
Universidad de Granada

Departamento de Ciencias de la Computación
e Inteligencia Artificial

Programa de Doctorado en Tecnoloǵıas de la Información y la Comunicación

Mineŕıa de datos en computación de altas prestaciones

para identificación en base a huellas dactilares

Tesis Doctoral

Daniel Peralta Cámara

Granada, Junio de 2016

Editor: Universidad de Granada. Tesis Doctorales
Autor: Daniel Peralta Cámara
ISBN: 978-84-9163-027-2
URI: http://hdl.handle.net/10481/44550

Universidad de Granada

Mineŕıa de datos en computación de altas prestaciones

para identificación en base a huellas dactilares

MEMORIA PRESENTADA POR

Daniel Peralta Cámara

PARA OPTAR AL GRADO DE DOCTOR EN INFORMÁTICA

Junio de 2016

DIRECTORES

Francisco Herrera Triguero y José Manuel Beńıtez Sánchez

Departamento de Ciencias de la Computación
e Inteligencia Artificial

La memoria titulada “Mineŕıa de datos en computación de altas prestaciones para identifi-
cación en base a huellas dactilares”, que presenta D. Daniel Peralta Cámara para optar al grado
de doctor, ha sido realizada dentro del Programa Oficial de Doctorado en “Tecnoloǵıas de la In-
formación y la Comunicación”, en el Departamento de Ciencias de la Computación e Inteligencia
Artificial de la Universidad de Granada bajo la dirección de los doctores D. Francisco Herrera
Triguero y D. José Manuel Beńıtez Sánchez.

El doctorando, D. Daniel Peralta Cámara, y los directores de la tesis, D. Francisco Herrera
Triguero y D. José Manuel Beńıtez Sánchez, garantizamos, al firmar esta tesis doctoral, que el
trabajo ha sido realizado por el doctorando bajo la dirección de los directores de la tesis, y hasta
donde nuestro conocimiento alcanza, en la realización del trabajo se han respetado los derechos de
otros autores a ser citados cuando se han utilizado sus resultados o publicaciones.

Granada, Junio de 2016

El Doctorando Los directores

Fdo: Daniel Peralta Cámara Fdo: Francisco Herrera Triguero Fdo: José Manuel Beńıtez Sánchez

Esta tesis doctoral ha sido desarrollada con la financiación del Programa de Becas de Formación
de Profesorado Universitario del Ministerio de Educación y Ciencia, en su Resolución del 28 de
Febrero de 2013, bajo la referencia FPU12/04902.

Agradecimientos

Son tantas las personas a las que estoy agradecido y tantos los motivos por los que lo estoy que
no hay imprenta que pueda encuadernarlo todo. Aśı que os pido disculpas a todos y todas por no
corresponder a lo que me habéis dado en estos años.

Empezando por los que han estado ah́ı desde el principio, agradezco infinitamente a mis padres
su esfuerzo, que nunca les podré devolver porque me faltaŕıan vidas. Si ahora tengo algo bueno es
porque lo aprend́ı de vosotros primero. Gracias también a Vı́ctor, por hacerme ver que las cosas ines-
peradas se consiguen con entusiasmo y dedicación. A mi abuela, t́ıos y primos, por esas estupendas
comidas hablando de postres y de barriguillas. A Julia, por hacerme réır cuando lo he necesitado,
y a Rosario y Miguel, por hacerme ver la vida de otra forma. Y un enorme agradecimiento a los
que ya no estáis, porque siempre os echaremos de menos en los buenos momentos.

Debo agradecer a mis directores el enorme esfuerzo invertido en esta tesis y en enseñarme cosas
que sólo se enseñan con el ejemplo. Paco, gracias por tener siempre claro el camino a seguir, por
los e-mails de colores en los momentos necesarios, y por enseñarme que cuando uno hace lo que le
gusta el entusiasmo nunca se pierde. José Manuel, gracias por aportar siempre el punto de vista
práctico, por esas conversaciones a deshora, por aficionarme a la mitoloǵıa griega, y por enseñarme
y demostrarme que el saber no ocupa lugar.

Tras los directores van dos personas que casi lo han sido. Isaac, gracias por estar siempre ah́ı sea
para revisar art́ıculos, hacerme correr o prestarme almohadas. Sabes igual que yo que nada de esto
habŕıa sido igual sin ti. Salva, gracias por esos cafés que en 20 minutos me han hecho reorientar
meses de trabajo, y por tantas risas juntos (aunque algunos no se lo crean).

Evidentemente no pueden faltar mis compañeros, siempre ah́ı para compartir sudores y emocio-
nes: Manu, Sergio, Pablo, Sara, José Antonio, Juanan, Kasia, Rafa, Manolo, Jorge, Natalia, Lala...
¡Y los seniors! Sin tener como modelo a Christoph, Joaqúın, Victoria, Alberto, Julián, Fran, y un
largo etcétera, los que vamos detrás no sabŕıamos ni por dónde empezar. Finalmente, un enorme
abrazo a la sangre nueva, que dentro de unos pocos deadlines estarán quebrándose la cabeza para
escribir sus propios agradecimientos: Paco, Jesús, Sergio, Elena, y todos los demás.

Huge thanks to Yvan Saeys and the entire DaMBi research group, for the amazing treatment
that made me feel at home so many times. Everything is always better with an awesome playlist!

Un agradecimiento muy especial a la piña de Albolote y extrarradio, porque cualquier esfuerzo
se hace ligero sabiendo que siempre se puede contar con vosotros para desconectar. Y no me olvido
de esos personajes del C.C. Chana, por demostrarme que es posible trabajar arduamente, tomarse
la vida con humor y nunca ser globero ni penco (salvo en algún caso).

Y terminando por lo más importante, gracias Ana. Porque si yo he invertido horas en esta tesis,
tú has invertido muchas más (aunque no te des cuenta) en hacerme feliz. Porque al fin y al cabo,
tú empezaste todo esto y mucho más.

Table of Contents

Page

I PhD dissertation 1

1 Introduction . 1

Introducción . 6

2 Preliminaries . 11

2.1 Feature extraction . 11

2.2 Fingerprint identification . 12

2.3 High Performance Computing (HPC) . 13

2.4 Database penetration reduction and fingerprint classification 15

2.5 Information fusion for fingerprint identification 16

3 Justification . 17

4 Objectives . 18

5 Methodology . 19

6 Summary . 20

6.1 Review on minutiae-based local matching algorithms 21

6.2 Minutiae filtering . 22

6.3 Efficient, scalable and accurate fingerprint identification 23

6.4 Database penetration rate reduction . 24

7 Discussion of results . 26

7.1 Review on minutiae-based local matching algorithms 26

7.2 Minutiae filtering . 26

7.3 Efficient, scalable and accurate fingerprint identification 26

7.4 Database penetration rate reduction . 27

8 Concluding Remarks . 29

Conclusiones . 29

9 Future Work . 31

II Publications: Published Papers 33

vii

viii TABLE OF CONTENTS

1 A Survey on Fingerprint Minutiae-Based Local Matching for Verification and Iden-
tification: Taxonomy and Experimental Evaluation 34

2 Minutiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching
Algorithms . 71

3 Fast Fingerprint Identification for Large Databases 111

4 DPD-DFF: A Dual Phase Distributed Scheme with Double Fingerprint Fusion for
Fast and Accurate Identification in Large Databases 143

Bibliograf́ıa 169

Chapter I

PhD dissertation

1 Introduction

Personal identification has been an increasingly important issue in a wide variety of fields,
such as access control, criminology, forensics or automatic payment. In particular, in the last few
years the amount of people that must be identified has been hugely increased: the identification
requirements of big companies, law-enforcement departments or public administrations reach the
hundreds of millions of individuals [iaf, uid]. This problem has been dealt with in various manners,
some of the most popular of which are passwords and tokens. However, these solutions present
some problems: passwords can be forgotten, tokens can be lost, and both can be stolen with relative
easiness. Therefore, there has been a great interest in the scientific community to find a mean for
identification that is not based on what we know (like passwords) nor what we have (like tokens),
but rather on who we are [JFR07].

Biometrics provide an answer to that question by using features that are intrinsic to each
person for the identification. The biometric features that can be used to identify individuals are
diverse, such as face, fingerprints, ear, palmprint, finger veins, DNA, iris, and many others [JFR07].
Among these, fingerprints are the most used ones due to their desirable properties [MMJP09]:

• Universality: everybody has fingerprints, except in rare cases of severe amputations.

• Uniqueness: every finger of every person in the planet has a unique fingerprint.

• Invariability: fingerprints do not change along a person’s life.

• Easiness of use: collecting fingerprint images is fast, cheap and non-invasive, especially with
the development of specific electronic devices for this purpose.

A fingerprint is essentially a pattern of ridges and valleys located on a fingertip. These ridges
and valleys form different types of patterns that can be used for their recognition. Although finger-
print patterns have been scientifically studied for more than a century [Hen00], manual comparison
is a tedious and time-consuming process. In this context, automatic fingerprint recognition aims
to speed up this process by registering the image of a fingerprint in a computer support, where the
matching between fingerprints can be carried out in a systematic and efficient way.

Although fingerprints can be compared directly at the image level, such approaches usually
do not yield good results due to the variances between different images of the same fingerprints,

1

2 Chapter I. PhD dissertation

such as rotations, translations and deformations of the skin. Image level comparison is also time
consuming due to the high number of pixels of the image matrices. Therefore, the first step in the
fingerprint recognition process is feature extraction [MMJP09]. This process consists of obtaining
the relevant information of the image, so as to use it in further steps of the recognition. The
various types of features that can be extracted from fingeprints are usually grouped into three
levels: global (singular points, orientation maps and pseudoridges), local (minutiae) and detail
(pores and intra-ridge features).

Among these, minutiae are by far the most used features for fingerprint recogni-
tion [PGT+15]. Minutiae are the bifurcations and the endings of the fingerprint ridges. They
are easily described by their position and angle, and their number allows for efficient comparison
algorithms. Minutiae-based fingerprint matching algorithms compare two sets of minutiae to de-
termine whether they belong to the same fingerprint or not. The final output of the matching
function is a measure of the similarity between the two compared fingerprints, which is usually
either a binary truth-or-false value either a real-valued similarity score. Most of the current match-
ing algorithms in the specialized literature start by computing a set of local structures, usually
involving minutiae neighborhoods. Then, the local structures are compared with each other and a
final consolidation step is applied to obtain the final similarity score or matching decision. Some
matching methods involve complex computations and are very accurate, whilst others can compare
sets of minutiae very fast, with a slightly lower accuracy.

The fingerprint recognition problem can be addressed from two points of view, each of which
represents a different problem on its own [MMJP09]:

• Verification [JHB97] consists of comparing two fingerprint captures to determine whether
they were taken from the same finger or not. It is a 1:1 comparison problem that typically
involves a single application of a matching function.

• Identification [JHPB97] consists of exploring a database of template fingerprints to find
the match of an input fingerprint, that is, a 1:n comparison problem for a database of n
templates.

This thesis focuses on the identification problem. The general steps of an Automatic Fin-
gerprint Identification System (AFIS) are depicted in Figure 1. First, the fingerprints of all the
users that are to be identified are captured in a process called enrollment, to build the template
fingerprint database. Then, when a new input fingerprint has to be identified, it is compared with
each template fingerprint and the best match is returned. The main requirements of an AFIS can
be synthesized into the following:

• Accuracy: the error rate of the identification. It should be as low as possible, to avoid both
false positives (accepted impostors) and false negatives (rejected genuine users).

• Efficiency: the time needed to locate a fingerprint in the database. It should be kept as small
as possible. Many real applications of fingerprint identification involve real-time constraints,
so that a late response of the system is equivalent to a system failure. Very often, this time
threshold is in the order of a few seconds.

• Scalability: the current needs of large-scale identification systems involve the possibility that
template databases are likely to grow in all contexts. Therefore, an AFIS must be able to
efficiently cope with such increased sizes, for instance by an adequate increase of the hardware
resources.

1 Introduction 3

• Flexibility: the system should be able to cope with any database size, any fingerprint
characteristics (such as low-quality images or rolled prints), any performance requirement
and any hardware configuration.

Figure 1: Workflow of an AFIS

It is immediate to deduce that identification is intrinsically more difficult than verification,
as it can be approached as a succession of n verification steps. In fact, this is the approach followed
by many AFIS [MMJP09]: the input fingerprint is compared to each fingerprint in the database,
and the identity that yields the highest matching score is returned. Most approaches also apply a
certain threshold on the response, to take into account the possibility that the input fingerprint is
actually not in the database. The difficulty of identification with respect to verification is twofold:

• High identification time: a basic identification system takes at least n times longer than
the underlying verification algorithm to identify a given fingerprint.

• Accuracy loss: an identification system not only has to find the single correct match for
the input fingerprint among all database templates; it must also ensure that non-matching
templates will not be detected as genuine matches. As the number of non-matching templates
is at least n− 1, the probability of a false matching is usually not negligible.

By definition, these difficulties increase along with the value of n. Therefore, a direct brute-
force approach for an AFIS that must identify within a database of more than a few thousands
of people is not possible [PTSR+14]. From the identification time point of view, most of these
systems have real time constraints; for instance, the identification to access a building should not
take much more than one second. From the accuracy point of view, a large value of n implies
a large number of non-matching templates in the database, with the consequent increase of the
probability of a wrong identification. As current society necessities for identification are reaching
the order of hundreds of millions of people [iaf, uid], there is a strong need of scalable, accurate
solutions that can adequately deal with this problem.

High Performance Computing (HPC) is one of the tools that support the modern Science,
as it enables the computation of multiple calculations in a reasonable time by means of massive
computational resources [Sto92]. The scientific literature thrives with successful applications of

4 Chapter I. PhD dissertation

HPC systems to real problems, and most big companies and public institutions implement their
own HPC infrastructures to process their data. As such, HPC is a promising tool for the problem
of fingerprint identification in large databases.

In this context, one of the hot research topics during the last few years has been big data,
which can be defined is as the amount of data that cannot be processed within a single machine.
Big data poses an interesting challenge in many fields, but also offers an opportunity to extract
better and more valuable knowledge. So far, big data techniques have been successfully applied to
various problems [FdRL+14]. Several HPC-based frameworks have been developed to help with this
task; two of the most popular ones are Apache Hadoop [Whi12] (which implements the MapReduce
paradigm) and Apache Spark [KKWZ15].

However, a problem of this scale cannot be solved by HPC alone. It is necessary to delve
deeper into the fingerprint identification problem to find new ways to tackle very large scale identi-
fication more efficiently. In this context, Data Mining consists of evaluating sets of data to extract
new knowledge from them, usually by detecting patterns that were previously unknown [WFH11].
Such knowledge can be used to design an implement new ways of approaching problems related
with that kind of data.

Preprocessing is one of the key components of any process involving data mining, as it is
necessary to obtain all the benefits from the data mining techniques [GLH15]. In the context of
fingerprint identification, preprocessing techniques can be applied in several manners to enhance the
accuracy and the runtime of the identification itself, for instance to enhance the features extracted
from the fingerprints or to gather information to improve the identification process.

One of the most extended ways to improve the identification time of an AFIS is the use of
classification techniques [DHS12]. Fingerprints can be divided into five classes according to the
visual pattern of their ridges [Hen00]. If the class of an input fingerprint is correctly determined,
then it is possible to perform the identification by comparing it only with the template fingerprints
belonging to the same class [MMJP09]. The number of comparisons with template fingerprints
with respect to the database size is called penetration rate and its reduction can be key in the
performance of identification system. However, the misclassification of a fingerprint can lead to
identification errors; therefore, it is crucial to reduce the classification error as much as possible.

Information fusion is a paradigm used in many disciplines to improve the overall precision
of a given process, including biometrics [RJ03]. Biometric problems are intrinsically adapted to
information fusion approaches; the fusion of information can be performed at many levels [LN17]:
data level, feature level, score level or decision level. In particular, fusion approaches in fingerprint
identification are usually grouped into two categories: using several fingerprint images [JFR07] and
using several matching algorithms [JPC99]. Information fusion has been steadily used to increase
the accuracy of fingerprint and other biometric recognition systems. However, it affects negatively
the runtime, as more computation has to be performed to obtain redundant information. In this
context, it would be desirable to use information fusion from a different point of view to tackle
both the accuracy and the runtime problems.

This thesis starts by presenting a deep study of the scientific literature on minutiae-based
local matching matching techniques, establishing a taxonomy of the available local structures and
consolidation methods, and highlighting the main advantages and drawbacks of each of them.
Then, we will present a minutiae filtering algorithm that removes spurious or misleading minutiae to
improve both the identification time and the accuracy of the recognition process. After that, we will
describe two frameworks for massively parallel fingerprint identification, which are able to execute
different matching algorithms adapting to the underlying hardware for maximum performance and

1 Introduction 5

full scalability. We will also develop a framework to combine the information of two fingerprints
and the capabilities of two different matching algorithms to address both problems that hinder
identification in large databases: the high identification time and the loss of accuracy. Finally, we
describe a new classification strategy to reduce the penetration rate of the identification. Finally

After this introduction section, Section 2 describes in detail the background of the main areas
addressed in this thesis: fingerprint feature extraction (Section 2.1), fingerprint identification (Sec-
tion 2.2), high performance computing (Section 2.3), database penetration reduction and fingerprint
classification (Section 2.4) and information fusion for fingerprint identification (Section 2.5).

After that, Section 3 presents the justification of this memory, describing the open problems
addressed throughout this thesis. The objectives pursued to address these problems are detailed
in Section 4, along with the methodology followed along the thesis in Section 5. Section 6 summa-
rizes the works that compose this memory, while Section 7 presents the results obtained in them,
performing an analysis in relation with the tackled objectives and how they have been reached.
Section 8 presents the conclusions after the work carried out for this thesis. Finally, in Section 9
we point out several future lines of work that have been derived from the results achieved.

6 Chapter I. PhD dissertation

Introducción

La identificación de personas ha sido un problema de importancia creciente en una amplia variedad
de campos, como el control de acceso, la criminoloǵıa, el análisis forense o el pago automático.
En particular, durante los últimos años la cantidad de personas que deben ser identificadas ha
aumentado enormemente: los requisitos de identificación de grandes empresas, fuerzas de seguridad
o administraciones públicas alcanzan tamaños de los cientos de millones de individuos [iaf, uid].
Este problema se ha intentado resolver de diversas formas; algunas de las más populares son las
contraseñas y los objetos (como llaves o tarjetas de identificación). Sin embargo, estas soluciones
presentan algunos problemas: las contraseñas pueden ser olvidadas, los objetos se pueden perder, y
ambos pueden ser robados con relativa facilidad. Por lo tanto, ha habido un gran interés en la co-
munidad cient́ıfica por encontrar un medio para la identificación que no esté basado en qué sabemos
(como las contraseñas) ni en qué tenemos (como los objetos) sino más bien en quién somos [JFR07].

La Biometŕıa proporciona una respuesta a esta pregunta utilizando caracteŕısticas intŕınsecas
a cada persona para la identificación. Las caracteŕısticas biométricas que se pueden utilizar para
identificar individuos son diversas, como el rostro, huellas y venas dactilares, oreja, palma de la
mano, ADN, iris, y muchas otras [JFR07]. Entre ellas, las huellas dactilares son las más utilizadas
debido a sus propiedades [MMJP09]:

• Universalidad: todo el mundo tiene huellas, excepto en casos raros de amputaciones graves.

• Unicidad: cada dedo de cada persona en el planeta tiene una huella única.

• Invariabilidad: las huellas no cambian a lo largo de la vida de una persona.

• Facilidad de uso: la recolección de huellas es rápida, económica y no invasiva, especialmente
tras el desarrollo de dispositivos electrónicos espećıficos para este propósito.

Una huella dactilar es en esencia un patrón de crestas y valles situado en la yema de un dedo.
Estas crestas y valles forman distintos tipos de patrones que se pueden utilizar para el reconoci-
miento de las huellas. Aunque se han estudiado cient́ıficamente durante más de un siglo [Hen00], la
comparación manual es un proceso largo y tedioso. En este contexto, el reconocimiento automático
de huellas busca acelerar este proceso registrando la imagen de la huella en un soporte compu-
tacional, donde el emparejamiento entre huellas se pueda llevar a cabo de forma sistemática y
eficiente.

Aunque las huellas se pueden comparar directamente a nivel de imagen, habitualmente este
enfoque no proporciona buenos resultados debido a la variabilidad existente entre distintas imágenes
de la misma huella, como rotaciones, traslaciones y deformaciones de la piel. La comparación
de imágenes también es computacionalmente costosa debido al elevado número de ṕıxeles de sus
matrices. Por tanto, el primer paso en el proceso de reconocimiento de huellas es la extracción de
caracteŕısticas [MMJP09]. Este proceso consiste en obtener información relevante a partir de la
imagen para utilizarla en pasos posteriores del reconocimiento. Los diversos tipos de caracteŕısticas
que se pueden extraer de las huellas se suelen agrupar en tres niveles: global (puntos singulares,
mapas de orientación y pseudocrestas), local (minucias) y detalle (poros y caracteŕısticas intra-
cresta).

Entre ellas, las minucias son con diferencia la caracteŕıstica más utilizada para el reconoci-
miento de huellas dactilares [PGT+15]. Las minucias son las bifurcaciones y finales de las crestas
de la huella. Se describen fácilmente mediante su posición y ángulo, y su número permite el diseño

1 Introduction 7

de algoritmos de comparación eficientes. Los algoritmos de emparejamiento (o matching) basados
en minucias comparan dos conjuntos de minucias para determinar si pertenecen a la misma huella
o no. La salida final de la función de matching es una medida de la similitud entre las dos huellas
comparadas, la cual suele ser o bien un valor binario (verdadero o falso) o un score de similitud de
valor real. La mayor parte de los algoritmos de matching en la literatura especializada empiezan
calculando un conjunto de estructuras locales, que habitualmente se basan en los vecindarios de las
minucias. A continuación, las estructuras locales se comparan entre ellas y se aplica un paso final
de consolidación para obtener el score de similitud final. Algunos métodos de matching utilizan
cálculos complejos y son muy precisos, mientras que otros pueden comparar conjuntos de minucias
de forma muy rápida, con una precisión algo menor.

El problema del reconocimiento de huellas dactilares se puede abordar desde dos puntos de
vista, cada uno de los cuales representa un problema diferente [MMJP09]:

• Verificación [JHB97]: consiste en comparar dos capturas de huellas para determinar si fueron
tomadas del mismo dedo o no. Es una comparación 1:1 que implica t́ıpicamente una única
aplicación de una función de matching.

• Identificación [JHPB97]: consiste en explorar una base de datos de huellas para encontrar
la pareja de una huella de entrada, es decir, es un problema de comparación 1:n para una
base de datos de n huellas (denominadas template).

Figura 2: Pasos generales de un sistema de identificación automático

Esta tesis se centra en el problema de la identificación. Los pasos generales de un sistema
automático de identificación de huellas (Automatic Fingerprint Identification System, AFIS) se
muestran en la Figura 2. Primero, las huellas de todos los usuarios que se deban identificar son
capturadas en un proceso de registro, para construir la base de datos de huellas template. Luego,
cuando una nueva huella debe identificarse, se compara con cada una de las huellas template y se
devuelve el mejor emparejamiento. Los principales requisitos de un AFIS se pueden sintetizar en
los siguientes:

• Precisión: la tasa de error de la identificación. Debe ser lo más baja posible, para evitar tanto
falsos positivos (impostores aceptados) como falsos negativos (usuarios genuinos rechazados).

8 Chapter I. PhD dissertation

• Eficiencia: el tiempo requerido para localizar una huella en la base de datos. Debe mantenerse
lo más pequeño posible. Muchas aplicaciones reales de la identificación con huellas implican
restricciones de tiempo real, de forma que un resultado tard́ıo equivale a un fallo del sistema.
Muy a menudo, este umbral de tiempo está en el orden de unos pocos segundos.

• Escalabilidad: las necesidades actuales de los sistemas de identificación a gran escala impli-
can una alta probabilidad de que las bases de datos de huellas crezcan en todos los ámbitos.
Por lo tanto, un AFIS debe ser capaz de trabajar de forma eficiente con bases de datos de
tamaño creciente, por ejemplo mediante un incremento adecuado de los recursos computacio-
nales.

• Flexibilidad: el sistema debe ser capaz de enfrentarse a bases de datos de cualquier tamaño,
huellas con cualquier tipo de propiedades (como imágenes de baja calidad o impresiones
rodadas), cualquier requisito de rendimiento y cualquier configuración hardware.

Es inmediato deducir que la identificación es intŕınsecamente más compleja que la verifi-
cación, dado que se puede ver como una sucesión de n pasos de verificación. De hecho, éste es el
enfoque seguido por muchos AFIS [MMJP09]: la huella de entrada se compara con cada una de
las huellas en la base de datos, y se devuelve la identidad que proporciona el score de matching
más alto. La mayor parte de este tipo de soluciones también aplican un cierto umbral sobre la
respuesta, para tener en cuenta la posibilidad de que la huella de entrada no esté en la base de
datos. La dificultad de la identificación con respecto a la verificación es doble:

• Elevado tiempo de identificación: un sistema de identificación básico tarda n veces más
en identificar una huella que el algoritmo de verificación subyacente.

• Pérdida de precisión: un sistema de identificación no solamente debe encontrar el único
emparejamiento correcto para la huella de entrada entre todas las huellas de la base de datos;
también debe asegurar que las huellas no emparejadas no se detectarán como parejas genuinas.
Al ser el número de templates no emparejados al menos n − 1, la probabilidad de un falso
emparejamiento habitualmente no es despreciable.

Por definición, estas dificultades se incrementan junto con el valor de n. Por lo tanto, no
es factible un enfoque directo por fuerza bruta para un AFIS que debe identificar en una base
de datos de más de unos pocos miles de huellas [PTSR+14]. Desde el punto de vista del tiempo
de identificación, la mayoŕıa de esos sistemas tiene restricciones de tiempo real; por ejemplo, la
identificación para acceder a un edificio no debeŕıa tardar mucho más de un segundo. Desde el
punto de vista de la precisión, un valor alto de n implica una gran cantidad de templates en la base
de datos que no emparejan con la huella de entrada, con el consiguiente aumento de la probabilidad
de una identificación errónea. Las necesidades de identificación actuales de la sociedad alcanzan
el orden de los cientos de millones de personas [iaf, uid], por lo que hay una fuerte necesidad de
soluciones precisas y escalables que resuelvan este problema de forma adecuada.

La computación de altas prestaciones (High Performance Computing, HPC) es una de las
herramientas que dan soporte a la Ciencia moderna, al posibilitar el cómputo de múltiples cálculos
en un tiempo razonable mediante el uso de recursos computacionales masivos [Sto92]. La literatura
cient́ıfica presenta múltiples aplicaciones exitosas de sistemas HPC sobre problemas reales, y la
mayor parte de grandes empresas e instituciones públicas implementan sus propias infraestructuras
HPC para procesar sus datos. Por tanto, la HPC es una herramienta prometedora para el problema
de identificación de huellas dactilares en grandes bases de datos.

1 Introduction 9

En este contexto, una de las ĺıneas de investigación de más alta actividad en los últimos años
es el big data, que se puede definir como la cantidad de datos que no se puede procesar con una
única máquina. El big data crea un desaf́ıo interesante en muchos campos, pero también ofrece una
oportunidad para extraer conocimiento de mayor calidad y valor. Hasta el momento, las técnicas
big data se han aplicado con éxito sobre varios problemas [FdRL+14]. Varias plataformas basadas
en HPC han sido desarrolladas para dar soporte a esta tarea; dos de las más populares son Apache
Hadoop [Whi12] (que implementa el paradigma MapReduce) y Apache Spark [KKWZ15].

No obstante, un problema de esta escala no se puede solucionar mediante HPC por śı sola.
Es necesario ahondar más en el problema de la identificación con huellas para encontrar nuevas
v́ıas de abordar de forma eficiente la identificación a muy gran escala. En este contexto, la mineŕıa
de datos consiste en evaluar conjuntos de datos para extraer nuevo conocimiento a partir de ellos,
por lo habitual mediante la detección de patriones que eran previamente desconocidos [WFH11].
Este conocimiento se puede usar para diseñar e implementar nuevas formas de abordar problemas
relacionados con el tipo de datos analizado.

El preprocesamiento es uno de los componentes clave de cualquier proceso que implique mi-
neŕıa de datos, puesto que es necesario para obtener todos los beneficios de tales técnicas [GLH15].
En el contexto de la identificación con huellas dactilares, las técnicas de preprocesamiento se pueden
aplicar de varias maneras para mejorar la precisión y el tiempo de la identificación, por ejemplo me-
jorando las caracteŕısticas extráıdas de las huellas o recogiendo información que permita optimizar
el proceso de identificación.

Una de las maneras más extendidas de mejorar el tiempo de identificación de un AFIS
es el uso de técnicas de clasificación [DHS12]. Las huellas se pueden dividir en cinco clases en
función del patrón visual de sus crestas [Hen00]. Si la clase de una huella de entrada se determina
correctamente, es posible realizar la identificación comparándola solamente con las huellas template
pertenecientes a la misma clase [MMJP09]. El número de comparaciones con huellas template con
respecto al tamaño de la base de datos se llama tasa de penetración, y su reducción puede ser
clave en el rendimiento de un sistema de identificación. Sin embargo, una clasificación errónea de
una huella puede conllevar errores de identificación; por consiguiente es crucial reducir el error de
clasificación tanto como sea posible.

La fusión de información es un paradigma utilizado en muchas disciplinas para mejorar
la precisión global de un determinado proceso, incluyendo la biometŕıa [RJ03]. Los problemas
biométricos están intŕınsecamente adaptados a los enfoques de fusión de información, dado que
ésta puede aplicarse en varios niveles [LN17]: datos, caracteŕısticas, score o decisión. En particular,
las técnicas de fusión en identificación de huellas se suelen agrupar en dos categoŕıas: el uso de
varias imágenes de huellas [JFR07] y el uso de varios algoritmos de matching [JPC99]. La fusión de
información se ha utilizado con regularidad para aumentar la precisión de los sistemas de identifi-
cación con huellas y otras caracteŕısticas biométricas. Sin embargo, afecta negativamente al tiempo
de ejecución, puesto que la obtención de información redundante requiere de un cómputo mayor.
En este contexto, es deseable utilizar la fusión de información desde un punto de vista diferente
para abordar conjuntamente los problemas de precisión y tiempo de ejecución.

Esta tesis empieza presentando un profundo estudio de la literatura cient́ıfica sobre técnicas
de matching locales basadas en minucias, estableciendo una taxonomı́a de los tipos de estructu-
ras locales y métodos de consolidación, y señalando las principales ventajas e inconvenientes de
cada uno de ellos. A continuación, se presenta un algoritmo de filtrado de minucias que elimina
minucias espurias o engañosas para mejorar tanto el tiempo de identificación como la precisión del
proceso de reconocimiento. Después, se describen dos plataformas para identificación de huellas
en arquitecturas masivamente paralelas, que son capaces de ejecutar diferentes algoritmos de mat-

10 Chapter I. PhD dissertation

ching adaptándose al hardware subyacente para un rendimiento máximo y escalabilidad completa.
También se desarrolla una plataforma para combinar la información de dos huellas dactilares y
las capacidades de dos algoritmos de matching diferentes, para abordar de forma conjunta los dos
problemas que dificultan la identificación en grandes bases de datos: el elevado tiempo de identifi-
cación y la pérdida de precisión. Finalmente, se describe una nueva estrategia de clasificación para
reducir la tasa de penetración de la búsqueda.

Tras esta sección introductoria, la Sección 2 describe en detalle las áreas principales a las
que hace referencia esta tesis: extracción de caracteŕısticas de las huellas dactilares (Sección 2.1),
identificación de huellas (Sección 2.2), computación de altas prestaciones (Sección 2.3), reducción
de la penetración en la base de datos y clasificación de huellas (Sección 2.4) y fusión de información
para identificación con huellas (Sección 2.5).

Posteriormente, la Sección 3 presenta la justificación de esta memoria, describiendo los pro-
blemas abiertos abordados a lo largo de esta tesis. Los objetivos perseguidos en la búsqueda de la
solución a estos problemas se detallan en la Sección 4, junto con la metodoloǵıa seguida para el
desarrollo de la tesis en la Sección 5. La Sección 6 resume los trabajos que componen esta memoria,
y la Sección 7 presenta los resultados obtenidos en ellos, realizando un análisis en relación con
los objetivos considerados y cómo se han alcanzado. La Sección 8 presenta las conclusiones tras
el trabajo llevado a cabo para esta tesis. Finalmente, en la Sección 9 se destacan varias ĺıneas de
trabajo futuro que se derivan de los resultados conseguidos.

2 Preliminaries 11

2 Preliminaries

This section points out the preliminary background on the topics addressed by this thesis. First,
Section 2.1 explains the features extracted from fingerprints. Section 2.2 details the main char-
acteristics of the fingerprint identification process. Section 2.3 presents some knowledge on high
performance computing and its previous applications on fingerprint identification. Then, Section 2.4
explains the highlights on database penetration reduction and fingerprint classification. Finally,
the use of information fusion for fingerprint identification is detailed in Section 2.5.

2.1 Feature extraction

Most fingerprint recognition approaches in the literature do not work with the images themselves.
Rather, a set of features is first extracted from the image [MMJP09] to describe useful patterns;
then, these features are used for the different operations that can be performed on fingerprints,
such as verification, identification or classification.

There are various types of features that can be extracted from fingerprints. These features
are usually grouped into three categories, ranging from coarse to fine-grain patterns [MMJP09]:

• Level 1 (global): refers to the global ridge line flow. The most used features in this category
are the following:

– Orientation map: a matrix containing the direction of the ridge line flow for each
block of the fingerprint image.

– Singular points: points around which the ridge lines are structured. There are two
main types of singular points: deltas and cores.

• Level 2 (local): considers minutiae details extracted from the ridge skeleton. Although
there are multiple types of minutiae, most works use the two most easily extracted ones:
ridge endings and bifurcations.

• Level 3 (fine-detail): involves intra-ridge details such as width, shape, ridge contours, sweat
pores and creases.

Each of these different types of features is better suited to a different purpose. On the
one hand, the distinctiveness of level 1 features is not enough to perform an accurate verification;
however, they are suited to carry out a classification process [GDP+15b]. On the other hand,
the distinctiveness properties and average number of minutiae make them the best candidate for
verification and identification [CFM10]. Finally, level 3 features are mainly used in combination
with minutiae to improve the accuracy of the recognition [JCD07].

There are many proposals for feature extraction in the literature. Each type of fea-
ture requires a different approach for its extraction [GDP+15b]. For instance, most orienta-
tion map extractors are based on the gradient of the image [JPC99, Liu10] or the slits sum
method [CGW+95, CLMM99]. Singular point detection often uses the Poincaré method [KJ96]
or complex filters [Liu10]. Finally, minutiae extractors can be categorized into one the follow-
ing [MMJP09]:

• Binarization-based methods: are the largest group. They require a binary fingerprint
image. The image passes through a thinning process that reduces the ridge width to a single

12 Chapter I. PhD dissertation

pixel, to produce a skeleton image. Then, the minutiae can be easily extracted with a scan
of the image. Some methods are explained in [RCJ95, WGT+10].

• Direct gray-scale extraction: some methods do not apply binarization or thinning meth-
ods to the image. Instead, the detection is carried out directly from the gray-scale pixel
map [LHC00, CF01].

2.2 Fingerprint identification

Fingerprint identification consists of exploring a template fingerprint database, looking for the mate
of a given input fingerprint. Therefore, the identification typically involves comparing the input
fingerprint to each template in order to select the most likely match. In general, fingerprints are
not directly compared at the image level due to the large intra-class variance of the images (caused
by factors such as translations, rotations and skin deformation). Therefore, in this section we will
focus on minutiae-based matching, which is the most extended approach [PPJ02]. Instead, a set
of minutiae is extracted from each fingerprint, constituting the basic information for a comparison
algorithm.

A template fingerprint T and an input fingerprint I (or rather, their respective minutiae
sets) are compared in a process called matching, which returns a similarity value q. The matching
is a function Q that maps pairs of fingerprints to the similarity domain, so that Q(I, T) = q. In
verification approaches the value q is usually boolean, indicating if the two compared fingerprints
are the same or not. Identification approaches are more often based on numeric scores that rate
the similarity level of the compared fingerprints.

Minutiae-based fingerprint matching can be carried out at two different levels [MMJP09]:

• Global matching: the entire minutiae sets are directly compared. This type of matching is
more sensitive to image distortions, rotations and translations, although it takes advantage
from a global view of the fingerprints. Some proposals are presented in [RKCJ96, CCHW97].

• Local matching: local structures are computed from the minutiae set, usually involving the
immediate neighborhood of each minutiae. This neighborhood can be computed either as the
nearest neighbors [JY00] or using a fixed radius [RBPV00, CTY06, CFM10]. Then, these
local structures are compared among themselves to compute the matching score. Thanks
to the use of local information, local matching algorithms are intended to be invariant to
rotations and translations, and more robust to skin deformations.

In practice, most modern matching algorithms follow a hybrid approach: a local matching
process is used to find the most similar local structures and extract a common alignment for both
fingerprints; then, a global matching procedure (called in this context consolidation) is applied to
obtain the final matching score.

In an identification system the matching process has to be applied once for each template Ti

in the database. In such a context, the identity returned by the identification system follows this
form:

Identity = arg max
i

Q(I, Ti) i ∈ {1, 2, ..., n} (I.1)

Identification implies a heavy computational effort, especially as the size of the database
n grows. Some proposals have arisen in the last few years to palliate this problem, such as the

2 Preliminaries 13

use of high performance computing (Section 2.3) or the reduction of the database penetration rate
(Section 2.4).

There are several measures that quantify the goodness of verification and identification
approaches. Some of the most used measures throughout the literature are the following:

• Measures for verification:

– False Match Rate (FMR): probability of stating that two different fingerprints are
the same.

– False Non-Match Rate (FNMR): probability of denying the equality of two captures
of the same fingerprint.

– Equal Error Rate (ERR): point at which the FMR and FNMR are equal.

– FMR100: lowest achievable FNMR for a FMR ≤ 1%.

– ROC: curve that plots the Genuine Matching Rate (GMR = 1 − FNMR) versus the
FMR.

• Measures for identification:

– True Positive Rate (TPR): percentage of test fingerprints that are correctly identified
in the database, when only the best matching identity is returned.

– R100: lowest rank (i.e. the number of identities returned from the database) that allows
an error lower than 1%.

– Cumulative Match Curve (CMC): curve that represents the error associated to each
rank.

These measures allow to compare objectively different matching algorithms and identification
systems, as they give information on different aspects of their behavior.

2.3 High Performance Computing (HPC)

HPC systems are widely used for distributed and parallel computing in many fields of Science and
industry. Their use is oriented at obtaining diverse advantages [Sto92]:

• Efficiency: the computation can be carried out in parallel so that the results are obtained
faster.

• Robustness: the processing workload is spread among different computers, allowing the
system to be fault tolerant. If one machine fails, the others can assume its work.

• Scalability: nowadays, the hardware industry evolves towards integrating a higher number
of cores and collaborating processors. Thus, an adequately designed algorithm that is able
to solve bigger problems just by using more computing power could solve arbitrarily big
problems in the future, without being modified.

Hardware has evolved in two main ways to support HPC, both of which are focused on
increasing and exploiting the parallelism. On the one hand, several computers can be integrated
with a high-throughput network to conform a cluster. This approach provides a great flexibility
when the computing capacity has to be increased, as this can be done merely by purchasing more

14 Chapter I. PhD dissertation

machines. However, the performance can become limited by the network speed. On the other hand,
each single processor is composed nowadays by an ever growing number of cores that are able to
handle several execution threads in parallel. These threads can communicate very efficiently using
shared memory or internal mechanisms. The limitation of this approach is that the number of
cores within a processor is limited and cannot be changed over time. Most practical deployments
nowadays implement a hybrid approach: clusters of multicore computers. Such clusters are able to
take advantage of the strengths of both approaches.

Similarly, several lines of software aim to support the development of applications for HPC
infrastructures. In multi-computer environments, tools like the Message Passing Interface (MPI)
provide the means of communicating several machines using the intermediary network. Within a
single multi-core machine, libraries that handle parallel or concurrent threads (such as OpenMP or
POSIX threads) offer an optimal performance.

There are several performance measures for parallel systems. The most widely used is the
speedup (S = ts/tp), which measures the ratio between the execution time of a sequential approach
and that of the parallelized implementation. If a calculation is executed in p processing cores, and
a fraction f of it is performed in parallel, Amdahl’s Law [Amd67] provides the maximum attainable
speedup:

S∗ =
1

(1− f) + f
p

(I.2)

According to the equation, a fully parallelizable (f = 1) algorithm would have a maximum
speedup of p. However, in practice there are several factors that hinder this speedup:

• All algorithms include some non-parallelizable computation, so f < 1. Even if it represents a
small amount with respect to the whole runtime, the impact on the maximum speedup can
be important, as shown in Equation I.3, which shows the maximum speedup with an infinite
number of processors:

lim
p→+∞

1

(1− f) + f
p

=
1

1− f
(I.3)

• The parallel version of a sequential algorithm usually introduces more operations, such as
communication and synchronizations, to organize the workload and ensure correct results.

• In many cases, such communication and synchronization times can become the bottleneck of
the parallel approach, especially for high values of p.

The scientific literature presents some examples of applications of HPC infrastructures to
the fingerprint identification problem [ISA11, DGLN11]. These approaches can be grouped into
two main categories: client-server systems, where the server forwards identification requests to the
clients, which explore the database [HAL+08, MLH11]; and agent-based systems, where each agent
performs some processing task and then shares the results with other agents [NH04, BGMB08].

In recent years, a number of HPC frameworks for big data processing have been developed.
Such frameworks provide several characteristics that can be summarized into high availability,
fault-tolerance, distributed data storage, massive parallelization and high data throughput. This
allows to develop specific applications following certain programming paradigms, such as MapRe-
duce [DG08]. In exchange, they introduce a certain overhead in processing and communication
times. Such frameworks have been successfully applied to various problems in several fields, in-
cluding biometric recognition [SR11, KS13].

2 Preliminaries 15

2.4 Database penetration reduction and fingerprint classification

Despite the enormous power of modern HPC infrastructures, the acquisition and deployment costs
required for very large-scale databases can become high. Therefore, other solutions must be found
to tackle the problem. One of them consists of reducing the number of template fingerprints that
are compared with the input. The percentage of database that is explored is called penetration
rate [RB04].

In this context, there are two main families of methods that attempt to reduce the database
penetration rate [MMJP09]. Indexing algorithms [Cap11] perform a mapping of the fingerprints to
a multi-dimensional space, so that different captures of the same fingerprint should be close to each
other in the target space. Classification algorithms [GDP+15b] split the database into a certain
number of disjoint classes, so that the input fingerprint is only compared with those fingerprints
that belong to its same class. In this thesis, we focus on the classification approach to the problem.

In a machine learning context, classification [DHS12] consists of extracting knowledge from
a set of n input examples x1, ..., xn, each of which is labeled with one of m classes yi ∈ {c1, ..., cm}
and characterized by p features a1, ..., ap. The aim of a classifier is to be able to correctly predict
the class of a new unseen example. In fingerprint classification, the most widely used system is the
five-class model defined by Henry [Hen00] (Figure 3).

(a) Arch (b) Left loop (c) Right loop (d) Tented arch (e) Whorl

Figure 3: Cinco fingerprint classes defined by Henry [Hen00]

From this point of view, each fingerprint corresponds to a single example, represented by
a feature vector. In fingerprint classification, unlike what occurs typically in machine learning,
the construction of such feature vectors is often considered to be included into the classification
process, so that the classification refers to the problem as a whole. Therefore, many proposals in
the literature cope both the feature extraction process and the classifier itself working on top of
the proposed features.

The features used for fingerprint classification are usually based on level 1 features, such
as orientation maps [CLMM99], ridge structure [Sen97] and singular points [NAKMM04]. Other
approaches are also based on the application of filters to the fingerprint image; Gabor filters are
one of the most popular for this purpose [JPC99]. Finally, many authors combine several of the
previously mentioned features to maximize the accuracy yielded by the classifier [HMCC08, Liu10].

A review of the most prominent feature extraction and classification methods in the scientific
literature was carried out in [GDP+15b, GDP+15a], describing a taxonomy of the various types of
features and classification approaches, and featuring an extensive experimental study. The knowl-
edge gathered in this review has been used as starting point for the new proposals for fingerprint
classification presented in this thesis.

16 Chapter I. PhD dissertation

2.5 Information fusion for fingerprint identification

Information fusion can be applied to the fingerprint recognition problem in several ways and at
multiple levels. For instance, the use of different types of features or the inclusion of classification
strategies already represents a type of information fusion [LN17]. When we focus on the specific
minutiae-based fingerprint identification problem, information fusion can be carried out in two
main ways.

On the one hand, several fingers [JFR07] can be used altogether to increase the distinc-
tiveness of the identities and to avoid the difficulties posed by injured fingertips or low qual-
ity scans. A matching function for multiple (k) fingerprints follows the form Q(I, Ti) where
I = {Ij | j ∈ {1, ..., k}} and Ti = {Tij | j ∈ {1, ..., k}}.

On the other hand, several matching algorithms can be combined [JPC99, NM06] to profit
from their advantages while leaving aside their weaknesses. Multi-algorithm techniques work
in a similar way as multi-finger ones, so that the fused score for k algorithms is Q(I, Ti) =
F (Q1(I, Ti), ..., Qk(I, Ti)), where F is an aggregation function and each Qj is a different matching
function.

A third category of approaches uses several captures of each fingerprint, but it has already
been proven that the multi-finger approach is more effective due to the use of less correlated
information [MMJP09].

Multi-finger and multi-algorithm approaches can be categorized together according to the
type of fusion they perform:

• Feature fusion [JS02, NSV07]: merges all k fingerprints of an identity into a single structure.
This structure is compared to all n template structures, avoiding the need of performing k
matchings per identity but requiring specific matching algorithms to handle such structures
as well as an additional conversion step.

• Score fusion [JPC99, MRD13]: performs one application of the matching function for each
fingerprint or algorithm, and aggregates the results into a single score, typically by adding
or multiplying them. It does not need a specific matching algorithm; however, the use of k
fingerprints or k matchings multiplies the identification time by k.

• Decision fusion [RKCJ96, PJ02]: can be seen as a special case of score fusion, where
matching is performed hierarchically. When the k input fingerprints are compared with some
k template fingerprints for a given identity, the first pair is compared first. If the resulting
score meets a certain condition, the second pair is compared, and so on, until a decision is
reached.

Most fusion approaches in the literature attempt to improve the matching accuracy and they
have already proven to yield good results; nevertheless, the runtime is not considered. Such methods
are therefore not suitable to tackle the identification in large databases because the required time
is higher than it is for single-fingerprint or single-matcher approaches.

3 Justification 17

3 Justification

As explained in the previous sections, there is a need of efficient, scalable automatic fingerprint
identification systems that are able to carry out identifications in very large databases. Various tools
and techniques, such as preprocessing, HPC, classification or the combination of several fingerprints
and matchers have the potential of improving the identification process to obtain both faster and
more accurate solutions.

To obtain such an identification system, the following issues should be addressed:

• In the last decades, a large number of fingerprint matching algorithms have been proposed.
All these approaches should be revised and systematically analyzed, to allow the study of
their common structures, so as to determine their strengths and weaknesses. Specifically,
approaches combining a local matching process with a global consolidation phase have proven
to offer a good performance within a reasonable computing time.

• Spurious minutiae are one of the problems that hinder the performance of any matching
algorithm. A correct handling of this issue would allow to obtain more accurate fingerprint
identification systems. Additionally, the removal of spurious minutiae has a positive impact
on the identification time, reducing the computational needs for each matching operation.

• When dealing with large fingerprint databases, the matching time becomes a very important
bottleneck for any identification system. Furthermore, the identification accuracy is degraded
as the size of the database grows. It is necessary to tackle both problems with suitable tools,
such as:

– Parallelization techniques to use the computing power of HPC infrastructures, so as to
eliminate that bottleneck in a scalable manner. The new frameworks for big data could
also provide an interesting support for very large scale proposals.

– Multi-finger and multi-matcher approaches that have already been proven to enhance the
accuracy of verification and identification systems. However, there has been no attempt
to use such ideas to also improve the identification time along with the accuracy. In
combination with an adequate HPC infrastructure and implementation, a multi-finger
and multi-matcher solution could be decisive in obtaining an accurate, fully scalable
fingerprint identification system.

• Finally, tackling the penetration rate of the identification search would allow for a better
performance of the identification system. There are multiple fingerprint classification algo-
rithms published in the specialized literature; however, there is no proposal yet to evaluate
its impact on the actual subsequent identification process. Additionally, some of the feature
extractors that produce accurate results in classification reject some of the fingerprints and
are unable to extract any features for them. This problem should be addressed in order to
maximize the reduction of the penetration rate.

All the aforementioned issues can be encompassed within the subject of this thesis: the
development and application of data mining techniques in high performing computing architectures
for fingerprint identification in very large databases.

18 Chapter I. PhD dissertation

4 Objectives

After an adequate study of the current state of all the areas described in the previous sections,
it is possible to focus on the actual objectives of this thesis. These will include the research and
analysis of the background fields described before, and the development of advanced models for
fingerprint identification based on the most promising properties of each field. More specifically,
the objectives are:

• To study the current state of the art in minutiae-based fingerprint matching.
In particular, matching algorithms based on local structures and global consolidation have
proven to reach a good trade-off between accuracy and computational complexity. The com-
mon structures and processes followed by all published methods, as well as their particulari-
ties, their weaknesses and their advantages, should be fully understood in order to settle the
basis for the remaining work of this thesis.

• To propose a new preprocessing method to eliminate spurious minutiae. Spurious
minutiae have a negative impact on any matching algorithm, both in terms of accuracy and
runtime. The developed preprocessing method should remove as many spurious minutiae as
possible, while keeping genuine minutiae unmodified, which would speed up and improve the
accuracy of matching algorithms.

• To develop efficient, scalable and accurate approaches for fingerprint identifica-
tion. Such methods are necessary to address the identification in very large databases. To
tackle this objective, we will follow two main paths:

– Strategies based on HPC : from this point of view, two alternatives are considered: an
implementation based on MPI for multi-node and multi-core clusters, and another that
takes advantage of big data frameworks. Furthermore, the side advantages of the devel-
opment of such frameworks are twofold. First, such proposals would certainly prove to
be of interest for a broad scope of the scientific community; the development of a publicly
available software would settle the basis for reproducible research, and other researchers
could benefit from the knowledge acquired for this thesis. Second, they would constitute
a valuable support for the experimentation needed for other parts of this thesis.

– Strategies based on information fusion: the fusion of several matching algorithms and
several fingers should improve the two tackled goals: accuracy and efficiency. Any
identification system must find a trade-off between them; in our proposal, this trade-off
should be flexible so as to be able to obtain fast results with a fair accuracy, or very
accurate results with a slightly higher time delay.

Actually, both paths are not conflicted with each other and can be applied altogether to an
identification system.

• To reduce the database penetration rate of the identification search. The use of a
classification step previous to the identification would enhance the performance of the overall
process by reducing the database penetration rate. The proposal should be generic enough
to allow for different types of classifiers that could suit different needs. Moreover, it is very
desirable to avoid the rejection of fingerprints in the feature extraction step that precedes the
classification. Finally, the identification process itself should be able to draw the maximum
information from the classification phase, so as to reduce the penetration rate as much as
possible.

5 Methodology 19

5 Methodology

This thesis requires the application of a methodology that is both theoretical and practical. There-
fore, we need a strategy that, while maintaining the guidelines of the traditional scientific method,
is able to provide the special needs of such methodology. In particular, the following guidelines for
the research work and experiments will be applied:

1. Observation: detailed study of the fingerprint identification problem and its specific char-
acteristics, as well as the possibilities offered by HPC systems and data mining techniques.
Local minutiae-based fingerprint matching has to be accorded special attention, as it is the
core of the performance of an automatic fingerprint identification system.

2. Hypothesis formulation: design of new identification methods that make use of the ap-
proaches that have been highlighted as promising to improve the performance of the identifica-
tion, such as classification, preprocessing and high performance computing. The new methods
should implement the characteristics described in the previously mentioned objectives to face
the problem of identification in very large databases.

3. Observation gathering: getting the results obtained by the application of the new methods,
on different types of fingerprint databases and using different types of performance measures.
Both the efficiency and the accuracy have to be taken into account.

4. Contrasting the hypothesis: comparison of the results obtained with those published by
other methods related to fingerprint identification in the specialized literature. For a fair
comparison, the compared methods should be evaluated on the same hardware and the same
databases, in a generic manner so as not to obtain biased conclusions.

5. Hypothesis proof or refusal: acceptance or rejection and modification, in due case, of
the developed techniques as a consequence of the performed experiments and the gathered
results. If necessary, the previous steps should be repeated to formulate new hypothesis that
can be proven.

6. Scientific thesis: extraction, redaction and acceptance of the conclusions obtained through-
out the research process. All the proposals and results gathered along the entire process
should be synthesized into a memory of the thesis.

20 Chapter I. PhD dissertation

6 Summary

This section presents a summary of the proposals described in the publications associated
to this thesis. Afterwards, Section 7 will show an overview of the obtained results. The research
carried out for this thesis and the results obtained in each case are collected into the following
published papers:

• D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garćıa, E. Barrenechea, J. M. Beńıtez, H.
Bustince, F. Herrera, A Survey on Fingerprint Minutiae-Based Local Matching for Verification
and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015)
67–87, doi: 10.1016/j.ins.2015.04.013.

• D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Beńıtez, F. Herrera. Minu-
tiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Al-
gorithms. Engineering Applications of Artificial Intelligence, 32 (2014) 37–53. doi:
10.1016/j.engappai.2014.02.016

• D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Beńıtez. Fast Finger-
print Identification for Large Databases. Pattern Recognition 47:2 (2014) 588–602. doi:
10.1016/j.patcog.2013.08.002

• D. Peralta, I. Triguero, S. Garćıa, F. Herrera, J.M. Beńıtez. DPD-DFF: A Dual Phase
Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in
Large Databases. Information Fusion 32 (2016) 40–51. doi: 10.1016/j.inffus.2016.03.002

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Clasificación Jerárquica
de Huellas Dactilares con Selección de Caracteŕısticas. VII Symposium of Theory and Appli-
cations of Data Mining (TAMIDA), CAEPIA 2015, Albacete (España), pp. 831-840, 09-12
November 2015.

Additionally, several other works are currently under different stages of development and
submission in specialized journals:

• D. Peralta, S. Garćıa, J.M. Beńıtez, F. Herrera. Fingerprint Identification in MapReduce and
Spark.

– The aim of this work is to establish a flexible decomposition paradigm for matching al-
gorithms, with the final goal of adapting them to big data environments such as MapRe-
duce or Spark. Thus, the identification in very large databases would benefit from the
advantages of such frameworks, such as robustness and fault-tolerance.

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Complete Fingerprint
Identification System with Classification.

– In this work, we present a complete identification system whose first step is a novel
classification strategy that combines features from different sources to optimize the clas-
sification accuracy. The identification itself is performed in a progressive way to further
improve the performance of the proposal.

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Deep Learning for
Fingerprint Classification.

6 Summary 21

– The capabilities of deep learning approaches are explored concerning their application
on the fingerprint classification problem. Different types of architectures are analyzed
and tested on various types of fingerprint databases to test their behavior and highlight
their weaknesses and strengths. The aim of this study is also to provide the starting
point for further research.

Due to the constraints imposed by auto-plagiarism detection systems, the specific proposals
and results presented in these papers cannot be included into this memory; instead, the draft
version of the submitted material will be provided separately.

The remainder of this section is organized into the four objectives defined in Section 4.
First, Section 6.1 summarizes the review performed on minutiae-based matching algorithms. Then,
Section 6.2 shows the proposed preprocessing algorithm for minutiae filtering. Section 6.3 details
the proposed approaches to improve the efficiency and efficacy of the identification process. Finally,
Section 6.4 explains our proposals to take advantage of the reduction of the database penetration
rate.

6.1 Review on minutiae-based local matching algorithms

Fingerprint identification has become a topic of main interest in the last decades. Automatic
recognition systems have been widely used with great achievements in many practical applications.
In particular, minutiae-based fingerprint matching has proven to yield a good performance for both
verification and identification purposes. More than 80 different methods have been proposed so
far in the specialized literature, showing the possibilities of the approach and the interest of the
scientific community.

However, these methods do not follow a common design procedure and the terminology is
sometimes unclear. Despite this, many of the published methods share similar or repeated parts
that might even be named differently in different sources. Although there are some reviews on the
topic [YA04, MMJP09, JFN10], at the time of writing this thesis there is no general categorization
of matching methods and their particularities.

We have identified the main characteristics in minutiae-based local matching algorithms, in-
cluding the topology of the local structures (nearest neighbors, fixed radius, texture mixed, minutiae
triplets, K-plets and cylinders), the type of transformation applied in the global consolidation pro-
cess (single, consensus, multiple, complex or incremental), the use of additional features (ridge
frequencies, core points, local orientation and gray-scale images), the peculiarities of the minutiae
(type, ridge count and ridge properties), and finally the type of parameter learning (matching
score or local similarity). This thorough analysis allowed us to build a taxonomy of the meth-
ods published so far, highlighting which characteristics are common between them and how they
interact.

In addition, an experimental study with the most representative matching methods of each
category was carried out on several fingerprint datasets, including public datasets and one collected
by the authors’ research group with different sensors in a controlled environment. Multiple accuracy
and runtime measures were accounted for, so as to evaluate the impact of the different characteristics
of the matching on them.

The journal paper associated to this part is:

• D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garćıa, E. Barrenechea, J. M. Beńıtez, H.
Bustince, F. Herrera, A Survey on Fingerprint Minutiae-Based Local Matching for Verification

22 Chapter I. PhD dissertation

and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015)
67–87, doi: 10.1016/j.ins.2015.04.013.

6.2 Minutiae filtering

Minutiae show several properties that make them very suited to perform fingerprint recognition
tasks: they are unique, universal, invariable and easy to use. As a consequence, most matching
algorithms rely on minutiae to compute the similarity between two fingerprints. Minutiae extraction
is therefore a key component of the fingerprint recognition process, as these matching methods often
rely exclusively on the information provided by the minutiae extractor.

Although there are several minutiae extractors proposed in the literature, the problems
encountered with the process are common for all of them and can be classified into two types:

• Missing minutiae that are not detected by the extractor and therefore cannot be used for
the matching.

• Spurious minutiae that are erroneously detected by the extractor, introducing noise into
the resulting minutiae set. Most spurious minutiae are detected on the borderline of the
fingerprint.

In general, minutiae extractors tend to suffer more from the latter, so as not to omit real minutiae
that might be crucial for the comparison. These problems increase the difference between captures
of the same fingerprint, whilst they can also cause false similarities between captures of different
fingers. They become more acute when dealing with low quality fingerprints or with large-scale
identification, in which the huge amount of non-matching templates requires an accurate matching
algorithm to avoid identification errors.

In this thesis we have tackled the problem of removing spurious borderline minutiae after
their extraction. For this goal we have applied different strategies to extract a candidate set of
spurious minutiae for a fingerprint:

• Computing the convex hull of the extracted minutiae set; all the minutiae in the convex hull
are included into the candidate set.

• Using an image segmentation-based approach aimed at discerning the background and the
foreground of the fingerprint image. The approach includes four steps: normalization, block-
wise variance computation, thresholding and refinement. The minutiae that are detected
within background areas are included into the candidate set.

Both strategies have been combined with the quality information provided by the minutiae extrac-
tor, so that the minutiae selected by the preprocessing that fall under a certain quality threshold
are eliminated prior to the recognition itself. As a side objective, the influence of the spurious
minutiae on several different matching methods has also been studied.

The experiments for this proposal have been carried out on multiple different databases,
some of them widely used and publicly available, some others collected by the research group, and
five artificially generated databases. The advantage of the latter is that, unlike for real captures, the
ground-truth minutiae of a fingerprint can be known and compared with the extracted set. This
allowed us to evaluate and quantify the amount of noise introduced by the minutiae extraction
algorithm.

The journal paper associated to this part is:

6 Summary 23

• D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Beńıtez, F. Herrera. Minu-
tiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Al-
gorithms. Engineering Applications of Artificial Intelligence, 32 (2014) 37–53. doi:
10.1016/j.engappai.2014.02.016

6.3 Efficient, scalable and accurate fingerprint identification

The increasing number of applications of identification applications in many contexts, such as
public institutions, police departments or forensic purposed, has led in many cases to a growth of
the size of the fingerprint databases used for the identification. When dealing with large fingerprint
databases, the bottleneck of the identification process is the matching algorithm because it must be
applied once for each template fingerprint in the database. Although the literature offers fingerprint
matching algorithms that provide a very good accuracy, they are often computationally expensive
and their use becomes prohibitive in large-scale environments.

HPC has already been successfully applied to many different pattern recognition problems;
a parallel computing infrastructure allows to speed up the execution of computationally heavy
algorithms. Although there are some proposals in the literature that use HPC tools for fingerprint
recognition, at the time of writing this thesis none of them focused on the large-scale identification
problem. Rather, they tackled other problems such as high availability or database distribution.

For this thesis, we developed a parallel and distributed framework for fingerprint identi-
fication that takes advantage both of multi-computer clusters and multi-core processors with a
two-level parallelism. The framework focuses on parallelizing the matching step as much as possi-
ble, while reducing the communication and synchronization needs between the different threads and
processes. Moreover, the proposal can be used for any matching algorithm as it does not involve
modifying the computation; the result obtained for the identification is guaranteed to be the same
as that of a sequential approach.

Taking this idea one step further, a decomposition scheme for fingerprint matching algo-
rithms has been proposed. The knowledge gathered in the review on minutiae-based matching has
been applied to develop the proposal as a generic strategy that can be applied to any algorithm.
The ultimate purpose of such decomposition is to facilitate the adaptation of matching algorithms
to big data frameworks, so as to take advantage of all the possibilities offered by them.

The experiments performed for the developed systems involved an artificially generated
database of hundreds of thousands of fingerprints, along with one of the largest public datasets
available, to evaluate the speedup of the proposals under different hardware contraints.

Although the previously described HPC-based proposals do not suffer from any accuracy
loss, they do not tackle the task of enhancing the accuracy of the underlying matching algorithms.
The use of several fingerprints or several matching algorithms has already been proven to enhance
the accuracy of the recognition process by several authors. However, there is yet no attempt to use
these strategies to lower the identification time; instead, this time is increased by the successive
application of the matching algorithms.

We propose an identification system (nicknamed DPD-DFF) that incorporates two different
fingerprints per identity, as well as two matching algorithms. Once an input fingerprint pair is
available, the identification is carried out in two phases. In the first (fast) phase, a fast matching
algorithm is used to quickly perform a first scan of the database to select a set of candidate identities.
Then, a very accurate matching algorithm is used in the accurate phase to select the matching
identity among those in the candidate set. Each of these phases can either use a single or both

24 Chapter I. PhD dissertation

fingerprints, yielding different trade-offs between accuracy and identification time. Additionally,
the size of the candidate set can be varied to finely tune that balance, so as to suit the environmental
constraints and the available computational resources.

DPD-DFF has been extensively tested on several sets of publicly available databases, as well
as a large artificially generated dataset. All possible combinations of single and double fingerprint
were put to the test, along with two different criteria for the selection of the set of candidate
identities.

The journal papers associated to this part are:

• D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Beńıtez. Fast Finger-
print Identification for Large Databases. Pattern Recognition 47:2 (2014) 588–602. doi:
10.1016/j.patcog.2013.08.002

• D. Peralta, I. Triguero, S. Garćıa, F. Herrera, J.M. Beńıtez. DPD-DFF: A Dual Phase
Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in
Large Databases. Information Fusion 32 (2016) 40–51. doi: 10.1016/j.inffus.2016.03.002

• D. Peralta, S. Garćıa, J.M. Beńıtez, F. Herrera. Fingerprint Identification in MapReduce and
Spark. Sometido.

6.4 Database penetration rate reduction

When dealing with sufficiently large databases, a large computing capacity might not be enough to
solve the performance constraints. It can also happen that the cost of such an infrastructure could
be high, which leads to the search of other solutions to allow for fast fingerprint identification.
Therefore, there is a need to consider other approaches that will speed up the identification time
in very large databases, in combination with HPC infrastructures.

In this line of work, the reduction of the database penetration is one of the most pursued
goals. Different approaches can be followed to tackle this objective; among them, fingerprint
classification is one of the most popular. Different classification procedures, each with a particular
feature extraction process to encode the fingerprints, have been proposed in the literature.

Some of the feature extraction methods that lead to the best classification accuracy reject
the fingerprints that do not meet certain criteria, so that no feature vector is extracted, making
the classification impossible.

We proposed a classification approach that combines several feature extractors in several
ways to improve the classification accuracy while eliminating the rejection rate. This, in combina-
tion with an incremental search procedure, allows to reduce the database penetration rate for the
identification, while maintaining a good identification accuracy.

Several experiments were performed to assess the quality of the proposal and evaluate the
behavior of the subsequent identification search, following the guidelines established in the previous
review. The experiments used a large synthetically generated database as well as the well-known
NIST-SD14 public dataset.

The research papers associated to this part is:

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Clasificación Jerárquica
de Huellas Dactilares con Selección de Caracteŕısticas. VII Symposium of Theory and Appli-

6 Summary 25

cations of Data Mining (TAMIDA), CAEPIA 2015, Albacete (España), pp. 831-840, 09-12
November 2015.

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Complete Fingerprint
Identification System with Classification. Sometido.

• D. Peralta, I. Triguero, Y. Saeys, S. Garćıa, J.M. Beńıtez, F. Herrera. Deep Learning for
Fingerprint Classification. Sometido.

26 Chapter I. PhD dissertation

7 Discussion of results

The following subsections summarize and discuss the results obtained in each specific stage of the
thesis.

7.1 Review on minutiae-based local matching algorithms

Both classic and recent minutiae-based fingerprint matching algorithms have been thoroughly ana-
lyzed within the published review. The different characteristics that define them have been pointed
out and served as a basis to define a taxonomy of matching methods, which allows establish guide-
lines for further work.

The extensive experimental study carried out has compared the accuracy and runtime of
the main matching algorithms of each family described in the taxonomy. The obtained results
have been further analyzed with statistical tests. The results of the comparison have highlighted
the potential of cylinder-based approaches when accuracy is at stake. Also, some simple nearest
neighbors approaches with relatively simple consolidations can obtain a decent accuracy within a
very fast computing time. In general, no single approach is preferred above all others: the suitability
of a matching method will depend on the specific requirements of the application. However, the
results obtained in this review allow to reduce the breadth of the decision and sets the guidelines
to reach a better decision.

Additionally, all the results obtained are publicly available at http://sci2s.ugr.es/

MatchingReview for their download.

7.2 Minutiae filtering

We have proposed a preprocessing algorithm for fingerprint matching that tackles the problem of
the spurious minutiae detection. The proposal implements two different strategies (the convex hull
and a new segmentation method) to delimit the borders of the fingerprint, where most spurious
minutiae are located. Then, a threshold based on the quality provided by the minutiae extractor
is applied to filter the minutiae.

Twelve different databases have been used to perform experiments; one of them was captured
by the authors’ research groups, six are public and five were artificially generated, allowing the
analysis of the difference between the ground-truth minutiae sets and the corresponding extracted
minutiae sets. The experiments were carried out with four different matching algorithms to assess
the robustness of the proposal. The results show that the proposed filters allowed us to reduce
the number of spurious minutiae without damaging the correctly detected ones. This lead to an
increase of the accuracy of the applied matching algorithms, along with a reduction of their runtime
due to the lower number of minutiae. The accuracy improvement reached up to 2% for good quality
databases and 25% for the public FVC. The runtime reduction attained up to 60%.

7.3 Efficient, scalable and accurate fingerprint identification

We have designed two types of parallel frameworks to allow for the full scalability of fingerprint
identification systems.

The first proposal is based on Message Passing Interface (MPI), and describes a two-level
parallel and distributed framework that is generic for any fingerprint matching algorithm. The

7 Discussion of results 27

system ensures that there is no loss in the accuracy with respect to a sequential approach.

The extensive experiments carried out on databases of different sizes and different volumes of
hardware resources show that the proposal offers a near-linear scalability for fingerprint identifica-
tion. For instance, a database of 400 000 fingerprints was explored in 0.5s. Moreover, the availability
of more RAM memory when using several computers allows to maintain larger amounts of prepro-
cessed fingerprints in main memory, accelerating the identification process. The associated software
is publicly available (https://github.com/dperaltac/mpi-afis). Our results have been used by
other authors as a baseline for the evaluation of their own proposals, assessing a good acceptation
in the scientific community. The results of the experiments and details on the implementation can
be found at http://sci2s.ugr.es/ParallelMatching.

The second proposal is a generic fingerprint matching decomposition methodology that en-
ables the use of big data paradigms (such as MapReduce or Spark) to enhance the identification
speed and scalability. The proposed decomposition has been applied to two different well-known
matchers.

The Hadoop and Spark implementations of these algorithms were compared in the experi-
mental study, highlighting the different characteristics provided by each big data framework. Ad-
ditionally, the proposal was compared with those of the parallel framework previously described.
The results showed that the execution times with Spark were even lower that those obtained with
MPI, assessing the good behavior of the proposed decomposition, which allows to avoid part of the
computation by early dropping of non promising local structure matches.

We proposed a flexible identification system, DPD-DFF, that involves two fingers per identity
and two matching algorithms. First, the database is quickly explored with a fast matching algorithm
to extract a set of candidate identities; then, an accurate matcher is applied to select the most
similar match in the candidate set. Both phases can use either one or two fingerprints, providing
several variant of the algorithm that allow different accuracy-efficiency trade-offs. Additionally, the
size of the candidate set can be controlled by several criteria, enabling a fine-grain tuning of that
trade-off.

The resulting software is publicly available at https://github.com/dperaltac/mpi-afis.
A thorough experimentation was carried out to verify the behavior of the proposal, involving many
public databases, a large artificially generated database, and a database composed of fingerprint
pairs gathered among more than 300 people specifically for this study, using a sensor that captures
two fingerprints at a time.

The results obtained showed that DPD-DFF outperforms traditional, single fngerprint sys-
tems both in terms of identification accuracy and identification time. Moreover, the tested double
fingerprint and double matcher approaches that conform the state-of-the-art in the topic also were
outperformed by our approach. Finally, an additional study carried out using impostor fingerprints
showed an outstanding performance for the early detection of such cases, obtaining very high True
Negative Rate and True Positive Rate altogether. The complete results obtained for this study can
be consulted at http://sci2s.ugr.es/DPDDFF.

7.4 Database penetration rate reduction

The reduction of the penetration rate has been tackled by following a multi-level classification
approach, combining several feature extractors in a way that avoids rejecting any fingerprint while
taking advantage of the extractors that do reject those that do not meet their quality requirements.
The subsequent identification process, which is carried out in an incremental manner, has also been

28 Chapter I. PhD dissertation

considered in the approach so as to provide a system as a whole.

The experiments, involving a large database and a public database of rolled fingerprints,
showed that the approach is able to outperform the state-of-the-art classifiers in terms of classifi-
cation accuracy, with the additional advantage of not rejecting any fingerprint. Furthermore, the
experiments involving the identification process revealed that the reduction of the penetration rate
is very close to the theoretical maximum that can be obtained with the 5-class approach (around
70%), while maintaining a high identification accuracy.

8 Concluding Remarks 29

8 Concluding Remarks

In this thesis, we have addressed the problem of fingerprint identification in large databases,
with the aim of analyzing, designing and implementing different strategies for efficient, scalable
and accurate identification systems.

The initial objective for the thesis was to gain a deep understanding of the field, especially
regarding minutiae-based local matching algorithms, which constitute the bottleneck of any large-
scale identification approach. To do so, we have carried out a theoretical and empirical survey of
the main methods proposed in the literature, focusing on extracting the characteristics that are
common between them and those that are unique to each approach. The results of this study
constituted the ground basis for the subsequent research during this thesis.

The second objective tackled was the improvement of both the accuracy and the runtime of
matching algorithms by a preprocessing algorithm to filter minutiae. We have revealed the impact
of spurious minutiae on the performance of several different matchers, and we have proposed two
different schemes to carry out their filtering. The results showed improvements in both accuracy
and runtime, assessing the value of the proposal.

The parallelization of the matching process has been carried out through two different pro-
posals. On the one hand, a two-level parallel scheme has been proposed, which runs processes
in different machines as well as several threads within each process. The experiments performed
using the proposal revealed near-linear speedup independent of the underlying matching algorithm.
Moreover, the speedup was super-linear when the most complex database was used, showing the
benefits of the synchronized work of several machines. On the other hand, a methodology for the
decomposition of matching algorithms (based on the knowledge gathered for the review) was de-
signed and applied to some of the most relevant algorithms of the state-of-the-art. The aim of such
decomposition is to provide a generic methodology to implement any matching algorithm within a
big data framework, thus taking advantage of their benefits. The decomposition allows for an early
detection of poorly-matching fingerprints, so as to reduce the computational load. The results of
the experiments outperformed those obtained with the two-level parallel approach, revealing the
extreme scalability capabilities of the decomposition scheme.

In combination with the development of such scalable system, we have applied information
fusion strategies to reduce both the identification time and the identification error. In this line of
work, we have proposed an identification system that fuses two fingerprints and two matching algo-
rithms in a dual-phase scheme, which provides a flexible trade-off between accuracy and efficiency
by means of a single parameter. The proposal dominated the approaches of the state-of-the-art in
both goodness measures.

Finally, another strategy to improve the identification time involved fingerprint classifica-
tion. To do so, we combined different feature extractors in a multi-level manner to maximize
the classification accuracy and eliminate the fingerprint rejection of the feature extractors. The
accuracy of the resulting classifier outperformed that of all the compared methods. The further
tests carried out involving the entire identification process assessed the good performance of the
approach in terms of the reduction of the database penetration rate.

30 Chapter I. PhD dissertation

Conclusiones

En esta tesis se ha abordado el problema de la identificación de huellas dactilares en grandes bases
de datos, con el objetivo de analizar, diseñar e implementar distintas estrategias para sistemas de
identificación eficientes, escalables y precisos.

El objetivo inicial de la tesis era obtener un profundo conocimiento del área, especialmente en
cuanto a algoritmos de matching locales basados en minucias, que constituyen el cuello de botella
de cualquier sistema de identificación a gran escala. Para ello, se ha llevado a cabo un estudio
teórico y emṕırico de los principales métodos propuestos en la literatura, centrado en extraer
las caracteŕısticas que son más comunes entre ellos y las que son únicas para cada enfoque. Los
resultados de este estudio constituyen la base para la investigación realizada durante esta tesis.

El segundo objetivo fue la mejora de la precisión y el tiempo de ejecución de los algoritmos de
matching mediante un algoritmo de preprocesamiento para el filtrado de minucias. Se ha revelado
el impacto de las minucias espurias sobre distintos algoritmos, y se han propuesto dos estrategias
diferentes para su filtrado. Los resultados muestran mejoras tanto en precisión como en tiempo,
certificando la vaĺıa de la propuesta.

La paralelización del proceso de matching se ha llevado a cabo mediante dos propuestas
diferentes. Por una parte, se ha propuesto un esquema paralelo a dos niveles que lanza procesos en
distintas máquinas, y varias hebras en cada proceso. Los experimentos revelaron una aceleración
super-lineal al utilizar la base de datos más compleja, mostrando los beneficios del trabajo sincroni-
zado de varias máquinas. Por otra parte, se ha diseñado una metodoloǵıa para la descomposición de
algoritmos de matching (basada en el conocimiento adquirido para la revisión previamente mencio-
nada), y se ha aplicado sobre algunos de los algoritmos más relevantes del ámbito. El objetivo de tal
descomposición es proporcionar una metodoloǵıa genérica para implementar cualquier algoritmo de
matching en una plataforma de big data, aprovechando las ventajas que proporciona. La descom-
posición permite una pronta detección de huellas con escaso emparejamiento, para reducir la carga
computacional. Los resultados de los experimentos mejoraron los obtenidos con el enfoque paralelo
a dos niveles, revelando las extremas capacidades de escalabilidad del método de descomposición.

En combinación con el desarrollo de estos sistemas escalables, se han aplicado estrategias
de fusión de información para reducir tanto el tiempo como el error de identificación. En esta ĺınea
de trabajo, se ha propuesto un sistema de identificación que fusiona dos huellas y dos algoritmos
de matching en un esquema de dos fases, proporcionando un equilibrio flexible entre precisión y
eficiencia con un único parámetro. La propuesta dominó a las del estado del arte para las dos
medidas estudiadas.

Finalmente, otra estrategia para mejorar el tiempo de identificación implicó la clasificación
de huellas. Para ello, se han combinado distintos extractores de caracteŕısticas de forma jerárquica
para maximizar el acierto de la clasificación y eliminar el rechazo de las huellas producido por los
extractores. La precisión del clasificador resultante mejoró la de todos los métodos comparados. Las
pruebas llevadas a cabo posteriormente, abarcando el proceso completo de identificación, ratificaron
el buen rendimiento de la propuesta en términos de reducción de la tasa de penetración en la base
de datos.

9 Future Work 31

9 Future Work

The work carried out during this thesis has highlighted new promising research lines, either
to further enhance the performance of the models proposed, or to apply them to new challenging
problems.

Applying deep learning techniques to enhance the fingerprint recognition process: In
the last few years, deep neural networks [LBH15] have arisen as a very powerful way to solve many
complex real-world problems, in particular those based on images [KSH+12]. Their use on several
parts of the fingerprint recognition process is therefore very promising.

Deep learning has been proven to provide outstanding performances in classification prob-
lems. Therefore, their use to improve the fingerprint classification task is of great interest.

Deep neural networks can also be applied in an unsupervised manner to extract patterns
that intrinsically define a given input [LGRN09]. From this perspective, deep learning can be used
as a feature extractor to obtain relevant information from the fingerprints.

New big data approaches: Big data is expected to be one of the main challenges for data
mining in the near future [FdRL+14]. The huge quantities of data that are available in many fields
offer a two-fold field of research. On the one hand, there is a need of systems that are able to deal
with such large amounts of data in an efficient and scalable manner. On the other hand, all that
data can provide new knowledge and information to solve new problems.

In the Biometrics field, the increasing needs to identify people is leading to ever larger
databases of different biometric features. The use of big data approaches to evaluate all that
information could lead to a better understanding of the problem.

Multi-modal biometrics: One of the natural solutions that have arisen for biometrics is the
hybridization of several biometric features [RNJ06]. By combining the information from several
sources such as fingerprint, face, iris, etc., it is possible to increase the accuracy and reliability of the
recognition, as well as to provide more robust systems in case of injuries or amputations. However,
the identification time is also increased in a similar manner to what happens with multi-finger or
multi-matcher methods.

Therefore, there is also a need to adapt multi-modal biometric approaches to a large-scale
point of view to deal with their increased scalability and identification times issues.

Fingerprint identification on co-processors: Although most high performance computing
systems rely on clusters of multi-core processors, during the last years there has been a vast ef-
fort to implement computationally heavy tasks in GPU support with frameworks such as NVIDIA
CUDA [cud]. GPUs have already very recently successfully used for fingerprint identification sys-
tems with outstanding performance [GLHB14, CFM15, LCG+15].

In addition to GPUs, other co-processors have been developed to give support to compu-
tationally intensive algorithms. One example is the Intel Xeon Phi [JR13], which includes several
dozens of cores and local memory to execute highly parallel tasks. Unlike GPUs, such co-processors
have an instruction set that is closer to that of a general purpose processor, which makes them

32 Chapter I. PhD dissertation

easier to use for general purpose applications. Therefore, the study of the impact that this kind of
hardware can have on the performance of fingerprint identification systems would be of interest.

Hybrid architectures: The previous line of future work would also arise the possibility of devel-
oping more complex identification systems that put together multiple types of hardware to obtain
a maximum performance. A single server hosting several CPUs, GPUs and co-processors could
provide a very interesting performance for a reasonably low price and above all low maintenance
costs, as there is no need for inter-connecting networks or shared resources. An approach of this
kind could be of great interest for small or medium sized corporations.

Chapter II

Publications: Published Papers

33

34 Chapter II. Publications: Published Papers

1 A Survey on Fingerprint Minutiae-Based Local Matching for
Verification and Identification: Taxonomy and Experimental
Evaluation

• D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garćıa, E. Barrenechea, J. M. Beńıtez, H.
Bustince, F. Herrera, A Survey on Fingerprint Minutiae-Based Local Matching for Verification
and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015)
67–87, doi: 10.1016/j.ins.2015.04.013.

– Status: Published.

– Impact Factor (JCR 2015): 3.364

– Subject Category: Computer Science, Information Systems. Ranking 8 / 143 (Q1).

A Survey on Fingerprint Minutiae-based Local Matching for

Verification and Identification: Taxonomy and Experimental

Evaluation

Daniel Peraltaa, Mikel Galarc, Isaac Triguerod,a, Daniel Paternainc, Salvador Garćıaa,b,∗,
Edurne Barrenecheac, José M. Beńıteza, Humberto Bustincec, Francisco Herreraa

aDept. of Computer Science and Artificial Intelligence. University of Granada, 18071 Granada, Spain
bFaculty of Computing and Information Technology - North Jeddah, King Abdulaziz University, 21589,

Jeddah, Saudi Arabia
cDepartamento de Automática y Computación, Universidad Pública de Navarra, Pamplona, Spain

dInflammation Research Center, a VIB-UGent Dept. UGent Dept. of Internal Medicine, Respiratory
Medicine (GE01) Technologiepark 927, B-9052 Zwijnaarde, Belgium.

Abstract

Fingerprint recognition has found a reliable application for verification or identification of
people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several
perceptions observed by the experts; such as the distinctiveness and the permanence on
humans and the performance in real applications. Among the main stages of fingerprint
recognition, the automated matching phase has received much attention from the early
years up to nowadays. This paper is devoted to review and categorize the vast number
of fingerprint matching methods proposed in the specialized literature. In particular, we
focus on local minutiae-based matching algorithms, which provide good performance with
an excellent trade-off between efficacy and efficiency. We identify the main properties and
differences of existing methods. Then, we include an experimental evaluation involving the
most representative local minutiae-based matching models in both verification and evalua-
tion tasks. The results obtained will be discussed in detail, supporting the description of
future directions.

Keywords: Biometrics, fingerprint verification, fingerprint identification, local matching,
minutiae.

∗Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
Email addresses: dperalta@decsai.ugr.es (Daniel Peralta), mikel.galar@unavarra.es (Mikel

Galar), Isaac.Triguero@irc.vib-UGent.be (Isaac Triguero), daniel.paternain@unavarra.es (Daniel
Paternain), salvagl@decsai.ugr.es (Salvador Garćıa), edurne.barrenechea@unavarra.es (Edurne
Barrenechea), J.M.Benitez@decsai.ugr.es (José M. Beńıtez), bustince@unavarra.es (Humberto
Bustince), herrera@decsai.ugr.es (Francisco Herrera)

Preprint submitted to Information Sciences January 7, 2015

1. Introduction

Automatic fingerprint recognition has been one of the most known and used biometric
authentication systems during the last decades. It has been used for personal verification
and identification with great achievements [76]. A vast number of applications incorporate
fingerprint recognition as basics, such as forensics, building accessing, ATM authentication
or secure payment [113]. There are some other human characteristics that can be used as
traits of a biometric system, such as the person’s face, the retina or iris [16], the voice,
etc. There is no trait that highlights as the best one. However, on average, fingerprints
offer good capabilities in all properties analyzed by the experts and excellent results in
distinctiveness [126], permanence and global performance [113]. Although the recognition
is not as accurate as with other traits, it provides a good balance between accuracy, speed,
resource requirements and robustness.

Independent of the type of task, either verification [72] (one-to-one comparison) or iden-
tification (search for an input fingerprint in a database) [80], it is necessary to perform a
sequence of operations to build a template database and later use the system. Assuming
that there is a database and that proper enrollments have been previously taken, the order
of the operations for both tasks is given by: a capture of the fingerprint, a feature extraction
stage, a matching and a pre-selection or filtering [85] (which is associated to identification
tasks only). The capture of the fingerprint obtains an image that is not usually stored as
such in the database. Instead, a feature extraction process is applied to obtain up to three
levels of features [60]: level 1 features provide, at the global level, information of singular
points and ridge line flow or orientation; level 2 features, at a local level, refer to minutiae
details which usually correspond to bifurcations and ridge endings; and level 3 features, at
the very-fine level, include features inside the ridges such as width, shape, curvature, dots,
etc. These features are only observable in high resolution images.

Once a set of features is extracted from the fingerprint image, the final goal is to find
(or confirm) the identity of a person whose fingerprint has been previously enrolled into the
system. The matching mechanism is the responsible to provide a likeliness score between
two fingerprints. Most of the efforts in matching are with the use of minutiae details,
although there are other types of matching methods based on correlations of images, other
types of features and even on level 3 features. Minutiae matching consists of finding the
alignment between two templates that results in the maximum number of minutiae pairings.
Furthermore, minutiae matching can be classified as local or global [81], aligned or not [189],
etc; all the categories will be detailed in this paper.

Many fingerprint matching algorithms have been proposed in the literature, and the
operations with features they use are sometimes similar or even repeated. In spite of the
existence of some reviews on the topic, such as [174, 113, 71], they are not explicitly focused
on matching and the characteristics of the methods are not completely studied or categorized.
This issue may lead to a lack of unification and even to propose very similar matching
methods in the future. Moreover, there are few attempts to empirically compare them.

In this sense, the motivation of this paper can be segregated into three main objectives:

• To gather and briefly describe all the matching methods proposed in the specialized

2

literature.

• To offer an entire taxonomy based on the main processes and properties observed in
the matching methods. It allows us to understand the reasons to choose the most
suitable matching algorithm depending on the circumstances.

• To conduct an empirical study analyzing the most important local minutiae-based
matching algorithms in terms of accuracy and speed throughput when they are applied
to both verification and identification tasks.

The rest of this paper is organized as follows. Section 2 provides the necessary back-
ground in fingerprint minutiae matching. In Section 3, we introduce the main proper-
ties and the taxonomy for the matching methods. Next, Section 4 overviews the current
trends in fingerprint matching. In Section 5, experiments on several data sets compare
some of the most important local minutiae-based matching methods. Finally, Section 6
concludes the paper, including some original opinions for instruction in theory and appli-
cation and future research directions. Additional material to the paper can be found at
http://sci2s.ugr.es/MatchingReview/.

2. Background in Fingerprint Minutiae Matching

Fingerprint matching is a crucial step in both verification and identification problems.
Roughly, a fingerprint matching algorithm compares two fingerprints and returns either
a degree of similarity (a real number bounded into an interval) or a dichotomic output
(matched or non-matched). Hereafter, we use the representation of the fingerprint acquired
by enrollment as the template (T) and the representation of the input fingerprint (I). Two
fingerprints are called genuine if they represent the same finger, and impostor when they
are different.

Several factors make fingerprint matching a very challenging problem [113]: image noise,
skin condition, distortions, rotations, displacement, etc. There are two well-known properties
in fingerprints: large variability in different impressions of the same finger (large intra-class
variations) and much similarity between two images from different fingers (small interclass
variations).

The most popular and used technique is the minutiae-based matching. Subsequent sub-
sections will detail the main concepts of minutiae-based matching (Subsection 2.1), including
the distinction between global and local matching (Subsection 2.2) and feature extraction
techniques that are commonly used to obtain the minutiae for matching (Subsection 2.3).

2.1. Minutiae-based Matching

The output of a minutiae extraction stage is, at least, a set of minutiae. Each minutia
is represented by its location coordinates and orientation angles, forming a 3-tuple M =
(x, y, θ). T and I fingerprints have m and n minutiae, respectively. A minutia Mj in I
is considered matched with a minutia Mi in T when it falls within the tolerance box of
Mi. The tolerance box is defined as the maximum spatial distance and direction difference

3

permitted to compensate unavoidable errors made by minutiae extractors and positioning
changes produced by distortions.

Obviously, it is mandatory to obtain the optimal displacement and rotation alignment
of fingerprints in order to maximize the number of minutiae matched. This also includes
scaling and advanced geometrical transformations. After alignment, a matching score for
the two fingerprints is calculated. To do this, the pairing function between minutiae Mi and
Mj must be found, assuming that each minutia has either exactly one matched minutia in
the other fingerprint or has none at all. Achieving the optimal pairing is not a trivial task
when the correct alignment is not known, as it usually happens in practice. For instance, a
minutia of I may fall within the tolerance box of two or more minutiae of T . An assignment
algorithm, preferably fast or greedy, is usually employed for this task.

Finally, the matching score could be formulated as follows:

matching score =
k

(n+m)/2

where k is the number of matched minutiae. It is a simple expression usually shared among
matching algorithms. However, advanced models normally exploit further information such
as the minutiae quality and adjusted parameters by using optimization techniques.

2.2. Global and Local Minutiae Matching

Fingerprint minutiae matching can be firstly divided into two families of methods:

• Global minutiae matching: the algorithms of this kind tackle the alignment process by
taking into consideration all the minutiae as a whole set in a global manner. Since the
number of components to be aligned are, at least, three (two directions and the angle),
they may require high computational resources and often the usage of a pre-alignment
stage that is based on other features extracted such as singular points or orientation
maps.

• Local minutiae matching: they consist of comparing two fingerprints according to
local structures of minutiae. These structures are formed by considering different
relationships based on proximity between closer minutiae. They are characterized by
properties that are invariant regarding global transformations, such as translations
and rotations. Thus, they do not take into account global relationships and allow to
make matching with partial information.

The benefits of local minutiae matching are simplicity, low computational complexity
and distortion tolerance, whereas global minutiae matching techniques lead to high distinc-
tiveness. However, all of these benefits could be achieved by using hybrid strategies that
perform a local minutiae matching followed by a consolidation stage. The former step deter-
mines pairs of minutiae that locally match and extracts a subset of candidate alignments for
I and T . The latter step, which is not strictly mandatory, is aimed at checking the degree
in which local matches support global matching.

4

Table 1: Enumeration of representative global minutiae matching algorithms

References Main Property

[138, 101] Hough transform-based approaches

[72, 107, 37] Ridge-based relative pre-alignment

[47, 189] Global matching of clusters of minutiae

[157, 11, 28, 163] Algebraic geometry-based approaches

[30, 83] Singularity-based relative pre-alignment

[140, 98, 118] Warping modeling-based approaches

[120] Minutiae matching with tesselated local information

[161] Global minutiae matching with image correlation

[56, 104, 175, 82] Orientation image-based relative pre-alignment

[151, 145, 144] Global matching by evolutionary algorithms

[78, 92] Weighted global matching with adjustment of scores

[32, 160] Hierarchical and/or multilevel minutiae matching

Recently, most of the proposals of fingerprint minutiae matching designed to be imple-
mented in real systems have given up the idea of global matching in favor of local matching.
Nevertheless, although the focus of this paper is to review the properties and methods be-
longing to local minutiae matching, we also provide an enumeration of the most influential
global minutiae matching methods proposed in the specialized literature (see Table 1).

2.3. Feature Extraction Techniques

This section is devoted to briefly identify the subset of feature extraction techniques fre-
quently used in conjunction with fingerprint minutiae matching. It is worth mentioning that
an exhaustive review of existing techniques can be found in [113]. Next, we will summarize
the most representative algorithms according to their usage in practice and in subsequent
matching approaches proposed in the literature:

• Fingerprint segmentation [108, 34].

• Local orientation map estimation [125, 137, 4].

• Local ridge frequencies estimation [65, 109].

• Singular and core points searching [85, 74, 139, 86].

• Alignment of local orientations and ridge frequencies [27].

• Fingerprint binarization [125, 65].

• Fingerprint skeletonization [180, 58, 106].

• Minutiae extraction [1, 108].

5

• Spurious minutiae removal [153, 12, 184, 95, 129].

3. Local Minutiae Matching: Properties, Methods and Taxonomy

In the following, we present the taxonomy of minutiae-based local matching methods
and the properties used to build it. First, in Subsection 3.1, the essential characteristics,
which will define the categories of the taxonomy, will be outlined. Next, in Subsection 3.2,
we will enumerate all the minutiae-based local matching methods proposed in the scientific
literature. Then, each method will be categorized according to the studied properties to
provide a comprehensive taxonomy.

3.1. Properties for Categorizing Local Matching

This subsection provides a framework for the organization of the matching methods that
will be presented in Subsection 3.2. The aspects discussed here include (1) topology of local
structure, (2) type of consolidation, (3) usage of additional features, (4) minutiae peculiar-
ities and (5) parameter learning. These mentioned facets are involved in the definition of
the taxonomy, because they determine the way of operation of each matching technique.

3.1.1. Topology of local structure

Local matching is based on the computation of the similarity between local regions
of two fingerprints, for the sake of achieving the desired invariance regarding translations
and rotations. In minutiae matching, regions are associated with subsets of minutiae that
present some kind of relationship, mainly based on location and proximity. Hence, the
subsets of minutiae are organized into local structures and they can be built under different
assumptions:

• Nearest Neighbors (NN): local structures are formed by a central minutia and a certain
number of its nearest neighbor minutiae. The number of neighbors is specified as an
input parameter and the local structures are usually defined by distances, directions
and angles between pairs of minutiae.

• Fixed Radius: it creates a local structure from a central minutia by using a maximum
distance (dmax) in the graph (Vi, Ei) defined as: (1) a set of vertices Vi containing all
the minutiae whose spatial distance is less than or equal to dmax and, (2) a set of
edges Ei connecting the central minutia and every vertex in Vi. The distance dmax is
specified as an input parameter and the local structures are defined by the set of edges
in clockwise traversing, by using distances as well as absolute and relative angles.

• Texture mixed: a local structure is defined as a feature vector that contains proper
information extracted from the minutia and other types of information coming from
additional features extracted from the fingerprint image, such as local orientation, ridge
frequency, gray-scale image properties or sampling of equidistant points following the
ridge starting from the minutia, from neighbor ridges or organized in a circular pattern
around a central minutia. This aspect is closely related to the use of additional features

6

(third property described in this subsection), which indicates the source of the extra
information used in the local structure. Also, if the matcher has the Ridge Properties
(within the Peculiarities in Minutia aspect), activated, this is a symptom of using the
aforementioned sampling.

• Minutiae Triplets: firstly used for indexing approaches, they are also interesting to
yield local structures. Triplets may be built by some type of triangulation or by
using all possible combinations of triplets in local regions. The local structures use
information regarding angles of the vertices, length of the sides and some triangle
properties such as direction, orientation, etc.

• K-Plet: it is an extension of the NN local based structure where it is ensured that
the nearest neighbors minutiae are equally distributed in the four quadrants around
the minutia.

• Minutia Cylinder: as an extension of fixed radius local structures, it allows a fixed
length invariant coding for each minutia based on a discretization of a cuboid into
cells. The cylinder is set up by using the radius as the base and the direction difference
between minutiae as the height. It also allows binary representation of local structures
for fast matching.

3.1.2. Type of consolidation

Although the partial scores obtained from the comparison of local structures could
straightaway get a final matching score, it is common to develop a further consolidation
stage in order to check whether the local similarity is supported at the global level or not.
It adds an extra stage to evaluate the coherence among spatial relationships taking the local
structures as basic elements. It is very useful in some cases, in which local structures could
match in fingerprints from different fingers, independent of the fingerprint region that they
represent. Different consolidation techniques have been proposed and can be easily isolated
from the rest of the properties studied in this section:

• Single transformation: it is the simplest consolidation idea, based on the alignment
of T and I by using the best transformation resulting from a local structure matching.
A common procedure is to estimate a very limited number of pairs of local structures
that received the highest matching scores and then to use the translation and rotation
obtained from them to carry out a global alignment for the remaining minutiae.

• Consensus of transformations: it tries to evaluate to what extent each transformation
obtained from a local structure matching is consistent with the others. Another manner
is to assess the maximum number of consistent individual transformations. There are
different approaches to calculate this estimator, although the most common one is to
check that a subset of the most similar local structures remains consistent.

• Multiple transformations: due to the fact that the best transformation coming from
the most similar local structures is not the best transformation at the global level,

7

multiple transformations may be used by: (1) selecting the final transformation ac-
cording to the highest score achieved in the final pairing stage, (2) restricting the
global matching to regions adjacent to each reference pair, or (3) fusing the results of
multiple registrations.

• Complex transformation: this group includes transformations which are based on
complex models to alleviate deformations and plastic distortions. For instance, there
are models that apply a thin-plate spline to represent elastic deformations, or use the
Parzen window to estimate the probability density.

• Incremental consolidation: when arranging the local structures into a graph, con-
necting the minutiae by the edges, the matching can be performed trough a dual graph
traversal algorithm in a breadth-first fashion. At the end of the route, the algorithm
returns the number of matched nodes. This process is repeated for every pair of
minutiae and the best solution is finally chosen.

3.1.3. Use of additional features

We call as additional features those cases in which local structures also incorporate infor-
mation gathered from other external sources. They may come from other feature extraction
processes such as the local orientation image or the local ridge frequency estimation. Once
again, we would like to emphasize that the additional features must be external with respect
to the minutiae extraction algorithm. Thus, these additional features can cooperate with
the mandatory features associated to minutiae (minutiae position and direction) defined by
standards like ISO/IEC 19794-2. The external additional features used are the following:

• Ridges Frequency (RF): a local ridges frequency represents the local average pixel
distance between ridges. It can be used either as a local feature associated to a certain
region (or minutia) of the fingerprint image, when it is relativized with respect to
the global ridges frequency of the fingerprint, or to normalize distances between two
minutiae as a method of palliating the effect of distortion.

• Core points: the locations and orientations of core singularities are extracted from
the fingerprint images for supporting the decision made by the local matching. For
instance, they could be used to perform a relative pre-alignment, discarding those
minutiae that are far from the original directions, or to involve only those minutiae
that are close to them.

• Local Orientation (LO): locally, a fingerprint has a well-defined orientation field given
by the ridge direction in a certain region of the image. In order to estimate it, it is
normal to define a window size (ranging from 8×8 to 16×16) in order to quantize the
average direction into 8 or 16 angles. The local orientation is then a number associated
to a region of the fingerprint and it can be also associated to a central minutia of a
local structure.

8

• Gray-Scale Images (GSI): they include texture information such as regions of gray-
scale fingerprint images enhanced by filters, derived from variances among pixels, ob-
tained by Gabor expansion or FingerCode textures [75].

3.1.4. Peculiarities in minutiae

Unlike the previous property, we define as a peculiarity in minutiae the additional infor-
mation closely related to the minutia that can be extracted by using an advanced minutiae
extractor. They are considered as supplementary features, different of position and direc-
tion, directly obtained from the minutiae set and being essential for the performance of a
concrete matching technique. In what follows we present the most important ones:

• Types of minutia: one of the most common peculiarities required by many matchers
is the type of minutia, dividing them into two classical types: bifurcations and ridge
ends.

• Ridge Count (RC): this peculiarity is associated to each central minutia of the local
structure and represents the number of ridges that are cut across the line joining
two minutiae. The minutiae extractor requires access to the binarized or skeletonized
fingerprint image to be computed.

• Ridge Properties (RP): the ridge which the minutia belongs to is analyzed in terms
of its degree of curvature or by sampling some equidistant points along the curve to
form relationships with respect to the central minutia. Here, the minutiae extractor
requires to explore the skeletonized fingerprint image to walk through the ridges.

3.1.5. Parameter learning

Finally, with the term of parameter learning we refer to the application of machine learn-
ing based techniques to optimize the separation between genuine and impostor fingerprints.
They are usually employed in the optimization of the similarity score that determines the
final decision. The parameters typically involved in the learning process are the weights
associated to the contribution of each pair of matched minutiae to the computation of the
final score. This and other forms of parameter learning are the following:

• Matching Score (MS): a function receiving as input the feature vectors that represent
two local structures and obtaining as output the similarity score is learned by means
of neural networks or other regression schemes. The learning process is supervised
and it is focused on optimizing the final matching score between genuine or impostor
fingerprints.

• Local Similarity (LS): an off-line learning process is performed to learn the genuine
similarity between local structures or to adjust the contribution weights associated to
each component of the feature vector.

9

3.2. Taxonomy of Minutiae-Based Local Matching Methods

Nowadays, more than 80 minutiae-based local matching methods have been proposed
in the specialized literature. This section is focused on enumerating and categorizing them
according to the properties studied before. Table 2 presents an enumeration of the methods
reviewed in this paper. In this field, the authors do not usually give a name for their proposal,
with few exceptions. Thus, we will use the reference of the paper as their identifier.

As we can see in Table 2, the most common proposals use the Texture based topology,
being the main baseline method the one proposed in [154]. Regarding other topologies,
almost all the NN and Radius approaches provide from the matchers [81] and [136]. Referring
to consolidation and the additional features, we can observe that all categories are spread
over all methods without a clear norm. The access to the RP is more common in recent
methods. Moreover, the RC and the use of the Types of minutiae are in decline in recent
years, due to their lack of uniformity in different prints obtained from the same finger.
Finally, few techniques require the use of parameter learning.

4. Related and Current Work on Matching

Once we have provided a comprehensive review on minutiae-based fingerprint matching
methods, it is meaningful to also provide other kinds of procedures using for matching. They
can be seen as related techniques that could be connected with matching, and current work
in other ways of improving matching in different application areas. In this sense, this section
gathers the most relevant developments in different issues (Subsection 4.1), distinguishing
among correlation-based matching techniques (Subsection 4.2), indexing algorithms and
advanced progresses in matching (Subsection 4.3).

4.1. Correlation-based Techniques and Matching without Minutiae

Generically, matching by correlation of images occurs when two fingerprint images are
superimposed and their similarity is computed through the correlation between correspond-
ing pixels for different alignments. However, this apparently simple operation rarely leads
to acceptable results, mainly due to undesirable changes of global structure and brightness
and contrast of the image, both depending on distortions and skin condition. Moreover, this
process may involve high computational costs.

In the specialized literature, there are various alternatives coped to palliate some of
the problems associated with correlation-based matching. For example, to alleviate the
distortion problem, some proposals use local windows around the minutiae [90], singular
points alignment before correlation [124] or advanced correlation filters [159]. To reduce the
computational complexity, the correlation is performed in local regions in the Fourier domain
[168], or using the Fourier-Mellin transform to maintain rotation and translation invariance
[149, 84], the symmetric phase only filter to reduce noise [66] and the curvelet transform [57].
Recently, there is a promising trend that transforms minutiae positions and orientations to
spectral representations in fixed-length feature vectors invariant to translations, rotations
and scale. They are suitable to be reduced by dimensionality reduction techniques to speed
up the matching process [171, 121].

10

Table 2: Enumeration and classification of minutiae-based local matching methods

References Local Structure Type of Additional Minutiae Parameter
Topology Consolidation Features Peculiarities Learning

[165] NN Incremental None None None
[81, 6] NN Single None Types + RC None
[136] Radius Consensus None RC None
[94] Texture Multiple RF Types None
[181] NN Single Core None None
[5] NN Complex None None None
[63] Texture Single LO Types + RP None
[141] Not defined Not defined RF + GSI Not defined None
[150] Triplets None None RC None

[154, 166, 117] Texture Multiple LO None None
[29] NN Single None Types + RP None

[123, 182] Texture Multiple LO RP None
[127, 116] Triplets Multiple None None None

[142] Texture Multiple LO Types None
[170] Radius Multiple None None None
[41] K-Plet Incremental Core Types None
[46] Triplets Multiple None Types + RC None
[77] NN Consensus None None MS

[134, 167] Texture Single LO None None
[132] Texture + Triplets Single LO None None

[155, 156] Texture Single LO RC None
[178, 183] Triplets Single None None None

[179] NN Single None Types None
[13] NN None None RC None

[35, 15] Radius Consensus None None None
[36] Texture + Triplets Consensus LO None LS
[39] K-Plet Incremental None Types None
[40] Texture Single GSI None None

[50, 133, 187] Texture Multiple None RP None
[62, 96] Texture Consensus GSI RP None

[93] K-Plet Complex None None None
[143] NN Consensus None RC None
[7] Texture Multiple GSI None None

[48, 2] Texture None None RP None
[61] Texture Complex GSI RP None
[131] Radius Consensus LO None None
[135] Texture Multiple None Types + RP None

[172, 177] Triplets Incremental None None None
[164] Texture Consensus LO RP None
[8] Texture Single Core + GSI RC None
[49] Radius + Texture Multiple RF + Core + LO Types + RP MS
[88] Triplets None None Types None
[89] Radius Incremental None None None
[115] K-Plet Single GSI Types None
[162] K-Plet Single RF + GSI RP None
[188] NN None None Types + RC None
[14] Texture Consensus None RC + RP None

[20, 152] Texture Complex None RP None
[21] Radius + Texture Multiple RF + LO RP MS
[87] NN Single GSI Types + RC None
[114] Texture Incremental None Types + RP None
[146] Radius None None None None
[147] Texture None LO None None
[173] Radius Consensus None Types + RC None
[186] Triplets Multiple None Types None
[19] Texture Multiple RF + LO RP None

[26, 67] Cylinder Consensus None None None
[148] NN Multiple None None None
[31] Texture + Triplets None GSI None None
[42] K-Plet Incremental None RC + RP None
[53] NN None None None None
[100] Texture + Radius Consensus GSI None None
[185] Triplets Single LO None None
[17] Texture Multiple LO + Core RP None
[18] Radius + Texture Incremental Core + LO RP None
[23] Texture + Cylinder Consensus RF + LO + Core None None
[33] Texture None GSI None None
[43] Radius Multiple None Types None
[55] Radius + Texture None LO + GSI None None
[119] Texture + Triplets None Core + GSI None None

11

Other approaches perform fingerprint matching without the use of minutiae. They use
the so-called texture information, being the most popular the FingerCode approach [75],
which chains tessellated areas related to core points with Gabor filter to capture useful
texture information. FingerCode features have been used in later research [7, 122, 176].
Isolated orientation [91] or ridge information [169] can also be used for matching. Finally,
when high resolution images are available, level-3 features such as sweat pores, dots and
incipient ridges can be used instead of minutiae [68, 103].

4.2. Fingerprint Indexing

Fingerprint indexing arises from the necessity of quick access to the fingerprint tem-
plates database in identification tasks. Some indexing techniques use partial information
provided by the extracted minutiae of the fingerprint and build local structures centered
on each minutia to establish similarity relationships between fingerprints and key indexes.
This allows the ordering of candidate templates to increase the probability to match true
paired fingerprints. Actually, these approaches can be viewed as minutiae-based matching
approaches if the matching score is proportionally related to the number of coincident local
structures.

The pure indexing proposals found in the literature are those based on minutiae triplets,
which consider triangle-based characteristics to compute similarity among fingerprints, such
as lengths, angles, handleless [10], etc.; and triangulations to improve efficiency [99]. Other
indexing approaches utilize LO [105] and also RF [22]. Finally, several criteria for narrowing
the candidate list obtained from indexing are evaluated in [24].

4.3. Current Progress in Matching

Nowadays, the matching field is continually in progress, offering new developments to
improve personal identification. In the following, we briefly mention different matching
related issues being currently tackled:

• Accelerating fingerprint matching: many efforts have been performed to speed up the
matching process, for instance, by means of FPGA-based [79], GPU-based [59] parallel
architectures or distributed computing [130].

• Fingerprint matching in embedded systems: sensors [3] and smart cards [9].

• Latent fingerprint matching: it is a more complicated problem because these finger-
prints are inadvertent impressions left by fingers on surfaces [70, 128].

• Palmprint matching: based on ridges [44], minutiae [25, 32] and also effective ap-
proaches for latent matching [69, 102].

• Combinations with other traits and multiple matching: with face recognition [64],
multiple matching [73], multiple sample [38] and minutiae-based synthesis for matching
[158].

12

• Privacy protection in fingerprint matching: which tries to avoid the traditional encryp-
tion with its associated decryption, which exposes the fingerprint to the attacker. Two
examples of recent techniques are the reverse MCC representation [51] and the combi-
nation of two different fingerprints into a new identity, based on minutiae, orientations
and singular points [97].

5. Experimental Evaluation of Local Minutiae Matching Methods

This section is devoted to perform an experimental evaluation of the most important lo-
cal minutiae-based matching algorithms. Subsection 5.1 establishes the experimental frame-
work, presenting information about the used databases, the performance measures, the
algorithms and their parameters. Then, Subsection 5.2 shows the analysis of the results of
the used methods over the public FVC databases. Subsection 5.3 presents a study over four
databases captured by the authors.

5.1. Experimental Set Up

This section describes the databases (Subsection 5.1.1), the accuracy measures (Sub-
section 5.1.2) and the framework (Subsection 5.1.3) used to carry out the experimental
evaluation of the matchers.

5.1.1. Databases

We have used a wide variety of databases to test the performance and behavior of the
matching algorithms. Table 3 presents their characteristics, showing their size and the
average number of minutiae of the template and input fingerprints.

Table 3: Summary description of the used databases.

Denomination Number of Impressions Average template Average input

Fingerprints per finger minutiae number minutiae number

FVC2000 db1a 100 8 49.51 48.93

FVC2000 db2a 100 8 58.43 57.97

FVC2000 db3a 100 8 132.97 144.18

FVC2000 db4a 100 8 36.88 37.10

FVC2002 db1a 100 8 53.11 49.69

FVC2002 db2a 100 8 61.87 56.93

FVC2002 db3a 100 8 58.23 57.52

FVC2002 db4a 100 8 50.52 49.78

FVC2004 db1a 100 8 49.01 62.84

FVC2004 db2a 100 8 64.45 64.19

FVC2004 db3a 100 8 94.52 98.63

FVC2004 db4a 100 8 55.00 52.61

DB1 1228 10 45.26 45.20

DB2 1228 10 145.79 142.94

DB3 1228 10 44.36 43.34

DB4 1228 10 44.50 43.35

First, we apply the algorithms over twelve of the well-known FVC databases, using the
first impression of each finger as template, and the other seven impressions as input. These

13

databases are designed for verification competitions, and therefore their fingerprints have
bad quality on purpose. More information about the FVCs databases can be found in
[110, 112, 111].

Four additional databases, captured by the authors’ research groups, are used for the
study. They simulate a real environment for identification with consented fingerprints cap-
tures of reasonable quality. All of them are composed by the same fingers, captured by four
different sensors (Table 4).

Table 4: Sensors used to capture the fingerprints.

Database Sensor Sensor type Fingerprint type

DB1 Upek Eikon Capacitive Swipe

DB2 Suprema RealScan-D Optical Rolled

DB3 Suprema BioMini Optical Plain

DB4 SecuGen Hamster IV Optical Plain

A total of 308 people participated in the study. The fingerprints of the thumb, forefinger
and middle finger of both their hands were captured along three different sessions. After
removing the failed captures, we selected three random input fingerprints per session and a
single template fingerprint for each finger and sensor. After this manner we get four final
databases that contain the same 1228 fingers captured by four different sensors.

5.1.2. Accuracy measures

The accuracy of a fingerprint matcher can be measured from two different perspectives:

• Verification: consists of matching two fingerprints to determine whether they corre-
spond to the same finger or not.

• Identification: tries to find the match of an input fingerprint in a database, comparing
it to all the templates.

Each perspective employs different accuracy measures. In this paper, we use the following
verification measures:

• False Matching Rate (FMR): rate of different fingerprints that are considered to be
the same by the matcher. Each possible score has an FMR associated; the higher the
score, the lower the FMR.

• False Non-Matching Rate (FNMR): rate of corresponding fingerprints that are erro-
neously considered different.

• Equal-Error Rate (EER): value (corresponding to a certain score threshold) where
FMR and FNMR are equal.

• ROC: curve that plots the Genuine Matching Rate (GMR = 1 − FNMR) versus the
FMR.

14

• FMR100: lowest achievable FNMR for a FMR ≤ 1%.

• FMR1000: lowest achievable FNMR for a FMR ≤ 0.1%.

• ZeroFMR: lowest achievable FNMR for a FMR = 0%.

Within an identification process, most of the accuracy measures are related to the rank,
which is the position of the genuine score if all the obtained scores are ordered in descending
order. In other words, the rank is the minimum number of database fingerprints that have
to be returned by the identification system to ensure that the correct identity is included.
We use the following identification accuracy measures:

• True positive rate (TPR): percentage of test fingerprints that are correctly identified
in the database, when only the best matching score is retrieved. The TPR is the error
obtained when using a rank of 1.

• R100: lowest rank that allows an error lower than 1%.

• ZeroR: lowest rank that does not allow errors.

• Cumulative Match Curve (CMC): curve that represents the error associated to each
rank.

The optimum value for R100 and ZeroR is 1, whereas the worst one is the size of the
database.

In addition to all these values, the average matching time is also important to determine
if a matching algorithm is suitable for a certain identification system.

For reasons of space and concision, not all of these measures are presented in the paper.
The full set of results is accessible at http://sci2s.ugr.es/MatchingReview/.

Statistical tests allow to establish a fair comparison between the methods and to detect
significant differences. In this paper, we use the nonparametric tests recommended in [45, 54],
which claim to be simple, safe and robust.

Furthermore, we apply the Friedman test [52] to measure the differences between the
methods with a multiple comparison analysis. The Holm procedure is applied to find out
which algorithms are distinctive. 1

5.1.3. Experimental framework

To compute these measures it is necessary to perform all the matching comparisons
between template and input fingerprints. In order to obtain the results within a reasonable
time, and to fix a common execution environment, all the experiments have been carried
out within the parallel framework proposed in [130], which speeds up the computation
while ensuring that the results are the same as in a sequential execution. The NIGOS

1Additional information about these tests, as well as the corresponding software, are available at http:
//sci2s.ugr.es/sicidm/.

15

mindtct algorithm [165] has been used for the minutiae extraction. All executions have been
performed in a cluster of 12 machines, each of them with two Intel(R) Xeon(R) E5-2620
CPU at 2.00 GHz and 64GB RAM.

The empirical study involves 12 matching algorithms from those listed in Table 2. We
want to outline that all the implementations of the matching algorithms, excepting the
proposed in [165], were developed by us and they are only based on the descriptions and
specifications given by the respective authors according to their papers. It is also noteworthy
that our implementation of Feng’s algorithm only uses the minutiae features provided by the
minutiae extractor, and therefore is not as complex as the original algorithm. The parameter
values used for all matchers have been extracted from these papers and are shown in Table 5.
In the cases where the parameter values are not given in the original paper, we experimentally
selected values that suit the general case. We have not performed any training to adapt these
parameters, because our objective is not to maximize the accuracy, but to fairly compare
the matchers and their robustness in a common environment and upon different databases.

5.2. Analysis and Empirical Results on FVC Databases

This section analyzes the results obtained over the 12 FVC databases, in terms of veri-
fication and identification.

5.2.1. Verification

Tables 6 and 7 present the EER and FMR100, respectively, as the error percentage
obtained for all tested algorithms over the 700 input fingerprints of each FVC database.
The best result for each database is stressed in boldface. Additionally, Figure 1 plots the
ROC curve for the most difficult FVC database (FVC2002 db3a, which obtains the highest
average EER).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FMR

G
M

R

Bozorth3

Chen

Chikkerur

Deng

Feng

Jiang

MCC

MCC+L1

Qi

Ratha

Tan

Tico

Figure 1: ROC curve for FVC2002 db3a

Bozorth3 is the best performing algorithm in general. If we focus on the EER, MCC also
obtains good results, while Deng is more accurate in terms of FMR100. The ROC curves

16

Table 5: Parameters for the methods used in the experiments

Algorithm Parameters

Mindtct [165] output format = ANSI INCITS 378-2004

image enhancement = enabled

Bozorth3 [165] input format = ANSI INCITS 378-2004, Maximum number of minutiae = 150,

Minimum number of minutiae = 10

Jiang [81] wd = 1, wθ = 54π,wφ = 54π,wn = 0, wt = 0

Consolidation step iterations = 5,Minutiae neighborhood size = 2

BG1 = 8, BG2 = π
6
, BG3 = π

6

Ratha [136] Neigh=6, Fmin=0.4, TM=8, RelDist=0.2, RidgesDiff=10,

EdgesDiff=0.1, MisMatch=10000

Tan [150] ∆α=10, ∆τ=20, WindowsSize=32, Tripletangle=2,

Tripletside=15,TripletminutieaDensity=2,TripletRidgeCount=2,

TS=0.15, TΘ=30, T1=150, T2=100, TD=12, TN=8, MaxTriangleWidth=300

Tico [154] THRV = 25, Block = 16, NumRadius=4, THRt=Π, THRDist=6,

THRangle=
Π
6
, MTI=6, µ=0.25

Deng [46] MinutiaeminDelanuy=20, TH1=36, THnum=20, THedge=15,

W0=1, W1=W2=0.3·180
Π

, W3=3, W4=W5=6,

THd=8, THΘ=THφ=THang=
Π
6
, THrc=3, THSL=0.2

Qi [132] THRV = 25, Block = 16, PointSeg=3,MinutiaeSeg=6, LongSeg=18,

THRt=Π, THRO=Π
2
, THRDist=10, THRangle=

Π
4
,

WM=0.6,WO=0.4

Chen [35] ThrL = 55, ThrH = 80, R = 80, RS = 100, θL = 0.25, θH = 0.4

lenL = 5, lenH = 20, Thrtopo = 0.7

Chikkerur [39] K = 8,Bounding box = {8, π/6, π/6}
Feng [49] Neighborhood radius = 60,Translation Tolerance Box = 8,

Rotation Tolerance Box = π/6,Rotation maximum threshold = 5π/9,

Minimum normalized similarity = π

MCC [26] R = 70, Ns = 16, Nd = 6, σs = 28
3
, σd = 2π

9
, µΨ = 0.01, τΨ = 400

ω = 50,minV C = 0.75,minM = 2,minME = 0.60, σθ = π
2
,maxnp = 12

Floating-point-based version: enabled, consolidation scheme= LSSR, µP = 20

wR = 0.5, µρ1 = 5, τP = 0.6,minnp = 4

µρ2 = π
12
, µρ3 = π

12
, τ ρ1 = −1.6, τ ρ2 = −30, τ ρ3 = −30, nrel = 5

MCC+L1 [23] Blockw = 16, Blockl = 32, FVlong = 36, FVradius = 4

W1=W3=0.16, W2=0.37, W4=0.31, Threshold=0.4

show that Bozorth3, MCC and Deng dominate all methods, followed by Jiang.
These four algorithms are substantially different from each other. For example, MCC

uses cylinders as local structure, while Deng uses the texture and Jiang and Bozorth3 use

17

Table 6: EER percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1

FVC2000 db1a 7.481 12.945 43.557 25.711 83.286 7.633 25.446 69.143 37.840 20.013 8.207 24.804

FVC2000 db2a 8.751 16.451 42.499 37.143 87.429 9.308 20.124 66.143 39.406 22.252 8.578 20.725

FVC2000 db3a 18.750 24.954 41.996 30.965 95.857 14.814 29.978 64.714 43.219 40.022 20.216 23.152

FVC2000 db4a 5.817 8.166 42.042 24.228 91.857 17.006 41.777 46.571 36.498 32.259 6.026 20.144

FVC2002 db1a 15.286 16.312 41.761 26.366 80.000 16.676 34.640 63.571 40.776 15.067 15.325 23.287

FVC2002 db2a 14.564 13.404 38.141 27.708 79.571 12.959 27.852 46.000 37.840 15.254 12.553 22.166

FVC2002 db3a 20.062 27.686 46.093 33.002 95.286 21.258 37.346 86.714 43.462 31.922 21.867 32.015

FVC2002 db4a 21.003 23.281 42.641 29.839 88.857 24.352 39.921 90.286 36.369 23.692 23.988 26.181

FVC2004 db1a 17.374 24.999 44.405 40.286 98.429 20.409 42.930 83.571 47.938 23.209 19.562 28.592

FVC2004 db2a 17.183 23.798 45.195 38.728 48.000 20.766 35.354 85.143 42.102 29.003 19.786 31.675

FVC2004 db3a 6.265 13.834 43.545 31.792 79.000 9.396 31.119 29.714 43.415 35.287 10.037 18.699

FVC2004 db4a 26.189 31.438 42.315 33.712 65.286 28.372 40.106 93.286 40.029 29.240 28.122 27.160

Table 7: FMR100 percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1

FVC2000 db1a 13.334 20.269 98.704 67.550 90.591 12.764 50.339 100.000 97.107 76.583 14.239 79.610

FVC2000 db2a 18.712 27.582 98.647 80.952 94.609 18.435 47.920 100.000 96.458 89.613 18.564 71.068

FVC2000 db3a 37.876 54.204 98.619 89.996 98.250 28.632 95.592 100.000 98.114 97.057 46.071 82.449

FVC2000 db4a 14.012 15.944 98.621 77.234 100.000 31.254 88.820 100.000 95.597 89.744 9.657 66.374

FVC2002 db1a 24.967 25.806 98.605 67.114 92.114 22.380 56.529 100.000 97.442 52.155 22.192 76.952

FVC2002 db2a 22.645 20.300 98.378 64.810 94.427 17.357 46.073 56.559 97.010 48.794 19.363 72.116

FVC2002 db3a 37.324 56.179 98.830 85.811 100.000 39.946 74.281 100.000 97.974 90.282 47.915 86.162

FVC2002 db4a 52.152 51.010 98.655 80.990 96.435 51.858 75.166 100.000 96.911 85.916 51.861 86.607

FVC2004 db1a 36.286 51.935 98.748 92.937 98.631 41.550 77.401 100.000 98.048 87.091 36.503 86.848

FVC2004 db2a 35.089 52.450 98.787 91.740 97.416 37.457 74.450 91.571 97.785 95.038 41.324 86.201

FVC2004 db3a 13.618 34.910 98.704 86.950 95.782 28.127 79.643 40.986 98.521 98.007 28.420 71.332

FVC2004 db4a 60.790 66.630 98.637 85.705 97.055 69.738 83.779 100.000 97.156 87.176 66.055 89.465

the nearest neighbors. The consolidation type is also different. However, it is noteworthy
that none of them use any additional features: Jiang and Deng use both the minutia type
and the ridge count, while Bozorth3 and MCC only use the basic minutia information.

It is also interesting that, even though MCC+L1 obtains good results when the GMR
is high, it does not improve the results obtained with the bare use of MCC. Note that the
MCC+L1 algorithm uses a different, less accurate variant of MCC (with binary encoding
and a different consolidation), meant to be very efficiently implemented on hardware.

This states that none of the characteristics described in Subsection 3.1 can be discarded
as worse than the rest: the verification performance is determined by the matching algo-
rithm as a whole, and each local structure and consolidation can supply useful information.
Nevertheless, the use of additional features does not always lead to more accurate results.

Along with the accuracy, the computational performance is a very important character-
istic of a fingerprint matching algorithm, especially when it has to deal with large fingerprint

18

databases.
Table 8 summarizes the average matching times for the tests performed so far. Note

that these times are measured in computational time, and therefore are not affected by the
parallel framework in which the tests have been carried out.

Table 8: Average matching times (in milliseconds) for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1

FVC2000 db1a 1.026 0.382 2.865 161.339 21.319 2.409 0.739 3.936 5.051 3.577 10.094 0.762

FVC2000 db2a 1.719 0.541 3.938 513.535 34.927 4.400 0.913 7.712 6.187 6.632 13.710 0.979

FVC2000 db3a 6.187 4.149 22.220 81277.765 228.140 91.468 4.653 51.330 91.320 46.758 82.510 4.854

FVC2000 db4a 3.145 0.234 1.606 49.119 11.242 1.284 0.466 2.249 3.330 2.409 5.733 0.436

FVC2002 db1a 1.349 0.422 3.189 279.543 21.319 3.386 0.749 4.541 5.532 4.047 10.880 0.784

FVC2002 db2a 1.233 0.551 4.149 442.721 33.742 3.989 0.955 4.777 6.725 4.554 14.559 0.901

FVC2002 db3a 1.235 0.534 3.964 436.841 28.712 4.222 0.986 6.771 6.301 5.920 14.168 1.054

FVC2002 db4a 1.268 0.397 2.915 338.823 18.921 3.697 0.784 5.163 5.046 4.770 10.334 0.745

FVC2004 db1a 1.488 0.491 3.656 313.619 16.544 3.849 0.942 6.434 5.563 5.553 12.253 0.801

FVC2004 db2a 1.534 0.680 4.845 853.888 33.527 5.448 1.292 9.432 7.482 7.922 17.974 1.275

FVC2004 db3a 16.566 1.850 10.815 10575.240 99.901 21.829 2.336 27.278 18.136 25.183 40.523 2.535

FVC2004 db4a 1.312 0.461 3.340 540.880 25.047 4.189 0.872 6.484 5.325 5.913 11.737 0.840

We can notice that in all cases, Jiang is the fastest algorithm, followed by Qi. The former
performs a simple consolidation and does not use any additional features, which makes the
computation very fast. The latter does not involve any consolidation, and therefore performs
all the matching process from a local point of view.

In the other extreme, the Tan’s algorithm is extremely slow, especially for databases with
more minutiae per fingerprint. This algorithm computes all the triplets of the fingerprints,
and compares them. This computation has factorial order and therefore takes a long time
for fingerprints with a certain number of minutiae. This is an example of an algorithm that
could be improved by a previous minutiae filtering.

It is curious to note that the Qi’s algorithm is very fast, although it also uses triplets.
However, it includes a first candidate selection using the texture, avoiding the creation of
all possible triplets.

If we compare the overall performance of the algorithms, we can observe that the consol-
idation bears a high weight in the runtime. Complex consolidations require more computing
time, as for MCC, Deng and Tico.

Another observation that can be made is that MCC+L1 is considerably faster than
MCC. This is due to the structure of MCC+L1, which first compares the L1 features of the
fingerprints, and applies MCC only if they are similar enough. This hierarchical matching is
able to save a lot of computing time, but also explains why MCC+L1 is often less accurate
than MCC.

Table 9 shows the results of the statistical tests for several accuracy measures, highlight-
ing Bozorth3, MCC and Deng as the best algorithms.

19

Table 9: Statistical tests over the verification measures over the FVC databases

Algorithm EER FMR100 FMR1000 ZeroFMR

Bozorth3 1.500 2.083 1.750 1.292

Jiang 4.000 3.500 3.833 3.458

Ratha 9.917 11.083 11.250 10.042

Tan 7.250 6.833 7.250 7.167

Tico 11.750 9.750 10.208 10.042

Deng 3.000 2.083 2.250 3.083

Qi 7.583 5.583 6.333 8.833

Chen 10.833 10.500 7.250 5.500

Chikkerur 9.000 9.917 10.625 10.042

Feng 5.333 7.500 7.833 9.458

MCC 2.500 2.333 2.167 2.250

MCC+L1 5.333 6.833 7.250 6.833

Friedman P-value 6.18e-011 6.13e-11 5.33e-11 7.34e-11

5.2.2. Identification

Tables 10 and 11 summarize the R100 and TPR values, respectively. Finally, Figure 2
displays the CMC curves for the FVC2002 db3a database.

Table 10: R100 values for FVC databases (100 templates)

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1

FVC2000 db1a 100 91 100 100 96 100 100 100 100 100 72 79

FVC2000 db2a 100 96 100 100 94 72 97 100 100 100 64 77

FVC2000 db3a 100 98 100 94 97 81 98 100 100 100 98 84

FVC2000 db4a 100 79 100 100 100 100 100 100 100 100 33 95

FVC2002 db1a 100 95 100 100 100 100 100 100 100 100 89 85

FVC2002 db2a 100 92 100 100 100 100 98 100 100 100 88 80

FVC2002 db3a 100 98 100 100 99 100 99 100 100 100 91 86

FVC2002 db4a 100 95 100 100 98 100 100 100 100 100 91 84

FVC2004 db1a 100 94 100 100 100 100 99 100 100 100 87 91

FVC2004 db2a 100 96 100 100 99 98 99 100 100 100 94 94

FVC2004 db3a 100 90 100 100 96 49 99 100 100 100 64 84

FVC2004 db4a 100 96 100 100 96 100 99 100 100 100 94 89

It is curious to observe that, while MCC+L1 is the best algorithm if we focus on the
rank, MCC obtains better numeric results (for example for FVC2000 db4a) and Deng and
Bozorth3 have higher TPR in most cases. The CMC curves explain this behavior. For low
ranks, Deng and Bozorth3 perform better, and therefore have a lower TPR. MCC is slightly
below Deng in accuracy, while MCC+L1 obtains good results for very high ranks.

The high values obtained denote the difficulty of the FVC databases: the algorithms
need to return the majority of the databases in order to ensure that the genuine fingerprint
is returned. Note that the methods that have a value of 100 return the entire database.
Chen’s algorithm has a very low CMC curve because the matching score is often exactly
zero (when the compared fingerprints do not match some conditions). This causes some

20

Table 11: TPR percentage for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1

FVC2000 db1a 87.857 78.571 37.714 50.143 10.857 86.286 49.286 29.286 3.000 28.571 85.286 43.429

FVC2000 db2a 82.857 71.714 42.857 45.286 5.143 85.286 49.000 33.286 4.429 12.714 81.571 50.714

FVC2000 db3a 63.143 45.286 26.571 17.857 2.714 72.571 10.714 33.143 2.286 2.143 54.000 50.714

FVC2000 db4a 88.571 82.429 24.857 38.429 8.429 70.286 10.000 51.143 3.429 7.429 91.571 52.000

FVC2002 db1a 77.714 75.857 53.143 49.571 8.000 78.286 42.571 35.143 3.571 47.286 77.429 44.000

FVC2002 db2a 80.143 81.429 69.286 52.000 6.571 83.143 54.286 47.571 4.000 56.429 80.429 58.143

FVC2002 db3a 63.571 41.000 18.714 20.286 12.286 60.857 25.000 13.286 1.857 8.571 50.143 21.286

FVC2002 db4a 48.000 44.571 28.714 31.000 2.143 50.857 23.857 8.714 3.143 14.000 46.857 29.000

FVC2004 db1a 65.286 46.714 23.143 9.000 1.429 61.857 23.857 16.143 2.571 29.143 60.857 23.143

FVC2004 db2a 64.714 46.429 20.286 11.714 3.000 63.000 25.571 12.286 2.571 5.000 58.429 21.571

FVC2004 db3a 86.714 65.571 16.000 29.286 6.714 83.857 19.429 61.429 2.571 1.000 74.429 57.286

FVC2004 db4a 37.286 34.143 21.000 26.429 1.857 29.000 17.571 4.714 3.286 9.857 32.714 25.429

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Rank

C
u

m
u

la
ti
ve

 a
c
c
u

ra
c
y

Bozorth3

Chen

Chikkerur

Deng

Feng

Jiang

MCC

MCC+L1

Qi

Ratha

Tan

Tico

Figure 2: CMC curves for FVC2002 db3a

genuine scores to be the lowest ones in the fingerprint database, and therefore the rank
necessary to ensure a certain identification accuracy is greatly increased.

Table 12 displays the results of the statistical tests.
In general, the identification results of these algorithms are similar to the ones obtained

for verification, and their behavior remains the same.
To conclude the study, Figure 3 outlines two directed-graphs for verification and identifi-

cation statistical results respectively. Each method is represented as a vertex, and the edges
connect two methods in which the Holm test has detected significant differences. Specif-
ically, in Figure 3a, those methods that receive an arrow are outperformed by the linked
algorithm in terms of EER, whereas in Figure 3b, we focus on the TPR measure. A Thick
line means that a method statistically outperform another considering all the verification or
identification measures. To simplify the graphs, the methods with identical differences with
the others have been grouped in the same nodes.

21

Table 12: Statistical tests for the identification measures over the FVC databases

Algorithm TPR R100 ZeroR

Bozorth3 1.667 8.875 7.375

Jiang 3.667 3.458 4.083

Ratha 7.208 8.875 7.375

Tan 7.083 8.292 7.375

Tico 10.917 5.625 6.917

Deng 1.917 6.333 6.792

Qi 7.250 6.167 7.000

Chen 8.417 8.875 7.375

Chikkerur 11.583 8.875 7.375

Feng 9.417 8.875 7.375

MCC 2.833 1.958 4.625

MCC+L1 6.042 1.792 4.333

Friedman P-value 5.652e-11 5.652e-11 0.089

The figure ratifies the analysis of the accuracy measures: Bozorth3, MCC, Jiang and
Deng are the most accurate algorithms for the FVC databases, with statistically significant
differences with respect to the other methods.

(a) Verification (b) Identification

Figure 3: Significant differences among the tested methods

5.3. Analysis and Empirical Results on Captured Databases

In the preceding section, the algorithms of Bozorth3 [165], Jiang [81], Deng [46] and MCC
[26] were highlighted as the most accurate for the FVC databases, as they are statistically
better than other methods both for verification and identification. This section performs a
deeper study upon the four captured databases described, focusing on these four algorithms.

22

5.3.1. Verification

Table 13 presents the results obtained in terms of EER, FMR100 and FMR1000. Figure
4 displays the ROC curves.

Table 13: Verification performance measures (in percentages)

EER FMR100 FMR1000

Database Bozorth3 Jiang Deng MCC Bozorth3 Jiang Deng MCC Bozorth3 Jiang Deng MCC

DB1 2.763 6.292 4.288 3.448 4.852 15.092 9.337 6.908 11.144 29.223 22.733 15.638

DB2 0.686 3.712 3.393 0.350 0.617 6.546 6.056 0.180 1.219 14.131 15.309 0.623

DB3 0.839 2.518 1.018 0.414 0.779 4.013 1.025 0.280 2.103 9.177 2.845 0.889

DB4 0.788 2.512 0.951 0.443 0.701 3.958 0.929 0.303 1.951 8.806 2.624 0.834

0.900

0.925

0.950

0.975

1.000

0.00 0.05 0.10 0.15 0.20 0.25

FMR

G
M

R

Database

DB1

DB2

DB3

DB4

Algorithm

Bozorth3

Deng

Jiang

MCC

Figure 4: ROC curves for captured databases

Note that the error values for these databases are far better than those obtained for the
FVC ones, which are designed for test purposes and whose quality is deliberately bad.

In this case, MCC obtains the best results for all measures and databases except DB1,
in which Bozorth3 is better, and the ROC curves follow the same behavior. Jiang gets the
worst values among the three tested algorithms.

MCC and Bozorth3 only use the basic minutiae information to build their local struc-
tures, while Deng takes into account texture information and some minutiae peculiarities
such as the ridge count and the type. Therefore, the fact that Deng is able to obtain good
results with the FVC databases—even though it is outperformed by MCC and Bozorth3 for
the captured ones—suggests that the texture is less affected than the minutiae in the FVC
bad quality images.

It is also noteworthy that Jiang and Deng perform better with the DB3 and DB4
databases (plain fingerprints), while Bozorth3 excels on DB1 (swipe fingerprints), and MCC
obtains better results with DB2 (rolled fingerprints). This could happen due to the convex
hull computation carried out by MCC, which filters the minutiae on the borders of the fin-
gerprint. Bozorth3, Deng and Jiang do not carry out any special treatment on those areas,

23

which are more prone to errors. In all cases, the DB1 database (captured with a narrow
swipe sensor) is the most difficult one for the verification.

As for the computing times, we observe the same behavior as with the FVC databases
(Table 14). Jiang is the fastest algorithm, followed by Bozorth3, MCC and Deng, which
involve more complex consolidations and more information.

Table 14: Average matching times (in milliseconds)

Database Bozorth3 Jiang Deng MCC

DB1 3.679 0.469 11.178 6.061

DB2 12.076 7.501 175.132 64.826

DB3 3.227 0.415 9.057 5.884

DB4 3.184 0.423 9.054 5.797

5.3.2. Identification

To conclude this study, Table 15 and Figure 5 present the identification performance
measures and the CMC for the four tested algorithms over the four captured databases.

Table 15: Identification performance values (1228 templates)

R100 ZeroR TPR

Database Bozorth3 Jiang Deng MCC Bozorth3 Jiang Deng MCC Bozorth3 Jiang Deng MCC

DB1 1228 866 147 237 1228 1228 1228 1169 90.264% 69.942% 85.125% 84.057%

DB2 1 297 121 1 1228 1228 1220 1202 99.077% 87.559% 93.838% 99.222%

DB3 1 172 6 1 1228 1224 1228 1027 99.050% 90.771% 98.082% 99.285%

DB4 1 118 4 1 1228 1228 1228 1228 99.168% 90.879% 98.172% 99.358%

0.900

0.925

0.950

0.975

1.000

0 25 50 75 100

Rank

C
u

m
u

la
ti
ve

 a
c
c
u

ra
c
y

Database

DB1

DB2

DB3

DB4

Algorithm

Bozorth3

Deng

Jiang

MCC

Figure 5: CMC curves for the captured databases

Again, MCC highlights as the most accurate algorithm, except for the DB1 database,
for which Deng obtains better R100 and Bozorth obtains better TPR. The CMC curves

24

illustrate these results, showing that for low ranks, Bozorth3 performs better than MCC
and Deng over DB1. As the rank increases, the cumulative accuracy of Deng increases too.
This result contrasts with the verification analysis, which stated that both Bozorth3 and
MCC outperform Deng for all databases.

The explanation of this fact is that the verification performance measures are calculated
considering a fixed score. That is, each point of the ROC curve plots the FMR and FNMR
obtained with a certain score. However, the rank is independent of the numerical value
of the scores: it only takes into account their order. The different behavior of ROC and
CMC means that the score variability over these databases is higher for Deng than for MCC
and Bozorth3. This means that, given an input fingerprint, Deng can ensure with a high
confidence that the genuine score is higher than the impostor ones; however, it does not
ensure with the same confidence that the genuine and impostor scores of all fingerprints can
be separated by a certain fixed threshold.

Otherwise, the relative performance of the databases is maintained: the swipe sensor
provides fingerprints that are more difficult to recognize, as well as the DB2 sensor for rolled
fingerprints.

6. Conclusions

In this paper, we have compiled the most relevant work in the scientific literature about
fingerprint local minutiae-based matching. We have described the background in the field,
including some references about global matching and feature extraction techniques. Then,
we have studied the main properties of the local matching algorithms, as well as the infor-
mation they are based on, distinguishing between five different aspects: topology of local
structure, type of consolidation, usage of additional features, minutiae peculiarities and pa-
rameter learning. Using all this information we have built a taxonomy of more than 80 local
minutiae matching methods.

In order to complete the study, we have designed and implemented an experimental
framework using two sets of databases: 12 from the FVC competitions, which are publicly
available, and 4 databases captured by the authors’ research groups. The study analyzes
the results of 12 of the studied matchers, both in terms of verification and identification
performance measures.

After the work realized in this paper, the following conclusions can be drawn:

• Fingerprint matching is a very active field, with dozens of proposed matching methods.

• The obtained results reveal big differences in the accuracy of the matchers, highlighting
some of them as more precise than the others.

• The best performing algorithms do not share any special characteristics, although none
of them uses any fingerprint features apart in addition to the minutiae coordinates,
angle, type and ridge count.

• Furthermore, it has been seen that for different databases, different matchers may
be the most accurate. An especially revealing result is that there is a big difference

25

between processing rolled, plain and swipe fingerprints, as the different number of
minutiae and the presence or not of minutiae on the borders affects the behavior of
the matchers.

• This states that some of the different approaches to design matching algorithms are
equally valid, and depend on the particular fingerprints.

• There is also a big difference in the computational complexity of the methods: the
fastest methods are more suitable for systems with very large fingerprint databases.

• This paper can help nonexperts to choose an appropriate matching algorithm that
suits their particular problem.

• It can also help other researchers in the field to develop new matching methods, using
the components and properties described in this paper.

In our opinion, the specialized literature contains lots of ideas related to minutiae fin-
gerprint matching, some of them are quite similar and even it may be possible to find
overlap among them. Most of the fingerprint matching approaches introduced in the last
four decades are minutiae based. One of the reasons to expect minutiae-based algorithms to
perform well is the sheer amount of research done on this approach. Original ideas are those
which have served as inspiration of the rest of the matching methods. The majority of them
were analyzed in this paper with empirical studies, trying to fix one of the main problems
observed in this respect in the literature: almost all the proposals were compared under
different configurations and without a standard. However, this task is very tedious due to
the fact that the papers do not provide all the details to achieve a perfect implementation
of the idea presented, especially the information related to the values of the parameters
employed.

In the theoretical slope, we realize that the usage of isolated minutiae for matching,
although is enough to achieve competitive performance, falls short in more complex scenarios.
This is the reason that justifies the fact of real life implementations of fingerprint systems
that fuse fingerprints with other traits or employ double fingerprint inputs. The world-
wide large scale deployment of fingerprint systems demands a new generation of accurate
and highly interoperable algorithms; therefore the development of minutiae-only matching
algorithms will not be abandoned for a long time.

In the practical slope, the experiments have shown that none of the features established in
the taxonomy can be considered as better than the others, and that the matching algorithms
work as a whole. The same algorithms have also been proven to perform differently in
different databases. Therefore, all the local structures, consolidations and features described
in the taxonomy can be useful for future developments, as the key of an accurate matching
algorithm is an adequate use of these parts and not the parts themselves. It has also been
noted that the difference in the identification time can be huge depending on the used
methods, especially for rolled fingerprints. When time is a limited resource, care must be
taken on choosing local structures and consolidations that are at most linear or quadratic
with respect to the number of minutiae.

26

As future research directions, we particularize the following ones:

• Biometric Fusion: the main advantage of fusion in the context of biometrics is an
improvement in the overall matching accuracy. This is commonly known as multi-
factor authentication and is considered more secure than using fingerprints alone as
these other factors have some of their own strengths. Combining fingerprints with other
biometric traits offers several advantages, such as the improvement of the universality
or the problems caused by the acquisition of poor quality images due to external
factors.

• Indexing and Big Data: as we mention in Section 4.2, the indexing is particularly
useful when large volumes of fingerprints are stored every day. Identification task in
large data bases could become in a real challenge for obtaining quick responses for each
query. The employment of Big Data solutions to fingerprint matching and indexing is
incoming in the near future.

• High quality images: in certain applications, it is possible to acquire high resolution
images in which at the very-fine level, intra-ridge details can be detected. These
include width, shape, curvature, edge contours of ridges as well as other permanent
details such as dots and incipient ridges. One of the most important fine-level details
is the finger sweat pores, whose positions and shapes are considered highly distinctive.

Acknowledgements

This work was supported by the Research Projects CAB(CDTI), TIN2011-28488, and
TIN2013-40765-P. D. Peralta holds an FPU scholarship from the Spanish Ministry of Edu-
cation and Science (FPU12/04902).

References

[1] C. Arcelli, G.S. di Baja, A width-independent fast thinning algorithm., IEEE Transactions on Pattern
Analysis and Machine Intelligence 7 (1985) 463–474.

[2] A. Balti, M. Sayadi, F. Fnaiech, Improved features for fingerprint identification, in: Proceedings of
the Mediterranean Electrotechnical Conference - MELECON, 2012, pp. 878–883.

[3] S. Bayram, H.T. Sencar, N. Memon, Efficient sensor fingerprint matching through fingerprint bina-
rization, IEEE Transactions on Information Forensics and Security 7 (2012) 1404–1413.

[4] A.M. Bazen, S.H. Gerez, Systematic methods for the computation of the directional fields and singular
points of fingerprints., IEEE Transations on Pattern Analysis and Machine Intelligence 24 (2002) 905–
919.

[5] A.M. Bazen, S.H. Gerez, Fingerprint matching by thin-plate spline modelling of elastic deformations.,
Pattern Recognition 36 (2003) 1859–1867.

[6] A. Bengueddoudj, S. Akrouf, F. Belhadj, D. Nada, Improving fingerprint minutiae matching using
local and global structures, in: 8th International Workshop on Systems, Signal Processing and Their
Applications, WoSSPA 2013, 2013, pp. 279–282.

[7] F. Benhammadi, M.N. Amirouche, H. Hentous, K. Bey-Beghdad, M. Aissani, Fingerprint matching
from minutiae texture maps., Pattern Recognition 40 (2007) 189–197.

27

[8] F. Benhammadi, K.B. Beghdad, H. Hentous, Fingerprint verification based on core point neighbour-
hoods minutiae, in: AICCSA 08 - 6th IEEE/ACS International Conference on Computer Systems and
Applications, 2008, pp. 530–536.

[9] F. Benhammadi, K.B. Bey, Embedded fingerprint matching on smart card, International Journal of
Pattern Recognition and Artificial Intelligence 27 (2013).

[10] B. Bhanu, X. Tan, Fingerprint indexing based on novel features of minutiae triplets, IEEE Transactions
on Pattern Analysis and Machine Intelligence 25 (2003) 616–622.

[11] P. Bhowmick, B.B. Bhattacharya, Approximate fingerprint matching using kd-tree., in: International
Conference on Pattern Recognition (ICPR (1)), 2004, pp. 544–s547.

[12] Z. Bian, D. Zhang, W. Shu, Knowledge-based fingerprint post-processing, International Journal of
Pattern Recognition and Artificial Intelligence 16 (2002) 53–67.

[13] S. Bistarelli, F. Santini, A. Vaccarelli, An asymmetric fingerprint matching algorithm for java card
tm, Pattern Analysis and Applications (2006) 359–376.

[14] J. Bohn, V. Despigel, Fingerprint skeleton matching based on local descriptor, in: IEEE 3rd Interna-
tional Conference on Biometrics: Theory, Applications and Systems, BTAS 2009, 2009.

[15] J. Bringer, V. Despiegel, Binary feature vector fingerprint representation from minutiae vicinities, in:
IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010,
2010.

[16] M.J. Burge, K.W. Bowyer, Handbook of Iris Recognition, Springer Publishing Company, Incorporated,
2013.

[17] K. Cao, X. Yang, X. Chen, X. Tao, Y. Zang, J. Liang, J. Tian, Minutia handedness: A novel global
feature for minutiae-based fingerprint matching., Pattern Recognition Letters 33 (2012) 1411–1421.

[18] K. Cao, X. Yang, X. Chen, Y. Zang, J. Liang, J. Tian, A novel ant colony optimization algorithm for
large-distorted fingerprint matching., Pattern Recognition 45 (2012) 151–161.

[19] K. Cao, X. Yang, X. Tao, P. Li, Y. Zang, J. Tian, Combining features for distorted fingerprint
matching, Journal of Network and Computer Applications 33 (2010) 258–267.

[20] K. Cao, X. Yang, X. Tao, Y. Zhang, J. Tian, A novel matching algorithm for distorted fingerprints
based on penalized quadratic model, in: IEEE 3rd International Conference on Biometrics: Theory,
Applications and Systems, BTAS 2009, 2009.

[21] K. Cao, X. Yang, J. Tian, Y. Zhang, P. Li, X. Tao, Fingerprint matching based on neighboring
information and penalized logistic regression, in: International Conference on Advances in Biometrics
(ICB), volume 5558 of Lecture Notes in Computer Science, 2009, pp. 617–626.

[22] R. Cappelli, Fast and accurate fingerprint indexing based on ridge orientation and frequency., IEEE
Transactions on Systems, Man, and Cybernetics, Part B 41 (2011) 1511–1521.

[23] R. Cappelli, M. Ferrara, A fingerprint retrieval system based on level-1 and level-2 features., Expert
Systems with Applications 39 (2012) 10465–10478.

[24] R. Cappelli, M. Ferrara, D. Maio, Candidate list reduction based on the analysis of fingerprint indexing
scores., IEEE Transactions on Information Forensics and Security 6 (2011) 1160–1164.

[25] R. Cappelli, M. Ferrara, D. Maio, A fast and accurate palmprint recognition system based on minutiae,
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42 (2012) 956–962.

[26] R. Cappelli, M. Ferrara, D. Maltoni, Minutia cylinder-code: A new representation and matching
technique for fingerprint recognition., IEEE Transactions on Pattern Analysis and Machine Intelligence
32 (2010) 2128–2141.

[27] R. Cappelli, A. Lumini, D. Maio, D. Maltoni, Fingerprint classification by directional image parti-
tioning., IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999) 402–421.

[28] C. Carvalho, H. Yehia, Fingerprint alignment using line segments., in: International Conference on
Biometric Authentication (ICBA), volume 3072 of Lecture Notes in Computer Science, Springer, 2004,
pp. 380–387.

[29] J.H. Cha, H. Jang, G.Y. Kim, H.I. Choi, Fingerprint matching based on linking information structure
of minutiae., in: International Conference on Computational Science and its Applications (ICCSA
(1)), volume 3043 of Lecture Notes in Computer Science, 2004, pp. 41–48.

28

[30] K.C. Chan, Y.S. Moon, P.S. Cheng, Fast fingerprint verification using subregions of fingerprint images,
IEEE Transactions on Circuits Systems and Video Technology 14 (2004) 95–101.

[31] A.C. Chau, C.P. Soto, Hybrid algorithm for fingerprint matching using delaunay triangulation and
local binary patterns, in: 16th Iberoamerican Congress on Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications (CIARP), volume 7042 of Lecture Notes in Computer
Science, 2011, pp. 692–700.

[32] F. Chen, X. Huang, J. Zhou, Hierarchical minutiae matching for fingerprint and palmprint identifica-
tion, IEEE Transactions on Image Processing 22 (2013) 4964–4971.

[33] K. Chen, A. Hu, Fingerprint matching using texture feature extracted from minutiae neighborhood,
in: Proceedings - 4th International Conference on Computational Intelligence and Communication
Networks, CICN 2012, 2012, pp. 322–326.

[34] X. Chen, J. Tian, J. Cheng, X. Yang, Segmentation of fingerprint images using linear classifier.,
EURASIP Journal of Advanced Signal Processing 4 (2004) 480–494.

[35] X. Chen, J. Tian, X. Yang, A new algorithm for distorted fingerprints matching based on normalized
fuzzy similarity measure., IEEE Transactions on Image Processing 15 (2006) 767–776.

[36] X. Chen, J. Tian, X. Yang, Y. Zhang, An algorithm for distorted fingerprint matching based on local
triangle feature set, IEEE Transactions on Information Forensics and Security 1 (2006) 169–177.

[37] J. Cheng, J. Tian, H. Chen, Fingerprint minutiae matching with orientation and ridge, in: Interna-
tional Conference on Biometric Authentication (ICBA), 2004, pp. 351–358.

[38] X. Cheng, S. Tulyakov, V. Govindaraju, Minutiae-based matching state model for combinations in
fingerprint matching system, in: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2013, pp. 92–97.

[39] S. Chikkerur, A.N. Cartwright, V. Govindaraju, K-plet and coupled BFS: A graph based fingerprint
representation and matching algorithm., in: International Conference on Biometrics (ICB), volume
3832 of Lecture Notes in Computer Science, 2006, pp. 309–315.

[40] S. Chikkerur, S. Pankanti, A. Jea, N.K. Ratha, R.M. Bolle, Fingerprint representation using localized
texture features., in: International Conference on Pattern Recognition (ICPR (4)), 2006, pp. 521–524.

[41] S. Chikkerur, N.K. Ratha, Impact of singular point detection on fingerprint matching performance.,
in: workshop on Automatic Identification Advanced Technologies, 2005, pp. 207–212.

[42] H. Choi, K. Choi, J. Kim, Fingerprint matching incorporating ridge features with minutiae., IEEE
Transactions on Information Forensics and Security 6 (2011) 338–345.

[43] V. Conti, G. Vitello, F. Sorbello, S. Vitabile, An advanced technique for user identification using
partial fingerprint, in: Proceedings of the 7th International Conference on Complex, Intelligent, and
Software Intensive Systems, CISIS 2013, 2013, pp. 236–242.

[44] J. Dai, J. Feng, J. Zhou, Robust and efficient ridge-based palmprint matching, IEEE Transactions on
Pattern Analysis and Machine Intelligence 34 (2012) 1618–1632.

[45] J. Demšar, Statistical comparisons of classifiers over multiple data sets, The Journal of Machine
Learning Research 7 (2006) 1–30.

[46] H. Deng, Q. Huo, Minutiae matching based fingerprint verification using delaunay triangulation and
aligned-edge-guided triangle matching, in: Proceedings of the 5th International Conference on Audio-
and Video-Based Biometric Person Authentication, AVBPA, 2005, pp. 270–278.

[47] K.C. Fan, C.W. Liu, Y.K. Wang, A randomized approach with geometric constraints to fingerprint
verification., Pattern Recognition 33 (2000) 1793–1803.

[48] G. Fang, S.N. Srihari, H. Srinivasan, P. Phatak, Use of ridge points in partial fingerprint matching,
in: SPIE: Biometric Technology for Human Identification IV, 2007.

[49] J. Feng, Combining minutiae descriptors for fingerprint matching., Pattern Recognition 41 (2008)
342–352.

[50] J. Feng, Z. Ouyang, A. Cai, Fingerprint matching using ridges, Pattern Recognition 39 (2006) 2131–
2140.

[51] M. Ferrara, D. Maltoni, R. Cappelli, Noninvertible minutia cylinder-code representation, IEEE Trans-
actions on Information Forensics and Security 7 (2012) 1727–1737.

29

[52] M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance,
Journal of the American Statistical Association 32 (1937) 675–701.

[53] Z. Gao, X. You, L. Zhou, W. Zeng, A novel matching technique for fingerprint recognition by graphical
structures, in: International Conference on Wavelet Analysis and Pattern Recognition, 2011, pp. 77–
82.

[54] S. Garćıa, F. Herrera, An extension on ”statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons, Journal of Machine Learning Research 9 (2008) 2677–2694.

[55] R. Garg, S. Rane, A keypoint descriptor for alignment-free fingerprint matching, in: ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2013, pp. 2994–
2998.

[56] J. Gu, J. Zhou, C. Yang, Fingerprint recognition by combining global structure and local cues, IEEE
Transactions on Image Processing 15 (2006) 1952–1964.

[57] H. Guesmi, H. Trichili, A.M. Alimi, B. Solaiman, Fingerprint verification system based on curvelet
transform and possibility theory, Multimedia Tools and Applications, in press. DOI: 10.1007/s11042-
013-1785-1 (2014) 1–20.

[58] Z. Guo, R.W. Hall, Parallel thinning with two-subiteration algorithms., Communications of the ACM
32 (1989) 359–373. Corrigendum: CACM 32(6): 759 (1989).

[59] P.D. Gutiérrez, M. Lastra, F. Herrera, J.M. Benitez, A high performance fingerprint matching system
for large databases based on GPU, IEEE Transactions on Information Forensics and Security 9 (2014)
62–71.

[60] H. Hasan, S.A. Kareem, Fingerprint image enhancement and recognition algorithms: a survey, Neural
Computing and Applications 23 (2013) 1605–1610.

[61] X. He, J. Tian, L. Li, Y. He, X. Yang, Modeling and analysis of local comprehensive minutia relation
for fingerprint matching, IEEE Transactions on Systems, Man, and Cybernetics, Part B 37 (2007)
1204–1211.

[62] Y. He, J. Tian, L. Li, H. Chen, X. Yang, Fingerprint matching based on global comprehensive simi-
larity, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006) 850–862.

[63] Y. He, J. Tian, X. Luo, T. Zhang, Image enhancement and minutiae matching in fingerprint verifica-
tion, Pattern Recognition Letters 24 (2003) 1349–1360.

[64] L. Hong, A. Jain, Integrating faces and fingerprints for personal identification, IEEE Transactions on
Pattern Analysis and Machine Intelligence 20 (1998) 1295–1307.

[65] L. Hong, Y. Wan, A. Jain, Fingerprint image enhancement: Algorithm and performance evaluation,
IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 777–789.

[66] K. Ito, H. Nakajima, K. Kobayashi, T. Aoki, T. Higuchi, A fingerprint matching algorithm using
phase-only correlation, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences E87-A (2004) 682–691.

[67] M.H. Izadi, L. Mirmohamadsadeghi, A. Drygajlo, Introduction of cylinder quality measure into minu-
tia cylinder-code based fingerprint matching, in: 2012 IEEE 5th International Conference on Biomet-
rics: Theory, Applications and Systems, BTAS 2012, 2012, pp. 353–358.

[68] A.K. Jain, Y. Chen, M. Demirkus, Pores and ridges: High-resolution fingerprint matching using level
3 features, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007) 15–27.

[69] A.K. Jain, J. Feng, Latent palmprint matching, IEEE Transactions on Pattern Analysis and Machine
Intelligence 31 (2009) 1032–1047.

[70] A.K. Jain, J. Feng, Latent fingerprint matching, IEEE Transactions on Pattern Analysis and Machine
Intelligence 33 (2011) 88–100.

[71] A.K. Jain, J. Feng, K. Nandakumar, Fingerprint matching, IEEE Computer 43 (2010) 36–44.
[72] A.K. Jain, L. Hong, R.M. Bolle, On-Line Fingerprint Verification, IEEE Transactions on Pattern

Analysis and Machine Intelligence 19 (1997) 302–314.
[73] A.K. Jain, S. Prabhakar, S. Chen, Combining multiple matchers for a high security fingerprint verifi-

cation system, Pattern Recognition Letters 20 (1999) 1371–1379.
[74] A.K. Jain, S. Prabhakar, L. Hong, A multichannel approach to fingerprint classification., IEEE Trans-

30

actions on Pattern Analysis and Machine Intelligence 21 (1999) 348–359.
[75] A.K. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based fingerprint matching, IEEE Trans-

actions on Image Proccessing 9 (2000) 846–859.
[76] A.K. Jain, A.A. Ross, K. Nandakumar, Introduction to Biometrics, Springer Publishing Company,

Incorporated, 2011.
[77] T.Y. Jea, V. Govindaraju, A minutia-based partial fingerprint recognition system, Pattern Recognition

38 (2005) 1672–1684.
[78] J. Jia, L. Cai, P. Lu, X. Liu, Fingerprint matching based on weighting method and the svm., Neuro-

computing 70 (2007) 849–858.
[79] R.M. Jiang, D. Crookes, Fpga-based minutia matching for biometric fingerprint image database re-

trieval, Journal of Real-Time Image Processing 3 (2008) 177–182.
[80] X. Jiang, M. Liu, A.C. Kot, Fingerprint retrieval for identification., IEEE Transactions on Information

Forensics and Security 1 (2006) 532–542.
[81] X. Jiang, W.Y. Yau, Fingerprint minutiae matching based on the local and global structures, in:

International Conference on Pattern Recognition (ICPR), 2000, pp. 6038–6041.
[82] X. Jiang, X. You, Y. Yuan, M. Gong, A method using long digital straight segments for fingerprint

recognition, Neurocomputing 77 (2012) 28–35.
[83] Y. Jie, Y. Yi fang, Z. Renjie, S. Qifa, Fingerprint minutiae matching algorithm for real time system,

Pattern Recognition 39 (2006) 143–146.
[84] A.T.B. Jin, D.N.C. Ling, O.T. Song, An efficient fingerprint verification system using integrated

wavelet and fourier-mellin invariant transform., Image and Vision Computing 22 (2004) 503–513.
[85] K. Karu, A.K. Jain, Fingerprint classification, Pattern Recognition 29 (1996) 389–404.
[86] M. Khalil, D. Muhammad, M. Khan, K. Alghathbar, Singular points detection using fingerprint

orientation field reliability., International Journal of Physical Sciences 5 (2010) 352–357.
[87] U.M. Khan, S.A. Khan, N. Ejaz, R.U. Rehman, A fingerprint verification system using minutiae and

wavelet based features, in: 2009 International Conference on Emerging Technologies, ICET 2009,
2009, pp. 291–296.

[88] H. Khazaei, A. Mohades, Fingerprint matching algorithm based on voronoi diagram, in: Proceedings
- The International Conference on Computational Sciences and its Applications, ICCSA 2008, 2008,
pp. 433–440.

[89] A. Kisel, A. Kochetkov, J. Kranauskas, Fingerprint minutiae matching without global alignment using
local structures, Informatica 19 (2008) 31–44.

[90] Z.M. Kovács-Vajna, A fingerprint verification system based on triangular matching and dynamic time
warping, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 1266–1276.

[91] J.V. Kulkarni, B.D. Patil, R.S. Holambe, Orientation feature for fingerprint matching., Pattern Recog-
nition 39 (2006) 1551–1554.

[92] R. Kumar, B.R.D. Vikram, Fingerprint matching using multi-dimensional ann., Engineering Applica-
tions of Artificial Intelligence 23 (2010) 222–228.

[93] D. Kwon, I.D. Yun, D.H. Kim, S.U. Lee, Fingerprint matching method using minutiae clustering and
warping., in: International Conference on Pattern Recognition (ICPR (4)), 2006, pp. 525–528.

[94] D. Lee, K. Choi, J. Kim, A robust fingerprint matching algorithm using local alignment., in: Interna-
tional Conference on Pattern Recognition (ICPR (3)), 2002, pp. 803–806.

[95] S. Lee, H. seung Choi, K. Choi, J. Kim, Fingerprint-quality index using gradient components., IEEE
Transactions on Information Forensics and Security 3 (2008) 792–800.

[96] P. Li, X. Yang, Q. Su, Y. Zhang, J. Tian, A novel fingerprint matching algorithm using ridge curvature
feature, in: International Conference on Advances in Biometrics (ICB), volume 5558 of Lecture Notes
in Computer Science, 2009, pp. 607–616.

[97] S. Li, A. Kot, Fingerprint combination for privacy protection, IEEE Transactions on Information
Forensics and Security 8 (2013) 350–360.

[98] X. Liang, T. Asano, Fingerprint matching using minutia polygons, International Conference on Pattern
Recognition (ICPR) 1 (2006) 1046–1049.

31

[99] X. Liang, A. Bishnu, T. Asano, A robust fingerprint indexing scheme using minutia neighborhood
structure and low-order delaunay triangles., IEEE Transactions on Information Forensics and Security
2 (2007) 721–733.

[100] C. Liu, J. Cao, X. Gao, X. Fu, J. Feng, A novel fingerprint matching algorithm using minutiae phase
difference feature, in: Proceedings - International Conference on Image Processing, ICIP, 2011, pp.
3201–3204.

[101] C. Liu, T. Xia, H. Li, A hierarchical hough transform for fingerprint matching., in: International
Conference on Biometric Authentication (ICBA), volume 3072 of Lecture Notes in Computer Science,
Springer, 2004, pp. 373–379.

[102] E. Liu, A.K. Jain, J. Tian, A coarse to fine minutiae-based latent palmprint matching, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 35 (2013) 2307–2322.

[103] F. Liu, Q. Zhao, D. Zhang, A novel hierarchical fingerprint matching approach, Pattern Recognition
44 (2011) 1604–1613.

[104] L. Liu, T. Jiang, J. Yang, C. Zhu, Fingerprint registration by maximization of mutual information,
IEEE Transactions on Image Processing 15 (2006) 1100–1110.

[105] M. Liu, P.T. Yap, Invariant representation of orientation fields for fingerprint indexing, Pattern Recog-
nition 45 (2012) 2532–2542.

[106] X. Luo, J. Tian, Knowledge based fingerprint image enhancement., in: International Conference on
Pattern Recognition (ICPR), 2000, pp. 4783–4786.

[107] X. Luo, J. Tian, Y. Wu, A minutia matching algorithm in fingerprint verification., in: International
Conference on Pattern Recognition (ICPR), 2000, pp. 4833–4836.

[108] D. Maio, D. Maltoni, Direct gray-scale minutiae detection in fingerprints, IEEE Transactions on
Pattern Analysis and Machine Inteligence 19 (1997) 27–40.

[109] D. Maio, D. Maltoni, Ridge-line density estimation in digital images, in: International Conference on
Pattern Recognition (ICPR(1)), 1998, pp. 534–538.

[110] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, A. Jain, FVC2000: fingerprint verification competition,
Pattern Analysis and Machine Intelligence, IEEE Transactions on 24 (2002) 402–412.

[111] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, A. Jain, FVC2004: Third fingerprint verification compe-
tition, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 3072 (2004) 1–7.

[112] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain, FVC2002: Second fingerprint verification
competition, in: Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 3,
2002, pp. 811–814.

[113] D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recognition, Springer Pub-
lishing Company, Incorporated, 2nd edition, 2009.

[114] K. Mao, G. Wang, C. Yu, Y. Jin, A novel multi-reference points fingerprint matching method, in:
International Conference on Advances in Multimedia Modeling (MMM), volume 5371 of Lecture Notes
in Computer Science, 2009, pp. 356–366.

[115] K. Mao, G. Wang, G. Yu, A novel fingerprint matching method by excluding elastic distortion, in:
International Conference on Database Systems for Advanced Applications (DASFAA), volume 4947
of Lecture Notes in Computer Science, 2008, pp. 348–363.

[116] M.A. Medina-Pérez, M. Garćıa-Borroto, A.E. Gutierrez-Rodŕıguez, L. Altamirano-Robles, Improving
fingerprint verification using minutiae triplets, Sensors 12 (2012) 3418–3437.

[117] M.A. Medina-Prez, A. Gutirrez-Rodrguez, M. Garca-Borroto, Improving fingerprint matching using
an orientation-based minutia descriptor, in: 14th Iberoamerican Conference on Pattern Recognition:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP), vol-
ume 5856 of Lecture Notes in Computer Science, 2009, pp. 121–128.

[118] P. Meenen, A. Ashrafi, R.R. Adhami, The utilization of a taylor series-based transformation in finger-
print verification., Pattern Recognition Letters 27 (2006) 1606–1618.

[119] P.I. Mistry, C.N. Paunwala, Fusion fingerprint minutiae matching system for personal identification, in:
4th International Conference on Computing, Communications and Networking Technologies, ICCCNT

32

2013, 2013.
[120] K.A. Nagaty, An adaptive hybrid energy-based fingerprint matching technique., Image and Vision

Computing 23 (2005) 491–500.
[121] K. Nandakumar, Fingerprint matching based on minutiae phase spectrum., in: International Confer-

ence on Biometrics (ICB), 2012, pp. 216–221.
[122] L. Nanni, A. Lumini, Local binary patterns for a hybrid fingerprint matcher, Pattern Recognition 41

(2008) 3461–3466.
[123] G.S. Ng, X. Tong, X. Tang, D. Shi, Adjacent orientation vector based fingerprint minutiae matching

system, in: International Conference on Pattern Recognition (ICPR (1)), 2004, pp. 528–531.
[124] K. Nilsson, J. Bigun, Localization of corresponding points in fingerprints by complex filtering, Pattern

Recognition Letters 24 (2003) 2135–2144.
[125] L. O’Gorman, J.V. Nickerson, An approach to fingerprint filter design., Pattern Recognition 22 (1989)

29–38.
[126] S. Pankanti, S. Prabhakar, A.K. Jain, On the individuality of fingerprints, IEEE Transactions on

Pattern Analysis and Machine Intelligence 24 (2001) 1010–1025.
[127] G. Parziale, A. Niel, A fingerprint matching using minutiae triangulation., in: International Conference

on Biometric Authentication (ICBA), volume 3072 of Lecture Notes in Computer Science, 2004, pp.
241–248.

[128] A.A. Paulino, J. Feng, A.K. Jain, Latent fingerprint matching using descriptor-based hough transform,
IEEE Transactions on Information Forensics and Security 8 (2013) 31–45.

[129] D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Benitez, F. Herrera, Minutiae filtering to
improve both efficacy and efficiency of fingerprint matching algorithms, Engineering Applications of
Artificial Intelligence 32 (2014) 37 – 53.

[130] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Benitez, Fast fingerprint identification for
large databases, Pattern Recognition 47 (2014) 588–602.

[131] V.N. Perminov, A.M. Fartukov, Method for fingerprint minutiae matching based on their alignment,
Pattern Recognition and Image Analysis 17 (2007) 631–638.

[132] J. Qi, Y. Wang, A robust fingerprint matching method, Pattern Recognition 38 (2005) 1665–1671.
[133] J. Qi, M. Xie, W. Wang, A novel fingerprint matching method using a curvature-based minutia

specifier, in: Proceedings - International Conference on Image Processing, ICIP, 2008, pp. 1488–1491.
[134] J. Qi, S. Yang, Y. Wang, Fingerprint matching combining the global orientation field with minutia,

Pattern Recognition Letters 26 (2005) 2424–2430.
[135] C.J. Ran, M. Xie, A new fingerprint matching method based on ridge tracing, in: Proceedings of the

2007 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR ’07, volume 3,
2007, pp. 402–407.

[136] N. Ratha, R. Bolle, V. Pandit, V. Vaish, Robust fingerprint authentication using local structural
similarity, in: Workshop on Applications of Computer Vision, 2000, pp. 29–34.

[137] N.K. Ratha, S. Chen, A.K. Jain, Adaptive flow orientation-based feature extraction in fingerprint
images., Pattern Recognition 28 (1995) 1657–1672.

[138] N.K. Ratha, K. Karu, S. Chen, A.K. Jain, A real-time matching system for large fingerprint databases.,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (1996) 799–813.

[139] K. Rerkrai, V. Areekul, A new reference point for fingerprint recognition., in: International Conference
on Image Processing (ICIP), 2000, pp. 499–502.

[140] A. Ross, S.C. Dass, A.K. Jain, A deformable model for fingerprint matching., Pattern Recognition 38
(2005) 95–103.

[141] A. Ross, A.K. Jain, J. Reisman, A hybrid fingerprint matcher., Pattern Recognition 36 (2003) 1661–
1673.

[142] L. Sha, X. Tang, Orientation-improved minutiae for fingerprint matching, in: Proceedings of the
Pattern Recognition, 17th International Conference on (ICPR) Volume 4, 2004, pp. 432–435.

[143] L. Sha, F. Zhao, X. Tang, Minutiae-based fingerprint matching using subset combination, in: Inter-
national Conference on Pattern Recognition (ICPR (4)), 2006, pp. 566–569.

33

[144] W. Sheng, G. Howells, M. Fairhurst, F. Deravi, K. Harmer, Consensus fingerprint matching with
genetically optimised approach, Pattern Recognition 42 (2009) 1399–1407.

[145] W. Sheng, G. Howells, M.C. Fairhurst, F. Deravi, A memetic fingerprint matching algorithm., IEEE
Transactions on Information Forensics and Security 2 (2007) 402–412.

[146] J. Shi, K.Y. Lam, Minucode: A fixed-value representation of fingerprint minutiae for biometric cryp-
tosystem, in: International Conference on Advances in Information Security and Assurance (ISA),
volume 5576 of Lecture Notes in Computer Science, 2009, pp. 382–391.

[147] Z. Shi, V. Govindaraju, Robust fingerprint matching using spiral partitioning scheme, in: International
Conference on Advances in Biometrics (ICB), volume 5558 of Lecture Notes in Computer Science, 2009,
pp. 647–655.

[148] F. Su, P. Sun, L. Wang, X. Xie, An efficient minutiae-based fingerprint matching algorithm for resource
constrained implementation, in: Proceedings - 2010 2nd IEEE International Conference on Network
Infrastructure and Digital Content, IC-NIDC 2010, 2010, pp. 214–218.

[149] V.A. Sujan, M.P. Mulqueen, Fingerprint identification using space invariant transforms., Pattern
Recognition Letters 23 (2002) 609–619.

[150] X. Tan, B. Bhanu, A robust two step approach for fingerprint identification, Pattern Recognition
Letters 24 (2003) 2127–2134.

[151] X. Tan, B. Bhanu, Fingerprint matching by genetic algorithms, Pattern Recognition 39 (2006) 465–
477.

[152] N.T.H. Thuy, H.X. Huan, N.N. Ky, An efficient method for fingerprint matching based on local
point model, in: International Conference on Computing, Management and Telecommunications,
ComManTel 2013, 2013, pp. 334–339.

[153] M. Tico, P. Kuosmanen, An algorithm for fingerprint image postprocessing, in: In Proceedings of the
Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, pp. 1735–1739.

[154] M. Tico, P. Kuosmanen, Fingerprint matching using an orientation-based minutia descriptor., IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (2003) 1009–1014.

[155] X. Tong, J. Huang, X. Tang, D. Shi, Fingerprint minutiae matching using the adjacent feature vector.,
Pattern Recognition Letters 26 (2005) 1337–1345.

[156] X. Tong, S. Liu, J. Huang, X. Tang, Local relative location error descriptor-based fingerprint minutiae
matching, Pattern Recognition Letters 29 (2008) 286–294.

[157] R. Udupa, G. Garg, P.K. Sharma, Fast and accurate fingerprint verification., in: International Confer-
ence on Audio and Video based Biometric Person Authentication (AVBPA), volume 2091 of Lecture
Notes in Computer Science, 2001, pp. 192–197.

[158] T. Uz, G. Bebis, A. Erol, S. Prabhakar, Minutiae-based template synthesis and matching for fingerprint
authentication, Computer Vision and Image Understanding 113 (2009) 979–992.

[159] K. Venkataramani, B.V.K.V. Kumar, Performance of composite correlation filters in fingerprint veri-
fication., Optical Engineering 43 (2004) 1820–1827.

[160] M.A. Wahby-Shalaby, M. Omair Ahmad, A multilevel structural technique for fingerprint representa-
tion and matching, Signal Processing 93 (2013) 56–69.

[161] D. Wan, J. Zhou, Fingerprint recognition using model-based density map, IEEE Transactions on
Image Processing 15 (2006) 1690–1696.

[162] C. Wang, G. Ding, Z. Zheng, Fingerprint matching combining the adjacent feature with curvature
of ridges, in: Proceedings of the World Congress on Intelligent Control and Automation (WCICA),
2008, pp. 6807–6810.

[163] W. Wang, J. Li, W. Chen, Fingerprint minutiae matching based on coordinate system bank and
global optimum alignment, in: International Conference on Pattern Recognition (ICPR (4)), 2006,
pp. 401–404.

[164] X. Wang, J. Li, Y. Niu, Fingerprint matching using orientationcodes and polylines., Pattern Recog-
nition 40 (2007) 3164–3177.

[165] C.I. Watson, M.D. Garris, E. Tabassi, C.L. Wilson, R.M. Mccabe, S. Janet, K. Ko, User’s Guide to
NIST Biometric Image Software (NBIS), Technical Report, NIST, 2010.

34

[166] H. Wei, M. Guo, Z. Ou, Fingerprint verification based on multistage minutiae matching., in: Interna-
tional Conference on Pattern Recognition (ICPR (2)), 2006, pp. 1058–1061.

[167] H. Wei, D. Liu, A multi-stage fingerprints matching algorithm, in: Proceedings of the 2009 IEEE
International Conference on Automation and Logistics, ICAL 2009, 2009, pp. 197–199.

[168] C.L. Wilson, C.I. Watson, E.G. Paek, Effect of resolution and image quality on combined optical and
neural network fingerprint matching., Pattern Recognition 33 (2000) 317–331.

[169] X. Xie, F. Su, A. Cai, Ridge-based fingerprint recognition., in: International Conference on Biometrics
(ICB), volume 3832 of Lecture Notes in Computer Science, 2006, pp. 273–279.

[170] X. Xie, F. Su, A. Cai, J. Sun, A robust fingerprint minutiae matching algorithm based on the support
model., in: International Conference on Biometric Authentication (ICBA), volume 3072 of Lecture
Notes in Computer Science, 2004, pp. 316–323.

[171] H. Xu, R.N.J. Veldhuis, T.A.M. Kevenaar, A.H.M. Akkermans, A fast minutiae-based fingerprint
recognition system., IEEE Systems Journal 3 (2009) 418–427.

[172] W. Xu, X. Chen, J. Feng, A robust fingerprint matching approach: Growing and fusing of local struc-
tures., in: International Conference on Biometrics (ICB), volume 4642 of Lecture Notes in Computer
Science, 2007, pp. 134–143.

[173] L. Xuzhou, Y. Fei, A new fingerprint matching algorithm based on minutiae, in: Proceedings of 2009
IEEE International Conference on Communications Technology and Applications, IEEE ICCTA2009,
2009, pp. 869–873.

[174] N. Yager, A. Amin, Fingerprint verification based on minutiae features: a review, Pattern Analysis
and Applications 7 (2004) 94–113.

[175] N. Yager, A. Amin, Fingerprint alignment using a two stage optimization., Pattern Recognition Letters
27 (2006) 317–324.

[176] J. Yang, S. Xie, S. Yoon, D. Park, Z. Fang, S. Yang, Fingerprint matching based on extreme learning
machine, Neural Computing and Applications 22 (2013) 435–445.

[177] W. Yang, J. Hu, M. Stojmenovic, Ndtc: A novel topology-based fingerprint matching algorithm
using n-layer delaunay triangulation net check, in: Proceedings of the 2012 7th IEEE Conference on
Industrial Electronics and Applications, ICIEA 2012, 2012, pp. 866–870.

[178] Y. Ying, H. Zhang, X. Yang., A method based on delaunay triangulation for fingerprint matching.,
in: SPIE Conference on Biometric Technology for Human Identification II, 2005.

[179] K.D. Yu, S. Na, T.Y. Choi, A fingerprint matching algorithm based on radial structure and a structure-
rewarding scoring strategy., in: International Conference on Audio- and Video-based Biometric Person
Authentication (AVBPA), volume 3546 of Lecture Notes in Computer Science, 2005, pp. 656–664.

[180] T.Y. Zhang, C.Y. Suen, A fast parallel algorithm for thinning digital patterns, Communications of
the ACM 27 (1984) 236–239.

[181] W. Zhang, Y. Wang, Core-based structure matching algorithm of fingerprint verification, in: Interna-
tional Conference on Pattern Recognition (ICPR (1)), 2002, pp. 70–74.

[182] Y. Zhang, X. Yang, Q. Su, J. Tian, Fingerprint recognition based on combined features., in: Interna-
tional Conference on Biometrics (ICB), volume 4642 of Lecture Notes in Computer Science, 2007, pp.
281–289.

[183] D. Zhao, F. Su, A. Cai, Fingerprint registration using minutia clusters and centroid structure, in:
International Conference on Pattern Recognition (ICPR (4)), 2006, pp. 413–416.

[184] F. Zhao, X. Tang, Preprocessing and postprocessing for skeleton-based fingerprint minutiae extrac-
tion., Pattern Recognition 40 (2007) 1270–1281.

[185] X. Zhao, X. Zhang, G. Zhao, X. Li, K. Zhang, R. Qian, Triangle matching combined with singular fea-
tures in fingerprints, in: Proceedings 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer, MEC 2011, 2011, pp. 2069–2072.

[186] J.D. Zheng, Y. Gao, M.Z. Zhang, Fingerprint matching algorithm based on similar vector triangle, in:
Proceedings of the 2009 2nd International Congress on Image and Signal Processing, CISP’09, 2009.

[187] X. Zheng, Y. Wang, Fingerprint matching based on ridge similarity, in: ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, 2008, pp. 1701–1704.

35

[188] W.B. Zhong, X.B. Ning, C.J. Wei, A fingerprint matching algorithm based on relative topological
relationship among minutiae, in: 2008 IEEE International Conference Neural Networks and Signal
Processing, ICNNSP, 2008, pp. 225–228.

[189] E. Zhu, J. Yin, G. Zhang, Fingerprint matching based on global alignment of multiple reference
minutiae, Pattern Recognition 38 (2005) 1685–1694.

36

2 Minutiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Algorithms 71

2 Minutiae Filtering to Improve Both Efficacy and Efficiency of
Fingerprint Matching Algorithms

• D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Beńıtez, F. Herrera. Minu-
tiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Al-
gorithms. Engineering Applications of Artificial Intelligence, 32 (2014) 37–53. doi:
10.1016/j.engappai.2014.02.016

– Status: Published.

– Impact Factor (JCR 2014): 2.207

– Subject Category: Automation & Control Systems Science. Ranking 16 / 58 (Q2).

– Subject Category: Computer Science, Artificial Intelligence. Ranking 30 / 123 (Q1).

– Subject Category: Engineering, Multidisciplinary. Ranking 12 / 85 (Q1).

– Subject Category: Engineering, Electrical & Electronic. Ranking 51 / 249 (Q1).

Minutiae Filtering to Improve Both Efficacy and
Efficiency of Fingerprint Matching Algorithms

Daniel Peraltaa, Mikel Galarb, Isaac Trigueroa, Oscar Miguel-Hurtadoc, Jose M.
Beniteza, Francisco Herreraa

aDepartment of Computer Science and Articial Intelligence, CITIC-UGR (Research Center on
Information and Communications Technology), University of Granada, 18071 Granada, Spain

bDepartment of Automatics and Computation, Universidad Pública de Navarra, 31006
Pamplona, Spain

cInstituto Cientı́fico de Innovación y Tecnologı́as Aplicadas (INCITA), R and D Department,
C/Santa Leonor 65, Bloque C, Planta 2, 28037 Madrid, Spain

Abstract

Fingerprint minutiae extraction is a critical issue in fingerprint recognition. Both
missing and spurious minutiae hinder the posterior matching process. Spurious
minutiae are more frequent than missing ones, but they can be removed by post-
processing. In this work, we study the usage of a state-of-the-art minutiae ex-
tractor, MINDTCT, and we analyze its major drawback: the presence of spurious
minutiae lying on the borders of the fingerprint and out its area. In order to over-
come this problem, we use two different filtering approaches based on the convex
hull of the minutiae and the segmentation of the fingerprint. We will analyze,
supported by an exhaustive experimental study, the efficacy of these methods to
remove spurious minutiae. We will evaluate both the effect on different state-of-
the-art matchers and the goodness of the minutiae, by comparing the extracted
minutiae with the ground-truth ones. For this purpose, the experiments have been
performed on several databases of both real and synthetic fingerprints. The filters
used allow us to remove spurious minutiae, resulting in more accurate results even
in the case of robust matchers. The EER is improved up to 2% for good quality
databases, and up to 25% for FVC databases. Additionally, the matching time
is accelerated, since less minutiae are processed, attaining up to a 60% runtime
reduction for the tested database.

Keywords: Fingerprint recognition, Minutiae filtering, Fingerprint segmentation,
Fingerprint enhancement

Preprint submitted to Engineering Applications of Artificial Intelligence June 21, 2016

1. Introduction

Fingerprints are the most used features for biometric identification. Finger-
prints are present on the surface of fingertips and they are patterns formed of
ridges and valleys. Their individuality, which is determined by the local ridge
characteristics and their relationships (Hong et al., 1998), makes them appropri-
ate for identification purposes, since each individual has unique fingerprints. The
characteristics or features of a fingerprint are usually classified into three levels
(Maltoni et al., 2009; Feng and Jain, 2011):

• Level 1 (Global) refers to the global ridge line flow (orientations) and the
features derived from it (singular points).
• Level 2 (Local) considers minutiae details extracted from the ridge skeleton.
• Level 3 (Fine-detail) includes intra-ridge details such as width, shape, ridge

contours, sweat pores, creases, etc.

Level 2 features (minutiae) are the most commonly used ones for fingerprint
matching (Jiang and Yau, 2000; Deng and Huo, 2005; Chen et al., 2006; Cap-
pelli et al., 2010), that is, to check whether two fingerprints belong to the same
individual. Notice that neither Level 1 features nor Level 3 features are usually
considered for matching. The former ones because their distinctiveness is not suf-
ficient to accurately perform the matching, whereas the latter ones because they
require high quality fingerprints, which are not usually available.

In the last years, fingerprint recognition has acquired a big importance due
to its advantages for identifying people, but there are also legal concerns about
its use. One of the hot topics in research is the encoding of fingerprints, which
seeks to store the fingerprint in the database in a template format from which the
original image cannot be retrieved. There are many minutiae-based algorithms
that perform this task (Lee and Kim, 2010; Ahmad et al., 2011).

A minutia is defined as a local discontinuity in the fingerprint pattern (ridge
skeleton). Many minutiae types can be found in fingerprints, but only two of
them are considered by most of the Automatic Fingerprint Identification Systems
(AFISs): ridge endings and ridge bifurcations. The usage of minutiae provides
several advantages to the matching process: they are distinctive, compact and
human experts also use them to match fingerprints. Nevertheless, the extraction of
minutiae from fingerprint images is a difficult task (Maio and Maltoni, 1997; Hong
et al., 1998). Moreover, the difficulty increases as the quality of the fingerprint is
degraded.

2

As a consequence, minutiae extraction becomes a key component in the de-
velopment of AFISs (Ratha and Bolle, 2004; Maltoni et al., 2009). Two differ-
ent types of errors can be attributed to these methods: missing minutiae (non-
detected real minutiae) and spurious minutiae (non-existing detected minutiae).
Such errors might be produced by poor-quality images, but also due to creases
or scars in the fingerprint pattern. In addition to these errors, the quality of the
minutiae should also be assessed, that is, how close are the estimated minutiae
positions and angles from the real minutiae ones (Ratha et al., 1995; Gao et al.,
2010). Regarding erroneous minutiae, a missing minutia can only be recovered
(detected) improving the minutiae extraction method; otherwise, a spurious minu-
tiae can be detected and removed from the minutiae set by post-processing tech-
niques (Chikkerur et al., 2005).

This post-processing step is of great importance, since a large number of spu-
rious minutiae are usually detected on poor-quality fingerprints, whereas the num-
ber of correct minutiae detected might be enough to perform a successful matching
(around 12 correctly matched minutiae are usually sufficient to claim the individu-
ality of a fingerprint (Dass, 2010)). The removal of spurious minutiae, maintaining
the correct ones, improves the results of the matching process (Hong et al., 1998).

In this paper, we focus on the well-known MINDTCT minutiae extractor,
which is provided with NBIS software package (Watson et al., 2010). Our aim
is to study the behavior of two different approaches to remove borderline minu-
tiae and thus enhance the minutiae set given by MINDTCT: the usage of the con-
vex hull formed by the minutiae and a segmentation-based approach (presented in
Section 3). In this manner, we have a two-fold objective:

• First, we aim to improve the minutiae set obtained by MINDTCT eliminat-
ing the spurious borderline minutiae, using the two mentioned approaches.
Then, we will compare the quality of the original and the filtered minutiae
sets to validate the studied post-processing mechanisms.
• Second, we will investigate the influence of the spurious minutiae on several

matching methods to show that an adequate post-processing can be effec-
tive to enhance the results obtained in AFISs. More specifically, we will
show that robust methods are not severely affected by spurious minutiae in
terms of accuracy, whereas simpler ones can be highly influenced by their
presence. Furthermore, reducing the number of minutiae the computational
complexity of the matching is reduced, obtaining faster matching times,
which are also evaluated in this paper.

3

In order to carry out these objectives, we have developed an exhaustive exper-
imental study, where we aim to evaluate both the quality of the minutiae extracted
(with and without filtering) and the effect of the filtering methods in different
state-of-the-art matching methods (both in terms of accuracy and complexity). In
total, twelve databases of three different types have been evaluated: five databases
artificially generated with SFinGe (Cappelli et al., 2004; Maltoni et al., 2009), six
databases from the FVC competitions, and one database captured by the authors’
research groups. The parallel architecture presented in (Peralta et al., 2014) has
been used to allow the execution of huge amounts of matches in a reasonable time.
We will show that almost 75% of the spurious minutiae detected by MINDTCT
can be removed by an adequate post-processing, highly reducing the error rates of
the matchers (the reduction varies depending on their robustness) and their execu-
tion times.

The rest of the paper is organized as follows. In Section 2.1, we recall sev-
eral related works to minutiae filtering and quality evaluation. In Section 2.2,
we describe the quality measures used in this paper. In Section 3, we present
two different post-processing methods for borderline minutiae filtering. The ex-
perimental framework used to develop the experiments is presented in Section 4.
Next, Section 5 presents the experimental study carried out to evaluate both the
quality of the minutiae and the performance of the matching methods. Finally,
Section 6 concludes the paper and presents some future research lines based on
the obtained results.

2. Fingerprint minutiae

In this section, we first recall some related works to minutiae extraction and
post-processing. Next, we review some metrics already used to assess the quality
of the extracted minutiae with respect to the ground-truth ones.

2.1. Minutiae extraction in AFISs
Two types of minutiae detection algorithms can be found in the specialized

literature depending on how they deal with the fingerprint image. Binarization-
based methods (Jain et al., 1997; Watson et al., 2010) carry out a binarization
process followed by the thinning of the obtained image, producing a new image
from which the minutiae can be easily extracted. Thus, errors in both phases bring
along the detection of spurious minutiae. Otherwise, gray-level intensities-based
methods (Maio and Maltoni, 1997; Jiang et al., 2001) directly extract the minutiae
from the gray-scale image without requiring to pre-process the image. Although

4

the pre-processing is avoided, these methods also produce spurious minutiae in
low quality fingerprints. Hence, independently of the method used to extract the
minutiae, two types of errors can be produced, as we have previously mentioned:
spurious and missing minutiae.

Focusing on the spurious minutiae, post-processing techniques can be con-
sidered in order to prune them. Two different approaches can be found in the
literature (Chikkerur et al., 2005; Maltoni et al., 2009):

1. Structural post-processing: heuristics based on the relative location and the
length of the ridges, among other structural information, are used to remove
minutiae (Jiang et al., 2001). These rules are usually strongly related to the
minutiae extraction algorithm. For example, in Xiao and Raafat (1991), a
number of structures resulting from the thinning of the image leading to
spurious minutiae were identified and different heuristics were proposed
to eliminate such minutiae. In Hung (1993) and Zhao and Tang (2007),
the authors take advantage of the duality property of the ridge endings and
bifurcations using the negative and positive gray-level images to detect and
prune minutiae.

2. Filtering based on gray-level: the gray-scale values in the neighborhood of
the minutiae are used to verify the minutiae. Most of these approaches rely
on previously labeled spurious and correct minutiae to train a classifier able
to decide whether each minutia is spurious or not. In Prabhakar et al. (2000),
the gray-scale values are directly used to train a Learning Vector Quantifier
classifier. Neural networks are used in Maio and Maltoni (1998), Santhanam
et al. (2007) and Kumar and Deva Vikram (2010) to learn to filter minutiae
with different pre-processing steps and features to represent the minutiae as
the input for the classifier.

MINDTCT extracts the minutiae from an input image following six steps: 1)
generation of image maps, 2) binarization of the image, 3) detection of the initial
minutiae set, 4) removal of spurious minutiae, 5) ridge counting between neigh-
boring minutiae and 6) assessment of the minutiae quality. Both the 4th and the 6th

steps are related to minutiae post-processing. The former aims to remove spurious
minutiae by structural post-processing, whereas the latter assigns a quality index
to each minutia, which allows for further processing of the minutiae. However, de-
spite these processes, a certain number of spurious minutiae are still present in the
extracted minutiae set, as it can be observed in Figure 1. Observe that most of the
spurious minutiae lie on the border between the fingerprint and the background.

Although we are centering our attention on MINDTCT, we should notice that

5

there are several minutiae extractors in the literature (Maio and Maltoni, 1997;
Jain et al., 1997; Gao et al., 2010), but MINDTCT is still competitive, despite a
number of spurious minutiae are detected (Dass, 2010).

Figure 1: Ground-truth (marked with green crosses) and extracted (drawn as red circles) minutiae.

2.2. Minutiae Quality Evaluation
Minutiae quality can be understood in two ways. It can be related to the con-

fidence of the minutiae extractor algorithm on the extracted minutia. In this case,
the quality might help the matching process to reject fingerprints, remove low
quality minutiae or assign weights depending on the quality. The quality given to
each minutia by MINDTCT is an example of this type of quality. In MINDTCT
the quality is assigned depending on the gray-level of the pixels in the neighbor-
hood of the minutiae and on the local quality assigned to the minutiae location
(quality map). However, this quality is not adequate by itself for post-processing,
since low quality is assigned to areas near singular points, even though the minu-
tiae are correctly detected. This fact will be clearly shown carrying out several
experiments using the quality as filtering criterion (Section 5).

In this paper, we refer to minutiae quality (and its evaluation) as the quality of
the minutiae obtained with respect to the ground-truth ones. However, obtaining
ground-truth minutiae is a very difficult task. For this reason, we take advantage
of the SFinGe software tool (Cappelli et al., 2004; Maltoni et al., 2009), which

6

generates realistic synthetic fingerprints, allowing a straightforward evaluation of
AFISs. Moreover, since the fingerprints are generated from minutiae, the ground-
truth minutiae become available (among other interesting ground-truth data) and
hence, it makes possible to properly evaluate the performance of minutiae post-
processing methods and to observe their influence on different matching algo-
rithms. Furthermore, the experiments carried out with SFinGe are easily repro-
ducible by other researchers using the same parameters for the generation process,
which are provided in Section 4. In addition, we carry out an indirect evaluation of
the minutiae in the fingerprint verification and identification problem considering
databases from the FVC and a real one.

In the specialized literature the Goodness Index (GI) has been considered to
measure the quality of minutiae with respect to the ground-truth ones (Hong et al.,
1998; Zhao and Tang, 2002). The GI combines the number of correctly detected
minutiae (paired with ground-truth minutiae, P), the number of spurious minu-
tiae (S) and the number of missing minutiae (M) in a unique value, easing the
comparison between different methods. Its computation is shown in Equation 1,
where T is the total number of ground-truth minutiae. Notice that for the minutiae
pairing a tolerance box centered around each ground-truth minutia is used (in our
experiments this box is a 10 pixels radius circle). The maximum value of GI is 1,
meaning that all ground-truth minutiae are correctly paired with the corresponding
detected minutiae and there are no missing minutiae (P = T and M = S = 0).
Hence, the greater the GI is, the greater the quality of the detected minutiae is.

GI =
P −M − S

T
(1)

Besides from the GI, other metrics to quantify the quality of the minutiae have
been used in the literature. That is the case of the True Positive Rate (TPR) and the
Positive Predictive Value (PPV). The TPR is the percentage of correctly detected
minutiae with respect to the number of ground-truth minutiae (TPR = P/T =
P/(P +M)), whereas the PPV is the percentage of correctly detected minutiae
among all the minutiae detected (PPV = P/(P+S)). Hence, the former is related
to the number of missing minutiae, whereas the latter is related to the number of
spurious minutiae.

In addition to these measures quantifying the accuracy of the minutiae, in the
sense that they measure the proportion of correctly detected minutiae, we propose
other metrics in Section 4.3.1 to measure, among the correctly detected minutiae,
how close are the localization and the orientation estimations of the minutiae with
respect to the corresponding ground-truth ones. This measurement is interesting in

7

order to analyze the deviations produced by the minutiae extractors. Reasonably,
if a minutia is correctly detected but its localization or angle difference is large,
the extracted minutiae can be considered as spurious, whereas the real one can be
considered as missing.

3. Post-processing Methods for Borderline Minutiae Filtering

In this section we describe two alternatives for minutiae filtering. The former
uses a convex hull approach to find spurious minutiae (Section 3.1), whereas the
latter considers the segmentation of the fingerprint to filter the minutiae in the
borders (Section 3.2).

3.1. Convex hull-based filtering
The convex hull of a set of points S is defined as the convex polygon that

contains all the elements of S with the smallest area. Figure 2 depicts an example
of the convex hull for a set of points. It shows the concept of convex hull as the
analogy of an elastic-band that surrounds the complete set S and then is released,
so that the enclosed points form the convex hull.

Figure 2: Convex hull example. Elastic-band analogy.

This idea has been widely used in the specialized literature as a simple, but
efficient, mechanism to remove spurious minutiae (Wen and Guo, 2009; Cappelli
et al., 2010). In this work, we implement the convex hull idea in conjunction with
the quality assessment mechanism of MINDTCT, providing an intuitive way to
filter the minutiae set.

A minutia mi is formed by four components (xi, yi, θi, qi), where:

• (xi, yi) are the coordinates in the fingerprint image.
• θi is the orientation or minutia angle.

8

• qi refers to the quality of the minutia.

Thus, after the minutiae detection process accomplished by MINDTCT, a fin-
gerprint F can be represented as a vector of r minutiae m = {m1,m2, ...,mr}.
To determine which minutiae of a given fingerprint F are susceptible of being
spurious, we focus on their coordinates xi and yi and their quality qi (with i ∈
{1, . . . , r}).

Figure 3: Example of minutiae triplet in the Graham’s scan algorithm. In this case, the minutiae
mi does not belong to the convex hull.

Initially, the convex hull of the fingerprint minutiae set is calculated using the
Graham’s scan algorithm (Graham, 1972). This algorithm places a random point
Pg among the minutiae, and converts their coordinates to polar. Then, the minutiae
are ordered by their newly calculated polar angle. The minutiae are grouped in
triplets according to their order, forming triangles as depicted in Figure 3. The
minutiae mi belongs to the convex hull if and only if α + β < π. The process
is repeated for all triplets, obtaining the set of minutiae that form the convex hull
(mCH).

Then, minutiae in mCH with their quality lower than the threshold φ are in-
cluded in the set of candidate spurious minutiae ms. These minutiae are removed
from the original minutiae set m. If the resulting set has at least rmin minutiae,
it is taken as the final filtered minutiae set. Otherwise, the information loss is
considered too high and the filtering is not applied. Note that if φ is set to the
maximum quality value (100), the algorithm will remove all the minutiae in the
convex hull.

The main highlights of the convex hull approach are its simplicity and intu-
itiveness. The convex hull can be very easily superposed to the fingerprint image,

9

and the correctness of the filtered minutiae can be visually checked. As for the
computational impact, our implementation has the complexity of the Graham’s
scan algorithm, which is of O(n log n), with n being the number of minutiae of
the fingerprint. Thus, the convex hull computation is reasonably fast.

However, this method has some drawbacks. The most important one is that it
is very sensitive to image translations, as it can be clearly observed in Figure 4,
which shows two captures of the same fingerprint. The fingerprint in Figure 4a is
correctly centered, and the convex hull is correctly detected, including most of the
image spurious minutiae. Otherwise, the fingerprint in Figure 4b is translated and
many of the minutiae that lie on the image borders are not spurious. The usage of
the MINDTCT quality parameter that we propose intends to reduce the impact of
this kind of translations. However, the quality assignment process of MINDTCT
assigns low qualities to the minutiae near the image borders, even when they are
correctly detected, and this may difficult the filtering process.

(a) (b)

Figure 4: Convex hull of two captures of the same fingerprint.

3.2. Segmentation-based filtering
This method consists of detecting the fingerprint area in the image, that is, to

define a segmentation mask for the fingerprint. Once the mask is defined, all the
minutiae that were detected out of the fingerprint region or near the borders are

10

deleted. In such a way, we aim to decrease the number of spurious minutiae while
maintaining the number of correctly detected ones.

The segmentation process combines the concepts presented in Ratha et al.
(1995); Hong et al. (1998); Bazen and Gerez (2001). A fingerprint image usually
has two well-differentiated areas: the background and the fingerprint itself. In
the former there are usually low variations of the gray-level intensities, since it
tends to be homogeneous (although the intensity may vary and can be different
depending on the device used). In opposite, the latter presents a high variance of
gray-level intensities due to the presence of ridges and valleys. On this account, an
effective methodology for fingerprint segmentation can be developed considering
the local variance (block-wise variance) of the pixel intensity values.

The operating procedure of the whole algorithm is presented hereafter:

1. Normalization: A desired mean M0 and variance V0 for the fingerprint im-
age are established. The image is then normalized in such a way that its
mean and variance take valuesM0 and V0, respectively. This pre-processing
reduces the gray-level variations along ridges and valleys, which facilitates
further processing. In our case, this phase allows us to set a global thresh-
old for all the images. Normalization is a pixel-wise operation in which a
new image Inorm is created starting from the original image I (with original
mean and variance M and V , respectively) as follows.

Inorm(i, j) =

M0 +

√
V0·(I(i,j)−M)2

V
if I(i, j) > M

M0 −
√

V0·(I(i,j)−M)2

V
otherwise.

(2)

2. Block-wise variance computation: The gray-level variance of each block in
the normalized image is computed (blocks of 8 × 8 pixels are used in our
experiments).

3. Thresholding: Each block is assigned to the background or to the fingerprint
depending on its variance following a global threshold (Tv). Blocks with
variance greater than the threshold belong to the fingerprint, whereas the
rest are assigned to the background.

4. Refinement: In order to obtain a unique fingerprint area, three iterations of
hole filling are carried out, where blocks discordant with more than half
of its 8-neighbors are changed. Then, an erosion process is performed to
ensure that the fingerprint region does not contain any background zone.

After carrying out the segmentation of the fingerprint, all the minutiae lo-
cated on blocks belonging to the background and whose quality is lower than φ

11

are pruned. In addition to these minutiae, those lying on the borderline blocks,
that is, in blocks having a background block in its 8-neighborhood, are also re-
moved. An example of the application of this process to the minutiae obtained us-
ing MINDTCT algorithm can be shown in Figure 5. The shaded area corresponds
to the background detected by the segmentation algorithm. We can observe that
the studied method has effectively removed a great amount of spurious minutiae
lying on the borders of the fingerprint.

Figure 5: Minutiae detected by MINDTCT algorithm and filtered by the segmentation-based ap-
proach. Blue means low quality and red means high quality.

4. Experimental Framework

In this section, we show the main aspects related to the experimental setup
that we will use in this work. Section 4.1 details the databases used. Section 4.2
summarizes the methods used in this study with their respective parameters. Fi-
nally, Section 4.3 describes the performance measures needed to provide a faithful
comparison of the obtained results.

4.1. Databases
This section describes the 12 databases used for this study, grouped into three

categories: 5 SFinGe-generated (Section 4.1.1), 6 FVC databases (Section 4.1.2)
and a real database captured by the authors (Section 4.1.3).

12

4.1.1. SFinGe databases
To evaluate the efficacy of the analyzed minutiae filtering techniques we will

use the SFinGe tool (Cappelli et al., 2004; Maltoni et al., 2009) to generate five
synthetic databases with different sizes. This software allows us to control the
quality and other features of the generated fingerprints. In order to make the
generation process reproducible, Table 1 shows the configuration parameters of
the SFinGe tool that we have used to generate the databases. These parameters
have been selected aiming to obtain realistic fingerprints that offer a wide range
of image qualities, including very low quality fingerprints with highly corrupted
areas.

Scanner parameters
Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm).
Resolution: 500 dpi, Image size: 288 x 384.
Background type: Optical, Background noise: Default.
Crop borders: 0 x 0.
Generation parameters
Impression per finger: 25. Class distribution: Natural.
Set all distributions as: “Varying quality and perturbations”
Generate pores: enabled, Save ISO templates: enabled.
Output settings
Output file type: WSQ.

Table 1: Parameter specification used with SFinGe tool.

In the five databases, we have generated 25 impressions of each fingerprint.
For each fingerprint, we have to differentiate between template and input impres-
sions. In order to perform a more real setup, we carry out an enrolment process
in the synthetic databases. This process selects a good quality impression as tem-
plate, ensuring a minimum of 40 ground-truth minutiae. In case that all 25 impres-
sions have less than 40 minutiae, the sample with the highest number of minutiae
is taken as template. The remaining 24 samples are considered as input finger-
prints. Table 2 presents the characteristics of the databases generated, showing
the size of the databases and the average number of ground-truth minutiae of the
template and input fingerprints.

4.1.2. FVC databases
In order to get the most realistic behavior, we have only taken those FVC

databases that contain real fingerprints. Thus, we have used DB1A and DB2A
from FVC2000 (Maio et al., 2002a), FVC2002 (Maio et al., 2002b) and FVC2004 (Maio
et al., 2004), making a total of six real databases, whose main features are de-
scribed in Table 2.

13

Denomination Number of Impressions Average template Average input
Fingerprints per finger minutiae number minutiae number

BD1 1000 25 40.79 36.84
BD2 1000 25 40.90 36.79
BD3 1000 25 41.29 37.28
BD4 2000 25 40.84 36.81
BD5 5000 25 40.97 36.98
FVC2000 db1a 100 8 49.51 48.93
FVC2000 db2a 100 8 58.43 57.97
FVC2002 db1a 100 8 53.11 49.69
FVC2002 db2a 100 8 61.87 56.93
FVC2004 db1a 100 8 49.01 62.84
FVC2004 db2a 100 8 64.45 64.19
Captured 1530 9 44.63 45.92

Table 2: Summary description of the databases.

4.1.3. Captured database
To complete this study, the experiments have been repeated with a database

of real fingerprints, which have been captured by the authors’ research groups in
three different cities. The fingerprints have been captured with an optical sensor
(SecuGen Hamster Plus), and belong to the thumb, forefinger and middle finger of
both hands of 356 people. The captures were taken within three different sessions,
between two and three weeks apart, obtaining two template images and twelve test
images (four per session) per fingerprint.

After removing failed captures and selecting a single random template image
and three random test images per finger and per session, the final database is
formed by 1530 template fingerprints and 13770 input fingerprints, whose overall
statistics are shown in Table 2.

4.2. Algorithms and configuration of the parameters
Minutiae-based matching algorithms can work at different levels with the

minutiae sets, comparing small groups of them (local approaches), using the whole
minutiae sets (global approaches) and combining both philosophies (hybrid ap-
proaches). In this work, we will use four well-known minutiae-based matchers:
Jiang (Jiang and Yau, 2000), Deng (Deng and Huo, 2005), Chen (Chen et al.,
2006) and MCC (Cappelli et al., 2010). These matchers are briefly describe here-
after:

• Jiang’s algorithm is a classical hybrid matching algorithm in which each
minutia is represented with a feature vector that is related with its neigh-
boring minutiae. Thus, the most similar pair of feature vectors should

14

correspond to the same minutia, and the remaining minutiae are globally
matched, obtaining the similarity score.
• Deng’s algorithm also presents a hybrid approach, but is based on the minu-

tiae graph triangulation. Once the triangle set of each fingerprint is com-
puted using the Delaunay triangulation, the algorithm calculates the global
score associated to each triangle pair. The final score is the maximum global
score.
• Chen’s method is local and focuses on getting robustness despite of the

fingerprint distortion. It calculates a local topology for each minutia with a
fixed radius. Then, it compares local topologies of fingerprints to establish
the similarity. If they are similar enough, it includes a second comparison
with a higher radius, aiming to avoid image distortion problems.
• MCC uses both local and global information to perform the matching, build-

ing tridimensional data structures (called cylinders) from minutiae distances
and angles. This method includes its own filtering process that is based on
the convex hull idea. In our experiments we will test two versions of this
algorithm depending on the cylinder’s size (8 and 16), disabling its own
filtering process when it is used in combination with the analyzed filtering
methods to avoid a double removing stage. We will call these modified vari-
ants MCC8n and MCC16n, to distinguish them from the original algorithm
with the embedded filtering method.

Algorithm Parameters Reference
Mindtct output format = ANSI INCITS 378-2004, image enhancement = enabled (Watson et al., 2010)
Convex hull rmin = 12 Section 3.1
Segmentation M0 = 100, V0 = 1000, Tv = 30 Section 3.2

THRL = 55, THRH = 80, R = 80, RS = 100,

Chen LENL = 5, LENH = 20, THETAL = 0.25 (Chen et al., 2006)
THETAH = 0.4, THRTOPO = 0.7

W1 = 1,W2 = 0.3 · 180/π,W3 = 0.3 · 180/π,W4 = 6,W5 = 6,
Deng TH1 = 36, THnum = 20, THedge = 15, THd = 8, THθ = π/6, (Deng and Huo, 2005)

THφ = π/6, THrc = 3, THSL = 0.2, THang = π/6,
W1 = 1,W2 = 0.3 · 180/π,W3 = 0.3 · 180/π,W4 = 3,W5 = 3,

Jiang Consolidation step iterations = 5, Minutia neighborhood size = 2 (Jiang and Yau, 2000)
BG1 = 8, BG2 = π/6, BG3 = π/6

R = 70, Ns ∈ {8, 16}, Nd = 6, σs = 28/3, σd = 2/9 · π, µΨ = 1/100

τΨ = 400, ω = 50,minV C = 0.75,minM = 2,minME = 0.60,

MCC Floating-point-based version: enabled, µP = 20, τP = 2/5, (Cappelli et al., 2010)
minnp = 4,maxnp = 12, wR = 0.5, µρ1 = 5, τ ρ1 = −8/5,
µρ2 = π/12, τ ρ2 = −30, µρ3 = π/12, τ ρ3 = −30, nrel = 5, σθ = π/2

Table 3: Specification of the parameters.

15

Note that these algorithms are translation and rotation invariant. The con-
figuration parameters of all the methods used in this study are common for all
databases, and they were selected according to the recommendation of the cor-
responding authors (Table 3). This can be done because the study is performed
comparing the algorithms with themselves. Furthermore, this parameter setting
allows future comparisons for other studies, and produces a more realistic setup,
avoiding the overfitting that may arise from specific parameter optimization. The
value for the rmin parameter was selected because at least 12 minutiae are needed
to claim the individuality of a fingerprint (Dass, 2010).

4.3. Performance measures
In this section we present the three different types of performance measures

that we used to evaluate the minutiae filtering methods from different perspectives.
In Section 4.3.1, we describe the first group of metrics, which are related to the
quality of the detected minutiae in comparison with ground-truth minutiae. These
metrics aim to extend those defined in Section 2.2. The second ones are devoted to
measure the performance of the matching algorithms in the fingerprint verification
problem (Section 4.3.2). Finally, the third group aims to measure the identification
performance of the algorithms (Section 4.3.3).

4.3.1. New minutiae quality evaluation metrics
In addition to the measures explained in Section 2.2, in this work we propose

a simple similarity measure not to replace the previous proposals, but to expand
them providing information about the difference between ground-truth minutiae
and the corresponding correctly extracted minutiae. In conjunction with GI, TPR
and PPV, the proposed metrics provide more information about how similar are
two sets of minutiae.

These metrics measure the difference between the location and angle estima-
tion of the extracted minutiae and the ground truth ones. They are computed as
follows. For each ground-truth minutia, the nearest extracted minutia in a ten pix-
els radius is selected as matched minutia (which cannot be then matched with a
different ground-truth minutiae). If there are no extracted minutiae in this area,
the ground-truth minutia is marked as missing. When all the ground-truth minu-
tiae are categorized as matched or missing ones, the remaining extracted minutiae
(if any) are considered to be spurious. After this process, for each paired minu-
tiae their euclidean distance in pixels is computed. Finally, the average of the
euclidean distances of all pairs is obtained to measure the location error. This

16

error is denoted as Mean Euclidean Distance (MED). Similarly, the absolute av-
erage difference between the angles of the matched minutiae pairs (in degrees) is
computed and denoted as mean angle distance (MAD).

4.3.2. Measuring the performance of the matchers in the verification problem
In order to measure the effectiveness of the matchers, we consider the well-

known False Matching Rate (FMR), False Non-Matching Rate (FNMR), and Equal-
Error Rate (EER), which indicates the value where FMR and FNMR are equal.
Furthermore, we use other useful indicators such as FMR100 (the lowest achiev-
able FNMR for a FMR ≤ 1%) and FMR1000 (the lowest FNMR for a FMR
≤ 0.1%).

4.3.3. Measuring the performance of the matchers in the identification problem
The measures presented in the preceding section offer average values for 1vs1

comparisons. Thus, we use some additional values to complete the scope of our
study, which use the concept of rank. Within an identification process, where
the input fingerprint is compared to all template fingerprints in a database, the
rank is the position of the genuine score if all the obtained scores are ordered in
descending order. In other words, the rank is the minimum number of database
fingerprints that have to be returned by the identification system to ensure that the
correct identity is included. The accuracy measures in these case are R100 (lowest
rank that allows an error lower than 1%) and R1000 (lowest rank that allows an
error lower than 0.1%). The optimum value for these measures is 1, whereas the
worst one is the size of the database.

Additionally, the CMC (Cumulative Match Curve) is used to show graphically
the behavior of a matching algorithm. The curve shows the error associated to
each rank.

5. Experimental Study

This section presents all the experiments that have been designed for this work.
There is one section for each of the tested databases: SFinGe (Section 5.1), FVC
(Section 5.2) and captured (Section 5.3). As we have mentioned, this experimen-
tation has several objectives, and we have divided this section accordingly:

1. To check the accuracy of the different matchers when using the minutiae
extracted by MINDTCT in comparison the accuracy obtained with a perfect
minutiae extractor that obtains ground-truth minutiae (Section 5.1.1).

17

2. To verify the usefulness of the MINDTCT minutia quality value. The same
accuracy measures from the verification and identification problems are
used to compare the results when only minutiae over a certain quality thresh-
old are used for the matching (Section 5.1.2).

3. To measure the quality of the extracted minutiae with respect to the filtered
ones. The quality measures described in Sections 2.2 and 4.3.1 are com-
puted for all the minutiae sets, comparing whether the quality of the filtered
minutiae overcome that of the original ones (Section 5.1.3).

4. To test the effect of the convex hull and segmentation filters in both types of
matching problems considered. We perform an analysis of the verification
and identification accuracy measures (Sections 5.1.4, 5.1.5, 5.2 and 5.3).

5.1. SFinGe databases
In this section, we use the SFinGe databases, which provide the ground-truth

minutiae, to study the minutiae statistics and the behavior of the minutiae extractor
and all the proposed filtering schemes along with several minutiae matchers.

5.1.1. Performance evaluation with MINDTCT vs ground-truth minutiae
The first step of this experimental study consists of comparing the results

obtained with the minutiae extracted by MINDTCT with those obtained using
ground-truth minutiae, in order to quantify the loss of accuracy.

Following the experimental framework established, Table 4 shows the verifi-
cation performance measures obtained for each matching algorithm and database.
In this table, we observe that the matching algorithms maintain their respective
performance ranking independently of the minutiae considered (ground-truth or
MINDTCT). MCC16 is the best performing algorithm in all the databases, while
Deng is by far the worst algorithm. Nevertheless, except for the Deng algorithm,
the achieved error rates are very low for ground-truth minutiae, whereas they suf-
fer great increase when MINDTCT minutiae are used. The bad behavior of Deng’s
algorithm could be explained because it uses additional information (the ridge
count) that is not included in the ground-truth information provided by SFinGe,
and therefore it has to be obtained from the data extracted by MINDTCT. How-
ever, the element that provides the most information to Deng’s algorithm is still
the minutiae set itself.

The results on the identification problem for the same algorithms and databases
are also shown in Table 4. It can also be observed that MINDTCT introduces
noise and erroneous information deteriorating the results obtained, as expected.
It can be noted that although Deng is the less accurate algorithm, Chen obtains

18

EER FMR100 FMR1000 R100 R1000
Matcher GT MIND. GT MIND. GT MIND. GT MIND. GT MIND.
Chen 0.2291 5.6618 0.1750 10.4083 0.3750 19.3000 1 1000 1000 1000
Deng 13.0702 15.6673 22.3917 23.5375 24.8125 26.7208 869 873 983 983

BD1 Jiang 0.1047 2.3267 0.0375 3.3958 0.1292 8.4833 1 58 1 789
MCC8 0.0137 0.5712 0.0000 0.7292 0.0042 1.1375 1 1 1 163
MCC16 0.0091 0.5368 0.0042 0.7708 0.0042 1.1833 1 1 1 148
Chen 0.2510 5.2323 0.1833 9.5208 0.3875 17.9458 1 1000 1000 1000
Deng 13.3764 15.3131 22.6708 23.4917 24.725 26.3875 851 866 977 981

BD2 Jiang 0.0964 2.2146 0.0333 3.2500 0.1250 7.6042 1 33 1 648
MCC8 0.0252 0.3988 0.0083 0.4458 0.0125 0.7792 1 1 1 59
MCC16 0.0148 0.3792 0.0000 0.4208 0.0000 0.7333 1 1 1 30
Chen 0.1988 5.4133 0.1500 10.8167 0.3250 19.4750 1 1000 1000 1000
Deng 13.8259 14.3113 22.9417 23.8042 25.225 26.6875 863 848 981 978

BD3 Jiang 0.1531 2.3961 0.0750 3.6417 0.1625 8.0125 1 51 1 825
MCC8 0.0256 0.5017 0.0042 0.8042 0.0042 1.2167 1 1 1 97
MCC16 0.0161 0.4663 0.0042 0.7000 0.0083 1.1125 1 1 1 88
Chen 0.2399 5.4464 0.1792 9.9646 0.3812 18.6313 1 2000 2000 2000
Deng 13.1484 15.2916 22.4583 23.5833 24.4813 26.525 1722 1739 1959 1964

BD4 Jiang 0.1013 2.2647 0.0354 3.3792 0.1313 7.7250 1 90 1 1514
MCC8 0.0207 0.4910 0.0042 0.5771 0.0083 0.9479 1 1 1 177
MCC16 0.0119 0.4538 0.0021 0.6125 0.0021 0.9958 1 1 1 152
Chen 0.2122 5.4377 0.1667 11.0333 0.3308 19.3142 1 5000 5000 5000
Deng 12.8995 13.8054 22.3058 23.5075 24.7092 26.9992 4309 4311 4912 4909

BD5 Jiang 0.1106 2.3017 0.0533 3.5650 0.1325 7.9992 1 250 1 3923
MCC8 0.0225 0.4860 0.0033 0.7542 0.0050 1.1925 1 2 1 430
MCC16 0.0178 0.4558 0.0025 0.6642 0.0050 1.0967 1 2 1 362

Table 4: Verification and identification results for ground-truth and MINDTCT minutiae.

the maximum possible values in most of the cases. This is due to some outliers,
corresponding to genuine scores with value zero. These outliers appear because
by definition the rank is a maximum value. The other matchers do not have out-
liers in their results, although it can be observed that MINDTCT minutiae perform
considerably worse than the perfect results achieved using ground-truth minutiae.

5.1.2. MINDTCT quality value
The previous results confirm that the minutiae extraction process is a critical

step in a fingerprint identification system, and thus a deeper study of the extracted
minutiae must be performed. As explained in Section 2.2, MINDTCT algorithm
provides a quality value for each extracted minutia. Figure 6a shows the aver-
age quality distribution per fingerprint of the five considered databases. As all
databases have been generated using the same parameters with SFinGe, the av-
erage characteristics are very similar. Figure 6b shows how much the average
number of minutiae per fingerprint is reduced when we filter the minutiae with a

19

basic quality threshold. These figures follow a very clear pattern, marking three
sharp separations: 10, 30 and 50. According to Figure 6b, these thresholds leave
each fingerprint with an average of 45, 32 and 21 minutiae, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

MINDTCT quality

A
v
e
ra

g
e
 m

in
u
ti
a
e
 p

e
r

fi
n
g
e
rp

ri
n
t

BD1

BD2

BD3

BD4

BD5

(a) Distribution

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

A
v
e
ra

g
e
 m

in
u
ti
a
e
 p

e
r

fi
n
g
e
rp

ri
n
t

MINDTCT quality

BD1

BD2

BD3

BD4

BD5

(b) Cumulative

Figure 6: Average quality distribution of the minutiae for each fingerprint

EER FMR100 FMR1000
Matcher MIND. Th-10 Th-30 Th-50 MIND. Th-10 Th-30 Th-50 MIND. Th-10 Th-30 Th-50
Chen 5.6618 5.7528 5.3506 9.4004 10.4083 10.5167 11.0500 24.3593 19.3000 21.1500 19.0958 49.2020
Deng 15.6673 15.5481 14.8782 19.2270 23.5375 23.4917 25.1292 43.9963 26.7208 27.3333 29.3583 91.3285

BD1 Jiang 2.3267 2.3030 2.8475 5.5472 3.3958 3.3292 4.2083 8.5779 8.4833 7.3208 8.0208 13.3169
MCC8 0.5712 0.6833 1.4845 4.8255 0.7292 0.9917 2.7167 6.2521 1.1375 1.5458 3.6625 8.6728
MCC16 0.5368 0.7152 1.5154 3.2427 0.7708 0.8792 2.4083 5.9386 1.1833 1.8750 3.3250 8.3382
Chen 5.2323 5.4240 4.8810 8.8163 9.5208 9.8583 11.6667 22.6625 17.9458 19.5583 17.6333 57.9000
Deng 15.3131 15.2669 15.1866 17.1155 23.4917 23.3208 24.5500 49.1909 26.3875 26.0875 29.9583 90.9910

BD2 Jiang 2.2146 2.1769 2.7535 5.0819 3.2500 3.0375 3.9000 7.6144 7.6042 7.0708 8.0208 12.5740
MCC8 0.3988 0.5862 1.4593 4.7469 0.4458 0.5542 2.4250 6.1073 0.7792 1.5625 3.2208 8.3406
MCC16 0.3792 0.4814 1.5318 2.9973 0.4208 0.5667 2.1667 5.7223 0.7333 1.0750 2.8875 7.8217
Chen 5.4133 5.7154 5.1666 9.0655 10.8167 14.8458 12.2917 24.0875 19.4750 21.8500 19.7417 54.9708
Deng 14.3113 14.1980 15.9426 17.0402 23.8042 24.1667 25.2000 50.4087 26.6875 27.5667 31.2750 92.3757

BD3 Jiang 2.3961 2.2342 2.5970 5.0475 3.6417 3.7083 4.1958 8.0364 8.0125 7.1333 7.6583 11.8586
MCC8 0.5017 0.8578 1.7641 4.8308 0.8042 0.9250 2.4500 6.0547 1.2167 1.4042 4.0583 8.4749
MCC16 0.4663 0.7144 1.8139 3.1029 0.7000 0.4875 2.2042 5.7415 1.1125 1.2958 3.7375 7.8945
Chen 5.4464 5.5880 5.1159 9.1090 9.9646 10.1875 12.4354 23.5109 18.6313 20.5292 18.3646 54.3595
Deng 15.2916 15.3520 15.1611 17.2930 23.5833 23.4479 24.7979 48.5937 26.5250 27.0562 29.1187 90.7194

BD4 Jiang 2.2647 2.2230 2.8559 5.1915 3.3792 3.2042 4.2292 7.9669 7.7250 7.2792 7.9583 12.7704
MCC8 0.4910 0.6360 1.4514 4.7531 0.5771 0.7583 2.6021 6.1901 0.9479 1.2542 3.4875 8.5213
MCC16 0.4538 0.5909 1.4862 3.1016 0.6125 0.7500 2.3146 5.8868 0.9958 1.2417 3.1396 8.1405
Chen 5.4377 5.6067 5.1790 9.2726 11.0333 14.6792 12.5333 24.8677 19.3142 19.1517 18.5242 54.5388
Deng 13.8054 14.1424 13.8936 17.3177 23.5075 24.0117 25.7600 49.3406 26.9992 26.6008 31.2533 91.7535

BD5 Jiang 2.3017 2.2976 2.8379 5.2062 3.5650 3.2367 4.3425 7.9578 7.9992 7.2158 8.1425 12.8853
MCC8 0.4860 0.6420 1.4924 4.8992 0.7542 0.7500 2.6583 6.5453 1.1925 1.2167 3.5500 8.9515
MCC16 0.4558 0.6182 1.4716 3.2772 0.6642 0.6875 2.4325 6.2481 1.0967 1.7033 3.2825 8.5172

Table 5: Verification results obtained using different quality thresholds to filter the minutiae.

20

R100 R1000
Matcher MIND. Th-10 Th-30 Th-50 MIND. Th-10 Th-30 Th-50
Chen 1000 1000 1000 999 1000 1000 1000 1000
Deng 873 869 880 906 983 984 985 990

BD1 Jiang 58 53 107 855 789 709 915 992
MCC8 1 2 44 102 163 156 630 210
MCC16 1 2 34 130 148 112 548 272
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 866 862 869 896 981 980 982 981

BD2 Jiang 33 25 76 809 648 671 925 994
MCC8 1 1 35 51 59 104 667 114
MCC16 1 1 27 62 30 88 660 145
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 848 838 859 898 978 981 979 981

BD3 Jiang 51 39 87 779 825 786 879 991
MCC8 1 1 42 85 97 85 596 192
MCC16 1 1 27 91 88 97 507 221
Chen 2000 2000 2000 1999 2000 2000 2000 2000
Deng 1739 1731 1747 1798 1964 1966 1967 1971

BD4 Jiang 90 79 187 1657 1514 1377 1832 1986
MCC8 1 2 77 148 177 251 1296 316
MCC16 1 2 58 179 152 208 1202 390
Chen 5000 5000 5000 4999 5000 5000 5000 4999
Deng 4311 4267 4337 4487 4909 4904 4898 4907

BD5 Jiang 250 209 465 3798 3923 3706 4475 4958
MCC8 2 3 214 477 430 647 3356 1015
MCC16 2 3 152 559 362 523 3095 1195

Table 6: Identification results obtained using different quality thresholds to filter the minutiae.

As a first approach to reduce the loss of accuracy when using MINDTCT,
we have filtered the extracted minutiae using their quality value. This filtering
consists of removing the minutiae whose quality is below a fixed threshold. Note
that MINDTCT results shown in Table 4 correspond to a threshold with value 0.
Table 5 shows the verification results obtained for all algorithms and databases
when this simple filter is used with the three selected thresholds. We stress in
bold-face the best result for each database and each algorithm. In general, the
table shows that the variation in the error rate with respect to the quality threshold
depends on the matching algorithm. On the one hand, Jiang and Deng obtain
better results when the 10 threshold is used (variant Th-10). The same occurs
for Chen and the Th-30 variant. However, with the other thresholds the accuracy
is often lower than the one obtained considering the whole minutiae set. On the
other hand, the performance loss of MCC is dramatic when the threshold is high.
This is due to the embedded filtering technique of MCC, which is based on the

21

convex hull.
Additionally, Table 6 shows the identification results for the same algorithms

and databases. Now only Jiang and Deng show a certain improvement in the
results, when the threshold 10 is used. In all other cases the obtained results are
worse than when the whole set of minutiae extracted by MINDTCT is used.

Therefore, we can conclude that this simple threshold-based technique is not
useful to improve the accuracy, but the improvement that can be observed in some
specific cases (such as Jiang with 10 threshold or Chen with 30 threshold) suggests
that there may be some way to obtain the desired performance gain eliminating
minutiae. It is also clear that the quality value provided by MINDTCT is not valid
by itself to filter the minutiae sets, since minutiae in critical zones of the fingerprint
(such as singular points) are deleted even though they are correctly detected.

5.1.3. Minutiae quality comparison: MINDTCT and filtering with convex hull
and segmentation

BD1 BD2 BD3 BD4 BD5
Mean 36.9936 36.9549 37.4404 36.9742 37.1392

Ground-Truth Std. 9.6787 9.4596 9.6266 9.5698 9.5539
Max. 77 86 75 86 86
Min. 8 9 5 8 5
Mean 49.8367 49.8643 50.4599 49.8505 50.1133

MINDTCT Std. 13.0665 12.8395 13.0434 12.9531 13.0357
Max. 115 127 116 127 127
Min. 10 15 12 10 9
Mean 45.9267 46.0320 46.5839 45.9793 46.2658

CH-10 Std. 12.3741 12.1213 12.3295 12.2484 12.3221
Max. 111 119 114 119 119
Min. 10 15 8 10 8
Mean 37.9738 37.9731 38.5253 37.9735 38.2162

CH-100 Std. 11.9769 11.7203 11.8661 11.8492 11.8935
Max. 105 115 106 115 116
Min. 10 14 8 10 8
Mean 45.5284 45.6393 46.2042 45.5838 45.8872

Seg-10 Std. 12.0370 11.7531 12.0042 11.8959 11.9748
Max. 108 114 113 114 114
Min. 7 13 8 7 7
Mean 37.7164 37.5088 37.8590 37.6126 37.6798

Seg-20 Std. 10.6260 10.2919 10.4139 10.4607 10.4599
Max. 104 104 95 104 104
Min. 5 7 7 5 5
Mean 33.7098 33.5650 34.0063 33.6374 33.8091

Seg-100 Std. 9.8163 9.4293 9.5950 9.6249 9.6280
Max. 104 103 90 104 104
Min. 5 7 5 5 5

Table 7: Comparison of the number of minutiae obtained when filtering the minutiae with CH-φ
(φ ∈ {10, 100}) and Seg-φ (φ ∈ {10, 20, 100}).

22

Once we have shown that the usage of the quality given by MINDTCT is not
useful by itself, in this section we analyze the effect of the application of the fil-
tering techniques described in Section 3 to the minutiae extracted by MINDTCT.
In order to do so, we use the minutiae quality measures presented in Sections 2.2
and 4.3.1. This way, we are able to study whether the filtering techniques allow
us to improve the quality of the minutiae.

MSD MAD Matches Spur Missing GI TPR PPV
MINDTCT 4.3287 18.6132 30.5779 19.2474 6.4157 0.1265 0.8308 0.6242
CH-10 4.3283 18.4609 30.1679 15.7588 6.8256 0.2006 0.8192 0.6676

BD1 CH-100 4.3298 18.0510 27.8580 10.1158 9.1286 0.2282 0.7523 0.7502
Seg-10 4.3246 18.4616 30.4098 15.1186 6.5837 0.2324 0.8263 0.6781
Seg-20 4.3139 18.0300 29.8012 7.9152 7.1869 0.4040 0.8098 0.8034
Seg-100 4.3135 18.0216 27.8824 5.8274 9.0846 0.3586 0.7576 0.8417
MINDTCT 4.3150 18.2277 30.7011 19.1633 6.2538 0.1362 0.8347 0.6252
CH-10 4.3153 18.0810 30.2894 15.7425 6.6655 0.2080 0.8230 0.6675

BD2 CH-100 4.3178 17.6707 27.9835 9.9896 8.9652 0.2386 0.7563 0.7517
Seg-10 4.3115 18.0807 30.5370 15.1023 6.4179 0.2403 0.8304 0.6779
Seg-20 4.2998 17.5808 29.9147 7.5940 7.0357 0.4197 0.8136 0.8091
Seg-100 4.2982 17.5301 28.0243 5.5407 8.9076 0.3749 0.7622 0.8473
MINDTCT 4.3548 18.4689 31.0070 19.4186 6.4334 0.1267 0.8306 0.6242
CH-10 4.3547 18.3087 30.5954 15.9884 6.8449 0.1981 0.8191 0.6662

BD3 CH-100 4.3574 17.9001 28.3180 10.2073 9.1168 0.2306 0.7542 0.7496
Seg-10 4.3511 18.3187 30.8433 15.3609 6.5971 0.2296 0.8263 0.6764
Seg-20 4.3407 17.8158 30.2044 7.6547 7.2297 0.4106 0.8092 0.8090
Seg-100 4.3411 17.7903 28.3309 5.6754 9.0822 0.3657 0.7591 0.8452
MINDTCT 4.3218 18.4205 30.6395 19.2053 6.3348 0.1314 0.8328 0.6247
CH-10 4.3218 18.2710 30.2287 15.7506 6.7456 0.2043 0.8211 0.6675

BD4 CH-100 4.3238 17.8608 27.9208 10.0527 9.0469 0.2334 0.7543 0.7510
Seg-10 4.3181 18.2711 30.4734 15.1105 6.5008 0.2363 0.8283 0.6780
Seg-20 4.3069 17.8054 29.8580 7.7546 7.1113 0.4118 0.8117 0.8062
Seg-100 4.3059 17.7759 27.9533 5.6840 8.9961 0.3668 0.7599 0.8445
MINDTCT 4.3400 18.4312 30.7833 19.3170 6.3560 0.1300 0.8325 0.6246
CH-10 4.3398 18.2732 30.3732 15.8926 6.7659 0.2017 0.8209 0.6667

BD5 CH-100 4.3417 17.8590 28.0841 10.1321 9.0482 0.2335 0.7550 0.7506
Seg-10 4.3363 18.2827 30.6185 15.2687 6.5207 0.2332 0.8281 0.6769
Seg-20 4.3251 17.7922 29.9839 7.6959 7.1497 0.4128 0.8110 0.8083
Seg-100 4.3251 17.7862 28.1038 5.7053 9.0082 0.3672 0.7602 0.8448

Table 8: Minutiae quality comparison.

Table 7 shows the average number of minutiae found in each database and each
method, while Table 8 presents the differences between ground-truth, extracted
and filtered minutiae sets. Observing these tables, we can make the following
observations about the weaknesses of MINDTCT:

• It is clear that extracting real minutiae is a very difficult task due to noise

23

and distortions of the fingerprint images. Thus, we observe that wide dis-
tance and angle differences are found between matched minutiae. This fact
affects negatively to the performance of matching algorithms. Neverthe-
less, MINDTCT is able to detect about 31 of the 37 real minutiae in each
fingerprint (on average, see Table 2).
• MINDTCT overlooks about 6 minutiae per fingerprint (on average). These

missing minutiae may produce a performance degradation of the matching
algorithms.
• The number of detected spurious minutiae is high. As we observed in the

example presented in Figure 1, an important number of these spurious minu-
tiae are near to the borders of the fingerprint.

This experimental study confirms our premises about MINDTCT. Among these
drawbacks, the most remarkable problem of this minutiae extractor is the high
number of spurious minutiae detected. However, these minutiae can be addressed
by a post-processing step, as we have mentioned earlier.

Otherwise, the analyzed filtering procedures remove up to 16 of the extracted
minutiae. Thus, the resulting number of filtered minutiae can be lower than the
number of real minutiae, but the absolute difference is smaller than when using
MINDTCT. Moreover, this fact could be due to missing minutiae rather than to the
removal of real ones. For this reason, we need to investigate the results in terms
of the quality of the minutiae. It is also clear that CH-10 and Seg-10 produce
very similar minutiae statistics. Due to their low threshold value, they remove
only minutiae that are spurious with a very high probability, and thus these filters
are those removing the lowest number of minutiae (the most conservative ones).
When the threshold is increased, so does the number of filtered minutiae, but this
also brings along an increase in the probability of removing real minutiae.

MINDTCT has the greatest number of both spurious and matched minutiae,
and the highest TPR. For all the described methods an important decrease in the
number of spurious minutiae in comparison with the bare use of MINDTCT can be
observed. Additionally, the number of matches is always very close to the number
achieved by MINDTCT, meaning that the vast majority of pruned minutiae are
spurious.

If we focus on the GI measure, Seg-20 filtering always reaches the highest
values. Hence, this approach offers the best balance between spurious and missing
minutiae. Otherwise, Seg-100 obtains the best PPV in all cases, meaning that it
is the method that removes the most spurious minutiae, and hence most of the
remaining minutiae are real, although the number of missing minutiae is slightly

24

higher than with other approaches. It is also the approach with the lowest MSD
and MAD, meaning that the removed minutiae are those that are the furthest from
their respective ground-truth minutiae.

5.1.4. Performance evaluation for the verification problem

EER FMR100 FMR1000
Matcher MIND. CH-10 CH-100 MIND. CH-10 CH-100 MIND. CH-10 CH-100
Chen 5.6618 5.5307 6.1476 10.4083 13.9167 11.5000 19.3000 18.6042 21.8708
Deng 15.6673 34.2749 34.4205 23.5375 66.6333 68.4917 26.7208 78.9208 78.6625

BD1 Jiang 2.3267 2.3365 2.7583 3.3958 3.2375 5.1542 8.4833 7.2417 10.1917
MCC8n 0.5712 0.5409 0.7598 0.7292 0.7833 0.7625 1.1375 1.1333 1.8542
MCC16n 0.5368 0.5185 0.8275 0.7708 0.7583 0.7000 1.1833 1.1208 1.6875
Chen 5.2323 5.1250 5.7623 9.5208 12.9000 10.6542 17.9458 17.3417 20.9042
Deng 15.3131 34.8337 34.5040 23.4917 68.5375 66.9625 26.3875 79.4750 79.7750

BD2 Jiang 2.2146 2.1452 2.5900 3.2500 3.0625 4.2458 7.6042 7.3333 9.6375
MCC8n 0.3988 0.3816 0.5819 0.4458 0.4500 0.5458 0.7792 0.7208 1.5417
MCC16n 0.3792 0.3852 0.5804 0.4208 0.4542 0.5000 0.7333 0.6708 1.4417
Chen 5.4133 5.4506 6.1277 10.8167 14.3583 11.3458 19.4750 21.3500 21.2417
Deng 14.3113 34.6242 33.9043 23.8042 69.5458 69.7875 26.6875 80.0500 80.0792

BD3 Jiang 2.3961 2.3006 3.1027 3.6417 3.6542 4.9833 8.0125 8.1208 10.3292
MCC8n 0.5017 0.5527 0.6143 0.8042 0.4875 0.7375 1.2167 1.2792 1.1708
MCC16n 0.4663 0.5704 0.6201 0.7000 0.4042 0.6458 1.1125 1.1875 1.6583
Chen 5.4464 5.3276 5.9549 9.9646 13.4104 11.0771 18.6313 17.9792 19.3813
Deng 15.2916 34.6161 32.8453 23.5833 68.2396 68.5292 26.5250 79.0979 79.1438

BD4 Jiang 2.2647 2.2058 2.7430 3.3792 3.2479 4.9438 7.7250 7.5188 9.8771
MCC8n 0.4910 0.4587 0.6848 0.5771 0.6146 0.6375 0.9479 0.9354 1.6958
MCC16n 0.4538 0.4456 0.7044 0.6125 0.6083 0.5896 0.9958 0.9229 1.5854
Chen 5.4377 5.3687 6.0499 11.0333 14.1642 11.2117 19.3142 18.8967 21.9500
Deng 13.8054 32.8154 32.9439 23.5075 67.1075 69.3317 26.9992 79.5333 80.9400

BD5 Jiang 2.3017 2.2935 2.8867 3.5650 3.2917 5.0258 7.9992 7.5017 9.8742
MCC8n 0.4860 0.5909 0.6546 0.7542 0.4342 0.7050 1.1925 1.2517 1.7667
MCC16n 0.4558 0.5573 0.6797 0.6642 0.4367 0.6458 1.0967 1.2742 1.6542

Table 9: Verification results obtained with the convex hull filtering.

So far, we have observed that the filter methods improve the minutiae quality.
However, the goal of this operation is to perform more accuracte matchings. This
section analyzes the results obtained with the different filtering approaches pre-
sented in this work in the framework of fingerprint verification. Table 9 shows the
results for the two convex hull variants. In almost all cases, the CH-10 approach
performs better than the CH-100 approach, because the additional quality criterion
avoids the removal of real minutiae. Focusing on the CH-10 variant, it can be ob-
served that the results with Chen and Jiang matchers are slightly improved. In the
case of MCC, the results are similar to those obtained with MINDTCT. However,

25

the obtained results are better than those shown in Table 5, where the filtering
criteria was only based on the quality assigned to the minutiae by MINDTCT.
Finally, Deng shows a deterioration of the accuracy when the filters are applied.

EER FMR100 FMR1000
Matcher MIND. Seg-10 Seg-20 Seg-100 MIND. Seg-10 Seg-20 Seg-100 MIND. Seg-10 Seg-20 Seg-100
Chen 5.6618 5.2916 4.0232 3.6916 10.4083 13.5458 9.6458 6.3917 19.3000 18.1125 14.7875 12.6000
Deng 15.6673 14.9290 13.8725 14.5227 23.5375 23.1042 23.6542 24.4333 26.7208 27.0875 27.7000 28.2500

BD1 Jiang 2.3267 2.1747 1.7953 1.5705 3.3958 2.9292 2.2333 1.9917 8.4833 6.6250 5.0542 4.2458
MCC8n 0.5712 0.5070 0.6413 0.5771 0.7292 0.7542 0.5250 0.7000 1.1375 1.1292 1.2500 1.0667
MCC16n 0.5368 0.4877 0.5628 0.5911 0.7708 0.7083 0.6167 0.6667 1.1833 1.0583 0.9708 1.0583
Chen 5.2323 4.9994 3.8063 3.4353 9.5208 12.3917 8.6542 7.3625 17.9458 18.3375 13.0333 12.7875
Deng 15.3131 13.9528 14.7480 15.1588 23.4917 22.7083 23.1458 23.2583 26.3875 26.0458 26.5292 27.6792

BD2 Jiang 2.2146 1.8747 1.5268 1.5206 3.2500 2.7000 1.8875 2.0292 7.6042 6.3625 4.7250 4.3000
MCC8n 0.3988 0.3555 0.3865 0.3432 0.4458 0.3958 0.3250 0.5583 0.7792 0.5917 0.6042 1.0208
MCC16n 0.3792 0.3296 0.3362 0.3223 0.4208 0.4125 0.3833 0.4667 0.7333 0.6417 0.6917 0.8958
Chen 5.4133 5.2407 3.8875 3.5594 10.8167 13.4500 8.9917 7.8000 19.4750 20.0292 13.7125 13.2417
Deng 14.3113 13.6681 13.3721 14.1480 23.8042 23.2917 23.1750 25.4250 26.6875 26.6708 27.6083 30.8375

BD3 Jiang 2.3961 2.0966 1.7268 1.5443 3.6417 3.2125 2.2042 2.1208 8.0125 6.4000 4.7875 4.4125
MCC8n 0.5017 0.5742 0.4097 0.4903 0.8042 0.4333 0.4833 0.5292 1.2167 1.0958 0.8417 0.8125
MCC16n 0.4663 0.3902 0.4287 0.5294 0.7000 0.3917 0.4667 0.4750 1.1125 0.9625 0.7708 0.7333
Chen 5.4464 5.1454 3.9135 3.5632 9.9646 13.0562 9.1500 7.8292 18.6313 17.4312 13.9104 12.0250
Deng 15.2916 14.0606 14.9685 15.3625 23.5833 23.5854 23.3042 23.4729 26.5250 26.2229 26.7021 27.7479

BD4 Jiang 2.2647 1.9363 1.7517 1.5556 3.3792 2.8292 2.0646 2.1854 7.7250 6.5167 4.9000 3.8333
MCC8n 0.4910 0.4229 0.4674 0.4445 0.5771 0.5896 0.4792 0.7563 0.9479 0.8792 0.8104 1.2667
MCC16n 0.4538 0.4082 0.4164 0.4291 0.6125 0.5604 0.5396 0.6750 0.9958 0.8563 0.9000 1.1146
Chen 5.4377 5.1490 3.9190 3.5600 11.0333 13.6717 9.1092 7.8617 19.3142 18.1183 13.8075 13.3158
Deng 13.8054 14.1212 13.9448 14.7570 23.5075 23.8667 23.6258 25.0317 26.9992 26.3950 29.2192 30.2117

BD5 Jiang 2.3017 1.9899 1.6747 1.5863 3.5650 2.8283 2.2275 2.1225 7.9992 6.4783 4.6358 4.5058
MCC8n 0.4860 0.5046 0.4829 0.4337 0.7542 0.4300 0.4717 0.7275 1.1925 0.7683 0.8142 1.2142
MCC16n 0.4558 0.5384 0.4752 0.4240 0.6642 0.3950 0.4600 0.6542 1.0967 1.1358 0.7917 1.0850

Table 10: Verification results obtained with the segmentation-based filtering.

The matching results obtained with the minutiae sets filtered using the seg-
mentation method are shown in Table 10, where we observe that the segmentation
filter has reduced the error rates achieved by all algorithms in almost all the cases.
These results are closer to the obtained with ground-truth minutiae for all the con-
sidered thresholds. The results with Deng and MCC have also been improved
by the applied filter. Moreover, in general the most accurate variant is Seg-100,
which is the one that reduces the most the number of minutiae and has the high-
est PPV. This highlights this measure as a good one to determine the verification
accuracy.

Besides the accuracy improvements, the reduction of spurious minutiae re-
duces the computational complexity of the matching process. Figure 7 and Ta-
ble 11 show the average runtime1 of the matching algorithms. In the figure, the
filters are ordered in decreasing order of the number of minutiae. It is clearly

1These results have been obtained with an Intel(R) Xeon(R) E5-2620 CPU at 2.00 GHz.

26

shown that the matching time is proportional to the average number of minutiae
in each database. Thus, Seg-100 approach is both the most precise and the one
that produces the fastest matchings, and thus is highlighted as the optimal among
the tested filters. Otherwise, the use of non-filtered MINDTCT minutiae leads to
the slowest execution times.

Chen Deng Jiang MCC8 MCC16
0

1

2

3

4

5

6

A
v
e
ra

g
e
 m

a
tc

h
in

g
 t
im

e
 (

m
s
)

MINDTCT

CH−10

Seg−10

CH−100

Seg−20

Ground−Truth

Seg−100

Figure 7: Average matching time in BD1 for each filtering scheme.

Chen Deng Jiang MCC8 MCC16
Ground-truth 2.5841 1.5568 0.2479 1.3269 3.1207
MINDTCT 5.5846 3.3289 0.4329 2.3722 5.4394
CH-10 4.6302 2.2378 0.3688 1.9884 4.5880
CH-100 3.1440 3.0702 0.2570 1.3232 3.1317
Seg-10 4.5026 2.5617 0.3575 1.9956 4.5807
Seg-20 2.9099 1.5836 0.2501 1.3879 3.2255
Seg-100 2.2575 1.2431 0.2021 1.0027 2.3862

Table 11: Average matching time (in milliseconds) in BD1 for each filtering scheme.

5.1.5. Performance evaluation for the identification problem
In this section we analyze the obtained results in terms of the identification

performance measures, and more specifically using R100 and R1000 as defined
in Section 4.3.3.

Table 12 shows the results for the convex hull-based filter. As in the previous
section, when we compare these results with those obtained with MINDTCT, it

27

R100 R1000
Matcher MIND. CH-10 CH-100 MIND. CH-10 CH-100
Chen 1000 1000 1000 1000 1000 1000
Deng 873 973 977 983 997 998

BD1 Jiang 58 50 75 789 706 765
MCC8 1 1 2 163 98 144
MCC16 1 1 2 148 88 123
Chen 1000 1000 1000 1000 1000 1000
Deng 866 973 974 981 997 997

BD2 Jiang 33 28 46 648 646 787
MCC8 1 1 1 59 28 79
MCC16 1 1 1 30 34 81
Chen 1000 1000 1000 1000 1000 1000
Deng 848 972 970 978 995 997

BD3 Jiang 51 41 76 825 785 820
MCC8 1 1 1 97 45 104
MCC16 1 1 1 88 43 108
Chen 2000 2000 2000 2000 2000 2000
Deng 1739 1945 1950 1964 1994 1995

BD4 Jiang 90 77 113 1514 1411 1535
MCC8 1 1 2 177 95 228
MCC16 1 1 2 152 95 223
Chen 5000 5000 5000 5000 5000 5000
Deng 4311 4859 4867 4909 4981 4986

BD5 Jiang 250 217 353 3923 3658 3954
MCC8 2 1 3 430 232 637
MCC16 2 1 3 362 241 618

Table 12: Identification results obtained with the convex hull-based filter.

can be shown that the CH-10 filter improves the results, mainly with MCC. How-
ever, the CH-100 variant removes too many minutiae and causes a certain loss of
accuracy. The Deng algorithm performs better when no minutiae are removed,
and Chen shows a high sensibility to outliers, as in the previous sections.

Finally, Table 13 contains the results of the segmentation-based filter. Now
the improvement in the obtained results is very clear, meaning that the difference
between genuine and impostor scores has been increased as a result of the removal
of spurious minutiae.

Therefore, it can be concluded that the filtering that that removes the greatest
number of minutiae (Seg-100) is also the one that achieves the best results in most
of the cases. Consequently, the identification time obtained with this approach is
also the fastest among all tested schemes, as it can be observed in Figure 8 and Ta-
ble 14, which show the average identification time in BD1. This time corresponds
to the initial processing of the input fingerprint plus 1000 matchings. Again, the
figure orders the filter in decreasing order of the number of minutiae. Hence, this

28

R100 R1000
Matcher MIND. Seg-10 Seg-20 Seg-100 MIND. Seg-10 Seg-20 Seg-100
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 873 865 849 863 983 977 975 981

BD1 Jiang 58 43 21 20 789 703 727 63
MCC8 1 1 1 1 163 72 77 77
MCC16 1 1 1 1 148 68 82 90
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 866 857 852 863 981 982 982 983

BD2 Jiang 33 23 9 7 648 655 513 446
MCC8 1 1 1 1 59 20 24 23
MCC16 1 1 1 1 30 20 28 24
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 848 836 847 866 978 984 977 980

BD3 Jiang 51 33 16 12 825 772 724 766
MCC8 1 1 1 1 97 34 38 43
MCC16 1 1 1 1 88 31 35 68
Chen 2000 2000 2000 2000 2000 2000 2000 2000
Deng 1739 1725 1707 1721 1964 1959 1956 1963

BD4 Jiang 90 63 28 23 1514 1363 1359 1209
MCC8 1 1 1 1 177 79 91 106
MCC16 1 1 1 1 152 78 93 99
Chen 5000 5000 5000 5000 5000 5000 5000 5000
Deng 4311 4249 4250 4316 4909 4901 4886 4904

BD5 Jiang 250 164 70 61 3923 3684 3427 3360
MCC8 2 1 1 1 430 212 228 280
MCC16 2 1 1 1 362 200 252 303

Table 13: Identification results obtained with the segmentation-based filter.

filtering method produces both faster and more accurate results, outperforming
the usage of MINDTCT without post-processing, and even improving the results
of the MCC internal filtering mechanism.

Chen Deng Jiang MCC8 MCC16
Ground-truth 2.5884 1.5573 0.2501 1.3450 3.1787
MINDTCT 5.5944 3.3344 0.4392 2.4053 5.5241
CH-10 4.6399 2.2563 0.3740 2.0163 4.6783
CH-100 3.1478 3.0707 0.2581 1.3408 3.1954
Seg-10 4.5112 2.5840 0.3625 2.0192 4.6715
Seg-20 2.9086 1.5953 0.2508 1.4055 3.2957
Seg-100 2.2631 1.2545 0.1973 1.0210 2.4449

Table 14: Average identification time (in seconds) in BD1 for each filtering scheme.

Finally, we conclude the study on the identification framework showing the
CMC curves for the largest database considered (BD5) for all algorithms and all
filtering schemes, on Figure 9. For the Jiang and Chen algorithms, Seg-100 filter
dominates all solutions (except the ground-truth minutiae), closely followed by

29

Chen Deng Jiang MCC8 MCC16
0

1

2

3

4

5

6

A
v
e
ra

g
e
 i
d
e
n
ti
fi
c
a
ti
o
n
 t
im

e
 (

s
)

MINDTCT

CH−10

Seg−10

CH−100

Seg−20

Ground−Truth

Seg−100

Figure 8: Average identification times in BD1 (1000 matchings per identification) for each filtering
scheme.

Seg-20. The usage of MINDTCT alone obtains one of the worst CMC curves,
showing the importance of a good pre-processing step. For Deng, both convex
hull variants have very bad results, while all the other approaches present very
similar CMC curves. In the case of MCC, all variants have very high and similar
scores because of its higher robustness, but again the segmentation filter provides
the best results.

5.2. FVC databases
Some of the experiments have been repeated with the well-known FVC databases,

to allow reproducible results in a benchmark manner and to avoid the bias in the
conclusions due to the usage of a unique source of fingerprints. In order to verify
the behavior of the segmentation and convex hull approaches, we have repeated
the experiments with the best configuration for each one of them (CH-10 and Seg-
100), as well as for the initial minutiae set extracted by MINDTCT. The minutiae
statistics of the obtained databases are shown in Table 15. The results in the ta-
ble show that between 20% and 40% of the extracted minutiae are deleted when
using Seg-100, which is more than when using the SFinGe databases, due to the
lower quality of the FVC fingerprints. This deletion is reflected in an important
reduction of the matching and identification times, independently of the accuracy
results achieved.

30

0 50 100 150
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Rank

C
u

m
u

la
ti
v
e

 M
a

tc
h

 S
c
o

re

Ground−Truth

MINDTCT

CH−10

CH−100

Seg−10

Seg−20

Seg−100

(a) Chen

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

C
u

m
u

la
ti
v
e

 M
a

tc
h

 S
c
o

re

Ground−Truth

MINDTCT

CH−10

CH−100

Seg−10

Seg−20

Seg−100

(b) Deng

0 50 100 150
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

C
u

m
u

la
ti
v
e

 M
a

tc
h

 S
c
o

re

Rank

Ground−Truth

MINDTCT

CH−10

CH−100

Seg−10

Seg−20

Seg−100

(c) Jiang

0 50 100 150
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Rank

C
u

m
u

la
ti
v
e

 M
a

tc
h

 S
c
o

re

Ground−Truth

MINDTCT

CH−10

CH−100

Seg−10

Seg−20

Seg−100

(d) MCC8

0 50 100 150
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Rank

C
u

m
u

la
ti
v
e

 M
a

tc
h

 S
c
o

re

Ground−Truth

MINDTCT

CH−10

CH−100

Seg−10

Seg−20

Seg−100

(e) MCC16

Figure 9: CMC curves for BD5 database.

31

FVC2000 FVC2002 FVC2004
DB1A DB2A DB1A DB2A DB1A DB2A

Mean 49.0063 58.0313 50.1188 57.5438 61.1138 64.2238
MINDTCT Std. 11.9596 17.5767 12.9701 14.9358 18.4753 17.1335

Max. 90 132 94 148 156 135
Min. 18 24 11 12 20 21
Mean 43.6150 53.1538 43.4525 54.0713 52.7700 59.0600

CH-10 Std. 11.4751 16.7629 11.9027 14.4751 17.4217 16.2433
Max. 84 128 85 139 141 128
Min. 18 21 11 12 19 21
Mean 38.7838 45.4088 35.9675 45.2950 42.4500 36.9225

Seg100 Std. 10.6328 15.5173 10.5342 14.0905 14.5261 13.4584
Max. 76 127 73 97 118 114
Min. 12 12 7 8 10 7

Table 15: Comparison of the number of minutiae obtained when filtering the minutiae of the FVC
databases with CH-10 and Seg-100.

EER FMR100 FMR1000
MIND. CH-10 Seg-100 MIND. CH-10 Seg-100 MIND. CH-10 Seg-100

Chen 34.8405 33.0981 11.9452 69.1429 65.8571 28.7143 81.0000 79.7143 37.0000
Deng 7.1284 6.8391 4.8730 11.7143 12.5714 11.2857 22.0000 23.1429 25.5714

FVC2000 db1a Jiang 13.1436 11.3016 8.5765 21.0000 19.5714 15.5714 31.8571 29.2857 24.2857
MCC8n 5.3196 6.7807 3.5440 8.5714 15.2857 7.8571 13.5714 25.7143 9.8571
MCC16n 7.8759 6.8413 3.2922 14.2857 13.8571 8.1429 15.0000 22.4286 9.8571
Chen 33.0960 33.1760 11.4704 66.1429 66.1429 22.5714 66.1429 77.0000 33.2857
Deng 7.9856 8.3716 5.1631 20.4286 17.8571 14.0000 29.0000 28.4286 23.0000

FVC2000 db2a Jiang 16.2482 15.1984 9.7763 28.0000 26.4286 18.5714 39.2857 37.0000 30.4286
MCC8n 5.4699 8.4892 2.7143 10.0000 18.8571 4.5714 18.5714 34.1429 11.2857
MCC16n 4.2669 7.9257 2.5765 15.7143 18.7143 6.7143 19.2857 34.2857 10.2857
Chen 31.8795 30.7150 6.7374 63.5714 61.1429 13.1429 72.8571 71.7143 20.4286
Deng 16.9921 15.7532 11.9235 22.5714 22.0000 16.8571 26.2857 25.4286 26.1429

FVC2002 db1a Jiang 16.6400 15.4062 4.9156 25.8571 23.7143 9.8571 34.4286 31.7143 17.1429
MCC8n 12.4436 16.2294 1.3903 20.0000 22.7143 1.5714 27.8571 26.0000 2.5714
MCC16n 12.0489 15.3434 0.8110 20.0000 22.8571 1.2857 24.2857 25.1429 2.7143
Chen 24.2237 23.2266 3.9726 56.7143 62.5714 9.1429 77.2857 77.0000 19.2857
Deng 12.3254 14.2994 8.7590 17.2857 18.0000 14.2857 20.7143 21.7143 21.2857

FVC2002 db2a Jiang 13.5058 13.1032 4.2648 20.5714 20.5714 8.1429 28.1429 28.1429 14.4286
MCC8n 14.3045 11.3997 0.6962 24.2857 21.4286 0.7143 25.0000 23.5714 1.7143
MCC16n 13.6842 10.6883 0.6111 23.5714 21.2857 0.4286 27.1429 23.5714 1.4286
Chen 42.0209 41.0462 21.6421 83.5714 81.2857 42.5714 92.2857 92.2857 55.0000
Deng 19.3160 19.4127 13.7994 40.7143 38.7143 37.4286 54.7143 52.1429 61.7143

FVC2004 db1a Jiang 25.2958 23.3398 14.0411 52.0000 49.1429 31.4286 67.4286 61.0000 48.0000
MCC8n 22.1053 17.3088 7.1443 45.0000 38.0000 13.1429 55.7143 45.8571 23.7143
MCC16n 23.0075 17.8074 7.0390 46.4286 38.0000 13.0000 62.8571 47.7143 23.4286
Chen 43.4942 43.1212 18.1075 91.5714 91.4286 35.7143 97.8571 97.0000 51.8571
Deng 19.1320 19.5404 15.3449 36.4286 37.7143 26.8571 51.8571 49.5714 49.2857

FVC2004 db2a Jiang 23.7020 22.8911 12.4437 53.1429 50.0000 25.0000 67.0000 65.1429 38.4286
MCC8n 22.8008 21.5678 8.4185 46.4286 43.4286 12.7143 49.2857 52.7143 18.7143
MCC16n 23.5902 19.3153 8.3629 45.7143 42.1429 12.0000 53.5714 53.0000 18.5714

Table 16: Verification performance values for FVC databases.

32

Table 16 shows the verification results obtained with these databases. The first
fact that should be noted is that the FVC complexity increases over the years, and
hence the lowest EER rates are obtained for FVC2000, and the highest ones are
seen for FVC2004.

R100 R1000
MIND. CH-10 Seg-100 MIND. CH-10 Seg-100

Chen 100 100 100 100 100 100
Deng 73 67 34 97 97 85

FVC2000 db1a Jiang 89 86 83 99 100 100
MCC8n 62 65 32 99 96 97
MCC16n 67 80 30 97 94 99
Chen 100 100 100 100 100 100
Deng 63 69 50 92 96 98

FVC2000 db2a Jiang 96 91 82 100 99 94
MCC8n 68 64 17 94 91 47
MCC16n 65 67 23 98 95 39
Chen 100 100 100 100 100 100
Deng 88 95 84 100 100 99

FVC2002 db1a Jiang 94 94 53 100 100 87
MCC8n 88 80 2 100 100 99
MCC16n 85 83 2 98 99 94
Chen 100 100 100 100 100 100
Deng 83 80 78 99 99 95

FVC2002 db2a Jiang 90 88 12 98 98 84
MCC8n 79 85 1 96 98 13
MCC16n 82 81 1 98 97 12
Chen 100 100 100 100 100 100
Deng 92 94 79 100 99 99

FVC2004 db1a Jiang 94 93 89 99 99 100
MCC8n 90 83 54 97 100 99
MCC16n 93 88 55 98 96 100
Chen 100 100 100 100 100 100
Deng 95 94 91 99 100 100

FVC2004 db2a Jiang 96 94 81 100 100 100
MCC8n 93 87 74 99 99 100
MCC16n 95 91 68 100 100 99

Table 17: Identification performance values for FVC databases.

With the FVC databases, the Seg-100 variant greatly improves the results in
all cases, except sometimes for the FMR1000 value with the Deng algorithm.
Otherwise, the results of the convex hull approach are more similar to those ob-
tained without filtering. The table also shows that the improvement obtained with
Seg-100 depends on both the matcher and the database, although it is always re-
markable. Moreover, the improvement is higher for the most difficult database,
where a huge difference can be observed between the ERR in the MINDTCT col-
umn and that of the Seg-100. This result, along with the large number of removed

33

minutiae, highlight the Seg-100 approach as a very good tool to improve both the
matching accuracy and its runtime, especially for low-quality databases such as
those of FVC2004.

The identification accuracy results are shown in Table 17. Again, the best
results are those obtained by the Seg-100 approach.

5.3. Captured database
The same experiments carried out for the FVC databases in the previous sec-

tion have been executed in this case. Table 18 presents the minutiae statistics of
this database. In this case, the number of minutiae removed by the filters is not as
high as for the FVC databases, but still the Seg-100 variant is the one that removes
the most of them.

MINDTCT CH-10 Seg-100
Mean 44.7602 42.1176 37.4990
Std. 11.5560 11.0870 10.8468
Max. 137 127 133
Min. 14 14 9

Table 18: Comparison of the number of minutiae obtained when filtering the minutiae of the
captured database with CH-10 and Seg-100.

EER FMR100 FMR1000
MIND. CH-10 Seg-100 MIND. CH-10 Seg-100 MIND. CH-10 Seg-100

Chen 3.9693 4.0764 3.6698 7.2404 7.5018 6.8918 15.6790 15.6935 13.2534
Deng 1.1954 1.2611 1.5208 1.5977 1.8954 2.5055 5.4248 5.5846 6.4488
Jiang 2.5860 2.5433 2.3769 4.1685 4.3500 3.9797 11.3653 10.0436 9.2302
MCC8 0.8691 0.5401 0.6417 1.4016 0.8351 0.5882 2.4474 1.5686 2.0044
MCC16 0.8393 0.5045 0.5605 0.7480 0.8424 0.6245 2.5490 1.6122 1.1474

Table 19: Verification performance values for the captured database.

Table 19 shows the verification results obtained with the captured database.
It can be seen in the table that Seg-100 still improves the results, although the
difference is not as high as for other databases. In some cases the CH-10 filter
performs better, and for the Deng algorithm both filters produce worse results
than when the non-filtered minutiae set is used. However, this matcher obtains
more precise results for this database, especially if they are compared to those
obtained with the SFinGe databases. This behavior reveals the lack of robustness
of this algorithm, whose accuracy tends to be affected by the particular fingerprint

34

features, although for this database its results are close to those obtained by the
best matcher (MCC).

The particular error values are similar to those presented in Section 5.1, ex-
cept for Deng. This highlights the SFinGe databases as being reasonably realistic,
since the behavior of the algorithms is similar as with a database of real finger-
prints.

The identification accuracy results are shown in Table 20. Again, the Deng
algorithm is the only one for which Seg-100 does not produce the best results,
whereas Jiang and MCC significantly improve their accuracy. Concretely, the R
rates for MCC are reduced by about 50%.

R100 R1000
MIND. CH-10 Seg-100 MIND. CH-10 Seg-100

Chen 1530 1530 1530 1530 1530 1530
Deng 6 6 8 454 503 768
Jiang 164 169 148 1391 1363 1352
MCC8 4 2 1 298 165 162
MCC16 3 1 1 237 174 137

Table 20: Identification performance values for the captured database.

6. Conclusions and Future Lines

In this contribution, we have studied two filters to improve the minutiae ex-
traction of MINDTCT: a convex hull-based filter and a segmentation-based filter.
These filters have been tested with several configurations and databases. We have
performed an analysis of the number of spurious and missing minutiae that arise
when using MINDTCT, and we have shown that the studied filters can reduce the
number of spurious minutiae without compromising the number of matched ones.

In our experiments, we have analyzed the influence of these spurious minu-
tiae in several state-of-the-art minutiae-based matchers. The compared schemes
allow one to remove spurious minutiae providing more accurate results even for
robust matching algorithms such as MCC. The segmentation based filter is espe-
cially powerful, and the variant that removes the most minutiae is also the one
that provides the best accuracy. Therefore, in addition to the accuracy improve-
ments, the resulting reduction of number of minutiae leads to a faster matching
process. These positive results are even better when the fingerprint database is
of low quality, because the segmentation removes a higher number of spurious

35

minutiae, leading both to better accuracy and runtime, as it can be seen with the
FVC databases. This fact shows the importance of an appropriate fingerprint post-
processing both for the accuracy and the efficiency of the matching algorithms.

The results of this study have also shown that the PPV is a good minutiae
quality measure, and the filters with high PPV tend to produce better matching
accuracy. Finally, it has been observed that the SFinGe databases have a reason-
ably realistic behavior, as the results obtained with it are similar to those obtained
with a database of real fingerprints, captured by the authors’ research groups in
controlled conditions.

As future work, we aim to consider new strategies to remove harmful minu-
tiae and speed up the matching process, as well as to develop a novel matching
algorithm that includes the minutiae filtering process.

Acknowledgments

This work was supported by the research projects CAB (CDTI), TIN2011-
28488 and TIN2009-14575. D. Peralta holds an FPU scholarship from the Spanish
Ministry of Education and Science (FPU12/04902).

References

Ahmad, T., Hu, J., Wang, S., 2011. Pair-polar coordinate-based cancelable finger-
print templates. Pattern Recognition 44, 2555–2564.

Bazen, A.M., Gerez, S.H., 2001. Segmentation of fingerprint images, in: ProRISC
2001 Workshop on Circuits, Systems and Signal Processing, pp. 276–280.

Cappelli, R., Ferrara, M., Maltoni, D., 2010. Minutia cylinder-code: A new rep-
resentation and matching technique for fingerprint recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32, 2128–2141.

Cappelli, R., Maio, D., Maltoni, D., 2004. Sfinge: an approach to synthetic finger-
print generation, in: Eighth International Conference on Control, Automation,
Robotics and Vision (ICARCV2004), Kunming, China. pp. 147–154.

Chen, X., Tian, J., Yang, X., 2006. A new algorithm for distorted fingerprints
matching based on normalized fuzzy similarity measure. IEEE Transactions on
Image Processing 15, 767–776.

36

Chikkerur, S., Govindaraju, V., Pankanti, S., Bolle, R.M., Ratha, N.K.,
2005. Novel approaches for minutiae verification in fingerprint images, in:
WACV/MOTION, pp. 111–116.

Dass, S., 2010. Assessing fingerprint individuality in presence of noisy minutiae.
IEEE Transactions on Information Forensics and Security 5, 62–70.

Deng, H., Huo, Q., 2005. Minutiae matching based fingerprint verification using
Delaunay triangulation and aligned-edge-guided triangle matching, in: Lecture
Notes in Computer Science, pp. 270–278.

Feng, J., Jain, A.K., 2011. Fingerprint reconstruction: From minutiae to phase.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 209–223.

Gao, X., Chen, X., Cao, J., Deng, Z., Liu, C., Feng, J., 2010. A novel method of
fingerprint minutiae extraction based on gabor phase, in: Proc. of the Interna-
tional Conference on Image Processing, ICIP, pp. 3077–3080.

Graham, R., 1972. An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters 1, 132–133.

Hong, L., Wan, Y., Jain, A., 1998. Fingerprint image enhancement: algorithm and
performance evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 20, 777–789.

Hung, D., 1993. Enhancement and feature purification of fingerprint images. Pat-
tern Recognition 26, 1661–1671.

Jain, A., Hong, L., Bolle, R., 1997. On-line fingerprint verification. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19, 302–314.

Jiang, X., Yau, W., 2000. Fingerprint minutiae matching based on the local and
global structures, in: Proc. of the 15th International Conference on Pattern
Recognition, IEEE. pp. 1038–1041.

Jiang, X., Yau, W.., Ser, W., 2001. Detecting the fingerprint minutiae by adaptive
tracing the gray-level ridge. Pattern Recognition 34, 999–1013.

Kumar, R., Deva Vikram, B., 2010. Fingerprint matching using multi-dimensional
ann. Engineering Applications of Artificial Intelligence 23, 222–228.

37

Lee, C., Kim, J., 2010. Cancelable fingerprint templates using minutiae-based
bit-strings. Journal of Network and Computer Applications 33, 236–246.

Maio, D., Maltoni, D., 1997. Direct gray-scale minutiae detection in fingerprints.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 27–40.

Maio, D., Maltoni, D., 1998. Neural network based minutiae filtering in finger-
prints, in: Proc. of Fourteenth International Conference on Pattern Recognition,
pp. 1654–1658.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K., 2002a. FVC2000:
Fingerprint verification competition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24, 402–412.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K., 2002b. FVC2002:
Second fingerprint verification competition, in: Proceedings - International
Conference on Pattern Recognition, pp. 811–814.

Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K., 2004. FVC2004:
Third fingerprint verification competition, in: Biometric Authentication, pp. 1–
7.

Maltoni, D., Maio, D., Jain, A., Prabhakar, S., 2009. Handbook of fingerprint
recognition. Second ed., Springer-Verlag, New York.

Peralta, D., Triguero, I., Sanchez-Reillo, R., Herrera, F., Benitez, J.M., 2014. Fast
fingerprint identification for large databases. Pattern Recognition 47, 588–602.

Prabhakar, S., Jain, A., Wang, J., Pankanti, S., Bolle, R., 2000. Minutia verifi-
cation and classification for fingerprint matching, in: Proc of the 15th Interna-
tional Conference on Pattern Recognition, pp. 25–29.

Ratha, N., Bolle, R., 2004. Automatic Fingerprint Recognition Systems. Springer,
New York.

Ratha, N.K., Chen, S., Jain, A.K., 1995. Adaptive flow orientation-based feature
extraction in fingerprint images. Pattern Recognition 28, 1657–1672.

Santhanam, T., Sumathi, C., Easwarakumar, K., 2007. Fingerprint minutiae filter-
ing using artmap. Neural Computing and Applications 16, 49–55.

38

Watson, C.I., Garris, M.D., Tabassi, E., Wilson, C.L., Mccabe, R.M., Janet, S., Ko,
K., 2010. User’s Guide to NIST Biometric Image Software (NBIS). Technical
Report. NIST.

Wen, C., Guo, T., 2009. An efficient algorithm for fingerprint matching based on
convex hulls, in: Proc. of the 2009 International Conference on Computational
Intelligence and Natural Computing, IEEE Computer Society. pp. 66–69.

Xiao, Q., Raafat, H., 1991. Combining statistical and structural information for
fingerprint image processing classification and identification, in: Plamondon,
R., Cheng, H. (Eds.), Pattern Recognition: Architectures, Algorithms and Ap-
plications, pp. 335–354.

Zhao, F., Tang, X., 2002. Duality-based post-processing for fingerprint minu-
tiae extraction, in: Proc. of International Conference on Information Security,
Shanghai, China, pp. 36–42.

Zhao, F., Tang, X., 2007. Preprocessing and postprocessing for skeleton-based
fingerprint minutiae extraction. Pattern Recognition 40, 1270–1281.

39

3 Fast Fingerprint Identification for Large Databases 111

3 Fast Fingerprint Identification for Large Databases

• D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Beńıtez. Fast Finger-
print Identification for Large Databases. Pattern Recognition 47:2 (2014) 588–602. doi:
10.1016/j.patcog.2013.08.002

– Status: Published.

– Impact Factor (JCR 2014): 3.096

– Subject Category: Computer Science, Artificial Intelligence. Ranking 15 / 123 (Q1).

– Subject Category: Engineering, Electrical & Electronic. Ranking 20 / 249 (Q1).

Fast Fingerprint Identification for Large Databases

D. Peraltaa,∗, I. Trigueroa, R. Sanchez-Reillob, F. Herreraa, J.M. Beniteza

aDepartment of Computer Science and Artificial Intelligence of the University of Granada, CITIC-UGR, Granada, Spain, 18071
bUniversity Group for Identification Technologies (GUTI) at the Electronics Technology Dpt., Carlos III University of Madrid, Avda. Universidad,

30, 28911 Leganes (Madrid), Spain

Abstract

Fingerprint matching has emerged as an effective tool for human recognition due to the uniqueness, universality and

invariability of fingerprints. Many different approaches have been proposed in the literature to determine faithfully

if two fingerprint images belong to the same person. Among them, minutiae-based matchers highlight as the most

relevant techniques because of their discriminative capabilities, providing precise results. However, performing a

fingerprint identification over a large database can be an inefficient task due to the lack of scalability and high com-

puting times of fingerprint matching algorithms. In this paper, we propose a distributed framework for fingerprint

matching to tackle large databases in a reasonable time. It provides a general scheme for any kind of matcher, so

that its precision is preserved and its time of response can be reduced. To test the proposed system, we conduct an

extensive study that involves both synthetic and captured fingerprint databases, which have different characteristics,

analyzing the performance of three well-known minutiae-based matchers within the designed framework. With the

available hardware resources, our distributed model is able to address up to 400 000 fingerprints in approximately half

a second. Additional details are provided at http://sci2s.ugr.es/ParallelMatching.

Keywords:

Distributed computing, large databases, minutiae matching, parallel computing, real-time fingerprint identification

∗Corresponding author. Tel.: +34 958244019; fax: +34 958243317
Email addresses: dperalta@decsai.ugr.es (D. Peralta), triguero@decsai.ugr.es (I. Triguero), rsreillo@ing.uc3m.es

(R. Sanchez-Reillo), herrera@decsai.ugr.es (F. Herrera), J.M.Benitez@decsai.ugr.es (J.M. Benitez)

Under consideration for publication in Pattern Recognition June 21, 2016

1. Introduction

Personal identification is one of the largest problems in the society today in a wide variety of fields: from access

control to criminology and forensic identifications, payments and identification in computer systems [1]. Among

all the biometric features that can be used for identification, such as voice, iris, DNA, etc, fingerprints are the most

widely used [2]. They are very suitable for human recognition because of their uniqueness, universality, invariability

and extraction facilities.

A fingerprint is basically a pattern of ridges and valleys captured from a finger by inked press, capacitive or optical

sensors, etc. Fingerprint recognition has been studied for many years and a great number of fingerprint matching al-

gorithms have been proposed in the specialized literature [3, 4]. Minutiae-based matching algorithms highlight as the

most relevant approaches because minutiae are considered the most discriminating and reliable features [5, 6]. The

design of Automatic Fingerprint Identification Systems (AFISs) [7] is an important task in pattern recognition. Al-

though very effective solutions are currently available, many problems still remain [8]. Among them, the performance

and speed of AFISs for large databases need to be improved.

Fingerprint recognition can be categorized into two different problems: verification [9] and identification [10]. The

former consists of determining whether two images belong to the same fingerprint, that is, a one-to-one comparison.

The latter is devoted to search for the matching of an input fingerprint in a template database, so that the owner of

this fingerprint can be identified. Thus, identification can be seen as a generalization of the verification problem that

conducts one-to-many comparisons. In this paper, we will focus on identification.

In general, matching algorithms are designed to carry out a fingerprint verification and their generalization to

address identification is straightforward. Most of them are focused on achieving very accurate matchings, what

usually negatively affects the time consumption. This factor is determinant in most real time systems where a high

response time is equivalent to a system failure. Furthermore, this weakness is especially harmful when the number of

templates in the database is increased. Although some approaches have been designed to be as fast as possible [6],

they are not suitable to tackle large databases maintaining their precision.

High Performance Computing (HPC) is one of the tools that support the modern Science, allowing the execution

of multiple calculations in a reasonable time [11] by using an adequate massive computational structure [12]. HPC has

been successfully used in many different pattern recognition problems [13, 14, 15], and more concretely in real-time

image comparison [16] and other artificial intelligence systems [17]. Given the complexity order of an AFIS, HPC is

a promising resource that has already been proven to reduce the identification time [18, 19]. However, the proposals

in the current scientific literature focus on objectives other than performance, such as high availability or database

distribution. Real-time response times can only be obtained through a correct algorithm design and implementation

in order to exploit the available resources as flexibly and efficiently as possible.

In this paper, we design a two-level distributed framework to provide matching algorithms the capacity of dealing

with arbitrarily large databases by adapting the underlying hardware. According to the so far presented reasons, three

2

objectives are defined for this paper:

• To analyze the behavior of matching algorithms when dealing with large databases.

• To verify the scalability of the proposed system.

• To provide a real-time answer.

To check the performance of the proposed system, we will conduct experiments involving up to 400 000 fin-

gerprints. Because of the absence of large captured fingerprint databases, we use the SFinGe software tool [20, 2] to

generate a large synthetic database. This database is used for experiments both with the ground-truth minutia provided

by SFinGe and using the NIGOS mindtct [21] minutiae extractor in a seek of a more realistic framework. Furthermore,

in order to validate the results we also include experiments with captured databases: NIST DB4 [22] and DB14 [23].

Due to the space constraints not every experiment could be included in the paper. Complementary material about

the work done for this paper can be found at the URL http://sci2s.ugr.es/ParallelMatching.

The rest of this paper is organized as follows: Section 2 provides a description of the fingerprint recognition

process, defining in detail the most important steps. In Section 3, the HPC paradigm is presented, showing its hardware

and software requirements, theoretical benefits and current applications to AFISs. Section 4 explains the proposed

distributed system for tackling the fingerprint identification problem in a reasonable time. Section 5 describes the

experimental framework. Section 6 examines the results obtained, presenting a discussion of them. Finally, Section 7

concludes the paper.

2. Background

A considerable research effort has been carried out in the fingerprint recognition field over the last decades. This

section sums up the state-of-the-art in that field, starting with the fingerprint recognition problem (Section 2.1), and

explaining the generalities of feature extraction (Section 2.2) and fingerprint matching (Section 2.3).

2.1. Fingerprint recognition

Because of its different application fields, most authors divide the fingerprint recognition problem into two variants

that constitute by themselves different problems [2]:

• Verification consists of determining whether two fingerprint images P1 and P2 belong to the same person,

performing a 1:1 comparison [9]. The system output is an acceptation or a refusal of the claimed identity

depending on the similarity level (called score) of both fingerprints.

• Identification aims to find the fingerprint that matches with the input fingerprint in a database, so that its owner

can be identified [10]. A fingerprint database is a set T of N template fingerprints T = {T1,T2, ...,TN} that

are used as reference for the identification. Thus, identification is a problem of 1:N comparison as the input

3

fingerprint I needs to be compared with all Ti template fingerprints (with i ∈ {1, 2, ...,N}) to find the matching

that provides the highest score. This score is called mbest. It is defined in Equation 1, where Q(I,Ti) is the

matching function (see Section 2.3). If mbest is lower than a certain threshold φ, then the system may consider

that the input fingerprint has no corresponding template in the database. Hence, the system output can be the

matched identity, a “not found” notification, or a set of candidate identities. This paper focuses on a system that

considers only the maximum score, so the last case is not detailed, as shows Equation 2. A description of the

system behavior in the case with a set of candidates can be found in the web site.

mbest = max{Q(I,Ti) | i ∈ {1, 2, ...,N}} (1)

Id(I) =

not found, if mbest > φ

arg maxi Q(I,Ti) i ∈ {1, ...,N}, otherwise
(2)

The identification problem can be seen as a verification performed once per each fingerprint in the database. The

main difference between these problems is therefore a matter of complexity order. The objective in a verification

problem is to obtain a very precise result, reducing the error rates as much as possible. However, complex verification

methods are not useful for identification because the overall response time would be excessive.

So far, the general characteristics of the identification problem have been defined. The requirements needed by an

AFIS to deal with large databases can be fixed:

• Precision: error rates have to be as low as possible in order to get an accurate system. Additional information

about error rates can be found in the web site associated with this paper.

• Efficiency: the time that is needed to locate a fingerprint in the database should be as small as possible. In

a real-time system, for example, a high delay can be equivalent to a system failure [24]. The delay threshold

depends on the specific system but it is very often within the order of a few seconds.

• Scalability: it reveals the system capabilities to deal with databases of almost arbitrary size, in a reasonable

amount of time, maintaining the precision requirement. This can be done by guaranteeing that a large database

can be explored in the same time than a smaller one by increasing correspondingly the underlying hardware

resources.

• Flexibility: the system has to fit easily and efficiently any database size, any database features (such as noisy

fingerprints or rollings), as well as any hardware configuration (different architectures, varying cluster size,

different processors, etc.).

Although there are several solutions to the fingerprint identification problem, the general search process structure

is composed of the following steps [2]:

4

1. Input fingerprint fetching

2. Feature extraction

3. Search of a similar fingerprint in the database

4. Returning the result

2.2. Feature extraction

A fingerprint is basically formed by ridges and valleys. They can be easily appreciated in a good quality im-

age (Fig. 1a), or on the contrary they can be blurred or even indistinguishable (Fig. 1b), difficulting the knowledge

extraction process.

(a) Good quality image (b) Bad quality image

Figure 1: Good and bad quality images.

As they are analyzed at different degrees theses ridges and valleys present some patterns that can be used to

perform the fingerprint comparison. The most relevant features, ordered from the most global to the most local, are

the following [2]:

• Singular points: they are detected at the most global level. They are points around which the ridge patterns

are wrapped. There are two kinds of them: loops and deltas, and a fingerprint can have between zero and five

singular points.

• Orientation map: it belongs to the same level as singular points and contains the direction of the fingerprint

lines for each coordinate in the image.

• Minutiae: they are the ridge bifurcations and endings, which are detected at a more detailed level (Fig. 2).

Among these kinds of patterns, minutiae are the most used features for fingerprint recognition [2]. Some studies

state that they are the most reliable features for these purposes [25, 26], and that twelve perfectly matching minutiae

5

Figure 2: Fingerprint minutiae with their orientation.

between two fingerprints can ensure they are the same [27]. However, in bad quality images their extraction can be

troublesome [28].

A minutia Mi is typically described with five parameters (xi, yi, θi, ti, qi):

• (xi, yi): coordinates in the picture

• θi: orientation or minutia angle

• ti: type (ridge ending or bifurcation)

• qi: quality

Therefore, a fingerprint F with r minutiae can be represented as a minutiae vector {M1,M2, ...,Mr}.
The number of minutiae r is typically between 30 and 100. Thus, minutiae can be efficiently stored and easily

handled in a computing environment, and fingerprint comparison can be treated as a similarity calculation between

minutiae sets.

There are two main types of minutiae extractors [2]:

• Binarization-based methods: most of the methods require a binary fingerprint image. The image usually

passes through a thinning process that reduces the line thickness to one pixel, resulting in a skeleton image.

Although these steps are time-consuming and may cause some information loss, they allow the minutiae de-

tection with a simple image scan and they greatly benefit from previous enhancement processes such as the

approaches presented in [29, 30, 31]. Some methods of this type are NIGOS mindtct [21], and an approach

based on peak detection along sections orthogonal to the ridge orientation [32]. Additionally, other methods

improve the image quality before the thinning step, for example by using adaptive windows to follow the ridges

and find the gaps and holes [33].

6

• Direct gray-scale extractors: some methods do not use binarization nor thinning. Therefore, there is no

information loss and the time spent on binarization and thinning steps is avoided, but these methods do not

benefit from a priori enhancements. One of the most used methods uses the orientation map to follow the

ridges [5], and is used as a basis by further proposals [34, 35, 36, 37, 38]. Other methods use alternatives to

ridge-line tracking, such as neural networks [39] or spatial filtering [40].

2.3. Matching

A matching algorithm compares the features of two fingerprints and returns a similarity score. The algorithm and

the data structures it uses depend on the specific features that are extracted from the fingerprint image, allowing the

following classification of matchers [2]:

• Correlation-based [41, 42]

• Minutiae-based [43, 28, 6, 44]

• Non-minutiae feature-based [33, 4]

This paper focuses on minutiae-based matchers, whose usual data structures are the following:

• Distance between minutiae

• Minutiae neighborhood

• Number of ridges between minutiae (ridge count)

A matching algorithm performs some calculations from these structures and the fingerprint features themselves

and returns a score (typically a real number) that describes the similarity level ranging from completely different

fingerprints to the totally identical pictures.

The minutiae-based matching process can be performed at three different levels [2, 6]:

• Global: The minutiae of the whole image are compared. This matching type is more sensitive to image distor-

tions, rotations and translations, although the usage of information of the whole image at the same time provides

a complete view of the fingerprint. Some proposals are presented in [45, 46].

• Local: Small groups of minutiae close to each other are compared. Problems due to rotations and translations

are softened because the use of relative angles and coordinates makes the method rotation and translation invari-

ant. The distortion problem is also reduced because close minutiae are less affected by distortions. However, not

considering the fingerprint as a whole implies a loss of information that can affect the precision of the algorithm.

Some approaches are described in [47, 28].

7

• Hybrid: Most reliable algorithms use a hybrid approach, combining both philosophies. First, a local matching

extracts the most similar minutiae groups of both fingerprints. These minutiae are considered to be the same,

and then a global matching based on this correspondence is executed. Some of the most relevant proposals

are [43, 6].

3. High Performance Computing

HPC systems are normally used for distributed and parallel computing, providing several advantages:

• Efficiency: the parallel processing in several cores and computers can be used to get results faster.

• Robustness: the use of several machines allows the system to be fault-tolerant, because if one machine fails,

the rest can assume its work and the system still provides a correct response.

• Scalability: hardware evolves towards a higher number of cores and collaborating processors. Thus, an algo-

rithm that is able to solve bigger problems just by using more computers could solve arbitrarily big problems

without being modified.

In Sections 3.1 and 3.2, the hardware and software that give support to an HPC system are described. Section 3.3

presents the theoretical expectation of improvement in the execution times of a generic system that uses HPC. Finally,

the state-of-the-art about distributed AFISs is studied in Section 3.4.

3.1. Hardware support

Hardware has evolved in two ways to support HPC. On the one hand, several computers can be integrated with

a high-speed network to form a cluster. This provides a great flexibility when the processing capacity has to be

increased, but the performance can become limited by the network speed.

On the other hand, a single computer can have several processors, a single processor can have several cores, and

a single core can handle several execution threads (for example, with the Intel Hyperthreading technology [48]). All

these processors and cores can communicate using shared memory, which is very fast, as long as the synchronization

is efficiently performed. This is not always easy and may imply great design and implementation efforts. However,

the number of cores in a single computer is still quite limited, and nowadays is not higher than about 12 or 24.

A typical computing cluster is formed by a bunch of computers, and each one of them has one or several multicore

processors, where all the cores share the main memory and some cache. This kind of clusters are called hybrid clusters

(Fig. 3).

8

Figure 3: Typical hybrid architecture of the cluster used for the experiments in Section 6.

3.2. Software support

According to the current evolution of technology, the parallel paradigm for software development is bound to be

increasingly necessary in the next years (and most likely in a longer term too).

Within a hybrid cluster, the computing program is typically divided into several processes and each process is run

in a different node. These processes communicate using Message Passing Interface (MPI) 1 . Again, each process can

be divided into several execution threads that can communicate using shared memory, which is faster than MPI. The

maximum performance is usually reached when each computing node executes a single process that contains one or

two threads per node core. Thus, the adequate implementation of a system in a computing cluster is a complex task.

The execution of these processes and threads can be tackled by the operating system (for example when using

C++), or by a virtual machine (for instance with Java, Scala or Erlang).

3.3. Theoretical expectations

There are several formulas to measure the performance of a parallel system. The most widely used is the speedup

(S = ts/tp), which measures the relation between the execution times of the sequential (ts) and parallel (tp) versions

of a same calculation.

If a calculation is executed in n processing cores, and a portion f of the calculation is performed in parallel, the

maximum attainable speedup would be S ∗, according to the Amdahl’s Law [49], which is shown in Equation 3.

S ∗ =
1

(1 − f) +
f
n

(3)

Therefore, if the calculation is fully parallelizable (f = 1) the maximum speedup would be equal to the number of

cores (n). However, in practice the attained speedup is lower than this maximum due to several factors:

1http://www.mpi-forum.org/

9

• There is always some part of the calculation that is not parallelizable (1 − f). Even if this part is very small

it can represent a very big speedup loss when the number of parallel cores is high, as it can be seen in Equa-

tion 4, which shows the maximum speedup for a certain f even if the number of processors is arbitrarily high.

Therefore, it is crucial to reduce as much as possible the fraction of non-parallelizable calculation.

lim
n→+∞

1

(1 − f) +
f
n

=
1

1 − f
(4)

• A parallel application includes extra communication and synchronization workloads that are not necessary in

sequential programs.

• When some threads or processes finish their workload before others, the hardware does not work at full capacity

any more because some of the processing cores remain idle, waiting for new tasks to be assigned.

However, there are some cases where a superlinear speedup can be attained. One of them is when the amount of

processed information does not fit in the main memory of a single computer. If several computers collaborate, the

total amount of available memory is higher and then the necessity of slow hard-disk accesses can be removed.

Finally, the relationship between processing (tpr) and communication (tc) workload as the problem size increases

is also important (Rpc = tpr/tc). If the processing workload is higher, a bigger cluster would be useful in order to

improve the performance. However, if there is more communication as the problem size increases, there would be a

bottleneck and the use of more machines would not imply faster results.

3.4. Distributed AFISs: proposals in the specialized literature

According to the preceding sections, the features provided by HPCs are very similar to the AFIS objectives de-

scribed in Section 2. HPC is a promising tool for the design of a flexible and scalable AFIS because it would allow a

parallel search through the fingerprint database, providing an increased system performance [18, 50].

At the time of writing this paper there are several AFISs in the specialized literature and also in the commercial

market. Most of these systems have an acceptable performance when they deal with small databases. Nevertheless,

in most real world problems there is a need of finding a person among databases whose sizes can range from tens

of thousands to tens of millions. These identifications must be performed in a reasonable time, often shorter than a

threshold of a few seconds. Furthermore, as explained in Section 2, the larger the size of the fingerprint database, the

harder it is to obtain a good identification accuracy.

Within this context, the bottleneck step in the identification process is the matching algorithm, because it must be

performed once per each database fingerprint to determine which one is the most similar to the input.

The proposals in the specialized literature can be classified into different categories:

• Client-server systems: in [51], the authors propose a server-like AFIS where the fingerprint database is dis-

tributed among several servers. When a client requests an identification from a server, it searches the input

10

fingerprint in its database portion. If it succeeds, it sends the response to the client. However, if the fingerprint

is not found in the server, the request is forwarded to other servers and the server acts as a client. Therefore,

this system does not process the information in parallel. The distribution only affects the database and not the

processing, and the overall processing time is higher than in a sequential AFIS. This makes this architecture

unsuitable for very large databases with hundreds of thousands of fingerprints. A similar system is described

in [19], that additionally includes a GPS-based system for an increased security.

The objective of these systems is to provide an AFIS for distributed databases, whereas this paper focuses on

attaining low identification times in large databases. Thus, no comparison can be performed between these

systems.

• Agent-based systems: in [52] an agent-based system is presented, mostly oriented to heterogeneous hardware

architectures. The novelty of this work is that it uses the idle times of a bunch of computers that are mainly

used for other purposes, especially desktop machines. The main part of this proposal is therefore a load-

balancing algorithm. The system has a master-slave structure where a set of slave agents compare fingerprints

and a master agent distributes and organizes the computing workload. The proposed architecture is divided

into layers that isolate the resource monitoring, the agent manager and the matching algorithm. A similar, less

centralized approach is presented in [53], where slave agents are able to communicate and share their found

scores. Several processes are dynamically created when an input fingerprint is received to better distribute

the database exploration. Although this may improve the system flexibility, there is a negative impact on the

identification time.

Again, the objective in these systems is not performance, but load-balancing between shared machines. The

execution times shown in [52] are of 3 minutes and 14 second for performing 700 matchings in a set of 20

Pentium IV machines. This result shows that this approach is not able to handle identifications through hundreds

of thousands of fingerprints in no more than a few seconds, as is the requirement for most real-time biometric

systems.

To sum up, there are some solutions and ideas to improve the efficiency and the availability of AFISs; however,

there is no really scalable AFIS available in the current scientific literature.

4. Distributed and scalable AFIS framework

As it has been explained in previous sections, the bottleneck in a traditional AFIS is the matching process, that

has to be executed once for each fingerprint in the database. This makes the system less usable when it comes to

deal with large or very large databases (from tens of thousands of fingerprints onwards) as the response time becomes

too high. However, the fingerprint identification problem is naturally parallelizable, because the comparisons of the

input fingerprint I with each one of the N fingerprints Ti in the database are entirely independent. This feature can

11

be exploited by designing a flexible and efficient parallel identification system based on the HPC paradigm, which

eliminates the bottleneck.

The proposed system is described as follows: Section 4.1 details its parallel structure, Section 4.2 describes the

database distribution and Section 4.3 explains the distributed search process.

4.1. Two-level parallelization

As described in Section 3.1, a typical computer cluster has two parallelism levels. Both nodes and cores contribute

to the system performance and can execute processes by themselves; however, they must be handled by the software

in a different way if a maximum performance must be attained.

The proposed software system (which is implemented in C++) consequently has a two-level parallelization:

• Processes: typically one per node, they are handled with MPI. 1

• Threads: one or several per process, they are handled with OpenMP. 2

There is a single process (called “master”) which reads the input fingerprint and gathers the results at the end of a

search. All the other processes are called “slaves”, and perform parts of the search executing the matching algorithm.

Each slave loads its corresponding fraction of the database and searches the input fingerprint in it. Additionally, each

slave process is itself formed by one or more threads, therefore its database fraction can be divided over again and the

threads perform a parallel search within each process.

4.2. Database distribution

Suppose a generic system with N fingerprints, p nodes and h threads per node. The database would be divided

into one portion per node, so that each process searches in its corresponding portion of N/p fingerprints (Fig. 4). This

distribution can be physical, if the fingerprints are stored in their corresponding nodes in order to improve the access

time and avoid the bottlenecks of a centralized database, or merely logical if the database is centralized.

Inside each node, the process performs a logical partition of its database portion. Hence, each thread searches

through only N/(ph) fingerprints. This scheme allows N, p and h to be modified in a totally flexible way, so they

can be adjusted to any hardware (from single-core computers to hybrid clusters), any environment conditions and any

database to obtain a maximum performance gain.

Fig. 5 represents the interval size for each thread as a function of the total number of threads ph.

4.3. Distributed search process

The logic of the system remains the same independently of how many nodes or threads are used, and is depicted

in Fig. 6.

2http://openmp.org/wp/

12

Figure 4: Database partition for nodes and threads

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
d
a
ta

b
a
s
e
 f
in

g
e
rp

ri
n
ts

 i
n
 e

a
c
h
 i
n
te

rv
a
l

Total number of threads (ph)

Figure 5: Relative interval size for each thread

13

1. Initialization: this step is executed only once, and then the system can perform as many identifications as

required. The database partitions are established, each slave loads its part of the database, preprocesses it if

necessary, and the master waits for input fingerprints.

2. Identification loop

(a) The master receives an input fingerprint. As the feature extraction is performed only once, it can be

computed either in the master process or in each of the slaves independently, depending on the system

features.

(b) When a slave gets the fingerprint features, each one of its threads performs N
ph matchings to compare it

with the template fingerprints in its database portion.

(c) Each slave sends its successful matches to the master process.

(d) The master computes the results and gives a response to the user.

This scheme ensures that the bottleneck step (number 2.b) is executed with two levels of parallelism, in order

to accelerate the execution as much as possible and eliminate the bottleneck. Moreover, as the matching algorithm

remains the same as in a sequential search, there is no loss of precision and the system is guaranteed to find exactly

the same solution as the sequential model in much less time. This also makes the system independent of the matching

algorithm, which can be easily replaced.

Figure 6: Processing in the proposed distributed model

According with these data and Amdahl’s Law (Section 3.3), this system can obtain a maximum speedup of 1
ph . In

that case the identification time plot would have the same hyperbolic shape as the partition size in Fig. 5.

The proposed distributed system shows several important advantages:

• Very high speedup because of several factors:

– Independent processing among slave processes

– Independent processing among threads within each slave

14

– Minimum communication overhead

– Optimal exploitation of the hardware structure

• Adaptability to multiple sequential or distributed platforms and architectures

• Flexibility for centralized or distributed databases

• Flexibility for any matcher or feature extractor

• Same precision as the sequential model

5. Experimental setup

This section describes the experimental framework for this paper. The aim of this experimental study is to check

the system scalability —along with its adaptability to the underlying hardware system— in several aspects:

• The number of computing nodes

• The number of threads in each node

• The size of the database

All the performed experiments have the same structure: first, a fingerprint database is loaded in the system and all

its fingerprints are preprocessed according to the corresponding matching algorithm; then, a set of input fingerprints

are searched throughout the database for their identification. All the presented results are averages of the identification

times obtained for 1000 input fingerprints. For the sake of readability and reasons of space, the standard deviations

are not included, but they can be found in the web site associated with this paper. The penetration rate is 100% for this

setup, as there is no stopping criterion for the search. As explained in Section 4.3, the proposed system provides the

same identifications as a traditional sequential AFIS. A large description of the possible stopping criterion is presented

in the associated web site, as well as the precision results for all the databases used in this paper.

Firstly, the hardware and software support are defined and detailed in Section 5.1. Then, Section 5.2 describes the

large synthetic databases created with SFinGe. Finally, Section 5.3 details the captured databases that are used in the

experiments.

5.1. Hardware and software environment

The experiments have been carried out on up to twelve nodes in a cluster. Each of these nodes has the following

features:

• Processors: 2 x Intel Xeon CPU E5-2620

• Cores: 6 per processor (12 threads)

15

• Clock Speed: 2.00 GHz

• Cache: 15 MB

• Network: Gigabit Ethernet (1 Gbps)

• RAM: 64 GB

One of the nodes acts as the interface with the user and hosts the master process. However, as this process does

not perform any major processing tasks, a slave process can also be executed on the same node without compromising

the performance and thus the hardware is more efficiently exploited.

The proposed distributed model has been implemented in C++, using the OpenMPI 1.6 library3 for the commu-

nication and synchronization of processes. Similarly, the OpenMP library 2 has been used for handling the threads

within each process. In all databases where the fingerprint features had to be extracted, the NIGOS mindtct [21]

algorithm was used.

Table 1: Parameters for the methods used in the experimentation

Algorithm Parameters Reference

Mindtct
output format = ANSI INCITS 378-2004

[21]
image enhancement = enabled

Jiang

wd = 1,wθ = 54π,wφ = 54π,wn = 0,wt = 0

[43]Consolidation step iterations = 5,Minutiae neighborhood size = 2

BG1 = 8, BG2 = π
6 , BG3 = π

6

Chen
ThrL = 55,ThrH = 80,R = 80,RS = 100, θL = 0.25, θH = 0.4

[28]
lenL = 5, lenH = 20,Thrtopo = 0.7

MCC16

R = 70,Ns = 16,Nd = 6, σs = 28
3 , σd = 2π

9 , µΨ = 0.01, τΨ = 400

[6]

ω = 50,minVC = 0.75,minM = 2,minME = 0.60, σθ = π
2 ,maxnp = 12

Floating-point-based version: enabled, µP = 20

wR = 0.5, µρ1 = 5, τP = 0.6,minnp = 4

µ
ρ
2 = π

12 , µ
ρ
3 = π

12 , τ
ρ
1 = −1.6, τρ2 = −30, τρ3 = −30, nrel = 5

Three different matching algorithms of the state-of-the-art literature have been used within the framework:

• Jiang is a classical hybrid matching algorithm [43]. Each minutia is described with a feature vector that depends

on its neighboring minutiae, and the feature vectors of both fingerprints are compared in pairs. The algorithm

3http://www.open-mpi.org/

16

assumes that the most similar pair corresponds to the same minutia in both fingerprints and compares the rest

of the minutiae using relative coordinates and angles (avoiding the translation and rotation problems).

• Chen focuses on getting robustness despite of the fingerprint distortion [28]. The algorithm is mostly local, as

it calculates the local topology for each minutiae given a fixed radius. Then, it compares the local topologies

of both fingerprints, and if they are similar enough, it repeats the comparison with a modified radius to avoid

problems with the image distortion.

• Minutia-Cylinder-Code (MCC) uses both local and global information to perform the matching [6]. For each

minutia, a tridimensional cylinder is built and discretized in cells. Each cell is given a value that depends on its

position and the relative position of neighboring minutiae. According to this number, the cell can be declared

either valid or invalid, so that only cylinders with a minimum number of valid cells are taken into account for the

matching process. This process compares the cylinders of both fingerprints cell by cell and merges the results

(global matching) to get the score.

This algorithm has a binary and a real version. In this paper, we focus on the latter, which is more precise and

more suited for general purpose machines. We also fix 16 cells as the cylinder side size in order to get the most

accurate configuration, which is also the most computationally complex. Results for the version with Ns = 8

are included in the web site associated to this paper.

All three algorithms have been implemented by the authors of this paper, with the only help of the information

shown at each of the referred papers. All the used methods parameters are common for all databases, and they were

selected according to the recommendation of the corresponding authors (Table 1).

5.2. SFinGe databases: ground-truth minutiae and NIGOS mindtct extraction

A correct scalability study requires a very large database. However, there is no public captured fingerprint database

big enough to cover this need, so we used SFinGe [20, 2] to generate a database with 400 000 synthetic fingerprints,

using the parameters described in Table 2 to ensure the generation of realistic fingerprints.

SFinGe randomly generates the fingerprint minutiae and calculate a fingerprint image from them, following pat-

terns so that the resulting synthetic fingerprints behave as natural captures. As SFinGe is able to provide the generated

minutiae as an additional output, this paper has used both the returned ground-truth minutiae and the extracted minu-

tiae (using mindtct), obtaining two databases with the same fingerprints but slightly different characteristics.

For each fingerprint 25 impressions have been generated. One of the impressions is selected as template, and the

rest are considered input fingerprints. Then, several subsets of the whole database (each of them of increasing sizes)

have been selected, respecting the natural class distribution, in such a way that each database contains the immediately

smaller one. The whole enrollment process is described in the associated web site.

The size of all database subsets are presented in Table 3, along with the average number of minutiae for both

template and input fingerprints. As it can be seen, the number of average minutiae is higher for the extracted feature

17

Table 2: Parameter specification used with the SFinGe tool

Scanner parameters

Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm).

Resolution: 500 dpi.

Image size: 288 x 384.

Background type: Optical.

Background noise: Default.

Crop borders: 0 x 0.

Generation parameters

Impression per finger: 25.

Class distribution: Natural.

Set all distributions as: “Varying quality and perturbations”.

Generate pores: enabled.

Save ISO templates: enabled.

Output settings

Output file type: WSQ.

Table 3: SFinGe databases size and average number of minutiae

DB Size
Ground-truth Extracted

Template Input Template Input

1000 40.79 36.84 55.35 49.60

2000 40.84 36.81 55.47 49.61

5000 40.97 36.98 55.64 49.87

10 000 40.79 36.77 55.48 49.61

50 000 40.72 36.70 55.44 49.58

100 000 40.73 36.71 55.46 49.62

200 000 40.74 36.71 55.50 49.63

400 000 40.70 36.68 55.47 49.66

vectors due to the noise introduced by the image generation and the processing steps. This implies that mindtct extracts

an average of 15 spurious minutiae per fingerprint.

Finally, we have selected one random input impression for each fingerprint in the smallest database, obtaining a

18

test set of 1000 input fingerprints that is valid for the experiments with all the generated databases.

Table 4: Execution times and speedup with the MCC16 algorithm

Slaves DB size
1 thread 4 threads 12 threads 24 threads

Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1

1000 6.5377 1.0000 1.6867 3.8759 0.6444 10.1447 0.5043 12.9646
2000 12.9968 1.0000 3.2963 3.9429 1.2041 10.7936 0.9059 14.3463
5000 32.5242 1.0000 8.1634 3.9841 2.9056 11.1937 2.1228 15.3212

10 000 64.7076 1.0000 16.2010 3.9940 5.7484 11.2566 4.1308 15.6645
50 000 321.8924 1.0000 81.9340 3.9287 28.2669 11.3876 20.1745 15.9554

100 000 624.3297 1.0000 160.9759 3.8784 56.5323 11.0438 40.2844 15.4980
200 000 1250.2594 1.0000 314.9397 3.9698 113.1789 11.0468 80.4265 15.5454
400 000 – – – – – – – –

2

1000 3.3728 1.9384 0.9062 7.2142 0.3633 17.9976 0.3081 21.2203
2000 6.5398 1.9873 1.6969 7.6592 0.6457 20.1289 0.5144 25.2667
5000 16.3442 1.9900 4.1567 7.8246 1.4826 21.9367 1.1156 29.1537

10 000 32.5416 1.9885 8.1786 7.9118 2.9220 22.1446 2.1294 30.3882
50 000 161.8845 1.9884 40.3953 7.9686 14.1720 22.7132 10.1626 31.6743

100 000 324.4350 1.9244 80.6912 7.7373 28.2606 22.0919 20.1649 30.9612
200 000 625.5980 1.9985 161.2985 7.7512 56.5520 22.1081 40.2440 31.0669
400 000 1248.7902 – 322.3448 – 109.9070 – 80.4963 –

4

1000 1.8610 3.5129 0.5247 12.4603 0.2329 28.0741 0.2133 30.6491
2000 3.3892 3.8347 0.9121 14.2499 0.3680 35.3140 0.3172 40.9691
5000 8.2977 3.9197 2.1465 15.1521 0.7898 41.1816 0.6155 52.8417

10 000 16.3510 3.9574 4.1657 15.5334 1.4917 43.3775 1.1096 58.3179
50 000 80.8244 3.9826 20.3091 15.8497 7.1278 45.1600 5.1219 62.8463

100 000 161.5434 3.8648 40.4924 15.4185 14.2047 43.9523 10.1475 61.5253
200 000 312.9654 3.9949 80.7448 15.4841 28.2520 44.2538 20.1662 61.9977
400 000 621.7593 – 158.2815 – 56.4944 – 40.2569 –

8

1000 0.9849 6.6382 0.3098 21.1005 0.1681 38.8978 0.1750 37.3486
2000 1.8604 6.9859 0.5302 24.5143 0.2335 55.6547 0.2195 59.2200
5000 4.2340 7.6816 1.1434 28.4443 0.4392 74.0569 0.3691 88.1285

10 000 8.3241 7.7735 2.1611 29.9425 0.7880 82.1115 0.5932 109.0777
50 000 40.4281 7.9621 10.2904 31.2810 3.5670 90.2412 2.5289 127.2860

100 000 80.9415 7.7133 20.2252 30.8689 7.0044 89.1343 4.9369 126.4614
200 000 161.5014 7.7415 40.3357 30.9963 14.1784 88.1803 10.1298 123.4243
400 000 315.6620 – 80.5549 – 28.2313 – 20.1449 –

12

1000 0.6955 9.4000 0.2366 27.6279 0.1384 47.2470 0.1616 40.4603
2000 1.2825 10.1340 0.3841 33.8357 0.1885 68.9394 0.1909 68.0741
5000 2.9076 11.1858 0.8120 40.0537 0.3320 97.9537 0.2866 113.4908

10 000 5.5884 11.5789 1.4935 43.3259 0.5632 114.8979 0.4399 147.0949
50 000 27.1921 11.8377 7.0135 45.8961 2.4538 131.1832 1.7928 179.5466

100 000 54.1348 11.5329 13.5321 46.1370 4.8029 129.9911 3.4581 180.5417
200 000 104.8093 11.9289 26.9958 46.3132 9.4815 131.8623 6.7807 184.3857
400 000 213.1696 – 51.5151 – 18.8523 – 13.4805 –

The execution parameters take the following values for the experiments with these database subsets, producing a

total of 480 executions of 1000 identifications each:

• Number of nodes: 1, 2, 4, 8 and 12

• Number of threads per node: 1, 4, 12 and 24

19

Table 5: Execution times and speedup with Jiang and Chen algorithms

Slaves DB size

Jiang Chen
1 thread 4 threads 12 threads 24 threads 1 thread 4 threads 12 threads 24 threads

Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

1

1000 0.2223 1.0000 0.0572 3.8865 0.0210 10.6091 0.0322 6.9010 2.6166 1.0000 0.6707 3.9014 0.2631 9.9439 0.2158 12.1275
2000 0.4491 1.0000 0.1143 3.9292 0.0418 10.7486 0.0469 9.5809 5.2484 1.0000 1.3442 3.9046 0.5200 10.0937 0.4094 12.8186
5000 1.1262 1.0000 0.2871 3.9232 0.1048 10.7434 0.0898 12.5358 13.2122 1.0000 3.3910 3.8963 1.3043 10.1294 1.0083 13.1038

10 000 2.2432 1.0000 0.5710 3.9286 0.2072 10.8245 0.1670 13.4285 26.3182 1.0000 6.7189 3.9170 2.6000 10.1224 1.9823 13.2764
50 000 11.2532 1.0000 2.8536 3.9434 1.0443 10.7753 0.7408 15.1909 130.0427 1.0000 33.3673 3.8973 12.9129 10.0708 9.7984 13.2719

100 000 22.3477 1.0000 5.6989 3.9214 2.0743 10.7737 1.4444 15.4715 261.2312 1.0000 66.7052 3.9162 25.8390 10.1099 19.5891 13.3355
200 000 44.7627 1.0000 11.4571 3.9070 4.1789 10.7115 2.8860 15.5104 520.8561 1.0000 133.8296 3.8919 51.7934 10.0564 39.2616 13.2663
400 000 89.4130 1.0000 22.8261 3.9171 8.3137 10.7549 5.7485 15.5541 1041.2164 1.0000 268.2014 3.8822 103.6681 10.0437 78.6457 13.2393

2

1000 0.1142 1.9461 0.0294 7.5499 0.0108 20.6412 0.0292 7.6174 1.3740 1.9044 0.3538 7.3956 0.1360 19.2343 0.1180 22.1809
2000 0.2233 2.0118 0.0575 7.8125 0.0213 21.1162 0.0364 12.3264 2.6151 2.0069 0.6745 7.7813 0.2643 19.8543 0.2176 24.1182
5000 0.5647 1.9942 0.1455 7.7383 0.0522 21.5809 0.0579 19.4507 6.6614 1.9834 1.7315 7.6305 0.6522 20.2588 0.5073 26.0449

10 000 1.1266 1.9911 0.2917 7.6913 0.1041 21.5529 0.0940 23.8630 13.2512 1.9861 3.4134 7.7102 1.3075 20.1283 1.0074 26.1243
50 000 5.5878 2.0139 1.4407 7.8108 0.5222 21.5507 0.3782 29.7538 65.3116 1.9911 16.8256 7.7289 6.4966 20.0171 4.9242 26.4089

100 000 11.2132 1.9930 2.8599 7.8141 1.0442 21.4017 0.7306 30.5885 130.0469 2.0087 33.5380 7.7891 12.9157 20.2258 9.7965 26.6656
200 000 22.3400 2.0037 5.7152 7.8323 2.0770 21.5513 1.4477 30.9198 263.4494 1.9771 67.1486 7.7568 25.8201 20.1725 19.5915 26.5858
400 000 44.7918 1.9962 11.4334 7.8203 4.1682 21.4514 2.8645 31.2138 494.2013 2.1069 134.0177 7.7692 51.7896 20.1047 39.2861 26.5034

4

1000 0.0636 3.4950 0.0160 13.8813 0.0060 36.8029 0.0237 9.3672 0.7832 3.3409 0.2000 13.0831 0.0773 33.8613 0.0773 33.8581
2000 0.1154 3.8922 0.0297 15.1395 0.0111 40.4738 0.0294 15.2556 1.3838 3.7928 0.3590 14.6187 0.1362 38.5442 0.1155 45.4296
5000 0.2848 3.9547 0.0731 15.4160 0.0268 42.0524 0.0382 29.4869 3.3920 3.8951 0.8811 14.9944 0.3295 48.0000 0.2660 49.6665

10 000 0.5649 3.9707 0.1456 15.4113 0.0526 42.6104 0.0582 38.5593 6.6707 3.9454 1.7267 15.2417 0.6550 40.1810 0.5116 51.4412
50 000 2.8063 4.0099 0.7184 15.6639 0.2631 42.7751 0.1996 56.3777 33.6899 3.8600 8.4567 15.3775 3.2448 40.0772 2.4605 52.8523

100 000 5.5953 3.9940 1.4330 15.5947 0.5248 42.5867 0.3764 59.3691 65.3531 3.9972 16.8876 15.4688 6.4745 40.3479 4.9155 53.1444
200 000 11.2069 3.9942 2.8843 15.5196 1.0416 42.9750 0.7293 61.3813 130.2397 3.9992 33.7397 15.4375 12.9011 40.3730 9.7735 53.2930
400 000 22.3816 3.9949 5.7571 15.5309 2.0919 42.7426 1.4346 62.3251 244.8766 4.2520 67.2316 15.4870 25.8130 40.3369 19.5542 53.2478

8

1000 0.0316 7.0401 0.0083 26.7494 0.0035 64.2974 0.0290 7.6733 0.4037 6.4812 0.1054 24.8257 0.0428 61.1117 0.0515 50.8454
2000 0.0620 7.2497 0.0161 27.9362 0.0062 72.6729 0.0212 21.1652 0.7753 6.7691 0.2062 25.4555 0.0775 67.7110 0.0758 69.2445
5000 0.1451 7.7641 0.0378 29.7743 0.0137 82.4991 0.0132 85.4633 1.7007 7.7686 0.4545 29.0717 0.1694 77.9951 0.1482 89.1464

10 000 0.2842 7.8943 0.0736 30.4730 0.0269 83.4649 0.0189 118.5300 3.3823 7.7811 0.9019 29.1795 0.3319 79.2880 0.2626 100.2375
50 000 1.3982 8.0483 0.3657 30.7747 0.1338 84.0739 0.0865 130.1263 16.2990 7.9786 4.3068 30.1949 1.6056 80.9917 1.2014 108.2427

100 000 2.8018 7.9761 0.7160 31.2100 0.2617 85.4097 0.1676 133.3246 32.6356 8.0045 8.3803 31.1721 3.2778 79.6972 2.3699 110.2273
200 000 5.5918 8.0050 1.4278 31.3501 0.5252 85.2298 0.3771 118.6958 65.4597 7.9569 16.7699 31.0590 6.4707 80.4948 4.9169 105.9329
400 000 11.2094 7.9766 2.8535 31.3340 1.0465 85.4367 0.7311 122.2957 130.3891 7.9855 33.5594 31.0261 12.9884 80.1652 9.8312 105.9092

12

1000 0.0217 10.2596 0.0059 37.8051 0.0026 84.7512 0.0355 6.2588 0.2860 9.1492 0.0750 34.8743 0.0319 82.0586 0.0462 56.6480
2000 0.0420 10.7056 0.0111 40.5654 0.0045 100.4881 0.0305 14.7041 0.5355 9.8015 0.1402 37.4315 0.0555 94.5845 0.0605 86.7839
5000 0.0987 11.4113 0.0257 43.7860 0.0099 113.8505 0.0245 46.0084 1.1946 11.0598 0.3207 41.1937 0.1207 109.4223 0.1097 120.3981

10 000 0.1913 11.7289 0.0496 45.2401 0.0180 124.5452 0.0294 76.2192 2.2545 11.6735 0.6144 42.8372 0.2249 117.0009 0.1826 144.0929
50 000 0.9391 11.9824 0.2479 45.3899 0.0886 127.0723 0.0769 146.2598 11.6401 11.1720 2.9209 44.5208 1.0921 119.0792 0.8393 154.9394

100 000 1.8793 11.8913 0.4780 46.7535 0.1757 127.1641 0.1298 172.2133 21.8480 11.9568 5.6096 46.5684 2.1689 120.4465 1.6707 156.3570
200 000 3.7270 12.0104 0.9538 46.9313 0.3514 127.3876 0.2573 173.9799 43.5101 11.9709 11.1898 46.5475 4.3222 120.5079 3.2824 158.6822
400 000 7.4420 12.0146 1.9056 46.9214 0.7015 127.4627 0.4922 181.6637 83.1721 12.5188 22.3146 46.6609 8.6148 120.8634 6.5342 159.3485

• Matchers: Jiang, Chen and MCC16

For the extracted minutiae databases not all parameter combinations are necessary, and the experiments are limited

to the sequential and fully parallel cases to compare if the system behavior when using the extracted minutiae is the

same as when using the ground-truth database. Considering the 3 matching algorithms and the 8 database sizes, this

produces a total of 48 experiments. It is important to note that the increase in the number of minutiae shown in Table 3

implies a slow down in the identification process.

5.3. NIST DB4 and DB14 databases

In addition to the above mentioned experiments, NIST DB4 and DB14 databases have also been used. These

databases are provided by the National Institute of Standards and Technology (NIST). They contain 2000 and 27

000 rolled fingerprint pairs, respectively, and thus the number of minutiae extracted by NIGOS mindtct is very high

20

(135.87 in DB4 and 206.90 in DB14). The aim of using DB4 and DB14 is to test if the proposed system can deal

with captured databases, and also with rolled fingerprints. The used parameters for the minutiae extraction and the

matching algorithms are the same as for the SFinGe extracted database.

6. Experimental study

This section describes the results of the performed experiments. Sections 6.1, 6.2 and 6.3 present the results for

SFinGe ground-truth, SFinGe extracted and NIST databases, respectively.

6.1. Speedup with SFinGe ground-truth minutiae

The obtained results are presented in Tables 4 and 5. Note that the experiments with the 400 000 fingerprints

database combined with the MCC16 algorithm could not be performed within a single machine because the prepro-

cessed database is bigger than the whole RAM space in the used computers (64GB), and thus no speedups can be

calculated. The sequential tests could be run using virtual memory, but the performance loss would be dramatic and

the speedup when using several machines would be superlinear, as described in Section 3.3. This is a very clear case of

a problem that cannot be solved in a sequential manner, but can be successfully tackled using a distributed approach.

In the rest of the results, the decrease in the execution time and the corresponding increase in the speedup as the

amounts of threads and processes are augmented can be seen. It is also clear that the speedup is generally almost

linear with the total number of threads that perform the distributed search.

However, there are some exceptions to this statement:

• When the number of threads per computing node is 24, the performance gain is not proportional to this number

of threads, but lower. Nevertheless, this behavior is normal because each node in the used cluster only has 12

cores. The Intel Hyperthreading technology is able to handle two threads in each core, but its performance is

not as high as when these threads are executed in parallel within different cores, and strongly depends on the

specific instructions executed by the threads.

• When the database size is small and the computing resources are high, the performance is not optimal. This

behavior is especially clear with the Jiang algorithm, which is the fastest method tested in this paper. For

example, the execution time for 10 000 fingerprints is lower than for 1000 fingerprints when the full cluster (12

nodes and 24 threads) is used. This is due to the ratio between processing and communication times (Rpc), as

explained in Section 3.3. With small databases and big resources, the processing time tpr is much smaller than

the communication time tc and thus no gain is obtained. Furthermore, tc is increased due to the synchronization

between threads and processes. The response time of the overall system depends on the response time of the

slowest thread; when the database is small, the chunks assigned to each thread are very small and the difference

are high. This problem disappears as the database grows, and it explains why bigger databases can be explored

faster than smaller ones when large resources are employed.

21

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Number of threads per process

S
p
e
e
d
u
p

Speedup for Jiang

1 slave

2 slaves

4 slaves

8 slaves

12 slaves

(a) Jiang

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

Number of threads per process

S
p
e
e
d
u
p

Speedup for Chen

1 slave

2 slaves

4 slaves

8 slaves

12 slaves

(b) Chen

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Number of threads per process

S
p
e
e
d
u
p

Speedup for MCC16

1 slave

2 slaves

4 slaves

8 slaves

12 slaves

(c) MCC16

Figure 7: Speedup when varying the number of slave processes and threads, for databases with 10 000 or more fingerprints

Since we are mainly concerned with large databases, this is no issue. Anyway, it can be easily solved by using

a specific configuration for databases with a size smaller than a given threshold.

Additionally, Fig. 7 shows the speedup when the number of threads and processes is varied, with one line per

database size and number of slaves. For the sake of readability and to avoid the irregular behavior described in the

preceding paragraph, only databases from 10 000 fingerprints onwards have been drawn in these plots.

These figures clearly state that when there are more threads than physical cores the speedup does not increase

linearly. It can also be seen that the lines corresponding to different database sizes are grouped. Thus, the database

size does not affect the speedup when it is reasonably large. This result, along with the fact that the flexible proposed

system allows the identification in arbitrarily large databases, ensures full scalability regarding the database size.

22

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

180

200

Total number of threads

S
p
e
e
d
u
p

Speedup for Jiang

Amdahl’s Law limit

1000

2000

5000

10 000

50 000

100 000

200 000

400 000

(a) Jiang

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

Total number of threads

S
p
e
e
d
u
p

Speedup for Chen

Amdahl’s Law limit

1000

2000

5000

10 000

50 000

100 000

200 000

400 000

(b) Chen

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

180

200

Total number of threads

S
p
e
e
d
u
p

Speedup for MCC16

Amdahl’s Law limit

1000

2000

5000

10 000

50 000

100 000

200 000

400 000

(c) MCC16

Figure 8: Speedup when varying the database size

In other words, if the database size is doubled, the identification time can be kept constant by simply doubling the

computing resources.

Fig. 8 shows the speedup as a function of the total number of threads that are performing the parallel search. The

theoretical limit imposed by the Amdahl’s Law is also displayed, and it can be seen that the results are close to the

line. Moreover, the larger the database size is, the closer to the line the results are, showing that the system scalability

increases along with the database size. This is the best possible situation, as it ensures a maximum scalability and

performance when it is most needed. As before, there are exceptions where the speedup is much lower than the limit,

when the database size is small and when the number of used threads is higher than the number of physical computing

cores. The right side of the plots in Fig. 8 shows this behavior very clearly: then the full cluster is used, the speedup

increases when the database grows.

23

Table 6: Sequential (ts) and parallel (tp) execution times and speedup with the SFinGe extracted and NIST databases

Jiang Chen MCC16
DB size ts (s) tp (s) Speedup ts (s) tp (s) Speedup ts (s) tp (s) Speedup

1000 0.4735 0.0253 18.7070 5.9325 0.0661 89.6952 10.4988 0.2023 51.9038
2000 0.9330 0.0255 36.5825 11.4148 0.1004 113.6886 19.7435 0.2519 78.3921
5000 2.3099 0.0325 71.0363 28.6567 0.2061 139.0185 47.5580 0.3912 121.5540

10 000 4.6722 0.0446 104.8213 56.6954 0.3477 163.0649 93.2347 0.6227 149.7332
50 000 22.9674 0.1475 155.6925 283.3022 1.6784 168.7886 459.9514 2.5605 179.6316

100 000 46.3680 0.2734 169.6040 569.8500 3.3252 171.3708 922.1267 4.9613 185.8622
200 000 92.3980 0.5288 174.7348 1144.3038 6.6053 173.2413 1851.2036 9.7530 189.8089
400 000 183.2521 1.0368 176.7501 2303.3817 13.2144 174.3086 – 19.3620 –

DB4 7.7601 0.0795 97.5911 81.7127 0.5893 138.6534 192.5607 1.6131 119.3743
DB14 307.4337 2.0310 151.3740 2454.5287 10.4387 235.1381 6460.3050 20.6486 312.8684

6.2. SFinGe databases: extracted minutiae

Once the speedup behavior when changing the computing resources has been studied, more experiments have

been performed in order to validate the results with more realistic databases. For this purpose, we have compared the

sequential execution times with the times obtained when using the best configuration (12 nodes and 24 threads per

node). Table 6 presents the sequential and parallel times, along with their quotient (speedup).

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

Database size

S
p
e
e
d
u
p

Speedup for SFinGe extracted databases

Jiang

Chen

MCC16

1 and 2 threads per core

Figure 9: Speedup with the SFinGe extracted database. The dashed lines represent theoretical maximum speedups considering one or two threads

per core.

It becomes clear that the good speedups obtained with the ground-truth database are also obtained with extracted

24

minutiae. This is due to the flexibility of the database partitioning scheme, which distributes the database statically

among nodes and dynamically among threads. Another fact that can be seen in the table is that the execution times are

higher than with the ground-truth minutiae. This is a consequence of the higher number of obtained minutiae when

using NIGOS mindtct.

Fig. 9 shows the obtained speedups depending on the database size (note the logarithmic scale on the horizontal

axis). It can be seen that the larger the database, the higher the speedup. It is due to the same reasons explained in

the preceding section. Thus, the system behavior remains the same even when the database is changed. The plot also

shows how the obtained speedup when using two threads per core is far from the theoretical maximum with the Intel

Hyperthreading technology, but it is also considerably higher than the maximum of 144 (12 nodes with 12 cores) that

would be attainable if this technology were not implemented in the microprocessors. This proves again that we are in

an optimal case for the application of a distributed system and that the proposed system has been optimally designed

and implemented.

6.3. NIST DB4 and DB14 databases

Finally, the NIST DB4 and DB14 databases have been used to test the proposed system in the same conditions as

the SFinGe extracted fingerprints. The results are presented in Table 6 and Fig. 10.

Again, the speedup values are similar to those obtained with the SFinGe ground-truth database, proving that the

proposed system is database-independent and can achieve very good results both with plain and rolled fingerprints,

whose matching times are totally different.

The plot also shows that the speedups are higher when the search is performed in DB14, which is by far the biggest

database. This result is in the same line as those obtained with the SFinGe databases, where bigger databases allow

better scalability. If the figure is compared with Fig. 9, it can be seen that both NIST databases reach a better speedup

than SFinGe databases of the same size. This is due to the higher number of minutiae of the rolled fingerprints: the

matching process is more computationally complex, and thus HPC is able to improve the time results even further

because the impact of the sequential preprocessing is reduced.

The different matching algorithms show the same behavior with the NIST and SFinGe databases, as it can be

seen when comparing Fig. 9 and 10: the Jiang algorithm has less speedup because its processing workload is very

small, and thus the communication time has a bigger impact on the overall time. On the other extreme, the most

computationally expensive algorithm (MCC) obtains a superlinear speedup when inserted in the proposed framework,

although in theory this situation should not be possible. In this case, as mentioned in Section 3.3, a higher number of

computers also means more main memory and more caches. As the database chunks explored by each node are also

smaller, they can fit more easily in the cache memory and thus can be explored even faster.

25

DB4 (2000 fingerprints) DB14 (27 000 fingerprints)
0

50

100

150

200

250

300

350

S
p

e
e

d
u

p

Jiang

Chen

MCC16

1 and 2 threads per core

Figure 10: Speedup with the NIST databases.

7. Conclusions

In this paper, we have introduced a novel two-level parallelized automatic fingerprint identification system. The

proposed framework combines process-level and thread-level parallelism in order to obtain a maximum speedup for

any kind of underlying hardware architecture from monocore processors to large hybrid clusters. It also abstracts the

fingerprint matching algorithm, in such a way that the inclusion of a new algorithm is straightforward and does not

affect neither the algorithm nor the global framework.

In order to verify the capabilities of the system, we have used the SFinGe software [20, 2] to generate a database

of 400 000 fingerprints that has been used for identification in a set of experiments on a hybrid cluster, ranging

from sequential to massively parallel runs. In a search for more realistic fingerprints, we have applied the NIGOS

mindtct minutiae extractor on the database and performed more experiments. Finally, another set of experiments has

been executed using two large real-world databases from the NIST. All these experiments have been run with three

well-known fingerprint matching algorithms [43, 28, 6].

After detailing the obtained results, we can conclude that the proposed framework fulfills the expectations. It has

a linear scalability regarding to the fingerprint database, as well as an optimal adaptability to the underlying hardware.

In theory, this allows the identification in databases of arbitrary size as long as there is enough computing power. In

practice, the identification time can be kept constant against the database growth just by augmenting the computing

resources in the same proportion. The framework has also proven to maintain its good behavior independently of the

26

underlying matching algorithms and fingerprint features.

8. Acknowledgements

This work was supported by the research projects CAB(CDTI), TIN2011-28488 and TIN2009-14575. D. Peralta

holds an FPU scholarship from the Spanish Ministry of Education and Science (FPU12/04902).

References

[1] A. K. Jain, R. M. Bolle, S. Pankanti, Biometrics: Personal Identification in Networked Society, Springer, 2005.

[2] D. Maltoni, D. Maio, A. Jain, S. Prabhakar, Handbook of fingerprint recognition, Springer-Verlag New York Inc, 2009.

[3] A. Jain, S. Prabhakar, L. Hong, S. Pankanti, Filterbank-based fingerprint matching, IEEE Trans. Image Process. 9 (5) (2000) 846–859.

[4] F. Liu, Q. Zhao, D. Zhang, A novel hierarchical fingerprint matching approach, Pattern Recognition 44 (8) (2011) 1604–1613.

[5] D. Maio, D. Maltoni, Direct gray-scale minutiae detection in fingerprints, IEEE Trans. Pattern Analysis and Machine Intelligence 19 (1)

(1997) 27–40.

[6] R. Cappelli, M. Ferrara, D. Maltoni, Minutia cylinder-code: A new representation and matching technique for fingerprint recognition, IEEE

Trans. Pattern Analysis and Machine Intelligence 32 (12) (2010) 2128–2141.

[7] N. Ratha, R. Bolle, Automatic Fingerprint Recognition Systems, Springer, New York, 2004.

[8] S. Pankanti, S. Prabhakar, A. Jain, On the individuality of fingerprints, IEEE Trans. Pattern Analysis and Machine Intelligence 24 (8) (2002)

1010–1025.

[9] A. Jain, L. Hong, R. Bolle, On-line fingerprint verification, IEEE Trans. Pattern Analysis and Machine Intelligence 19 (4) (1997) 302–314.

[10] A. Jain, L. Hong, S. Pankanti, R. Bolle, An identity-authentication system using fingerprints, Proc. IEEE 85 (9) (1997) 1365–1388.

[11] H. Stone, High-performance computer architecture, Addison-Wesley Longman Publishing Co., Inc., 1992.

[12] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, B. Smolinski, Toward a common component architecture for

high-performance scientific computing, in: Proc. 8th IEEE Int. Symp. High Performance Distributed Computing, 1999, pp. 115–124.

[13] M. S. Seidenberg, J. L. McClelland, A distributed, developmental model of word recognition and naming, Psychological review 96 (4) (1989)

523–568.

[14] A. Datta, S. Soundaralakshmi, Fast parallel algorithm for distance transform, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 33 (4)

(2003) 429–434.

[15] A. Stamatakis, M. Ott, Exploiting fine-grained parallelism in the phylogenetic likelihood function with mpi, pthreads, and openmp: A

performance study, in: Proc. 3rd Int. Conf. Pattern Recognition in Bioinformatics, Springer-Verlag, 2008, pp. 424–435.

[16] M. Gong, Y. Zhang, Y. H. Yang, Near-real-time stereo matching with slanted surface modeling and sub-pixel accuracy, Pattern Recognition

44 (10.11) (2011) 2701–2710.

[17] T. Y. Ho, P. M. Lam, C. S. Leung, Parallelization of cellular neural networks on GPU, Pattern Recognition 41 (8) (2008) 2684–2692.

[18] G. Danese, M. Giachero, F. Leporati, N. Nazzicari, An embedded multi-core biometric identification system, Microprocessors and Microsys-

tems 35 (5) (2011) 510–521.

[19] M. Hulea, A. AÅtilean, T. LeÅ£ia, R. Miron, S. Folea, Fingerprint recognition distributed system, in: Proc. 16th IEEE Int. Conf. Automation,

Quality and Testing, Robotics, Vol. 3, 2008, pp. 423–428.

[20] R. Cappelli, D. Maio, D. Maltoni, Synthetic fingerprint-database generation, in: Proc. 16th Int. Conf. Pattern Recognition, Vol. 3, 2002, pp.

744–747.

[21] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. Mccabe, S. Janet, K. Ko, User’s guide to NIST biometric image software (NBIS),

Tech. rep., NIST (2010).

[22] C. Watson, C. Wilson, NIST special database 4, Tech. rep., NIST (1992).

27

[23] C. Watson, NIST special database 14, Tech. rep., NIST (1993).

[24] G. K. Manacher, Production and stabilization of real-time task schedules, J. ACM 14 (3) (1967) 439–465. doi:10.1145/321406.321408.

[25] F. B. of Investigation (Ed.), The Science of Fingerprints: Classification and Uses, U.S. Government Printing Office, 1984.

[26] H. Lee, R. Gaensslen, Advances in fingerprint technology, CRC, 2001.

[27] Q. Fang, N. Bhattacharjee, Incremental fingerprint recognition model for distributed authentication, in: Proc. Int. Conf. Security and Man-

agement, 2008, pp. 41–47.

[28] X. Chen, J. Tian, X. Yang, A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure, IEEE Trans.

Image Process. 15 (3) (2006) 767–776.

[29] C. Gottschlich, C. Schnlieb, Oriented diffusion filtering for enhancing low-quality fingerprint images, IET Biometrics 1 (2) (2012) 105–113.

[30] J. Liu-Jimenez, R. Sanchez-Reillo, L. Mengibar-Pozo, O. Miguel-Hurtado, Optimisation of biometric id tokens by using hardware/software

co-design, IET Biometrics 1 (3) (2012) 168–177.

[31] P. Sutthiwichaiporn, V. Areekul, Adaptive boosted spectral filtering for progressive fingerprint enhancement, Pattern Recognition 46 (9)

(2013) 2465–2486.

URL http://www.sciencedirect.com/science/article/pii/S0031320313000782

[32] N. K. Ratha, S. Chen, A. K. Jain, Adaptive flow orientation-based feature extraction in fingerprint images, Pattern Recognition 28 (11) (1995)

1657–1672.

[33] L. Coetzee, E. C. Botha, Fingerprint recognition in low quality images, Pattern Recognition 26 (10) (1993) 1441–1460.

[34] X. Jiang, W. Y. Yau, W. Ser, Minutiae extraction by adaptive tracing the gray level ridge of the fingerprint image, in: IEEE Int. Conf. Image

Process., Vol. 2, 1999, pp. 852–856.

[35] X. Jiang, W. Yau, W. Ser, Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge, Pattern Recognition 34 (5) (2001)

999–1013.

[36] J. Liu, Z. Huang, K. L. Chan, Direct minutiae extraction from gray-level fingerprint image by relationship examination, in: IEEE Int. Conf.

Image Processing, Vol. 2, 2000, pp. 427–430.

[37] J. Chang, K. Fan, Fingerprint ridge allocation in direct gray-scale domain, Pattern Recognition 34 (10) (2001) 1907–1925.

[38] M. Fons, F. Fons, N. Canyellas, E. Cant, M. Lpez, Hardware-software co-design of an automatic fingerprint acquisition system, in: IEEE Int.

Symp. Industrial Electronics, Vol. III, 2005, pp. 1123–1128.

[39] M. Leung, W. Engeler, P. Frank, Fingerprint image processing using neural networks, in: Conf. Comput. and Commun. Syst., IEEE, 1990,

pp. 582–586.

[40] K. Nilsson, J. Bigun, Using linear symmetry features as a pre-processing step for fingerprint images, in: Audio and Video-Based Biometric

Person Authentication, Springer, 2001, pp. 247–252.

[41] S. H. Lee, H. B. Chae, S. Y. Yi, E. S. Kim, Optical fingerprint identification based on binary phase extraction joint transform correlator, in:

Proc. Int. Soc. for Optical Eng., Vol. 2752, 1996, pp. 224–232.

[42] B. V. K. V. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thornton, A. Mahalanobis, Biometric verification with correlation filters,

Applied Optics 43 (2) (2004) 391–402.

[43] X. Jiang, W. Yau, Fingerprint minutiae matching based on the local and global structures, in: Proc. 15th Int. Conf. Pattern Recognition, Vol. 2,

IEEE, 2000, pp. 1038–1041.

[44] K. Cao, X. Yang, X. Chen, Y. Zang, J. Liang, J. Tian, A novel ant colony optimization algorithm for large-distorted fingerprint matching,

Pattern Recognition 45 (1) (2012) 151–161. doi:10.1016/j.patcog.2011.04.016.

URL http://www.sciencedirect.com/science/article/pii/S0031320311001750

[45] N. Ratha, K. Karu, S. Chen, A. Jain, A real-time matching system for large fingerprint databases, IEEE Trans. Pattern Analysis and Machine

Intelligence 18 (8) (1996) 799–813.

[46] S. Chang, F. Cheng, W. Hsu, G. Wu, Fast algorithm for point pattern matching: invariant to translations, rotations and scale changes, Pattern

Recognition 30 (2) (1997) 311–320.

28

[47] A. Hrechak, J. McHugh, Automated fingerprint recognition using structural matching, Pattern Recognition 23 (8) (1990) 893–904.

[48] D. Koufaty, D. Marr, Hyperthreading technology in the netburst microarchitecture, IEEE Micro 23 (2) (2003) 56–65.

doi:10.1109/MM.2003.1196115.

[49] G. M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: Proc. Spring Joint Comput.

Conf., ACM, 1967, pp. 483–485.

[50] G. Indrawan, B. Sitohang, S. Akbar, Parallel processing for fingerprint feature extraction, in: Int. Conf. Electr. Eng. and Informat., 2011, pp.

1–6. doi:10.1109/ICEEI.2011.6021606.

[51] R. F. Miron, T. S. Letia, M. Hulea, Two server topologies for a distributed fingerprint-based recognition system, in: 15th Int. Conf. System

Theory, Control and Computing, 2011, pp. 1–6.

[52] K. Beghdad Bey, Z. Guessoum, A. Mokhtari, F. Benhammadi, Agent based approach for distribution of fingerprint matching in a metacom-

puting environment, in: Proc. 8th Int. Conf. New Technologies in Distributed Systems, 2008, pp. 1–7.

[53] K. Nagaty, E. Hattab, An approach to a fingerprints multi-agent parallel matching system, in: IEEE Int. Conf. Syst., Man and Cybern., Vol. 5,

2004, pp. 4750–4756. doi:10.1109/ICSMC.2004.1401282.

29

Daniel Peralta received the M.Sc. degree in Computer Science in 2011 from the University of Granada, Granada,

Spain. He is currently a Ph.D. student in the Department of Computer Science and Artificial Intelligence, University

of Granada. His research interests include data mining, biometrics and parallel and distributed computing.

Isaac Triguero received the M.Sc. degree in Computer Science from the University of Granada, Granada, Spain,

in 2009. He is currently a Ph.D. student in the Department of Computer Science and Artificial Intelligence, University

of Granada, Granada, Spain. His research interests include data mining, data reduction, biometrics, evolutionary

algorithms and semi-supervised learning.

Raul Sanchez-Reillo graduated as Telecommunication Engineer by the Polytechnic University of Madrid, ob-

taining his PhD at the same University in 2000, based on Biometric Authentication in Smart Cards. From 1994 he

has been researching at the University Group for Identification Technologies, managing the group since 2000. He is

currently Associate Professor at Carlos III University of Madrid. He is also member of ISO/IEC JTC1 SC17, SC27

and SC37 standardization bodies, holding some management position in national and international standardization

bodies. His interests in R&D cover all Personal Identification Technologies, including Smart Cards, Biometrics and

Secure Authentication Systems. He is founder of IDTestingLab, an evaluation facility for identification products.

Francisco Herrera received his M.Sc. in Mathematics in 1988 and Ph.D. in Mathematics in 1991, both from the

University of Granada, Spain. He is currently a Professor in the Department of Computer Science and Artificial Intel-

ligence at the University of Granada. He has published more than 230 papers in international journals. He is coauthor

of the book ”Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases” (World Sci-

entific, 2001). He currently acts as Editor in Chief of the international journal “Progress in Artificial Intelligence”

(Springer). He acts as area editor of the International Journal of Computational Intelligence Systems and associated

editor of the journals: IEEE Transactions on Fuzzy Systems, Information Sciences, Knowledge and Information Sys-

tems, Advances in Fuzzy Systems, and International Journal of Applied Metaheuristics Computing; and he serves as

member of several journal editorial boards, among others: Fuzzy Sets and Systems, Applied Intelligence, Information

Fusion, Evolutionary Intelligence, International Journal of Hybrid Intelligent Systems, Memetic Computation, and

Swarm and Evolutionary Computation. He received the following honors and awards: ECCAI Fellow 2009, 2010

Spanish National Award on Computer Science ARITMEL to the “Spanish Engineer on Computer Science”, Interna-

tional Cajastur “Mamdani” Prize for Soft Computing (Fourth Edition, 2010), IEEE Transactions on Fuzzy System

Outstanding 2008 Paper Award (bestowed in 2011), and 2011 Lotfi A. Zadeh Prize Best paper Award of the Interna-

tional Fuzzy Systems Association. His current research interests include computing with words and decision making,

bibliometrics, data mining, biometrics, data preparation, instance selection, fuzzy rule based systems, genetic fuzzy

systems, knowledge extraction based on evolutionary algorithms, memetic algorithms and genetic algorithms.

José Manuel Benı́tez is an Associate Professor at the Department Computer Science and Artificial Intelligence

(http://decsai.ugr.es), Universidad de Granada, Granada, Spain. Dr. Benı́tez holds an M.S. Degree and a Ph. D.

in Computer Science, both from the Universidad de Granada. He is a member of the Research Group “Soft Computing

and Intelligent Information Systems” (SCI2S, http://sci2s.ugr.es) and head of the “Distributed Computational

30

Intelligence and Time Series” research lab (DICITS, http://sci2s.ugr.es/DiCITS). He is an active researcher

in the Computational Intelligence field where his work covers the whole spectrum from foundations to applications

in a number of engineering and scientific areas. In particular, his current fields of interest are time series analysis

and modeling, distributed/parallel computational intelligence, high performance computing, cloud computing, data

mining, biometrics, and statistical learning theory. He is a member of a number of scientific associations, including

IEEE, IEEE Computational Intelligence Society, and EUSFLAT.

31

4 DPD-DFF: A Dual Phase Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate
Identification in Large Databases 143

4 DPD-DFF: A Dual Phase Distributed Scheme with Double Fin-
gerprint Fusion for Fast and Accurate Identification in Large
Databases

• D. Peralta, I. Triguero, S. Garćıa, F. Herrera, J.M. Beńıtez. DPD-DFF: A Dual Phase
Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in
Large Databases. Information Fusion 32 (2016) 40–51. doi: 10.1016/j.inffus.2016.03.002

– Status: Published.

– Impact Factor (JCR 2015): 4.353

– Subject Category: Computer Science, Artificial Intelligence. Ranking 9 / 130 (Q1).

– Subject Category: Computer Science, Theory & Methods. Ranking 4 / 105 (Q1).

DPD-DFF: A Dual Phase Distributed Scheme with Double Fingerprint Fusion
for Fast and Accurate Identification in Large Databases

Daniel Peraltaa,∗, Isaac Triguerob,c, Salvador Garcı́aa,d, Francisco Herreraa, Jose M. Beniteza

aDepartment of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology),
University of Granada, 18071 Granada, Spain

bDepartment of Respiratory Medicine, Ghent University, 9000 Gent, Belgium
cVIB Inflammation Research Center, 9052 Zwijnaarde, Belgium

dDepartment of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Nowadays, many companies and institutions need fast and reliable identification systems that are able to deal with

very large databases. Fingerprints are among the most used biometric traits for identification. In the current literature

there are fingerprint matching algorithms that are focused on efficiency, whilst others are based on accuracy.

In this paper we propose a flexible dual phase identification method, called DPD-DFF, that combines two fingers

and two matchers within a hybrid fusion scheme to obtain both fast and accurate results. Different alternatives are

designed to find a trade-off between runtime and accuracy that can be further tuned with a single parameter.

The experiments show that DPD-DFF obtains very competitive results in comparison with the state-of-the-art

score fusion techniques, especially when dealing with large databases or impostor fingerprints.

Keywords: Real-time identification, large databases, minutiae matching, fingerprint fusion, decision fusion, score

fusion, parallel computing, biometrics

1. Introduction

Personal identification has arisen as an important issue in the last few years for many companies and institu-

tions [1]. Identification databases grow larger every year, ranging from a few tens of people for small companies to

several millions for institutions such as the police. Although there are various biometric traits that allow for iden-

tification, fingerprints are widely used because of their uniqueness and universality, among other properties [2, 3].

Fingerprint recognition can be tackled from two different perspectives: verification [4] and identification [5]. The

former consists of matching two fingerprints to determine whether they belong to the same finger or not. The latter

aims to identify an input fingerprint from a set of fingerprints and determine which of them matches with the input. In

∗Corresponding author. Tel.: +34 958244019; fax: +34 958243317
Email addresses: dperalta@decsai.ugr.es (Daniel Peralta), Isaac.Triguero@irc.vib-UGent.be (Isaac Triguero),

salvagl@decsai.ugr.es (Salvador Garcı́a), herrera@decsai.ugr.es (Francisco Herrera), J.M.Benitez@decsai.ugr.es (Jose M.
Benitez)

Preprint submitted to Information fusion June 8, 2016

this context, an Automatic Fingerprint Identification System (AFIS) is a tool that allows us to perform identifications

in fingerprint databases [3].

Fingerprints are composed of a pattern of ridges and valleys, from which diverse features can be extracted. Among

these features, minutiae are widely used for fingerprint matching, mostly due to their distinctiveness [2, 6]. When two

fingerprints are to be compared, the minutiae are extracted from the images, and then a matching algorithm is applied

over the two minutiae sets to determine a similarity level. There are multiple proposals of minutiae-based matching

algorithms in the literature [7]. Some of them are very efficient due to their simplicity [8], while others are very

accurate [9]. However, these two objectives are usually not reached together because accurate algorithms tend to

be complex, and therefore time-consuming. This restriction complicates the development of AFIS that are able to

identify people in very large databases in a suitable time frame without precision loss.

Moreover, as the overall response time of an identification procedure is linear with respect to the size of the

database, even the fastest matching algorithms may become useless when the database grows too large. Moreover, the

huge number of matchings causes an accuracy loss.

Information fusion is a widely used paradigm that improves overall precision in many fields, including biomet-

rics [10, 11, 12]. In particular, two main approaches have been proven to enhance the recognition capabilities: the

use of several fingerprint images [13] and the use of several matching algorithms [14]. The information fusion can be

performed at different levels:

• Feature fusion approaches merge the characteristics extracted from different fingerprint images, coming either

from the same finger or different fingers [15, 16].

• Score fusion methods perform separate matchings and then sum up the scores [14, 17].

• Decision fusion methods apply the matching algorithms in a hierarchical mode over the fingerprints [11, 18].

Although these approaches increase the accuracy of the AFIS, they also slow the identification down because the

processing workload is higher. In this work, we combine the ideas of multi-finger and multi-algorithm identification

to improve the runtime along with the accuracy.

High Performance Computing (HPC) is an important tool to speed up the runtime of a system [19, 20], and

several proposals in the literature apply it to AFIS. However, these systems focus on objectives other than precision,

such as high availability [21], load balancing [22] or reduced matching times [18]. Other systems provide the ability

to identify in very large databases [23, 24, 25], but their accuracy is not improved with respect to a sequential AFIS.

There are currently several systems in the world that maintain large fingerprint databases. For example, as of

September 2015, India’s UIDAI system [26] stores the fingerprints of around 907 million people, although so far they

are only used for verification purposes, not identification. FBI IAFIS [27] (now included within Next Generation

Identification, NGI) keeps the fingerprints (among other data) for around 104 million subjects, and is able to perform

searches in an average time of 72 minutes.

2

In this paper, we propose a flexible, Dual Phase Distributed AFIS with Double Fingerprint Fusion (called DPD-

DFF) that integrates two fingerprints and two matching algorithms, aiming to overcome the weaknesses of isolated

approaches: high identification time and accuracy loss. To do so, the identification is split into two phases, each of

which can either use a single fingerprint or fuse two of them, conforming a mixed score fusion and decision fusion

process:

• In the first phase, the database is explored by a fast matching algorithm to select a candidate set. Jiang’s

algorithm [8] has been selected for this phase due to its high running speed [7].

• Then, the second phase applies a more accurate algorithm to identify the correct identity within this candidate

set. The matcher used in this phase is Minutia Cylinder-Code (MCC) [9], which is very precise [7].

With this design, the fingerprint fusion is powerful and flexible as it is performed at two separate levels. Further-

more, this strategy has been integrated within the parallel framework proposed in [23] in order to reach full scalability

for arbitrarily large databases.

This manuscript is structured as follows. First, Section 2 provides the background information on the problem

at hand. Section 3 presents DPD-DFF, the approach proposed in this paper. Section 4 describes the experiments

performed and their results. Finally, Section 5 details the conclusions. Complementary material to the paper including

tables, plots and identification times as well as additional studies over other databases can be found at http://sci2s.

ugr.es/DPDDFF and in the associated Technical Report [28].

2. Preliminaries

A fingerprint is a pattern of valleys and ridges located on a fingertip. Although there are several ways to perform

a matching between two fingerprints, many matching algorithms use the minutiae [3, 7, 29], comparing two minutiae

sets to return a similarity score. The matching is performed once for each comparison between two fingerprints. Some

of the existing matching algorithms offer very good matching precision [9], and others provide a fast response with

slightly diminished accuracy [8], according to the taxonomy and results presented in [7].

There are two main variants of the fingerprint recognition problem [3]. Verification [4] is a 1:1 comparison to

check if two fingerprints represent the same finger. Identification [5] consists of determining which fingerprint in a

database of previously captured and stored templates T = {T1,T2, ...,Tn} corresponds to a given input fingerprint I.

An identification algorithm compares I to every Ti and returns the identity with the best matching score as shown in

Eq. 1, where Q(I,Ti) is the matching function. Thus, identification is a 1:n comparison.

Identity = arg max
i

Q(I,Ti) i ∈ {1, 2, ..., n} (1)

3

This paper is focused on identification. Section 2.1 explains the current proposals for fast and scalable identifi-

cation within large databases. Then, Section 2.2 presents the previous work about fingerprint fusion to improve the

identification accuracy.

2.1. Scalable fingerprint recognition in large databases

The bottleneck of an AFIS when attempting to identify within a large database is the matching algorithm. Several

proposals in the literature aim to overcome this problem.

FPGA-based systems implement the matching into a Field Programmable Gate Array [18, 30], a hardware device

that performs some operations very quickly, so that the overall identification time is reduced.

Other approaches reduce the penetration rate in the database by using a previous classification or indexing step [31,

32, 33, 34]. Nevertheless, in large databases this step may become the bottleneck, and the size of the subsets can

become too large. Accuracy is degraded when the penetration rate is too small or the collision rate too high [33].

HPC is a common solution for reducing high execution times [19, 20]. By using q computers with c cores each

to perform a parallel search, the execution time can be reduced by up to a factor of qc. Moreover, the availability of

more RAM memory allows more template fingerprints to be kept in a fast access device, avoiding slow access to sec-

ondary memory. Therefore, an adequate parallel framework can constitute a suitable tool for solving the identification

problem in large databases [23, 24, 25].

2.2. Fingerprint information fusion

This section introduces two of the main trends to improve the accuracy of fingerprint recognition. On the one hand,

the use of several fingers [13] increases the distinctiveness of the identities and tries to avoid the difficulties posed by

injured fingertips or low quality scans. The matching function for f fingerprints becomes of the form Q(I,Ti) where

I = {I j | j ∈ {1, ..., f }} and Ti = {Ti j | j ∈ {1, ..., f }}. This approach has been successfully applied over latent

fingerprints, which are of very low quality [35].

On the other hand, the combination of several matchers [14, 36] aims to profit from their advantages, while leaving

aside their weaknesses. Multi-algorithm techniques work in a similar way as multi-finger ones, so that the fused score

obtained for f algorithms is Q(I,Ti) = F
(
Q1(I,Ti), ...,Q f (I,Ti)

)
, where F is an aggregation function.

Multi-finger and multi-algorithm approaches can be categorized together according to the type of fusion they

perform:

• Feature fusion [15, 16, 37, 38]: this approach merges all f fingerprints of an identity into a single structure,

which is compared to all n template structures. This avoids the necessity of performing f matchings per identity,

but requires specific matching algorithms to handle such structures, as well as an additional conversion step.

• Score fusion [14, 17, 36, 39, 40]: this method applies several matchings (one for each fingerprint or algorithm)

and aggregates the results into a single score. Although it does not need a specific matching algorithm, the use

of f fingerprints or f matchings multiplies the identification time by f .

4

• Decision fusion [10, 11, 18, 32]: can be seen as a special case of score fusion, where matching is performed

hierarchically. When the f input fingerprints are compared with some f template fingerprints for a given

identity, the first pair is compared first. If the resulting score meets a certain condition, the second pair is

compared, and so on.

Most fusion approaches are focused on improving accuracy, without considering runtime. Therefore, they are

not adapted to address the identification in large databases because the execution time is higher than it is for simpler

approaches. Empirical results obtained by some of the methods mentioned above can be found in the Technical Report

associated with this paper [28].

3. Dual Phase Distributed Scheme with Double Fingerprint Fusion

DPD-DFF carries out a hybrid fusion between two matching algorithms and two fingers within a flexible dual

phase scheme that is implemented in a parallel HPC system. The proposal seeks to tackle large fingerprint databases

with a good trade-off between two seemingly opposed objectives:

• Accuracy: identification accuracy must be better than it is for isolated models.

• Efficiency and scalability: the system should provide a real-time response. The runtime threshold depends on

the specific application; it can vary between a few milliseconds and several minutes. Ideally the identification

time should be lower than when using an isolated AFIS.

First, a fast matcher explores the whole database and extracts a set of candidate identities C. Then, an accurate

matcher compares the input fingerprints with the templates in C. This corresponds to a decision fusion identification

method as described in Section 2.2, in which the separate use of both algorithms avoids the necessity of transforming

their respective outputs to a common domain and the consequent loss of precision, as it does for traditional multi-

algorithm score fusion approaches. The overall identification procedure is applied as follows:

1. Fast phase: according to the results obtained in [7], Jiang’s algorithm [8] has been selected to perform this first

identification phase, because of its speed and its appropriate accuracy. Two different criteria may be used to

compose the set C:

• Rank: given a rank r, select the r identities that provide the best scores. Thus, C has a fixed size |C| = r.

• Threshold: all templates Ti whose score is higher than a fixed threshold φ when compared to the input

fingerprint I are included in C. Therefore, the size of C is not previously known and will likely be different

for each input fingerprint pair. The set can be described as C = {Ti | QJiang(I,Ti) ≥ φ}.
2. Accurate phase: the MCC algorithm [9] has been chosen for this phase due to its high accuracy. After com-

paring the input fingerprints with the templates in C, the identity with the best score is returned as the found

match, as shown in Eq. 2.

5

Identity = arg max
i
{QMCC(I,Ti) | Ti ∈ C} (2)

TAB = {Ti | Ti = {TiA,TiB} , i ∈ {1, 2, ..., n}} (3)

In addition to this multi-algorithm scheme, we also use two different fingers (let them be finger A and finger B) per

identity to even further improve identification accuracy. Two template fingerprints per person are stored, constituting a

database TAB with n fingerprints pairs as described in Eq. 3. An identification requires an input set of two fingerprints

I = {IA, IB}. According to this structure, each of the previously described identification phases can be carried out

using either a single fingerprint or both fingerprints:

• Single finger: a single fingerprint of each identity is compared, as shown in Eq. 4. This alternative is proposed

in a search for speed, minimizing the computation load.

QJiang(I,Ti) = QJiang(IA,TiA) (fast phase)

QMCC(I,Ti) = QMCC(IB,TiB) (accurate phase)
(4)

• Double finger: both fingerprints are used for the comparison. This constitutes in itself a fusion method. Thus,

a score-based fusion has been implemented, using the average as the aggregation function (Eq. 5), as recom-

mended by the results of [17]. This approach is obviously slower than using a single finger, but it is much more

accurate.

QJiang(I,Ti) =
QJiang(IA,TiA) + QJiang(IB,TiB)

2
(fast phase)

QMCC(I,Ti) =
QMCC(IA,TiA) + QMCC(IB,TiB)

2
(accurate phase)

(5)

Table 1: Names of the eight considered variants of DPD-DFF

Fingers used Candidate set criterion

First phase Second phase Prefix Rank (*R) Threshold (*T) Objective

Single (A) Single (B) SS* SSR SST High speed

Single (A) Double (A,B) SD* SDR SDT Trade-off

Double (A,B) Single (B) DS* DSR DST Trade-off

Double (A,B) Double (A,B) DD* DDR DDT High accuracy

The described method performs a hybrid fusion that uses both score and decision fusion to combine two fingers

and two algorithms. The overall workflow is depicted in Figure 1. A pseudocode of the identification procedure

6

Figure 1: Workflow of DPD-DFF. Dashed lines are pathways that correspond to double finger variants. Dotted lines correspond to single finger

variants. Continuous lines are pathways that are always taken.

is shown in Algorithm 1. Out of this design, we take eight variants of the algorithm into consideration, which are

denoted with three letters as shown in Table 1. The first two letters represent the fingers that are taken for the fast

and accurate phases respectively (S for single and D for double). The last letter stands for the criterion to build the

candidate set (R for rank, T for threshold).

Note that the variants that use both fingers within a same phase (SD*, DS* and DD*) will eventually apply both

matching algorithms over the fingerprints in C. This can enhance the identification accuracy, due to the synergy

between two algorithms that perform the matching differently [14].

Along with the algorithm variant, the choice of the parameters to build the candidate set (r or θ) is critical, as it

will determine its size |C|, which in turn determines the trade-off between speed and accuracy: a small candidate set

relies more on the fast phase and provides faster results (though less accurate), whilst a large candidate set leads to

7

Input: T , I, crit, r, θ

C ← ∅
// Fast phase

foreach Ti ∈ T do
q← QJiang(I,Ti)

if crit == “Ranking” then

if |C| < r then C.append(Ti);

else
minC = arg mini{QJiang(I,Ti) | Ti ∈ C}
if QJiang(I,TminC) < q then

C.remove(TminC)

C.append(Ti)

end

end

else if crit == “Threshold” and QJiang(I,Ti) ≥ θ then
C.append(Ti)

end

end

// Accurate phase

maxq ← 0

identity← null

foreach Ti ∈ C do

if QMCC(I,Ti) > maxq then
maxq ← QMCC(I,Ti)

identity← Ti

end

end

return identity
Algorithm 1: DPD-DFF algorithm

more accurate results but needs longer runtime.

Despite the separation between fast and accurate phases, if the structure proposed so far is implemented in a

sequential manner the scalability problem will eventually appear for arbitrarily large databases. To achieve high

scalability, DPD-DFF has been developed within the two-level parallel framework proposed in [23], as described in

the Technical Report [28]. Hence, the scheme can be efficiently executed in a cluster of computers.

8

4. Experiments and results

This section describes the experiments performed over several fingerprint databases: a large database of SFinGe-

generated fingerprints (Section 4.2), a database captured by the authors (Section 4.3), the well-known NIST-DB14

(Section 4.4) and several other public databases (Section 4.5). Section 4.1 describes the hardware and software used

for these experiments.

The number of True Positives (TP), False Positives (FP) and False Negatives (FN) are used as accuracy measures,

along with the True Positive Rate (TPR). The average identification time is denoted by tavg and measured in seconds

in all cases. For the threshold variants, the average candidate set size |C|avg is also given. The plots include the

accuracy and identification time of three reference AFIS: an isolated one that uses a single finger and a single matcher

(as described in [8, 9]), and two score fusion approaches, one multi-finger (as described in [17, 41]) and one multi-

algorithm (as described in [11, 17, 36]).

Note that for a fair comparison, both DPD-DFF and the reference AFIS were implemented in the framework

proposed in [23] and executed over the same hardware. It is out of the scope of this paper to analyze the performance

of the parallel procedure; the study is focused on the behavior of the proposed hybrid fusion method.

Additional details and results (such as tables, figures, database statistics, identification times, hardware con-

figuration and results with more databases) are available in the associated Technical Report [28] and at http:

//sci2s.ugr.es/DPDDFF.

4.1. Hardware and software environment

The experiments carried out for this paper have been executed in a cluster of 12 nodes, each of them with two Intel

Xeon E5-2620 processors (6 cores each). The executions were performed with 12 slave processes (one in each node),

each of them composed of 24 threads. Note that a smaller subset of nodes was used for the databases of small size.

All fingerprint minutiae were extracted using the NIGOS mindtct software [42], whose parameters are detailed in

Table 2. The authors have written their own implementation of the underlying matching algorithms [8, 9], with the

sole aid of their respective original publications. The parameters used for these algorithms are also presented in the

table.

To ensure a fair comparison, the same parameters were used for all the tested databases, so as to avoid any kind

of over-fitting of the results. Even though this may produce low accuracy values for some of the databases, this setup

aims to assess the robustness of the proposed method in different use cases.

4.2. SFinGe database

This section describes the experiments performed over a database of 50 000 fingerprint pairs, synthetically gener-

ated with the SFinGe software [3, 43]. First, Section 4.2.1 details the used fingerprint database. Then, Section 4.2.2

describes the experiments carried out and the obtained results.

9

Table 2: Parameters for the methods used in the experimentation

Algorithm Parameters Reference

Jiang

wd = 1,wθ = 0.3 180
π
,wφ = 0.3 180

π

[8]
wn = 0,wt = 0,Consolidation step iterations = 5

Minutiae neighborhood size = 2

BG1 = 8, BG2 = π
6 , BG3 = π

6

MCC

R = 70,Ns = 8,Nd = 6, σs = 28
3 , σd = 2π

9

[9]

µΨ = 0.01, τΨ = 400, ω = 50,minVC = 0.75

minM = 2,minME = 0.60, σθ = π
2 ,maxnp = 12

Floating-point-based version: enabled, µP = 20

wR = 0.5, µρ1 = 5, τP = 0.6,minnp = 4, τρ1 = −1.6

µ
ρ
2 = π

12 , τ
ρ
2 = −30, µρ3 = π

12 , τ
ρ
3 = −30, nrel = 5

mindtct
output format = ANSI INCITS 378-2004

[42]
image enhancement = enabled

4.2.1. Database generation and parameters of the algorithms

In order to obtain very large databases and to control the fingerprint characteristics, we used the SFinGe soft-

ware [3, 43] to generate synthetic fingerprints using the parameters specified in Table 3. The fingerprint pairs are

composed by joining two synthetic fingerprints. A fingerprint cannot be included in more than one pair to ensure that

all pairs are unique and disjoint in the database.

Table 3: Parameter specification used with the SFinGe tool

Scanner parameters Generation parameters Output settings

Acquisition area: 14.6mm x 19.6mm. Impression per finger: 25. Output file type: WSQ.

Resolution: 500 dpi. Class distribution: Natural.

Image size: 288 x 384. Varying quality and perturbations.

Background type: Optical. Generate pores: enabled.

Background noise: Default. Save ISO templates: enabled.

Crop borders: 0 x 0.

The test set for all the experiments carried out in this paper with the SFinGe database is composed of 1000 random

input pairs, which are used to perform 1000 different identifications in the database of 50 000 template fingerprint

pairs. Each input pair is formed by a different impression of each fingerprint of a template pair. Therefore, we obtain

accuracy measures that range from 0 to 1000.

10

4.2.2. Discussion of the results

This section discusses the obtained results for all the described variants of DPD-DFF over the SFinGe database.

For the experiments, the rank values used to build the candidate set have been taken among the multiples of the number

of cores of the cluster (144 in our setup), to maximize the throughput. However, we have also used lower values of

the rank those in order to enrich the study and obtain more information about the behavior of the obtained accuracy.

Table 4: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

12 927 73 0 0.1588 928 72 0 0.1845 994 6 0 0.2870 996 4 0 0.3174

24 948 52 0 0.1597 949 51 0 0.1872 994 6 0 0.2776 997 3 0 0.3190

48 956 44 0 0.1589 958 42 0 0.1884 993 7 0 0.2815 997 3 0 0.3199

96 968 32 0 0.1597 970 30 0 0.1882 993 7 0 0.2889 997 3 0 0.3190

144 972 28 0 0.1606 974 26 0 0.1889 995 5 0 0.2833 999 1 0 0.3212

288 973 27 0 0.1603 976 24 0 0.1890 995 5 0 0.2916 999 1 0 0.3230

576 980 20 0 0.1696 983 17 0 0.2095 994 6 0 0.2977 999 1 0 0.3447

1152 984 16 0 0.1889 988 12 0 0.2680 992 8 0 0.3215 999 1 0 0.3788

2304 990 10 0 0.2412 995 5 0 0.3345 993 7 0 0.3485 1000 0 0 0.4483

4608 989 11 0 0.2897 996 4 0 0.4547 990 10 0 0.4185 1000 0 0 0.5887

9216 987 13 0 0.4313 996 4 0 0.7369 990 10 0 0.5665 1000 0 0 0.8665

18432 988 12 0 0.7379 998 2 0 1.3333 990 10 0 0.8481 1000 0 0 1.4356

36864 989 11 0 1.4270 1000 0 0 2.5521 989 11 0 1.4728 1000 0 0 2.5772

Table 5: Results of DPD-DFF with 1000 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.05 46528.2 989 11 0 1.5153 1000 0 0 2.9382 49242.4 989 11 0 1.7302 1000 0 0 3.1920

0.10 22913.0 989 11 0 0.8381 999 1 0 1.6204 23580.8 990 10 0 1.0345 1000 0 0 1.8055

0.15 5404.7 989 11 0 0.3223 993 7 0 0.5450 2511.3 993 7 0 0.3727 999 1 0 0.4911

0.20 685.4 964 30 6 0.1925 967 27 6 0.2319 81.7 995 4 1 0.2865 997 2 1 0.3197

0.25 39.9 911 54 35 0.1583 912 53 35 0.1878 1.8 969 0 31 0.2819 969 0 31 0.3170

0.30 1.5 796 26 178 0.1515 796 26 178 0.1792 0.9 884 0 116 0.2722 884 0 116 0.3115

Tables 4 and 5 present the results of the eight variants of DPD-DFF. Note that columns |C|avg and tavg contain

average values over the 1000 performed identifications. Accordingly, Figure 2 plots the TPR along with the average

identification time (note the logarithmic scale) for each variant of DPD-DFF and each reference AFIS. The following

highlights can be extracted:

• The accuracy increases along with the amount of used information, so that DS* and DD* approaches are the

most accurate ones.

• For a same average candidate set size, the rank approach produces more accurate results than the threshold

variants, especially for small candidate sets. This might seem surprising because given an input pair, if both

variants produce a candidate set of the same size, then these candidate sets are the same. However, recall that

11

0.80

0.85

0.90

0.95

1.00

0.15 0.20 0.30 0.50 1.00 2.00 3.00

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AFIS

Jiang

MCC

Multi−finger Jiang

Multi−finger MCC

Multi−algorithm

DPD−DFF variant

SS*

DS*

SD*

DD*

Criterion

Rank

Threshold

Figure 2: Average identification time and accuracy with the SFinGe database (N = 50000)

Table 5 shows the average set size. The actual value of |C| in the threshold variant is different for each input

pair, which makes the variant less robust.

• The rank ensures that there are no false negatives because it allows us to fix the size of the candidate set,

ensuring |C| > 0 and offering better control of the overall identification time.

• Even for a small |C|, the rank variants outperform Jiang over a single fingerprint.

• Similarly, for a very large |C|, DPD-DFF relies more on the second phase and therefore the results get closer to

those obtained by MCC. The DS* variants are a particular case because the accuracy decreases as |C| increases.

As the candidate set grows, they rely less on multi-finger Jiang, and more on single-finger MCC, which is less

accurate than the former.

• The most accurate variant is DDR, which uses the two fingerprints with both algorithms and the rank.

12

• The DS* and DD* variants of DPD-DFF outperform all reference AFIS, reaching 100% TPR along with the

multi-finger approach with MCC.

If the average identification time is also taken into account, the following conclusions arise:

• As expected, in general the more precise variants also take more time. These results show how DPD-DFF can

be tuned according to the system needs, so that reasonably good results can be obtained very quickly (SSR

variant, r = 576), and very precise results can be obtained with slower configurations (DDR variant, r = 2304).

• These tables also show that given a certain variant, the configurations with small candidate sets have a very

similar runtime because all the matchings can be performed in parallel, but the accuracy is better for bigger

candidate sets. Therefore, in a real environment, configurations with less than one candidate per core are

usually not interesting, as they do not use the whole capacity of the cluster.

In summary, the DPD-DFF model dominates in time and accuracy all the tested AFIS, even the multi-finger

approaches which provide very good accuracy. The DDR variant reaches 100% TPR in about 0.45 seconds, while the

only reference AFIS that reaches this accuracy (multi-finger MCC) takes 3 seconds.

4.3. DBSpain654

A database of 654 fingerprint pairs was captured by the authors to test DPD-DFF on a controlled framework.

This section describes the database (Section 4.3.1), the results obtained (Section 4.3.2), and an additional study with

impostor fingerprints (Section 4.3.3). Due to the size of this database, all experiments described in this section were

carried out using a single computer.

4.3.1. Database description

The fingerprints belong to the forefinger and middle finger of both hands of 334 non-experienced subjects from

three different cities. Note that 14 fingerprint pairs failed in their enrolment and therefore were excluded from the

database, making the resulting number of 654 pairs.

Both fingerprints of each pair were captured within the same image using a Suprema RealScan-D sensor. Each

pair was captured 2 times as a template and 12 as an input over 3 different sessions several weeks apart. To compose

the database and the test input set for this study, a single template and a single random input capture were selected

for each pair. Then, the NIGOS nfseg algorithm [42] was used to segment the image and separate both fingerprints of

each pair before applying the minutiae extraction.

4.3.2. Discussion of the results

Tables 6 and 7 present the results of the eight variants of the proposed DPD-DFF. Figure 3 depicts both accuracy

and the average identification time of all tested AFIS. The following conclusions can be extracted from these results:

13

• The algorithms behave in the same way as in the previously studied databases: Jiang is less precise than MCC,

and the multi-finger approaches obtain the best results both among the reference AFIS and the DPD-DFF

variants.

• Again, the rank variants show more robust behavior than the threshold ones for the same average size of the

candidate set. The DDR variant obtains the best performance possible for any number of candidates.

• DDR and DSR dominate all the considered multi-algorithm AFIS, and get the same TPR as multi-finger MCC

in a much faster time.

• The multi-finger Jiang algorithm is faster than DPD-DFF. Actually, it corresponds to the first phase of the DS*

and DD* variants, and it is clear that its accuracy is significantly improved with a small time overhead.

Table 6: Results of DPD-DFF with 654 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

2 614 40 0 0.0622 614 40 0 0.1000 652 2 0 0.0891 653 1 0 0.1264

4 623 31 0 0.0641 623 31 0 0.1020 652 2 0 0.0902 654 0 0 0.1277

8 629 25 0 0.0655 629 25 0 0.1030 651 3 0 0.0915 654 0 0 0.1296

12 634 20 0 0.0658 635 19 0 0.1040 648 6 0 0.0919 654 0 0 0.1302

24 639 15 0 0.0666 642 12 0 0.1058 647 7 0 0.0927 654 0 0 0.1315

48 642 12 0 0.0805 645 9 0 0.1330 647 7 0 0.1073 654 0 0 0.1598

Table 7: Results of DPD-DFF with 654 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.15 113.5 641 13 0 0.1165 646 8 0 0.2114 61.1 647 7 0 0.1205 654 0 0 0.1863

0.20 19.3 631 17 6 0.0694 632 16 6 0.1128 4.1 645 1 8 0.0893 646 0 8 0.1266

0.25 2.0 600 19 35 0.0619 600 19 35 0.0972 1.0 616 2 36 0.0867 616 2 36 0.1211

0.30 0.8 545 2 107 0.0590 545 2 107 0.0924 0.9 562 0 92 0.0857 562 0 92 0.1194

4.3.3. Results using impostor fingerprints

This section provides additional accuracy results for the DBSpain654 database.

In this section, the introduction of impostor fingerprints in the database requires additional error measures to study

the behavior of DPD-DFF:

• False Acceptance Rate (FAR): rate of impostor fingerprints that are erroneously identified as genuine ones.

• False Rejection Rate (FRR): rate of genuine fingerprints that are erroneously rejected.

• Equal Error Rate (EER): error when FAR and FRR are equal.

14

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AFIS

Jiang

MCC

Multi−finger Jiang

Multi−finger MCC

Multi−algorithm

DPD−DFF variant

SS*

DS*

SD*

DD*

Criterion

Rank

Threshold

Figure 3: Runtime and accuracy with the captured database (N = 654)

• FAR100, FAR1000: FRR when FAR is 1% and 0.1%, respectively.

• True Negatives (TN): number of input fingerprints that are not in the database, and are correctly detected as

such.

• True Negative Rate (TNR): quotient of TN and the number of impostor test fingerprints.

Tables 8 and 9 depict these error measures for all tested variants of DPD-DFF. To calculate these values, we took

3 random input fingerprint pairs for each of the 654 templates, and matched them with all the templates, making a

total of 1 283 148 matchings for each matcher and each finger.

These tables show that the error rates become very low when the candidate set is big enough, especially for the

DDR variant. Additionally, the FAR100 and FAR1000 values are very similar in most cases, meaning that the FAR

drops quickly while the FRR remains almost constant, stating the robustness of DPD-DFF. The DRR variant obtains

a very low FAR1000 when r = 48, which corresponds to a system that is robust against attacks (0.1% FAR), while

avoiding rejections of genuine identities (0.25% FRR).

15

Table 8: Additional error measures (in percentages) using DPD-DFF (rank)

SSR SDR DSR DDR

r EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000

2 6.2691 6.2691 6.3462 6.2691 6.2691 6.2691 1.3252 1.3252 1.4547 1.3252 1.3252 1.3252

4 5.3007 5.3007 5.4536 5.3007 5.3007 5.3007 0.9684 0.9684 1.1879 0.9684 0.9684 0.9684

8 4.4852 4.4907 4.6406 4.4852 4.4852 4.4852 0.8396 0.7875 1.2571 0.7645 0.7645 0.7645

12 3.8226 3.9012 4.0571 3.8226 3.8226 3.8226 0.7715 0.7344 1.1956 0.6116 0.6116 0.6116

24 2.7405 2.8525 3.2449 2.7013 2.7013 2.7077 0.5750 0.5607 1.0508 0.3568 0.3568 0.3818

48 2.0346 2.0897 2.5592 1.8858 1.8858 1.9217 0.6132 0.4497 1.2210 0.2039 0.2039 0.2519

Table 9: Additional error measures (in percentages) using DPD-DFF (threshold)

SST SDT DST DDT

θ EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000 EER FAR100 FAR1000

0.15 1.9888 2.0829 2.7641 1.7848 1.7848 1.8358 0.6938 0.5347 1.3761 0.3058 0.3058 0.3851

0.20 4.5385 4.6810 4.9608 4.5385 4.5385 4.5385 1.6820 1.6820 1.8941 1.6820 1.6820 1.6820

0.25 9.5360 9.5360 9.6470 9.5360 9.5360 9.5360 5.8104 5.8104 5.8104 5.8104 5.8104 5.8104

0.30 18.2050 18.2050 18.2050 18.2050 18.2050 18.2050 15.4944 15.4944 15.4944 15.4944 15.4944 15.4944

To conclude this section, we performed a new test, for which half of the fingerprints were randomly removed from

the database, so that 50% of the input fingerprints become impostors trying to break into the system. The criterion

used by DPD-DFF to determine if a fingerprint does not belong to the database is a score threshold within the accurate

phase: if the fingerprint selected as the most similar to the input does not reach that threshold, the input is considered

to be an impostor. The threshold used for these tests was the one that gives 0.01% FAR for the standalone MCC

algorithm.

Table 10: Results of DPD-DFF with impostors and 654 test identifications (rank)

SSR SDR DSR DDR

r TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

2 303 327 0 24 309 324 3 18 321 326 1 6 327 325 2 0

4 305 327 0 22 311 324 3 16 321 326 1 6 327 325 2 0

8 308 327 0 19 314 324 3 13 321 326 1 6 327 325 2 0

12 310 327 0 17 316 323 4 11 321 325 2 6 327 323 4 0

24 313 326 1 14 319 322 5 8 321 322 5 6 327 321 6 0

48 317 324 3 10 323 320 7 4 321 320 7 6 327 320 7 0

The results presented in Tables 10 and 11 show that, in contrast to the behavior of the TP, the TN decreases as the

candidate size grows. This happens because a smaller candidate set allows the impostors to be detected during the first

phase, while a bigger set makes the system more vulnerable to such attacks. This behavior provides good flexibility

for the system: it can focus either on rejecting impostors or avoiding false rejections by modifying the rank parameter.

All rank variants of DPD-DFF show very good accuracy results when detecting impostors while identifying gen-

uine fingerprints, keeping both FP and FN very low. As an example, DDR obtains the best result with the smallest r,

and therefore the fastest configuration, without any false negatives in all cases. Similarly, the SSR variant is the one

16

Table 11: Results of DPD-DFF with impostors and 654 test identifications (threshold)

SST SDT DST DDT

θ TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

0.15 316 323 4 11 322 320 7 5 321 319 8 6 327 321 6 0

0.20 308 326 1 19 314 323 4 13 319 326 1 8 325 324 3 2

0.25 295 327 0 32 301 325 2 26 307 327 0 20 311 327 0 16

0.30 260 327 0 67 264 327 0 63 279 327 0 48 281 327 0 46

that is more robust against false positives, although this happens at the cost of a worse false negative rate.

0.7

0.8

0.9

1.0

0.80 0.85 0.90 0.95 1.00

True positive rate

T
ru

e
 n

e
g

a
ti
ve

 r
a

te

AFIS

Jiang

MCC

Multi−finger Jiang

Multi−finger MCC

Multi−algorithm

DPD−DFF variant

SS*

DS*

SD*

DD*

Criterion

Rank

Threshold

Figure 4: True positive rate and true negative rate with the captured database

Figure 4 shows how the proposed system dominates by far all reference AFIS in terms of the trade-off between

false rejections and false acceptances. It can be seen that the DDR variant reaches almost 100% of both measures at

the same time.

17

4.4. NIST-DB14 database

The NIST-DB14 database is composed of 27 000 rolled fingerprints, each of which was captured twice [44].

Tables 12 and 13 present the results of DPD-DFF over the NIST-DB14 database for the rank and threshold variants,

respectively, using 12 slave machines. Figure 5 displays graphically the values of the tables.

Table 12: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s) TP FP FN tavg (s)

12 244 756 0 2.0345 275 725 0 2.3242 335 665 0 3.5431 357 643 0 3.8281

24 259 741 0 2.0564 312 688 0 2.3920 357 643 0 3.5769 393 607 0 3.9234

48 272 728 0 2.0726 340 660 0 2.4209 367 633 0 3.5816 418 582 0 3.9301

96 287 713 0 2.0865 369 631 0 2.4353 382 618 0 3.5872 442 558 0 3.9446

144 294 706 0 2.0891 383 617 0 2.4418 388 612 0 3.5965 458 542 0 3.9531

288 303 697 0 2.1033 405 595 0 2.4644 393 607 0 3.6070 485 515 0 3.9681

576 311 689 0 2.2739 431 569 0 2.8361 391 609 0 3.7861 507 493 0 4.3407

1152 324 676 0 2.5856 458 542 0 3.5211 393 607 0 4.1169 528 472 0 5.0399

2304 318 682 0 3.1847 482 518 0 4.8292 395 605 0 4.7404 544 456 0 6.3622

4608 331 669 0 4.3706 499 501 0 7.3712 381 619 0 5.9571 556 444 0 8.9160

9216 336 664 0 6.6912 518 482 0 12.3243 369 631 0 8.2953 559 441 0 13.8824

Table 13: Results of DPD-DFF with 1000 test identifications (threshold)

SST SDT DST DDT

φ |C|avg TP FP FN tavg (s) TP FP FN tavg (s) |C|avg TP FP FN tavg (s) TP FP FN tavg (s)

0.10 13065.3 344 656 0 8.9011 535 465 0 17.0552 13380.5 360 640 0 10.7978 555 445 0 19.1454

0.15 3820.7 329 670 1 4.2518 484 515 1 7.2158 2197.2 394 605 1 4.9861 529 470 1 6.8838

0.20 367.3 298 684 18 2.2591 389 593 18 2.8427 49.7 342 540 118 3.5687 380 502 118 3.9022

0.25 6.0 191 476 333 1.9899 202 465 333 2.2579 0.2 137 31 832 3.4112 137 31 832 3.5791

It has to be noted that the TPR is surprisingly low, in discrepancy with other studies that highlight these matchers

as accurate for the NIST-DB14 database. However, they may require specific tuning to be optimized for rolled

fingerprints, which falls beyond the scope of this study. Therefore, we focus on the results obtained with general-

purpose parameters that can highlight the robustness of the tested AFIS. For this database, which is difficult and

computationally expensive, DPD-DFF outperforms all other approaches, in terms of both identification time and

accuracy. The DDR variant is able to obtain better accuracy than the multi-finger MCC in about 25% more of the time

than that required by the latter.

18

0.2

0.3

0.4

0.5

5 10 15 20

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AFIS

Jiang

MCC

Multi−finger Jiang

Multi−finger MCC

Multi−algorithm

DPD−DFF variant

SS*

DS*

SD*

DD*

Criterion

Rank

Threshold

Figure 5: Average identification time and accuracy with NIST-DB14 (N = 21600)

4.5. Other real databases

We have performed an extensive experimental study over several publicly available databases composed of real

fingerprints. The objective of this study is to analyze the behavior of DPD-DFF in several realistic systems, where the

fingerprints have been captured by different sensors and techniques, and to do so in a reproducible way. DB25496 is a

mixture of the other four real databases formed by plain fingerprints (DBSpain654, CASIA-FingerprintV5, MCYT100

and FingerPass), where four captures of each fingerprint pair were included into the template database. Table 14

summarizes the characteristics of the three selected databases. Figure 6 displays graphically the time and accuracy

values obtained for them.

Again, the DDR variant is able to obtain the same results as the multi-finger MCC, in a much shorter time frame.

For the smaller databases, the multi-finger Jiang AFIS is able to obtain results that are faster than any of the variants of

DPD-DFF. However, this time difference is less than 0.1s, which is usually an acceptable time to spend if the accuracy

is improved. For a bigger database with the same characteristics, the relative difference in time would decrease as the

accurate phase overhead would represent a smaller proportion of the overall time, thus making DPD-DFF even more

19

Table 14: Summary of the used real databases

Database Subjects Fingers Template pairs Input pairs Machines used Reference

CASIA-FingerprintV5 500 8 4000 1000 4 [45]

MCYT100 100 10 1000 1000 1 [46]

FingerPass 90 8 720 720 1 [47]

DB25496 1024 – 25 496 1000 12 [28]

suitable for the identification. This is reflected in the largest and most difficult databases (CASIA-FingerprintV5 and

DB25496), as well as in the previously analyzed NIST-DB14, where DPD-DFF improves accuracy in all the reference

results.

20

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

(a) CASIA-FingerprintV5

0.84

0.88

0.92

0.96

0.3 0.6 0.9

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

(b) MCYT100

0.900

0.925

0.950

0.975

1.000

0.25 0.50 0.75 1.00 1.25

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

(c) FingerPass

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 1 2 3 4

Average identification time (s)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

(d) DB25496

AFIS

Jiang

MCC

Multi−finger Jiang

Multi−finger MCC

Multi−algorithm

DPD−DFF variant

SS*

DS*

SD*

DD*

Criterion

Rank

Threshold

(e) Legend

Figure 6: Average identification time and accuracy with the additional real databases

21

5. Conclusions

In this paper, we have proposed a novel dual phase identification model (denoted DPD-DFF) to address the identi-

fication problem in large fingerprint databases. Its goal is to overcome the two problems that arise when dealing with

this kind of database: the accuracy loss and the long runtime. To do so, the model combines two matching algorithms

and two fingerprints per identity, using a mixed decision-level and score-level fusion, and has been implemented in a

distributed system.

One of the main strengths of the proposed system is its flexibility, so that it can be tuned to the desired balance

between accuracy and speed. Furthermore, the proposal has been tested over six fingerprint databases of diverse

characteristics. The attained results have shown that the solutions obtained by our model dominate both in time and in

accuracy over those obtained by using a single fingerprint or score fusion with either two fingerprints or two matchers,

especially when large or complex databases are involved.

With a database of 50 000 fingerprint pairs, the algorithm reaches 100% TPR for identification taking only 0.44

seconds in a cluster of 12 machines. As for the fast results, 98.0% accuracy is obtained within 0.17 seconds.

The experiments carried out over the remaining databases have confirmed these conclusions. The additional study

including impostor scores claims that DPD-DFF is much more precise than the three reference AFIS in terms of the

trade-off between TPR and TNR, being able to eliminate any false negatives within a fast identification time.

Acknowledgments

This work was supported by the research projects TIN2014-57251-P, TIN2013-47210-P and P12-TIC-2958. D.

Peralta holds an FPU scholarship from the Spanish Ministry of Education and Science (FPU12/04902). I. Triguero

holds a BOF postdoctoral fellowship from the Ghent University.

Portions of the research in this paper use the CASIA-FingerprintV5 collected by the Chinese Academy of Sci-

ences’ Institute of Automation (CASIA).

References

[1] A. K. Jain, R. M. Bolle, S. Pankanti, Biometrics: Personal Identification in Networked Society, Springer, 2005.

[2] S. Pankanti, S. Prabhakar, A. K. Jain, On the individuality of fingerprints, IEEE Trans. Pattern Anal. Mach. Intell. 24 (8) (2002) 1010–1025.

[3] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, Handbook of fingerprint recognition, Springer-Verlag New York Inc, 2009.

[4] A. Jain, L. Hong, R. Bolle, On-line fingerprint verification, IEEE Trans. Pattern Anal. Mach. Intell. 19 (4) (1997) 302–314.

[5] A. K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity-authentication system using fingerprints, Proc. IEEE 85 (9) (1997) 1365–1388.

[6] N. Ratha, R. Bolle, Automatic Fingerprint Recognition Systems, Springer, New York, 2004.

[7] D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garcı́a, E. Barrenechea, J. M. Benitez, H. Bustince, F. Herrera, A Survey on Fingerprint

Minutiae-based Local Matching for Verification and Identification: Taxonomy and Experimental Evaluation, Inf. Sci. 315 (2015) 67–87.

[8] X. Jiang, W. Y. Yau, Fingerprint minutiae matching based on the local and global structures, in: Proc. 15th Int. Conf. Pattern Recognit., Vol. 2,

IEEE, 2000, pp. 1038–1041.

22

[9] R. Cappelli, M. Ferrara, D. Maltoni, Minutia cylinder-code: A new representation and matching technique for fingerprint recognition, IEEE

Trans. Pattern Anal. Mach. Intell. 32 (12) (2010) 2128–2141.

[10] P. Verlinde, G. Chollet, M. Acheroy, Multi-modal identity verification using expert fusion, Inf. Fusion 1 (1) (2000) 17–33.

[11] S. Prabhakar, A. K. Jain, Decision-level fusion in fingerprint verification, Pattern Recognit. 35 (4) (2002) 861–874.

[12] A. Ross, A. Jain, Information fusion in biometrics, Pattern Recognit. Lett. 24 (13) (2003) 2115–2125.

[13] A. K. Jain, P. Flynn, A. A. Ross, Handbook of biometrics, Springer, 2007.

[14] A. K. Jain, S. Prabhakar, S. Chen, Combining multiple matchers for a high security fingerprint verification system, Pattern Recognit. Lett. 20

(1999) 1371–1379.

[15] X. Jiang, W. Ser, Online fingerprint template improvement, IEEE Trans. Pattern Anal. Mach. Intell. 24 (8) (2002) 1121–1126.

[16] H. Xu, R. N. J. Veldhuis, Spectral minutiae representations for fingerprint recognition, in: Proc. 6th Int. Conf. Intell. Inf. Hiding Multimed.

Signal Process., 2010, pp. 341–345.

[17] G. L. Marcialis, F. Roli, L. Didaci, Multimodal fingerprint verification by score-level fusion: An experimental investigation, J. Intell. Fuzzy

Syst. 24 (2013) 51–60.

[18] N. K. Ratha, K. Karu, S. Chen, A. K. Jain, A real-time matching system for large fingerprint databases, IEEE Trans. Pattern Anal. Mach.

Intell. 18 (8) (1996) 799–813.

[19] H. S. Stone, High-performance computer architecture, Addison-Wesley Longman Publishing Co., Inc., 1992.

[20] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, B. Smolinski, Toward a Common Component Architecture

for High-Performance Scientific Computing, in: Proc. 8th IEEE Int. Symp. High Perform. Distrib. Comput., 1999, pp. 115–124.

[21] R. F. Miron, T. S. Letia, M. Hulea, Two server topologies for a distributed fingerprint-based recognition system, in: 15th Int. Conf. Syst.

Theory, Control Comput., 2011, pp. 1–6.

[22] K. Beghdad Bey, Z. Guessoum, A. Mokhtari, F. Benhammadi, Agent based approach for distribution of fingerprint matching in a metacom-

puting environment, in: Proc. 8th Int. Conf. New Technol. Distrib. Syst., 2008, pp. 1–7.

[23] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J. M. Benitez, Fast Fingerprint Identification for Large Databases, Pattern Recognit.

47 (2) (2014) 588–602.

[24] P. D. Gutierrez, M. Lastra, F. Herrera, J. M. Benitez, A high performance fingerprint matching system for large databases based on GPU,

IEEE Trans. Inf. Forensics Secur. 9 (1) (2014) 62–71.

[25] R. Cappelli, M. Ferrara, D. Maltoni, Large-scale fingerprint identification on GPU, Inf. Sci. 306 (2015) 1–20.

[26] Unique Authentication Authority of India.

URL http://uidai.gov.in/

[27] Integrated Automated Fingerprint Identification System.

URL http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/iafis/iafis

[28] D. Peralta, I. Triguero, S. Garcı́a, F. Herrera, J. M. Benitez, Supplementary material for “DPD-DFF: A Dual Phase Distributed Scheme with

Double Fingerprint Fusion for Fast and Accurate Identification in Large Databases”, Tech. rep., Soft Computing and Intelligent Information

Systems, University of Granada (2015).

URL http://sci2s.ugr.es/sites/default/files/files/ComplementaryMaterial/DPDDFF/techrep.pdf

[29] D. Peralta, M. Galar, I. Triguero, J. M. Benitez, F. Herrera, Minutiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching

Algorithms, Eng. Appl. Artif. Intell. 32 (2014) 37–53.

[30] A. Lindoso, L. Entrena, J. Izquierdo, FPGA-based acceleration of fingerprint minutiae matching, in: Proc. 3rd South. Conf. Program. Log.,

2007, pp. 81–86.

[31] X. Jiang, M. Liu, A. C. Kot, Fingerprint retrieval for identification, IEEE Trans. Inf. Forensics Secur. 1 (4) (2006) 532–542.

[32] M. Liu, X. Jiang, A. Chichung Kot, Efficient fingerprint search based on database clustering, Pattern Recognit. 40 (6) (2007) 1793–1803.

[33] R. Cappelli, M. Ferrara, D. Maltoni, Fingerprint indexing based on minutia cylinder-code, IEEE Trans. Pattern Anal. Mach. Intell. 33 (5)

(2011) 1051–1057.

23

[34] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-Molina, S. Garcı́a, J. M. Benitez, M. Pagola, E. Barrenechea, H. Bustince,

F. Herrera, A survey of fingerprint classification Part I: Taxonomies on feature extraction methods and learning models, Knowledge-Based

Syst. 81 (2015) 76–97.

[35] M. Vatsa, R. Singh, A. Noore, K. Morris, Simultaneous latent fingerprint recognition, Appl. Soft Comput. 11 (7) (2011) 4260–4266.

[36] L. Nanni, D. Maio, Combination of different fingerprint systems: A case study FVC2004, Sens. Rev. 26 (1) (2006) 51–57.

[37] A. Noore, R. Singh, M. Vatsa, Robust memory-efficient data level information fusion of multi-modal biometric images, Inf. Fusion 8 (4)

(2007) 337–346.

[38] T. Uz, G. Bebis, A. Erol, S. Prabhakar, Minutiae-based template synthesis and matching for fingerprint authentication, Comput. Vis. Image

Underst. 113 (2009) 979–992.

[39] Y. Li, J. Yin, E. Zhu, Score-based fusion in multi-unit biometric recognition system, Appl. Mech. Mater. 48–49 (2011) 1010–1013.

[40] D. Gafurov, C. Busch, P. Bours, B. Yang, Fusion in fingerprint authentication: Two finger types vs. two scanner types, in: Proc. ACM Symp.

Appl. Comput., 2011, pp. 13–20.

[41] A. K. Jain, S. Prabhakar, A. Ross, Fingerprint matching: Data acquisition and performance evaluation, Tech. Rep. TR99-14, MSU (1999).

[42] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. Mccabe, S. Janet, K. Ko, User’s Guide to NIST Biometric Image Software (NBIS),

Tech. Rep. NISTIR-7392, NIST (2010).

[43] R. Cappelli, D. Maio, D. Maltoni, Synthetic fingerprint-database generation, in: Proc. 16th Int. Conf. Pattern Recognit., Vol. 3, 2002, pp.

744–747.

[44] C. I. Watson, NIST Special Database 14, Tech. rep., NIST (1993).

[45] CASIA-FingerprintV5 database.

URL http://biometrics.idealtest.org/

[46] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho,

D. Escudero, Q.-I. Moro, MCYT baseline corpus: A bimodal biometric database, IEEE Proc. Vision, Image Signal Process. 150 (6) (2003)

395–401.

[47] X. Jia, X. Yang, Y. Zang, N. Zhang, J. Tian, A cross-device matching fingerprint database from multi-type sensors, in: Proc. Int. Conf. Pattern

Recognit., 2012, pp. 3001–3004.

24

Bibliography

[Amd67] Amdahl G. M. (apr 1967) Validity of the single processor approach to achieving large
scale computing capabilities. In Proc. Spring Jt. Comput. Conf., pp. 483–485. ACM.

[BGMB08] Beghdad Bey K., Guessoum Z., Mokhtari A., and Benhammadi F. (2008) Agent based
approach for distribution of fingerprint matching in a metacomputing environment.
In Proc. 8th Int. Conf. New Technol. Distrib. Syst., pp. 1–7.

[Cap11] Cappelli R. (2011) Fast and Accurate Fingerprint Indexing Based on Ridge Ori-
entation and Frequency. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 41(6):
1511–1521.

[CCHW97] Chang S. H., Cheng F. H., Hsu W. H., and Wu G. Z. (1997) Fast algorithm for point
pattern matching: invariant to translations, rotations and scale changes. Pattern
Recognit. 30(2): 311–320.

[CF01] Chang J. and Fan K. (2001) Fingerprint ridge allocation in direct gray-scale domain.
Pattern Recognit. 34(10): 1907–1925.

[CFM10] Cappelli R., Ferrara M., and Maltoni D. (2010) Minutia cylinder-code: A new repre-
sentation and matching technique for fingerprint recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 32(12): 2128–2141.

[CFM15] Cappelli R., Ferrara M., and Maltoni D. (2015) Large-scale fingerprint identification
on GPU. Inf. Sci. 306: 1–20.

[CGW+95] Candela G. T., Grother P. J., Watson C. I., Wilkinson R. A., and Wilson C. L.
(1995) {PCASYS}- A Pattern-Level Classification Automation System for Finger-
prints. Technical Report 5647, NIST.

[CLMM99] Cappelli R., Lumini A., Maio D., and Maltoni D. (may 1999) Fingerprint classifi-
cation by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell.
21(5): 402–421.

[CTY06] Chen X., Tian J., and Yang X. (2006) A new algorithm for distorted fingerprints
matching based on normalized fuzzy similarity measure. IEEE Trans. Image Process.
15(3): 767–776.

[cud] NVIDIA CUDA.

[DG08] Dean J. and Ghemawat S. (jan 2008) {MapReduce}: simplified data processing on
large clusters. Commun. ACM 51(1): 107–113.

169

170 BIBLIOGRAPHY

[DGLN11] Danese G., Giachero M., Leporati F., and Nazzicari N. (2011) An embedded multi-
core biometric identification system. Microprocess. Microsyst. 35(5): 510–521.

[DHS12] Duda R. O., Hart P. E., and Stork D. G. (2012) Pattern classification. John Wiley
& Sons.

[FdRL+14] Fernández A., del Ŕıo S., López V., Bawakid A., del Jesus M. J., Benitez J. M., and
Herrera F. (2014) Big Data with Cloud Computing: an insight on the computing
environment, {MapReduce}, and programming frameworks. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 4(5): 380–409.

[GDP+15a] Galar M., Derrac J., Peralta D., Triguero I., Paternain D., Lopez-Molina C., Garćıa
S., Benitez J. M., Pagola M., Barrenechea E., Bustince H., and Herrera F. (2015)
A survey of fingerprint classification Part II: Experimental analysis and ensemble
proposal. Knowledge-Based Syst. 81: 98–116.

[GDP+15b] Galar M., Derrac J., Peralta D., Triguero I., Paternain D., Lopez-Molina C., Garćıa
S., Benitez J. M., Pagola M., Barrenechea E., Bustince H., and Herrera F. (2015) A
survey of fingerprint classification Part I: Taxonomies on feature extraction methods
and learning models. Knowledge-Based Syst. 81: 76–97.

[GLH15] Garćıa S., Luengo J., and Herrera F. (2015) Data Preprocessing in Data Mining.
Springer, New York, 1st edition.

[GLHB14] Gutierrez P. D., Lastra M., Herrera F., and Benitez J. M. (2014) A high performance
fingerprint matching system for large databases based on GPU. IEEE Trans. Inf.
Forensics Secur. 9(1): 62–71.

[HAL+08] Hulea M., Aştilean A., Leţia T., Miron R., and Folea S. (may 2008) Fingerprint
recognition distributed system. In Proc. 16th IEEE Int. Conf. Autom. Qual. Testing,
Robot., volumen 3, pp. 423–428.

[Hen00] Henry E. (1900) Classification and Uses of Finger Prints. George Routledge and
Sons, Broadway, Ludgate Hill, United Kingdom.

[HMCC08] Hong J. H., Min J. K., Cho U. K., and Cho S. B. (2008) Fingerprint classifica-
tion using one-vs-all support vector machines dynamically ordered with naive Bayes
classifiers. Pattern Recognit. 41(2): 662–671.

[iaf] Integrated Automated Fingerprint Identification System.

[ISA11] Indrawan G., Sitohang B., and Akbar S. (jul 2011) Parallel Processing for Fingerprint
Feature Extraction. In Int. Conf. Electr. Eng. Informat., pp. 1–6.

[JCD07] Jain A., Chen Y., and Demirkus M. (jan 2007) Pores and Ridges: High-Resolution
Fingerprint Matching Using Level 3 Features. IEEE Trans. Pattern Anal. Mach.
Intell. 29(1): 15–27.

[JFN10] Jain A. K., Feng J., and Nandakumar K. (feb 2010) Fingerprint Matching. Computer
(Long. Beach. Calif). 43(2): 36–44.

[JFR07] Jain A. K., Flynn P., and Ross A. A. (2007) Handbook of biometrics. Springer.

BIBLIOGRAPHY 171

[JHB97] Jain A. K., Hong L., and Bolle R. (1997) On-line fingerprint verification. IEEE
Trans. Pattern Anal. Mach. Intell. 19(4): 302–314.

[JHPB97] Jain A. K., Hong L., Pankanti S., and Bolle R. (1997) An identity-authentication
system using fingerprints. Proc. IEEE 85(9): 1365–1388.

[JPC99] Jain A. K., Prabhakar S., and Chen S. (1999) Combining multiple matchers for a
high security fingerprint verification system. Pattern Recognit. Lett. 20: 1371–1379.

[JR13] Jeffers J. and Reinders J. (2013) Intel Xeon Phi Coprocessor High Performance Pro-
gramming. Newnes.

[JS02] Jiang X. and Ser W. (aug 2002) Online fingerprint template improvement. IEEE
Trans. Pattern Anal. Mach. Intell. 24(8): 1121–1126.

[JY00] Jiang X. and Yau W. Y. (2000) Fingerprint minutiae matching based on the local
and global structures. In Proc. 15th Int. Conf. Pattern Recognit., volumen 2, pp.
1038–1041. IEEE.

[KJ96] Karu K. and Jain A. K. (1996) Fingerprint classification. Pattern Recognit. 29(3):
389–404.

[KKWZ15] Karau H., Konwinski A., Wendell P., and Zaharia M. (2015) Learning Spark:
Lightning-Fast Big Data Analysis. O’Reilly Media, Inc.

[KS13] Kitano T. and Su L. (jun 2013) SPOAN: Load Balancing Replica Placement Strategy
for Large Scale Biometric Identification Service. In 2013 IEEE Int. Congr. Big Data,
pp. 326–333. IEEE.

[KSH+12] Krizhevsky A., Sulskever I., Hinton G. E. G. E., Sutskever I., and Hinton G. E.
G. E. (2012) ImageNet Classification with Deep Convolutional Neural Networks.
Adv. Neural Inf. Process. Syst. pp. 1097–1105.

[LBH15] LeCun Y., Bengio Y., and Hinton G. (2015) Deep learning. Nature 521(7553): 436–
444.

[LCG+15] Lastra M., Carabaño J., Gutierrez P. D., Benitez J. M., and Herrera F. (apr 2015)
Fast fingerprint identification using GPUs. Inf. Sci. 301: 195–214.

[LGRN09] Lee H., Grosse R., Ranganath R., and Ng A. Y. (2009) Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proc.
26th Annu. Int. Conf. Mach. Learn. - ICML ’09, pp. 1–8. ACM Press, New York,
New York, USA.

[LHC00] Liu J., Huang Z., and Chan K. L. (2000) Direct minutiae extraction from gray-level
fingerprint image by relationship examination. In IEEE Int. Conf. Image Process.,
volumen 2, pp. 427–430.

[Liu10] Liu M. (2010) Fingerprint classification based on Adaboost learning from singularity
features. Pattern Recognit. 43(3): 1062–1070.

[LN17] Lumini A. and Nanni L. (2017) Overview of the combination of biometric matchers.
Inf. Fusion 33: 71–85.

172 BIBLIOGRAPHY

[MLH11] Miron R. F., Letia T. S., and Hulea M. (2011) Two server topologies for a distributed
fingerprint-based recognition system. In 15th Int. Conf. Syst. Theory, Control Com-
put., pp. 1–6.

[MMJP09] Maltoni D., Maio D., Jain A. K., and Prabhakar S. (2009) Handbook of fingerprint
recognition. Springer, New York.

[MRD13] Marcialis G. L., Roli F., and Didaci L. (2013) Multimodal fingerprint verification by
score-level fusion: An experimental investigation. J. Intell. Fuzzy Syst. 24: 51–60.

[NAKMM04] Nyongesa H. O., Al-Khayatt S., Mohamed S. M., and Mahmoud M. (2004) Fast
robust fingerprint feature extraction and classification. J. Intell. Robot. Syst. 40(1):
103–112.

[NH04] Nagaty K. A. and Hattab E. (2004) An approach to a fingerprints multi-agent parallel
matching system. In IEEE Int. Conf. Syst., Man Cybern., volumen 5, pp. 4750–4756.

[NM06] Nanni L. and Maio D. (2006) Combination of different fingerprint systems: A case
study FVC2004. Sens. Rev. 26(1): 51–57.

[NSV07] Noore A., Singh R., and Vatsa M. (2007) Robust memory-efficient data level infor-
mation fusion of multi-modal biometric images. Inf. Fusion 8(4): 337–346.

[PGT+15] Peralta D., Galar M., Triguero I., Paternain D., Garćıa S., Barrenechea E., Benitez
J. M., Bustince H., and Herrera F. (2015) A survey on fingerprint minutiae-based
local matching for verification and identification: Taxonomy and experimental eval-
uation. Inf. Sci. 315: 67–87.

[PJ02] Prabhakar S. and Jain A. K. (2002) Decision-level fusion in fingerprint verification.
Pattern Recognit. 35(4): 861–874.

[PPJ02] Pankanti S., Prabhakar S., and Jain A. K. (2002) On the individuality of fingerprints.
IEEE Trans. Pattern Anal. Mach. Intell. 24(8): 1010–1025.

[PTSR+14] Peralta D., Triguero I., Sanchez-Reillo R., Herrera F., and Benitez J. M. (feb 2014)
Fast Fingerprint Identification for Large Databases. Pattern Recognit. 47(2): 588–
602.

[RB04] Ratha N. and Bolle R. (2004) Automatic Fingerprint Recognition Systems. Springer,
New York.

[RBPV00] Ratha N., Bolle R., Pandit V., and Vaish V. (2000) Robust fingerprint authentication
using local structural similarity. In Proc. Fifth IEEE Work. Appl. Comput. Vis., pp.
29–34. IEEE Comput. Soc.

[RCJ95] Ratha N. K., Chen S., and Jain A. K. (1995) Adaptive flow orientation-based feature
extraction in fingerprint images. Pattern Recognit. 28(11): 1657–1672.

[RJ03] Ross A. A. and Jain A. K. (2003) Information fusion in biometrics. Pattern Recognit.
Lett. 24(13): 2115–2125.

[RKCJ96] Ratha N. K., Karu K., Chen S., and Jain A. K. (1996) A real-time matching system
for large fingerprint databases. IEEE Trans. Pattern Anal. Mach. Intell. 18(8): 799–
813.

BIBLIOGRAPHY 173

[RNJ06] Ross A. A., Nandakumar K., and Jain A. K. (2006) Handbook of multibiometrics,
volumen 6. Springer.

[Sen97] Senior A. (1997) A hidden Markov model fingerprint classifier. In Proc. 31st Asilomar
Conf. Signals, Syst. Comput., volumen 1, pp. 306–310. IEEE Comput. Soc, Pacific
Grove, CA.

[SR11] Shelly and Raghava N. S. (sep 2011) Iris recognition on Hadoop: A biometrics system
implementation on cloud computing. In 2011 IEEE Int. Conf. Cloud Comput. Intell.
Syst., pp. 482–485. IEEE.

[Sto92] Stone H. S. (1992) High-performance computer architecture. Addison-Wesley, Read-
ing, USA.

[uid] Unique Authentication Authority of India.

[WFH11] Witten I. H., Frank E., and Hall M. A. (2011) Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kauffman Series in Data Management Sys-
tems.

[WGT+10] Watson C. I., Garris M. D., Tabassi E., Wilson C. L., Mccabe R. M., Janet S., and
Ko K. (2010) User’s Guide to NIST Biometric Image Software (NBIS). Technical
report, NIST.

[Whi12] White T. (2012) Hadoop: The Definitive Guide. O’Reilly Media, Inc., 3rd edition.

[YA04] Yager N. and Amin A. (apr 2004) Fingerprint verification based on minutiae features:
a review. Pattern Anal. Appl. 7(1): 94–113.

