of crime [11, 15]. Statistics based methods have been used

since the release of CompStat in 1994, however it was only a few years ago that

complex mathematical algorithms have been developed to address this problem

in the most profound way. CompStat combined Geographic Information System

(GIS) and crime mapping techniques to identify areas of high crime intensity.

The importance of measuring the occurrence of crimes in the police districts and

keeping track of the actions of the police managers for decision-making was proved

by Weisburd et al. [110]. This topic was opened to di�erent approaches by the

International Journal of Forecasting, which published a special issue on crime

forecasting in 2003 [41].

Years later, researchers at UCLA started a new approach to the investi-

gations of crime agglomerations, modeling the dynamics of crime hotspots and

determining the parameter values that lead to the creation of stable hotspots [98].

In a subsequent study, they used amplitude equations to study the development

of crime hotspot patterns [97] and self-exciting point processes [72]. Also, they

mathematically proved that there were di�erent types of hotspots, even though

they seemed similar at �rst sight. This breakthrough was further developed using

Lévy Flight models by Chaturapruek et al. [24]. More recently, Zipkin et al. [115]

introduced a police behavior component aiming at suppressing hotspots of crimi-

nal activity. In this model, the police deployment adapts dynamically to changing

crime patterns, making criminals modify, to a certain degree, their awareness and

their criminal actions.

Probably the most ambitious predictive policing project so far made use of

the algorithms created by Brantingham and Mohler, along with LAPD Captain

Sean Malinowski. With three years of data, and focusing on three types of crime

in particular (i.e., burglary, automobile theft, and theft from automobiles), the

algorithm points out areas of likely crime incidence. The �rst analyses have shown

a reduction of property o�enses where this methodology has been implemented,

reporting considerable reductions in serious violence crimes in the treatment cities

and areas relative to comparison cities and areas. Another experiment of predictive

policing was implemented in Santa Cruz, CA, where predictive maps based on risk
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percentages were given to security managers. The use of these maps resulted in a

19% drop in burglaries [35].

Another line of research that has been widely applied in practice has focused

on Risk Terrain Modeling (RTM) [19]. According to its creators, RTM is �an

approach to risk assessment in which separate map layers representing the in�uence

and intensity of a crime risk factor at every place throughout a geography is created

in a geographic information system (GIS). Then all map layers are combined to

produce a composite 'risk terrain' map with values that account for all risk factors

at every place throughout the geography� [18]. RTM has also been proposed as

a methodology for the identi�cation of risk clusters and the distribution of police

resources [55].

A number of models making use of methodologies other than hotspot and

RTM have been presented in the academic literature. Xue and Brown [111] and

Smith and Brown [99] developed a spatial choice model and represented criminal

events as point processes combining discrete choice techniques and data mining.

They used this approach to predict the spatial behavior of criminals, comparing it

with existing hotspot analyses. Furtado et al. [36] model criminal behavior by using

ant-inspired systems, trying to discover strategies for e�cient police patrolling that

take into account the dynamics of the criminals. Wang [105] used a spatio-temporal

analysis for modeling criminal incidents, making use of a variety of data types,

such as spatial, temporal, geographic, and demographic data. In a subsequent

paper, Wang et al. [106] extended this prediction model to include information

proceeding from social network posts. A similar approach is proposed by Gerber

[38], �nding that by combining historical crime records with Twitter data from

users in a speci�c geographic area, the prediction performance improves for 19 of

25 crime types. Finally, Chen et al. [25] applied spatio-temporal analysis methods

to investigate patterns of o�enses against property.

Mielke [69], from Redlands Police Department, explains how to use ESRI

districting tool, a free extension for ESRI ArcGIS that allows creating new police

districts in a city or region. Other successful applications of geographical tech-

nologies to police redistricting have been reported from Austin PD and Charlotte-

Mecklenburg PD.
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2.5. DSS for E�cient Policing

The application of DSS to police environment has a growing role in the liter-

ature. Some innovative strategies have been established to be e�ective and e�cient

when deciding on the best o�cer deployment and schedule. In the late 1980s, Tay-

lor and Huxley [103] proposed a scheduling system driven by shift turnovers, based

on years of calls data. This led to a declining response time compared to manual

methods. However, in that study, di�erent crime records were not considered.

More recently, Xue and Brown [111] proposed a DSS in which criminal events

were modeled as point processes. They intended to predict the spatial behavior of

active criminals. By analyzing the o�enders' decisions, law enforcement would be

empowered with better planning and knowledge of the spatial patterns of crime.

A few years later, another intuitive method discussed by Li et al. [63] suggested a

model based on a fuzzy self-organizing map, identifying the characteristic of several

crime patterns, to determine a better duty deployment. However, recent research

by Kuo et al. [61] argued most programs for making use of a naive before�after

evaluation method. The authors developed hotspot approaches that apply GIS

to combine crime rates and crash rates for prediction, aiming to reduce dispatch

time. The main characteristics of the articles reviewed here are summarized in

Table 2.2.

The research presented in this thesis innovates in the �eld of DSS for Public

Security in several ways. First, most of the methodologies developed so far assume

that the crime incidents can be represented as points in time and space. As we

elaborate in �3.1 Data Pre-Processing Unit (DPPU),� this is not always the case,

as most of the time the victims are not aware of the time or the location where

the crime took place. Therefore, we developed a methodology that allows us to

represent crime records having an indeterminate time or location. Second, the

proposed methodology makes use of classical time series models. Although not

novel, these models have two advantages: they are very good at capturing the

seasonal components of the crime data and they do not require any additional

spatial information (e.g., population density, average income, distance to risky

locations), which makes them extremely applicable. Finally, to the best of the

author knowledge, the DSS presented in this thesis is the �rst to combine Predictive

Policing capabilities with an optimization model that explicitly provides e�cient

partitions of the territory into patrol sectors, rather than just a representation of
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Table 2.2. References and structural characteristics of DSS for e�cient policing.

Reference Data Objective(s) Technology Validated

Taylor and Huxley [103] Provided by: San Francisco

Police Department, CA.

Historical calls for service,

time spent by call type,

percentage of calls requiring

two or more police o�cers,

and percentage of cars with

two or more o�cers

allocated.

Reduction of

the cost of

operations and

increase of

citizen safety

and o�cer

morale

San Francisco

Police

Department

Computer

Aided (CAD)

System

Yes

Xue and Brown [111] Provided by: Richmond

Police Department, VA.

Criminal incidents between

July 1, 1997 and October 31,

1997. Includes more than

1200 crime observations.

Crime

reduction

Regional Crime

Analysis

Program

(ReCAP)

No

Li et al. [63] Provided by: National Police

Agency of Taiwan. Data

originated from 20 county

police bureaus in Taiwan

from 2003 to 2004. Fourteen

criminal categories were

collected.

Crime

reduction

Unknown No

Kuo et al. [61] Provided by: College Station

Police Department, TX.

Crime and crash data, from

January 2005 to September

2010. Includes 65,461 o�ense

reports and 14,712 crash

reports.

Reduction of

dispatching

time and

number of

crime and

tra�c events

ArcGIS, KDE,

Google Maps

No

the criminal hotspots.

2.6. Development and Use of New Technological Advances in

the National Police

Today, the speed of technological change taking place has transformed day-

to-day operations in policing as described by Roberts Roberts [84]. The adoption

of technology in policing which started with the telephone has come a long way
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since, and the launch of Sala 091 or police unit that enabled immediate contact

between citizens and the police was a signi�cant milestone. Utilization of the

Sala 091 system increased exponentially with the arrival of mobile phones which

increased many times over, the prompt response, assistance and performance of

patrol cars.

Nowadays, patrol cars are in constant contact with the Sala 091 through

systems of radio or 'pockets', which were once considered a technological revolution

and suddenly provided the ability to reach multiple locations that needed police

presence quickly, and, according to Harris, Harris [45] this transformation has

changed the organization and operation of police departments signi�cantly.

New technologies continue to emerge and continue to enable a more ef-

fective SNPC that will gradually be equipped with new and innovative systems

helping them to use resources more e�ectively both at investigative level and crime

prevention level.

Nevertheless, we cannot a�ord to be complacent, since it is probable that a

second technological revolution will bring further substantial change to the orga-

nization and police operations [23, 45, 100], which the Spanish police should take

advantage of in the interests of continuous improvement.

Let us consider the various notes and studies from the United States by dif-

ferent expert authors in this �eld, such as Gro� and McEwen Gro� and McEwen

[43], who in their review of the use of the technology to store and retrieve infor-

mation are convinced that among police forces which had implemented technology

such as laptops, automated information systems �eld, records management sys-

tems and automated �ngerprint identi�cation systems had bene�ted greatly.

These advances have become the reality of the past 40 years, since new

technologies have been gradually implemented as an integral part of the work

of the SNPC. For example, substituting typing machines for current computers,

not only accelerated the police documentation work but also facilitated e�ective

storage and retrieval of the information generated daily by the police. Another

example is the �ngerprint system named Live Scan, that allows �ngerprints to be

taken and stored digitally with the consequent advantages shared across various

facilities in di�erent �elds.

Thus, the SNPC is constantly monitoring and assessing advanced technolo-

gies for adoption by the Corps and also studying other legislations that regulate

the use of such technology to ensure its correct functioning in daily operations. It
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is interesting to mention that Roberts Roberts [84] in these matters, states with

vehemence, the importance of technology and innovation in the daily operation

of the police force. His reasoning is fairly logical as the bene�ts of the use of

technology are evident in terms of e�ciency and cost reduction. Reichert Reichert

[83] agrees that technological innovation was the impulse that led to reforming of

the prevention and control of crime, both by di�erent police forces and related

institutes.

In 2007 the Department of Justice of the United States, through the Bureau

of Justice Statistics, carried out a study on the Law of Enforcement Management

and Administrative Statistics (LEMAS). One of the advantages of using the sur-

vey of this law was its amplitude, which allowed them to generalize results and

consistency. The study includes the use of computers by di�erent police agencies,

di�erent computerized processing of police functions, the speci�c detail concern-

ing budgetary expenditure distribution of o�cials in the various charts, technical

maintenance, works, etc. Other computer tasks included the analysis of criminal

investigations and the general exchange of information.

The largest police districts, serving populations greater than 250,000 inhab-

itants, largely used computer technology for the analysis of crime and cartography.

In medium-size districts, serving populations of less than 250,000 people, computer

use was essentially limited to the use of portable computers and terminals. They

also reported using automated �ngerprint identi�cation systems. The majority of

police departments were willing to use electronic methods for the transmission of

reports, something that helped to ensure not only the transfer of information, but

to do so expediently and accurately.

Use of computers within di�erent police stations is increasing due to the

progress, among other things, in own infrastructure of mobile communication and

the development of ultramodern applications Roberts [84]. Di�erent applications

have become extremely accurate and simple to use. For example, computers allow

sequencing of criminogenic maps in just a few minutes through the various sta-

tistical data, as opposed to what once would have taken several hours minimum

to complete, as well as the di�erent images required for distribution amongst the

police to facilitate searches more easily and quickly.

Another breakthrough in terms of time and ease of data collection is the

use of conjectured systems. They aggregate various criminal investigations data

used by di�erent intelligence units of police centers, and help to identify di�erent
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relational schemes that, at �rst, may appear di�erent and unrelated. For example;

matching suspects through incomplete names, signatures, nicknames or descrip-

tions of physical characteristics or even vehicle related searches.

Another technological innovation in the �ght against crime is the use of

surveillance cameras, which enables photos and/or video to be taken of people

committing various illegal acts such as painting gra�ti, illegal dumping of waste,

and vandalism or purely criminal acts, and notify the corresponding police agencies

immediately. Some of these cameras even have the capability to warn the people

who are committing illegal acts of possible prosecutions and to ask them to leave

the location. Use of these types of cameras has increased e�ectiveness greatly,

especially by becoming wireless and by using independent solar power sources [93].

Nonetheless, these types of photographic systems are not new, as tra�c cameras

have already been approved and in use for decades to identify tra�c violations

such as speeding.

Closely related to surveillance camera systems, are thermal imaging de-

vices. These non-intrusive electronic elements are fairly easy to use, maintain and

even store, and their function is to produce images of surface energy emitted or

re�ected. Such mechanisms o�er photos of heat sources with respect to their en-

vironment, empowering the police to monitor, locate, and catch people suspected

of committing criminal o�ences using these generators of thermal imaging. The

intervening police can see the live image of body heat of the person while in pur-

suit, thus not preventing the police acting even if the person tries to camou�age

himself through the use of dark or similar clothing.

In addition, the use of cameras by police has been developed, contributing

to their pro�ciency. Again, let us observe data from the United States on this

particular scenario, speci�cally the aforementioned survey LEMAS 2007, which

determines that the use of cameras in di�erent police cars was at approximately

61%, approving to be a valuable tool inside the car patrol to ensure, amongst other

things, the highest level of professionalism of police during the course of their work.

Videos recorded in this way in several police interventions, allowed the events to

be presented as evidence if needed. This often happens in the case of citizen's

complaints or even more extreme cases such as in trials against policemen.

Another possible use of this kind of medium would be purely educational,

serving as training videos in di�erent police schools. Cameras are well suited in

this situation as probably the greatest strength of this technology is the ability to
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act as a silent and objective witness of the di�erent facts that develop under its

watch. It can both protect and speak for the police or victims of police injustice

which in many cases cannot speak for themselves. As determined by Brown Brown

[12], a police o�cer spends approximately 92% of his time obtaining, combining

and circulating the managed information. So, to access the information easily and

quickly, by using it accurately and distributing it on time is a very important part

of the daily police duty. Even from a more traditional approach to policing, it is

necessary to access accurate data to ensure that actions taken during service and

any critical decisions leading to the detention of an individual are accurate [52].

Just as importantly, traditional approaches and more sophisticated ap-

proaches regarding police action depend on even more information. The infor-

mation handled may not necessarily be related to crime and its perpetrators, but

often also include issues as important as top priority information of activities in the

communities, serving to prepare a more collaborative approach of police action for

prevention and response to future crime and its prevention. The forces of law and

order have invested more than one decade in di�erent strategies and techniques

for predicting police activities, acting in speci�c areas with greater possibility of

crimes. For example, ComStat4, is a police action oriented towards the speci�c

problems of the geographical area, depending upon the management and analysis

of information [13, 80]. Related to the technological use of lasers, it is also impor-

tant to mention its particular e�cacy in a transcendent subject such as terrorism.

Thanks to the use of portable devices utilizing laser spectroscopy, the detection of

chemical substances can be determined in just a few seconds. These devices even

have the ability to reveal the chemical composition with a certainty of 95% of for

example a powder suspect [93].

On the other hand, tracking devices using Global Positioning Systems

(GPS), can be attached to the vehicles of suspects if the situation requires. Such

a mechanism would considerably reduce the need of follow-ups and even police

chases. This technology provides the police with time and valuable information

about the habits of the suspect, which allows them to establish strategic plans to

then study the suspect, if required, with minimal detrimental impact on nearby ar-

eas [93]. GPS technology also facilitates a response more quickly and e�ectively in

the areas requiring police intervention, ensuring patrol is closer to the area where

they need to act.

It is important to highlight that one of the biggest advantages of the tech-
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nology is that it has made things simple and quick, which means more time can

be spent on planning services more e�ciently and e�ectively. As an example of

how this technology has facilitated the police to identify, among other things, ve-

hicles owners through their license plate number, known in the Spanish Police as

the computer system Atlas, in a very short time, the police are able to determine

vehicle details and the identity of their owners.

If a car has been stolen or has participated in a criminal act, or the owner of

the car has a criminal record, this is known immediately by the acting agent. An-

other example would be the common use by the police of Tablets, which are useful

in brie�ngs and for obtaining, storing and exchanging information for subsequent

use by several team members, even allowing the downloading of information on a

computer for storage or further analysis, and will probably allow the improvement

of Predictive Policing.



CHAPTER 3

A MULTI-CRITERIA POLICE DISTRICTING PROBLEM

This chapter illustrates the PDP developed in collaboration with the SNPC.

The goal of the model is to partition the territory under the jurisdiction of a dis-

trict into patrol sectors in the best possible way. The criteria for evaluating the

goodness of the con�gurations of the patrol sectors were identi�ed after interview-

ing several service coordinators and a number of agents involved in public safety

operations. The result is a mathematical optimization model that �nds an e�cient

con�guration in terms of prevention service and attention to calls, distributing the

workload equitably between the agents.

For further information on this chapter see [17].

3.1. Model Characteristics

During the interviews with the public servants involved in public safety

operations, several desirable characteristics were identi�ed in order to �nd a 'good'

territory partition.

� Compact Areas: A compact area allows better control of the territory by

the agents, as travel times from one point to another within the area are

minimal. Therefore, the more compact an area is, the faster agents in the

corresponding area can respond to emergency calls.

� Homogeneity in terms of workload: Generating patrol sectors that are

similar in terms of workload is quite useful for two main reasons. First, it

ensures a more e�cient distribution of work and, therefore, better service.

Second, greater equality in the workplace increases the satisfaction of the

agents.

31
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� Mutual support: It is desirable that agents be able to count on the support

of agents assigned to other patrol sectors in case of need and emergency.

Our model di�ers from those proposed so far in the literature in a number of

relevant aspects. In general, our focus is on crime prevention. For this reason, the

purpose of our model is to increase the e�ectiveness of the deterrent e�ect of the

agents' presence on the territory, by concentrating the agents in the areas with a

higher risk of crime. On the other hand, previous approaches such as D'Amico et al.

[31] and Zhang and Brown [114] focus on reaction to crime incidents and aim at

optimizing the response to emergency calls and, hence, to crimes that have already

happened. Additionally, we present the �rst model for the PDP that optimizes

attributes of area, crime risk, compactness, and support, simultaneously.

Speci�cally, mutual support is an attribute that has not been included in

any previous model. Mutual support di�ers from backup coverage [30] in that the

former regards the possibility of receiving backing in any point of the patrol sector

from any other agent in the district, while the latter only concerns the overlapping

areas between patrol sectors. Furthermore, our model allows the decision-maker

to explicitly and easily include his/her preferences in the optimization process by

means of weights associated to the attributes. In the formulation proposed by

D'Amico et al. [31], the user can specify his/her preferences only by adjusting the

righthand side coe�cients in the constraints, while in Curtin et al. [29, 30]no user

preference is considered.

Finally, all the approaches previously presented in the literature require

speci�c data and information, such as the time, location, and service time of

incidents and emergency calls, which might not be available. This requirement

makes these models inapplicable in any context where this information is not

available. Also, these methodologies do not take into consideration, and hence

they cannot be extended to, all the non-violent crimes that are not reported by

emergency calls, such as, pickpockets, theft of vehicles, or property damage.

3.2. Input Data

Without loss of generality, the territory under the jurisdiction of the district

is assumed to be divided into a square grid, G, of n rows and m columns, having

elements indexed by (i, j) ∈ G. Following this structure, we de�ne two data

matrices both having n rows and m columns:
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� The crime risk matrix, R. Its entries, rij ∈ R, are non-negative real

numbers specifying the crime risk associated with the corresponding loca-

tions. The risk of criminal activity can be estimated with past data or using

a predictive policing model [80].

� The area matrix, A. Its entries, aij ∈ A, are non-negative real numbers

specifying the total street length at each tile of the grid. This data can be

easily obtained using a GIS.

Finally, the number of patrol sectors, p, is required. The model uses this informa-

tion to de�ne the number of areas into which to partition the territory.

3.3. Notes on Taxicab Geometry

The representation of the territory as a grid necessarily involves certain sim-

pli�cations when considering geometric properties such as continuity and distance.

Given the loss of information on the urban fabric of streets and roads resulting

from using a grid as a model, it is natural and necessary to apply a taxicab geome-

try. In this geometry, the distance between two points, also called the Manhattan

distance, is the sum of the (absolute) di�erences of their coordinates. Therefore,

the distance between the points a = (i, j) and b = (k, l) is calculated as

dist (a, b) = |i− k|+ |j − l| . (3.1)

Following this de�nition, two points are considered adjacent if and only

if their distance is equal to 1. A subset of points s is de�ned to be connected

if between any pair of points (belonging to s) there is a path of adjacent points

(belonging to s) connecting them. Within a connected subset s, the minimum

distance between any pair of points is de�ned as the length of the shortest path

connecting them formed by points belonging to s. If this path does not exist, then

the subset is not connected. The matrix of the shortest paths between pairs of

points belonging to s, F s, can be calculated e�ciently using the Floyd�Warshall

algorithm [34, 107]. We refer to its elements as F s
a,b, where a, b ∈ s; F s

a,b = ∞
when there is no path connecting points a and b. The connectivity condition can

be expressed as

0 ≤ F s
a,b <∞, ∀a, b ∈ s⇐⇒ s is connected. (3.2)
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Finally, we present the property of convexity. In taxicab geometry, the

de�nition of convexity is related to the notion of the orthogonal convex hull of

a subset. In this thesis, we exploit the following property: a subset of points s

is convex if, and only if, for all pairs of points belonging to s, the shortest path

distance (inside of the subset) is equal to the Manhattan distance between them:

F s
a,b = dist (a, b) , ∀a, b ∈ s⇐⇒ s is convex. (3.3)

3.4. Constraints

We now present the model constraints. As explained in previous sections,

the model must generate a patrol sector con�guration. The districts cannot overlap

and they must cover the whole territory.

Mathematically, a partition is a family of non-empty subsets completely

covering the initial set and in which each pair of these subsets are disjoint. Thus,

the �rst condition that any solution has to satisfy is to de�ne a partition, P , of

the territory considered. This translates to a de�nition of the subsets over the

matrices A and R. Each subset s ∈ P contains some of the matrix entries and

represents a patrol sector. From now on, the terms subset and (patrol) sector will

refer to the same concept.

The second restriction concerns the cardinality of the partition. The num-

ber of subsets in the partition must be exactly p.

The third condition regards the subsets' geometry. Only connected subsets

are feasible. This condition implies that an agent cannot be assigned to a patrol

district composed of two or more separate areas of the city. Furthermore, all the

subsets are required to be convex. When a subset is convex, it is also optimally

e�cient in terms of distances between its points. In fact, in a convex subset, there

is a minimal shortest path connecting any pair of points. Therefore, this condition

allows the generation of patrol sectors that are more e�cient in terms of movement

within the area.

The resulting PDP can be characterized by the following mathematical

program, adopted from King et al. [57].

opt obj (P ) (3.4)
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s.t. ∃s ∈ P | (i, j) ∈ s ∀ (i, j) ∈ G (3.5)

Emptys (P ) = 0 ∀s ∈ P (3.6)

|P | = p (3.7)

Conns (P ) = 1 ∀s ∈ P (3.8)

Convs (P ) = 1 ∀s ∈ P (3.9)

In the model, obj (P ) in Equation (3.4) is an objective re�ecting the goals

of the decision maker. The constraints (3.5) require that all the points of the grid

must belong to a subset. Emptys (P ) in Constraints (3.6) is an indicator function

that equals 1 when s is empty (i.e., no points have been assigned to it) and zero

otherwise. The cardinality constraint (3.7) forces the number of subsets to be

exactly p. Finally, Conns (P ) in Constraints (3.8) is an indicator function that

equals 1 when s is connected and zero otherwise, and Convs (P ) in Constraints

(3.9) is an indicator function that equals 1 when s is convex and zero otherwise.

3.5. Attributes

To �nd the best possible partition, a methodology is needed that allows

the comparison of the di�erent solutions in terms of �goodness�. To evaluate this,

we need to de�ne some unambiguous criteria. More speci�cally, we consider the

following attributes for each subset s ∈ P :

� Area, as. This attribute identi�es the size of the territory that an agent

should patrol. It is calculated as

as =
∑

(i,j)∈s

aij. (3.10)

� Support received, bs. Two districts support each other if the distance

between their geometric medians is less than or equal to a de�ned constant,

K. We recommend de�ning K as

K =

⌈
max {m,n}
√
p

⌉
. (3.11)

The geometric median, os, of a subset s is the point minimizing the sum of
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the distances to the elements of the subset:

os = argmin
a∈s

{∑
b∈s

F s
a,b

}
. (3.12)

Finally, the support received by a subset can be calculated as follows:

bs =
∣∣∣{s′ ∈ P ∣∣∣dist(os, os′) ≤ K, s 6= s′

}∣∣∣ . (3.13)

� Demand, cs. The demand is de�ned as the total risk of the subset, i.e., the

sum of the risks associated to the points belonging to the subset:

cs =
∑

(i,j)∈s

rij. (3.14)

It is important to remember that rij identify the crime risk associated to a

point. Therefore, the demand cs identi�es how �dangerous� the subset is in

terms of the expected crime risk.

� Diameter, ds. The diameter of a subset is de�ned as the maximum distance

between any pair of points belonging to the subset:

ds = max
a,b∈s

{
F s
a,b

}
. (3.15)

The diameter is an e�ciency measure. In fact, compact districts have small

diameters. Moreover, the diameter can be interpreted as the maximum dis-

tance that the agent associated to the district should travel in case of an

emergency call. Therefore, a small diameter results in a low response time.

The attributes de�ned are not comparable, as they are associated to di�erent

dimensions. To make comparisons between them, we need to convert the attributes

into dimensionless ratios:

� Area ratio, αs. This is the ratio of the subset area to the whole area:

αs =
as∑

(i,j)∈G aij
. (3.16)

� Isolation ratio, βs. To express all the ratios as quantities to be minimized,

we consider the isolation of a subset as the complement of the support re-
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ceived:

βs =
p− 1− bs

p− 1
. (3.17)

� Demand ratio, γs. This is the ratio of the subset demand to the whole

demand:

γs =
cs∑

(i,j)∈G rij
. (3.18)

� Diameter ratio, δs. This is the ratio of the subset diameter to the maximum

diameter possible. We estimate this quantity as the maximum Manhattan

distance between two points in the grid:

δs =
ds

maxa,b∈G {dist (a, b)}
. (3.19)

Now that all the attributes have been expressed in a dimensionless fashion, it is

necessary to de�ne the relative importance of each ratio. The decision maker can

express preferences by associating weights to the attributes: wα, wβ, wγ, and wδ.

A larger weight assigns more importance to the minimization of the attribute. We

can now de�ne the workloadW s of a subset s as the sum of the products of weights

with the ratios:

W s = wα · αs + wβ · βs + wγ · γs + wδ · δs. (3.20)

3.6. Objective Function

After analyzing the information provided by the professionals of the SNPC,

we identi�ed two primary necessities that our model should take into account:

� The model should de�ne districts that are as e�cient as possible, in terms of

the attributes considered and the weights speci�ed.

� The model should de�ne districts that are as homogeneous as possible, in

terms of the attributes considered and the weights speci�ed.

Unfortunately, there might be a trade-o� between these requirements. As an

example, an increase in the homogeneity of the districts could reduce the global

e�ciency, and vice-versa. Therefore, we de�ne a multi-criteria objective function
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that takes into consideration the preferences of the decision maker with respect to

these factors:

min obj(P ) = λ ·max
s∈P
{W s}+ (1− λ) ·

∑
s∈P W

s

p
, (3.21)

where 0 ≤ λ ≤ 1. The term maxs∈P{W s} represents the worst workload, while the
term

∑
s∈P W

s

p
is the average workload1. The objective function de�ned, inspired by

the extended goal programming paradigm introduced by Romero [85, 86], allows

the decision maker to examine the trade-o� between optimization and balance

by a parametric analysis. In fact, by varying λ, the model gives a range from

optimization (λ = 0) to balance (λ = 1).

3.7. The Optimization Algorithm

The model resulting from (3.4)�(3.9) is extremely complex. In fact, Drexl

and Haase [33] showed that subset contiguity can be enforced by using a number

of inequalities, similar to the sub-tour elimination constraints in vehicle routing,

that increases exponentially with the number of subsets, making it intractable in

large problems. Shirabe [95, 96] proposed a �uid �ow approach to contiguity, yield-

ing a mixed-integer program formulation that avoids this exponential increase by

adding continuous decision variables measuring a �ow volume. Nevertheless, this

formulation is also intractable in large problems. Also, to the best of the author's

knowledge, no linear formulation for the convexity condition has been presented

in the literature. Additionally, for the purposes of this research, computational

time is critical since the model is to be included in an integrated DSS and, there-

fore, the user would expect a solution within a reasonable time. Therefore, the

presented model is solved by means of a heuristic algorithm. Namely, we adopt a

random search algorithm that, on each iteration, generates a new solution using a

randomized greedy heuristic and then improves it using a local search algorithm.

Additionally, the random search algorithm can be initialized by a solution provided

by the user, which is then optimized by means of local search.

Random Greedy Algorithm

1The average workload term of the objective function includes constant terms, such as
∑
αs = 1 and∑

γs = 1. We decided to include them so that the worst workload and the average workload could have
the same magnitude and, therefore, be comparable.
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Algorithm 1 Random greedy algorithm.

procedure GreedyHeuristic(A,R, p)
. Phase 1 � Random initialization of the subsets.

C ← (i, j) ∈ G; . Initialize points.
for all s ∈ P do

c← rand(C); . Randomly choose a point from C.
C ← C\c; . Remove c from C.
s← c; . Assign c to s.

end for

. Phase 2 � Subset expansion.
while C 6= ∅ do

P ? ← ∅;
for all {s ∈ P} and {c|c ∈ Neighborhood(s) ∧ c ∈ C} do

s← s ∪ c; . Assign c to s.
if Convs(P ) = 1 and obj(P ) < obj(P ?) then

P ? ← P ; . Save the best solution found so far.
c? ← c; . Save the last point added to a subset.

end if

s← s\c; . Remove c from s.
end for

P ← P ?; . Update the current solution with the best solution found so far.
C ← C\c?; . Remove c? from C.

end while

return P ?;
end procedure

This algorithm generates an initial solution by randomly choosing the �rst

element of each subset and then expanding the subsets in a greedy fashion while

preserving their connectivity and convexity. Initially, the partition subsets are

empty. In the �rst phase of the algorithm, each subset is initialized with a ran-

domly chosen point. At each iteration of the second phase, the algorithm extends

the initial solution by assigning a point to a subset. The algorithm chooses the

combination of point and subset that results in the best feasible solution. The

algorithm ends when all the points have been assigned to subsets. However, due

to the convexity condition, it is possible that the algorithm cannot assign all the

points to subsets. In this case, the algorithm returns an empty set.

The procedure rand () randomly chooses an element from the input set.

The set Neighborhood (s) returns the neighboring points, i.e., the set of feasible

points that do not belong to s and whose distance from at least one of the points

in s is exactly 1:

Neighborhood (s) = {a = (i, j) ∈ G\s |∃b ∈ s |dist (a, b) = 1 } . (3.22)

The neighboring set of points can be e�ciently calculated by keeping a list for each
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Algorithm 2 Local search algorithm.

procedure LocalSearch(A,R, p, P )
improved← true;
while improved do

improved← false;
P ? ← P ; . Initialize the best solution found with the current one.
for all {sA ∈ P} and {c ∈ sA} and {sB ∈ P |c ∈ Neighborhood(sB)} do

sA ← sA\c; . Remove c from sA.
sB ← sB ∪ c; . Assign c to sB .
if ∀s ∈ P, Emptys(P ) = 0 and Conns(P ) = 1 and Convs(P ) = 1 and obj(P ) < obj(P ?) then

P ? ← P ; . Save the best solution found so far.
improved← true; . The solution improved.

end if

sB ← sB\c; . Remove c from sB .
sA ← sA ∪ c; . Assign c to sA.

end for

P ← P ?; . Update the current solution with the best solution found so far.
end while

return P ?;
end procedure

subset that is updated every time a point is added to or removed from the subset.

Subsets can be checked for convexity (Convs (P ) = 1) by applying condition (3.3),

having a complexity equal to O
(
|s|2
)
. King et al. [57, 58] propose data struc-

tures speci�cally designed for the e�cient implementation of contiguity and hole

constraints in local search algorithms for planar graph partitioning. Nevertheless,

implementing such sophisticated data structures in our algorithm is unnecessary,

as no real bene�t would result from reducing the complexity of the convexity test.

In fact, the complexity for running the convexity test is dominated by that of the

Floyd�Warshall algorithm O
(
|s|3
)
to compute the shortest-path distance matrix,

on which the convexity test is based.

Local Search Algorithm

The local search algorithm improves the solution generated by the greedy

algorithm by reassigning the points located at the subsets' borders. At each step

of the algorithm, all the feasible reassignments of a point are considered. The al-

gorithm chooses the reassignment that results in the best partition. If the solution

found is better than the previous one, then it is taken as the starting point of the

next iteration.

Subsets can be checked for connectivity (Conns (P ) = 1) by applying con-

dition (3.2), having a complexity equal to O
(
|s|2
)
. Also the connectivity test

requires the shortest-path distance matrix computed using the Floyd�Warshall

algorithm.
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Algorithm 3 Random search algorithm.

procedure RandomSearch(A,R, p,N, P̂ )

if P̂ 6= ∅ then
P ? ← LocalSearch(A,R, p, P̂ ); . Initialization by user provided solution.

else

P ? ← ∅; . Initialize the best solution found to empty set.
end if

n← 0; . Initialize the number of iterations to zero.
while Loop() do

P ← GreedyHeuristic(A,R, p); . Generate a new solution.
P ← LocalSearch(A,R, p, P ); . Improve the current solution.
if obj(P ) < obj(P ?) then

P ? ← P ; . Save the best solution found so far.
end if

n← n+ 1; . Increase the iteration counter.
end while

return P ?;
end procedure

Random Search Algorithm

Initially, if no initial solution P̂ is provided by the user, the best solution is

initialized to empty. Otherwise, the best solution is initialized by optimizing P̂ by

means of local search. At each iteration, the random search algorithm generates

a new solution by calling GreedyHeuristic and LocalSearch. The new solution is

compared with the best solution found. The algorithm iterates according to a

certain looping condition, Loop. In our implementation, the algorithm runs for a

�xed amount of computational time.
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CHAPTER 4

A DECISION SUPPORT SYSTEM FOR PREDICTIVE

POLICE PATROLLING (P3-DSS)

A Decision Support System (DSS) can help to optimize e�ective use of the

scarce human resources available. In this thesis we present a DSS that merges

Predictive Policing capabilities with a Patrolling Districting Model for the design

of predictive patrolling areas. The proposed DSS, developed in close collaboration

with the Spanish National Police Corps (SNPC), de�nes partitions of the territory

under the jurisdiction of a district that are e�cient and balanced at the same

time, according to the preferences of a decision maker. To analyze the crime

records provided by the SNPC, a methodology for the description of spatially and

temporally indeterminate crime events has been developed.

For further information on this chapter see [16].

4.1. Structure of the P3-DSS

The DSS we propose is composed of three main elements that identify the

predictive police patrolling strategies: Data Pre-Processing Unit (DPPU), Crime

Risk Forecasting Unit (CRFU), Patrol Sector Optimization Unit (PSOU).

Figure 4.1. The P3-DSS main loop.

Forecasting models
updated?

DPPU: Dynamic data
structure update.

CRFU: Crime risk
forecast

for next shift.

Patrol sector
optimization

required?

PSOU: Patrol sector
optimization.

YES

YESNO

NO

Figure 4.1 illustrates the main loop of the P3-DSS, which shows how the

elements interact. Being a real-time system, the P3-DSS undertakes an in�nite

43
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loop composed of two main parts. When a certain updating condition is met (e.g.,

when a signi�cant number of records have been added to the crime reports database

and a certain amount of time has passed since the last update), the system �rst

calls the DPPU to update the internal data structures and the CRFU to update

the forecasting models. These operations are carried out in the background, and

are invisible to the user. Whenever a request for a patrolling con�guration is sent

by the user, the P3-DSS calls the PSOU and returns the resulting con�guration.

These units will be presented in detail in the following subsections.

4.1.1. Data Pre-Processing Unit (DPPU)

Most of the research in Predictive Policing assumes that the criminal in-

cidents are associated with a determined point in time and space. Ratcli�e [82]

presents a methodology for the temporal description of crime events where the time

of incidence is indeterminate. However, many common crimes also have indetermi-

nate spatial incidence, e.g., pickpocketing. We now present a novel methodology

for the spatio-temporal description of crime events that can be indeterminate in

both the temporal and the spatial dimensions.

The P3-DSS makes use of a three-dimensional data structure providing a

discretized representation of the space (i.e., the territory under the jurisdiction of

a district) and of time (i.e., the period of time considered in the historical data).

In fact, we represent the territory under the jurisdiction of a district as a grid,

G, having I rows and J columns. The size of the grid cells can be determined

by taking advantage of the results of Gorr and Harries [41], which show that the

average monthly crime counts in a territory need to be on the order of 30 or more

to achieve good forecast accuracy. Time is discretized by considering the agents'

shift as the time unit1. The total number of time steps, T , can be easily computed

by calculating the number of shifts included in the period of time encompassed by

the historical data available.

The main data structure used by the DSS is a three-dimensional array C,

having dimension I × J × T . The value of each element, ci,j,t ∈ R, represents
the number of crime reports associated with location (i, j) ∈ G at time step t ∈
{1, . . . , T}. The procedure executed by the DPPU to compute this value will be

1In the SNPC, shifts are scheduled as follows: morning shift, from 8 AM to 3 PM; afternoon shift,
from 3 PM to 10 PM; night shift, from 10 PM to 8 AM of the next day.
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explained in the following.

The array C is initialized to 0. Next, each crime report is proportionally

accounted for in the elements of the array involved in the criminal event according

to the following data included in the crime report database of the SNPC:

� Event time window: Range of dates and times in which an event occurred.

� Event location: Place where the crime was committed, i.e., its geographical

location. This might be speci�ed as an address or, more generally, as an area.

By �proportionally� we mean that a crime is partially accounted for in all elements

ci,j,t referenced by the data. The following cases might occur:

� The time and location of the crime are known with certainty and are limited

to a single grid cell and time step (e.g., a robbery). The location (i, j) and

time step t can be determined unambiguously. The value of ci,j,t is increased

by 1.

� The location of the crime is limited to a single grid cell and the time is ex-

pressed as a period of time covering more than one time step (e.g., a motor

vehicle theft). In this case, the location (i, j) can be determined unambigu-

ously but the time is expressed as a range t, . . . , t + n. Thus, the values of

the ci,j,t, . . . , ci,j,t+n are increased according to the proportional part of the

crime time range that falls into each time step.

� The time of occurrence of the crime is contained in one time step but the

location is not limited to a single grid cell (e.g., a breach of the peace). The

time step t can be determined unequivocally but the location is expressed

as set of locations {(i1, j1) , . . . , (in, jn)}. Therefore, the ci1,j1,t, . . . , cin,jn,t are
increased according to the proportional part of the area considered by the

reports that falls into each grid cell.

� The location is not limited to a single grid cell and the time of the crime

is contained in more than one time step (e.g., a pickpocketing or evading a

police car). In this case, �rst all the elements involved are identi�ed, and

then the value of each element is increased proportionally, as illustrated in

the previous items.

Once C is built, we can use it to forecast the risk of crime in a speci�c shift.
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4.1.2. Crime Risk Forecasting Unit (CRFU)

The array C can be looked at from two di�erent perspectives. In fact, by

selecting a speci�c time step, t ∈ {1, . . . , T}, the bi-dimensional matrix C•,•,t rep-

resents the distribution of crimes reported in the territory for the selected shift.

Similarly, by selecting a speci�c location
(
i, j
)
∈ G, the vector Ci,j,• is the time

series of the crime counts for the selected location. Since this number is an ap-

proximation to the real number of crimes committed, we can apply classical time

series forecasting models to predict the risk of crime for each cell of the grid. For

instance, exponential smoothing models assign progressively smaller weights (im-

portance) to older data, whereas newer data is given progressively greater weight.

The use of classical time series forecasting models has also been validated by pre-

vious research on the topic. In fact, Gorr et al. [42] and Cohen [28] agree that

exponential smoothing models are very accurate at forecasting crime series at the

sub-district level. Following these results, the CRFU considers for each location

(i, j) ∈ G an exponential smoothing state space model [50]. As shown in Section

6.2, although this methodology relies exclusively on crime location, the CRFU is

capable of discerning the underlying pattern and producing good quality predic-

tions.

4.1.3. Patrol Sector Optimization Unit (PSOU)

Forecasting the risk of crime in an area is just the �rst step towards the

de�nition of sound patrolling sectors in a district. By optimizing the con�guration

of patrol areas, it is possible to focus resources on the most relevant locations, with

a consequential improvement in the e�ectiveness of patrolling operations. After

interviewing several service coordinators and a number of agents involved in public

safety operations, several desirable characteristics were identi�ed in order to �nd

a 'good' territory partition.

� Compact Areas

� Homogeneity in terms of workload

� Mutual support

The mathematical optimization model proposed for the solution of this

problem partitions the area under the jurisdiction of a police district into a de�ned
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number of patrolling sectors, in the most e�cient way. The resulting districting

problem, called the Multi-Criteria Police Districting Problem (MC-PDP), has been

presented in Chapter 3 and a fast heuristic algorithm was proposed for its solution.

Computational experiments showed that the MC-PDP rapidly generates patrolling

con�gurations that are more e�cient than those currently adopted by the SNPC.

The main characteristics of the MC-PDP are introduced below.

Input Data and Parameters

The PSOU requires the following input data:

� Let R be the bi-dimensional crime risk matrix for a future time step t′ > T ,

having dimension I×J . This matrix is computed by the CRFU by forecasting

the crime risk level at each location (i, j) ∈ G. Thus, the value of every

element ri,j ∈ R represents the predicted risk of crime at location (i, j) and

time step t′.

� Let A be the bi-dimensional distance matrix, having dimension I × J . The
elements ai,j ∈ A are non-negative real numbers that represent the total

length of the streets to be patrolled at location (i, j) ∈ G. This matrix can

be computed using the information provided in a GIS.

� Let p ∈ N be the number of patrolling sectors to be de�ned. We assume

p > 1.

� Let w ∈ R4 be the vector of weights expressing the decision maker's prefer-

ence associated with each attribute (see paragraph �Patrol Sector Attributes

and Workload� below).

� Let λ ∈ R, 0 ≤ λ ≤ 1 be the coe�cient expressing the decision maker's pref-

erence between optimization and workload balance (see paragraph �Objective

Function� in page 49).

Structure of a Patrolling Con�guration

A feasible patrolling con�guration is a partition P of the territory consid-

ered. Each subset s ∈ P represents a patrol sector and is expressed as a subset

of locations, i.e., s ⊆ G. From this point onward, the terms �patrol sector� and

�partition subset� will refer to the same concept. The number of subsets in the

partition must be exactly p. All partition subsets must be connected and convex.
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Patrol Sector Attributes and Workload

The MC-PDP evaluates the patrol sectors s ∈ P de�ned by a con�guration

P according to four main attributes: area, isolation, demand, and diameter. All

the attributes, explained in the following, are expressed as dimensionless ratios, so

as to be comparable.
� Area, αs. This attribute is a measure of the size of the territory that an

agent should patrol. It is expressed as the ratio of the area encompassed by

sector s, to the whole district area.

αs =

∑
(i,j)∈s aij∑
(i,j)∈G aij

. (4.1)

� Isolation, βs. In the MC-PDP, two districts support each other if the dis-

tance between their geometric medians (i.e., the location in a sector that

minimizes the sum of the distances to all the locations in the sector) is less

than or equal to a de�ned constant, K. We recommend de�ning K as

K =

⌈
max {I, J}
√
p

⌉
. (4.2)

The support received by a sector can be calculated by

bs =
∣∣∣{s′ ∈ P ∣∣∣dist(os, os′) ≤ K, s 6= s′

}∣∣∣ , (4.3)

where os identi�es the median location of sector s and dist is the distance

between two locations2. The isolation of sector s is computed as

βs =
p− 1− bs

p− 1
. (4.4)

� Risk, γs. This attribute is a measure of the total risk associated to the sector

that an agent patrols. It is expressed as the ratio of the total risk of sector

s, to the whole district risk.

γs =

∑
(i,j)∈s rij .∑
(i,j)∈G rij

. (4.5)

� Diameter, δs. The diameter of a subset is de�ned as the maximum dis-

tance between any pair of locations belonging to that subset. It has been

introduced in the MC-PDP as an e�ciency measure. In fact, the diameter

2Given the underlying grid structure, the distance function used in the MC-PDP is the Manhattan
distance.
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can be interpreted as the maximum distance that the agent associated to

the district would have to travel in case of an emergency call. Therefore, a

small diameter results in a low response time. The diameter measure used to

evaluate a patrol sector is the ratio of the subset diameter to the maximum

diameter possible.

δs =
maxa,b∈s {dist (a, b)}
maxa,b∈G {dist (a, b)}

. (4.6)

By combining the attributes with the preference weights w de�ned by the decision

maker, we can compute a measure of the workload W s of a sector s as

W s = wα · αs + wβ · βs + wγ · γs + wδ · δs. (4.7)

Objective Function

According to the guidelines provided by the professionals of the SNPC, the

patrolling con�gurations should be as e�cient as possible and, at the same time,

they should distribute the workload homogeneously among the patrol sectors. Un-

fortunately, there might be a trade-o� between these requirements. The objective

function of the MC-PDP takes into consideration the preferences of the decision

maker for these factors.

min obj(P ) = λ ·max
s∈P
{W s}+ (1− λ) ·

∑
s∈P W

s

p
. (4.8)

The term maxs∈P{W s} represents the worst workload, while the term
∑

s∈P W
s

p

is the average workload. This objective function allows the decision maker to

examine the trade-o� between optimization and balance by a parametric analysis.

In fact, by varying λ, the model gives a range from optimization (λ = 0) to balance

(λ = 1).

Solving the MC-PDP

The MC-PDP is an extremely complex model that cannot easily be solved

to optimality. In fact, not only does modeling the property of subset connectivity

make the MC-PDP intractable in large problems, but also no linear formulation

for the convexity condition has been presented in the literature. Given that com-

putational time is critical � the user expects a solution within a reasonable time

� the MC-PDP is solved by a Greedy Randomized Adaptive Search Procedure

(GRASP) algorithm. This methodology, thoroughly described in Chapter 3 and
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tested in Chapter 6, is capable of generating more e�cient patrolling con�gurations

than those are currently being adopted by the SNPC, within one minute.

Figure 4.2. Operational envelope. Workload of the system as a function of the number

of patrolling sectors p.

4.2. The Operational Envelope

The MC-PDP �nds a good partition of the territory, according to di�erent

attributes. When considering suboptimal ways of subdividing a district, the basic

question is what is the loss of e�ciency involved in terms of workload. We can

approximate this loss of e�ciency by calculating the distance from the best solution

value found. For a �xed number of patrolling sectors and weights, we can represent

the increase in workload (or loss of system e�ciency) as shown in Figure 4.2.

The operational envelope presented refers to Saturday, 10/13/2012, night

shift in the Central District of Madrid (see Section 6.2) and was computed using

the real crime distribution in the district. However, we can obtain an approxi-

mate operational envelope by using the forecast crime distribution provided by

the CRFU. In Figure 4.2, the values on the x-axis represent the number of pa-

trolling sectors. The values on the y-axis display the workload, computed as in

Equation (5.8). For this illustrative example, we assign to the weights and the

balance coe�cient the following values, (wα, wβ, wγ, wδ) = (0.45, 0.05, 0.45, 0.05)

and λ = 0.1. As the number of patrolling sectors increases, the workload is conse-

quently decreased. Figure 4.2 has two trends: the upper trend displays the worst
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case workload (i.e., the workload obtained when the least e�ective patrolling plan

is implemented) whereas the lower trend depicts the best case workload (i.e., the

workload when implementing the best patrolling plan for di�erent values of p). It

can be easily seen that the two trends de�ne a range of losses, from the best case

to the worst case, that encompasses all the possible ways of protecting the district.

This region is referred to as the operational envelope. Knowing the structure of

the envelope can be helpful for patrol planning decisions. The lower curve repre-

sents a situation of complete control. Thus, the optimal patrolling strategy can

be devised. On the other hand, the upper curve shows the e�ects of applying the

worst possible patrolling scheme. The thickness of the envelope provides valuable

information regarding the range of the impact of di�erent partitioning strategies

using the same amount of resources, and the extent to which the workload may

be unnecessarily increased if suboptimal plans are implemented. Prior examples

of depicting similar envelopes in other application settings can be found in Urban

and Keitt [104], Kim and O'Kelly [56], and Church and Scaparra [26].

4.2.1. Computing the Operational Envelope

An algorithm for the computation of the operational envelope is presented

in Algorithm 4.

Computing (or approximating) the operational envelope for a turn is com-

putationally expensive. In fact, the lower trend points are the best solutions found

by the MC-PDP, while the upper trend points are the greatest solutions found by

a maximization version of the MC-PDP. For the determination of the operational

envelope in Figure 4.2, we ran the optimization algorithms for each value of p

iteratively and stopped the execution when there was no improvement in the best

solution for 10 consecutive iterations. This stopping criterion is often applied in

exploration-based optimization algorithms such as Genetic Algorithms to ensure

that the method has converged [54, 88]. In terms of computational time, it took

approximately two hours to compute the operational envelope presented in Figure

4.2, which is quite time consuming. However, since the operational envelope is a

strategical tool that needs to be calculated only once per shift, this computational

time is reasonable.
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Algorithm 4 Algorithm for the computation of the operational envelope.

Require: R, A, w, λ
1: for p ∈ {2, . . . , 10} do
2: . Obtaining lower trend point
3: i← 0
4: obj

(
P+
p

)
← inf

5: while i < 10 do

6: solve obj (P )← min MC-PDP(R,A,w, p, λ)

7: if obj (P ) < obj
(
P+
p

)
then

8: obj
(
P+
p

)
← obj (P )

9: i← 0
10: else

11: i← i+ 1
12: end if

13: end while

14: . Obtaining upper trend point
15: i← 0
16: obj

(
P−p
)
← − inf

17: while i < 10 do

18: solve obj (P )← max MC-PDP(R,A,w, p, λ)

19: if obj (P ) > obj
(
P−p
)
then

20: obj
(
P−p
)
← obj (P )

21: i← 0
22: else

23: i← i+ 1
24: end if

25: end while

26: end for

27: return obj
(
P+
p

)
and obj

(
P−p
)
, ∀p = 2, . . . , 10
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4.2.2. Calculating the E�ciency Loss

The decision-maker can exploit the information provided by the operational

envelope to compare alternative patrolling con�gurations and evaluate the poten-

tial bene�ts of corrective plans, such as changes in the number of patrolling sectors,

or investments in the analysis of the system to acquire a better de�nition of the

data and the parameters. In fact, the operational envelope can be used to compute

the percentage e�ciency loss associated to a certain partition P :

E�ciency loss = 100
obj (P )− obj (P+)

obj (P−)− obj (P+)
, (4.9)

where P+and is the best and P− the worst known partition for the set of attributes.
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CHAPTER 5

LOCAL SEARCH METHODS FOR THE

MULTI-CRITERIA POLICE DISTRICTING PROBLEM

ON GRAPH

The Multi-Criteria Police Districting Problem (MC-PDP) concerns the def-

inition of sound patrolling sectors in a police district. The model was originally

formulated in collaboration with the Spanish National Police Corps and was solved

by means of a Steepest Descent Hill Climbing algorithm. One of the major limi-

tations of the MC-PDP is that it requires the territory to be organized as a grid.

In this chapter we formulate the MC-PDP for a generic graph, which results in a

more applicable and usable model. Also, we propose for its solution three local

search algorithms, including a Tabu Search.

For further information on this chapter see [64].

5.1. The Multi-Criteria Police Districting Problem on Graph

The MC-PDP concerns the design of patrol sector con�gurations that are

e�cient and that distribute the workload homogeneously among the police o�cers.

A solution to the MC-PDP de�ned on a graph G = (N,E) is a partition P of the

set of nodes N . Each block A ∈ P of the partition is a connected subset of the

node set and represents a patrol sector. Therefore, from this point onward the

terms �partition block,� �patrol sector� and �sector� will be used interchangeably.

The MC-PDP requires the partition blocks to be convex. This condition has been

introduced to ensure that all the patrol sector would be intrinsically e�cient, i.e.,

the agent can move within the sector always following the shortest path. Finally,

the number of subsets in the partition must be exactly p. The formal elements of

the model are presented in the following.
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5.1.1. Data and Properties

We de�ne the MC-PDP on a generic graph G = (N,E), with N being the

set of nodes and E the set of edges. For each node i ∈ N the following data is

required:

� ai ∈ R≥0: Total length of the streets to be patrolled at node i ∈ N .

� ri ∈ R≥0: Risk of crime at node i ∈ N .

Also, each edge (i, j) ∈ E is characterized by the following:

� lij ∈ R≥0: Length of edge (i, j) ∈ E.

Finally, p ∈ N≥2 is the number of patrolling sectors to be de�ned.

Additionally, on the set of nodes N and all of its subsets N ′ ⊆ N we de�ne

the following operations:

� di,j (N
′): Shortest path distance between nodes i, j ∈ N ′ computed using

only the nodes in N ′. This distance is calculated considering the length of

the edges in the path.

� d1i,j (N
′): Shortest edge distance between nodes i, j ∈ N ′ computed using

only the nodes in N ′. This distance is calculated considering exclusively the

number of edges in the path.

Given a node subset N ′ ⊆ N , the shortest distances between all the nodes are

obtained using the Floyd-Warshall algorithm [34, 107]. The algorithm is initialized

with lij for di,j (N
′), and with the adjacency matrix for d1i,j (N

′). Other relevant

properties de�ned on the set of nodes N and all of its subsets N ′ ⊆ N are:

� �N ′ : Diameter of subset N ′. The diameter is the maximum distance between

two nodes belonging to N ′, i.e., �N ′ = maxi,j∈N ′ di,j (N
′).

� cN ′ : Center of subset N
′. We de�ne the center of a subset of nodes N ′ ⊆ N as

the node belonging to the subset that minimizes the maximum risk-weighted

distance to all the other nodes in the subset. In case of ties, the node that

minimizes the sum of the risk-weighted distances is chosen. In summary,

cN ′ = arg Lex mini∈N ′
(
maxj∈N ′ rjdi,j (N

′) ,
∑

j∈N ′ rjdi,j (N
′)
)
, where Lex

stands for Lexicographic optimization (i.e., hierarchical optimization) of the

two objectives. We consider risk-weighted distances as we assume that the

agents should spend more time patrolling the nodes having greater risk.



5.1. THE MULTI-CRITERIA POLICE DISTRICTING PROBLEM ON GRAPH 57

5.1.2. Patrol Sector Attributes and Workload

The MC-PDP evaluates the patrol sectors de�ned by a partition according

to four main attributes: area, isolation, demand, and diameter. All the attributes,

explained in the following, are expressed as dimensionless ratios, so as to be com-

parable.

� Area, αA: This attribute is a measure of the size of the territory that an

agent should patrol. It is expressed as the ratio of the area encompassed by

patrol sector A to the whole district area.

αA =

∑
i∈A ai∑
i∈N ai

, (5.1)

� Isolation, βA: In the MC-PDP, two patrol sectors support each other if the

distance between their centers is less than or equal to a de�ned constant, K.

The value of K can be provided by an expert. Alternatively, for the MC-PDP

on graph we recommend the following:

K =
�N
2
√
p
, (5.2)

that is, we suggest K to be set equal to the total diameter of the graph

divided by twice the square root of the number of subsets to be de�ned. The

support received by a patrol sector can be calculated by:

bA = |{B ∈ P |dcAcB (N) ≤ K, A 6= B }| , (5.3)

that is, the support bA is equal to the number of sectors whose centers are

within a distance of K from the center of the currently considered subset.

Therefore, the isolation of sector A is computed as:

βA =
p− 1− bA

p− 1
, (5.4)

� Risk, γA: This attribute is a measure of the total risk associated to the

sector that an agent patrols. It is expressed as the ratio of the total risk of
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sector A to the whole district risk.

γA =

∑
i∈A ri∑
i∈N ri

, (5.5)

� Diameter, δA: The diameter has been introduced in the MC-PDP as an

e�ciency measure. In fact, the diameter can be interpreted as the maximum

distance that the agent associated to the sector would have to travel in case

of an emergency call. Therefore, a small diameter results in a low response

time. The diameter measure used to evaluate a patrol sector is the ratio

of the subset diameter to the diameter of the graph, that is, the maximum

possible diameter.

δA =
�A
�N

, (5.6)

The decision maker can express her preference on each attribute by de�ning a

normalized vector of weights w ∈ R4. By linearly combining the attributes with

the preference weights w we can compute a measure of the workload WA of a

sector A as

WA = wα · αA + wβ · βA + wγ · γA + wδ · δA. (5.7)

5.1.3. Objective Function

The objective of the MC-PDP is to generate patrolling con�gurations that

are e�cient and, at the same time, that distribute the workload homogeneously

among the patrol sectors. The objective function of the MC-PDP takes into con-

sideration the preferences of the decision maker for these factors by introducing

the coe�cient λ ∈ R, 0 ≤ λ ≤ 1, that expresses the decision maker's preference

between optimization and workload balance.

obj(P ) = λ ·max
A∈P

{
WA

}
+ (1− λ) ·

∑
A∈P W

A

p
. (5.8)

The term maxA∈P{WA} represents the worst workload, while the term
∑

A∈P W
A

p

is the average workload. This objective function allows the decision maker to

examine the trade-o� between optimization and balance by a parametric analysis.

In fact, by varying λ, the model gives a range from optimization (λ = 0) to balance

(λ = 1).
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5.1.4. Problem Formulation

We can now present a mathematical formulation for the MC-PDP on

graphs:

min obj (P ) (5.9)

s.t. ∅ /∈ P (5.10)⋃
A∈P A = N (5.11)

A ∩B = ∅ ∀A,B ∈ P |A 6= B (5.12)

|P | = p (5.13)

Conn (A) = 1 ∀A ∈ P (5.14)

Conv (A) = 1 ∀A ∈ P (5.15)

The model optimizes the objective function (5.8). The constraints (5.10)-

(5.12) represent the conditions held by a partition P de�ned on N : P should

not contain the empty set ∅ (5.10), the partition blocks cover N (5.11) and are

pairwise disjoint (5.12). The restriction (5.13) concerns the partition cardinality

and enforces the number of partition blocks to be exactly p. Conditions (5.14) and

(5.15) regard the geometry of the patrol sectors. In fact, Conn (A) is an indicator

function that equals 1 when A is connected and zero otherwise, and Conv (A) is

an indicator function that equals 1 when A is convex and zero otherwise. The

model establishes that only connected partition blocks are feasible. This condition

implies that an agent cannot be assigned to a patrol sector composed of two or more

separate areas of the city. Furthermore, all the partition blocks are required to be

convex. When a subset is convex, it is also optimally e�cient in terms of distance

between the points. In fact, in a convex subset there is a minimal shortest path

connecting any pair of points. Therefore, this condition allows for the generation

of patrol sectors that are more e�cient in terms of movement inside of the area.

In the following, we illustrate more in detail the concept of graph convexity.
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5.1.5. A Note on Graph Convexity and on Convex Graph

Partitioning

Let G = (N,E) be a �nite simple graph. Let A ⊆ N , its closed interval

I [A] is the set of all nodes lying on shortest paths between any pair of nodes of A.

The set A is convex if I [A] = A. In this work, the following equivalent condition

is applied:

d1i,j (A) = d1i,j (N) ∀i, j ∈ A ⇐⇒ Conv (A) = 1. (5.16)

Lemma. Equation (5.16) is a proper condition for set convexity.

Proof. Let A be a non convex set. It follows from the de�nition that I [A] 6= A.

Let us consider nodes i, j ∈ A and a node k ∈ N such that k ∈ I [A] and k /∈ A.
It follows that d1i,j (A) > d1i,j (N). In fact, if it were that d1i,j (A) = d1i,j (N) then

k would need to belong to A. Now let A be a convex set. It follows from the

de�nition that I [A] = A. More speci�cally, all the nodes lying on the shortest

path between between i, j ∈ A also belong to A. It follows that, necessarily,

d1i,j (A) = d1i,j (N).

As we do not make any assumption on the graph G, convexity for all the

patrol sectors could not always be possible. In order to always obtain a solution,

we relax constraint (5.15) and penalize its violation in the objective function by

means of a Lagrange multiplier. The resulting program is:

min obj (P ) = obj (P ) + µ
∑

A∈P (1− Conv (A)) (5.17)

s.t. (5.10)− (5.14) (5.18)

The coe�cient µ is the Lagrange multiplier associated to the convexity

constraint (5.15). We suggest setting µ > 1. In fact, as obj (P ) ≤ 1, setting µ > 1

translates into always preferring a convex graph partition over a non-convex one,

regardless of the value of obj (P ).
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Algorithm 5 Local Search algorithm pseudocode.

procedure LocalSearch(P0)
P ? ← P0; . Initialize the best solution found to the initial solution.

t← 0;
while ¬TerminationCriteria() do

Pt+1 ← SelectNeighbor(Pt); . Select a neighboring solution.

if Pt+1 better than P
? then

P ? ← Pt+1; . Save the best solution found so far.

end if
t← t+ 1; . Increase the iteration counter.

end while
return P ?;
end procedure

5.2. Local Search Methods for the MC-PDP

Local search algorithms move from solution to solution in the space of

candidate solutions (the search space) by applying local changes, until certain

termination criteria are satis�ed, e.g., a solution deemed optimal is found or a time

bound is elapsed. One of the main advantages of local search algorithms is that

they are anytime algorithms, which means that they can return a valid solution

even if they are interrupted at any time before they end. For this reason, they are

often used to tackle hard optimization problems in a real-time environment, such

as the MC-PDP. A generic pseudocode for a local search algorithm is presented in

Algorithm 5.

The procedure starts the search from a given initial solution P0 and it it-

eratively moves to a solution belonging to the neighborhood of the incumbent

one, until a certain termination criteria is met. Di�erent implementations of

TerminationCriteria() and SelectNeighbor() result in di�erent local search al-

gorithms. The characteristics of the algorithms developed in this research are

presented in the following.

Simple Hill Climbing

At each iteration, the Simple Hill Climbing (SHC) algorithm [87] explores

the neighborhood of the incumbent solution to �nd a better one. The neighborhood

of a solution is the set of solutions that can be obtained from the current one by

changing it slightly. In this research, we consider all the solutions that can be
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obtained by removing a node from a patrol sector and assigning it to another one,

without violating constraints (5.10)-(5.14). In our SHC, the SelectNeighbor (Pt)

procedure explores the neighborhood of the partition Pt in a random fashion and

returns the �rst improving solution found. The algorithm terminates when no

improving solution is found or the time limit is exceeded.

Steepest Descent Hill Climbing

The Steepest Descent Hill Climbing (SDHC) algorithm [87] is a variant

of the SHC that explores the whole neighborhood of the incumbent solution and

chooses the best solution belonging to it. This is the same algorithm originally

proposed for the solution of the MC-PDP [17].

Tabu Search

Similarly to the SDHC, the Tabu Search (TS) algorithm [39, 40] explores

the whole neighborhood of the incumbent solution. However, the TS chooses for

the next iteration the best solution found that is not tabu. Also, the TS does

not terminate if an improving solution is not found. This allows the algorithm to

escape local optima. The criterion that is used to declare a certain point of the

neighborhood as tabu is based on a short-term memory. At each iteration, the

TS presented in this thesis stores the current solution in the short-term memory

with an associated expiration counter initially set to T . During the exploration of

a neighborhood all the solutions found that are already included in the short term

memory are marked as tabu and their expiration counter are reset to T . Finally,

at the end of the iteration, all the expiration counters are decreased by one and

the solutions whose counters have reached zero are removed from the short term

memory.

The algorithm terminates when the time limit is exceeded, when no non-

tabu solution is found in the current neighborhood, or after a �xed number I

of non-improving iterations. We suggest setting the parameters T and I to the

cardinality of the node set, i.e., T = I = |N |.
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5.2.1. Multi-Start Local Search Algorithms

Local search methods are very good at exploring certain zones of the solu-

tion space but they generally end up in local optima. Multi-start is a very simple

and general diversi�cation method. In order to better explore distant portions of

the solution space the search is started more than one time from di�erent points.

The pseudocode of a multi-start procedure is illustrated in Algorithm 6.

Algorithm 6 Multi-start pseudocode.

procedure MultiStart()
while ¬TerminationCriteria() do

P ← InitialSolution(); . Generate an initial solution.

P ′ ← LocalSearch(P ); . Improve the current solution.

if P ′ better than P ? then
P ? ← P ′; . Save the best solution found so far.

end if
end while
return P ?;
end procedure

The procedure alternates a solution generation procedure with a local search

step, until the termination criteria, e.g. a time limit is exceeded.

Generating an Initial Solution

To generate an initial solution at each iteration of the multi-start algorithm,

we use the random greedy algorithm proposed in Chapter 3, adapted to work on a

generic graph. In summary, the algorithm generates a solution by randomly choos-

ing the �rst node of each sector and then expanding the sectors in a greedy fashion

while preserving their connectivity. Initially, the partition blocks are empty. In

the �rst phase of the algorithm, each block is initialized with a randomly chosen

node. Subsequently, at each iteration of the second phase, the algorithm extends

the initial solution by assigning a node to a single sector. The algorithm chooses

the combination of node and sector that results in the best feasible solution. The

algorithm ends when all the points have been assigned to subsets. It is important

to notice that, in the current version of the algorithm, the solutions are evaluated

by using the relaxed objective function (5.17) .
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CHAPTER 6

COMPUTATIONAL EXPERIMENTS AND RESULTS.

6.1. Results for MCPDP Applied to a Case Study of the Central

District of Madrid

The Local Search Algorithm has been applied and tested on a case study of

the Central District of Madrid. The solutions identi�ed by the optimization algo-

rithm have been analyzed and compared to the standard patrolling con�gurations

currently adopted by inspectors of the SNPC.

6.1.1. The Central District of Madrid

Madrid is the capital of Spain and the most populous city in the country

with 3,207,247 inhabitants as of 2013. In the metropolitan area as a whole, the

population is 6,543,031. The Central District of Madrid, on which we focus our

work, has an area of more than two square miles and comprises six neighborhoods:

Palacio, Embajadores, Cortes, Justicia, Universidad, and Sol. Its population is

approximately 150,000 inhabitants.

Datasets

To determine the best grid size, we can take advantage of the results of

Gorr and Harries [41]. In fact, the authors show that the average monthly crime

counts for each cell of the grid needs to be on the order of 30 or more to achieve

good forecast accuracy. The resulting grid for the Central District of Madrid has

nine rows and nine columns, and can be seen in Figure 6.1. Crime analysts from

the SNPC stated that the grid is su�ciently precise for the determination of patrol

districts.

65
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In this case study, we consider the thefts committed during the month of

October, 2011. Theft is the most frequent type of crime committed in Spain and

one of the main priorities for the SNPC is its reduction. The month of October

has been chosen, as it is an �average� month in terms of population and activity

and it has only one holiday. More speci�cally, we consider the following working

shifts:

� SATT3: Saturday, 10/15/2011, night shift (10 PM�8 AM).

� SUNT1: Sunday, 10/16/2011, morning shift (8 AM�3 PM).

� MONT2: Monday, 10/17/2011, afternoon shift (3 PM�10 PM).

These three shifts have been chosen for their representativeness, as crime activity

varies by time of day, day of the week, and by sector, and exhibits seasonal e�ects

[28]. Figure 6.1 illustrates the distribution of thefts in the three shifts considered.

SATT3 is characterized by a high level of nightlife, with people coming from other

districts of Madrid as well as other cities. In the picture it can be seen that thefts

are committed in almost all the territory, with the highest levels concentrated

around Plaza Mayor, the central plaza of the city. SUNT1 has a moderate level of

criminality, mostly concentrated in the south of the district where a very popular

�ea market (El Rastro) is held every Sunday morning. Finally, MONT2 presents

the characteristics of a normal business day, with low levels of criminal activity,

mostly concentrated in the commercial area.

6.1.2. Current Patrolling Con�gurations Analysis

During an interview, a service coordinator in charge of the patrolling oper-

ations of the Central District of Madrid stated that, on a �normal day�, one of the

following patrol sector con�gurations is applied:

� CONF2: The district is divided into two big sectors by the Gran Via, the main

artery in the territory, and the agents are free to patrol the assigned area ad

libitum. The northern sector includes two neighborhoods (i.e., Universidad

and Justicia) while the southern sector includes four neighborhoods (i.e.,

Palacio, Sol, Embajadores, and Cortes).

� CONF6: The district is partitioned according to its six neighborhoods.
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Figure 6.1. Number of thefts in the Central District of Madrid. Red represents a high

crime level, while white represents no criminal activity.

(a) SATT3: Saturday,
10/15/2011, night shift
(10 PM�8 AM).

(b) SUNT1: Sunday, 10/16/2011,
morning shift (8 AM�3 PM).

(c) MONT2: Monday,
10/17/2011, afternoon
shift (3 PM�10 PM).
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To be able to compare the performance of these con�gurations with those identi�ed

by the optimization algorithm, we represented CONF6 and CONF2 using the same

grid structure adopted by the optimization algorithm, as illustrated in Figures 6.2

and 6.3. The cells of the grid that are shared by more than one sector have

been assigned to the sector occupying the most of its area. It is important to

highlight that in both con�gurations there exists one sector that is not convex,

i.e., the green sector in CONF6 and the light blue sector in CONF2. Therefore,

the con�guration currently adopted by the SNPC would be infeasible according

to the optimization model proposed. This might result in better attribute values

for these solutions than those achievable with a feasible solution. In the following,

we use these con�gurations as a comparative basis for the quality of the solutions

identi�ed by the optimization algorithm.

6.1.3. Analysis of the Optimization Model Solutions

We now analyze the quality of the solutions found by the optimization al-

gorithm, by comparing them to the patrolling con�gurations currently adopted by

the SNPC. The optimization algorithm was implemented in C++. The experi-

ments were run on a computer with an Intel Core i5-2500K CPU having four cores

at 3.30GHz and 4GB RAM . The program was run on only one core and the mea-

sured RAM memory use is less than 2MB. Given that the police district optimizer

should be part of a DSS and, therefore, be su�ciently interactive, the computa-

tional time limit for each test was set to 60 seconds. Concerning the parameters,

we asked a service coordinator in charge of the patrolling operations of the Central

District to de�ne her preferences among the criteria and the values for the weights

and the parameter λ. The parameter values adopted in the experiments are the

following:

� Dataset: {SATT3, SUNT1, MONT2}.

� Number of patrol sectors, p: {2, 6}.

� Preference weights, (wα, wβ, wγ, wδ): {(0.45, 0.05, 0.45, 0.05)}.

� Balance coe�cient, λ: {0.1}.

In any event, the algorithm can be run for any feasible combination of the param-

eters. In the following, we compare the solutions found by the proposed algorithm

and the patrolling con�gurations currently adopted by the SNPC.
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Figure 6.2. Comparison of the patrolling con�gurations currently adopted by the SNPC

with those generated by the optimization algorithm. Scenario with two patrol

sectors. Each sector is represented in a di�erent color.

(a) CONF2. Solution currently
adopted by the SNPC.

(b) SATT3. Best solution found by
the random search algorithm.

(c) SUNT1. Best solution found by
the random search algorithm.

(d) MONT2. Best solution found
by the random search algorithm.

Scenario with Two Patrol Sectors

As the optimization algorithm is random in nature, we ran each con�gura-

tion 50 times. The best solutions found by the algorithm are displayed in Figure

6.2. According to the �gures, the optimization algorithm assigns a greater area to

the northern sector than the current solution of the SNPC. Also, we can see that

the northern sector slowly decreases in size as we move from the Saturday night

shift to the Monday afternoon shift, to adapt to the changes in the crime activity

level and distribution.

The solution and the attribute values are illustrated and compared in Table
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6.1a. The �rst three columns report the dataset, the methodology, and the objec-

tive function value. Then, for each attribute, the average and the worst value are

given. The area and demand averages are not shown, as they are constant. For the

algorithm, we show the 95% con�dence interval computed over the 50 runs. Also,

to simplify the interpretation of the di�erences in the attributes values, we show

the percentage improvement of our solutions over the current solution adopted by

the SNPC. The improvement was calculated as 100 · (1 − ZALG
ZSNPC

) , except for the

average and min support, that were calculated as 100 · ( ZALG
ZSNPC

− 1), where ZALG

is the value of the solution computed by the optimization algorithm and ZSNPC

is the value for the current patrolling con�guration in use by the SNPC. In the

instances considered, the proposed algorithm produces patrolling con�gurations

that are always better than the current one in terms of the objective function,

with an average improvement of 11.97%. Also, we can see that all the attributes

experience a signi�cant improvement, with the exception of the diameter, which

worsens by 4.55% on average.

Scenario with Six Patrol Sectors

The best solutions found by the algorithm with six sectors are shown in

Figure 6.3. We can see that there are signi�cant di�erences between them and the

current patrolling con�guration. From the observation of the con�gurations with

six subsets, one can see the importance of designing patrolling districts tailored

for the speci�c characteristics of each shift. In fact, we can see that the size and

location of the sectors changes to adapt to the crime distribution in each shift. For

the Saturday night shift (Figure 6.3b), the focus is on the center of the district,

where most of the nightlife takes place. On Sunday morning (Figure 6.3c), as

expected, we can see that most of the agents should be located on the southern

part of the district, where the �ea market takes place. On the other hand, on

Monday afternoon (Figure 6.3d), patrolling in the southern part of the district

can be reduced (only two sectors), in favor of a greater control of the central and

the northern parts of the district, where the commercial activities are located.

The solution and the attribute values are illustrated and compared in Table

6.1b. Also, in the scenario with six patrol sectors the algorithm generates better

partitions than those currently in use in the SNPC, with an average improvement

of 10.40%. In fact, it can be seen that the objective function value of the current
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Figure 6.3. Comparison of the patrolling con�gurations currently adopted by the SNPC

with those generated by the optimization algorithm. Scenario with six patrol

sectors. Each sector is represented in a di�erent color.

(a) CONF6. Solution currently
adopted by the SNPC.

(b) SATT3. Best solution found by
the random search algorithm.

(c) SUNT1. Best solution found by
the random search algorithm.

(d) MONT2. Best solution found
by the random search algorithm.
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con�guration is always larger that of the con�gurations generated by the optimiza-

tion algorithm. Also, the optimization algorithm improves notably the average and

minimum support, while keeping the max area and the max demand below the

values of the current solutions. The only exception is for dataset SATT3, where

the max demand is much higher than that of the current solution.

6.2. A DSS for Predictive Police Patrolling Tested with a Case

Study in the Central District of Madrid

To test the P3-DSS, we developed an initial version considering the thefts

reported during the years 2008 to 2012 in the Central District of Madrid. The

dataset includes exactly 105,755 incidents. This case study focuses on theft as

it is the single most frequent type of crime committed in Spain and one of the

main priorities for the SNPC is its reduction. However, extending the P3-DSS to

other districts and to consider several types of crime is straightforward and can

be accomplished with little change in the structure of the units and the models.

Nevertheless, the �nal version of the P3-DSS will require dedicated hardware to

be able to cover the whole national territory.

6.2.1. Overview of the Central District of Madrid

The population of the Central District of Madrid is extremely heteroge-

neous; there is also a large transient population that increasingly commutes to

this district for reasons of work, sightseeing, or leisure.

In Spain, the security of towns is the responsibility of the SNPC, usually

sharing the territory with other local security forces. Currently, the inspector in

charge of civil protection operations in a shift decides the distribution of agents in

the district. This decision is normally taken considering mostly their personal ex-

perience, their intuition, and also some descriptive statistics, such as the summary

of the criminal activity of the last days.

6.2.2. Implementation and Integration of P3-DSS

The DPPU and the CRFU have been developed in R [81] and then em-

bedded in C++. For their implementation, the following R packages have been
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used: sp [6, 79], rgeos [5], maptools [4], and forecast [49]. The PSOU has been

programmed entirely in C++.

The GIS currently in use by the SNPC (SNPC-GIS) is structured as shown

in Figure 6.4.

Figure 6.4. SNPC-GIS diagram. A line connecting two elements indicates bi-directional

communication between them.

GIS USER

Map DB

Reports DB

Map Server

ETL Module

The SNPC-GIS is composed of the following elements:

� Map Database and Server: These units provide access to the updated road

maps of Spain.

� Reports Database and ETL Module: These units provide access to crime

records.

� GIS: The GIS in use in the SNPC allows visualizing crime records on the

map and representing the location of police vehicles in the territory.

The P3-DSS proposed in this thesis is composed of three fundamental parts

that interact naturally with the existing SNPC-IS, as illustrated in Figure 6.5.

The DPPU interacts with the ETL Module to access the Reports DB, get

the crime records data, and to combine this data with the geographical information

returned by the Map Server to build the crime risk matrix C. This data is passed

to the CRFU to forecast crime risk levels for future shifts. Both the DPPU and the

CRFU need to regularly update their data structure and models so as to always

have the best forecasting quality. The PSOU obtains the forecast crime risk levels

from the CRFU, and the user's preferences from the GIS. Finally, the GIS is

connected to the CRFU and the PSOU to make queries regarding the distribution

of crime risk in a future shift and the recommended patrol sector con�guration,

respectively. The GIS has been updated to visualize the patrol con�gurations,
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Figure 6.5. P3-DSS integrated into the SNPC Information System. A line connecting

two elements indicates bi-directional communication between them.

GIS USER

Map DB

Reports DB

Map Server

ETL Module

PSOU

CRFUDPPU

P3-DSS

while the forecast crime risk levels are represented using an existing feature for the

display of heat maps.

6.2.3. Crime Risk Prediction Quality

We now analyze the quality of the crime risk forecast given by the CRFU.

The seasonality period-length was chosen according to preliminary experiments

on the dataset that showed that the best performance is obtained when using a

seasonality period-length of 21 shifts.

Dataset

We assessed the quality of the CRFU forecasts by computing the forecast-

ing Mean Square Error (MSE), considering all the months in 2012 and three areas

of interest in the Central District of Madrid. For each validation period, we trained

the forecasting model using all the criminal records prior to the period considered

(e.g., for the January 2012 validation period, we trained the forecasting models us-

ing the historical data from January 2008 to December 2011). Next, we computed

the validation MSE for the following areas of interest of the district:
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� Tribunal. Located in the north of the district, Tribunal is a well-frequented

crossroad positioned right at the border between two areas that are very

popular for nightlife: Malasaña and Chueca.

� Puerta del Sol. One of Madrid's main attractions and a prominent meeting

place for citizens and tourists alike, Puerta del Sol is a square located in the

center of the district.

� El Rastro. An area located in the south of the district that hosts a famous

�ea market every Sunday morning.

Performance Analysis

Figure 6.6. Crime distribution for January 2012.
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The training and validation MSEs are given in Table 6.2a. Except for

�January 2012/Puerta del Sol,� the CRFU performed extremely well in validation,

with a maximum validation MSE of 2.98, corresponding to an average forecasting

error of 1.73 thefts per shift. The �January 2012/Puerta del Sol � case can be easily

explained by observing Figure 6.6.

In fact, the plot has a peak of more than 80 thefts in the �rst shift. This

observation, that statistically can be considered an outlier, is due to the fact that

the �rst shift of January 2012 corresponds to New Year's Eve. It is traditional

in Madrid to celebrate this event in the Puerta del Sol. Therefore, the high ag-

gregation of people in the square and the festive atmosphere contributed to the

extraordinarily high number of thefts.
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Comparison with the Baseline

To understand the quality of the predictions returned by the CRFU we

compare the results obtained against a baseline. Table 6.2b presents the MSEs

obtained by a baseline model that predicts tomorrow's crime rate to be the same as

today's crime rate. In absolute terms, the baseline model performs fairly well, with

relatively low values of validation MSE. We can conclude that, with the exception

of the �January 2012/Puerta del Sol � case, the crime risk level is quite simple to

forecast using only information on time and location, in the dataset considered.

In the table, the percentages are the ratios of the MSEs obtained by the baseline

model to those of the CRFU. These values con�rm that the CRFU provides a

much better prediction than the baseline model. In fact, the validation MSE of

the baseline model is always larger than the MSE of the CRFU, especially in El

Rastro, where it is always more than four times larger.

6.2.4. Predictive Police Patrol Con�gurations Quality

In Section (6.1) we extensively analyzed the performance of the MC-PDP

in the presence of perfect information. We now assess the quality of the patrolling

con�gurations generated by the P3-DSS based on the forecast crime risk.

Comparison with Standard Con�gurations

To analyze the quality of the solutions found by the optimization algorithm,

we compare them to the patrolling con�gurations currently adopted by the SNPC.

In the Central District of Madrid, on an �average day�, one of the following

patrol sector con�gurations is applied:

� CONF6: The district is partitioned according to its six neighborhoods.

� CONF2: The district is split into two big sectors by the Gran Via, the main

artery in the territory, and the agents are free to patrol the assigned areas

ad lib. The northern sector includes two neighborhoods (viz., Universidad

and Justicia) while the southern sector includes four neighborhoods (viz.,

Palacio, Sol, Embajadores, and Cortes).

To be able to compare the performance of these con�gurations with those deter-

mined by the optimization algorithm, we represented CONF6 and CONF2 using

the same grid structure adopted by the optimization algorithm, as illustrated in
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Figure 6.7. Patrolling con�gurations currently adopted by the SNPC in the Central Dis-

trict of Madrid. Each sector is represented by a di�erent color.

(a) CONF2: the city is divided into
two big sectors by the Gran Via,
the main street in the district,
and the agents are free to patrol
the assigned area ad lib.

(b) CONF6: the district is parti-
tioned according to its neighbor-
hoods.

Figure 6.7. The cells of the grid shared by more than one sector have been assigned

to the sector occupying most of its area. It should be noticed that both con�g-

urations have one sector that is not convex, i.e., the green sector in CONF6 and

the light blue sector in CONF2. Therefore, the con�gurations currently adopted

by the SNPC would be infeasible according to the optimization model proposed.

This might result in better attribute values for these solutions than those achiev-

able with a feasible solution by the MC-PDP.

To assess the quality of the predictive patrol sector con�gurations, we ran

an analysis composed of the following steps:

1. Generation of 1000 random test instances. Each instance is represented

as a tuple (wα, wβ, wγ, wδ, λ, shift). For each sample, the attribute weights

(wα, wβ, wγ, wδ) are sampled from a uniform distribution U(0, 1) and normal-

ized, the balance coe�cient λ is sampled from a uniform distribution U(0, 1)
and the shift is chosen randomly from the set of all the shifts in 2012.

2. Forecasting of the crime risk distribution and extraction of the validation

crime distribution for each of the test instances.

3. Generation of patrolling con�gurations based on the forecast crime risk by

running the MC-PDP once, using 2 and 6 patrol sectors (p = {2, 6}). The
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optimization algorithm has been run for 60 seconds to simulate a real-time

environment.

4. Evaluation of patrolling con�gurations generated by the P3-DSS using the

validation data.

5. Evaluation of the standard patrolling con�gurations currently adopted by the

SNPC (CONF2 and CONF6) using the validation data.

6. Statistical comparison of the objective function values obtained on the same

test instances by the standard con�gurations and those generated by the

P3-DSS.

The results of the statistical analysis will be presented in the following. First, we

tested the data for each group for normality using a Shapiro�Wilk Normality Test

and found that they did not follow a normal distribution. Then, we applied a

Friedman Test, a nonparametric test of nonindependent data from two or more

groups that does not require the data to proceed from a normal distribution.

The statistical di�erence is signi�cant in both cases. In fact, the p-values are

p = 2.56e − 12 for the 2 patrol sectors case, and p = 0.02781 for the 6 patrol

sectors case. We can therefore state that, even in the face of uncertainty, the P3-

DSS produces patrolling con�gurations that dominate those currently adopted by

the SNPC.

Comparing the Loss of Performance

It is di�cult to understand what is the real improvement in terms of ef-

�ciency resulting from using the P3-DSS. That is because the objective function

in Equation (5.8) includes both a balance term and a global performance term.

Fortunately, we can use the operational envelope (see Section 4.2) to compare the

patrolling con�gurations in terms of e�ciency loss (Equation 4.9).

Given the computational time required to compute the operational envelope

for each case, this analysis has been limited to three shifts and one con�guration of

the attributes. The shifts and the attributes have been identi�ed with the help of

a service coordinator in charge of the patrolling operations of the Central District

of Madrid. In the course of many meetings, we asked the service coordinator to

identify a small number of shifts that could be considered as typical scenarios

and that presented very di�erent crime activity patterns. The following shifts are
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considered:

� SATT3: Saturday, 10/13/2012, night shift (10 PM�8 AM).

� SUNT1: Sunday, 10/14/2012, morning shift (8 AM�3 PM).

� MONT2: Monday, 10/15/2012, afternoon shift (3 PM�10 PM).

Figure 6.8. Maps of the number of thefts reported in the Central District of Madrid. The

red shade represents a high crime level while the white shade represents no

criminal activity.

(a) SATT3: Saturday, 10/13/2012,
night shift (10 PM�8 AM).

(b) SUNT1: Sunday, 10/14/2012,
morning shift (8 AM�3 PM).

(c) MONT2: Monday, 10/15/2012,
afternoon shift (3 PM�10 PM).

These three shift were chosen for their representativeness. Figure 6.8 illustrates

the distribution of thefts in these three shifts. SATT3 is characterized by a high

level of nightlife, with people coming from other districts of Madrid as well as other

cities. In the picture it can be seen that thefts are committed in almost all the

territory, with the highest levels concentrated around Plaza Callao, a busy meeting
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place, Plaza Mayor, the central plaza of the city, and Lavapies, a di�cult area.

SUNT1 has a moderate level of criminality, mostly concentrated in the south of

the district where the popular El Rastro �ea market is held every Sunday morning.

Finally, MONT2 presents the characteristics of a normal business day, with low

levels of criminal activity, mostly concentrated in the commercial area. Figure 6.9

Figure 6.9. Maps of the forecast crime risk in the Central District of Madrid. The red

shade represents a high crime risk level while the white shade represents no

criminal risk.

(a) Prediction for SATT3: Saturday,
10/13/2012, night shift (10 PM�
8 AM).

(b) Prediction for SUNT1: Sun-
day, 10/14/2012, morning shift
(8 AM�3 PM).

(c) Prediction for MONT2: Mon-
day, 10/15/2012, afternoon shift
(3 PM�10 PM).

shows the forecast crime risk distribution obtained by the CRFU. Visually, the

real and forecast crime distributions appear to be very close.

Concerning the weights and the balance coe�cient, we explained the mean-
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ing of each attribute in the model to the service coordinator. Then we asked

her to rate from 0 to 10 the importance of each attribute and her preference

between patrolling e�ciency and workload balance. The following values were

obtained after normalizing and scaling the �gures provided: � Attribute weights,

(wα, wβ, wγ, wδ) = (0.45, 0.05, 0.45, 0.05).

� Balance coe�cient, λ = 0.1. The objective function values in Equation

(5.8) of the standard patrolling con�gurations are provided in Table 6.3a.

Table 6.3. Comparison of the objective function values.

(a) Objective function values of the pa-
trol sector con�gurations currently
adopted by the SNPC.

Shift Con�guration p Obj (P )

SATT3
CONF2 2 0.55086

CONF6 6 0.20655

SUNT1
CONF2 2 0.56515

CONF6 6 0.21236

MONT2
CONF2 2 0.55074

CONF6 6 0.20830

(b) Objective function values of
the patrol sector con�gurations
obtained by P3-DSS. 95% con-
�dence intervals over 50 runs.

Dataset p Obj (P ) 95% CI

SATT3
2 [0.54560, 0.54560]

6 [0.19699, 0.20061]

SUNT1
2 [0.54695, 0.54695]

6 [0.19703, 0.19973]

MONT2
2 [0.54112, 0.54112]

6 [0.19399, 0.19708]

The MC-PDP was run for 60 seconds using the parameters provided by the

service coordinator. As the optimization algorithm is random in nature, we ran

each con�guration 50 times, using the forecast data. After that, we evaluated the

solutions using the validation data. The 95% con�dence intervals of the solution

values using the real data are shown in Table 6.3b. As expected, the con�dence

intervals are better (lower) than the objective function values of the corresponding

SNPC con�gurations in all cases.

To understand the real improvement in terms of e�ciency resulting from the

adoption of the P3-DSS, we compute the e�ciency loss for both types of patrolling

con�gurations.

Table 6.4 provides the e�ciency loss, computed according to Equation (4.9),

associated to the patrolling con�gurations currently adopted by the SNPC and the

95% con�dence interval of the e�ciency loss relative to the solutions identi�ed by

the P3-DSS. For this experiment the operational envelope was approximated by

running the optimization algorithms on the validation data. The results in the
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Table 6.4. Comparison of the patrol sector con�gurations obtained by P3-DSS with those

currently adopted by the SNPC.

Dataset Con�guration p SNPC Solutions

E�ciency Loss (%)

P3-DSS Solutions

E�ciency Loss (%)

95% CI

SATT3
CONF2 2 15.77 [0,0]

CONF6 6 20.01 [10.15,14.38]

SUNT1
CONF2 2 82.75 [0,0]

CONF6 6 24.32 [8.81,12.04]

MONT2
CONF2 2 24.14 [0,0]

CONF6 6 21.46 [7.12,10.74]

table show that there is a signi�cant improvement in terms of e�ciency when

implementing the con�gurations identi�ed by the P3-DSS. These results con�rm

the usefulness of the P3-DSS as a policing DSS for the data and the parameters

considered in the experiments.

Figures 6.10 - 6.12 show the best patrolling con�gurations obtained by the

P3-DSS for the three shifts considered. We can see that these patrol sectors have

signi�cant di�erences from those currently in use (Figure 6.7). Some insights will

be given in the following:

� SATT3: Police activity is focused on the Gran Via, the main artery of the

city that runs from the top-left corner of the district to the center, and then

goes toward the east. The reason for that is that the Gran Via and its

surroundings are very popular nightlife areas.

� SUNT1: The patrolling con�guration concentrates on the southern part of

the district, where most of the crimes happen on Sunday morning because of

the popular �ea market.

� MONT2: The city is uniformly partitioned between north-east and south-

west. The con�guration with 6 patrol sectors assigns higher importance to

the central-western part of the district, corresponding to the commercial area.
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Figure 6.10. Best patrolling con�gurations identi�ed by the P3-DSS for the shift SATT3

with 2 and 6 patrol sectors. Each sector is represented in a di�erent color.

(a) (b)

Figure 6.11. Best patrolling con�gurations identi�ed by the P3-DSS for the shift SUNT1

with 2 and 6 patrol sectors. Each sector is represented in a di�erent color.

(a) (b)

6.3. Local Search Methods for the MC-PDP on Graph

Empirically Tested on a Case Study on the Central District

of Madrid

We test our algorithm on the Central District of Madrid dataset presented

in Camacho-Collados et al. [17]. However, in this research the data is aggregated

with respect to the census district rather than a grid. As reported by Sarac et

al. [89] the use of a structure based on census districts is preferable as it allows

easy access to demographic data and is suitable for use by other agencies. Figure
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Figure 6.12. Best patrolling con�gurations identi�ed by the P3-DSS for the shift MONT2

with 2 and 6 patrol sectors. Each sector is represented in a di�erent color.

(a) (b)

6.13 shows the subdivision of the territory and the associated graph. The borders

of the census districts are plotted in gray. The nodes of the graph, identi�ed by

black bullets, correspond to the centroids of the census districts. Finally, black

lines represent the edges of the graph that connect neighboring census districts.

Overall, the graph is comprised of 111 nodes and 277 edges. The total length of the

streets at each node, ai, is obtained by summing the length of the parts of street

contained within the borders of each census district. The length of each edge, lij,

is computed as the great-circle distance between the nodes. In terms of the risk of

crime at each node, ri, we consider the thefts occurred during the following shifts:

� SATT3: Saturday, 10/13/2012, night shift (10 PM�8 AM).

� SUNT1: Sunday, 10/14/2012, morning shift (8 AM�3 PM).

� MONT2: Monday, 10/15/2012, afternoon shift (3 PM�10 PM).

These shifts have been identi�ed by a service coordinator in charge of the patrolling

operations of the Central District of Madrid as typical scenarios representing dif-

ferent crime activity patterns, as illustrated in Figure 6.14. In the SATT3 shift the

district is characterized by a high level of nightlife, therefore thefts are commit-

ted in almost all the territory, with the highest levels distributed around popular

meeting places in the center and in the north-east of the district. SUNT1 has

a low level of criminality, mostly concentrated in the south of the district where

a popular �ea market is held every Sunday morning. Finally, MONT2 presents
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Figure 6.13. Census districts in the Central District of Madrid (in gray) and the corre-

sponding graph (in black).
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Figure 6.14. Maps of the number of thefts reported in the Central District of Madrid.

The red shade represents a high crime level while the white shade represents

no criminal activity.

(a) SATT3 (b) SUNT1

(c) MONT2
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the characteristics of a normal business day, with criminal activity spread in the

central area of the territory, that is where the commercial activities are located.

6.3.1. Computational Experiments

The experiments were conducted using the same parameters adopted in

previous researches on the subject [16, 17].

� Decision maker preference weights and balance coe�cient: (wα, wβ, wγ, wδ) =

(0.45, 0.05, 0.45, 0.05) and λ = 0.1. These values have been provided by

a service coordinator in charge of the patrolling operations of the Central

District of Madrid as her preference.

� Number of patrol sectors: p = {2, 6}. On an �average day,� the Central

District of Madrid is either split into two big sectors or partitioned according

to its six neighborhoods.

Given the random nature of the algorithms proposed, we ran each combination of

algorithm, shift and number of patrol sectors 50 times. Each run had a time limit

of 60 seconds to simulate the real time environment of a DSS. The experiments

were run on a computer with an Intel Core i5-2500K CPU having four cores at

3.30GHz and 4GB RAM memory and the algorithm were programmed in C++.

Tables 6.5a - 6.5f show the average relaxed objective function value, obj (P ),

and the corresponding standard deviation for each group. In the tables, the rows

correspond to the algorithm and the best average solution value is highlighted in

bold. Please note that a solution value that is less than one indicates that the

solution is feasible with respect to the convexity constraints (5.15). From the

tables we can observe that on average the TS algorithm �nds the best solution in

four out of six groups and the SDHC in the remaining two groups.

6.3.2. Statistical Analysis

To understand if the di�erences in the means are statistically signi�cant we

run one-way ANOVA tests. The results are illustrated in Table 6.6. We highlighted

in bold the rows of the groups where a signi�cant di�erence was detected. We can

immediately see that there is no signi�cant di�erence in the groups where the

SDHC algorithm was the best. We run post-hoc Tukey's tests to understand



90 CHAPTER 6. COMPUTATIONAL EXPERIMENTS AND RESULTS.

Table 6.5. Average relaxed objective function value, obj (P ), and standard deviation for

each group.

(a) Shift SATT3, p = 2.

Algorithm Avg. St. Dev.

SHC 0.50109 0.00435

SDHC 0.49997 0.00413

TS 0.53567 0.19831

(b) Shift SATT3, p = 6.

Algorithm Avg. St. Dev.

SHC 0.20720 0.00342

SDHC 0.20498 0.00313

TS 0.20146 0.00513

(c) Shift SUNT1, p = 2.

Algorithm Avg. St. Dev.

SHC 0.50456 0.01000

SDHC 0.50651 0.01277

TS 0.49101 0.00473

(d) Shift SUNT1, p = 6.

Algorithm Avg. St. Dev.

SHC 0.20619 0.00315

SDHC 0.20594 0.00328

TS 0.20161 0.00384

(e) Shift MONT2, p = 2.

Algorithm Avg. St. Dev.

SHC 0.50381 0.00608

SDHC 0.50067 0.00656

TS 0.51948 0.14180

(f) Shift MONT2, p = 6.

Algorithm Avg. St. Dev.

SHC 0.20350 0.00469

SDHC 0.20336 0.00498

TS 0.19729 0.00620

Table 6.6. Results of the one-way ANOVA tests on the solution values.

Shift p F (2, 147) Pr (> F )

SATT3 2 1.57 0.212

SATT3 6 26.2 1.85e-10

SUNT1 2 37.44 7.19e-14

SUNT1 6 28.16 4.43e-11

MONT2 2 0.754 0.472

MONT2 6 22.12 4.01e-09
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Table 6.7. Results of Tukey's test for each group.

(a) Shift SATT3, p = 2.

Pair p-value

SHC-SDHC 0.99867

TS-SDHC 0.26697

TS-SHC 0.28945

(b) Shift SATT3, p = 6.

Pair p-value

SHC-SDHC 0.01698

TS-SDHC 6.09e-5

TS-SHC <1e-7

(c) Shift SUNT1, p = 2.

Pair p-value

SHC-SDHC 0.57937

TS-SDHC <1e-7

TS-SHC <1e-7

(d) Shift SUNT1, p = 6.

Pair p value

SHC-SDHC 0.93070

TS-SDHC <1e-7

TS-SHC <1e-7

(e) Shift MONT2, p = 2.

Pair p value

SHC-SDHC 0.98003

TS-SDHC 0.48723

TS-SHC 0.60639

(f) Shift MONT2, p = 6.

Pair p value

SHC-SDHC 0.99018

TS-SDHC 2e-7

TS-SHC 1e-7

more in detail which algorithm performs better for the solution of the MC-PDP.

Tukey's test is a single-step multiple comparison procedure used to �nd means that

are signi�cantly di�erent from each other and that is more suitable for multiple

comparisons than doing a number of t-tests would be. The results are illustrated in

Tables 6.7a - 6.7f. In the tables, the rows are associated with the pairs of algorithms

being tested. We highlighted in bold the rows showing a signi�cant di�erence.

From the results of the statistical tests we can draw the following conclusions:

� The performances of the SHC and the SDHC in terms of solutions objective

function values are always identical, except for the shift SATT3 with six pa-

trol sectors, where the SDHC produces solutions that are signi�cantly better

than those of the SHC.

� The TS produces on average better solutions in four out of six groups, and

its performances are not worse than those of the other two algorithms in the

remaining two groups. Therefore, we can claim that it is preferable to use

the TS over the SHC and the SDHC.
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6.3.3. Solution Analysis

Figures 6.15a - 6.15f illustrate the best solutions found for each shift and

number of patrol sectors in terms of relaxed objective function values. All the

solutions have been identi�ed by the TS. In the �gures, the borders of the census

districts have been plotted in black, the streets in gray and each patrol sector is

represented by a di�erent color. By observing the patrolling con�gurations some

insights can be drawn:

� SATT3: Police activity is focused mostly on the center, as well as on the

north-east part of the district, where most of the crimes are committed. The

reason for that is that those areas are very busy nightlife meeting places.

� SUNT1: The patrolling con�gurations concentrate on the southern part of

the territory, where most of the thefts happen on Sunday morning because of

the popular �ea market. In the six patrol sectors con�guration we can see that

one sector is dedicated exclusively to the area with the highest concentration

of crimes that corresponds exactly to the location of the �ea market.

� MONT2: The district is uniformly partitioned between north-east and south-

west. The con�guration with six patrol sectors assigns higher importance to

the central-western part of the district, corresponding to the commercial area.
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Figure 6.15. Best solutions found.

(a) Shift SATT3, p = 2. (b) Shift SATT3, p = 6.

(c) Shift SUNT1, p = 2. (d) Shift SUNT1, p = 6.

(e) Shift MONT2, p = 2. (f) Shift MONT2, p = 6.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH LINES

In this thesis the author presented a new model for the improvement of

police district design by homogenous distribution of workload among the sectors

that comprise a district. In this model, speci�cally tailored to suit the requirements

of the SNPC, the workload for each sector is measured in terms of total associated

area, risk, diameter (that is, a proxy for compactness), and mutual support. The

area is obtained from GIS maps and the risk from a prediction of the total number

of crimes in the district. Even distribution of the workload among the sectors

improves the e�cency of security operations and the satisfaction of the agents.

The �rst original contribution of the thesis concerned the extension of the

existing PDP models to include features that match the requirements of the SNPC.

In particular, no previous model included a measure of mutual support that allows

for considering the e�ect of being able to rely on the assistance of neighboring

sectors.

The second contribution concerned the adaptation of the model on a generic

graph. The main challenge was represented by the convexity constraints on the

sectors. Convex partitioning of graphs is a very recent �eld of research that is still

at its infancy. In this thesis, the author proposed a novel convexity condition for

graphs that presents advantages in terms of computational cost.

Given the non-linear nature of the model restrictions, the author explored

local search heuristics for its solution. Speci�cally, the author compared a SHC,

a SDHC, and a TS. A case study of the Central District of Madrid including real

criminal data was presented and the performance of the algorithms was assessed.

The author showed empirically that all the algorithms rapidly generates patrolling

con�gurations that are more e�cient than those currently adopted by the SNPC.

More in detail, the TS provided the best solutions among the three algorithms.
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The research presented in this thesis fosters a number of new research direc-

tions and several areas that can be potentially extended as described below. The

approximation introduced by the current area measure could be improved by con-

sidering other more realistic measures. A previous implementation of the model

computed the minimum length Hamiltonian Cycle. However, preliminary compu-

tational experiments showed that that was computationally ine�cient. Further

research could focus on its time-e�cient implementation, or on alternative repre-

sentative measures [76, 77].

Furthermore, the e�ectiveness of other heuristic and metaheuristic algo-

rithms such as ant colonies and genetic algorithms could be investigated. The

solution by means of optimal methods would open new research opportunities for

the presented model, such as the analysis of the inclusion of social factors among

the criteria considered. Although the model is intrinsically non-linear, decompo-

sition methods such as Column Generation or Benders' Decomposition could be

applied to solve the problem to optimality. Also, these methodologies could still be

used to generate good heuristic solutions should the solution process take longer

than the allowed computational time.

Recent papers have analyzed the statistical e�ect of law enforcement actions

on crime patterns [52]. By including these e�ects in an optimization problem it

would be possible to formulate a model for the design of patrol con�gurations that

result in a reduction of the future level of criminality. The model would be similar

in nature to theoretical games [48] and to forti�cation/interdiction problems used

to hedge against intentional attacks [60, 91, 116] and natural disasters [65].

From the point of view of spatio-temporal risk assessment, an important

direction of research concerns the implementation in this context of di�erent risk

measures for objetive model-based dynamical speci�cation of risk inputs in the

DSS.

On a di�erent note, a service coordinator in charge of the patrolling opera-

tions in the Central District of Madrid pointed out that an important component

is ensuring that the agents' job is �pleasant�, as opposed to dull and boring. It

could be an interesting challenge for modelers to come up with an �interesting�

attribute to be included during the optimization process.

The author wishes that this thesis will be a useful source of inspiration

for future research on police districting problems, and will contribute further to

the development of solution approaches that can solve more complex and realistic
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models within the context of public security.
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CHAPTER 7

CONCLUSIONES Y FUTURAS LÍNEAS DE

INVESTIGACIÓN

En esta tesis el autor presenta un nuevo modelo para la mejora del diseño

de la policía distrital a través de una distribución homogénea de la carga de trabajo

entre los sectores que componen un distrito. En este modelo, adaptado especí�ca-

mente para satisfacer los requisitos del CNP, la carga de trabajo para cada sector

se mide en términos de la super�cie total de área asociada, el riesgo, el diámetro

(es decir, un indicador de compactibilidad), y el apoyo mutuo. El área se obtiene

a partir de mapas SIG y el riesgo de una predicción del número total de delitos en

el distrito. Incluso la distribución de la carga de trabajo entre los sectores mejora

la e�ciencia de las operaciones de seguridad y la satisfacción de los agentes.

La primera contribución original de la tesis se re�ere a la extensión de los

modelos PDDP existentes para incluir características que responden a las exigen-

cias del CNP. En particular, ningún modelo anterior incluía una medida de apoyo

mutuo que permitiese considerar el efecto de poder contar con la ayuda de los

sectores vecinos.

La segunda contribución versa sobre la adaptación del modelo en un grafo

genérico. El reto principal fue representado por las limitaciones de convexidad en

los sectores. La división convexa de los grafos es un campo muy reciente de la

investigación que se encuentra todavía en su etapa más temprana. En esta tesis,

el autor propone una condición de convexidad novedosa para grafos que presenta

ventajas en términos de coste computacional.

Dada la naturaleza no lineal de las restricciones del modelo, el autor explora

los heurísticos de búsqueda local para su solución. En concreto, el autor comparó

un SHC, un SDHC y un BT. Se presenta un caso de estudio en el Distrito Central

de Madrid y el rendimiento del algoritmo es evaluado. El autor demuestra empíri-
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camente que el algoritmo genera rápidamente con�guraciones de patrulla que son

más e�cientes que las actualmente empleadas por el CNP. Más en detalle, el BT

proporciona las mejores soluciones entre los tres algoritmos.

La investigación presentada en esta tesis fomenta una serie de nuevas di-

recciones de investigación y varias áreas que pueden ser potencialmente ampliadas

como se describe a continuación. La aproximación introducida por la medida de

área actual podría mejorarse teniendo en cuenta otras medidas más realistas. Una

aplicación anterior del modelo calcula la longitud mínima del camino hamiltoniano.

Sin embargo, los experimentos computacionales preliminares mostraron que éste

era computacionalmente ine�ciente. La investigación adicional podría centrarse

en su aplicación tiempo-e�ciencia, o en medidas alternativas de representación

[76, 77].

Desde el punto de vista de la valoración espacio-temporal del riesgo, una

importante dirección de investigación concierne la implementación en este contexto

de diferentes medidas para una especi�cación dínamica y objetiva del riesgo para

el SSD basada en modelos.

Por otra parte, la efectividad de otros algoritmos heurísticos y meta heurís-

ticos tales como las colonias de hormigas y algoritmos genéticos podrían ser in-

vestigadas. La solución por medio de métodos óptimos abriría nuevas oportu-

nidades de investigación para el modelo presentado, tales como el análisis de la

inclusión de factores sociales entre los criterios considerados. Aunque el modelo es

intrínsecamente no lineal, métodos de descomposición, tales como la Generación

de Columnas o de Descomposición de Bender podrían aplicarse para resolver el

problema de optimización. Además, estas metodologías todavía se podrían utilizar

para generar buenas soluciones heurísticas en caso de que el proceso de solución

llevara más tiempo que el tiempo de cálculo permitido.

Trabajos recientes han analizado el efecto estadístico de las acciones de la

aplicación de la ley sobre los patrones de delitos [52]. Mediante la inclusión de estos

efectos en un problema de optimización, sería posible formular un modelo para el

diseño de con�guraciones de patrullaje que resulten en una reducción del futuro

nivel de criminalidad. El modelo sería de naturaleza similar a los juegos teóricos

[48] y para la forti�cación e interdicción de problemas utilizados para protegerse

contra los ataques intencionales [60, 91, 116] y los desastres naturales [65].

En otro orden de ideas, un coordinador de servicios a cargo de las opera-

ciones de patrullaje en el Distrito Central de Madrid señaló que un componente
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importante es asegurarse de que el trabajo de los agentes sea agradable, en lugar

de gris y aburrido. Podría ser un reto interesante para los diseñadores llegar a

obtener un atributo interesante para ser incluidos en el proceso de optimización.

El autor desea que esta tesis sea una fuente útil de inspiración para futuras

investigaciones sobre los problemas de los distritos policiales, y siga contribuyendo

al desarrollo de soluciones que puedan resolver modelos más complejos y realistas

dentro del contexto de la seguridad pública.
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MAIN CONSTRIBUTIONS AND MERITS

In this chapter the contributions and the main merits of this research are
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a) Journal Publications

� M. Camacho-Collados, F. Liberatore, and J.M. Angulo, �A multi-criteria

police districting problem for the e�cient and e�ective design of patrol

sector�, European Journal of Operational Research 246(2):674�684, 2015.

JCR rank: 9/82, Q1, Operations Research & Management Science.

� M. Camacho-Collados and F. Liberatore, �A decision support system for

predictive police patrolling�, Decision Support Systems 75:25�37, 2015.

JCR rank: 10/82, Q1, Operations Research & Management Science.

� F. Liberatore and M. Camacho-Collados, �A comparison of local search

methods for the multicriteria police districting problem on graph�, Math-
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� M. Camacho-Collados and F. Liberatore, �La lucha contra el crimen a
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ferencias del Año Internacional de la Estadística, Universidad de Granada,
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APPENDIX A

SOURCE CODE

We now present the source code of the solution algorithm for the

MC-PCP.

A.1. File: main.cpp

This �le contains the main method of the program that obtains

the inputs (data and parameters) from the users, runs the optimization

algorithm and prints the result.

main.cpp
#include <iostream>

#include <cstdlib>

#include "InputData.hpp"

#include "MultiStart.hpp"

#include "Parameters.hpp"

using namespace std;

InputData* inputData;

MultiStart* multiStart;

typedef struct {

int subset_num, cpu, iter;

char* input_filename;

char* sol_filename;

double wDemand, wArea, wDiameter, wSupport, lambda;

} input_t;

void freeMemory(void);

void instructions(char *name){

121
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cout << "Usage: " << name << " [OPTION]..." << endl;

cout << "Partitions a matrix according to efficiency criteria." << endl;

cout << endl;

cout << "Mandatory arguments:" << endl;

cout << "-I,\t -i\t\t input filename." << endl;

cout << "-p,\t -p\t\t number of partitions [>0]." << endl;

cout << endl;

cout << "Optional arguments:" << endl;

cout << "-WD,\t -wd\t\t weight associated to demand [>=0] (default: " << Parameters::WDEMAND

<< ")." << endl;

cout << "-WI,\t -wi\t\t weight associated to diameter [>=0] (default: " <<

Parameters::WDIAMETER << ")." << endl;

cout << "-WA,\t -wa\t\t weight associated to area [>=0] (default: " << Parameters::WAREA <<

")." << endl;

cout << "-WS,\t -ws\t\t weight associated to support [>=0] (default: " <<

Parameters::WSUPPORT << ")." << endl;

cout << "\t\t\t [weights are always normalized]" << endl;

cout << "-L,\t -l\t\t balance/optimization tradeoff [0-1] (default: " << Parameters::LAMBDA

<< ")." << endl;

cout << "-CT,\t -ct\t\t optimization CPU time [>0] (default: " << Parameters::CPU << ")." <<

endl;

cout << "-IT,\t -it\t\t empty iterations [>0] (default: " << Parameters::ITERATIONS << ")."

<< endl;

cout << "-S,\t -s\t\t solution filename for its evaluation. When provided the program

returns" << endl;

cout << "\t\t\t the evaluation of the solution's attribute." << endl;

cout << "-H,\t -h\t\t this help." << endl;

cout << endl;

cout << "Example:" << endl;

cout << name << " -i madrid.input -p 6 -L 0.33" << endl;

cout << "determines 6 subsets over the madrid.input instance, setting lambda to 0.33 and

using default\nweights." << endl;

exit(EXIT_SUCCESS);

}

input_t paramConfig(int argc, char *argv[])

{

input_t input;

bool p = false, inputfile = false;

input.wDemand = Parameters::WDEMAND;

input.wDiameter = Parameters::WDIAMETER;

input.wArea = Parameters::WAREA;

input.wSupport = Parameters::WSUPPORT; //DEF_WEIGHT;

input.lambda = Parameters::LAMBDA; //DEF_LAMBDA;

input.cpu = Parameters::CPU; //DEF_CPU;

input.iter = Parameters::ITERATIONS; //DEF_ITER;

input.sol_filename = NULL;

int pos = 1;
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while(pos < argc){

string param = argv[pos];

if(param == "-P" || param == "-p"){

input.subset_num = atoi(argv[pos+1]);

if(input.subset_num <= 0){

cerr << argv[0] << ": " << param << " accepts only positive values." << endl;

exit(EXIT_FAILURE);

}

p = true;

}else if(param == "-I" || param == "-i"){

input.input_filename = argv[pos+1];

inputfile = true;

}else if(param == "-IS" || param == "-is"){

input.sol_filename = argv[pos+1];

}else if(param == "-WD" || param == "-wd"){

input.wDemand = atof(argv[pos+1]);

if(input.wDemand < 0.0f){

cerr << argv[0] << ": " << param << " accepts only non-negative values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-WI" || param == "-wi"){

input.wDiameter = atof(argv[pos+1]);

if(input.wDiameter < 0.0f){

cerr << argv[0] << ": " << param << " accepts only non-negative values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-WA" || param == "-wa"){

input.wArea = atof(argv[pos+1]);

if(input.wArea < 0.0f){

cerr << argv[0] << ": " << param << " accepts only non-negative values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-WS" || param == "-ws"){

input.wSupport = atof(argv[pos+1]);

if(input.wSupport < 0.0f){

cerr << argv[0] << ": " << param << " accepts only non-negative values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-L" || param == "-l"){

input.lambda = atof(argv[pos+1]);

if(input.lambda < 0.0f || input.lambda > 1.0f){

cerr << argv[0] << ": " << param << " accepts only values between 0 and 1." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-CT" || param == "-ct"){

input.cpu = atoi(argv[pos+1]);

if(input.cpu <= 0){

cerr << argv[0] << ": " << param << " accepts only positive values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-IT" || param == "-it"){
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input.iter = atoi(argv[pos+1]);

if(input.iter <= 0){

cerr << argv[0] << ": " << param << " accepts only positive values." << endl;

exit(EXIT_FAILURE);

}

}else if(param == "-S" || param == "-s"){

input.sol_filename = argv[pos+1];

}else if(param == "-H" || param == "-h"){

instructions(argv[0]);

}else{

cerr << argv[0] << ": " << param << ": command not found" << endl;

exit(EXIT_FAILURE);

}

pos += 2;

}

if(!inputfile) cerr << argv[0] << ": Input filename not specified. See " << argv[0] << " -H."

<< endl;

if(input.sol_filename == NULL && !p) cerr << argv[0] << ": Number of partitions not specified.

See " << argv[0] << " -H." << endl;

if((input.sol_filename == NULL && !p) || !inputfile){

exit(EXIT_FAILURE);

}

//weights normalization

double sumWeights = input.wDemand + input.wDiameter + input.wArea + input.wSupport;

input.wDemand /= sumWeights;

input.wDiameter /= sumWeights;

input.wArea /= sumWeights;

input.wSupport /= sumWeights;

return input;

}

int main(int argc, char *argv[])

{

input_t input = paramConfig(argc, argv);

Parameters::WDEMAND = input.wDemand;

Parameters::WAREA = input.wArea;

Parameters::WDIAMETER = input.wDiameter;

Parameters::WSUPPORT = input.wSupport;

Parameters::LAMBDA = input.lambda;

Parameters::CPU = input.cpu;

Parameters::ITERATIONS = input.iter;

inputData = new InputData(input.subset_num, input.input_filename);

Parameters::ITERATIONS = inputData->numNodes();

Parameters::TABU_TENURE = inputData->numNodes();

if(input.sol_filename == NULL){
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//Optimization

multiStart = new MultiStart(inputData);

multiStart->search();

freeMemory();

}else{

//Solution Analysis

Partition* sol = new Partition(inputData, input.sol_filename);

sol->printPartition();

sol->printResume();

delete sol;

}

exit(EXIT_SUCCESS);

}

//Deallocates all the memory structures created.

void freeMemory(void)

{

//delete randomSearch;

delete inputData;

}

A.2. Files: Parameters.hpp and Parameters.cpp

The user can use these �les to set the default importance weights

for the criteria, as well as select the optimization algorithm to use and

de�ne the default parameters for the tabu search.

Parameters.hpp
#ifndef PARAMETERS_HPP

#define PARAMETERS_HPP

typedef enum improve_e{FIRST_IMPROVE, BEST_IMPROVE} improve_t;

typedef enum search_e{LOCAL_SEARCH, TABU_SEARCH} search_t;

class Parameters{

public:

//Decision Maker Preferences

static double WDEMAND;

static double WAREA;

static double WDIAMETER;

static double WSUPPORT;

static double LAMBDA;

//Convex unfeasibility penalty

static double PENALTY;
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//Search algorithm parameters

static improve_t IMPROVE_STRATEGY;

static search_t SEARCH_ALGORITHM;

static unsigned int TABU_TENURE;

//Iterative algorithm parameters

static unsigned int CPU;

static unsigned int ITERATIONS;

};

#endif

Parameters.cpp
#include "Parameters.hpp"

double Parameters::WDEMAND = 0.45;

double Parameters::WAREA = 0.45;

double Parameters::WDIAMETER = 0.05;

double Parameters::WSUPPORT = 0.05;

double Parameters::LAMBDA = 0.1;

double Parameters::PENALTY = 1;

improve_t Parameters::IMPROVE_STRATEGY = BEST_IMPROVE; // BEST_IMPROVE or FIRST_IMPROVE

search_t Parameters::SEARCH_ALGORITHM = TABU_SEARCH; // LOCAL_SEARCH or TABU_SEARCH

unsigned int Parameters::TABU_TENURE = 111;

unsigned int Parameters::ITERATIONS = 111;

unsigned int Parameters::CPU = 60;

A.3. File: InputData.hpp and InputData.cpp

These �les de�ne the data structures used to represent the input

data required by the optimization algorithms.

InputData.hpp
#ifndef INPUTDATA_HPP

#define INPUTDATA_HPP

#include <string>

#include <vector>

using namespace std;

typedef double crime_t;
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typedef double area_t;

typedef double dist_t;

typedef unsigned int node_t;

/*

* Class managing input data structures.

*/

class InputData{

private:

//Number of nodes in the graph

unsigned int p_nodes;

//Number of edges in the graph

unsigned int p_edges;

//Nodes crime

crime_t *p_crime;

//Nodes area

area_t *p_area;

//Number of partitions.

unsigned int p_num_subsets;

//Acquires the data from an input file.

//a_InputFile : input file name string.

void readInputData(string a_InputFile);

//Total risk

crime_t p_tot_crime;

//Total area

area_t p_tot_area;

//Nodes adjacency matrix

bool **p_adj_mat;

//List of edges by node

vector<node_t> *p_node_edge;

//Nodes distance matrix

dist_t **p_dist_mat;

//Edge shortest path distance matrix

unsigned int **p_edgeSP_mat;

//Shortest path distance matrix

dist_t **p_distSP_mat;

//Graph diameter
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dist_t p_diameter;

//Maximum support distance

dist_t p_support_dist;

//Max edge distance

dist_t p_max_dist;

//Big enough constant

dist_t p_big_M;

public:

//returns the number of nodes in the graph

unsigned int numNodes(void);

//returns the total crime in the graph

crime_t totalCrime(void);

//returns the total area in the graph

area_t totalArea(void);

//returns the maximum diameter in the graph

dist_t diameter(void);

//Data class constructor.

//a_InputFile : input file name string.

InputData(unsigned int a_num_partitions, string a_InputFile);

//Data class destructor.

~InputData(void);

//Returns the crime of a specific node

crime_t crime(node_t a_node);

//Returns the area of a specific node

area_t area(node_t a_node);

//Returns the number of partitions.

unsigned int numSubsets(void);

//Sets the number of partitions.

void numSubsets(unsigned int p);

//Returns the edge distance between two nodes

unsigned int edgeDistance(node_t a_node1, node_t a_node2);

//Returns the distance between two nodes

dist_t distance(node_t a_node1, node_t a_node2);

//Returns the maximum support distance



A.3. FILE: INPUTDATA.HPP AND INPUTDATA.CPP 129

dist_t supportDistance(void);

//Returns a big enough constant

dist_t bigM(void);

//Returns the degree of a node

unsigned int numEdges(node_t a_node);

//Returns the destination of the pos-th edge exiting from a_node

node_t edgeByPos(node_t a_node, unsigned int pos);

//Returns true if there exists an edge connecting the two nodes

bool isEdge(node_t a_nodeA, node_t a_nodeB);

};

#endif

InputData.cpp
#include <cstdlib>

#include <iostream>

#include <fstream>

#include <cmath>

#include "InputData.hpp"

#include "mymemory.hpp"

#include "myalgorithm.hpp"

InputData::InputData(unsigned int a_num_subsets, string a_InputFile)

{

p_num_subsets = a_num_subsets;

//Reading input file

readInputData(a_InputFile);

//Building data structures

//Edge shortest path distance matrix

//and shortest path distance matrix

p_edgeSP_mat = new_matrix<unsigned int>(p_nodes, p_nodes);

p_distSP_mat = new_matrix<dist_t>(p_nodes, p_nodes);

for(node_t i = 0; i < p_nodes; ++i){

for(node_t j = 0; j < p_nodes; ++j){

if(i == j){

p_edgeSP_mat[i][j] = p_edgeSP_mat[j][i] = 0;

}else{

p_edgeSP_mat[i][j] = p_adj_mat[i][j]?1:(unsigned int)p_big_M;

p_distSP_mat[i][j] = p_adj_mat[i][j]?p_dist_mat[i][j]:p_big_M;

}

}

}
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FloydWarshall<unsigned int>(p_edgeSP_mat, p_nodes);

FloydWarshall<dist_t>(p_distSP_mat, p_nodes);

//Computing parameters

//Graph diameter

p_diameter = 0;

for(node_t i = 0; i < p_nodes-1; ++i){

for(node_t j = i+1; j < p_nodes; ++j){

if(p_distSP_mat[i][j] > p_diameter)

p_diameter = p_distSP_mat[i][j];

}

}

//Maximum support distance

p_support_dist = p_diameter/ (2*sqrt((dist_t)p_num_subsets));

}

InputData::~InputData(void)

{

if(p_crime != NULL) delete[] p_crime;

if(p_area != NULL) delete[] p_area;

if(p_node_edge != NULL) delete[] p_node_edge;

delete_matrix(p_adj_mat, p_nodes);

delete_matrix(p_dist_mat, p_nodes);

delete_matrix(p_edgeSP_mat, p_nodes);

delete_matrix(p_distSP_mat, p_nodes);

}

void InputData::readInputData(string a_InputFile)

{

//Open the input file.

ifstream in_file_stream;

in_file_stream.open(a_InputFile.c_str());

if(!in_file_stream.is_open())

{

cerr << "ERROR in InputData::readInputData : input file cannot be opened." << endl;

exit(EXIT_FAILURE);

}

//Read the number of nodes

in_file_stream >> p_nodes;

//Instantiate crime array

p_crime = new crime_t[p_nodes];

p_tot_crime = 0;

//Read crime data from file

for(node_t i = 0; i < p_nodes; ++i)

{
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in_file_stream >> p_crime[i];

p_tot_crime += p_crime[i];

}

//Instantiate area array

p_area = new area_t[p_nodes];

p_tot_area = 0;

//Read area data from file

for(node_t i = 0; i < p_nodes; ++i)

{

in_file_stream >> p_area[i];

p_tot_area += p_area[i];

}

//Read the number of edges

in_file_stream >> p_edges;

//Instantiate list of edges by node

p_node_edge = new vector<node_t>[p_nodes];

//Instantiate adjacency matrix

p_adj_mat = new_matrix<bool>(p_nodes, p_nodes);

//Instantiate distance matrix

p_dist_mat = new_matrix<dist_t>(p_nodes, p_nodes);

for(unsigned int i = 0; i < p_nodes; ++i){

for(unsigned int j = 0; j < p_nodes; ++j){

p_adj_mat[i][j] = false;

p_dist_mat[i][j] = 0;

}

}

//Reading edges

node_t edgeA, edgeB;

dist_t dist;

p_max_dist = 0;

for(unsigned int i = 0; i < p_edges; ++i){

in_file_stream >> edgeA >> edgeB >> dist;

--edgeA; --edgeB;

if(dist > p_max_dist) p_max_dist = dist;

p_adj_mat[edgeA][edgeB] = p_adj_mat[edgeB][edgeA] = true;

p_dist_mat[edgeA][edgeB] = p_dist_mat[edgeB][edgeA] = dist;

p_node_edge[edgeA].push_back(edgeB);

p_node_edge[edgeB].push_back(edgeA);

}

p_big_M = p_max_dist * p_edges + 1;

in_file_stream.close();
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}

crime_t InputData::crime(node_t a_node)

{

if(a_node < p_nodes){

return p_crime[a_node];

}else{

cerr << "ERROR in InputData::getCrime : argument our of range." << endl;

exit(EXIT_FAILURE);

}

}

area_t InputData::area(node_t a_node)

{

if(a_node < p_nodes){

return p_area[a_node];

}else{

cerr << "ERROR in InputData::getArea : argument out of range." << endl;

exit(EXIT_FAILURE);

}

}

unsigned int InputData::edgeDistance(node_t a_node1, node_t a_node2){

if(a_node1 < p_nodes && a_node2 < p_nodes){

return p_edgeSP_mat[a_node1][a_node2];

}else{

cerr << "ERROR in InputData::edgeDistance : argument out of range." << endl;

exit(EXIT_FAILURE);

}

}

dist_t InputData::distance(node_t a_node1, node_t a_node2){

if(a_node1 < p_nodes && a_node2 < p_nodes){

return p_distSP_mat[a_node1][a_node2];

}else{

cerr << "ERROR in InputData::distance : argument out of range." << endl;

exit(EXIT_FAILURE);

}

}

unsigned int InputData::numNodes(void){return p_nodes;}

unsigned int InputData::numSubsets(void){return p_num_subsets;}

void InputData::numSubsets(unsigned int p){p_num_subsets = p;}

crime_t InputData::totalCrime(void){return p_tot_crime;}

area_t InputData::totalArea(void){return p_tot_area;}

dist_t InputData::diameter(void){return p_diameter;}



A.4. FILE: MULTISTART.HPP AND MULTISTART.CPP 133

dist_t InputData::supportDistance(void){return p_support_dist;}

dist_t InputData::bigM(void){return p_big_M;}

unsigned int InputData::numEdges(node_t a_node){

return p_node_edge[a_node].size();

}

node_t InputData::edgeByPos(node_t a_node, unsigned int pos){

return p_node_edge[a_node][pos];

}

bool InputData::isEdge(node_t a_nodeA, node_t a_nodeB){

return p_adj_mat[a_nodeA][a_nodeB];

}

A.4. File: MultiStart.hpp and MultiStart.cpp

MultiStart.cpp provides the framework for the implementation of

the random multi-start optimization algorithm. It iteratively calls the

greedy constructive heuristics and the chosen local search optimization

algorithm, until the stopping condition is met.

MultiStart.hpp
#ifndef MULTISTART_CPP

#define MULTISTART_CPP

#include "Partition.hpp"

#include "InputData.hpp"

class MultiStart

{

private:

InputData* p_input_data;

Partition* p_best_partition;

public:

MultiStart(InputData* a_input_data);

~MultiStart(void);

void search(void);

Partition* bestPartition(void);

};

#endif
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MultiStart.cpp
#include <cmath>

#include <cstdlib>

#include <iostream>

#include <ctime>

#include "MultiStart.hpp"

#include "Parameters.hpp"

#include "SearchAlgorithm.hpp"

using namespace std;

MultiStart::MultiStart(InputData* a_input_data)

{

srand ((unsigned int)time(NULL));

p_input_data = a_input_data;

p_best_partition = NULL;

}

MultiStart::~MultiStart(void)

{

if(p_best_partition != NULL)

delete p_best_partition;

}

void MultiStart::search(void)

{

Partition* sol;

unsigned int emptyIter = 0;

time_t timeStart = time(NULL);

SearchAlgorithm optAlgorithm(p_input_data);

//Loop until the time is up.

while(time(NULL) - timeStart < Parameters::CPU)// &&

// (p_best_partition == NULL || emptyIter < Parameters::ITERATIONS))

{

//Create the new solution using

//a constructive greedy heuristic

sol = optAlgorithm.constrHeuristic();

if(!sol->isValid() ||

(p_best_partition != NULL && sol->value() > p_best_partition->value() * 1.50))

{

delete sol;

sol = NULL;

//++emptyIter;

continue;
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}

//Local search optimization

optAlgorithm.optimize(sol, Parameters::CPU - time(NULL) + timeStart);

//cout << "NEW SOLUTION FOUND (" << time(NULL) - timeStart << "s) : "<< sol->value() << endl;

if(p_best_partition == NULL || sol->isBetterThan(*p_best_partition))

{

if(p_best_partition != NULL)

delete p_best_partition;

p_best_partition = sol;

//cout << "NEW SOLUTION FOUND (" << time(NULL) - timeStart << "s) : "<<

p_best_partition->value() << endl;

p_best_partition->timeStamp = time(NULL) - timeStart;

//p_best_partition->printPartition();

emptyIter = 0;

}

else{

delete sol;

++emptyIter;

}

sol = NULL;

}

//cout << "TOTAL TIME : " << time(NULL) - timeStart << "s\t" << "EMPTY ITERs : " << emptyIter

<< endl;

p_best_partition->printConfiguration();

p_best_partition->printResume();

}

Partition* MultiStart::bestPartition(void)

{

return p_best_partition;

}

A.5. File: SearchAlgorithm.hpp and SearchAlgorithm.cpp

The greedy optimization algorithm and the local search proce-

dures are described in these �les. Also, the data structure used to

represent the tabu tenure is provided here.

SearchAlgorithm.hpp
#if !defined SEARCHALGORITHM_HPP

#define SEARCHALGORITHM_HPP

#include <vector>

#include <cstring>

#include "InputData.hpp"
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#include "Partition.hpp"

//Class that defines a standard move in the search algorithm

class Move{

public:

unsigned int from_p, to_p;

node_t node;

Move(unsigned int a_from, unsigned int a_to, node_t a_node):

from_p(a_from), to_p(a_to), node(a_node){};

};

class TabuTenureElem{

public:

int *solution;

unsigned int size;

unsigned int expiration;

bool isSame(int *a_solution){

bool isSame = true;

for(unsigned int i = 0; isSame && i < size; ++i){

if(solution[i] != a_solution[i]){

isSame = false;

}

}

return isSame;

}

TabuTenureElem(int* a_solution, unsigned int a_size, unsigned int a_expiration){

expiration = a_expiration;

size = a_size;

solution = new int[size];

memcpy(solution, a_solution, sizeof(int) * size);

}

~TabuTenureElem(){

if(solution != NULL)

delete[] solution;

}

};

class SearchAlgorithm{

private:

InputData *p_input_data;

vector<TabuTenureElem*> p_tabuTenure;

void buildMoveList(Partition *a_solution, vector<Move> &a_moveList);

//Check if the solution is tabu

bool isTabu(Partition *a_solution);
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//Decrease the expiration counter of the solutions in the tabu tenure

void TenureExpire(void);

//Clear the Tabu Tenure

void EmptyTenure(void);

//Add a solution to the tabu tenure

void AddToTenure(Partition *a_solution);

public:

SearchAlgorithm(InputData *a_inputData);

~SearchAlgorithm(void);

//Creates a new partition by constructive greedy heuristic.

Partition* constrHeuristic(void);

//Optimizes a partition using local search.

void optimize(Partition* a_solution, time_t a_time);

};

#endif

SearchAlgorithm.cpp
#include <vector>

#include <algorithm>

#include <iostream>

#include <ctime>

#include "Parameters.hpp"

#include "SearchAlgorithm.hpp"

SearchAlgorithm::SearchAlgorithm(InputData *a_inputData){

p_input_data = a_inputData;

}

SearchAlgorithm::~SearchAlgorithm(void){

if(Parameters::SEARCH_ALGORITHM == TABU_SEARCH)

EmptyTenure();

}

void SearchAlgorithm::buildMoveList(Partition *a_solution, vector<Move> &a_moveList){

node_t node;

unsigned int pFrom;

a_moveList.clear();

for(unsigned int pTo = 0; pTo < p_input_data->numSubsets(); ++pTo)

{

for(unsigned int pos = 0; pos < a_solution->p_partition[pTo]->numNeighElements(); ++pos){
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node = a_solution->p_partition[pTo]->getNeighbor(pos);

pFrom = a_solution->p_solution[node];

if(a_solution->p_partition[pFrom]->numElements() > 1){

a_moveList.push_back(Move(pFrom,pTo,node));

}

}

}

random_shuffle(a_moveList.begin(), a_moveList.end());

}

bool SearchAlgorithm::isTabu(Partition *a_solution){

bool found = false;

//Search the current solution

for(unsigned int i = 0; !found && i < p_tabuTenure.size(); ++i){

found = p_tabuTenure[i]->isSame(a_solution->p_solution);

if(found) p_tabuTenure[i]->expiration = Parameters::TABU_TENURE;

}

return found;

}

void SearchAlgorithm::EmptyTenure(void){

for(unsigned int i = 0; i < p_tabuTenure.size(); ++i){

delete p_tabuTenure[i];

}

p_tabuTenure.clear();

}

void SearchAlgorithm::AddToTenure(Partition *a_solution){

//We assume that the solution is not already in the tabu tenure

TabuTenureElem *elem = new TabuTenureElem(a_solution->p_solution, p_input_data->numNodes(),

Parameters::TABU_TENURE);

p_tabuTenure.push_back(elem);

}

void SearchAlgorithm::TenureExpire(void){

unsigned int i = 0;

//Decrease the expiration of all the solutions in the tabu tenure

while(i < p_tabuTenure.size()){

p_tabuTenure[i]->expiration--;

if(p_tabuTenure[i]->expiration == 0){

//Remove the solutions that have expired

p_tabuTenure.erase(p_tabuTenure.begin()+i);

}else ++i;

}

}

void SearchAlgorithm::optimize(Partition *a_solution, time_t a_time)

{

bool loopCondition, improved;

Partition *current_sol, *new_sol, *bestLocal_sol, *bestGlobal_sol;
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vector<Move> moveList;

current_sol = new Partition(*a_solution);

bestGlobal_sol = current_sol;

new_sol = bestLocal_sol = NULL;

loopCondition = true;

time_t timeStart = time(NULL);

unsigned int emptyIter = 0;

//Loop while the conditions is met.

while(loopCondition &&

time(NULL) - timeStart < a_time &&

emptyIter < Parameters::ITERATIONS)

{

loopCondition = false;

//Update the expiration time of tabu tenure

if(Parameters::SEARCH_ALGORITHM == TABU_SEARCH){

TenureExpire();

//Add current solution to tabu tenure

AddToTenure(current_sol);

}

//Create the vector of all the possible exchanges

buildMoveList(current_sol, moveList);

improved = false;

bestLocal_sol = NULL;

//Loop on all the elements belonging to any subset, in random order

while((Parameters::IMPROVE_STRATEGY == BEST_IMPROVE && !moveList.empty()) ||

(Parameters::IMPROVE_STRATEGY == FIRST_IMPROVE && !improved && !moveList.empty()) )

{

Move tmp_move = moveList.back();

moveList.pop_back();

//Generate the neighbor solution

//Copy the current solution

new_sol = new Partition(*current_sol);

//Execute the move

new_sol->p_partition[tmp_move.from_p]->remove(tmp_move.node);

new_sol->p_partition[tmp_move.to_p]->add(tmp_move.node, false);

new_sol->p_solution[tmp_move.node] = tmp_move.to_p;

//Normalize solution

new_sol->normalize();

//Evaluate the fitness of the new solution

new_sol->computeValue();

//Check if the solution can be considered

if(Parameters::SEARCH_ALGORITHM == LOCAL_SEARCH ||

(Parameters::SEARCH_ALGORITHM == TABU_SEARCH && !isTabu(new_sol)))
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{

//Update the best local solution if necessary

if(bestLocal_sol == NULL ||

new_sol->isBetterThan(*bestLocal_sol)){

delete(bestLocal_sol);

bestLocal_sol = new_sol;

//Update the best global solution if necessary

if(bestLocal_sol->isBetterThan(*bestGlobal_sol))

improved = true;

}

}

//Check if the new solution can be destroyed

if(new_sol != bestLocal_sol)

delete new_sol;

new_sol = NULL;

}

//Update best global solution with best local if necessary

if(bestLocal_sol != NULL &&

(improved ||

Parameters::SEARCH_ALGORITHM == TABU_SEARCH)){

if(current_sol != bestGlobal_sol)

delete current_sol;

current_sol = bestLocal_sol;

if(bestLocal_sol->isBetterThan(*bestGlobal_sol)){

delete bestGlobal_sol;

bestGlobal_sol = bestLocal_sol;

}

bestLocal_sol = NULL;

loopCondition = true;

}else{

if(bestLocal_sol != bestGlobal_sol) delete bestLocal_sol;

if(current_sol != bestGlobal_sol) delete current_sol;

bestLocal_sol = current_sol = NULL;

}

if(improved) emptyIter = 0;

else ++emptyIter;

}//End while(LoopCondition)

//Update the solution with the best solution found

if(bestGlobal_sol->isBetterThan(*a_solution)){

a_solution->copyPartition(*bestGlobal_sol);

}

if(current_sol != bestGlobal_sol){

if(bestLocal_sol != current_sol) delete bestLocal_sol;

delete current_sol;
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}else if(bestLocal_sol != bestGlobal_sol) delete bestLocal_sol;

delete bestGlobal_sol;

//cout << "\n" << endl;

}

Partition* SearchAlgorithm::constrHeuristic(void)

{

Partition *solution = new Partition(p_input_data);

//STEP ONE

//Assign a random node to each subset.

vector<node_t> nodeList;

for(node_t i = 0; i < p_input_data->numNodes(); ++i){

nodeList.push_back(i);

}

unsigned int rnd;

node_t node;

for(unsigned int sub1 = 0; sub1 < p_input_data->numSubsets(); ++sub1)

{

rnd = rand() % (p_input_data->numNodes() - sub1);

node = nodeList[rnd];

nodeList.erase(nodeList.begin()+rnd);

//Add the random node to the subset

solution->p_partition[sub1]->add(node, false);

solution->p_solution[node] = sub1;

}

nodeList.clear();

//STEP TWO

//Expand the subsets in a greedy fashion.

unsigned int count = p_input_data->numSubsets();

Partition *tmp_partition = NULL, *best_partition = NULL;

vector<unsigned int> subsetList;

unsigned int set;

//Loop on all the remaining nodes

while(count < p_input_data->numNodes())

{

//Include all the non-assigned neighboring nodes into the corresponding subset

//and select the best one.

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub){

for(unsigned int pos = 0; pos < solution->p_partition[sub]->numNeighElements(); ++pos){

if(solution->p_solution[solution->p_partition[sub]->getNeighbor(pos)] == -1){

nodeList.push_back(solution->p_partition[sub]->getNeighbor(pos));

subsetList.push_back(sub);

}

}
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}

//Loop on all the neighbor nodes, randomly chosen

while(!subsetList.empty())

{

rnd = rand()%subsetList.size();

set = subsetList[rnd];

subsetList.erase(subsetList.begin()+rnd);

node = nodeList[rnd];

nodeList.erase(nodeList.begin()+rnd);

//Copy the current partition

tmp_partition = new Partition(*solution);

//Include the node to the current subset

tmp_partition->p_partition[set]->add(node, false);

tmp_partition->p_solution[node] = set;

//TODO:if(tmp_partition->isConvex(set))

{

//Evaluate the fitness of the new partition

tmp_partition->computeValue();

//Update the best partition found

if(best_partition == NULL ||

tmp_partition->isBetterThan(*best_partition))

{

if(best_partition != NULL)

delete best_partition;

best_partition = tmp_partition;

}

}

if(tmp_partition != best_partition)

delete tmp_partition;

tmp_partition = NULL;

}

//Update current partition with the best one.

if(best_partition != NULL)

{

solution->copyPartition(*best_partition);

delete best_partition;

best_partition = NULL;

}

else

{

solution->p_valid = false;

return NULL;

}

//Increase the counter

++count;

}
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solution->p_valid = true;

solution->normalize();

return solution;

}

A.6. File: Partition.hpp and Partition.cpp

These �le describe the class Partition that provides methods and

�elds for the representation of a partition.

Partition.hpp
#ifndef PARTITION_HPP

#define PARTITION_HPP

#include "InputData.hpp"

#include "Subset.hpp"

/*

* Class representing a valid partition of the demand matrix.

*/

class Partition

{

friend class SearchAlgorithm;

private:

//Input data.

InputData* p_input_data;

//The partition represented as an array of subsets.

Subset** p_partition;

//True if the partition is a valid one. False otherwise.

bool p_valid;

//Partition objective function value.

double p_value;

//List of subsets by node

int *p_solution;

//Calculates the fitness of the current partition.

void calculateFitness(void);
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//Copies a partition into the current one.

void copyPartition(Partition& a_other);

//Update the attributes values.

void computeValue(void);

//Returns true if all the subsets are convex.

//False otherwise.

bool isConvex(void);

//Returns true if subsets a_sub is convex.

bool isConvex(unsigned int a_sub);

//Normalize the solution to avoid simmetries

void normalize(void);

public:

//Time stamp representing when the solution was generated

time_t timeStamp;

//Constructor of the class.

//a_input_data : pointer to the input data.

Partition(InputData *a_input_data);

//Constructor of the class.

//a_input_data : pointer to the input data.

//a_sol_filename : name of the file storing the partition.

Partition(InputData *a_input_data, string a_sol_filename);

//Copy constructor of the class.

//a_other : original element to be copied.

Partition(Partition& a_other);

//Destructor of the class.

~Partition(void);

//Prints the partition and attribute values to the out stream.

void printPartition(void);

//Prints exclusively the partition to the err stream.

void printConfiguration(void);

//Returns true if the current partition is better than or equal to the other.

//Returns false otherwise.

bool isBetterThan(const Partition& a_other) const;

//Returns true if the partition has been properly generated.

//False otherwise.

bool isValid(void);
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//Prints a resume of the partition stats

void printResume(void);

//Returns the value of the partition

double value(void);

};

#endif

Partition.cpp
#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <limits>

#include <cstring>

#include "Partition.hpp"

#include "Parameters.hpp"

using namespace std;

Partition::Partition(InputData *a_input_data)

{

p_input_data = a_input_data;

p_partition = new Subset*[p_input_data->numSubsets()];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

{

p_partition[sub] = new Subset(a_input_data);

p_solution = NULL;

}

p_solution = new int[p_input_data->numNodes()];

for(node_t node = 0; node < p_input_data->numNodes(); ++node){

p_solution[node] = -1;

}

p_value = 0;

p_valid = false;

}

Partition::Partition(InputData *a_input_data, string a_sol_filename)

{

p_input_data = a_input_data;

//Open the partition file.

ifstream sol_file_stream;

sol_file_stream.open(a_sol_filename.c_str());

if(!sol_file_stream.is_open())

{

cerr << "ERROR in Partition::Partition : solution file cannot be opened." << endl;
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exit(EXIT_FAILURE);

}

int num;

int p = 0;

for(unsigned int i = 0; i < a_input_data->numNodes(); ++i){

sol_file_stream >> num;

if(num > p) p = num;

}

sol_file_stream.close();

if(p <= 0)

{

cerr << "ERROR in Partition::Partition : solution file not correct. Negative number of

partitions." << endl;

}

p_input_data->numSubsets(p);

p_partition = new Subset*[p_input_data->numSubsets()];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

{

p_partition[sub] = new Subset(a_input_data);

}

p_value = 0;

p_valid = false;

//Open the partition file.

sol_file_stream.open(a_sol_filename.c_str());

if(!sol_file_stream.is_open())

{

std::cerr << "ERROR in Partition::Partition : solution file cannot be opened." << endl;

exit(EXIT_FAILURE);

}

p_solution = new int[p_input_data->numNodes()];

//Read partition list from file

int par;

for(unsigned int i = 0; i < a_input_data->numNodes(); ++i)

{

sol_file_stream >> par; par--;

//Checking for errors

if(par < 0){

std::cerr << "ERROR in Partition::Partition : solution file element " << i<< " not

correct." << endl;

exit(EXIT_FAILURE);

}

if(par >= 0)
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{

p_partition[par]->add(i, true);

p_solution[i] = i;

}

}

sol_file_stream.close();

this->computeValue();

}

Partition::Partition(Partition& a_other)

{

p_input_data = a_other.p_input_data;

p_partition = new Subset*[p_input_data->numSubsets()];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

p_partition[sub] = NULL;

p_solution = new int[p_input_data->numNodes()];

copyPartition(a_other);

/*

p_input_data = a_other.p_input_data;

p_partition = new Subset*[p_input_data->numSubsets()];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

p_partition[sub] = new Subset(*(a_other.p_partition[sub]));

p_solution = new int[p_input_data->numNodes()];

for(node_t node = 0; node < p_input_data->numNodes(); ++node){

p_solution[node] = a_other.p_solution[node];

}

p_value = a_other.p_value;

p_valid = false;

*/

}

void Partition::copyPartition(Partition& a_other)

{

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

if(p_partition[sub] != NULL)

delete p_partition[sub];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

p_partition[sub] = new Subset(*(a_other.p_partition[sub]));

memcpy((void*)p_solution, (const void*)a_other.p_solution,

p_input_data->numNodes()*sizeof(int));

p_value = a_other.p_value;

p_valid = a_other.p_valid;

/*
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p_input_data = a_other.p_input_data;

if(p_partition != NULL)

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

delete p_partition[sub];

delete[] p_partition;

p_partition = new Subset*[p_input_data->numSubsets()];

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

p_partition[sub] = new Subset(*(a_other.p_partition[sub]));

for(node_t node = 0; node < p_input_data->numNodes(); ++node){

p_solution[node] = a_other.p_solution[node];

}

p_value = a_other.p_value;

p_valid = a_other.p_valid;

*/

}

Partition::~Partition(void)

{

if(p_partition != NULL)

{

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

delete p_partition[sub];

delete[] p_partition;

}

if(p_solution != NULL) delete[] p_solution;

}

bool Partition::isConvex(void)

{

for(unsigned int i = 0; i < p_input_data->numSubsets(); ++i)

if(!p_partition[i]->isConvex())

return false;

return true;

}

void Partition::normalize(void){

unsigned int sub = 0;

for(unsigned int i = 0; sub < p_input_data->numSubsets() && i < p_input_data->numNodes(); ++i){

if(p_solution[i] <(int) sub){

continue;

}

if(p_solution[i] == sub){

++sub;

continue;

}
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if(p_solution[i] >(int) sub){

unsigned int old_sub = p_solution[i];

Subset *tmp_sub = p_partition[old_sub];

p_partition[old_sub] = p_partition[sub];

p_partition[sub] = tmp_sub;

for(unsigned int j = i; j < p_input_data->numNodes(); ++j){

if(p_solution[j] == old_sub) p_solution[j] = sub;

else if(p_solution[j] == sub) p_solution[j] = old_sub;

}

++sub;

}

}

}

bool Partition::isConvex(unsigned int a_sub)

{

if(a_sub >= p_input_data->numSubsets()){

std::cerr << "ERROR in Partition::isConvex : subset number is not valid." << endl;

exit(EXIT_FAILURE);

}

if(!p_partition[a_sub]->isConvex())

return false;

return true;

}

double Partition::value(void){return p_value;}

void Partition::computeValue(void)

{

//Calculate the number of supporting areas for all the subsets

unsigned int supporting;

for(unsigned int sub1 = 0; sub1 < p_input_data->numSubsets(); ++sub1)

{

supporting = 0;

for(unsigned int sub2 = 0; sub2 < p_input_data->numSubsets(); ++sub2)

{

if(sub1 == sub2) continue;

if(p_input_data->distance(p_partition[sub1]->centerMass(),

p_partition[sub2]->centerMass()) <= p_input_data->supportDistance())

++supporting;

}

p_partition[sub1]->setSupport(supporting);

}

wload_t tmpWLoad, sumWLoad = 0;

wload_t maxWLoad = - numeric_limits<wload_t>::max();

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

{

tmpWLoad = p_partition[sub]->calculateWLoad();
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sumWLoad += tmpWLoad;

if(tmpWLoad > maxWLoad) maxWLoad = tmpWLoad;

}

p_value = Parameters::LAMBDA * maxWLoad + (1 - Parameters::LAMBDA) * sumWLoad /

p_input_data->numSubsets();

//Computing convexity violation

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

{

if(!p_partition[sub]->isConvex()){

p_value += Parameters::PENALTY;

}

}

}

bool Partition::isBetterThan(const Partition& a_other) const

{

if(p_value < a_other.p_value)

return true;

return false;

}

void Partition::printPartition(void)

{

printConfiguration();

cout << "\tAREA\tSUPPORT\tDEMAND\tDIAMET\tLAMBDA\tSUP_DIST" << endl;

cout << "WEIGHTS" << "\t" << Parameters::WAREA << "\t" << Parameters::WSUPPORT << "\t" <<

Parameters::WDEMAND << "\t" << Parameters::WDIAMETER << "\t"<< Parameters::LAMBDA << "\t"

<< "(dist:"<< p_input_data->supportDistance()<< ")" << endl;

for(unsigned int s = 0; s < p_input_data->numSubsets(); ++s)

cout << s+1 << "\t" << p_partition[s]->area() << "\t" << p_partition[s]->support() << "\t"

<< p_partition[s]->crime() << "\t" << p_partition[s]->diameter() << endl;

cout << "\t" << endl;

}

void Partition::printConfiguration(void)

{

for(node_t node = 0; node < p_input_data->numNodes(); ++node ){

for(unsigned int sub = 0; sub < p_input_data->numSubsets(); ++sub)

{

if(p_partition[sub]->isContain(node))

{

std::cout << " " << sub+1;

break;

}

}

}

cout << endl;
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}

void Partition::printResume(void)

{

double maxDemand = 0.0f, avgDemand = 0.0f;

double maxArea = 0.0f, avgArea = 0.0f;

double maxDiameter = 0.0f, avgDiameter = 0.0f;

double minSupport = p_input_data->numSubsets()-1, avgSupport = 0.0f;

for(unsigned int s = 0; s < p_input_data->numSubsets(); ++s){

avgDemand += p_partition[s]->crime();

avgArea += p_partition[s]->area();

avgDiameter += p_partition[s]->diameter();

avgSupport += p_partition[s]->support();

if(p_partition[s]->crime() > maxDemand) maxDemand = p_partition[s]->crime();

if(p_partition[s]->area() > maxArea) maxArea = p_partition[s]->area();

if(p_partition[s]->diameter() > maxDiameter) maxDiameter = p_partition[s]->diameter();

if(p_partition[s]->support() < minSupport) minSupport = p_partition[s]->support();

}

avgDemand /= p_input_data->numSubsets();

avgArea /= p_input_data->numSubsets();

avgDiameter /= p_input_data->numSubsets();

avgSupport /= p_input_data->numSubsets();

cerr << p_input_data->numSubsets() << "\t" << Parameters::WAREA << "\t" <<

Parameters::WSUPPORT << "\t" << Parameters::WDEMAND << "\t" << Parameters::WDIAMETER <<

"\t" << Parameters::LAMBDA << "\t" << avgArea << "\t" << maxArea << "\t" << avgSupport <<

"\t" << minSupport << "\t" << avgDemand << "\t" << maxDemand << "\t" << avgDiameter <<

"\t" << maxDiameter << "\t" << p_value << "\t" << timeStamp << endl;

}

bool Partition::isValid(void)

{

return p_valid;

}

A.7. File: Subset.hpp and Subset.cpp

These �les de�ne the class Subset. The class Subset describes a

single patrol sector and provides methods for its evaluation as well all

the data required by the optimization algorithm.

Subset.hpp
#ifndef SUBSET_HPP
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#define SUBSET_HPP

#include <vector>

#include "InputData.hpp"

using namespace std;

typedef double wload_t;

/*

* A subset belonging to a partition.

*/

class Subset

{

private:

//Input data.

InputData* p_input_data;

//Nodes belonging to the subset

vector<node_t> p_node_list;

//ATTRIBUTES

//Total demand

crime_t p_crime;

//Area

area_t p_area;

//Diameter

dist_t p_diameter;

//Number of supporting areas

unsigned int p_support;

//SUPPORT DATA STRUCTURES AND METHODS

//Nodes belonging to the neighborhood

vector<node_t> p_neighbor_list;

//Updates the neighbor cell list.

void updateNeighborList(node_t a_node, bool force);

void computeNeighborList(void);

//Distance matrix

dist_t** p_node_dist;

unsigned int** p_node_edgeDist;

unsigned int p_node_dist_size;

//Updates the distance matrix

void updateDistanceMatrix(void);

void updateDiameter(void);

//Center of mass

node_t p_center_mass;

void updateCenterMass(void);

public:

//Constructor

Subset(InputData *a_input_data);
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Subset(Subset& a_other);

//Destructor

~Subset(void);

//Check if an element belongs to the subset.

bool isContain(node_t a_node);

//Check if an element is a neighbor of the subset.

bool isNeighbor(node_t a_node);

//Check if the subset is connected.

bool isConnected(void);

//Check if the subset is convex.

bool isConvex(void);

//Add an element to the subset.

void add(node_t a_node, bool force);

//Remove an element from the subset.

void remove(node_t a_node);

//Returns the number of elements in the subset.

unsigned int numElements(void);

//Returns an element at a specific position.

node_t get(unsigned int a_pos);

//Returns the number of elements in the neighbor list.

unsigned int numNeighElements(void);

//Returns an element of the neighbor list at a specific position.

node_t getNeighbor(unsigned int a_pos);

//Returns the total demand.

crime_t crime(void);

//Returns the total area.

area_t area(void);

//Returns the diameter.

dist_t diameter(void);

//Returns the shortest patrol route length

dist_t patrolRouteLength(void);

//Returns the number of supporting areas

unsigned int support(void);

//Sets the number of supporting areas
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void setSupport(unsigned int a_support);

//Returns the center of mass

node_t centerMass(void);

//Computes the total load of the subset, according to the attributes and the weights

wload_t calculateWLoad(void);

};

#endif

Subset.cpp
#include <cmath>

#include <iostream>

#include <cstdlib>

#include <limits>

#include "Subset.hpp"

#include "Parameters.hpp"

#include "mymemory.hpp"

#include "myalgorithm.hpp"

#define EPS 1E-4

Subset::Subset(InputData *a_input_data)

{

p_input_data = a_input_data;

p_crime = 0;

p_area = 0;

p_node_dist = NULL;

p_node_edgeDist = NULL;

p_node_dist_size = 0;

p_diameter = 0;

p_center_mass = 0;

p_support = 0;

}

Subset::Subset(Subset& a_other)

{

p_input_data = a_other.p_input_data;

//Copy nodes list

p_node_list = a_other.p_node_list;

//Copy neighbor list

p_neighbor_list = a_other.p_neighbor_list;

//Copy attributes



A.7. FILE: SUBSET.HPP AND SUBSET.CPP 155

p_crime = a_other.p_crime;

p_diameter = a_other.p_diameter;

p_area = a_other.p_area;

p_center_mass = a_other.p_center_mass;

p_support = a_other.p_support;

//Copy distance matrix

p_node_dist = copy_matrix<dist_t>(a_other.p_node_dist, p_node_list.size(),p_node_list.size());

p_node_edgeDist = copy_matrix<unsigned int>(a_other.p_node_edgeDist,

p_node_list.size(),p_node_list.size());

p_node_dist_size = a_other.p_node_dist_size;

}

Subset::~Subset(void)

{

p_node_list.clear();

delete_matrix<dist_t>(p_node_dist, p_node_dist_size);

delete_matrix<unsigned int>(p_node_edgeDist, p_node_dist_size);

p_neighbor_list.clear();

}

bool Subset::isContain(node_t a_node)

{

for(unsigned int pos = 0; pos < p_node_list.size(); ++pos)

if(p_node_list[pos] == a_node)

return true;

return false;

}

bool Subset::isNeighbor(node_t a_node)

{

for(unsigned int pos = 0; pos < p_neighbor_list.size(); ++pos)

if(p_neighbor_list[pos] == a_node)

return true;

return false;

}

bool Subset::isConnected(void)

{

for(unsigned int i = 0; i < p_node_dist_size; ++i)

for(unsigned int j = 0; j < p_node_dist_size; ++j)

if(p_node_edgeDist[i][j] >= p_input_data->bigM())

return false;

return true;

}

bool Subset::isConvex(void)
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{

if(p_node_dist_size == 0) return true;

node_t nodeA, nodeB;

for(unsigned int i = 0; i < p_node_dist_size-1; ++i)

for(unsigned int j = 1; j < p_node_dist_size; ++j)

{

nodeA = p_node_list[i];

nodeB = p_node_list[j];

if(p_node_edgeDist[i][j] > p_input_data->edgeDistance(nodeA, nodeB))

return false;

}

return true;

}

void Subset::add(node_t a_node, bool force)

{

//If the cell is not already present in the subset

if(!isContain(a_node))

{

//Include cell to the subset

p_node_list.push_back(a_node);

//Update area

p_area += p_input_data->area(a_node);

//Update crime risk

p_crime += p_input_data->crime(a_node);

//Update the neighbor list

updateNeighborList(a_node, force);

//Update distance matrix

updateDistanceMatrix();

//Update diameter

updateDiameter();

//Update center of gravity

updateCenterMass();

}

else

{

cerr << "ERROR in Subset::add : argument already belongs to the subset." << endl;

exit(EXIT_FAILURE);

}

}

void Subset::remove(node_t a_node)

{

if(isContain(a_node))

{

bool found = false;

//Remove node from the subset

for(unsigned int pos = 0; !found && pos < p_node_list.size(); ++pos)

if(p_node_list[pos] == a_node)

{

found = true;
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p_node_list.erase(p_node_list.begin()+pos);

}

//Update area

p_area -= p_input_data->area(a_node);

//Update crime

p_crime -= p_input_data->crime(a_node);

//Update the neighbor list

computeNeighborList();

//Update distance matrix

updateDistanceMatrix();

//update Diameter

updateDiameter();

//update Center of Gravity

updateCenterMass();

}

else

{

cerr << "ERROR in Subset::remove : argument doesn't belong to the subset." << endl;

exit(EXIT_FAILURE);

}

}

void Subset::updateCenterMass(void)

{

dist_t best_maxDist = numeric_limits<dist_t>::max();

dist_t best_sumDist = numeric_limits<dist_t>::max();

dist_t tmp_maxDist, tmp_sumDist;

for(unsigned int sel = 0; sel < p_node_dist_size; ++sel)

{

tmp_sumDist = tmp_maxDist = 0;

for(unsigned int pos = 0; pos < p_node_dist_size; ++pos)

{

tmp_sumDist += p_node_dist[sel][pos] * p_input_data->crime(p_node_list[pos]);

if(p_node_dist[sel][pos] > tmp_maxDist)

tmp_maxDist = p_node_dist[sel][pos] * p_input_data->crime(p_node_list[pos]);

}

if(tmp_maxDist < best_maxDist ||

(tmp_maxDist == best_maxDist && tmp_sumDist < best_sumDist)){

best_maxDist = tmp_maxDist;

best_sumDist = tmp_sumDist;

p_center_mass = p_node_list[sel];

}

}

}

void Subset::computeNeighborList(void)

{
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node_t node, tmp_node;

bool found;

//Empty the list

p_neighbor_list.clear();

//Loop on all the elements in the subset

for(unsigned int sel = 0; sel < p_node_list.size(); ++sel)

{

node = p_node_list[sel];

//Including all the nodes neighboring the current one.

for(unsigned int pos = 0; pos < p_input_data->numEdges(node); pos++)

{

tmp_node = p_input_data->edgeByPos(node, pos);

//If the node is included and doesn't already belong to the subset

if(!isContain(tmp_node))

{

//Check if the node has already been included in the neighbor

found = false;

for(unsigned int tmp = 0; !found && tmp < p_neighbor_list.size(); ++tmp)

found = (p_neighbor_list[tmp] == tmp_node);

//If the node has never been included in the neighbor

if(!found)

//Add the node to the neighbor

p_neighbor_list.push_back(tmp_node);

}

}

}

}

void Subset::updateDiameter(void)

{

p_diameter = 0;

for(unsigned int i = 0; i < p_node_dist_size-1; ++i)

for(unsigned int j = i; j < p_node_dist_size; ++j)

if(p_node_dist[i][j] > p_diameter)

p_diameter = p_node_dist[i][j];

}

void Subset::updateDistanceMatrix(void)

{

//Erase the previous distance matrices

delete_matrix<dist_t>(p_node_dist, p_node_dist_size);

p_node_dist = NULL;

delete_matrix<unsigned int>(p_node_edgeDist, p_node_dist_size);

p_node_edgeDist = NULL;
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//Populate the matrix

p_node_dist_size = p_node_list.size();

p_node_dist = new_matrix<dist_t>(p_node_dist_size, p_node_dist_size);

p_node_edgeDist = new_matrix<unsigned int>(p_node_dist_size, p_node_dist_size);

for(unsigned int i = 0; i < p_node_dist_size; ++i)

{

for(unsigned int j = 0; j < p_node_dist_size; ++j)

if(i == j){

p_node_dist[i][j] = 0;

p_node_edgeDist[i][j] = 0;

} else if(p_input_data->isEdge(p_node_list[i], p_node_list[j])){

p_node_dist[i][j] = p_input_data->distance(p_node_list[i], p_node_list[j]);

p_node_edgeDist[i][j] = 1;

} else{

p_node_dist[i][j] = p_input_data->bigM();

p_node_edgeDist[i][j] =(unsigned int) p_input_data->bigM();

}

}

//All-pairs shortest path matrix

FloydWarshall(p_node_dist, p_node_dist_size);

FloydWarshall(p_node_edgeDist, p_node_dist_size);

}

node_t Subset::get(unsigned int a_pos)

{

if(a_pos < p_node_list.size()) return p_node_list[a_pos];

else

{

cerr << "ERROR in Subset::get : argument out of range." << endl;

exit(EXIT_FAILURE);

}

}

unsigned int Subset::numElements(void)

{

return p_node_list.size();

}

void Subset::updateNeighborList(node_t a_node, bool force)

{

node_t tmp_node;

bool found;

//Eliminating the new node from the neighbor list.

found = force;

for(unsigned int pos = 0; !found && pos < p_neighbor_list.size(); ++pos)

if(p_neighbor_list[pos] == a_node)

{

found = true;

p_neighbor_list.erase(p_neighbor_list.begin()+pos);
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}

if(!found && p_neighbor_list.size() > 0)

{

cerr << "ERROR in Subset::updateNeighborList : argument node does not belong to the neighbor

list." << endl;

exit(EXIT_FAILURE);

}

//Including all the nodes neighboring the current one.

for(unsigned int pos = 0; pos < p_input_data->numEdges(a_node); pos++)

{

tmp_node = p_input_data->edgeByPos(a_node, pos);

//If the node is included and doesn't already belong to the subset

if(!isContain(tmp_node))

{

//Check if the node has already been included in the neighbor

found = false;

for(unsigned int tmp = 0; !found && tmp < p_neighbor_list.size(); ++tmp)

found = (p_neighbor_list[tmp] == tmp_node);

//If the node has never been included in the neighbor

if(!found)

//Add the node to the neighbor

p_neighbor_list.push_back(tmp_node);

}

}

}

//Returns the number of nodes in the neighbor list.

unsigned int Subset::numNeighElements(void)

{

return p_neighbor_list.size();

}

//Returns a node of the neighbor list at a specific position.

node_t Subset::getNeighbor(unsigned int a_pos)

{

if(a_pos < p_neighbor_list.size()) return p_neighbor_list[a_pos];

else

{

cerr << "ERROR in Subset::getNeighbor : argument out of range." << endl;

exit(EXIT_FAILURE);

}

}

crime_t Subset::crime(void)

{

return p_crime;

}
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area_t Subset::area(void)

{

return p_area;

}

dist_t Subset::diameter(void)

{

return p_diameter;

}

unsigned int Subset::support(void)

{

return p_support;

}

void Subset::setSupport(unsigned int a_support)

{

p_support = a_support;

}

node_t Subset::centerMass(void)

{

return p_center_mass;

}

double Subset::calculateWLoad(void)

{

wload_t tmp_load = 0;

//First attribute: Demand ratio

tmp_load += Parameters::WDEMAND * p_crime / p_input_data->totalCrime();

//Second attribute: Area ratio

tmp_load += Parameters::WAREA * p_area / p_input_data->totalArea();

//Third attribute: Diameter ratio

tmp_load += Parameters::WDIAMETER * p_diameter / p_input_data->diameter();

//Fourth attribute: Support ratio

tmp_load += Parameters::WSUPPORT * (p_input_data->numSubsets() - 1 - p_support) /

(p_input_data->numSubsets() - 1);

return tmp_load;

}
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A.8. File: myalgorithm.hpp

This �le contains the de�nition of the Floyd-Warshal algorithm

for the computation of the shortest-path matrix.

myalgorithm.hpp
#if !defined MYALGORITHM_HPP

#define MYALGORITHM_HPP

#include "mymemory.hpp"

using namespace std;

template <typename T>

void FloydWarshall(T **a_matrix, unsigned int a_nodes)

{

//T **matrix = copy_matrix(a_matrix, a_nodes, a_nodes);

for(unsigned int k = 0; k < a_nodes; ++k)

for(unsigned int i = 0; i < a_nodes - 1; ++i)

for(unsigned int j = i + 1; j < a_nodes; ++j)

if(a_matrix[i][k] + a_matrix[k][j] < a_matrix[i][j])

a_matrix[i][j] = a_matrix[j][i] = a_matrix[i][k] + a_matrix[k][j];

}

#endif

A.9. File: mymemory.hpp

mymemory.hpp provides basic procedures for the management

of matrices data structures.

mymemory.hpp
#if !defined MYMEMORY_HPP

#define MYMEMORY_HPP

#include <cstring>

template <typename T>

T** new_matrix(unsigned int a_row, unsigned int a_col)

{

if(a_row <= 0 || a_col <= 0)

return NULL;

T** matrix = new T*[a_row];
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for(unsigned int i = 0; i < a_row; ++i){

matrix[i] = new T[a_col];

for(unsigned int j = 0; j < a_col; ++j){

matrix[i][j] =(T) 0;

}

}

return matrix;

}

template <typename T>

void delete_matrix(T** a_matrix, unsigned int a_row)

{

if(a_matrix != NULL){

for(unsigned int i = 0; i < a_row; ++i){

if(a_matrix[i] != NULL) delete[] a_matrix[i];

}

delete[] a_matrix;

}

}

template <typename T>

T** copy_matrix(T** a_matrix, unsigned int a_row, unsigned int a_col)

{

if(a_matrix == NULL || a_row <= 0 || a_col <= 0)

return NULL;

T** matrix = new_matrix<T>(a_row, a_col);

for(unsigned int i = 0; i < a_row; ++i){

memcpy(matrix[i], a_matrix[i], a_col*sizeof(T));

}

return matrix;

}

#endif
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APPENDIX B

SAMPLE PROBLEM INSTANCE

We now present a sample problem instance for the MC-

PDP. Speci�cally, this example refers to the night shift of Saturday

10/15/2011, from 10 PM to 8 AM. An instance is comprised of the

following parts:

� Number of nodes.

� Risk associated with each node. In the sample instance, it repre-

sents the number of expected thefts that will occur in the corre-

sponding area during the considered shift.

� Area associated with each node. In the sample instance, it is

calculated as the sum of the lengths (in meters) of the streets that

belong to the considered area.

� Number of edges.

� List of edges and associated distance as a triplet {source, desti-

nation, distance}. In the instance the distances are expressed in

meters.

111

1.847435032 0.1556274449 0.622201076 1 0.5210441332 0.681074225 1.4952551484 0.9773838127 0

0.5903392415 0.5628374046 0 0 0 0 0 0 0.5211234734 0.5834516704 0.4361932303 0.2348564477

1.3596163852 2.7351950533 0.6646511965 1.7169609736 0 0 0 0 0 0 0 0 0 0 0.0013616558 0 0
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0.1418114507 0.2599278718 0.2908085259 0 0.325805989 0.4017393225 0 1.2495583367 1.247059666

0 0 0 0 0 0.5183809999 0.5462574949 0.420142739 0.2719482174 0 0 0 0.2954159984 2.2754077918

1.8064755012 3.6682885544 0 2.610233578 3 1.4335569947 1.0294728075 0.5448328366

0.9278174276 0.7160613989 1.7108410694 1.4897414961 1.1752472477 2.1759956517 2.0027277849

0.0026898746 0.0026898746 0 0 0.0016987842 0.115539476 0.0035917092 0 0 0 0 0.3760499461

0.2854458854 0.1786589192 0 0.2216245926 0 0 0 0 0.5116581304 1.1606141128 0.357061161

0.2761369351 0 0 0.2667712853 0.357676439 3.8648130035 0.1427225802 1.4823337139

2.6810386478 4.5424046962 1.3736329756 2.2426371065

10637.8872114451 1173.2769893873 2758.8700868319 1787.9890877009 2461.1753810222 1090.853926134

1483.5956187032 3456.290740624 2100.6547195789 996.5333417578 1304.411931992 1156.8964938761

1946.7897353357 1208.0347571006 2444.2107729082 623.9632981413 1337.1321940978

1428.2902193829 1170.1374591127 1106.4392538321 836.4159434318 1411.8715397772

1583.9677789648 1185.2191479776 1647.0286264933 945.8844274653 793.9633631986

1176.2236941508 1596.4448672656 848.6033507724 1021.144546867 1125.4345941882 894.1678747523

721.270369998 607.4444014646 1638.7233120348 444.5422139508 828.9932405194 756.7402334221

567.5827150186 1220.3438557124 1080.7024206932 1331.4297306652 668.9632511685 712.4229946604

1049.2687601145 870.444985404 1101.3181423807 713.9108625644 688.4900578513 478.9529935614

1126.6314459422 1415.5398425038 1339.705903453 837.0835942753 1813.4933502728 985.0861576098

1604.0825864119 953.5708003785 1066.573921927 1474.7604162864 1463.2195243717

1502.0734020987 1288.282106473 4560.8872801325 2611.4997715881 2639.6419417113

1282.271141329 1298.5228441698 1346.6817891962 1570.0774756507 1455.084327801

1782.0840480148 2825.7590949842 2462.2665830782 1876.0283946461 858.4741616318

885.8925321892 788.8190543854 504.8093999718 993.1836208315 1527.1380441207 998.2037957052

889.421191316 1155.2865292616 911.5433132603 1045.8751854988 1192.2908098112 867.0416009103

1555.4527254373 1207.9802554586 1076.1166227739 1647.6272092661 643.0536522822

1316.7260209498 1905.1267125181 821.4243363018 1470.0304931748 1140.4426361983

2058.1429140528 924.5701697846 1327.026045963 2037.6467818207 1961.8213548161

3589.6338241939 1175.6238536709 2802.1082634262 2047.4937094759 2979.9093937573

1400.3307655069 2992.9475203784
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1 2 646.4820551767

1 4 481.3878312856

1 5 461.1720019008

1 6 439.0575877958

1 8 519.324813152

1 15 586.2965591151

2 3 205.8168679553

2 4 290.3870591101

2 100 228.6375224773

3 100 283.6679667638

3 103 226.4965892555

3 105 333.0346968893

3 5 391.9884993202

3 4 214.874188596

4 5 214.3471955242

5 105 455.5710778691

5 111 366.6435770383

5 110 265.7709295427
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5 6 140.2422051988

6 110 304.9873120699

6 7 189.9294667145

6 8 209.6537023257

7 109 200.8761716717

7 8 162.7903871665

8 109 358.8668602735

8 10 289.2399471467

8 9 188.0350047585

8 14 180.6860262938

9 10 161.5085529271

9 12 233.1856574503

9 13 252.7902638656

9 14 196.3174790692

10 109 333.2787261526

10 23 330.8116984716

10 22 162.3059284584

10 11 267.7845890205

11 21 165.5821135919

11 20 153.2746266649

11 18 264.8507001939

11 17 285.3897951831

11 12 126.7603011744

12 17 212.1709992221

12 13 163.5441113246

13 14 197.2520751395

13 17 250.8356315793

13 15 152.078845272

14 15 231.1232154167

15 17 329.894794384

15 16 356.4069014923

16 17 171.0589935458

16 18 278.5029316041

17 18 153.0277791679

18 19 194.2154483222

19 20 168.455120456

19 29 203.0157536088

20 21 170.4959926642

20 28 149.8048391736

20 29 245.7899128206

21 22 235.8352206241

21 28 107.5096938582

22 23 206.8585528052

22 25 168.1013193459

22 28 304.9013522838

23 24 278.729386583

23 25 190.8879140251

23 109 241.078705742

24 61 122.1318308699

24 54 388.4500964391

24 41 102.4352078293
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24 25 301.480044472

25 41 285.5694532194

25 43 218.9089081755

25 31 244.593293541

25 26 146.9885807274

26 31 223.1073169655

26 27 129.0737733357

26 28 198.0390239936

27 31 199.4564428057

27 30 58.3159331727

27 28 148.3468804664

28 29 240.9805906922

29 30 243.5633398556

29 33 215.3367479173

29 34 210.3001858967

29 36 387.8316420411

30 31 198.6449699537

30 32 200.8803023129

30 33 93.262056887

31 43 182.8908297802

31 40 67.6734301078

31 39 222.4288454119

31 32 146.5627636574

32 39 167.081826059

32 35 121.3908191215

32 34 185.0170850582

32 33 157.2546717475

33 34 105.3690782354

34 36 187.3534446983

35 39 141.4402819544

35 36 119.9775343063

36 39 257.1949481435

36 37 186.4828965357

37 38 116.9556824954

38 39 164.1127644613

38 46 209.0343819419

38 49 145.163711969

38 50 147.2530570907

38 51 127.1045401344

39 40 222.747987693

39 44 157.2112433606

39 46 135.8612044331

40 43 117.8698217849

40 44 120.5881932569

41 54 331.9063610081

41 42 194.8898922863

41 43 134.3946237642

42 54 150.3277197067

42 47 155.5828865089

42 46 227.0824056997

42 45 132.1979614905
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42 43 242.6258649459

43 44 147.4952784438

43 45 192.5829441477

44 45 108.6424325347

44 46 135.6730320697

45 46 110.1471905817

46 47 134.9909545372

46 49 152.6081391632

47 54 180.5172144654

47 48 145.3036398797

48 54 229.1635113835

48 53 260.8178200641

48 52 188.219827619

48 50 196.7457648927

48 49 168.4288100713

49 50 78.1074161957

50 52 237.9839594228

50 51 91.200120063

51 52 294.5053478463

52 53 207.9871317684

53 54 335.7149342657

53 55 178.9114886595

53 56 160.6491303737

54 60 139.5738097133

54 55 198.4176527865

55 56 128.2431531977

55 60 212.1799533904

56 57 145.1286020682

56 60 315.5163697246

57 58 137.9204149293

57 60 249.7348034094

58 64 174.021048116

58 59 241.819501206

58 60 195.3506265738

59 60 172.390571984

59 61 221.399366416

59 62 152.4996215078

59 64 209.337528397

60 61 312.852004482

61 63 208.6162975407

61 62 137.748627377

62 63 175.5818783157

62 65 305.8674620464

62 64 314.3664518636

63 107 182.5247715

63 65 344.7811009549

64 65 290.3952049198

65 107 372.1609255761

65 106 381.8907226312

65 67 370.4560298529

65 66 688.1630934292
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66 74 280.515078596

66 71 253.3645009578

66 70 251.8980062807

66 67 410.1075241233

67 70 214.8853988638

67 69 182.2829137927

67 68 298.0543451015

67 106 282.0015932388

68 104 251.2239088984

68 83 123.546290144

68 72 230.8886281308

68 69 122.7700055184

68 106 328.4287270392

69 72 229.5809601962

69 70 189.1951953478

70 72 210.1222043652

70 71 201.1656723018

71 72 164.8581965998

71 73 224.2084603822

71 74 251.0362217065

72 73 165.9689155772

72 82 305.9463344119

72 83 271.6984693737

73 74 388.3438210282

73 75 215.7885298985

73 82 262.0238621982

74 75 283.3769922776

75 76 227.2703643265

75 82 451.1434952119

76 77 147.7967042809

76 81 265.6274385267

76 82 324.0238911463

77 78 186.4155841634

78 79 194.9596992752

78 80 121.0160389758

78 81 153.8737989471

79 80 84.8550509526

79 90 204.6899001232

79 91 162.5830055735

80 90 157.7453893728

81 82 245.9260714456

81 89 121.0402924611

81 90 205.278016978

82 83 217.1560983402

82 84 218.9108702909

82 85 186.9132164052

82 89 159.0263503603

83 84 131.5831795589

83 104 230.4840748615

84 85 134.3865505995

84 104 217.8951910379
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84 102 153.4854157177

85 89 201.4147019479

85 86 100.9254915409

85 102 197.6181934849

86 87 157.7254105234

86 88 135.6819313517

86 89 173.9351407835

86 101 221.1227006513

87 88 125.8362835552

87 101 143.6786647293

87 98 179.9624988143

88 90 134.7183888318

88 89 213.2137653261

88 98 247.7877178949

89 90 211.8456077149

90 91 243.7738806913

90 92 233.0897550153

91 94 148.2911850778

91 93 202.5617193749

91 92 193.1359274635

92 93 141.4274377387

92 97 159.1439845842

92 98 164.308852143

93 94 146.073367511

93 96 200.7407348029

93 97 142.5780855721

94 95 307.8283580361

95 96 252.947943015

96 97 173.1046541144

96 98 306.5311606915

96 99 262.419347052

97 98 138.3441260338

98 99 216.0112691581

98 100 238.6189559171

99 100 231.3808633981

100 101 180.4033046033

100 103 282.9772753442

101 102 208.0969760746

101 103 223.5274826566

102 103 163.9039458959

102 104 207.9353792749

103 104 279.4762736117

103 105 264.1958990449

104 105 265.1177438164

105 106 371.3249373993

105 107 400.9021230293

105 111 166.8739686659

106 107 267.3883538215

107 108 245.3931701596

107 111 344.3389045471

108 109 206.5778347614
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108 110 250.7839254911

109 110 193.3128827599

110 111 164.6725934034



APPENDIX C

MAP OF THE CENTRAL DISTRICT OF MADRID

We now provide a map of the Central District of Madrid (in

Spanish) illustrating the partition in census districts. Thick lines de-

limit the six neighbors comprising the Central District, while the thin

lines demarcate the census districts. Each census district is identi�ed

by a number. It is important to notice that some of the numbers are

missing (i.e., 5, 10, 17, 44, 52, 60, 70, 78, 80, 83, 85, 86, 122). Thus, the

total number of census districts is 111, although the highest numbered

district is the 124th.
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