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Abstract and conclusions

The evolution of geometric objects with respect to a time variable (t) is a
field of intense study in the framework of Riemannian Geometry. A good
example is the work of Perelman which led to the proof of the geometrization
conjecture of Thurston and, consequently, to the Poincaré conjecture. In
general, two types of geometric objects are distinguished: the intrinsic ones,
such as the metric of a manifold, and the extrinsic ones, such as an embedding
(or immersion) of a manifold into another one. These two types of objects
give rise to two types of flows: the intrinsic ones, such as the Ricci flow, and
the extrinsic ones, such as the mean curvature flow. In these particular flows
the object that evolves is precisely the metric and the immersion respectively.

The mean curvature flow is maybe the most important geometric evolu-
tion equation of submanifolds in Riemannian manifolds. Intuitively, a family
of smooth submanifolds evolves under mean curvature flow if the velocity at
each point of the submanifold is given by the mean curvature vector at this
point, that is, the submanifolds move at each point in the direction of the
corresponding normal unit vector and with speed equals to its scalar mean
curvature. For example, a sphere in the Euclidean space evolves under mean
curvature flow by shrinking inward until it collapses in a finite time to a
point.

In the literature there are different approaches to the mean curvature
flow: from the geometric measure theory, from level set flows and from partial
differential equations. We will follow the latter approach, which began with
the pioneer work of Huisken [Hui84].

The evolution equation can develop singularities, that is, solutions may
become non-smooth in finite time. For example, it is known (see for instance
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[Smo12]) that closed submanifolds (i.e., compact submanifolds without boun-
dary) of the Euclidean space remain smooth for a finite time during their
evolution under mean curvature flow and then they develop a singularity.
Thus, a particularly interesting topic in this theory is to study the behavior
of singularities. In order to do that, following Huisken’s work [Hui90], two
types of singularities are often distinguished: type I singularities, which are
those cases with a better control of the growth of the norm of the second
fundamental form —in a sense which is made precise in [Hui90]—, and type II
singularities, which are all the other singularities. As the definition suggests,
type II singularities are more difficult to treat than type I singularities.

In the case of hypersurfaces, Huisken and Sinestrari [HS99] proved that if
the initial surface is mean convex (that is, H ≥ 0 in the whole surface, where
H is the mean curvature) and it develops a type II singularity, then the limit
surface obtained with a certain technique of rescaling of the flow is convex
and satisfies the equation H = v⊥, where H is the mean curvature vector, v is
a constant vector and the superscript ⊥ denotes projection onto the normal
bundle. A surface whose mean curvature vector satisfies the above equation is
called translating soliton of the mean curvature flow. Geometrically it evolves
moving in the direction of v with speed |v|, that is, with fixed direction and
constant speed given by the vector v. Thus, it does not change its shape
during the evolution, it simply translates. Therefore, translating solitons
are eternal solutions of the flow, that is, their evolution exists for all times
−∞ < t < +∞.

Translating solitons arise not only in the study of singularities, but also in
the general investigation of the mean curvature flow. For example, again in
the case of hypersurfaces in the Euclidean space, Hamilton [Ham95] proved
that any strictly convex eternal solution to the mean curvature flow where
the mean curvature assumes its maximum value at a point in space-time
must be a translation soliton.

Moreover, translating solitons are interesting examples of the mean curva-
ture flow because they are precise solutions in the sense that their evolution
is known, which is very hard to determine in general. In the first chapter of
this thesis, after a brief introduction to the mean curvature flow and trans-
lating solitons, we present the classic examples of the latter ones (see section
1.4).



It is well known that translating solitons are related to minimal surfaces
[Ilm94]. Obviously, this relationship is important because it allows to use
classical results of the theory of minimal surfaces to study translating solitons.
In this spirit, the maximum principle, stated as its geometric counterpart,
the tangency principle, is the main tool of the second chapter of the thesis,
which begins with the proof of the results of non-existence of translating soli-
tons. We prove that there are no non-compact translating solitons contained
in a solid cylinder (Theorem 2.1.2). We also rule out the existence of cer-
tain compact embedded translating solitons with two boundary components
(Theorem 2.1.5). Then, by comparison with a tilted grim reaper cylinder, we
obtain an estimate of the maximum height that a compact translating soliton
embededd in R3 can achieve; this estimate is in terms of the diameter of the
boundary curved of the translator (Theorem 2.2.1). Another application to
the tangency principle is to study graphical perturbations of translating soli-
tons, which allows us to easily prove the characterization of the translating
paraboloid given in [MSHS15, Theorem A]. On the other hand, we use the
method of moving planes to show that a compact embedded translating soli-
ton contained in a slab and with boundary components given by two convex
curves in the parallel planes determining the slab inherits all the symmetries
of its boundary (Theorem 2.4.1).

The main result of the thesis is presented in the third and last chapter
and it is a characterization of grim reaper cylinders as properly embedded
translators with uniformly bounded genus and asymptotic to two half-planes
whose boundaries are contained in the boundary of a solid cylinder with axis
perpendicular to the direction of translation (Theorem 3.0.2). The proof is
quite elaborated and heavily uses analytic tools developed by Brian White: a
compactness theorem for sequences of minimal surfaces properly embedded
into three-dimensional manifolds with locally uniformly bounded area and
genus, as well as a barrier principle. As mentioned above, the key ingredient
to use these results of White is to consider translating solitons as minimal
surfaces in the so-called Ilmanen’s metric and to establish the good relation
between these surfaces in both (usual Euclidean and Ilmanen) metrics, in
particular with respect to their asymptotic behavior.





Resumen y conclusiones

La evolución de objetos geométricos respecto a una variable temporal (t) es
un área de estudio intenso en el marco de la Geometŕıa Riemanniana. Un
buen ejemplo lo constituye el trabajo de Perelman que ha permitido probar
la conjetura de geometrización de Thurston y, en consecuencia, la conjetura
de Poincaré. En general, se distinguen dos tipos de objetos geométricos:
los intŕınsecos, como la métrica de una variedad, y los extŕınsecos, como el
embebimiento (o inmersión) de una variedad en otra. Estos dos tipos de
objetos dan lugar a dos tipos de flujos: intŕınsecos, como por ejemplo el
llamado flujo de Ricci, y extŕınsecos, como por ejemplo es el caso del flujo
de la curvatura media. En estos flujos concretos el objeto que evoluciona es
precisamente la métrica y la inmersión respectivamente.

El flujo de la curvatura media es quizás la ecuación de evolución geo-
métrica más importante de subvariedades en variedades de Riemann. Intui-
tivamente, una familia de subvariedades diferenciables evoluciona según el
flujo de la curvatura media si la velocidad en cada punto de la subvariedad
viene dada por el vector curvatura media en ese punto, es decir, las subvarie-
dades se mueven en cada punto siguiendo la dirección del correspondiente
vector normal unitario y con rapidez igual a su curvatura media. Un ejemplo
habitual es el de las esferas en el espacio eucĺıdeo, las cuales evolucionan
según el flujo de la curvatura media contrayéndose concéntricamente hasta
que colapsan en un tiempo finito en un punto, el centro común de las esferas.

De las diferentes aproximaciones al flujo de la curvatura media que hay en
la literatura, a saber, desde la teoŕıa geométrica de la medida, desde los flujos
de conjuntos de nivel y desde las ecuaciones en derivadas parciales, seguire-
mos este último enfoque, que se inició con el trabajo pionero de Huisken de
1984 [Hui84].
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La ecuación de evolución puede desarrollar singularidades, esto es, la solu-
ción puede dejar de ser diferenciable, en tiempo finito. Por ejemplo, se sabe
que las subvariedades cerradas (es decir, compactas y sin borde) del espacio
eucĺıdeo evolucionan siguiendo el flujo de la curvatura media como subvarie-
dades diferenciables durante un tiempo finito tras el cual se desarrollan una
singularidad [Smo12]. Aśı, un tema particularmente interesante en esta teoŕıa
es estudiar el comportamiento de las singularidades. Para ello a menudo se
distinguen dos tipos de singularidades, distinción introducida originalmente
por Huisken [Hui90]: singularidades de tipo I, que son aquellas en las que
se tiene —en cierto sentido que se hace preciso por ejemplo en [Hui90]— el
mejor control del crecimiento de la norma de la segunda forma fundamental,
y singularidades de tipo II, que son el resto. Como cabe esperar de la propia
definición, las singularidades de tipo II son mucho más dif́ıciles de tratar que
las de tipo I.

En el caso de hipersuperficies, Huisken y Sinestrari [HS99] probaron que
si la superficie inicial es convexa en media (esto es, H ≥ 0 en toda la
hipersuperficie, siendo H la curvatura media) y tiene una singularidad de
tipo II, entonces toda superficie ĺımite (obtenida mediante cierta técnica de
reescalamiento del flujo) es convexa y satisface la ecuación H = v⊥, siendo
H el vector curvatura media, v un vector constante y el supeŕındice ⊥ indica
proyección sobre el fibrado normal. Las superficies que verifican la ecuación
anterior (H = v⊥) reciben el nombre de solitones de traslación del flujo de la
curvatura media. Son soluciones eternas del flujo de la curvatura media, esto
es, su evolución existe para todo tiempo −∞ < t < +∞. Geométricamente,
un solitón de traslación se mueve siguiendo el flujo de la curvatura media
trasladándose en la dirección de v con velocidad |v|, es decir, con dirección
y velocidad constantes dadas por el vector v. No cambia su forma, solo se
traslada (con velocidad y dirección fijas) en el espacio eucĺıdeo.

Los solitones de traslación no solo aparecen en el estudio de las singu-
laridades, sino en general en el estudio del flujo de la curvatura media. Por
ejemplo, de nuevo en el caso de hipersuperficies, Hamilton [Ham95] probó
que una solución del flujo de la curvatura media que sea eterna, estricta-
mente convexa, y para la que la curvatura media alcance su valor máximo en
un punto del espacio-tiempo, es un solitón de traslación.

Además, los solitones de traslación forman ejemplos interesantes del flujo
de la curvatura media ya que constituyen soluciones precisas del mismo, las



cuales en general son muy dif́ıciles de obtener. En el primer caṕıtulo de
esta tesis, tras una breve introducción al flujo de la curvatura media y a
los solitones de traslación, presentamos los ejemplos clásicos de los mismos
(véase la sección 1.4).

Es conocido que los solitones de traslación del espacio eucĺıdeo también
están relacionados con las superficies mı́nimas [Ilm94]. Obviamente, esta
relación es importante ya que permite usar resultados de la teoŕıa de su-
perficies mı́nimas para estudiar los solitones de traslación. En esta ĺınea, el
principio del máximo, enunciado en su versión geométrica, el principio de
tangencia, es la herramienta principal del segundo caṕıtulo de la tesis, el cual
comienza con la demostración de resultados de no existencia de solitones
de traslación. Por ejemplo, probamos que no existen solitones de traslación
no compactos contenidos en un cilindro sólido (Teorema 2.1.2). También
descartamos la existencia de ciertos solitones de traslación compactos y em-
bebidos con frontera compuesta por dos componentes compactas (Teorema
2.1.5). A continuación, comparando con un cilindro grim reaper inclinado
obtenemos una estimación de la altura de un solitón de traslación compacto
en términos del diámetro de su curva frontera (Teorema 2.2.1). Una última
aplicación directa que realizamos del principio de tangencia consiste en es-
tudiar perturbaciones gráficas de solitones de traslación, lo que nos permite
demostrar fácilmente la caracterización del paraboloide de traslación dada
en [MSHS15, Teorema A]. Por otro lado, utilizamos la técnica de los planos
en movimiento (moving planes) de Alexandrov para probar que un solitón
de traslación compacto, embebido y contenido en una banda que tenga por
componentes frontera dos curvas convexas situadas en los planos paralelos de
la banda hereda todas las simetŕıas de la frontera (Teorema 2.4.1).

El resultado principal de esta tesis se presenta en el tercer y último caṕı-
tulo y es una caracterización del cilindro grim reaper a partir de su compor-
tamiento asintótico (Teorema 3.0.2). La demostración es bastante elaborada
y utiliza fuertemente herramientas anaĺıticas desarrolladas por Brian White:
un teorema de compacidad para las sucesiones de superficies mı́nimas propia-
mente embebidas en variedades tridimensionales con área y género ambos
localmente uniformemente acotados, aśı como un principio de barrera. El
ingrediente clave para poder aplicar estos resultados de White es considerar
los solitones de traslación como superficies mı́nimas con la métrica de Ilma-
nen y establecer la buena relación que hay entre estas superficies en ambas



métricas (la eucĺıdea usual y la de Ilmanen), en particular en lo que respecta
a su comportamiento asintótico.



Chapter 1

Introduction

1.1 Mean curvature flow

A one-parameter family of smooth hypersurfaces evolves (or moves) by mean
curvature flowif the velocity vector coincides with the mean curvature vector
at each point.

Definition 1.1.1. Let F0 : M → Rm+1 be an orientable hypersurface. Let
Ft(·) := F (·, ·) : M × [0, T ) → Rm+1 be a smooth family of immersions of
M in Rm+1, where T ∈ (0,+∞]. We say that Ft is a mean curvature flow
(MCF for short) or, equivalently, that M evolves under the mean curvature
flow, if (

∂

∂t
Ft

)⊥
= H, (1.1.1)

where

•
(
∂
∂t
Ft
)⊥

is the normal component of ∂
∂t
Ft,

• H is the mean curvature vector.

In terms of scalar quantities,

H = −
〈
∂

∂t
Ft, ν

〉
, (1.1.2)
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• H is the scalar mean curvature of F ,

• ν is a unit normal vector of F ,

where we follow the usual convention in this field:

H = −H ν, (1.1.3)

that is, the scalar mean curvature is computed with respect to − ν. Note
that the unit normal vector is defined up to a sign, but the mean curvature
vector H is independent of such choice. Therefore, with this convention we
choose a normal vector, the opposite vector to the one given by ν.

In order to abbreviate notation:

• We will often specify the t-argument as a subscript, as in F (x, t) =
Ft(x). And we will proceed this way with all the objects derived from
the family {ft}t∈[0,T ). For instance,

Mt := f(M, t), Ht(p) := H(p, t), etc.

Furthermore, we will suppress the subscript t if the context does not
cause confusion.

• Einstein summation convention: when an index variable appears twice
(and only twice) in a term of an expression, it implies summation of
that term over all the values of the index.

1.2 Graphical solutions

Mean curvature flow has been widely studied in certain families such as
graphical hypersurfaces or lagrangian submanifolds. For our purposes it will
be very useful to study graphical solutions of mean curvature flow.

Let u : Rm → R be a smooth function. It is very well known that then
the graph of u, Graph(u) = {(x, u(x)) : x ∈ Rm}, is a smooth hypersurface of



Rm+1. Our goal is to study a solution to the mean curvature flow where the
evolving hypersurfaces are all graphical, that is, we look for a smooth map

F : Rm × [0, T )→ Rm+1, F (x, t) := (x(t), u(x(t), t)) .

such that 
∂F

∂t
= H ν,

F (·, 0) = Graph(u).

Note that, in general, our setting to study mean curvature flow is a family
of immersions F : M × [0, T ) → Rm+1 that satisfies the mean curvature
equation (1.1.1). However, since here M = Graph(u), we can simply consider
the map F defined on Rm × [0, T ).

Thus, we will need to know the geometry of the graphical hypersurfaces,
which is condensed in the following lemma.

Lemma 1.2.1 (Graphical hypersurfaces). Let u : Rm → R be a smooth
map. Then the (induced) metric, the downwards unit normal vector, the
scalar second fundamental form and the mean curvature of Graph(u) ⊂ Rm+1

are given by:
gij = δij + uiuj,

gij = δij −
uiuj

1 + |∇u|2
,

ν =
(∇u,−1)√
1 + |∇u|2

,

Aij =
uij√

1 + |∇u|2
,

H = div

(
∇u√

1 + |∇u|2

)
.

Notation 1.2.2. As usual, the subscripts of the first and second fundamental
forms denote evaluation of these forms at the corresponding vector fields of

a local basis

{
∂

∂xi

}m
i=1

of the tangent bundle, i.e., the components of these

tensors in a local basis:

gij := g

(
∂

∂xi
,
∂

∂xj

)
, Aij := A

(
∂

∂xi
,
∂

∂xj

)
.



In the case of the smooth function u, the subscripts denote first or second
partial derivative:

ui := uxi = ∂iu =
∂u

∂xi
, uij := uxixj = ∂iju =

∂2u

∂xixj
.

Proof.

1. Considering the parametrization

F : Rm → Graph(u) ⊂ Rm+1, F (x) := (x, u(x)),

the induced metric of Graph(u) is

gij = 〈Fi, Fj〉 = 〈(ei, ui), (ej, uj)〉 = δij + uiuj,

where ei are the vectors of the canonical basis of Rm+1.

2. It holds that

gikg
kj = (δik + uiuk)

(
δkj −

ukuj
1 + |∇u|2

)
=

= δikδkj − δik
ukuj

1 + |∇u|2
+ uiukδkj − uiuk

ukuj
1 + |∇u|2

=

= δij −
uiuj

1 + |∇u|2
+ uiuj − |∇u|2

uiuj
1 + |∇u|2

=

= δij − (1 + |∇u|2)
uiuj

1 + |∇u|2
+ uiuj =

= δij − uiuj + uiuj = δij,

which means that gij is indeed the inverse matrix of gij.

3. The vectors Fi = (ei, ui), i = 1, . . . ,m, form a basis of the tangent space
to Graph(u). On the other hand, the vector (∇u,−1) is orthogonal to
all these vectors:

〈Fi, (∇u,−1)〉 = 〈(ei, ui), (∇u,−1)〉 = ui − ui = 0.

Therefore, normalizing it, we obtain the downwards unit normal vector

ν =
(∇u,−1)√
1 + |∇u|2

.



4. It is a straightforward computation from the definition of the scalar
second fundamental form:

Aij = 〈Fij,− ν〉 =

〈
(0, uij),

(−∇u, 1)√
1 + |∇u|2

〉
=

uij√
1 + |∇u|2

.

Note that the scalar second fundamental form is considered with respect
to − ν, according to our convention (1.1.3).

5. To establish the formula H = div

(
Du√

1+|Du|2

)
, we will compute both

sides of the equality independently.

On the one side,

div

(
∇u√

1 + |∇u|2

)
=

∂

∂xi

(
ui√

1 + |∇u|2

)

=

∑n
i=1 uii√

1 + |∇u|2
− 1

2
ui

1

(1 + |∇u|2)3/2
∂i
(
|∇u|2

)
=

∆u√
1 + |∇u|2

− 1

2
ui

1

(1 + |∇u|2)3/2
∂i

(∑
j

(uj)
2

)

=
∆u√

1 + |∇u|2
− uiujuij

(1 + |∇u|2)3/2
.

On the other hand,

H = gijAij =

(
δij −

uiuj
1 + |∇u|2

)
uij√

1 + |∇u|2

= δij
uij√

1 + |∇u|2
− uiujuij

(1 + |∇u|2)3/2

=
∆u√

1 + |∇u|2
− uiujuij

(1 + |∇u|2)3/2
.

Hence,

H = div

(
∇u√

1 + |∇u|2

)
.



Remark 1.2.3. In the last item of the previous lemma we have seen that

H = div

(
∇u√

1 + |∇u|2

)
=

1√
1 + |∇u|2

(
δij −

uiuj
1 + |∇u|2

)
uij.

This expression will be helpful below.

Now we can use Lemma 1.2.1 to deduce a partial differential equation for
u (instead of F ) for the evolution of graphical hypersurfaces.

Recall that our starting point is the family of immersions

F : Rm × [0, T )→ Rm+1, F (x, t) := (x(t), u(x(t), t)) ,

satisfying the scalar mean curvature equation (1.1.2):〈
∂F

∂t
,− ν

〉
= H.

We start the computation by differentiating F with respect to the t-
argument and applying the chain rule, we have that

∂F

∂t
=

(
∂x

∂t
,
∂u

∂xi

∂xi
∂t

+
∂u

∂t

)
=

(
∂x

∂t
,

〈
∇u, ∂x

∂t

〉
+
∂u

∂t

)
,

so the scalar mean curvature equation becomes〈(
∂x

∂t
,

〈
∇u, ∂x

∂t

〉
+
∂u

∂t

)
,− ν

〉
= H. (1.2.1)

Using Lemma 1.2.1 to express ν, the left-hand side of this equation is:〈(
∂x

∂t
,

〈
∇u, ∂x

∂t

〉
+
∂u

∂t

)
,− ν

〉
=

〈(
∂x

∂t
,

〈
∇u, ∂x

∂t

〉)
+

(
0,
∂u

∂t

)
,

(−∇u, 1)√
1 + |∇u|2

〉
=

1√
1 + |∇u|2

[〈(
∂x

∂t
,

〈
∇u, ∂x

∂t

〉)
, (−∇u, 1)

〉
+

〈(
0,
∂u

∂t

)
, (−∇u, 1)

〉]
=

1√
1 + |∇u|2

∂u

∂t
,



And by Remark 1.2.3, the left-hand side of (1.2.1) is:

H = div

(
∇u√

1 + |∇u|2

)
=

1√
1 + |∇u|2

(
δij −

uiuj
1 + |∇u|2

)
uij.

Therefore, equation (1.2.1) reads

∂u

∂t
=
√

1 + |∇u|2 div

(
∇u√

1 + |∇u|2

)
, (1.2.2)

or, in expanded form,

∂u

∂t
=

(
δij −

uiuj
1 + |∇u|2

)
uij, (1.2.3)

where, following Einstein notation, recall that we are summing over repeated
indices.

1.3 Special solutions: translators

In general, evolution equations often have special solutions, called solitons,
that evolve over time by a conformal transformation of the ambient space.
Consequently, these solutions keep their shape during their evolution. Two
very important classes of solitons in mean curvature flow are self-shrinkers
and translating solutions, which evolve by an homothety or a translation
respectively.

This thesis is about translating solutions of the mean curvature flow.
Therefore, we introduce them in more detail.

Translators. Let F0 : M → Rm+1 be an orientable hypersurface. For
T > 0, consider a family of immersions {Ft}t∈[0,T ), where Ft := M → Rm+1.
Assume that it represents a translating soliton of the mean curvature flow,
i.e., that the family of hypersurfaces moves by translation. Then there must
exist a vector depending only on time, v(t) ∈ Rm+1, such that

Ft(p) = F0(p) + v(t),



Observe also that, under these hypothesis, the solution exists for all times,
that is, T = +∞, in which case it is said that the solution is eternal.
On the other hand, as a solution of the mean curvature flow, it holds(

∂

∂t
Ft

)⊥
= H⇔ (v′(t))

⊥
= H,

Since the family of immersions is a family of translations of M , the mean
curvature vector H = H(p, t) is independent of time, which means that
(v′(t))⊥ is a constant vector in Rm+1.
In summary, for a translating soliton of the mean curvature flow there exists
a constant vector in the ambient space such that the mean curvature vector
coincides with its normal component at each point, and vice versa.

The previous discussion motivates the following definition.

Definition 1.3.1. An oriented smooth hypersurface F : M → Rm+1 is called
translating soliton of the mean curvature flow ( translator for short) if its
mean curvature vector field H satisfies the differential equation

H = v⊥, (1.3.1)

where v ∈ Rm+1 is a fixed vector and v⊥ stands for the orthogonal projection
of v to the normal bundle of the immersion F .

For simplicity we will assume that all translators to be considered in this
thesis are translating in the direction of v = em+1 = (0, . . . , 0, 1) ∈ Rm+1,
unless, unless otherwise stated.

Graphical translators. By Graphical translators we mean translat-
ing solitons of the mean curvature flow that are graphs over the x1 . . . xm-
hyperplane, i.e., usual graphs, and that are translating in the direction of
em+1 ∈ Rm+1.
Therefore, the family of immersions associated to a graph translator is

Ft(x) = F0(x) + tem+1 = (x, u(x, 0)) + t(0, . . . , 0, 1) = (x, u(x, 0) + t) .

Remark 1.3.2. When we work with graphical translators, the t-argument
can be suppressed and reintroduced at conveniency simply taking into a-
ccount that

u(x, t) = u(x, 0) + t.



Observe also that, since

∂u(x, t)

∂t
=
∂ (u(x, 0) + t)

∂t
= 1,

the mean curvature equation for graphical translators, (1.2.3), simplifies to

1 =

(
δij −

uiuj
1 + |∇u|2

)
uij. (1.3.2)

Translators and minimal hypersurfaces. Due to a result of Ilmanen
[Ilm94], there is a duality between translators in the euclidean space Rm+1

and minimal surfaces in (Rm+1, g), where g is the conformally flat Riemannian
metric

g(· , ·) := e
2
m
〈p,v〉〈· , ·〉,

and 〈· , ·〉 stands for the euclidean inner product of Rm+1. The metric g will
be called Ilmanen’s metric. Specifically, every translator in the euclidean
space Rm+1 is a minimal surface in (Rm+1, g) and vice versa.

Once this duality is known, it is not difficult to prove it:

Lemma 1.3.3. Let f : Mm → Rm+1 be an immersed oriented smooth hyper-
surface. Then M ≡ f(Mm) is a translator in (Rm+1, 〈·, ·〉) with translating
velocity v if and only if M is a g-minimal hypersurface in (Rm+1, g).

Proof. We provide a direct proof computing the relation between the mean
curvatures of the hypersurface with respect to each of the two metrics.

First, we derive the relation between the mean curvatures in the general
case, that is, for an arbitrary riemannian metric g in M and for an arbitrary
conformal change of metric g̃ := e2fg, where f is a smooth function in M .
Our goal is to compute the corresponding mean curvatures H and H̃. To this
end, we use the expression of the mean curvature as the trace (with respect
to the metric) of the scalar second fundamental form:

H =
m∑

i,j=1

gijAij,

H̃ =
m∑

i,j=1

g̃ijÃij. (1.3.3)



Obviously, g̃ij = e−2fgij. On the other hand,

Ãij = g̃
(
Ã(∂i, ∂j),−ν̃

)
= e2fg

(
∇̃∂i∂j,−ν̃

)
= efg

(
∇̃∂i∂j,− ν

)
, (1.3.4)

where Ã is the second fundamental form, −ν̃ is the Gauß map with respect
to the second fundamental form is considered (recall the convention (1.1.3)),
and ∇̃ is the Levi-Civita connection of (M, g̃). We denote the coordinate
vector fields by ∂i ≡ ∂

∂xi
. In the last equality we used that ν̃ = e−f ν.

Claim 1. The Levi-Civita connection ∇ of (M, g) and the Levi-Civita con-
nection ∇̃ of (M, g̃) are related by the following identity

∇̃XY = ∇XY + (Xf)Y + (Y f)X − g(X, Y ) grad f,

for any X, Y smooth vector fields in M .

The proof of Claim 1 is immediate from the Koszul formula. Now, using
the relation given by Claim 1, (1.3.4) reads

Ãij = ef
(
Aij − gij〈grad f,− ν〉

)
(1.3.5)

And using this expression in (1.3.3), together with g̃ij = e−2fgij, we get

H̃ =
m∑

i,j=1

e−fgij
(
hij − gij〈grad f,− ν〉

)
= e−f

(
H +m〈grad f, ν〉

)
, (1.3.6)

which is the relation between the mean curvatures.

Finally, note that in our specific case (Ilmanen’s metric) the smooth function
f : M → R is

f(p) =
1

m
〈p, v〉 ⇒ grad f(p) =

1

m
v .

Thus

H̃ = e
1
m
〈p,v〉(H + 〈v, ν〉

)
.

Therefore,

H̃ = 0⇔ H = −〈v, ν〉,

as claimed.



1.4 Classical examples of translators

The simplest examples of solutions to the mean curvature flow are minimal
hypersurfaces, that is, solutions for which H vanishes identically. Dynami-
cally, these are solutions that do not move at all. If, moreover, we look for
the translating ones, the translating equation must be satisfied:

0 = H = v⊥,

that is, v must be tangential to the translator. Therefore, the simplest exam-
ples of translators are hyperplanes containing the direction of translation v.

According to their simplicity, the next examples are the grim reaper cylin-
der, which is explicity known, and the rotationally symmetric translators,
which are solutions to an ODE. Because of their importance in our work, we
introduce them in detail in the following subsections.

1.4.1 The grim reaper cylinder

In order to introduce the grim reaper cylinder, first it is convenient to mention
the curve shortening flow, the analogy of the mean curvature flow in ambient
dimension 2, considering the curvature of the curve instead of the scalar mean
curvature of the hypersurface. It is very well known that the curve given by

γ : (−π/2, π/2)→ R2, γ(t) = (t,− log cos t),

is a translating solution of the curve shortening flow. It is called the grim
reaper curve, and it is the unique translating curve up to homotheties and
rigid motions.

The grim reaper cylinder G is the product of the grim reaper curve and
Rm−1. Then, it can be parametrized by

F : (−π/2, π/2)×Rm → Rm+1, F (x1, . . . , xm) = (x1, x2, . . . , xm,− log cosx1).

Consequently, it is a graphical translator which is invariant under translations
in the direction of ei, i ∈ {2, 3, . . . ,m}. Note also that this parametrization
is an embedding, so we will usually identify the grim reaper cylinder G with
its image by this parametrization.



(a) A plane tangential to v (b) A grim reaper cylinder

(c) A translating paraboloid or bowl soliton

(d) A translating catenoid or winglike translator

Figure 1.1: Classic examples of translators

In the following lemma we collect a few computations about the grim
reaper cylinder that will be useful later.

Lemma 1.4.1. Using the above parametrization of the grim reaper cylinder
G, we have that, at any point (x1, x2, . . . , xm,− log cosx1) ∈ G, an orthonor-
mal frame {Ei}mi=1 of the tangent space, the downwards unit normal vector ν



and the scalar mean curvature H are given respectively by:

E1 = cosx1 · e1 + sinx1 · em+1, Ei = ei for any i = 2, . . . ,m,

ν = sinx1 · e1 − cosx1 · em+1,

H = cosx1,

where the ei, i ∈ {1, . . . ,m + 1}, are the vectors of the canonical basis of
Rm+1.

Proof. The grim reaper cylinder is a graphical hypersurface, so we can apply
Lemma 1.2.1. We will use the same notation as in Lemma 1.2.1, except that
here we will denote by ei, i = 1, . . . ,m+1, the vectors of the canonical basis of
Rm+1 instead of Rm. In particular, we will denote the above parametrization
by

F (x1, . . . , xm) = (x1, x2, . . . , xm, u(x1, . . . , xm))

where u(x1, . . . , xm) := − log cos x1. Then,

u1 = tanx1, ui = 0 for any i = 2, . . . ,m,

u11 = 1 + tan2 x1 =
1

cos2 x1

, uij = 0 for any other i, j.

By Lemma 1.2.1, we know that the vectors {Fxi}mi=1 form a basis of the
tangent space:

Fx1 = (1, 0, . . . , 0, u1) = e1 + tanx1 · em+1

Fxi = (1, 0, . . . , 0, ui) = ei for any i = 2, . . . ,m,

and the induced metric g of G is

gij = δij + uiuj = δij + δ1i tan2 x1 for any i, j ∈ {1, 2, . . . ,m}.

Then an orthornomal frame of the tangent space is

E1 =
Fx1√
〈Fx1 ,Fx1 〉

= cosx1 · Fx1 = cosx1 · (e1 + tanx1 · em+1)

= cosx1 · e1 + sinx1 · em+1,

Ei = Fxi = ei for any i = 2, . . . ,m.



The downwards unit normal ν is

ν =
(∇u,−1)√
1 + |∇u|2

=
(− tanx1, 0, . . . , 0,−1)√

1 + tan2(x1)

= cosx1 · (tanx1, 0, . . . , 0,−1) = (sin x1, 0, . . . , 0,− cosx1)

= sinx1 · e1 − cosx1 · em+1.

Finally, the mean curvature is given by

H = δij
uij√

1 + |∇u|2
− uiujuij

(1 + |∇u|2)3/2
= − u11√

1 + u2
1

− u2
1u11

(1 + u2
1)3/2

=
√
u11 −

u2
1√
u11

=
u11 − u2

1√
u11

=
1
√
u11

= cosx1,

where we used the derivatives of u computed above and the fact that, in this
particular case, 1 + u2

1 = u11 ⇔ u11 − u2
1 = 1.

Nevertheless, we can obtain further information if we compute the prin-
cipal curvatures. For instance, this can be done easily through the shape
operator.
The partial derivatives of ν are:

ν1 = (− cosx1, 0, . . . , 0,− sinx1) = − cosx1 · e1 − sinx1 · em+1 = −E1

νi = (0, . . . , 0).

Thus, in the above basis {Fxi}mi=1 of the tangent space, the derivative of the
Gauß map, d ν, is

d ν(Fx1) = ν1 = −E1 = − cosx1 · Fx1 ,
d ν(Fxi) = νi = (0, . . . , 0) = 0 · Fxi for any i = 2, . . . ,m,

so the shape operator S := −d ν (this definition preserves our convention
(1.1.3) on the sign of H with respect to − ν in mean curvature flow) is

S(Fx1) = −d ν(Fx1) = cos x1 · Fx1 ,
S(Fxi) = −d ν(Fxi) = 0 · Fxi for any i = 2, . . . ,m.

Therefore, the principal curvatures are λ1 = cosx1 and λi = 0 for any i =
2, . . . ,m, and the scalar mean curvature is

H =
m∑
i=1

λi = cosx1.



Remark 1.4.2. The grim reaper cylinder G is strictly mean convex, that is,

H = cosx1 > 0 for all points in G,

since x1 ∈ (−π/2, π/2).

Tilted grim reaper cylinders. Applying a suitable dilation and rota-
tion to a grim reaper cylinder, new examples of graphical translators with
the same translating velocity em+1 can be constructed. These examples are
known as tilted grim reaper cylinders and they were introduced in [Lee12]
by Lee using his correspondence from null curves in C3 to translators in R3

[Lee12, Theorem 4]. We will follow a different approach based on the in-
variance of the grim reaper cylinder under translations in the direction of ei,
i ∈ {2, 3, . . . ,m}.

Consider the grim reaper cylinder G and transform it as follows:

1. Dilation.
Apply to G a dilation of factor λ > 1.
Note that with this dilation the translating velocity changes from em+1

to (1/λ)em+1; this follows, for instance, from the scalar translating
equation: initially the equation is

H = −〈em+1, ν〉,

and after the dilation of factor λ the unit normal vector ν̂ of λG is the
same one but the mean curvature Ĥ is scaled by 1/λ, so denoting by
w to the translating velocity of λG we have that:

Ĥ = −〈w, ν̂〉 ⇔ 1

λ
H = −〈w, ν〉 ⇔ H = −〈λw, ν〉,

thus

−〈em+1, ν〉 = −〈λw, ν〉 ⇔ w =
1

λ
em+1.

2. Translation in order to obtain unitary translating velocity.
Since λG is invariant under translations in the direction of ei, i ∈
{2, 3, . . . ,m}, applying a translation of vector ae2, where a ∈ R, λG
can be considered as a translator in the direction of

(1/λ) v +ae2 = (0, a, 0, . . . , 0, 1/λ) ∈ Rm+1, for any a ∈ R.



In particular, for a0 =
√

1− (1/λ)2 we have that

ṽ = (0,
√

1− (1/λ)2, 0, . . . , 0, 1/λ) ∈ Rm+1

is a unit vector. Observe that λ > 1 is necessary in this step.

3. Rotation.
Finally, a rotation around the x1-axis is performanced in order to trans-
form ṽ into em+1. Specifically, the angle α of rotation must be the one
between the vectors ṽ and em+1, that is,

1

λ
= 〈ṽ, em+1〉 = |ṽ||em+1| cosα = cosα⇒ α = arccos

(
1

λ

)
.

In this way we obtain a dilated, slanted grim reaper cylinder translating
with velocity em+1 and defined over a strip of width λπ > π, called tilted
grim reaper cylinder.

1.4.2 Rotationally symmetric translators

The aim of this section is to introduce the rotationally symmetric translators
described in [CSS07]. We will follow the notation in this reference, except
for the dimension, which we denote by m instead of n. In this way we can
easily keep track of the results exposed there and develop their arguments.

First, assume thatM is a rotationally symmetric graphical em+1-translator
given by u : Rm ×R → R, (x, t) 7→ u(x, t). In fact, the rotationally symmet-
ric property implies that the translator is, in a certain way, one-dimensional:
it can be described more easily via the map V : (0,+∞) × R → R, (r, t) 7→
V (r, t), where r = |x| =

√∑m
i=1 x

2
i . In this case the translating equation

reads

1 =
V ′′

1 + (V ′)2
+ (m− 1)

V ′

r
, (1.4.1)

where r′ denotes derivatives with respect to r.

Proof. Recall the equation (1.3.2) for a graphical translator:

1 =

(
δij −

uiuj
1 + |∇u|2

)
uij.



By the rotational symmetry, there exists V : (0,+∞)× R → R defined by

u (x, t) = V (|x|, t) = V

( m∑
i=1

x2
i

)1/2

, t

 = V (r, t) .

To make the computation using this extra hypothesis, let us introduce the
function

ũ : Rm × R → R, (x, t) 7→ ũ(x, t) := V

( m∑
i=1

x2
i

)1/2

, t

 .

Hence,

ũi =
∂V

∂r

1

2r
2xi =

1

r
xi
∂V

∂r
,

|∇ũ|2 =
m∑
i=1

ũ2
i =

1

r2
r2

(
∂V

∂r

)2

=

(
∂V

∂r

)2

,

ũij =
∂

∂xj

(
xi
r

∂V

∂r

)
=
δijr − xixj

r

r2

∂V

∂r
+
xi
r

∂2V

∂r2

1

r
xj

=
1

r2

((
δijr −

xixj
r

) ∂V
∂r

+ xixj
∂2V

∂r2

)
.



Then,

ũiũjũij =
1

r4

((
δijxixjr −

(xixj)
2

r

)(
∂V

∂r

)3

+ (xixj)
2

(
∂V

∂r

)2
∂2V

∂r2

)

=
1

r4

((
r2r − r2r2

r

)(
∂V

∂r

)3

+ r2r2

(
∂V

∂r

)2
∂2V

∂r2

)

=

(
∂V

∂r

)2
∂2V

∂r2
, (1.4.2)

δijũij =
1

r2

((
δijr −

δijxixj
r

)
∂V

∂r
+ δijxixj

∂2V

∂r2

)
=

1

r2

((
mr − r2

r

)
∂V

∂r
+ r2∂

2V

∂r2

)
=

1

r2

(
(m− 1) r

∂V

∂r
+ r2∂

2V

∂r2

)
=

1

r
(m− 1)

∂V

∂r
+
∂2V

∂r2
,

(
1 + |∇ũ|2

)
δijũij =

(
1 +

(
∂V

∂r

)2
)(

1

r
(m− 1)

∂V

∂r
+
∂2V

∂r2

)
=

1

r
(m− 1)

∂V

∂r
+
∂2V

∂r2
+

1

r
(m− 1)

(
∂V

∂r

)3

+

(
∂V

∂r

)2
∂2V

∂r2
. (1.4.3)

Thus, subtracting (1.4.3) and (1.4.2), one gets

1

r
(m− 1)

∂V

∂r
+
∂2V

∂r2
+

1

r
(m− 1)

(
∂V

∂r

)3

=
1

r
(m− 1)

∂V

∂r

(
1 +

(
∂V

∂r

)2
)

+
∂2V

∂r2
,

and finally dividing by 1 + |∇ũ|2 = 1 +
(
∂V
∂r

)2
, the graphical translating



equation (1.3.2) reads

1 =
1

r
(m− 1)

∂V

∂r
+

∂2V
∂r2

1 +
(
∂V
∂r

)2 ,

as claimed.

Our goal now is to study the existence of solutions to equation 1.4.1. Note
that this is a second order ODE. Considering ϕ := V ′, it becomes a first order
ODE:

1 =
ϕ′

1 + ϕ2
+ (m− 1)

ϕ

r
⇔ ϕ′ = (1 + ϕ2)

(
1− (m− 1)

ϕ

r

)
. (1.4.4)

Lemma 1.4.3 (Lemma 2.1 in [CSS07]). For any R > 0 and ϕ0 ∈ R, the
boundary value problem ϕ′(r) = (1 + ϕ2)

(
1− (m− 1)

ϕ

r

)
,

ϕ(R) = ϕ0,

has a unique C∞-solution ϕ on [R,+∞). Moreover, as r → +∞, we have
the asymptotic expansion

ϕ(r) =
r

m− 1
− 1

r
+O(r−2). (1.4.5)

Existence easily follows from a discussion about the sign of the derivative
of ϕ, using equation (1.4.4).

The asymptotic behaviour is more tricky to establish. The basic idea is
to use a computer to conjecture the form of the solution, and then proving
the asymptotic behaviour suggested by this solution using this information
(the coefficients on it) and equation (1.4.4).

Existence of the translating paraboloid.

Lemma 1.4.4 (Lemma 2.2 in [CSS07]). There exists an entire rotationally
symmetric, strictly convex graphical em+1-translator, U : Rm × [0,+∞) →
R,m ≥ 2. We have the following asymptotic expansion as r approaches
infinity:

U(r, t) = t+
r2

2(m− 1)
− log r +O(r−1).



The existence was shown by Altschuler and Wu in [AW94], as well as the
fact that these translators are asymptotic to the paraboloid r2

2(m−1)
, which

justify the name translating paraboloid. The finer asymptotic behaviour at
infinity comes from Lemma 1.4.3.

These translators, which are unique up to a rigid motion, are also known
as the bowl soliton since their shape reminds of the one of these objects. See
Figure 1.1c.

Existence of the translating catenoid.

Lemma 1.4.5 (Lemma 2.3 in [CSS07]). For every R > 0, there exist ro-
tationally symmetric graphical em+1-translators, W+

R ,W
−
R : (Rm \ BR) ×

[0,+∞) → R,m ≥ 2. We have the following asymptotic expansion as r
approaches infinity:

U(r, t) = t+
r2

2(m− 1)
− log r +O(r−1) + C±.

Proof. We split the construction of this translator into two steps.

Step 1: Construction of a small piece of the translator considering it as
a graph over the em+1-axis.

At points where the tangent space is not horizontal (i.e., it is not orthog-
onal to em+1), the translator can be represented locally as a graph over the
em+1-axis: ⋃

xm+1

h(xm+1, t) · Sm−1 × {xm+1},

where h : (a, b) × (0,+∞) → R is a function defined over a certain interval
(a, b) of the em+1-axis, which represents the radius of the surface given its
last component, i.e, the “height”.

Claim 2. The function h satisfies the ODE

h′′ =

(
m− 1

h
− h′

)
(1 + h′2),

where ′ denotes differentiation with respect to xm+1.



Proof of Claim 1. We distinguish two cases:

Case A. At points where the tangent space is not vertical (i.e., it is not
parallel to em+1), the translator can be represented locally as a graph V over
the e1 . . . em-hyperplane. Observe that the functions h and V are inverse (the
first one represents the radius of the translator given its height and the other
one is precisely the reverse): V ◦ h = id. Applying the chain rule to this
identity, we have that V ′(h)h′ = 1, that is,

V ′(h) =
1

h′
. (1.4.6)

Hence,

V ′′(h)h′ = [V ′(h)]
′
=
[
(h′)−1

]′
= − 1

(h′)2
h′′,

where the first equailty follows from the chain rule and the second one from
(1.4.6). We conclude that

V ′′(h) = − h′′

(h′)3
. (1.4.7)

On the other hand, the hypothesis imply that V satisfies the translator equa-
tion for rotationally symmetric graphical translators (1.4.1). Evaulating this
equation at points h = h(z), we have that

1 =
V ′′(h)

1 + (V ′(h))2 + (m− 1)
V ′(h)

h
,

Using the previous computations,

V ′′(h)

1 + (V ′(h))2 = − h′′

(h′)3

1

1 +
(

1
h′

)2 = − h′′

(h′)3

(h′)2

1 + (h′)2 = −h
′′

h′
1

1 + (h′)2 ,

(m− 1)
V ′(h)

h
= (m− 1)

1

hh′
.

Hence,

1 =
V ′′(h)

1 + (V ′(h))2 + (m− 1)
V ′(h)

h
⇔ 1 = −h

′′

h′
1

1 + (h′)2 + (m− 1)
1

hh′
,



or equivalently

h′′ =

(
m− 1

h
− h′

)
(1 + (h′)2),

as claimed.

Case B. At points where the tangent space is vertical, we can consider
the two branches of the translator and argue separately with each of them
as in the previous Case A.

Now fix z0 ∈ R; a different choice of z0 corresponds to translating the
hypersurface in the em+1-direction.

Claim 3. Starting with h′(z0) = 0, h(z0) = R > 0, we obtain a strictly convex
solution h in a small interval around z0.

Proof of Claim 2. It is straightforward. By Claim 2 and the initial conditions
at the point z0, we have that

h′(z0) = 0,

h′′(z0) =

(
m− 1

h(z0)
− h′(z0)

)
(1 + h′2(z0)) =

m− 1

h(z0)
=
m− 1

R
> 0,

then z0 is a local minimum of h, which in the coordinate system considered
means precisely that h is strictly convex in a small interval around z0.

Step 2: Construction of the rest of the translator considering it as a
graph over the e1 . . . em-hyperplane.

Therefore, we return now to our original coordinate system. From this
point of view, the translator constructed so far has two branches. Lemma
1.4.3 allows us to extend both branches all the way to infinity. Indeed, to
this end, consider two points in the interior of the constructed translator
and apply Lemma 1.4.3 with the corresponding initial data (i.e., the corres-
ponding slope in the points considered. It follows that both branches can be
extended uniquely to the infinity and, moreover, both branches have the same
asymptotic behaviour at infinity, the one given in Lemma 1.4.3, as claimed.



Remark 1.4.6. The extension of the translator constructed in Lemma 1.4.5
is carried out through a superposition procedure, not through a glue argument.

These translators, which are unique up to a rigid motion, are also known
as the winglike translator because of their wing-shape. See Figure 1.1d.





Chapter 2

Translators and the tangency
principle

The aim of this chapter is to use the classic examples of translators described
in 1.4 and the tangency principle (see section 2.1) to deduce interesting con-
sequences on translating solitons of the mean curvature flow.

In section 2.1, we use the tangency principle to derive two non-existence
results for translators. In section 2.2 we provide a height estimate for compact
translators. In section 2.3 it is shown that a graphical perturbation of a graph
translator of revolution M which is asymptotic to M , remains a hypersurface
of revolution. As an immediate consequence, we give an alternative proof of
the uniqueness theorem for complete embedded translating solitons with a
single end that are asymptotic to a translating paraboloid [MSHS15, Theorem
A]. Finally, in section 2.4, using the Alexandrov’s reflection principle we
prove that if a compact translator lies between two parallel planes P1 and P2

which are orthogonal to v, and its boundary consists of two strictly convex
curves contained respectively in P1 and P2, then the translator inherits the
symmetries of its boundary.

Notation. We will often discuss the hypothesis in our results using pieces
of these examples, in which case the following notation will be very useful:
for any a ∈ R, we denote the corresponding closed upper and lower half-space
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in Rm+1, respectively, by

Z+
a = {(x1, . . . , xm+1) ∈ Rm+1 : xm+1 ≥ a},

Z−a = {(x1, . . . , xm+1) ∈ Rm+1 : xm+1 ≤ a}.

Remark 2.0.1. After I submitted the preprint [PG16], whose content led to
this chapter, I learned that Pyo also studied compact translating solitons with
non-empty planar boundary in the interesting paper [Pyo16], using similar
techniques, that is, the tangency principle. In particular, he also used the
Alexandrov’s reflection principle in order to prove that compact translators
spanning two horizontal planar Jordan curves inherits the symmetries of its
boundary. The only difference is that our proof follows the approach in
[MSHS15, Section 3] and Pyo’s proof follows the one in [Lóp]; that is why we
assume that the boundary curves are strictly convex. Moreover, Pyo notes in
his paper the interesting fact that there exist plenty of compact translators
with plane boundary, as a consequence of a result of Serrin [Ser69] which
says that the necessary and sufficient condition for the existence of a solution
of the graphical translating equation (1.3.2) in a domain D in a horizontal
plane is that D is mean convex.

2.1 Non-existence of translators

We begin with the statement of our main tool throughout this paper, the
tangency principle.

Theorem 2.1.1 (Tangency principle). Let Σ1 and Σ2 be embedded con-
nected translators in Rm+1 with boundaries ∂Σ1 and ∂Σ2.

(a) (Interior principle) Suppose that there exists a common point x in the
interior of Σ1 and Σ2 where the corresponding tangent spaces coincide
and such that Σ1 lies at one side of Σ2. Then Σ1 coincides with Σ2.

(b) (Boundary principle) Suppose that the boundaries ∂Σ1 and ∂Σ2 lie
in the same hyperplane Π and that the intersection of Σ1, Σ2 with Π is
transversal. Assume that Σ1 lies at one side of Σ2 and that there exists
a common point of ∂Σ1 and ∂Σ2 where the surfaces Σ1 and Σ2 have
the same tangent space. Then Σ1 coincides with Σ2.



Roughly speaking, this maximum principle says that two different trans-
lators cannot“touch”each other at one interior or boundary point. Thanks to
the fact that translating solitons are minimal hypersurfaces in a conformally
changed Riemannian metric [Ilm94], the proof is based on the well-known
tangency principle for minimal hypersurfaces. For more details, please see
[MSHS15, Theorem 2.1].

In [MSHS15, Remark 3.1 (c)], the authors pointed out that the tangency
principle implies that there are no complete and embedded translators con-
tained in a solid half-cylinder. In [Møl14], Møller combined knowledge of
explicit examples of translators with a maximum principle and he proved a
geometric obstruction (the so-called funnel condition) that generalized pre-
viously known non-existence conditions such as the above-mentioned cylin-
drical boundedness.

Following these ideas, we provide an easy proof for the non-existence of
translators inside a cylinder:

Theorem 2.1.2. Let f : Mm → Rm+1 be a non-compact embedded connec-
ted translator with compact boundary (possiby empty). Then M cannot be
contained in any cylinder.

Remark 2.1.3. By compact boundary we mean that the boundary consists
of finite connected components, each of them compact.

Proof. We argue by contradiction. Suppose that M ≡ f(Mm) is contained
in a cylinder Cr0 . We distinguish two cases:

Case 1: The axis of Cr0 is parallel to the direction of translation v.

Consider first a winglike translatorWR0 with center in the axis of Cr0 and
with radius R0 > r0, so that, in particular, WR0 ∩M = ∅. Consider next the
family of winglike translators {WR}0<R≤R0 . Since WR0 ∩M = ∅, there must
be a R1 ∈ (0, R0] such that WR1 intersects M for the first time. Without
loss of generality, we can assume that this first point of contact is an interior
point of both surfaces, otherwise it is at the boundary of M , in which case it
is sufficient to consider the initial winglike translatorWR0 located at a higher
height (recall that the boundary of M is compact by hypothesis). Therefore,
by the interior tangency principle, M ⊂ WR1 , which contradicts that M is a
non-compact surface contained in Cr0 .



Case 2: The axis of Cr0 is not parallel to v.

In this case the argument is similar but comparing with a grim reaper
cylinder. Let us see it in detail. Due to the compactness of the boundary
and the non-compactness of the translator, there exists a real number a such
that S∩∂M = ∅, where S := (−π+a, π+a)×Rm. Let Ĝ be the grim reaper
cylinder located in this slab S at a large height so that it does not intersect
M . Then translate it down until it “touches”M for the first time. Observe
that this procedure is feasible because S∩M is compact, since by hypothesis
the cylinder is tilted. Moreover, as S ∩ ∂M = ∅, this point of contact must
be in the interior of M . Hence, by the interior tangency principle, M ⊂ Ĝ, a
contradiction.

Remark 2.1.4. Let us make here some remarks concerning the previous
Theorem 2.1.2.

a) The result is not true if the translator (with boundary) is compact. A
counterexample is the piece of translating paraboloid P obtained by cut-
ting this surface with a horizontal plane at any arbitrary but fixed height
a > 0 and considering the lower part, that is, P ∩ Z−a .

b) The compactness of the boundary is also necessary. A counterexample is
the intersection of the grim reaper cylinder G with a cylinder of arbitrary
but fixed radius R > 0 and axis the x2-axis; this surface is contained, for
instance, in the cylinder of radius 2R and axis the x2-axis.

In the following result we prove that there are no translators that resemble
a handle (see figure 2.1). More precisely,

Theorem 2.1.5. There do not exist a connected compact embedded transla-
tor in Rm+1 whose boundary is contained in a hyperplane orthogonal to the
direction of translation v and consists of two strictly convex Jordan curves
located at distance greater or equal than π and such that one of them is not
contained in the region enclosed by the other one.

Proof. We will denote by f : M → Rm+1 to an embedding of M , and by P
to the hyperplane that contained the boundary of M ≡ f(M).



Figure 2.1: A surface under the conditions of Theorem 2.1.5

First, note thatM must be below the plane P . Otherwise, by compactness
of M , the height function of M , u := 〈f, v〉, would attain a global maximum.
But recall [MSHS15, Lemma 2.1 (d)] that this height function satisfies the
equation ∆u + |∇u|2 = 1, so u does not admit any local maxima in the
interior, a contradiction.

Now consider the segment s realizing the distance between the two bound-
ary curves of M . The length of this segment is greater or equal than π by
hypothesis. Let l be the straight line in the direction of v passing through the
middle point of the segment s. Place a grim reaper cylinder Ĝ in such a way
that its lower generatix coincides with l. Observe that Ĝ is strictly contained
in a slab S defined as the cartesian product of the segment s times the line l.
Initially Ĝ does not intersect M because M is below the hyperplane P . Then
translate Ĝ down following the direction of translation v until it intersects M
for the first time, which necessarily occurs in an interior point of M because
any of these translations of Ĝ is strictly contained in the slab S. Then, by
the interior tangency principle, M ⊂ Ĝ, which is absurd.

Remark 2.1.6.

a) In Theorem 2.1.5, it is necessary that the boundary curves lie in the same
hyperplane. Otherwise the result is not true, as the following example
shows: the piece of the translating paraboloid which is between two hor-
izontal hyperplanes: Z+

a ∩ P ∩ Z−b , where 0 < a < b.



b) Moreover, if it is allowed that one of the boundary curves is in the region
enclosed by the other one, then there exist translators under the rest of
the hypothesis of the theorem 2.1.5. For instance, the intersection of a
winglike translator with a lower half-space, WR∩Z−a , where, obviously, a
is large enough so that this intersection is non-empty.

2.2 A height estimate

Our aim in this section is to develop a geometric argument for obtaining an
upper bound to the maximum height that a compact embedded translator
in R3 can achieve.

Theorem 2.2.1. Let M ⊂ R3 be a connected compact embedded translator
whose boundary is a connected curve Γ contained in a plane P orthogonal to
v. Assume that the diameter of Γ is d > 0. Then, for all p ∈M , the distance
in R3 from p to P is less or equal than{

− log cos
(
d
2

)
0 < d < π

min
1<s≤s0

C(s) d ≥ π

where C : (1,+∞)→ (0,+∞) is the function given by

C(s) := −
(
d

π
s

)2

log cos

(
π/2

s

)
+
d

2

√(
d

π
s

)2

− 1,

and

s0 :=
π

2

1

arctan
(

4−
√

2
2

) ≈ 1.722.

Proof. The idea is to compare M with an appropiate grim reaper cylinder.

First suppose that 0 < d < π. Without loss of generality, assume that
the diameter of lenght d coincides with

{(x, y, z) ∈ R3 : −d/2 ≤ x ≤ d/2, y = 0, z = z0},



for an arbitrary but fixed z0 ∈ R. Consider a grim reaper cylinder G and
observe that, since d < π, the region between the two parallel planes asymp-
totic to G contains Γ. Hence, this grim reaper cylinder can be translated
down until it does not intersect M . Now traslate it up until their first point
of contact occurs. By the tangency principle, this must happen at a bound-
ary point of M . Observe also that for any point (x0, y0,− log cos x0) of the
grim reaper cylinder, the width between its two “wings” is precisely 2x0, so
the width is d when the height is − log cos

(
d
2

)
. In conclusion, this argument

shows that M must be contained in the compact region enclosed by the in-
tersection of the horizontal plane P and a grim reaper cylinder whose lowest
point is at distance − log cos

(
d
2

)
from P , which proves the boundedness if

0 < d < π.

Second, suppose that d ≥ π. In this case a grim reaper cylinder G cannot
contained Γ. It is necessary a dilation of factor λ > d

π
> 1. But then

the velocity changes, which does not allow us to use the tangency principle
anymore. To overcome this problem, we use tilted grim reaper cylinders.
Following the description in 1.4.1, consider the grim reaper cylinder

G = {(x, y,− log cosx) : (x, y) ∈ (−π/2, π/2)× R},

and apply to G a dilation of factor λ > 1 such that λπ > d,

λG = {λ(x, y,− log cosx) : (x, y) ∈ (−π/2, π/2)× R},

so that Γ fits in the slab determined by the dilated grim reaper cylinder λG.
Observe that there are infinite factors of dilation with this property. A way
to parametrize them is to consider λ(s) := d

π
s, where s > 1. For brevity, we

will usually omit the parameter s.
Then, following the procedure and notation in 1.4.1, the suitable rotation is
given by the matrix

Rx(α) :=

1 0 0
0 cosα − sinα
0 sinα cosα

 =

1 0 0

0 1/λ −
√

1− (1/λ)2

0
√

1− (1/λ)2 1/λ


Therefore, a parametrization of the tilted grim reaper cylinder is

Rx(α)(λG) =
{(
λx, y +

√
λ2 − 1 log cosx,

√
λ2 − 1y − log cosx

)
:

(x, y) ∈ (−π/2, π/2)× R} .
(2.2.1)



For brevity, we will denote Rx(α)(λG) by Gλ,α.
Now the idea is to translate Gλ,α until it does not intersect M and translate
it back until they intersect each other for the first time. By the tangency
principle, the first point of contact must be at the boundary of M . To make
the computations it is convenient to consider the following static situation,
which is equivalent: to determine the intersection of Gλ,α with the cylinder C
of diameter d,

C = Cd/2 :=

{
(x, y, z) ∈ R3 : x2 + y2 =

(
d

2

)2
}
, (2.2.2)

and compute the global minimum and maximun of the third coordinate func-
tion of the parametrization of this intersection.
Combining (2.2.1) and (2.2.2), we obtain that a parametrization of the in-

tersection of Gλ,α and C is γ± :
[
−d/2

λ
, d/2
λ

]
→ R3 given by

γ±(x) :=

(
λx,±

√
(d/2)2 − (λx)2,

− λ2 log cosx±
√
λ2 − 1

√
(d/2)2 − (λx)2

)
.

The critical points of γ± correspond to x = 0:(
0,−d

2
,−d

2

√
λ2 − 1

)
,

(
0,
d

2
,
d

2

√
λ2 − 1

)
.

On the other hand, the points on the boundary of Gλ,α ∩ C are(
−d

2
, 0,−λ2 log cos

d/2

λ

)
,

(
d

2
, 0,−λ2 log cos

d/2

λ

)
.

Therefore, evaluating at all these points we conclude that the global maxi-
mum and minimum of the third coordinate function of γ± are −λ2 log cos d/2

λ

and −d
2

√
λ2 − 1, respectively. Hence, the boundedness is given in this case

by their difference, which is precisely C(s), as claimed.

Now observe that the function C(s) is positive and

lim
s→1+

C(s) = lim
s→+∞

C(s) = +∞,



hence C(s) has a global minimum. The problem is that it cannot be com-
puted analytically. Indeed, the critical points of C(s) are the zeros of

C ′(s) = −2
d2

π2
s log cos

(
π/2

s

)
− d2

2π
tan

(
π/2

s

)
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s√(
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π
s
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.

Nevertheless, we can determine an s0 > 1 such that C(s) is increasing in
(s0,+∞). Specifically, for all s > 1,

C ′(s) = −2
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s log cos
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Since
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+ 1 ≥ 0⇔ s ≥ 2,

then

min
s∈(1,+∞)

C(s) = min
1<s≤2

C(s).

Once we know that C is increasing for s > 2, we can easily improve the



above lower bound of C ′:
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Now, observe that
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+ tan
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and taking into account that, due to our previous computations, we can
restrict our estimation of C ′ to the interval (1, 2], we have that it is sufficient
to find an s such that

cos
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+ tan
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≤ cos
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) ,
and the proof is complete.

Remark 2.2.2. The height estimate is valid in a more general setting: in
the statement of the Theorem 2.2.1, instead of considering the diameter d of
Γ, we can assume that the curve Γ is strictly contained in a slab of width
d > 0, and the proof remains exactly the same.



2.3 Graphical perturbations of translators

Definition 2.3.1 (Graphical perturbation). Let N be a connected graph hy-
persurface given by u : U ⊂ Rm → Rm+1. Let M be a hypersurface in Rm+1.
We say that M is a graphical perturbation of N if there exists a function
ϕ : U → R such that M can be represented as the graph of u+ ϕ, that is,

M = Graph (u+ ϕ).

We will say that M is an asymptotic graphical perturbation of N if M is
a graphical perturbation of N and, moreover, for every sequence {xi}+∞

i=1 in
U such that lim

i→+∞
u(xi) =∞ it holds that lim

i→+∞
ϕ(xi) = 0.

Finally, we will say that M is a (an asymptotic) graphical perturbation of
N outside a compact set K ⊂ Rm+1 if M −K is a (an asymptotic) graphical
perturbation of N −K.

Remark 2.3.2. Note that if there exists a function ϕ as in the previous
definition, then it is smooth because it is the difference of two graph hyper-
surfaces, which are always assumed to be smooth in this paper.

Roughly speaking, the asymptotic behaviour here means that, outside a
bounded region in M , M is arbitrarily close to N . An example is shown in
figure 2.2.

The goal of this section is to show that if we have two hypersurfaces that
are graphically asymptotic outside a compact set, then there are some inter-
esting common properties between them, such as being a graph hypersurface
or a hypersurface of revolution. This is the content of our next theorem.
Before stating it precisely, let us present the idea of the proof. Basically it
is another consequence of the tangency principle, comparing the translator
with a transformation of itself according to the following scheme:

1) Consider M̂ a “copy” of M ;

2) Translate M̂ up, M̂ 7→ M̂ + t0v for some t0 > 0, until it does not intersect
M ;



Figure 2.2: A profile view of an example of an asymptotic graphical pertur-
bation of a translating paraboloid

3) Apply an isometry i : Rm+1 → Rm+1 of the ambient space to M̂ + t0v so
that i(M̂ + t0v) ∩M = ∅;

4) Move i(M̂ + t0v) down until it “touches”M for the first time.

Then, by the interior tangency principle, i(M̂) = M . Hence, M is invari-
ant under the isometry i.

We will follow this scheme in the next results.

For example,

• To show that M is a graph hypersurface, take i = identity;

• To show that M is a hypersurface of revolution, consider as i any
arbitrary but fixed rotation around the axis of symmetry.

Here by a hypersurface (or set, in general) of revolution (or, equivalently,
“rotationally symmetric hypersurface”) in Euclidean space Rm+1 we mean a
hypersurface (set) of Rm+1 which is invariant by the action of SOl(m + 1),
the subgroup of the special orthogonal group SO(m + 1) that fixes a given
straight line l. We will assume that all the sets of revolution that appear
together are sets of revolution with respect to the same axis unless otherwise
stated.



Lemma 2.3.3. Let N be a connected graph translator in Rm+1. Assume
that M ⊂ Rm+1 is, outside a compact set K ⊂ Rm+1, a translator which is
a graphical perturbation of N . Suppose that the boundary of M is graphical
(possibly empty). Then M is graphical.

Proof. Obviously, by definition of graphical perturbation, M−K is graphical.
We have to prove that M ∩ K also is. To this end, just apply the scheme
presented above, which clearly works because we deal with a compact region.
To avoid contact at the boundary of M ∩K during step 4, we work from the
very beginning with a bigger compact set Br(0) ⊃ K with r > 0 sufficiently
large so that the boundary created intersecting M with Br(0) is graphical.
Therefore, the contact at the boundary can occur only when i(M̂) comes
back to its original position, in which case M is graphical, as claimed.

Corollary 2.3.4. If the definitions given in 2.3.1 hold outside a compact set,
they hold everywhere.

Proof. The case of graphical perturbation is precisely the content of the pre-
vious lemma 2.3.3.

With respect to asymptotic graphical perturbation, observe simply that
this definition is indepedent of what happens in compact regions since it
deals with the behaviour of the surfaces at infinity.

Theorem 2.3.5. Let N be a connected graph translator of revolution in
Rm+1. Suppose that M is, outside a compact set K ⊂ Rm+1, a translator of
Rm+1 which is an asymptotic graphical perturbation of N . Assume that the
boundary of M is graphical (possibly empty) and a set of revolution. Then
M is a hypersurface of revolution.

Remark 2.3.6. Under the hypothesis of Theorem 2.3.5, if there exists the
boundary of M , then it is not necessarily connected. For instance, the in-
tersection of a winglike translator with two different and parallel horizontal
planes. But, in general, due to the rotational symmetry hypothesis on the
boundary of M , each connected component of the boundary of M must be
contained in a horizontal hyperplane, and indeed it must be a circumference.



Proof. We will show that the previous scheme works for any arbitrary but fix
element i of SOl(m+ 1), where l is the axis of symmetry. Indeed, l must be
parallel to the direction of translation v = (0, . . . , 0, 1), otherwise M would
not be graphical. Let us consider such an isometry i.

First, by corollary 2.3.4, M is an asymptotic graphical perturbation of
N everywhere. Then, there exists d <∞ (for instance, d := maxU |ϕ|) such
that

|ϕ(x)| < d for all x ∈ U.
Geometrically, this means that M is contained in a slab S of diameter d
centered at N :

S := {(s1, . . . , sm, sm+1) ∈ U × R : |sm+1 − u(s1, . . . , sm)| ≤ d, x ∈ N},

and M ⊂ S.
Since N is a hypersurface of revolution by hypothesis, then S is a set of
revolution.

We can easily argue now that our scheme works:

• Step 2 is trivially possible to do because M is graphical;

• Step 3 is achievable because

M ⊂ S (by construction of S), (M̂ + t0v) ∩ S = ∅ (by step 2)
⇒ i(M̂ + t0v) ∩M ⊂ i(M̂ + t0v) ∩ S = i

(
(M̂ + t0v) ∩ S

)
= ∅;

• Step 4:
The first point of contact cannot be at infinity because ϕ tends to zero
at infinity.
Since the boundary is a graphical set of revolution, the first point of
contact cannot be at the boundary unless the hypersurface returns to
its original position, in which case i(M̂) = M , as claimed.

Corollary 2.3.7. [MSHS15, Theorem A] Let f : Mm → Rm+1 be a complete
embedded translating soliton of the mean curvature flow with a single end
that is smoothly asymptotic to a translating paraboloid. Then, M = f(Mm)
is a translating paraboloid.



Proof. It is a consequence of our previous theorem 2.3.5, taking N as the
translating paraboloid.
Observe that the meaning of smoothly asymptotic in [MSHS15, Theorem A]
is that there exists a sufficiently large r > 0 such that M − Br(0) can be
written as the graph of a function g such that

g(x) =
1

2
||x|| − 1

2
log
(
||x||

)
+O

(
1

||x||

)
, (2.3.1)

where || · || denotes the usual euclidean norm in Rm.
Now, taking into account that the translating paraboloid is a graph hyper-
surface for a function f ∈ C∞(Rm) satisfying the same asymptotic behaviour

f(x) =
1

2
||x|| − 1

2
log
(
||x||

)
+O

(
1

||x||

)
, (2.3.2)

then being smoothly asymptotic clearly implies being an asymptotic graphical
perturbation. Indeed, from the relation g = f+ϕ and from (2.3.1) and (2.3.2),
we deduce that

ϕ = g − f = O

(
1

||x||

)
.

That is, it is sufficient to consider as ϕ any smooth function such that ϕ =

O

(
1
||x||

)
(as ||x|| → ∞), i.e., ϕ(x) ≤ C

||x|| for all ||x|| > r and for some

constant C ∈ R.

2.4 Compact translators with symmetric boun-

dary

In this section we apply the method of moving planes [Ale56,Sch84,Lóp] to
study compact translators with symmetric boundary.

Theorem 2.4.1. Let M be a connected compact embedded translator in Rm+1

whose boundary consists of two strictly convex curves Γ1 and Γ2 contained,
respectively, in two parallel planes P1 and P2 which are orthogonal to v.
Assume that M lies between the two planes P1 and P2, and suppose that the
curves Γ1 and Γ2 are symmetric with respect to a plane Π containing the
direction of translation v. Then M is symmetric with respect to the plane Π.



Proof. Without loss of generality, up to a rigid motion, we can assume that

P1 = {(x1, . . . , xm+1) ∈ Rm+1 : xm+1 = 0}

and
Π = {(x1, . . . , xm+1) ∈ Rm+1 : x1 = 0}.

We will apply the Alexandrov’s method of moving planes (see [Ale56,
Sch84]). We will follow the application of this method in [MSHS15, Section
3], including the notation, which we recall briefly:

The family of planes {Π(t)}t∈R is given by

Π(t) :=
{

(x1, . . . , xm+1) ∈ Rm+1 : x1 = t
}
,

and given a subset A of Rm+1, for any t ∈ R we define the sets

δt(A) :=
{

(x1, . . . , xm+1) ∈ A : x1 = t
}

= A ∩ Π(t),

A+(t) :=
{

(x1, . . . , xm+1) ∈ A : x1 ≥ t
}
,

A−(t) :=
{

(x1, . . . , xm+1) ∈ A : x1 ≤ t
}
,

A∗+(t) :=
{

(2t− x1, . . . , xm+1) ∈ Rm+1 : (x1, . . . , xm+1) ∈ A+(t)
}
,

A∗−(t) :=
{

(2t− x1, . . . , xm+1) ∈ Rm+1 : (x1, . . . , xm+1) ∈ A−(t)
}
.

Note that A∗+(t) and A∗−(t) are the image of A+(t) and A−(t) by the
reflection respect to the plane Π(t).

Consider the set

A := {t ∈ [0, t0] : M+(t) is a graph over Π and M∗
+(t) ≥M−(t)},

where t0 := max{t > 0 : M ∩ Π(t) 6= ∅} is a positive real number that
exists because of the compactness of M . Indeed, q0 := M ∩ Π(t0), the first
point of contact between M and a vertical plane coming from +∞, must be a
boundary point of M , otherwise M would coincide with Π(t0) by the interior
tangency principle, which is absurd.

Our goal is to prove that 0 ∈ A. The proof of this fact will be divided
into 3 claims.

Claim 1. The set A − {t0} is not empty. Moreover, if s ∈ A, then
[s, t0] ∈ A.



To show that A − {t0}, we prove that there exists an ε > 0 such that
(t0 − ε, t0] ⊂ A.
First note that Γ1 ∪ Γ2 is a bi-graph over its plane of symmetry Π because,
by hypothesis, both boundary curves are strictly convex plane curves. Then,
in a neighborhood around q0 ∈ Γ1 ∪ Γ2, M is a graph over Π. Otherwise, as
M lies between the planes P1 and P2, a neighborhood of M around q0 would
be contain in the plane Pi, for some i ∈ {1, 2}, that is, M would not be
locally around q0 a translator in the direction of v, which is absurd. In other
words, since q0 is in Γ1∪Γ2 and it is the first point of contact between M and
Π(t0), by continuity this implies that there exists a sufficiently small ε > 0
such that M+(t) is a graph over Π(t) for every t ∈ (t0 − ε, t0]. Moreover,
as M is embedded, considering ε > 0 smaller if necessary, it holds that
M∗

+(t) ≥M−(t) for every t ∈ (t0 − ε, t0].
For the second part of the claim, let t̃ be an arbitrary but fixed number in the
interval (s, t0). Our goal is to prove that t̃ ∈ A. According to the definition of
the set A, there are two conditions to be checked, so the proof falls naturally
into two parts or steps.

Step 1 : M+(t̃) is a graph over Π.
As s ∈ A, then M+(s) is a graph over Π. Therefore, M+(t) is a graph over
Π for every t ∈ [s, t0]. In particular, M+(t̃) is a graph over Π.

Step 2 : M∗
+(t̃) ≥M−(t̃).

On the contrary, if M∗
+(t̃) �M−(t̃), then, by compactness of M , there exists a

number t1 ∈ [t̃, t0−ε) such thatM∗
+(t1)−δt1(M) andM−(t1)−δt1(M) intersect

for the first time. Furthermore, this first point of contact is an interior point
of M∗

+(t1) and M−(t1) because the boundary of M consists of two strictly
convex plane curves symmetric with respect to Π. Then M∗

+(t1) = M−(t1)
by the interior tangency principle. Thus, Π(t1) 6= Π would be a plane of
symmetry of M , hence, in particular, it would be a plane of symmetry of the
curves Γ1 and Γ2, a contradiction.

Claim 2. A is a closed set of the interval [0, t0].
The argument is identical to the one in [MSHS15, Theorem A]: it is proved by
contradiction, using the sequential characterization of closed sets; first it is
assumed that the graphical condition in A is not satisfied, which contradicts
Claim 1; then the graphical condition and the continuity gives the reflection
condition in A.



Claim 3. The minimum of the set A is 0.
We argue by contradiction. Suppose s0 := minA > 0. We will show that
then there exists ε0 > 0 such that s0 − ε0 ∈ A, contradicting that s0 is the
minimum of A.
Again, we divide the proof into two steps.

Step 1 : There exists ε1 ∈ (0, s0) such that M∗
+(s0− ε1) is a graph over Π.

Since s0 ∈ A, M+(s0) is a graph over Π. Moreover, there is no point in
M+(s0) with normal vector included in Π. If there were such a point, let us
say that its first coordinate is t̃ ∈ [s0, t0), then by the tangency principle at
the boundary, M∗

+(t̃) = M−(t̃), that is, Π(t̃) would be a plane of symmetry
of M . In particular, Π(t̃) would be a plane of symmetry of the curves Γ1 and
Γ2, which contradicts that Π 6= Π(t̃) also is. Thus,

ξ{M+(s0)} ∩ Π = ∅.

As M is compact, we have that there exists ε1 ∈ (0, s0) such that

ξ{M+(s0)} ∩ Π = ∅ for all t ∈ [s0 − ε1, s0].

From this fact, together with the compactness of M , it follows that M+(t)
can be represented as a graph over the plane Π for every t ∈ [s0 − ε1, s0].
In particular, M∗

+(s0 − ε1) is a graph over Π and the proof of this step is
complete.

Step 2 : There exists ε0 ∈ (0, ε1) such that M∗
+(s0 − ε0) ≥M−(s0 − ε0).

We are going to show that there exists ε0 ∈ (0, ε1] such that

M∗
+(t) ∩M−(t) = δt(M) for all t ≥ s0 − ε0,

which in particular implies that M∗
+(s0 − ε0) ≥ M−(s0 − ε0), and this step

will be proved.
We argue by contradiction. If it were not true, then there would exist an
increasing sequence {tn}n∈N converging to s0 such that(

M∗
+(tn) ∩M−(tn)

)
− δtn(M) 6= ∅.

For each natural n, denote by Pn = (pn1 , p
n
2 , p

n
3 ) a point in the above set. At

this point, we make two key observations:(
M∗

+(t) ∩M−(t)
)
− δt(M) ⊂M−(s0 − ε1) for all t ∈ [s0 − ε1, t0], (2.4.1)



M∗
+(s0) ∩M−(s0) = δs0(M). (2.4.2)

(2.4.1) follows from Step 1, that is, from the fact that M∗
+(s0− ε1) is a graph

over Π for every t ∈ [s0 − ε1, t0]. Therefore,( (
M∗

+(t) ∩M−(t)
)
− δt(M)

)
∩ S = ∅,

where S := {(x1, . . . , xm+1) ∈ Rm+1 : s0 − ε1 ≤ x1 ≤ t0}, simply because, in
plain language,

“the reflection of a graph over a plane Π with respect to this plane Π is
always on the right hand side of the left part of the graph”,

where orientation (right and left) is considered with respect to the plane
Π. This is a direct consequence of the definitions, in particular from the
meaning of being a graph over a plane.
On the other hand, (2.4.2) follows from the fact that s0 ∈ A. Indeed, if
M∗

+(s0)∩M−(s0) were a set bigger than δs0(M), then, as M∗
+(s0) ≥M−(s0),

there would be a first point of contact between M∗
+(s0) and M−(s0), which

would be in the interior because the boundary of M consists of two strictly
convex plane curves symmetric with respect to Π. Then by the interior
tangency principle both surfaces would coincide, hence Π(s0) would be a
symmetric plane of M , a contradiction.
Let us come back to the sequence {Pn}n∈N. By the compactness of M , we
can assume without loss of generality that this sequence converges to a point
P∞ = (p∞1 , p

∞
2 , p

∞
3 ) ∈ M . Indeed, since tn ↗ s0, P∞ ∈ M∗

+(s0) ∩M−(s0) =
δs0(M), where the last equality is by (2.4.2). On the other hand, from (2.4.1)
we see that pn1 ≤ s0 − ε1 for each n. Thus, p∞1 ≤ s0 − ε1 < s0, which
contradicts that P∞ ∈ δs0(M).

Remark 2.4.2. The assumption that M must be between the two parallel
planes P1 and P2 cannot be dropped, as the following counterexample shows.
Consider the intersection of a winglike solutionW with two horizontal parallel
planes P1 and P2, so that the lower one, P1, contains the radius ofW . Observe
that the intersection of each of these planes withW consists of two concentric
circles. The counterexample is the piece of W between these two planes and
whose boundary is the inner circle in P1 and the outer circle in P2.



Corollary 2.4.3. In the setting of the previous theorem 2.4.1, if Γ1 and Γ2

are concentric circles, then M is a hypersurface of revolution.

Proof. Simply note that, by theorem 2.4.1, M is symmetric with respect to
any plane Π containing the direction of translation v. Therefore, M is a
hypersurface of revolution around v.

Corollary 2.4.4. Theorem 2.4.1 remains true if the boundary of the trans-
lator M is assumed to be only one strictly convex plane curve Γ.

Proof. Observe that in this case the translator lies below the plane P that
contains the curve Γ because M is compact and, as a translator, its height
function cannot attain a local maximum [MSHS15, Lemma 2.1 (d)]. Hence,
the same argument using the Alexandrov’s method proves the corollary.

Corollary 2.4.5. Let M be a connected compact embedded translator in
Rm+1 whose boundary Γ is a (m − 1)-sphere contained in a hyperplane P
orthogonal to v. Then M is the compact piece of the translating paraboloid
whose boundary coincides with Γ.

Proof. Let P be the compact piece of the translating paraboloid whose
boundary coincides with Γ. Place P above the plane P so that its vertex lies
on the same line as the center of Γ. Then translate it down until they “touch”
for the first time. There are two possibilities: either they intersect for the
first time in an interior point or they do it in a boundary point. In any case,
the interior or boundary tangency principle tells us they coincide.



Chapter 3

A characterization of the grim
reaper cylinder

The content of this chapter is published in [MPGSHS16]. We prove that a
connected and properly embedded translating soliton in R3 with uniformly
bounded genus on compact sets which is C1-asymptotic to two planes outside
a cylinder, either is flat or coincides with the grim reaper cylinder. Before
stating this result rigorously, let us set up the notation and provide some
definitions.

Definition 3.0.1. Let H be an open half-plane in R3 and w the unit inward
pointing normal of ∂H. For a fixed positive number δ, denote by Hδ the set
given by

Hδ :=
{
p+ tw : p ∈ ∂H and t > δ

}
.

(a) We say that a smooth surface M is Ck-asymptotic to the open half-
plane H if M can be represented as the graph of a Ck-function ϕ :
H → R such that for every ε > 0 there exists δ > 0 so that for any
j ∈ {1, 2, . . . , k} it holds

supHδ |ϕ| < ε and supHδ |D
jϕ| < ε.

(b) A smooth surface M is called Ck-asymptotic outside a cylinder to two
half-planes H1 and H2 if there exists a solid cylinder C such that:
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(b1) the solid cylinder C contains the boundaries of the half-planes H1

and H2,

(b2) the set M − C consists of two connected components M1 and M2

that are C1-asymptotic to H1 and H2, respectively.

Figure 3.1: Asymptotic behavior

For example the grim reaper cylinder G is asymptotic to the parallel half-
planes

H1 =
{

(x1, x2, x3) ∈ R3 : x3 > r0 > 0, x1 = −π/2
}

and
H2 =

{
(x1, x2, x3) ∈ R3 : x3 > r0 > 0, x1 = +π/2

}
outside the solid cylinder

C =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

3 ≤ r2
0 + π2/4

}
,

where here r0 is a positive real constant.

Let us now state the main result of this chapter.

Theorem 3.0.2. Let f : M2 → R3 be a connected, properly embedded 1

translating soliton with uniformly bounded genus on compact sets of R3 and
C be a solid cylinder whose axis is perpendicular to the direction of translation
of M := f(M2). Assume that M is C1-asymptotic outside the cylinder C to
two half-planes whose boundaries belongs on ∂C. Then either

1Here by embedded we only mean that M has no self-intersections.



(a) both half-planes are contained in the same vertical plane Π and M = Π,
or

(b) the half-planes are included in different parallel planes and M coincides
with a grim reaper cylinder.

Remark 3.0.3.

(a) Notice that in the above theorem infinite genus a priori could be possible.
The assumption that M has uniformly bounded genus on compact sets
of R3 means that for any positive r there exists m(r) such that for any
p ∈M it holds

genus
{
M ∩ Br(p)

}
≤ m(r),

where Br(p) is the ball of radius r in R3 centered at the point p. Roughly
speaking, the above condition says that as we approach infinity the “size
of the holes’’ of M is not becoming arbitrary small and furthermore they
are not getting arbitrary close to each other.

(b) We would like to mention here that Nguyen [Ngu15,Ngu13,Ngu09] con-
structed examples of complete embedded translating solitons in the eu-
clidean space R3 with infinite genus. Outside a cylinder, these examples
look like a family of parallel half-planes. This means that the hypothesis
about the number of half-planes is sharp. Very recently, Dávila, Del Pino
& Nguyen [DdPN15] and, independently, Smith [Smi15] constructed ex-
amples of complete embedded translators with finite non-trivial topology.
For an exposition of examples of translators see also [MSHS15, Subsec-
tion 2.2].

(c) Ilmanen constructed a one-parameter family of complete convex trans-
lators, defined on strips, connecting the grim reaper cylinder with the
bowl soliton [Whi02]. Note that the level sets of these translators are
closed curves. This means that our hypothesis of being asymptotic to
two planes outside a cylinder is natural and cannot be removed.

Let us describe now the general idea and the steps of the proof. Without
loss of generality we will assume that the translating velocity of M is v =
(0, 0, 1); then, again without loss of generality, we can choose the x2-axis as



the axis of rotation of C. First we show that the half-planes must be parallel
to each other, that they should be also parallel to the translating direction
and that both wings of M outside the cylinder must point in the direction of
v. Then, after a translation in the direction of the x1-axis, if necessary, we
prove that the asymptotic half-planes H1 and H2 are subsets of the parallel
planes

Π(−π/2) =
{

(x1, x2, x3) ∈ R3 : x1 = −π/2
}

and
Π(+π/2) =

{
(x1, x2, x3) ∈ R3 : x1 = +π/2

}
,

respectively, and that M is contained in the slab between the planes Π(−π/2)
and Π(+π/2). To prove this claim we study the x1-coordinate function of M
in order to control its range. By the strong maximum principle we conclude
that the x1-coordinate function cannot attain local maxima or minima. To
prove that supMx1 = π/2 = −infMx1 we perform a “blow-down” argument
based on a compactness theorem of White [Whi15b] for sequences of properly
embedded minimal surfaces in Riemannian 3-manifolds. The next step is to
show that M is a bi-graph over Π(+π/2) and that the plane

Π(0) =
{

(x1, x2, x3) ∈ R3 : x1 = 0
}

is a plane of symmetry for M . This is proven using Alexandrov’s method of
moving planes. In the sequel we show that M must be a graph over a slab
of the x1x2-plane. Thus, M must have zero genus and it must be strictly
mean convex. To achieve this goal we carefully investigate the set of the
local maxima and minima of the profile curve

Γ = M ∩ Π(0) ⊂ C.

Performing again a “blow-down” argument along the ends of the curve Γ
we deduce that M looks like a grim reaper cylinder at infinity. To finish
the proof, we consider the function ξ2 which measures the x2-coordinate of
the Gauß map ξ of M . Then, by applying the strong maximum principle
to ξ2H

−1, we deduce that ξ2 is identically zero. This implies that the Gauß
curvature of M is zero and then M must coincide with a grim reaper cylinder
(see [MSHS15, Theorem B]).

The structure of the chapter is as follows. In Section 3.1 we introduce the
compactness and the strong barrier principle of White [Whi15a,Whi15b]. In



Section 3.2 we show that the smooth asymptotic behaviour with respect to
the so-called Ilmanen’s metric implies the smooth asymptotic behaviour with
respect to the euclidean metric, an important fact that we need at the end
of our proof. In Section 3.3 we present a lemma that will play a crucial role
in the proof of our theorem. This lemma (Lemma 3.3.1) asserts that every
complete, properly embedded translating soliton in R3 with the asymptotic
behavior of two half-planes has a surprising amount of internal dynamical
periodicity. The main theorem is proved in Section 3.4.

3.1 A compactness theorem and a strong ba-

rrier principle of Brian White

We will introduce here the main tools that we will use in the proofs. We will
consider sequences of translators and we will take limits (up to a subsequence)
thanks to a compactness theorem and a strong barrier principle, both results
of Brian White [Whi15a,Whi15b]. Another crucial tool will be the tangency
principle, already presented in section 2.1.

Let Σ be a surface in a 3-manifold (Ω, g). Given p ∈ Σ and r > 0 we
denote by

Dr(p) :=
{
w ∈ TpΣ : |w| < r

}
the tangent disc of radius r. Consider now TpΣ as a vector subspace of TpΩ
and let ν be the unit normal vector of TpΣ in TpΩ. Fix a sufficiently small
ε > 0 and denote by Wr,ε(p) the solid cylinder around p, that is

Wr,ε(p) :=
{

expp(q + tνq) : q ∈ Dr(p) and |t| ≤ ε
}
,

where exp stands for the exponential map of the ambient Riemannian 3-
manifold (Ω, g). Given a function u : Dr(p)→ R, the set

Graph(u) :=
{

expp(q + u(q)νq) : q ∈ Dr(p)
}

is called the graph of u over Dr(p).

Definition 3.1.1 (Convergence in the C∞-topology). Let (Ω, g) be a
Riemannian 3-manifold and {Mi}i∈N a sequence of connected embedded sur-
faces. The sequence {Mi}i∈N converges in the C∞-topology with finite multi-
plicity to a smooth embedded surface M∞ if:



(a) M∞ consists of accumulation points of {Mi}i∈N, that is for each p ∈
M∞ there exists a sequence of points {pi}i∈N such that pi ∈ Mi, for
each i ∈ N, and p = limi→∞pi.

(b) For all p ∈ M∞ there exist r, ε > 0 such that M∞ ∩ Wr,ε(p) can be
represented as the graph of a function u over Dr(p).

(c) For all large i ∈ N, the set Mi ∩ Wr,ε(p) consists of a finite number
k, independent of i, of graphs of functions u1

i , . . . , u
k
i over Dr(p) which

converge smoothly to u.

The multiplicity of a given point p ∈ M∞ is defined to be the number of
graphs in Mi ∩Wr,ε(p), for i large enough.

Remark 3.1.2. Note that although each surface of the sequence {Mi}i∈N is
connected, the limiting surface M∞ is not necessarily connected. However,
the multiplicity remains constant on each connected component Σ of M∞.
For more details we refer to [PR02,CS85].

Definition 3.1.3. Let {Mi}i∈N be a sequence of embedded surfaces in a Rie-
mannian 3-manifold (Ω, g).

(a) We say that {Mi}i∈N has uniformly bounded area on compact subsets
of Ω if

lim supi→∞ area{Mi ∩K} <∞,
for any compact subset K of Ω.

(b) We say that {Mi}i∈N has uniformly bounded genus on compact subsets
of Ω if

lim supi→∞ genus
{
Mi ∩K

}
<∞,

for any compact subset K of Ω.

Theorem 3.1.4 (White’s compactness theorem). Let (Ω, g) be an ar-
bitrary Riemannian 3-manifold. Suppose that {Mi}i∈N is a sequence of con-
nected properly embedded minimal surfaces. Assume that the area and the
genus of {Mi}i∈N are uniformly bounded on compact subsets of Ω. Then,
after passing to a subsequence, {Mi}i∈N converges to a smooth properly em-
bedded minimal surface M∞ ⊂ Ω. The convergence is smooth away from a
discrete set denoted by Sing. Moreover, for each connected component Σ of
M∞, either



(a) the convergence to Σ is smooth everywhere with multiplicity 1, or

(b) the convergence is smooth, with some multiplicity greater than one,
away from Σ ∩ Sing.

Now suppose that Ω is an open subset of R3 while the metric g is not nec-
essarily flat. If pi = (p1i, p2i, p3i) ∈ Mi, i ∈ N, converges to p ∈ M∞ then,
after passing to a further subsequence, either TpiMi → TpM or there exists
a sequence of real number {λi}i∈N tending to ∞ such that the sequence of
surfaces {λi(Mi − pi)}i∈N, where

λi(Mi − pi) =
{
λi(x1 − p1i, x2 − p2i, x3 − p3i) ∈ R3 : (x1, x2, x3) ∈M

}
,

converge smoothly and with multiplicity 1 to a non-flat, complete and properly
embedded minimal surface M∗

∞ of finite total curvature and with ends parallel
to TpM∞.

A crucial assumption in the compactness theorem of White is that the
sequence has uniformly bounded area on compact subsets of Ω. Let us denote
by

Z :=
{
p ∈ Ω : lim supi→∞area{Mi ∩ Br(p)} =∞ for every r > 0

}
,

the set where the area blows up. Clearly Z is a closed set. It will be
useful to have conditions that will imply that the set Z is empty. In this
direction, White [Whi15a, Theorem 2.6 and Theorem 7.4] shows that under
some natural conditions the set Z satisfies the same maximum principle as
properly embedded minimal surfaces without boundary.

Theorem 3.1.5 (White’s strong barrier principle). Let (Ω, g) be a Rie-
mannian 3-manifold and {Mi}i∈N a sequence of properly embedded minimal
surfaces, with boundaries {∂Mi}i∈N in (Ω, g). Suppose that:

(a) The lengths of {∂Mi}i∈N are uniformly bounded on compact subsets of
Ω, that is

lim supi→∞length{∂Mi ∩K} <∞,

for any relatively compact subset K of Ω.



(b) The set Z of {Mi}i∈N is contained in a closed region N of Ω with
smooth, connected boundary ∂N such that g

(
H∂N , ξ

)
≥ 0, at every

point of ∂N , where H∂N(p) is the mean curvature vector of ∂N at p
and ξ(p) is the unit normal at p to the surface ∂N that points into N .

If the set Z contains any point of ∂N , then it contains all of ∂N .

Remark 3.1.6. The above theorem is a sub-case of a more general result of
White. In fact the strong barrier principle of White holds for sequences of
embedded hypersurfaces of n-dimensional Riemannian manifolds which are
not necessarily minimal but they have uniformly bounded mean curvatures.
For more details we refer to [Whi15a].

3.2 Distance in Ilmanen’s metric

Our aim in this section is to show that the smooth asymptotic behaviour of
Definition 3.0.1 when the metric involved is the so-called Ilmanen’s metric g
implies the smooth asymptotic behaviour with respect to the euclidean metric
(R3, 〈·, ·〉), an important fact that we need at the end of our proof. Recall
that in this chapter the ambient space is R3 and the translating velocity of
the translator is v = e3 = (0, 0, 1), so the specific Ilmanen’s metric is

g = ex3〈· , ·〉.

The strategy is to find a suitable relation between the distance with re-
spect to the Euclidean metric and the distance with respect to the Ilmanen’s
metric. For this purpose, we begin by computing the geodesics of (R3, g).

Proposition 3.2.1. Vertical straight lines and “grim-reaper-type” curves,
that is, images of smooth curves γ : (−π, π) → (R3, g) of the form γ(t) =(
t, 0,−2 log cos t

2

)
, are geodesics with respect to the Ilmanen’s metric.

Proof. Let the parametrized curve γ : I → R3 be a geodesic. The geodesic
equation of γ in a system of coordiantes where the curve can be written as
γ(t) = (x1(t), x2(t), x3(t)) is

d2xk
dt

+ Γ̃kij
dxi
dt

dxj
dt

= 0, k ∈ {1, 2, 3}, (3.2.1)



where Γ̃kij are the Christoffel symbols in (R3, g). Thus

Γ̃kij =
1

2

(
∂

∂xi
gjm +

∂

∂xj
gim−

∂

∂xm
gij

)
gmk .

Since the Ilmanen’s metric is gij = ex3δij, we have that

gij = e−x3δij and
∂

∂xm
gij =

∂

∂xm
(ex3δij) = ex3δm3δij.

Then

Γ̃kij =
1

2

(
∂

∂xi
gjm +

∂

∂xj
gim−

∂

∂xm
gij

)
gmk

=
1

2
(ex3δi3δjm + ex3δj3δim − ex3δm3δij) e

−x3δmk

=
1

2
(δi3δjmδmk + δj3δimδmk − δ3mδmkδij)

=
1

2
(δi3δjk + δj3δik − δ3kδij) .

Hence

Γ̃1
ij =

1

2
(δi3δj1 + δj3δi1 − δ31δij) =

1

2
(δi1δj3 + δi3δj1) ,

Γ̃2
ij =

1

2
(δi3δj2 + δj3δi2 − δ32δij) =

1

2
(δi2δj3 + δi3δj2) ,

Γ̃3
ij =

1

2
(δi3δj3 + δj3δi3 − δ33δij) = −1

2
(δij − 2δi3δj3) .

Therefore, the second order system of EDOs (3.2.1) reads

d2x1

dt
+
dx1

dt

dx3

dt
= 0

d2x2

dt
+
dx2

dt

dx3

dt
= 0

d2x3

dt
− 1

2

(
dx1

dt

dx1

dt
+
dx2

dt

dx2

dt
− dx3

dt

dx3

dt

)
= 0


(3.2.2)

Let us prove that the curves mentioned are solutions of this system, arguing
how they may be found.



First of all, by looking at the two first equations we conjecture that γ =
(A,B, x3), where A andB are arbitrary constants in R, is a solution. Trivially
it satisfies the two first equations. With respect to the third one, it becomes

d2x3

dt
+

1

2

dx3

dt

dx3

dt
= 0

or, equivalently, writing f(t) := dx3
dt

and denoting by f ′ the derivative of f
with respect to t, it reads

f ′ +
1

2
f 2 = 0⇒ − f

′

f 2
=

1

2
⇒ 1

f
=

1

2
t+ C ⇒ dx3

dt
= f =

2

t+ 2C

⇒ x3 = 2 log |t+ 2C|+D,

for arbitrary constans C,D ∈ R. Since C is an arbitrary real constant, we
can substitute 2C by C without loss of generality. Thus, a solution of the
system (3.2.2) is the curve γ : I → R3, defined —assuming that C ≥ 0— in
an open interval I ⊆ (−C,+∞) or I ⊆ (−∞,−C), given by

γ(t) = (A,B, 2 log |t+ C|+D), for constants A,B,C,D ∈ R,

Furthermore, we impose that γ is arc-lenght parametrized:

1 =

∣∣∣∣dγdt
∣∣∣∣
gγ(t)

=

∣∣∣∣ (0, 0, 2|t+ C|−1
) ∣∣∣∣

gγ(t)

=
[
gγ(t)

(
(0, 0, 2|t+ C|−1), (0, 0, 2|t+ C|−1)

)]1/2
= e(2 log |t+C|+D)/2 2

|t+ C|
= eD/2|t+ C| 2

|t+ C|
= 2eD/2

⇒ D = 2 log

(
1

2

)
.

Then, a solution of (3.2.2), parametrized by the arc-length, is

γ(t) =

(
A,B, log

(t+ C)2

4

)
, for arbitrary constants A,B,C ∈ R.

Second, we conjecture that another particular solution γ of the system is
a grim reaper curve, that is,

γ : (−π/2, π/2)→ R3, γ(t) = (t, 0,− log cos(t)) .



Then, we check immediately that the second equation of the system is tri-
vially satisfied but the first one does not hold. So this is not a solution. This
is not surprising if we recall that a necessary condition for a curve to be a
geodesic is that the length of its tangent vector dγ

dt
must be constant. Hence,

our next step is to consider the arc-length parameter s = s(t) of the curve γ,
or rather, the inverse of this function t(s), in order to consider the arc-length
parametrization of γ:

γ(s) = (t(s), 0, log cos(t(s))) ,

where t(s) is a smooth function such that:∣∣∣∣dγds
∣∣∣∣
gγ(s)

= 1.

If we now come back to the first equation of the system, it turns out that this
γ(s) does not satisfy it. But there exists the possibility to include another
degree of freedom considering a new real constant K, to be determined later,
while γ(s) keeps the form of a grim reaper curve. Let us consider simply

γ(s) =

(
t(s), 0,− 1

K
log cos(Kt(s))

)
.

where t(s) is a smooth function such that:

1 =

∣∣∣∣dγds
∣∣∣∣2
gγ(s)

=
∣∣(t′(s), 0,−t′(s) tan(Kt(s))

)∣∣2
gγ(s)

= gγ(s)

((
t′(s), 0,−t′(s) tan(Kt(s))

)
,
(
t′(s), 0,−t′(s) tan(Kt(s))

))
= e−

1
K

log cos(Kt(s))t′(s)
(
1 + tan2(Kt(s))

)
= t′(s) cos−1/K(Kt(s))

1

cos2(Kt(s))
= t′(s)

1

cos2+ 1
K (Kt(s))

,

that is, such that:
t′(s) = cos1+ 1

2K (Kt(s)). (3.2.3)

We will also need t′′(s):

t′′(s) = −
(

1 +
1

2k

)
kt′(s) cos

1
2K (Kt(s)) sin(Kt(s))

= −
(
K +

1

2

)
sin(Kt(s)) cos1+ 1

K (Kt(s)). (3.2.4)



Let us try this curve γ(s) as a solution of the system (3.2.2). We have that:

γ(s) =

(
t(s), 0,− 1

K
log cos(Kt(s)

)
⇒ γ′(s) = (t′(s), 0, t′(s) tan(Kt(s)))

⇒ γ′′(s) =

(
t′′(s), 0, t′′(s) tan(Kt(s)) +

K(t′(s))2

cos2(Kt(s))

)
.

Then, the first equation of the system is

0 =
d2x1

ds
+
dx1

ds

dx3

ds
= t′′(s) + [t′(s)]2 tan(Kt(s))

= −
(
K +

1

2

)
sin(Kt(s)) cos1+ 1

K (Kt(s)) + cos2+ 1
K (Kt(s))

sin(Kt(s))

cos(Kt(s))

=

(
1

2
−K

)
sin(Kt(s)) cos1+ 1

K (Kt(s)).

Consequently, this equation holds if and only if K = 1/2. Then

γ(s) =

(
t(s), 0,−2 log cos

(
t(s)

2

))
.

On the other hand, the second equation of the system trivially holds because
the second component of the curve γ(s) vanishes identically. Finally, the
third equation is:

d2x3

ds
− 1

2

(
dx1

ds

dx1

ds
+
dx2

ds

dx2

ds
− dx3

ds

dx3

ds

)
= t′′(s) tan

(
t(s)

2

)
+

(t′(s))2

2 cos2
(
t(s)
2

) − 1

2

(
[t′(s)]2 − [t′(s) tan

(
t(s)

2

)
]2
)

= [t′(s)]2

 t′′(s)

[t′(s)]2
tan

(
t(s)

2

)
+

1

2 cos2
(
t(s)
2

) − 1

2

(
1− tan

(
t(s)

2

)2
)

= [t′(s)]2

(
− tan2

(
t(s)

2

)
+

1

2

(
1 + tan2

(
t(s)

2

))
− 1

2

(
1− tan

(
t(s)

2

)2
))

= [t′(s)]20 = 0.

Therefore, the curve γ(s) =
(
t(s), 0,−2 log cos

(
t(s)
2

))
is another solution of

the system (3.2.2), as claimed.



Remark 3.2.2. In the above proof, once we know that K = 1/2, we can
compute explicitly t(s), the inverse of the arc-length parameter of our second
geodesic: it is the solution of t′(s) = cos2(Kt(s)), i.e., t(s) = 2 arctan

(
s+A

2

)
,

where A is any real number. However, we will not need it.

The following proposition allows us to construct all the geodesics of (R3, g)
from the previous ones. Although we assume throughout the whole chapter
that v = e3, in the next result we work with an arbitrary translating velocity
v because this way the proof is even easier to understand and its geometric
sense is fully preserved.

Proposition 3.2.3. Rotations and parallel transports in (R3, 〈·, ·〉) that pre-
serve v, also preserve the geodesics of (R3, g).

Proof. Taking into account that rotations and parallel transports in (R3, 〈·, ·〉)
are isometries of (R3, 〈·, ·〉), we are going to prove a more general result: any
isometry Φ of the Euclidean space (R3, 〈·, ·〉) that preserves v (i.e., Φ(v) = v),
also preserve the geodesics of (R3, g).

It is very well known that isometries preserve geodesics. Then it is suffi-
cient to show that Φ is an isometry of (R3, g) = (R3, e〈p,v〉〈· , ·〉), that is, for
all p ∈ R3 and for all w1, w2 ∈ TpR3 we have

gp(w1, w2) = gΦ(p)(dΦp(w1), dΦp(w2)).

Using the hypothesis, this is a straightforward computation:

gΦ(p)(dΦp(w1), dΦp(w2)) = e〈Φ(p),v〉〈dΦp(w1), dΦp(w2)〉 = e〈Φ(p),Φ(v)〉〈w1, w2〉
= e〈p,v〉〈w1, w2〉 = gp(w1, w2).

Now we can argue geometrically to deduce all the geodesics of (R3, g).
The basic geodesic curves that we already computed are:

γ(t) =

(
0, 0, log

(
t2

4

))
,

γ(s) =

(
t(s), 0,−2 log cos

(
t(s)

2

))
,



where recall that t(s) is the inverse of the arc-length parameter function s(t).
Their derivatives are, respectively:

γ′(t) =

(
0, 0,

2

t

)
,

γ′(s) =

(
t′(s), 0, t′(s) tan

(
t(s)

2

))
,

Consequently, vertical straight lines as above can be used to obtain geodesics
with any initial vertical velocity (i.e., velocities proportional to e3) and“grim-
reaper-type” curves can be used to obtain geodesics with any non-vertical
velocity in the plane {(x1, x2, x3) ∈ R3 : x2 = 0}. On the other hand,
rotations around the e3-axis allow us to obtain geodesics with any initial
velocity in general. And the parallel transport serves to establish any point
p as the the initial one of the geodesic. In summary, we proved the following
result:

Corollary 3.2.4. All the geodesics of (R3, g) can be constructed using the
above geodesics (Proposition 3.2.1) and transformations (Proposition 3.2.3).

Finally, we can establish now a relation between the distance of a point
from a vertical plane in (R3, g) and in (R3, 〈·, ·〉), which allows us to obtain
a relation between the smooth asymptotic behaviour described in Definition
3.0.1 in these two ambient spaces.

Let δ be a sufficiently small positive number and p = (p1, p2, p3) a point
in R3 such that p1 ∈ (−δ, 0) and p3 > 0. Let us denote by distg(p,Π(0)) the
distance of p from the plane

Π(0) =
{

(x1, x2, x3) ∈ R3 : x1 = 0
}
.

with respect to the Ilmanen’s metric and by dist(p,Π(0)) = −p1 the euclidean
distance of the point p from the plane Π(0). According to our previous
discussion about the geodesics in (R3, g), and since geodesics locally minimize
the arc length, the distance distg(p,Π(0)) is given as the length with respect
to the Ilmanen’s metric of the smooth curve l : (p1, 0)→ (R3, g) given by

l(t) =
(
t, p2,−2 log cos t

2
+ 2 log cos p1

2
+ p3

)
.



This length is:

distg(p,Π(0)) =

∫ 0

p1

∣∣∣∣dldt
∣∣∣∣
gγ(t)

dt =

∫ 0

p1

e
p3
2 ·

cos p1
2

cos t
2

·
√

1 +
(

tan t
2

)2
dt

= e
p3
2 · cos

(p1

2

)∫ 0

p1

1

cos2
(
t
2

)dt = e
p3
2 · cos

(p1

2

)
·
[
2 tan

(
t
2

)]0
p1

= 2e
p3
2 ·
(
− sin p1

2

)
= 2e

p3
2 · sin dist(p,Π(0))

2
. (3.2.5)

Remark 3.2.5. As we saw in the proof of Proposition 3.2.1, the curve l
is not a geodesic because its tangent vector does not have constant length.
However, we proved there that its image coincide with the image of a geodesic.
Therefore, it can be used to compute the distance between sufficiently close
points since the length of a curve is invariant under reparametrization.

The above formula gives us a smooth bijection between distg(p,Π(0))
and dist(p,Π(0)) for points p = (p1, p2, p3) ∈ R3 such that p1 ∈ (−δ, 0) and
p3 > 0, where δ is a sufficiently small positive number:

distg(p,Π(0)) = 2ep3/2 · sin dist(p,Π(0))
2

(3.2.6)

⇔ dist(p,Π(0)) = 2 arcsin

(
e−p3/2

2
· distg(p,Π(0))

)
. (3.2.7)

(3.2.7) implies that, as p1 → 0 and p3 → +∞, if distg(p,Π(0)) → 0, then
dist(p,Π(0))→ 0.

Remark 3.2.6. Observe that (3.2.6) does not imply the reciprocal since
an indeterminate form is obtained when the limit is evaluated as p1 → 0
and p3 → +∞. Indeed, this indeterminate form can be evaluated using the
boundedness x − x3

3!
< sinx < x for x > 0 and the fact that the exponen-

tial grows faster than any polynomial. Hence, the limit is +∞. Therefore,
it is not true that as p1 → 0 and p3 → +∞, if dist(p,Π(0)) → 0, then
distg(p,Π(0))→ 0.

Bearing in mind Definition 3.0.1 (asymptotic behaviour) and the defini-
tion of the graph of a function over an open disc of the tangent plane of
a surface given at the beginning of section 3.1 (in this definition, the role
of the tangent plane is played here by Π(0)), using the same notation we



have that the function ϕ at the point l(0) ∈ Π(0) coincides with the distance
dist(l(p1),Π(0)) = dist(p,Π(0)):

ϕ(l(0)) = dist(l(p1),Π(0)) = dist(p,Π(0)).

Analogously with ϕg and distg(p,Π(0)), where we indicate the dependence of
ϕ on the ambient space by writing the metric as a subscript. See figure 3.2,
where γ(q, νq) denotes the corresponding geodesic passing through the point
q ∈ Π(0) with initial velocity νq, the unit normal vector of Π(0).

Figure 3.2: Euclidean and Ilmanen distances of a point p in the surface M
from the vertical point Π(0), respectively. Profile view in the x1x3-plane

In order to show the smoothness of the asymptotic behaviour in (R3, 〈·, ·〉),
assuming that it is smooth in (R3, g), first of all observe that p2 and p3 can
be considered as coordinates in the plane TpΠ(0) = Π(0) via

l(0) : (p2, p3) 7→
(
0, p2, 2 log cos p1

2
+ p3

)
.

We have that:

ϕ(l(0)) = ϕ
(
0, p2, 2 log cos p1

2
+ p3

)
= dist(p,Π(0))

= 2 arcsin

(
e−p3/2

2
· distg(p,Π(0))

)
= 2 arcsin

(
e−p3/2

2
· ϕg(l(0))

)
.



Then

∂ϕ(l(0))

∂p2

=

(
1− e−p3

4
· ϕ2

g(l(0))

)−1/2

· e
−p3/2

2
· ∂ϕg(l(0))

∂p2

,

∂ϕ(l(0))

∂p3

=

(
1− e−p3

4
· ϕ2

g(l(0))

)−1/2(
e−p3/2

2
· ∂ϕg(l(0))

∂p3

− e−p3/2

4
· ϕg(l(0))

)
By hypothesis ϕg(l(0)) and all its partial derivatives tend to 0 as p1 → 0
and p3 → +∞. So the first partial derivatives of ϕ(l(0)) also do. Moreover,
the higher-order partial derivatives also do because by the derivative rules
(product and potential rules) and the functions involved (ϕg(l(0)) and expo-
nential function with negative exponent), they keep the form of the previous
derivatives. Consequently, |Djϕ| also does for every j.

These considerations proves the following result, which will be very useful
in the last step of the proof of our main theorem of this chapter.

Lemma 3.2.7. Suppose that M , regarded as a minimal surface in (R3 g),
is C∞-asymptotic to two parallel vertical half-planes H1 and H2 outside the
cylinder C. Then the translator M is also smoothly asymptotic to the above
mentioned half-planes outside C with respect to the Euclidean metric.

3.3 A compactness result and its first conse-

quences

The translating property is preserved if we act on M via isometries of R3

which preserves the translating direction. Therefore, if (a, b, c) is a vector of
R3 then the surface

M + (a, b, c) =
{

(x1 + a, x2 + b, x3 + c) ∈ R3 : (x1, x2, x3) ∈M
}

is again a translator. Based on White’s compactness theorem, we can prove
a convergence result for some special sequences of translating solitons. More
precisely, we show the following:



Lemma 3.3.1. Let M be a surface as in our theorem. Suppose that {bi}i∈N is
a sequence of real numbers and let {Mi}i∈N be the sequence of surfaces given
by
{
Mi := M + (0, bi, 0)

}
i∈N. Then, after passing to a subsequence, {Mi}i∈N

converges smoothly with multiplicity one to a properly embedded connected
translating soliton M∞ which has the same asymptotic behavior as M .

Proof. Recall that any translator M ⊂ R3 can be regarded as a minimal
surface of (Ω = R3, g) where g is the Ilmanen’s metric. Notice that each
element of the sequence {Mi}i∈N has the same asymptotic behavior as M .
Without loss of generality, we can arrange the coordinate system such that

C =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

3 ≤ r2
0

}
.

By assumption our surface M is C1-asymptotic outside C to two half-planes
H1, H2 (see Fig. 3.3). Let now w1, w2 be the unit inward pointing vectors

Figure 3.3: Asymptotic behaviour with tilted half-planes

of ∂H1, ∂H2, respectively. For any δ > 0 consider the closed half-planes

Hk(δ) = {p+ twk : p ∈ ∂Hk and t ≥ δ},

for k ∈ {1, 2} and denote by Z+
kδ, k ∈ {1, 2}, the closed half-space of R3 con-

tainingHk(δ) and with boundary containing ∂Hk(δ) and being perpendicular
to wk. Moreover, consider the closed half-spaces

Z−kδ =
(
R3 − Z+

kδ

)
∪ ∂Z+

kδ,



for any k ∈ {1, 2}.

In the case where the sequence {bi}i∈N is bounded, we can consider a
subsequence such that lim bi = b∞ ∈ R. Then obviously {Mi}i∈N converges
smoothly with multiplicity one to the properly embedded translating soliton

M∞ = M + (0, b∞, 0).

Clearly M∞ has the same asymptotic behavior with M .

Let us examine now the case where the sequence {bi}i∈N is not bounded.
Split each surface Mi of the surface into the parts

M+
1i(δ) := Mi ∩ Z+

1δ, M
+
2i(δ) := Mi ∩ Z+

2δ and M−
i (δ) := Mi ∩ Z−1δ ∩ Z

−
2δ.

Claim 1. The sequences {M+
1i(δ)}i∈N and {M+

2i(δ)}i∈N have uniformly
bounded area on compact sets.

Proof of the claim. Let K be a compact subset of Ω and Br(0) a ball
of radius r centered at the origin of R3 containing K. Denote by Vi the
projection of the surface M+

1i(δ) ∩K to the closed half-plane H1(δ). Hence
we can parametrize M+

1i(δ) by a map Φi : Vi → R3 of the form

Φi(s, t) = (c1, c2, c3) + se2 + tw1 + ϕ(s− bi, t)e2 ∧ w1

=
{
c1 + (cosα)t+ (sinα)ϕ(s− bi, t)

}
e1 +

{
c2 + s

}
e2

+
{
c3 + (sinα)t− (cosα)ϕ(s− bi, t)

}
e3,

where i ∈ N,
{

e1, e2, e3

}
is the standard basis of R3, α is the angle between

the vectors e1 and w1 and (c1, c2, c3) is a fixed point on ∂H1(δ). By taking
δ very large we can make sure that |ϕ| and |Dϕ| are bounded by a universal
constant ε. Hence, for any index i ∈ N we have that

areag

{
M+

1i(δ) ∩K
}

=

∫
Vi

ec3+(sinα)t−(cosα)ϕ(s−bi,t)
√

1 + |Dϕ|2 dsdt

≤
∫
Vi

ec3+c(r)+ε
√

1 + ε2 dsdt

= ec3+c(r)+ε
√

1 + ε2 areaeuc(Vi),

where c(r) is a constant depending on r and areaeuc(Vi) is the euclidean area
of Vi. Note that areaeuc(Vi) is less or equal than the euclidean area of the



projection of K to the plane containing H1(δ). Thus there exists a number
m(K) depending only on K such that

areag

{
M+

1i(δ) ∩K
}
≤ m(K).

Consequently,
{
M+

1i(δ)
}
i∈N has uniformly bounded area. Similarly, we show

that
{
M+

2i(δ)
}
i∈N has uniformly bounded area and this concludes the proof

of the claim.

Claim 2. The sequence of surfaces
{
M−

i (δ)
}
i∈N has uniformly bounded

area on compact sets.

Proof of the claim. Let us show a first that the sequence
{
∂M−

i (δ)
}
i∈N

has uniformly bounded length on compact sets. Following the notation in-
troduced in the above claim, each connected component of ∂M−

i (δ) can be
represented as the image of the curve γi : R → R3 given by

γi(s) =
{
c1 + (cosα)δ + (sinα)ϕ(s− bi, δ)

}
e1

+
{
c2 + s

}
e2 +

{
c3 + (sinα)δ − (cosα)ϕ(s− bi, δ)

}
e3,

for any index i ∈ N. Let K be a compact set of Ω, Br(0) a ball of radius
r centered at the origin and containing K. Denote by Ii the projection of
∂M−

i (δ) ∩K to ∂H1(δ). Estimating as in Claim 1, we get that

lengthg

{
∂M−

i (δ) ∩K
}
≤
∫
Ii

e
c3+c(r)+ε

2
√

1 + ε2 ds,

where c(r) is a constant depending on r. Thus, there exists a constant n(K)
depending only on the compact set K such that

lengthg

{
∂M−

i (δ) ∩K
}
≤ n(K).

Hence, the sequence
{
∂M−

i (δ)
}
i∈N has uniformly bounded length on compact

sets.

Recall now that the set Z is closed. From Claim 1 it follows that Z
is contained inside a cylinder. Consider now a translating paraboloid and
translate it in the direction of the x3-axis until it has no common point with
Z . Then move back the translating paraboloid until it intersects for the first
time the set Z (see Fig. 3.4).



Figure 3.4: The area blow-up set Z

From the strong barrier principle of White (Theorem 3.1.5), the translat-
ing paraboloid is contained in Z . But this leads to a contradiction, because
now the area blow-up set Z is not contained inside a cylinder. Thus, Z
must be empty and consequently {M−

i (δ)}i∈N has uniformly bounded area.

Since the parts {M+
1i(δ)}i∈N, {M+

2i(δ)}i∈N, {M−
i (δ)}i∈N have uniformly

bounded area, we see that the whole sequence {Mi}i∈N has uniformly bounded
area. From our assumptions, also the genus of the sequence is uniformly
bounded. The convergence to a smooth properly embedded translator M∞
follows from Theorem 3.1.4 of White. Since each M+

ki(δ), k ∈ {1, 2}, is a
graph and each Mi is connected, we deduce that the multiplicity is one ev-
erywhere. Thus, the convergence is smooth. Moreover, observe that each
component of M∞ ∩ Z+

kδ, k ∈ {1, 2}, can be represented as the graph of a
smooth function ϕ∞ which is the limit of the sequence of graphs generated
by the smooth functions

ϕi(s, t) = ϕ(s− bi, t)

for any i ∈ N. Thus, the limiting surface M∞ has the same asymptotic
behavior as M . The limiting surface M∞ must be connected since otherwise
there should exist a properly embedded connected component Σ of M lying
inside C. But then, the x3-coordinate function of Σ must be bounded from
above, which is absurd. This concludes the proof.

As a first application of the above compactness result we show that the
half-planes H1 and H2 must be parallel to each other.



Lemma 3.3.2. Let M be a translating soliton as in our theorem. Then, the
half-planes H1 and H2 must be parallel to the translating direction. Moreover,
if H1 and H2 are parts of the same plane Π, then M should coincide with Π.

Proof. We follow the notation introduced in the last lemma. Assume to the
contrary that the half-plane

H1 =
{
p+ tw1 : p ∈ ∂H1 and t > 0

}
is not parallel to the translating direction v. Let us suppose at first that the
cosine of angle between the unit inward pointing normal w1 of ∂H1 and e1 is
positive. Consider the strip St0 given by

St0 := (t0 − π/2, t0 + π/2)× R × R.

For sufficiently large t0 this slab does not intersects the cylinder C. For fixed
real numbers t, l let Gt,l be the grim reaper cylinder

Gt,l :=
{

(x1, x2, l + log cos(x1 − t)) ∈ R3 : |x1 − t| < π/2, x2 ∈ R
}
.

By our assumptions, as δ becomes larger the wing Mδ := M ∩ Z+
1δ of M is

getting closer to H1. By the asymptotic behavior of M to two half-planes,
there exists t0, l0 ∈ R large enough such that Gt0,l0 does not intersect Mδ.
Then translate this grim reaper cylinder in the direction of − v. Since H1 is
not parallel to v, after some finite time l1 either there will be a first interior
point of contact between the surface Mδ and Gt0,l0−l1 or there will exist a
sequence of points {pi = (p1i, p2i, p3i)}i∈N in the interior of Mδ, with {p3i}i∈N
bounded and {p2i}i∈N unbounded, such that

lim
i→∞

dist(pi,Gt0,l0−l1) = 0.

The first possibility contradicts the asymptotic behavior of M . So let us
examine the second possibility. Consider the sequence of surfaces {Mi}i∈N
given by Mi = M+(0,−p2i, 0), for any i ∈ N. By Lemma 3.3.1, after passing
to a subsequence, {Mi}i∈N converges smoothly to a connected and properly
embedded translator M∞ which has the same asymptotic behavior as M .
But now there exists an interior point of contact between M∞ and Gt0,l0−l1 ,
which is absurd. Similarly we treat the case where the cosine of the angle
between w1 and e1 is negative. Hence both half-planes must be parallel to
the translating direction v.



Suppose now that the half-planes H1 and H2 are contained in the same
vertical plane Π. Without loss of generality we may assume that Π = Π(0).
Suppose to the contrary that the translator M does not coincide with Π.
Observe that in this case the x1-coordinate function attains a non-zero supre-
mum or a non-zero infimum along a sequence {pi = (p1i, p2i, p3i)}i∈N in the
interior of M , with {p3i}i∈N bounded and {p2i}i∈N unbounded. Performing a
limiting process as in the previous case we arrive to a contradiction. There-
fore, the x1-coordinate function must be zero constant and thus M must be
planar.

Another application of the above compactness result is the following
strong maximum principle.

Lemma 3.3.3. Let M be a translating soliton as in our theorem and assume
that the half-planes H1 and H2 are distinct. Consider a portion Σ of M (not
necessarily compact) with non-empty boundary ∂Σ such that the x3-coordinate
function of Σ is bounded. Then the supremum and the infimum of the x1-
coordinate function of Σ are reached along the boundary of Σ i.e., there exists
no sequence {pi}i∈N in the interior of Σ such that limi→∞ dist(pi, ∂Σ) > 0 and
limi→∞x1(pi) = supΣx1 or limi→∞x1(pi) = infΣx1.

Proof. Recall that from the above lemma the half-planes H1 and H2 must be
parallel to each other and to the direction v of translation. From our assump-
tions the x1-coordinate function of the surface M is bounded. Moreover, the
extrema of x1 cannot be attained at an interior point of Σ, since otherwise
from the tangency principle Σ should be a plane. This would imply that M
is a plane, something that contradicts the asymptotic assumptions. So, let
us suppose that there exists a sequence of points {pi = (p1i, p2i, p3i)}i∈N in
the interior of Σ such that limi→∞ dist(pi, ∂Σ) > 0 and x1(pi) is tending to
its supremum or infimum. Then, consider the sequence of surfaces {Mi}i∈N
given by Mi = M+(0,−p2i, 0), for any i ∈ N. By Lemma 3.3.1, after passing
to a subsequence, {Mi}i∈N converges smoothly to a connected and properly
embedded translator M∞ which has the same asymptotic behavior as M .
But now there exists a point in M∞ where its x1-coordinate function reaches
its local extremum, which is absurd.

Remark 3.3.4. The x1-coordinate function of M satisfies the partial differ-
ential equation ∆x1 + 〈∇x1,∇x3〉 = 0. However, Lemma 3.3.3 is not a direct



consequence of the strong maximum principle for elliptic PDE’s because in
general Σ is not bounded.
Let us see that x1 satisfies that PDE. Let {E1, E2} be an orthonormal frame
defined on an open neighborhood of M . We have that

∆ x1 =
∑
i

{Ei (Ei(x1))− (∇EiEi) (x1)}.

We begin by differentiating x1 = 〈f, e1〉 with respect to Ei:

d x1(Ei) = Ei(x1) = Ei(〈f, e1〉) = 〈DEif, e1〉 = 〈df(Ei), e1〉. (3.3.1)

Then

Ei (Ei(x1))
∗
= Ei (〈df(Ei), e1〉) = 〈DEidf(Ei), e1〉 = 〈Ddf(Ei)df(Ei), e1〉
= 〈A(Ei, Ei) + df (∇EiEi) , e1〉,

(∇EiEi) (x1) = d x1 (∇EiEi)
∗
= 〈df (∇EiEi) , e1〉,

where we used (3.3.1) in the equalities marked with ∗, and that A(X, Y ) =
Ddf(X)df(Y )−df (∇XY ) for any smooth vector fields X, Y of M by definition
of the second fundamental form A of f .
Therefore,

∆ x1 =
∑
i

{Ei (Ei(x1))− (∇EiEi) (x1)}

=
∑
i

{〈A(Ei, Ei) + df (∇EiEi) , e1〉 − 〈df (∇EiEi) , e1〉}

=
∑
i

〈A(Ei, Ei), e1〉 = 〈
∑

i A(Ei, Ei), e1〉 = 〈H, e1〉

= 〈e⊥3 , e1〉 = 〈e3 − e>3 , e1〉 = −〈e>3 , e1〉 = −〈∇ x3, e1〉,

where in the last equality we used [MSHS15, Lemma 2.1 (a)]; note that the
notation in this reference for the third coordinate function of M is u instead of
x3. We denote by e⊥3 the orthogonal projection of e3 onto the normal bundle
of f and by e>3 the orthogonal projection of e3 onto the tangent bundle of f .
This establishes the PDE.



3.4 Proof of the theorem

We have to deal only with the case where H1 and H2 are distinct and parallel
to v. We can arrange the coordinates such that v = (0, 0, 1) and such that
the x2-axis is the axis of rotation of our cylinder

C =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

3 ≤ r2
}
.

Following the setting in [MSHS15], let us define the family of planes {Π(t)}t∈R ,
given by

Π(t) :=
{

(x1, x2, x3) ∈ R3 : x1 = t
}
.

Moreover, given a subset A of R3, for any t ∈ R we define the sets

A+(t) :=
{

(x1, x2, x3) ∈ A : x1 ≥ t
}
,

A−(t) :=
{

(x1, x2, x3) ∈ A : x1 ≤ t
}
,

A+(t) :=
{

(x1, x2, x3) ∈ A : x3 ≥ t
}
,

A−(t) :=
{

(x1, x2, x3) ∈ A : x3 ≤ t
}
,

A∗+(t) :=
{

(2t− x1, x2, x3) ∈ R3 : (x1, x2, x3) ∈ A+(t)
}
,

A∗−(t) :=
{

(2t− x1, x2, x3) ∈ R3 : (x1, x2, x3) ∈ A−(t)
}
.

Note that A∗+(t) and A∗−(t) are the image of A+(t) and A−(t) by the
reflection respect to the plane Π(t).

STEP 1: We claim that both parts of M outside the cylinder point in
the direction of v. We argue indirectly. Let us suppose that one part of
M − C is asymptotic to

H1 =
{

(x1, x2, x3) ∈ R3 : x3 > r1 > 0, x1 = −δ
}

and the other part is asymptotic to

H2 =
{

(x1, x2, x3) ∈ R3 : x3 < r2 < 0, x1 = +δ
}
,

for some δ > 0 (see Fig. 3.5). Fix real numbers t, l and let Gt,l be the grim
reaper cylinder

Gt,l :=
{

(x1, x2, l + log cos(x1 − t)) ∈ R3 : |x1 − t| < π/2, x2 ∈ R
}
.



Figure 3.5: Comparison with a grim reaper cylinder

Figure 3.6: Comparison with a grim reaper cylinder

The idea is to obtain a contradiction by comparing the surface M with an
appropriate grim reaper cylinder Gt,l. Let us start with the grim reaper
cylinder Gπ/2+δ,0. Note that Gπ/2+δ,0 lies outside the strip (−δ, δ)×R2 and it
is asymptotic to two half-planes contained in Π(δ) and Π(δ + π).

Fix ε ∈ (0, 2δ). Because outside a cylinder the grim reaper cylinder
Gπ/2+δ,0 is asymptotic to two half-planes, there exists δ1 > 0, depending on
ε, such that Gπ/2+δ,0 ∩ Z+

δ1
is inside the region

(δ, δ + ε/2)× R × (δ1,+∞).

Moreover, there exists δ2 > 0, depending on ε, such that M ∩ Z−−δ2 is inside



the region
(δ − ε/2, δ + ε/2)× R × (−∞,−δ2).

Consider now the grim reaper cylinder Gπ/2+δ+t,−δ1−δ2−1 and choose t large
enough so that

Gπ/2+δ+t,−δ1−δ2−1 ∩M = ∅.

Translate the above grim reaper cylinder in the direction of (−1, 0, 0). Since
ε ∈ (0, 2δ), we see that after some finite time t0 either there will be a first
interior point of contact between M and Gπ/2+δ+t0,−δ1−δ2−1 or there will exist
a sequence {pi = (p1i, p2i, p3i)}i∈N of points in M , with {p3i}i∈N bounded and
{p2i}i∈N unbounded, such that

lim
i→∞

dist(pi,Gπ/2+δ+t0,−δ1−δ2−1) = 0.

As in Lemma 3.3.3, we deduce that both cases contradict the asymptotic
behavior of M . Therefore, both parts of M − C must point in the direction
of v.

STEP 2: We claim now that M lies in the slab S :=
(
− δ,+δ

)
× R2.

Assume at first that λ := supMx1 > δ. Consider now the surface (see Fig.
3.7)

Σ := {(x1, x2, x3) ∈M : x1 ≥ δ/2 + λ/2}.

Figure 3.7: A slice of Σ

The asymptotic assumptions on M imply that the x3-coordinate of Σ is
bounded. Therefore, due to Lemma 3.3.3,

supΣx1 = sup∂Σx1.



But since
∂Σ ⊂ {(x1, x2, x3) ∈ R3 : x1 = δ/2 + λ/2},

we have that
x1(p) = δ/2 + λ/2 < λ = supΣx1,

for any p ∈ ∂Σ, which is absurd. Thus supM x1 ≤ δ. Observe that if
equality holds, then a contradiction is reached comparing M and the plane
Π(δ) using the tangency principle. Hence supM x1 < δ. Similarly, we can
prove that infMx1 > −δ. Consequently, M should lie inside the slab S.

STEP 3: Using the same arguments we will prove now that 2δ = π.
Indeed, suppose at first that 2δ > π. We can then place a grim reaper cylinder
G0,l inside the slab S, by taking l sufficiently large, so that G0,l ∩M = ∅ (see
Fig. 3.8).

Figure 3.8: Comparison with a grim reaper cylinder from inside

Consider now the set

A :=
{
l > 0 : M ∩ G0,l = ∅}.

Let l0 := inf A . Assume at first that l0 /∈ A . Because M∩G0,l0 6= ∅, it follows
that there is an interior point of contact between M and G0,l0 . But then



M ≡ G0,l0 which leads to a contradiction with the asymptotic assumptions on
M . Let us treat now the case where l0 ∈ A . In this case dist

{
M,G0,l0

}
= 0.

Therefore, there exists a sequence of points
{
pi = (p1i, p2i, p3i)}i∈N in M such

that

lim
i→∞

p1i = p1∞ ∈ R, lim
i→∞

p2i =∞, lim
i→∞

p3i = p3∞ ∈ R

and

lim
i→∞

dist
(
pi,G0,l0

)
= 0.

Consider the sequence {
Mi = M + (0,−p2i, 0)

}
i∈N.

By Lemma 3.3.1 we know that after passing to a subsequence, {Mi}i∈N con-
verges to a connected properly embedded translator M∞ which has the same
asymptotic behavior as M . On the other hand M∞ has an interior point of
contact with G0,l0 and thus they must coincide. But this contradicts again
the assumption on the asymptotic behavior of M . Thus 2δ must be less or
equal than π. We exclude also the case where 2δ < π by comparing M with
a grim reaper cylinder from outside (see Fig. 3.9).

Figure 3.9: Comparison with a grim reaper cylinder from outside

Consequently, 2δ = π.



STEP 4: We will prove here two auxiliary results that will be very useful
in the rest of the proof.

Claim 4. The inequality

−π/2 < inf∂M−(t)x1 ≤ infM−(t)x1 ≤ supM−(t)x1 ≤ sup∂M−(t)x1 < π/2,

holds for any any real number t such that M−(t) 6= ∅.

Proof of the claim. Recall that

M−(t) = {(x1, x2, x3) ∈M : x3 ≤ t}.

Hence, from Lemma 3.2, we have that

dist
(
M−(t),Π(π/2)

)
= dist

(
∂M−(t),Π(π/2)

)
.

Suppose now to the contrary that

dist
(
∂M−(t),Π(π/2)

)
= 0.

Then, there exists a sequence {pi = (p1i, p2i, t)}i∈N of points of ∂M−(t) such
that

lim
i→∞

p1i = π/2 and lim
i→∞

p2i =∞.

Consider the sequence of surfaces {Mi := M + (0,−p2i, 0)}i∈N. From Lemma
3.1 we know that {Mi}i∈N converges to a connected properly embedded trans-
lator M∞ which has the same asymptotic behavior as M . On the other hand,
there is an interior point of contact between M∞ and Π(π/2), which is a con-
tradiction. Thus,

dist
(
∂M−(t),Π(π/2)

)
> 0.

which implies that supM−(t)x1 < π/2. In the same way, we can prove that
infM−(t)x1 > −π/2. This completes the proof of the claim.

Claim 5. There exists a sufficiently large number t such that the parts of
M+(t) are graphs over the x1x2-plane, and there exists a sufficiently small
δ > 0 such that M+(π/2− δ) is a graph over the x1x2-plane.



Proof of the claim. First note that the proof is complete if we see the
second part of the claim, i.e., that there exists a sufficiently small δ > 0 such
that M+(π/2−δ) is a graph over the x1x2-plane. Assuming this, the hypoth-
esis on the asymptotic behavior of M implies that there exists a sufficiently
large number t such that M+(t) ⊂ M−(−π/2 + δ) ∪M+(π/2 − δ), so both
connected components of M+(t) are graphs over the x1x2-plane, as claimed.

In order to prove the existence of δ > 0 such that M+(π/2− δ) is a graph
over the x1x2-plane, recall that from STEP 3 we know that M lies inside the
slab

S = (−π/2, π/2)× R2.

Since G and M − C are C1-asymptotic to Π
(
π
2

)
, we can represent each wing

of M − C as a graph over G. Fix a sufficiently small positive number ε.
Then, there exists δ > 0 such that the interior of the right wing M+(π/2− δ)
of M − C (and analogously with the left wing M−(−π/2 + δ); indeed, the
whole argument below is completely analogous for the left wing) can be
parametrized by a smooth map

F̃ : Tδ := (π/2− δ, π/2)× R → R3, F̃ = F + ϕνF , (3.4.1)

where the map F (x1, x2) = (x1, x2,− log cosx1) describes the position vector
of G, νF (x1, x2) = (sin x1, 0,− cosx1) is the downwards unit normal of F (see
Lemma 1.4.1) and ϕ : (π/2− δ, π/2)×R → R is a smooth function such that

supTδ |ϕ| < ε and supTδ |Dϕ| < ε. (3.4.2)

We are going to see that this δ > 0 works.

Denote by π : R3 → R2 be the usual projection map defined by π(x1, x2, x3) =
(x1, x2). Consider the following domain and range restriction of π:

π̃ : int (M+(π/2− δ)) ⊂M ⊂ R3 → Tδ = (π/2− δ, π/2)× R ⊂ R2,

where int denotes the interior of M+(π/2−δ). Note that it is well-defined be-
cause, by definition of M+(π/2−δ), the first coordinate function of M+(π/2−
δ) is greater or equal than π/2− δ, and by STEP 3 the first coordinate func-
tion of M ⊃M+(π/2− δ) is less than π/2.
We finish if we prove that π̃ is a global homeomorphism. The scheme of the
proof is:



1. π̃ is a covering map.
This follow from [Lee03, Proposition 2.19], whose hypothesis are:

(a) π̃ is a proper local diffeomorphism.

(b) int (M+(π/2− δ)) and Tδ are connected smooth manifolds.

2. π̃ is a global homeomorphism.
This follow from [dC76, Corollary of Proposition 5, section 5-6 A],
whose hypothesis, besides π̃ being a covering map, are:

(a) int (M+(π/2− δ)) is arcwise connected;

(b) Tδ is simply connected.

Let us prove all these statements.

First, let us see that π̃ is a proper map, that is, for every compact K ⊂ Tδ
the inverse image π̃−1(K) is compact. This follows from the asymptotic
behaviour of M . Indeed, by definition of the projection map, π̃−1(K) =
K × A, where A is a subset of R. Observe that A is closed because π is
continuous and K is closed, and A must be bounded since otherwise M
could not be asymptotic to Π(π/2) in the sense of definition 3.0.1.

Furthermore, π̃ is a local diffeomorphism. Indeed, it is sufficient to show
that π̃ is a local bijection; then, being a local diffeomorphism comes from the
fact that π̃ is a chart of the smooth surface int (M+(π/2− δ)). The strategy
to prove that π̃ is a local bijection is to use the parametrization F̃ introduced
in (3.4.1) in order to show that int (M+(π/2− δ)) is strictly mean convex.
Since it is a translator, 0 < H = −〈νF̃ , v〉. Hence 〈νF̃ , v〉 < 0. Thus, each
point of int (M+(π/2− δ)) has an open neighborhood that can be represented
as a graph over the x1x2-plane, that is, π̃ is a local bijection, as claimed.
We begin by computing the downwards unit normal νF̃ of F̃ :

νF̃ =
−ϕx1 cos2 x1Fx1 − (1 + ϕ cosx1)ϕx2Fx2 + (1 + ϕ cosx1) νF√

ϕ2
x1

cos2 x1 + (1 + ϕ cosx1)2(1 + ϕ2
x2

)
. (3.4.3)

Proof. First, let us express the tangent vectors of F̃ in the orthonormal basis
of R3 (see Lemma 1.4.1)

{E1 = (cosx1, 0, sinx1), E2 = (0, 1, 0), νF = (sinx1, 0,− cosx1)}.



In that Lemma 1.4.1 we also computed the tangent vectors Fx1 and Fx2 :

Fx1 = (1, 0 tanx1), Fx2 = (0, 1, 0),

and the partial derivatives of νF :

(νF )x1 = (cosx1, 0, sinx1) = E1,

(νF )x2 = (0, 0, 0).

Observe that E1 = cosx1Fx1 , E2 = Fx2 .
Then

F̃x1 = Fx1 + ϕx1 νF +ϕ(νF )x1 = (1 + ϕ cosx1)Fx1 + ϕx1 νF

=
(

1
cosx1

+ ϕ
)
E1 + ϕx1 νF =

(
1

cosx1
+ ϕ, 0, ϕ1

)
,

F̃x2 = Fx2 + ϕx2 νF +ϕ(νF )x2 = E2 + ϕx2 νF = (0, 1, ϕ2),

and the unit downwards normal vector νF̃ of F̃ can be computed using the
cross product:

F̃x1 × F̃x2 =

E1 E2 νF
1

cosx1
+ ϕ 0 ϕx1

0 1 ϕx2

= −ϕx1E1 −
(

1
cosx1

+ ϕ
)
ϕx2E2 +

(
1

cosx1
+ ϕ

)
νF

Then

|F̃x1 × F̃x2| =
√
ϕ2
x1

+
(

1
cosx1

+ ϕ
)2

(1 + ϕ2
x2

),

hence

νF̃ =
F̃x1 × F̃x2
|F̃x1 × F̃x2 |

=
−ϕx1E1 −

(
1

cosx1
+ ϕ

)
ϕx2E2 +

(
1

cosx1
+ ϕ

)
νF√

ϕ2
x1

+
(

1
cosx1

+ ϕ
)2

(1 + ϕ2
x2

)

=
−ϕx1 cosx1Fx1 −

(
1

cosx1
+ ϕ

)
ϕx2Fx2 +

(
1

cosx1
+ ϕ

)
νF√

ϕ2
x1

+
(

1
cosx1

+ ϕ
)2

(1 + ϕ2
x2

)

=
−ϕx1 cos2 x1Fx1 − (1 + ϕ cosx1)ϕx2Fx2 + (1 + ϕ cosx1) νF√

ϕ2
x1

cos2 x1 + (1 + ϕ cosx1)2(1 + ϕ2
x2

)
. (3.4.4)



Now, since F̃ is a translator, we have that its mean curvature is

H = −〈νF̃ , v〉 =
cosx1(1 + ϕ cosx1 + ϕx1 sinx1)√

ϕ2
x1

cos2 x1 + (1 + ϕ cosx1)2(1 + ϕ2
x2

)
. (3.4.5)

Proof. We have that

〈Fx1 , v〉 = 〈(1, 0, tanx1), (0, 0, 1)〉 = tanx1,

〈Fx2 , v〉 = 〈(0, 1, 0), (0, 0, 1)〉 = 0,

〈νF , v〉 = 〈(sinx1, 0,− cosx1), (0, 0, 1)〉 = − cosx1.

By linearity of the metric and using expression (3.4.4), we obtain the desired
formula (3.4.5).

Then, taking into account that x1 ∈ (π/2− δ, π/2), thus cos x1 > 0, and
(3.4.2), which means that ϕ and its first partial derivatives are small, we have
that H > 0, as claimed.

With respect to the connectedness of int (M+(π/2− δ)) and Tδ, this is
trivially true in the case of Tδ = (π/2 − δ, π/2) × R. And, by Lemma
3.3.3, M+(π/2 − δ) must be connected. Indeed, assume to the contrary
that M+(π/2 − δ) has more than one connected component. Let Σ be a
connected component different from the one whose x3-coordinate function
is not bounded (there is at least one by assumption). Then due to Lemma
3.3.3 the infimum and the supremum of the x1-coordinate function of Σ are
reached along the boundary, that is, Σ is contained in the plane Π(π/2− δ),
so the whole surface M must coincide with this plane by the interior tan-
gency principle, which is a contradiction. Once we know that M+(π/2 − δ)
is connected, then its interior int (M+(π/2− δ)) is also connected; this is not
true in general for any arbitrary set, but observe that in this case the bounda-
ry of M+(π/2− δ) is a connected infinite non-self-intersecting curve. If this
boundary were finite, then the asymptotic behaviour of M would not be true
since it implies, according to its definition and the hypothesis on Theorem
3.0.2, that for sufficiently small δ > 0, as it is the case, M+(π/2− δ) can be
represented as a graph over a whole half-plane of Π(π/2) with boundary pa-
rallel to the x2-axis. This shows also that it is non-self-intersecting, which also
follows from the hypothesis that M is embedded. Moreover, the boundary
of M+(π/2− δ) is connected, otherwise, since by hypothesis M is connected



and, bearing in mind its asymptotic behaviour, then necessarily the number
of times that M intersects the plane Π(π/2 − δ) is finite and odd. Then, if
there were three or more intersections, this would mean that M+(π/2− δ) is
not connected, a contradiction. Therefore, the boundary of M+(π/2− δ) is a
single infinite non-self-intersecting curve, so when it is removed, the resulting
set, int (M+(π/2− δ)), remains connected, as claimed.

So far, we have established that π̃ is a covering map.

On the other hand, let us prove now that int (M+(π/2− δ)) is arcwise
connected. This is terminology of [dC76], where it is also proved that,
in the case of (regular) surfaces, connectedness and arcwise connectedness
are equivalent properties, although this is not true in general (see [dC76,
Appendix, part B, Proposition 10]). Therefore, since we already proved
int (M+(π/2− δ)) is connected, then in fact it is arcwise connected.

Finally, it remains to prove that Tδ = (π/2−δ, π/2)×R is simply connec-
ted, but this is trivially true.

STEP 5: We shall prove now that M is symmetric with respect to

Π(0) =
{

(x1, x2, x3) ∈ R3 : x1 = 0
}

and that M is a bi-graph over this plane. The main tool used in the proof
is the method of moving planes of Alexandrov (see [Ale56, Sch84]). Let us
define

A := {t ∈ [0, π/2) : M+(t) is a graph over Π(0) and M∗
+(t) ≥M−(t)}.

Recall from [MSHS15, Definition 3.1] that the relation M∗
+(t) ≥M−(t) means

that M∗
+(t) is on the right hand side of M−(t). We will prove that 0 ∈ A. In

this case we have that M∗
+(0) ≥ M−(0). By a symmetric argument we can

show that M+(0) ≥M∗
−(0). Thus M∗

+(0) ≡M−(0) and the proof of this step
will be completed. The steps of the proof are the same as in [MSHS15, Proof
of Theorem A] with the difference that here we have to control the behavior
of the Gauß map in the direction of the x2-axis.

Claim 6. The minimum of the set A is 0. In particular, A = [0, π/2).

Proof of the claim. Due to Claim 5 it follows that given a sufficiently
small number ε, there exists a positive number t such that the surface M+(t)



can be represented as a graph over Π(0) as well as a graph over the x1x2-
plane. Hence one can easily show that A is a non-empty set. Following the
same arguments as in [MSHS15, Section 3, Proof of Theorem A], we can show
that A is a closed subset of [0, π/2). Moreover if s ∈ A, then [s, π/2) ⊂ A.
Suppose now that s0 := minA > 0. Then we will get at a contradiction, i.e.,
we will show that there exists a positive number ε such that s0 − ε ∈ A.

Condition 1: We will show at first that there exists a positive constant
ε1 < s0 such that M+(s0−ε1) is a graph over the plane Π(0). Take a positive
number α and consider the sets

M+
+ (s) := {(x1, x2, x3) ∈M+(s) : x3 > α},

M+
− (s) := {(x1, x2, x3) ∈M−(s) : x3 > α},

and
M−

+ (s) := {(x1, x2, x3) ∈M+(s) : x3 ≤ α},

M−
− (s) := {(x1, x2, x3) ∈M−(s) : x3 ≤ α}.

Since M+(s0) is a graph over Π(0), there exists α large enough such that

dist
[
ξ
(
M+

+ (s0)
)
,Π(0)

]
> 0. (3.4.6)

We fix such an α. From (3.4.6) it follows that there exists ε0 > 0 such
that M+

+ (s0 − ε0) can be represented as a graph over the plane Π(0) and
furthermore

M+∗
+ (s0 − ε0) ≥M+

− (s0 − ε0). (3.4.7)

Let us now investigate the lower part of our surface M−
+ (s0). Because s0 ∈

A, we can represent M−
+ (s0) as a graph over the plane Π(0). Note that

there is no point in M−
+ (s0) with normal vector included in the plane Π(0)

since otherwise M−
+ (s0) and its reflection with respect to Π(s0) would have

the same tangent plane at that point so by the tangency principle at the
boundary M would have been symmetric to a plane parallel to Π(0). But
this contradicts the asymptotic behavior of M . Consequently,

ξ
(
M−

+ (s0)
)
∩ Π(0) = ∅. (3.4.8)

Assertion. There exists ε1 ∈ (0, ε0] such that, for all t ∈ [s0 − ε1, s0],

ξ
(
M−

+ (t)
)
∩ Π(0) = ∅. (3.4.9)



Proof of the assertion. Suppose to the contrary that such ε1 does not exist.
This implies that for all i ∈ N there exists ti ∈ [s0 − 1/i, s0] such that

ξ
(
M−

+ (ti)
)
∩ Π(0) 6= ∅.

Then there exists a sequence {qi}i∈N ⊂M−
+ (ti) such that ξ(qi) ∈ Π(0). Only

two situations can occur, namely either the sequence {qi}i∈N is bounded or
it is unbounded. We will show that both cases lead to a contradiction.

If {qi}i∈N is bounded, then it should have a convergent subsequence that
we do not relabel for simplicity. Denote its limit by q∞. Note that q∞ belongs
to the closure of M−

+ (s0). Hence, by the continuity of the Gauß map

Π(0) ⊃ S1 3 ξ(qi)→ ξ(q∞) ∈ S1 ⊂ Π(0).

Then
ξ
(
M−

+ (s0)
)
∩ Π(0) 6= ∅,

which contradicts the relation (3.4.8).

Let us now examine the case where the sequence {qi = (q1i, q2i, q3i)}i∈N
is not bounded. The first coordinate {q1i}i∈N of {qn}n∈N is bounded. The
last coordinate {q3i}i∈N of {qi}i∈N is also bounded. Therefore, the second
coordinate {q2i}i∈N of the sequence must be unbounded. Consider now the
sequence {Mi = M + (0,−q2i, 0)}i∈N. Due to Lemma 3.3.1, we have that
after passing to a subsequence, {Mi}i∈N converges smoothly to a properly
embedded connected translator M∞ which has the same asymptotic behavior
as M . Furthermore, the limiting surface M∞ has the following additional
properties:

(a) The surface (M∞)+(s0) can be represented as a graph over the plane
Π(0).

(b) The inequality (M∞)∗+(s0) ≥ (M∞)−(s0) holds true.

(c) There exists a point in M∞ in which the Gauß map belongs to the plane
Π(0).

Applying the tangency principle at the boundary of (M∞)∗+(s0) and (M∞)−(s0)
we deduce that Π(s0) is a plane of symmetry for M∞, something that con-
tradicts the asymptotic behavior of M∞. This completes the proof of our
assertion.



The relation (3.4.9) implies that, for every t ∈ [s0 − ε1, s0], the surface
M−

+ (t) can be represented as a graph over Π(0). Consequently, M+(t) is a
graph over Π(0) for all t ≥ s0− ε1. Hence the first condition in the definition
of the set A is verified.

Condition 2: Reasoning again as in [MSHS15, Proof of Theorem A] and
with the help of Lemma 3.1 we can prove the inequality M∗

+(s0 − ε1) ≥
M−(s0 − ε1).

Therefore, by Conditions 1 and 2, we have that s0 − ε ∈ A. This contra-
dicts the fact that s0 is the infimum of A. So, s0 = 0 and this concludes the
proof of STEP 5.

STEP 6: Let us explore the asymptotic behavior of our translating soli-
ton M as its x2-coordinate function tends to infinity.

Claim 7. Consider the profile curve Γ = M∩Π(0). If the coordinate function
x3|Γ attains its global extremum on Γ (maximum or minimum), then M is a
grim reaper cylinder.

Proof of the claim. We will distinguish two cases. The idea is to com-
pare M with a “half-grim reaper cylinder” at the level where x3 attains its
extremum.

Case A: Suppose at first that there exists a point p ∈ Γ (see Fig. 3.10)
such that

l := x3(p) = maxΓx3.

Observe that
∂M+(0) ⊂ {(x1, x2, x3) ∈ R3 : x3 ≤ l}.

For a fixed real number t consider the“half-grim reaper cylinder” (see Fig.
3.11) given by

Gt,l+ =
{(
x1, x2, l + log cos(x1 − t)

)
∈ R3 : x1 ∈ [t, π/2 + t), x2 ∈ R

}
.

Define now the set

Q :=
{
t ∈ (−∞, 0) : Gt,l+ ∩M+(0) = ∅

}
Obviously, Q is a non-empty set. Moreover, if t ∈ Q then (−∞, t) ⊂ Q. Let
t0 := supQ.



Figure 3.10: The profile curve Γ

Figure 3.11: Comparing with a plane

We claim that t0 = 0. Suppose this is not true. If t0 6∈ Q, then there
would be an interior point of contact (notice that the boundaries of both
surfaces do not touch when t < 0). This implies that M = Gt0,l, which
contradicts the assumption on the asymptotic behavior of M . Let us consider
now the case where t0 ∈ Q. In this case there exists a divergent sequence
{pi = (p1i, p2i, p3i)}i∈N ⊂M+(0) such that

lim
i→∞

dist
(
pi,Gt0,l+

)
= 0.

Because the asymptotic behavior of Gt0,l+ and M+(0) is different and the
distance between their boundaries is positive, then one can find constants
a0 and a1 such that a0 < x3(pi) < a1, for all i ∈ N. So, {p2i}i∈N tends to



infinity. Now we can apply Lemma 3.3.1 in order to deduce that the limit of
the sequence {Mi}i∈N, given by

Mi := M − (0, p2i, 0),

exists and has the same asymptotic behavior as M . Let us call this limit
M∞. But now M∞ and Gt0,l+ have an interior point of contact and thus they

must coincide. This leads again to a contradiction because M∞ and Gt0,l+ do

not have the same asymptotic behavior. Hence, t0 = 0. Consequently, G0,l
+

and M+(0) have a boundary contact at p. Observe that the tangent plane at
p of both surfaces is horizontal by STEP 5, and therefore by the boundary
tangency principle they must coincide.

Case B: Suppose now that there exists q ∈ Γ such that

µ = x3(q) = minΓx3.

In this case, we compareM+(0) with the family of“half-grim reaper cylinders”{
Gt,µ+

}
t≥0

and we proceed exactly as in the proof of Case A.

Claim 8. The surface M is a graph over the x1x2-plane.

Proof of the claim: Recall that the profile curve Γ = Π(0)∩M lies inside
the cylinder C. Let

α := lim sup
x2→+∞

(x3|Γ) and β := lim inf
x2→−∞

(x3|Γ) .

Take sequences {pi = (0, p2i, p3i)}i∈N and {qi = (0, q2i, q3i)}i∈N along the curve
Γ such that

lim
i→∞

p2i = +∞, lim
i→∞

q2i = −∞, lim
i→∞

p3i = α and lim
i→∞

q3i = β.

and define the sequences of translators {Mα
i }i∈N, {Mβ

i }i∈N given by

Mα
i := M − (0, p2i, 0) and Mβ

j := M − (0, q2j, 0).

From Lemma 3.3.1 we deduce that

Mα
i →Mα

∞ and Mβ
i →Mβ

∞,



where Mα
∞ and Mβ

∞ are connected properly embedded translators with the
same asymptotic behavior as our surface M .

Consider the points (0, 0, α) ∈ Mα
∞ and (0, 0, β) ∈ Mβ

∞. Taking into ac-
count the way in which we have constructed our limits, we have that

α = max
Mα
∞∩Π(0)

x3 and β = min
Mβ
∞∩Π(0)

x3.

At this point, we can use Claim 7 to conclude that the limits Mα
∞ and Mβ

∞
are grim reaper cylinders, possibly displayed at different heights. From the
definition of the limit and the second part of Theorem 3.1.4, it follows that
for large enough values i ≥ i0 there exist:

(a) strictly increasing sequences of positive numbers {m1i}i∈N, {m2i}i∈N,
{n1i}i∈N and {n2i}i∈N satisfying

m1i < m2i and − n1i < −n2i,

for every i ≥ i0,

(b) real smooth functions ϕi : (−π/2, π/2) × (m1i,m2i) → R and ϑi :
(−π/2, π/2)× (−n1i,−n2i)→ R satisfying the conditions

|ϕi| < 1/i, |ϑi| < 1/i, |Dϕi| < 1/i and |Dϑi| < 1/i,

for any i ≥ i0,

such that the surfaces

Ri :=
{

(x1, x2, x3) ∈M : m1i < x2 < m2i

}
and

Li :=
{

(x1, x2, x3) ∈M : −n1i < x2 < −n2i

}
can be represented as graphs over grim reaper cylinders that are generated
by the functions ϕi and ϑi, respectively.

Now we prove that Ri and Li can be represented globally as graphs over
rectangles of the x1x2-plane. Formally, consider an arbitrary but fixed i ≥ i0,
and let

π̃ : Ri ⊂M ⊂ R3 → Ti := (−π/2, π/2)× (m1i,m2i) ⊂ R2,



be the domain and range restriction of the usual projection map π : R3 → R2.
In order to prove that Ri (the argument is analogous with Li) is a graph over
the corresponding rectangle (−π/2, π/2) × (m1i,m2i) of the x1x2-plane, we
can follow the strategy of Claim 5. Indeed, we can make the same argument,
taking larger i0 if necessary; the only difference here is the proof of the
connectedness of Ri. In order to prove it, consider a sufficiently large t > 0
such that the two wings of R+

i (t) are graphs over the x1x2-plane. By Claim
5, there exists such a t and, moreover, the two wings of R+

i (t) are connected.
Thus, we finish if we prove that R−i (t) is connected. But thanks to the
compactness of R−i (t), what we can easily prove is that R−i (t) is contained in a
connected set. This is a consequence of the following proposition of Topology:
if Xα is connected for all α and ∩αXα 6= ∅, then ∪αXα is connected. Indeed,
since we already know that the limit Mα

∞ of the above sequence {Mα
i }i∈N is

a grim reaper cylinder, from the definition of the limit of a surface, keeping
the same notation (see Definition 3.1.1), we have that:

Ri =
⋃

p∈Mα
∞

Ri ∩Wr,ε(p) =
⋃

p∈Mα
∞

Graph
((
u1
i

)
|Dr(p)

)
where each u1

i (Dr(p)) is connected because u1
i is continuous and the disk

Dr(p) is connected for all p. Then, by the compactness of R−i (t), we can
express R−i (t) as a finite union of connected sets and, furthermore, we can
argue with the above property as follows:

• (Step 1) Consider initially just two non-disjoint connected sets between
the ones in the above union that cover R−i (t); then their union, denoted
by U1, is connected by the above property.

• (Step 2) Take now another set non-disjoint with U1; again, their union,
U2, is connected by the above property.

• (Step i) And so on: in the i-th step just two sets are considered, the
union of the two previous ones, Ui−1, and another set non-disjoint with
it. Their union, Ui, is connected by the above property.

By the compactness of R−i (t), this process ends after a finite number of steps,
let us say s steps. Therefore, Us ⊇ R−i (t) is a connected set.
Finally,

Ri = R+
i (t) ∪ Us,



whereR+
i (t) and Us are non-disjoint connected sets. Then, again by the above

property, their union, Ri, is connected, which is the desired conclusion.

Consider now the compact exhaustion {Λi}i≥i0 (see Fig. 3.12) of the
surface M given by

Λi :=
{

(x1, x2, x3) ∈M : −ai ≤ x2 ≤ bi, x3 ≤ i
}

where
ai = (n1i + n2i)/2 and bi = (m1i +m2i)/2.

Figure 3.12: The exhaustion set Λi

The boundary of each Λi is piecewise smooth and consists of two lateral
curves that converge to grim reapers and two top curves that converge to
two parallel horizontal lines. Observe that we just proved that in a strip Bi

around ∂Λi (see again Fig. 3.12) the surface Λi is a graph over the x1x2-
plane. The proof will be concluded if we prove that there exists i1 ∈ N such
that each Λi is a graph over the x1x2-plane, for any i ≥ i1.
We will argue by contradiction. The idea is to find a suitable i1 ∈ N and
assume that there exists i ≥ i1 such that Λi is not a graph over the x1x2-
plane. Then we compare Λi with a vertical translation of itself, and translate
it back to reach a contradiction using the interior tangency principle, as we
did in Section 2.3.
In order to formalize the above argument, first note that by claim 5 we can
fix a large height t0 such that M+(t0) is a graph over the x1x2-plane. From
Claim 4 we know that

dist
(
M−(t0),Π(π/2)

)
= dist

(
∂M−(t0),Π(π/2)

)
=: δ.



From the asymptotic behavior of M we know that there exists a number
t1 > t0 such that

dist
(
M−(t1),Π(π/2)

)
= dist

(
∂M−(t1),Π(π/2)

)
= δ/2.

Now fix an integer i1 > max{i0, t1}. Let us see that this integer works.
Suppose to the contrary that there is i ≥ i1 such that Λi is not a graph over
the x1x2-plane. We will derive a contradiction. Let

Λi(s) := Λi + (0, 0, s)

be the translation of Λi in direction of v. Take a number s0 such that

Λi(s0) ∩ Λi = ∅.

Start to move back Λi(s0) in the direction of − v. Then there exists s1 > 0
where Λi(s1) intersects Λi. From the choice of i1 we see that the intersec-
tion points must be interior points of contact. But then, from the tangency
principle, it follows that Λi(s1) = Λi, which is a contradiction. Therefore,
for each i > i1 the surface Λi must be a graph over the x1x2-plane. Because
{Λi}i∈N is a compact exhaustion of M we deduce that M itself must be a
graph over the x1x2-plane. In particular, genus(M) = 0.

STEP 7: From Claim 8 we see that our surface M must be strictly mean
convex. Consider now the x2-coordinate of the Gauß map, i.e., the smooth
function ν2 : M → R given by ν2 = 〈ν, e2〉, where e2 = (0, 1, 0). Let us see
that ν2 and H satisfy the following partial differential equations

∆ ν2 +〈∇ ν2,∇x3〉+ |A|2 ν2 = 0 (3.4.10)

and
∆H + 〈∇H,∇x3〉+ |A|2H = 0, (3.4.11)

where |A|2 stands for the squared norm of the second fundamental form of
M .

Proof. Equation (3.4.11) is proved in [MSHS15, Lemma 2.1 (f)]. We will
follow a similar approach to establish equation (3.4.10).

To simplify our computations, we introduce normal coordinates: for an
arbitrary but fixed point p ∈ M , there exists a smooth frame field {E1, E2}



such that gij(p) := g(Ei, Ej)(p) = δij for all 1 ≤ i, j ≤ 2 and ∇EiEj = 0 for
all 1 ≤ i, j ≤ 2. We do all the calculations at an arbitrary but fixed point
p ∈M using normal coordinates at p.

Let us compute ∆ ν2 =
∑

iEi (Ei (ν2)). First,

Ei (ν2) = Ei (〈ν, e2〉) = 〈DEi ν, e2〉 = 〈dν(Ei), e2〉 = 〈dν(Ei), e
>
2 〉

= A(Ei, e
>
2 ). (3.4.12)

Recall that, in general, for any vector v ∈ R3 we denote by v⊥ the ortho-
gonal projection of v onto the normal bundle of f and by v> the orthogonal
projection of v onto the tangent bundle of f .
Thus,

∆ ν2 =
∑
i

Ei (Ei (ν2)) =
∑
i

Ei
(
A(Ei, e

>
2 )
)
.

Our next step is to interchange the derivative Ei and e>2 , that is, to apply the

Codazzi equation to these two indices: (∇EiA) (Ei, e
>
2 ) =

(
∇e>2

A
)

(Ei, Ei).

Since in normal coordinates around p it holds that (∇EiEi) (p) = 0,

Ei
(
A(Ei, e

>
2 )
)

=

(
Ei
(
A(Ei, e

>
2 )
)
− A

(
∇EiEi, e

>
2

)
− A

(
Ei,∇Eie

>
2

))
+ A

(
Ei,∇Eie

>
2

)
= (∇EiA) (Ei, e

>
2 ) + A

(
Ei,∇Eie

>
2

)
=
(
∇e>2

A
)

(Ei, Ei) + A
(
Ei,∇Eie

>
2

)
= e>2 (A(Ei, Ei)) + A

(
Ei,∇Eie

>
2

)
.

Then

∆ ν2 =
∑
i

e>2 (A(Ei, Ei)) +
∑
i

A
(
Ei,∇Eie

>
2

)
.

On the one hand,

∑
i

e>2 (A(Ei, Ei)) = e>2

(∑
i

A(Ei, Ei)

)
= e>2 (H) =

〈
∇H, e>2

〉
,



and, by [MSHS15, Lemma 2.1 (e)],
〈
∇H, e>2

〉
= −A(∇ x3, e

>
2 ), so

∑
i

e>2 (A(Ei, Ei)) = −A(∇ x3, e
>
2 ) = −A

(∑
j

Ej(x3)Ej, e
>
2

)
= −

∑
j

Ej(x3)A(Ej, e
>
2 ) = −

∑
j

Ej(x3)Ej(ν2)

= −〈∇ ν2,∇ x3〉 ,

where we used (3.4.12) in the penultimate equality.

On the other hand, in order to compute
∑

iA
(
Ei,∇Eie

>
2

)
, we are going

to follow a similar approach to the one in [MSHS15, Lemma 2.1] in order to
deduce item (f). To this end, first note that e>2 = ∇ x2:

〈Ei,∇ x2〉 = Ei(x2) = Ei(〈f, e2〉) = 〈DEif, e2〉 = 〈df(Ei), e2〉 = 〈df(Ei), e
>
2 〉,

where D denotes the Levi-Civita connection in Rm+1.
Now recall that (∇EiEi) (p) = 0 because we are using normal coordinates
around p, so:

∇Eie
>
2 = ∇Ei

(∑
k

Ek(x2)Ek

)
=
∑
k

(
Ei(Ek(x2))Ek + Ek(x2)∇EiEk

)
=
∑
k

Ei(Ek(x2))Ek =
∑
k

∇2 x2(Ei, Ek)Ek.

And the Hessian ∇2 x2 fulfills a similar equation to the one that satisfies
∇2 x3 in [MSHS15, Lemma 2.1 (c)]:

∇2 x2(Ei, Ej) = Ei (Ej(x2)) = Ei (Ej(〈f, e2〉)) = Ei (〈df(Ej), e2〉)
= 〈Ddf(Ei)df(Ej), e2〉 = 〈A(Ei, Ej), e2〉
= A(Ei, Ej)〈− ν, e2〉 = −A(Ei, Ej) ν2,

where we used that A(Ei, Ej) = Ddf(Ei)df(Ej)− df(∇EiEj) = Ddf(Ei)df(Ej),
being D the Levi-Civita connection in Rm+1.
Thus

∇Eie
>
2 =

∑
k

∇2 x2(Ei, Ek)Ek = − ν2

∑
k

A(Ei, Ek)Ek.



Then

∑
i

A
(
Ei,∇Eie

>
2

)
=
∑
i

A

(
Ei,− ν2

∑
k

A(Ei, Ek)Ek

)
= − ν2

∑
i,k

A(Ei, Ek)A(Ei, Ek) = − ν2 |A|2.

Therefore,

∆ ν2 =
∑
i

e>2 (A(Ei, Ei)) +
∑
i

A
(
Ei,∇Eie

>
2

)
= −〈∇ ν2,∇ x3〉 − ν2 |A|2,

as claimed.

Define now the function h := ν2H
−1. Combining the equations (3.4.10)

and (3.4.11) we deduce that h satisfies the following differential equation

∆h+ 〈∇h,∇(x3 + 2 logH)〉 = 0. (3.4.13)

Proof. In order to prove it, we simply compute ∆h and 〈∇h,∇(x3 +2 logH)〉
and check that they are opposite each other.

∆h = ∆

(
ν2 ·

1

H

)
=

1

H
∆ ν2 + ν2 ∆

(
1

H

)
+ 2

〈
∇ ν2,∇

(
1

H

)〉
=

1

H
∆ ν2 +

2 ν2

H3
〈∇H,∇H〉 − ν2

H2
∆H − 2

H2
〈∇ ν2,∇H〉

= − 1

H
〈∇ ν2,∇ x3〉 − |A|2

ν2

H
+

2 ν2

H3
〈∇H,∇H〉+

ν2

H2
〈∇H,∇ x3〉

+ |A|2ν2

H
− 2

H2
〈∇ ν2,∇H〉

= − 1

H
〈∇ ν2,∇ x3〉+

2 ν2

H3
〈∇H,∇H〉+

ν2

H2
〈∇H,∇ x3〉 −

2

H2
〈∇ ν2,∇H〉

where we used that for any smooth functions u and v in M the Laplace-
Beltrami operator satisfies ∆(uv) = v∆u+u∆v+ 2〈∇u,∇v〉 and, from here,
taking u = ũ/ṽ and v = ṽ, for any smooth functions ũ and ṽ 6= 0 in M , it
holds that

∆

(
ũ

ṽ

)
=

1

ṽ
∆ũ− 2

ṽ

〈
∇
(
ũ

ṽ

)
,∇ũ

〉
− ũ

ṽ2
∆ṽ.



We also used that ∇(1/H) = −1/H2∇H and equations (3.4.10) and (3.4.11).

Now, in order to compute 〈∇h,∇(x3 +2 logH)〉, let us calculate first ∇h
and ∇ logH:

∇h = ∇
(
ν2 ·

1

H

)
= ν2∇

(
1

H

)
+

1

H
∇ ν2 = − ν2

H2
∇H +

1

H
∇ν2,

∇ logH =
1

H
∇H,

where in the last equality we used the chain rule; observe that logH is well
defined because H > 0. Then

〈∇h,∇(x3 +2 logH)〉
= 〈∇h,∇ x3〉+ 2〈∇h,∇ logH〉

= − ν2

H2
〈∇H,∇ x3〉+

1

H
〈∇ ν2,∇ x3〉 −

2 ν2

H3
〈∇H,∇H〉+

2

H2
〈∇ ν2,∇H〉 .

This is the desired conclusion.

Claim 9. The surface M is smoothly asymptotic outside a cylinder to the
grim reaper cylinder.

Proof of the claim. Consider the sequence of surfaces {Mi}i∈N given by
Mi := M+(0, 0,−i), for any i ∈ N. One can readily see that for any compact
set K of R3, it holds

lim supi→∞area
{
Mi ∩K

}
<∞ and lim supi→∞genus

{
Mi ∩K

}
<∞.

From the compactness theorem of White, the sequence of surfaces {Mi}i∈N
converges smoothly (with respect to the Ilmanen’s metric) to the union
Π(−π/2) ∪ Π(π/2). Hence, due to Lemma 3.2.7, the wings of the translator
M outside the cylinder must be smoothly asymptotic to the corresponding
wings of the grim reaper cylinder. This completes the proof of the claim.

Claim 10. The function h tends to zero as we approach infinity of our surface
M.

Proof of the claim. Consider the compact exhaustion {Λi}i>i1 defined in



the STEP 6. The boundary of each Λi consists of four parts, namely:

Λ1i : =
{

(x1, x2, x3) ∈M : x1 > 0, −ai ≤ x2 ≤ bi, x3 = i
}
,

Λ2i : =
{

(x1, x2, x3) ∈M : x1 < 0, −ai ≤ x2 ≤ bi, x3 = i
}
,

Λ3i : =
{

(x1, x2, x3) ∈M : x2 = −ai, x3 ≤ i
}
,

Λ4i : =
{

(x1, x2, x3) ∈M : x2 = bi, x3 ≤ i
}
.

Bearing in mind the asymptotic behavior of M , we deduce that around each
boundary curve line there exists a tubular neighborhood that can be repre-
sented as the graph of a smooth function over a slab of the grim reaper
cylinder. If ϕ is such a function then, from the equations (3.4.3) and (3.4.5),
we can represent h in the form

h = − ϕx2
cosx1

· 1 + ϕ cosx1

1 + ϕ cosx1 + ϕx1 sinx1

. (3.4.14)

Let us examine the behavior of h along Λ1i. Note that these curves belong
to the wings of M outside the cylinder. Fix a sufficiently small ε > 0. Then,
there exists δ2 > 0 and large enough index i2 such that

M ∩
{

(x1, x2, x3) ∈ R3 : x3 ≥ i2
}

can be written as the graph over the grim reaper cylinder of a smooth function
ϕ defined in the domain Tδ2 :=

(
π/2− δ2, π/2

)
× R satisfying

supTδ2
|ϕ| < ε, supTδ2

|Dϕ| < ε and supTδ2
|D2ϕ| < ε.

Because for any fixed x2 we have

lim
x1→π/2−

ϕ = lim
x1→π/2−

|Dϕ| = 0,

we get

|ϕx2(x1, x2)| =
∣∣∣− ∫ π

2

x1

ϕx2x1(x1, x2)dx1

∣∣∣ ≤ (π/2− x1

) ∣∣∣supTδ2
ϕx1x2

∣∣∣
≤

(
π/2− x1

)
ε.

Hence, for any i ≥ i2, from equation (3.4.14) we see that supΛ1i
|h| < ε. Be-

cause of the symmetry we immediately get that supΛ2i
|h| < ε. On the other



hand, recall that the strips Ri and Li are getting C1-close to the correspond-
ing grim reaper cylinders. Hence, there exists an index i3 ≥ i2 such that for
i ≥ i3 we can represent

Ri ∩
{

(x1, x2, x3) ∈ R3 : x3 ≤ i3
}

as the graph over a grim reaper cylinder of a smooth function ϕi defined in
a slab of the form Gδ3i := (−π/2 + δ3, π/2 − δ3) × (m1i,m2i), where here δ3

depends only on i3, satisfying the properties

supGδ3i
|ϕi| < ε and supGδ3i

|Dϕi| < ε.

Exactly the same estimate can be obtained along the strips Li. Note that in
this case the x1-coordinate is not tending to ±π/2 and so cosx1 is bounded
from below by a positive number. Going now back to equation (3.4.14) we
obtain that for i ≥ i3 we have

supΛ4i
|h| < ε and supΛ3i

|h| < ε.

Therefore h|∂Λi becomes arbitrary small as i tends to infinity. This completes
the proof of the claim.

Finally observe that, from Claim 10, there exists an interior point where
h attains a local maximum or a local minimum. From the strong maximum
principle of Hopf we deduce that h must be identically zero. Consequently,
ν2 = 0 and thus e2 = (0, 1, 0) is a tangent vector of M . Now differentiating
the equation ν2 = 0 with respect to the tangent vector e2, we deduce that
A(e2, e2) = 0:

0 = e2(0) = e2 (ν2) = e2 (〈ν, e2〉) = 〈De2 ν, e2〉 = 〈dν(e2), e2〉 = A(e2, e2).

Thus, detA = 0, hence K = 0 and so |A|2 = |A|2 + 2K = H2. Since
|A|2 = H2 we deduce from [MSHS15, Theorem B] that M must be a grim
reaper cylinder and the proof is complete.
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