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Chapter I

PhD dissertation

1 Introduction

Personal identification has been an increasingly important issue in a wide variety of fields,
such as access control, criminology, forensics or automatic payment. In particular, in the last few
years the amount of people that must be identified has been hugely increased: the identification
requirements of big companies, law-enforcement departments or public administrations reach the
hundreds of millions of individuals [iaf, uid]. This problem has been dealt with in various manners,
some of the most popular of which are passwords and tokens. However, these solutions present
some problems: passwords can be forgotten, tokens can be lost, and both can be stolen with relative
easiness. Therefore, there has been a great interest in the scientific community to find a mean for
identification that is not based on what we know (like passwords) nor what we have (like tokens),
but rather on who we are [JFRO7].

Biometrics provide an answer to that question by using features that are intrinsic to each
person for the identification. The biometric features that can be used to identify individuals are
diverse, such as face, fingerprints, ear, palmprint, finger veins, DNA, iris, and many others [JFR07].
Among these, fingerprints are the most used ones due to their desirable properties [MMJP09]:

e Universality: everybody has fingerprints, except in rare cases of severe amputations.
e Uniqueness: every finger of every person in the planet has a unique fingerprint.
e Invariability: fingerprints do not change along a person’s life.

e Easiness of use: collecting fingerprint images is fast, cheap and non-invasive, especially with
the development of specific electronic devices for this purpose.

A fingerprint is essentially a pattern of ridges and valleys located on a fingertip. These ridges
and valleys form different types of patterns that can be used for their recognition. Although finger-
print patterns have been scientifically studied for more than a century [Hen00], manual comparison
is a tedious and time-consuming process. In this context, automatic fingerprint recognition aims
to speed up this process by registering the image of a fingerprint in a computer support, where the
matching between fingerprints can be carried out in a systematic and efficient way.

Although fingerprints can be compared directly at the image level, such approaches usually
do not yield good results due to the variances between different images of the same fingerprints,
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such as rotations, translations and deformations of the skin. Image level comparison is also time
consuming due to the high number of pixels of the image matrices. Therefore, the first step in the
fingerprint recognition process is feature extraction [MMJP09]. This process consists of obtaining
the relevant information of the image, so as to use it in further steps of the recognition. The
various types of features that can be extracted from fingeprints are usually grouped into three
levels: global (singular points, orientation maps and pseudoridges), local (minutiae) and detail
(pores and intra-ridge features).

Among these, minutiae are by far the most used features for fingerprint recogni-
tion [PGT*15]. Minutiae are the bifurcations and the endings of the fingerprint ridges. They
are easily described by their position and angle, and their number allows for efficient comparison
algorithms. Minutiae-based fingerprint matching algorithms compare two sets of minutiae to de-
termine whether they belong to the same fingerprint or not. The final output of the matching
function is a measure of the similarity between the two compared fingerprints, which is usually
either a binary truth-or-false value either a real-valued similarity score. Most of the current match-
ing algorithms in the specialized literature start by computing a set of local structures, usually
involving minutiae neighborhoods. Then, the local structures are compared with each other and a
final consolidation step is applied to obtain the final similarity score or matching decision. Some
matching methods involve complex computations and are very accurate, whilst others can compare
sets of minutiae very fast, with a slightly lower accuracy.

The fingerprint recognition problem can be addressed from two points of view, each of which
represents a different problem on its own [MMJP09]:

e Verification [JHB97] consists of comparing two fingerprint captures to determine whether
they were taken from the same finger or not. It is a 1:1 comparison problem that typically
involves a single application of a matching function.

e Identification [JHPB97] consists of exploring a database of template fingerprints to find
the match of an input fingerprint, that is, a 1:n comparison problem for a database of n
templates.

This thesis focuses on the identification problem. The general steps of an Automatic Fin-
gerprint Identification System (AFIS) are depicted in Figure 1. First, the fingerprints of all the
users that are to be identified are captured in a process called enrollment, to build the template
fingerprint database. Then, when a new input fingerprint has to be identified, it is compared with
each template fingerprint and the best match is returned. The main requirements of an AFIS can
be synthesized into the following:

e Accuracy: the error rate of the identification. It should be as low as possible, to avoid both
false positives (accepted impostors) and false negatives (rejected genuine users).

e Efficiency: the time needed to locate a fingerprint in the database. It should be kept as small
as possible. Many real applications of fingerprint identification involve real-time constraints,
so that a late response of the system is equivalent to a system failure. Very often, this time
threshold is in the order of a few seconds.

e Scalability: the current needs of large-scale identification systems involve the possibility that
template databases are likely to grow in all contexts. Therefore, an AFIS must be able to
efficiently cope with such increased sizes, for instance by an adequate increase of the hardware
resources.
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e Flexibility: the system should be able to cope with any database size, any fingerprint
characteristics (such as low-quality images or rolled prints), any performance requirement
and any hardware configuration.

Input fingerprint|

Feature
extraction
Identification

Identity

Template
database

Figure 1: Workflow of an AFIS

It is immediate to deduce that identification is intrinsically more difficult than verification,
as it can be approached as a succession of n verification steps. In fact, this is the approach followed
by many AFIS [MMJPO09]: the input fingerprint is compared to each fingerprint in the database,
and the identity that yields the highest matching score is returned. Most approaches also apply a
certain threshold on the response, to take into account the possibility that the input fingerprint is
actually not in the database. The difficulty of identification with respect to verification is twofold:

e High identification time: a basic identification system takes at least n times longer than
the underlying verification algorithm to identify a given fingerprint.

e Accuracy loss: an identification system not only has to find the single correct match for
the input fingerprint among all database templates; it must also ensure that non-matching
templates will not be detected as genuine matches. As the number of non-matching templates
is at least n — 1, the probability of a false matching is usually not negligible.

By definition, these difficulties increase along with the value of n. Therefore, a direct brute-
force approach for an AFIS that must identify within a database of more than a few thousands
of people is not possible [PTSR*14]. From the identification time point of view, most of these
systems have real time constraints; for instance, the identification to access a building should not
take much more than one second. From the accuracy point of view, a large value of n implies
a large number of non-matching templates in the database, with the consequent increase of the
probability of a wrong identification. As current society necessities for identification are reaching
the order of hundreds of millions of people [iaf, uid], there is a strong need of scalable, accurate
solutions that can adequately deal with this problem.

High Performance Computing (HPC) is one of the tools that support the modern Science,
as it enables the computation of multiple calculations in a reasonable time by means of massive
computational resources [Sto92]. The scientific literature thrives with successful applications of
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HPC systems to real problems, and most big companies and public institutions implement their
own HPC infrastructures to process their data. As such, HPC is a promising tool for the problem
of fingerprint identification in large databases.

In this context, one of the hot research topics during the last few years has been big data,
which can be defined is as the amount of data that cannot be processed within a single machine.
Big data poses an interesting challenge in many fields, but also offers an opportunity to extract
better and more valuable knowledge. So far, big data techniques have been successfully applied to
various problems [FARL"14]. Several HPC-based frameworks have been developed to help with this
task; two of the most popular ones are Apache Hadoop [Whil2] (which implements the MapReduce
paradigm) and Apache Spark [KKWZ15].

However, a problem of this scale cannot be solved by HPC alone. It is necessary to delve
deeper into the fingerprint identification problem to find new ways to tackle very large scale identi-
fication more efficiently. In this context, Data Mining consists of evaluating sets of data to extract
new knowledge from them, usually by detecting patterns that were previously unknown [WFH11].
Such knowledge can be used to design an implement new ways of approaching problems related
with that kind of data.

Preprocessing is one of the key components of any process involving data mining, as it is
necessary to obtain all the benefits from the data mining techniques [GLH15]. In the context of
fingerprint identification, preprocessing techniques can be applied in several manners to enhance the
accuracy and the runtime of the identification itself, for instance to enhance the features extracted
from the fingerprints or to gather information to improve the identification process.

One of the most extended ways to improve the identification time of an AFIS is the use of
classification techniques [DHS12]. Fingerprints can be divided into five classes according to the
visual pattern of their ridges [Hen00]. If the class of an input fingerprint is correctly determined,
then it is possible to perform the identification by comparing it only with the template fingerprints
belonging to the same class [MMJP09]. The number of comparisons with template fingerprints
with respect to the database size is called penetration rate and its reduction can be key in the
performance of identification system. However, the misclassification of a fingerprint can lead to
identification errors; therefore, it is crucial to reduce the classification error as much as possible.

Information fusion is a paradigm used in many disciplines to improve the overall precision
of a given process, including biometrics [RJ03]. Biometric problems are intrinsically adapted to
information fusion approaches; the fusion of information can be performed at many levels [LN17]:
data level, feature level, score level or decision level. In particular, fusion approaches in fingerprint
identification are usually grouped into two categories: using several fingerprint images [JFR07] and
using several matching algorithms [JPC99]. Information fusion has been steadily used to increase
the accuracy of fingerprint and other biometric recognition systems. However, it affects negatively
the runtime, as more computation has to be performed to obtain redundant information. In this
context, it would be desirable to use information fusion from a different point of view to tackle
both the accuracy and the runtime problems.

This thesis starts by presenting a deep study of the scientific literature on minutiae-based
local matching matching techniques, establishing a taxonomy of the available local structures and
consolidation methods, and highlighting the main advantages and drawbacks of each of them.
Then, we will present a minutiae filtering algorithm that removes spurious or misleading minutiae to
improve both the identification time and the accuracy of the recognition process. After that, we will
describe two frameworks for massively parallel fingerprint identification, which are able to execute
different matching algorithms adapting to the underlying hardware for maximum performance and
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full scalability. We will also develop a framework to combine the information of two fingerprints
and the capabilities of two different matching algorithms to address both problems that hinder
identification in large databases: the high identification time and the loss of accuracy. Finally, we
describe a new classification strategy to reduce the penetration rate of the identification. Finally

After this introduction section, Section 2 describes in detail the background of the main areas
addressed in this thesis: fingerprint feature extraction (Section 2.1), fingerprint identification (Sec-
tion 2.2), high performance computing (Section 2.3), database penetration reduction and fingerprint
classification (Section 2.4) and information fusion for fingerprint identification (Section 2.5).

After that, Section 3 presents the justification of this memory, describing the open problems
addressed throughout this thesis. The objectives pursued to address these problems are detailed
in Section 4, along with the methodology followed along the thesis in Section 5. Section 6 summa-
rizes the works that compose this memory, while Section 7 presents the results obtained in them,
performing an analysis in relation with the tackled objectives and how they have been reached.
Section 8 presents the conclusions after the work carried out for this thesis. Finally, in Section 9
we point out several future lines of work that have been derived from the results achieved.
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Introduccién

La identificacion de personas ha sido un problema de importancia creciente en una amplia variedad
de campos, como el control de acceso, la criminologia, el analisis forense o el pago automatico.
En particular, durante los tdltimos anos la cantidad de personas que deben ser identificadas ha
aumentado enormemente: los requisitos de identificacién de grandes empresas, fuerzas de seguridad
o administraciones publicas alcanzan tamanos de los cientos de millones de individuos [iaf, uid].
Este problema se ha intentado resolver de diversas formas; algunas de las mas populares son las
contrasenas y los objetos (como llaves o tarjetas de identificacién). Sin embargo, estas soluciones
presentan algunos problemas: las contrasenias pueden ser olvidadas, los objetos se pueden perder, y
ambos pueden ser robados con relativa facilidad. Por lo tanto, ha habido un gran interés en la co-
munidad cientifica por encontrar un medio para la identificacién que no esté basado en qué sabemos
(como las contrasenas) ni en qué tenemos (como los objetos) sino més bien en quién somos [JFROT].

La Biometria proporciona una respuesta a esta pregunta utilizando caracteristicas intrinsecas
a cada persona para la identificacion. Las caracteristicas biométricas que se pueden utilizar para
identificar individuos son diversas, como el rostro, huellas y venas dactilares, oreja, palma de la
mano, ADN; iris, y muchas otras [JFRO7]. Entre ellas, las huellas dactilares son las més utilizadas
debido a sus propiedades [MMJP09]:

e Universalidad: todo el mundo tiene huellas, excepto en casos raros de amputaciones graves.
e Unicidad: cada dedo de cada persona en el planeta tiene una huella tnica.
e Invariabilidad: las huellas no cambian a lo largo de la vida de una persona.

e Facilidad de uso: la recoleccion de huellas es rapida, econdmica y no invasiva, especialmente
tras el desarrollo de dispositivos electrénicos especificos para este propésito.

Una huella dactilar es en esencia un patrén de crestas y valles situado en la yema de un dedo.
Estas crestas y valles forman distintos tipos de patrones que se pueden utilizar para el reconoci-
miento de las huellas. Aunque se han estudiado cientificamente durante mas de un siglo [Hen00], la
comparacién manual es un proceso largo y tedioso. En este contexto, el reconocimiento automatico
de huellas busca acelerar este proceso registrando la imagen de la huella en un soporte compu-
tacional, donde el emparejamiento entre huellas se pueda llevar a cabo de forma sistematica y
eficiente.

Aunque las huellas se pueden comparar directamente a nivel de imagen, habitualmente este
enfoque no proporciona buenos resultados debido a la variabilidad existente entre distintas imagenes
de la misma huella, como rotaciones, traslaciones y deformaciones de la piel. La comparacién
de imagenes también es computacionalmente costosa debido al elevado nimero de pixeles de sus
matrices. Por tanto, el primer paso en el proceso de reconocimiento de huellas es la extraccién de
caracteristicas [MMJP09]. Este proceso consiste en obtener informacién relevante a partir de la
imagen para utilizarla en pasos posteriores del reconocimiento. Los diversos tipos de caracteristicas
que se pueden extraer de las huellas se suelen agrupar en tres niveles: global (puntos singulares,
mapas de orientacién y pseudocrestas), local (minucias) y detalle (poros y caracteristicas intra-
cresta).

Entre ellas, las minucias son con diferencia la caracteristica més utilizada para el reconoci-
miento de huellas dactilares [PGT'15]. Las minucias son las bifurcaciones y finales de las crestas
de la huella. Se describen facilmente mediante su posicién y angulo, y su ntimero permite el disefio
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de algoritmos de comparacién eficientes. Los algoritmos de emparejamiento (o matching) basados
en minucias comparan dos conjuntos de minucias para determinar si pertenecen a la misma huella
o no. La salida final de la funcién de matching es una medida de la similitud entre las dos huellas
comparadas, la cual suele ser o bien un valor binario (verdadero o falso) o un score de similitud de
valor real. La mayor parte de los algoritmos de matching en la literatura especializada empiezan
calculando un conjunto de estructuras locales, que habitualmente se basan en los vecindarios de las
minucias. A continuacion, las estructuras locales se comparan entre ellas y se aplica un paso final
de consolidacién para obtener el score de similitud final. Algunos métodos de matching utilizan
calculos complejos y son muy precisos, mientras que otros pueden comparar conjuntos de minucias
de forma muy répida, con una precisién algo menor.

El problema del reconocimiento de huellas dactilares se puede abordar desde dos puntos de
vista, cada uno de los cuales representa un problema diferente [MMJP09]:

e Verificacién [JHB97]: consiste en comparar dos capturas de huellas para determinar si fueron
tomadas del mismo dedo o no. Es una comparacién 1:1 que implica tipicamente una tinica
aplicacién de una funcion de matching.

e Identificacién [JHPBO7]: consiste en explorar una base de datos de huellas para encontrar
la pareja de una huella de entrada, es decir, es un problema de comparacién 1:n para una
base de datos de n huellas (denominadas template).

Huella de entrada

Base de datos
de templates

Extraccion
de
caracteristicas

Identificacién

Identidad

Figura 2: Pasos generales de un sistema de identificacién automatico

Esta tesis se centra en el problema de la identificaciéon. Los pasos generales de un sistema
automatico de identificacién de huellas (Automatic Fingerprint Identification System, AFIS) se
muestran en la Figura 2. Primero, las huellas de todos los usuarios que se deban identificar son
capturadas en un proceso de registro, para construir la base de datos de huellas template. Luego,
cuando una nueva huella debe identificarse, se compara con cada una de las huellas template y se
devuelve el mejor emparejamiento. Los principales requisitos de un AFIS se pueden sintetizar en
los siguientes:

e Precision: la tasa de error de la identificacion. Debe ser lo méas baja posible, para evitar tanto
falsos positivos (impostores aceptados) como falsos negativos (usuarios genuinos rechazados).
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e Eficiencia: el tiempo requerido para localizar una huella en la base de datos. Debe mantenerse
lo més pequenio posible. Muchas aplicaciones reales de la identificacién con huellas implican
restricciones de tiempo real, de forma que un resultado tardio equivale a un fallo del sistema.
Muy a menudo, este umbral de tiempo estd en el orden de unos pocos segundos.

e Escalabilidad: las necesidades actuales de los sistemas de identificacién a gran escala impli-
can una alta probabilidad de que las bases de datos de huellas crezcan en todos los ambitos.
Por lo tanto, un AFIS debe ser capaz de trabajar de forma eficiente con bases de datos de
tamano creciente, por ejemplo mediante un incremento adecuado de los recursos computacio-
nales.

e Flexibilidad: el sistema debe ser capaz de enfrentarse a bases de datos de cualquier tamaio,
huellas con cualquier tipo de propiedades (como imagenes de baja calidad o impresiones
rodadas), cualquier requisito de rendimiento y cualquier configuracién hardware.

Es inmediato deducir que la identificacién es intrinsecamente m&s compleja que la verifi-
cacién, dado que se puede ver como una sucesion de n pasos de verificacién. De hecho, éste es el
enfoque seguido por muchos AFIS [MMJPO09]: la huella de entrada se compara con cada una de
las huellas en la base de datos, y se devuelve la identidad que proporciona el score de matching
mas alto. La mayor parte de este tipo de soluciones también aplican un cierto umbral sobre la
respuesta, para tener en cuenta la posibilidad de que la huella de entrada no esté en la base de
datos. La dificultad de la identificaciéon con respecto a la verificacién es doble:

e Elevado tiempo de identificacion: un sistema de identificacién basico tarda n veces mas
en identificar una huella que el algoritmo de verificacién subyacente.

e Pérdida de precision: un sistema de identificacién no solamente debe encontrar el Unico
emparejamiento correcto para la huella de entrada entre todas las huellas de la base de datos;
también debe asegurar que las huellas no emparejadas no se detectaran como parejas genuinas.
Al ser el numero de templates no emparejados al menos n — 1, la probabilidad de un falso
emparejamiento habitualmente no es despreciable.

Por definicién, estas dificultades se incrementan junto con el valor de n. Por lo tanto, no
es factible un enfoque directo por fuerza bruta para un AFIS que debe identificar en una base
de datos de mds de unos pocos miles de huellas [PTSR*14]. Desde el punto de vista del tiempo
de identificacion, la mayoria de esos sistemas tiene restricciones de tiempo real; por ejemplo, la
identificacion para acceder a un edificio no deberfa tardar mucho mas de un segundo. Desde el
punto de vista de la precisién, un valor alto de n implica una gran cantidad de templates en la base
de datos que no emparejan con la huella de entrada, con el consiguiente aumento de la probabilidad
de una identificacién errénea. Las necesidades de identificacién actuales de la sociedad alcanzan
el orden de los cientos de millones de personas [iaf, uid], por lo que hay una fuerte necesidad de
soluciones precisas y escalables que resuelvan este problema de forma adecuada.

La computacién de altas prestaciones (High Performance Computing, HPC) es una de las
herramientas que dan soporte a la Ciencia moderna, al posibilitar el computo de multiples calculos
en un tiempo razonable mediante el uso de recursos computacionales masivos [Sto92]. La literatura
cientifica presenta multiples aplicaciones exitosas de sistemas HPC sobre problemas reales, y la
mayor parte de grandes empresas e instituciones publicas implementan sus propias infraestructuras
HPC para procesar sus datos. Por tanto, la HPC es una herramienta prometedora para el problema
de identificacién de huellas dactilares en grandes bases de datos.
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En este contexto, una de las lineas de investigacién de mas alta actividad en los tltimos anos
es el big data, que se puede definir como la cantidad de datos que no se puede procesar con una
Unica maquina. El big data crea un desafio interesante en muchos campos, pero también ofrece una
oportunidad para extraer conocimiento de mayor calidad y valor. Hasta el momento, las técnicas
big data se han aplicado con éxito sobre varios problemas [FARL'14]. Varias plataformas basadas
en HPC han sido desarrolladas para dar soporte a esta tarea; dos de las més populares son Apache
Hadoop [Whil2] (que implementa el paradigma MapReduce) y Apache Spark [KKWZ15].

No obstante, un problema de esta escala no se puede solucionar mediante HPC por si sola.
Es necesario ahondar mas en el problema de la identificacién con huellas para encontrar nuevas
vias de abordar de forma eficiente la identificacién a muy gran escala. En este contexto, la mineria
de datos consiste en evaluar conjuntos de datos para extraer nuevo conocimiento a partir de ellos,
por lo habitual mediante la deteccién de patriones que eran previamente desconocidos [WFH11].
Este conocimiento se puede usar para disenar e implementar nuevas formas de abordar problemas
relacionados con el tipo de datos analizado.

El preprocesamiento es uno de los componentes clave de cualquier proceso que implique mi-
neria de datos, puesto que es necesario para obtener todos los beneficios de tales técnicas [GLH15].
En el contexto de la identificacién con huellas dactilares, las técnicas de preprocesamiento se pueden
aplicar de varias maneras para mejorar la precisién y el tiempo de la identificacion, por ejemplo me-
jorando las caracteristicas extraidas de las huellas o recogiendo informacién que permita optimizar
el proceso de identificacion.

Una de las maneras mas extendidas de mejorar el tiempo de identificacién de un AFIS
es el uso de técnicas de clasificacién [DHS12]. Las huellas se pueden dividir en cinco clases en
funcién del patrén visual de sus crestas [Hen00]. Si la clase de una huella de entrada se determina
correctamente, es posible realizar la identificacién comparandola solamente con las huellas template
pertenecientes a la misma clase [MMJP09]. El ntimero de comparaciones con huellas template con
respecto al tamano de la base de datos se llama tasa de penetracion, y su reduccién puede ser
clave en el rendimiento de un sistema de identificacién. Sin embargo, una clasificacion errénea de
una huella puede conllevar errores de identificacién; por consiguiente es crucial reducir el error de
clasificacién tanto como sea posible.

La fusién de informacién es un paradigma utilizado en muchas disciplinas para mejorar
la precisién global de un determinado proceso, incluyendo la biometria [RJ03]. Los problemas
biométricos estan intrinsecamente adaptados a los enfoques de fusién de informacién, dado que
ésta puede aplicarse en varios niveles [LN17]: datos, caracteristicas, score o decisién. En particular,
las técnicas de fusién en identificacién de huellas se suelen agrupar en dos categorias: el uso de
varias imagenes de huellas [JFRO7] y el uso de varios algoritmos de matching [JPC99]. La fusién de
informacién se ha utilizado con regularidad para aumentar la precisién de los sistemas de identifi-
cacién con huellas y otras caracteristicas biométricas. Sin embargo, afecta negativamente al tiempo
de ejecucién, puesto que la obtencién de informacién redundante requiere de un cémputo mayor.
En este contexto, es deseable utilizar la fusién de informacion desde un punto de vista diferente
para abordar conjuntamente los problemas de precisién y tiempo de ejecucion.

Esta tesis empieza presentando un profundo estudio de la literatura cientifica sobre técnicas
de matching locales basadas en minucias, estableciendo una taxonomia de los tipos de estructu-
ras locales y métodos de consolidacion, y senalando las principales ventajas e inconvenientes de
cada uno de ellos. A continuacion, se presenta un algoritmo de filtrado de minucias que elimina
minucias espurias o engafiosas para mejorar tanto el tiempo de identificacion como la precisién del
proceso de reconocimiento. Después, se describen dos plataformas para identificacién de huellas
en arquitecturas masivamente paralelas, que son capaces de ejecutar diferentes algoritmos de mat-
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ching adaptandose al hardware subyacente para un rendimiento méaximo y escalabilidad completa.
También se desarrolla una plataforma para combinar la informacién de dos huellas dactilares y
las capacidades de dos algoritmos de matching diferentes, para abordar de forma conjunta los dos
problemas que dificultan la identificacion en grandes bases de datos: el elevado tiempo de identifi-
cacion y la pérdida de precision. Finalmente, se describe una nueva estrategia de clasificacién para
reducir la tasa de penetracién de la bisqueda.

Tras esta seccion introductoria, la Seccion 2 describe en detalle las areas principales a las
que hace referencia esta tesis: extraccién de caracteristicas de las huellas dactilares (Seccién 2.1),
identificacion de huellas (Seccién 2.2), computacién de altas prestaciones (Seccién 2.3), reduccion
de la penetracién en la base de datos y clasificacién de huellas (Seccién 2.4) y fusién de informacién
para identificaciéon con huellas (Seccién 2.5).

Posteriormente, la Seccién 3 presenta la justificacién de esta memoria, describiendo los pro-
blemas abiertos abordados a lo largo de esta tesis. Los objetivos perseguidos en la bisqueda de la
solucion a estos problemas se detallan en la Seccién 4, junto con la metodologia seguida para el
desarrollo de la tesis en la Seccién 5. La Seccién 6 resume los trabajos que componen esta memoria,
y la Seccién 7 presenta los resultados obtenidos en ellos, realizando un anélisis en relacién con
los objetivos considerados y como se han alcanzado. La Secciéon 8 presenta las conclusiones tras
el trabajo llevado a cabo para esta tesis. Finalmente, en la Seccién 9 se destacan varias lineas de
trabajo futuro que se derivan de los resultados conseguidos.
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2 Preliminaries

This section points out the preliminary background on the topics addressed by this thesis. First,
Section 2.1 explains the features extracted from fingerprints. Section 2.2 details the main char-
acteristics of the fingerprint identification process. Section 2.3 presents some knowledge on high
performance computing and its previous applications on fingerprint identification. Then, Section 2.4
explains the highlights on database penetration reduction and fingerprint classification. Finally,
the use of information fusion for fingerprint identification is detailed in Section 2.5.

2.1 Feature extraction

Most fingerprint recognition approaches in the literature do not work with the images themselves.
Rather, a set of features is first extracted from the image [MMJP09] to describe useful patterns;
then, these features are used for the different operations that can be performed on fingerprints,
such as verification, identification or classification.

There are various types of features that can be extracted from fingerprints. These features
are usually grouped into three categories, ranging from coarse to fine-grain patterns [MMJPO09]:

e Level 1 (global): refers to the global ridge line flow. The most used features in this category
are the following:

— Orientation map: a matrix containing the direction of the ridge line flow for each
block of the fingerprint image.

— Singular points: points around which the ridge lines are structured. There are two
main types of singular points: deltas and cores.

e Level 2 (local): considers minutiae details extracted from the ridge skeleton. Although
there are multiple types of minutiae, most works use the two most easily extracted ones:
ridge endings and bifurcations.

e Level 3 (fine-detail): involves intra-ridge details such as width, shape, ridge contours, sweat
pores and creases.

Each of these different types of features is better suited to a different purpose. On the
one hand, the distinctiveness of level 1 features is not enough to perform an accurate verification;
however, they are suited to carry out a classification process [GDP*15b]. On the other hand,
the distinctiveness properties and average number of minutiae make them the best candidate for
verification and identification [CFM10]. Finally, level 3 features are mainly used in combination
with minutiae to improve the accuracy of the recognition [JCDO07].

There are many proposals for feature extraction in the literature. Each type of fea-
ture requires a different approach for its extraction [GDPT15b]. For instance, most orienta-
tion map extractors are based on the gradient of the image [JPC99, LiulO] or the slits sum
method [CGWT95, CLMM99]. Singular point detection often uses the Poincaré method [KJ96]
or complex filters [Liul0]. Finally, minutiae extractors can be categorized into one the follow-
ing [MMJPO09]:

e Binarization-based methods: are the largest group. They require a binary fingerprint
image. The image passes through a thinning process that reduces the ridge width to a single
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pixel, to produce a skeleton image. Then, the minutiae can be easily extracted with a scan
of the image. Some methods are explained in [RCJ95, WGT'10].

e Direct gray-scale extraction: some methods do not apply binarization or thinning meth-
ods to the image. Instead, the detection is carried out directly from the gray-scale pixel
map [LHC00, CFO01].

2.2 Fingerprint identification

Fingerprint identification consists of exploring a template fingerprint database, looking for the mate
of a given input fingerprint. Therefore, the identification typically involves comparing the input
fingerprint to each template in order to select the most likely match. In general, fingerprints are
not directly compared at the image level due to the large intra-class variance of the images (caused
by factors such as translations, rotations and skin deformation). Therefore, in this section we will
focus on minutiae-based matching, which is the most extended approach [PPJ02]. Instead, a set
of minutiae is extracted from each fingerprint, constituting the basic information for a comparison
algorithm.

A template fingerprint 7' and an input fingerprint I (or rather, their respective minutiae
sets) are compared in a process called matching, which returns a similarity value g. The matching
is a function @ that maps pairs of fingerprints to the similarity domain, so that Q(I,T) = ¢. In
verification approaches the value ¢ is usually boolean, indicating if the two compared fingerprints
are the same or not. Identification approaches are more often based on numeric scores that rate
the similarity level of the compared fingerprints.

Minutiae-based fingerprint matching can be carried out at two different levels [MMJP09]:

e Global matching: the entire minutiae sets are directly compared. This type of matching is
more sensitive to image distortions, rotations and translations, although it takes advantage
from a global view of the fingerprints. Some proposals are presented in [RKCJ96, CCHW97].

e Local matching: local structures are computed from the minutiae set, usually involving the
immediate neighborhood of each minutiae. This neighborhood can be computed either as the
nearest neighbors [JY00] or using a fixed radius [RBPV00, CTY06, CFM10]. Then, these
local structures are compared among themselves to compute the matching score. Thanks
to the use of local information, local matching algorithms are intended to be invariant to
rotations and translations, and more robust to skin deformations.

In practice, most modern matching algorithms follow a hybrid approach: a local matching
process is used to find the most similar local structures and extract a common alignment for both
fingerprints; then, a global matching procedure (called in this context consolidation) is applied to
obtain the final matching score.

In an identification system the matching process has to be applied once for each template T;
in the database. In such a context, the identity returned by the identification system follows this
form:

Identity = argmax Q(I,T;) i€ {1,2,...,n} (I.1)
%

Identification implies a heavy computational effort, especially as the size of the database
n grows. Some proposals have arisen in the last few years to palliate this problem, such as the
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use of high performance computing (Section 2.3) or the reduction of the database penetration rate
(Section 2.4).

There are several measures that quantify the goodness of verification and identification
approaches. Some of the most used measures throughout the literature are the following:

e Measures for verification:

— False Match Rate (FMR): probability of stating that two different fingerprints are
the same.

— False Non-Match Rate (FNMR): probability of denying the equality of two captures
of the same fingerprint.

— Equal Error Rate (ERR): point at which the FMR and FNMR are equal.
— FMR100: lowest achievable FNMR for a FMR < 1%.

— ROC: curve that plots the Genuine Matching Rate (GMR = 1 — FNMR) versus the
FMR.

e Measures for identification:

— True Positive Rate (TPR): percentage of test fingerprints that are correctly identified
in the database, when only the best matching identity is returned.

— R100: lowest rank (i.e. the number of identities returned from the database) that allows
an error lower than 1%.

— Cumulative Match Curve (CMC): curve that represents the error associated to each
rank.

These measures allow to compare objectively different matching algorithms and identification
systems, as they give information on different aspects of their behavior.

2.3 High Performance Computing (HPC)

HPC systems are widely used for distributed and parallel computing in many fields of Science and
industry. Their use is oriented at obtaining diverse advantages [Sto92]:

e Efficiency: the computation can be carried out in parallel so that the results are obtained
faster.

e Robustness: the processing workload is spread among different computers, allowing the
system to be fault tolerant. If one machine fails, the others can assume its work.

e Scalability: nowadays, the hardware industry evolves towards integrating a higher number
of cores and collaborating processors. Thus, an adequately designed algorithm that is able
to solve bigger problems just by using more computing power could solve arbitrarily big
problems in the future, without being modified.

Hardware has evolved in two main ways to support HPC, both of which are focused on
increasing and exploiting the parallelism. On the one hand, several computers can be integrated
with a high-throughput network to conform a cluster. This approach provides a great flexibility
when the computing capacity has to be increased, as this can be done merely by purchasing more
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machines. However, the performance can become limited by the network speed. On the other hand,
each single processor is composed nowadays by an ever growing number of cores that are able to
handle several execution threads in parallel. These threads can communicate very efficiently using
shared memory or internal mechanisms. The limitation of this approach is that the number of
cores within a processor is limited and cannot be changed over time. Most practical deployments
nowadays implement a hybrid approach: clusters of multicore computers. Such clusters are able to
take advantage of the strengths of both approaches.

Similarly, several lines of software aim to support the development of applications for HPC
infrastructures. In multi-computer environments, tools like the Message Passing Interface (MPI)
provide the means of communicating several machines using the intermediary network. Within a
single multi-core machine, libraries that handle parallel or concurrent threads (such as OpenMP or
POSIX threads) offer an optimal performance.

There are several performance measures for parallel systems. The most widely used is the
speedup (S = ts/t,), which measures the ratio between the execution time of a sequential approach
and that of the parallelized implementation. If a calculation is executed in p processing cores, and
a fraction f of it is performed in parallel, Amdahl’s Law [Amd67] provides the maximum attainable
speedup:

. 1
S* = Tl (L2)

According to the equation, a fully parallelizable (f = 1) algorithm would have a maximum
speedup of p. However, in practice there are several factors that hinder this speedup:

= I~

e All algorithms include some non-parallelizable computation, so f < 1. Even if it represents a
small amount with respect to the whole runtime, the impact on the maximum speedup can
be important, as shown in Equation 1.3, which shows the maximum speedup with an infinite
number of processors:

1 1
lim

e The parallel version of a sequential algorithm usually introduces more operations, such as
communication and synchronizations, to organize the workload and ensure correct results.

e In many cases, such communication and synchronization times can become the bottleneck of
the parallel approach, especially for high values of p.

The scientific literature presents some examples of applications of HPC infrastructures to
the fingerprint identification problem [ISA11, DGLN11]. These approaches can be grouped into
two main categories: client-server systems, where the server forwards identification requests to the
clients, which explore the database [HALT08, MLH11]; and agent-based systems, where each agent
performs some processing task and then shares the results with other agents [NH04, BGMBOS].

In recent years, a number of HPC frameworks for big data processing have been developed.
Such frameworks provide several characteristics that can be summarized into high availability,
fault-tolerance, distributed data storage, massive parallelization and high data throughput. This
allows to develop specific applications following certain programming paradigms, such as MapRe-
duce [DGO8]. In exchange, they introduce a certain overhead in processing and communication
times. Such frameworks have been successfully applied to various problems in several fields, in-
cluding biometric recognition [SR11, KS13].
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2.4 Database penetration reduction and fingerprint classification

Despite the enormous power of modern HPC infrastructures, the acquisition and deployment costs
required for very large-scale databases can become high. Therefore, other solutions must be found
to tackle the problem. One of them consists of reducing the number of template fingerprints that
are compared with the input. The percentage of database that is explored is called penetration
rate [RB04].

In this context, there are two main families of methods that attempt to reduce the database
penetration rate [MMJP09]. Indexing algorithms [Capl1] perform a mapping of the fingerprints to
a multi-dimensional space, so that different captures of the same fingerprint should be close to each
other in the target space. Classification algorithms [GDP*15b] split the database into a certain
number of disjoint classes, so that the input fingerprint is only compared with those fingerprints
that belong to its same class. In this thesis, we focus on the classification approach to the problem.

In a machine learning context, classification [DHS12] consists of extracting knowledge from
a set of n input examples x1, ..., z,, each of which is labeled with one of m classes y; € {c1,...,cn}
and characterized by p features ai,...,a,. The aim of a classifier is to be able to correctly predict
the class of a new unseen example. In fingerprint classification, the most widely used system is the
five-class model defined by Henry [Hen00] (Figure 3).

(a) Arch (b) Left loop  (c) Right loop (d) Tented arch (e) Whorl

Figure 3: Cinco fingerprint classes defined by Henry [Hen00]

From this point of view, each fingerprint corresponds to a single example, represented by
a feature vector. In fingerprint classification, unlike what occurs typically in machine learning,
the construction of such feature vectors is often considered to be included into the classification
process, so that the classification refers to the problem as a whole. Therefore, many proposals in
the literature cope both the feature extraction process and the classifier itself working on top of
the proposed features.

The features used for fingerprint classification are usually based on level 1 features, such
as orientation maps [CLMM99], ridge structure [Sen97] and singular points [NAKMMO04]. Other
approaches are also based on the application of filters to the fingerprint image; Gabor filters are
one of the most popular for this purpose [JPC99]. Finally, many authors combine several of the
previously mentioned features to maximize the accuracy yielded by the classifier [HMCCO08, Liul0].

A review of the most prominent feature extraction and classification methods in the scientific
literature was carried out in [GDPT15b, GDP™15a], describing a taxonomy of the various types of
features and classification approaches, and featuring an extensive experimental study. The knowl-
edge gathered in this review has been used as starting point for the new proposals for fingerprint
classification presented in this thesis.
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2.5 Information fusion for fingerprint identification

Information fusion can be applied to the fingerprint recognition problem in several ways and at
multiple levels. For instance, the use of different types of features or the inclusion of classification
strategies already represents a type of information fusion [LN17]. When we focus on the specific
minutiae-based fingerprint identification problem, information fusion can be carried out in two
main ways.

On the one hand, several fingers [JFR07] can be used altogether to increase the distinc-
tiveness of the identities and to avoid the difficulties posed by injured fingertips or low qual-
ity scans. A matching function for multiple (k) fingerprints follows the form Q(Z,7;) where
I={I|je{l,...k}t}and T, ={T;; | j € {1,....k}}.

On the other hand, several matching algorithms can be combined [JPC99, NMO06] to profit
from their advantages while leaving aside their weaknesses. Multi-algorithm techniques work
in a similar way as multi-finger ones, so that the fused score for k algorithms is Q(I,T;) =
F(Q1(I,T;),...,Qk(I,T;)), where F is an aggregation function and each @; is a different matching
function.

A third category of approaches uses several captures of each fingerprint, but it has already
been proven that the multi-finger approach is more effective due to the use of less correlated
information [MMJP09].

Multi-finger and multi-algorithm approaches can be categorized together according to the
type of fusion they perform:

e Feature fusion [JS02, NSVO07]: merges all k fingerprints of an identity into a single structure.
This structure is compared to all n template structures, avoiding the need of performing &
matchings per identity but requiring specific matching algorithms to handle such structures
as well as an additional conversion step.

e Score fusion [JPC99, MRD13]: performs one application of the matching function for each
fingerprint or algorithm, and aggregates the results into a single score, typically by adding
or multiplying them. It does not need a specific matching algorithm; however, the use of k
fingerprints or k matchings multiplies the identification time by k.

e Decision fusion [RKCJ96, PJ02]: can be seen as a special case of score fusion, where
matching is performed hierarchically. When the k input fingerprints are compared with some
k template fingerprints for a given identity, the first pair is compared first. If the resulting
score meets a certain condition, the second pair is compared, and so on, until a decision is
reached.

Most fusion approaches in the literature attempt to improve the matching accuracy and they
have already proven to yield good results; nevertheless, the runtime is not considered. Such methods
are therefore not suitable to tackle the identification in large databases because the required time
is higher than it is for single-fingerprint or single-matcher approaches.
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3 Justification

As explained in the previous sections, there is a need of efficient, scalable automatic fingerprint
identification systems that are able to carry out identifications in very large databases. Various tools
and techniques, such as preprocessing, HPC, classification or the combination of several fingerprints
and matchers have the potential of improving the identification process to obtain both faster and
more accurate solutions.

To obtain such an identification system, the following issues should be addressed:

e In the last decades, a large number of fingerprint matching algorithms have been proposed.
All these approaches should be revised and systematically analyzed, to allow the study of
their common structures, so as to determine their strengths and weaknesses. Specifically,
approaches combining a local matching process with a global consolidation phase have proven
to offer a good performance within a reasonable computing time.

e Spurious minutiae are one of the problems that hinder the performance of any matching
algorithm. A correct handling of this issue would allow to obtain more accurate fingerprint
identification systems. Additionally, the removal of spurious minutiae has a positive impact
on the identification time, reducing the computational needs for each matching operation.

e When dealing with large fingerprint databases, the matching time becomes a very important
bottleneck for any identification system. Furthermore, the identification accuracy is degraded
as the size of the database grows. It is necessary to tackle both problems with suitable tools,
such as:

— Parallelization techniques to use the computing power of HPC infrastructures, so as to
eliminate that bottleneck in a scalable manner. The new frameworks for big data could
also provide an interesting support for very large scale proposals.

— Multi-finger and multi-matcher approaches that have already been proven to enhance the
accuracy of verification and identification systems. However, there has been no attempt
to use such ideas to also improve the identification time along with the accuracy. In
combination with an adequate HPC infrastructure and implementation, a multi-finger
and multi-matcher solution could be decisive in obtaining an accurate, fully scalable
fingerprint identification system.

e Finally, tackling the penetration rate of the identification search would allow for a better
performance of the identification system. There are multiple fingerprint classification algo-
rithms published in the specialized literature; however, there is no proposal yet to evaluate
its impact on the actual subsequent identification process. Additionally, some of the feature
extractors that produce accurate results in classification reject some of the fingerprints and
are unable to extract any features for them. This problem should be addressed in order to
maximize the reduction of the penetration rate.

All the aforementioned issues can be encompassed within the subject of this thesis: the
development and application of data mining techniques in high performing computing architectures
for fingerprint identification in very large databases.
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4 Objectives

After an adequate study of the current state of all the areas described in the previous sections,
it is possible to focus on the actual objectives of this thesis. These will include the research and
analysis of the background fields described before, and the development of advanced models for
fingerprint identification based on the most promising properties of each field. More specifically,
the objectives are:

e To study the current state of the art in minutiae-based fingerprint matching.
In particular, matching algorithms based on local structures and global consolidation have
proven to reach a good trade-off between accuracy and computational complexity. The com-
mon structures and processes followed by all published methods, as well as their particulari-
ties, their weaknesses and their advantages, should be fully understood in order to settle the
basis for the remaining work of this thesis.

e To propose a new preprocessing method to eliminate spurious minutiae. Spurious
minutiae have a negative impact on any matching algorithm, both in terms of accuracy and
runtime. The developed preprocessing method should remove as many spurious minutiae as
possible, while keeping genuine minutiae unmodified, which would speed up and improve the
accuracy of matching algorithms.

e To develop efficient, scalable and accurate approaches for fingerprint identifica-
tion. Such methods are necessary to address the identification in very large databases. To
tackle this objective, we will follow two main paths:

— Strategies based on HPC': from this point of view, two alternatives are considered: an
implementation based on MPI for multi-node and multi-core clusters, and another that
takes advantage of big data frameworks. Furthermore, the side advantages of the devel-
opment of such frameworks are twofold. First, such proposals would certainly prove to
be of interest for a broad scope of the scientific community; the development of a publicly
available software would settle the basis for reproducible research, and other researchers
could benefit from the knowledge acquired for this thesis. Second, they would constitute
a valuable support for the experimentation needed for other parts of this thesis.

— Strategies based on information fusion: the fusion of several matching algorithms and
several fingers should improve the two tackled goals: accuracy and efficiency. Any
identification system must find a trade-off between them; in our proposal, this trade-off
should be flexible so as to be able to obtain fast results with a fair accuracy, or very
accurate results with a slightly higher time delay.

Actually, both paths are not conflicted with each other and can be applied altogether to an
identification system.

e To reduce the database penetration rate of the identification search. The use of a
classification step previous to the identification would enhance the performance of the overall
process by reducing the database penetration rate. The proposal should be generic enough
to allow for different types of classifiers that could suit different needs. Moreover, it is very
desirable to avoid the rejection of fingerprints in the feature extraction step that precedes the
classification. Finally, the identification process itself should be able to draw the maximum
information from the classification phase, so as to reduce the penetration rate as much as
possible.
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5 Methodology

This thesis requires the application of a methodology that is both theoretical and practical. There-
fore, we need a strategy that, while maintaining the guidelines of the traditional scientific method,
is able to provide the special needs of such methodology. In particular, the following guidelines for
the research work and experiments will be applied:

1. Observation: detailed study of the fingerprint identification problem and its specific char-
acteristics, as well as the possibilities offered by HPC systems and data mining techniques.
Local minutiae-based fingerprint matching has to be accorded special attention, as it is the
core of the performance of an automatic fingerprint identification system.

2. Hypothesis formulation: design of new identification methods that make use of the ap-
proaches that have been highlighted as promising to improve the performance of the identifica-
tion, such as classification, preprocessing and high performance computing. The new methods
should implement the characteristics described in the previously mentioned objectives to face
the problem of identification in very large databases.

3. Observation gathering: getting the results obtained by the application of the new methods,
on different types of fingerprint databases and using different types of performance measures.
Both the efficiency and the accuracy have to be taken into account.

4. Contrasting the hypothesis: comparison of the results obtained with those published by
other methods related to fingerprint identification in the specialized literature. For a fair
comparison, the compared methods should be evaluated on the same hardware and the same
databases, in a generic manner so as not to obtain biased conclusions.

5. Hypothesis proof or refusal: acceptance or rejection and modification, in due case, of
the developed techniques as a consequence of the performed experiments and the gathered
results. If necessary, the previous steps should be repeated to formulate new hypothesis that
can be proven.

6. Scientific thesis: extraction, redaction and acceptance of the conclusions obtained through-
out the research process. All the proposals and results gathered along the entire process
should be synthesized into a memory of the thesis.
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6 Summary

This section presents a summary of the proposals described in the publications associated
to this thesis. Afterwards, Section 7 will show an overview of the obtained results. The research
carried out for this thesis and the results obtained in each case are collected into the following
published papers:

e D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garcia, E. Barrenechea, J. M. Benitez, H.
Bustince, F. Herrera, A Survey on Fingerprint Minutiae-Based Local Matching for Verification

and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015)
67-87, doi: 10.1016/j.ins.2015.04.013.

e D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Benitez, F. Herrera. Minu-
tiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Al-
gorithms.  Engineering Applications of Artificial Intelligence, 32 (2014) 37-53. doi:
10.1016/j.engappai.2014.02.016

e D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Benitez. Fast Finger-
print Identification for Large Databases. Pattern Recognition 47:2 (2014) 588-602. doi:
10.1016/j.patcog.2013.08.002

e D. Peralta, 1. Triguero, S. Garcia, F. Herrera, J.M. Benitez. DPD-DFF: A Dual Phase
Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in
Large Databases. Information Fusion 32 (2016) 40-51. doi: 10.1016/j.inffus.2016.03.002

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Clasificacién Jerarquica
de Huellas Dactilares con Seleccién de Caracteristicas. VII Symposium of Theory and Appli-
cations of Data Mining (TAMIDA), CAEPIA 2015, Albacete (Espana), pp. 831-840, 09-12
November 2015.

Additionally, several other works are currently under different stages of development and
submission in specialized journals:

e D. Peralta, S. Garcia, J.M. Benitez, F. Herrera. Fingerprint Identification in MapReduce and
Spark.

— The aim of this work is to establish a flexible decomposition paradigm for matching al-
gorithms, with the final goal of adapting them to big data environments such as MapRe-
duce or Spark. Thus, the identification in very large databases would benefit from the
advantages of such frameworks, such as robustness and fault-tolerance.

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Complete Fingerprint
Identification System with Classification.

— In this work, we present a complete identification system whose first step is a novel
classification strategy that combines features from different sources to optimize the clas-
sification accuracy. The identification itself is performed in a progressive way to further
improve the performance of the proposal.

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Deep Learning for
Fingerprint Classification.
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— The capabilities of deep learning approaches are explored concerning their application
on the fingerprint classification problem. Different types of architectures are analyzed
and tested on various types of fingerprint databases to test their behavior and highlight
their weaknesses and strengths. The aim of this study is also to provide the starting
point for further research.

Due to the constraints imposed by auto-plagiarism detection systems, the specific proposals
and results presented in these papers cannot be included into this memory; instead, the draft
version of the submitted material will be provided separately.

The remainder of this section is organized into the four objectives defined in Section 4.
First, Section 6.1 summarizes the review performed on minutiae-based matching algorithms. Then,
Section 6.2 shows the proposed preprocessing algorithm for minutiae filtering. Section 6.3 details
the proposed approaches to improve the efficiency and efficacy of the identification process. Finally,
Section 6.4 explains our proposals to take advantage of the reduction of the database penetration
rate.

6.1 Review on minutiae-based local matching algorithms

Fingerprint identification has become a topic of main interest in the last decades. Automatic
recognition systems have been widely used with great achievements in many practical applications.
In particular, minutiae-based fingerprint matching has proven to yield a good performance for both
verification and identification purposes. More than 80 different methods have been proposed so
far in the specialized literature, showing the possibilities of the approach and the interest of the
scientific community.

However, these methods do not follow a common design procedure and the terminology is
sometimes unclear. Despite this, many of the published methods share similar or repeated parts
that might even be named differently in different sources. Although there are some reviews on the
topic [YA04, MMJP09, JEN10], at the time of writing this thesis there is no general categorization
of matching methods and their particularities.

We have identified the main characteristics in minutiae-based local matching algorithms, in-
cluding the topology of the local structures (nearest neighbors, fixed radius, texture mixed, minutiae
triplets, K-plets and cylinders), the type of transformation applied in the global consolidation pro-
cess (single, consensus, multiple, complex or incremental), the use of additional features (ridge
frequencies, core points, local orientation and gray-scale images), the peculiarities of the minutiae
(type, ridge count and ridge properties), and finally the type of parameter learning (matching
score or local similarity). This thorough analysis allowed us to build a taxonomy of the meth-
ods published so far, highlighting which characteristics are common between them and how they
interact.

In addition, an experimental study with the most representative matching methods of each
category was carried out on several fingerprint datasets, including public datasets and one collected
by the authors’ research group with different sensors in a controlled environment. Multiple accuracy
and runtime measures were accounted for, so as to evaluate the impact of the different characteristics
of the matching on them.

The journal paper associated to this part is:

e D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garcia, E. Barrenechea, J. M. Benitez, H.
Bustince, F. Herrera, A Survey on Fingerprint Minutiae-Based Local Matching for Verification
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and Identification: Taxonomy and Experimental Evaluation. Information Sciences 315 (2015)
67-87, doi: 10.1016/j.ins.2015.04.013.

6.2 Minutiae filtering

Minutiae show several properties that make them very suited to perform fingerprint recognition
tasks: they are unique, universal, invariable and easy to use. As a consequence, most matching
algorithms rely on minutiae to compute the similarity between two fingerprints. Minutiae extraction
is therefore a key component of the fingerprint recognition process, as these matching methods often
rely exclusively on the information provided by the minutiae extractor.

Although there are several minutiae extractors proposed in the literature, the problems
encountered with the process are common for all of them and can be classified into two types:

e Missing minutiae that are not detected by the extractor and therefore cannot be used for
the matching.

e Spurious minutiae that are erroneously detected by the extractor, introducing noise into
the resulting minutiae set. Most spurious minutiae are detected on the borderline of the
fingerprint.

In general, minutiae extractors tend to suffer more from the latter, so as not to omit real minutiae
that might be crucial for the comparison. These problems increase the difference between captures
of the same fingerprint, whilst they can also cause false similarities between captures of different
fingers. They become more acute when dealing with low quality fingerprints or with large-scale
identification, in which the huge amount of non-matching templates requires an accurate matching
algorithm to avoid identification errors.

In this thesis we have tackled the problem of removing spurious borderline minutiae after
their extraction. For this goal we have applied different strategies to extract a candidate set of
spurious minutiae for a fingerprint:

e Computing the convex hull of the extracted minutiae set; all the minutiae in the convex hull
are included into the candidate set.

e Using an image segmentation-based approach aimed at discerning the background and the
foreground of the fingerprint image. The approach includes four steps: normalization, block-
wise variance computation, thresholding and refinement. The minutiae that are detected
within background areas are included into the candidate set.

Both strategies have been combined with the quality information provided by the minutiae extrac-
tor, so that the minutiae selected by the preprocessing that fall under a certain quality threshold
are eliminated prior to the recognition itself. As a side objective, the influence of the spurious
minutiae on several different matching methods has also been studied.

The experiments for this proposal have been carried out on multiple different databases,
some of them widely used and publicly available, some others collected by the research group, and
five artificially generated databases. The advantage of the latter is that, unlike for real captures, the
ground-truth minutiae of a fingerprint can be known and compared with the extracted set. This
allowed us to evaluate and quantify the amount of noise introduced by the minutiae extraction
algorithm.

The journal paper associated to this part is:
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e D. Peralta, M. Galar, I. Triguero, O. Miguel-Hurtado, J.M. Benitez, F. Herrera. Minu-
tiae Filtering to Improve Both Efficacy and Efficiency of Fingerprint Matching Al-
gorithms.  Engineering Applications of Artificial Intelligence, 32 (2014) 37-53. doi:
10.1016/j.engappai.2014.02.016

6.3 Efficient, scalable and accurate fingerprint identification

The increasing number of applications of identification applications in many contexts, such as
public institutions, police departments or forensic purposed, has led in many cases to a growth of
the size of the fingerprint databases used for the identification. When dealing with large fingerprint
databases, the bottleneck of the identification process is the matching algorithm because it must be
applied once for each template fingerprint in the database. Although the literature offers fingerprint
matching algorithms that provide a very good accuracy, they are often computationally expensive
and their use becomes prohibitive in large-scale environments.

HPC has already been successfully applied to many different pattern recognition problems;
a parallel computing infrastructure allows to speed up the execution of computationally heavy
algorithms. Although there are some proposals in the literature that use HPC tools for fingerprint
recognition, at the time of writing this thesis none of them focused on the large-scale identification
problem. Rather, they tackled other problems such as high availability or database distribution.

For this thesis, we developed a parallel and distributed framework for fingerprint identi-
fication that takes advantage both of multi-computer clusters and multi-core processors with a
two-level parallelism. The framework focuses on parallelizing the matching step as much as possi-
ble, while reducing the communication and synchronization needs between the different threads and
processes. Moreover, the proposal can be used for any matching algorithm as it does not involve
modifying the computation; the result obtained for the identification is guaranteed to be the same
as that of a sequential approach.

Taking this idea one step further, a decomposition scheme for fingerprint matching algo-
rithms has been proposed. The knowledge gathered in the review on minutiae-based matching has
been applied to develop the proposal as a generic strategy that can be applied to any algorithm.
The ultimate purpose of such decomposition is to facilitate the adaptation of matching algorithms
to big data frameworks, so as to take advantage of all the possibilities offered by them.

The experiments performed for the developed systems involved an artificially generated
database of hundreds of thousands of fingerprints, along with one of the largest public datasets
available, to evaluate the speedup of the proposals under different hardware contraints.

Although the previously described HPC-based proposals do not suffer from any accuracy
loss, they do not tackle the task of enhancing the accuracy of the underlying matching algorithms.
The use of several fingerprints or several matching algorithms has already been proven to enhance
the accuracy of the recognition process by several authors. However, there is yet no attempt to use
these strategies to lower the identification time; instead, this time is increased by the successive
application of the matching algorithms.

We propose an identification system (nicknamed DPD-DFF) that incorporates two different
fingerprints per identity, as well as two matching algorithms. Once an input fingerprint pair is
available, the identification is carried out in two phases. In the first (fast) phase, a fast matching
algorithm is used to quickly perform a first scan of the database to select a set of candidate identities.
Then, a very accurate matching algorithm is used in the accurate phase to select the matching
identity among those in the candidate set. Each of these phases can either use a single or both
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fingerprints, yielding different trade-offs between accuracy and identification time. Additionally,
the size of the candidate set can be varied to finely tune that balance, so as to suit the environmental
constraints and the available computational resources.

DPD-DFF has been extensively tested on several sets of publicly available databases, as well
as a large artificially generated dataset. All possible combinations of single and double fingerprint
were put to the test, along with two different criteria for the selection of the set of candidate
identities.

The journal papers associated to this part are:

e D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J.M. Benitez. Fast Finger-
print Identification for Large Databases. Pattern Recognition 47:2 (2014) 588-602. doi:
10.1016/j.patcog.2013.08.002

e D. Peralta, 1. Triguero, S. Garcia, F. Herrera, J.M. Benitez. DPD-DFF: A Dual Phase
Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate Identification in
Large Databases. Information Fusion 32 (2016) 40-51. doi: 10.1016/j.inffus.2016.03.002

e D. Peralta, S. Garcia, J.M. Benitez, F. Herrera. Fingerprint Identification in MapReduce and
Spark. Sometido.

6.4 Database penetration rate reduction

When dealing with sufficiently large databases, a large computing capacity might not be enough to
solve the performance constraints. It can also happen that the cost of such an infrastructure could
be high, which leads to the search of other solutions to allow for fast fingerprint identification.
Therefore, there is a need to consider other approaches that will speed up the identification time
in very large databases, in combination with HPC infrastructures.

In this line of work, the reduction of the database penetration is one of the most pursued
goals. Different approaches can be followed to tackle this objective; among them, fingerprint
classification is one of the most popular. Different classification procedures, each with a particular
feature extraction process to encode the fingerprints, have been proposed in the literature.

Some of the feature extraction methods that lead to the best classification accuracy reject
the fingerprints that do not meet certain criteria, so that no feature vector is extracted, making
the classification impossible.

We proposed a classification approach that combines several feature extractors in several
ways to improve the classification accuracy while eliminating the rejection rate. This, in combina-
tion with an incremental search procedure, allows to reduce the database penetration rate for the
identification, while maintaining a good identification accuracy.

Several experiments were performed to assess the quality of the proposal and evaluate the
behavior of the subsequent identification search, following the guidelines established in the previous
review. The experiments used a large synthetically generated database as well as the well-known
NIST-SD14 public dataset.

The research papers associated to this part is:

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Clasificacion Jerarquica
de Huellas Dactilares con Seleccién de Caracteristicas. VII Symposium of Theory and Appli-
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cations of Data Mining (TAMIDA), CAEPIA 2015, Albacete (Espana), pp. 831-840, 09-12
November 2015.

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Complete Fingerprint
Identification System with Classification. Sometido.

e D. Peralta, I. Triguero, Y. Saeys, S. Garcia, J.M. Benitez, F. Herrera. Deep Learning for
Fingerprint Classification. Sometido.
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7 Discussion of results

The following subsections summarize and discuss the results obtained in each specific stage of the
thesis.

7.1 Review on minutiae-based local matching algorithms

Both classic and recent minutiae-based fingerprint matching algorithms have been thoroughly ana-
lyzed within the published review. The different characteristics that define them have been pointed
out and served as a basis to define a taxonomy of matching methods, which allows establish guide-
lines for further work.

The extensive experimental study carried out has compared the accuracy and runtime of
the main matching algorithms of each family described in the taxonomy. The obtained results
have been further analyzed with statistical tests. The results of the comparison have highlighted
the potential of cylinder-based approaches when accuracy is at stake. Also, some simple nearest
neighbors approaches with relatively simple consolidations can obtain a decent accuracy within a
very fast computing time. In general, no single approach is preferred above all others: the suitability
of a matching method will depend on the specific requirements of the application. However, the
results obtained in this review allow to reduce the breadth of the decision and sets the guidelines
to reach a better decision.

Additionally, all the results obtained are publicly available at http://sci2s.ugr.es/
MatchingReview for their download.

7.2 Minutiae filtering

We have proposed a preprocessing algorithm for fingerprint matching that tackles the problem of
the spurious minutiae detection. The proposal implements two different strategies (the convex hull
and a new segmentation method) to delimit the borders of the fingerprint, where most spurious
minutiae are located. Then, a threshold based on the quality provided by the minutiae extractor
is applied to filter the minutiae.

Twelve different databases have been used to perform experiments; one of them was captured
by the authors’ research groups, six are public and five were artificially generated, allowing the
analysis of the difference between the ground-truth minutiae sets and the corresponding extracted
minutiae sets. The experiments were carried out with four different matching algorithms to assess
the robustness of the proposal. The results show that the proposed filters allowed us to reduce
the number of spurious minutiae without damaging the correctly detected ones. This lead to an
increase of the accuracy of the applied matching algorithms, along with a reduction of their runtime
due to the lower number of minutiae. The accuracy improvement reached up to 2% for good quality
databases and 25% for the public FVC. The runtime reduction attained up to 60%.

7.3 Efficient, scalable and accurate fingerprint identification

We have designed two types of parallel frameworks to allow for the full scalability of fingerprint
identification systems.

The first proposal is based on Message Passing Interface (MPI), and describes a two-level
parallel and distributed framework that is generic for any fingerprint matching algorithm. The
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system ensures that there is no loss in the accuracy with respect to a sequential approach.

The extensive experiments carried out on databases of different sizes and different volumes of
hardware resources show that the proposal offers a near-linear scalability for fingerprint identifica-
tion. For instance, a database of 400 000 fingerprints was explored in 0.5s. Moreover, the availability
of more RAM memory when using several computers allows to maintain larger amounts of prepro-
cessed fingerprints in main memory, accelerating the identification process. The associated software
is publicly available (https://github.com/dperaltac/mpi-afis). Our results have been used by
other authors as a baseline for the evaluation of their own proposals, assessing a good acceptation
in the scientific community. The results of the experiments and details on the implementation can
be found at http://sci2s.ugr.es/ParallelMatching.

The second proposal is a generic fingerprint matching decomposition methodology that en-
ables the use of big data paradigms (such as MapReduce or Spark) to enhance the identification
speed and scalability. The proposed decomposition has been applied to two different well-known
matchers.

The Hadoop and Spark implementations of these algorithms were compared in the experi-
mental study, highlighting the different characteristics provided by each big data framework. Ad-
ditionally, the proposal was compared with those of the parallel framework previously described.
The results showed that the execution times with Spark were even lower that those obtained with
MPI, assessing the good behavior of the proposed decomposition, which allows to avoid part of the
computation by early dropping of non promising local structure matches.

We proposed a flexible identification system, DPD-DFF, that involves two fingers per identity
and two matching algorithms. First, the database is quickly explored with a fast matching algorithm
to extract a set of candidate identities; then, an accurate matcher is applied to select the most
similar match in the candidate set. Both phases can use either one or two fingerprints, providing
several variant of the algorithm that allow different accuracy-efficiency trade-offs. Additionally, the
size of the candidate set can be controlled by several criteria, enabling a fine-grain tuning of that
trade-off.

The resulting software is publicly available at https://github.com/dperaltac/mpi-afis.
A thorough experimentation was carried out to verify the behavior of the proposal, involving many
public databases, a large artificially generated database, and a database composed of fingerprint
pairs gathered among more than 300 people specifically for this study, using a sensor that captures
two fingerprints at a time.

The results obtained showed that DPD-DFF outperforms traditional, single fngerprint sys-
tems both in terms of identification accuracy and identification time. Moreover, the tested double
fingerprint and double matcher approaches that conform the state-of-the-art in the topic also were
outperformed by our approach. Finally, an additional study carried out using impostor fingerprints
showed an outstanding performance for the early detection of such cases, obtaining very high True
Negative Rate and True Positive Rate altogether. The complete results obtained for this study can
be consulted at http://sci2s.ugr.es/DPDDFF.

7.4 Database penetration rate reduction

The reduction of the penetration rate has been tackled by following a multi-level classification
approach, combining several feature extractors in a way that avoids rejecting any fingerprint while
taking advantage of the extractors that do reject those that do not meet their quality requirements.
The subsequent identification process, which is carried out in an incremental manner, has also been
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considered in the approach so as to provide a system as a whole.

The experiments, involving a large database and a public database of rolled fingerprints,
showed that the approach is able to outperform the state-of-the-art classifiers in terms of classifi-
cation accuracy, with the additional advantage of not rejecting any fingerprint. Furthermore, the
experiments involving the identification process revealed that the reduction of the penetration rate
is very close to the theoretical maximum that can be obtained with the 5-class approach (around
70%), while maintaining a high identification accuracy.
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8 Concluding Remarks

In this thesis, we have addressed the problem of fingerprint identification in large databases,
with the aim of analyzing, designing and implementing different strategies for efficient, scalable
and accurate identification systems.

The initial objective for the thesis was to gain a deep understanding of the field, especially
regarding minutiae-based local matching algorithms, which constitute the bottleneck of any large-
scale identification approach. To do so, we have carried out a theoretical and empirical survey of
the main methods proposed in the literature, focusing on extracting the characteristics that are
common between them and those that are unique to each approach. The results of this study
constituted the ground basis for the subsequent research during this thesis.

The second objective tackled was the improvement of both the accuracy and the runtime of
matching algorithms by a preprocessing algorithm to filter minutiae. We have revealed the impact
of spurious minutiae on the performance of several different matchers, and we have proposed two
different schemes to carry out their filtering. The results showed improvements in both accuracy
and runtime, assessing the value of the proposal.

The parallelization of the matching process has been carried out through two different pro-
posals. On the one hand, a two-level parallel scheme has been proposed, which runs processes
in different machines as well as several threads within each process. The experiments performed
using the proposal revealed near-linear speedup independent of the underlying matching algorithm.
Moreover, the speedup was super-linear when the most complex database was used, showing the
benefits of the synchronized work of several machines. On the other hand, a methodology for the
decomposition of matching algorithms (based on the knowledge gathered for the review) was de-
signed and applied to some of the most relevant algorithms of the state-of-the-art. The aim of such
decomposition is to provide a generic methodology to implement any matching algorithm within a
big data framework, thus taking advantage of their benefits. The decomposition allows for an early
detection of poorly-matching fingerprints, so as to reduce the computational load. The results of
the experiments outperformed those obtained with the two-level parallel approach, revealing the
extreme scalability capabilities of the decomposition scheme.

In combination with the development of such scalable system, we have applied information
fusion strategies to reduce both the identification time and the identification error. In this line of
work, we have proposed an identification system that fuses two fingerprints and two matching algo-
rithms in a dual-phase scheme, which provides a flexible trade-off between accuracy and efficiency
by means of a single parameter. The proposal dominated the approaches of the state-of-the-art in
both goodness measures.

Finally, another strategy to improve the identification time involved fingerprint classifica-
tion. To do so, we combined different feature extractors in a multi-level manner to maximize
the classification accuracy and eliminate the fingerprint rejection of the feature extractors. The
accuracy of the resulting classifier outperformed that of all the compared methods. The further
tests carried out involving the entire identification process assessed the good performance of the
approach in terms of the reduction of the database penetration rate.
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Conclusiones

En esta tesis se ha abordado el problema de la identificacién de huellas dactilares en grandes bases
de datos, con el objetivo de analizar, disenar e implementar distintas estrategias para sistemas de
identificacion eficientes, escalables y precisos.

El objetivo inicial de la tesis era obtener un profundo conocimiento del area, especialmente en
cuanto a algoritmos de matching locales basados en minucias, que constituyen el cuello de botella
de cualquier sistema de identificacién a gran escala. Para ello, se ha llevado a cabo un estudio
tedrico y empirico de los principales métodos propuestos en la literatura, centrado en extraer
las caracteristicas que son mas comunes entre ellos y las que son unicas para cada enfoque. Los
resultados de este estudio constituyen la base para la investigacion realizada durante esta tesis.

El segundo objetivo fue la mejora de la precision y el tiempo de ejecucion de los algoritmos de
matching mediante un algoritmo de preprocesamiento para el filtrado de minucias. Se ha revelado
el impacto de las minucias espurias sobre distintos algoritmos, y se han propuesto dos estrategias
diferentes para su filtrado. Los resultados muestran mejoras tanto en precisién como en tiempo,
certificando la valia de la propuesta.

La paralelizacién del proceso de matching se ha llevado a cabo mediante dos propuestas
diferentes. Por una parte, se ha propuesto un esquema paralelo a dos niveles que lanza procesos en
distintas maquinas, y varias hebras en cada proceso. Los experimentos revelaron una aceleracion
super-lineal al utilizar la base de datos més compleja, mostrando los beneficios del trabajo sincroni-
zado de varias maquinas. Por otra parte, se ha disenado una metodologia para la descomposicién de
algoritmos de matching (basada en el conocimiento adquirido para la revisién previamente mencio-
nada), y se ha aplicado sobre algunos de los algoritmos més relevantes del &mbito. El objetivo de tal
descomposicién es proporcionar una metodologia genérica para implementar cualquier algoritmo de
matching en una plataforma de big data, aprovechando las ventajas que proporciona. La descom-
posicién permite una pronta deteccién de huellas con escaso emparejamiento, para reducir la carga
computacional. Los resultados de los experimentos mejoraron los obtenidos con el enfoque paralelo
a dos niveles, revelando las extremas capacidades de escalabilidad del método de descomposicién.

En combinacién con el desarrollo de estos sistemas escalables, se han aplicado estrategias
de fusién de informacién para reducir tanto el tiempo como el error de identificacion. En esta linea
de trabajo, se ha propuesto un sistema de identificaciéon que fusiona dos huellas y dos algoritmos
de matching en un esquema de dos fases, proporcionando un equilibrio flexible entre precision y
eficiencia con un tdnico parametro. La propuesta dominé a las del estado del arte para las dos
medidas estudiadas.

Finalmente, otra estrategia para mejorar el tiempo de identificacién implicé la clasificacién
de huellas. Para ello, se han combinado distintos extractores de caracteristicas de forma jerarquica
para maximizar el acierto de la clasificacién y eliminar el rechazo de las huellas producido por los
extractores. La precision del clasificador resultante mejoré la de todos los métodos comparados. Las
pruebas llevadas a cabo posteriormente, abarcando el proceso completo de identificacién, ratificaron
el buen rendimiento de la propuesta en términos de reduccién de la tasa de penetracién en la base
de datos.
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9 Future Work

The work carried out during this thesis has highlighted new promising research lines, either
to further enhance the performance of the models proposed, or to apply them to new challenging
problems.

Applying deep learning techniques to enhance the fingerprint recognition process: In
the last few years, deep neural networks [LBH15] have arisen as a very powerful way to solve many
complex real-world problems, in particular those based on images [KSH*12]. Their use on several
parts of the fingerprint recognition process is therefore very promising.

Deep learning has been proven to provide outstanding performances in classification prob-
lems. Therefore, their use to improve the fingerprint classification task is of great interest.

Deep neural networks can also be applied in an unsupervised manner to extract patterns
that intrinsically define a given input [LGRN09]. From this perspective, deep learning can be used
as a feature extractor to obtain relevant information from the fingerprints.

New big data approaches: Big data is expected to be one of the main challenges for data
mining in the near future [FARL T 14]. The huge quantities of data that are available in many fields
offer a two-fold field of research. On the one hand, there is a need of systems that are able to deal
with such large amounts of data in an efficient and scalable manner. On the other hand, all that
data can provide new knowledge and information to solve new problems.

In the Biometrics field, the increasing needs to identify people is leading to ever larger
databases of different biometric features. The use of big data approaches to evaluate all that
information could lead to a better understanding of the problem.

Multi-modal biometrics: One of the natural solutions that have arisen for biometrics is the
hybridization of several biometric features [RNJ06]. By combining the information from several
sources such as fingerprint, face, iris, etc., it is possible to increase the accuracy and reliability of the
recognition, as well as to provide more robust systems in case of injuries or amputations. However,
the identification time is also increased in a similar manner to what happens with multi-finger or
multi-matcher methods.

Therefore, there is also a need to adapt multi-modal biometric approaches to a large-scale
point of view to deal with their increased scalability and identification times issues.

Fingerprint identification on co-processors: Although most high performance computing
systems rely on clusters of multi-core processors, during the last years there has been a vast ef-
fort to implement computationally heavy tasks in GPU support with frameworks such as NVIDIA
CUDA [cud]. GPUs have already very recently successfully used for fingerprint identification sys-
tems with outstanding performance [GLHB14, CFM15, LCG*15].

In addition to GPUs, other co-processors have been developed to give support to compu-
tationally intensive algorithms. One example is the Intel Xeon Phi [JR13], which includes several
dozens of cores and local memory to execute highly parallel tasks. Unlike GPUs, such co-processors
have an instruction set that is closer to that of a general purpose processor, which makes them
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easier to use for general purpose applications. Therefore, the study of the impact that this kind of
hardware can have on the performance of fingerprint identification systems would be of interest.

Hybrid architectures: The previous line of future work would also arise the possibility of devel-
oping more complex identification systems that put together multiple types of hardware to obtain
a maximum performance. A single server hosting several CPUs, GPUs and co-processors could
provide a very interesting performance for a reasonably low price and above all low maintenance
costs, as there is no need for inter-connecting networks or shared resources. An approach of this
kind could be of great interest for small or medium sized corporations.
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1. Introduction

Automatic fingerprint recognition has been one of the most known and used biometric
authentication systems during the last decades. It has been used for personal verification
and identification with great achievements [76]. A vast number of applications incorporate
fingerprint recognition as basics, such as forensics, building accessing, ATM authentication
or secure payment [113]. There are some other human characteristics that can be used as
traits of a biometric system, such as the person’s face, the retina or iris [16], the voice,
etc. There is no trait that highlights as the best one. However, on average, fingerprints
offer good capabilities in all properties analyzed by the experts and excellent results in
distinctiveness [126], permanence and global performance [113]. Although the recognition
is not as accurate as with other traits, it provides a good balance between accuracy, speed,
resource requirements and robustness.

Independent of the type of task, either verification [72] (one-to-one comparison) or iden-
tification (search for an input fingerprint in a database) [80], it is necessary to perform a
sequence of operations to build a template database and later use the system. Assuming
that there is a database and that proper enrollments have been previously taken, the order
of the operations for both tasks is given by: a capture of the fingerprint, a feature extraction
stage, a matching and a pre-selection or filtering [85] (which is associated to identification
tasks only). The capture of the fingerprint obtains an image that is not usually stored as
such in the database. Instead, a feature extraction process is applied to obtain up to three
levels of features [60]: level 1 features provide, at the global level, information of singular
points and ridge line flow or orientation; level 2 features, at a local level, refer to minutiae
details which usually correspond to bifurcations and ridge endings; and level 3 features, at
the very-fine level, include features inside the ridges such as width, shape, curvature, dots,
etc. These features are only observable in high resolution images.

Once a set of features is extracted from the fingerprint image, the final goal is to find
(or confirm) the identity of a person whose fingerprint has been previously enrolled into the
system. The matching mechanism is the responsible to provide a likeliness score between
two fingerprints. Most of the efforts in matching are with the use of minutiae details,
although there are other types of matching methods based on correlations of images, other
types of features and even on level 3 features. Minutiae matching consists of finding the
alignment between two templates that results in the maximum number of minutiae pairings.
Furthermore, minutiae matching can be classified as local or global [81], aligned or not [189],
etc; all the categories will be detailed in this paper.

Many fingerprint matching algorithms have been proposed in the literature, and the
operations with features they use are sometimes similar or even repeated. In spite of the
existence of some reviews on the topic, such as [174, 113, 71}, they are not explicitly focused
on matching and the characteristics of the methods are not completely studied or categorized.
This issue may lead to a lack of unification and even to propose very similar matching
methods in the future. Moreover, there are few attempts to empirically compare them.

In this sense, the motivation of this paper can be segregated into three main objectives:

e To gather and briefly describe all the matching methods proposed in the specialized
2



literature.

e To offer an entire taxonomy based on the main processes and properties observed in
the matching methods. It allows us to understand the reasons to choose the most
suitable matching algorithm depending on the circumstances.

e To conduct an empirical study analyzing the most important local minutiae-based
matching algorithms in terms of accuracy and speed throughput when they are applied
to both verification and identification tasks.

The rest of this paper is organized as follows. Section 2 provides the necessary back-
ground in fingerprint minutiae matching. In Section 3, we introduce the main proper-
ties and the taxonomy for the matching methods. Next, Section 4 overviews the current
trends in fingerprint matching. In Section 5, experiments on several data sets compare
some of the most important local minutiae-based matching methods. Finally, Section 6
concludes the paper, including some original opinions for instruction in theory and appli-
cation and future research directions. Additional material to the paper can be found at
http://sci2s.ugr.es/MatchingReview/.

2. Background in Fingerprint Minutiae Matching

Fingerprint matching is a crucial step in both verification and identification problems.
Roughly, a fingerprint matching algorithm compares two fingerprints and returns either
a degree of similarity (a real number bounded into an interval) or a dichotomic output
(matched or non-matched). Hereafter, we use the representation of the fingerprint acquired
by enrollment as the template (7') and the representation of the input fingerprint (7). Two
fingerprints are called genuine if they represent the same finger, and impostor when they
are different.

Several factors make fingerprint matching a very challenging problem [113]: image noise,
skin condition, distortions, rotations, displacement, etc. There are two well-known properties
in fingerprints: large variability in different impressions of the same finger (large intra-class
variations) and much similarity between two images from different fingers (small interclass
variations).

The most popular and used technique is the minutiae-based matching. Subsequent sub-
sections will detail the main concepts of minutiae-based matching (Subsection 2.1), including
the distinction between global and local matching (Subsection 2.2) and feature extraction
techniques that are commonly used to obtain the minutiae for matching (Subsection 2.3).

2.1. Minutiae-based Matching

The output of a minutiae extraction stage is, at least, a set of minutiae. Each minutia
is represented by its location coordinates and orientation angles, forming a 3-tuple M =
(z,y,6). T and I fingerprints have m and n minutiae, respectively. A minutia M; in [
is considered matched with a minutia M; in T when it falls within the tolerance box of
M;. The tolerance box is defined as the maximum spatial distance and direction difference
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permitted to compensate unavoidable errors made by minutiae extractors and positioning
changes produced by distortions.

Obviously, it is mandatory to obtain the optimal displacement and rotation alignment
of fingerprints in order to maximize the number of minutiae matched. This also includes
scaling and advanced geometrical transformations. After alignment, a matching score for
the two fingerprints is calculated. To do this, the pairing function between minutiae M; and
M; must be found, assuming that each minutia has either exactly one matched minutia in
the other fingerprint or has none at all. Achieving the optimal pairing is not a trivial task
when the correct alignment is not known, as it usually happens in practice. For instance, a
minutia of I may fall within the tolerance box of two or more minutiae of 7. An assignment
algorithm, preferably fast or greedy, is usually employed for this task.

Finally, the matching score could be formulated as follows:

k
(n+m)/2
where £ is the number of matched minutiae. It is a simple expression usually shared among

matching algorithms. However, advanced models normally exploit further information such
as the minutiae quality and adjusted parameters by using optimization techniques.

matching_score =

2.2. Global and Local Minutiae Matching

Fingerprint minutiae matching can be firstly divided into two families of methods:

e Global minutiae matching: the algorithms of this kind tackle the alignment process by
taking into consideration all the minutiae as a whole set in a global manner. Since the
number of components to be aligned are, at least, three (two directions and the angle),
they may require high computational resources and often the usage of a pre-alignment
stage that is based on other features extracted such as singular points or orientation
maps.

e Local minutiae matching: they consist of comparing two fingerprints according to
local structures of minutiae. These structures are formed by considering different
relationships based on proximity between closer minutiae. They are characterized by
properties that are invariant regarding global transformations, such as translations
and rotations. Thus, they do not take into account global relationships and allow to
make matching with partial information.

The benefits of local minutiae matching are simplicity, low computational complexity
and distortion tolerance, whereas global minutiae matching techniques lead to high distinc-
tiveness. However, all of these benefits could be achieved by using hybrid strategies that
perform a local minutiae matching followed by a consolidation stage. The former step deter-
mines pairs of minutiae that locally match and extracts a subset of candidate alignments for
I and T'. The latter step, which is not strictly mandatory, is aimed at checking the degree
in which local matches support global matching.
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Table 1: Enumeration of representative global minutiae matching algorithms

References Main Property
[138, 101] Hough transform-based approaches
[72, 107, 37] Ridge-based relative pre-alignment
[47, 189] Global matching of clusters of minutiae
[157, 11, 28, 163] | Algebraic geometry-based approaches
[30, 83] Singularity-based relative pre-alignment
[140, 98, 118] Warping modeling-based approaches
[120] Minutiae matching with tesselated local information
[161] Global minutiae matching with image correlation
[56, 104, 175, 82] | Orientation image-based relative pre-alignment
[151, 145, 144] Global matching by evolutionary algorithms
[78, 92] Weighted global matching with adjustment of scores
[32, 160] Hierarchical and/or multilevel minutiae matching

Recently, most of the proposals of fingerprint minutiae matching designed to be imple-
mented in real systems have given up the idea of global matching in favor of local matching.
Nevertheless, although the focus of this paper is to review the properties and methods be-
longing to local minutiae matching, we also provide an enumeration of the most influential
global minutiae matching methods proposed in the specialized literature (see Table 1).

2.8. Feature Extraction Techniques

This section is devoted to briefly identify the subset of feature extraction techniques fre-
quently used in conjunction with fingerprint minutiae matching. It is worth mentioning that
an exhaustive review of existing techniques can be found in [113]. Next, we will summarize
the most representative algorithms according to their usage in practice and in subsequent
matching approaches proposed in the literature:

e Fingerprint segmentation [108, 34].

e Local orientation map estimation [125, 137, 4].

e Local ridge frequencies estimation [65, 109].

e Singular and core points searching [85, 74, 139, 86].

e Alignment of local orientations and ridge frequencies [27].
e Fingerprint binarization [125, 65].

e Fingerprint skeletonization [180, 58, 106].

e Minutiae extraction [1, 108].



e Spurious minutiae removal [153, 12, 184, 95, 129].

3. Local Minutiae Matching: Properties, Methods and Taxonomy

In the following, we present the taxonomy of minutiae-based local matching methods
and the properties used to build it. First, in Subsection 3.1, the essential characteristics,
which will define the categories of the taxonomy, will be outlined. Next, in Subsection 3.2,
we will enumerate all the minutiae-based local matching methods proposed in the scientific
literature. Then, each method will be categorized according to the studied properties to
provide a comprehensive taxonomy.

3.1. Properties for Categorizing Local Matching

This subsection provides a framework for the organization of the matching methods that
will be presented in Subsection 3.2. The aspects discussed here include (1) topology of local
structure, (2) type of consolidation, (3) usage of additional features, (4) minutiae peculiar-
ities and (5) parameter learning. These mentioned facets are involved in the definition of
the taxonomy, because they determine the way of operation of each matching technique.

3.1.1. Topology of local structure

Local matching is based on the computation of the similarity between local regions
of two fingerprints, for the sake of achieving the desired invariance regarding translations
and rotations. In minutiae matching, regions are associated with subsets of minutiae that
present some kind of relationship, mainly based on location and proximity. Hence, the
subsets of minutiae are organized into local structures and they can be built under different
assumptions:

e Nearest Neighbors (NN): local structures are formed by a central minutia and a certain
number of its nearest neighbor minutiae. The number of neighbors is specified as an
input parameter and the local structures are usually defined by distances, directions
and angles between pairs of minutiae.

e Fixed Radius: it creates a local structure from a central minutia by using a maximum
distance (dq.) in the graph (V;, E;) defined as: (1) a set of vertices V; containing all
the minutiae whose spatial distance is less than or equal to d,,.. and, (2) a set of
edges F; connecting the central minutia and every vertex in V;. The distance d,,,, is
specified as an input parameter and the local structures are defined by the set of edges
in clockwise traversing, by using distances as well as absolute and relative angles.

e Texture mixed: a local structure is defined as a feature vector that contains proper
information extracted from the minutia and other types of information coming from
additional features extracted from the fingerprint image, such as local orientation, ridge
frequency, gray-scale image properties or sampling of equidistant points following the
ridge starting from the minutia, from neighbor ridges or organized in a circular pattern
around a central minutia. This aspect is closely related to the use of additional features
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(third property described in this subsection), which indicates the source of the extra
information used in the local structure. Also, if the matcher has the Ridge Properties
(within the Peculiarities in Minutia aspect), activated, this is a symptom of using the
aforementioned sampling.

e Minutiae Triplets: firstly used for indexing approaches, they are also interesting to
yield local structures. Triplets may be built by some type of triangulation or by
using all possible combinations of triplets in local regions. The local structures use
information regarding angles of the vertices, length of the sides and some triangle
properties such as direction, orientation, etc.

e K-Plet: it is an extension of the NN local based structure where it is ensured that
the nearest neighbors minutiae are equally distributed in the four quadrants around
the minutia.

e Minutia Cylinder: as an extension of fixed radius local structures, it allows a fixed
length invariant coding for each minutia based on a discretization of a cuboid into
cells. The cylinder is set up by using the radius as the base and the direction difference
between minutiae as the height. It also allows binary representation of local structures
for fast matching.

3.1.2. Type of consolidation

Although the partial scores obtained from the comparison of local structures could
straightaway get a final matching score, it is common to develop a further consolidation
stage in order to check whether the local similarity is supported at the global level or not.
It adds an extra stage to evaluate the coherence among spatial relationships taking the local
structures as basic elements. It is very useful in some cases, in which local structures could
match in fingerprints from different fingers, independent of the fingerprint region that they
represent. Different consolidation techniques have been proposed and can be easily isolated
from the rest of the properties studied in this section:

e Single transformation: it is the simplest consolidation idea, based on the alignment
of T and I by using the best transformation resulting from a local structure matching.
A common procedure is to estimate a very limited number of pairs of local structures
that received the highest matching scores and then to use the translation and rotation
obtained from them to carry out a global alignment for the remaining minutiae.

e Consensus of transformations: it tries to evaluate to what extent each transformation
obtained from a local structure matching is consistent with the others. Another manner
is to assess the maximum number of consistent individual transformations. There are
different approaches to calculate this estimator, although the most common one is to
check that a subset of the most similar local structures remains consistent.

e Multiple transformations: due to the fact that the best transformation coming from
the most similar local structures is not the best transformation at the global level,
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multiple transformations may be used by: (1) selecting the final transformation ac-
cording to the highest score achieved in the final pairing stage, (2) restricting the
global matching to regions adjacent to each reference pair, or (3) fusing the results of
multiple registrations.

e Complex transformation: this group includes transformations which are based on
complex models to alleviate deformations and plastic distortions. For instance, there
are models that apply a thin-plate spline to represent elastic deformations, or use the
Parzen window to estimate the probability density.

e Incremental consolidation: when arranging the local structures into a graph, con-
necting the minutiae by the edges, the matching can be performed trough a dual graph
traversal algorithm in a breadth-first fashion. At the end of the route, the algorithm
returns the number of matched nodes. This process is repeated for every pair of
minutiae and the best solution is finally chosen.

3.1.3. Use of additional features

We call as additional features those cases in which local structures also incorporate infor-
mation gathered from other external sources. They may come from other feature extraction
processes such as the local orientation image or the local ridge frequency estimation. Once
again, we would like to emphasize that the additional features must be external with respect
to the minutiae extraction algorithm. Thus, these additional features can cooperate with
the mandatory features associated to minutiae (minutiae position and direction) defined by
standards like ISO/IEC 19794-2. The external additional features used are the following:

e Ridges Frequency (RF): a local ridges frequency represents the local average pixel
distance between ridges. It can be used either as a local feature associated to a certain
region (or minutia) of the fingerprint image, when it is relativized with respect to
the global ridges frequency of the fingerprint, or to normalize distances between two
minutiae as a method of palliating the effect of distortion.

e Core points: the locations and orientations of core singularities are extracted from
the fingerprint images for supporting the decision made by the local matching. For
instance, they could be used to perform a relative pre-alignment, discarding those
minutiae that are far from the original directions, or to involve only those minutiae
that are close to them.

e Local Orientation (LO): locally, a fingerprint has a well-defined orientation field given
by the ridge direction in a certain region of the image. In order to estimate it, it is
normal to define a window size (ranging from 8 x 8 to 16 x 16) in order to quantize the
average direction into 8 or 16 angles. The local orientation is then a number associated
to a region of the fingerprint and it can be also associated to a central minutia of a
local structure.



e Gray-Scale Images (GSI): they include texture information such as regions of gray-
scale fingerprint images enhanced by filters, derived from variances among pixels, ob-
tained by Gabor expansion or FingerCode textures [75].

3.1.4. Peculiarities in minutiae

Unlike the previous property, we define as a peculiarity in minutiae the additional infor-
mation closely related to the minutia that can be extracted by using an advanced minutiae
extractor. They are considered as supplementary features, different of position and direc-
tion, directly obtained from the minutiae set and being essential for the performance of a
concrete matching technique. In what follows we present the most important ones:

e Types of minutia: one of the most common peculiarities required by many matchers
is the type of minutia, dividing them into two classical types: bifurcations and ridge
ends.

e Ridge Count (RC): this peculiarity is associated to each central minutia of the local
structure and represents the number of ridges that are cut across the line joining
two minutiae. The minutiae extractor requires access to the binarized or skeletonized
fingerprint image to be computed.

e Ridge Properties (RP): the ridge which the minutia belongs to is analyzed in terms
of its degree of curvature or by sampling some equidistant points along the curve to
form relationships with respect to the central minutia. Here, the minutiae extractor
requires to explore the skeletonized fingerprint image to walk through the ridges.

3.1.5. Parameter learning

Finally, with the term of parameter learning we refer to the application of machine learn-
ing based techniques to optimize the separation between genuine and impostor fingerprints.
They are usually employed in the optimization of the similarity score that determines the
final decision. The parameters typically involved in the learning process are the weights
associated to the contribution of each pair of matched minutiae to the computation of the
final score. This and other forms of parameter learning are the following:

e Matching Score (MS): a function receiving as input the feature vectors that represent
two local structures and obtaining as output the similarity score is learned by means
of neural networks or other regression schemes. The learning process is supervised
and it is focused on optimizing the final matching score between genuine or impostor
fingerprints.

e Local Similarity (LS): an off-line learning process is performed to learn the genuine
similarity between local structures or to adjust the contribution weights associated to
each component of the feature vector.



3.2. Taxonomy of Minutiae-Based Local Matching Methods

Nowadays, more than 80 minutiae-based local matching methods have been proposed
in the specialized literature. This section is focused on enumerating and categorizing them
according to the properties studied before. Table 2 presents an enumeration of the methods
reviewed in this paper. In this field, the authors do not usually give a name for their proposal,
with few exceptions. Thus, we will use the reference of the paper as their identifier.

As we can see in Table 2, the most common proposals use the Texture based topology,
being the main baseline method the one proposed in [154]. Regarding other topologies,
almost all the NN and Radius approaches provide from the matchers [81] and [136]. Referring
to consolidation and the additional features, we can observe that all categories are spread
over all methods without a clear norm. The access to the RP is more common in recent
methods. Moreover, the RC and the use of the Types of minutiae are in decline in recent
years, due to their lack of uniformity in different prints obtained from the same finger.
Finally, few techniques require the use of parameter learning.

4. Related and Current Work on Matching

Once we have provided a comprehensive review on minutiae-based fingerprint matching
methods, it is meaningful to also provide other kinds of procedures using for matching. They
can be seen as related techniques that could be connected with matching, and current work
in other ways of improving matching in different application areas. In this sense, this section
gathers the most relevant developments in different issues (Subsection 4.1), distinguishing
among correlation-based matching techniques (Subsection 4.2), indexing algorithms and
advanced progresses in matching (Subsection 4.3).

4.1. Correlation-based Techniques and Matching without Minutiae

Generically, matching by correlation of images occurs when two fingerprint images are
superimposed and their similarity is computed through the correlation between correspond-
ing pixels for different alignments. However, this apparently simple operation rarely leads
to acceptable results, mainly due to undesirable changes of global structure and brightness
and contrast of the image, both depending on distortions and skin condition. Moreover, this
process may involve high computational costs.

In the specialized literature, there are various alternatives coped to palliate some of
the problems associated with correlation-based matching. For example, to alleviate the
distortion problem, some proposals use local windows around the minutiae [90], singular
points alignment before correlation [124] or advanced correlation filters [159]. To reduce the
computational complexity, the correlation is performed in local regions in the Fourier domain
[168], or using the Fourier-Mellin transform to maintain rotation and translation invariance
(149, 84], the symmetric phase only filter to reduce noise [66] and the curvelet transform [57].
Recently, there is a promising trend that transforms minutiae positions and orientations to
spectral representations in fixed-length feature vectors invariant to translations, rotations
and scale. They are suitable to be reduced by dimensionality reduction techniques to speed
up the matching process [171, 121].
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Table 2: Enumeration and classification of minutiae-based local matching methods

References Local Structure Type of Additional Minutiae Parameter
Topology Consolidation Features Peculiarities | Learning

[165] NN Incremental None None None
181, 6] NN Single None Types + RC None
[136] Radius Consensus None RC None
[94] Texture Multiple RF Types None
[181] NN Single Core None None
[5] NN Complex None None None
[63] Texture Single LO Types + RP None
[141] Not defined Not defined RF + GSI Not defined None
[150] Triplets None None RC None
[154, 166, 117] Texture Multiple LO None None
[29] NN Single None Types + RP None
[123, 182] Texture Multiple LO RP None
[127, 116] Triplets Multiple None None None
[142] Texture Multiple LO Types None
[170] Radius Multiple None None None
41 K-Plet Incremental Core Types None
46 Triplets Multiple None Types + RC None

7 NN Consensus None None MS
[134, 167] Texture Single LO None None
[132] Texture 4 Triplets Single LO None None
[155, 156] Texture Single LO RC None
[178, 183] Triplets Single None None None
[179] NN Single None Types None
[13] NN None None RC None
[35, 15] Radius Consensus None None None
36 Texture + Triplets Consensus LO None LS
39 K-Plet Incremental None Types None
40 Texture Single GSI None None
[50, 133, 187] Texture Multiple None RP None
[62, 96] Texture Consensus GSI RP None
193] K-Plet Complex None None None
[143] NN Consensus None RC None
[7] Texture Multiple GSI None None
[48, 2] Texture None None RP None
[61] Texture Complex GSI RP None
[131] Radius Consensus LO None None
[135] Texture Multiple None Types + RP None
[172, 177] Triplets Incremental None None None
[164] Texture Consensus LO RP None
18] Texture Single Core + GSI RC None

49 Radius + Texture Multiple RF + Core + LO | Types + RP MS
88 Triplets None None Types None
89 Radius Incremental None None None
115 K-Plet Single GSI Types None
162 K-Plet Single RF + GSI RP None
188 NN None None Types + RC None
[14] Texture Consensus None RC + RP None
[20, 152] Texture Complex None RP None
[21] Radius + Texture Multiple RF + LO RP MS
[87] NN Single GSI Types + RC None
114 Texture Incremental None Types + RP None
146 Radius None None None None
147] Texture None LO None None
173 Radius Consensus None Types + RC None
186 Triplets Multiple None Types None
[19] Texture Multiple RF + LO RP None
[26, 67] Cylinder Consensus None None None
[148] NN Multiple None None None
31 Texture + Triplets None GSI None None
42 K-Plet Incremental None RC + RP None
53 NN None None None None
[100] Texture + Radius Consensus GSI None None
[185] Triplets Single LO None None
17 Texture Multiple LO + Core RP None
18 Radius + Texture Incremental Core + LO RP None
23 Texture + Cylinder Consensus RF + LO + Core None None
33 Texture None GSI None None
43 Radius Multiple None Types None
55 Radius + Texture None LO + GSI None None
[119] Texture + Triplets None Core + GSI None None
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Other approaches perform fingerprint matching without the use of minutiae. They use
the so-called texture information, being the most popular the FingerCode approach [75],
which chains tessellated areas related to core points with Gabor filter to capture useful
texture information. FingerCode features have been used in later research [7, 122, 176].
Isolated orientation [91] or ridge information [169] can also be used for matching. Finally,
when high resolution images are available, level-3 features such as sweat pores, dots and
incipient ridges can be used instead of minutiae [68, 103].

4.2. Fingerprint Indexing

Fingerprint indexing arises from the necessity of quick access to the fingerprint tem-
plates database in identification tasks. Some indexing techniques use partial information
provided by the extracted minutiae of the fingerprint and build local structures centered
on each minutia to establish similarity relationships between fingerprints and key indexes.
This allows the ordering of candidate templates to increase the probability to match true
paired fingerprints. Actually, these approaches can be viewed as minutiae-based matching
approaches if the matching score is proportionally related to the number of coincident local
structures.

The pure indexing proposals found in the literature are those based on minutiae triplets,
which consider triangle-based characteristics to compute similarity among fingerprints, such
as lengths, angles, handleless [10], etc.; and triangulations to improve efficiency [99]. Other
indexing approaches utilize LO [105] and also RF [22]. Finally, several criteria for narrowing
the candidate list obtained from indexing are evaluated in [24].

4.8. Current Progress in Matching

Nowadays, the matching field is continually in progress, offering new developments to
improve personal identification. In the following, we briefly mention different matching
related issues being currently tackled:

e Accelerating fingerprint matching: many efforts have been performed to speed up the
matching process, for instance, by means of FPGA-based [79], GPU-based [59] parallel
architectures or distributed computing [130].

e Fingerprint matching in embedded systems: sensors [3] and smart cards [9].

e Latent fingerprint matching: it is a more complicated problem because these finger-
prints are inadvertent impressions left by fingers on surfaces [70, 128].

e Palmprint matching: based on ridges [44], minutiae [25, 32] and also effective ap-
proaches for latent matching [69, 102].

e Combinations with other traits and multiple matching: with face recognition [64],
multiple matching [73], multiple sample [38] and minutiae-based synthesis for matching
[158].
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e Privacy protection in fingerprint matching: which tries to avoid the traditional encryp-
tion with its associated decryption, which exposes the fingerprint to the attacker. Two
examples of recent techniques are the reverse MCC representation [51] and the combi-
nation of two different fingerprints into a new identity, based on minutiae, orientations
and singular points [97].

5. Experimental Evaluation of Local Minutiae Matching Methods

This section is devoted to perform an experimental evaluation of the most important lo-
cal minutiae-based matching algorithms. Subsection 5.1 establishes the experimental frame-
work, presenting information about the used databases, the performance measures, the
algorithms and their parameters. Then, Subsection 5.2 shows the analysis of the results of
the used methods over the public FVC databases. Subsection 5.3 presents a study over four
databases captured by the authors.

5.1. Ezxperimental Set Up

This section describes the databases (Subsection 5.1.1), the accuracy measures (Sub-
section 5.1.2) and the framework (Subsection 5.1.3) used to carry out the experimental
evaluation of the matchers.

5.1.1. Databases

We have used a wide variety of databases to test the performance and behavior of the
matching algorithms. Table 3 presents their characteristics, showing their size and the
average number of minutiae of the template and input fingerprints.

Table 3: Summary description of the used databases.

Denomination Number of | Impressions | Average template Average input

Fingerprints per finger minutiae number | minutiae number
FVC2000_dbla 100 8 49.51 48.93
FVC2000_db2a 100 8 58.43 57.97
FVC2000_db3a 100 8 132.97 144.18
FVC2000_db4a 100 8 36.88 37.10
FVC2002_dbla 100 8 53.11 49.69
FVC2002_db2a 100 8 61.87 56.93
FVC2002_db3a 100 8 58.23 57.52
FVC2002_db4a 100 8 50.52 49.78
FVC2004_dbla 100 8 49.01 62.84
FVC2004_db2a 100 8 64.45 64.19
FVC2004_db3a 100 8 94.52 98.63
FVC2004_db4a 100 8 55.00 52.61
DB1 1228 10 45.26 45.20
DB2 1228 10 145.79 142.94
DB3 1228 10 44.36 43.34
DB4 1228 10 44.50 43.35

First, we apply the algorithms over twelve of the well-known FVC databases, using the
first impression of each finger as template, and the other seven impressions as input. These

13



databases are designed for verification competitions, and therefore their fingerprints have
bad quality on purpose. More information about the FVCs databases can be found in
(110, 112, 111].

Four additional databases, captured by the authors’ research groups, are used for the
study. They simulate a real environment for identification with consented fingerprints cap-
tures of reasonable quality. All of them are composed by the same fingers, captured by four
different sensors (Table 4).

Table 4: Sensors used to capture the fingerprints.

Database | Sensor Sensor type | Fingerprint type
DB1 Upek Eikon Capacitive Swipe

DB2 Suprema RealScan-D | Optical Rolled

DB3 Suprema BioMini Optical Plain

DB4 SecuGen Hamster IV | Optical Plain

A total of 308 people participated in the study. The fingerprints of the thumb, forefinger
and middle finger of both their hands were captured along three different sessions. After
removing the failed captures, we selected three random input fingerprints per session and a
single template fingerprint for each finger and sensor. After this manner we get four final
databases that contain the same 1228 fingers captured by four different sensors.

5.1.2. Accuracy measures
The accuracy of a fingerprint matcher can be measured from two different perspectives:

e Verification: consists of matching two fingerprints to determine whether they corre-
spond to the same finger or not.

e Identification: tries to find the match of an input fingerprint in a database, comparing
it to all the templates.

Each perspective employs different accuracy measures. In this paper, we use the following
verification measures:

e False Matching Rate (FMR): rate of different fingerprints that are considered to be
the same by the matcher. Each possible score has an FMR associated; the higher the
score, the lower the FMR.

e False Non-Matching Rate (FNMR): rate of corresponding fingerprints that are erro-
neously considered different.

e Equal-Error Rate (EER): value (corresponding to a certain score threshold) where
FMR and FNMR are equal.

e ROC: curve that plots the Genuine Matching Rate (GMR = 1 — FNMR) versus the
FMR.
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e FMR100: lowest achievable FNMR for a FMR < 1%.
e FMR1000: lowest achievable FNMR for a FMR < 0.1%.
o ZeroFMR: lowest achievable FNMR for a FMR = 0%.

Within an identification process, most of the accuracy measures are related to the rank,
which is the position of the genuine score if all the obtained scores are ordered in descending
order. In other words, the rank is the minimum number of database fingerprints that have
to be returned by the identification system to ensure that the correct identity is included.
We use the following identification accuracy measures:

e True positive rate (TPR): percentage of test fingerprints that are correctly identified
in the database, when only the best matching score is retrieved. The TPR is the error
obtained when using a rank of 1.

e R100: lowest rank that allows an error lower than 1%.
e ZeroR: lowest rank that does not allow errors.

e Cumulative Match Curve (CMC): curve that represents the error associated to each
rank.

The optimum value for R100 and ZeroR is 1, whereas the worst one is the size of the
database.

In addition to all these values, the average matching time is also important to determine
if a matching algorithm is suitable for a certain identification system.

For reasons of space and concision, not all of these measures are presented in the paper.
The full set of results is accessible at http://sci2s.ugr.es/MatchingReview/.

Statistical tests allow to establish a fair comparison between the methods and to detect
significant differences. In this paper, we use the nonparametric tests recommended in [45, 54],
which claim to be simple, safe and robust.

Furthermore, we apply the Friedman test [52] to measure the differences between the
methods with a multiple comparison analysis. The Holm procedure is applied to find out
which algorithms are distinctive. !

5.1.8. Experimental framework

To compute these measures it is necessary to perform all the matching comparisons
between template and input fingerprints. In order to obtain the results within a reasonable
time, and to fix a common execution environment, all the experiments have been carried
out within the parallel framework proposed in [130], which speeds up the computation
while ensuring that the results are the same as in a sequential execution. The NIGOS

! Additional information about these tests, as well as the corresponding software, are available at http:
//sci2s.ugr.es/sicidm/.
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mindtct algorithm [165] has been used for the minutiae extraction. All executions have been
performed in a cluster of 12 machines, each of them with two Intel(R) Xeon(R) E5-2620
CPU at 2.00 GHz and 64GB RAM.

The empirical study involves 12 matching algorithms from those listed in Table 2. We
want to outline that all the implementations of the matching algorithms, excepting the
proposed in [165], were developed by us and they are only based on the descriptions and
specifications given by the respective authors according to their papers. It is also noteworthy
that our implementation of Feng’s algorithm only uses the minutiae features provided by the
minutiae extractor, and therefore is not as complex as the original algorithm. The parameter
values used for all matchers have been extracted from these papers and are shown in Table 5.
In the cases where the parameter values are not given in the original paper, we experimentally
selected values that suit the general case. We have not performed any training to adapt these
parameters, because our objective is not to maximize the accuracy, but to fairly compare
the matchers and their robustness in a common environment and upon different databases.

5.2. Analysis and Empirical Results on FVC Databases

This section analyzes the results obtained over the 12 FVC databases, in terms of veri-
fication and identification.

5.2.1. Verification

Tables 6 and 7 present the EER and FMRI100, respectively, as the error percentage
obtained for all tested algorithms over the 700 input fingerprints of each FVC database.
The best result for each database is stressed in boldface. Additionally, Figure 1 plots the
ROC curve for the most difficult FVC database (FVC2002_db3a, which obtains the highest
average EER).
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— - Chen
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- - MCC+L1
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o
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Figure 1: ROC curve for FVC2002_db3a

Bozorth3 is the best performing algorithm in general. If we focus on the EER, MCC also
obtains good results, while Deng is more accurate in terms of FMR100. The ROC curves
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Table 5: Parameters for the methods used in the experiments

Algorithm Parameters

Mindtct [165] | output format = ANSI INCITS 378-2004

image enhancement = enabled

Bozorth3 [165] | input format = ANSI INCITS 378-2004, Maximum number of minutiae = 150,

Minimum number of minutiae = 10

Jiang [81] wg = 1,wy = 54w, wy = 54w, w, = 0, w; =0
Consolidation step iterations = 5, Minutiae neighborhood size = 2
BG, =8,BGy = %,BGs =%

Ratha [136] Neigh=6, F,,;,=0.4, TM=8, RelDist=0.2, RidgesDiff=10,
EdgesDiff=0.1, MisMatch=10000
Tan [150] A,=10, A;=20, WindowsSize=32, Triplet sngc=2,

Tripletside:157T7‘iplCtminutieuDensity:27T7'Z'pletRidgeCount:27
TS=0.15, Te=30, T1=150, T5=100, Tp=12, Ty=8, MaxTriangleWidth=300

Tico [154] THpry = 25, Block = 16, NumRadius=4, TH R;=I1, T H Rp; =6,
THRapge=4, MTI1=6, 1=0.25

Deng [46] Minutiaeminpetanuy=20, TH1=36, T Hypym=20, T Hg4e=15,
Wo=1, Wy=W,=03180 73 1/, =TW;=6,
THy=8, THo=THy=TH,py= 1, TH, =3, THg,=0.2

Qi [132] THpgy = 25, Block = 16, PointSeg=3,MinutiaeSeg=6, LongSeg=18,

THR,=II, THRO:%, THRp;s=10, THR(mgle:%,
Wi=0.6,Wp=0.4

Chen [35] Thry =55,Thry =80,R =80, RS = 100,60, = 0.25,05 = 0.4
leny, = 5,1eny = 20, Thripp, = 0.7

Chikkerur [39] | K = 8, Bounding box = {8,7/6,7/6}

Feng [49] Neighborhood radius = 60, Translation Tolerance Box = §,

Rotation Tolerance Box = 7/6, Rotation maximum threshold = 57 /9,
Minimum normalized similarity = 7

MCC [26] R=70,Ny=16,N; =6,0, = ?—fﬁd = %”,uq, = 0.01, 7y = 400

w = 50, minyc = 0.75, miny = 2, miny g = 0.60,09 =

jus

2
Floating-point-based version: enabled, consolidation scheme= LSSR, up = 20

, MATy, = 12

wr = 0.5, =5,7p = 0.6, min,, =4

phy =L, 4 =5, 1 = —1.6,78 = 30,74 = =30, 0y = 5
MCCHL1 [23] | Blocky, = 16, Block; = 32, FVipng = 36, F'Viqdius = 4
W1=W3=0.16, W5=0.37, W,;=0.31, Threshold=0.4

show that Bozorth3, MCC and Deng dominate all methods, followed by Jiang.
These four algorithms are substantially different from each other. For example, MCC
uses cylinders as local structure, while Deng uses the texture and Jiang and Bozorth3 use
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Table 6: EER percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 7.481 12.945 43.557 25.711 83.286  7.633 25.446 69.143 37.840 20.013  8.207 24.804
FVC2000_db2a 8.751 16.451 42.499 37.143 87.429  9.308 20.124 66.143 39.406 22.252 8.578 20.725
FVC2000_db3a 18.750 24.954 41.996 30.965 95.857 14.814 29.978 64.714 43.219 40.022 20.216 23.152
FVC2000_db4a 5.817 8.166 42.042 24.228 91.857 17.006 41.777 46.571 36.498 32.259  6.026 20.144
FVC2002_dbla 15.286 16.312 41.761 26.366 80.000 16.676 34.640 63.571 40.776 15.067 15.325 23.287
FVC2002_db2a 14.564 13.404 38.141 27.708 79.571 12.959 27.852 46.000 37.840 15.254 12.553 22.166

FVC2002_db3a 20.062 27.686 46.093 33.002 95.286 21.258 37.346 86.714 43.462 31.922 21.867 32.015
FVC2002_db4a 21.003 23.281 42.641 29.839 88.857 24.352 39.921 90.286 36.369 23.692 23.988 26.181

FVC2004_dbla 17.374 24.999 44.405 40.286 98.429 20.409 42.930 83.571 47.938 23.209 19.562 28.592
FVC2004_db2a 17.183 23.798 45.195 38.728 48.000 20.766 35.354 85.143 42.102 29.003 19.786 31.675
FVC2004_db3a 6.265 13.834 43.545 31.792 79.000 9.396 31.119 29.714 43.415 35.287 10.037 18.699

FVC2004_db4a 26.189 31.438 42.315 33.712 65.286 28.372 40.106 93.286 40.029 29.240 28.122 27.160

Table 7: FMR100 percentages for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 13.334 20.269 98.704 67.550 90.591 12.764 50.339 100.000 97.107 76.583 14.239 79.610
FVC2000_db2a 18.712 27.582 98.647 80.952 94.609 18.435 47.920 100.000 96.458 89.613 18.564 71.068
FVC2000_db3a 37.876 54.204 98.619 89.996 98.250 28.632 95.592 100.000 08.114 97.057 46.071 82.449
FVC2000_db4a 14.012 15.944 98.621 77.234 100.000 31.254 88.820 100.000 95.597 89.744 9.657 66.374
FVC2002_dbla 24.967 25.806 98.605 67.114 92.114 22.380 56.529 100.000 97.442 52.155 22.192 76.952
FVC2002_db2a 22.645 20.300 98.378 64.810 94.427 17.357 46.073 56.559 97.010 48.794 19.363 72.116
FVC2002_db3a 37.324 56.179 98.830 85.811 100.000 39.946 74.281 100.000 97.974 90.282 47.915 86.162
FVC2002_db4a 52.152 51.010 98.655 80.990 96.435 51.858 75.166 100.000 96.911 85.916 51.861 86.607
FVC2004_dbla 36.286 51.935 98.748 92.937 98.631 41.550 77.401 100.000 08.048 87.091 36.503 86.848
FVC2004 _db2a 35.089 52.450 98.787 91.740 97.416 37.457 74.450 91.571 97.785 95.038 41.324 86.201
FVC2004_db3a 13.618 34.910 98.704 86.950 95.782 28.127 79.643 40.986 08.521 98.007 28.420 71.332
FVC2004_db4a 60.790 66.630 98.637 85.705 97.055 69.738 83.779 100.000 97.156 87.176 66.055 89.465

the nearest neighbors. The consolidation type is also different. However, it is noteworthy
that none of them use any additional features: Jiang and Deng use both the minutia type
and the ridge count, while Bozorth3 and MCC only use the basic minutia information.

It is also interesting that, even though MCC+L1 obtains good results when the GMR
is high, it does not improve the results obtained with the bare use of MCC. Note that the
MCC+L1 algorithm uses a different, less accurate variant of MCC (with binary encoding
and a different consolidation), meant to be very efficiently implemented on hardware.

This states that none of the characteristics described in Subsection 3.1 can be discarded
as worse than the rest: the verification performance is determined by the matching algo-
rithm as a whole, and each local structure and consolidation can supply useful information.
Nevertheless, the use of additional features does not always lead to more accurate results.

Along with the accuracy, the computational performance is a very important character-
istic of a fingerprint matching algorithm, especially when it has to deal with large fingerprint
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databases.

Table 8 summarizes the average matching times for the tests performed so far. Note
that these times are measured in computational time, and therefore are not affected by the
parallel framework in which the tests have been carried out.

Table 8: Average matching times (in milliseconds) for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 1.026 0.382 2.865 161.339 21.319 2.409 0.739 3.936 5.051 3.577 10.094 0.762
FVC2000_db2a 1.719 0.541 3.938 513.535 34.927 4.400 0.913 7.712 6.187 6.632 13.710 0.979
FVC2000_db3a 6.187 4.149 22.220 81277.765 228.140 91.468 4.653 51.330 91.320 46.758 82.510 4.854
FVC2000_db4a 3.145 0.234 1.606 49.119 11.242 1.284 0.466 2.249 3.330 2409 5.733 0.436
FVC2002_dbla 1.349 0.422 3.189 279.543 21.319 3.386 0.749 4.541 5.532 4.047 10.880 0.784
FVC2002_db2a 1.233 0.551 4.149 442.721 33.742 3.989 0.955 4.777 6.725 4.554 14.559 0.901
FVC2002_db3a 1.235 0.534 3.964 436.841 28.712 4.222 0.986 6.771 6.301 5.920 14.168 1.054
FVC2002_db4a 1.268 0.397 2915 338.823 18.921 3.697 0.784 5.163 5.046 4.770 10.334 0.745
FVC2004_dbla 1.488 0.491 3.656 313.619 16.544 3.849 0.942 6.434 5.563 5.553 12.253 0.801
FVC2004_db2a 1.534 0.680 4.845 853.888 33.527 5.448 1.292 9.432 7.482 7.922 17.974 1.275
FVC2004_db3a 16.566 1.850 10.815 10575.240 99.901 21.829 2.336 27.278 18.136 25.183 40.523 2.535
FVC2004_db4a 1.312 0.461 3.340 540.880 25.047 4.189 0.872 6.484 5.325 5.913 11.737 0.840

We can notice that in all cases, Jiang is the fastest algorithm, followed by Qi. The former
performs a simple consolidation and does not use any additional features, which makes the
computation very fast. The latter does not involve any consolidation, and therefore performs
all the matching process from a local point of view.

In the other extreme, the Tan’s algorithm is extremely slow, especially for databases with
more minutiae per fingerprint. This algorithm computes all the triplets of the fingerprints,
and compares them. This computation has factorial order and therefore takes a long time
for fingerprints with a certain number of minutiae. This is an example of an algorithm that
could be improved by a previous minutiae filtering.

It is curious to note that the Qi’s algorithm is very fast, although it also uses triplets.
However, it includes a first candidate selection using the texture, avoiding the creation of
all possible triplets.

If we compare the overall performance of the algorithms, we can observe that the consol-
idation bears a high weight in the runtime. Complex consolidations require more computing
time, as for MCC, Deng and Tico.

Another observation that can be made is that MCC+L1 is considerably faster than
MCC. This is due to the structure of MCC+L1, which first compares the L1 features of the
fingerprints, and applies MCC only if they are similar enough. This hierarchical matching is
able to save a lot of computing time, but also explains why MCC+L1 is often less accurate
than MCC.

Table 9 shows the results of the statistical tests for several accuracy measures, highlight-
ing Bozorth3, MCC and Deng as the best algorithms.
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Table 9: Statistical tests over the verification measures over the FVC databases

Algorithm EER |FMR100| FMR1000| ZeroFMR
Bozorth3 1.500 2.083 1.750 1.292
Jiang 4.000 3.500 3.833 3.458
Ratha 9.917 11.083 11.250 10.042
Tan 7.250 6.833 7.250 7.167
Tico 11.750 9.750 10.208 10.042
Deng 3.000 2.083 2.250 3.083
Qi 7.583 5.583 6.333 8.833
Chen 10.833 10.500 7.250 5.500
Chikkerur 9.000 9.917 10.625 10.042
Feng 5.333 7.500 7.833 9.458
MCC 2.500 2.333 2.167 2.250
MCC+L1 5.333 6.833 7.250 6.833
Friedman P-value|6.18e-011| 6.13e-11 5.33e-11 7.34e-11

5.2.2. Identification
Tables 10 and 11 summarize the R100 and TPR values, respectively. Finally, Figure 2
displays the CMC curves for the FVC2002_db3a database.

Table 10: R100 values for FVC databases (100 templates)

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 100 91 100 100 96 100 100 100 100 100 72 79
FVC2000_db2a 100 96 100 100 94 72 97 100 100 100 64 7
FVC2000_db3a 100 98 100 94 97 81 98 100 100 100 98 84
FVC2000_db4a 100 79 100 100 100 100 100 100 100 100 33 95
FVC2002_dbla 100 95 100 100 100 100 100 100 100 100 89 85
FVC2002_db2a 100 92 100 100 100 100 98 100 100 100 88 80
FVC2002_db3a 100 98 100 100 99 100 99 100 100 100 91 86
FVC2002_db4a 100 95 100 100 98 100 100 100 100 100 91 84
FVC2004_dbla 100 94 100 100 100 100 99 100 100 100 87 91
FVC2004_db2a 100 96 100 100 99 98 99 100 100 100 94 94
FVC2004_db3a 100 90 100 100 96 49 99 100 100 100 64 84
FVC2004_db4a 100 96 100 100 96 100 99 100 100 100 94 89

It is curious to observe that, while MCC+L1 is the best algorithm if we focus on the
rank, MCC obtains better numeric results (for example for FVC2000_-db4a) and Deng and
Bozorth3 have higher TPR in most cases. The CMC curves explain this behavior. For low
ranks, Deng and Bozorth3 perform better, and therefore have a lower TPR. MCC is slightly
below Deng in accuracy, while MCC+L1 obtains good results for very high ranks.

The high values obtained denote the difficulty of the FVC databases: the algorithms
need to return the majority of the databases in order to ensure that the genuine fingerprint
is returned. Note that the methods that have a value of 100 return the entire database.
Chen’s algorithm has a very low CMC curve because the matching score is often exactly
zero (when the compared fingerprints do not match some conditions). This causes some
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Table 11: TPR percentage for FVC databases

Database Bozorth3 Jiang Ratha Tan Tico Deng Qi Chen Chikkerur Feng MCC MCC+L1
FVC2000_dbla 87.857 78.571 37.714 50.143 10.857 86.286 49.286 29.286 3.000 28.571 85.286 43.429
FVC2000_db2a 82.857 T71.714 42.857 45.286 5.143 85.286 49.000 33.286 4.429 12.714 81.571 50.714
FVC2000_db3a 63.143 45.286 26.571 17.857 2.714 72.571 10.714 33.143 2.286  2.143 54.000 50.714
FVC2000_db4a 88.571 82.429 24.857 38.429 8.429 70.286 10.000 51.143 3.429 7.429 91.571 52.000
FVC2002_dbla 77.714 75.857 53.143 49.571 8.000 78.286 42.571 35.143 3.571 47.286 77.429 44.000
FVC2002_db2a 80.143 81.429 69.286 52.000 6.571 83.143 54.286 47.571 4.000 56.429 80.429 58.143
FVC2002_db3a 63.571 41.000 18.714 20.286 12.286 60.857 25.000 13.286 1.857 8.571 50.143 21.286
FVC2002_db4a 48.000 44.571 28.714 31.000 2.143 50.857 23.857 8.714 3.143 14.000 46.857 29.000
FVC2004_dbla 65.286 46.714 23.143 9.000 1.429 61.857 23.857 16.143 2.571 29.143 60.857 23.143
FVC2004_db2a 64.714 46.429 20.286 11.714 3.000 63.000 25.571 12.286 2.571 5.000 58.429 21.571
FVC2004_db3a 86.714 65.571 16.000 29.286 6.714 83.857 19.429 61.429 2.571 1.000 74.429 57.286
FVC2004_db4a 37.286 34.143 21.000 26.429 1.857 29.000 17.571 4.714 3.286 9.857 32.714 25.429
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Figure 2: CMC curves for FVC2002_db3a

genuine scores to be the lowest ones in the fingerprint database, and therefore the rank
necessary to ensure a certain identification accuracy is greatly increased.

Table 12 displays the results of the statistical tests.

In general, the identification results of these algorithms are similar to the ones obtained
for verification, and their behavior remains the same.

To conclude the study, Figure 3 outlines two directed-graphs for verification and identifi-
cation statistical results respectively. Each method is represented as a vertex, and the edges
connect two methods in which the Holm test has detected significant differences. Specif-
ically, in Figure 3a, those methods that receive an arrow are outperformed by the linked
algorithm in terms of EER, whereas in Figure 3b, we focus on the TPR measure. A Thick
line means that a method statistically outperform another considering all the verification or
identification measures. To simplify the graphs, the methods with identical differences with
the others have been grouped in the same nodes.
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Table 12: Statistical tests for the identification measures over the FVC databases

Algorithm TPR R100|ZeroR
Bozorth3 1.667 8.875| 7.375
Jiang 3.667 3.458| 4.083
Ratha 7.208 8.875| 7.375
Tan 7.083 8.292| 7.375
Tico 10.917 5.625| 6.917
Deng 1.917 6.333| 6.792
Qi 7.250 6.167| 7.000
Chen 8.417 8.875| 7.375
Chikkerur 11.583 8.875| 7.375
Feng 9.417 8.875| 7.375
MCC 2.833 1.958| 4.625
MCC+L1 6.042 1.792| 4.333
Friedman P-value|5.652e-11|5.652e-11| 0.089

The figure ratifies the analysis of the accuracy measures: Bozorth3, MCC, Jiang and
Deng are the most accurate algorithms for the FVC databases, with statistically significant
differences with respect to the other methods.

—oens
C Qo > Teo D Jiang

Chen

Chikkerur

Bozorth3
Deng

(a) Verification (b) Identification

Figure 3: Significant differences among the tested methods

5.8. Analysis and Empirical Results on Captured Databases

In the preceding section, the algorithms of Bozorth3 [165], Jiang [81], Deng [46] and MCC
[26] were highlighted as the most accurate for the FVC databases, as they are statistically
better than other methods both for verification and identification. This section performs a
deeper study upon the four captured databases described, focusing on these four algorithms.
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5.3.1. Verification
Table 13 presents the results obtained in terms of EER, FMR100 and FMR1000. Figure
4 displays the ROC curves.

Table 13: Verification performance measures (in percentages)

EER FMR100 FMR1000

Database |Bozorth3 Jiang Deng MCC | Bozorth3 Jiang Deng MCC |Bozorth3 Jiang Deng MCC
DB1 2.763 6.292 4.288 3.448 4.852 15.092 9.337 6.908 11.144 29.223 22.733 15.638
DB2 0.686 3.712 3.393 0.350 0.617 6.546 6.056 0.180 1.219 14.131 15.309 0.623
DB3 0.839 2.518 1.018 0.414 0.779 4.013 1.025 0.280 2,103 9.177 2.845 0.889
DB4 0.788 2.512 0.951 0.443 0.701 3.958 0.929 0.303 1.951 8.806 2.624 0.834

Database
— DBt
— DB2
— DB3
DB4

Algorithm
— Bozorth3
- - Deng

-+ Jiang
-= MCC

Figure 4: ROC curves for captured databases

Note that the error values for these databases are far better than those obtained for the
FVC ones, which are designed for test purposes and whose quality is deliberately bad.

In this case, MCC obtains the best results for all measures and databases except DB1,
in which Bozorth3 is better, and the ROC curves follow the same behavior. Jiang gets the
worst values among the three tested algorithms.

MCC and Bozorth3 only use the basic minutiae information to build their local struc-
tures, while Deng takes into account texture information and some minutiae peculiarities
such as the ridge count and the type. Therefore, the fact that Deng is able to obtain good
results with the FVC databases—even though it is outperformed by MCC and Bozorth3 for
the captured ones—suggests that the texture is less affected than the minutiae in the FVC
bad quality images.

It is also noteworthy that Jiang and Deng perform better with the DB3 and DB4
databases (plain fingerprints), while Bozorth3 excels on DB1 (swipe fingerprints), and MCC
obtains better results with DB2 (rolled fingerprints). This could happen due to the convex
hull computation carried out by MCC, which filters the minutiae on the borders of the fin-
gerprint. Bozorth3, Deng and Jiang do not carry out any special treatment on those areas,
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which are more prone to errors. In all cases, the DB1 database (captured with a narrow
swipe sensor) is the most difficult one for the verification.

As for the computing times, we observe the same behavior as with the FVC databases
(Table 14). Jiang is the fastest algorithm, followed by Bozorth3, MCC and Deng, which
involve more complex consolidations and more information.

Table 14: Average matching times (in milliseconds)

Database|Bozorth3 Jiang Deng MCC
DB1 3.679 0.469 11.178 6.061
DB2 12.076 7.501 175.132 64.826
DB3 3.227 0.415 9.057 5.884
DB4 3.184 0.423 9.054 5.797

5.3.2. Identification
To conclude this study, Table 15 and Figure 5 present the identification performance
measures and the CMC for the four tested algorithms over the four captured databases.

Table 15: Identification performance values (1228 templates)

R100 ZeroR TPR
Database |Bozorth3 Jiang Deng MCC |Bozorth3 Jiang Deng MCC | Bozorth3 Jiang Deng MCC
DB1 1228 866 147 237 1228 1228 1228 1169| 90.264% 69.942% 85.125% 84.057%
DB2 1 297 121 1 1228 1228 1220 1202| 99.077% 87.559% 93.838% 99.222%
DB3 1 172 6 1 1228 1224 1228 1027, 99.050% 90.771% 98.082% 99.285%
DB4 1 118 4 1 1228 1228 1228 1228| 99.168% 90.879% 98.172% 99.358%
Database
1.000 - fmimimim e imimimimim i imee — -y
§ NS aiateirt=t=tot bbbl — DB2
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3 =T DB3
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Figure 5: CMC curves for the captured databases

Again, MCC highlights as the most accurate algorithm, except for the DB1 database,
for which Deng obtains better R100 and Bozorth obtains better TPR. The CMC curves
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illustrate these results, showing that for low ranks, Bozorth3 performs better than MCC
and Deng over DB1. As the rank increases, the cumulative accuracy of Deng increases too.
This result contrasts with the verification analysis, which stated that both Bozorth3 and
MCC outperform Deng for all databases.

The explanation of this fact is that the verification performance measures are calculated
considering a fixed score. That is, each point of the ROC curve plots the FMR and FNMR
obtained with a certain score. However, the rank is independent of the numerical value
of the scores: it only takes into account their order. The different behavior of ROC and
CMC means that the score variability over these databases is higher for Deng than for MCC
and Bozorth3. This means that, given an input fingerprint, Deng can ensure with a high
confidence that the genuine score is higher than the impostor ones; however, it does not
ensure with the same confidence that the genuine and impostor scores of all fingerprints can
be separated by a certain fixed threshold.

Otherwise, the relative performance of the databases is maintained: the swipe sensor
provides fingerprints that are more difficult to recognize, as well as the DB2 sensor for rolled
fingerprints.

6. Conclusions

In this paper, we have compiled the most relevant work in the scientific literature about
fingerprint local minutiae-based matching. We have described the background in the field,
including some references about global matching and feature extraction techniques. Then,
we have studied the main properties of the local matching algorithms, as well as the infor-
mation they are based on, distinguishing between five different aspects: topology of local
structure, type of consolidation, usage of additional features, minutiae peculiarities and pa-
rameter learning. Using all this information we have built a taxonomy of more than 80 local
minutiae matching methods.

In order to complete the study, we have designed and implemented an experimental
framework using two sets of databases: 12 from the FVC competitions, which are publicly
available, and 4 databases captured by the authors’ research groups. The study analyzes
the results of 12 of the studied matchers, both in terms of verification and identification
performance measures.

After the work realized in this paper, the following conclusions can be drawn:

e Fingerprint matching is a very active field, with dozens of proposed matching methods.

e The obtained results reveal big differences in the accuracy of the matchers, highlighting
some of them as more precise than the others.

e The best performing algorithms do not share any special characteristics, although none
of them uses any fingerprint features apart in addition to the minutiae coordinates,
angle, type and ridge count.

e Furthermore, it has been seen that for different databases, different matchers may
be the most accurate. An especially revealing result is that there is a big difference
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between processing rolled, plain and swipe fingerprints, as the different number of
minutiae and the presence or not of minutiae on the borders affects the behavior of
the matchers.

e This states that some of the different approaches to design matching algorithms are
equally valid, and depend on the particular fingerprints.

e There is also a big difference in the computational complexity of the methods: the
fastest methods are more suitable for systems with very large fingerprint databases.

e This paper can help nonexperts to choose an appropriate matching algorithm that
suits their particular problem.

e [t can also help other researchers in the field to develop new matching methods, using
the components and properties described in this paper.

In our opinion, the specialized literature contains lots of ideas related to minutiae fin-
gerprint matching, some of them are quite similar and even it may be possible to find
overlap among them. Most of the fingerprint matching approaches introduced in the last
four decades are minutiae based. One of the reasons to expect minutiae-based algorithms to
perform well is the sheer amount of research done on this approach. Original ideas are those
which have served as inspiration of the rest of the matching methods. The majority of them
were analyzed in this paper with empirical studies, trying to fix one of the main problems
observed in this respect in the literature: almost all the proposals were compared under
different configurations and without a standard. However, this task is very tedious due to
the fact that the papers do not provide all the details to achieve a perfect implementation
of the idea presented, especially the information related to the values of the parameters
employed.

In the theoretical slope, we realize that the usage of isolated minutiae for matching,
although is enough to achieve competitive performance, falls short in more complex scenarios.
This is the reason that justifies the fact of real life implementations of fingerprint systems
that fuse fingerprints with other traits or employ double fingerprint inputs. The world-
wide large scale deployment of fingerprint systems demands a new generation of accurate
and highly interoperable algorithms; therefore the development of minutiae-only matching
algorithms will not be abandoned for a long time.

In the practical slope, the experiments have shown that none of the features established in
the taxonomy can be considered as better than the others, and that the matching algorithms
work as a whole. The same algorithms have also been proven to perform differently in
different databases. Therefore, all the local structures, consolidations and features described
in the taxonomy can be useful for future developments, as the key of an accurate matching
algorithm is an adequate use of these parts and not the parts themselves. It has also been
noted that the difference in the identification time can be huge depending on the used
methods, especially for rolled fingerprints. When time is a limited resource, care must be
taken on choosing local structures and consolidations that are at most linear or quadratic
with respect to the number of minutiae.
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As future research directions, we particularize the following ones:

e Biometric Fusion: the main advantage of fusion in the context of biometrics is an

improvement in the overall matching accuracy. This is commonly known as multi-
factor authentication and is considered more secure than using fingerprints alone as
these other factors have some of their own strengths. Combining fingerprints with other
biometric traits offers several advantages, such as the improvement of the universality
or the problems caused by the acquisition of poor quality images due to external
factors.

Indexing and Big Data: as we mention in Section 4.2, the indexing is particularly
useful when large volumes of fingerprints are stored every day. Identification task in
large data bases could become in a real challenge for obtaining quick responses for each
query. The employment of Big Data solutions to fingerprint matching and indexing is
incoming in the near future.

High quality images: in certain applications, it is possible to acquire high resolution
images in which at the very-fine level, intra-ridge details can be detected. These
include width, shape, curvature, edge contours of ridges as well as other permanent
details such as dots and incipient ridges. One of the most important fine-level details
is the finger sweat pores, whose positions and shapes are considered highly distinctive.
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Abstract

Fingerprint minutiae extraction is a critical issue in fingerprint recognition. Both
missing and spurious minutiae hinder the posterior matching process. Spurious
minutiae are more frequent than missing ones, but they can be removed by post-
processing. In this work, we study the usage of a state-of-the-art minutiae ex-
tractor, MINDTCT, and we analyze its major drawback: the presence of spurious
minutiae lying on the borders of the fingerprint and out its area. In order to over-
come this problem, we use two different filtering approaches based on the convex
hull of the minutiae and the segmentation of the fingerprint. We will analyze,
supported by an exhaustive experimental study, the efficacy of these methods to
remove spurious minutiae. We will evaluate both the effect on different state-of-
the-art matchers and the goodness of the minutiae, by comparing the extracted
minutiae with the ground-truth ones. For this purpose, the experiments have been
performed on several databases of both real and synthetic fingerprints. The filters
used allow us to remove spurious minutiae, resulting in more accurate results even
in the case of robust matchers. The EER is improved up to 2% for good quality
databases, and up to 25% for FVC databases. Additionally, the matching time
is accelerated, since less minutiae are processed, attaining up to a 60% runtime
reduction for the tested database.
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1. Introduction

Fingerprints are the most used features for biometric identification. Finger-
prints are present on the surface of fingertips and they are patterns formed of
ridges and valleys. Their individuality, which is determined by the local ridge
characteristics and their relationships (Hong et al., 1998), makes them appropri-
ate for identification purposes, since each individual has unique fingerprints. The
characteristics or features of a fingerprint are usually classified into three levels
(Maltoni et al., 2009; Feng and Jain, 2011):

o Level 1 (Global) refers to the global ridge line flow (orientations) and the
features derived from it (singular points).

e Level 2 (Local) considers minutiae details extracted from the ridge skeleton.

o Level 3 (Fine-detail) includes intra-ridge details such as width, shape, ridge
contours, sweat pores, creases, etc.

Level 2 features (minutiae) are the most commonly used ones for fingerprint
matching (Jiang and Yau, 2000; Deng and Huo, 2005; Chen et al., 2006; Cap-
pelli et al., 2010), that is, to check whether two fingerprints belong to the same
individual. Notice that neither Level 1 features nor Level 3 features are usually
considered for matching. The former ones because their distinctiveness is not suf-
ficient to accurately perform the matching, whereas the latter ones because they
require high quality fingerprints, which are not usually available.

In the last years, fingerprint recognition has acquired a big importance due
to its advantages for identifying people, but there are also legal concerns about
its use. One of the hot topics in research is the encoding of fingerprints, which
seeks to store the fingerprint in the database in a template format from which the
original image cannot be retrieved. There are many minutiae-based algorithms
that perform this task (Lee and Kim, 2010; Ahmad et al., 2011).

A minutia is defined as a local discontinuity in the fingerprint pattern (ridge
skeleton). Many minutiae types can be found in fingerprints, but only two of
them are considered by most of the Automatic Fingerprint Identification Systems
(AFISs): ridge endings and ridge bifurcations. The usage of minutiae provides
several advantages to the matching process: they are distinctive, compact and
human experts also use them to match fingerprints. Nevertheless, the extraction of
minutiae from fingerprint images is a difficult task (Maio and Maltoni, 1997; Hong
et al., 1998). Moreover, the difficulty increases as the quality of the fingerprint is
degraded.



As a consequence, minutiae extraction becomes a key component in the de-
velopment of AFISs (Ratha and Bolle, 2004; Maltoni et al., 2009). Two differ-
ent types of errors can be attributed to these methods: missing minutiae (non-
detected real minutiae) and spurious minutiae (non-existing detected minutiae).
Such errors might be produced by poor-quality images, but also due to creases
or scars in the fingerprint pattern. In addition to these errors, the quality of the
minutiae should also be assessed, that is, how close are the estimated minutiae
positions and angles from the real minutiae ones (Ratha et al., 1995; Gao et al.,
2010). Regarding erroneous minutiae, a missing minutia can only be recovered
(detected) improving the minutiae extraction method; otherwise, a spurious minu-
tiae can be detected and removed from the minutiae set by post-processing tech-
niques (Chikkerur et al., 2005).

This post-processing step is of great importance, since a large number of spu-
rious minutiae are usually detected on poor-quality fingerprints, whereas the num-
ber of correct minutiae detected might be enough to perform a successful matching
(around 12 correctly matched minutiae are usually sufficient to claim the individu-
ality of a fingerprint (Dass, 2010)). The removal of spurious minutiae, maintaining
the correct ones, improves the results of the matching process (Hong et al., 1998).

In this paper, we focus on the well-known MINDTCT minutiae extractor,
which is provided with NBIS software package (Watson et al., 2010). Our aim
is to study the behavior of two different approaches to remove borderline minu-
tiae and thus enhance the minutiae set given by MINDTCT: the usage of the con-
vex hull formed by the minutiae and a segmentation-based approach (presented in
Section 3). In this manner, we have a two-fold objective:

e First, we aim to improve the minutiae set obtained by MINDTCT eliminat-
ing the spurious borderline minutiae, using the two mentioned approaches.
Then, we will compare the quality of the original and the filtered minutiae
sets to validate the studied post-processing mechanisms.

e Second, we will investigate the influence of the spurious minutiae on several
matching methods to show that an adequate post-processing can be effec-
tive to enhance the results obtained in AFISs. More specifically, we will
show that robust methods are not severely affected by spurious minutiae in
terms of accuracy, whereas simpler ones can be highly influenced by their
presence. Furthermore, reducing the number of minutiae the computational
complexity of the matching is reduced, obtaining faster matching times,
which are also evaluated in this paper.



In order to carry out these objectives, we have developed an exhaustive exper-
imental study, where we aim to evaluate both the quality of the minutiae extracted
(with and without filtering) and the effect of the filtering methods in different
state-of-the-art matching methods (both in terms of accuracy and complexity). In
total, twelve databases of three different types have been evaluated: five databases
artificially generated with SFinGe (Cappelli et al., 2004; Maltoni et al., 2009), six
databases from the FVC competitions, and one database captured by the authors’
research groups. The parallel architecture presented in (Peralta et al., 2014) has
been used to allow the execution of huge amounts of matches in a reasonable time.
We will show that almost 75% of the spurious minutiae detected by MINDTCT
can be removed by an adequate post-processing, highly reducing the error rates of
the matchers (the reduction varies depending on their robustness) and their execu-
tion times.

The rest of the paper is organized as follows. In Section 2.1, we recall sev-
eral related works to minutiae filtering and quality evaluation. In Section 2.2,
we describe the quality measures used in this paper. In Section 3, we present
two different post-processing methods for borderline minutiae filtering. The ex-
perimental framework used to develop the experiments is presented in Section 4.
Next, Section 5 presents the experimental study carried out to evaluate both the
quality of the minutiae and the performance of the matching methods. Finally,
Section 6 concludes the paper and presents some future research lines based on
the obtained results.

2. Fingerprint minutiae

In this section, we first recall some related works to minutiae extraction and
post-processing. Next, we review some metrics already used to assess the quality
of the extracted minutiae with respect to the ground-truth ones.

2.1. Minutiae extraction in AFISs

Two types of minutiae detection algorithms can be found in the specialized
literature depending on how they deal with the fingerprint image. Binarization-
based methods (Jain et al., 1997; Watson et al., 2010) carry out a binarization
process followed by the thinning of the obtained image, producing a new image
from which the minutiae can be easily extracted. Thus, errors in both phases bring
along the detection of spurious minutiae. Otherwise, gray-level intensities-based
methods (Maio and Maltoni, 1997; Jiang et al., 2001) directly extract the minutiae
from the gray-scale image without requiring to pre-process the image. Although
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the pre-processing is avoided, these methods also produce spurious minutiae in
low quality fingerprints. Hence, independently of the method used to extract the
minutiae, two types of errors can be produced, as we have previously mentioned:
spurious and missing minutiae.

Focusing on the spurious minutiae, post-processing techniques can be con-
sidered in order to prune them. Two different approaches can be found in the
literature (Chikkerur et al., 2005; Maltoni et al., 2009):

1. Structural post-processing: heuristics based on the relative location and the
length of the ridges, among other structural information, are used to remove
minutiae (Jiang et al., 2001). These rules are usually strongly related to the
minutiae extraction algorithm. For example, in Xiao and Raafat (1991), a
number of structures resulting from the thinning of the image leading to
spurious minutiae were identified and different heuristics were proposed
to eliminate such minutiae. In Hung (1993) and Zhao and Tang (2007),
the authors take advantage of the duality property of the ridge endings and
bifurcations using the negative and positive gray-level images to detect and
prune minutiae.

2. Filtering based on gray-level: the gray-scale values in the neighborhood of
the minutiae are used to verify the minutiae. Most of these approaches rely
on previously labeled spurious and correct minutiae to train a classifier able
to decide whether each minutia is spurious or not. In Prabhakar et al. (2000),
the gray-scale values are directly used to train a Learning Vector Quantifier
classifier. Neural networks are used in Maio and Maltoni (1998), Santhanam
et al. (2007) and Kumar and Deva Vikram (2010) to learn to filter minutiae
with different pre-processing steps and features to represent the minutiae as
the input for the classifier.

MINDTCT extracts the minutiae from an input image following six steps: 1)
generation of image maps, 2) binarization of the image, 3) detection of the initial
minutiae set, 4) removal of spurious minutiae, 5) ridge counting between neigh-
boring minutiae and 6) assessment of the minutiae quality. Both the 4" and the 6"
steps are related to minutiae post-processing. The former aims to remove spurious
minutiae by structural post-processing, whereas the latter assigns a quality index
to each minutia, which allows for further processing of the minutiae. However, de-
spite these processes, a certain number of spurious minutiae are still present in the
extracted minutiae set, as it can be observed in Figure 1. Observe that most of the
spurious minutiae lie on the border between the fingerprint and the background.

Although we are centering our attention on MINDTCT, we should notice that
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there are several minutiae extractors in the literature (Maio and Maltoni, 1997;
Jain et al., 1997; Gao et al., 2010), but MINDTCT is still competitive, despite a
number of spurious minutiae are detected (Dass, 2010).

Figure 1: Ground-truth (marked with green crosses) and extracted (drawn as red circles) minutiae.

2.2. Minutiae Quality Evaluation

Minutiae quality can be understood in two ways. It can be related to the con-
fidence of the minutiae extractor algorithm on the extracted minutia. In this case,
the quality might help the matching process to reject fingerprints, remove low
quality minutiae or assign weights depending on the quality. The quality given to
each minutia by MINDTCT is an example of this type of quality. In MINDTCT
the quality is assigned depending on the gray-level of the pixels in the neighbor-
hood of the minutiae and on the local quality assigned to the minutiae location
(quality map). However, this quality is not adequate by itself for post-processing,
since low quality is assigned to areas near singular points, even though the minu-
tiae are correctly detected. This fact will be clearly shown carrying out several
experiments using the quality as filtering criterion (Section 5).

In this paper, we refer to minutiae quality (and its evaluation) as the quality of
the minutiae obtained with respect to the ground-truth ones. However, obtaining
ground-truth minutiae is a very difficult task. For this reason, we take advantage
of the SFinGe software tool (Cappelli et al., 2004; Maltoni et al., 2009), which
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generates realistic synthetic fingerprints, allowing a straightforward evaluation of
AFISs. Moreover, since the fingerprints are generated from minutiae, the ground-
truth minutiae become available (among other interesting ground-truth data) and
hence, it makes possible to properly evaluate the performance of minutiae post-
processing methods and to observe their influence on different matching algo-
rithms. Furthermore, the experiments carried out with SFinGe are easily repro-
ducible by other researchers using the same parameters for the generation process,
which are provided in Section 4. In addition, we carry out an indirect evaluation of
the minutiae in the fingerprint verification and identification problem considering
databases from the FVC and a real one.

In the specialized literature the Goodness Index (GI) has been considered to
measure the quality of minutiae with respect to the ground-truth ones (Hong et al.,
1998; Zhao and Tang, 2002). The GI combines the number of correctly detected
minutiae (paired with ground-truth minutiae, P), the number of spurious minu-
tiae (S) and the number of missing minutiae ()/) in a unique value, easing the
comparison between different methods. Its computation is shown in Equation 1,
where 7' is the total number of ground-truth minutiae. Notice that for the minutiae
pairing a tolerance box centered around each ground-truth minutia is used (in our
experiments this box is a 10 pixels radius circle). The maximum value of Gl is 1,
meaning that all ground-truth minutiae are correctly paired with the corresponding
detected minutiae and there are no missing minutiae (P = 7 and M = S = 0).
Hence, the greater the Gl is, the greater the quality of the detected minutiae is.

= PT‘MS (1)

Besides from the GI, other metrics to quantify the quality of the minutiae have
been used in the literature. That is the case of the True Positive Rate (TPR) and the
Positive Predictive Value (PPV). The TPR is the percentage of correctly detected
minutiae with respect to the number of ground-truth minutiae (TPR = P/T =
P/(P + M)), whereas the PPV is the percentage of correctly detected minutiae
among all the minutiae detected (PPV = P/(P+5)). Hence, the former is related
to the number of missing minutiae, whereas the latter is related to the number of
spurious minutiae.

In addition to these measures quantifying the accuracy of the minutiae, in the
sense that they measure the proportion of correctly detected minutiae, we propose
other metrics in Section 4.3.1 to measure, among the correctly detected minutiae,
how close are the localization and the orientation estimations of the minutiae with
respect to the corresponding ground-truth ones. This measurement is interesting in
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order to analyze the deviations produced by the minutiae extractors. Reasonably,
if a minutia is correctly detected but its localization or angle difference is large,
the extracted minutiae can be considered as spurious, whereas the real one can be
considered as missing.

3. Post-processing Methods for Borderline Minutiae Filtering

In this section we describe two alternatives for minutiae filtering. The former
uses a convex hull approach to find spurious minutiae (Section 3.1), whereas the
latter considers the segmentation of the fingerprint to filter the minutiae in the
borders (Section 3.2).

3.1. Convex hull-based filtering

The convex hull of a set of points .S is defined as the convex polygon that
contains all the elements of S with the smallest area. Figure 2 depicts an example
of the convex hull for a set of points. It shows the concept of convex hull as the
analogy of an elastic-band that surrounds the complete set S and then is released,
so that the enclosed points form the convex hull.

Figure 2: Convex hull example. Elastic-band analogy.

This idea has been widely used in the specialized literature as a simple, but
efficient, mechanism to remove spurious minutiae (Wen and Guo, 2009; Cappelli
etal., 2010). In this work, we implement the convex hull idea in conjunction with
the quality assessment mechanism of MINDTCT, providing an intuitive way to
filter the minutiae set.

A minutia m; is formed by four components (z;, y;, 0;, ¢;), where:

e (x;,y;) are the coordinates in the fingerprint image.
e 0, is the orientation or minutia angle.



e ¢, refers to the quality of the minutia.

Thus, after the minutiae detection process accomplished by MINDTCT, a fin-
gerprint F' can be represented as a vector of r minutiae m = {my, mo,...,m, }.
To determine which minutiae of a given fingerprint F' are susceptible of being
spurious, we focus on their coordinates x; and y; and their quality ¢; (with ¢ €

{1,...,7}.

My

P

9

Figure 3: Example of minutiae triplet in the Graham’s scan algorithm. In this case, the minutiae
m; does not belong to the convex hull.

Initially, the convex hull of the fingerprint minutiae set is calculated using the
Graham’s scan algorithm (Graham, 1972). This algorithm places a random point
P, among the minutiae, and converts their coordinates to polar. Then, the minutiae
are ordered by their newly calculated polar angle. The minutiae are grouped in
triplets according to their order, forming triangles as depicted in Figure 3. The
minutiae m; belongs to the convex hull if and only if o + 8 < 7. The process
is repeated for all triplets, obtaining the set of minutiae that form the convex hull
(m¢p).

Then, minutiae in mgcy with their quality lower than the threshold ¢ are in-
cluded in the set of candidate spurious minutiae m,. These minutiae are removed
from the original minutiae set m. If the resulting set has at least r,,;, minutiae,
it is taken as the final filtered minutiae set. Otherwise, the information loss is
considered too high and the filtering is not applied. Note that if ¢ is set to the
maximum quality value (100), the algorithm will remove all the minutiae in the
convex hull.

The main highlights of the convex hull approach are its simplicity and intu-
itiveness. The convex hull can be very easily superposed to the fingerprint image,
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and the correctness of the filtered minutiae can be visually checked. As for the
computational impact, our implementation has the complexity of the Graham’s
scan algorithm, which is of O(n log n), with n being the number of minutiae of
the fingerprint. Thus, the convex hull computation is reasonably fast.

However, this method has some drawbacks. The most important one is that it
is very sensitive to image translations, as it can be clearly observed in Figure 4,
which shows two captures of the same fingerprint. The fingerprint in Figure 4a is
correctly centered, and the convex hull is correctly detected, including most of the
image spurious minutiae. Otherwise, the fingerprint in Figure 4b is translated and
many of the minutiae that lie on the image borders are not spurious. The usage of
the MINDTCT quality parameter that we propose intends to reduce the impact of
this kind of translations. However, the quality assignment process of MINDTCT
assigns low qualities to the minutiae near the image borders, even when they are
correctly detected, and this may difficult the filtering process.

(b)

Figure 4: Convex hull of two captures of the same fingerprint.

3.2. Segmentation-based filtering

This method consists of detecting the fingerprint area in the image, that is, to
define a segmentation mask for the fingerprint. Once the mask is defined, all the
minutiae that were detected out of the fingerprint region or near the borders are
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deleted. In such a way, we aim to decrease the number of spurious minutiae while
maintaining the number of correctly detected ones.

The segmentation process combines the concepts presented in Ratha et al.
(1995); Hong et al. (1998); Bazen and Gerez (2001). A fingerprint image usually
has two well-differentiated areas: the background and the fingerprint itself. In
the former there are usually low variations of the gray-level intensities, since it
tends to be homogeneous (although the intensity may vary and can be different
depending on the device used). In opposite, the latter presents a high variance of
gray-level intensities due to the presence of ridges and valleys. On this account, an
effective methodology for fingerprint segmentation can be developed considering
the local variance (block-wise variance) of the pixel intensity values.

The operating procedure of the whole algorithm is presented hereafter:

1. Normalization: A desired mean M, and variance 1} for the fingerprint im-
age are established. The image is then normalized in such a way that its
mean and variance take values M and Vj, respectively. This pre-processing
reduces the gray-level variations along ridges and valleys, which facilitates
further processing. In our case, this phase allows us to set a global thresh-
old for all the images. Normalization is a pixel-wise operation in which a
new image I, 1S created starting from the original image [ (with original
mean and variance M and V, respectively) as follows.

hm(ing) = L M0 TV R i) > M @
norm\?, J]) = i\
M, — w otherwise.

2. Block-wise variance computation: The gray-level variance of each block in
the normalized image is computed (blocks of 8 x 8 pixels are used in our
experiments).

3. Thresholding: Each block is assigned to the background or to the fingerprint
depending on its variance following a global threshold (7;,). Blocks with
variance greater than the threshold belong to the fingerprint, whereas the
rest are assigned to the background.

4. Refinement: In order to obtain a unique fingerprint area, three iterations of
hole filling are carried out, where blocks discordant with more than half
of its 8-neighbors are changed. Then, an erosion process is performed to
ensure that the fingerprint region does not contain any background zone.

After carrying out the segmentation of the fingerprint, all the minutiae lo-
cated on blocks belonging to the background and whose quality is lower than ¢
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are pruned. In addition to these minutiae, those lying on the borderline blocks,
that is, in blocks having a background block in its 8-neighborhood, are also re-
moved. An example of the application of this process to the minutiae obtained us-
ing MINDTCT algorithm can be shown in Figure 5. The shaded area corresponds
to the background detected by the segmentation algorithm. We can observe that
the studied method has effectively removed a great amount of spurious minutiae
lying on the borders of the fingerprint.

Figure 5: Minutiae detected by MINDTCT algorithm and filtered by the segmentation-based ap-
proach. Blue means low quality and red means high quality.

4. Experimental Framework

In this section, we show the main aspects related to the experimental setup
that we will use in this work. Section 4.1 details the databases used. Section 4.2
summarizes the methods used in this study with their respective parameters. Fi-
nally, Section 4.3 describes the performance measures needed to provide a faithful
comparison of the obtained results.

4.1. Databases

This section describes the 12 databases used for this study, grouped into three
categories: 5 SFinGe-generated (Section 4.1.1), 6 FVC databases (Section 4.1.2)
and a real database captured by the authors (Section 4.1.3).
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4.1.1. SFinGe databases

To evaluate the efficacy of the analyzed minutiae filtering techniques we will
use the SFinGe tool (Cappelli et al., 2004; Maltoni et al., 2009) to generate five
synthetic databases with different sizes. This software allows us to control the
quality and other features of the generated fingerprints. In order to make the
generation process reproducible, Table 1 shows the configuration parameters of
the SFinGe tool that we have used to generate the databases. These parameters
have been selected aiming to obtain realistic fingerprints that offer a wide range
of image qualities, including very low quality fingerprints with highly corrupted
areas.

Scanner parameters

Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm).
Resolution: 500 dpi, Image size: 288 x 384.
Background type: Optical, Background noise: Default.
Crop borders: 0 x 0.

Generation parameters

Impression per finger: 25. Class distribution: Natural.
Set all distributions as: “Varying quality and perturbations”
Generate pores: enabled, Save ISO templates: enabled.
Output settings

Output file type: WSQ.

Table 1: Parameter specification used with SFinGe tool.

In the five databases, we have generated 25 impressions of each fingerprint.
For each fingerprint, we have to differentiate between template and input impres-
sions. In order to perform a more real setup, we carry out an enrolment process
in the synthetic databases. This process selects a good quality impression as tem-
plate, ensuring a minimum of 40 ground-truth minutiae. In case that all 25 impres-
sions have less than 40 minutiae, the sample with the highest number of minutiae
is taken as template. The remaining 24 samples are considered as input finger-
prints. Table 2 presents the characteristics of the databases generated, showing
the size of the databases and the average number of ground-truth minutiae of the
template and input fingerprints.

4.1.2. FVC databases

In order to get the most realistic behavior, we have only taken those FVC
databases that contain real fingerprints. Thus, we have used DB1A and DB2A
from FVC2000 (Maio et al., 2002a), FVC2002 (Maio et al., 2002b) and FVC2004 (Maio
et al., 2004), making a total of six real databases, whose main features are de-
scribed in Table 2.
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Denomination Number of | Impressions | Average template Average input

Fingerprints per finger | minutiae number | minutiae number
BD1 1000 25 40.79 36.84
BD2 1000 25 40.90 36.79
BD3 1000 25 41.29 37.28
BD4 2000 25 40.84 36.81
BD5 5000 25 40.97 36.98
FVC2000_dbla 100 8 49.51 48.93
FVC2000_db2a 100 8 58.43 57.97
FVC2002_dbla 100 8 53.11 49.69
FVC2002_db2a 100 8 61.87 56.93
FVC2004_dbla 100 8 49.01 62.84
FVC2004_db2a 100 8 64.45 64.19
Captured 1530 9 44.63 45.92

Table 2: Summary description of the databases.

4.1.3. Captured database

To complete this study, the experiments have been repeated with a database
of real fingerprints, which have been captured by the authors’ research groups in
three different cities. The fingerprints have been captured with an optical sensor
(SecuGen Hamster Plus), and belong to the thumb, forefinger and middle finger of
both hands of 356 people. The captures were taken within three different sessions,
between two and three weeks apart, obtaining two template images and twelve test
images (four per session) per fingerprint.

After removing failed captures and selecting a single random template image
and three random test images per finger and per session, the final database is
formed by 1530 template fingerprints and 13770 input fingerprints, whose overall
statistics are shown in Table 2.

4.2. Algorithms and configuration of the parameters

Minutiae-based matching algorithms can work at different levels with the
minutiae sets, comparing small groups of them (local approaches), using the whole
minutiae sets (global approaches) and combining both philosophies (hybrid ap-
proaches). In this work, we will use four well-known minutiae-based matchers:
Jiang (Jiang and Yau, 2000), Deng (Deng and Huo, 2005), Chen (Chen et al.,
2006) and MCC (Cappelli et al., 2010). These matchers are briefly describe here-
after:

e Jiang’s algorithm is a classical hybrid matching algorithm in which each

minutia is represented with a feature vector that is related with its neigh-
boring minutiae. Thus, the most similar pair of feature vectors should
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correspond to the same minutia, and the remaining minutiae are globally
matched, obtaining the similarity score.

Deng’s algorithm also presents a hybrid approach, but is based on the minu-
tiae graph triangulation. Once the triangle set of each fingerprint is com-
puted using the Delaunay triangulation, the algorithm calculates the global
score associated to each triangle pair. The final score is the maximum global
score.

Chen’s method is local and focuses on getting robustness despite of the
fingerprint distortion. It calculates a local topology for each minutia with a
fixed radius. Then, it compares local topologies of fingerprints to establish
the similarity. If they are similar enough, it includes a second comparison
with a higher radius, aiming to avoid image distortion problems.

MCC uses both local and global information to perform the matching, build-
ing tridimensional data structures (called cylinders) from minutiae distances
and angles. This method includes its own filtering process that is based on
the convex hull idea. In our experiments we will test two versions of this
algorithm depending on the cylinder’s size (8 and 16), disabling its own
filtering process when it is used in combination with the analyzed filtering
methods to avoid a double removing stage. We will call these modified vari-
ants MCC8n and MCCl16n, to distinguish them from the original algorithm
with the embedded filtering method.

Algorithm Parameters Reference
Mindtct output format = ANSI INCITS 378-2004, image enhancement = enabled | (Watson et al., 2010)
Convex hull Tomin = 12 Section 3.1
Segmentation | 1/, = 100, V; = 1000, T, = 30 Section 3.2

THR; =55THRy = 80, R = 80, RS = 100,
Chen LENp =5,LENy =20,THETA = 0.25 (Chen et al., 2006)

THETAy =04, THRTOPO =0.7

Wy =1,W,=0.3-180/7, W3 = 0.3-180/m, Wy = 6, W5 = 6,
Deng TH, =36, THpum = 20, THegge = 15, THq = 8, THy = 7 /6, (Deng and Huo, 2005)
THy=m/6,TH,. =3,THg;, = 0.2, TH,,y = 7/6,

Wy =1,W,=0.3-180/m, W3 = 0.3-180/m, Wy = 3, W5 = 3,
Jiang Consolidation step iterations = 5, Minutia neighborhood size = 2 (Jiang and Yau, 2000)
BG, =8,BGy =7/6,BG3 =7/6

R =70, N, € {816}, Ny=6,0,=28/3,04=2/9 -7, py =1/100
7y =400, w = 50, minyc = 0.75, miny, = 2, minyp = 0.60,
MCC Floating-point-based version: enabled, pp = 20, 7p = 2/5, (Cappelli et al., 2010)
ming,, = 4, maz,, = 12,wg = 0.5, 4 = 5,7{ = —8/5,

b =m/12,75 = =30, s = 7/12, 75 = =30, 1,0 = 5,09 = 7/2

Table 3: Specification of the parameters.
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Note that these algorithms are translation and rotation invariant. The con-
figuration parameters of all the methods used in this study are common for all
databases, and they were selected according to the recommendation of the cor-
responding authors (Table 3). This can be done because the study is performed
comparing the algorithms with themselves. Furthermore, this parameter setting
allows future comparisons for other studies, and produces a more realistic setup,
avoiding the overfitting that may arise from specific parameter optimization. The
value for the r,,;, parameter was selected because at least 12 minutiae are needed
to claim the individuality of a fingerprint (Dass, 2010).

4.3. Performance measures

In this section we present the three different types of performance measures
that we used to evaluate the minutiae filtering methods from different perspectives.
In Section 4.3.1, we describe the first group of metrics, which are related to the
quality of the detected minutiae in comparison with ground-truth minutiae. These
metrics aim to extend those defined in Section 2.2. The second ones are devoted to
measure the performance of the matching algorithms in the fingerprint verification
problem (Section 4.3.2). Finally, the third group aims to measure the identification
performance of the algorithms (Section 4.3.3).

4.3.1. New minutiae quality evaluation metrics

In addition to the measures explained in Section 2.2, in this work we propose
a simple similarity measure not to replace the previous proposals, but to expand
them providing information about the difference between ground-truth minutiae
and the corresponding correctly extracted minutiae. In conjunction with GI, TPR
and PPV, the proposed metrics provide more information about how similar are
two sets of minutiae.

These metrics measure the difference between the location and angle estima-
tion of the extracted minutiae and the ground truth ones. They are computed as
follows. For each ground-truth minutia, the nearest extracted minutia in a ten pix-
els radius is selected as matched minutia (which cannot be then matched with a
different ground-truth minutiae). If there are no extracted minutiae in this area,
the ground-truth minutia is marked as missing. When all the ground-truth minu-
tiae are categorized as matched or missing ones, the remaining extracted minutiae
(if any) are considered to be spurious. After this process, for each paired minu-
tiae their euclidean distance in pixels is computed. Finally, the average of the
euclidean distances of all pairs is obtained to measure the location error. This
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error is denoted as Mean Euclidean Distance (MED). Similarly, the absolute av-
erage difference between the angles of the matched minutiae pairs (in degrees) is
computed and denoted as mean angle distance (MAD).

4.3.2. Measuring the performance of the matchers in the verification problem

In order to measure the effectiveness of the matchers, we consider the well-
known False Matching Rate (FMR), False Non-Matching Rate (FNMR), and Equal-
Error Rate (EER), which indicates the value where FMR and FNMR are equal.
Furthermore, we use other useful indicators such as FMR100 (the lowest achiev-
able FNMR for a FMR < 1%) and FMR1000 (the lowest FNMR for a FMR
< 0.1%).

4.3.3. Measuring the performance of the matchers in the identification problem

The measures presented in the preceding section offer average values for 1vsl
comparisons. Thus, we use some additional values to complete the scope of our
study, which use the concept of rank. Within an identification process, where
the input fingerprint is compared to all template fingerprints in a database, the
rank is the position of the genuine score if all the obtained scores are ordered in
descending order. In other words, the rank is the minimum number of database
fingerprints that have to be returned by the identification system to ensure that the
correct identity is included. The accuracy measures in these case are R100 (lowest
rank that allows an error lower than 1%) and R1000 (lowest rank that allows an
error lower than 0.1%). The optimum value for these measures is 1, whereas the
worst one is the size of the database.

Additionally, the CMC (Cumulative Match Curve) is used to show graphically
the behavior of a matching algorithm. The curve shows the error associated to
each rank.

5. Experimental Study

This section presents all the experiments that have been designed for this work.
There is one section for each of the tested databases: SFinGe (Section 5.1), FVC
(Section 5.2) and captured (Section 5.3). As we have mentioned, this experimen-
tation has several objectives, and we have divided this section accordingly:

1. To check the accuracy of the different matchers when using the minutiae
extracted by MINDTCT in comparison the accuracy obtained with a perfect
minutiae extractor that obtains ground-truth minutiae (Section 5.1.1).
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2. To verify the usefulness of the MINDTCT minutia quality value. The same
accuracy measures from the verification and identification problems are
used to compare the results when only minutiae over a certain quality thresh-
old are used for the matching (Section 5.1.2).

3. To measure the quality of the extracted minutiae with respect to the filtered
ones. The quality measures described in Sections 2.2 and 4.3.1 are com-
puted for all the minutiae sets, comparing whether the quality of the filtered
minutiae overcome that of the original ones (Section 5.1.3).

4. To test the effect of the convex hull and segmentation filters in both types of
matching problems considered. We perform an analysis of the verification
and identification accuracy measures (Sections 5.1.4, 5.1.5, 5.2 and 5.3).

5.1. SFinGe databases

In this section, we use the SFinGe databases, which provide the ground-truth
minutiae, to study the minutiae statistics and the behavior of the minutiae extractor
and all the proposed filtering schemes along with several minutiae matchers.

5.1.1. Performance evaluation with MINDTCT vs ground-truth minutiae

The first step of this experimental study consists of comparing the results
obtained with the minutiae extracted by MINDTCT with those obtained using
ground-truth minutiae, in order to quantify the loss of accuracy.

Following the experimental framework established, Table 4 shows the verifi-
cation performance measures obtained for each matching algorithm and database.
In this table, we observe that the matching algorithms maintain their respective
performance ranking independently of the minutiae considered (ground-truth or
MINDTCT). MCC16 is the best performing algorithm in all the databases, while
Deng is by far the worst algorithm. Nevertheless, except for the Deng algorithm,
the achieved error rates are very low for ground-truth minutiae, whereas they suf-
fer great increase when MINDTCT minutiae are used. The bad behavior of Deng’s
algorithm could be explained because it uses additional information (the ridge
count) that is not included in the ground-truth information provided by SFinGe,
and therefore it has to be obtained from the data extracted by MINDTCT. How-
ever, the element that provides the most information to Deng’s algorithm is still
the minutiae set itself.

The results on the identification problem for the same algorithms and databases
are also shown in Table 4. It can also be observed that MINDTCT introduces
noise and erroneous information deteriorating the results obtained, as expected.
It can be noted that although Deng is the less accurate algorithm, Chen obtains
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EER FMR100 FMR1000 R100 R1000
Matcher GT | MIND. GT | MIND. GT | MIND. | GT | MIND. | GT | MIND.
Chen 0.2291 | 5.6618 | 0.1750 | 10.4083 | 0.3750 | 19.3000 1 1000 || 1000 1000
Deng 13.0702 | 15.6673 | 22.3917 | 23.5375 | 24.8125 | 26.7208 | 869 873 || 983 983
BD1 | Jiang 0.1047 | 2.3267 | 0.0375 | 3.3958 | 0.1292 | 8.4833 1 58 1 789
MCC8 0.0137 | 0.5712 | 0.0000 | 0.7292 | 0.0042 | 1.1375 1 1 1 163
MCC16 0.0091 | 0.5368 | 0.0042 | 0.7708 | 0.0042 | 1.1833 1 1 1 148
Chen 0.2510 | 5.2323 | 0.1833 | 9.5208 | 0.3875 | 17.9458 1 1000 || 1000 1000
Deng 13.3764 | 15.3131 || 22.6708 | 23.4917 | 24.725 | 26.3875 | 851 866 | 977 981
BD2 | Jiang 0.0964 | 2.2146 | 0.0333 | 3.2500 | 0.1250 | 7.6042 1 33 1 648
MCC8 0.0252 | 0.3988 | 0.0083 | 0.4458 | 0.0125 | 0.7792 1 1 1 59
MCC16 0.0148 | 0.3792 | 0.0000 | 0.4208 | 0.0000 | 0.7333 1 1 1 30
Chen 0.1988 | 5.4133 | 0.1500 | 10.8167 | 0.3250 | 19.4750 1 1000 || 1000 1000
Deng 13.8259 | 14.3113 || 22.9417 | 23.8042 || 25.225 | 26.6875 || 863 848 || 981 978
BD3 | Jiang 0.1531 | 23961 | 0.0750 | 3.6417 | 0.1625 | 8.0125 1 51 1 825
MCC8 0.0256 | 0.5017 | 0.0042 | 0.8042 | 0.0042 | 1.2167 1 1 1 97
MCC16 0.0161 | 0.4663 | 0.0042 | 0.7000 | 0.0083 | 1.1125 1 1 1 88
Chen 0.2399 | 5.4464 | 0.1792 | 9.9646 | 0.3812 | 18.6313 1 2000 || 2000 2000
Deng 13.1484 | 15.2916 | 22.4583 | 23.5833 | 24.4813 | 26.525 || 1722 1739 || 1959 1964
BD4 | Jiang 0.1013 | 2.2647 | 0.0354 | 3.3792 | 0.1313 | 7.7250 1 90 1 1514
MCC8 0.0207 | 0.4910 | 0.0042 | 0.5771 | 0.0083 | 0.9479 1 1 1 177
MCC16 0.0119 | 0.4538 | 0.0021 | 0.6125 | 0.0021 | 0.9958 1 1 1 152
Chen 0.2122 | 5.4377 | 0.1667 | 11.0333 | 0.3308 | 19.3142 1 5000 || 5000 5000
Deng 12.8995 | 13.8054 | 22.3058 | 23.5075 | 24.7092 | 26.9992 || 4309 4311 || 4912 4909
BDS5 | Jiang 0.1106 | 2.3017 | 0.0533 | 3.5650 | 0.1325 | 7.9992 1 250 1 3923
MCC8 0.0225 | 0.4860 | 0.0033 | 0.7542 | 0.0050 | 1.1925 1 2 1 430
MCC16 0.0178 | 0.4558 | 0.0025 | 0.6642 | 0.0050 | 1.0967 1 2 1 362

Table 4: Verification and identification results for ground-truth and MINDTCT minutiae.

the maximum possible values in most of the cases. This is due to some outliers,
corresponding to genuine scores with value zero. These outliers appear because
by definition the rank is a maximum value. The other matchers do not have out-
liers in their results, although it can be observed that MINDTCT minutiae perform
considerably worse than the perfect results achieved using ground-truth minutiae.

5.1.2. MINDTCT quality value

The previous results confirm that the minutiae extraction process is a critical
step in a fingerprint identification system, and thus a deeper study of the extracted
minutiae must be performed. As explained in Section 2.2, MINDTCT algorithm
provides a quality value for each extracted minutia. Figure 6a shows the aver-
age quality distribution per fingerprint of the five considered databases. As all
databases have been generated using the same parameters with SFinGe, the av-
erage characteristics are very similar. Figure 6b shows how much the average
number of minutiae per fingerprint is reduced when we filter the minutiae with a
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basic quality threshold. These figures follow a very clear pattern, marking three
sharp separations: 10, 30 and 50. According to Figure 6b, these thresholds leave
each fingerprint with an average of 45, 32 and 21 minutiae, respectively.
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Figure 6: Average quality distribution of the minutiae for each fingerprint

EER FMR100 FMR1000
Matcher | MIND. | Th-10 | Th-30 | Th-50 || MIND. | Th-10 | Th-30 | Th-50 || MIND. | Th-10 | Th-30 | Th-50
Chen 5.6618 | 5.7528 | 5.3506 | 9.4004 || 10.4083 | 10.5167 | 11.0500 | 24.3593 || 19.3000 | 21.1500 | 19.0958 | 49.2020
Deng 15.6673 | 15.5481 | 14.8782 | 19.2270 || 23.5375 | 23.4917 | 25.1292 | 43.9963 || 26.7208 | 27.3333 | 29.3583 | 91.3285
BD1 | Jiang 23267 | 2.3030 | 2.8475 | 5.5472 | 3.3958 | 3.3292 | 4.2083 | 8.5779 | 8.4833 | 7.3208 | 8.0208 | 13.3169

MCC8 0.5712 | 0.6833 | 1.4845 | 4.8255| 0.7292 | 0.9917 | 2.7167 | 6.2521 1.1375 | 1.5458 | 3.6625 | 8.6728
MCC16 0.5368 | 0.7152 | 1.5154 | 3.2427 || 0.7708 | 0.8792 | 2.4083 | 5.9386 || 1.1833 | 1.8750 | 3.3250 | 8.3382

Chen 52323 | 54240 | 4.8810 | 8.8163 || 9.5208 | 9.8583 | 11.6667 | 22.6625 || 17.9458 | 19.5583 | 17.6333 | 57.9000
Deng 15.3131 | 15.2669 | 15.1866 | 17.1155 || 23.4917 | 23.3208 | 24.5500 | 49.1909 || 26.3875 | 26.0875 | 29.9583 | 90.9910
BD2 | Jiang 2.2146 | 21769 | 2.7535| 5.0819 || 3.2500 | 3.0375 | 3.9000 | 7.6144 | 7.6042 | 7.0708 | 8.0208 | 12.5740

MCC8 0.3988 | 0.5862 | 1.4593 | 4.7469 || 0.4458 | 0.5542 | 24250 | 6.1073 | 0.7792 | 1.5625| 3.2208 | 8.3406
MCC16 0.3792 | 04814 | 1.5318 | 2.9973 || 0.4208 | 0.5667 | 2.1667 | 5.7223 || 0.7333 | 1.0750 | 2.8875 | 7.8217

Chen 54133 | 57154 | 51666 | 9.0655 | 10.8167 | 14.8458 | 12.2917 | 24.0875 || 19.4750 | 21.8500 | 19.7417 | 54.9708
Deng 14.3113 | 14.1980 | 15.9426 | 17.0402 || 23.8042 | 24.1667 | 25.2000 | 50.4087 || 26.6875 | 27.5667 | 31.2750 | 92.3757
BD3 | Jiang 23961 | 22342 | 25970 | 5.0475| 3.6417 | 3.7083 | 4.1958 | 8.0364 | 8.0125 | 7.1333 | 7.6583 | 11.8586

MCC8 0.5017 | 0.8578 | 1.7641 | 4.8308 || 0.8042 | 0.9250 | 2.4500 | 6.0547 || 1.2167 | 1.4042 | 4.0583 | 8.4749
MCC16 0.4663 | 0.7144 | 1.8139 | 3.1029 | 0.7000 | 0.4875 | 2.2042 | 5.7415| 1.1125| 12958 | 3.7375 | 7.8945

Chen 5.4464 | 5.5880 | 5.1159 | 9.1090 || 9.9646 | 10.1875 | 12.4354 | 23.5109 || 18.6313 | 20.5292 | 18.3646 | 54.3595
Deng 15.2916 | 15.3520 | 15.1611 | 17.2930 || 23.5833 | 23.4479 | 24.7979 | 48.5937 || 26.5250 | 27.0562 | 29.1187 | 90.7194
BD4 | Jiang 22647 | 2.2230 | 2.8559 | 5.1915 | 3.3792 | 3.2042 | 4.2292 | 7.9669 || 7.7250 | 7.2792 | 7.9583 | 12.7704

MCC8 0.4910 | 0.6360 | 1.4514 | 4.7531 | 0.5771 | 0.7583 | 2.6021 | 6.1901 || 0.9479 | 12542 | 3.4875| 8.5213
MCC16 0.4538 | 0.5909 | 1.4862 | 3.1016 | 0.6125 | 0.7500 | 2.3146 | 5.8868 || 0.9958 | 1.2417 | 3.1396 | 8.1405

Chen 54377 | 5.6067 | 51790 | 9.2726 | 11.0333 | 14.6792 | 12.5333 | 24.8677 || 19.3142 | 19.1517 | 18.5242 | 54.5388
Deng 13.8054 | 14.1424 | 13.8936 | 17.3177 || 23.5075 | 24.0117 | 25.7600 | 49.3406 | 26.9992 | 26.6008 | 31.2533 | 91.7535
BD5 | Jiang 23017 | 2.2976 | 2.8379 | 52062 || 3.5650 | 3.2367 | 4.3425 | 7.9578 | 7.9992 | 7.2158 | 8.1425 | 12.8853

MCC8 0.4860 | 0.6420 | 1.4924 | 4.8992 | 0.7542 | 0.7500 | 2.6583 | 6.5453 || 1.1925| 12167 | 3.5500 | 8.9515
MCC16 0.4558 | 0.6182 | 1.4716 | 3.2772 | 0.6642 | 0.6875 | 2.4325 | 6.2481 1.0967 | 1.7033 | 3.2825| 8.5172

Table 5: Verification results obtained using different quality thresholds to filter the minutiae.
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R100 R1000
Matcher | MIND. | Th-10 | Th-30 | Th-50 | MIND. | Th-10 | Th-30 | Th-50
Chen 1000 | 1000 | 1000 999 1000 | 1000 | 1000 | 1000
Deng 873 869 880 906 983 984 985 990
BDI | Jiang 58 53 107 855 789 709 915 992
MCC8 1 2 44 102 163 156 630 210
MCC16 1 2 34 130 148 112 548 272
Chen 1000 | 1000 | 1000 | 1000 1000 | 1000 | 1000 | 1000
Deng 866 862 869 896 981 980 982 981
BD2 | Jiang 33 25 76 809 648 671 925 994
MCC8 1 1 35 51 59 104 667 114
MCC16 1 1 27 62 30 88 660 145
Chen 1000 | 1000 | 1000 | 1000 1000 | 1000 | 1000 | 1000
Deng 848 838 859 898 978 981 979 981
BD3 | Jiang 51 39 87 779 825 786 879 991
MCC8 1 1 42 85 97 85 596 192
MCC16 1 1 27 91 88 97 507 221
Chen 2000 | 2000 | 2000 | 1999 2000 | 2000 | 2000 | 2000
Deng 1739 | 1731 | 1747 | 1798 1964 | 1966 | 1967 | 1971
BD4 | Jiang 90 79 187 | 1657 1514 | 1377 | 1832 | 1986
MCC8 1 2 77 148 177 251 | 1296 316
MCCl16 1 2 58 179 152 208 | 1202 390
Chen 5000 | 5000 | 5000 | 4999 5000 | 5000 | 5000 | 4999
Deng 4311 | 4267 | 4337 | 4487 4909 | 4904 | 4898 | 4907
BD5 | Jiang 250 209 465 | 3798 3923 | 3706 | 4475 | 4958
MCC8 2 3 214 477 430 647 | 3356 | 1015
MCCl16 2 3 152 559 362 523 | 3095 | 1195

Table 6: Identification results obtained using different quality thresholds to filter the minutiae.

As a first approach to reduce the loss of accuracy when using MINDTCT,
we have filtered the extracted minutiae using their quality value. This filtering
consists of removing the minutiae whose quality is below a fixed threshold. Note
that MINDTCT results shown in Table 4 correspond to a threshold with value O.
Table 5 shows the verification results obtained for all algorithms and databases
when this simple filter is used with the three selected thresholds. We stress in
bold-face the best result for each database and each algorithm. In general, the
table shows that the variation in the error rate with respect to the quality threshold
depends on the matching algorithm. On the one hand, Jiang and Deng obtain
better results when the 10 threshold is used (variant Th-10). The same occurs
for Chen and the Th-30 variant. However, with the other thresholds the accuracy
is often lower than the one obtained considering the whole minutiae set. On the
other hand, the performance loss of MCC is dramatic when the threshold is high.
This is due to the embedded filtering technique of MCC, which is based on the
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convex hull.

Additionally, Table 6 shows the identification results for the same algorithms
and databases. Now only Jiang and Deng show a certain improvement in the
results, when the threshold 10 is used. In all other cases the obtained results are
worse than when the whole set of minutiae extracted by MINDTCT is used.

Therefore, we can conclude that this simple threshold-based technique is not
useful to improve the accuracy, but the improvement that can be observed in some
specific cases (such as Jiang with 10 threshold or Chen with 30 threshold) suggests
that there may be some way to obtain the desired performance gain eliminating
minutiae. It is also clear that the quality value provided by MINDTCT is not valid
by itself to filter the minutiae sets, since minutiae in critical zones of the fingerprint
(such as singular points) are deleted even though they are correctly detected.

5.1.3. Minutiae quality comparison: MINDTCT and filtering with convex hull
and segmentation

BD1 BD2 BD3 BD4 BDS5

Mean | 36.9936 | 36.9549 | 37.4404 | 36.9742 | 37.1392

Ground-Truth | Std. 9.6787 9.4596 9.6266 9.5698 9.5539
Max. 77 86 75 86 86

Min. 8 9 5 8 5

Mean | 49.8367 | 49.8643 | 50.4599 | 49.8505 | 50.1133

MINDTCT Std. 13.0665 | 12.8395 | 13.0434 | 12.9531 | 13.0357
Max. 115 127 116 127 127

Min. 10 15 12 10 9

Mean | 45.9267 | 46.0320 | 46.5839 | 45.9793 | 46.2658

CH-10 Std. 12.3741 | 12.1213 | 12.3295 | 12.2484 | 12.3221
Max. 111 119 114 119 119

Min. 10 15 8 10 8

Mean | 37.9738 | 37.9731 | 38.5253 | 37.9735 | 38.2162

CH-100 Std. 11.9769 | 11.7203 | 11.8661 | 11.8492 | 11.8935
Max. 105 115 106 115 116

Min. 10 14 8 10 8

Mean | 45.5284 | 45.6393 | 46.2042 | 45.5838 | 45.8872

Seg-10 Std. 12.0370 | 11.7531 | 12.0042 | 11.8959 | 11.9748
Max. 108 114 113 114 114

Min. 7 13 8 7 7

Mean | 37.7164 | 37.5088 | 37.8590 | 37.6126 | 37.6798

Seg-20 Std. 10.6260 | 10.2919 | 10.4139 | 10.4607 | 10.4599
Max. 104 104 95 104 104

Min. 5 7 7 5 5

Mean | 33.7098 | 33.5650 | 34.0063 | 33.6374 | 33.8091

Seg-100 Std. 9.8163 9.4293 9.5950 9.6249 9.6280
Max. 104 103 90 104 104

Min. 5 7 5 5 5

Table 7: Comparison of the number of minutiae obtained when filtering the minutiae with CH-¢
(¢ € {10, 100}) and Seg-¢ (¢ € {10,20,100}).
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Once we have shown that the usage of the quality given by MINDTCT is not
useful by itself, in this section we analyze the effect of the application of the fil-
tering techniques described in Section 3 to the minutiae extracted by MINDTCT.
In order to do so, we use the minutiae quality measures presented in Sections 2.2
and 4.3.1. This way, we are able to study whether the filtering techniques allow
us to improve the quality of the minutiae.

MSD MAD | Matches Spur | Missing GI TPR PPV
MINDTCT | 4.3287 | 18.6132 | 30.5779 | 19.2474 | 6.4157 | 0.1265 | 0.8308 | 0.6242
CH-10 4.3283 | 18.4609 | 30.1679 | 15.7588 | 6.8256 | 0.2006 | 0.8192 | 0.6676
BD1 | CH-100 4.3298 | 18.0510 | 27.8580 | 10.1158 | 9.1286 | 0.2282 | 0.7523 | 0.7502
Seg-10 4.3246 | 18.4616 | 30.4098 | 15.1186 | 6.5837 | 0.2324 | 0.8263 | 0.6781
Seg-20 4.3139 | 18.0300 | 29.8012 | 7.9152 | 7.1869 | 0.4040 | 0.8098 | 0.8034
Seg-100 4.3135 | 18.0216 | 27.8824 | 5.8274 | 9.0846 | 0.3586 | 0.7576 | 0.8417
MINDTCT | 4.3150 | 18.2277 | 30.7011 | 19.1633 | 6.2538 | 0.1362 | 0.8347 | 0.6252
CH-10 4.3153 | 18.0810 | 30.2894 | 15.7425 | 6.6655 | 0.2080 | 0.8230 | 0.6675
BD2 | CH-100 4.3178 | 17.6707 | 27.9835 | 9.9896 | 8.9652 | 0.2386 | 0.7563 | 0.7517
Seg-10 4.3115 | 18.0807 | 30.5370 | 15.1023 | 6.4179 | 0.2403 | 0.8304 | 0.6779
Seg-20 4.2998 | 17.5808 | 29.9147 | 7.5940 | 7.0357 | 0.4197 | 0.8136 | 0.8091
Seg-100 4.2982 | 17.5301 | 28.0243 | 5.5407 | 8.9076 | 0.3749 | 0.7622 | 0.8473
MINDTCT | 4.3548 | 18.4689 | 31.0070 | 19.4186 | 6.4334 | 0.1267 | 0.8306 | 0.6242
CH-10 4.3547 | 18.3087 | 30.5954 | 15.9884 | 6.8449 | 0.1981 | 0.8191 | 0.6662
BD3 | CH-100 4.3574 | 17.9001 | 28.3180 | 10.2073 | 9.1168 | 0.2306 | 0.7542 | 0.7496
Seg-10 4.3511 | 18.3187 | 30.8433 | 15.3609 | 6.5971 | 0.2296 | 0.8263 | 0.6764
Seg-20 4.3407 | 17.8158 | 30.2044 | 7.6547 | 7.2297 | 0.4106 | 0.8092 | 0.8090
Seg-100 43411 | 17.7903 | 28.3309 | 5.6754 | 9.0822 | 0.3657 | 0.7591 | 0.8452
MINDTCT | 4.3218 | 18.4205 | 30.6395 | 19.2053 | 6.3348 | 0.1314 | 0.8328 | 0.6247
CH-10 4.3218 | 18.2710 | 30.2287 | 15.7506 | 6.7456 | 0.2043 | 0.8211 | 0.6675
BD4 | CH-100 4.3238 | 17.8608 | 27.9208 | 10.0527 | 9.0469 | 0.2334 | 0.7543 | 0.7510
Seg-10 43181 | 18.2711 | 30.4734 | 15.1105 | 6.5008 | 0.2363 | 0.8283 | 0.6780
Seg-20 4.3069 | 17.8054 | 29.8580 | 7.7546 | 7.1113 | 0.4118 | 0.8117 | 0.8062
Seg-100 4.3059 | 17.7759 | 27.9533 | 5.6840 | 8.9961 | 0.3668 | 0.7599 | 0.8445
MINDTCT | 4.3400 | 18.4312 | 30.7833 | 19.3170 | 6.3560 | 0.1300 | 0.8325 | 0.6246
CH-10 4.3398 | 18.2732 | 30.3732 | 15.8926 | 6.7659 | 0.2017 | 0.8209 | 0.6667
BD5 | CH-100 4.3417 | 17.8590 | 28.0841 | 10.1321 | 9.0482 | 0.2335 | 0.7550 | 0.7506
Seg-10 4.3363 | 18.2827 | 30.6185 | 15.2687 | 6.5207 | 0.2332 | 0.8281 | 0.6769
Seg-20 4.3251 | 17.7922 | 29.9839 | 7.6959 | 7.1497 | 0.4128 | 0.8110 | 0.8083
Seg-100 4.3251 | 17.7862 | 28.1038 | 5.7053 | 9.0082 | 0.3672 | 0.7602 | 0.8448

Table 8: Minutiae quality comparison.

Table 7 shows the average number of minutiae found in each database and each
method, while Table 8 presents the differences between ground-truth, extracted
and filtered minutiae sets. Observing these tables, we can make the following
observations about the weaknesses of MINDTCT:

e It is clear that extracting real minutiae is a very difficult task due to noise
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and distortions of the fingerprint images. Thus, we observe that wide dis-
tance and angle differences are found between matched minutiae. This fact
affects negatively to the performance of matching algorithms. Neverthe-
less, MINDTCT is able to detect about 31 of the 37 real minutiae in each
fingerprint (on average, see Table 2).

e MINDTCT overlooks about 6 minutiae per fingerprint (on average). These
missing minutiae may produce a performance degradation of the matching
algorithms.

e The number of detected spurious minutiae is high. As we observed in the
example presented in Figure 1, an important number of these spurious minu-
tiae are near to the borders of the fingerprint.

This experimental study confirms our premises about MINDTCT. Among these
drawbacks, the most remarkable problem of this minutiae extractor is the high
number of spurious minutiae detected. However, these minutiae can be addressed
by a post-processing step, as we have mentioned earlier.

Otherwise, the analyzed filtering procedures remove up to 16 of the extracted
minutiae. Thus, the resulting number of filtered minutiae can be lower than the
number of real minutiae, but the absolute difference is smaller than when using
MINDTCT. Moreover, this fact could be due to missing minutiae rather than to the
removal of real ones. For this reason, we need to investigate the results in terms
of the quality of the minutiae. It is also clear that CH-10 and Seg-10 produce
very similar minutiae statistics. Due to their low threshold value, they remove
only minutiae that are spurious with a very high probability, and thus these filters
are those removing the lowest number of minutiae (the most conservative ones).
When the threshold is increased, so does the number of filtered minutiae, but this
also brings along an increase in the probability of removing real minutiae.

MINDTCT has the greatest number of both spurious and matched minutiae,
and the highest TPR. For all the described methods an important decrease in the
number of spurious minutiae in comparison with the bare use of MINDTCT can be
observed. Additionally, the number of matches is always very close to the number
achieved by MINDTCT, meaning that the vast majority of pruned minutiae are
spurious.

If we focus on the GI measure, Seg-20 filtering always reaches the highest
values. Hence, this approach offers the best balance between spurious and missing
minutiae. Otherwise, Seg-100 obtains the best PPV in all cases, meaning that it
is the method that removes the most spurious minutiae, and hence most of the
remaining minutiae are real, although the number of missing minutiae is slightly
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higher than with other approaches. It is also the approach with the lowest MSD
and MAD, meaning that the removed minutiae are those that are the furthest from
their respective ground-truth minutiae.

5.1.4. Performance evaluation for the verification problem

EER FMR100 FMR1000
Matcher | MIND. | CH-10 | CH-100 | MIND. | CH-10 | CH-100 | MIND. | CH-10 | CH-100
Chen 5.6618 | 5.5307 | 6.1476 || 10.4083 | 13.9167 | 11.5000 || 19.3000 | 18.6042 | 21.8708
Deng 15.6673 | 34.2749 | 34.4205 || 23.5375 | 66.6333 | 68.4917 | 26.7208 | 78.9208 | 78.6625
BDI | Jiang 2.3267 | 23365 | 2.7583 | 3.3958 | 3.2375 | 5.1542 | 8.4833 | 7.2417 | 10.1917

MCC8n 0.5712 | 0.5409 | 0.7598 || 0.7292 | 0.7833 | 0.7625 1.1375 | 1.1333 | 1.8542
MCCl6n | 0.5368 | 0.5185 | 0.8275| 0.7708 | 0.7583 | 0.7000 || 1.1833 | 1.1208 | 1.6875

Chen 52323 | 51250 | 5.7623 || 9.5208 | 12.9000 | 10.6542 || 17.9458 | 17.3417 | 20.9042
Deng 15.3131 | 34.8337 | 34.5040 | 23.4917 | 68.5375 | 66.9625 || 26.3875 | 79.4750 | 79.7750
BD2 | Jiang 22146 | 2.1452 | 25900 | 3.2500 | 3.0625 | 4.2458 | 7.6042 | 7.3333 | 9.6375

MCC8n 0.3988 | 0.3816 | 0.5819 | 0.4458 | 0.4500 | 0.5458 | 0.7792 | 0.7208 | 1.5417
MCCl6n | 0.3792 | 0.3852 | 0.5804 || 0.4208 | 0.4542 | 0.5000 | 0.7333 | 0.6708 | 1.4417

Chen 5.4133 | 5.4506 | 6.1277 | 10.8167 | 14.3583 | 11.3458 || 19.4750 | 21.3500 | 21.2417
Deng 14.3113 | 34.6242 | 33.9043 | 23.8042 | 69.5458 | 69.7875 || 26.6875 | 80.0500 | 80.0792
BD3 | Jiang 2.3961 | 2.3006 | 3.1027 | 3.6417 | 3.6542 | 4.9833 | 8.0125 | 8.1208 | 10.3292

MCC8n 0.5017 | 0.5527 | 0.6143 || 0.8042 | 0.4875 | 0.7375 1.2167 | 1.2792 | 1.1708
MCCl6n | 0.4663 | 0.5704 | 0.6201 | 0.7000 | 0.4042 | 0.6458 || 1.1125 | 1.1875| 1.6583

Chen 5.4464 | 5.3276 | 5.9549 | 9.9646 | 13.4104 | 11.0771 || 18.6313 | 17.9792 | 19.3813
Deng 15.2916 | 34.6161 | 32.8453 || 23.5833 | 68.2396 | 68.5292 | 26.5250 | 79.0979 | 79.1438
BD4 | Jiang 22647 | 22058 | 2.7430 || 3.3792 | 3.2479 | 4.9438 | 7.7250 | 7.5188 | 9.8771

MCC8n 0.4910 | 0.4587 | 0.6848 | 0.5771 | 0.6146 | 0.6375 || 0.9479 | 0.9354 | 1.6958
MCCl16n | 0.4538 | 0.4456 | 0.7044 | 0.6125 | 0.6083 | 0.5896 | 0.9958 | 0.9229 | 1.5854

Chen 5.4377 | 5.3687 | 6.0499 || 11.0333 | 14.1642 | 11.2117 || 19.3142 | 18.8967 | 21.9500
Deng 13.8054 | 32.8154 | 32.9439 | 23.5075 | 67.1075 | 69.3317 || 26.9992 | 79.5333 | 80.9400
BDS5 | Jiang 23017 | 2.2935| 2.8867 | 3.5650 | 3.2917 | 5.0258 || 7.9992 | 7.5017 | 9.8742

MCC8n 0.4860 | 0.5909 | 0.6546 | 0.7542 | 0.4342 | 0.7050 | 1.1925 | 1.2517 | 1.7667
MCCl6n | 0.4558 | 0.5573 | 0.6797 | 0.6642 | 0.4367 | 0.6458 | 1.0967 | 1.2742 | 1.6542

Table 9: Verification results obtained with the convex hull filtering.

So far, we have observed that the filter methods improve the minutiae quality.
However, the goal of this operation is to perform more accuracte matchings. This
section analyzes the results obtained with the different filtering approaches pre-
sented in this work in the framework of fingerprint verification. Table 9 shows the
results for the two convex hull variants. In almost all cases, the CH-10 approach
performs better than the CH-100 approach, because the additional quality criterion
avoids the removal of real minutiae. Focusing on the CH-10 variant, it can be ob-
served that the results with Chen and Jiang matchers are slightly improved. In the
case of MCC, the results are similar to those obtained with MINDTCT. However,
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the obtained results are better than those shown in Table 5, where the filtering
criteria was only based on the quality assigned to the minutiae by MINDTCT.
Finally, Deng shows a deterioration of the accuracy when the filters are applied.

EER FMR100 FMR1000
Matcher | MIND. | Seg-10 | Seg-20 | Seg-100 | MIND. | Seg-10 | Seg-20 | Seg-100 | MIND. | Seg-10 | Seg-20 | Seg-100
Chen 5.6618 | 5.2916 | 4.0232 | 3.6916 | 10.4083 | 13.5458 | 9.6458 | 6.3917 | 19.3000 | 18.1125 | 14.7875 | 12.6000
Deng 15.6673 | 14.9290 | 13.8725 | 14.5227 | 23.5375 | 23.1042 | 23.6542 | 24.4333 | 26.7208 | 27.0875 | 27.7000 | 28.2500
BD1 | Jiang 23267 | 2.1747 | 1.7953 | 1.5705 | 3.3958 | 2.9292 | 22333 | 1.9917 | 8.4833 | 6.6250 | 5.0542 | 4.2458

MCC8n 0.5712 | 0.5070 | 0.6413 | 0.5771 | 0.7292 | 0.7542 | 0.5250 | 0.7000 | 1.1375 | 1.1292 | 1.2500 | 1.0667
MCCl6n || 0.5368 | 0.4877 | 0.5628 | 0.5911 || 0.7708 | 0.7083 | 0.6167 | 0.6667 1.1833 | 1.0583 | 0.9708 | 1.0583

Chen 5.2323 | 49994 | 3.8063 | 3.4353 | 9.5208 | 12.3917 | 8.6542 | 7.3625 | 17.9458 | 18.3375 | 13.0333 | 12.7875
Deng 15.3131 | 13.9528 | 14.7480 | 15.1588 | 23.4917 | 22.7083 | 23.1458 | 23.2583 | 26.3875 | 26.0458 | 26.5292 | 27.6792
BD2 | Jiang 22146 | 1.8747 | 1.5268 | 1.5206 | 3.2500 | 2.7000 | 1.8875 | 2.0292 | 7.6042 | 6.3625 | 4.7250 | 4.3000

MCC8n 0.3988 | 0.3555 | 0.3865 | 0.3432 | 0.4458 | 0.3958 | 0.3250 | 0.5583 | 0.7792 | 0.5917 | 0.6042 | 1.0208
MCCl6n | 0.3792 | 0.3296 | 0.3362 | 0.3223 | 0.4208 | 0.4125 | 0.3833 | 0.4667 | 0.7333 | 0.6417 | 0.6917 | 0.8958

Chen 5.4133 | 5.2407 | 3.8875| 3.5594 | 10.8167 | 13.4500 | 8.9917 | 7.8000 | 19.4750 | 20.0292 | 13.7125 | 13.2417
Deng 14.3113 | 13.6681 | 13.3721 | 14.1480 | 23.8042 | 23.2917 | 23.1750 | 25.4250 | 26.6875 | 26.6708 | 27.6083 | 30.8375
BD3 | Jiang 2.3961 | 2.0966 | 1.7268 | 1.5443 | 3.6417 | 3.2125| 22042 | 21208 | 8.0125 | 6.4000 | 4.7875 | 4.4125

MCC8n 0.5017 | 0.5742 | 0.4097 | 0.4903 | 0.8042 | 0.4333 | 0.4833 | 0.5292 | 12167 | 1.0958 | 0.8417 | 0.8125
MCCl6n | 0.4663 | 0.3902 | 0.4287 | 0.5294 | 0.7000 | 0.3917 | 0.4667 | 0.4750 || 1.1125| 0.9625 | 0.7708 | 0.7333

Chen 54464 | 5.1454 | 3.9135| 3.5632 | 9.9646 | 13.0562 | 9.1500 | 7.8292 || 18.6313 | 17.4312 | 13.9104 | 12.0250
Deng 152916 | 14.0606 | 14.9685 | 15.3625 | 23.5833 | 23.5854 | 23.3042 | 23.4729 | 26.5250 | 26.2229 | 26.7021 | 27.7479
BD4 | Jiang 22647 | 19363 | 1.7517 | 1.5556 | 3.3792 | 2.8292 | 2.0646 | 2.1854 || 7.7250 | 6.5167 | 4.9000 | 3.8333

MCC8n 0.4910 | 0.4229 | 0.4674 | 0.4445| 0.5771| 0.5896 | 0.4792 | 0.7563 | 0.9479 | 0.8792 | 0.8104 | 1.2667
MCCl16n | 04538 | 0.4082 | 04164 | 04291 | 0.6125 | 0.5604 | 0.5396 | 0.6750 | 0.9958 | 0.8563 | 0.9000 | 1.1146

Chen 5.4377 | 5.1490 | 3.9190 | 3.5600 | 11.0333 | 13.6717 | 9.1092 | 7.8617 | 19.3142 | 18.1183 | 13.8075 | 13.3158
Deng 13.8054 | 14.1212 | 13.9448 | 14.7570 | 23.5075 | 23.8667 | 23.6258 | 25.0317 | 26.9992 | 26.3950 | 29.2192 | 30.2117
BDS | Jiang 23017 | 1.9899 | 1.6747 | 1.5863 | 3.5650 | 2.8283 | 2.2275 | 2.1225| 7.9992 | 64783 | 4.6358 | 4.5058

MCC8n 0.4860 | 0.5046 | 0.4829 | 0.4337 | 0.7542 | 0.4300 | 04717 | 0.7275 || 1.1925 | 0.7683 | 0.8142 | 1.2142
MCCl16n | 04558 | 0.5384 | 0.4752| 0.4240 | 0.6642 | 0.3950 | 0.4600 | 0.6542 || 1.0967 | 1.1358 | 0.7917 | 1.0850

Table 10: Verification results obtained with the segmentation-based filtering.

The matching results obtained with the minutiae sets filtered using the seg-
mentation method are shown in Table 10, where we observe that the segmentation
filter has reduced the error rates achieved by all algorithms in almost all the cases.
These results are closer to the obtained with ground-truth minutiae for all the con-
sidered thresholds. The results with Deng and MCC have also been improved
by the applied filter. Moreover, in general the most accurate variant is Seg-100,
which is the one that reduces the most the number of minutiae and has the high-
est PPV. This highlights this measure as a good one to determine the verification
accuracy.

Besides the accuracy improvements, the reduction of spurious minutiae re-
duces the computational complexity of the matching process. Figure 7 and Ta-
ble 11 show the average runtime' of the matching algorithms. In the figure, the
filters are ordered in decreasing order of the number of minutiae. It is clearly

I'These results have been obtained with an Intel(R) Xeon(R) E5-2620 CPU at 2.00 GHz.
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shown that the matching time is proportional to the average number of minutiae
in each database. Thus, Seg-100 approach is both the most precise and the one
that produces the fastest matchings, and thus is highlighted as the optimal among
the tested filters. Otherwise, the use of non-filtered MINDTCT minutiae leads to
the slowest execution times.

I MINDTCT
I CH-10
- I Seg-10

4 | I CH-100
[ Seg-20
[ Ground-Truth
[ ]Seg-100

Average matching time (ms)

il

Chen Deng Jiang MCC8 MCC16

Figure 7: Average matching time in BD1 for each filtering scheme.

Chen | Deng | Jiang | MCC8 | MCC16
Ground-truth | 2.5841 | 1.5568 | 0.2479 | 1.3269 | 3.1207
MINDTCT 5.5846 | 3.3289 | 0.4329 | 2.3722 | 5.4394

CH-10 4.6302 | 2.2378 | 0.3688 | 1.9884 | 4.5880
CH-100 3.1440 | 3.0702 | 0.2570 | 1.3232 | 3.1317
Seg-10 4.5026 | 2.5617 | 0.3575 | 1.9956 | 4.5807
Seg-20 2.9099 | 1.5836 | 0.2501 | 1.3879 | 3.2255
Seg-100 2.2575 | 1.2431 | 0.2021 | 1.0027 | 2.3862

Table 11: Average matching time (in milliseconds) in BD1 for each filtering scheme.

5.1.5. Performance evaluation for the identification problem

In this section we analyze the obtained results in terms of the identification
performance measures, and more specifically using R100 and R1000 as defined
in Section 4.3.3.

Table 12 shows the results for the convex hull-based filter. As in the previous
section, when we compare these results with those obtained with MINDTCT, it
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R100 R1000
Matcher || MIND. | CH-10 | CH-100 | MIND. | CH-10 | CH-100
Chen 1000 1000 1000 1000 1000 1000
Deng 873 973 977 983 997 998
BDI | Jiang 58 50 75 789 706 765
MCC8 1 1 2 163 98 144
MCC16 1 1 2 148 88 123
Chen 1000 1000 1000 1000 1000 1000
Deng 866 973 974 981 997 997
BD2 | Jiang 33 28 46 648 646 787
MCC8 1 1 1 59 28 79
MCC16 1 1 1 30 34 81
Chen 1000 1000 1000 1000 1000 1000
Deng 848 972 970 978 995 997
BD3 | Jiang 51 41 76 825 785 820
MCC8 1 1 1 97 45 104
MCC16 1 1 1 88 43 108
Chen 2000 | 2000 2000 2000 | 2000 2000
Deng 1739 1945 1950 1964 1994 1995
BD4 | Jiang 90 77 113 1514 1411 1535
MCC8 1 1 2 177 95 228
MCC16 1 1 2 152 95 223
Chen 5000 | 5000 5000 5000 | 5000 5000
Deng 4311 4859 4867 4909 4981 4986
BDS5 | Jiang 250 217 353 3923 3658 3954
MCC8 2 1 3 430 232 637
MCC16 2 1 3 362 241 618

Table 12: Identification results obtained with the convex hull-based filter.

can be shown that the CH-10 filter improves the results, mainly with MCC. How-
ever, the CH-100 variant removes too many minutiae and causes a certain loss of
accuracy. The Deng algorithm performs better when no minutiae are removed,
and Chen shows a high sensibility to outliers, as in the previous sections.

Finally, Table 13 contains the results of the segmentation-based filter. Now
the improvement in the obtained results is very clear, meaning that the difference
between genuine and impostor scores has been increased as a result of the removal
of spurious minutiae.

Therefore, it can be concluded that the filtering that that removes the greatest
number of minutiae (Seg-100) is also the one that achieves the best results in most
of the cases. Consequently, the identification time obtained with this approach is
also the fastest among all tested schemes, as it can be observed in Figure 8 and Ta-
ble 14, which show the average identification time in BD1. This time corresponds
to the initial processing of the input fingerprint plus 1000 matchings. Again, the
figure orders the filter in decreasing order of the number of minutiae. Hence, this
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R100 R1000
Matcher | MIND. | Seg-10 | Seg-20 | Seg-100 | MIND. | Seg-10 | Seg-20 | Seg-100
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 873 865 849 863 983 977 975 981
BD1 | Jiang 58 43 21 20 789 703 727 63
MCC8 1 1 1 1 163 72 77 77
MCC16 1 1 1 1 148 68 82 90
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 866 857 852 863 981 982 982 983
BD2 | Jiang 33 23 9 7 648 655 513 446
MCC8 1 1 1 1 59 20 24 23
MCC16 1 1 1 1 30 20 28 24
Chen 1000 1000 1000 1000 1000 1000 1000 1000
Deng 848 836 847 866 978 984 977 980
BD3 | Jiang 51 33 16 12 825 772 724 766
MCC8 1 1 1 1 97 34 38 43
MCCI16 1 1 1 1 88 31 35 68
Chen 2000 | 2000 | 2000 2000 2000 | 2000 | 2000 2000
Deng 1739 1725 1707 1721 1964 1959 1956 1963
BD4 | Jiang 90 63 28 23 1514 1363 1359 1209
MCC8 1 1 1 1 177 79 91 106
MCCI16 1 1 1 1 152 78 93 99
Chen 5000 | 5000 | 5000 5000 5000 | 5000 | 5000 5000
Deng 4311 4249 | 4250 4316 4909 | 4901 4886 4904
BD5 | Jiang 250 164 70 61 3923 3684 3427 3360
MCC8 2 1 1 1 430 212 228 280
MCCI16 2 1 1 1 362 200 252 303

Table 13: Identification results obtained with the segmentation-based filter.

filtering method produces both faster and more accurate results, outperforming
the usage of MINDTCT without post-processing, and even improving the results
of the MCC internal filtering mechanism.

Chen | Deng | Jiang | MCC8 | MCC16
Ground-truth | 2.5884 | 1.5573 | 0.2501 | 1.3450 | 3.1787
MINDTCT 5.5944 | 3.3344 | 0.4392 | 2.4053 | 5.5241

CH-10 4.6399 | 2.2563 | 0.3740 | 2.0163 | 4.6783
CH-100 3.1478 | 3.0707 | 0.2581 | 1.3408 | 3.1954
Seg-10 4.5112 | 2.5840 | 0.3625 | 2.0192 | 4.6715
Seg-20 2.9086 | 1.5953 | 0.2508 | 1.4055 | 3.2957
Seg-100 2.2631 | 1.2545 | 0.1973 | 1.0210 | 2.4449

Table 14: Average identification time (in seconds) in BD1 for each filtering scheme.

Finally, we conclude the study on the identification framework showing the
CMC curves for the largest database considered (BDS) for all algorithms and all
filtering schemes, on Figure 9. For the Jiang and Chen algorithms, Seg-100 filter
dominates all solutions (except the ground-truth minutiae), closely followed by
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Figure 8: Average identification times in BD1 (1000 matchings per identification) for each filtering
scheme.

Seg-20. The usage of MINDTCT alone obtains one of the worst CMC curves,
showing the importance of a good pre-processing step. For Deng, both convex
hull variants have very bad results, while all the other approaches present very
similar CMC curves. In the case of MCC, all variants have very high and similar
scores because of its higher robustness, but again the segmentation filter provides
the best results.

5.2. FVC databases

Some of the experiments have been repeated with the well-known FVC databases,
to allow reproducible results in a benchmark manner and to avoid the bias in the
conclusions due to the usage of a unique source of fingerprints. In order to verify
the behavior of the segmentation and convex hull approaches, we have repeated
the experiments with the best configuration for each one of them (CH-10 and Seg-
100), as well as for the initial minutiae set extracted by MINDTCT. The minutiae
statistics of the obtained databases are shown in Table 15. The results in the ta-
ble show that between 20% and 40% of the extracted minutiae are deleted when
using Seg-100, which is more than when using the SFinGe databases, due to the
lower quality of the FVC fingerprints. This deletion is reflected in an important
reduction of the matching and identification times, independently of the accuracy
results achieved.

30



Cumulative Match Score

Cumulative Match Score

4
©

o
®
&

o
@
3

o
@
®

o
®
[

e
®

O Ground-Truth|
— -~ MINDTCT
— — —CH-10

x  CH-100

- Seg-10
Seg-20
Seg-100

100 150

Rank

(a) Chen

O Ground-Truth|
—-—-MINDTCT
— — —CH-10
£ x  CH-100
< -« Seg-10
x
x
x

Seg-20
Seg-100

100 150

Rank

(c) Jiang

09r 4
08
© 07 ]
5
@
2 o6t 4
S
]
= o5 q
v
2 _
L 04l R g
E —
3 s W O Ground-Truth|]
E — -~ MINDTCT
- = - CH-10
o2r x  CH-100 |
- Seg-10
0.1r Seg-20
Seg-100
o . .
0 50 100 150
Rank
(b) Deng
1
0.999F 4
0.998
©
5
8
n
5 09971
|
=
°
2
E 0996
S
g
3 [ O Ground-Truth
0995/ s — — MINDTCT ]
(N - = - CH-10
A X CH-100
0904111, X - Seg-10 n
[ox Seg-20
s Seg-100
0993 . .
0 50 100 150

Rank

(d) MCC8

0.999

0.998

0.997

0.996

Cumulative Match Score

O Ground-Truth|
——-MINDTCT
— — —CH-10

Seg-100

0.995F 4/ 1
g
11 >Z<>Z<
09941/ X
I
s
0.993 H—x .
0 50

150
Rank

(e) MCC16

Figure 9: CMC curves for BD5 database.
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FVC2000 FVC2002 FVC2004

DBI1A DB2A DBI1A DB2A DBIA DB2A

Mean | 49.0063 | 58.0313 | 50.1188 | 57.5438 | 61.1138 | 64.2238

MINDTCT | Std. 11.9596 | 17.5767 | 12.9701 | 14.9358 | 18.4753 | 17.1335
Max. 90 132 94 148 156 135

Min. 18 24 11 12 20 21

Mean | 43.6150 | 53.1538 | 43.4525 | 54.0713 | 52.7700 | 59.0600

CH-10 Std. 11.4751 | 16.7629 | 11.9027 | 14.4751 17.4217 | 16.2433
Max. 84 128 85 139 141 128

Min. 18 21 11 12 19 21

Mean | 38.7838 | 45.4088 | 35.9675 | 45.2950 | 42.4500 | 36.9225

Seg100 Std. 10.6328 | 15.5173 | 10.5342 | 14.0905 | 14.5261 | 13.4584
Max. 76 127 73 97 118 114

Min. 12 12 7 8 10 7

Table 15: Comparison of the number of minutiae obtained when filtering the minutiae of the FVC
databases with CH-10 and Seg-100.

EER FMR100 FMR1000
MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100
Chen 34.8405 | 33.0981 | 11.9452 || 69.1429 | 65.8571 | 28.7143 || 81.0000 | 79.7143 | 37.0000
Deng 7.1284 | 6.8391 | 4.8730 || 11.7143 | 12.5714 | 11.2857 || 22.0000 | 23.1429 | 25.5714
FVC2000_dbla | Jiang 13.1436 | 11.3016 | 8.5765 | 21.0000 | 19.5714 | 15.5714 | 31.8571 | 29.2857 | 24.2857

MCC8n 5.3196 | 6.7807 | 3.5440 || 8.5714 | 15.2857 | 7.8571 || 13.5714 | 25.7143 | 9.8571
MCCl6n || 7.8759 | 6.8413 | 3.2922 || 14.2857 | 13.8571 | 8.1429 || 15.0000 | 22.4286 | 9.8571

Chen 33.0960 | 33.1760 | 11.4704 || 66.1429 | 66.1429 | 22.5714 || 66.1429 | 77.0000 | 33.2857
Deng 7.9856 | 83716 | 5.1631 | 20.4286 | 17.8571 | 14.0000 | 29.0000 | 28.4286 | 23.0000
FVC2000_db2a | Jiang 16.2482 | 15.1984 | 9.7763 || 28.0000 | 26.4286 | 18.5714 | 39.2857 | 37.0000 | 30.4286

MCC8n 5.4699 | 8.4892 | 2.7143 || 10.0000 | 18.8571 | 4.5714 || 18.5714 | 34.1429 | 11.2857
MCClé6n || 4.2669 | 7.9257 | 2.5765 || 15.7143 | 18.7143 | 6.7143 || 19.2857 | 34.2857 | 10.2857

Chen 31.8795 | 30.7150 | 6.7374 || 63.5714 | 61.1429 | 13.1429 || 72.8571 | 71.7143 | 20.4286
Deng 16.9921 | 15.7532 | 11.9235 || 22.5714 | 22.0000 | 16.8571 || 26.2857 | 25.4286 | 26.1429
FVC2002_dbla | Jiang 16.6400 | 15.4062 | 4.9156 || 25.8571 | 23.7143 | 9.8571 || 34.4286 | 31.7143 | 17.1429

MCC8n 12.4436 | 16.2294 | 1.3903 | 20.0000 | 22.7143 | 1.5714 | 27.8571 | 26.0000 | 2.5714
MCCl6n | 12.0489 | 15.3434 | 0.8110 || 20.0000 | 22.8571 1.2857 | 24.2857 | 25.1429 | 2.7143

Chen 242237 | 23.2266 | 3.9726 || 56.7143 | 62.5714 | 9.1429 || 77.2857 | 77.0000 | 19.2857
Deng 12.3254 | 14.2994 | 8.7590 | 17.2857 | 18.0000 | 14.2857 || 20.7143 | 21.7143 | 21.2857
FVC2002_db2a | Jiang 13.5058 | 13.1032 | 4.2648 || 20.5714 | 20.5714 | 8.1429 | 28.1429 | 28.1429 | 14.4286

MCC8n | 14.3045 | 11.3997 | 0.6962 || 24.2857 | 21.4286 | 0.7143 || 25.0000 | 23.5714 | 1.7143
MCCl6n | 13.6842 | 10.6883 | 0.6111 || 23.5714 | 21.2857 | 0.4286 || 27.1429 | 23.5714 | 1.4286

Chen 42.0209 | 41.0462 | 21.6421 || 83.5714 | 81.2857 | 42.5714 | 92.2857 | 92.2857 | 55.0000
Deng 19.3160 | 19.4127 | 13.7994 || 40.7143 | 38.7143 | 37.4286 | 54.7143 | 52.1429 | 61.7143
FVC2004_dbla | Jiang 25.2958 | 23.3398 | 14.0411 || 52.0000 | 49.1429 | 31.4286 || 67.4286 | 61.0000 | 48.0000

MCC8n | 22.1053 | 17.3088 | 7.1443 || 45.0000 | 38.0000 | 13.1429 || 55.7143 | 45.8571 | 23.7143
MCClé6n | 23.0075 | 17.8074 | 7.0390 || 46.4286 | 38.0000 | 13.0000 || 62.8571 | 47.7143 | 23.4286

Chen 43.4942 | 43.1212 | 18.1075 || 91.5714 | 91.4286 | 35.7143 | 97.8571 | 97.0000 | 51.8571
Deng 19.1320 | 19.5404 | 15.3449 || 36.4286 | 37.7143 | 26.8571 || 51.8571 | 49.5714 | 49.2857
FVC2004_db2a | Jiang 23.7020 | 22.8911 | 12.4437 || 53.1429 | 50.0000 | 25.0000 || 67.0000 | 65.1429 | 38.4286

MCC8n | 22.8008 | 21.5678 | 8.4185 || 46.4286 | 43.4286 | 12.7143 || 49.2857 | 52.7143 | 18.7143
MCCl16n || 23.5902 | 19.3153 | 8.3629 | 45.7143 | 42.1429 | 12.0000 || 53.5714 | 53.0000 | 18.5714

Table 16: Verification performance values for FVC databases.
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Table 16 shows the verification results obtained with these databases. The first
fact that should be noted is that the FVC complexity increases over the years, and
hence the lowest EER rates are obtained for FVC2000, and the highest ones are
seen for FVC2004.

R100 R1000

MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100

Chen 100 100 100 100 100 100

Deng 73 67 34 97 97 85

FVC2000_dbla | Jiang 89 86 83 99 100 100
MCC8n 62 65 32 99 96 97

MCCl6n 67 80 30 97 94 99

Chen 100 100 100 100 100 100

Deng 63 69 50 92 96 98

FVC2000_db2a | Jiang 96 91 82 100 99 94
MCC8n 68 64 17 94 91 47

MCCl6n 65 67 23 98 95 39

Chen 100 100 100 100 100 100

Deng 88 95 84 100 100 99

FVC2002_dbla | Jiang 94 94 53 100 100 87
MCC8n 88 80 2 100 100 99

MCCl6n 85 83 2 98 99 94

Chen 100 100 100 100 100 100

Deng 83 80 78 99 99 95

FVC2002_db2a | Jiang 90 88 12 98 98 84
MCC8n 79 85 1 96 98 13

MCCl6n 82 81 1 98 97 12

Chen 100 100 100 100 100 100

Deng 92 94 79 100 99 99

FVC2004_dbla | Jiang 94 93 89 99 99 100
MCC8n 90 83 54 97 100 99

MCCl16n 93 88 55 98 96 100

Chen 100 100 100 100 100 100

Deng 95 94 91 99 100 100

FVC2004_db2a | Jiang 96 94 81 100 100 100
MCC8n 93 87 74 99 99 100

MCCl6n 95 91 68 100 100 99

Table 17: Identification performance values for FVC databases.

With the FVC databases, the Seg-100 variant greatly improves the results in
all cases, except sometimes for the FMR1000 value with the Deng algorithm.
Otherwise, the results of the convex hull approach are more similar to those ob-
tained without filtering. The table also shows that the improvement obtained with
Seg-100 depends on both the matcher and the database, although it is always re-
markable. Moreover, the improvement is higher for the most difficult database,
where a huge difference can be observed between the ERR in the MINDTCT col-
umn and that of the Seg-100. This result, along with the large number of removed
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minutiae, highlight the Seg-100 approach as a very good tool to improve both the
matching accuracy and its runtime, especially for low-quality databases such as
those of FVC2004.

The identification accuracy results are shown in Table 17. Again, the best
results are those obtained by the Seg-100 approach.

5.3. Captured database

The same experiments carried out for the FVC databases in the previous sec-
tion have been executed in this case. Table 18 presents the minutiae statistics of
this database. In this case, the number of minutiae removed by the filters is not as
high as for the FVC databases, but still the Seg-100 variant is the one that removes
the most of them.

MINDTCT | CH-10 | Seg-100
Mean 44.7602 | 42.1176 | 37.4990
Std. 11.5560 | 11.0870 | 10.8468
Max. 137 127 133
Min. 14 14 9

Table 18: Comparison of the number of minutiae obtained when filtering the minutiae of the
captured database with CH-10 and Seg-100.

EER FMR100 FMR1000
MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100
Chen 3.9693 | 4.0764 | 3.6698 | 7.2404 | 7.5018 | 6.8918 || 15.6790 | 15.6935 | 13.2534
Deng 1.1954 | 1.2611 | 1.5208 | 1.5977 | 1.8954 | 2.5055 | 5.4248 | 5.5846 | 6.4488
Jiang 2.5860 | 2.5433 | 23769 || 4.1685 | 43500 | 3.9797 | 11.3653 | 10.0436 | 9.2302
MCC8 0.8691 | 0.5401 | 0.6417 || 1.4016 | 0.8351 | 0.5882 | 2.4474 | 1.5686 | 2.0044
MCC16 || 0.8393 | 0.5045 | 0.5605 || 0.7480 | 0.8424 | 0.6245 | 2.5490 | 1.6122 | 1.1474

Table 19: Verification performance values for the captured database.

Table 19 shows the verification results obtained with the captured database.
It can be seen in the table that Seg-100 still improves the results, although the
difference is not as high as for other databases. In some cases the CH-10 filter
performs better, and for the Deng algorithm both filters produce worse results
than when the non-filtered minutiae set is used. However, this matcher obtains
more precise results for this database, especially if they are compared to those
obtained with the SFinGe databases. This behavior reveals the lack of robustness
of this algorithm, whose accuracy tends to be affected by the particular fingerprint
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features, although for this database its results are close to those obtained by the
best matcher (MCC).

The particular error values are similar to those presented in Section 5.1, ex-
cept for Deng. This highlights the SFinGe databases as being reasonably realistic,
since the behavior of the algorithms is similar as with a database of real finger-
prints.

The identification accuracy results are shown in Table 20. Again, the Deng
algorithm is the only one for which Seg-100 does not produce the best results,
whereas Jiang and MCC significantly improve their accuracy. Concretely, the R
rates for MCC are reduced by about 50%.

R100 R1000
MIND. | CH-10 | Seg-100 | MIND. | CH-10 | Seg-100
Chen 1530 1530 1530 1530 1530 1530
Deng 6 6 8 454 503 768
Jiang 164 169 148 1391 1363 1352
MCCS8 4 2 1 298 165 162
MCC16 3 1 1 237 174 137

Table 20: Identification performance values for the captured database.

6. Conclusions and Future Lines

In this contribution, we have studied two filters to improve the minutiae ex-
traction of MINDTCT: a convex hull-based filter and a segmentation-based filter.
These filters have been tested with several configurations and databases. We have
performed an analysis of the number of spurious and missing minutiae that arise
when using MINDTCT, and we have shown that the studied filters can reduce the
number of spurious minutiae without compromising the number of matched ones.

In our experiments, we have analyzed the influence of these spurious minu-
tiae in several state-of-the-art minutiae-based matchers. The compared schemes
allow one to remove spurious minutiae providing more accurate results even for
robust matching algorithms such as MCC. The segmentation based filter is espe-
cially powerful, and the variant that removes the most minutiae is also the one
that provides the best accuracy. Therefore, in addition to the accuracy improve-
ments, the resulting reduction of number of minutiae leads to a faster matching
process. These positive results are even better when the fingerprint database is
of low quality, because the segmentation removes a higher number of spurious
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minutiae, leading both to better accuracy and runtime, as it can be seen with the
FVC databases. This fact shows the importance of an appropriate fingerprint post-
processing both for the accuracy and the efficiency of the matching algorithms.

The results of this study have also shown that the PPV is a good minutiae
quality measure, and the filters with high PPV tend to produce better matching
accuracy. Finally, it has been observed that the SFinGe databases have a reason-
ably realistic behavior, as the results obtained with it are similar to those obtained
with a database of real fingerprints, captured by the authors’ research groups in
controlled conditions.

As future work, we aim to consider new strategies to remove harmful minu-
tiae and speed up the matching process, as well as to develop a novel matching
algorithm that includes the minutiae filtering process.
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1. Introduction

Personal identification is one of the largest problems in the society today in a wide variety of fields: from access
control to criminology and forensic identifications, payments and identification in computer systems [1]. Among
all the biometric features that can be used for identification, such as voice, iris, DNA, etc, fingerprints are the most
widely used [2]. They are very suitable for human recognition because of their uniqueness, universality, invariability
and extraction facilities.

A fingerprint is basically a pattern of ridges and valleys captured from a finger by inked press, capacitive or optical
sensors, etc. Fingerprint recognition has been studied for many years and a great number of fingerprint matching al-
gorithms have been proposed in the specialized literature [3, 4]. Minutiae-based matching algorithms highlight as the
most relevant approaches because minutiae are considered the most discriminating and reliable features [5, 6]. The
design of Automatic Fingerprint Identification Systems (AFISs) [7] is an important task in pattern recognition. Al-
though very effective solutions are currently available, many problems still remain [8]. Among them, the performance
and speed of AFISs for large databases need to be improved.

Fingerprint recognition can be categorized into two different problems: verification [9] and identification [10]. The
former consists of determining whether two images belong to the same fingerprint, that is, a one-to-one comparison.
The latter is devoted to search for the matching of an input fingerprint in a template database, so that the owner of
this fingerprint can be identified. Thus, identification can be seen as a generalization of the verification problem that
conducts one-to-many comparisons. In this paper, we will focus on identification.

In general, matching algorithms are designed to carry out a fingerprint verification and their generalization to
address identification is straightforward. Most of them are focused on achieving very accurate matchings, what
usually negatively affects the time consumption. This factor is determinant in most real time systems where a high
response time is equivalent to a system failure. Furthermore, this weakness is especially harmful when the number of
templates in the database is increased. Although some approaches have been designed to be as fast as possible [6],
they are not suitable to tackle large databases maintaining their precision.

High Performance Computing (HPC) is one of the tools that support the modern Science, allowing the execution
of multiple calculations in a reasonable time [11] by using an adequate massive computational structure [12]. HPC has
been successfully used in many different pattern recognition problems [13, 14, 15], and more concretely in real-time
image comparison [16] and other artificial intelligence systems [17]. Given the complexity order of an AFIS, HPC is
a promising resource that has already been proven to reduce the identification time [18, 19]. However, the proposals
in the current scientific literature focus on objectives other than performance, such as high availability or database
distribution. Real-time response times can only be obtained through a correct algorithm design and implementation
in order to exploit the available resources as flexibly and efficiently as possible.

In this paper, we design a two-level distributed framework to provide matching algorithms the capacity of dealing

with arbitrarily large databases by adapting the underlying hardware. According to the so far presented reasons, three
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objectives are defined for this paper:

e To analyze the behavior of matching algorithms when dealing with large databases.
e To verify the scalability of the proposed system.

e To provide a real-time answer.

To check the performance of the proposed system, we will conduct experiments involving up to 400 000 fin-
gerprints. Because of the absence of large captured fingerprint databases, we use the SFinGe software tool [20, 2] to
generate a large synthetic database. This database is used for experiments both with the ground-truth minutia provided
by SFinGe and using the NIGOS mindtct [21] minutiae extractor in a seek of a more realistic framework. Furthermore,
in order to validate the results we also include experiments with captured databases: NIST DB4 [22] and DB 14 [23].

Due to the space constraints not every experiment could be included in the paper. Complementary material about
the work done for this paper can be found at the URL http://sci2s.ugr.es/ParallelMatching.

The rest of this paper is organized as follows: Section 2 provides a description of the fingerprint recognition
process, defining in detail the most important steps. In Section 3, the HPC paradigm is presented, showing its hardware
and software requirements, theoretical benefits and current applications to AFISs. Section 4 explains the proposed
distributed system for tackling the fingerprint identification problem in a reasonable time. Section 5 describes the
experimental framework. Section 6 examines the results obtained, presenting a discussion of them. Finally, Section 7

concludes the paper.

2. Background

A considerable research effort has been carried out in the fingerprint recognition field over the last decades. This
section sums up the state-of-the-art in that field, starting with the fingerprint recognition problem (Section 2.1), and

explaining the generalities of feature extraction (Section 2.2) and fingerprint matching (Section 2.3).

2.1. Fingerprint recognition

Because of its different application fields, most authors divide the fingerprint recognition problem into two variants

that constitute by themselves different problems [2]:

o Verification consists of determining whether two fingerprint images P; and P, belong to the same person,
performing a 1:1 comparison [9]. The system output is an acceptation or a refusal of the claimed identity

depending on the similarity level (called score) of both fingerprints.

o Identification aims to find the fingerprint that matches with the input fingerprint in a database, so that its owner
can be identified [10]. A fingerprint database is a set 7 of N template fingerprints T = {7, T3, ..., Ty} that
are used as reference for the identification. Thus, identification is a problem of 1:N comparison as the input
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fingerprint / needs to be compared with all 7; template fingerprints (with i € {1,2,..., N}) to find the matching
that provides the highest score. This score is called my,s. It is defined in Equation 1, where Q(I, T;) is the
matching function (see Section 2.3). If my, is lower than a certain threshold ¢, then the system may consider
that the input fingerprint has no corresponding template in the database. Hence, the system output can be the
matched identity, a “not found” notification, or a set of candidate identities. This paper focuses on a system that
considers only the maximum score, so the last case is not detailed, as shows Equation 2. A description of the

system behavior in the case with a set of candidates can be found in the web site.

Mpesy = max{Q(,T;) | ie€{l,2,..,N}} (1)

1d(D) = not found, if Mpess > @ )
argmax; Q(I,T;) ie€{l,..,N}, otherwise
The identification problem can be seen as a verification performed once per each fingerprint in the database. The
main difference between these problems is therefore a matter of complexity order. The objective in a verification
problem is to obtain a very precise result, reducing the error rates as much as possible. However, complex verification
methods are not useful for identification because the overall response time would be excessive.

So far, the general characteristics of the identification problem have been defined. The requirements needed by an

AFIS to deal with large databases can be fixed:

e Precision: error rates have to be as low as possible in order to get an accurate system. Additional information

about error rates can be found in the web site associated with this paper.

o Efficiency: the time that is needed to locate a fingerprint in the database should be as small as possible. In
a real-time system, for example, a high delay can be equivalent to a system failure [24]. The delay threshold

depends on the specific system but it is very often within the order of a few seconds.

o Scalability: it reveals the system capabilities to deal with databases of almost arbitrary size, in a reasonable
amount of time, maintaining the precision requirement. This can be done by guaranteeing that a large database
can be explored in the same time than a smaller one by increasing correspondingly the underlying hardware

resources.

o Flexibility: the system has to fit easily and efficiently any database size, any database features (such as noisy
fingerprints or rollings), as well as any hardware configuration (different architectures, varying cluster size,

different processors, etc.).

Although there are several solutions to the fingerprint identification problem, the general search process structure

is composed of the following steps [2]:



1. Input fingerprint fetching
2. Feature extraction
3. Search of a similar fingerprint in the database

4. Returning the result

2.2. Feature extraction

A fingerprint is basically formed by ridges and valleys. They can be easily appreciated in a good quality im-
age (Fig. 1a), or on the contrary they can be blurred or even indistinguishable (Fig. 1b), difficulting the knowledge

extraction process.

: ‘/ t')
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(a) Good quality image (b) Bad quality image

Figure 1: Good and bad quality images.

As they are analyzed at different degrees theses ridges and valleys present some patterns that can be used to
perform the fingerprint comparison. The most relevant features, ordered from the most global to the most local, are

the following [2]:

e Singular points: they are detected at the most global level. They are points around which the ridge patterns
are wrapped. There are two kinds of them: loops and deltas, and a fingerprint can have between zero and five

singular points.

¢ Orientation map: it belongs to the same level as singular points and contains the direction of the fingerprint

lines for each coordinate in the image.

e Minutiae: they are the ridge bifurcations and endings, which are detected at a more detailed level (Fig. 2).

Among these kinds of patterns, minutiae are the most used features for fingerprint recognition [2]. Some studies

state that they are the most reliable features for these purposes [25, 26], and that twelve perfectly matching minutiae
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Figure 2: Fingerprint minutiae with their orientation.

between two fingerprints can ensure they are the same [27]. However, in bad quality images their extraction can be
troublesome [28].

A minutia M; is typically described with five parameters (x;, y;, 6;, t;, ¢;):

(x4, yi): coordinates in the picture

e 6;: orientation or minutia angle

t;: type (ridge ending or bifurcation)

gi: quality

Therefore, a fingerprint F' with » minutiae can be represented as a minutiae vector {M;, M>, ..., M, }.

The number of minutiae r is typically between 30 and 100. Thus, minutiae can be efficiently stored and easily
handled in a computing environment, and fingerprint comparison can be treated as a similarity calculation between
minutiae sets.

There are two main types of minutiae extractors [2]:

¢ Binarization-based methods: most of the methods require a binary fingerprint image. The image usually
passes through a thinning process that reduces the line thickness to one pixel, resulting in a skeleton image.
Although these steps are time-consuming and may cause some information loss, they allow the minutiae de-
tection with a simple image scan and they greatly benefit from previous enhancement processes such as the
approaches presented in [29, 30, 31]. Some methods of this type are NIGOS mindtct [21], and an approach
based on peak detection along sections orthogonal to the ridge orientation [32]. Additionally, other methods
improve the image quality before the thinning step, for example by using adaptive windows to follow the ridges

and find the gaps and holes [33].



e Direct gray-scale extractors: some methods do not use binarization nor thinning. Therefore, there is no
information loss and the time spent on binarization and thinning steps is avoided, but these methods do not
benefit from a priori enhancements. One of the most used methods uses the orientation map to follow the
ridges [5], and is used as a basis by further proposals [34, 35, 36, 37, 38]. Other methods use alternatives to

ridge-line tracking, such as neural networks [39] or spatial filtering [40].

2.3. Matching

A matching algorithm compares the features of two fingerprints and returns a similarity score. The algorithm and
the data structures it uses depend on the specific features that are extracted from the fingerprint image, allowing the

following classification of matchers [2]:

e Correlation-based [41, 42]
e Minutiae-based [43, 28, 6, 44]
e Non-minutiae feature-based [33, 4]

This paper focuses on minutiae-based matchers, whose usual data structures are the following:

e Distance between minutiae
e Minutiae neighborhood

e Number of ridges between minutiae (ridge count)

A matching algorithm performs some calculations from these structures and the fingerprint features themselves
and returns a score (typically a real number) that describes the similarity level ranging from completely different
fingerprints to the totally identical pictures.

The minutiae-based matching process can be performed at three different levels [2, 6]:

¢ Global: The minutiae of the whole image are compared. This matching type is more sensitive to image distor-
tions, rotations and translations, although the usage of information of the whole image at the same time provides

a complete view of the fingerprint. Some proposals are presented in [45, 46].

e Local: Small groups of minutiae close to each other are compared. Problems due to rotations and translations
are softened because the use of relative angles and coordinates makes the method rotation and translation invari-
ant. The distortion problem is also reduced because close minutiae are less affected by distortions. However, not
considering the fingerprint as a whole implies a loss of information that can affect the precision of the algorithm.

Some approaches are described in [47, 28].



e Hybrid: Most reliable algorithms use a hybrid approach, combining both philosophies. First, a local matching
extracts the most similar minutiae groups of both fingerprints. These minutiae are considered to be the same,
and then a global matching based on this correspondence is executed. Some of the most relevant proposals

are [43, 6].

3. High Performance Computing
HPC systems are normally used for distributed and parallel computing, providing several advantages:

¢ Efficiency: the parallel processing in several cores and computers can be used to get results faster.

¢ Robustness: the use of several machines allows the system to be fault-tolerant, because if one machine fails,

the rest can assume its work and the system still provides a correct response.

e Scalability: hardware evolves towards a higher number of cores and collaborating processors. Thus, an algo-
rithm that is able to solve bigger problems just by using more computers could solve arbitrarily big problems

without being modified.

In Sections 3.1 and 3.2, the hardware and software that give support to an HPC system are described. Section 3.3
presents the theoretical expectation of improvement in the execution times of a generic system that uses HPC. Finally,

the state-of-the-art about distributed AFISs is studied in Section 3.4.

3.1. Hardware support

Hardware has evolved in two ways to support HPC. On the one hand, several computers can be integrated with
a high-speed network to form a cluster. This provides a great flexibility when the processing capacity has to be
increased, but the performance can become limited by the network speed.

On the other hand, a single computer can have several processors, a single processor can have several cores, and
a single core can handle several execution threads (for example, with the Intel Hyperthreading technology [48]). All
these processors and cores can communicate using shared memory, which is very fast, as long as the synchronization
is efficiently performed. This is not always easy and may imply great design and implementation efforts. However,
the number of cores in a single computer is still quite limited, and nowadays is not higher than about 12 or 24.

A typical computing cluster is formed by a bunch of computers, and each one of them has one or several multicore
processors, where all the cores share the main memory and some cache. This kind of clusters are called hybrid clusters

(Fig. 3).
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Figure 3: Typical hybrid architecture of the cluster used for the experiments in Section 6.

3.2. Software support

According to the current evolution of technology, the parallel paradigm for software development is bound to be
increasingly necessary in the next years (and most likely in a longer term too).

Within a hybrid cluster, the computing program is typically divided into several processes and each process is run
in a different node. These processes communicate using Message Passing Interface (MPI) ! . Again, each process can
be divided into several execution threads that can communicate using shared memory, which is faster than MPI. The
maximum performance is usually reached when each computing node executes a single process that contains one or
two threads per node core. Thus, the adequate implementation of a system in a computing cluster is a complex task.

The execution of these processes and threads can be tackled by the operating system (for example when using

C++), or by a virtual machine (for instance with Java, Scala or Erlang).

3.3. Theoretical expectations

There are several formulas to measure the performance of a parallel system. The most widely used is the speedup
(S = t,/t,), which measures the relation between the execution times of the sequential (¢,) and parallel (¢,) versions
of a same calculation.

If a calculation is executed in n processing cores, and a portion f of the calculation is performed in parallel, the

maximum attainable speedup would be S *, according to the Amdahl’s Law [49], which is shown in Equation 3.

1
S (-p+i

Therefore, if the calculation is fully parallelizable (f = 1) the maximum speedup would be equal to the number of

*

3

cores (n). However, in practice the attained speedup is lower than this maximum due to several factors:

"http://www.mpi-forum.org/



e There is always some part of the calculation that is not parallelizable (1 — f). Even if this part is very small
it can represent a very big speedup loss when the number of parallel cores is high, as it can be seen in Equa-
tion 4, which shows the maximum speedup for a certain f even if the number of processors is arbitrarily high.

Therefore, it is crucial to reduce as much as possible the fraction of non-parallelizable calculation.

1
lim - =
n—>+oo(1_f)+£ 1-f

“

e A parallel application includes extra communication and synchronization workloads that are not necessary in

sequential programs.

e When some threads or processes finish their workload before others, the hardware does not work at full capacity

any more because some of the processing cores remain idle, waiting for new tasks to be assigned.

However, there are some cases where a superlinear speedup can be attained. One of them is when the amount of
processed information does not fit in the main memory of a single computer. If several computers collaborate, the
total amount of available memory is higher and then the necessity of slow hard-disk accesses can be removed.

Finally, the relationship between processing (t,,) and communication (z.) workload as the problem size increases
is also important (R,. = t,./t.). If the processing workload is higher, a bigger cluster would be useful in order to
improve the performance. However, if there is more communication as the problem size increases, there would be a

bottleneck and the use of more machines would not imply faster results.

3.4. Distributed AFISs: proposals in the specialized literature

According to the preceding sections, the features provided by HPCs are very similar to the AFIS objectives de-
scribed in Section 2. HPC is a promising tool for the design of a flexible and scalable AFIS because it would allow a
parallel search through the fingerprint database, providing an increased system performance [18, 50].

At the time of writing this paper there are several AFISs in the specialized literature and also in the commercial
market. Most of these systems have an acceptable performance when they deal with small databases. Nevertheless,
in most real world problems there is a need of finding a person among databases whose sizes can range from tens
of thousands to tens of millions. These identifications must be performed in a reasonable time, often shorter than a
threshold of a few seconds. Furthermore, as explained in Section 2, the larger the size of the fingerprint database, the
harder it is to obtain a good identification accuracy.

Within this context, the bottleneck step in the identification process is the matching algorithm, because it must be
performed once per each database fingerprint to determine which one is the most similar to the input.

The proposals in the specialized literature can be classified into different categories:

¢ Client-server systems: in [51], the authors propose a server-like AFIS where the fingerprint database is dis-
tributed among several servers. When a client requests an identification from a server, it searches the input
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fingerprint in its database portion. If it succeeds, it sends the response to the client. However, if the fingerprint
is not found in the server, the request is forwarded to other servers and the server acts as a client. Therefore,
this system does not process the information in parallel. The distribution only affects the database and not the
processing, and the overall processing time is higher than in a sequential AFIS. This makes this architecture
unsuitable for very large databases with hundreds of thousands of fingerprints. A similar system is described

in [19], that additionally includes a GPS-based system for an increased security.

The objective of these systems is to provide an AFIS for distributed databases, whereas this paper focuses on
attaining low identification times in large databases. Thus, no comparison can be performed between these

systems.

Agent-based systems: in [52] an agent-based system is presented, mostly oriented to heterogeneous hardware
architectures. The novelty of this work is that it uses the idle times of a bunch of computers that are mainly
used for other purposes, especially desktop machines. The main part of this proposal is therefore a load-
balancing algorithm. The system has a master-slave structure where a set of slave agents compare fingerprints
and a master agent distributes and organizes the computing workload. The proposed architecture is divided
into layers that isolate the resource monitoring, the agent manager and the matching algorithm. A similar, less
centralized approach is presented in [53], where slave agents are able to communicate and share their found
scores. Several processes are dynamically created when an input fingerprint is received to better distribute
the database exploration. Although this may improve the system flexibility, there is a negative impact on the

identification time.

Again, the objective in these systems is not performance, but load-balancing between shared machines. The
execution times shown in [52] are of 3 minutes and 14 second for performing 700 matchings in a set of 20
Pentium IV machines. This result shows that this approach is not able to handle identifications through hundreds
of thousands of fingerprints in no more than a few seconds, as is the requirement for most real-time biometric

systems.

To sum up, there are some solutions and ideas to improve the efficiency and the availability of AFISs; however,

there is no really scalable AFIS available in the current scientific literature.

4. Distributed and scalable AFIS framework

As it has been explained in previous sections, the bottleneck in a traditional AFIS is the matching process, that

has to be executed once for each fingerprint in the database. This makes the system less usable when it comes to

deal with large or very large databases (from tens of thousands of fingerprints onwards) as the response time becomes

too high. However, the fingerprint identification problem is naturally parallelizable, because the comparisons of the

input fingerprint / with each one of the N fingerprints 7; in the database are entirely independent. This feature can
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be exploited by designing a flexible and efficient parallel identification system based on the HPC paradigm, which
eliminates the bottleneck.
The proposed system is described as follows: Section 4.1 details its parallel structure, Section 4.2 describes the

database distribution and Section 4.3 explains the distributed search process.

4.1. Two-level parallelization

As described in Section 3.1, a typical computer cluster has two parallelism levels. Both nodes and cores contribute
to the system performance and can execute processes by themselves; however, they must be handled by the software
in a different way if a maximum performance must be attained.

The proposed software system (which is implemented in C++) consequently has a two-level parallelization:
e Processes: typically one per node, they are handled with MPI. !
e Threads: one or several per process, they are handled with OpenMP.

There is a single process (called “master”) which reads the input fingerprint and gathers the results at the end of a
search. All the other processes are called “slaves”, and perform parts of the search executing the matching algorithm.
Each slave loads its corresponding fraction of the database and searches the input fingerprint in it. Additionally, each
slave process is itself formed by one or more threads, therefore its database fraction can be divided over again and the

threads perform a parallel search within each process.

4.2. Database distribution

Suppose a generic system with N fingerprints, p nodes and / threads per node. The database would be divided
into one portion per node, so that each process searches in its corresponding portion of N/p fingerprints (Fig. 4). This
distribution can be physical, if the fingerprints are stored in their corresponding nodes in order to improve the access
time and avoid the bottlenecks of a centralized database, or merely logical if the database is centralized.

Inside each node, the process performs a logical partition of its database portion. Hence, each thread searches
through only N/(ph) fingerprints. This scheme allows N, p and & to be modified in a totally flexible way, so they
can be adjusted to any hardware (from single-core computers to hybrid clusters), any environment conditions and any
database to obtain a maximum performance gain.

Fig. 5 represents the interval size for each thread as a function of the total number of threads ph.

4.3. Distributed search process

The logic of the system remains the same independently of how many nodes or threads are used, and is depicted

in Fig. 6.

’http://openmp.org/wp/

12



Complete Fingerprint

Database

Interval 1
\_/
Interval 2
\—/

\—/
Interval h

Interval 1
\_/
Interval 2
\—/

\_/
Interval h

\_/

\_/

Figure 4: Database partition for nodes and threads

Interval 1
\_/
Interval 2
\—/

\_/
Interval h
\—/

Proportion of database fingerprints in each interval

10 15 20
Total number of threads (ph)

25

30

35

40

Figure 5: Relative interval size for each thread

13

45 50



1. Initialization: this step is executed only once, and then the system can perform as many identifications as
required. The database partitions are established, each slave loads its part of the database, preprocesses it if
necessary, and the master waits for input fingerprints.

2. Identification loop

(a) The master receives an input fingerprint. As the feature extraction is performed only once, it can be
computed either in the master process or in each of the slaves independently, depending on the system
features.

(b) When a slave gets the fingerprint features, each one of its threads performs % matchings to compare it
with the template fingerprints in its database portion.

(c) Each slave sends its successful matches to the master process.

(d) The master computes the results and gives a response to the user.

This scheme ensures that the bottleneck step (number 2.b) is executed with two levels of parallelism, in order
to accelerate the execution as much as possible and eliminate the bottleneck. Moreover, as the matching algorithm
remains the same as in a sequential search, there is no loss of precision and the system is guaranteed to find exactly
the same solution as the sequential model in much less time. This also makes the system independent of the matching

algorithm, which can be easily replaced.

Slave processes

Fingerprint Feature i+ p»| Matching
image ! extraction HH :

E 1+ P»| Matching |— E

: g —

E 1+ D»l Matching |— E

Gathering}( — ;
e b mmmcmmcccmmemm——a- :

Figure 6: Processing in the proposed distributed model

According with these data and Amdahl’s Law (Section 3.3), this system can obtain a maximum speedup of # In
that case the identification time plot would have the same hyperbolic shape as the partition size in Fig. 5.

The proposed distributed system shows several important advantages:

e Very high speedup because of several factors:

— Independent processing among slave processes

— Independent processing among threads within each slave
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— Minimum communication overhead

— Optimal exploitation of the hardware structure

Adaptability to multiple sequential or distributed platforms and architectures

Flexibility for centralized or distributed databases

Flexibility for any matcher or feature extractor

e Same precision as the sequential model

5. Experimental setup

This section describes the experimental framework for this paper. The aim of this experimental study is to check

the system scalability —along with its adaptability to the underlying hardware system— in several aspects:
e The number of computing nodes
e The number of threads in each node
e The size of the database

All the performed experiments have the same structure: first, a fingerprint database is loaded in the system and all
its fingerprints are preprocessed according to the corresponding matching algorithm; then, a set of input fingerprints
are searched throughout the database for their identification. All the presented results are averages of the identification
times obtained for 1000 input fingerprints. For the sake of readability and reasons of space, the standard deviations
are not included, but they can be found in the web site associated with this paper. The penetration rate is 100% for this
setup, as there is no stopping criterion for the search. As explained in Section 4.3, the proposed system provides the
same identifications as a traditional sequential AFIS. A large description of the possible stopping criterion is presented
in the associated web site, as well as the precision results for all the databases used in this paper.

Firstly, the hardware and software support are defined and detailed in Section 5.1. Then, Section 5.2 describes the
large synthetic databases created with SFinGe. Finally, Section 5.3 details the captured databases that are used in the

experiments.

5.1. Hardware and software environment

The experiments have been carried out on up to twelve nodes in a cluster. Each of these nodes has the following

features:

e Processors: 2 x Intel Xeon CPU E5-2620

e Cores: 6 per processor (12 threads)
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Cache: 15 MB

RAM: 64 GB

One of the nodes acts as the interface with the user and hosts the master process. However, as this process does

not perform any major processing tasks, a slave process can also be executed on the same node without compromising

Clock Speed: 2.00 GHz

Network: Gigabit Ethernet (1 Gbps)

the performance and thus the hardware is more efficiently exploited.

The proposed distributed model has been implemented in C++, using the OpenMPI 1.6 library? for the commu-
nication and synchronization of processes. Similarly, the OpenMP library > has been used for handling the threads

within each process. In all databases where the fingerprint features had to be extracted, the NIGOS mindtct [21]

algorithm was used.

Table 1: Parameters for the methods used in the experimentation

Algorithm

Parameters

Reference

Mindtct

output format = ANSI INCITS 378-2004

image enhancement = enabled

(21]

Jiang

wa = 1,wg = 54m, wy = 54, w, =0,w, =0
Consolidation step iterations = 5, Minutiae neighborhood size = 2

BG) =8,BG, = ,BG; = &

[43]

Chen

Thry, =55,Thry = 80,R = 80,RS = 100,60, = 0.25,05 = 0.4

len; = 5,leny = 20, Thry,p, = 0.7

(28]

MCC16

R=70,N,=16,N; = 6,0, = 2,04 = %,y = 0.01, 7y = 400

w = 50, minyc = 0.75, miny = 2, minye = 0.60,09 = g,max,,p =12
Floating-point-based version: enabled, up = 20

wg = 05,4 =5,7p = 0.6, min,, =4

HFZ) = %,”‘2 = 1—"2,‘('/]7 = —].6,7'[2) = _30,713] =-30,n, =5

(6]

Three different matching algorithms of the state-of-the-art literature have been used within the framework:

e Jiang is a classical hybrid matching algorithm [43]. Each minutia is described with a feature vector that depends

on its neighboring minutiae, and the feature vectors of both fingerprints are compared in pairs. The algorithm

3http://www.open-mpi.org/
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assumes that the most similar pair corresponds to the same minutia in both fingerprints and compares the rest

of the minutiae using relative coordinates and angles (avoiding the translation and rotation problems).

e Chen focuses on getting robustness despite of the fingerprint distortion [28]. The algorithm is mostly local, as
it calculates the local topology for each minutiae given a fixed radius. Then, it compares the local topologies
of both fingerprints, and if they are similar enough, it repeats the comparison with a modified radius to avoid

problems with the image distortion.

e Minutia-Cylinder-Code (MCC) uses both local and global information to perform the matching [6]. For each
minutia, a tridimensional cylinder is built and discretized in cells. Each cell is given a value that depends on its
position and the relative position of neighboring minutiae. According to this number, the cell can be declared
either valid or invalid, so that only cylinders with a minimum number of valid cells are taken into account for the
matching process. This process compares the cylinders of both fingerprints cell by cell and merges the results

(global matching) to get the score.

This algorithm has a binary and a real version. In this paper, we focus on the latter, which is more precise and
more suited for general purpose machines. We also fix 16 cells as the cylinder side size in order to get the most
accurate configuration, which is also the most computationally complex. Results for the version with Ns = 8

are included in the web site associated to this paper.

All three algorithms have been implemented by the authors of this paper, with the only help of the information
shown at each of the referred papers. All the used methods parameters are common for all databases, and they were

selected according to the recommendation of the corresponding authors (Table 1).

5.2. SFinGe databases: ground-truth minutiae and NIGOS mindtct extraction

A correct scalability study requires a very large database. However, there is no public captured fingerprint database
big enough to cover this need, so we used SFinGe [20, 2] to generate a database with 400 000 synthetic fingerprints,
using the parameters described in Table 2 to ensure the generation of realistic fingerprints.

SFinGe randomly generates the fingerprint minutiae and calculate a fingerprint image from them, following pat-
terns so that the resulting synthetic fingerprints behave as natural captures. As SFinGe is able to provide the generated
minutiae as an additional output, this paper has used both the returned ground-truth minutiae and the extracted minu-
tiae (using mindtct), obtaining two databases with the same fingerprints but slightly different characteristics.

For each fingerprint 25 impressions have been generated. One of the impressions is selected as template, and the
rest are considered input fingerprints. Then, several subsets of the whole database (each of them of increasing sizes)
have been selected, respecting the natural class distribution, in such a way that each database contains the immediately
smaller one. The whole enrollment process is described in the associated web site.

The size of all database subsets are presented in Table 3, along with the average number of minutiae for both
template and input fingerprints. As it can be seen, the number of average minutiae is higher for the extracted feature
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Table 2: Parameter specification used with the SFinGe tool

Scanner parameters

Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm).
Resolution: 500 dpi.

Image size: 288 x 384.

Background type: Optical.

Background noise: Default.

Crop borders: 0 x 0.

Generation parameters

Impression per finger: 25.

Class distribution: Natural.

Set all distributions as: “Varying quality and perturbations”.
Generate pores: enabled.

Save ISO templates: enabled.

Output settings
Output file type: WSQ.

Table 3: SFinGe databases size and average number of minutiae

Ground-truth Extracted

DB Size
Template Input | Template Input
1000 40.79 36.84 55.35  49.60
2000 40.84 36.81 5547 49.61
5000 40.97 36.98 55.64 49.87
10 000 40.79  36.77 5548 49.61
50 000 40.72  36.70 5544  49.58
100 000 40.73  36.71 5546  49.62
200 000 40.74 36.71 55.50 49.63
400 000 40.70  36.68 5547 49.66

vectors due to the noise introduced by the image generation and the processing steps. This implies that mindtct extracts
an average of 15 spurious minutiae per fingerprint.

Finally, we have selected one random input impression for each fingerprint in the smallest database, obtaining a

18



test set of 1000 input fingerprints that is valid for the experiments with all the generated databases.

Table 4: Execution times and speedup with the MCC16 algorithm

1 thread 4 threads 12 threads 24 threads
Time (s)| Speedup Time (s)| Speedup Time (s) Speedup Time (s) Speedup
1000 6.5377| 1.0000|| 1.6867| 3.8759| 0.6444| 10.1447| 0.5043| 12.9646
2000( 12.9968| 1.0000|| 3.2963| 3.9429(| 1.2041| 10.7936|| 0.9059| 14.3463
5000|| 32.5242| 1.0000|| 8.1634| 3.9841|| 2.9056| 11.1937|| 2.1228| 15.3212
10 000|| 64.7076| 1.0000|| 16.2010| 3.9940| 5.7484| 11.2566|| 4.1308| 15.6645
50 000(| 321.8924| 1.0000|| 81.9340| 3.9287|| 28.2669| 11.3876|(20.1745| 15.9554
100 000|| 624.3297| 1.0000(/160.9759| 3.8784|| 56.5323| 11.0438|40.2844| 15.4980
200 000({1250.2594| 1.0000(314.9397| 3.9698|(113.1789| 11.0468|80.4265| 15.5454
400 000 - - - — - - - -
1000 3.3728| 1.9384| 0.9062| 7.2142|| 0.3633| 17.9976/ 0.3081| 21.2203
2000 6.5398| 1.9873|| 1.6969| 7.6592|| 0.6457| 20.1289| 0.5144| 25.2667
5000( 16.3442| 1.9900|| 4.1567| 7.8246|| 1.4826] 21.9367|| 1.1156| 29.1537
10 000|| 32.5416| 1.9885|| 8.1786| 7.9118| 2.9220| 22.1446|| 2.1294| 30.3882
50 000|| 161.8845| 1.9884|| 40.3953| 7.9686|| 14.1720] 22.7132|{10.1626| 31.6743
100 000|| 324.4350| 1.9244| 80.6912| 7.7373|| 28.2606| 22.0919(|20.1649| 30.9612
200 000|| 625.5980] 1.9985(/161.2985| 7.7512|| 56.5520| 22.1081(|40.2440| 31.0669
400 000]{1248.7902 —||322.3448 —1109.9070 —180.4963 -
1000 1.8610 3.5129|| 0.5247/12.4603|| 0.2329| 28.0741| 0.2133| 30.6491
2000 3.3892| 3.8347|| 0.9121[14.2499|| 0.3680| 35.3140( 0.3172| 40.9691
5000 8.2977| 3.9197|| 2.1465(15.1521|| 0.7898| 41.1816|| 0.6155| 52.8417
10 000|| 16.3510| 3.9574|| 4.1657(15.5334| 1.4917| 43.3775|| 1.1096| 58.3179
50 000(| 80.8244| 3.9826|| 20.3091|15.8497| 7.1278| 45.1600|| 5.1219| 62.8463
100 000|| 161.5434| 3.8648|| 40.4924/15.4185|| 14.2047| 43.9523||10.1475| 61.5253
200 000|| 312.9654| 3.9949| 80.7448|15.4841|| 28.2520| 44.2538||20.1662| 61.9977
400 000|| 621.7593 —|158.2815 —|| 56.4944 —140.2569 -
1000 0.9849| 6.6382( 0.3098|21.1005|| 0.1681| 38.8978|| 0.1750| 37.3486
2000 1.8604| 6.9859|| 0.5302/24.5143|| 0.2335| 55.6547|| 0.2195| 59.2200
5000 4.2340( 7.6816| 1.1434|28.4443|| 0.4392| 74.0569| 0.3691| 88.1285
10 000 8.3241| 7.7735|| 2.1611{29.9425|| 0.7880 82.1115|| 0.5932/109.0777
50 000|| 40.4281| 7.9621|| 10.2904|31.2810(| 3.5670] 90.2412|| 2.5289|127.2860
100 000|| 80.9415| 7.7133|| 20.2252|30.8689|| 7.0044| 89.1343|| 4.9369(126.4614
200 000|| 161.5014| 7.7415|| 40.3357|30.9963|| 14.1784| 88.1803|{10.1298|123.4243
400 000|| 315.6620 —|| 80.5549 —|| 28.2313 —120.1449 -
1000 0.6955| 9.4000|| 0.2366|27.6279|| 0.1384| 47.2470|| 0.1616| 40.4603
2000 1.2825|10.1340|| 0.3841|33.8357|| 0.1885] 68.9394|| 0.1909| 68.0741
5000 2.9076|11.1858|| 0.8120(40.0537|| 0.3320] 97.9537|| 0.2866|113.4908
10 000 5.5884(11.5789|| 1.4935(43.3259|| 0.5632/114.8979|| 0.4399/147.0949
50000(| 27.1921|11.8377|| 7.0135/45.8961| 2.4538]131.1832|| 1.7928|179.5466
100 000|| 54.1348|11.5329|| 13.5321|46.1370|| 4.8029/129.9911|| 3.4581|180.5417
200 000|| 104.8093[11.9289| 26.9958|46.3132|| 9.4815|131.8623| 6.7807(184.3857
400 000|| 213.1696 —|| 51.5151 —|| 18.8523 —113.4805 -

Slaves| DB size

12

The execution parameters take the following values for the experiments with these database subsets, producing a

total of 480 executions of 1000 identifications each:
e Number of nodes: 1, 2,4, 8 and 12

e Number of threads per node: 1, 4, 12 and 24
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Table 5: Execution times and speedup with Jiang and Chen algorithms

Jiang Chen
Slaves| DB size 1 thread 4 threads 12 threads 24 threads 1 thread 4 threads 12 threads 24 threads

Time (s)| Speedup Time (s)| Speedup|| Time (s) Speedup|| Time (s) Speedup Time (s)| Speedup Time (s)| Speedup Time (s) Speedup Time (s) Speedup
1000(| 0.2223] 1.0000|| 0.0572| 3.8865//0.0210 10.6091//0.0322| 6.9010 2.6166 1.0000(| 0.6707| 3.9014|| 0.2631| 9.9439|| 0.2158 12.1275
2000(| 0.4491] 1.0000|| 0.1143] 3.9292//0.0418] 10.7486//0.0469| 9.5809 5.2484] 1.0000|| 1.3442] 3.9046|| 0.5200 10.0937|| 0.4094 12.8186
5000(| 1.1262] 1.0000|| 0.2871| 3.9232|/0.1048| 10.7434//0.0898| 12.5358|| 13.2122| 1.0000|| 3.3910| 3.8963|| 1.3043| 10.1294( 1.0083 13.1038
10 000|| 2.2432| 1.0000| 0.5710| 3.9286(|0.2072| 10.8245((0.1670| 13.4285| 26.3182| 1.0000|| 6.7189| 3.9170| 2.6000| 10.1224( 1.9823 13.2764
1 50 000||11.2532| 1.0000]| 2.8536| 3.9434(/1.0443| 10.7753||0.7408| 15.1909|| 130.0427| 1.0000|| 33.3673| 3.8973|| 12.9129| 10.0708|| 9.7984 13.2719
100 000{|22.3477| 1.0000|| 5.6989| 3.9214(/2.0743| 10.7737||1.4444| 15.4715|| 261.2312 1.0000(| 66.7052| 3.9162|| 25.8390| 10.1099|/19.5891 13.3355
200 000||44.7627| 1.0000/11.4571| 3.9070(|4.1789| 10.7115||2.8860| 15.5104|| 520.8561| 1.0000|/133.8296| 3.8919|| 51.7934| 10.0564(/39.2616 13.2663
400 000(189.4130| 1.0000{22.8261| 3.9171||8.3137| 10.7549||5.7485| 15.5541{/1041.2164| 1.0000|268.2014| 3.8822(/103.6681| 10.0437||78.6457 13.2393
1000]| 0.1142] 1.9461|| 0.0294| 7.5499//0.0108| 20.6412//0.0292| 7.6174 1.3740| 1.9044| 0.3538| 7.3956| 0.1360| 19.2343|| 0.1180 22.1809
2000(| 0.2233] 2.0118|| 0.0575| 7.8125|/0.0213] 21.1162(/0.0364| 12.3264 2.6151] 2.0069|| 0.6745] 7.7813|| 0.2643| 19.8543|| 0.2176 24.1182
5000(| 0.5647| 1.9942|| 0.1455| 7.7383|/0.0522| 21.5809/|0.0579| 19.4507 6.6614| 1.9834| 1.7315] 7.6305|| 0.6522| 20.2588|| 0.5073 26.0449
10 000|| 1.1266| 1.9911|| 0.2917| 7.6913||0.1041| 21.5529||0.0940| 23.8630|| 13.2512| 1.9861| 3.4134| 7.7102|| 1.3075| 20.1283|| 1.0074 26.1243
2 50 000|| 5.5878| 2.0139|| 1.4407| 7.8108||0.5222| 21.5507||0.3782| 29.7538|| 65.3116| 1.9911|| 16.8256| 7.7289|| 6.4966| 20.0171|| 4.9242 26.4089
100 000(|11.2132| 1.9930]| 2.8599| 7.8141||1.0442| 21.4017(|0.7306| 30.5885|| 130.0469| 2.0087|| 33.5380| 7.7891|| 12.9157| 20.2258|| 9.7965 26.6656
200 000{|22.3400| 2.0037|| 5.7152| 7.8323||2.0770| 21.5513||1.4477| 30.9198|| 263.4494| 1.9771|| 67.1486| 7.7568|| 25.8201| 20.1725|{19.5915 26.5858
400 000|144.7918| 1.9962||11.4334| 7.8203||4.1682| 21.4514||2.8645| 31.2138|| 494.2013| 2.1069|(134.0177| 7.7692|| 51.7896| 20.1047|39.2861 26.5034
1000(| 0.0636] 3.4950|| 0.0160/13.8813|/0.0060| 36.8029/0.0237| 9.3672 0.7832| 3.3409|| 0.2000(13.0831|| 0.0773| 33.8613|| 0.0773 33.8581
2000(| 0.1154| 3.8922|| 0.0297|15.1395||0.0111| 40.4738||0.0294| 15.2556 1.3838| 3.7928|| 0.3590(14.6187|| 0.1362| 38.5442(| 0.1155 45.4296
5000|| 0.2848| 3.9547|| 0.0731|15.4160|0.0268| 42.0524(|0.0382| 29.4869 3.3920 3.8951|| 0.8811(14.9944|| 0.3295| 48.0000|| 0.2660 49.6665
10 000|| 0.5649| 3.9707|| 0.1456|15.4113||0.0526| 42.6104(/0.0582| 38.5593 6.6707| 3.9454| 1.7267|15.2417|| 0.6550| 40.1810|| 0.5116 51.4412
4 50 000|| 2.8063| 4.0099|| 0.7184(15.6639||0.2631| 42.7751/|0.1996| 56.3777|| 33.6899| 3.8600|| 8.4567|15.3775|| 3.2448| 40.0772|| 2.4605 52.8523
100 000|| 5.5953| 3.9940|| 1.4330(15.5947(|0.5248| 42.5867(|0.3764| 59.3691| 65.3531| 3.9972|| 16.8876|15.4688|| 6.4745| 40.3479|| 4.9155 53.1444
200 000||11.2069| 3.9942|| 2.8843|15.5196]|1.0416| 42.9750|0.7293| 61.3813|| 130.2397| 3.9992|| 33.7397|15.4375|| 12.9011| 40.3730|| 9.7735 53.2930
400 000|22.3816| 3.9949|| 5.7571|15.5309||2.0919| 42.7426||1.4346| 62.3251|| 244.8766| 4.2520|| 67.2316]15.4870|| 25.8130| 40.3369||19.5542 53.2478
1000(| 0.0316| 7.0401|| 0.0083|26.7494{|0.0035| 64.2974(|0.0290, 7.6733 0.4037| 6.4812|| 0.1054|24.8257|| 0.0428| 61.1117|| 0.0515 50.8454
2000(| 0.0620| 7.2497|| 0.0161/27.9362|/0.0062| 72.6729|/0.0212| 21.1652 0.7753| 6.7691|| 0.2062|25.4555|| 0.0775| 67.7110(| 0.0758 69.2445
5000|| 0.1451| 7.7641|| 0.0378/29.7743/|0.0137| 82.4991/|0.0132| 85.4633 1.7007| 7.7686|| 0.4545]29.0717|| 0.1694| 77.9951|| 0.1482 89.1464
10 000|| 0.2842| 7.8943|| 0.0736|30.4730||0.0269| 83.4649|/0.0189/118.5300 3.3823| 7.7811|| 0.901929.1795|| 0.3319| 79.2880|| 0.2626 100.2375
8 50 000|| 1.3982| 8.0483|| 0.3657|30.7747(|0.1338| 84.0739(|0.0865|130.1263|| 16.2990 7.9786|| 4.3068|30.1949|| 1.6056| 80.9917|| 1.2014 108.2427
100 000|| 2.8018] 7.9761|| 0.7160(31.2100/0.2617| 85.4097|/0.1676]133.3246|| 32.6356| 8.0045|| 8.3803|31.1721|| 3.2778] 79.6972|| 2.3699 110.2273
200 000|| 5.5918| 8.0050(| 1.4278|31.3501(|0.5252| 85.2298|0.3771|118.6958| 65.4597| 7.9569|| 16.7699(31.0590| 6.4707| 80.4948|| 4.9169 105.9329
400 000[11.2094| 7.9766| 2.8535|31.3340||1.0465| 85.4367||0.7311/122.2957|| 130.3891| 7.9855|| 33.5594(31.0261|| 12.9884| 80.1652|| 9.8312 105.9092
1000(| 0.0217]10.2596|| 0.0059(37.8051|/0.0026| 84.7512(/0.0355] 6.2588 0.2860| 9.1492|| 0.0750|34.8743|| 0.0319] 82.0586|| 0.0462 56.6480
2000(| 0.0420(10.7056| 0.0111/40.5654//0.0045/100.4881//0.0305| 14.7041 0.5355| 9.8015|| 0.1402|37.4315|| 0.0555| 94.5845|| 0.0605 86.7839
5000(| 0.0987[11.4113|| 0.0257/43.7860|/0.0099/113.8505|/0.0245| 46.0084 1.1946(11.0598|| 0.3207|41.1937|| 0.1207(109.4223|| 0.1097 120.3981
10 000|| 0.1913|11.7289|| 0.0496/45.2401||0.0180(124.5452/0.0294| 76.2192 2.2545(11.6735|| 0.6144/42.8372|| 0.2249(117.0009|| 0.1826 144.0929
12 50 000|| 0.9391|11.9824(| 0.2479|45.3899|((0.0886|127.0723(|0.0769|146.2598|| 11.6401({11.1720(| 2.9209/44.5208|| 1.0921{119.0792|| 0.8393 154.9394
100 000|| 1.8793]11.8913|| 0.4780(46.7535/|/0.1757|127.1641|/0.1298/172.2133|| 21.8480|11.9568|| 5.6096|46.5684|| 2.1689/120.4465|| 1.6707 156.3570
200 000|| 3.7270|12.0104(| 0.9538|46.9313||0.3514(127.3876/|0.2573|173.9799|| 43.5101{11.9709|| 11.1898/46.5475| 4.3222(120.5079|| 3.2824 158.6822
400 000|| 7.4420/12.0146|| 1.9056/46.9214(|0.7015|127.4627||0.4922|181.6637|| 83.1721|{12.5188|| 22.3146|46.6609| 8.6148|120.8634| 6.5342 159.3485

e Matchers: Jiang, Chen and MCC16

For the extracted minutiae databases not all parameter combinations are necessary, and the experiments are limited

to the sequential and fully parallel cases to compare if the system behavior when using the extracted minutiae is the

same as when using the ground-truth database. Considering the 3 matching algorithms and the 8 database sizes, this

produces a total of 48 experiments. It is important to note that the increase in the number of minutiae shown in Table 3

implies a slow down in the identification process.

5.3. NIST DB4 and DBI14 databases

In addition to the above mentioned experiments, NIST DB4 and DB14 databases have also been used. These

databases are provided by the National Institute of Standards and Technology (NIST). They contain 2000 and 27

000 rolled fingerprint pairs, respectively, and thus the number of minutiae extracted by NIGOS mindtct is very high
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(135.87 in DB4 and 206.90 in DB14). The aim of using DB4 and DB14 is to test if the proposed system can deal
with captured databases, and also with rolled fingerprints. The used parameters for the minutiae extraction and the

matching algorithms are the same as for the SFinGe extracted database.

6. Experimental study

This section describes the results of the performed experiments. Sections 6.1, 6.2 and 6.3 present the results for

SFinGe ground-truth, SFinGe extracted and NIST databases, respectively.

6.1. Speedup with SFinGe ground-truth minutiae

The obtained results are presented in Tables 4 and 5. Note that the experiments with the 400 000 fingerprints
database combined with the MCC16 algorithm could not be performed within a single machine because the prepro-
cessed database is bigger than the whole RAM space in the used computers (64GB), and thus no speedups can be
calculated. The sequential tests could be run using virtual memory, but the performance loss would be dramatic and
the speedup when using several machines would be superlinear, as described in Section 3.3. This is a very clear case of
a problem that cannot be solved in a sequential manner, but can be successfully tackled using a distributed approach.

In the rest of the results, the decrease in the execution time and the corresponding increase in the speedup as the
amounts of threads and processes are augmented can be seen. It is also clear that the speedup is generally almost
linear with the total number of threads that perform the distributed search.

However, there are some exceptions to this statement:

e When the number of threads per computing node is 24, the performance gain is not proportional to this number
of threads, but lower. Nevertheless, this behavior is normal because each node in the used cluster only has 12
cores. The Intel Hyperthreading technology is able to handle two threads in each core, but its performance is
not as high as when these threads are executed in parallel within different cores, and strongly depends on the

specific instructions executed by the threads.

e When the database size is small and the computing resources are high, the performance is not optimal. This
behavior is especially clear with the Jiang algorithm, which is the fastest method tested in this paper. For
example, the execution time for 10 000 fingerprints is lower than for 1000 fingerprints when the full cluster (12
nodes and 24 threads) is used. This is due to the ratio between processing and communication times (R,), as
explained in Section 3.3. With small databases and big resources, the processing time #,, is much smaller than
the communication time #, and thus no gain is obtained. Furthermore, ¢, is increased due to the synchronization
between threads and processes. The response time of the overall system depends on the response time of the
slowest thread; when the database is small, the chunks assigned to each thread are very small and the difference
are high. This problem disappears as the database grows, and it explains why bigger databases can be explored
faster than smaller ones when large resources are employed.
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Figure 7: Speedup when varying the number of slave processes and threads, for databases with 10 000 or more fingerprints

Since we are mainly concerned with large databases, this is no issue. Anyway, it can be easily solved by using

a specific configuration for databases with a size smaller than a given threshold.

Additionally, Fig. 7 shows the speedup when the number of threads and processes is varied, with one line per
database size and number of slaves. For the sake of readability and to avoid the irregular behavior described in the
preceding paragraph, only databases from 10 000 fingerprints onwards have been drawn in these plots.

These figures clearly state that when there are more threads than physical cores the speedup does not increase
linearly. It can also be seen that the lines corresponding to different database sizes are grouped. Thus, the database
size does not affect the speedup when it is reasonably large. This result, along with the fact that the flexible proposed

system allows the identification in arbitrarily large databases, ensures full scalability regarding the database size.
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Figure 8: Speedup when varying the database size

In other words, if the database size is doubled, the identification time can be kept constant by simply doubling the

computing resources.

Fig. 8 shows the speedup as a function of the total number of threads that are performing the parallel search. The
theoretical limit imposed by the Amdahl’s Law is also displayed, and it can be seen that the results are close to the
line. Moreover, the larger the database size is, the closer to the line the results are, showing that the system scalability
increases along with the database size. This is the best possible situation, as it ensures a maximum scalability and
performance when it is most needed. As before, there are exceptions where the speedup is much lower than the limit,
when the database size is small and when the number of used threads is higher than the number of physical computing

cores. The right side of the plots in Fig. 8 shows this behavior very clearly: then the full cluster is used, the speedup

increases when the database grows.
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Table 6: Sequential (¢,) and parallel (z,) execution times and speedup with the SFinGe extracted and NIST databases

Jiang Chen MCC16
DB size ts (s) t, (s)  Speedup ts (s) t, (s) Speedup ts (5) t,(s) Speedup
1000 0.4735 0.0253 18.7070 5.9325  0.0661 89.6952 10.4988  0.2023  51.9038
2000 0.9330 0.0255  36.5825 11.4148  0.1004 113.6886 19.7435  0.2519  78.3921
5000 2.3099 0.0325  71.0363 28.6567  0.2061 139.0185 475580  0.3912 121.5540
10 000 4.6722  0.0446 104.8213 56.6954  0.3477 163.0649 93.2347  0.6227 149.7332
50000 | 229674 0.1475 155.6925 | 283.3022  1.6784 168.7886 | 459.9514  2.5605 179.6316
100000 | 46.3680 0.2734 169.6040 | 569.8500  3.3252 171.3708 | 922.1267 4.9613 185.8622
200000 | 92.3980 0.5288 174.7348 | 1144.3038  6.6053 173.2413 | 1851.2036  9.7530 189.8089
400 000 | 183.2521 1.0368 176.7501 | 2303.3817 13.2144 174.3086 - 19.3620 -
DB4 7.7601 0.0795  97.5911 81.7127  0.5893 138.6534 192.5607 1.6131 119.3743
DB14 | 307.4337 2.0310 151.3740 | 2454.5287 10.4387 235.1381 | 6460.3050 20.6486 312.8684

6.2. SFinGe databases: extracted minutiae

Once the speedup behavior when changing the computing resources has been studied, more experiments have
been performed in order to validate the results with more realistic databases. For this purpose, we have compared the

sequential execution times with the times obtained when using the best configuration (12 nodes and 24 threads per

node). Table 6 presents the sequential and parallel times, along with their quotient (speedup).

Figure 9: Speedup with the SFinGe extracted database. The dashed lines represent theoretical maximum speedups considering one or two threads

per core.

It becomes clear that the good speedups obtained with the ground-truth database are also obtained with extracted
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minutiae. This is due to the flexibility of the database partitioning scheme, which distributes the database statically
among nodes and dynamically among threads. Another fact that can be seen in the table is that the execution times are
higher than with the ground-truth minutiae. This is a consequence of the higher number of obtained minutiae when
using NIGOS mindtct.

Fig. 9 shows the obtained speedups depending on the database size (note the logarithmic scale on the horizontal
axis). It can be seen that the larger the database, the higher the speedup. It is due to the same reasons explained in
the preceding section. Thus, the system behavior remains the same even when the database is changed. The plot also
shows how the obtained speedup when using two threads per core is far from the theoretical maximum with the Intel
Hyperthreading technology, but it is also considerably higher than the maximum of 144 (12 nodes with 12 cores) that
would be attainable if this technology were not implemented in the microprocessors. This proves again that we are in
an optimal case for the application of a distributed system and that the proposed system has been optimally designed

and implemented.

6.3. NIST DB4 and DB14 databases

Finally, the NIST DB4 and DB 14 databases have been used to test the proposed system in the same conditions as
the SFinGe extracted fingerprints. The results are presented in Table 6 and Fig. 10.

Again, the speedup values are similar to those obtained with the SFinGe ground-truth database, proving that the
proposed system is database-independent and can achieve very good results both with plain and rolled fingerprints,
whose matching times are totally different.

The plot also shows that the speedups are higher when the search is performed in DB 14, which is by far the biggest
database. This result is in the same line as those obtained with the SFinGe databases, where bigger databases allow
better scalability. If the figure is compared with Fig. 9, it can be seen that both NIST databases reach a better speedup
than SFinGe databases of the same size. This is due to the higher number of minutiae of the rolled fingerprints: the
matching process is more computationally complex, and thus HPC is able to improve the time results even further
because the impact of the sequential preprocessing is reduced.

The different matching algorithms show the same behavior with the NIST and SFinGe databases, as it can be
seen when comparing Fig. 9 and 10: the Jiang algorithm has less speedup because its processing workload is very
small, and thus the communication time has a bigger impact on the overall time. On the other extreme, the most
computationally expensive algorithm (MCC) obtains a superlinear speedup when inserted in the proposed framework,
although in theory this situation should not be possible. In this case, as mentioned in Section 3.3, a higher number of
computers also means more main memory and more caches. As the database chunks explored by each node are also

smaller, they can fit more easily in the cache memory and thus can be explored even faster.
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Figure 10: Speedup with the NIST databases.

7. Conclusions

In this paper, we have introduced a novel two-level parallelized automatic fingerprint identification system. The
proposed framework combines process-level and thread-level parallelism in order to obtain a maximum speedup for
any kind of underlying hardware architecture from monocore processors to large hybrid clusters. It also abstracts the
fingerprint matching algorithm, in such a way that the inclusion of a new algorithm is straightforward and does not
affect neither the algorithm nor the global framework.

In order to verify the capabilities of the system, we have used the SFinGe software [20, 2] to generate a database
of 400 000 fingerprints that has been used for identification in a set of experiments on a hybrid cluster, ranging
from sequential to massively parallel runs. In a search for more realistic fingerprints, we have applied the NIGOS
mindtct minutiae extractor on the database and performed more experiments. Finally, another set of experiments has
been executed using two large real-world databases from the NIST. All these experiments have been run with three
well-known fingerprint matching algorithms [43, 28, 6].

After detailing the obtained results, we can conclude that the proposed framework fulfills the expectations. It has
a linear scalability regarding to the fingerprint database, as well as an optimal adaptability to the underlying hardware.
In theory, this allows the identification in databases of arbitrary size as long as there is enough computing power. In
practice, the identification time can be kept constant against the database growth just by augmenting the computing

resources in the same proportion. The framework has also proven to maintain its good behavior independently of the
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underlying matching algorithms and fingerprint features.
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Abstract

Nowadays, many companies and institutions need fast and reliable identification systems that are able to deal with
very large databases. Fingerprints are among the most used biometric traits for identification. In the current literature
there are fingerprint matching algorithms that are focused on efficiency, whilst others are based on accuracy.

In this paper we propose a flexible dual phase identification method, called DPD-DFF, that combines two fingers
and two matchers within a hybrid fusion scheme to obtain both fast and accurate results. Different alternatives are
designed to find a trade-off between runtime and accuracy that can be further tuned with a single parameter.

The experiments show that DPD-DFF obtains very competitive results in comparison with the state-of-the-art
score fusion techniques, especially when dealing with large databases or impostor fingerprints.

Keywords: Real-time identification, large databases, minutiae matching, fingerprint fusion, decision fusion, score

fusion, parallel computing, biometrics

1. Introduction

Personal identification has arisen as an important issue in the last few years for many companies and institu-
tions [1]. Identification databases grow larger every year, ranging from a few tens of people for small companies to
several millions for institutions such as the police. Although there are various biometric traits that allow for iden-
tification, fingerprints are widely used because of their uniqueness and universality, among other properties [2, 3].
Fingerprint recognition can be tackled from two different perspectives: verification [4] and identification [5]. The
former consists of matching two fingerprints to determine whether they belong to the same finger or not. The latter

aims to identify an input fingerprint from a set of fingerprints and determine which of them matches with the input. In

*Corresponding author. Tel.: +34 958244019; fax: +34 958243317
Email addresses: dperalta@decsai.ugr.es (Daniel Peralta), Isaac.Triguero@irc.vib-UGent .be (Isaac Triguero),
salvagl@decsai.ugr.es (Salvador Garcia), herrera@decsai.ugr.es (Francisco Herrera), J.M.Benitez@decsai.ugr.es (Jose M.
Benitez)

Preprint submitted to Information fusion June 8, 2016



this context, an Automatic Fingerprint Identification System (AFIS) is a tool that allows us to perform identifications
in fingerprint databases [3].

Fingerprints are composed of a pattern of ridges and valleys, from which diverse features can be extracted. Among
these features, minutiae are widely used for fingerprint matching, mostly due to their distinctiveness [2, 6]. When two
fingerprints are to be compared, the minutiae are extracted from the images, and then a matching algorithm is applied
over the two minutiae sets to determine a similarity level. There are multiple proposals of minutiae-based matching
algorithms in the literature [7]. Some of them are very efficient due to their simplicity [8], while others are very
accurate [9]. However, these two objectives are usually not reached together because accurate algorithms tend to
be complex, and therefore time-consuming. This restriction complicates the development of AFIS that are able to
identify people in very large databases in a suitable time frame without precision loss.

Moreover, as the overall response time of an identification procedure is linear with respect to the size of the
database, even the fastest matching algorithms may become useless when the database grows too large. Moreover, the
huge number of matchings causes an accuracy loss.

Information fusion is a widely used paradigm that improves overall precision in many fields, including biomet-
rics [10, 11, 12]. In particular, two main approaches have been proven to enhance the recognition capabilities: the
use of several fingerprint images [13] and the use of several matching algorithms [14]. The information fusion can be

performed at different levels:

o Feature fusion approaches merge the characteristics extracted from different fingerprint images, coming either

from the same finger or different fingers [15, 16].
o Score fusion methods perform separate matchings and then sum up the scores [14, 17].

e Decision fusion methods apply the matching algorithms in a hierarchical mode over the fingerprints [11, 18].

Although these approaches increase the accuracy of the AFIS, they also slow the identification down because the
processing workload is higher. In this work, we combine the ideas of multi-finger and multi-algorithm identification
to improve the runtime along with the accuracy.

High Performance Computing (HPC) is an important tool to speed up the runtime of a system [19, 20], and
several proposals in the literature apply it to AFIS. However, these systems focus on objectives other than precision,
such as high availability [21], load balancing [22] or reduced matching times [18]. Other systems provide the ability
to identify in very large databases [23, 24, 25], but their accuracy is not improved with respect to a sequential AFIS.

There are currently several systems in the world that maintain large fingerprint databases. For example, as of
September 2015, India’s UIDAI system [26] stores the fingerprints of around 907 million people, although so far they
are only used for verification purposes, not identification. FBI IAFIS [27] (now included within Next Generation
Identification, NGI) keeps the fingerprints (among other data) for around 104 million subjects, and is able to perform

searches in an average time of 72 minutes.



In this paper, we propose a flexible, Dual Phase Distributed AFIS with Double Fingerprint Fusion (called DPD-
DFF) that integrates two fingerprints and two matching algorithms, aiming to overcome the weaknesses of isolated
approaches: high identification time and accuracy loss. To do so, the identification is split into two phases, each of
which can either use a single fingerprint or fuse two of them, conforming a mixed score fusion and decision fusion

process:

o In the first phase, the database is explored by a fast matching algorithm to select a candidate set. Jiang’s

algorithm [8] has been selected for this phase due to its high running speed [7].

e Then, the second phase applies a more accurate algorithm to identify the correct identity within this candidate

set. The matcher used in this phase is Minutia Cylinder-Code (MCC) [9], which is very precise [7].

With this design, the fingerprint fusion is powerful and flexible as it is performed at two separate levels. Further-
more, this strategy has been integrated within the parallel framework proposed in [23] in order to reach full scalability
for arbitrarily large databases.

This manuscript is structured as follows. First, Section 2 provides the background information on the problem
at hand. Section 3 presents DPD-DFF, the approach proposed in this paper. Section 4 describes the experiments
performed and their results. Finally, Section 5 details the conclusions. Complementary material to the paper including
tables, plots and identification times as well as additional studies over other databases can be found athttp://sci2s.

ugr . es/DPDDFF and in the associated Technical Report [28].

2. Preliminaries

A fingerprint is a pattern of valleys and ridges located on a fingertip. Although there are several ways to perform
a matching between two fingerprints, many matching algorithms use the minutiae [3, 7, 29], comparing two minutiae
sets to return a similarity score. The matching is performed once for each comparison between two fingerprints. Some
of the existing matching algorithms offer very good matching precision [9], and others provide a fast response with
slightly diminished accuracy [8], according to the taxonomy and results presented in [7].

There are two main variants of the fingerprint recognition problem [3]. Verification [4] is a 1:1 comparison to
check if two fingerprints represent the same finger. Identification [5] consists of determining which fingerprint in a
database of previously captured and stored templates T = {T, T, ..., T,,} corresponds to a given input fingerprint /.
An identification algorithm compares [ to every T; and returns the identity with the best matching score as shown in

Eq. 1, where Q(I, T;) is the matching function. Thus, identification is a 1:n comparison.

Identity = argmax Q(I,T;) i€ {l,2,...,n} (1)



This paper is focused on identification. Section 2.1 explains the current proposals for fast and scalable identifi-
cation within large databases. Then, Section 2.2 presents the previous work about fingerprint fusion to improve the

identification accuracy.

2.1. Scalable fingerprint recognition in large databases

The bottleneck of an AFIS when attempting to identify within a large database is the matching algorithm. Several
proposals in the literature aim to overcome this problem.

FPGA-based systems implement the matching into a Field Programmable Gate Array [18, 30], a hardware device
that performs some operations very quickly, so that the overall identification time is reduced.

Other approaches reduce the penetration rate in the database by using a previous classification or indexing step [31,
32, 33, 34]. Nevertheless, in large databases this step may become the bottleneck, and the size of the subsets can
become too large. Accuracy is degraded when the penetration rate is too small or the collision rate too high [33].

HPC is a common solution for reducing high execution times [19, 20]. By using g computers with ¢ cores each
to perform a parallel search, the execution time can be reduced by up to a factor of gc. Moreover, the availability of
more RAM memory allows more template fingerprints to be kept in a fast access device, avoiding slow access to sec-
ondary memory. Therefore, an adequate parallel framework can constitute a suitable tool for solving the identification

problem in large databases [23, 24, 25].

2.2. Fingerprint information fusion

This section introduces two of the main trends to improve the accuracy of fingerprint recognition. On the one hand,
the use of several fingers [13] increases the distinctiveness of the identities and tries to avoid the difficulties posed by
injured fingertips or low quality scans. The matching function for f fingerprints becomes of the form Q(Z, 7;) where
I ={;ljel{l,..fiyand 7; = {T;; | j € {1,..., f}}. This approach has been successfully applied over latent
fingerprints, which are of very low quality [35].

On the other hand, the combination of several matchers [14, 36] aims to profit from their advantages, while leaving
aside their weaknesses. Multi-algorithm techniques work in a similar way as multi-finger ones, so that the fused score
obtained for f algorithmsis Q(I,T;) = F (Q1 I, Ty,.., 0, T,-)), where ¥ is an aggregation function.

Multi-finger and multi-algorithm approaches can be categorized together according to the type of fusion they

perform:

e Feature fusion [15, 16, 37, 38]: this approach merges all f fingerprints of an identity into a single structure,
which is compared to all n template structures. This avoids the necessity of performing f matchings per identity,

but requires specific matching algorithms to handle such structures, as well as an additional conversion step.

e Score fusion [14, 17, 36, 39, 40]: this method applies several matchings (one for each fingerprint or algorithm)
and aggregates the results into a single score. Although it does not need a specific matching algorithm, the use
of f fingerprints or f matchings multiplies the identification time by f.
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e Decision fusion [10, 11, 18, 32]: can be seen as a special case of score fusion, where matching is performed
hierarchically. When the f input fingerprints are compared with some f template fingerprints for a given
identity, the first pair is compared first. If the resulting score meets a certain condition, the second pair is

compared, and so on.

Most fusion approaches are focused on improving accuracy, without considering runtime. Therefore, they are
not adapted to address the identification in large databases because the execution time is higher than it is for simpler
approaches. Empirical results obtained by some of the methods mentioned above can be found in the Technical Report

associated with this paper [28].

3. Dual Phase Distributed Scheme with Double Fingerprint Fusion

DPD-DFF carries out a hybrid fusion between two matching algorithms and two fingers within a flexible dual
phase scheme that is implemented in a parallel HPC system. The proposal seeks to tackle large fingerprint databases

with a good trade-off between two seemingly opposed objectives:
e Accuracy: identification accuracy must be better than it is for isolated models.

¢ Efficiency and scalability: the system should provide a real-time response. The runtime threshold depends on
the specific application; it can vary between a few milliseconds and several minutes. Ideally the identification

time should be lower than when using an isolated AFIS.

First, a fast matcher explores the whole database and extracts a set of candidate identities C. Then, an accurate
matcher compares the input fingerprints with the templates in C. This corresponds to a decision fusion identification
method as described in Section 2.2, in which the separate use of both algorithms avoids the necessity of transforming
their respective outputs to a common domain and the consequent loss of precision, as it does for traditional multi-

algorithm score fusion approaches. The overall identification procedure is applied as follows:

1. Fast phase: according to the results obtained in [7], Jiang’s algorithm [8] has been selected to perform this first
identification phase, because of its speed and its appropriate accuracy. Two different criteria may be used to

compose the set C:
o Rank: given a rank r, select the r identities that provide the best scores. Thus, C has a fixed size |C| = r.

e Threshold: all templates 7; whose score is higher than a fixed threshold ¢ when compared to the input
fingerprint J are included in C. Therefore, the size of C is not previously known and will likely be different

for each input fingerprint pair. The set can be described as C = {77 | Qiang(L, T7) = ¢}.

2. Accurate phase: the MCC algorithm [9] has been chosen for this phase due to its high accuracy. After com-
paring the input fingerprints with the templates in C, the identity with the best score is returned as the found

match, as shown in Eq. 2.



Identity = arg max{Qucc(Z, T3) | T € C) @)

TAB = {7—1 | 7-1 = {TiA’TiB} s i€ {1929511}} (3)

In addition to this multi-algorithm scheme, we also use two different fingers (let them be finger A and finger B) per
identity to even further improve identification accuracy. Two template fingerprints per person are stored, constituting a
database T4p with n fingerprints pairs as described in Eq. 3. An identification requires an input set of two fingerprints
I = {I4,1}. According to this structure, each of the previously described identification phases can be carried out

using either a single fingerprint or both fingerprints:

o Single finger: a single fingerprint of each identity is compared, as shown in Eq. 4. This alternative is proposed

in a search for speed, minimizing the computation load.

QJiang(Ia 7.;) = QJiang(lA7 TiA) (faSt Phase) (4)
Omccd. 7)) = OmccUs, Tip) (accurate phase)

¢ Double finger: both fingerprints are used for the comparison. This constitutes in itself a fusion method. Thus,

a score-based fusion has been implemented, using the average as the aggregation function (Eq. 5), as recom-

mended by the results of [17]. This approach is obviously slower than using a single finger, but it is much more

accurate.

OJiang 4 Tix) + Q]iang(l& Tip)

OJiangL> T = (fast phase)
e T) + O T ©)
Omcc . T) = MCCA " 5 MCC 5 3 (accurate phase)

Table 1: Names of the eight considered variants of DPD-DFF

Fingers used Candidate set criterion
First phase Second phase | Prefix | Rank (*R) | Threshold (*T) Objective
Single (A) Single (B) SS* SSR SST High speed
Single (A) Double (A,B) | SD* SDR SDT Trade-off
Double (A,B) Single (B) DS* DSR DST Trade-off
Double (A,B) | Double (A,B) | DD* DDR DDT High accuracy

The described method performs a hybrid fusion that uses both score and decision fusion to combine two fingers
and two algorithms. The overall workflow is depicted in Figure 1. A pseudocode of the identification procedure

6
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Figure 1: Workflow of DPD-DFF. Dashed lines are pathways that correspond to double finger variants. Dotted lines correspond to single finger

variants. Continuous lines are pathways that are always taken.

is shown in Algorithm 1. Out of this design, we take eight variants of the algorithm into consideration, which are
denoted with three letters as shown in Table 1. The first two letters represent the fingers that are taken for the fast
and accurate phases respectively (S for single and D for double). The last letter stands for the criterion to build the
candidate set (R for rank, T for threshold).

Note that the variants that use both fingers within a same phase (SD*, DS* and DD*) will eventually apply both
matching algorithms over the fingerprints in C. This can enhance the identification accuracy, due to the synergy
between two algorithms that perform the matching differently [14].

Along with the algorithm variant, the choice of the parameters to build the candidate set (r or ) is critical, as it
will determine its size |C|, which in turn determines the trade-off between speed and accuracy: a small candidate set

relies more on the fast phase and provides faster results (though less accurate), whilst a large candidate set leads to



Input: 7, 7, crit, r, 6
C<0
// Fast phase

foreach 7; € T do
q — QJiang(Is 7.;)

if crit == “Ranking” then
if |C| < r then C.append(7);

else
minc = arg mind{ Q jiang (L, 77) | T: € C}

if QJiallg(Is Tminc) <q then
C.remove(7 i)

C.append(7;)

end

end

else if crit == “Threshold” and Q jizne(I,T;) > 6 then
| C.append(77)

end

end

// Accurate phase
max, < 0

identity « null
foreach 7; € C do

if Oycc(2,77) > max, then
maxy < Qucc(Z,T7)

identity « T;

end

end

return identity

Algorithm 1: DPD-DFF algorithm

more accurate results but needs longer runtime.

Despite the separation between fast and accurate phases, if the structure proposed so far is implemented in a
sequential manner the scalability problem will eventually appear for arbitrarily large databases. To achieve high
scalability, DPD-DFF has been developed within the two-level parallel framework proposed in [23], as described in

the Technical Report [28]. Hence, the scheme can be efficiently executed in a cluster of computers.



4. Experiments and results

This section describes the experiments performed over several fingerprint databases: a large database of SFinGe-
generated fingerprints (Section 4.2), a database captured by the authors (Section 4.3), the well-known NIST-DB 14
(Section 4.4) and several other public databases (Section 4.5). Section 4.1 describes the hardware and software used
for these experiments.

The number of True Positives (TP), False Positives (FP) and False Negatives (FN) are used as accuracy measures,
along with the True Positive Rate (TPR). The average identification time is denoted by #,,, and measured in seconds
in all cases. For the threshold variants, the average candidate set size |Cl,,, is also given. The plots include the
accuracy and identification time of three reference AFIS: an isolated one that uses a single finger and a single matcher
(as described in [8, 9]), and two score fusion approaches, one multi-finger (as described in [17, 41]) and one multi-
algorithm (as described in [11, 17, 36]).

Note that for a fair comparison, both DPD-DFF and the reference AFIS were implemented in the framework
proposed in [23] and executed over the same hardware. It is out of the scope of this paper to analyze the performance
of the parallel procedure; the study is focused on the behavior of the proposed hybrid fusion method.

Additional details and results (such as tables, figures, database statistics, identification times, hardware con-
figuration and results with more databases) are available in the associated Technical Report [28] and at http:

//sci2s.ugr.es/DPDDFF.

4.1. Hardware and software environment

The experiments carried out for this paper have been executed in a cluster of 12 nodes, each of them with two Intel
Xeon E5-2620 processors (6 cores each). The executions were performed with 12 slave processes (one in each node),
each of them composed of 24 threads. Note that a smaller subset of nodes was used for the databases of small size.

All fingerprint minutiae were extracted using the NIGOS mindtct software [42], whose parameters are detailed in
Table 2. The authors have written their own implementation of the underlying matching algorithms [8, 9], with the
sole aid of their respective original publications. The parameters used for these algorithms are also presented in the
table.

To ensure a fair comparison, the same parameters were used for all the tested databases, so as to avoid any kind
of over-fitting of the results. Even though this may produce low accuracy values for some of the databases, this setup

aims to assess the robustness of the proposed method in different use cases.

4.2. SFinGe database

This section describes the experiments performed over a database of 50 000 fingerprint pairs, synthetically gener-
ated with the SFinGe software [3, 43]. First, Section 4.2.1 details the used fingerprint database. Then, Section 4.2.2

describes the experiments carried out and the obtained results.



Table 2: Parameters for the methods used in the experimentation

Algorithm

Parameters

Reference

Jiang

wa = Lowg = 0380y, = 0318
wy, = 0, w, = 0, Consolidation step iterations = 5
Minutiae neighborhood size = 2

BG, = 8,BG; = £,BG; = Z

(8]

MCC

R=70,N;=8,N;=6,0,=2,0y=%
wy = 0.01, 7y = 400, w = 50, minyc = 0.75

miny = 2, minyr = 0.60,0 = ’%,maxnp =12
Floating-point-based version: enabled, up = 20
wg = 0.5, = 5,7p = 0.6, min,,, = 4,70 =-1.6

/1/2) = %,Tg = —30,ﬂ§ = %771'; = _3Oynrel =5

(9]

mindtct

output format = ANSI INCITS 378-2004

image enhancement = enabled

(42]

4.2.1. Database generation and parameters of the algorithms

In order to obtain very large databases and to control the fingerprint characteristics, we used the SFinGe soft-
ware [3, 43] to generate synthetic fingerprints using the parameters specified in Table 3. The fingerprint pairs are

composed by joining two synthetic fingerprints. A fingerprint cannot be included in more than one pair to ensure that

all pairs are unique and disjoint in the database.

Table 3: Parameter specification used with the SFinGe tool

Scanner parameters

Generation parameters

Output settings

Resolution: 500 dpi.
Image size: 288 x 384.

Crop borders: 0 x 0.

Acquisition area: 14.6mm x 19.6mm. | Impression per finger: 25.

Background type: Optical. Generate pores: enabled.

Background noise: Default. Save ISO templates: enabled.

Class distribution: Natural.

Varying quality and perturbations.

Output file type: WSQ.

The test set for all the experiments carried out in this paper with the SFinGe database is composed of 1000 random
input pairs, which are used to perform 1000 different identifications in the database of 50 000 template fingerprint

pairs. Each input pair is formed by a different impression of each fingerprint of a template pair. Therefore, we obtain

accuracy measures that range from 0 to 1000.
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4.2.2. Discussion of the results

This section discusses the obtained results for all the described variants of DPD-DFF over the SFinGe database.
For the experiments, the rank values used to build the candidate set have been taken among the multiples of the number
of cores of the cluster (144 in our setup), to maximize the throughput. However, we have also used lower values of

the rank those in order to enrich the study and obtain more information about the behavior of the obtained accuracy.

Table 4: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR
r TP FP  FN 14, (s) TP FP  EN  t4, (5) TP FP  FN 14, (s) TP FP  EN  t4, ()
12 927 73 0 0.1588 928 72 0 0.1845 || 994 6 0 0.2870 996 4 0 03174
24 948 52 0 0.1597 949 51 0 0.1872 || 994 6 0 0.2776 997 3 0 0.3190
48 956 44 0 0.1589 958 42 0 0.1884 || 993 7 0 0.2815 997 3 0 03199
96 968 32 0 0.1597 970 30 0 0.1882 || 993 7 0 0.2889 997 3 0 03190
144 972 28 0 0.1606 974 26 0 0.1889 || 995 5 0 0.2833 999 1 0 03212
288 973 27 0 0.1603 976 24 0 0.1890 || 995 5 0 0.2916 999 1 0 0.3230
576 980 20 0 0.1696 983 17 0 0.2095 || 994 6 0 0.2977 999 1 0 0.3447
1152 984 16 0 0.1889 988 12 0 0.2680 || 992 8 0 0.3215 999 1 0 0.3788
2304 990 10 0 0.2412 995 5 0 0.3345 || 993 7 0 0.3485 | 1000 0 0 0.4483
4608 989 11 0 0.2897 996 4 0 0.4547 || 990 10 0 0.4185 | 1000 0 0 0.5887
9216 987 13 0 04313 996 4 0 0.7369 || 990 10 0 0.5665 | 1000 0 0 0.8665
18432 || 988 12 0 0.7379 998 2 0 1.3333 || 990 10 0 0.8481 | 1000 0 0 1.4356
36864 || 989 11 0 1.4270 | 1000 0 0 25521 || 989 11 0 1.4728 | 1000 0 0 25772
Table 5: Results of DPD-DFF with 1000 test identifications (threshold)
SST SDT DST DDT
¢ [Clag | TP FP EN  f4(s) | TP FP FN 10 (s) | IClag | TP FP EN  f,5(5) | TP FP  EN ()
0.05 || 465282 (989 11 0 15153 (1000 O 0 29382 | 492424 | 989 11 0 17302 | 1000 O 0 3.1920
0.0 || 22913.0 [989 11 0 08381 | 999 1 0 16204 | 23580.8 | 990 10 0 1.0345 | 1000 O 0 1.8055
0.15 || 54047 (989 11 0 03223 | 993 7 0 05450 || 25113 1993 7 0 03727 999 1 0 04911
020 | 6854|964 30 6 0.1925| 967 27 6 02319 817995 4 1 02865| 997 2 1 03197
0.25 399 | 911 54 35 0.583 | 912 53 35 0.1878 18969 0 31 02819] 969 0 31 03170
0.30 15]79 26 178 0.515| 796 26 178 0.1792 09 (84 0 116 02722| 84 0 116 03115

Tables 4 and 5 present the results of the eight variants of DPD-DFF. Note that columns |C|,,, and #,,, contain
average values over the 1000 performed identifications. Accordingly, Figure 2 plots the TPR along with the average
identification time (note the logarithmic scale) for each variant of DPD-DFF and each reference AFIS. The following

highlights can be extracted:

e The accuracy increases along with the amount of used information, so that DS* and DD* approaches are the

most accurate ones.

e For a same average candidate set size, the rank approach produces more accurate results than the threshold
variants, especially for small candidate sets. This might seem surprising because given an input pair, if both
variants produce a candidate set of the same size, then these candidate sets are the same. However, recall that
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Figure 2: Average identification time and accuracy with the SFinGe database (N = 50000)

Table 5 shows the average set size. The actual value of |C| in the threshold variant is different for each input

pair, which makes the variant less robust.

e The rank ensures that there are no false negatives because it allows us to fix the size of the candidate set,

ensuring |C| > 0 and offering better control of the overall identification time.
e Even for a small |C|, the rank variants outperform Jiang over a single fingerprint.

e Similarly, for a very large |C|, DPD-DFF relies more on the second phase and therefore the results get closer to
those obtained by MCC. The DS* variants are a particular case because the accuracy decreases as |C| increases.

As the candidate set grows, they rely less on multi-finger Jiang, and more on single-finger MCC, which is less

accurate than the former.

e The most accurate variant is DDR, which uses the two fingerprints with both algorithms and the rank.

12



e The DS* and DD* variants of DPD-DFF outperform all reference AFIS, reaching 100% TPR along with the
multi-finger approach with MCC.

If the average identification time is also taken into account, the following conclusions arise:

e As expected, in general the more precise variants also take more time. These results show how DPD-DFF can
be tuned according to the system needs, so that reasonably good results can be obtained very quickly (SSR

variant, r = 576), and very precise results can be obtained with slower configurations (DDR variant, » = 2304).

e These tables also show that given a certain variant, the configurations with small candidate sets have a very
similar runtime because all the matchings can be performed in parallel, but the accuracy is better for bigger
candidate sets. Therefore, in a real environment, configurations with less than one candidate per core are

usually not interesting, as they do not use the whole capacity of the cluster.

In summary, the DPD-DFF model dominates in time and accuracy all the tested AFIS, even the multi-finger
approaches which provide very good accuracy. The DDR variant reaches 100% TPR in about 0.45 seconds, while the

only reference AFIS that reaches this accuracy (multi-finger MCC) takes 3 seconds.

4.3. DBSpain654

A database of 654 fingerprint pairs was captured by the authors to test DPD-DFF on a controlled framework.
This section describes the database (Section 4.3.1), the results obtained (Section 4.3.2), and an additional study with
impostor fingerprints (Section 4.3.3). Due to the size of this database, all experiments described in this section were

carried out using a single computer.

4.3.1. Database description

The fingerprints belong to the forefinger and middle finger of both hands of 334 non-experienced subjects from
three different cities. Note that 14 fingerprint pairs failed in their enrolment and therefore were excluded from the
database, making the resulting number of 654 pairs.

Both fingerprints of each pair were captured within the same image using a Suprema RealScan-D sensor. Each
pair was captured 2 times as a template and 12 as an input over 3 different sessions several weeks apart. To compose
the database and the test input set for this study, a single template and a single random input capture were selected
for each pair. Then, the NIGOS nfseg algorithm [42] was used to segment the image and separate both fingerprints of

each pair before applying the minutiae extraction.

4.3.2. Discussion of the results
Tables 6 and 7 present the results of the eight variants of the proposed DPD-DFF. Figure 3 depicts both accuracy

and the average identification time of all tested AFIS. The following conclusions can be extracted from these results:

13



e The algorithms behave in the same way as in the previously studied databases: Jiang is less precise than MCC,
and the multi-finger approaches obtain the best results both among the reference AFIS and the DPD-DFF

variants.

e Again, the rank variants show more robust behavior than the threshold ones for the same average size of the

candidate set. The DDR variant obtains the best performance possible for any number of candidates.

e DDR and DSR dominate all the considered multi-algorithm AFIS, and get the same TPR as multi-finger MCC

in a much faster time.

e The multi-finger Jiang algorithm is faster than DPD-DFF. Actually, it corresponds to the first phase of the DS*

and DD* variants, and it is clear that its accuracy is significantly improved with a small time overhead.

Table 6: Results of DPD-DFF with 654 test identifications (rank)

SSR SDR DSR DDR
r || TP FP BN fae(s) | TP FP FN  fu4(s) || TP FP EN  f4,(s) | TP FP FN  fy (s)
2 614 40 0 0.0622 | 614 40 0 0.1000 || 652 2 0 0.0891 | 653 1 0 0.1264
4 | 623 31 0 0.0641 | 623 31 0 0.1020 || 652 2 0 0.0902 | 654 0 0 0.1277
8 629 25 0 0.0655 | 629 25 0 0.1030 || 651 3 0 0.0915 | 654 0 0 0.1296
12 || 634 20 0 0.0658 | 635 19 0 0.1040 || 648 6 0 0.0919 | 654 0 0 0.1302
24 || 639 15 0 0.0666 | 642 12 0 0.1058 || 647 7 0 0.0927 | 654 0 0 0.1315
48 || 642 12 0 0.0805 | 645 9 0 0.1330 || 647 7 0 0.1073 | 654 0 0 0.1598
Table 7: Results of DPD-DFF with 654 test identifications (threshold)
SST SDT DST DDT

¢ || IClug | TP FP FN 14 (s) | TP FP FN 70 (8) || IClug | TP FP BN f0(s) | TP FP FN 14 (5)
015 || 1135|641 13 0 0.1165|646 8 0 02114 | 61.1 |647 7 0 01205654 0 0 0.1863
020 || 193|631 17 6 00694 |632 16 6 01128 | 41 |645 1 8 00893 646 0 8 0.1266
0.25 20600 19 35 00619 | 600 19 35 0.0972 10616 2 36 0087|616 2 36 01211
0.30 08| 545 2 107 00590 | 545 2 107 00924 || 09]562 0 92 00857 [562 0 92 0.1194

4.3.3. Results using impostor fingerprints
This section provides additional accuracy results for the DBSpain654 database.

In this section, the introduction of impostor fingerprints in the database requires additional error measures to study

the behavior of DPD-DFF:
o False Acceptance Rate (FAR): rate of impostor fingerprints that are erroneously identified as genuine ones.
¢ False Rejection Rate (FRR): rate of genuine fingerprints that are erroneously rejected.

e Equal Error Rate (EER): error when FAR and FRR are equal.

14
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Figure 3: Runtime and accuracy with the captured database (N = 654)

e FAR100, FAR1000: FRR when FAR is 1% and 0.1%, respectively.

o True Negatives (TN): number of input fingerprints that are not in the database, and are correctly detected as

such.
o True Negative Rate (TNR): quotient of TN and the number of impostor test fingerprints.

Tables 8 and 9 depict these error measures for all tested variants of DPD-DFF. To calculate these values, we took
3 random input fingerprint pairs for each of the 654 templates, and matched them with all the templates, making a
total of 1 283 148 matchings for each matcher and each finger.

These tables show that the error rates become very low when the candidate set is big enough, especially for the
DDR variant. Additionally, the FAR100 and FAR1000 values are very similar in most cases, meaning that the FAR
drops quickly while the FRR remains almost constant, stating the robustness of DPD-DFF. The DRR variant obtains
a very low FAR1000 when r = 48, which corresponds to a system that is robust against attacks (0.1% FAR), while

avoiding rejections of genuine identities (0.25% FRR).
15



Table 8: Additional error measures (in percentages) using DPD-DFF (rank)

SSR SDR DSR DDR
r || EER FARIO0O FARI000 | EER FARI00 FARI000 || EER FARI00 FARI000 | EER  FARI00 FAR1000
2 || 62691 62691 6.3462 | 62691  6.2691 62691 || 13252 1.3252 14547 | 13252 13252 1.3252
4 || 53007 53007 54536 | 53007  5.3007 53007 || 0.9684  0.9684 11879 | 0.9684 09684  0.9684
8 || 44852 44907  4.6406 | 44852  4.4852 44852 || 0.8396  0.7875 12571 | 0.7645 07645  0.7645
12 || 38226 39012 4.0571 | 3.8226  3.8226  3.8226 || 0.7715  0.7344 1.1956 | 0.6116  0.6116  0.6116
24 || 27405 2.8525 32449 | 27013 2.7013 27077 || 0.5750  0.5607 1.0508 | 03568 03568  0.3818
48 || 2.0346  2.0897 25592 | 1.8858  1.8858 19217 || 0.6132  0.4497 12210 | 02039 02039 02519

Table 9: Additional error measures (in percentages) using DPD-DFF (threshold)

SST SDT DST DDT
6 EER  FARIO0 FARI000 | EER  FARIO0 FARI000 || EER  FARI00 FARI000 | EER  FARI00 FARI000
0.15 || 19888 20829 27641 | 1.7848 17848  1.8358 || 0.6938  0.5347 13761 | 03058 03058  0.3851
020 || 45385 46810 49608 | 4.5385 45385 45385 | 1.6820 1.6820  1.8941 | 1.6820  1.6820  1.6820
025 | 95360 9.5360  9.6470 | 9.5360  9.5360  9.5360 | 5.8104 58104 58104 | 58104 58104 58104
0.30 || 18.2050 182050  18.2050 | 18.2050 182050  18.2050 || 15.4944 154944 154944 | 154944 154944 154944

Table 10: Results of DPD-DFF with impostors and 654 test identifications (rank)

To conclude this section, we performed a new test, for which half of the fingerprints were randomly removed from
the database, so that 50% of the input fingerprints become impostors trying to break into the system. The criterion
used by DPD-DFF to determine if a fingerprint does not belong to the database is a score threshold within the accurate
phase: if the fingerprint selected as the most similar to the input does not reach that threshold, the input is considered

to be an impostor. The threshold used for these tests was the one that gives 0.01% FAR for the standalone MCC

SSR SDR DSR DDR
r TP TN FP FN| TP TN FP FEN | TP TN FP FEN | TP TN FP FN
2 || 303 327 0 24309 324 3 18| 321 326 1 6 | 327 325 2 0
4 || 305 327 0 22311 324 3 16 | 321 326 1 6 | 327 325 2 0
8 || 308 327 0 19| 314 324 3 13| 321 326 1 6 | 327 325 2 0
12 || 310 327 0 17| 316 323 4 11 321 325 2 6 | 327 323 4 0
24 || 313 326 1 14| 319 322 5 8 || 321 322 5 6 | 327 321 6 0
48 || 317 324 3 10| 323 320 7 41 321 320 7 6327 320 7 0

16

The results presented in Tables 10 and 11 show that, in contrast to the behavior of the TP, the TN decreases as the
candidate size grows. This happens because a smaller candidate set allows the impostors to be detected during the first
phase, while a bigger set makes the system more vulnerable to such attacks. This behavior provides good flexibility
for the system: it can focus either on rejecting impostors or avoiding false rejections by modifying the rank parameter.

All rank variants of DPD-DFF show very good accuracy results when detecting impostors while identifying gen-
uine fingerprints, keeping both FP and FN very low. As an example, DDR obtains the best result with the smallest r,

and therefore the fastest configuration, without any false negatives in all cases. Similarly, the SSR variant is the one




Table 11: Results of DPD-DFF with impostors and 654 test identifications (threshold)

SST SDT DST DDT

0 TP TN FP EN | TP TN FP FN || TP TN FP FN | TP TN FP FN
0.15 || 316 323 4 11 |322 320 7 5| 321 319 8 6 | 327 321 6 0
0.20 || 308 326 119|314 323 4 13 || 319 326 1 81325 324 3
0251295 327 0 32301 325 2 261|307 327 0 20311 327 0 16
030 || 260 327 0 67 |264 327 0 63279 327 0 48 |28l 327 O

that is more robust against false positives, although this happens at the cost of a worse false negative rate.
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Figure 4: True positive rate and true negative rate with the captured database

Figure 4 shows how the proposed system dominates by far all reference AFIS in terms of the trade-off between
false rejections and false acceptances. It can be seen that the DDR variant reaches almost 100% of both measures at

the same time.
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4.4. NIST-DBI14 database

The NIST-DB14 database is composed of 27 000 rolled fingerprints, each of which was captured twice [44].
Tables 12 and 13 present the results of DPD-DFF over the NIST-DB 14 database for the rank and threshold variants,

respectively, using 12 slave machines. Figure 5 displays graphically the values of the tables.

Table 12: Results of DPD-DFF with 1000 test identifications (rank)

SSR SDR DSR DDR

r TP FP FN t,,(6) | TP FP FN 14, (s) TP FP FN f,,(5) | TP FP FN 14, (5)
12 244 756 0 2.0345 | 275 725 0 23242 || 335 665 0 3.5431 | 357 643 0  3.8281
24 259 741 0 2.0564 | 312 688 0 23920 || 357 643 0 3.5769 | 393 607 0 39234
48 272 728 0 2.0726 | 340 660 0 24209 || 367 633 0 3.5816 | 418 582 0 3.9301
96 287 713 0 2.0865 | 369 631 0 24353 || 382 618 0 3.5872 | 442 558 0 3.9446
144 || 294 706 0 2.0891 | 383 617 0 24418 || 388 612 0 3.5965 | 458 542 0 39531
288 303 697 0 21033 | 405 595 0 24644 || 393 607 0 3.6070 | 485 515 0 3.9681
576 || 311 689 0 22739 | 431 569 0 2.8361 || 391 609 0 3.7861 | 507 493 0 4.3407
1152 || 324 676 0 25856 | 458 542 0  3.5211 || 393 607 0 4.1169 | 528 472 0 5.0399
2304 || 318 682 0 3.1847 | 482 518 0 48292 || 395 605 0 4.7404 | 544 456 0  6.3622
4608 || 331 669 0 43706 | 499 501 0 7.3712 || 381 619 0 59571 | 556 444 0  8.9160
9216 || 336 664 0 6.6912 | 518 482 0 12.3243 || 369 631 0 8.2953 | 559 441 0 13.8824

Table 13: Results of DPD-DFF with 1000 test identifications (threshold)
SST SDT DST DDT
6 IClag | TP FP EN  fyg(s) | TP FP EN 1y (5) IClag | TP FP EN  f45() | TP FP FN 4 (5)

0.10 || 13065.3 | 344 656 0 89011 | 535 465 0 17.0552 || 13380.5 | 360 640 0 10.7978 | 555 445 0 19.1454
0.15 3820.7 | 329 670 1 42518 | 484 515 1 72158 2197.2 | 394 605 1 49861 | 529 470 1 6.8838
0.20 367.3 | 298 684 18 22591 | 389 593 18  2.8427 49.7 | 342 540 118  3.5687 | 380 502 118  3.9022
0.25 6.0 | 191 476 333 19899 | 202 465 333  2.2579 02| 137 31 832 34112 | 137 31 832 3.5791

It has to be noted that the TPR is surprisingly low, in discrepancy with other studies that highlight these matchers
as accurate for the NIST-DB14 database. However, they may require specific tuning to be optimized for rolled
fingerprints, which falls beyond the scope of this study. Therefore, we focus on the results obtained with general-
purpose parameters that can highlight the robustness of the tested AFIS. For this database, which is difficult and
computationally expensive, DPD-DFF outperforms all other approaches, in terms of both identification time and
accuracy. The DDR variant is able to obtain better accuracy than the multi-finger MCC in about 25% more of the time

than that required by the latter.
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Figure 5: Average identification time and accuracy with NIST-DB14 (N = 21600)

4.5. Other real databases

We have performed an extensive experimental study over several publicly available databases composed of real
fingerprints. The objective of this study is to analyze the behavior of DPD-DFF in several realistic systems, where the
fingerprints have been captured by different sensors and techniques, and to do so in a reproducible way. DB25496 is a
mixture of the other four real databases formed by plain fingerprints (DBSpain654, CASIA-FingerprintV5, MCYT100
and FingerPass), where four captures of each fingerprint pair were included into the template database. Table 14
summarizes the characteristics of the three selected databases. Figure 6 displays graphically the time and accuracy
values obtained for them.

Again, the DDR variant is able to obtain the same results as the multi-finger MCC, in a much shorter time frame.
For the smaller databases, the multi-finger Jiang AFIS is able to obtain results that are faster than any of the variants of
DPD-DFF. However, this time difference is less than 0.1s, which is usually an acceptable time to spend if the accuracy
is improved. For a bigger database with the same characteristics, the relative difference in time would decrease as the
accurate phase overhead would represent a smaller proportion of the overall time, thus making DPD-DFF even more
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Table 14: Summary of the used real databases

Database Subjects | Fingers | Template pairs | Input pairs | Machines used | Reference
CASIA-FingerprintV5 500 8 4000 1000 4 [45]
MCYT100 100 10 1000 1000 1 [46]
FingerPass 90 8 720 720 1 [47]
DB25496 1024 - 25 496 1000 12 [28]

suitable for the identification. This is reflected in the largest and most difficult databases (CASIA-FingerprintV5 and
DB25496), as well as in the previously analyzed NIST-DB 14, where DPD-DFF improves accuracy in all the reference

results.
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Figure 6: Average identification time and accuracy with the additional real databases
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5. Conclusions

In this paper, we have proposed a novel dual phase identification model (denoted DPD-DFF) to address the identi-
fication problem in large fingerprint databases. Its goal is to overcome the two problems that arise when dealing with
this kind of database: the accuracy loss and the long runtime. To do so, the model combines two matching algorithms
and two fingerprints per identity, using a mixed decision-level and score-level fusion, and has been implemented in a
distributed system.

One of the main strengths of the proposed system is its flexibility, so that it can be tuned to the desired balance
between accuracy and speed. Furthermore, the proposal has been tested over six fingerprint databases of diverse
characteristics. The attained results have shown that the solutions obtained by our model dominate both in time and in
accuracy over those obtained by using a single fingerprint or score fusion with either two fingerprints or two matchers,
especially when large or complex databases are involved.

With a database of 50 000 fingerprint pairs, the algorithm reaches 100% TPR for identification taking only 0.44
seconds in a cluster of 12 machines. As for the fast results, 98.0% accuracy is obtained within 0.17 seconds.

The experiments carried out over the remaining databases have confirmed these conclusions. The additional study
including impostor scores claims that DPD-DFF is much more precise than the three reference AFIS in terms of the

trade-off between TPR and TNR, being able to eliminate any false negatives within a fast identification time.
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