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Abstract

Intensity normalization is an important pre-processing step in the study and
analysis of brain functional imaging. As most automatic supervised image segmen-
tation and classification methods base their assumptions regarding the intensity
distributions on a standardized intensity range, intensity normalization takes on a
very significant role. In this Thesis, new intensity normalization schemes for the de-
tection of Parkinsonism patterns by means of Single Photon Emission Computed To-
mography (SPECT) and Positron Emission Tomography (PET) images are proposed.
The first normalization approach is based on a nonlinear image filtering using the
Gaussian mixture model (GMM), which considers not only the intensity levels of
each voxel but also its coordinates inside the so-defined spatial Gaussian functions.
Normalization is achieved according to a probability threshold that measures the
weight of each kernel or cluster on the striatum area. The voxels in the so-defined
non-specific region are intensity normalized by removing clusters whose likelihood
is negligible. The second normalization method is based on the mean-squared er-
ror (MSE) optimization which is performed by a linear intensity transformation at a
voxel level. This approach is based on predicting different intensity normalization
parameters that leads to the joint minimization of the squared sum errors between
the template image and the optimal linear estimated image (normalized image).
The third approach is a combination between the two previous methods. Thus, it is
based on the minimization of the MSE between the GMM-based extracted features
from each subject image and a template in the non-specific region at the cluster
(of voxels) level. The fourth proposed intensity normalization approach is based
on a predictive modeling using multivariate linear regression (MLR). Different in-
tensity normalization parameters derived from this model will be used in a linear
procedure to perform the intensity normalization of 123 I-ioflupane-SPECT and 18

F-DMFP PET brain images. These intensity normalization methods are compared to
many widely used approaches. This comparison is performed on different databases
of SPECT and PET images comprising analysis and classification stages for the de-
velopment of computer aided diagnosis (CAD) system of neurological diseases, such
as, idiopathic parkinsonian syndrome (Parkinson’s disease) and atypical parkinso-
nian syndromes due to other neurodegenerative diseases, such as, multiple system
atrophy (MSA) and progressive supranuclear palsy (PSP).





Resumen

La normalización en intensidad es una etapa importante de pre-procesamiento
en el estudio y análisis de imágenes funcionales del cerebro. Como la mayorı́a de los
métodos automáticos de segmentación y de clasificación supervisada de imágenes
requieren que las distribuciones del nivel de gris se presenten en un rango de inten-
sidad normalizada y comparable entre sujetos, este procedimiento adquiere un pa-
pel cada vez más importante. En la presente tesis doctoral, se proponen nuevos es-
quemas de normalización de la intensidad para la detección de patrones de Parkin-
son en tomografı́a computarizada de emisión de un sólo fotón (SPECT, del inglés
“Single Photon Emission Tomography”) y en tomografı́a por emisión de positrones
(PET, del inglés “ Positron Emission Tomography”). El primer método de norma-
lización se basa en un filtrado no-lineal de imágenes utilizando un modelo de mez-
cla de Gaussianas (GMM, del inglés “ Gaussian mixture model”), que considera no
solo los niveles de intensidad de cada vóxel, sino también sus coordenadas dentro
de las funciones Gaussianas espaciales ası́ definidas. La normalización se consigue
de acuerdo con un umbral de probabilidad que mide el peso de cada kernel o clúster
en la zona del estriado. Los vóxeles en la región definida como no especı́fica se nor-
malizan en intensidad mediante la eliminación del clúster cuya probabilidad resulta
no significativa. El segundo método de normalización se basa en la minimización
del error cuadrático medio (MSE, del inglés “ mean-squared error”) que se realiza
mediante una transformación lineal de intensidad a nivel de vóxel. Este enfoque se
basa en la predicción de los diferentes parámetros en la normalización en intensidad
que conduce a la minimización conjunta de la suma de errores cuadráticos entre la
plantilla y la imagen normalizada (estimación lineal óptima bajo este criterio). El
tercer enfoque es una combinación entre los dos métodos anteriores. Por lo tanto,
se basa en la minimización del MSE entre las caracterı́sticas extraı́das mediante el
modelo GMM de cada imagen y de una plantilla en la región no especı́fica a nivel de
clúster (de vóxeles). El cuarto enfoque de normalización de la intensidad propuesto
consiste en un modelo predictivo basando en regresión lineal multivariante (MLR,
del inglés “ multivariate linear regression”). Los métodos propuestos se comparan
con otros muchos enfoques empleados hasta la fecha en literatura médica. La com-
paración se realiza mediante diferentes bases de datos de imágenes SPECT y PET
con el objetivo de determinar la influencia de los algoritmos de normalización de in-
tensidad en etapas de análisis y de clasificación en la precisı́on de los sistemas de di-
agnóstico asistido por ordenador (CAD, del inglés “ computer aided diagnosis”) de
enfermedades neurológicas. De entre estas enfermedades destacamos el sı́ndrome
idiopático de Parkinson (enfermedad de Parkinson) y los sı́ndromes Parkinsonianos
atı́picos, tales como la atrofia múltiple sistémica (MSA, del inglés “ multiple sys-
tem atrophy ”) y la parálisis supranuclear progresiva (PSP, del inglés “ progressive
supranuclear palsy ”).
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Chapter 1
Introduction

1.1 General Introduction

Imaging has been selected as one of the greatest achievements of the twentieth cen-
tury by the US National Academy of Engineering (NAE) [7] because of its impact
on medicine and biology [8]. In the medical field, image data are ubiquitously used
in clinical practice as well as in scientific studies to infer details regarding the pro-
cess under investigation whether it is a disease process or a physiological process.
Hence, information provided by medical images has become a vital part of today’s
patient healthcare.
Beyond that, imaging has not only increased the quality of patient care, but also
reduced the health care costs. In fact, imaging is a complimentary tool to the neu-
ropsychological tests that can evaluate structural and functional abnormalities to
improve the early diagnosis. Additionally, many diseases can be diagnosed in a
much earlier stage of the disease progression, since it is not necessary that symp-
toms are apparent on the outside of the human body, as it used to be. Moreover, if a
disease is detected, procedures can be performed much less invasive.
Unlike the images produced in industrial applications, the images generated in
medical applications are complex and vary notably from an application to another.
Thus, as one can imagine, the field of image processing and analysis has to tackle a
diverse and complex set of problems. Because of its wide extent, we focus on certain
topics that we consider important in the field of medicine, such as the development
of computer-aided diagnosis (CAD) systems for neurodegenerative diseases. CAD
is a broad concept that integrates image processing, computer vision, mathematics,
physics, and statistics into computerized techniques. These techniques assist ra-
diologists in their medical decision-making processes, as depicted in Figure 1.1. It
serves as a second opinion in the detection of abnormalities, classification of lesions,
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quantification of disease and anatomic structures, risk assessment, and physiologic
evaluation. Moreover, CAD is a relatively young interdisciplinary technology com-
bining elements of artificial intelligence and digital image processing in the field of
radiological and nuclear medicine imaging. A typical application is the detection
of a tumor. For instance, some hospitals use CAD to support preventive medical
checkups in mammography (diagnosis of breast cancer), the detection of polyps in
the colon, and lung cancer. This seems to indicate that CAD is beginning to be ap-
plied widely in the detection and differential diagnosis of many different types of
abnormalities in medical images obtained in various examinations by use of differ-
ent imaging modalities. In fact, CAD has become one of the major research subjects
in medical imaging and diagnostic radiology [9–11]. Lately, some methods based
on the machine learning paradigm [12, 13] and neural networks [14] have been ap-
plied to image analysis procedures, yielding to the construction of CAD systems
for several neurodegenerative diseases, such as Alzheimer’s disease (AD) [15–17] or
Parkinson’s disease (PD) [1, 18–20]. These systems not only process and analyze
image data but also can determine if an image belongs to the class of normal images
(healthy subjects) or pathological images (patients), performing that way an auto-
matic diagnosis. Therefore, a typical CAD system may be made up of four main
modules, as shown in Figure 1.1. Image pre-processing improves the input image
quality to allow image segmentation for accurate extraction of the regions of in-
terest. Feature extraction and selection identify a small number of mathematical
features that are used by pattern-recognition and machine-learning techniques for
disease identification and classification. In addition, CAD systems can be applied

Figure 1.1: General architecture of CAD Systems for medical images.

to different nuclear medicine imaging.
Nuclear medicine is the section of science that utilizes the characteristics of radioac-
tive drugs in order to derive clinical information of the human physiology and bio-
chemistry. According to the examination needed for each patient, a small quantity
of radioactive material, i.e., a radionuclide is attached to a pharmaceutical (tracer).
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This combination is called a radiopharmaceutical or radiotracers. Then, the whole
complex is administered to the patient intravenously. Thus, the radiotracer follows
its physiological pathway and it is concentrated on specific place in the patient body
where there could be disease or an abnormality for short periods of time. Then,
the radiation emitted from the radiopharmaceutical in the human body is detected
using a special camera called a gamma camera, resulting in images of the biodistri-
bution of the radiotracer. Thus, nuclear medicine images show characteristic infor-
mation about the physiological properties of the tissue or organ being investigated.
In the last several decades, medical imaging systems have advanced in quantum
leaps. There have been substantial improvements on their characteristics such as
sensitivity, resolution and acquisition speed. Thus, advanced techniques of image
processing and analysis find widespread use in medicine. Image processing meth-
ods are under continuous development in order to further improve the quality of
the medical images that are used for a reliable diagnosis.
The scope of image processing and analysis applied to medical applications is to im-
prove the quality of the acquired image and extract quantitative information (i.e.,
feature) from medical image data in an efficient and accurate way.
Image quality plays an important role in nuclear medicine imaging in order to pro-
vide a reliable image of the projected organ for an accurate diagnosis or therapy.
The physical characteristics that are used to describe image quality are spatial reso-
lution, contrast and noise.
Spatial resolution is defined as the ability of the imaging modality to reproduce the
details of a nonuniform radioactive distribution of the tracer in the patient [21].
Thus, it refers to the ability of the imaging instrument to provide the sharpness or
detail of the object. The spatial resolution is separated into intrinsic resolution (scin-
tillator, photomultiplier tubes and electronic circuit) and system resolution (colli-
mator, scintillator, photomultiplier tubes and electronic circuit) [22]. The intrinsic
resolution depends on the thickness of scintillation crystal while the system reso-
lution depends mainly on the distance from the emitting source to collimator (the
collimator geometry) and to some extent by the septal thickness. Moreover, the res-
olution of a gamma camera is limited by several factors, such as, the patient motion,
the statistical fluctuation in the distribution of visible photons detected, the colli-
mators geometry, the Poisson noise in scintillation photon production, the number
of photomultiplier tubes, the position-localization algorithms used and the image
display or recording system [3].
Thus, intrinsic and camera spatial resolutions are parameters that inherently affect
image quality and quantitative accuracy. Most modern gamma cameras have similar
values for these parameters, and most of the values are close to optimal for present
collimator/scintillation-crystal/photodetector technology [3].

The second physical characteristic to describe the image quality is the image
contrast. It can be defined as the difference in intensity corresponding to different
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concentration of activity in the patient [22]. Nuclear medicine images must be of
high contrast for a good diagnostic accuracy.
Image contrast is affected by several factors, such as, the radiopharmaceutical that is
used for imaging, Compton scatter, random or accidental coincidences, and detector
dead time [3]. Hence, it is preferable to use a radioactive drug enabling a high up-
take in the target organ. Compton scatter [23] can be reduced by energy windowing.
However, to maintain high sensitivity (fewer rejected events), the energy resolution
and photofraction should be high so that a narrow photopeak window will contain
a high fraction of the incoming events [3]. To minimize the effect of random co-
incidences on image contrast, it is mandatory to have an excellent coincident time
resolution and a reduced detection activity [24]. High coincident resolving time
requires a fast, bright scintillation crystal or detector and low electronic noise [3].
Thus, random-coincidence and dead-time effects can be reduced if fast detectors are
implemented [25, 26].
Lastly, the third physical characteristic is the noise which is the major factor in the
degradation of image quality. The image noise may be divided into random and
structured noise [22, 27]. Random noise, also referred as statistical noise, is the
result of statistical variations in the counts being detected, which can be quite sig-
nificant in positron emission tomography (PET) imaging studies [28]. Structured
noise is derived from non-uniformities in the scintillation camera and overlying
structures in patient brain. Structured noise may arise from the radionuclide dis-
tribution itself or caused by system artifacts [29]. Thus, the noise primarily comes
from the inherent random variations in the counting of photons. Moreover, it is re-
lated to the number of photons detected and used for the image generation [29, 30].
For instance, single photon emission tomography (SPECT) images with fewer pho-
tons more typically have noise levels of about 10% [30].
Consequently, the noise can be caused on one hand, by random, uncorrelated un-
certainties, including photon noise, electronic noise and noise due to scattered ra-
diation. On the other hand, the noise can be generated by systematic, correlated
uncertainties, including geometric distortion, detector non-linearity, errors due to
sampling a continuous image into a discrete set of pixels and computational errors
when an image is reconstructed from indirect data [31].

1.2 Motivation

Despite of the enormous progress made in imaging technology, many severe prob-
lems in using these devices are related to the artifacts of medical images for diag-
nostics and treatment planning. Thus, the quality of acquired images is degraded
by both physical factors, such as compton scattering and photon attenuation, and
system parameters, such as intrinsic and extrinsic spatial resolution of the gamma
camera system. The main issue is that these image imperfections can influence the
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diagnosis or in the worst case may even lead to false decisions by the physician.
Therefore, the sources of artifacts have to be understood and removed during the
acquisition process. However, in many cases, this cannot be achieved due to phys-
ical, financial or time issues. Then, they have to be dealt with using retrospective
correction methods [32]. Moreover, in order to overcome the influence of inter-
individual variability, images are processed with registration and intensity normal-
ization steps. These steps are devoted to standardize brain volumes, spatially align
anatomical regions, and recalibrate gray-level intensity so that images can be com-
pared one to another. In this thesis, we will investigate the possibility to provide
clinicians with tools that deliver useful information about emission-computed to-
mography (ECT) images, such as, SPECT and PET for the diagnostic process. Thus,
we will mainly concentrate on a very important part of CAD system, that is intensity
normalization in order to improve the overall performance in the early detection of
Parkinson’s disease (PD) and other neurodegenerative diseases such as multiple sys-
tem atrophy (MSA) and progressive supranuclear palsy (PSP). The initial diagnoses
of PD made by general neurologists have shown to be incorrect in 24% to 35% of
the cases [33]. A reliable diagnostic test, which could be used to differentiate be-
tween different tremor disorders, would therefore be of great value. Thus, as a
feature of PD is a marked reduction in dopaminergic neurons in the striatal region,
brain imaging techniques (SPECT or PET) with specific ligands can be used as a
valuable tool to evaluate PD patients [34]. These specific radio-ligands bind to the
dopamine transporters in the striatum and have evolved as in vivo markers of pro-
gressive dopaminergic neuron loss in PD. Previous to any kind of image processing,
the functional brain images have to be normalized in terms of intensity. Hence, the
intensity normalization step is essential, as it corresponds to the initial step in any
subsequent computer-based analysis. It guarantees that the differences between im-
ages of different subjects are due to physiological reasons and the brain functioning,
and not due to the baseline calibration of the Gamma camera used for the acquisi-
tion among other factors [35]. The main advantage of CAD systems might be a
reduction of workload for the clinicians, while providing reproducible, observer in-
dependent and reliable results. Considering longitudinal studies and treatment of
patients, CAD systems may be able to detect and call the attention to early stages,
prodromal cases.

1.3 Goals

The main goal of this thesis is to present four fully automated intensity normaliza-
tion methodologies in order to help clinicians in the analysis of functional tomo-
graphic images of the brain. These novel approaches are based on the Gaussian
Mixture Model (GMM), the mean squared error (MSE) and the predictive mod-
eling using multivariate linear regression (MLR). The GMM-based image filtering
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method will be achieved according to a probability threshold that removes the clus-
ters whose likelihood are negligible in the non-specific region. The MSE optimiza-
tion method will consist of a linear transformation that will be obtained by minimiz-
ing the MSE in the non-specific region between the intensity normalized image and
the template. For the MLR approach, the normalized images will be computed by
linearly transforming the voxel intensity of each image subject using a predefined
model, as in the MSE approach. The proposed intensity normalization methods
will be compared to widely used approaches, such as, the specific-to-non-specific
binding ratio, the integral-based intensity normalization, the histogram equaliza-
tion, the linear approach based on the α-stable distribution, the normalization to
the maximum intensity values and the intensity normalization by minimizing the
Kullback-Leiber divergence. This comparison is performed on two different image
databases comprising analysis and classification stages for the development of CAD
systems for idiopathic and atypical Parkinsonian syndrome (PS) detection. In addi-
tion, these proposed methods will be evaluated in the correction of spatially varying
artifacts that modulate the intensity of the images.

1.4 Main contributions

The main scientific contributions of the thesis can be split into three different cat-
egories: development and implementation of standard methods for intensity nor-
malization, development and implementation of novel intensity normalization ap-
proaches based on GMM, MSE and MLR, and utilization of the proposed intensity
normalization scheme on a clinically relevant application dealing with computer-
aided assessment of the early detection of PS. In the following, we will briefly intro-
duce the major scientific contributions. For more information, we want to refer to
the corresponding chapters.

• Development and implementation of state of the art algorithms for intensity
normalization, which were carried out on two different imaging modalities
(SPECT and PET).

• Development and implementation of a GMM-based image filtering approach,
which considers not only the intensity levels, but also the coordinates of vox-
els inside the so-defined spatial Gaussian functions. The voxels in the refer-
ence region (non-specific region) are intensity-normalized by removing clus-
ters whose likelihood is negligible.

• Optimization and implementation of two proposed methodologies, which are
based on MSE. The first MSE optimization method consists of a linear transfor-
mation at every voxel in the brain image. This transformation is obtained by
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minimizing the MSE between the intensity normalized image and the template
in the so-defined non-specific (NS) region. However, the second approach is
based on minimization of the MSE between the GMM-based extracted features
from each subject image and the template in NS region.

• Development and implementation of a novel intensity normalization approach,
which is based on a predictive modeling using MLR. Different intensity nor-
malization parameters derived from this model will be used in a linear proce-
dure to perform the intensity normalization of functional brain images.

• Qualitative and quantitative inter-subject variability measures are performed
to evaluate the improvements provided by the proposed approaches when
compared to state of the art algorithms.

• Algorithm independence of the clinical protocol.

• Improvement of the computational time, stability and repeatability of the per-
formance for the different intensity normalization schemes.

• The development of more accurate CAD systems for the early detection of PS
for two different imaging modalities (SPECT and PET).

1.5 Published works

Part of the work presented here has been published and is already available for the
research community.

Articles in International Magazines:

1. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Intensity normalization of
DaTSCAN SPECT imaging using a model-based clustering approach’. Journal
of Applied Soft Computing, 37 (2015): 234–244, 2015, doi: 10.1016/j.asoc.201-
5.08.030.

2. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher and D. Salas-Gonzalez, ’Com-
parison between Different Intensity Normalization Methods in 123I-Ioflupane
Imaging for the Automatic Detection of Parkinsonism’. Journal of Plos One,
10 (6): 1–20, 2015, doi:10.1371/journal.pone.0130274.

International Conference Proceedings:
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1. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Linear intensity normaliza-
tion of DaTSCAN images using Mean Square Error and a model-based clus-
tering approach’, International Conference on Innovation in Medicine and
Healthcare, San Sebastian, Spain, July 2014. vol.207, pp 251-260, ISBN: 978-
1-61499-473-2,

2. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher, ’Linear intensity normaliza-
tion of DaTSCAN images using Mean Square Error and a model-based clus-
tering approach’, 2014 IEEE International Conference on Image Processing
(ICIP14), Paris, France, October 2014. vol.207, pp 3617–3621, ISBN: 978-1-
4799-5751-4,

3. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Intensity Normalization of
123I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear
Regression Approach’, 6th. INTERNATIONAL WORK-CONFERENCE on the
INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION, Elche,
Spain, June 2015. vol. 9107, pp 68-77, ISBN: 978-3-319-18913-0.

Furthermore, further papers were published with collaborations in different inter-
national magazine and conference proceedings:

1. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and F. Segovia, ’Early diagnosis
of Alzheimer’s disease based on partial least squares, principal component
analysis and support vector machine using segmented MRI images’.Journal of
Neurocomputing, 151 (1): 139–150, 2014, doi:10.1016/j.neucom.2014.09.072.

2. L. Khedher, J. Ramı́rez, J. M. Górriz , A. Brahim. , ’Automatic classification of
segmented MRI data combining Independent Component Analysis and Sup-
port Vector Machines’, International Conference on Innovation in Medicine
and Healthcare (Inmed14), San Sebastian, Spain, July 2014. vol.207, pp 271–
279, ISBN: 978-1-61499-473-2,

3. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and I.A. Illán, ’Independent
Component Analysis-Based Classification of Alzheimer’s Disease from Seg-
mented MRI Data’, 6th. INTERNATIONAL WORK-CONFERENCE on the
INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION, Elche,
Spain, June 2015. vol. 9107, pp 78-87, ISBN: 978-3-319-18913-0.

1.6 Structure of the document

The contents of the thesis are organized as follows:
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• Chapter 2 presents an introduction to SPECT and PET imaging, their radio-
tracers and clinical application and an overview about various imaging arti-
facts that influence the image quality. In addition, it contains a medical back-
ground information about the neurodegenerative diseases that are considered
along the thesis: PD, PSP and MSA. This introduction familiarizes the reader
with these imaging modalities, some of its possibilities and limitations in the
detection of these neurodegenerative diseases. This familiarity helps him to
understand the discussions on the difficulties encountered, particularly on the
intensity normalization issues.

• Chapter 3 reviews the pre-processing pipelines for the SPECT and PET data
modalities that have been treated. Additionally, we present the state of the art
about intensity normalization approaches adequately adapted to the nature of
the PD images.

• Chapter 4 presents a novel method for automatic intensity normalization of
functional brain images. The proposed methodology is based on GMMs which
are used firstly for density estimation of the intensity profile of each functional
medical imaging. We approximate the intensity profile of the SPECT images
by a sum of Gaussians satisfying a maximum likelihood (ML) criterion. Then,
the resulting mixture model is used for intensity normalization according to
a cluster selection strategy. Clusters are selected by means of a normalized
probability threshold that measures the weight of each kernel on the striatum
area and the intensity normalization is actually carried out by only adding the
relevant clusters in the image reconstruction.

• Chapter 5 addresses the correction of inter-image signal intensity variations by
proposing three novel intensity normalization approaches. These methodolo-
gies are based on the extraction of intrinsic parameters from DaTSCAN SPECT
and DMFP PET images, resulting in three automatic procedures for intensity
normalization: MSE optimization between the intensity normalized image and
the template in the NS region, MSE optimization between the GMM-based ex-
tracted features from each subject image and the template in the reference re-
gion, and finally a normalization method based on predictive modeling using
MLR.

• Chapter 6 exhibits an evaluation study of the proposed intensity normaliza-
tion approaches when compared to conventional IN methods adequately adapted
to the nature of the PD. Thus, qualitative and quantitative inter-subject vari-
ability measures are performed. In addition, a comparison is performed using
a classification system for PS detection, that may improve the development of
a CAD system for PD.

• The thesis is concluded in Chapter 7 where we also discuss some possible
paths for future research.





Chapter 2
The diagnosis of idiopathic and atypical
parkinsonian syndromes using
Functional imaging

There have been a growing number of studies showing the importance of functional
imaging studies using single-photon emission tomography (SPECT) or positron emis-
sion tomography (PET) tracers in many fields, such as, neurology, nuclear imaging
and in diagnostics in general. In particular, Parkinson’s disease (PD) and other neu-
rodegenerative disorders such as multiple system atrophy (MSA) and progressive
supranuclear palsy (PSP) are useful disease models to understand the contribution
of modern functional neuroimaging techniques in their identification and treat-
ments. In this chapter our aim is to address the principles of SPECT and PET and
also its pitfalls, with focus on the diagnosis of PD, MSA and PSP. The understand-
ing of these molecular imaging techniques is important to be able to understand the
choices we will made in treating these kind of images.

2.1 Single Photon Emission Computed Tomography
(SPECT)

The neuroscientist of today disposes of a powerful instrumentarium for functional
imaging that has never made more impressive advances before [36]. Thus, it helps
to better understand the pathologies and the mechanisms of diseases [37]. Fur-
thermore, its aids to develop and design drug treatment options with a superior
efficacy and safety profile [38]. Among this instrumentarium, SPECT has become
forerunner in the functional imaging arena, much more than functional magnetic
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resonance imaging [37]. SPECT is an emission-computed tomography (ECT) imag-
ing technique that was initially developed in the 1960s, but was not widely used
in clinical practice until the 1980s [39]. The main aim of SPECT as used in brain
imaging, is to measure the regional cerebral blood flow (rCBF) [40]. The earliest
experiments to measure cerebral blood flow were performed in 1948 by Kety and
Schmidt [41]. They used nitrous oxide as an indicator in the blood, measuring the
differences between the arterial input and venous outflow, from which the cellular
uptake could be determined. This could only be used to measure the global cerebral
blood flow, and so in 1963 Glass and Harper [42], building on the work of Ingvar
and Lassen [43], used the radioisotope 133Xe (xenon), which emits gamma rays, to
measure the rCBF. The development of computed tomography in the 1970’s allowed
the distribution mapping of the radionuclides in the brain, and led to the technique
now called SPECT [44]. When structural information is insufficient to detect or
monitor a functional disorder, SPECT imaging can be used [45].
SPECT is a noninvasive, three-dimensional functional imaging modality that pro-
vides clinical information regarding biochemical and physiologic processes in pa-
tients [45]. Thus, SPECT is a diagnostic imaging technique in which tomographs of
a radioisotope distribution are generated from gamma photons detected at numer-
ous positions about the distribution [3].
Thereby, SPECT imaging is an ionizing technique, where the resulting images are
created by detecting nuclear radiations [46]. These radiations are emitted from the
brain after injecting a radioactive pharmaceutical. The pharmaceutical is a molecule
that imitates a substance which is implicated in a specific biochemical process, for
example glucose or oxygen consummation. The pharmaceutical contains a radionu-
clide that emits gamma rays [47]. In SPECT imaging, the commonly used radionu-
clides are thallium (201 Tl), technetium (99m Tc), iodine (123I), gallium (67Ga) and
Indium (111 In). These radionuclides decay by emitting gamma rays for imaging
with photon energies up to a few hundreds of keV, as illustrated in Table 2.1.

Table 2.1: Gamma photon emitter radionuclides with their Half-life duration and
clinical applications commonly used in SPECT.

Radionuclide Half-Life
(h)

Photon energy (KeV) Clinical applications

201 Tl 73 135 Cardiovascular
123I 13 159 Thyroid, neurologi-

cal tumor
99m Tc 6 140 General and tumor
67Ga 78 93, 185, 300, 304 Infections
111 In 68 171, 245 Infection, tumor
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Figure 2.1: Brain SPECT Imaging Camera.

2.1.1 The use of the Gamma camera in SPECT imaging

The detection of Gamma rays is carried out using a gamma camera composed of a
scintillation detector consisting of a collimator, a scintillation crystal, and a set of
photomultiplier tubes as shown in figures 2.1 and 2.2. The purpose and functioning
of the gamma camera can briefly be described as follows:

• Firstly, The photons that are emitted isotropically from within the subject are
mechanically collimated. The collimator is usually a plate made of lead that
absorbs photons that are not aligned with the holes drilled in it. Collimation is
necessary in order to know the direction from which the photon was emitted.
Thus, the collimator forms an image by selecting only the rays traveling in
(or nearly in) a specific direction. To learn more about collimators and their
characteristics, the reader is referred to [3].

• Secondly, The scintillation material absorbs γ photons by one or more collision
processes and converts some of their energy into visible light and ultraviolet
(UV) photons. This is done through a process know as scintillation.

• Then, These photons are guided toward the cathodes of the photomultiplier
tubes (PMTs) where they are converted to electrons by means of the photo-
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Figure 2.2: Fundamental components of a conventional gamma camera. Most
gamma cameras have a collimator, a scintillation crystal, an array of photomulti-
plier tubes that are connected to the electronic circuits (AD converters), and a com-
puter for acquisition, processing, and display of data and images. Modified from
[3].

electric effect. From a single photoelectron, a PMT can produce a cascade of
electrons, which yields a measurable electrical current. The electrons are mul-
tiplied in their flight toward the anode where they give rise to a voltage pulse.

• Lastly, The analog and digital electronic circuits (Analog-to-digital (AD) con-
verters) measure the output voltage pulses from the photomultiplier anodes
and estimate the position of the incoming gamma-ray.

2.1.2 SPECT image quality

SPECT imaging is not ideal. Inherent in SPECT imaging are degradations that dis-
tort the projection data [48]. Thus, there are many sources that influence the quality
of the image, as shown previously in chapter 1. In addition, to obtain the most ac-
curate quantitative data from SPECT images, two issues have to be resolved [3, 49].
The first issue is the photon attenuation, which can significantly reduce available
counts and cause nonuniform image artifacts [49]. It is caused by the absorption
of photons in the head of the subject. Thus, it depends on the distance of the cam-
eras from the source of radiation [50]. Gamma rays emitted from deep within the
head of the subject have a greater chance of being absorbed, so the effect is depth-
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dependent. If not accounted for, attenuation causes the reconstructed image to ap-
pear dark in the interior of the head [51]. Therefore, to some degree, this attenuation
is compensated by the fact that two cameras are used [52]. Further compensation
can be made by using specialized reconstruction filters or iterative reconstruction
algorithms [53, 54]. Moreover, Attenuation correction can be resolved by using the
constant linear attenuation coefficient (µ) method or using the transmission source
method [3, 55].
The second issue is the Compton scattering, where the photon is reduced in en-
ergy as well as deflected from its original path [56]. This is due to the interaction
between a gamma ray and a free electron in the brain. Thus, it leads to lack of
sharpness in the images and it is manifested as a nonlinear blurring effect in the
image [3]. The scatter correction methods are based on estimation techniques using
photon statistics derived from distribution models or experimental measurements
[57]. In addition, in order to reduce the effect of Compton scattering it is necessary
to have a camera with a high energy resolution [58]. For instance, photons with less
than 140 keV, such as, those issued from a scattering event can then be filtered out
[59]. Furthermore, the Compton scattering can be modeled during image recon-
struction when iterative image reconstruction schemes are used [60].
SPECT imaging shows an important biochemical information tagged with specific
physiology despite the poverty of SPECT images in structural information because
of the attenuation and scattering problems. SPECT imaging is a proven tool in the
assessment and the characterization of a tumor [45]. Also, SPECT imaging is a low-
cost imaging modality compared with PET because of the lower preparation cost of
the radioisotopes used in SPECT imaging. This radioisotopes have relatively long
half lives (a few hours to a few days), as shown in Table 2.1, making them easy to
produce and relatively cheap. Thus, this represents the major advantage of SPECT
as a brain imaging technique. However, it lacks good spatial or temporal resolution,
and there are safety aspects concerning the administration of radioisotopes to the
subject, especially for serial studies [61].

2.2 Positron Emission Tomography

Positron emission tomography (PET) imaging modality were developed in 1970s
by many researchers, such as, Ter-Pogossian and Phelps [62, 63]. PET is a nuclear
medicine imaging technique that produces a three-dimensional image of functional
processes in the body [64]. The PET imaging concept is based on the simultane-
ous detection of two 511 keV energy photons, which are emitted into near opposite
directions [51]. The distinctive feature of PET imaging technique is its ability to
trace radioisotope metabolized in the body tissue to provide specific information
about its biochemical and physiological behavior [65]. Despite the fact that PET
is based on photons emitted from a radionuclide, the underlying physics provide
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an opportunity to improve beam collimation through so-called electronic collimation
[66]. In PET, radioisotopes decay by emitting positively charged particles called
positrons [57]. Positrons are short lived, of the order of 2-100 minutes (see Table
2.2), and after traveling only a short distance (typically for 1-3 mm), they inter-
act with an electron. During this interaction, their masses are annihilated and two
gamma photons with 511 keV are generated traveling in opposite directions (close
to 180 degrees apart) [66]. The gamma rays are detected in coincidence by detectors
that surround the patient, as shown in Figure 2.3. Thus, by detecting a large number
of coincidences, the source location and distribution can be reconstructed through
image reconstruction algorithms [57, 66]. In the imaging reconstruction process, it
is the locations of annihilation events that are reconstructed as an image in the PET
imaging technique [65]. However, the emission events distribution of positrons is
considered close enough to the annihilation events distribution within a resolution
limit [57].
PET scans are increasing in use for all body parts. Furthermore, PET modality is
a relevant tool for the brain imaging [67]. It is challenging to get a radioactive
isotope into the brain for measurement because the protection of the blood-brain
barrier (BBB) [68]. The BBB makes it difficult to get most substances into the brain.
Therefore, to get through the BBB and enter the brain easily, carrier-mediated trans-
porters, such as, glucose can be used. For instance, a positron emitter, such as, the
fluorine isotope 18F can be inserted into a glucose molecule. Thus, the concentra-
tion of the radioactively tagged glucose is a measure of the metabolic activity level
at that location in the brain [69].
The PET scanning becomes an increasingly important tool for fundamental research
which provide a map of the metabolic activity level in the brain [25]. This imaging
technique has been used to map the different patterns of brain activity for various
activities, such as, cognitive tasks [70]. Moreover, patterns of activity associated
with certain brain disorders, such as, PD may be identified [71]. The positron emit-
ting neurotransmitters such as 18F, which is administered as fluorine-labeled radio-
pharmaceutical called fluorodeoxyglucose (FDG), can provide useful information
about the dopaminergic neuron functioning in patients with PD [72–74].
The main advantage of PET imaging is its ability to extract metabolic and functional
information of the brain tissue. This is mainly due to the unique interaction of the
positron with the matter of the tissue [57]. In addition, PET has major advantages
over SPECT, namely better spatial resolution, greater sensitivity and it allows one
to examine biological events which run much faster [75]. Radioisotopes labelled for
PET have a much shorter half-life compared with those used in SPECT [76]. This
means that a patient undergoing PET examination is examined more precisely and
also receives a smaller dose of the harmful radiation [77]. The main drawback of
PET is its very high cost because of the high costs of cyclotrons needed to produce
the short-lived radionuclides for PET scanning and the need for specially adapted
on-site chemical synthesis apparatus to produce the radiopharmaceuticals after ra-
dioisotope preparation [78].
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Figure 2.3: Physical principle of PET. A positron is emitted from a radioisotope
in the brain. The positron annihilates with an electron, producing two photons
emitted at 180 degrees to each other. Reproduced from [4].
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2.2.1 PET image quality

As in SPECT scanning, PET data are affected by attenuation, scatter, and several
mechanisms of blurring. These factors are generally easier to correct in PET than in
SPECT [3]. The spatial resolution, contrast and sensitivity of PET imaging are sig-
nificantly better than SPECT imaging mainly because of electronic collimation pro-
vided by the coincidence detection method [75]. The coincidence detection method
provides a more sensitive and accurate count of the photon-emission events [79].
Moreover, the resolution of PET images does not depend on the distance between
the emission source and detector as in SPECT images. In addition, The resolution of
a PET scanner is influenced by some factors which depends mainly on the physical
characteristics of the radionuclide and the detection system [75, 80].
Hence, the spatial resolution of PET imaging is limited by the fundamental nature
of positron annihilation [81, 82]. When Positrons are emitted, they do not imme-
diately annihilate. Instead they travel some distance in matter, depending on their
initial kinetic energy and the electron density of the absorbing material [83]. These
emitted positrons have a continuous distribution of kinetic energy values, ranging
from zero to a maximum energy, as shown in Table 2.2. Thus, the range of positrons
is not a fixed value but rather a distribution of values that can be characterized by a
full width at half-maximum (FWHM). When the thermal energies are reached, the
positrons interact with electrons by the formation of a hydrogen-like orbiting pair
called positronium [3]. Positronium is unstable and eventually decays, via annihila-
tion, into a pair of anti-parallel 511-keV photons (emitted at 180 degrees relative to
one another) [3]. Although the radial distribution of annihilation events is sharply
peaked at the origin (site of positron creation). A calculation of the radius that in-
cludes 75% of all annihilation events gives a realistic comparison of the impact of
the maximum positron energy on the spatial resolution of PET imaging [84, 85].

Table 2.2 illustrates the major emitters used in PET imaging, along with positron
energy and range in water (some of their relevant physical characteristics). The
range is defined as the radius that includes 75% of all annihilation events.
Moreover, the non-exact collinearity of the annihilation photons also leads to a lim-
itation of the spatial resolution of PET imaging [75]. It is a common understanding
that annihilated photons travel exactly in opposite directions. However, because of
the positronium has some residual momentum, annihilation photons are not emit-
ted exactly at 180 degrees [79]. Thus, the variation in momentum of the positron
results in an angular uncertainty in the direction of the 511-keV photons. This is
referred to as noncolinearity [83].
A third significant factor limiting PET image resolution is the intrinsic spatial reso-
lution of the detector [86]. A final factor affecting PET image resolution is referred
to the parallax error, which results from the uncertainty of the depth of interaction
(DOI) of the gamma rays in the crystal [3].
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Table 2.2: Half-life and positron range of Radionuclide commonly used in PET [3].

Radionuclide Half-Life
(min)

Maximum Positron energy (KeV) Mean Positron Range
in Water (mm)

11C 20.3 960 1.1
13N 9.97 1190 1.3
15O 2.03 1720 2.5
18F 109.8 635 0.5
68Ga 67.8 1899 0.8
82Rb 1.26 3356 1.5

The signal-to-noise ratio (SNR) is superior in PET images to SPECT but is still af-
fected by the dose of the positron emitter nuclide, the detector efficiency and the
intensity distribution of source emission [57]. Moreover, the SNR is further im-
proved by using retractable septa of the external collimator in multislice imaging
when multiple rings of detectors are used [57]. This mode rejects any cross-plane
event detection, reducing the data to only true coincidence events within the se-
lected plane without any scattering [78].

2.3 Functional Image acquisition

The acquisition of images, both SPECT and PET is performed with the patient in
supine position (lying on your back, neck in a neutral position, eyes turned to the
zenith, and extended upper limbs close to the body, palms up, extended lower limbs,
feet in neutral flexion and the tip of the toes up) and in a dimly lit room with no
noise in which the patient must be at least 10 minutes before the start of the process
[87]. Note that the obtained images will show the functions of the brain and there-
fore it is undesirable to have an influence of the environment that may cause more
brain activity than normal (at rest). The patient’s head must be immobilized and
the detector must be positioned so close to the brain as possible, preferably with a
radius of rotation of 14 centimeters or less from the detector surface collisions at
the center of the patient’s brain.
The acquisition process can start within 15 minutes of the administration of the
radiopharmaceutical although it is advisable to wait between 60 and 90 minutes.
During the process, the camera (or detector) is rotated around the brain and during
movement is taking pictures in 2D known as projections. Typically a projection is
taken every 2 degrees of rotation, making a total of 180 projections for each brain
image. Finally, the three-dimensional brain image is reconstructed from the projec-
tion data using filtered back-projection algorithm (FBP) described in the following
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section in combination with a Butterworth noise removal filter.
For the DaTSCAN SPECT image acquisition, the patients are injected with a gamma
emitting Ioflupane-I-123 (185 MBq (5 mCi)) radioligand. During this period, the
thyroid was blocked using a Lugols solution. The scans were obtained using a Gen-
eral Electric gamma camera, Millennium model, equipped with a dual head and
general purpose collimator. A 360-degree circular orbit was made around the cra-
nium, at three-degree intervals, leading to 60 128 × 128 images per interval. The
brain images were reconstructed using the filtered back projection (FBP) algorithm,
applying a Hanning filter (cut-off frequency equal to 0.7) and were obtained with
trans-axial slices.
18F-DMFP PET scans were acquired according to a standardized protocol.18F-DMFP
was injected as a slow intravenous bolus, and the patients were seated in a quiet
room. After 55 min, the patients reclined in the scanning bed of the ECAT EX-
ACT HR+ PET tomograph (Siemens/CTI), with their head comfortably immobilized
within the aperture, using a foam cushion. The scanner acquired 63 contiguous
trans-axial planes, simultaneously covering 15.5 cm of the axial field of view. The
trans-axial and axial resolutions (FWHM) of the PET system were 4.6 and 4.0 mm,
respectively, at the center of the field of view, and 4.8 and 5.4 mm, respectively, at a
radial offset of 10 cm. The emission recording began at 60 min after the start of the
bolus and consisted of 3 frames of 10 min each, acquired in 3-dimensional mode.
Finally, a brief transmission scan was obtained using a rotating 68Ge point source.
Images were reconstructed as 128 × 128 matrices of 2 × 2 mm voxels by FBP using
a Hanning filter with a cutoff frequency of 0.5 Nyquist and corrected for randoms,
dead time, and scatter. Images were then transferred to a workstation (Hermes Med-
ical Solutions). After verification of the absence of important head motion between
frames, the 3 frames were summed for further analysis [88].

2.4 Functional Image reconstruction

The purpose of reconstruction algorithms is to calculate an accurate 3D radioactiv-
ity distribution from the acquired projections [54]. Hence, after the acquisition of
projections made by the camera, it is necessary to reconstruct the transversal image
slices [30, 54, 89–95]. There are two major ways to reconstruct tomographic images
from acquired projections [54, 96]. The most widely used technique in clinical prac-
tice is the classical FBP algorithm [54, 97, 98]. Although many different iterative al-
gorithms for reconstruction exist, such as, the algebraic methods like the algebraic
reconstruction technique (ART) and the statistical algorithms like the maximum
likelihood expectation maximization (MLEM) [92] or the ordered subsets expecta-
tion maximization (OSEM) [30, 94]. The advantage of these algorithms is that some
of the error sources, such as, attenuation, Compton scatter and camera response can
be explicitly modeled and taken into account during reconstruction [99, 100].
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Since, all the SPECT and PET scans considered in this thesis have been recon-
structed using the FBP algorithm, we will restrict to present the filtered back-projection
techniques. However, in many cases iteratively reconstructed images need to be
post-filtered since they tend to be noisy [54]. Therefore, filtering can also be consid-
ered as a post-processing step in iterative reconstruction [98].
The backprojection is an essential step in image reconstruction [101]. It represents
the accumulation of the ray-sums of all the rays that pass through any point with
coordinates (x,y) for a given projection angle θ [95]. Hence, it is the adjoint to for-
ward projection process that forms the projections of the object. In ideal conditions,
projections are a set of integrated value measurements of some object parameter
along a line path. If the object is represented by a two dimensional function f (x,y)
and each line integral by the (θ,t) parameters, the line integral is defined as [95]:

Pθ(t) =
∫ +∞

−∞

∫ +∞

−∞
f (x,y)δ(xcosθ + y sinθ − t)dxdy, (2.1)

where Pθ(t) is known as the Radon transform of the function f (x,y). f (x,y) can be
defined as the distribution of radiotracer within the slice of the body defined by
the xy plane. Because an integral is basically a sum of values, the value Pθ(t) is the
sum of the values f (x,y) along the line t. Hence, Pθ(t) is called ray sum because it is
related with the sum of radioactive counts recorded in any time interval at point t
when the detector is at angle θ(t) [95].
The Fourier Slice Theorem is the key to tomographic imaging [102]. It is also known
as the central-section theorem and it is a foundational relationship in analytic im-
age reconstruction [101]. This theorem states that the Fourier transform of a one-
dimensional projection is equivalent to a section, or profile, at the same angle through
the center of the two-dimensional Fourier transform of the object [103]. Thus, the
Fourier transform Sθ(w) of a parallel projection Pθ(t) of an image f (x,y) taken at
angle θ can be defined as:

Sθ(w) =
∫ +∞

−∞
Pθ(t)exp(−j2πwt)dt, (2.2)

a slice of the two-dimensional Fourier transform is given by:

F(u,v) =
∫ +∞

−∞

∫ +∞

−∞
f (x,y)exp(−j2π(ux+ vy))dxdy, (2.3)

subtending an angle θ with the u-axis, that is,

Sθ(w) = F(u = wcosθ,v = w sinθ) (2.4)

This result is the key of straight ray tomography. By having projections of an object
function under a different angles θ1, θ2, ..., θk and taking the Fourier transform of
them, the values of the two-dimensional transform F(u,u) can be determined on
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radial lines in the uv plane (spatial frequency domain). In practice, only a finite
projections number of an object can be taken [102]. Thus, the function F(u,v) is
only known along a finite number of radial lines [95].
In this study, the used projection data are reconstructed using the the most com-
monly used FBP algorithm that is easily derived from the Fourier Slice Theorem.
FBP is a mathematical technique based on an idealized model of PET and SPECT
data that ignores many significant features of real data [3]. Specifically, FBP sup-
poses that the number of detected gamma-ray events traveling along a particular
direction approximates an integral of the radiotracer distribution along that line,
i.e., the parallel projection defined in eq. 2.1. Thus, an image of the cross section
f (x,y) of an object can be recovered by:

f (x,y) =
∫ π

0
Qθ(xcosθ + y sinθ)dθ, (2.5)

where Qθ(t) represents the filtering of the projections and it is defined as:

Qθ(t) =
∫ +∞

−∞
Sθ(w)|w|exp(j2πwt)dw (2.6)

Therefore, the FBP algorithm consists of two steps: the backprojection process,
which is taken place in spatial domain, and the filtering part, which can be visu-
alized as a simple weighting of each projection in the frequency domain [39].
In the noise apparition, the FBP algorithm must be slightly modified by the intro-
duction of a smoothing step [3]. The smoothing process can be implemented as a
1D filter applied to the projections prior to backprojection. Moreover, it can be im-
plemented also as a 2D filter applied to the image after backprojection [3]. When
applied to the projections, the smoothing filter is usually combined with the ramp
filter [104]. In addition, the undesired amplification of the high frequency noise
and its impact on reconstructed image quality, is the major drawback of FBP [95].
The causes of the noise amplification can be explained by the filtering operation or
by the multiplication of Sθ(w) by |w| in equation 2.6. In order to reduce the high
frequency noise amplified during FBP reconstruction, various filters have been de-
signed by including a window in them [105]. Thus, a number of window functions
has been proposed. Among the widely used window functions for FBP reconstruc-
tion: i) cosine, ii) sinc (Shepp-Logan filter), iii) Hanning, iv) Hamming, and v) Parzen
window functions. In this way, the reconstruction method described by equations
2.5 and 2.6 is normally redefined by applying a frequency window which returns
to zero as the frequency tends to π. For the improvement of reconstructed image
quality and therefore for the diagnostic evaluation, the noise captured by the ac-
quisition system needs to be filtered out even when the reconstruction noise is kept
low using a noise controlled FBP approach [54, 98]. Thus, in order to reduce the
noise acquired by the gamma camera as well as the noise amplified during FBP re-
construction, the preprocessing stage of most automatic SPECT image processing
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systems often includes prefiltering, reconstruction and postfiltering [102].
After image acquisition, when filtering and reconstruction are done, some addi-
tional preprocessing steps are needed before using functional brain images for com-
puter aided diagnosis systems [106]. This issue will be discussed in the following
chapter.

2.5 Idiopathic parkinsonian syndromes: Parkinson’s di
-sease (PD)

Idiopathic means that the cause of this disease is unknown. Parkinsonian syndrome
(PS) or Parkinsonism is characterized by the presence of hypokinesia associated with
rest tremor and/or rigidity and/or postural instability [107]. From a clinical point
of view, the most common condition in this syndrome is PD [108]. PD is the second
most common neurodegenerative disorder after Alzheimer’s disease [109]. Inci-
dence of the disease increases with age. The prevalence is estimated at 0.3% of the
whole population in industrialized countries, rising to 1% in those over 60 years of
age and to 4% of the population over 80 years of age [110]. The mean age of onset
is around 60 years, although 5 − 10% of cases, classified as young onset, begin be-
tween the ages of 20 and 50 [111]. According to the Parkinson’s Disease Foundation
[112], approximately 60,000 Americans are diagnosed with PD each year, and this
number does not reflect the many thousands of cases that go undetected.
PD is a progressive degenerative neurological disorder of the central nervous system.
Early in the course of the disease, the most obvious symptoms are movement-related
[109]. These include shaking, rigidity, tremor, slowness of movement, postural in-
stability and difficulty with walking and gait. Later, cognitive and behavioral prob-
lems may arise, with dementia commonly occurring in the advanced stages of the
disease [113, 114]. Other symptoms include sleep, sensory, and emotional prob-
lems [115]. The neuropathology of the disease is characterized by the progressive
loss of dopaminergic neurons of the substantia nigra that project to the putamen,
i.e., dopaminergic nigrostriatal pathway [116]. This leads to a corresponding loss of
dopamine transporters (DaTs) in the striatum [117]. The DaTs are proteins situated
at the presynaptic terminal of dopaminergic neurons which are responsible for the
re-uptake of dopamine [118] into the presynaptic neuron.
Figure 2.4 shows that in patients with PD, nigrostriatal degeneration leads to de-
creased production of dopamine, which results in less synaptic dopamine, fewer
axonal synapses, and ultimately fewer dopamine transporter targets for imaging
[119, 120].
Thus, the nigrostriatal cell loss is responsible for the major symptoms of this dis-

ease. Although a small proportion of cases can be attributed to known genetic fac-
tors, most cases of PD are idiopathic [109]. While the etiology of dopaminergic
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Figure 2.4: Simplified scheme of the dopaminergic synapse and dopaminergic neu-
rotransmission [5] with dopamine transporter loss in PD: the dopamine transporters
are located at the presynaptic side. They transport dopamine out of the synaptic
cleft, back into the presynaptic nerve endings for either re-use or degradation [6].
Nigrostriatal dopaminergic denervation is a key pathobiological event in PD and
related parkinsonian disorders. The lower number of nigrostriatal nerve terminals
in PD results in decreased striatal signal on DaT imaging.
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neuronal demise is elusive, a combination of genetic susceptibilities, age, and envi-
ronmental factors seems to play a critical role [121].
Historically, a diagnosis of PD is usually made based on the patient’s medical his-
tory and a neurological examination [122]. The physician conducts an interview
specifically looking for cardinal motor symptoms while attending to other possible
symptoms that would exclude a diagnosis of PD. There are four motor symptoms
which are considered cardinal in PD: tremor, rigidity, slowness of movement and
postural instability [123]. Common presentations of the disease are usually easily
diagnosed. Diagnosis can be difficult when the symptoms are not fully typical of PD
since Parkinsonism can occur due to a range of causes [124]. Furthermore, the dif-
ference with PD may be subtle, particularly in the early stages when symptoms may
be mild [125, 126]. A more detailed explanation about this disease can be found in
[111, 116, 123].

2.6 Atypical parkinsonian syndromes: multiple system
atrophy and progressive supranuclear palsy

The atypical parkinsonian syndromes (APS) such as multiple system atrophy, pro-
gressive supranuclear palsy, and corticobasal degeneration are characterized by poor
response to antiparkinsonian medication and rapid clinical deterioration, which one
often confused with PD [127]. Since APS patients share the parkinsonian symptoms,
the clinical distinction between PD and APS may be difficult in early phases [128].
The clinical diagnostic accuracy can be improved if specialists in movement disor-
ders make the diagnosis [129].
However, the accurate diagnosis may take time to unveil. In MSA, and PSP there
is a degeneration of dopamine neurons in substantia nigra, leading to depletion of
dopamine in the nigrostriatal system, such as in PD [116].

2.6.1 Multiple system atrophy (MSA)

MSA is a sporadic progressive neurodegenerative disorder characterized by neu-
ropathologic demonstration of CNS α-synuclein positive glial cytoplasmic inclu-
sions with neurodegenerative changes in striatonigral or olivopontocerebellar struc-
tures [130]. It may account for up to 10% of patients with extrapyramidal diseases
[131].
The disorder can present as a predominantly or exclusively cerebellar (olivoponto
cerebellar atrophy) or parkinsonian (striatonigral degeneration) form associated with
variable degrees of autonomic failure [132]. Depending on the predominant phe-
notype of the motor disorder, MSA is mainly classified into a parkinsonian type
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(MSA-P) in 80% of patients and a cerebellar type (MSA-C) in 20% of patients [127].
Pathologic studies of both groups of patients have demonstrated neuronal degen-
eration and gliosis in many brain regions, such as, the basal ganglia, brainstem,
spinal cord and cerebellum [133]. In MSA, regional cerebral blood flow and glucose
metabolism are reportedly reduced in some regions, such as, the striatum, cere-
bellum, and in some cortical structures. This reduced metabolism in the striatum
might help to distinguish MSA from PD patients [5].
The MSA-P can be reliably diagnosed only if prominent signs of autonomic failure,
such as, impotence or postural hypotension develop early in the course of the dis-
ease or a clear cerebellar syndrome is also present [134]. Besides dysautonomia,
other clinical characteristics can help differentiate MSA-p from PD: rapid course,
early instability and falls, nocturnal stridor, stimulus sensitive myoclonus, severe
dysarthria, pyramidal tract signs and insufficient or only transient response to L-
dopa [135, 136]. Regarding to neuro-transmission, MSA is identified by a degener-
ation of the pre- and postsynaptic dopaminergic system [137]. Therefore, PET and
SPECT investigations with the respective presynaptic and postsynaptic tracers have
been proven to improve the differential diagnosis of IPS and MSA as well as cor-
ticobasal degeneration and PSP [88, 138]. However, the major difference between
MSA and PD, is the presence of pathologic findings on the postsynaptic level. Thus,
on the presynaptic level, diagnostic discrimination between MSA and PD is not re-
liably possible [139].

2.6.2 Progressive supranuclear palsy (PSP)

PSP, also known as Steele-Richardson-Olszewski syndrome, is a rapidly progressing
degenerative disease belongs to the family of tauopathies [137]. Clinically, PSP is
characterized by parkinsonism with rigidity, bradykinesia, falls, postural instabil-
ity, a pseudobulbar syndrome that includes dysarthria and dysphagia and promi-
nent frontal lobe syndrome [5, 134]. The PSP key feature is the supranuclear palsy
of vertical gaze. It occurs rarely at disease onset and usually arises later [140].
Histopathologic findings of this neurodegenerative disease show cell loss and glio-
sis [5]. Neuropathological studies of this disease exhibit the existence of abundant
tau-positive neurofibrillary tangles in different brain regions, such as, subcortical
and brainstem structures [141]. Epidemiological [142] and clinicopathological [143]
studies of PSP show the frequent diagnostic confusion with PD, specifically, in the
early stages of this disorder before gaze abnormalities appear. Furthermore, this
confusion with PD can be in patients without gaze palsy, or when full-blown parkin-
sonism dominates the clinical picture [134]. Otherwise, the main distinguishing
features of PSP vs. MSA and PD are the decrements of glucose metabolism in the
brainstem and in the midline frontal regions [137].
The neurodegeneration in PSP affects both the pre- and postsynaptic dopamine sys-
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tem [144]. Therefore, the respective PET and SPECT findings are similar to those in
MSA subjects, i.e., showing a reduced striatal dopamine-receptor binding on both
levels [145]. Thus, PSP patients cannot be reliably separated from those with MSA
neither with pre- nor postsynaptic tracers at an early stage of these diseases [139].
Nevertheless, as in the MSA disorder, the presence of pathologic PET and SPECT
findings at the postsynaptic level allows the separation between PSP and PD [146].

2.7 Functional Imaging and its Role in the Differential
Diagnoses of Parkinsonism

An early and correct diagnosis of PD is important for the management of patients.
The diagnosis is usually based on the results of clinical assessments and clinical
signs have proved to be insufficient for accurate diagnosis especially at an early stage
and in elderly subjects. The initial diagnoses of PD made by general neurologists
have shown to be incorrect in 24% to 35% of the cases [33]. A reliable diagnostic
test, which could be used to differentiate between different tremor disorders, would
therefore be of great value.
Therefore, as a feature of PD is a marked reduction in dopaminergic neurons in
the striatal region, brain imaging techniques, such as SPECT or PET using pre- and
postsynaptic radiotracers [5] (see Table2.3) can be used as a valuable tool to evaluate
PS patients [34, 147, 148], such as I-Ioflupane (better known as DaTSCAN [34, 149]
or [123I]FP-CIT [1]), [123I]-β-CIT, [123I]iodobenzamide (IBZM) [150] and [Tc-99m]-
TRODAT-1 [151]. These radiopharmaceuticals, which may examine the integrity
of the nigrostriatal dopamine function with imaging techniques and bind to the
dopamine transporters in the striatum, have evolved as in vivo markers of progres-
sive dopaminergic neuron loss in PS.
In this Thesis, we focus on two specific tracers for SPECT and PET imaging for the
diagnosis of PS. These tracers are [123I] FP-CIT (DaTSCAN) and 18 F-Desmethoxy-
fallypride (DMFP). They have been developed to measure dopamine synthesis and
transport for the PS diagnosis purpose.
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2.7.1 DaTSCAN SPECT imaging

The dopamine transporter ligands, such as 123I-FP-CIT (N-ω-fluoropropyl-2-β-carbo-
methoxy-3β-(4-[123I]iodophenyl) nortropane), Iodine-123 (123I) Ioflupane (DaTSCAN)
is a novel proprietary radiopharmaceutical marketed by GE Healthcare [152]. It be-
cames commercially available following U.S. Food and Drug Administration (FDA)
approval in June 2011. Prior to release in the United States, DaTSCAN had been
widely used in Europe with over 100,000 recorded procedures since 2002. It is a
useful tool in clinical practice to confirm diagnosis of PD and to differentiate from
other diseases [107, 149, 153]. Indeed this radioligand has a high binding affinity
for DaTs, particularly in the striatal regions of the brain (putamen and caudate nu-
cleus) [117, 154, 155].

Normal Parkinson’s disease

Caudate

nucleus

Putamen

Figure 2.5: DaTSCAN measures presynaptic dopamine transporters in the nerve ter-
minals. In a normal scan the striatum is clearly visible as symmetric, comma-shaped
regions, with both the caudate and putamen showing a high intensity compared to
the background. However, there is a loss of DaTs signal in PD.

In Figure 2.5, DaTSCAN shows the loss of DaTs signal in PD compared to normal
subject where the striatal binding of [123I]FP-CIT is symmetrical and clearly visible
in both the caudate nucleus and putamen. In early PD, there is usually an asymmet-
rical pattern of reduced DaT binding starting in the dorsal putamen contralateral
to the clinically most symptomatic body side, gradually progressing anteriorly and
ipsilaterally as the disease becomes more severe.
Moreover, DaTSCAN may be used to help differentiate Essential Tremor (ET) from
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tremor due to PS (idiopathic PD, MSA and PSP) [155, 156]. However, imaging with
this dopaminergic marker will not reliably differentiate between PD and other neu-
rodegenerative brain diseases such as MSA or PSP [157]. In addition, (123I)Ioflupane
should be used selectively for patients whose diagnosis is uncertain and for whom
the result of a DaTSCAN image would make a difference [158]. While it may be
helpful to exclude patients without dopamine deficiency from clinical trials, the di-
agnosis of PD remains predominantly clinical, and the role of molecular imaging is
limited and not without controversy [159, 160].
The DaTSCAN SPECT is a nuclear medical imaging technique used for the estima-
tion of dopaminergic reabsorption within the human brain to assist in the evaluation
of patients with suspected PS. In cases of uncertain PS, a DaTSCAN image can help
clinicians choose among medications that are most likely to provide benefit and
avoid those that will not. (123I)Ioflupane may be an economically advantageous
diagnostic tool, avoiding costs related to inappropriate treatment of non-PD cases
with expensive and unnecessary visits by medical personnel, and conversely avoid-
ing the costs of cumulative disability related to a missed diagnosis of PD, thereby
lowering the total cost of care of these patients to health economies [158].
DaTSCAN SPECT maintains all the main characteristics of SPECT described in sec-
tion 2.1, using gamma cameras for detecting radioactivity level, but its application
is only concerned with brain analysis, for investigating on the dopaminergic system.
The scan involves injection of an intravenous radio-labelled ligand of the presynap-
tic DaTS, to be traced by a gamma camera for evaluating the amount of DaTs of the
brain striatum.

2.7.2 DMFP PET imaging

As mentioned previously, the diagnosis of PD may be challenging for the treating
physician, particularly in the early stages of disease. To aid in the differential diag-
nosis of PD and related Parkinsonian disorders versus, for example, ET, a presynap-
tic dopaminergic SPECT tracer such as 123 I-labelled ioflupane FP-CIT, occupying
the presynaptic dopaminergic transporter, is commonly used. On the other hand,
for the differential diagnosis between idiopathic parkinsonian syndrome (IPS, PD)
and atypical parkinsonian syndromes (APS), such as PSP or MSA, a SPECT post-
synaptic D2 dopaminergic receptor ligand such as 123 I-labelled iodobenzamide
(IBZM) is normally proposed [127]. Recently, some works have successfully used
the radiotracer 18F-Desmethoxyfallypride (DMFP) to analyze the dopamine D2/3
receptors and it was found that this tracer is suitable to differentiate between id-
iopathic and non-idiopathic PS [88, 138].
In Figure 2.6, two transverse images of the striatal dopamine D2/3 receptor binding
of 18 F-DMFP in single representative patients with non-IPS (Right scan) and IPS
(Left scan) are shown. The left-hand image shows an IPS patient with clinically left-
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dominant tremor, there is slight (compensatory) increase in striatal tracer uptake,
which is dominant in the right striatum. The right-hand image depicted a patient
suffering from APS with clinically left-dominant tremor. The striatal tracer uptake
is considerably decreased, with the lowest uptake in the left striatum. Decreased
D2/3 receptor binding, which was predominant in dorsal part of striatum, is shown
in non-IPS, whereas increased D2/3 receptor binding mainly in posterior putamen
could be discerned even visually (left image). Thus, the pathologic imaging results
reflect degeneration of postsynaptic fibers of the dopaminergic system within the
striatum. Note that presynaptic imaging alone would not distinguish between PD
and APS. Only at the postsynaptic level is there a marked difference between PD
(no neurodegeneration) and APS (neurodegeneration).
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Figure 2.6: Striatal dopamine D2/3 receptor binding of 18F-DMFP in patients with
IPS and APS.

First human investigations on the developed 18F-fluorinated benzamide 18 F-
desmeth-oxyfallypride [((S)-N[(1-allyl)-2-pyrrolidinyl)methyl]-5-[(3-18F-fluoropropyl)-
2-meth-oxybenzamide: [18F]DMFP demonstrated that 18 F-DMFP is a highly reli-
able tracer for the PET imaging of dopamine D2-like receptors, showing a com-
parable receptor affinity and very similar selectivity to 11C-raclopride [161]. 11C-
raclopride is anotherD2/3 receptor radiotracer. 18F-DMFP presents the advantage of
being labeled with fluorine-18 and therefore does not require an on-site cyclotron
[162]. Moreover, this tracer compared with 11C-labeled ligands, lends itself to more
routine clinical use while bringing the benefits of persistently high specific activity.
The benzamide antagonist 18F-Desmethoxyfallypride was found to be a sensitive
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agent for the differential diagnosis of patients with parkinsonism, showing high
specificity and positive predictive values for the differential diagnosis of IPS and
non-IPS (APS) [161], albeit in a relatively small group. Thus, [18F]DMFP PET is a
valuable tool for postsynaptic D2/3 receptor quantification, differential diagnosis of
idiopathic Parkinson’s disease and atypical parkinsonism and can provide valuable
information in unclear cases.
Whereas recent studies [88, 138] confirm the high sensitivity and specificity of
[18F]DMFP, but further clinical investigation will be needed, including larger pa-
tient groups and anatomopathological confirmation of the diagnostic of patients.

2.8 Conclusion

In this chapter, an overview of the SPECT and PET image formation process is given.
This chapter aims to give a reader that is unfamiliar with these imaging modalities,
some basic notions about these kinds of medical images and what they represent.
An understanding of the image formation process is necessary in order to under-
stand what SPECT and PET images show. The dopaminergic system plays a major
role in neurological disorders, such as PD. An important neuropathological charac-
teristic of PD is a severe loss of nigrostriatal dopamine neurons and consequently
a decrease of striatal DaTs. To investigate pre- and postsynaptic function, SPECT
and PET tracers, such as, [123I]FP-CIT (DaTSCAN) and 18F-Desmethoxyfallypride
(DMFP) have been developed to measure dopamine synthesis and transport for the
PS diagnosis purpose. Contrary to usual image processing problems, the result-
ing images are difficult to interpret. This is due to the low spatial resolution of
these kind of images and because their interpretation necessitates additional expert
knowledge. Furthermore, because image intensities observed in a SPECT or in PET
image are not quantitative, the issue of image intensity normalization is particularly
delicate. The information contained in the superimposition of two images (spatial
normalization) can be used with advantage to improve such normalization as ex-
plained in the following chapter where this issue is also further discussed.



Chapter 3
Pre-processing

Recent advances in medical imaging have made possible to obtain three-dimensio-
nal (3-D) anatomical and metabolic information about the internal structure of the
human body. Different medical imaging modalities provide specific information
about human brain physiology and physiological processes that is often comple-
mentary in diagnosis. The complexity of brain structures and the differences be-
tween brains of different subjects make necessary the normalization of the images
with respect to a common template. Thus, before being used in a statistical anal-
ysis, tomographic images must follow a process known as preprocessing ensuring
that the images are comparable. This process should include both spatial and inten-
sity normalizations, although sometimes entails more tasks, such as, skull removal,
smoothing, tissue segmentation, motion correction, etc.

3.1 Spatial Normalization

To better understand physiological processes, images obtained from different modal-
ities need to be registered [163]. For instance, anatomical images of the brain ob-
tained from magnetic resonance imaging (MRI) modality need to be coregistered
to metabolic images of the same patient obtained by positron emission tomography
(PET) imaging modality in order to analyze the metabolism within the anatomical
volume of a tumor. Through the comparative quantitative and qualitative analyses
of anatomical and metabolic volumes of the tumor from the registered images ac-
quired during the treatment, the response of the treatment can be evaluated. Anal-
ysis of registered 3-D multimodal images from a control group of subjects allows
the study of variance of specific features for better diagnosis, the understanding of
pathology, and therapeutic intervention protocols.



46 Chapter 3. Pre-processing

To make meaningful comparisons between images from different brains, extrinsic
differences (position and orientation) must be removed and intrinsic differences
(size and shape) minimized. A transformation process called spatial normaliza-
tion (SN) [164] or intersubject registration is used to account for these differences
by matching a set of brain features derived from a standard brain into a common
space for analysis [165]. Brain position, orientation, and size provide the minimal
set of global spatial features for SN in 3-D. The low resolution and the intersub-
ject variability between [123I]FP-CIT SPECT images renders them very difficult to
register. For this reason, some published works performed the SN assisted by the
existence of a high resolution MRI for each subject under study [166]. This strategy
is the most accurate because of the high spatial resolution of anatomic images but
requires the acquisition of an MRI scan for each individual undergoing DaTSCAN
SPECT. Moreover, it requires an accurate registration of the DaTSCAN image onto
the individual magnetic resonance (MR) image. These constraints make such an ap-
proach difficult to implement in clinical routine [167]. In the studies of this thesis,
all the DaTSCAN SPECT and DMFP PET images were spatially normalized using
the Statistical Parametric Mapping (SPM) 8 software [168] yielding a 73 × 73 × 45
and a 79× 95× 68 three-dimensional functional activity map for each subject. This
method assumes a general affine model with 12 parameters (3 translations, 3 rota-
tions (rigid-body), 3 shears and 3 zooms, as shown in Figure 3.1) and a Bayesian
framework that maximizes the product of the prior function (which is based on the
probability of obtaining a particular set of zooms and shears) and the likelihood
function, derived from the residual squared difference between the template and
the processed image [169]:

cf =
∑
i

(I(Mxi)− Ī(xi))2, (3.1)

where I denotes the source image and Ī is the template. For each voxel x = (x1,x2,x3)
in an image, the affine transformation into the coordinates y = (y1, y2, y3) is ex-
pressed by a matrix multiplication y = Mx.


y1
y2
y3
1

 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

0 0 0 1



x1
x2
x3
1

 . (3.2)

After the affine normalization, a more complex non-rigid spatial transformation
model is used to register the resulting image. The deformations are parameterized
by a linear combination of the lowest-frequency components of the three-dimensional
cosine transform bases [170]. A small-deformation approach is used and regulariza-
tion is achieved by the bending energy of the displacement field.

The template Ī is computed by registering all control subject images to a ran-
domly chosen one of them by affine transformations, as shown in eq. 3.2. The
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Figure 3.1: The SPM normalization procedure to match the size and position of the
images.

registered images and their hemisphere midplane reflections are averaged to create
the template [167], providing a symmetric image, as shown in the Figure 3.2.

Ī =
1
Nc

∑
i∈Xc

(Ii(x,y,z) + Ii(−x,y,z)) (3.3)

where Xc denotes the subset of control images, Nc the number of control images,
Ii(x,y,z) is the ith image and Ii(−x,y,z) is its reflected image in the x = 0 hemisphere
midplane.

Figure 3.2: Template image generated by averaging the control subjects and sym-
metrizing them for DaTSCAN SPECT data.

The main reasons for building the template Ī by a simple averaging process of
co-registered images from healthy patients [19, 171], as shown in Figure 3.3, are
that DaTSCAN SPECT images provide low resolution smoothed functional maps
about the uptake in the striatum area with limited morphological information. In
addition, intensity normalization is aimed to correct inter-subject variability in the
intensity level of the image due to a variety of reasons related to the acquisition pro-
cess. Thus, high resolution morphological information is not required by intensity
normalization since the algorithms are often based on descriptive statistics related
to the specific and/or non-specific areas to correct global variations of the intensity.
However, there are many developed methods to build the template for MRI where
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the morphological changes in tissues are important for most of the applications,
such as the mean shape method [172, 173].

Figure 3.3: The computed template used in the intensity normalization process for
DaTSCAN images.

This SN ensures that any given voxel in different images refers to the same
anatomical position across the brains. This step allows us to compare the voxel
intensities of the brain images of different subjects.

3.2 Intensity Normalization

Intensity normalization takes a very significant role in quantitative SPECT imag-
ing. In order to compare the functional activity distribution between subjects or
scans, the observed counts must signify absolute measures of this activity. Report-
ing absolute values of the regional cerebral blood flow (rCBF) also makes it possible
to compare values across imaging centers. The problem of obtaining quantitative
measures in emission tomography is a subject of active research.
The standard method for analyzing SPECT images is the calculation of the bind-
ing potential (BP) in the striatum. BP is a quantitative measure of specific tracer
binding, and is lower in PD patients as compared to healthy subjects [153, 154].
Accurate estimation of BP can be obtained by kinetic analysis of dynamic SPECT
studies [174]. Alternatively, a simplified, although somewhat biased, estimate can
be obtained from a static SPECT study [175], performed after a state of pseudo-
equilibrium in the tracer uptake has been reached. This specific-to-non-specific
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binding ratio can then be estimated as [176]:

BR =
CVOI −CN

CN
=
CVOI
CN

− 1 (3.4)

where CVOI is the mean count per voxel in the volume of interest (striatum, puta-
men or caudate nucleus) and CN represents the mean count per voxel in the non-
specific binding region (occipital cortex). This binding ratio is widely used in the
literature for normalization purpose in different functional brain images [177–179],
such as SPECT or PET images. The occipital region was chosen as reference region
because of negligible density of DaTs [180]. For this purpose, clinicians often use
proprietary software to delimit regions of interest (ROIs) and quantify the radio-
pharmaceutical uptake [181]. This procedure can be subjective and prone to error,
since it relies on gross changes in transporter density throughout the ROIs to allow
the differentiation between controls and pathological images. As such, it may not be
sensitive to changes in the pattern of distribution that can characterize the progres-
sion of the disease [182]. In contrast, some more automatized methods have been
proposed which establishes semiquantitative parameters in order to index absolute
differences between specific/non-specific uptake in the tomographic examinations
[183]. For this purpose, it is necessary that the images are quantitative, in the sense
that the image value in each voxel is proportional to the activity concentration.
The quality of acquired images is degraded by both physical factors, such as comp-
ton scattering and photon attenuation, and system parameters, such as intrinsic
and extrinsic spatial resolution of the gamma camera system. These factors result
in blurred and noisy images. Most times, the blurred images present artifacts that
may lead to a fault diagnosis. In order to gain a fair diagnostic of the functional
brain images for the physician, it is compulsory to follow a specific series of process-
ing, such as, scattering and attenuation correction during the image reconstruction
procedure, and preferably also resolution compensation or partial volume correc-
tion [184]. In addition, the intensity normalization is a relevant preprocessing step,
which guarantees that the differences between images of different subjects are due
to physiological reasons and brain functioning, and not due to the baseline calibra-
tion of the gamma camera applied for the acquisition [35]. The conventional way
of carrying out the intensity normalization is to consider as a reference the brain
region which is not significant as a differentiating criterion between, both ill and
healthy image subjects. Since the discriminant region for PD is the striatum, the oc-
cipital region is usually chosen as a reference because it is devoid of DATs and it is
usually selected as the background region. However, in this thesis, the whole brain
area is considered, minus the striatum, as a non-specific (NS) region[185, 186]. The
main reasons for this choice are that DaTSCAN SPECT images contain considerably
fewer anatomic details and omit structural details about the location of the occipi-
tal cortex (the normalization region). Furthermore, the partial volume effect causes
blurring of counts from the grey matter into the ventricular space, often to such
an extent that the ventricles are practically indistinguishable, sometimes making it
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difficult to use confidently occipital or frontal cortex regions. The proposed use of
the overall non-specific region should reduce variability as well as improve count-
ing statistics [181]. Thus, this image preprocessing stage consists of comparing the
uptake value in areas of specific activity (binding to dopaminergic transporters) to
the value in areas of non-specific activity (vascular activity) between subjects.

3.3 The state of the art

There are a variety of normalization methods available in the literature for the PD
image normalization [187–190]. These approaches are based on general normaliza-
tion of 3D functional images and may be adapted for the normalization of a par-
ticular type of images, such as the SPECT or PET images used in this thesis for
PD diagnosis. In this section, we will try to present some conventional intensity
normalization methods adequately adapted to the nature of the PD images. In ad-
dition, they will be considered for comparison with our proposed approaches.

3.3.1 Specific-to-non-specific binding ratio (BRall-IN):

This normalization approach is based on the computation of the radiopharmaceuti-
cal binding ratio (BR) at each voxel between high and low blood flow as a function
of the tracer concentration in the blood flow [156, 176] (see eq. 3.4). This BR can
be used for the normalization of functional brain images [191]. The normalization
process is based on dividing each voxel intensity by the mean intensity value in the
so-defined non-specific (NS) region [2]. This region includes a very large intensity
range since more structural areas apart of the occipital cortex are considered. Thus,
BRall denotes the binding ratio calculated using all the brain voxels except those in
the striatum as NS region. The main motivation for this choice is that this region is
devoid of dopamine transporter-binding sites. The exact relationship between the
specific-to-non-specific ratio and dopamine transporter density can be affected by a
number of factors and may not be linear unless the tracer achieves a stable equilib-
rium during the imaging period [156].
This ratio approach is commonly used to remove the effect of global values in several
imaging applications [190]. In addition, it outperforms ANCOVA, z score, residual
and subject residual profile approaches [189]. For these reasons, we considered
this ratio approach as a baseline for comparison with our proposed approaches.
However this normalization method depends on time consuming operator-intensive
work and expertise skills in manually placing the regions of interest (ROI). In ad-
dition, this approach assumes the tracer concentration in the blood to be stationary
over the whole image volume.
Moreover, the size of the volumes of interest, in particular, has a direct impact on
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the measurement of count concentration. This is mainly a consequence of the poor
spatial resolution of functional imaging, which causes counts to be blurred out of
the physical volume of the structure, i.e, partial volume effect [192], and therefore
makes it difficult to evaluate count concentrations with accuracy [181].

3.3.2 Integral-based intensity normalization [1](Integral-IN):

Integral-based intensity normalization consists of the computation of an intrinsic
parameter from the image, Ip. This normalization is performed by the estimation of
the binding activity:

Î =
I
Ip

(3.5)

where I denotes the spatially normalized image, Î denotes the intensity normalized
image and Ip is the integral intensity value. It can be approximated as the sum of
all the intensity values of the image, giving an integral value of intensity [19]:

Ip =
∫
I(x,y,z) ≈

∑
I(x,y,z) (3.6)

Thus Ip can be seen as the mean intensity of the image [1]. The computation of
this integral intensity value can be estimated in a particular reference volume in the
brain for each 3D brain image. In the particular case of PD, the reference volume has
to be properly defined and selected. In this thesis, it is proposed to set the reference
region to the complete brain volume without the striatum region, as mentioned
above.
Integral-IN preserves absolute differences in the uptake values, producing a similar
measure for NS region, and differences in striatal structures with highest intensity
counts [1]. This method is inexact and more sensitive to extreme values, for instance
subjects with severe loss of dopamine receptors, high intra-subject differences in the
binding potential, or outlier characteristics [1].

3.3.3 Intensity normalization by minimizing the Kullback-Leibler
divergence (MKL-IN):

The basic idea of the method presented in [193] is to estimate a multiplicative cor-
rection field in order to match a template histogram to a reference model density.
The observed image I can be expressed as:

I = FÎ +n (3.7)
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where F is a multiplicative intensity corruption field, n is the additional acquisition
noise and Î is the desired correct image. After neglecting n for having only little in-
fluence on the problem of intensity normalization and solving the eq. 3.7 for Î , the
uncorrupted image is obtained as Î ≈ F−1I . The intensity adjustment parameter F−1

has to be chosen in a way that the Kullback-Leibler (KL) divergence [194] between
the adjusted source and target data sets is minimized. The Simultaneous Perturba-
tion Stochastic Approximation (SPSA) is used to generate the gradient estimate and
then to adjust the current solution estimate according to the gradient estimate, as
shown in Appendix A.2. This approach have the following advantages [193]: i) It
can be matched to a supplied histogram model which can be generated by any rep-
resentative subject. This allows to proceed without assumptions about the shape of
the histogram or the specific contribution of a given class of tissue. ii) Since it can
be solved for a spatially varying normalization field, it is not necessary to involve a
separate step for field inhomogeneity correction. However, taking into account the
computational load, this normalization scheme is more demanding, as it is based
on an iterative algorithm (SPSA) and it needs the optimization of many parameters,
such as, the gain sequences, the maximum number of iterations, the initial intensity
adjustment parameter, etc. In addition, it is necessarily constrain the estimates of
F−1 to be of low spatial frequency. This provides a solution that improves the clus-
tering of global image statistics while preserving the local contrast that defines the
anatomical boundaries of interest.

3.3.4 Histogram equalization (Hist-eq-IN)

Histogram modeling techniques, i.e., histogram equalization provide a sophisti-
cated method for modifying the dynamic range and contrast of an image by alter-
ing each individual voxel such that its intensity histogram assumes a desired shape
[195]. A monotonic, non-linear mapping is employed by histogram equalization ap-
proach which re-assigns the intensity values of voxels in the input image such that
the output image contains an uniform distribution of intensities [196]. Through this
adjustment, this method is used in image comparison processes (because it is effec-
tive in detail enhancement) and in the correction of non-linear effects introduced
by a digitizer or display system [197]. The gray levels in an image may be viewed as
random variables in the interval [0, 1]. One of the most fundamental descriptors of
a random variable is its probability density function (PDF).
Suppose that the desired or specified normalized histogram is pd(t), with the desired
image being represented as d, having the normalized gray level t = 0,1,2, ...,L − 1.
Now, the given image f with the PDF pf (r) may be histogram-equalized by the
transformation:

C1(r) =
∫ r

0
pf (w)dw 0 6 r 6 1 (3.8)



3.3. The state of the art 53

where C1 is the cumulative sum of the image f for all intensities r, r is the gray
levels of the image to be enhanced and w is a dummy variable of integration [198].
The histogram-equalizing transform for the desired image may be also driven as:

C2(t) =
∫ t

0
pd(w)dw 0 6 t 6 1 (3.9)

where C2 is the cumulative histogram of the reference image.
For discrete values we deal with probabilities and summations instead of probabil-
ity density functions and integrals. The probability of occurrence of gray level rk in
an image is approximated by:

pf (rk) =
nk
n

k = 0,1,2, ...,L− 1 (3.10)

where n is the total number of voxels in the image, nk is the number of voxels that
have gray level rk, and L is the total number of possible gray levels in the image. The
discrete version of the transformation function given in eq.3.8 is

C1(rk) =
k∑
j=0

pf (rj) =
k∑
j=0

nj
n

k = 0,1,2, ...,L− 1 (3.11)

Thus, a processed (output) image is obtained by mapping each voxel with level rk
in the input image into a corresponding voxel with level C1(rk) in the output image
via eq. 3.11.
Mathematically, when a desired histogram is supplied, histogram equalization con-
sists of choosing the grayscale transformation T to minimize

‖ C1(T(t))−C2(t) ‖ (3.12)

This minimization is subject to the constraints that T must be monotonic andC1(T(a))
cannot overshootC2(a) by more than half the distance between the histogram counts
at a given intensity value a [106]. Then, the transformation T will be used to map
the gray levels in the image f (or the colormap) to their new values.
This non-linear normalization approach is performed for IN of functional imaging,
such as, SPECT and PET imaging as follows:

• Firstly, a mask is applied in the source images in order to consider only those
voxels with intensity values greater than a given threshold. This step is done
to discard those image voxels that are outside of the brain.

• Secondly, the histogram of the template image is calculated.

• Finally, the histogram matching is performed and the intensity values in the
source images are adjusted to the intensity values of the reference template.
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The histogram equalization approach appears robust and versatile in many previous
work, such as in [190]. For this reason, we will used it for comparison with our
proposed approaches. In addition, we will try to implement it at a first stage on the
whole image and at the second stage on the NS region. This could avoid its effect on
the striatum, as it is a nonlinear normalization method.

3.3.5 Normalization to the maximum intensity values [1] (Max-
IN):

This normalization method is applied individually for each scan of subject by re-
ferring each voxel to the average value of the highest intensity voxels set in [%].
Thus, the statistical comparison among different scan subjects could be permitted
[186]. Moreover, this approach aims to extend the size of discriminative regions by
interchanging the roles of specific/nonspecific areas of functional activity distribu-
tion between subjects [1]. This normalization approach may introduce problems in
some images which can have peak intensity values due to noise [186]. These nor-
malization errors can be removed when the intensity normalization is referred to a
voxel set with the highest intensity values. The number of voxels usually considered
for this intensity normalization are around 0.1% voxels [1]. Taking into account the
lower intensity levels, i.e., lower activation in the case of PD patients compared to
healthy subjects, this normalization method is prone to error. Furthermore, in nor-
malization to the maximum scheme, the striatal tracer uptake is matched for all
subjects, including patients and normal controls. This could lose the relation be-
tween the loss of dopamine receptors and decreased count numbers. Thus, in terms
of absolute uptake values, the interpretation is lost [1].

3.3.6 The α-stable distribution-based intensity normalization [2]
(α-stable-IN):

The α-stable distribution can be used for the adjustment of the functional images,
such in [2, 186]. If the intensity distribution of the images without the striatum
region is analyzed, a unimodal, heavy-tailed and skewed distribution is obtained,
with different variance and mean values. These intensity distributions can follow
an α-stable distribution [2].
The α-stable distribution is represented by the following equation [186, 199]:

fα,β(y|γ,µ) =
1
π
R

[∫ inf

0
ejt(y−µ)e(−γt)α(1−jβ tan(πα2 ))dt

]
(3.13)

Thus, the α-stable probability density function fα,β(y|γ,µ) has four parameters:
α ∈ (0,2] is the characteristic exponent which sets the level of impulsiveness, e.g
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the “tail” of the distribution, β ∈ [−1,+1] is the skewness parameter, (β = 0, for sym-
metric distributions and β = ±1 for the positive/negative stable family respectively),
γ > 0 is called the scale or the dispersion parameter, and µ is the location parameter.

Figure 3.4 gives a visual impression of different parameter values. The distribu-
tion with parameters α = 1.5, β = 0, γ = 1 and µ = 0 is used as reference [2]. This
figure also explain the name of the parameters: α controls the degree of impulsive-
ness; when α decreases, the degree of impulsiveness increases and vice versa. β
controls the skewness and its sign, if the asymmetry is on the left or the right. γ
controls the concentration of the samples along the bulk of the distribution: lower
values of γ correspond with higher concentration of the samples. Lastly, different
values of µ produce the similar probability density functions but shifted in the x-
axis.
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Figure 3.4: The α-stable probability density function with reference parameters {α,
β, γ , µ}={1.5,0,1,0} with changing: (a) Characteristic exponent α. (b) Skewness
parameter β. (c) Dispersion γ . (d) Location parameter µ.
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The intensity normalization using the α-stable is performed by transforming
the vector histogram of intensity data with α-stable distribution with parameters
I ∼ fα,β(y|γ,µ) to another α-stable distribution with distribution Î ∼ fα,β(y|γ∗,µ∗) by
using the following expression

Î = aI + b (3.14)

where a = γ∗

γ and b = µ∗ − γ∗

γ µ. Thus, the goal in this approach is to transform all
the intensity values for different images i with possibly different dispersion γi and
location µi parameters to another α-stable distribution with γ∗ and µ∗ parameters
using the expression in eq. 3.14 [2].

3.4 Conclusion

Data pre-processing is a very critical step in order to obtain meaningful results.
The spatial normalization (registration) of the data volumes is important in order
to ensure that each voxel has an equivalent meaning in all volumes. Moreover, the
intensity normalization is a relevant preprocessing step, which guarantees that the
differences between images of different subjects are due to physiological reasons
and brain functioning, and not due to the baseline calibration of the gamma camera
applied for the acquisition. Some conventional intensity normalization methods
adequately adapted to the nature of the PD images are presented in this chapter. In
addition, they will be considered for comparison with our proposed approaches in
two different medical imaging modalities.



Chapter 4
DaTSCAN image modeling and filtering
based on the Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is widely used approach for regions of interest
selection, density estimation and classification [200–202]. Thus, this probabilistic
model could be used to describe the intensity profile of the brain image and to en-
hance the average intensity gap between the specific and the non-specific areas in
the sense of increasing the signal-to-noise ratio (SNR) for intensity normalization
purposes.
This chapter presents a novel method for intensity normalization of functional brain
images based on GMMs. The proposed methodology considers not only the inten-
sity levels, but also the coordinates of voxels inside the so-defined spatial Gaussian
functions. The model parameters are obtained according to a maximum likelihood
criterion employing the Expectation Maximization (EM) algorithm. First, an avera-
ged control subject image is computed to obtain a threshold-based mask that se-
lects only the voxels inside the skull. Then, the GMM is obtained for the DaTSCAN
SPECT database, performing space quantization by populating it with Gaussian ker-
nels whose linear combination approximates the image intensity. According to a
probability threshold that measures the weight of each kernel or “cluster” in the
striatum area, the voxels in the non-specific region are intensity-normalized by re-
moving clusters whose likelihood is negligible.
The motivations of using this approach are i) to perform an automatic intensity nor-
malization of FP-CIT SPECT images using GMM, ii) to eliminate operator-dependent
manipulations [203] and iii) avoid the manual preselection of relevant information
by means of statistical analysis [176]. In addition, the GMM has the advantage of
simplifying the analytical treatment of the problem. The main novelty with respect
to previous approaches, such as in [2] is that the proposed method locally decom-
poses the image intensity into Gaussians in the spatial domain in order to automati-
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cally select ROIs. In this sense, the proposed strategy allows us to modulate or filter
the voxel intensity in the NS region by discarding the clusters whose probability is
below a normalized threshold in the specific region (striatum). We consider these
deleted Gaussians as a reference region because almost all of them are located in
areas with a low uptake value, i.e. the occipital cortex. Thus, GMM is used as a
filtering strategy to remove artifacts and noise [54, 98], preserving the image details
after the preprocessing stage.

4.1 Signal model

In general, the uptake value in the NS region should be small. Contrariwise, there is
an uptake in this region for reconstructed DaTSCAN images due to an equal supply
of tracer from the vascular compartment [156] and to the presence of several noise
sources, such as Gaussian noise [92, 204]. The image noise may be divided into
random and structured noise. For more details about this physical characteristic
that is used to describe the image quality, we want to refer to the chapter 1. In this
Thesis, a noise model, very similar to the one proposed in [205], is considered and
assumed to be from the scanner itself:

Ii =
µi

ρi
+Ni (4.1)

where the observed signal (Ii) is supposed to be an un-corrupted signal (µi), scaled
by some scanner multiplicative bias (ρi) with added Gaussian noise (Ni) that is in-
dependent of the bias. As a result, the real intensity µi for each voxel can be defined
as:

µi = ρi · (Ii −Ni) (4.2)

where the multiplicative bias is assumed to be inversely proportional to the mean
intensity in the NS region. In the same line of reasoning, almost all the IN methods
in DaTSCAN imaging, i.e. the one based on the BR, usually assume the bias to
be inversely proportional to the number of count per voxel in the NS region (ρi =

1
CNS

) neglecting the independent noise [2, 88]. With this definition, the BR provides
the real intensity in each voxel. In this chapter the NS region, that is commonly
determined by visual inspection, is automatically selected by some specific clusters,
as shown in the following section.

4.2 Gaussian Mixture Models (GMMs)

GMMs are an efficient method for classification and density estimation [200–202].
The basic assumption is that the given data xi , i = 1, ...,Nb is drawn from a probabil-
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ity distribution p(x), which is modeled by a sum of k Gaussian distributions [206]:

p(x) =
k∑
n=1

ωnfn(x|θn) (4.3)

where fn(x|θn) is the density of the n-th Gaussian with parameter vector θn and
the ωn are the weight factors or mixing proportions, with

∑
nωn=1. The normal

distributions fn(x|θn) in d dimensions are given by:

fn(x|θn ∈ {µn,Σn}) =
1√

(2π)d |Σn|
× exp[−1

2
(x−µn)TΣn

−1(x−µn)] (4.4)

where µn are the expectation values and Σn denote the covariance matrices. Geomet-
rical features of the components can be varied by parameterization of the covariance
matrices Σn using the eigenvalue decomposition [207]. For our purpose, shape, vo-
lume and orientation of the Gaussians are assumed to be variable since the relevant
activation areas (ROIs) could be located shapeless and with different sizes across the
brain. To estimate the set of mixture parameters, the Maximum Likelihood Estima-
tion (MLE) is usually considered since no other estimation method is asymptotically
more efficient [208]. This procedure consists of adapting these parameters in order
to maximize the likelihood of a mixture model with k components:

L(θ|x) =
Nb∏
i=1

p(xi|θ) (4.5)

where θ={θn}, for n = 1, ..., k, and x={xi}, for i = 1, ...,Nb, which corresponds to the
probability to observe the given samples xi. If independent and identically dis-
tributed random variables are assumed [202, 209], the MLE can be used in a modi-
fied way, as shown in [210] and in the following section.
Figure 4.1 depicts a visualization of a 2 dimensional Gaussian densities on an arti-
ficial data. In this example, we plot 6 Gaussians with different parameters. Their
means and covariances are randomly generated.

4.2.1 Spatial GMMs

Recently, GMMs have been successfully applied to the field of functional imaging
for voxels of interest (VOI) analysis and image compression [210–212]. The main
idea of this method is to assign each spatial coordinate xj, j=1 . . .Nb, a probability
proportionally equal to hj /Itot, where hj is the intensity value of xj, and Itot is the
total intensity of the image:

Itot =
Nb∑
j=1

hj (4.6)
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Figure 4.1: The curve of Gaussian sets with a 2-dimensional domain.

Under this assumption, the likelihood can be generalized to:

L(θ|x) =
Nb∏
j=1

[p(xj|θ)]hj (4.7)

Since we have hj i.i.d observations of data points at xj. Finally, the complete-data
log-likelihood to be minimized using the expectation maximization (EM) algorithm
[213, 214] is:

`(θ|x) =
Nb∑
j=1

k∑
n=1

hj log(ωnfn(x|θn)) (4.8)

In the presence of hidden data, the MLE can be determined using an EM algorithm
which is described in the next section.

4.2.2 The EM algorithm

The EM algorithm is widely used to maximize the likelihood [213, 214] because it is
a recursive scheme with interesting monotonic convergence properties. Therefore
a suitable initialization is critical in the successful application of EM. In this sense,
hierarchical agglomerative clustering can be performed as an initializing step, such
as in [215] in order to yield reasonable clusterings in the absence of any information
about a possible clustering inherent in the data. For computational reasons, the ini-
tialization procedure are adapted to the specific data the method is intended for, as
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shown in the following.
It is proved suitable to arrange the k Gaussian centers on a regular grid with nx ×
ny ×nz grid points [87]. In order not to “pin” the Gaussian centers at local intensity
maxima of the image, it is preferable to initialize the centers at low activation re-
gions and let them evolve freely. Therefore the central subcube is used with 1/3 of
the side length of the whole brain image, where the intensity is fairly low, and dis-
tribute the Gaussian centers regularly across this region. The distances between the
grid points are li = Li/(3ni), with i = x,y,z and Li being the length of the brain image
in the direction i. The weights are initialized with ωn = 1/k, and the covariances are
chosen to be diagonal for the first step of the iteration with elements 3lx,3ly and 3lz.
This initialization scheme provides a regular and symmetric setup, where the Gaus-
sians initially cover the whole central cube of the brain image and are strongly over-
lapping.
In Figure 4.2, the initialization of the different parameters for the EM algorithm is
illustrated when using an artificial data. The initial position of the clusters are ar-
ranged on a regular grid with 11× 11 grid points. This matrix represents the initial
position of the clusters. Then, the MLE algorithm will change the initial positions
according to the simulated data that we want to model using a GMM (k = 121). The
covariances are chosen to be diagonal for the first step of the iteration with elements
3lx and 3ly .
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Figure 4.2: The initialization of the different parameters of the EM algorithm for a
simulated data.

Along the same lines as shown for instance in reference [200] and using the
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novel log-likelihood as shown in equation (4.8), we can write down the equations
to update the unknown parameters ωn, µn and Σn, where the relations are only
modified by a weight factor hj :

ωn =
1
Itot

Nb∑
j=1

hjqn(xj) (4.9)

µn =
1

ωnItot

Nb∑
j=1

hjqn(xj)xj (4.10)

Σn =
1

ωnItot

Nb∑
j=1

hjqn(xj)(xj −µn)(xj −µn)T (4.11)

The posterior probability qn(x) for a data point to belong to a specific component or
cluster, entering the above equations is defined by:

qn(x) =
ωnfn(x)
p(x)

(4.12)

Starting with an initial guess for ωn, µn and Σn we can recursively apply equations
(4.9), (4.10) and (4.11) until convergence is reached, that is, the changes in the log-
likelihood are smaller than a given threshold. Thus, The EM algorithm terminates
after the difference between successive values of ` falls below some threshold. In
the proposed GMM based method, this threshold was set to 0.00001.
In Figure 4.3, the convergence of the GMM algorithm is illustrated when it is applied
to a 2D simulated data.
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Figure 4.3: Convergence of the GMM algorithm for a simulated data. The circles
represent the individual values of the log-likelihood.
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Figure 4.4 depicts the location of 6 Gaussians in the resulting image after the EM
convergence. In this Figure, the reconstructed image approximates the simulated
data when using a number of Gaussian equal to 121 in the EM algorithm.
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Figure 4.4: The reconstructed image from the obtained Gaussians according to eqs
(4.3).

4.2.3 Model selection

In [216], the authors claimed that a key question for the GMM approach is the num-
ber of Gaussians used for modeling ROIs (parameter k in (4.3)). Several methods
have been proposed to solve model selection problems, i.e. the Bayesian Informa-
tion Criterion (BIC) [217] and the Akaike Information Criterion (AIC) [218], which
suggest generally comparable results [219]. However the most used one is to app-
ly several models with different pre-defined numbers of components and subse-
quently choose the best model according to some model selection criterion (compu-
tational requirements, required dimensionality reduction, dimension of the feature
vector comparable to the number of scans, precision in defining ROIs, etc.) [201].
In this sense, our target is to model the spatial independent sources of any particular
image [220], including those related to noise and artifacts, that perfectly reconstruct
the global intensity of the raw image. This issue is major since there is a trade-off be-
tween reconstruction error and computational time. The reconstruction error, Erec,
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has been estimated as:

Erec =

√∑Nb
i=1(Ii−Ireci )2

Nb

Imax
(4.13)

where Ii and Ireci are the intensities of i-th voxel of the original image and the recon-
structed image, respectively, Nb is the number of voxels and Imax is the maximum
intensity.
In Figure 4.5 the reconstruction error tends to stabilize when the number of Gaus-
sians increases. Moreover, if k is large, the model will represent the image very well
as the reconstruction error decreases. Thus, it can be satisfactorily reconstructed
from the Gaussians, as illustrated in Figure 4.4. However, a large number of Gaus-
sians will vastly increase the computational cost [221].
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Figure 4.5: Reconstruction error of a 2D simulated data vs the number of Gaussians
used in the model.

4.2.4 Density estimation of the intensity profile

Once the model parameters {ωn,θn} are determined, the intensity of each voxel at x
can be recovered by:

IGauss(x) = Itot · p(x) = Itot ·
k∑
n=1

ωnfn(x|θn) (4.14)

Thus, the reconstructed images approximate the original images by conserving the
total intensity through the superposition of k Gaussians. In Figure 4.6, the effect of
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this modeling process is shown. The GMM method performs a space quantization
of each image by populating it with Gaussian kernels whose linear combination
approximates the image intensity. In principle, a histogram bin is associated to each
voxel coordinate xj of the DaTSCAN image, such that its intensity I(xj) corresponds
to the histogram height hj .

Figure 4.6: Left column: different slices of DaTSCAN image of an average normal
subject. Central column: different location and intensity of the clusters with prob-
ability values larger than 50% of the total height (colors indicate intensity). Right
column: reconstructed image from the obtained Gaussians according to eqs (4.3)
and (4.14).

4.3 GMM-based image filtering (FGMM)

The previous GMM modulates the voxel intensity of the image as shown in (4.14).
This probabilistic model can be used to enhance the average intensity gap between
the specific and the non-specific areas in the sense of increasing the signal-to-noise
ratio (SNR) for normalization purposes. During the image reconstruction, classical
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filtering techniques can be used [107, 152], however, as the uptake is reduced in
abnormal studies, the images will contain fewer counts and still appear to be noisy
in DaTSCAN SPECT imaging.

Let Ω be the indexed set of Gaussians. From (4.14) the following expression can
be derived by splitting Ω into two subsets:

IGauss(x) = Itot ·

∑
n∈Ωs

ωnfn(x|θn) +
∑
n∈ΩN

ωnfn(x|θn)

 (4.15)

where Ωs and ΩN denote the subsets of clusters modeling the un-corrupted signal
and the noise components, respectively, in (4.1). If this spatial model holds, the
Gaussian noise (Ni) may be removed from (4.15) by pruning the clusters belonging
to ΩN . The whole normalization procedure is illustrated in figure 4.7. Firstly, the
database is spatially normalized using the SPM software in order to ensure that any
given voxel in different images refers to the same anatomical position across the
brains. Secondly, a GMM approach is obtained for modeling the intensity profile
of the original image. In this sense, the intensity profile of each DaTSCAN SPECT
image is approximated by a sum of Gaussians (model-based clustering or parcella-
tion approach [212]) by satisfying a maximum likelihood (ML) criterion. Finally, the
resulting mixture model will be used for IN according to a cluster selection strategy.
Clusters are selected by means of a normalized probability threshold that measures
the weight of each kernel on the striatum area and the IN is actually carried out by
only adding the relevant clusters in the image reconstruction. Thus, the selected
clusters are used for GMM-based image filtering, which performs IN of the func-
tional images in the NS region and provides a noise-reduced image. In this way the

Figure 4.7: Block diagram of the IN procedure for DaTSCAN SPECT images

proposed IN method consists of the following steps:
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• A striatal mask 1 (see Figure 4.8 ) is computed by thresholding the average
image of control subjects. Then, the coordinates of each voxel belonging to
the striatum, denoted by Γ= {xs

j } for j={1, . . . ,Ns} are selected, where Ns is the
number of voxels within the striatum.

• A statistical criterion is defined for the set Ωs, that is, to determine which
clusters of the GMM are relevant in Γ . If the total intensity is assumed to
be uniformly distributed in the image, the probability of each coordinate is
pu(xj) = 1/Nb ≡ η � 4 · 10−6, where Nb is the total number of voxels. Thus, the
partial probability value of a given voxel in Γ that satisfies:

fn(xs
j |θn) < η n ∈Ω (4.16)

reflects a deviation from the uniform threshold value, that is, a negligible con-
tribution to (4.3). A cluster n ∈ΩN is considered as irrelevant if this inequality
holds for a large fraction α of Ns i.e. a fraction equal or greater than 75% (see
Appendix A.1 and Figure 6.20 for further details):

card{Γn} ≥ α ·Ns (4.17)

where Γn denotes the subset of non-activated voxels for the cluster n, that is,
the subset of voxels that satisfies (4.16). The irrelevant clusters are removed
from the probabilistic model by setting its weight ωn to zero. Otherwise the
cluster n ∈Ωs is considered as relevant (the cluster with activated voxels in Γ )
and contributes to the mixture distribution.

1The striatal mask is a binary mask, which is applied to each volume in order to select only the
high-intensity voxels of the striatum area (region of specific activity).
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Axial Coronal Sagital

Figure 4.8: The striatum mask used in the intensity normalization process.

Figure 4.9 shows the filtering process by means of GMM, using a 2D simulated
data. Here, the relevant Gaussians that contribute to the intensity of a specific re-
gion are preserved and the remaining ones are removed.
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Figure 4.9: The GMM-based image filtering on a 2D simulated data.
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4.4 Conclusion

The core idea of this chapter is to normalize intensity values in DaTSCAN images
using a novel method based on the GMMs, which is widely used in many pre-
processing techniques, such as ROI selection, density estimation, etc. In this chap-
ter, we used the GMM method to remove the Gaussian noise from the DaTSCAN
images, and to reconstruct these images by populating them with Gaussian ker-
nels whose linear combination approximates the original image intensity. In addi-
tion, we modulated the intensity values in the NS region by filtering the GMM-
reconstructed images according to a probability threshold. Using the proposed
GMM-based image filtering approach, the relevant clusters that contribute to the
striatum, the brain area involved in PD diagnosis, are retained. However, the non-
relevant clusters selected in the normalization region (occipital cortex), are auto-
matically removed. The proposed method was implemented using Matlab software.
The principal contributions in the field of soft computing that are presented in this
chapter are related to the topic “probabilistic computing” and its applications in
biomedical engineering, data mining, image processing and pattern recognition.
Moreover, the influence of the probabilistic computing technique shown in this
chapter is evaluated within a pattern recognition system developed for computer
aided diagnosis of the PD, as shown in the experimental chapter.





Chapter 5
Mean Squared Error Optimization for
intensity normalization

Intensity normalization is an important pre-processing step in the study and analy-
sis of functional imaging. As most automatic supervised image segmentation and
classification methods base their assumptions regarding the intensity distributions
on a standardized intensity range, intensity normalization takes on a very signifi-
cant role. In this chapter, three novel intensity normalization methods are pre-
sented. These proposed methodologies are based on mean-squared error (MSE) op-
timization. The first MSE optimization method consists of a linear transformation
at every voxel in the brain image. This transformation is obtained by minimizing
the MSE between the intensity normalized image and the template in the so-defined
non-specific (NS) region. However, the second approach is based on minimization
of the MSE between the Gaussian Mixture Model (GMM)-based extracted features
from each subject image and the template in NS region. Our approach to feature
extraction consists of using the set of parameters that define the template features,
such as weights, covariance matrices and mean vectors to model the remaining ima-
ges by reducing, consequently their dimensionality. Finally, the third intensity nor-
malization approach is based on a predictive modeling using multivariate linear
regression (MLR). Different intensity normalization parameters derived from this
model will be used in a linear procedure to perform the intensity normalization of
functional brain images. This new approach is an extension of the MSE normali-
zation method presented in our previous work in [222]. Thus, this normalization
methodology can be applied to the whole medical image, not only in a NS region.



72 Chapter 5. Mean Squared Error Optimization for intensity normalization

5.1 Mean Squared Error Optimization

The MSE is widely used as a metric for quality assessment of medical image [223]. In
this chapter, its minimization can involve a novel intensity normalization method
for functional images. To state the problem, let I(xi), Ī(xi) and Î(xi) denote the
intensity values of the original, template and normalized images in the NS region
(Figure 5.1).   
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Figure 5.1: General diagram of linear intensity normalization method for functional
images using the MSE approach.

In MSE optimization, an estimate Î(xi) is to be found that minimizes the cost
function ξ:

ξ =
1
Nns

Nns∑
i=1

|Î(xi)− Ī(xi)|2 (5.1)

where Nns is the number of voxels in the NS region. Although the solution to this
problem generally leads to a nonlinear estimator, in many cases a linear estimator
is preferred [224]. In linear mean-square estimation, we assume that the image
intensity levels are related by the following model:

Î(xi) = a I(xi) + b (5.2)

where a and b are the intensity normalization parameters, they represent the scale
and offset of the intensity transformation [225]. The aim of MSE optimization, is to
linearly transform the intensity heterogeneity in the non-specific region for different
functional brain images by jointly estimating the parameters a and b in equation 5.2.
This leads to the joint minimization of a cost function ξ that is expressed as:

ξ =
1
Nns

Nns∑
i=1

e2(xi) (5.3)
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where e(xi) is the estimation error, namely

e(xi) = Î(xi)− Ī(xi) = a I(xi) + b − Ī(xi) (5.4)

Solving the linear mean-square estimation problem may be accomplished by dif-
ferentiating ξ with respect to a and b and setting the derivatives equal to zero as
follows:

∂ξ
∂a

=
1
Nns

Nns∑
i=1

∂e2(xi)
∂a

=
1
Nns

Nns∑
i=1

2 e(xi) I(xi) = 0 (5.5)

∂ξ
∂b

=
1
Nns

Nns∑
i=1

∂e2(xi)
∂b

=
1
Nns

Nns∑
i=1

2 e(xi) = 0 (5.6)

Note that equation 5.5 is the orthogonality principle [224] and states that for the
optimum linear predictor the estimation error will be orthogonal to the data I(xi).
From equations 5.2, 5.4, 5.5 and 5.6, it follows that

a
Nns∑
i=1

I2(xi) + b
Nns∑
i=1

I(xi)−
Nns∑
i=1

Ī(xi)I(xi) = 0 (5.7)

a
Nns∑
i=1

I(xi) + b Nns −
Nns∑
i=1

Ī(xi) = 0 (5.8)

Solving equations 5.7 and 5.8 for a and b we find:

a =

∑Nns
i=1 I(xi)Ī(xi)−Nns mĪ mI∑Nns

i=1 I
2(xi)−Nns m2

I

(5.9)

b = mĪ − a mI (5.10)

where

mI =
1
Nns

Nns∑
i=1

I(xi); mĪ =
1
Nns

Nns∑
i=1

Ī(xi) (5.11)
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Substituting equation 5.10 into equation 5.2, the estimate for Î(xi) may be written
as:

Î(xi) = a I(xi) + (mĪ − a mI ) = a (I(xi)−mI ) + mĪ (5.12)

As a result, the normalized image Î(xi) can be expressed according to the original
image I(xi) and the intensity normalization parameters as:

Î(xi) =

∑Nns
i=1 I(xi)Ī(xi)−Nns mĪ mI∑Nns

i=1 I
2(xi)−Nns m2

I

(I(xi)−mI ) + mĪ (5.13)

After obtaining the optimum linear estimator for Î(xi), the minimum MSE can be
evaluated as:

ξmin =
1
Nns

Nns∑
i=1

e(xi) (a I(xi) + b − Ī(xi)) = − 1
Nns

Nns∑
i=1

e(xi) Ī(xi)

=
1
Nns

(
Nns∑
i=1

Ī2(xi)− b
Nns∑
i=1

Ī(xi)− a
Nns∑
i=1

I(xi)Ī(xi) )

(5.14)

In summary, this intensity normalization procedure for functional images is out-
lined as:

• Firstly, a non-specific mask is computed as the difference between the skull
and the striatum masks of the template in a binary form, as shown in Figure
5.2. Then, it is applied to all images in order to select the brain voxels minus
the striatum as non-specific region.

• Secondly, the average intensity of brain voxels mI and mĪ are computed for
the source I(xi) and the template Ī(xi) images in the NS areas.

• Lastly, the intensity normalization parameters a and b are calculated using
equations 5.9 and 5.10. As a result, a linear intensity transformation is applied
to each source image that minimizes the MSE between the latter image and the
template.

Figures 3.3 and 5.3 depict the computed templates used for normalization among
the different IN approaches for DaTSCAN and DMFP images.
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Axial Coronal Sagital

Axial Coronal Sagital

Figure 5.2: First row: the non-specific mask used in the intensity normalization pro-
cess for DaTCSAN images. Second row: the non-specific mask used in the intensity
normalization process for DMFP images.

5.2 Linear intensity normalization through Gaussians

In this section, a new method for intensity normalization of SPECT and PET brain
images based on minimization of the MSE between the Gaussian Mixture Model
(GMM)-based extracted features from each subject image and a template in the NS
region is derived. The proposed approach is based on a feature extraction tech-
nique, which consists of using the set of parameters that define the template features
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Axial Coronal Sagital

Figure 5.3: The computed template used in the MSE normalization approach for
DMFP PET images.

(weights, covariance matrices and mean vectors) in order to model the remaining
images. Thus reducing consequently their dimensionality. In this sense, we use the
GMM-based algorithm as a feature extraction method, which enables selecting the
clusters whose probability is below a probability threshold in the reference region.
The proposed MSE methodology performs a linear transformation of the intensity
value by estimating the different intensity normalization parameters that leads to
a minimum value of the MSE between the reduced feature vectors in NS region,
which represent the source and the template’s images.
This normalization scheme is a combination between GMM and MSE methodolo-
gies. The main motivations of using, both GMM and MSE are to parcel or delimit
the regions of interest (ROIs) on a functional image as a feature extraction method
and to overcome the computational cost during the image preprocessing stage. For
further details about the arguments for applying GMM to functional images, see
[212]. The procedure we follow to perform intensity normalization is summarized
as follows.

5.2.1 Defining ROIs and feature vectors

The GMM-based algorithm, as shown in chapter 4, is used to define the ROIs in or-
der to normalize the functional images. The Gaussians will be extracted only once
for an average normal image and we will use the obtained GMM configuration as
a common mask to extract the features from all brain images. Therefore we com-



5.2. Linear intensity normalization through Gaussians 77

pute the average normal image using all the images of the normal subjects in the
databases that yields to the GMM arrangement plotted in the right column of Figu-
re 5.4.

Figure 5.4: Left Column: DaTSCAN SPECT image and DMFP PET image of an
average normal subject. Right Column: location of the Gaussians; the ellipses show
the regions of the Gaussians with values larger than 50% of the total height and the
colors indicate the intensity of the clusters. This obtained GMM configuration is
used as a common mask to extract the features from all brain images.



78 Chapter 5. Mean Squared Error Optimization for intensity normalization

This model is used to extract the intensities In of the “ROIs” for each patient,
which are obtained by averaging over the intensities within the n-th Gaussian:

In =
∫

d3x I(x)fn(x) (5.15)

so that the dimensionality of the feature space equals the number of clusters. The
k-dimensional feature vector for each brain image is then defined by:

V = (I1, ..., Ik) (5.16)

where Ii represents the activation level of the Gaussian i for image V . This app-
roach leads to a drastic compression of the information contained in the brain ima-
ge. Hence, the computational cost of the image preprocessing stage is reduced.

5.2.2 Selection of Gaussians in the reference region

In terms of probability, the selection of Gaussians for feature extraction is per-
formed as the following. Let Ω denotes the index set of k Gaussians, Ωs and Ωn
denote the index sets, which depend respectively on the specific and non-specific
binding region, as the commonly used binding potential normalization method
(Ωn ∩Ωs = ∅, Ωn ∪Ωs = Ω). Furthermore, according to eqs. 4.3 and 4.14, we
assume that the intensity in the reference region Ins can be represented by a subset
of clusters Ωn ⊂Ω:

Ins = I ·
∑
n∈Ωn

ωnfn(x|θn) (5.17)

Our aim is to select the subset of Gaussians that are located in the non-specific
region. This is automatically done by thresholding in probability and following
these steps:

• First, in order to select the reference region, a binary mask is computed as
the difference between two binary masks that select respectively the skull and
the striatum by intensity thresholding using the mean control subject image
(as shown in Figure 5.2). Then, we apply this mask to all subjects computing
the coordinates xj of each voxel j belonging to the non-specific cortex region,
where j=1,2, . . . ,Nns and Nns is defined to be the number of voxels within the
mask that locates the NS region.

• Second, a statistical criterion is defined for the set Ωn, that is, to determine
which clusters of the GMM belong to the reference region. If the total intensity
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is assumed to be uniformly distributed in the image, the probability of each
coordinate is pu(xj) = 1/N ≡ η � 4 · 10−6 for DaTSCAN images and η � 2 · 10−6

for DMFP images, where N is the total number of voxels in the functional
image. Thus, each partial probability value of a given voxel in the reference
region:

fn(xj|θn) > η′ n ∈Ω (5.18)

reflects a deviation from the uniform threshold value (η′ < η, η′ � 5 · 10−11 for
DaTSCAN images and η′ � 2 · 10−14 for DMFP images), that is, a significant
contribution to the eq. 4.3 evaluated on this particular voxel. Given the refe-
rence region, a cluster n ∈Ωn if this inequality holds for a large fraction of the
total number of voxels, that is, 75%, otherwise n ∈Ωs.

According to this procedure, the dimensionality of the feature vectors V is reduced
by selecting only the Gaussians that correspond to the reference region. The reduced
feature vectors for each subject can be expressed as:

Vns = (I1, ..., In),n ∈Ωn (5.19)

5.2.3 Linear intensity transformation using MSE through Gaus-
sians

In this normalization approach, the MSE optimization is performed on the clusters
that represent the NS region, not on the voxel-level information. In this sense, let
Vns(n), V̂ns(n) and V̄ns(n) denote the samples of non-specific reduced feature vectors
that represent the original, normalized and template images. In mean-square esti-
mation, an estimate V̂ns(n) is to be found that minimizes the cost function ξ ′, which
can be derived from the GMM-based feature reduction as:

ξ ′ =
1
nns

nns∑
n=1

|V̂ns(n)− V̄ns(n)|2 (5.20)

where nns= |Ωn|, is the number of clusters in the reference region. In linear mean-
square estimation, we assume that the image intensity clusters are related by the
following model:

V̂ns(n) = a′ Vns(n) + b′ (5.21)
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where a′ and b′ are the intensity normalization parameters, they represent the scale
and offset of the linear intensity transformation [225]. Our goal in this methodology,
is to linearly transform the intensity heterogeneity in the clusters of the non-specific
region to intensity inhomogeneity for normalized images using the eq. 5.21, by
jointly estimating the parameters a′ and b′. This leads to the joint minimization of
a cost function ξ ′, that will be the usual sum of the squared errors:

ξ ′ =
1
nns

nns∑
n=1

e′2(n) (5.22)

where e’(n) is the estimation error, namely

e′(n) = V̂ns(n)− V̄ns(n) = a′ Vns(n) + b′ − V̄ns(n) (5.23)

Solving the linear mean-square estimation problem may be accomplished by dif-
ferentiating ξ ′ with respect to a′ and b′ and setting the derivatives equal to zero as
follows:

∂ξ
∂a′

=
1
nns

nns∑
n=1

∂e′2(n)
∂a′

=
1
nns

nns∑
n=1

2 e′(n) Vns(n) = 0 (5.24)

This relationship, known as the orthogonality principle, states that for the optimum
linear predictor, the estimation error will be orthogonal to the data Vns(n).

∂ξ
∂b′

=
1
nns

nns∑
n=1

∂e′2(n)
∂b′

=
1
Nns

nns∑
n=1

2 e′(n) = 0 (5.25)

from eqs 5.21, 5.23, 5.24 and 5.25, it follows that:

a′
nns∑
n=1

V2
ns(n) + b′

nns∑
n=1

Vns(n)−
nns∑
n=1

V̄ns(n)Vns(n) = 0 (5.26)

a′
nns∑
n=1

Vns(n) + b′ nns −
nns∑
n=1

V̄ns(n) = 0 (5.27)

Solving eqs. 5.26 and 5.27, for a′ and b′ we find:

a′ =

∑nns
n=1 Vns(n)V̄ns(n)−nns m′V̄ns

m′Vns∑nns
n=1 V2

ns(n)−nns m′2Vns

(5.28)
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b′ = m′V̄ns
− a′ m′Vns

(5.29)

where

m′Vns
=

1
nns

nns∑
n=1

Vns(n); m′V̄ns
=

1
nns

nns∑
n=1

V̄ns(n) (5.30)

Substituting eq. 5.29 into eq. 5.21, the estimate for V̂ns(n) may be written as:

V̂ns(n) = a′ Vns(n) + (m′V̄ns
− a′ m′Vns

) = a′ (Vns(n)−m′Vns
) + m′V̄ns

(5.31)

Moreover, the reduced feature vectors for the normalized images V̂ns(n) can be ex-
pressed according the GMM-based feature reduction for original images Vns(n) and
the intensity normalization parameters as:

V̂ns(n) =

∑nns
n=1 Vns(n)V̄ns(n)−nns m′V̄ns

m′Vns∑nns
n=1 V2

ns(n)−nns m′2Vns

(Vns(n)−m′Vns
) + m′V̄ns

(5.32)

Finally, after having found the optimal linear estimation for V̂ns(n), we can evaluate
the minimum mean-square error using the eqs. 5.23, 5.24 and 5.25:

ξ ′min =
1
nns

nns∑
n=1

e′(n) (a′ Vns(n) + b′ − V̄ns(n)) = − 1
nns

nns∑
n=1

e′(n) V̄ns(n)

=
1
nns

(
nns∑
n=1

V̄2
ns(n)− b′

nns∑
n=1

V̄ns(n)− a′
nns∑
n=1

Vns(n)V̄ns(n) )

(5.33)

In summary, this post-normalization procedure is resumed as:

• Firstly, we apply the GMM-based algorithm for obtaining the underlying Gaus-
sian mixture representation of each functional image and, thereby, each ROI
is represented by a single Gaussian with a certain center, shape and weight.
Then, a Gaussian selection strategy (see section 5.2.2) is applied in the spatial
domain in order to automatically select the clusters of the reference region;
that is, the non-specific cortex region, as shown in Figure 5.5.
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Figure 5.5: Left: the resulting Gaussians from the model-based clustering approach
for DaTSCAN and DMFP average normal images. Right: the selected Gaussians in
the non-specific region for DaTSCAN and DMFP average images.

• Secondly, we compute the average clusters intensity of the brain m′Vns
and m′V̄ns

for the feature vectors of the source and template images, respectively, Vns(n)
and V̄ns(n) in the NS areas.

• Lastly, we calculate the intensity normalization parameters a′ and b′ from sol-
ving the equations established by differentiating ξ ′ for each reduced GMM-
based feature vectors. Then, we transform linearly all voxel intensity in the
brain using eq.5.21 that leads to the minimization of MSE, which tends to
zero between the source and the template’s images.

5.3 Model-based Multivariate Linear Regression
approach for intensity normalization

In this section, a proposed intensity normalization approach based on a predic-
tive modeling using multivariate linear regression (MLR) is presented. Different
intensity normalization parameters derived from this model will be used in a linear
procedure to perform the intensity normalization of functional brain images. This
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new approach is an extension of the mean-squared error normalization method pre-
sented in our previous work in the section 5 and in [222]. Thus, this normalization
methodology can be applied to the whole medical image, not only in the reference
region.

5.3.1 Multivariate linear regression (MLR) model

Multivariate regression analysis is a well-known technique that is widely used in
many branches of science and engineering to predict values of D responses from a
set of P regressors, whereD ≥1 and P ≥1. A MLR is generally based on the following
statistical model [226]:

Yi = β0 + BT xi + εi (5.34)

where the symbol i is used to denote a sample unit; Yi=(Yi1, . . . ,Yid , . . . ,YiD)T and
xi=(xi1, . . . ,xip, . . . ,xiP )T are the D-dimensional vector of the response variables and
the P -dimensional vector of the fixed regressor values for the ith unit, respectively;
β0 is a D-dimensional vector containing the intercepts for the D responses; B is a
matrix of dimension P ×D whose (p, d)th element, βpd , is the regression coefficient
of the pth regressor on the dth response; finally, ε i denotes the D-dimensional ran-
dom vector of the error terms corresponding to the ith unit.
To simplify the computation, the multiple regression model in terms of the obser-
vations can be written using matrix notation. Using matrices allows for a more
compact framework in terms of vectors representing the observations, levels of re-
gressor variables, regression coefficients, and random errors. The model is in the
form:

Y = Xβ + ε (5.35)

5.3.2 Intensity normalization using MLR

In this subsection, we apply MLR to a specific pre-processing step of image proce-
ssing application, that is intensity normalization. The following assumption will be
used to perform the normalization task of each image subject:

• Let Y ∼ Ī be an N × 1 vector of observations on the dependent variable, that is
the template image.

• Let X ∼ I be an N × 1 vector where we have observations on 1 independent
variables for N observations, that is the raw data.

• Let the number of observations N be the number of image voxels.
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• Let β be an 1× 1 vector of unknown parameters that we want to estimate and
ε be an N × 1 vector of errors.

Therefore, by estimating the values of β and ε we can easily transform the intensity
distribution of I to Î using the following expression:

Î = I a′′ + b′′ (5.36)

where Î is the normalized image, a′′ = β and b′′ = ε̄ are the intensity normalization
parameters, they represent the scale and offset of the intensity transformation [222].
The used criteria for obtaining our estimates of β is to minimize the residual sums
of squares (or error sums of squares) (RSS), which can be defined as:

εT ε = (Ī− Iβ)T (Ī− Iβ) = ĪT Ī− ĪT Iβ − IT βT Ī + βT IT Iβ

= ĪT Ī− 2βT IT Ī + βT IT Iβ
(5.37)

To find the β that minimizes the RSS, we need to take the derivative of eq. 5.37 with
respect to β. This gives us the following equation:

∂εT ε
∂β

= −2IT Ī + 2IT Iβ = 0 (5.38)

From eq. 5.38, the “normal equations” are:

(IT I)β = IT Ī (5.39)

Multiplying both sides of the eq. 5.39 by the inverse (IT I)−1 gives us the following
equation:

(IT I)−1(IT I)β = (IT I)−1IT Ī (5.40)

By definition, (IT I)−1(IT I) = IN , where IN is the identity matrix andN is the number
of image voxels. As a result, the least square solution of β is :

β = (IT I)−1IT Ī (5.41)

The residuals are computed as:

ε = Ī− Iβ = Ī− I(IT I)−1IT Ī = (In − I(IT I)−1IT )Ī (5.42)

The goal of this approach is to transform linearly all the intensity values for different
image subjects using predictive modeling based on MLR. The procedure to perform
the intensity normalization is summarized as follows:

• Firstly, the template Ī is computed as :

Ī =
1
Nc

∑
i∈Xc

(Ii(x,y,z) + Ii(−x,y,z)) (5.43)
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where Xc denotes the subset of control images, Nc the number of control im-
ages, Ii(x,y,z) is the ith image and Ii(−x,y,z) is its reflected image in the x = 0
hemisphere midplane.

• Secondly, the different parameters β and ε of the MLR model are estimated
using the eqs. 5.41 and 5.42.

• Lastly, the normalized images are computed by linearly transforming the voxel
intensity of each image subject using the model in eq. 5.36.

5.4 Conclussion

Three novel intensity normalization approaches are proposed to establish a com-
parison between specific/non-specific uptake areas. These methodologies are based
on the extraction of intrinsic parameters from DaTSCAN SPECT and DMFP PET
images, resulting in three automatic procedures for intensity normalization: MSE
optimization between the intensity normalized image and the template in the NS
region, MSE optimization between the GMM-based extracted features from each
subject image and the template in the reference region and finally a normalization
method based on predictive modeling using MLR. These methodologies have the
advantage of automatically normalizing the 3D functional brain images without us-
ing anatomical information. In addition, they can be applied for different image
modalities, such as SPECT and PET.





Chapter 6
Experiments and Discussion

This chapter presents an evaluation study of the different proposed intensity nor-
malization approaches when compared to several other normalization methods pre-
viously reported in the literature. Thus, quantitative and qualitative image analysis
is performed. Furthermore, we carry out experiments to test the ability of the pro-
posed normalization approaches to aid clinicians in diagnosis of DaTSCAN SPECT
and 18F-DMFP PET images of Parkinson’s disease subjects. All experiments de-
scribed in this chapter were carried out on the real data.

6.1 Databases description

6.1.1 DaTSCAN SPECT database

To evaluate the proposed methodologies a database consisting of 189 SPECT images
from 189 subjects (94 Normal Controls (NCs) and 95 Parkinsonian Syndrome (PS)),
was obtained after the injection of 185 MBq (5 mCi) of the radioligand: Ioflupane-
I-123 after an extension of time between 3-4 h; during this period, the thyroid was
blocked using a Lugols solution. The SPECT images with Ioflupane/123I-FP-CIT
were obtained by a using a General Electric gamma camera, Millennium model,
equipped with a dual head and general purpose collimator. A 360-degree circu-
lar orbit was made around the cranium, at 3-degree intervals, leading to 60 images
each 35 seconds per interval and with 128 × 128 matrix. The brain images were
reconstructed using the filtered back projection algorithm, applying a Hanning fil-
ter (cut-off frequency equal to 0.7) and were obtained with transaxial slices. To
avoid variability from additional image processing, no attenuation or scatter cor-
rection was applied in this study. Those images were acquired by the ”Virgen de
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la Victoria” hospital from January 2003 until December 2008 (see Table 6.1 for de-
mographic details). All the SPECT images were spatially normalized using the SPM
8 software [168] yielding a 73 × 73 × 45 three-dimensional functional activity map
for each subject. This method assumes a general affine model with 12 parameters
and a Bayesian framework that maximizes the product of the prior function (which
is based on the probability of obtaining a particular set of zooms and shears) and
the likelihood function, derived from the residual squared difference between the
template and the processed image. The template t is computed by registering all
control images to a randomly chosen one by affine transformations. This Nc = 94
controls and its hemisphere midplane reflected that the images are averaged to cre-
ate the template [167], providing a symmetric image, as shown in the Figure 3.3.
This spatial normalization process ensures that any given voxel in different images
refers to the same anatomical position across the brains. This step allows us to com-
pare the voxel intensities of the brain images of the different subjects.

Table 6.1: Demographic details of the DaTSCAN SPECT subjects. µ and σ stand for
the average and the standard deviation respectively.

Sex Age
# M F µ σ range

NCs 94 49 45 69.26 10.16 33-89
PS 95 54 41 68.29 9.62 30-87

Once the images have been properly normalized, they were visually labeled by three
nuclear medicine specialists from the hospital using only the information contained
in the images, without any other medical information [18]. The assessments were
done without trying to assign them to different clinical groups within the set of
pathological studies. A study was considered to be “normal” when bilateral, sym-
metrical uptake appeared in caudate and putamen nuclei, and “abnormal” when
there were areas of qualitative reduced uptake in any of the striatal structures.

6.1.2 DMFP PET database

This database included 87 subjects showing parkinsonian movement disorders were
used for testing the proposed methodologies. Demographic details and groups dis-
tribution are gathered in Table 6.2.
These patients with parkinsonism, who underwent D2/3 receptor imaging with 18F-
DMFP PET to differentiate between idiopathic Parkinsonian syndrome (IPS) and
non-IPS (atypical Parkinsonian syndrome (APS)). 18F-DMFP PET scans were ac-
quired according to a standardized protocol.18F-DMFP was injected as a slow in-
travenous bolus, and the patients were seated in a quiet room. After 55 min, the
patients reclined in the scanning bed of the ECAT EXACT HR+ PET tomograph
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Table 6.2: Demographic details of the DMFP PET subjects. µ and σ stand for the
average and the standard deviation respectively.

Sex Age
# M F µ σ range

IPS 39 22 17 61.38 11.14 35-81
MSA 13 11 2 71.54 9.94 52-85
MSA-C 6 5 1 67.00 7.64 60-81
MSA-P 5 4 1 62.00 14.35 43-79
PSP 24 12 12 69.29 7.33 55-84

(Siemens/CTI), with their head comfortably immobilized within the aperture, using
a foam cushion. The scanner acquired 63 contiguous trans-axial planes, simultane-
ously covering 15.5 cm of the axial field of view. The trans-axial and axial resolu-
tions (FWHM) of the PET system were 4.6 and 4.0 mm, respectively, at the center
of the field of view, and 4.8 and 5.4 mm, respectively, at a radial offset of 10 cm.
The emission recording began at 60 min after the start of the bolus and consisted
of 3 frames of 10 min each, acquired in 3-dimensional mode. Finally, a brief trans-
mission scan was obtained using a rotating 68Ge point source. Images were recon-
structed as 128×128 matrices of 2×2 mm voxels by FBP using a Hanning filter with
a cutoff frequency of 0.5 Nyquist and corrected for randoms, dead time, and scatter.
Images were then transferred to a workstation (Hermes Medical Solutions). After
verification of the absence of important head motion between frames, the 3 frames
were summed for further analysis [88].
All patients were followed clinically for approximately 2 years after PET examina-
tions, at which time the clinical differential diagnoses were evaluated by clinicians
on the basis of observations according to the United Kingdom Parkinson Disease
Society Brain Bank Diagnostic Criteria for Parkinson Disease [129] and the second
consensus statement on the diagnosis of multiple system atrophy (MSA) [130] as
well as the established criteria for the diagnosis of progressive supranuclear palsy
(PSP) [227]. According to these criteria and the follow-up clinical examinations,
with special attention to the presence or absence of atypical symptoms such as or-
thostatic hypotension, cerebellar signs, eye movement disorders, and spasticity, 39
patients were labeled as IPS and the remaining 48 subjects either MSA or PSP. It is
worth noting that all the images were acquired during the first examinations and,
therefore, they correspond to early stages of the disorders.
As in the DaTSCAN images, all the DMFP images were spatially normalized using
the template matching approach implemented in SPM [168]. In order to build the
DFMP template, the control images, i.e. idiopathic Parkinson, were first registered
to a randomly chosen one. The resulting images and their hemisphere midplane re-
flections (ensuring a symmetric template) were then averaged and smoothed before
being used to spatially normalize the whole set of images. As a result, we got brain
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volumes with 79× 95× 68.

6.2 DaTSCAN experiments

In order to evaluate the improvements provided by the proposed intensity normal-
ization (IN) approaches when compared to conventional IN methods adequately
adapted to the nature of the Parkinson’disease (PD) images, qualitative and quan-
titative inter-subject variability measures are performed. For the qualitative eval-
uation, the resulting intensity-normalized brain images and the mean histogram
are depicted and analyzed. Meanwhile, for the quantitative inter-subject variabil-
ity, the error bars for the mean histogram of the intensity values in the NS region
are depicted. Moreover, three statistical analyses, applying the Kullback-Leibler di-
vergence, the Euclidean distance and the Jeffreys divergence are used to study the
difference between the probability distributions of each normalized image and the
mean normalized brain image for the different IN methods. In addition, a compar-
ison is performed using a classification system for PS detection, that may improve
the development of a computer aided diagnosis (CAD) system for PD. Thus, differ-
ent preprocessing procedures are considered:

• Raw data, for only spatial normalization without intensity normalization pro-
cedure.

• BRall-IN approach, for intensity normalization using specific-to-non-specific
binding ratio. BRall denotes the binding ratio calculated using all the brain
voxels, except those in the striatum [2, 88].

• Gaussian Mixture Model (GMM) reconstruction approach, for modeling the
intensity profile of the original image, as shown in section 4.2 and in [228].

• GMM-based image filtering (FGMM) approach, for intensity normalization
using a normalized probability threshold that discards irrelevant Gaussians in
the reference region , as shown in chapter 4 and in [228].

• Mean squared error (MSE) optimization approach, for intensity normalization
using a linear transformation of intensity by minimizing the MSE between the
source and the template image at voxel’s level, as shown in section 5.1 and in
[229].

• Linear intensity normalization through Gaussians (MSE-GMM). This proposed
method is based on minimization of the MSE between the GMM-based ex-
tracted features from each subject image and a template in the non-specific
(NS) region, as shown in section 5.2 and in [185].
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• Model-based Multivariate Linear Regression (MLR) approach for intensity
normalization. This proposed method is based on predictive modeling, as
shown in subsection 5.3.2 and in [113].

• Integral-based intensity normalization (Integral-IN) [1]. This approach is based
on the approximation of integral value of the intensity as the sum of all the in-
tensity values in reference region, as shown in section 3.3.2.

• Intensity normalization by minimizing the Kullback-Leibler divergence (MKL-
IN) [193]. This normalization technique is based on matching a template his-
togram to a reference model density by estimating a multiplicative correction
field, as shown in section 3.3.3.

• Histogram equalization (Hist-eq-IN). This latter is a non-linear normalization
approach. It is used for modifying the dynamic range and contrast of the
functional images by altering each individual voxel such that its intensity his-
togram assumes a desired shape from a reference template, as explained in
section 3.3.4.

• Normalization to the maximum intensity values (Max-IN) [1]. This method
is based on referring each voxel to the average value of the highest intensity
voxels set, as demonstrated in section 3.3.5.

• The α-stable distribution-based intensity normalization (α-stable-IN) [2]. This
methodology is based on the fact that the histogram of intensity values can be
fitted accurately using a positive skewed α-stable distribution, as illustrated
in section 3.3.6.

6.2.1 Qualitative image analysis

6.2.1.1 Raw data

The proposed methodologies have been tested using 127 different DaTSCAN im-
ages (68 NCs and 59 PS subjects) from the database described in subsection 6.1.1
which presents a high degree of variability of the intensity level for the specific/non-
specific area, as can be seen in Figure 6.1. Furthermore, these images present a rel-
atively low SNR in the non-specific (NS) region provided by the image acquisition
system in the nuclear medicine department.
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Figure 6.1: A given trans-axial slice of the 60 selected raw DaTSCAN brain images
from the database (30 NC + 30 PS): these images present a certain degree of vari-
ability between the intensity values before normalization.
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Figure 6.2: Mean histogram of the intensity values for the spatial normalized
DaTSCAN images.

Figure 6.2 depicts a scheme of the different parts of the binding values his-
togram, highlighting the specific and NS areas and their typical intensity values
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for original DaTSCAN images. This figure demonstrates that before normalization
there is a certain degree of variability between the intensity radioactivity values
(from 5.94 to 17.9) in the non-specific binding region due to different noise sources
and to an equal supply of tracer from the vascular compartment.

6.2.1.2 The compared IN methods

Linear approaches

The visual inspection of the mean histogram of the raw data, as depicted in Figure
6.2, suggests that this variability in the NS region is not produced by some mul-
tiplicative bias in the data [2]. Therefore, a normalization procedure using only a
multiplicative parameter, as BRall-IN, MKL-IN, Max-IN and Integral-IN do, could
be combined by other procedures for an accurate IN.

Figure 6.3: A given trans-axial slice of 60 DaTSCAN brain images from the database
after normalization by the specific-to-non-specific binding ratio (BRall-IN). In spite
of the ability of this approach to normalize the intensity distribution in the NS re-
gion, it is not enough for the images in question as it affects the shape and the
intensity of the striatal signal.

In figures 6.3 and 6.4, BRall-IN method entails the normalization of the intensity
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in the NS region. However, it is not enough for the images in question as it affects
the shape and the intensity of the striatal signal.
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Figure 6.4: Mean histogram of the intensity values for intensity normalized
DaTSCAN images by BRall-IN.

Figure 6.5: A given trans-axial slice of 60 DaTSCAN brain images from the
database after normalization by the Integral-based intensity normalization ap-
proach (Integral-IN).
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Figure 6.6: Mean histogram of the intensity values for intensity normalized images
by Integral-IN.

Integral-IN preserves absolute differences in the uptake of the tracers. Thus, it
produces a similar measure for NS regions.

Figure 6.7: A given trans-axial slice of 60 DaTSCAN brain images from the database
after normalization by minimizing the Kullback-Leibler divergence (MKL-IN).
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In addition, after normalization using the Integral-IN method, there is a notice-
able difference in striatal structures with highest intensity counts, as can be seen
in figures 6.5 and 6.6. This method is inexact and more sensitive to extreme val-
ues. For instance subjects with severe loss of dopamine receptors, high intra-subject
differences in the binding potential, or outlier characteristics.
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Figure 6.8: Mean histogram of the intensity values for intensity normalized images
by MKL-IN.

As in BRall-IN approach, MKL-IN entails a fair intensity normalization in NS re-
gion, despite that the striatal signal is affected, as shown in figures 6.7 and 6.8.
For the normalization to the maximum scheme, the uptake of the tracer in the stri-
atal structures is matched for both classes; controls and patients. This could affect
the relation between the loss of dopamine receptors and decreased count numbers,
which can be lost. Thus, the interpretation in terms of absolute uptake values is
lost, as depicted in figures 6.9 and 6.10. The objective of this approach is to extend
the size of discriminative regions (striatal structures) by interchanging the roles of
specific/nonspecific areas of activity. This may lead to a fault diagnosis.
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Figure 6.9: A given trans-axial slice of 60 DaTSCAN brain images from the database
after normalization by the maximun intensity values (Max-IN).
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Figure 6.10: Mean histogram of the intensity values for intensity normalized images
by Max-IN.
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Figure 6.11: A given trans-axial slice of 60 DaTSCAN brain images from the
database after normalization by α-stable distribution (α-stable-IN).
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Figure 6.12: Mean histogram of the intensity values for intensity normalized images
by α-stable approach.

The α-stable distribution approach is based on the fact that the shape of the
distribution of intensity values is skewed and heavy-tailed, and therefore, it can be
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modeled in a parsimonious way using the α-stable distribution [2]. The location-
scale property is used to transform linearly the intensity values in each voxel. After
normalization, the α-stable location and the scale parameters of the NS voxels in
each of the DaTSCAN brain images are the same. Thus, the inter-subject differences
in intensity values in the NS region is clearly mitigated after normalization, as illus-
trated in figures 6.11 and 6.12.

Nonlinear approach

The histogram equalization methodology is a nonlinear intensity transformation,
which is based on the cumulative distribution function of values in each brain im-
age. Since this technique is operationally equivalent to a ranking procedure, this
robustness should be expected. Ranked data underlie many nonparametric statis-
tical procedures that are robust to oddly shaped distributions and outlying obser-
vations. Thus, after applying this method, the intensity normalization affects the
whole image, as shown in figures 6.13 and 6.14. Moreover, the tracer uptake in the
striatum is matched for NC and PS subjects and the differentiation between these
two classes becomes difficult. For this reason, we tried to apply the Hist-eq-IN only
in the reference region, as illustrated in figures 6.15 and 6.16.

Figure 6.13: A given trans-axial slice of 60 DaTSCAN brain images from the
database after normalization by the Histogram equalization method (Hist-eq-IN).
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Figure 6.14: Mean histogram of the intensity values for intensity normalized images
by Hist-eq-IN approach.

In Figure 6.15, the brain images became with similar intensity distribution in
the reference region. Moreover, the intensity in the specific region is preserved after
applying the Hist-eq-IN approach only in the NS region.

Figure 6.15: A given trans-axial slice of 60 DaTSCAN brain images from the
database after normalization by the Hist-eq-IN in the NS region.
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Figure 6.16: Mean histogram of the intensity values for intensity normalized images
by Hist-eq-IN approach in the NS region.

6.2.1.3 Proposed approaches

As can be observed in the previous figures, these widely used normalization ap-
proaches for this low-resolution image modality where anatomical details in the NS
region are lost, can alter the shape and the intensity of the striatal structures. For
this purpose a different IN methods based on GMMs, MSE and MLR are proposed
in order to acquire brain images with similar intensity distribution in the reference
region and to increase the separation between the different binding regions.

GMM-based image filtering (FGMM)

We tested the GMM method for image modeling and cluster selection using the
DaTSCAN database. The number of Gaussians used for modeling ROIs (parameter
k in (4.3)) is selected according to an information criterion for model selection (see
section 4.2.3), such as the one based on the minimization of the MSE between the
original and the GMM-reconstructed images as shown in [211].
For our experiments we used machines running Intelr Xeonr processors with 2.67
GHz CPU frequency and having 48 GB of memory. In fact with this workstation,
the computational time can reach 4-5 hours of a GMM model with k = 125 clusters
for a reconstructed image subject.
In Figure 6.17 there a stability of the reconstruction error when the number of Gaus-
sians increases. In this Thesis, we have used a model with k = 64 Gaussians that
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leads to a good representation of FP-CIT SPECT images. Since the reconstruction
error is small and due to the smoothness of the DaTSCAN images, a number of clus-
ters equal to 64 is enough for achieving such a trade-off between the size of feature
vectors and the ability of reconstruction (related with the model adjustment).
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Figure 6.17: Reconstruction error of DaTSCAN SPECT images as a function of the
number of Gaussians used in the model.

Thus, by applying the GMM approach, an accurate model is obtained by the su-
perposition of 64 Gaussians with a similar mean of intensity distribution histogram,
as can be seen on Figure 6.18.
The intensity radioactivity values of the GMM-reconstructed images, both in the
specific and non-specific region approximate the intensity distribution of the raw
data. Thus, the intensity profile of each image is conserved (similar to Figure 6.1).

The resulting mixture model for each functional subject image is used for IN ac-
cording to a cluster selection strategy, as explained in section 4.3 and the appendix
A.1.
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Figure 6.18: Mean histogram of the intensity values for reconstructed images by the
GMM method: the GMM histogram approximates the intensity distribution in the
original DaTSCAN images.

Figure 6.19: Left column: DaTSCAN image of average normal subjects. Central
column: different location and intensity of relevant clusters for different normalized
probability threshold values η = 4 ·10−6, 4 ·10−5 and 4 ·10−4 . Right column: filtered
GMM image reconstruction according to eq. 4.16), which remove the irrelevant
clusters in the occipital region.
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Figure 6.19 shows a normalized average image after the filtering process by
means of GMM (right column). Different normalized probability threshold values
can be used to obtain the intensity normalization in the NS region. According to
these normalized thresholds, the relevant clusters that contribute to the intensity
of the striatal region are preserved (central column) and the remaining ones are re-
moved.
In accordance with this procedure, we provided a filtered GMM image reconstruc-
tion that: i) preserves the intensity in the specific region, and ii) automatically nor-
malizes the intensity in the NS areas such that the inter-subject intensity differences
are reduced and the irrelevant clusters that may represent different noise sources
are automatically removed.

Figure 6.20: Left column: DaTSCAN image of average normal subjects. Central
column: different location and intensity of relevant clusters for different fraction
of Ns, α = 95%, 75% and 50%. Right column: filtered GMM image reconstruction
according to eqs. 4.16 and 4.17, which remove the irrelevant clusters in the occipital
region.

Figure 6.20 illustrates the effect of α on the filtering process, specifically for a
value less then 75% of Ns which affects the striatal signal. For the filtering stage, we
choose α = 75%.
Thus, the proposed GMM-based image filtering approach entails noise reduction
and the increase of the difference between the average intensities in the striatal and
NS regions, as depicted in Figure 6.21. Furthermore, the proposed nonlinear image
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filtering provides an IN with respect to the reference region (NS region) and main-
tains the original intensity values in the striatum (specific region). This permitted a
fair comparison between subjects based only on DaTSCAN activity distribution in
the striatal structures.

Figure 6.21: A given trans-axial slice of 60 FGMM, post-normalization DaTSCAN
brain images: 30 NC + 30 PS.

Figure 6.21 shows one trans-axial slice for the 60 intensity-normalized DaTSCAN
brain images using the proposed FGMM method.

Figure 6.22 shows the post-normalization mean histogram of FGMM approach
for the DaTSCAN dataset. Observe that there is a high concentration of low-intensity
voxels in the background (on the far left). This makes sense as we assume that the
removed Gaussians according to a normalized probabilistic threshold do not con-
tribute to the intensity in the NS region, reducing its variance.

These figures prove that, after applying IN, the inter-subject intensity differences
in the NS region are clearly reduced. In this sense, relevant information in the stria-
tum, as well as in the NS region affecting the striatum area, is also preserved. This
is the key area used to perform a visual diagnosis of PD.

The complexity of the proposed system depends on the number of Gaussians
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Figure 6.22: Mean histogram of the intensity values for FGMM, post-normalization
DaTSCAN images. Take note that the intensity radioactivity values (from 3.94 to
11.8) for all the images are very similar after normalization. The histogram is passed
through a nonlinear filtering process to eliminate the Gaussian noise and an ex-
pected blood supply presented in the reference region of the original images.

which are used to model the brain data set as well as on the number of voxels in the
image [230]. The main implementation problem is the large number of Gaussians,
that leads to high computational complexity of the EM algorithm, as shown in sec-
tion 4.2.3 and in [231]. In previous works, such as in [212] and in section 4.2.2, the
computation of the EM algorithm is discussed.

Mean Squared Error (MSE) Optimization at voxel level

By applying this proposed intensity normalization method detailed in the method-
ological section 5.1, the intensity heterogeneity in the NS region is reduced and the
difference between the striatum and the background uptakes is increased as shown
in Figure 6.23.
In Figure 6.24, The intensity radioactivity values for all the images are very similar
after normalization in NS binding regions (its intensity values are between 14.93
and 15.5). The histogram is passed through a linear transformation that eliminates
the Gaussian noise and an expected blood supply presented in the reference region
of the original images. Therefore, this normalization method is suitable for prepro-
cessing of 123 I-ioflupane brain images for diagnosis purposes.
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Figure 6.23: A given trans-axial slice of 60 normalized DaTSCAN brain images: 30
NC + 30 PS by MSE approach.
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Figure 6.24: Mean histogram of the intensity values for MSE, post-normalization
DaTSCAN images.
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Mean Squared Error (MSE) Optimization at Gaussian level

This normalization scheme is a combination between the two previous proposed
approaches, i.e., the GMM and the MSE.

Figure 6.25: A given trans-axial slice of 60 normalized DaTSCAN brain images: 30
NC + 30 PS by MSE-GMM approach.

The motivation behind this new intensity normalization method is to overcome
the computational cost of the image preprocessing stage using the GMM-based al-
gorithm. Thus, the linear transformation of the intensity values is applied on the
cluster level.
The qualitative effects can be seen more clearly at the image level in the results of
Figure 6.25. Moreover, this figure proves that, post-normalization, the contrasts of
relevant features in the striatum are improved and the inter-subject intensity differ-
ences in the NS region (between 14.7 and 17) are clearly reduced, as illustrated in
Figure 6.26.

Model-Based Multivariate Linear Regression (MLR) Approach

This new method is an extension of the MSE normalization approach presented in
section 5.1. The major advantage of this normalization methodology is that it can
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Figure 6.26: Mean histogram of the intensity values for MSE-GMM, post-
normalization DaTSCAN images.

be applied to the whole medical image, not only in a NS region. Thus, it is indepen-
dent from the reference region. The qualitative effect of this method is presented in
figures 6.27 and 6.28.
In conclusion, these figures demonstrate that the inter-subject intensity differences
in the NS region due to several effects [30, 31, 156] are clearly reduced after the
normalization using our proposed methods. Unlike those ones shown in compared
approaches, the processed images are smoothed and preserve the relevant informa-
tion in the striatum region. In addition, the proposed normalization schemes allow
us to guarantee that the inter-subject differences in the DaTSCAN image database
(NC and PS subjects) are due only to the uptake of the tracer in the discriminant
region (striatum) and not due to the baseline calibration of the gamma camera used
for the acquisition.

6.2.2 Quantitative image analysis

In order to quantitatively measure the efficiency of the proposed intensity normal-
ization methods, we compare them with the spatial normalized DaTSCAN brain im-
ages (before intensity normalization) and several widely used normalization meth-
ods. The comparison is carried out by depicting the error bars, which are estimated
using 25th and 75th percentile of the mean histogram in the NS region, as in [2]
(see figures 6.29 and6.30). These error bars present the inter-subject intensity vari-
ability that is clearly reduced by our normalization methods based on the nonlin-
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Figure 6.27: A given trans-axial slice of 60 normalized DaTSCAN brain images: 30
NC + 30 PS by MLR approach.
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Figure 6.28: Mean histogram of the intensity values for MLR, post-normalization
DaTSCAN images. The inter-subject variability is reduced in the NS region (its
intensity values are between 14 and 16).

ear filtering process (FGMM approach) and a linear intensity transformation (MSE,
MSE-GMM and MLR approaches), as displayed in figures 6.29.b, 6.29.c, 6.29.d and
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6.29.e. Thus, these methodologies entail a greater degree of homogeneity in the
intensity values of the NS region, which is in fact the main goal of our intensity nor-
malization procedures.
Figure6.30 depicts the inter-subject intensity variability that is quietly reduced by
the compared methods in the reference region.
The proper adjustment of the resulting normalized set of images can be evaluated by
means of some defined metrics that provide a measure of the difference between two
sets of samples, such as the Kullback-Leibler divergence (KL) [194], the Euclidean
distance (ED) and the Jeffreys divergence (JD) measure [232]. In this particular case,
the set of samples to be evaluated with these metrics is the histogram of the normal-
ized 3D image, referred to the histogram of a reference target 3D image (typically,
the mean image of the healthy subjects) in the NS region. Lower values of these
divergences represent less difference between the two distributions of histograms.
Thus, the difference between the probability distribution of each image denoted by
Q and the probability distribution of the mean brain image denoted by P is evalu-
ated for all subjects before and after intensity normalization using KL, ED and JD
divergences are defined as:

KL (P ||Q) =
n∑
i=1

ln
(
P (i)
Q(i)

)
(P (i)) (6.1)

ED (P ||Q) =
n∑
i=1

|P (i)− (Q(i)| (6.2)

JD (P ||Q) =
∫ +∞

−∞
P (i) ln

(
P (i)
Q(i)

)
d(i) +

∫ +∞

−∞
Q(i) ln

(
Q(i)
P (i)

)
d(i) (6.3)

where n is a fixed number of bins. We use the discretized approximation of JD by
replacing the integrals with the summations over a fixed number of bins. The inter-
subject distance is calculated quantitatively between these two distributions, both
before normalization, for raw images and after normalization, using the proposed
and the compared methods.
The lowest KL, ED and JD values and the lowest error are obtained (in terms of the
standard deviation) by the proposed normalization methods based on linear inten-
sity normalization by MSE optimization at voxel and Gaussian levels, the GMM-
based image filtering and the MLR approach as presented in tables 6.3, 6.4 and 6.5.
This experimental result suggests that the proposed methods outperform the com-
pared methods, in entailing more intensity homogeneity in the NS region for the
different classes.
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Figure 6.29: Error bars for the mean histogram of the intensity values in the NS
region for DaTSCAN images before and after normalization using the proposed ap-
proaches. (a): Raw images, (b): FGMM images, (c): MSE images, (d): MSE-GMM
images and (e) MLR images. Error bars are calculated considering 25th and 75th
percentiles.
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Figure 6.30: Error bars for the mean histogram of the intensity values of DaSCAN
images in the NS region for the different compared approaches. (a): BRall images,
(b): Integral-IN images, (c): MKL-IN images, (d): Max-IN images, (e): Hist-eq-IN
images, (f): Hist-eq-IN (NS region) images and (g): α-stable-IN images. Error bars
are calculated considering 25th and 75th percentiles.
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Table 6.3: Mean Kullback-Leibler distance and standard deviation for DaTSCAN
SPECT images before and after intensity normalization methods in the non-specific
region.

Normalization approach Class Kullback-Leibler
distance

Raw data NCs 0.3021±0.2342
(spatial normalization) PS 0.2882±0.2412

NCs+PS 0.2957±0.2367
BRall − IN NCs 0.2549±0.1681

PS 0.3308±0.2279
NCs+PS 0.2902±0.2009

Integral-IN NCs 0.2498±0.1611
PS 0.3238±0.2034
NCs+PS 0.2842±0.1850

MKL-IN NCs 0.2180±0.1443
PS 0.2875±0.2716
NCs+PS 0.2503±0.2150

Max-IN NCs 0.6931±0.2988
PS 2.1852±1.2460
NCs+PS 1.3863±1.1490

α-stable-IN NCs 0.2075±0.1496
PS 0.2836±0.1792
NCs+PS 0.2428±0.1678

Hist-eq-IN NCs 0.1986±0.1388
PS 0.2632±0.1808
NCs+PS 0.2286±0.1623

Hist-eq-IN in NS region NCs 0.2004±0.1389
PS 0.2902±0.2441
NCs+PS 0.2421±0.1993

FGMM NCs 0.0671±0.0588
PS 0.0777±0.0575
NCs+PS 0.0720±0.0582

MSE NCs 0.1025±0.0588
PS 0.1196±0.0928
NCs+PS 0.1105±0.0766

MSE-GMM NCs 0.1523±0.0789
PS 0.1754±0.0894
NCs+PS 0.2421±0.1993

MLR NCs 0.1618±0.0670
PS 0.1600±0.0866
NCs+PS 0.1610±0.0764
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Table 6.4: Mean Jeffreys Divergence and standard deviation for original DaTSCAN
images and intensity normalized images in the non-specific region.

Normalization approach Class Jeffreys Divergence
Raw data NCs 0.7408±0.5743
(spatial normalization) PS 3.2127±0.6336

NCs+PS 0.7422±0.5943
BRall NCs 0.1634±0.0927

PS 2.8289±0.2387
NCs+PS 0.1860±0.1432

Integral-IN NCs 0.1655±0.0867
PS 2.8100±0.2320
NCs+PS 0.1873±0.1276

MKL-IN NCs 0.1981±0.1443
PS 2.9990±0.4418
NCs+PS 0.2484±0.3831

Max-IN NCs 0.5482±0.2807
PS 2.7281±0.2533
NCs+PS 1.3048±1.2823

α-stable-IN NCs 0.1670±0.1240
PS 0.7154±0.1504
NCs+PS 0.1755±0.1637

Hist-eq-IN NC 0.1671±0.0800
PS 0.4729±0.2499
NC+PS 0.1916±0.1450

Hist-eq-IN in NS region NCs 0.1717±0.0596
PS 2.7416±0.0971
NCs+PS 0.1789±0.0803

FGMM NCs 0.1095±0.0525
PS 2.1166±0.1819
NCs+PS 0.1270±0.0604

MSE NCs 0.1211±0.0685
PS 2.8498±0.2440
NCs+PS 0.1429±0.1203

MSE-GMM NCs 0.1511±0.0690
PS 0.4166±0.1959
NCs+PS 0.1657±0.0974

MLR NCs 0.1469±0.1267
PS 0.7645±0.2727
NCs+PS 0.1633±0.1394
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Table 6.5: Mean Euclidean distance and standard deviation for original DaTSCAN
images and intensity normalized images in the non-specific region.

Normalization approach Class Euclidean distance
Raw data NCs 0.5761±0.2567
(spatial normalization) PS 1.2363±0.0757

NCs+PS 0.5601±0.2479
BRall − IN NCs 0.5058±0.2220

PS 1.2621±0.0363
NCs+PS 0.5430±0.2303

Integral-IN NCs 0.4998±0.2068
PS 1.2592±0.0361
NCs+PS 0.5394±0.2153

MKL-IN NCs 0.4758±0.1838
PS 1.2655±0.0706
NCs+PS 0.4978±0.2095

Max-IN NCs 0.9680±0.2312
PS 1.4916±0.1181
NCs+PS 1.1773±0.3286

α-stable-IN NCs 0.4241±0.2000
PS 1.2657±0.0332
NCs+PS 0.4529±0.2012

Hist-eq-IN NCs 0.4477±0.1909
PS 1.3116±0.0240
NCs+PS 0.4830±0.1982

Hist-eq-IN in NS region NCs 0.4356±0.1918
PS 1.3141±0.0257
NCs+PS 0.4680±0.2044

FGMM NCs 0.2166±0.0974
PS 0.7235±0.1038
NCs+PS 0.2218±0.0961

MSE NCs 0.3091±0.1012
PS 1.3057±0.0185
NCs+PS 0.3022±0.1294

MSE-GMM NCs 0.3790±0.0899
PS 1.2688±0.0189
NCs+PS 0.3703±0.0867

MLR NCs 0.3332±0.1139
PS 1.2613±0.0140
NCs+PS 0.3605±0.1218
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Tables 6.3, 6.4 and 6.5 reveal that the inter-subject differences in intensity values
in the NS region are quantitatively mitigated after the intensity normalization using
the proposed methodologies.
Moreover, Figure 6.31 shows the inter-subject intensity variability in the striatum
for NC subjects (first row) and PS subjects (second row) in terms of mean histogram
and error bars. Notice that the intensity distributions obtained by our approaches
are clearly different in shape and variability for NC and PS subjects (specifically the
first row versus the second row of Figure 6.31. b and Figure 6.31. c.
Figures 6.32 and 6.33 depict the error bars for the mean histogram of the intensity
values in the striatum region for the different compared approaches.
When the Hist-eq-IN approach is applied in the whole image, the intensity distri-
bution of the striatum region is deeply affected in both classes, as shown in Figure
6.33.a compared to Figure 6.31.a. For this reason, we tried to apply this method also
in the reference region (NS region).
In order to further analyze these results, we propose the following sections in which
these distributions are considered in classification tasks.
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Figure 6.33: Mean histograms and error bars in the striatum region for 127 inten-
sity normalized DaTSCAN images using the histogram equalization method and
keeping separate distributions for the two different classes. The first row is for
NC subjects and the second row is for PS subjects. (a): Hist-eq-IN images and (b):
Hist-eq-IN (NS region) images. Error bars are calculated considering 25th and 75th
percentiles. The x-axis represents the intensity. The y-axis indicates the number of
voxels with a given level in the striatum region.

6.2.3 Quantitative classification performance of Parkinsonism

The benefits of the proposed intensity normalization methods are evaluated also
for PS detection. Several experiments were performed on the previously described
database in section 6.1.1. The proposed methods are assessed on the task of dis-
criminating PS from NC and compared to widely used IN techniques. Thus, each
intensity normalization procedure leads to a different dataset. For each dataset, the
performance of the Support Vector Machines (SVM) classifier was studied. This
classifier is described in detail in appendix B.1.
Only linear SVM has been used to compute the results, due to the large number
of input features to the classifier, to obtain more generalizable results and to avoid
the small sample size problem [19]. In this Thesis, the accuracy estimation of the
different datasets is performed following a Leave-One-Out (LOO) cross-validation
strategy (see appendix B.2).
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6.2.3.1 Selection of the Region of Interest (ROI)

The 123 I-ioflupane radiopharmaceutical provides brain images with higher activa-
tion in the striatum, a region of high interest for the diagnosis of PS [107]. Figure
6.34 reveals that most of the activity is gathered in the striatum. However, the im-
ages contain a lot of information (a large number of voxels) that is not relevant for
the diagnosis of the disorder. For this purpose, a required binary mask is applied to
each image for the different datasets in order to select only the high-intensity voxels
of the striatum area. Once the images of the different datasets are ready for the clas-

Figure 6.34: A given trans-axial slices of 6 selected brain images; 3 healthy subjects
(left) and 3 PS patients (right) of raw DaTSCAN brain images.

sification process, the relevant information has to be extracted. Only the voxels that
contain relevant information in terms of discrimination ability should be chosen. In
the case of Parkinson’s disease, this region is, as previously mentioned, the striatum.
For this purpose, we need to apply a binary mask for each image which is computed
as follows:

mi =
{

1 if ci > 0.45 max ci
0 otherwise

(6.4)

where mi , i = 1...n are the n voxels of the mask with value (0 or 1), ci , i = 1...n are
the intensity of n voxel at position i of an intermediate image, c, and max ci is the
highest intensity of c. The image c is computed by using the average of all NCs
in each dataset. Applying this mask allows to select the voxels whose intensity is
high (compared with the maximum intensity) in healthy subjects. In practice, this
is equivalent to select the voxels of the striatum.
Thus, after voxel selection, a set of intensity values is obtained for each subject,
arranged in a 1D array. This array is the key data to be processed in classification
between NCs and PS.
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6.2.3.2 Statistical performance measures of the different IN approaches

Voxels-as-Features (VAF)

The first applied method to the datasets is the simple VAF approximation [233].
VAF is considered as a baseline in many works like MRI analysis for AD or autism
diagnosis, as many studies suggest that this method is, at least, comparable with the
visual exam performed by experts [233]. This approximation uses all voxels in each
image as a feature vector, which is used as an input to the classifiers. This baseline
has been applied to different datasets using the raw images (spatially normalised 123

I-ioflupane-SPECT images) and intensity normalized images by the different pro-
posed approaches.
A significant improvement of the performance results is carried out by the proposed
approaches, as shown in Table 6.6. For instance, the accuracy gain is 10.18%, the
sensitivity and the specificity gains are 13.64% and 8.57% compared to unnormal-
ized intensity images (raw data). Compared to the other intensity normalization
methods, the accuracy gain is up to 11.02%, the sensitivity and the specificity gains
are up to 9.57% and 12.62%. The underlying reason for these improvements is the
reduction of inter-subject intensity variability between different images of the same
class, and between images of different classes as shown in the previous section.

Table 6.6: Comparison between the accuracy rates achieved with the different inten-
sity normalization methodologies based on VAF approach and linear SVM classifier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 79.58% 78.95% 80%
BRall − IN 85.83% 88.68% 83.78%
Integral-IN 85.04% 88.46% 82.66%
MKL-IN 81.10% 83.02% 79.73%
Max-IN 85.03% 87.03% 83.66%
α-stable 85.05% 87.04% 83.56%
Hist-eq-IN 78.74% 83.33% 75.95%
Hist-eq-IN in NS region 85.83% 85.96% 85.71%
FGMM 88.98% 90.91% 87.50%
MSE 88.97% 89.47% 88.57%
MSE-GMM 89.76% 92.59% 87.67%
MLR 88.19% 90.74% 86.30%

The accuracy rates for different normalization methods using the voxel intensity
in the striatum are presented in Table 6.7. In this Table, the use of the proposed in-
tensity normalization approaches on DaTSCAN images show a significant improve-
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ment of the performance results over the same VAF approach (up to 91.34% for the
Acc, 92.59% for the Sens and 92.54% for the Spec) compared to unnormalized inten-
sity images (raw data) and the widely used IN approaches, used here as a baselines.
The behavior of the computer aided diagnosis (CAD) system with these strategies
of preprocessing highlights the benefits of using an intensity normalization, which
allow us to compare the striatum area of each image voxel to voxel, assuming that
a similar value of intensity in two different subjects corresponds to a similar value
of the drug uptake. As well they show their ability and robustness in PS pattern
detection.

Table 6.7: Comparison between the accuracy rates achieved with the different inten-
sity normalization methodologies based on VAF approach and linear SVM classifier
in the striatum regions.

Normalization approach Accuracy Sensitivity Specificity
Raw data 87.40% 86.44% 88.23%
BRall − IN 88.19% 87.93% 88.40%
Integral-IN 88.18% 87.90% 88.25%
MKL-IN 88.98% 87.93% 88.57%
Max-IN 88.97% 94.12% 85.53%
α-stable 86.61% 85% 88.06%
Hist-eq-IN 88.98% 89.47% 87.67%
Hist-eq-IN in NS region 84.25% 88.23% 81.57%
FGMM 91.34% 90% 92.54%
MSE 90.55% 88.52% 92.42%
MSE-GMM 89.77% 88.33% 91.04%
MLR 89.76% 92.59% 88.58%

Principal Component Analysis (PCA)

The second system tested for the diagnosis of PS for different datasets is based on the
PCA feature extraction method [234–237]. Further details about this technique are
given in appendix B.3. As it is shown in tables 6.8 and 6.9, the proposed methodolo-
gies to analyze 123 I-ioflupane images provide high accuracy rates for PS diagnosis
with peak values over 92% for MSE and FGMM approaches and over 89% for MLR
and MSE-GMM approaches in the striatum region. However, taking into account
all the image voxels, the accuracy rates for the proposed approaches with the PCA
feature extraction method are up to 90.55%. They represent a significant improve-
ment in the incrementation of the accuracy compared with the results obtained by
raw images and the compared methods. The improvements in accuracy rates are
due to the ability of PCA to extract patterns explaining the greatest variance in the
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data. In addition, the dimensionality reduction of PCA is very effective in classi-
fication because a higher number of features will easily lead the classifier into the
problem of overfitting [235, 236]. However, the VAF approach considers the raw
information included in the ROI.
To sum up, the proposed methods for intensity normalization deserve much atten-
tion in the diagnosis of PS. They demonstrate also their ability and robustness to
improve computer aided diagnosis performance in DaTSCAN SPECT imaging in
combination with SVM classification, as may be seen from Tables 6.6,6.7, 6.8 and
6.9 and supported by Figure 6.31.
An important observation is that intensity normalization using the proposed ap-
proaches can prove to be a reasonable trade-off of computational complexity in fa-
vor of having an uniform cross-subject distribution of the intensities in the non-
specific area and the diagnostic ability of PS detection. For instance, the FGMM
outperforms the MSE in the sense of entailing intensity normalization in the non-
specific region as it leads to a less difference between the images of the same class,
and between images of different classes as shown in Tables 6.3, 6.4 and 6.5. How-
ever, MSE approach obtains higher classification results with a peak value of 92.91%
for the accuracy and 94.64% for the sensitivity using the PCA system as shown in
Table 6.9. In addition, Figure 6.31.c reveals that the intensity normalization using
MSE deeply affects the voxel information in the striatum region which leads to a
better sensitivity using the PCA system. Otherwise, FGMM preserves the informa-
tion in that region. Finally, taking into account the computational load, the MSE
approach is less demanding with a computation time of 7 seconds, as can be seen
in equation 5.13, than the FGMM method which requires a model estimation stage
[212]. For our experiments we used machines running Intelr Xeonr processors
with 2.67 GHz CPU frequency and having 48 GB of memory. In fact, with this
workstation, the computational time for the model estimation stage can reach 1-2
hours of a GMM model with k = 64 clusters. However, for the filtering stage, it
takes about 281.06 seconds. For the remaining proposed approaches, the compu-
tation time of MLR is 1487 seconds and for MSE-GMM is 465.50 seconds. For the
baseline approaches, the computation time varies between 2 and 570.87 seconds.
As a conclusion, the proposed intensity normalization procedures lead to compa-
rable generalization estimations and perform substantially better than the baseline
methods.



6.3. DMFP experiments 125

Table 6.8: Comparison between the accuracy rates achieved with the different in-
tensity normalization methodologies based on PCA feature extraction method and
linear SVM classifier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 84.25% 81.96% 86.36%
BRall − IN 88.18% 86.66% 89.55%
Integral-IN 85.83% 82.54% 89.06%
MKL-IN 85.03% 83.33% 86.56%
Max-IN 87.40% 85.24% 89.39%
α-stable 87.40% 86.44% 88.24%
Hist-eq-IN 83.46% 83.93% 83.1%
Hist-eq-IN in NS region 86.61% 86.21% 86.96%
FGMM 88.98% 90.91% 87.5%
MSE 90.55% 89.83% 91.18%
MSE-GMM 88.98% 88.14% 89.71%
MLR 88.97% 89.47% 88.57%

Table 6.9: Comparison between the accuracy rates achieved with the different in-
tensity normalization methodologies based on PCA feature extraction method and
linear SVM classifier in the striatum regions.

Normalization approach Accuracy Sensitivity Specificity
Raw data 89.76% 92.59% 87.67%
BRall − IN 90.34% 91.22% 90%
Integral-IN 89.76% 87.93% 88.73%
MKL-IN 87.40% 87.72% 87.14%
Max-IN 86.61% 86.21% 86.96%
α-stable 88.19% 89.29% 87.32%
Hist-eq-IN 87.40% 90.38% 84%
Hist-eq-IN in NS region 85.04% 87.04% 83.56%
FGMM 92.13% 91.53% 92.65%
MSE 92.91% 94.64% 91.55%
MSE-GMM 90.55% 91.23% 90%
MLR 89.77% 89.66% 89.86%

6.3 DMFP experiments

The same experiments were also performed on another independent database which
is described in section 6.1.2. The use of another independent dataset is a major
strength of our study, which keeps the research findings more objective as contrast
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to the other studies conducted on one dataset. Qualitative and quantitative image
analysis are performed, using the resulting intensity-normalized brain images and
the mean histogram of the intensity values for each normalized neuroimage. In
addition, the inter-subject variability is depicted using the error bars for the mean
histogram of the intensity values in the NS region. Furthermore, it is measured by
three statistical analyses, applying the KL divergence, the ED and the JD to study
the difference between the probability distributions of each normalized image and
the mean normalized brain image for the different IN methods. Finally, a compar-
ison is performed using a classification system to separate IPS from APS patients,
that may improve the development of a computer aided diagnosis (CAD) system for
PD. Thus, the following preprocessing procedures are considered:

• Raw data.

• BRall-IN [2, 88].

• MSE [229].

• MSE-GMM [185].

• MLR [113].

• Integral-IN [1].

• Max-IN [1].

• Hist-eq-IN in all binding regions.

• Hist-eq-IN in NS region.

• α-stable-IN [2].

The GMM-based image filtering (FGMM) approach is not applied to this database
because the high computational load of the model estimation stage. It can reach
more than 69 hours for just a one GMM model. In addition, a present lack of this
database of control subjects presents limitations, such that we are unable to consider
the MKL-IN approach for comparison. However, the Hist-eq method is applied,
firstly, taking into account all the image voxels and, secondly, taking into account
only the NS region.

6.3.1 Qualitative image analysis

6.3.1.1 Raw data

We tested the different IN methods using 87 raw 18F-DMFP images from the database
described in section 6.1.2, as shown in Figure 6.35. This figure reveals that there is
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a high degree of variability in the intensity level for the specific/non-specific area
before normalization. Thus, the cause of this variability is the machine artifact that
is a direct result of the spacing of the detectors in the tomographic ring. This last
issue also introduces an axial point-spread resulting from the width of the detector,
or the thickness of the ring of detectors [238].
The visual image analysis of the striatal 18F-DMFP uptake showed good spatial dis-
crimination between caudate nucleus and putamen, and generally, the striatal tracer
uptake was clearly reduced in the APS patients compared with the IPS patients. In
addition, with this decrease of the striatal tracer uptake, there is a lowest uptake
in the left striatum. Thus, APS patients show reduced postsynaptic tracer binding,
indicating a decreased receptor density due to neuronal cell loss.
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Figure 6.36: Mean histogram of the intensity values for the spatial normalized
DMFP images.

Figure 6.36 depicts a scheme of the different parts of the binding values his-
togram, highlighting the specific and NS regions and their typical intensity values
for original 18F-DMFP images. Observe in this figure how the histogram corre-
sponding to these data has two similar peaks at large intensities. Moreover, this
figure shows that in the intensity profile, there is a large amount of the total inten-
sity, which is located in the specific region. However, in other region, i.e. NS region
(from 1.1·103 to 3.79·103) have also intensity values large enough to allow the inter-
subject discrimination due to the machine artifact.
In summary, DMFP-based neuroimages contain a small region, the striatum, of great
importance for the differential diagnosis, and other regions of lower importance,
that are not significant for the diagnosis. These regions are considered as a refer-
ence region for normalization.

6.3.1.2 The compared IN methods

Linear approaches

The specific-to-non-specific binding ratio (BRall-IN) is the most widely used nor-
malization method [189] and it can be used for removing individual differences
from brain activity measures, as illustrated in figures 6.37 and 6.38. However, this
ratio method has substantially lower reliability in the striatum region, since, the
variability in the NS region might bias the intensity radioactivity values in the spe-
cific binding region.



130 Chapter 6. Experiments and Discussion

Figure 6.37: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the specific-to-non-specific binding ratio (BRall-IN).
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Figure 6.38: Mean histogram of the intensity values for intensity normalized DMFP
images by BRall-IN.
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Figure 6.39: A given trans-axial slice of 87 DMFP brain images from the database af-
ter normalization by the integral-based intensity normalization approach (Integral-
IN).
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Figure 6.40: Mean histogram of the intensity values for intensity normalized DMFP
images by Integral-IN.
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In figures 6.39 and 6.40, Integral-IN preserves absolute differences in the uptake
of the tracers. Thus, it produces a similar measure for NS regions, and there is a no-
ticeable difference in striatal structures, where the contrasts of relevant features in
the striatum are improved compared to unnormalized DMFP images.
According to figures 6.41 and 6.42, the intensity of the DMFP images was normal-
ized to a maximum value, obtained by averaging the 0.1% of the highest intensities
per image, as described in [239]. Similar to DaTSCAN scans, the Max-IN method
has unfortunate effects on IPS and APS scans. For the reason that the discrimina-
tive regions are extended by interchanging the roles of specific/nonspecific areas
of activity. Thus, the uptake of the tracer in the striatal structures is matched for
both classes; IPS and APS. As a consequence, this scaling approach affects areas that
show atrophy from the disease, i.e. the striatum. This may lead to a fault diagnosis.

Figure 6.41: A given trans-axial slice of 87 DMFP brain images from the database
after normalization to the maximum scheme (Max-IN).
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Figure 6.42: Mean histogram of the intensity values for intensity normalized DMFP
images by Max-IN.

Figure 6.43: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by α-stable distribution (α-stable-IN).
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Moreover, the intensity of 18F-DMFP images is normalized by a linear procedure
using the α-stable distribution, as illustrated in figure 6.43. This methodology is
based on the fact that the histogram of intensity values can be fitted accurately using
a positive skewed α-stable distribution. Then, the predicted α-stable parameters
and the location-scale property are used to linearly transform the intensity values
in each voxel. Figure 6.44depicts the mean histogram of the normalized DMFP
images using the α-stable-IN method.
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Figure 6.44: Mean histogram of the intensity values for intensity normalized DMFP
images by α-stable-IN method.

Nonlinear approach

We used the histogram equalization methodology as a nonlinear approach that will
be compared to our proposed methods. This method is based on a histogram match-
ing; the intensity values in the original DMFP image are pre-adjusted using the in-
formation of the histogram of the reference template, as shown in Figure 6.45. The
histograms of intensity values of each DMFP images are superimposed in the first
row of Figure 6.45. This figure reveals that there is a certain degree of variability
between the intensity values before normalization. The second row of the Figure
6.45 depicts the grayscale transformation that maps gray levels in the unmormal-
ized DMFP image to gray levels in the normalized DMFP image. The third row of
Figure 6.45 shows the histograms with the intensity values for each of the DMFP
images after performing the normalization procedure. Take note that the bulk of
the histograms of all the images are very similar after normalization.
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Figure 6.45: Histograms of each DMFP image before and after normalization using
the Hist-eq-IN approach. The intensity values in the source images are adjusted to
the intensity of the reference template (the red line with red circles).

Figure 6.46 shows the mean histogram of normalized DMFP images by Hist-eq-
IN method and the different parts of the binding values histogram, highlighting the
specific and NS regions.
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Figure 6.46: Mean histogram of the intensity values for intensity normalized DMFP
images by Hist-eq-IN method.
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Figure 6.47: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the Histogram equalization method (Hist-eq-IN). The striatal
tracer uptake was clearly increased in both, the IPS and APS patients. There were
no visually detectable differences in striatal tracer binding between IPS and APS
patients.

Figure 6.47 illustrates the resulting intensity-normalized brain images after the
Hist-eq-IN. This figure reveals that the inter-subject differences in intensity values
in the NS regions is clearly mitigated after IN. However, the tracer uptake in the
striatum is matched for IPS and APS subjects and the differentiation between these
two classes becomes difficult. For this reason, we tried to apply the Hist-eq-IN only
in the reference region, as illustrated in figures 6.48, 6.49 and 6.50.
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Figure 6.48: Histograms of each DMFP image before and after normalization using
the Hist-eq-IN approach in the NS region. The intensity values in the source images
are adjusted to the intensity of the reference template (the red line with red circles).

In Figure 6.50, the visual image analysis of the striatal 18F-DMFP uptake showed
a difference in the striatal tracer uptake between APS and IPS patients and the
matching between the two classes in the discriminative region is avoided.
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Figure 6.49: Mean histogram of the intensity values for intensity normalized DMFP
images by Hist-eq-IN method in the NS region.
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Figure 6.50: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the Histogram equalization method (Hist-eq-IN) in the NS
region.

6.3.1.3 Proposed approaches

As mentioned previously, The GMM-based image filtering (FGMM) approach is not
applied to this database because of the computational load. Thus, the remaining
proposed IN methods based on MSE and MLR are applied to this DMFP database.

Mean Squared Error (MSE) Optimization at voxel level

The minimization of MSE approach between the source image and the template
at a voxel level can involve a novel intensity normalization method for 18F-DMFP
images.
Figures 6.51 and 6.52 demonstrate that the inter-subject intensity differences in the
NS region due to several effects [30] are clearly reduced after normalization using
this proposed method.
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Figure 6.51: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the MSE optimization method in the NS region.
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Figure 6.52: Mean histogram of the intensity values for intensity normalized DMFP
images by MSE method in the NS region. The inter-subject intensity variability in
the NS region between 1900 and 1910 is reduced.
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Moreover, unlike those ones shown in the compared approaches, the processed
images are smoothed and they preserve the relevant information in the striatum
region.

Mean Squared Error (MSE) Optimization at Gaussian level

In order to overcome the computational load of the image preprocessing stage using
the GMM-based algorithm in DMFP PET database, this MSE optimization is per-
formed between the GMM-based extracted features from each subject image and
the template on the clusters that represent the reference region. Thus, the linear
intensity transformation is applied considering the cluster level.
The qualitative effects can be seen more clearly at the image level in the results of
Figure 6.53. Moreover, as illustrated in Figure 6.54, the inter-subject variability in
the NS region (between 1800 and 2060) are clearly reduced. In addition, 18F-DMFP
binding keeps its discriminative aspect between the two groups of patients, given
the more prominent nigrostriatal degeneration in the striatum region.

Figure 6.53: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the MSE-GMM optimization method in the NS region.
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Figure 6.54: Mean histogram of the intensity values for intensity normalized DMFP
images by MSE-GMM method in the NS region.

After applying the MSE approach at voxel and cluster level, the resulting brain
images show a slight difference on the intensity values of the striatal 18F-DMFP up-
take between Figure 6.51 and Figure 6.53. However, both approaches entail a good
normalization of intensity in the reference region. This is proved by the uniform
part of the mean histogram both in Figure 6.52 and Figure 6.54.

Model-Based Multivariate Linear Regression (MLR) Approach

This normalization methodology can be applied to the whole medical image, not
only in a NS region, which represents the major advantage of this proposed method.
The goal of this approach is to transform linearly all the intensity values for differ-
ent image subjects using predictive modeling based on MLR. The qualitative effect
of this method is presented in figures 6.55 and 6.56. This figures prove that after
applying this proposed approach, the intensity heterogeneity in the NS region (its
values of intensity are between 1830 and 1930) is reduced and the separation be-
tween the striatum and the NS region is increased. In addition the noise and the
artifact that may affect the raw data are clearly reduced.
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Figure 6.55: A given trans-axial slice of 87 DMFP brain images from the database
after normalization by the MLR method.
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Figure 6.56: Mean histogram of the intensity values for intensity normalized DMFP
images by MLR method.
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6.3.2 Quantitative image analysis

The proposed intensity normalization methods are compared quantitatively to many
widely used approaches. The comparison is carried out by depicting the error bars,
which are estimated using 25th and 75th percentile of the mean histogram in the
non-specific region, as depicted in the figures 6.57 et 6.58. The inter-subject in-
tensity variability, presented by error bars, is clearly reduced by our normalization
methods. Thus, it yields a greater degree of homogeneity in the intensity values of
the NS region.
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Figure 6.57: Error bars for the mean histogram of the intensity values in the NS
region for DMFP images before and after normalization using the proposed ap-
proaches. (a): Raw images, (b): MSE images, (c): MSE-GMM images and (d) MLR
images. Error bars are calculated considering 25th and 75th percentiles.
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Figure 6.58: Error bars for the mean histogram of the intensity values of DMFP im-
ages in the NS region for the different compared approaches. (a): BRall images, (b):
Integral-IN images, (c): Max-IN images, (d): Hist-eq-IN images, (e): Hist-eq-IN (NS
region) images and (f): α-stable-IN images. Error bars are calculated considering
25th and 75th percentiles.
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Moreover, we also evaluate the difference between the probability distribution of
each image and the mean brain image for all subjects according to class belonging
and using some defined metrics, such as, KL divergence, ED and JD. The inter-
subject distance is calculated quantitatively between these two distributions, both
before normalization, for raw images and after normalization, using the proposed
and the compared methods, as shown in tables 6.10, 6.11 and 6.12.
The lowest KL, ED and JD values and the lowest error are obtained by the pro-
posed normalization methods. Compared to raw data and normalized images using
the comparative approaches, its KL, ED and JD mesures represent less difference
between adjusted images and target model, both in the same class or in different
classes. Thus, these proposed approaches achieve a significant reduction in the
DMFP image discrepancy to the normalization reference. This leads to more in-
tensity homogeneity in the reference region.
In addition, the inter-subject intensity variability in the striatum for IPS subjects
(first row) and APS subjects (second row) in terms of mean histogram and error bars
for the spatial normalized and intensity normalized DMFP images are depicted in
figures 6.59,6.60 and 6.61.
Notice that the intensity distributions obtained by our approaches are quite dif-
ferent in shape and variability between the two classes (IPS VS APS; specifically
the first row versus the second row of Figure 6.59. b, c and d). However, there is
a similarity in these distributions in the compared methods, which will affect the
classification tasks. Thus, distinguishing between IPS and APS becomes more diffi-
cult.
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Table 6.10: Mean Euclidean distance and standard deviation for original DMFP
images and intensity normalized images in the NS region.

Normalization approach Class Euclidean
distance

Raw data IPS 0.4911±0.1792
(spatial normalization) MSA+PSP 0.4685±0.1641

IPS+MSA+PSP 0.4953±0.1776
BRall IPS 0.2202±0.1103

MSA+PSP 0.2566±0.1120
IPS+MSA+PSP 0.2503±0.1109

Integral IPS 0.2208±0.1092
MSA+PSP 0.2588±0.1137
IPS+MSA+PSP 0.2514±0.1111

Max IPS 0.4098±0.2138
MSA+PSP 0.4473±0.1310
IPS+MSA+PSP 0.4499±0.1578

Hist-eq-NS IPS 0.6296±0.1291
MSA+PSP 0.6139±0.1691
IPS+MSA+PSP 0.6286±0.1514

Hist-eq IPS 0.3421±0.0923
MSA+PSP 0.3331±0.1049
IPS+MSA+PSP 0.3409±0.1006

α-stable IPS 0.1984±0.0929
MSA+PSP 0.2471±0.1182
IPS+MSA+PSP 0.2285±0.1082

MSE IPS 0.1408±0.0713
MSA+PSP 0.1353±0.0553
IPS+MSA+PSP 0.1430±0.0670

MSE-GMM IPS 0.1998±0.0989
MSA+PSP 0.2298±0.0999
IPS+MSA+PSP 0.2249±0.1010

MLR IPS 0.1786±0.1131
MSA+PSP 0.1771±0.1111
IPS+MSA+PSP 0.1790±0.1169
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Table 6.11: Mean Kullback-Leibler distance and standard deviation for original
DMFP images and intensity normalized images in the NS region.

Normalization approach Class Kullback-Leibler
distance

Raw data IPS 0.2528±0.2366
(spatial normalization) MSA+PSP 0.2323±0.1654

IPS+MSA+PSP 0.2541±0.1862
BRall IPS 0.0513±0.0570

MSA+PSP 0.0674±0.0553
IPS+MSA+PSP 0.0639±0.0541

Integral IPS 0.0513±0.0565
MSA+PSP 0.0696±0.0603
IPS+MSA+PSP 0.0650±0.0564

Max IPS 0.2014±0.2611
MSA+PSP 0.2072±0.1348
IPS+MSA+PSP 0.2151±0.1816

Hist-eq-NS IPS 0.4282±0.1123
MSA+PSP 0.4064±0.1627
IPS+MSA+PSP 0.4234±0.1397

Hist-eq IPS 0.1499±0.0787
MSA+PSP 0.1383±0.0863
IPS+MSA+PSP 0.1456±0.0823

α-stable IPS 0.0482±0.0498
MSA+PSP 0.0726±0.0661
IPS+MSA+PSP 0.0630±0.0594

MSE IPS 0.0244±0.0308
MSA+PSP 0.0240±0.0269
IPS+MSA+PSP 0.0263±0.0341

MSE-GMM IPS 0.0422±0.0424
MSA+PSP 0.0564±0.0464
IPS+MSA+PSP 0.0535±0.0457

MLR IPS 0.0356±0.0541
MSA+PSP 0.0388±0.0652
IPS+MSA+PSP 0.0392±0.0641
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Table 6.12: Mean Jeffreys Divergence and standard deviation for original DMFP
images and intensity normalized images in the NS region.

Normalization approach Class Jeffreys Divergence
Raw data IPS 0.6073±0.5118
(spatial normalization) MSA+PSP 0.5825±0.4331

IPS+MSA+PSP 0.6551±0.4918
BRall IPS 0.1051±0.1043

MSA+PSP 0.1415±0.1079
IPS+MSA+PSP 0.1361±0.1070

Integral IPS 0.1052±0.1032
MSA+PSP 0.1455±0.1156
IPS+MSA+PSP 0.1381±0.1100

Max IPS 0.4795±0.5834
MSA+PSP 0.5051±0.3294
IPS+MSA+PSP 0.5355±0.4477

Hist-eq-NS IPS 0.7658±0.5473
MSA+PSP 0.8180±0.8118
IPS+MSA+PSP 0.8175±0.7078

Hist-eq IPS 0.1024±0.0390
MSA+PSP 0.1171±0.0521
IPS+MSA+PSP 0.1144±0.0478

α-stable IPS 0.0966±0.0901
MSA+PSP 0.1459±0.1268
IPS+MSA+PSP 0.1276±0.1135

MSE IPS 0.0464±0.0540
MSA+PSP 0.0431±0.0470
IPS+MSA+PSP 0.0475±0.0583

MSE-GMM IPS 0.0861±0.0791
MSA+PSP 0.1164±0.0883
IPS+MSA+PSP 0.1118±0.0890

MLR IPS 0.0704±0.1085
MSA+PSP 0.0795±0.1488
IPS+MSA+PSP 0.0787±0.1389
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Figure 6.61: Mean histograms and error bars in the striatum region for 87 inten-
sity normalized DMFP PET images using the histogram equalization method and
keeping separate distributions for the two different classes. The first row is for IPS
subjects and the second row is for APS subjects. (a): Hist-eq-IN images and (b):
Hist-eq-IN (NS region) images. Error bars are calculated considering 25th and 75th
percentiles. The x-axis represents the intensity. The y-axis indicates the number of
voxels with a given level in the striatum region.

6.3.3 Quantitative classification performance of Parkinsonism

The differential diagnosis of IPS (PD) versus APS is clinically important for thera-
peutic and particularly prognostic reasons. However, the diagnosis of parkinsonian
syndromes at early disease stages is difficult because of the initial coexpression of
signs and symptoms such as asymmetry of motor symptoms, resting tremor, and
positive response to L-DOPA treatment. Thus, distinguishing between IPS and APS
is still a challenge due to both disorders have similar symptoms [240, 241].
Since PET imaging provides a more precise quantification of striatal receptor bind-
ing owing to its superior imaging properties, the use of positron-emitting radionu-
clides labelled to appropriate ligands should enable better diagnostic discrimina-
tion between IPS and APS patients. Moreover, it should facilitate the diagnosis of
early APS stages, especially when ligands are used with higher affinity to D2-like
receptors and with lower unspecific binding.
Since the lack of studies using DMFP data in terms of classification accuracy and
there are still no data on the suitability of 18F-DMFP in the diagnosis of parkin-
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sonism, this study aims to investigate the diagnostic performance of 18F-DMFP in
patients with different forms of parkinsonism (PD, MSA and PSP), both before and
after applying our proposed IN approaches.
Thus, the classification performance of the proposed intensity normalization ap-
proaches is tested, firstly, using the classical multivariate approach VAF in com-
bination with the linear SVM kernel. Secondly, using the PCA feature extraction
method and the SVM with linear kernel. LOO cross-validation strategy is used in
order to estimate several performance parameters, such as, the accuracy rates, the
sensitivity and the specificity of the resulting datasets after IN.

Voxels-as-Features (VAF)

The accuracy measures obtained by VAF for the different IN methods are shown in
Table 6.13. The proposed approaches outperform the raw data, as they achieved a
gain of 3.45% for the accuracy, 5.18% for the sensitivity and a gain of 1.88% for the
specificity. Moreover, the accuracy again of our approaches is up to 9.2% compared
to the widely used IN and it is up to 11.16% and to 8.12% for the sensitivity and the
specificity gains.
18F-DMFP has a high binding affinity for dopamine transporters in the striatal re-
gion of the brain. For this reason, neuroimaging studies based on it usually fo-
cuses on that region. Thus, a binary mask is applied to each image for the different
datasets in order to select only the high-intensity voxels of the striatum area. The
accuracy rates for different normalization methods using only the voxel intensity in
the striatum are presented in Table 6.14.

Table 6.13: Comparison between the performance (%) achieved with the proposed
intensity normalization methodologies, the raw data and the other normalization
approaches in the whole brain image using VAF approach and linear SVM classi-
fier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 64.37% 60.53% 67.35%
BRall − IN 62.07% 58.82% 64.15%
Integral-IN 63.22% 60% 65.38%
Max-IN 63.21% 59.46% 66%
Hist-eq-IN 66.66% 64.70% 67.92%
Hist-eq-NS-IN 58.62% 54.55% 61.11%
α-stable-IN 62.07% 60% 63.16%
MSE 67.82% 65.71% 69.23%
MSE-GMM 64.37% 62.50% 65.45%
MLR 66.67% 64.71% 67.93%
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There is a significant improvement of the performance results over the same
VAF approach after the ROI selection for the different IN methods. However, The
MSE methodology, proposed in this work, achieved an accuracy rate of 71.27% and
outperformed other previous approaches in a fair comparison (using the same data
and classification approach).

Table 6.14: Comparison between the performance (%) achieved with the proposed
intensity normalization methodologies, the raw data and and the other normaliza-
tion approaches in the striatum using the VAF approach and linear SVM classifier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 70.11% 67.57% 71.15%
BRall − IN 67.82% 67.74% 67.86%
Integral-IN 62.06% 58.33% 64.70%
Max-IN 63.21% 59.45% 66%
Hist-eq-IN 65.52% 62.86% 67.31%
Hist-eq-NS-IN 62.07% 60% 63.15%
α-stable-IN 64.37% 62.50% 65.45%
MSE 71.27% 70.59% 71.70%
MSE-GMM 68.97% 67.65% 69.81%
MLR 67.82% 67.74% 67.86%

Principal Component Analysis (PCA)

In addition, we evaluated the proposed IN approaches using the PCA feature ex-
traction method in computer systems to distinguish between idiopathic and non-
idiopathic Parkinsonism. The reported accuracy rates of the proposed IN methods
vary from 70.12% up to 72.41%, using the PCA in the whole image and taking into
account all the binding regions. Thus, they outperform the unormalized DMFP im-
ages (raw data) whose its accuracy rate is 65.52% and the remaining IN approaches
whose their accuracy rates vary from 60.91% up to 68.96%. Taking into account the
striatum region, the accuracy rates of the proposed IN approaches reach a peak
value of 72.41% and they demonstrate a good trade-off between sensitivity and
specificity, as shown in tables 6.15 and 6.16. They outperform the raw data and
the compared methods in spite of their accuracy improvement after ROI selection.
Comparing the results obtained from the DaTSCAN SPECT database, the relatively
low accuracy rates obtained from DMFP database could be explained by the used
neuroimages, which correspond to early stages of the PD. Observe that the neu-
roimaging data were acquired during the first visit, 2 years before assigning the
final diagnosis that was used to label the data. Furthermore, it is worth noting that
the database was clinically labeled, what introduced an error due to the intrinsic
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limitations of the clinical assessment [242], and the generalization of the classifi-
cation procedure should be interpreted from this perspective. As a conclusion, the
obtained results suggest that the proposed intensity normalization procedures lead
to comparable generalization estimations and perform substantially better than the
baseline methods. Moreover, the proposed approaches demonstrate also their abil-
ity and robustness to develop an accurate computer aided diagnosis system based
on DMFP-based data in combination with SVM classification.

Table 6.15: Comparison between the performance (%) achieved with the proposed
intensity normalization methodologies, the raw data and the other normalization
approaches in the whole brain image using PCA approach and linear SVM classi-
fier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 65.52% 60.98% 69.57%
BRall − IN 68.96% 67.64% 69.81%
Integral-IN 68.97% 67.65% 69.82%
Max-IN 65.52% 61.54% 68.75%
Hist-eq-IN 60.91% 57.14% 63.46%
Hist-eq-NS-IN 60.92% 57.58% 62.96%
α-stable-IN 67.82% 65.71% 69.23%
MSE 72.41% 72.73% 72.22%
MSE-GMM 70.12% 67.57% 72%
MLR 71.27% 68.42% 73.47%

Table 6.16: Comparison between the performance (%) achieved with the proposed
intensity normalization methodologies, the raw data and and the other normaliza-
tion approaches in the striatum using the PCA approach and linear SVM classifier.

Normalization approach Accuracy Sensitivity Specificity
Raw data 67.81% 64.86% 70.37%
BRall − IN 68.96% 66.66% 70.58%
Integral-IN 64.37% 60.53% 67.34%
Max-IN 67.81% 62.79% 69.56%
Hist-eq-IN 66.66% 63.15% 69.38%
Hist-eq-NS-IN 63.22% 58.97% 66.66%
α-stable 67.81% 64.86% 70%
MSE 72.41% 69.23% 75%
MSE-GMM 70.11% 65.85% 73.91%
MLR 68.97% 65.79% 71.43%
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6.4 Conclusion

Nowadays, the visual examination of the neuroimages is combined with modern
computer systems that automatically analyze the data and are able to estimate their
class (pathological or not). In the case of PD diagnosis, the classical approach ad-
dresses the problem directly, i.e., by quantifying the loss of striatal dopamine. How-
ever, modern computer systems examine the images, looking for the patterns that
characterize the studied disease.
In this sense, the present chapter evaluates the impact of different intensity normal-
ization methods for the development of a computer aided diagnosis system for PS
detection based on DaTSCAN and DMFP image analysis and classification. Four
novel alternatives are proposed to establish a comparison between specific/non-
specific uptake areas. These methodologies are based on the extraction of intrinsic
parameters from 123 I-ioflupane-SPECT and 18F-DMFP PET images without using
anatomical information, resulting in four automatic procedures for intensity nor-
malization: GMM-based image filtering, MSE optimization (under voxel and cluster
levels) and predictive modeling using MLR. Further analysis reveals that, the pro-
posed normalization methods outperform many widely used approaches. Since, the
proposed ones improve the normalization, increase the the difference between the
striatum and the background uptakes. In addition, the inter-subject intensity dif-
ferences are quantitatively reduced in the non-specific region, and the artifacts and
noise affecting the source images are removed. This allows us to guarantee that the
differences between the different DaTSCAN (NC and PS subjects) and DMFP (IPS
and APS subjects) brain images are due only to the uptake of the tracer in the stria-
tum region. Finally, These proposed automatic intensity normalization methods
demonstrate also its ability and robustness in PS pattern detection as they provide
good values of accuracy compared to other approaches.





Chapter 7
Conclusions and Future Work

This chapter shows the conclusions of the Thesis and highlights the scientific con-
tributions that have been made. These contributions are divided into two groups.
On the one hand, the development of new intensity normalization algorithms that
improve the precision of computer aided diagnosis (CAD) systems for neurodegen-
erative diseases such as Parkinson’s disease (PD). On the other hand, a comparison
with many conventional intensity normalization (IN) methods adequately adapted
to the nature of the PD is performed. Furthermore, several proposals for the con-
tinuation of this work are proposed, as future research lines.

7.1 Conclusions

Advances in clinical medical imaging have brought about the routine production of
vast numbers of medical images that need to be analyzed. As a result, an enormous
amount of computer vision research effort has been targeted at achieving automated
medical image analysis. This has proved to be an elusive goal in many cases. Seve-
ral factors degrade the medical image quality, some of which are due to physical
factors, such as Compton scattering and photon attenuation, and system parame-
ters, such as intrinsic and extrinsic spatial resolution of the gamma camera system.
These factors result in blurred and noisy images. A high noise level will obscure the
contrast and reduce the image quality, resulting in less accurate diagnosis or even
in a fault diagnosis. The complexity of this problem encountered in analyzing these
images has prompted considerable interest in the use of a relevant pre-processing
step for such applications.
Hence, intensity normalization is a significant preprocessing step for functional
imaging. It guarantees that the differences between subjects or scans are due to
physiological reasons and brain functioning, and not due to the baseline calibration
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of the gamma camera applied for the acquisition.
In this sense, new intensity normalization schemes are proposed, firstly, for ana-
lyzing functional tomographic images. Secondly, for improving the accuracy of the
CAD systems used for the diagnosis of neurodegenerative diseases, such as, PD,
MSA and PSP. These novel IN approaches are based on GMM, MSE and MLR.
The first normalization approach is based on a nonlinear image filtering by means
of GMM. It is called the GMM-based image filtering approach. The voxels in the
non-specific region, i.e., the reference region are intensity normalized by remov-
ing clusters whose likelihood is negligible. This process is based on a probability
threshold that measures the weight of each kernel or cluster on the specific region,
i.e., the striatum.
The second normalization method is based on the MSE optimization which is per-
formed by a linear intensity transformation at a voxel level. This approach is based
on predicting jointly different intensity normalization parameters that leads to the
joint minimization of the squared sum errors between the template image and the
optimal linear estimated image (normalized image).
The third approach is a combination between the two previous methods. Thus, it is
based on the minimization of the MSE between the GMM-based extracted features
from each subject image and a template in the non-specific region at the cluster (of
voxels) level.
The fourth and the last proposed intensity normalization approach is based on a
predictive modeling using MLR. Different intensity normalization parameters de-
rived from this model will be used in a linear procedure to perform the intensity
normalization of the brain images.
The methodologies developed for the normalization of 3D images were essentially
applied to normalize DaTSCAN SPECT images. Furthermore, they are successfully
applied to other modalities of images, such as, DMFP PET imaging. Further analysis
reveals that, the proposed methods are characterized by stability and repeatability
of performance, speed of execution, independence of clinical protocol and robust-
ness.
The main motivations of using these approaches are i) to perform an automatic in-
tensity normalization of brain images, ii) to eliminate operator-dependent manipu-
lations [203], iii) to avoid the manual preselection of relevant information by means
of statistical analysis [176] and iiii) to improve CAD systems.
Throughout the experiments on two independent datasets, we not only demonstrate
the merits of our methods that outperform most state-of-the-art methods. Although,
we also show that the intensity normalization have a significant role in discriminat-
ing NC from PD images and in distinguishing PD from APS for an accurate com-
puter aided diagnosis systems.
As a final conclusion of this PhD project, the initial goals were successfully reached.
This is confirmed by the fact that the works developed were published in several
international journals and presented at international conferences.
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7.2 Future Work

As future lines of the research developed throughout this work, we present the fol-
lowing proposals:

• Improvements in the MKL-IN approach, which is based on the minimizing
of the Kullback-Leibler divergence. This normalization scheme is more de-
manding, as it is based on an iterative algorithm (SPSA). In order to overcome
this computational load, this algorithm needs the optimization of many pa-
rameters, such as, the gain sequences, the maximum number of iterations, the
initial intensity adjustment parameter, ext.

• The use of a multiple kernel learning procedure along with a SVM classifier to
improve the the relatively low accuracy rates obtained from DMFP database.

• The use of the Multiclass classification that allows to categorize the images
in more than two classes and therefore to distinguish different stages of the
progressive diseases.

• The use of the well-known Automated Anatomical Labeling (AAL) [243] atlas
in order to automatically parcel the neuroimaging data. This procedure allows
isolating specific regions such as the striatum.

• Field Programmable Gate Array (FPGA) Implementation of the GMM-based
image filtering (FGMM) approach for DMFP database in order to decrease the
computational time for the model estimation stage. It can reach more than 69
hours for just a one GMM model.
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Appendix A
Appendix

A.1 Cluster selection strategy

The local averaged intensity in the ROI for each image subject can be computed by:

IR =
∫
R

d3x I(x)fn(x) (A.1)

where I(x) is is the global intensity of the image. In terms of a-priori probabilities,
the eq (A.1) can be expanded to:

IR =
∫
R

d3x I(x)p(x) (A.2)

where p(x) is the probability density function (pdf) which is given by [200]:

p(x) =
k∑
n=1

Pnp(x|θn) (A.3)

The parameter Pn =ωn denotes the a priori probability of class “n” and p(x|θn)=fn(x|θn)
is the conditional density of class “n”. As a result the local averaged intensity can
be expressed as follows:

IR =
k∑
n=1

Pn

∫
R

d3x I(x)p(x|θn) =
k∑
n=1

PnIn (A.4)

If the striatum is selected as ROI and we assume that the intensity IS holds almost
constant in this region, the contribution of every cluster to the striatum intensity
can be computed as:

In = IS

∫
S

d3x p(x|θn) (A.5)
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Moreover the condition for activation (>) or non-activation (<) for every single voxel
in Γ is:

fn(xs
j |θn) ≷ η n ∈Ω (A.6)

If a region is “probable” or activated then, its probability P (XS) must be higher that
the one assigned by the uniform pdf of the same region:

P (XS) > Pu(XS) (A.7)

where P (XS) is evaluated as:

P (XS) =
k∑
n=1

Pn

∫
S

d3x p(x|θn) =
k∑
n=1

PnP (xs|θn) (A.8)

And Pu(XS) is calculated as:

Pu(XS) =
∫
S

d3x pu(x) = η ·VS (A.9)

Following the eq (A.6), the contribution of each relevant cluster to the whole prob-
ability for all the voxels:

P (xs|θn) =
∫
S

d3x p(x|θn) '
Ns∑
j=1

vs p(xs
j |θn) >

Ns∑
j=1

vsη = Pu(XS) (A.10)

where vs is the volume element, i.e. the voxel resolution. Thus the condition for
activation is:

µs =
1
Ns

Ns∑
j=1

p(xs
j |θn) > η (A.11)

Hence, the sample mean of the random variable p(xs
j |θn) must be higher than η. In

order to relax the condition in eq (A.6) for cluster selection we allow just a fraction
α of voxels to satisfy this condition, i.e. a fraction equal or greater than 75%. If this
fraction is large enough, the probability that the sample mean is bigger than η is
quite large, thus the eq (A.7) is fulfilled by a single cluster.
To assess this probability, lets assume for the set of Ns trials that p(xs

j |θn) is dis-

tributed normally and independently with mean µ and variance σ2 ∼ N (µ,σ2). Un-
der the null hypothesis H0 that the both means are equal, i.e. µ = η, the probability
P (p(xs

j |θn) ≷ η)=p=0.5. Moreover, the probability of gettingNb samples greater than
the mean η in Ns trials follows a binomial distribution is given by :

P (X =Nb) =
Ns!

Nb!M!
pNb(1− p)M =

Ns!
Nb!M!

pNs (A.12)

whereM=Ns–Nb stands for the samples of the probability less than the mean. Given
Ns � 1000, Nb= 0,75 ·Ns and M= 0,25 ·Ns, P (X = 0,75 ·Ns) = 4.5 · 10−59. Thus the
false alarm rate P (X ≥ 750) =

∑1000
i=750 P (X = i) = 1− P (X ≤ 750) = 0. As a conclusion,

our selection criterion is enough to fulfill the condition of relevance.
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A.2 MKL-IN

The Simultaneous Perturbation Stochastic Approximation (SPSA) [244, 245] is used
in this normalization approach to calculate an approximation of the objective func-
tion gradient at each iteration and then adjusts the current solution estimate accord-
ing to the gradient estimate. Moreover, for generating the gradient estimate, finite
differences are used. Thus, the SPSA method incorporates two “gain” sequences
that serve to shrink, as illustrated in eq. A.13 . Whereas the iterations progress, the
distance over which the finite differences are calculated as well as the size of the
adjustment step taken.
For the calculation of an approximation of the objective function, SPSA generates a
gradient estimate ĝi , at each iteration i, as follows:

ĝi(Fs) =
u(Fs + ci∆i)−u(Fs − ci∆i)

2ci∆i
(A.13)

where u(Fs) = KL(h(FsI),M) is the objective function, h(FsI) is the histogram of the
adjusted image Î (the original image I multiplied by the current estimate of the ad-
justment field Fs ), M is the model histogram to which we are matching, and KL is
the Kullback-Leibler divergence. The gradient estimate is made across a perturba-
tion of the parameter field Fs by ± ∆i. The convergence over a number of iterations
is guaranteed by the selection of ∆i. Spall suggests in [244] that sampling the el-
ements of ∆i from a Bernoulli ±1 distribution with +1 and -1 equally likely, as we
have used here. Therefore, ci∆i is a vector of ± ci .
The gain sequences are defined as follows:

ci =
c
iγ

(A.14)

ai =
a

(i +A)α
(A.15)

where ci controls the distance over which the gradient estimate is made and ai con-
trols the size of the resulting step taken. A is an added parameter that allows for a
more aggressive value of a, while avoiding instability during early iterations. The
decay parameters, α and γ , are set to 0.602 and 0.101, which was the starting point
recommended in [244].
After each iteration, the estimate of the solution parameter field Fi is updated as:

Fi+1 = Fi − aigi (A.16)
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Appendix B
Quantification of the intensity
normalization methods

The classification performances of our proposed approaches are tested using sup-
port vector machines-based supervised learning and the Leave-One-Out (LOO) cross-
validation strategy. The LOO strategy is often computationally expensive because of
the large number of times the training process is repeated, although it gives insight
into the ability of the classification method since all the available information is in-
cluded in the learning process. In addition, in order to extract the most significant
features from the datasets, the PCA based feature extraction is used.

B.1 Support vector machines classifier (SVM)

SVM are a set of related supervised learning methods widely used in pattern recog-
nition, voice activity detection, classification and regression analysis [246–249]. It
is introduced in order to separate a set of binary labelled training data with a hy-
perplane that is maximally distant from the two classes (called maximal margin
hyperplane). The objective is to build a function f : RN → ±1 using training data,
that is, n-dimensional patterns xi and class labels yi, so that f will correctly classify
new examples (x,y):

(x1,y1), (x2,y2), ......, (xN,yN) ∈RN ×±1 (B.1)

Linear discriminant functions define decision hyperplanes in a multidimensional
space, that is:

g(x) = wTx + w0 (B.2)

where w is the weight vector that is orthogonal to the decision hyperplane and w0
is the threshold. The optimization task consists of finding the unknown parameters
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wi, i =1, ...,N and w0 that define the decision hyperplane. Let xi, i =1, ...,n be the
feature vectors of the training set, x. These belong to either of the two classes, w1 or
w2. If the classes were linearly separable, the objective would be to design a hyper-
plane that classifies correctly all the training vectors. The hyperplane is not unique,
and the selection process is focused on maximizing the generalization performance
of the classifier, that is, the ability of the classifier, designed using the training set, to
operate satisfactorily with new data. Among the different design criteria, the max-
imal margin hyperplane is usually selected since it leaves the maximum margin of
separation between the two classes. Since the distance from a point x to the hyper-
plane is given by z =|g (x)|/‖w‖, scaling w and w0 so that the value of g (x) is +1 for
the nearest point in w1 and -1 for the nearest points in w2, reduces the optimization
problem to maximizing the margin: 2/‖w‖ with the constraints:

g(x) = wTx + w0 > 1,∀x ∈w1 (B.3)

g(x) = wTx + w0 6 1,∀x ∈w2 (B.4)

When no linear separation of the training data is possible, SVM can work effectively
in combination with kernel techniques such as quadratic, polynomial or radial basis
function (RBF), so that the hyperplane defining the SVM corresponds to a non-linear
decision boundary in the input space[250]. A kernel function is defined as:

K(xi,xj) = ϕ(xi)ϕ(xj) (B.5)

The use of kernel functions avoids directly working in the high dimensional feature
space, thus the training algorithm only depends on the data through dot products
in Euclidean space, i.e., on terms of the form ϕ(xi)ϕ(xj).

B.2 Cross validation

In cross validation, we randomly split the set of labeled training samples into two
parts: one is used as the traditional training set for adjusting model parameters
in the classifier. The other set is the validation set, which is used to estimate the
generalization error. Since our ultimate goal is low generalization error, we train
the classifier until we reach a minimum of this validation error [251]. The classifier
is trained as many times as the size of the database. In each iteration an image
is used for the test and the remaining ones for training. The global accuracy is
then calculated as the average of the accuracy achieved in each iteration. Thus, the
accuracy (Acc), sensitivity (Sens) and specificity (Spec) rates are defined as follows:

Acc =
T P + TN

T P + TN + TN +FP
; Sens =

T P
T P +FN

; Spec =
TN

TN +FP
(B.6)
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where TP is the number of true positives (number of PS patients correctly classified),
TN is the number of true negatives (number of control subjects correctly classified),
FP is the number of false positives (number of control subjects classified as PS pa-
tients and FN is the number of false negatives (number of PS patients classified as
control subjects).

B.3 Principal Component Analysis

Principal component analysis (PCA)[235] has been called one of the most impor-
tant and valuable results from applied linear algebra. PCA is used frequently in all
forms of analysis because it is an efficient tool for extracting the most significant
features from a dataset. It is often used in neuroimaging in order to reduce the orig-
inal high dimensional space of the brain images to a lower dimensional subspace
[236, 252]. Furthermore, it has been successfully applied for neuroimage classifi-
cation problems [237]. Mathematically, PCA generates an orthonormal basis vector
that maximizes the scatter of all the projected samples. After the preprocessing
steps, the n remaining voxels for each subject are rearranged into a vector form.
Let X = [x1,x2...,xN ] be the sample set of these vectors, where N is the number of
patients. After normalizing the vectors to unity norm and subtracting the large av-
erage, a new vector set Y = [y1,y2...,yN ] is obtained, where each yi represents an
n-dimensional normalized vector, yi = (yi1,yi2...,yin)t, i = 1,2, ..,N. The covariance
matrix of the normalized vectors set is defined as:

ΣY =
1
N

N∑
i=1

yiyi
t =

1
N

YYt (B.7)

and the eigenvector and eigenvalue matrices Φ and Λ are computed as:

ΣYΦ = ΦΛ (B.8)

Note that YYt is an n× n matrix while YtY is an N ×N matrix. If the sample size N
is much smaller than the dimensionality n, then diagonalizing YtY instead of YYt

reduces the computational complexity [253].

(YtY)Ψ = ΨΛ1 (B.9)

T = YΨ (B.10)

where Λ1= diag{λ1,λ2,...,λN } and T=[Φ1,Φ2,...,ΦN ]. In short, we use PCA to trans-
form the data into a set of a few intermediate linear latent variables (components)
and then, these new variables are used for dimension reduction.
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Appendix C
Introducción

C.1 Introducción General

La imagen tomográfica ha sido seleccionada como uno de los grandes logros del siglo
XX por la Academia Nacional de Ingenierı́a [7] debido a su impacto en la medicina y
la biologı́a [8]. En el campo médico, los datos de imagen se utilizan de forma ubicua
en la práctica clı́nica, ası́ como en los estudios cientı́ficos para inferir detalles sobre
el proceso objeto de la investigación, bien sea de un proceso de enfermedad o un
proceso fisiológico. Por lo tanto, la información proporcionada por las imágenes
médicas se ha convertido en una parte vital para la salud del paciente de hoy.
Más allá de esto, las imágenes no solo han mejorado la calidad de la atención al pa-
ciente, sino también la reducción de los costes del cuidado de la salud. De hecho,
la imagen es una herramienta complementaria para las pruebas neuropsicológicas
que pueden evaluar las anomalı́as estructurales y funcionales para mejorar el di-
agnóstico precoz. Además, muchas enfermedades pueden ser diagnosticadas en
una etapa mucho más temprana en la progresión de la enfermedad, ya que no es
necesario que los sı́ntomas sean evidentes en el exterior del cuerpo humano, como
solı́a ocurrir. Por otra parte, si se detecta una enfermedad, los procedimientos que
se pueden utilizar para ello resultan mucho menos invasivos.
A diferencia de las imágenes producidas en las aplicaciones industriales, las imágenes
generadas en aplicaciones médicas son complejas y muy diferentes de una apli-
cación a otra.
La medicina nuclear es la sección de la ciencia que utiliza las caracterı́sticas de
los fármacos radiactivos con el fin de obtener información clı́nica y bioquı́mica
de la fisiologı́a humana. De acuerdo con el examen necesario para cada paciente,
una pequeña cantidad de material radiactivo, es decir, un radionúclido se fija a un
fármaco (trazador). Esta combinación se llama radiofármaco o radiotrazador. En-
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tonces, todo el complejo se administra al paciente por vı́a intravenosa. Por lo tanto,
el marcador radiactivo sigue su vı́a fisiológica y se concentra en un lugar especı́fico
en el cuerpo del paciente dónde puede haber enfermedad o una anomalı́a durante
cortos perı́odos de tiempo. A continuación, la radiación emitida por el producto ra-
diofarmacéutico en el cuerpo humano se detecta usando una cámara especial que se
llama cámara gamma, dando como resultado imágenes de la biodistribución del ra-
diotrazador. Por lo tanto, las imágenes de medicina nuclear muestran información
caracterı́stica acerca de las propiedades fisiológicas del tejido u órgano investigado.
En las últimas décadas, los sistemas de imágenes médicas han avanzado conside-
rablemente. Se han producido unas mejoras sustanciales en sus caracterı́sticas como
sensibilidad, resolución y velocidad de adquisición. Por lo tanto, las técnicas avan-
zadas de procesamiento y análisis de imágenes encuentran un amplio uso en la
medicina. Los métodos de procesamiento de imágenes están en continuo desarrollo
con el fin de mejorar aún más la calidad de las imágenes médicas que se utilizan
para un diagnóstico fiable.
El reto del procesamiento y análisis de imágenes aplicado a las aplicaciones médicas
permite la mejora de la calidad de la imagen adquirida y extraer información cuan-
titativa (es decir, caracterı́stica) de los datos médicos de imagen de una manera efi-
ciente y exacta.
La calidad de la imagen juega un papel importante en la formación de imágenes de
medicina nuclear con el fin de proporcionar una imagen fiable del órgano proyec-
tado para un diagnóstico o terapia precisa. Las caracterı́sticas fı́sicas que se utilizan
para describir la calidad de la imagen son la resolución espacial, el contraste y el
ruido.
La resolución espacial se define como la capacidad de la técnica de imagen para re-
producir los detalles de una distribución no uniforme del trazador radiactivo en el
paciente [21]. Por lo tanto, se refiere a la capacidad del instrumento de formación
de imágenes para proporcionar la nitidez o detalle del objeto. La resolución espa-
cial se separa en la resolución intrı́nseca (centelleador, tubos fotomultiplicadores
y un circuito electrónico) y la resolución del sistema (colimador, centelleo, tubos
fotomultiplicadores y circuito electrónico) [22]. La resolución intrı́nseca depende
del espesor del cristal de centelleo, mientras que la resolución del sistema depende
principalmente de la distancia de la fuente emisora del colimador (la geometrı́a del
colimador) y en cierta medida por el grosor del tabique. Además, la resolución de
una cámara gamma está limitada por varios factores, tales como, el movimiento del
paciente, la fluctuación estadı́stica de la distribución de fotones visibles detectada,
la geometrı́a del colimadores, el ruido de Poisson en la producción de fotones de
centelleo, el número de tubos fotomultiplicadores, los algoritmos de localización de
posición utilizados y la visualización de la imagen o sistemas de registro [3].
Por lo tanto, las resoluciones espaciales intrı́nsecas y de la cámara son parámetros
que afectan inherentemente a la calidad de la imagen y la precisión cuantitativa.
La mayorı́a de las cámaras gamma modernas tienen valores similares para estos
parámetros, y la mayorı́a de los valores están cerca óptima para el presente coli-



C.1. Introducción General 173

mador / centelleador de cristal / tecnologı́a fotodetector [3].
La segunda caracterı́stica fı́sica para describir la calidad de la imagen es el contraste
de la imagen. Se puede definir como la diferencia en intensidad correspondiente
a la diferente concentración de la actividad en el paciente [22]. Las imágenes de
medicina nuclear deben ser de alto contraste para una buena precisión diagnóstica.
El contraste de la imagen se ve afectado por varios factores, tales como, el producto
radiofarmacéutico que se utiliza para formación de imágenes, el efecto Compton,
coincidencias aleatorias o accidentales, y el detector de tiempo muerto [3]. Por lo
tanto, es preferible utilizar un fármaco radiactivo que permita una alta absorción
en el órgano diana. El efecto Compton [23] puede ser reducido por las ventanas
de energı́a. Sin embargo, para mantener una alta sensibilidad, la resolución de en-
ergı́a y la fracción de los fotones deben ser altas [3].Para resolver coincidencia se
requiere un cristal de centelleo rápido brillante o un detector de bajo nivel de ruido
y electrónica [3]. El azar en la coincidencia y los efectos de tiempo muerto pueden
reducirse si se implementan detectores rápidos [25, 26].
Por último, la tercera caracterı́stica fı́sica es el ruido, que es el factor principal en
la degradación de la calidad de imagen. El ruido de la imagen puede dividirse en
ruido aleatorio y estructurado [22, 27]. El ruido aleatorio, también conocido como
ruido estadı́stico, es el resultado de las variaciones estadı́sticas en los recuentos de
ser detectado, que puede ser bastante significativo en los estudios de imagen de la
tomografı́a computarizada por emisión de positrones (PET)[28]. El ruido estruc-
turado se deriva de la falta de uniformidad en la cámara de centelleo y estructuras
superpuestas en el cerebro del paciente. El ruido estructurado puede surgir de la
propia distribución de radionucleido o causado por artefactos del sistema [29]. Por
lo tanto, el ruido proviene principalmente de las variaciones aleatorias inherentes
en el conteo de fotones. Por otra parte, está relacionado con el número de fotones
detectados y utilizados para la generación de la imagen [29, 30]. Por ejemplo, la to-
mografı́a por emisión de un sólo fotón (SPECT), que permite obtener imágenes con
un menor número de fotones, tiene niveles de ruido de alrededor de 10% [30].
En consecuencia, el ruido puede ser causado por un lado, por incertidumbres aleato-
rias no correlacionadas, incluyendo el ruido de fotones, ruido electrónico y el ruido
debido a la radiación dispersa. Por otro lado, el ruido puede ser generado por incer-
tidumbres sistemáticas correlacionadas, incluyendo la distorsión geométrica, detec-
tor de la no linealidad, los errores debidos a muestrear una imagen continua en un
conjunto discreto de pı́xeles y errores de cálculo cuando una imagen se reconstruye
a partir de datos indirectos [31].
El campo del procesamiento y análisis de imágenes tiene que hacer frente a un con-
junto diverso y complejo de problemas. Debido a su gran extensión, nos centramos
en ciertos temas que consideramos importantes en el campo de la medici-na, tales
como el desarrollo de sistemas de diagnóstico asistido por ordenador (CAD, del
inglés “computer aided diagnosis”) de enfermedades neurodegenerativas. CAD
es un concepto amplio que integra el procesamiento de imágenes, visión artifi-
cial, las matemáticas, la fı́sica y las estadı́sticas en gráficos computarizados. Estas
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técnicas ayudan a los radiólogos en el proceso de toma de decisiones médicas, tal
como se representa en la figura C.1. Sirve como una segunda opinión en la de-
tección de anomalı́as, clasificación de las lesiones, cuantificación de la enfermedad
y de las estructuras anatómicas, evaluación de riesgos y la evaluación fisiológica.
Por otra parte, CAD es una tecnologı́a interdisciplinaria relativamente joven que
combina elementos de la inteligencia artificial y procesamiento de imágenes digi-
tales en el campo de la imagen de medicina nuclear y radiológica. Una aplicación
tı́pica es la detección de un tumor. Por ejemplo, algunos hospitales utilizan CAD
para apoyar su examen médico preventivo en la mamografı́a (diagnóstico de cáncer
de mama), la detección de pólipos en el colon y cáncer de pulmón. Esto parece
indicar que los sistemas CAD están empezando a ser aplicado ampliamente en
la detección y diagnóstico diferencial de los diferentes tipos de anomalı́as en las
imágenes médicas obtenidas en diversos exámenes mediante el uso de diferentes
modalidades de imagen. De hecho, los sistemas CAD se han convertidos en uno de
los principales temas de investigación en imagen médica y el diagnóstico radiológico
[9–11]. Últimamente, algunos métodos basados en el paradigma de aprendizaje au-
tomático [12, 13] y redes neuronales [14] se han aplicado a los procedimientos de
análisis de imagen, dando lugar a la construcción de sistemas CAD para varias en-
fermedades neurodegenerativas, como la enfermedad de Alzheimer (AD, del inglés
Alzheimer’s Disease) [15–17]o la enfermedad de Parkinson (PD, del inglés Parkin-
son’s Disease) [1, 18–20]. Estos sistemas no solo procesan y analizan datos de la
imagen, sino también pueden determinar si una imagen pertenece a la clase de
imágenes normales (sujetos sanos) o imágenes patológicas (pacientes), realizando de
esta manera un diagnóstico automático. Por lo tanto, un sistema CAD tı́pico puede
estar compuesto de cuatro módulos principales, como se muestra en la Figura C.1.
El pre-procesamiento de las imágenes mejora la calidad de imagen de entrada y ası́
permite la segmentación de la imagen para la extracción precisa de las regiones de
interés. La extracción y selección de caracterı́sticas identifican un pequeño número
de caracterı́sticas matemáticas que son utilizadas por las técnicas de reconocimiento
de patrones y de aprendizaje automático para la identificación de la enfermedad y
la clasificación. Además, los sistemas CAD se pueden aplicar a diferentes imágenes
en medicina nuclear.

C.2 Motivación

A pesar de los enormes progresos realizados en la tecnologı́a de adquisición de
imágenes, muchos problemas graves en el uso de estos dispositivos están relaciona-
dos con los artefactos de imágenes médicas para el diagnóstico y la planificación
del tratamiento. Ası́, la calidad de las imágenes adquiridas se encuentra degradada
por factores fı́sicos, tales como el efecto Compton y la atenuación de fotones, y los
parámetros del sistema (la resolución espacial intrı́nseca y extrı́nseca del sistema
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Figure C.1: Arquitectura general de los sistemas CAD para las imágenes médicas.

de cámara gamma). El principal problema es que estas imperfecciones de imagen
pueden influir en el diagnóstico o, en el peor de los casos, pueden incluso dar lugar
a malas decisiones médicas. Por lo tanto, las fuentes de los artefactos deben ser com-
prendidas y eliminan durante el proceso de adquisición. Sin embargo, en muchos
casos, esto no se puede lograr debido a problemas fı́sicos, financieros o de tiempo.
Por lo tanto, tienen que utilizar los métodos de corrección retrospectivos [32]. Por
otra parte, con el fin de superar la influencia de la variabilidad interindividual, las
imágenes se procesan con pasos de registro y de normalización de intensidad. Estos
pasos están dedicados para normalizar los volúmenes cerebrales, alinear espacial-
mente las regiones anatómicas, y calibrar la intensidad en escala de grises, de modo
que las imágenes puedan ser comparadas una con otra. En esta tesis, investigare-
mos la posibilidad de proporcionar a los médicos herramientas que proporcionen
información útil acerca de las imágenes de tomografı́a computarizada por emisión,
tales como, SPECT y PET para el proceso de diagnóstico. Para ello, se concentrará
principalmente en una parte muy importante del sistema de CAD, la normalización
de la intensidad con el fin de mejorar el rendimiento general en la detección tem-
prana de la enfermedad de PD y otras enfermedades neurodegenerativas, tales como
el sı́ndrome de Shy-Drager o atrofia multisistémica (MSA, del inglés “multiple sys-
tem atrophy”) y la parálisis supranuclear progresiva (PSP, del inglés “progressive
supranuclear palsy”). El diagnóstico inicial de la PD realizado por neurólogos gen-
erales ha demostrado ser incorrecto entre el 24 % y 35 % de los casos [33]. Una
prueba de diagnóstico fiable, que se pudiera utilizar para diferenciar diferentes
trastornos de temblor, por lo tanto serı́a de gran valor. Como una caracterı́stica
de la PD es una marcada reducción de las neuronas dopaminérgicas en la región
estriatal, técnicas de imagen cerebral (SPECT o PET) con ligandos especı́ficos se
pueden utilizar como una herramienta valiosa para evaluar pacientes con PD [34].
Estos radio-ligandos especı́ficos se unen a los transportadores de dopamina en el
cuerpo estriado y han evolucionado como marcadores en vivo de la pérdida progre-
siva de neuronas dopaminérgicas en la PD. Previo a cualquier tipo de procesamiento
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de imágenes, las imágenes cerebrales funcionales tienen que ser normalizadas en
cuanto a intensidad. Por lo tanto, el paso de la normalización de la intensidad es
esencial, ya que corresponde a la etapa inicial en cualquier análisis posterior por
ordenador. Garantiza que las diferencias entre imágenes de temas diferentes son
debidas a razones fisiológicas y al funcionamiento del cerebro, entre otros factores
y no debido a la calibración de referencia de la cámara gamma que se usa para la
adquisición [35]. Las principales ventajas de los sistemas CAD podrı́an ser la re-
ducción de la carga de trabajo de los médicos, ası́ como la obtención de resultados
fiables, reproducibles e independientes del observador. Teniendo en cuenta los estu-
dios y tratamiento de pacientes longitudinales, los sistemas CAD pueden ser capaces
de detectar y llamar la atención en las primeras etapas de los casos prodrómicos.

C.3 Objetivos

El objetivo principal de esta tesis es presentar cuatro metodologı́as totalmente au-
tomatizadas de la normalización de la intensidad con el fin de ayudar a los médicos
en el análisis de las imágenes tomográficas funcionales del cerebro, tales como las
imagenes de DaTSCAN SPECT y DMFP PET. Estos nuevos enfoques se basan en el
modelo de mezcla gaussiana (GMM, del inglés “Gaussian mixture model”), el error
cuadrático medio (MSE, del inglés “mean-squared error”) y el modelado predictivo,
utilizando la regresión lineal multivariante (MLR, del inglés “multivariate linear
regression”). El método de filtrado de imágenes basado en GMM se consigue de
acuerdo con un umbral de probabilidad que elimina los grupos cuya probabilidad
son insignificantes en la región no especı́fica (los voxels del cerebro, excepto los de
la zona del estriado). El método de optimización de MSE consistirá en una transfor-
mación lineal que se obtiene reduciendo al mı́nimo el error cuadrático medio en la
región no especı́fica entre la intensidad de la imagen normalizada y la plantilla. Para
el enfoque MLR, las imágenes normalizadas se calculan mediante la transformación
lineal de la intensidad en el voxel de cada imagen del objeto, utilizando un modelo
predefinido, como en el enfoque MSE. Los métodos de normalización de intensidad
propuestos serán comparados con los enfoques ampliamente utilizados, como por
ejemplo, la relación de unión especı́fica y no especı́fica, la normalización de la inten-
sidad integral, la ecualización del histograma, la normalización de intensidad lineal
utilizando la distribución de α-stable, la normalización de intensidad utilizando los
valores máximos y la normalización de la intensidad, reduciendo al mı́nimo la di-
vergencia de Kullback-Leibler. Esta comparación se realiza en dos bases de datos
de imagen diferentes que comprenden las etapas de análisis y de clasificación para
el desarrollo de sistemas CAD para la detección de sı́ndrome de Parkinson (PS, del
englés “Parkinsonian syndrome”) idiopático y atı́pico. Además, estos métodos prop-
uestos serán evaluados en la corrección de artefactos espacialmente variables que
modulan la intensidad de las imágenes.
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C.4 Estado del arte en la normalización de la intensi-
dad

Hay diferentes métodos de normalización disponibles en la literatura para la nor-
malización de las imágenes de PD [187–190]. Estos enfoques se basan en la nor-
malización general de las imágenes funcionales 3D y se pueden adaptar para la
normalización de un tipo particular de imágenes, tales como las imágenes SPECT
o PET, utilizadas en esta tesis para el diagnóstico de la enfermedad de Parkinson.
En esta sección, vamos a tratar de presentar algunos de los métodos convencionales
de la normalización de intensidad adecuadamente adaptados a la naturaleza de las
imágenes de PD. Además, se tendrán en cuenta para la comparación con los enfo-
ques propuestos.

• Relación de unión especı́fica y no especı́fica (BRall-IN): este enfoque de nor-
malización se basa en el cálculo de la relación de unión (BR, del inglés “Bin -
ding Ratio”) del producto radiofarmacéutico en cada voxel entre el flujo sanguı́-
neo alto y bajo como una función de la concentración de marcador en el flujo
de sangre [156, 176]. Este BR puede ser utilizado para la normalización de las
imágenes funcionales del cerebro [191]. El proceso de normalización se basa
en la división de cada intensidad de voxel por el valor medio de intensidad en
la región no especı́fica en una forma defineda en [2]. BR all , como se muestra
en la ecuación 3.4, indica la relación de la unión calculada utilizando todos
los voxels del cerebro, excepto los de la zona del estriado como región no es-
pecı́fica. El principal motivo de esta elección es que esta región se encuentra
desprovista de sitios de unión del transportador de dopamina. La relación de
unión especı́fica y no especı́fica y la densidad del transportador de dopami-
na pueden ser afectadas por una serie de factores y pueden no ser lineales a
menos que el trazador logre un equilibrio estable durante el perı́odo de for-
mación de imágenes [156].
Este enfoque se usa comúnmente para eliminar el efecto de los valores globa-
les en varias aplicaciones de imagen [190]. Además, supera a varios enfoques,
como, ANCOVA, z score, residual y subject residual profile [189]. Por estas ra-
zones, se consideró que este enfoque como baseline para la comparación con los
enfoques propuestos. Sin embargo, este método de normalización depende de
mucho tiempo, trabajo y experiencia del operador y también de su habilidades
en colocar manualmente las regiones de interés (ROI, del inglés “Regions of in-
terest”). Además, este enfoque supone que la concentración de trazador en la
sangre sea estacionaria sobre toda la volumen de la imagen.
También, el tamaño de los volúmenes de interés, en particular, tiene un im-
pacto directo en la medición de la concentración de recuento. Esto es princi-
palmente una consecuencia de la baja resolución espacial de las modalidades
de imagen funcional (respecto a la estructural), lo que provoca que los recuen-
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tos sean borrosos fuera del volumen fı́sico de la estructura, es decir, el efecto
de volumen parcial [192], y por lo tanto hace que sea difı́cil evaluar las con-
centraciones de recuento con precisión [181].

• La normalización de la intensidad integral [1](Integral-IN): la normalización
de intensidad basada en Integral consiste en el cálculo de un parámetro intrı́nseco
de la imagen, Ip. Esta normalización se realiza mediante la estimación de la
actividad de unión:

Î =
I
Ip

(C.1)

donde I denota la imagen espacialmente normalizada, Î indica la imagen nor-
malizada en la intensidad e Ip es el valor de la integral de intensidad. Se puede
aproximarse como la suma de todos los valores de intensidad de la imagen,
dando un valor integral de la intensidad de [19]:

Ip =
∫
I(x,y,z) ≈

∑
I(x,y,z) (C.2)

Por lo tanto, Ip puede ser visto como la intensidad media de la imagen [1]. El
cálculo de este valor de intensidad integral se puede estimar en un volumen de
referencia particular en el cerebro para cada imagen cerebro de 3D . En el caso
particular de la PD, el volumen de referencia tiene que ser adecuadamente
definido y seleccionado. En esta tesis, se propone fijar la región de referencia
al volumen total del cerebro sin la región del estriado, como se mencionó an-
teriormente.
El método Integral-IN preserva las diferencias absolutas en los valores de capta-
ción, produciendo una medida similar para la región no especı́fica, y las dife-
rencias en las estructuras del estriado con conteos más altos de intensidad [1].
Este método es inexacto y más sensible a los valores extremos, por ejemplo, en
los sujetos con pérdida severa de los receptores de dopamina, las altas diferen-
cias intra-sujeto en el potencial de unión, o las caracterı́sticas atı́picas [1].

• La normalización de la intensidad, reduciendo al mı́nimo la divergencia de
Kullback-Leibler (MKL-IN): La idea básica del método presentado en [193] es
estimar un campo de corrección multiplicativa con el fin de que coincida con
un histograma de la plantilla a una densidad de modelo de referencia. La
imagen observada I se puede expresar como:

I = FÎ +n (C.3)

donde F es un campo de la corrupción multiplicativo de la intensidad, n es el
ruido de adquisición adicional y Î es la imagen correcta deseada. Después de
despreciar el efecto de la variable n, por tener poca influencia sobre el prob-
lema de la normalización de la intensidad, la solución de la ecuación C.3 para
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Î , se obtiene como Î ≈ F−1I . El parámetro de ajuste de intensidad F−1 tiene que
ser elegido de manera que se minimiza la divergencia de Kullback-Leibler (KL)
[194] entre los conjuntos de datos de origen y de destino. La aproximación
nestocástica de perturbación simultánea (SPSA, del inglés “Simultaneous Per-
turbation Stochastic Approximation”) se utiliza para generar la estimación de
gradiente y a continuación para ajustar la estimación actual de la solución de
acuerdo con la estimación del gradiente, como se muestra en el Apéndice A.2.
Este enfoque tiene las siguientes ventajas [193]: i) Se pueden combinar con
un modelo histograma suministrado que puede ser generado por cualquier
sujeto representativo. Esto permite proceder sin suposiciones acerca de la
forma del histograma o la contribución especı́fica de una determinada clase
de tejido. ii) Dado que puede ser resuelto para un campo de normalización
espacialmente variable, no es necesaria la participación de un paso separado
para la corrección de la falta de homogeneidad de campo. Sin embargo, te-
niendo en cuenta la carga computacional, este esquema de normalización es
más exigente, ya que se basa en un algoritmo iterativo (SPSA) y necesita la op-
timización de muchos parámetros, tales como, las secuencias de ganancia, el
número máximo de iteraciones, el parámetro de ajuste de la intensidad inicial,
etc. Además, se limitan necesariamente a las estimaciones de F−1 que sean de
baja frecuencia espacial. Esto proporciona una solución que mejora la agru-
pación de estadı́sticas de imagen globales, preservando el contraste local que
define los lı́mites anatómicos de interés.

• La ecualización del histograma (Hist-eq-IN): mediante técnicas de modelado
de histograma, es decir, la ecualización de histograma proporcionan un método
sofisticado para modificar el rango dinámico y el contraste de una imagen me-
diante la alteración individual de cada voxel de tal manera que su histograma
de intensidad asume una forma deseada [195]. Un mapeo monotónico, no
lineal se emplea por el enfoque de ecualización del histograma que re-asigna
los valores de intensidad de voxels en la imagen de entrada de manera que
la imagen de salida contiene una distribución uniforme de las intensidades
[196]. A través de este ajuste, este método se utiliza en los procesos de com-
paración de la imagen (debido a que es eficaz en la mejora de los detalles), y
en la corrección de los efectos no lineales introducidos por un digitalizador o
un sistema de visualización [197]. Los niveles de gris en una imagen pueden
ser vistos como variables aleatorias en el intervalo [0, 1]. Uno de los descrip-
tores más fundamentales de una variable aleatoria es su función de densidad
de probabilidad (PDF, del inglés “probability density function”).
Supongamos que el histograma normalizado deseado o especificado es pd(t),,
con la imagen deseada se representa como d, que tiene el nivel de gris normali-
zado t = 0,1,2, ...,L− 1. La imagen dada f con el PDF pf (r) puede ser igualada
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en los histogramas con la transformación:

C1(r) =
∫ r

0
pf (w)dw 0 6 r 6 1 (C.4)

donde C1 es la suma acumulada de la imagen f para todas las intensidades
r, r es los niveles de gris de las imágenes a ser mejoradas y w es una variable
ficticia de la integración [198].
El histograma de ecualización para transformar la imagen deseada puede ser
también conducido como:

C2(t) =
∫ t

0
pd(w)dw 0 6 t 6 1 (C.5)

donde C2 es el histograma acumulado de la imagen de referencia.
Para imágenes empleamos variables discretas aproximando probabilidades e
sumatorias en lugar de probabilidades de funciones de densidad e integrales.
La probabilidad de ocurrencia de nivel de gris rk en una imagen se aproxima
por:

pf (rk) =
nk
n

k = 0,1,2, ...,L− 1 (C.6)

donde n es el número total de voxels en la imagen, nk es el número de voxels
que tienen gris nivel de rk y L es el número total de posibles niveles de gris
de la imagen. La versión discreta de la función de transformación dada en la
ecuación C.4 es

C1(rk) =
k∑
j=0

pf (rj) =
k∑
j=0

nj
n

k = 0,1,2, ...,L− 1 (C.7)

Por lo tanto, una imagen procesada se obtiene mediante la asignación de cada
voxel con el nivel rk de la imagen de entrada en un voxel correspondiente con
el nivel C1(rk) de imagen de salida a través de la ecuación C.7.
Matemáticamente, cuando se suministra un histograma deseado, la ecualización
del histograma consiste en elegir la transformación T de escala de grises para
minimizar

‖ C1(T(t))−C2(t) ‖ (C.8)

Esta reducción está sujeta a las restricciones de que T debe ser monótona y
C1(T(a)) no puede sobrepasar C2(a) en más de la mitad de la distancia entre
el recuento de histograma a un valor de intensidad dado a [106]. Entonces, la
transformación T se utiliza para asignar los niveles de gris de la imagen f (o
el mapa de colores) a sus nuevos valores.
Este enfoque de normalización no lineal se lleva a cabo para la normalización
de la intensidad de imágenes funcional, tal como, imágenes SPECT y PET
como sigue:
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– En primer lugar, una máscara se aplica en las imágenes de origen con el
fin de tener en cuenta únicamente los voxels con valores de intensidad
superior a un umbral determinado. Este paso se realiza para descartar
aquellos voxels de imagen que se encuentran fuera del cerebro.

– En segundo lugar, se calcula el histograma de la imagen de la plantilla.

– Por último, la ecualización del histograma se lleva a cabo y los valores de
intensidad en las imágenes fuente se ajustan a los valores de intensidad
de la plantilla de referencia.

El enfoque de ecualización del histograma es un enfoque robusto y versátil
en muchos trabajos anteriores, como por ejemplo en [190]. Por esta razón,
los utilizaremos para la comparación con los enfoques propuestos. Además,
vamos a tratar de ponerlo en práctica, en una primera etapa, en toda la imagen
y en la segunda etapa en la región no especı́fica. Esto podrı́a evitar su efecto
en el cuerpo estriado, ya que es un método de normalización no lineal.

• La normalización de intensidad utilizando los valores máximos [1] (Max-IN):
este método de normalización se aplica individualmente para cada scan del
sujeto en referencia de cada voxel al valor medio del conjunto de la más alta
intensidad de voxels en [%]. De este modo, se permitirı́a la comparación es-
tadı́stica entre los diferentes sujetos [186]. Por otra parte, este enfoque tiene
como objetivo ampliar el tamaño de las regiones discriminativas para inter-
cambiando los papeles de áreas especı́ficos/no especı́ficos de la distribución
de la actividad funcional entre los sujetos [1]. Este enfoque de normalización
puede presentar problemas en algunas imágenes que pueden tener valores de
intensidad máxima debidos al ruido [186]. Estos errores de normalización
pueden ser reparados cuando la normalización de intensidad se refiere a un
voxel conjunto con los valores más altos de intensidad. El número de voxels
usualmente considerados para esta normalización de intensidad son alrededor
de 0,1% voxels [1]. Teniendo en cuenta los niveles de intensidad más bajos, es
decir, menor activación en el caso de los pacientes de PD en comparación con
sujetos sanos, este método de normalización es propenso a errores. Por otra
parte, en la normalización al régimen máximo, la captación del trazador del
cuerpo estriado se adapta para todos los sujetos, incluidos los pacientes y los
controles normales. Esto podrı́a perder la relación entre la pérdida de los re-
ceptores de dopamina y la disminución de contar números. Por lo tanto, en
términos de valores absolutos de captación, la interpretación se pierde [1].

• La normalización de intensidad lineal utilizando la distribución α-stable [2]
(α-stable-IN): la distribución α-stable se puede utilizar para el ajuste de las
imágenes funcionales [2, 186]. Si se analiza la distribución de intensidad de
las imágenes sin la región estriatal, se obtiene una distribución unimodal, pe-
sado de cola y sesgada, con diferente varianza y valores medios. Estas distribu-
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ciones de intensidad pueden producirse por un distribución α-stable [2].
La distribución α-stable está representado por la siguiente ecuación [186, 199]:

fα,β(y|γ,µ) =
1
π
R

[∫ inf

0
ejt(y−µ)e(−γt)α(1−jβ tan(πα2 ))dt

]
(C.9)

Por lo tanto, la función de densidad de probabilidad de α-stable, fα,β(y|γ,µ)
tiene cuatro parámetros: α ∈ (0,2] es el exponente caracterı́stico que establece
el nivel de impulsividad, es decir, la “cola” de la distribución, β ∈ [−1,+1] es
el parámetro de asimetrı́a, (β = 0, para las distribuciones simétricas y β = ±1
para la familia estable positivo/negativo, respectivamente), γ > 0 se llama la
escala o el parámetro de dispersión, y µ es el parámetro de localización.

La normalización de la intensidad de uso de la α-stable se lleva a cabo medi-
ante la transformación del vector de histograma de los datos de intensidad con
una distribución α-stable con parámetros I ∼ fα,β(y|γ,µ) a otro distribución
α-stable con la distribución Î ∼ fα,β(y|γ∗,µ∗) mediante el uso de la siguiente
expresión

Î = aI + b (C.10)

donde a = γ∗

γ and b = µ∗ − γ∗

γ µ. Por lo tanto, el objetivo de este enfoque es
transformar todos los valores de intensidad para diferentes imágenes i posi-
blemente con diferentes parámetros de dispersión γi y parámetros de locali-
zación µi a otra distribución α-stable con parámetros γ∗ y µ∗ utilizando la ex-
presión en la ecuación C.10 [2].

C.5 Contribuciones principales

Las principales contribuciones cientı́ficas de la presente tesis doctoral pueden di-
vidirse en tres categorı́as diferentes: el desarrollo y la aplicación de métodos estánda-
res para la normalización de la intensidad, el desarrollo y la aplicación de nuevos en-
foques de la normalización de la intensidad basados en GMM, MSE y MLR, y la uti-
lización del esquema de normalización de intensidad propuesto en una aplicación
clı́nicamente relevante de evaluación asistida por ordenador para la detección tem-
prana de PD. A continuación, vamos a introducir brevemente las principales con-
tribuciones cientı́ficas. Para más detalle, en conveniente referimos a los correspon-
dientes capı́tulos.
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• Desarrollo e implementación de los algoritmos del estado del arte presentados
en la sección anterior y descritos en el capı́tulo 3 para la normalización de
intensidad, que se llevaron a cabo en dos modalidades de imágen functional
(SPECT y PET).

• Desarrollo y aplicación de un enfoque basado en el filtrado no lineal de imágenes
utilizando GMM, que considera no sólo los niveles de intensidad, sino también
las coordenadas de los voxels dentro de las funciones gaussianas espaciales ası́
definidas. Los voxels en la región de referencia (región no especı́fica) son de
intensidad normalizada por la eliminación de las agrupaciones cuya proba-
bilidad es despreciable. Este proceso se basa en un umbral de probabilidad
que mide el peso de cada clúster en la región especı́fica, es decir, el cuerpo
del estriado, como se muestra en la figura C.2. Con este procedimiento, le
ofrecemos una reconstrucción de la imagen filtrada del modelo de GMM que:
i) conserva la intensidad en la región especı́fica, y ii) normalizar de forma au-
tomática la intensidad en la región de referencia de manera que las diferencias
de intensidad entre los sujetos se reducen y los grupos irrelevantes que pueden
representar diferentes fuentes de ruido se eliminan automáticamente.

Figure C.2: Diagrama de bloques del procedimiento en las imágenes de SPECT con
DaTSCAN.

• Optimización y aplicación de dos metodologı́as propuestas, que se basan en
MSE, como se muestra en la figura C.3. El primer método de optimización
del MSE consiste en una transformación lineal en cada voxel de la imagen del
cerebro. Esta transformación se obtiene reduciendo al mı́nimo el MSE entre la
intensidad de la imagen norma-lizada y la plantilla en la región no especı́fica
ası́ definida. El segundo enfoque se basa en la minimización de la MSE entre
las caracterı́sticas extraı́das basados en un GMM de cada imagen del objeto y
de la plantilla en la región no especı́fica. Estas metodologı́as tienen la ventaja
de normalizar automáticamente las imágenes funcionales del cerebro en 3D
sin necesidad de utilizar la información anatómica. Además, se pueden aplicar
para diferentes modalidades de imagen, tales como SPECT y PET.
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Figure C.3: Esquema general del método lineal de normalización de intensidad para
las imágenes funcional utilizando el enfoque MSE.

• Desarrollo e implementación de un nuevo enfoque de la normalización de la
intensidad, que se basa en un modelo predictivo utilizando MLR. Diferentes
parámetros de normalización en intensidad derivados de este modelo se usan
en un procedimiento lineal para normalizar en intensidad las imágenes fun-
cionales cerebrales. Este nuevo enfoque es una extensión del método de nor-
malización que se basa en la minimizacı́on del error cuadrático medio pre-
sentado anteriormente. Por lo tanto, esta metodologı́a de normalización se
puede aplicar a cualquier imagen médica, no sólo a regiones especı́ficas/no
especı́ficas en determinadas modalidades funcionales como DaTSCAN.

• Se utilizan medidas cualitativas y cuantitativas, tales como las imágenes del
cerebro, el histograma media, las barras de error para el histograma media
de los valores de intensidad en la región no especı́fica, las divergencias de
Kullback-Leibler y Jeffreys y la distancia euclı́dea, de variabilidad entre indi-
viduos para evaluar las mejoras proporcionadas por los enfoques propuestos
en comparación con el estado del arte de los algoritmos.

• Desarrollo de algoritmos de normalización que sean independientes del pro-
tocolo clı́nico o del experto explorador.

• Implementación de algoritmos eficientes en cuanto al cómputo necesario para
su aplicación. Mejora del tiempo de cálculo,la estabilidad y la repetibilidad de
los resultados usando los diferentes esquemas de normalización de intensidad.

• Integración de los métodos desarrollados en los llamados sistemas CAD (de
ayuda al diagnóstico basado en computador) para proporcionar sistemas más
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precisos en la detección precoz de PS con modalidades de imágenes tan difer-
entes como SPECT o PET.

C.6 Trabajos publicados

Parte del trabajo que aquı́ se presenta ha sido publicado y ya está disponible para la
comunidad cientı́fica.

Artı́culos en revistas indexadas:

1. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Intensity normalization of
DaTSCAN SPECT imaging using a model-based clustering approach’. Journal
of Applied Soft Computing, 37 (2015): 234–244, 2015, doi: 10.1016/j.asoc.201-
5.08.030.

2. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher and D. Salas-Gonzalez, ’Com-
parison between Different Intensity Normalization Methods in 123I-Ioflupane
Imaging for the Automatic Detection of Parkinsonism’. Journal of Plos One,
10 (6): 1–20, 2015, doi:10.1371/journal.pone.0130274.

Conferencias internacionales:

1. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Linear intensity normaliza-
tion of DaTSCAN images using Mean Square Error and a model-based clus-
tering approach’, International Conference on Innovation in Medicine and
Healthcare, San Sebastian, Spain, July 2014. vol.207, pp 251-260, ISBN: 978-
1-61499-473-2,

2. A. Brahim, J. Ramı́rez , J. M. Górriz, L. Khedher, ’Linear intensity normaliza-
tion of DaTSCAN images using Mean Square Error and a model-based clus-
tering approach’, 2014 IEEE International Conference on Image Processing
(ICIP14), Paris, France, October 2014. vol.207, pp 3617–3621, ISBN: 978-1-
4799-5751-4,

3. A. Brahim, J. M. Górriz, J. Ramı́rez, L. Khedher, ’Intensity Normalization of
123I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear
Regression Approach’, 6th. INTERNATIONAL WORK-CONFERENCE on the
INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION, Elche,
Spain, June 2015. vol. 9107, pp 68-77, ISBN: 978-3-319-18913-0.

Por otra parte, frutos de varias colaboraciones se han publicado otros artı́culos en
diferentes revistas indexadas y conferencias internacionales:



186 Appendix C. Introducción

1. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and F. Segovia, ’Early diagnosis
of Alzheimer’s disease based on partial least squares, principal component
analysis and support vector machine using segmented MRI images’.Journal of
Neurocomputing, 151 (1): 139–150, 2014, doi:10.1016/j.neucom.2014.09.072.

2. L. Khedher, J. Ramı́rez, J. M. Górriz , A. Brahim. , ’Automatic classification of
segmented MRI data combining Independent Component Analysis and Sup-
port Vector Machines’, International Conference on Innovation in Medicine
and Healthcare (Inmed14), San Sebastian, Spain, July 2014. vol.207, pp 271–
279, ISBN: 978-1-61499-473-2,

3. L. Khedher, J. Ramı́rez, J. M. Górriz, A. Brahim and I.A. Illán, ’Independent
Component Analysis-Based Classification of Alzheimer’s Disease from Seg-
mented MRI Data’, 6th. INTERNATIONAL WORK-CONFERENCE on the
INTERPLAY between NATURAL and ARTIFICIAL COMPUTATION, Elche,
Spain, June 2015. vol. 9107, pp 78-87, ISBN: 978-3-319-18913-0.

C.7 Estructura del documento

El contenido de la tesis se organiza de la siguiente manera:

• El capı́tulo 2 presenta una introducción a la SPECT y la PET, sus radiotrazadores
y la aplicación clı́nica, ası́ como una visión general acerca de los diversos arte-
factos de imagen que influyen en la calidad de la misma. Además, contiene
información de referencia médica sobre las enfermedades neurodegenerativas
que son consideradas a lo largo de la tesis: PD, PSP y MSA. Esta introducción
familiariza al lector con estas modalidades de imagen, algunas de sus posi-
bilidades y limitaciones en la detección de estos tipos de enfermedades. Esta
familiaridad le ayuda a comprender las dificultades encontradas, sobre todo
en las cuestiones de normalización de intensidad.

• El capı́tulo 3 revisa los preparativos de preprocesamiento previos para las
modalidades de datos SPECT y PET que han sido tratadas. Además, se pre-
senta el estado del arte sobre la normalización de la intensidad adecuadamente
adaptado a la naturaleza de las imágenes de PD.

• El capı́tulo 4 presenta un nuevo método para la normalización automática de
intensidad de las imágenes funcionales del cerebro. La metodologı́a propuesta
se basa en GMMs que se utilizan en primer lugar para la estimación de la den-
sidad del perfil de intensidad de cada imagen médica funcional. Nos aprox-
imamos al perfil de intensidad de las imágenes de SPECT por una suma de
gaussianas que satisface un criterio de máxima verosimilitud (ML, del inglés
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Maximum Likelihood). A continuación, el modelo de mezcla resultante se
utiliza para la normalización de intensidad de acuerdo a una estrategia de
selección de clúster. Los clústers se seleccionan por medio de un umbral de
probabilidad normalizada que mide el peso de cada kernel en la zona del área
del estriado y la normalización de intensidad se lleva a cabo en realidad sólo
por la adición de los grupos relevantes en la reconstrucción de la imagen.

• El capı́tulo 5 se ocupa de la corrección de las variaciones de intensidad de la
señal entre la imagen, mediante la propuesta de tres nuevos enfoques de nor-
malización de la intensidad. Estas metodologı́as se basan en la extracción de
parámetros intrı́nsecos de imágenes DaTSCAN SPECT y PET DMFP, lo que re-
sulta en tres procedimientos automáticos para la normalización de intensidad:
la optimización de MSE entre la imagen normalizada de intensidad y la plan-
tilla en la región no especı́fica, la optimización de MSE entre las caracterı́sticas
extraı́das basadas en GMM a partir de cada imagen del objeto y de la plantilla
en la región de referencia, y finalmente un método de normalización sobre la
base de modelos de predicción utilizando MLR.

• El capı́tulo 6 muestra un estudio de evaluación de los enfoques de la normal-
ización de la intensidad propuestos cuando se comparan con los métodos con-
vencionales adecuadamente adaptados a la naturaleza de la PD. De este modo,
se llevan a cabo medidas cualitativas y cuantitativas de variabilidad interindi-
vidual. Además, se realiza una comparación utilizando un sistema de clasi-
ficación para la detección de sı́ndromes de Parkinson, que puede mejorar el
desarrollo de un sistema CAD para PD.

• La tesis se concluye en el capı́tulo 7 dónde también se discuten algunos posi-
bles caminos para la investigación futura.
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rina, V. M. P. GarcÃa, S. R. SolÃs, and M. P. T. Rubio. 123-I Ioflupane
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[161] M. Schreckenberger, S. Hägele, T. Siessmeier, H.G. Buchholz, H. Armbrust-
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