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Abstract

Identifying Internet traffic applications is centric to many network security and
management tasks. With the steady emergence of Internet applications, en-
cryption and obfuscation techniques, researchers are facing various challenges
in accurately identifying different applications. An optimal traffic-classification
model has yet to be defined despite of the effort devoted by the research com-
munity in the last decade.

This thesis aims to provide an analytical review of existing traffic identifi-
cation methods, while suggesting novel enhancements and approaches.

First, with the remarkably increasing number of papers in the literature
covering traffic classification, we survey most recent works and propose a sys-
tematic multilevel taxonomy. Expressed in a consistent terminology, our pro-
posed taxonomy can promote and unify the research efforts in designing the
best future traffic identification model, which we describe and characterize
while underlining main research requirements. Moreover, the different cate-
gories (e.g. payload-based, statistical, machine learning, graphical, etc.) are
compared, as found in the literature, in terms of performance, accuracy, ability
to detect critical applications like peer-to-peer, and other relevant criteria. The
current research trend is also analyzed in the light of the surveyed works.

Second, with the lack of reference datasets for evaluating and comparing
traffic classification methods, we collected real traffic sets in a significant vol-
ume and extracted all the parameters relevant to the classification process
using customized tools.

Third, we assess payload based traffic identification methods and propose
an optimization that can best achieve the trade-off between the classification
accuracy and the user’s privacy protection. For this purpose, we assess the
performance of Deep Packet Inspection, and present a customized sampling
policy for the traffic payloads. According to our testbed, promising results,
related to the classification time gain, were obtained at the cost of less inspected
payload while maintaining the classification accuracy.

Finally, we assess blind identification models. First, we explore the discrim-
inative power of traffic features at the application layer by proposing a flow-
based classifier relying on application message lengths analysis. Our approach
analyzes application layer messages without breaching the user privacy. For
this model, we propose a novel flow-based classifier using multi-modal distribu-
tions. Evaluated on a real captured dataset, the results evidence the goodness
of the proposal and the existence of discriminative information regarding traffic
classification in the sizes of the exchanged messages.

Then, we discuss an extended model for multi-label host classification, as
most of the current host-based classification models do not reflect real usage
scenarios, where a host might be using more than one application. For this
purpose, we choose a host classification method, based on graphical techniques,
that we enhance and extend to handle multi-label classification. Our proposal



can regarded as an attempt to radically change the conventional view of mono-
label host classification. Our results show an improvement in classification
accuracy for most protocols including peer-to-peer.



Resumen

La identificación de la aplicación asociada a los elementos que componen el
tráfico circulante en Internet constituye una tarea central para la gestión y
seguridad de la red. Con la aparición constante de nuevas aplicaciones en
Internet, el uso de técnicas de cifrado y la ofuscación del tráfico, son varios e
importantes los retos a los que se enfrentan los investigadores para desarrollar
métodos precisos de clasificación. En este sentido, a pesar el enorme esfuerzo
realizado últimamente por la comunidad investigadora, aún no se ha definido
un procedimiento adecuado para ello.

El presente trabajo tiene como objetivo proporcionar una revisión analítica
de los métodos existentes para la identificación del tráfico, así como proponer
y evaluar mejoras y aproximaciones novedosas.

En primer lugar, con el notable aumento del número de trabajos en la lite-
ratura que abordan la clasificación de tráfico, examinamos las contribuciones
más recientes y proponemos una taxonomía sistemática multinivel. Expresada
en una terminología consistente, la taxonomía propuesta pretende establecer
un marco de referencia unificado en dicho campo que facilite la comparativa
de los sistemas, tanto existentes como futuros. En este sentido, se describen
y caracterizan las propiedades y características deseables de estos sistemas, al
tiempo que se subrayan los requisitos principales para la investigación en este
ámbito. Por otra parte, esta taxonomía se utiliza para como vehículo para or-
ganizar y describir las aproximaciones existentes en la bibliografía en términos
de técnica, rendimiento, precisión y capacidad de detectar aplicaciones críti-
cas como peer-to-peer. También se analizan las tendencias de la investigación
actual a la luz de las contribuciones estudiadas.

En segundo lugar, debido a la inexistencia de conjuntos de datos de referen-
cia para la evaluación y comparación de métodos de clasificación de tráfico, se
estableció un escenario de trabajo en el que se adquirieron conjuntos de tráfico
real en un volumen relevante, que es varios órdenes de magnitud superior a los
usados en la bibliografía. Este tráfico se caracterizó mediante la obtención de
todos los parámetros relevantes de cara al proceso de clasificación utilizando
para ello herramientas personalizadas al efecto.

En tercer lugar, evaluamos los métodos de identificación de tráfico basados
en la inspección de la carga útil y proponemos un método de optimización
que mejora el rendimiento computacional y reduce la invasión de la privacidad
de los usuarios. La propuesta se basa en la utilización de varios métodos de
muestreo de las cargas útiles, que son analizados y evaluados experimental-
mente para determinar la mejor política de muestreo de entre las propuestas.
Los resultados obtenidos evidencian que, mediante el muestreo seleccionado,
se puede conseguir una reducción en el número de bytes analizados, con la
consiguiente disminución del coste computacional y mejora en la privacidad,
sin degradar la precisión de la clasificación.

Finalmente, proponemos y evaluamos un método de identificación ciego,



esto es, que no inspecciona las cargas útiles. Para ello, en primer lugar, se ex-
plora el poder discriminativo de las características de tráfico a nivel de la capa
de aplicación mediante la propuesta de un clasificador de flujos basado en el
análisis de la longitud de los mensajes iniciales. Nuestro enfoque analiza estos
mensajes de la capa de aplicación sin violar la privacidad del usuario. El clasi-
ficador propuesto utiliza modelado de Markov y distribuciones multimodales
para representar la secuencia de longitudes de los mensajes. Los resultados
obtenidos ponen de manifiesto la bondad de la propuesta y la existencia de in-
formación discriminatoria respecto a la clasificación del tráfico en los tamaños
de los mensajes intercambiados.

A continuación, se extiende un método basado en la clasificación de host
para proporcionar una clasificación multi-etiqueta. Esta propuesta se realiza
a partir de la constatación de que la mayoría de los sistemas de clasificación
basados en host actuales no reflejan situaciones de uso real, en la que cada host
podría estar generando tráfico de más de una aplicación. En consecuencia, se
elige como punto de inicio un método de clasificación basado en técnicas gráfi-
cas, sobre el que se realizan con éxito algunas propuestas de mejora, y se realiza
una extensión del mismo para manejar una clasificación multi-etiqueta. Nues-
tra propuesta puede considerarse como un intento de cambiar radicalmente la
visión convencional de la clasificación de host en base a una única etiqueta.
Los resultados muestran una mejora en la precisión de la clasificación para la
mayoría de los protocolos, incluyendo los protocolos peer-to-peer que son, a
priori, los que entrañan mayor dificultad de clasificación.
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Chapter 1

Introduction

1.1 Introduction

Today’s networks are governing the way we live: network applications (e.g.
social networks, e-learning, e-commerce, etc.) are changing the way in which
social, educational and commercial interactions take place. Existing network
applications are diverse and are ever evolving in order to continuously cover
new users’ requirements and provide new services. Ranging from legacy Inter-
net applications, such as Web, e-mail, file transfer, etc., to dynamic complex
applications as video streaming, Peer-to-Peer (P2P) file sharing, etc., the un-
derlying network technologies must be adapted and/or improved to provide the
new services. Thus, new network paradigms (e.g. overlay networks, Software
Defined Networks, Internet of Things, etc.) are being developed and deployed.

As a result of the great impact and usage of Internet, the network traf-
fic is constantly growing [Brodkin, 2012, Kende, 2012] and the network itself
is becoming more and more complex. As shown in Figure 1.1, the available
bandwidth for the final users has grown up to 2 orders of magnitude in the
last decade while, at the same time, the number of users is also rising exponen-
tially. From the network management perspective, this continued increase in
the requirements and complexity represents a big challenge in many aspects.
Among them, the rise in traffic may affect the Quality of Service (QoS). The
influence of the traffic on the network infrastructure itself and on the hosted
services is evident. If it is not properly managed, the network might become
overwhelmed with huge amounts of uncontrolled traffic which would affect the
overall network performance, cause congestion and even a disruption in the
services. Thus, at some extents, services hosted by the network risk to become
completely unresponsive or denied. On the other hand, as the volume of traffic
increases, it will be more difficult to differentiate illegitimate traffic, which may
represent a security problem.

To properly deliver application data between network endpoints, that is,
to provide for the necessary QoS, the underlying network infrastructure and

1
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Figure 1.1: Evolution of Internet traffic [Brodkin, 2012]

interconnection devices should have a lot of attention at the management level.
What the management and security solutions of today’s network should cover
depends on many factors related to the network type and services’ criticality.
However, a very common task for most of these solutions is to constantly mon-
itor the traffic stream and demystify the nature of each traffic flow in real time,
which is relevant both from security and performance standpoints. This way, it
will be possible to provide each service with the required QoS or, if necessary,
even to filter it from the network. In this sense, describing the network traffic
by the amount of consumed bandwidth, though important, is still not enough.
Thus, an important step in any traffic analysis is to identify what the user is
really doing through each session, that is, which is the application in use.

Identifying network applications, that is, attributing network traffic to the
application or kind of application generating it [Callado, 2009], is a corner stone
in any of today’s network management and security solutions. The differen-
tiation of the nature of the flows in the network will be of major importance
from a traffic engineering point of view. From this, it will be possible, for
example, to provide different QoS to different services, to disable the traffic for
a given application or to plan for network upgrading as a response to a new
high consumption service. Furthermore, illegitimate traffic can use obfuscation
techniques in an attempt to pass over usual policy enforcement systems such as
firewalls. In this scenario, traffic identification is a must to apply the corrective
actions needed.

In a näıve approach, the nature of the traffic can be attributed to an ap-
plication or service based on the associated communication ports for the ser-
vice [IANA, 2013]. In the early years of traffic classification, the port-based
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technique [IANA, 2013] used to be typically the fastest, simplest and most
accurate one. To classify flows and packets, it simply relies on Internet As-
signed Numbers Authority (IANA) registered list (e.g. Hyper Text Transfer
Protocol (HTTP) uses Transmission Control Protocol (TCP) port 80). How-
ever, the use of port obfuscation, address translation, port forwarding and
protocol tunneling, together with the use of unregistered ports and multichan-
nel applications, have deprecated the use of this technique. Therefore, more
sophisticated techniques are nowadays required for this. Thus, traffic identi-
fication may involve the analysis of many traffic characteristics as the traffic
payloads, the general properties of flows and packets, the anomalies in appli-
cation protocols, the behavior of the applications and hosts or even the hosts’
interactions. All of these are examples of various types of traffic characteris-
tics that can assist network administrators in deeply understanding the effect
of traffic associated to each application on the network functionality, security
and performance. As an example, statistically huge sized packets and/or long
duration flows might be indicators of large file transfer which may, in turn,
lead to network overconsumption; a large number of connections might point
to the use of P2P applications; etc. In a similar sense, malformed packets or
incompletely established flows may point to protocol anomalies and suspicious
activities, inquiring thus special intervention.

Consequently, identifying network applications is not solely driven by the
simple need to associate traffic to applications. Though it is not sufficient for
network management and security, it can assist in providing a deeper insight
to understand the effect of different applications’ streams on the network in-
frastructure. Most importantly, traffic identification is motivated by the direct
security and performance implications one would have on the network behavior,
which validates its relevance for network management and security solutions.

Literally speaking, the need to identify network applications is relevant for
many network management and security tasks such as security measurements,
QoS assurance, traffic shaping and traffic engineering. For example, as different
applications have different network requirements in terms of packet latency and
resource allocation, QoS assurance mechanisms strongly depend on application
identification.

Tackling the intensive use of network resources among different applica-
tions is essential for bandwidth shaping and prioritization mechanisms used to
optimize network resources which are common traffic engineering tasks used
by Internet service providers and corporate networks.

Moreover, a preliminary step prior to enforcing any network access policy
is to identify the application in use so that policy actions can be accordingly
applied on network security devices. Namely, policies applied on firewalls, web
filters, intrusion detection systems, etc. often involve conditions on the used
application type, based on which, further actions are taken. For example, a
web filtering security policy might consist on blocking P2P traffic; an intru-
sion detection policy might need to specifically inspect web traffic for known
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attack types and so on. However, network based attacks that are hidden inside
unknown traffic, are evidently problematic and harder to detect. From this
standpoint, unknown traffic is regarded as one of the real sources of security
threats which might be carrying malicious activities.

Many other reasons motivate traffic identification. Some applications, whose
impact on the network is critical from network security and management per-
spectives, are regarded as crucial application types for traffic identification.
The most relevant example is P2P (Section 1.3), for many reasons including
their high bandwidth consumption, their associated system openness and se-
curity threats, and particularly, for the copyright concerns they raise.

In this context, the steady emergence of new Internet applications, together
with the advances in obfuscation mechanisms used to bypass network controls,
are keeping application identification a hot research topic. Identifying the wider
scope of contemporary and newly emergent applications (e.g. P2P, mobile
applications) is a challenge for most classifiers, as their accuracy figures may
differ from one application to another. Even more, it is not only a question of
new and possibly more complex applications with their associated protocols,
but also the intentional use of techniques to hide the nature of the traffic, that
is, of obfuscation techniques, which makes this problem a challenging one in
nowadays networks.

After briefly introducing the traffic identification field, in the next section
some basic definitions and terminology are presented, as well as a description
of the basic approaches. Section 1.2 introduces a discussion regarding the need
for a proper taxonomy and a benchmarking scenario in order to be able to
properly compare and assess the multiple exiting techniques, which makes it
necessary for every research team to use their own datasets for the develop-
ment and testing of their proposals. Next, being considered one of the most
challenging kind of applications for its classification, Section 1.3 presents a
comprehensive overview of P2P traffic, and how it introduces new needs (P2P
identification for security, copyright protection, high volumes of traffic) as well
as new challenges (port obfuscation, distributed nature, traffic encryption and
complex host interaction schemes). Section 1.4 describes the scope and the ob-
jectives of the current thesis and its contributions. Finally, Section 1.5 presents
an overview of the thesis and the structure of the current document.

1.2 Network Traffic classification

1.2.1 Definition and Goals

As stated earlier, traffic classification [Callado, 2009] consists on attributing
traffic instances or elements to the applications or kind of applications that
generated them. According to the element to be classified, it can be made at
three levels [Callado, 2009]: the flow level, the packet level and the host level.
In the first case, the elements to be classified are the flows traveling across the
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network, while in the second case these elements are the individual packets.
On the contrary, host based classification consists in labeling each host by the
application/s in use by that host. The most common case is flow classification,
as opposite to packet or host based ones, as it is the most directly related to
traffic shaping and QoS, and flows are the natural unit for communications
between applications. Furthermore, they are more information rich than pack-
ets from a feature extraction standpoint. Anyway, host based classification,
despite being a more complex problem, is also an interesting scenario for net-
work planning and even security related issues, as it allows the identification
of misbehaving hosts.

Traffic identification is a similar term also used in this context, although it
refers to a slightly different target, that is, it is used when targeting at a more
granular level. For instance, one flow can be classified as HTTP and identified
as http get. Nevertheless, it is also usual to use both terms indifferently, which
will be the case in the present thesis.

According to the number of classes to which traffic instances have to be
associated, variants of the classification problem can be considered. Thus, in
binary classification scenarios, the problem is deciding whether an instance to
be classified belongs or not to a given category. On the contrary, in multiclass
classification, an instance should be assigned to one of the multiple existing
classes. Furthermore, there exist scenarios in which a multilabel classification
is required. In these cases, typically related to host-based classification, each
element to be classified has to be assigned to different classes. This is the
hardest scenario from the classification point of view, as usually the number
of classes (labels) to assign to each element are also unknown. In this regard,
it is important to remark the differences between multiclass and multilabel
classification. Obviously, in both approaches more than one class exist and,
therefore, more than one different labels can be attributed to the objects to be
classified. Nevertheless, the difference is that in the multiclass case, a classified
object is to be annotated with just one class label among the different existing
ones, while in the multilabel case, the annotation is done with a set of labels.

1.2.2 Basic Approaches

Although a detailed analysis of the state of the art in traffic classification will
be presented in Chapter 2, next we present an overview of the existing traffic
classification approaches and the major challenges.

In brief, the methods found in the literature analyze payload bytes [Erman,
2007a], packets [Sen, 2004a], flows [Zhang, 2013], or hosts [Karagiannis, 2005],
being the flow-based classification the most used one. The scope of detected
applications ranges from well-known protocols (e.g. HTTP) to challenging
applications like P2P or encrypted traffic (e.g. Secure Sockets Layer (SSL) in
[McCarthy, 2011]) and encrypted network tunnels [Mujtaba, 2009]).

On the other hand, most current existing approaches fall into one of two
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categories: payload [Sen, 2004a] or non-payload (or in-the-dark) based clas-
sification. Historically, earlier classification methods relied on port numbers
[IANA, 2013] by simply associating the application protocol type to the trans-
port port protocol number. With port obfuscation, this method is obviously
deprecated.

On the other hand, port-based classifiers will have an unrealistic view of
the types of traffic being exchanged over the network, particularly for new
emerging mobile applications [Choi, 2012], most of which rely on HTTP and
Hypertext Transfer Protocol Secure (HTTPS). This renders port-based classi-
fication almost useless nowadays. Nevertheless, it can be still useful for legacy
applications [Callado, 2009, Aceto, 2010] such as Domain Name System (DNS)
or Simple Mail Transfer Protocol (SMTP) that use their default assigned port
numbers, or for contexts where accuracy is not a major concern (e.g. traffic
monitoring).

The historical evolution [Dainotti, 2012] of traffic classification methods
shows that payload inspection [Sen, 2004a] has emerged after port number
classification became unreliable. Payload based classification rely on payload
inspection, being the most accurate methods currently found in the literature.
They identify applications by matching well-known strings or signatures inside
the packets’ payloads, which raises, however, considerable concerns related to
performance, encrypted traffic and user privacy. Thus, a lot of interest is
deposited in non-payload based (also called blind) classification, as it is theo-
retically able to analyze encrypted traffic and it is not invading user’s privacy.
In this case, some features are extracted from the communications, being they
flows or any other unit, without inspecting application layer payloads. Thus,
each unit subject to analysis is represented through a set of parameters which is
subsequently used as the input for the classification method of choice. In this
regard, many techniques are described in the literature, including statistical
[Yildirim, 2010], Machine Learning (ML) [Nguyen, 2008] and graphical [Iliofo-
tou, 2007], besides hybrid [Keralapura, 2010] and a few miscellaneous [Trestian,
2010] approaches. All of these approaches will be detailed in Chapter 2.

1.2.3 Challenges

Traffic classification is a challenging task to accomplish. Many reasons make
this a hard problem. Particularly, some applications that are intrinsically hard
to detect might be using complex and dynamic protocols (e.g. videostreaming
and P2P) and including advanced traffic obfuscation techniques [Zink, 2012]
(e.g. port obfuscation, Network Address Translation (NAT), tunneling and
encryption [McCarthy, 2011], etc.). Furthermore, as previously mentioned,
transport layer port number can be easily obfuscated or NAT can be used to
establish connections behind a firewall. Additionally, encryption makes it very
hard to classify the traffic based on payload inspection mechanisms. And appli-
cations may even use closed proprietary protocols (e.g. Skype [Sen, 2004a]) to
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disguise network control devices. Obviously, using closed proprietary protocols
further complicates the task of traffic classification, as the protocol specifici-
ties and the message exchange patterns are undisclosed. Therefore, with the
proliferation of new applications and the advances in obfuscation techniques,
accurately classifying network traffic becomes more and more challenging.

Other considerations can be challenging for traffic classification research.
Particularly, protecting the user privacy and coping with high link speeds, that
is, scalability, are important concerns to be considered in modern classification
systems. The user privacy concern prohibits the use of payload inspection
techniques, despite of the high level of accuracy they provide, and is even il-
legal in many countries. On the other hand, coping with high link speeds
has severe implications on the classifier design, which should be able to clas-
sify huge amounts of traffic in real-time without affecting the overall network
performance.

On the other hand, although much research has been devoted in the last
decade by the research community to the traffic classification problem, the cur-
rent literature still lacks for recent surveys and for appropriate comparisons,
despite the significant amount of papers in the field. Most existing classifiers
lack for generality as they are often evaluated within special contexts (specific
applications and/or network environment). Many different techniques were ex-
plored and deployed, as previously mentioned, ranging from simple statistical
to advanced ML techniques. Besides inspecting the payload, quite different
traffic characteristics were mined including packet, flow and host characteris-
tics (packet size, flow duration, number of connections per host, etc.). Further-
more, the classification output, that is, the kind of the provided classification
information, depends on the classifier design and target, some of them focused
on packet or flow classification, while others are targeted at classifying hosts
and host communities. In this context, with the diversity in the deployed
techniques and data formats, the current literature still lacks for appropriate
benchmarks relying on reference traffic captures and expressed in a consistent
terminology. Furthermore, it is documented the lack of a consolidated input
format, consistent method definitions, and common network application sets
[Khalife, 2014]. The same applies for the definition of evaluation metrics and
comparison procedures.

Moreover, most of the existing classification approaches need to be revisited
for enhancements. Their intrinsic weaknesses are mostly related to the classi-
fier’s performance, the user privacy, the lack of generality, and even sometimes
to inapplicability in real scenarios. As an example, while payload inspection
methods are well-known and provide high classification accuracy, they are pri-
vacy invasive. Although relying on traffic characteristics instead of the pay-
loads, complex ML techniques would arise performance questions related to
the overall classification time, and to the required resources. Most often, low
classification performance is related to the complex techniques and large traf-
fic characteristics and input sizes used. Hybrid solutions were proposed in the
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literature, however, a clear integration methodology that takes into account
the capabilities of each classification technique and the overall system perfor-
mance is still missing. Trade-offs among classification accuracy, user privacy
and classification performance should be carefully studied. Apparently, there
exists an ad hoc in the way methods are proposed, categorized and evaluated.
As a result, an optimal traffic classification model has yet to be defined by the
research community. In this regard, the preference of one method over another
should be based on appropriate comparisons and benchmarks, which in turn
requires a lot of missing steps and actions that has to be completed by the re-
search community. In particular, it is relevant the lack of reference databases
or frameworks for the proper assessment of the proposed techniques and sys-
tems. In this scenario, Chapter 2 will be devoted to a comprehensive review
of the state of the art in which not only a taxonomy for current approaches is
presented but also the challenges and requirements are detailed.

1.3 Classification of P2P Applications

As mentioned earlier, most existing blind classifiers lack for generality as they
are often evaluated for a reduced set of specific applications. With the prolif-
eration of many different novel applications, one of the questions that arises
regarding the evaluation of the classification methods is the preferred set of ref-
erence applications on which classifiers should be tested and evaluated. This
choice reveals relevant for the research community in order to allow compar-
isons and benchmarks to converge efforts toward selecting the optimal clas-
sification model. In the current literature, classifying applications which are
intrinsically hard to detect, such as P2P applications [Shen, 2010] (e.g. Bit-
Torrent [Bittorrent, 2013], Gnutella [Gnutella, 2013]) are considered a key in-
dicator of the classifier’s capabilities [Nguyen, 2008, Zhang, 2009]. In fact, P2P
applications refer to traffic obfuscation techniques, encryption and tunneling
and often use closed proprietary protocols to disguise most network control de-
vices. As such, P2P application identification has been cited as part of the core
classifier evaluation process in most of the traffic classification works we sur-
veyed. Assessment results in most of these papers usually point to P2P classifi-
cation together with the overall classification results. Following this approach,
the subsequent experimental chapters addressing classifier’s enhancements and
proposals focus on P2P classification results. To get a deeper understanding of
what makes P2P applications highlighted by most traffic identification works,
in the following, we explain P2P main characteristics and their implications in
traffic identification.

Understanding an application’s protocol and its associate architectural com-
ponents can be significant for the application identification task, as the clas-
sification algorithm should be able to detect each application specificities and
traffic patterns that are discernible from other application types. In the fol-
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lowing sections, we try to reveal some of the P2P discriminative features that
are relevant for traffic identification. We start first by highlighting on the
particular benefits and challenges for P2P identification.

1.3.1 Relevance of P2P Traffic Identification

Nowadays, P2P applications are commonly used over the Internet and cover
various user needs, from file sharing or Voice Over IP (VoIP), to media stream-
ing and Peer-to-Peer TV (P2PTV) applications. Identifying P2P applications
is particularly relevant for network security and management, due to many
reasons. On the one hand, tackling the intensive use of network resources asso-
ciated to P2P applications, which supposedly constitute a substantial propor-
tion of today’s Internet traffic, commonly represents a challenge for Internet
Service Provider (ISP)s. Although P2P usage for sharing purposes is some-
how decreasing, P2P applications are still considered on the top of bandwidth
consuming applications [Bittorrent, 2013]. Additionally, the traffic symmetry
characterizing some P2P applications is considered today by some ISPs an
emerging problem for which their networks are not prepared for, as they were
designed under the assumption of traffic asymmetry. On the other hand, P2P
generates security threats that are mainly due to the openness and distributed
nature of the system, making them vehicles for the exploitation of several secu-
rity flaws and facilitating the spread of worms and viruses. Furthermore, they
are becoming increasingly used as the infrastructure backing up some botnets.
These facts are particularly problematic in the P2P case, since the traffic they
generate is now intentionally disguised to avoid monitoring systems. Thus,
the shared contents and transferred files are even harder to control, effectively
decreasing the security level of a host or even of the entire network. Finally,
files can be downloaded with no respect to any copyright or legal issues using
P2P.

As stated previously, P2P systems are characterized by their openness, high
decentralization and dynamicity. P2P applications use multiple obfuscation
techniques [Zink, 2012] as payload, flow and port obfuscation, tunneling, and
encryption [Mujtaba, 2009]. Moreover, P2P applications are still relatively
recent and do not conform to any standards or rules in the sense that closed
proprietary P2P protocols can be mutated and new protocols can appear, which
further complicates the traffic tracking. For instance, some P2P applications,
like Skype, use encrypted traffic through a closed and proprietary algorithm,
which turns its analysis and detection harder to perform. For these reasons,
P2P applications are intrinsically hard to detect and are thus considered, as
mentioned earlier, a key indicator in evaluating the capabilities of the traffic
classifiers.
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1.3.2 P2P Architectural Model and Discriminative Character-
istics

In contrast to the most widely adopted model by Internet applications, i.e. the
client-server model, there are no fixed client or server roles in the P2P model,
as any host can act as client or server in any exchange of information. Any host
in a P2P network can directly exchange information with any other one, after
finding the location of the desired piece of information and the address of the
information holder. Therefore, one of the core problems in a P2P network is
the addressing and search of the information, for which various approaches are
considered. Thus, P2P applications may be built on structured or unstructured
overlays [Shen, 2010], following a centralized, a decentralized or a hybrid model.
Although structured overlays are developed to improve the efficiency of data
lookup, most P2P Internet applications rely on unstructured overlays. In the
unstructured P2P overlays, the search mechanism is performed through central
servers (centralized P2P systems), or through message propagation strategies
(decentralized P2P systems), while in hybrid P2P systems, a few nodes are
selected to act as search servers (called super-nodes, ultra-peers or trackers)
based on their computing capabilities.

Although various P2P applications exist and merit being analyzed, for the
purposes of this work, we will be more concerned with unstructured P2P file
sharing applications, mostly Gnutella and BitTorrent, as they are the most
frequent P2P applications in nowadays traffic. Gnutella [Gnutella, 2013] is a
P2P network available in both decentralized and hybrid versions, while Bit-
Torrent [Bittorrent, 2013] uses a search mechanism closer to hybrid systems.
According to Cache Logic [Schulze, 2009] BitTorrent represents up to 43% of
Internet traffic.

The way in which P2P communications take place among peers and super-
nodes and the nature of P2P traffic will have direct implications on the connec-
tion patterns and traffic characteristics, as seen on the host, host-community
and even on the flow and packet levels. For example, a key concept for P2P
systems is the decentralization [Shen, 2010]. In most P2P systems, the de-
centralization concerns only the signaling traffic, and not the download traffic,
which directly occurs between peers. Thus, as shown in Figure 1.2, a requesting
peer first searches a file through a specific tracker or super-node, or by propa-
gating a search request to other peers. The requesting peer then connects to
other peers holding different file chunks to start the download. This behavior
is relevant from a traffic identification standpoint: in order to perform tasks
such as answering content queries and sharing files, the P2P peers act both as a
client and as a server opening a large number of connections. Fortunately, with
different patterns in signaling and data traffic, P2P hosts reveal a lot of other
discriminative traffic characteristics that are relevant for traffic classification
(e.g. long flow duration, packet size and interarrival times distribution, etc.)
as will be detailed in Chapter 2.
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Figure 1.2: Search and data download traffic for: a) BitTorrent and b)
Gnutella

1.4 Thesis Scope and Contributions

The main objective of the present work is to develop and evaluate novel meth-
ods for blind traffic classification both at the flow and host levels. For this,
it is also necessary to set up an experimental framework including real traffic
captures that should be labeled according to their classes and that will be used
as the ”ground truth” to train and evaluate the classifiers. Additionally, it is
necessary to develop the programs and algorithms required to parameterize the
traffic, according to the needs of the proposed classification methods.

The systems explored for traffic classification are based on message size
analysis, for the flow level one, and on elementary graphs decomposition, using
the so called motifs, for the host based classification. Prior to any of these
proposals, an in-depth review of the state of the art and a proposal on a tax-
onomy is made. Additionally, during the process of classifying the acquired
traffic using a customized Deep Packet Inspection (DPI) tool, some optimiza-
tions based on sampling are proposed and evaluated. Thus, the contributions
of this thesis can be summarized as follows:

A) New multilevel taxonomy proposal: The number of papers in the
literature covering traffic classification is tremendous. However, few are
the number of surveys covering up-to-date papers and fewer are the ones
that systematically categorize existing works. With the lack of existing
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surveys and significant taxonomies, we provide a survey categorizing ex-
isting methods according to a proposed taxonomy at three different levels
(input, technique and output). As a result of the study of the state of
the art, the main challenges and the characteristics of the ideal traffic
classifier are analyzed.

B) Framework for traffic classification research: Evaluating and com-
paring traffic classification methods should rely on significant traffic traces.
With the lack of reference datasets, we collected real traffic sets in a
significant volume after analyzing and discussing the requirements for a
proper assessment. Additionally, a set of tools to handle the datasets and
to extract all the parameters described in the literature for its potential
use in the classification process is built. Moreover, a DPI classification
tool is customized for its use in the assessment process, that is, to build
the ground truth and compare the results.

C) Assessment and optimization of payload-based classification me-
thods: The major limiting factors for the usage of DPI classification are
breaching the user’s privacy and the associated computational burden.
After assessing the performance of DPI, we present an optimization based
on various sampling policies for the payloads in each flow. The best
trade-off for performance, accuracy and user privacy is experimentally
demonstrated.

D) Novel blind flow-based classification method: The messages ex-
changed by peer entities at the application layer hold discriminative in-
formation that could enrich the classifier’s capabilities. From this stand-
point, we propose a novel blind method to explore the discriminative
power of application layer messages. The novelty of our approach con-
sists on relying on the size and direction of the messages instead of on
the packets and on applying a Markov modelling together with multipeak
Gaussians to represent the possible distributions in size from the differ-
ent methods in each application layer protocol. The results evidences the
goodness of the proposal and the existence of discriminative information
regarding traffic classification in the sizes of the exchanged messages.

E) Assessment and improvement of blind host-based classification
models: The current host-based classification models do not reflect real
usage scenarios, where a host might be using more than one applica-
tion. Thus, after selecting a host-based method, we explore multilabel
classification. The method of choice is based on a graph description
of the interactions between hosts, which are represented as elementary
units, the motifs. This method is assessed and some improvements at the
parametrization level are proposed and evaluated. Finally, we explore the
extension of the method for multilabel host identification.
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1.5 Thesis Structure

According to the previous discussions and contributions, the present thesis is
structured in 6 additional chapters as follows.

First, in Chapter 2, we analyze the state of the art in a comprehensive
way after proposing a taxonomy, which is consequently used to describe and
organize the existing contributions. While in the last decade multiple research
groups have been working in the traffic classification topic, which resulted in a
huge amount of publications, no significant survey on the field existed. Thus,
most of them were outdated while others were focused on one specific research
trend. Therefore, this chapter aims to provide a systematic approach for cat-
egorizing and characterizing traffic identification methods through a compre-
hensive three-level hierarchical taxonomy. After discussing the taxonomy, we
present the current literature in traffic classification by surveying most of the
existing and recent papers in the field, which are described according to the
terminology and categories established in the proposed taxonomy. From this,
the requirements that should be met by the optimal model or method for traffic
identification are discussed and the underlying related research hot topics are
highlighted.

Then, before moving to each of the new proposals requiring experimental
validation, we need to establish an appropriate testbed. Therefore, Chapter 3
is dedicated to explain the experimental setup and the testbed used throughout
the remaining of this thesis. The chapter starts with a discussion regarding the
requirements for the datasets and the scenario in order to be able to properly
evaluate the methods. From this analysis, it is concluded that, among other
properties, a proper dataset of real and labeled traffic, the so called ground
truth, is needed. This represents a relevant challenge, as it is not trivial to
label each of the instances in the real dataset. Therefore, after describing
the considered networking scenario and the data acquisition procedures, the
method and the tool used to label each of the samples are presented. The
chapter continues with a description of the captured datasets and the differ-
ent partitions established to train, evaluate and validate each of the traffic
classification methods proposed in this thesis. Next, the feature extraction
procedures and parameters are described. The chapter concludes with a pre-
sentation of the different metrics required to evaluate the performance of the
traffic classifiers.

Once the testbeds are set, in Chapter 4 an assessment and optimization of
payload-based classification is described. Throughout this chapter, we propose
and evaluate a general methodology for optimizing DPI through sampling. The
proposal is motivated by the potential to decrease the computational cost of
the inspection of the payloads and to enhance the users’ privacy by reducing
the amount of analyzed payload bytes. Thus, various sampling schemes includ-
ing payload-based sampling, flow-based sampling and a combination of both
techniques, using different inspection approaches, are considered and experi-
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mentally assessed. The classification results are then compared to show the
gain that can be obtained with the proposed samplers. An analysis of the po-
sitions in the flows of the information which is relevant for the discrimination
of the applications is also addressed.

Then, Chapter 5 presents and assesses a novel proposal for a blind flow-
based classification method. After finding in Chapter 4 that most of the sig-
natures used by DPI are located within the initial flow packets, the proposed
method focuses on the first application layer messages exchanged in each flow.
Thus, the procedures to parameterize each flow through the sizes and relative
directions of these initial messages are described. Next, the basic modeling used
to classify each parameter vector, that is, each flow, is presented. It is a classi-
fier based on Markov models whose observation probabilities are obtained from
class-dependent multipeak Gaussian distributions that are estimated through
a training procedure. Therefore, the topology and elements of the models,
as well as the method used to obtain these distributions are then described.
Finally, before the experimental validation of the proposed method, the proce-
dures to estimate the parameters of the models, that is, the Probability Density
Functions (PDF)s, are described.

After proposing a novel flow classification method, Chapter 6 focuses on
host-based classification. In particular, it is devoted to the assessment of a
graph-based approach based on the concept of motifs. This approach was pre-
viously proposed and explored by other authors, although it presented some
limitations. Therefore, in Chapter 6 we describe the fundamentals of the un-
derlying graph theory and the extraction of the so-called motifs from a graph
representing the interactions between hosts. Each host is then represented by
a profile which accounts for the involvement of the host in each of the obtained
motifs. Then, we assess and evaluate the results obtained from this method
in a real scenario in order to identify the limitations of the technique. In this
sense, some improvements targeted at the feature extraction and parametriza-
tion are proposed and evaluated. Next, in order to be really applicable in real
scenarios, the classifier should be able to classify the hosts according to the
set of applications in use instead of just one of them. Evidently, a host profile
should depict the typical host behavior contributing in more than one applica-
tion at the same time, which is rarely addressed in the literature and was not
considered in the previous work. Thus, we extend this method to a multi-label
host classification scenario.

Finally, Chapter 7 presents the conclusions from this work and some ideas
to be explored in future work.



Chapter 2

State of the Art in Traffic
Identification Methods

The basics of traffic classification and the motivations for this work were de-
scribed in Chapter 1. This chapter is devoted to present and analyze the works
described in the literature for this topic through a multi-level taxonomy.

Moreover, based on the surveyed works and comparisons, this chapter out-
lines the main requirements for future benchmarks and the optimal classifier
design concept that we believe (and argument) to follow a multi-classifier ap-
proach.

In the last decade, the relevance of the traffic classification problem moti-
vated multiple research groups, which resulted in a huge number of publica-
tions. Although each of the identification methods described in the literature
is considered optimal or valuable from the perspective of the authors, in most
of these works, only specific conditions and/or particular applications were
considered. Furthermore, existing comparisons used to cover only few identi-
fication techniques, while the results were rarely verifiable and the main focus
was on reducing error rates. Apparently, there are no clear research trends
toward defining the best traffic identification model.

On the other hand, existing surveys, [Zhang, 2009, Callado, 2009]), are now
outdated since the number of contributions has doubled in the last few years,
including a lot of recent and promising approaches. Some of these surveys
focused on specific research trends (e.g. [Nguyen, 2008] for machine learning
methods). Moreover, a single criterion, the classification input or technique
[Zhang, 2009, Callado, 2009] is usually considered for categorizing methods
described in the literature. As a result, identification methods were often
mapped to non-disjoint categories. To add to this fact is that most of the
proposed methods rely on different techniques and on various input/output
formats.

However, comparing methods without considering their differences both at
the input and output levels would be of less significance.

15
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Consequently, a comprehensive survey that can systematically categorize
and characterize different aspects of existing identification methods is required.
Obviously, a systematic taxonomy of exiting works is also relevant from a
benchmarking perspective.

In this chapter, a survey of existing and recent achievements in traffic clas-
sification over the last years is presented, focusing on the methods that are the
most relevant to the contributions in this thesis.

The aim is to provide a systematic way in categorizing and characterizing
traffic identification methods. Therefore, a proposal for classifying and organiz-
ing traffic identification methods is contributed in the first part of this chapter.
This taxonomy is then used as the vehicle to present major contributions in
the field. Specifically, a comprehensive three-level hierarchical and systematic
taxonomy which can assist in defining one consistent terminology that is useful
for future benchmarks is proposed. According to this taxonomy, each method
is categorized at three different aspect levels: the input type, the technique
used and the output. According to this taxonomy, methods are grouped into
disjoint category groups.

Finally, based on the surveyed works and comparisons, the optimal classifier
design together with the challenges and future requirements to build such a
system are discussed. As will be argued, it should follow a multi-classifier
approach.

2.1 A Novel Multilevel Taxonomy for Traffic Clas-
sification Methods

This section is dedicated to presenting the proposed taxonomy that we follow
in categorizing literature works in traffic identification.

As previously mentioned, hundreds of papers have been devoted by the
research community in developing traffic classification techniques. However,
some of the existing surveys take a narrow view [Nguyen, 2008] while most
[Zhang, 2009, Callado, 2009] are currently outdated. Moreover, previous tax-
onomies focus mainly on the used technique (e.g. port-based, DPI, machine-
learning) as the basic categorization criteria. Thus, a lot of relevant features
that worth of being underlined at the input and output levels were missed.

On the other hand, rigorous benchmarks usually refer to compare methods
within the same group before comparing methods across different groups. From
this perspective, existing taxonomies are confusing since the same method may
fall into different category groups. Therefore, comparing different categories
as per the existing taxonomies might be of less significance.

For these reasons, and to surpass these limitations, a comprehensive and
multilevel taxonomy that covers most existing and recent traffic identification
works in the literature is proposed and presented in this section.
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According to this taxonomy, each identification method is characterized at
three different levels:

(i) The classification input: The input covers the analyzed traffic character-
istics, which can be measured at different levels (e.g. packet, flow, host,
etc.).

(ii) The classification technique: The technique describes the core of the
identification process which may involve numerous means (e.g. payload
inspection, statistical, behavioral, etc.).

(iii) The classification output: The output is described in terms of quantita-
tive metrics (e.g. accuracy, precision, recall, etc.) as detailed in Chapter
3, that targets objects at different levels (e.g. packet, flow, host, etc.).

This three-level grouping provides richer information about each method
while generating separate three-tuples categories. Figure 2.1 illustrates the
proposed multilevel taxonomy by showing category groups at each of the three
defined levels. The different categories in each level are defined after the
review and grouping of the systems proposed in the literature, as will be de-
scribed in the next sections.

In this taxonomy, an identification method is necessarily a member of at
least three groups, one at each level. Nevertheless, existing identification meth-
ods may rely on multiple choices or on new non-categorized ones at each level,
referred to, respectively as combination and miscellaneous groups in Figure
2.1. Thus, an identification method is described as belonging to a 3-tuple de-
fined category (input, technique, output) that is associated with one distinctive
path in the diagram of Figure 2.1. For instance, the classification methods pro-
posed in [Sen, 2004a] and [Khalife, 2013b] are described by (payload, payload
inspection, flow-accuracy).

However, it is important to note that choices at the three levels are not
totally independent, as the classification technique may imply the form of the
required input and the provided output. For example, the payload input would
most probably imply the use of a payload inspection technique, providing flow
accuracy at the classifier’s output.

Nevertheless, with such a multilevel taxonomy, comparisons should become
of higher significance once the 3-tuples category groups are appropriately cho-
sen. For example, it would be much more significant to compare methods hav-
ing the same output group (e.g. host-based [Karagiannis, 2005, Allan, 2009]),
rather than comparing methods of different output groups (e.g. host-based
[Allan, 2009] and flow-based [Sen, 2004a]).

Next, from the perspective of this taxonomy, existing methods will be de-
scribed. However, instead of reviewing hundreds of individual methods, repre-
sentative methods are chosen from each category.
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Figure 2.1: A multilevel taxonomy for traffic classification methods character-
ized on three levels

In order to highlight on the motivations behind traffic identification, we
start by examining the kind of output level provided by each method. Choices
at the technique and input levels will be subsequently discussed.
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2.1.1 Categorization by the Classification’s Output

In the following, a survey and categorization of different traffic classification
methods is presented according to the nature of the classification output, as
per the third level in Figure 2.1.

Basically, as shown in Figure 2.1, the classifier’s target is to associate traffic
objects to output classes. Thus, each of the considered traffic identification
methods should define the traffic class or classes to which target objects are to
be ascribed. Thereafter, the goodness of the classification process is evaluated
in terms of some metrics which are usually dependent on the task, that is, the
nature of the input and output classes and the target of the classification.

2.1.1.1 Traffic Objects

Traffic objects, as shown in Figure 2.1, range from fine-grained (bytes, pack-
ets) to macroscopic levels (hosts, host-communities). Namely, traffic objects
include:

(i) Packets, in this case, each individual packet is to be labeled (e.g. [Sen,
2004a]).

(ii) Flows, where each flow is considered for classification. Usually, flow based
classification (e.g. [Zander, 2005, Kim, 2011]), defines a flow as an unidi-
rectional or bidirectional series of Internet Protocol (IP) packets having
the same IP addresses, port numbers, and transport layer protocol. The
flow concept can be extended to that of a Bag of Flows (BoF), (e.g.
[Zhang, 2012, Zhang, 2013]), which consists on a correlated set of flows
that are very likely to be generated by the same application.

(iii) Hosts, where the target is to classify the activity of a single host, (e.g.
[Karagiannis, 2005, Allan, 2009, Keralapura, 2010, Jinsong, 2009]). In
host based classification, hosts are represented by IP addresses and asso-
ciated, in most of the cases, with one single application (e.g. DNS host,
file transferring host, etc.).

(iv) Host-communities, in this case, it is the joint activity of a set of hosts
which is to be classified (e.g. [Iliofotou, 2011]). For example, host-
communities can be classified as P2P host-communities, SMTP host-
communities, etc.

Although some classification papers describe bytes as the elements to ana-
lyze [Erman, 2007b, Erman, 2007a], this approach is usually adopted only for
statistical evaluation, (e.g. monitoring volume consumption). They are not
literally defined, nor can be targeted as traffic classification objects.

Contrarily to bytes or packets, flows are the top most adopted identifi-
cation objects in most of the surveyed works. However, deciding upon the
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preference of classification objects still depend on the classifier’s intended use.
For example, for VoIP signaling traffic, both high flow and packet accuracy are
recommended, which is critical for controlling the whole voice session.

Ideally, a classifier should be able to identify traffic at the smaller possible
granular level, which is supposed to be computationally intensive. However,
coarse-grained identification objects are potentially more robust against net-
work fluctuations that usually affect low level statistics [Allan, 2009, Jin, 2009].

On the other hand, except for few modeling works (e.g. [Chang, 2009]),
most models treat each application independently to simplify the host classi-
fication problem. Most of the existing host and host-community classification
methods assume that only one application is in use by each host. However, one
host would simultaneously contribute in many applications, as per the normal
user behavior that might be, for instance, surfing the web and making a VoIP
phone call while running a P2P program in the background. Consequently,
inferring fine-grained classification given coarse-grained annotations, and vice
versa, is not a straightforward process. In other words, applications associated
with packets and flows generated by one host cannot be implicitly inferred
given that host’s annotation.

For example, flows generated by a host classified as a P2P host, are not nec-
essarily P2P flows. For this reason, coarse-grained identification approaches are
used to assist or to validate fine-grained classification methods. For instance,
after payload inspection fails at the packet level, [Keralapura, 2010] resorts to
host-based detection.

2.1.1.2 Traffic Classes

According to the degree of the classification detail, traffic classes can be cat-
egorized (see Figure 2.1) as ranging from fine-grained (e.g. a web application
function) to wider macroscopic levels (e.g. traffic cluster). As described in the
literature [Park, 2011], up to six major schemes can be identified for traffic
classes:

(i) Traffic clustering, (e.g. [McGregor, 2004]), which defines broad classes of
traffic (e.g. bulk, small transactions, etc.).

(ii) Application-type, (e.g. [Trestian, 2010]), which classifies the traffic ac-
cording to the kind of application generating it (e.g. game, browsing,
chat, P2P, streaming, email, etc.).

(iii) Application protocol, (e.g. [Keralapura, 2010]), which targets at the pro-
tocol associated to the traffic (e.g. Post Office Protocol (POP3), SMTP,
etc.).

(iv) Application software, which tries to determine the specific program for a
given piece of traffic (e.g. specific FTP or BitTorrent client software).
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(v) Fine-grained traffic classification, as in [Park, 2011, Kim, 2012], for multi-
channel applications, which takes a deeper insight trying to distinguish
different constituents in the traffic from each application (e.g. Facebook
login, Yahoo search, etc.).

(vi) Anomaly, (e.g. [Kim, 2006]), targeted at simply discriminating between
normal and abnormal traffic.

Anomaly is one of the main classification targets of many monitoring se-
curity systems. Anomaly alarms are generated whenever a deviation from a
pre-estimated ”normal” behavior is detected (see profiles in Section 2.1.3.2).
Traffic anomalies can include network, transport and application layer anoma-
lies.

On the other hand, fine-grained traffic classification can be relevant for
multi-channel applications that open multiple connections for different pur-
poses. For instance, Skype [Bonfiglio, 2007] offers several services (user au-
thentication, voice and video communications, file transfer, chat, etc.) over
TCP and UDP connections. Although belonging to Skype at the software ap-
plication level, these flows should be identified differently at a finer-grained
classification level. Furthermore, fine-grained traffic classification reveals cru-
cial for mobile applications [Park, 2011] as most of them rely on HTTP and
HTTPS flows.

Another relevant question is related to the number of classes each traffic
object can be assigned to. As previously mentioned, many of the contributions
in the literature use a single label to classify the traffic (single-label classifica-
tion), that is, each traffic object is attributed to just one class from one of the
previously mentioned classification schemes. This can be a suitable approach
depending on the nature of the traffic objects to be classified, as is the case for
flows and packets, and the intended task. However, there exist some situations
for which it would be wiser to have different labels from various schemes (or
multi-label classification) working at different granularities for each traffic ob-
ject [Schulze, 2009], and even from the same scheme, if the traffic objects are
hosts or host communities.

Regarding this last situation, most contributions in the literature use a
single label for hosts or host communities based classification, as they use the
assumption, most of the times not explicitly stated by the authors, that a host
is involved in only one application at a time.

As a direct result of this limitation, realistic cases where more than one
application is simultaneously in use are obviously not considered. As an ex-
ample, the authors in [Allan, 2009, Allan, 2008] relied on graph mining and
used a single-label K-nearest Neighbors (KNN) algorithm to classify the host
activity, testing hosts that used one application at a time, to find that most
of the considered hosts (61%) properly matched the profiles of a single class,
even in a narrow time window.
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2.1.2 Categorization by the Input

In the following, a survey and categorization of different traffic classification
methods is presented according to the nature of the input to the system, as
per the first level in Figure 2.1.

In general terms (Figure 2.1), traffic identification methods may use data
directly taken from the observations, as the traffic payload; processed infor-
mation from traffic measurements and properties, as packet sizes; hybrid sets
from both kinds and some miscellaneous types. The two main categories are:

A) Traffic payload: As mentioned in Chapter 1, one of the most used and
successful methods nowadays, DPI, is based on the inspection of the pay-
loads. Anyway, many other classification techniques also use the payloads
of the packets as their inputs. In this context, packet payload is referred
to in this thesis as the whole content of the packet beyond network and
transport headers, or a part of it, that is, just the information from the
application layer.
Despite their successfulness, major concerns are raised regarding the user
privacy with payload based methods, as mentioned in [Sen, 2004a, nDPI,
2013, Lu, 2007, Yeganeh, 2012]. Though most DPI signatures require few
packets to be disclosed [Khalife, 2013b, Aceto, 2010], payload based clas-
sification is still less preferred due to privacy breaching and the supposed
computational burden it introduces.
On the other hand, the use of ciphering may make this kind of input as
useless for traffic identification.

B) Traffic properties: Alternatively, non-payload based identification (also
called ”in-the-dark” classification) refers to extracting various traffic fea-
tures based on information at the network and transport layers. These
features can be gathered at different levels as packet, flow, host, and
host-community (Figure 2.1). They are similar, although not necessarily
the same, to the type of the traffic identification object (Section 2.1.1.1).
The nature and kind of the extracted attributes depends on the level
being considered. Thus, without pretending to be exhaustive, they can
be:

(i) Packet-level features: most common parameters are the headers
from the packet at different layers (network and transport), packets’
sizes, flags, etc.

(ii) Flow-level features: as the flow size, flow duration, average number
of packets, interarrival times, etc.

(iii) Host-level features: as the number of connections, the number of
distinct active ports, etc.
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(iv) Host-community-level features: as the connection degree, graph di-
ameter, etc.

Throughout most of the surveyed works, e.g. [Dainotti, 2008, Hu, 2012],
the packet interarrival times and packet sizes (including some statistical values
as the maximum, minimum, mean, variance, etc.) were mostly used in a flow
level characterization.

Obviously, the nature of the input depends on the network being monitored
and the available tools and resources. For instance, bidirectional packets’ fea-
tures might not be applicable in multi-homed networks relying on a single
monitoring point.

From a different standpoint, measurements can be either passive or active.
Passive measurements are carried out by parsing traffic characteristics, e.g.
[Moore, 2005a], while active measurements, e.g. [Trestian, 2010, Dedinski,
2009], inject probe packets into the network to infer some of its properties.
Most of the surveyed works use passive measurements inquiring, in some cases,
the disclosure of packet payload.

A common and relevant practice regarding the input to the classifiers is the
attempt to reduce the size of the input data in order to improve the perfor-
mance. For this purpose, different techniques are described in the literature,
although the applicable ones might depend on the nature of the data. Thus,
the number of parameters in input vectors can be reduced through feature
selection, as in [Nguyen, 2008]; flow data can be replaced by that from BoF
[Zhang, 2013, Zhang, 2012]; etc. This kind of approaches can be considered a
part of the classification method or a preprocessing step, and will be addressed,
as needed, in the next section.

Nevertheless, there exist some approaches that use just a fraction of the
potentially available data, independently on the used classification method
and the category of the input. Two schemes are relevant in this context: early
classification [Bernaille, 2007, Tabatabaei, 2012, Wang, 2009b] and sampling
[Khalife, 2013b].

Early classification methods are targeted at classifying flows as soon as
possible. For this, they only analyze the first few packets of the flow. The
intuition behind the approach is that these packets are supposed to capture
a pre-defined sequence of messages within the application negotiation phase.
Similarly, the input can be simply reduced through different sampling modes.
However, methods relying on much reduced input size should provide alterna-
tive sources when their input are lost or not captured by the classifier.

2.1.3 Categorization by the Technique

In this subsection, a survey and categorization of different traffic classification
methods is presented according to the type of the classification technique used,
as per the second level in Figure 2.1.
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According to this criterion, existing methods can be categorized as belong-
ing to the following major categories:

(i) Payload inspection: based on the direct inspection of the whole or part
of the data in the application layer payloads of the packets [Sen, 2004a,
Yeganeh, 2012].

(ii) Simple statistical: which uses general traffic features to build represen-
tative sets of parameters which are almost straight forwardly compared
with the reference sets of parameters [Moore, 2005a, Crotti, 2007]. Simple
statistical approaches include basic statistics [Yildirim, 2010, Alsham-
mari, 2011], heuristics [Karagiannis, 2005] and behavioral techniques
[Trestian, 2010]. In these cases, representatives for each of the classes to
be classified are manually selected or set and some distance or distance-
like measures are used to find the class of an element.

(iii) Machine learning: this category includes a variety of methods and sys-
tems from the Pattern Recognition discipline to classify the observations
(e.g. [Dehghani, 2010, McGregor, 2004]).

(iv) Graphical: based on building graphs representing some interactions be-
tween the elements to be classified, which are subsequently analyzed us-
ing graph-based techniques. This set of techniques is mainly targeted
at the host and host-community based classification (e.g. [Karagiannis,
2005, Iliofotou, 2007]).

(iv) Miscellaneous and hybrid: Hybrid approaches (Figure 2.1) integrating
more than one of the previously stated techniques were proposed in the
literature [Keralapura, 2010, Zhenxiang, 2011]. Moreover, various mis-
cellaneous methods [Trestian, 2010, Zhang, 2011] can also be found in
the literature and will be discussed in the next sections.

The historical evolution of traffic classification methods shows that payload
inspection has emerged after port-based classification became unreliable [Dain-
otti, 2012]. Then, statistical and ML techniques were applied to overcome the
limitations of most previous methods, while graph-based approaches are still
in its initial stages of development.

Once the categories have been presented, they will be described with greater
detail in the next following sections, including the respective subcategories and
the most representative contributions associated to each one.

2.1.3.1 Payload Inspection Techniques

As previously stated, payload inspection techniques are based on the analysis
of the information in the application layer payloads of the packets. Thus,
most payload inspection techniques [Sen, 2004a, Yeganeh, 2012] rely on DPI
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[Mochalski, 2009] which checks the packet payload against a set of known
protocol signatures (e.g. ’GET’ signature in Web traffic).

DPI is defined [Mochalski, 2009] as being ”a computer networking term
that refers to devices and technologies that inspect and take action based on
the contents of the packet (commonly called the payload) rather than just the
packet header.”

The most important components of DPI are regular expression matching
and signature based scanning. In the basic approach, the payload of all the
packets is checked against the set of known protocol signatures, being the flows
the objects to be classified, although it is also possible to classify individual
packets. Thus, DPI will need first to parse the packet headers, up to the layer 4
(shallow packet inspection) which is essential to identify the flow to which the
packet belongs to. To classify the packet and, subsequently, the flow, DPI will
then need to inspect the entire payload, beyond the layer 4 header, to match
applications’ signatures.

Some variants and refinements are possible regarding the signature match-
ing mechanism and the amount of analyzed information from each of the pack-
ets and/or flows. For instance, Statistical Protocol IDentification (SPID) [Choi,
2012] uses entropy-based comparisons of probability distributions, relying on
the payload content. It measures, for example, the frequency at which all of
the possible 256 byte values occur in a packet. Thus, the message type coded
as 0x16 (SSL Server Hello packet) should have higher frequency in SSL traffic.

On the other hand, in order to reduce the high computational cost associ-
ated to the inspection of the whole payload for all the packets traversing the
network, a lot of effort is devoted to studying the impact of sampling this data
(see Chapter 4 for details and related work).

Some less relevant alternatives to DPI relying on traffic payload can be
found in the literature. For example, the payload can be checked against the
content redistribution characteristic of P2P applications [Lu, 2007], which is
based on the likelihood that a P2P peer would usually redistribute the same
content it receives to other peers.

Most importantly, DPI based methods are characterized by providing the
highest accuracy level with the widest range of covered applications. In fact, if
the existence of unlabeled output is accepted, the performance of DPI methods
can approximate to 100% for the labeled flows/packets. Due to this, it is usually
considered as the reference validation method (i.e. to build the ground truth)
to compare other systems with.

However, DPI techniques have some limitations concerning the user pri-
vacy and the computational overhead associated with payload disclosure and
inspection. Moreover, DPI methods require specific, updated and consistent
applications’ signatures to cope with the exponentially increasing number of
Internet applications and floating signatures [Keralapura, 2010]. Although the
process of signatures’ extraction can be automated [Keralapura, 2010, Yeganeh,
2012], many of the existing DPI tools, e.g. [L7-filter, 2013, nDPI, 2013, Tstat,
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2013], use inconsistent sets of manually updated signatures. In fact, applica-
tions’ signatures might be differently located within the flow stream [Khalife,
2013b, Aceto, 2010] as different inspection algorithms might be also applied
according to the DPI tool of choice.

In fact, DPI has been implemented in many open source classification tools,
such as OpenDPI recently replaced by nDPI [nDPI, 2013]; Tstat [Tstat, 2013],
an open source passive sniffer providing several insight on the traffic patterns;
L7-filter [L7-filter, 2013], an open source application layer classifier for Linux’s
Netfilter; and Snort [Snort, 2013], an open source network intrusion prevention
and detection system.

Nevertheless, and although DPI implementation might be tool-dependent,
the same concept is usually followed in making the DPI classification decision
and matching signatures within the inspected payload [Mochalski, 2009].

Moreover, the literature shows different DPI based tools that incorporate
other joint technologies, such as behavioral [Zhang, 2010], statistical [Dehghani,
2010], port based [Aceto, 2010] and Deep Flow Identification (DFI) [Wang,
2009a].

2.1.3.2 Simple Statistical Techniques

Statistical methods are based on the underlying assumption that traffic at
the network and transport layers may have some statistical properties which
are unique for certain applications. This assumption proved to be valid for
many applications and retained its validity for encrypted traffic [McCarthy,
2011, Bernaille, 2007, Yildirim, 2010, Alshammari, 2011].

Statistical based classification approaches use general traffic features to
identify traffic applications without relying on payload analysis. In a simple
statistical model, representative sets of parameters are compared to the ob-
served ones [Moore, 2005a, Crotti, 2007, Wang, 2010].

In this context, a group of general flow discriminators relevant for traffic
classification was early defined in [Moore, 2005a].

Each statistical method uses a separate set of statistical features and func-
tions. Simple statistical approaches include (Figure 2.1) basic statistical pa-
rameters [Yildirim, 2010, Alshammari, 2011], heuristics and profile-based tech-
niques [Karagiannis, 2005, Trestian, 2010]. Next, some details about them are
discussed.

A) Basic statistical: Basic statistical techniques observe a set of selected
traffic properties to build a fingerprint for each protocol. Observations are
then compared against these fingerprints using basic statistical functions.
For example, protocol fingerprints were derived in [Crotti, 2007] based on
packets’ interarrival time by using simple PDF and normalized thresh-
olds. Results provided up to a 91% 1 of accuracy for some known pro-

1Evaluation metrics are reported by authors for various protocol sets and under different
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tocols such as HTTP, POP3 and SMTP. Results were, however, site-
dependent as pointed out by the authors. Similarly, based on the packet
size, a wider range of protocols was covered in [Wang, 2010] including
File Transfer Protocol (FTP), Internet Message Access Protocol (IMAP),
Secure Shell (SSH), and TELNET, while maintaining the overall accu-
racy at 87%. Some types of encrypted traffic (e.g. tunnels transporting
Skype based VoIP traffic [Yildirim, 2010]) can be also identified using
these basic techniques.
However, none of the basic statistical approaches [Yildirim, 2010, Crotti,
2007, Wang, 2010] has provided deeper insights into complex applications
like P2P. For this purpose, enhanced statistical approaches were proposed
under different terminologies such as heuristics, behavioral, profiling, and
characterization.
Enhanced statistical methods construct a set of statistical rules concern-
ing traffic properties to describe flows and hosts using specific applica-
tions. The statistical characteristics on which most of these methods rely
were experimentally selected.
Some of the statistical derived terms were used interchangeably in the
literature (e.g. traffic behavior, characterization and profiling [Bolla,
2008, Sen, 2004a]) and others were used in the method description (e.g.
heuristics and behavioral [Zhu, 2010]). Since researchers are more con-
cerned with the technical significance, approaches using statistical de-
rived terms covering heuristics, behavioral, profiling, and characteriza-
tion, were categorized under the statistical group at the technique level
in Figure 2.1.

B) Heuristic: A heuristic is an approximation about some statistical traffic
characteristics and attributes, generally defined as a set of rules [Kara-
giannis, 2005, Karagiannis, 2004, Wang, 2007]. An example of P2P
heuristic [Karagiannis, 2004] supposes that the concurrent use of TCP
and UDP sessions between two hosts with the same port number is an
indicator of P2P activity. Port-based classification [IANA, 2013], men-
tioned previously, can be considered as another kind of heuristic mapping
applications to IANA registered port numbers (e.g. web traffic uses TCP
port 80).

C) Profiles: Profiling measures the heterogeneity level and formalizes it in
a value that can be used to compare traffic identification objects. For
example, an application can be profiled using the PDF of the payload
length and direction of the first few packets in a flow [Wang, 2009b].

controlled scenarios. As such, they cannot be regarded as the major criteria for comparisons.
For adequate comparisons, further efforts are needed by the research community as we
recommend by the end of this chapter.
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Then, an observed flow is classified by matching its characteristics to the
closest application profile.
Although profiling and behavioral techniques are usually used for security
analysis and anomaly detection [Kim, 2006], they can also be employed
for traffic classification purposes.
Profile characteristics are often expressed using quantitative metrics such
as entropy [Gomes, 2008], graphical means [Karagiannis, 2005], etc. In
contrast to classifying the traffic based on simple heuristics, these tech-
niques provide a higher level view of the application’s characteristics
[Karagiannis, 2005, Trestian, 2010, Keralapura, 2010, Lee, 2007, Wu,
2009, Dedinski, 2009, Wang, 2009b, Gomes, 2008, Zhu, 2010].
Profiles can be built for applications, hosts, and users:

-Application profiles. They are defined by a set of rules summarizing
statistical properties shared by flows or packets that are generated
by the same application. For instance, profiling the packets’ size
[Wang, 2009b, Gomes, 2008, Zhu, 2010] proved to be discriminative
for P2P. Specifically, examining successive short equal-sized UDP
packets in P2P application behavior achieved 96% of P2P flow ac-
curacy [Zhu, 2010]. Similarly, profiling the payload length and direc-
tion of the first few packets in a flow (a similar approach is proposed
in Chapter 5) achieved more than 90% of recall for many P2P ap-
plications (Maze, Thunder, PPLive and Feindian) by incorporating
the longest common subsequence mechanism [Wang, 2009b].
Part of application profiling is to specifically characterize the sig-
naling phase. The assumption here is that application signaling,
regulated by the underlying protocol, should serve as an unique
signature for identification purposes. For instance, e-Donkey and
FTP signaling traffic [Dedinski, 2009] show differences both in the
distribution of packets’ inter arrival times and sizes. From a sim-
ilar perspective, the DNS-query behavior [Wu, 2009] can be used
to characterize P2P hosts. The intuition is that P2P applications
are supposed to send no or fewer DNS queries than non-P2P appli-
cations, as most peers are usually registered by their IP addresses.
With DNS-query profiling, 90% of accuracy is achieved for P2P pro-
tocols covering BitTorrent, eMule and PPStream.
-Host profiles. At a higher level of identification objects, attribute
values may be aggregated to build host profiles which can be ex-
pressed in several ways. For instance, using graphical means, host
profiles can be represented by graphlets [Karagiannis, 2005], reveal-
ing host interactions at the application layer reportedly providing
up to 95% of host classification accuracy covering most known pro-
tocols and including P2P hosts.



CHAPTER 2. STATE OF THE ART IN TRAFFIC IDENTIFICATION METHODS 29

Another way of building host profiles can be based on observing
their generated flows’ characteristics. For instance, by aggregating
the number of unique source port numbers and produced flows [Lee,
2007], hosts can be ranked as busy servers, web-servers or P2P.
Flow characteristics used to build host profiles can be quantified.
For instance, the Discreteness of Remote Hosts [Cheng, 2007] is a
value formulating the high number of remote networks to which a
P2P host is likely to connect. With this type of host profiling, results
achieved more than 90% of accuracy in detecting BitTorrent hosts.
Unconstrained Endpoint Profiling (UEP) [Trestian, 2010] is another
promising approach suggesting a fundamental change in host profil-
ing. Key differences exist with state-of-the art approaches, such as
BLINC [Karagiannis, 2005] (which also incorporates basic graphical
techniques), although both methods are used for host profiling.
First, UEP is different in design by actively crawling Web-based
information instead of exclusively relying on network traces.
Second, UEP is able to provide finer-grained host classes such as
Kazaa or Yahoo chat, whereas BLINC provides generic host classes
such as P2P or Chat. As per the conducted experiments in [Trestian,
2010], UEP was able to classify over 60% of traffic compared to 53%
with BLINC [Karagiannis, 2005].
Finally, active host profiling [Trestian, 2010] sending probes to hosts
to detect applications in use can be promising as a valid alternative
for the current profiling approaches.
-User profiles. They analyze traffic characteristics associated with
the user behavior [Ullah, 2012, Jinsong, 2009]. Long periods of
connectivity and nightly download activities [Jinsong, 2009] are ex-
amples of P2P users’s characteristics.
User profiles can be translated into host and flows properties for
traffic identification purposes. However, characterizing user behav-
ior was less explored in the context of traffic classification, although
it might have a potential to offer new discriminative information.

Up to this level, selected examples of existing statistical methods are shown
together with their discriminative power in traffic classification and the associ-
ated low computational costs. However, statistical based classifiers suffer from
several limitations. First, only few applications can be detected with these ap-
proaches. Second, some hosts or applications may still exhibit similar profiles
(e.g. P2P peers and highly active web clients [Cheng, 2007]).

In addition, most profiling approaches [Karagiannis, 2005, Lee, 2007, Cheng,
2007, Wu, 2009] assume that only one application is in use by each host, which
is a non-realistic assumption, as stated earlier in Section 2.1.1.1. In other
words, the statistical traffic properties characterizing each application in sep-
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arate might become indiscernible when measured for a host running multiple
applications simultaneously.

Fewer works [Lee, 2007, Chang, 2009] built host profiles by correlating
behaviors for many applications, but they were proposed, however, in the se-
curity context. In this regard, active host profiling [Trestian, 2010] might be
considered as a valid alternative for the current profiling approaches: Probing a
host for each application in separate might lead to more accurate classification
results, regardless of the number of running applications.

Another important aspect of statistical methods is that they need to rely
on large datasets and multi-dimensional spaces of attributes in order to extend
their classification capabilities. In expressing variations in such multidimen-
sional space, simple heuristics, statistical or even behavioral rules might become
complicated and poorly readable, requiring thus much higher computational
power. In these conditions, tedious human interventions should be dedicated
for creating and adjusting the huge number of required statistical rules, and
their mapping to different traffic classes. Alternatively, this process could be
partially or even fully automated through ML techniques, borrowed from the
field of artificial intelligence, as shown next.

2.1.3.3 Machine Learning Techniques

ML techniques are used in various fields including traffic classification. In
this case, classification falls into the Pattern Recognition [Theodoridis, 2009]
scientific discipline.

In a first approach, statistical based ML algorithms were extensively used
to mine relevant information from the huge amount of traffic characteristics.

Traffic classification [Nguyen, 2008] was posed in the context of ML as
supervised, unsupervised and semi-supervised learning problems (see Figure
2.2).

The most relevant works and methods based on ML are:

A) Unsupervised Traffic Classification
Unsupervised learning [Theodoridis, 2009] classifies traffic objects with-
out relying on any labeled instances for training. New unlabeled traffic
objects, as depicted in Figure 2.2, are directly applied to the classifier at
the input level.
In the context of traffic classification, simple unsupervised clustering al-
gorithms were mostly applied though many other unsupervised clustering
algorithms exist [Theodoridis, 2009]. Most unsupervised traffic classifi-
cation [McGregor, 2004, Bernaille, 2006, Kurt, 2012] uses to group un-
labeled instances (see Figure 2.2) into clusters, based on their feature
vectors, and according to a given similarity function or distance mea-
surement.
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Figure 2.2: Generic diagram of machine learning based traffic classification

For example, in unsupervised flow classification [Bernaille, 2006], clusters
are formed by measuring the Euclidean distance between points repre-
senting flows in a multidimensional space. A new flow instance will belong
to the closest cluster (i.e. having the minimal distance to the cluster’s
representative point).
At the output level, the first historically applied unsupervised cluster-
ing methods [McGregor, 2004] map traffic instances into generic classes
such as bulk transfer, small transactions, etc. Classes were so generic
as these methods lacked for the derivation of new attributes to further
discriminate between individual applications. These approaches relied
on few traffic characteristics, such as the packets’ order [Bernaille, 2006]
and sizes [Bernaille, 2007] at the input level.
Subsequent clustering approaches, such as AutoClass [Zander, 2005], were
based on more discriminative characteristics such as packet inter arrival
time, packet length, flow size, and flow duration. With this approach,
more granular results were provided in discerning applications such as
HTTP, SMTP, Telnet and FTP with a reported 80% of accuracy.
P2P applications were identified using K-means clusters [Erman, 2007b]
with 95% of flow accuracy. This approach was based on similar attributes
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to that used in AutoClass [Zander, 2005], but focused on the server-to-
client direction.
On the other hand, to improve the classification performance and speed
up the convergence of the clustering process, a constrained variant of
K-means was proposed [Wang, 2012]. This approach was motivated by
observing correlations between flows, and used additional attributes such
as the number of packets and the volume of transferred bytes. Results
achieved over 90% of F-Measure for most known protocols, including P2P
BitTorrent.
Another relevant issue concerns the input requirements for clustering
methods. For some approaches, it was not shown how many flow packets
are required to obtain a reliable identification [Zander, 2005]. However,
for online deployment, it is important to reduce the size of the input
features’ vector. For this purpose, the clustering process in early identi-
fication methods [Bernaille, 2007, Bernaille, 2006] is based on the char-
acteristics of the firsts flow packets.
For example, by using the size of the first five data packets of a flow
[Bernaille, 2006], 95% of flow accuracy was maintained while enhanc-
ing the classifier performance. Results covered most known protocols
including e-Donkey and Kazaa P2P applications. Similarly, and based
only on the first three examined packets [Bernaille, 2007], early iden-
tification were able to cluster known applications including BitTorrent
and e-Donkey P2P applications, in addition to SSL traffic with 85% of
accuracy.
A relevant issue is to enhance the classification accuracy of the clustering
process. For this purpose, many helper methods as port-based heuristic
[Bernaille, 2007] or Markov models [Kurt, 2012] can be jointly used. For
example, incorporating a Markov model [Kurt, 2012] provides a kind of
context dependent classification (as detailed in the next section) into the
clustering process. In this case, similar flows are assumed to belong to
the same cluster already established from previous flows. This approach
successfully grouped together flows (such as streaming, VoIP, and P2P
flows) that were generated from the same Markov model.
As a result, it is documented that traffic classification through unsuper-
vised learning and clustering is considered among the simplest ML mech-
anisms. Clustering performs much faster coping with emergent or un-
known applications, compared to updating new signatures in DPI based
methods.
However, critical challenges with clustering include identifying applica-
tions that do not dominate any of the classes and dealing with the cases in
which too many clusters are obtained. Although clustering may provide
an in-depth classification of similar traffic type generated by different
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protocols, it may be only suitable as a first step of classification for those
situations where the traffic is completely unknown.
Consequently, in order to build more complex classification models, a
classifier should be trained on labeled traffic instances, as detailed next,
by referring to supervised and semi-supervised classification algorithms.

B) Supervised Traffic Classification
Supervised learning [Theodoridis, 2009] learn from a set of pre-labeled
training samples at the input level to automatically associate unlabeled
instances with their corresponding classes. As depicted in Figure 2.2,
supervised classifiers build a model based on the experience learnt during
their training phase. This model is used during the classification phase to
map new traffic instances to output classes, based on their input features’
vector.
Supervised learning algorithms can be classified as context-free or content-
dependent. Context-dependent classifiers assume the existence of interre-
lations [Wright, 2006, Dainotti, 2008] among different classes. The class
to which a new instance is assigned depends on its own value and on the
values of other successive or previous instances. Context-dependent su-
pervised classification achieved 90% of general classification accuracy us-
ing the Viterbi algorithm [Wright, 2006] and more than 90% with Hidden
Markov Models (HMM) [Dainotti, 2008] covering e-Donkey and PPlive
P2P applications. Context-dependent classification approaches were less
addressed in the literature. Thus, most supervised traffic classification
models were context-free.
Supervised learning [Maglogiannis, 2007] was proposed in many traffic
classification works [Dehghani, 2010, Wright, 2006, Moore, 2005b, Li,
2008, Hu, 2012] and includes many algorithms such as KNN, Naive Bayes
and Bayesian Networks.

B.1) The k-nearest Neighbor KNN:
This approach is based on the consideration that instances within
the same class label should exist in close proximity to each other
(nearest neighbors), according to a given proximity function (e.g.
Mahalanobis distance [Huang, 2009]). To determine the class of
an instance, KNN locates the k nearest points and then identifies
the single most frequent class label. Applied to traffic flow classi-
fication, KNN [Huang, 2009] provided 90% of accuracy for known
applications including P2P BitTorrent and eMule.
The KNN algorithm has many advantages. First, KNN is an ex-
ample of instance-based learning where the generalization process is
delayed until the classification phase. This means that KNN does
not require any training time because the training instances are
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simply stored. In addition, KNN is relatively easy to tune with one
single parameter, k. The performance of a KNN classifier can be
improved by using fewer training samples and measuring averaged
distances to BoF [Zhang, 2013] instead of individual flows. With
this improvement, KNN leaded to 20% saving in the classification
time with 90% of less training samples per class.
Despite of many enhancements, KNN is still suffering from sev-
eral limitations [Maglogiannis, 2007] including its sensitivity to the
choices of both the similarity function and the value of k which
are crucial for the effectiveness of this algorithm. For instance, the
value of k proved to be dataset-dependent in [Huang, 2009]. Other
limitations of KNN include the relatively high storage and compu-
tational costs requirements. Moreover, KNN is deeply affected by
the presence of noisy instances in the dataset and the use of ir-
relevant features which may distort similarity measures leading to
misclassified instances.

B.2) Naïve Bayes
Naïve Bayes classifiers [Moore, 2005b, Auld, 2007, Zhang, 2012,
Zhenxiang, 2011, Dehghani, 2010] are based on computing prob-
abilities. Given an element, characterized by the observation of its
features, these techniques estimate the probability that a class gen-
erates such an observation and label the element with the class that
provides the highest probability.
The Naïve Bayes method is based on a robust algorithm that trains
very quickly and which requires less storage space, dedicated mainly
for the variances of the probabilities. Moreover, any missing fea-
tures’ values can be simply ignored and have no impact on the final
classification decision
However, Naïve Bayes classifiers are based on the assumption that
different features’ vectors are independent and have standard Gaus-
sian behavior, under the normality assumption, which cannot be
easily generalized.

B.3) Enhanced Bayesian Approach
To overcome these limitations, the Naïve Bayes model has been in
turn the subject to many enhancements through kernel density es-
timations [Moore, 2005b], neural networks [Auld, 2007], payload in-
spection [Dehghani, 2010, Zhenxiang, 2011], and BoF [Zhang, 2013].
Particularly, to address the problem of approximating every dis-
criminator by a Gaussian distribution, the kernel density estimation
theory [Moore, 2005b] was used with a Naïve Bayes classifier to ob-
tain 96% of accuracy covering most known protocols and including
Kazaa, BitTorrent, and GnuTella P2P applications.
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A relevant issue is to incorporate dependence between discriminators
in a Bayesian model. For this purpose, a Bayesian trained neural
network was proposed in [Auld, 2007]. Covering the same set of
P2P protocols, a 99% of accuracy was achieved.
On the other hand, to improve accuracy, payload inspection was
used jointly with a Naïve Bayes classifier to achieve, for most known
protocols [Dehghani, 2010, Zhenxiang, 2011], 80% to 93% of preci-
sion and recall results. P2P protocols were covered with up to 96%
of flow accuracy for BitTorrent, eMule, PPLive, and Skype applica-
tions [Zhenxiang, 2011].
Finally, and in order to minimize the training set, BoF with feature
discretization and flow correlation were used with Naïve Bayes clas-
sifiers [Zhang, 2012]. The classification accuracy was improved by
8% compared to the native classifier.
Nevertheless, enhanced Naïve Bayes classifiers are still based on hard
to generalize assumptions, and might not be suitable for datasets
with too many characteristics [Maglogiannis, 2007].
When dealing with multidimensional features, more complex mod-
els should be employed in order to fit data variations more readily.
In this case, more complex supervised learning algorithms tend gen-
erally to perform much better, as detailed next.

B.4) Supervised Artificial Neural Network
Simply defined, Artificial Neural Network (ANN) [Theodoridis, 2009]
is a mathematical model used for modeling complex relationships
between inputs and outputs.
ANN approaches (e.g. [Chen, 2009a, Sun, 2010b, Ting, 2010]) were
proposed for traffic identification. It was shown [Zhou, 2011, Ting,
2010] that ANN can outperform Naïve Bayes methods providing
more stable classification performance.
In fact, P2P applications, for example, were easily identified using
variants of ANN.
Back Propagation trained Neural Networks (BP-NN) [Chen, 2009a],
for example, can identify P2P traffic with up to 96% of True Positive
Rate (TPR). Similarly, using BP-NN [Gu, 2010] and Feed-Forward
Neural Networks (FF-NN) [Zhou, 2011], various P2P applications
such as BitTorrent, e-Donkey, eMule, PPstream, PPlive, Kazaa and
Gnutella were identified at 85% of classification accuracy. More-
over, Probabilistic Neural Network (PNN) [Sun, 2010b] achieved
over 91% of TPR and 87% of accuracy in discerning P2P and web
applications.
To produce a low-dimensional and discretized map representation
of the input space of the training samples, ANN can be trained
using unsupervised learning to obtain Self-Organizing Maps (SOM).
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With SOM [Ting, 2010], 90% of traffic classification accuracy was
achieved.
As a result, it can be seen that ANNs algorithms proved to be effi-
cient for traffic identification covering P2P protocols. However, the
presence of irrelevant features can make ANN training very ineffi-
cient, even impractical. When dealing with learning tasks where
the number of features is too large with respect to the number of
training instances [Maglogiannis, 2007], other alternatives would be
preferred, as detailed next.

B.5) Support Vector Machines
A Support Vector Machine (SVM) model [Theodoridis, 2009] rep-
resents training samples as points in a high-dimensional space and
constructs hyper-planes used for the classification task. SVMs were
proposed for P2P traffic identification in large networks, achieving
up to 97% of accuracy [Yang, 2007].
Moreover, the decision function of SVM can be weighted [Liu, 2010]
based on the False Positive (FP) and False Negative (FN) rates of
every SVM when it identifies specific application traffic. With the
weighted SVM approach, a wider range of P2P applications was
covered including BitComet, Xunlei, PPLive and PPStream, at the
cost of an accuracy degradation to 80%.
In addition, SVM classification was also customized for real-time
deployments [Tabatabaei, 2012] by observing the first 7 packets in
each flow. Accuracy was maintained at around 85% for many P2P
applications including BitTorrent, Gnutella, live-streaming, and -
Skype.
However, in contrast to Naïve Bayes classifiers, one of the obvious
pitfalls of both SVM and ANN is overfitting [Maglogiannis, 2007].
These approaches are based on complex algorithms with poor in-
terpretability and many parameters to tune. Their classification
accuracy can be improved at the cost of larger training sets and
increased training time. The training process itself would become
impractical at some extent. In this context, decision trees, could be
alternatively preferred due to their relatively smaller time complex-
ity, as detailed next.

B.6) Decision Trees
Decision trees [Theodoridis, 2009] are easily comprehensible logic-
based systems. A decision tree classifies instances by sorting them
based on feature values, so that the one that best divides the training
data would be the root node in the tree.
In fact, decision trees are reputed by being quite faster than neural
networks and SVMs [Maglogiannis, 2007], while still being more
resistant to missing or noisy attributes. Moreover, decision trees
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are able of updating the identification model incrementally. This
is crucial for handling the dynamic nature of, for example, P2P
applications, where new communities of peers often attend and old
communities of peers often leave.
In the literature, various types of decision trees were proposed for
traffic classification. For instance, J48 and REPTree decision trees
[Li, 2007] achieved more than 94% of classification accuracy in de-
tecting P2P applications covering BitTorrent, eMule, PPlive, QQ,
Kazaa, Gnutella and Skype. Specifically, the C4.5 [Li, 2008] achieved
more than 90% of accuracy covering the same set of P2P protocols
[Li, 2007] in addition to encrypted P2P applications, based only
on the first five flow packets. The classification accuracy of C4.5
decision trees was improved to 97% for the same P2P application
set in addition to covering the Xunlei application [Chunzhi, 2010].
The robustness of the C4.5 decision tree was assessed in many en-
crypted traffic classification works [McCarthy, 2011, Alshammari,
2011]. Moreover, services running over SSH encrypted tunnels were
unveiled with 99% of accuracy based on C4.5 decision trees trained
on simple statistical feature sets including temporal information. In
addition, identifying SSL applications (including SSL BitTorrent)
was also made possible using a modified version of AdaBoost and
C4.5 decision trees [McCarthy, 2011]. Results achieved 98% of clas-
sification accuracy and 0.6% of SSL False Positive Rate (FPR).
Moreover, the literature shows many refinements of decision trees,
applied to traffic classification. For instance, Fast Correlation Based
Feature Selection [Hu, 2012] is used to remove any redundant fea-
tures. The efficiency was improved for real-time traffic identification
and 90% of classification accuracy was maintained for P2P applica-
tions.
However, decision trees are still relatively hard to be changed if new
streaming data is acquired after the training is made [Verticale,
2008, Li, 2008]. As such, retraining points are required to offer the
possibility of discovering network specific unknowns [Erman, 2007a].
Consequently, for large data sets, and particularly in cases where
continuous, rapid data records are to be acquired, the retraining
process becomes harder. Alternatively, incremental decision trees
using stream mining techniques, such as Very Fast Decision Trees
(VFDT), are able to be quickly updated and revised using new data
instances. VFDT may be also adapted [Sun, 2010a, Yang, 2011],
for limited memory computing environments by controlling the tree
size while sustaining good prediction accuracy. As such, VFDT
[Raahemi, 2008] outperformed traditional C4.5 decision trees in real-
time deployments.
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Up to this level, most supervised classification approaches are covered.
Despite of their advantages, these methods still suffer from many persis-
tent limitations, inherited from their basic design concept, namely, the
training process. In fact, training might include irrelevant features which
can deeply affect the classification accuracy of supervised classifiers.
Moreover, obtaining significant large training sets and the associated
training cost are among the major limitations of supervised classifica-
tion approaches. Controversially, when trained on small datasets, super-
vised classification models would become difficult to generalize and more
dependent on the training samples.

To reduce the bias in supervised learning, training samples can be sub-
ject to iterative reweighting through meta-learning algorithms such as
Adaboost [McCarthy, 2011, Alshammari, 2011].

In the ML context, ensemble learning [Dietterich, 2000] is a systematic
method for combining and weighting classifiers to improve the overall
classification performance. This concept can be applied in a wider context
to cover other techniques, as discussed later in Section 2.3.

In the ML context, a simpler approach is to merge supervised and unsu-
pervised learning processes, to obtain semi-supervised learning, as pre-
sented next.

C) Semi-Supervised Traffic Classification
Semi-supervised classification [Theodoridis, 2009] (see Figure 2.2) relies
on a mixture of labeled and unlabeled input samples that are fed into
the unsupervised clustering algorithm. The labeled samples within each
generated cluster are used to associate the cluster with one of the ex-
isting classes. Semi-supervised traffic classification is preferred when the
training data is scarce. Moreover, semi-supervised approaches in [Erman,
2007a, Yuan, 2008, Zhang, 2012] are mostly adopted for the sake of com-
putational efficiency compared to complex supervised ML algorithms.

For instance, based on few labeled flows, the semi-supervised approach
[Erman, 2007a] yielded over 90% of classification accuracy for a variety
of applications including P2P. A simple probabilistic assignment is used
to map the K-means generated clusters to different application types.
This same approach was improved to reach more than 95% of classi-
fication accuracy, by automatically labeling unknown flows within the
same BoF [Zhang, 2013]. Classification results were improved to 97%
when the classified clusters were used to train a SVM classifier [Yuan,
2008]. Results covered many P2P applications such as Soulseek, Skype,
BitTorrent, e-Donkey, and QQ.
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D) Reinforcement Learning Traffic Classification:
Reinforcement Learning (RL) algorithms [Qiang, 2011] are developed to
interact with dynamic environments where labeled samples and exam-
ples of optimal outputs are not explicitly provided, but must be instead
discovered by a process of trial and error. Many of the existing RL tech-
niques have their origin in different scientific disciplines. Particularly,
RL’s widest application is in the field of intelligent control and robots.
To the best of our knowledge, RL has not yet been explored for traffic
classification.

To the best of our knowledge, RL is not yet used for traffic classification
problems. Up to this level, most ML based classification methods are covered.
Although some ML algorithms raise performance and complexity concerns, a
common aspect is underlined for most of the surveyed ML approaches: the
classification process is automated while the high problem dimensionality is
handled. For these reasons, ML techniques were the most reputed in the lit-
erature of traffic classification, especially when considering the number of the
surveyed works using ML.

Moreover, ML is a rich science discipline with a variety of additional al-
gorithms. Examples include: multi-label classification, RL, fuzzy clustering,
genetic algorithms [Alshammari, 2011], template matching, polynomial algo-
rithms, EC4.5 decision tree [Maglogiannis, 2007], Gaussian processes [Ras-
mussen, 2006], etc. Although many of these are designed for different purposes
(e.g. speech recognition, genetic analysis), they are still worth being assessed in
the traffic classification context. Applying genetic programming, for instance,
to traffic classification [Alshammari, 2011] achieved 98% of accuracy covering
encrypted Skype and SSH tunneled applications.

One of the relevant domains to explore is the multi-label traffic classi-
fication. Several algorithms have been adapted for multi-label classification
(see Chapter 6). Examples include multi-label decision trees [Vens, 2008,
De Comité, 2003], multi-label kernel methods [Boutell, 2004, Elisseeff, 2001],
multi-label neural networks [Zhang, 2006] and lazy multi-label classification
methods [Zhang, 2007, Spyromitros, 2008], which are the most relevant to our
research (see Chapter 6). Particularly, lazy multi-label classification methods
such as that in [Zhang, 2007] and BRkNN [Spyromitros, 2008] are derived
multi-label versions of the KNN algorithm.

Choosing a preferred lazy multi-label classification method depends on the
kind of evaluation metrics and the datasets used, which might be well-suited for
one method rather than the other, as concluded by authors in the comparison
study in [Spyromitros, 2008].

To the best of our knowledge, a considerable number of ML algorithms
[Theodoridis, 2009] have not been systematically explored for traffic classifi-
cation. The variety of existing pattern recognition algorithms should be an
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incentive for future researchers to explore efficient algorithms that matches the
best traffic classification requirements.

Beside ML complex algorithms, one of the research trends is to refer to
graphical techniques in identifying network applications, as detailed next.

2.1.3.4 Graphical Techniques

With Graphical techniques, interactions among hosts in computer networks are
illustrated using graphs whose properties are subject to further analysis and
mining. For most graphical representations (e.g. [Allan, 2009, Iliofotou, 2011]),
nodes represent IP addresses, and edges are observed exchanges that represent
interactions of interest. Host interactions can be illustrated at different layers,
mostly at the application and the network layer.

The underlying assumption of graph based classification approaches is that
hosts involved within the same application are supposed to reveal specific pat-
terns of interactions. For example, if a peer wishes to download a file using the
BitTorrent application, each user must first establish a connection to a central
tracker server, then, other connections are established with peers to download
portions of the file.

It is important to note that visualizing graph patterns is generally sugges-
tive [Lian, 2010], however, graph metrics (e.g. degree, diameter, etc.) make
the intuitions precise, which allows for appropriate classification.

Graph based approaches may use different input types, as per the vertex
and edge properties. With the graphical approaches, various objects can be
targeted for identification such as flow, host or host communities. Graphical
methods include graphlets [Karagiannis, 2005], motifs [Allan, 2009], Traffic
Activity Graphs (TAG) [Jin, 2009], and Traffic Dispersion Graphs (TDG) [Il-
iofotou, 2011], as depicted in Figure 2.3, in addition to visual motifs [Lian,
2010].

A) Graphlets
One of the earliest graphical classification methods is based on graphlets
[Karagiannis, 2005], which make part of the host profiling procedure.
A graphlet is a graphical illustration used to portray interactions among
hosts at the application layer. For this purpose, it consists on showing the
relationships between source and destination IP addresses and transport
layer port numbers. A sample of P2P graphlet is shown in Figure 2.3a)
(taken from [Karagiannis, 2005]) portraying the peer functional role.
Having a library of similar graphlets associated with different applica-
tions, is theoretically supposed to, classify any host by specifying the
closest matching behavior.
However, similar behaviors may be exhibited in some cases (e.g. P2P
server side, web, and games) and only few application types can be de-
tected with this approach. Moreover, this approach requires capturing
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a) b)

c) d)

Figure 2.3: Examples of graph based traffic classification approaches: a)
Graphlet, b) TAG, c) TDG, and d) Motif

both directions of traffic flows which makes it suitable only for single-
homed or edge networks.
In addition, the graphlet based approaches lacked the capability of coping
with the dynamic nature of network interactions along with their evolu-
tion over time. Nevertheless, several graphical methods were inspired by
this concept.
Specifically, dynamic activity and social network graphs are able to pro-
vide deeper insights into traffic interaction graphs, as detailed next.

B) Social Networks
Social graphs are usually used to analyze the human social behavior in
social network applications. Similarly, social network graphs [Iliofotou,
2007, Jin, 2009, Iliofotou, 2009] suppose that graph patterns of social
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interaction among network hosts are specific for each application. A set
of nodes (or hosts-community) forming a distinctive graph pattern will
be properly associated to the corresponding application.
Social network graphs include TAG [Jin, 2009], which depict host in-
teractions for a specific application. An example of P2P TAG is shown
in Figure 2.3b) (taken from [Iliofotou, 2011]), where the main P2P host
characteristic (i.e. connectivity with many other peers) is captured by
the high degree of connectivity.
Moreover, the P2P decentralized architecture is captured by the high
diameter in the TAG graph. TAGs [Jin, 2009] proved to be able to
discern HTTP, e-mail, AOL, BitTorrent and DNS host communities.
To incorporate temporal relationships between connections, TAGs are
simply referred to TDGs [Iliofotou, 2007]. TDGs include dynamic prop-
erties [Iliofotou, 2007, Iliofotou, 2009] that measure how frequently nodes
and edges change over time, which gives additional information about the
dynamic evolution of interactions for the application in use. This is cru-
cial for detecting applications, such as P2P, which are dynamic in nature.
This ability is due to the fact that edges in a TDG are labeled in the order
in which the corresponding node interactions were observed, as depicted
in Figure 2.3c) (taken from [Iliofotou, 2007]).
A TDG based framework, named Graption [Iliofotou, 2011] has been
proposed for traffic classification covering P2P protocols. The TDG based
approach [Iliofotou, 2011] showed promising results with 95% of accuracy
covering Gnutella, e-Donkey, FastTrack, Soribada, MP2P, and BitTorrent
P2P applications.
However, it is important to note that, by examining nodes in isolation,
TAGs or TDGs do not provide any information regarding flows between
two specific hosts. Instead, TDGs provide an indication regarding the
type of application that generated these flows. Moreover, social graphs
require capturing a lot of host interactions which are mostly available at
the service provider level.
While social graphs assimilate host interactions within computer net-
works to human social behavior, motif based approaches assimilate host
interactions to living cells behavior, as detailed next.

C) Motifs:
Motifs are a small number of specific patterns that occur repeatedly
across network types and are thus supposed to be the basic structural
elements for broad classes of networks. Motif based analysis is an ad-
vanced graph mining technique [Milo, 2002]. The underlying concept is
that many of the complex interconnections that occur within a network
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are built up from frequently recurring patterns of basic structural ele-
ments that is, the motifs. Figure 2.3d) (taken from [Allan, 2009]) shows
a motif composed of three nodes.
Primarily, motif analysis has been used mostly in biological networks.
However, authors in [Milo, 2002] state that the appearance of network
motifs at high frequencies suggests that they may have some specific func-
tions in the information processing, and thus the application interactions,
performed inside the network.
A motif based traffic classification model was presented in [Allan, 2009,
Allan, 2008] (detailed in Chapter 6). Motifs are detected by mining hosts’
interaction graphs, filtered for each application in separate. While social
graphs rely on traditional graph measures [Iliofotou, 2007, Jin, 2009],
motif based traffic classification [Allan, 2009] rely on binary metrics to
measure the host participation in each application based on its contribu-
tion in the set of motifs associated with that application [Allan, 2009].
Motif based classification has shown the ability of accurately identifying
85% of the hosts, assuming one host contributes in a single application,
over a protocol set covering AIM, DNS, HTTP, MSDS, NETBIOS, SSH
and Kazaa. Authors compare their results to traditional graph measures
and show that class recall was improved for most of the protocols (except
for AIM).
However, the default classification model proposed in [Allan, 2009, Al-
lan, 2008] is based on a single-label KNN algorithm, that is, assuming
each host contributes into one single application, as mentioned earlier.
Moreover, motif based classification proved to be computationally very
expensive in terms of training time, especially for order 4 motifs.

Some additional miscellaneous graphical classification methods are worth
of being mentioned. Thus, although using a similar terminology to [Allan,
2009], visual motifs [Lian, 2010] are based on a completely different concept.
A visual motif refers to representing a series of client-server interactions based
on the sizes and timing of packets.

Other graphical classification approaches [Gallagher, 2010, Kim, 2011] make
use of flow similarity intuitions (e.g. for analyzing hosts’ interactions graphs).
Inspired from context-dependent classification, the concept is that flows shar-
ing the same IP host address [Gallagher, 2010], or the same transport layer
port number within a large connected component [Kim, 2011], are supposed
to have the same application type.

As a result, it has been shown that most graphical techniques rely on net-
work layer addresses and transport layer port numbers as their basic traffic
input properties. Consequently, these methods are less affected by network
dynamics compared to statistical approaches relying, for example, on packets
interarrivals times.
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However, Graphlet, motif, TAG and TDG based methods are examples
of host based identification approaches. As previously mentioned in Section
2.1.1.1, these methods are not applicable for cases where multiple applications
are simultaneously in use. In addition, dealing with complex graphs results, in
most of the cases, in a poor classification performance.

For these reasons, most of these graphical techniques are used as a sec-
ondary classification technique within a classifier design. In this regard, in-
corporating more than one technique is an important research trend in the
literature for which, many papers were published, as shown next.

2.1.3.5 Hybrid and Miscellaneous Techniques

An active research trend in traffic classification is the use of hybrid techniques.
The idea is to combine different classification techniques that complement each
other in making the final decision. These are referred to as multi-classifiers or
hybrid classification systems.

For example, a multi-classifier may resort to host-based heuristics after
payload inspection has failed in identifying a traffic flow [Keralapura, 2010].

Another relevant example is that of SPID [Choi, 2012], a hybrid technique
integrating DPI with statistical analysis. Its traffic model contains a set of fin-
gerprints represented as probability distributions of different traffic attributes.
Payload measurements at the application layer include byte frequencies and
offsets for common byte values. SPID showed promising results with an av-
erage 92% recall in identifying standard and P2P application protocols. En-
hanced SPID [Qiang, 2011] can identify additional applications in real-time by
using a smaller size fingerprint database through a modified set of attributes
such as the number of direction changes and the first payload size. With this
enhancement, 17 standard application protocols are identified including Real-
time Transport Protocol (RTP), real time messaging protocol, Internet Relay
Chat (IRC) together with progressive tunneled video download protocols.

In the context of ML, fusion of multiple classifiers can be performed at
different levels. The score level fusion [Ichino, 2010] is the most preferred one,
as argued by the authors. Similarly, meta-learning algorithms like Adaboost
[Alshammari, 2011] and ensemble classifiers [Dietterich, 2000], construct a set
of classifiers by taking weighted vote of their predictions in classifying new
instances.

A relevant observation is that many of the surveyed works (e.g. [Jin, 2009,
Keralapura, 2010, Alshammari, 2011, Szabo, 2007, Aceto, 2010, Zhenxiang,
2011, Ichino, 2010]) reveal a small bias in the current research trends toward
the multi-classifiers approach.

However, and to the best of our knowledge, ML-based multi-classifiers are
not yet used in traffic classification problems. They are mostly applied to
speech and image recognition and other disciplines. In the context of network
traffic classification, researchers have only referred to simplified approaches
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[Keralapura, 2010, Szabo, 2007]. Examples included resorting to host-based
detection after payload inspection fails [Keralapura, 2010] or relying on simple
decision-making systems when combining multiple techniques [Szabo, 2007].

In the wider context of traffic classification, a complex decision system
(e.g. a multi-classifier [Szabo, 2007]) has to be designed to combine various
techniques. In the decision making process, methods with higher accuracy are
usually assigned higher priorities [Szabo, 2007].

Multi-classifiers are supposed, not only to inherit the advantages of different
combined techniques, but also, to complement and inter-validate their results.
These systems should be robust against changes affecting one population of
the input features. However, the increased input size, the complexity of the
decision mechanism and the multi-classifiers’ efficiency should be considered.

On the other hand, few approaches were proposed with less measurable
traction in their directions. Examples include active measurement [Trestian,
2010], active networking [Dedinski, 2009], distributed architectures [Kerala-
pura, 2010, Xu, 2009, Bo, 2009] and process-based classification [Szabó, 2008,
Zhang, 2011, Miruta, 2012]. Fewer approaches incorporate new technology
trends into the classification context such as virtualization technology [Ban,
2011] or cloud computing [Huang, 2012].

Future methods have to assess the real potentials of deploying such tech-
niques in traffic classifiers. For most of these, handling the administrative
and budgetary aspects for large scale Internet deployments may be practi-
cally unrealizable. For instance, process-based approaches [Szabó, 2008, Zhang,
2011, Miruta, 2012] consist on deploying special middleware programs on end
systems in order to inject extra information inside outgoing packets’ headers.
Distributed architectures [Keralapura, 2010, Xu, 2009, Bo, 2009] recommend
multiple subsystems in the classifier design in an attempt to improve the clas-
sification efficiency.

2.2 Comparison and Evaluation of Traffic Classifi-
cation Methods

In order for the research community to reach an optimized traffic classification
method, experimental efforts should be performed in order to compare the
most promising methods in the literature.

In this context, comparisons should be performed referring to well defined
processes in order to provide network administrators with a certain level of
confidence in the classifier’s results.

Requirements for appropriate comparisons and benchmarks are presented
later at the end of this section, but first, let us start by showing what should
the evaluation and comparison of traffic classification methods consist of.

Comparing traffic classification methods consists basically on defining a
set of procedures and data formats, covering the three levels of the defined
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taxonomy, namely:

(i) A set of traffic properties extracted from a traffic capture dataset used
for test, at the input level.

(ii) A validation method whose results are used as reference and, evidently,
an experimental setup of the classifier in question, at the technique level.

(i) A set of evaluation metrics to quantify the classification capabilities and
the comparison processes, targeting traffic object(s) and class(es) of in-
terest, at the output level.

To evaluate a method, the input format should be defined at first, as the
set of traffic parameters chosen during the classifier design phase (see Section
2.1.2). Then, the evaluation and comparison should be based on measuring
one or more evaluation metrics of interest (detailed in Chapter 3). Neverthe-
less, most of the literature works focus on only evaluating the accuracy of the
classification.

Apparently, the most crucial part of the comparison procedure is the val-
idation method, which should be commonly defined. Comparisons should be
performed in reference to one validation method, not one against the other,
which would make it easier for the research community to follow up on the
progress of works in the literature, as will be shown at the end of this section.

In this regard, the validation method is mainly used to obtain the validation
results, referred to as the ground truth, that is, the set of annotated objects,
used as reference. As mentioned previously in Section 2.1.3.1, by the time of
this writing, the validation method is usually based on DPI [Mochalski, 2009],
reputed with the highest classification accuracy.

However, with the existence of many DPI tools as L7-filter [L7-filter, 2013],
nDPI [nDPI, 2013]), etc. the DPI algorithm and signatures are not yet con-
solidated. Nevertheless, most of the comparison works found in the literature
referred to DPI as the technology of choice for the validation, as shown next.

2.2.1 Comparison and Limitations of Existing Methods

In this section, key features are compared for main methods in the literature.
Instead of studying an exhaustive list of all existing techniques, selected meth-
ods are compared for each category. Basically, we focus on desirable classifi-
cation features, as highlighted in the few existing comparison works [Nguyen,
2008, Maglogiannis, 2007, Yildirim, 2010, Erman, 2007b, Verticale, 2008, Li,
2008, Hu, 2012, Erman, 2006].

Classification features are detailed in Table 2.1 for each method at three
different levels. The overall classification accuracy results are shown as pre-
sented in the original papers. Most features are qualitatively presented as high
(H), medium (M), low (L) or not applicable (N), where H indicates that the
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feature is strongly offered by a method; L indicates the opposite case; M cor-
responds to moderate cases where neither L nor H applies (M cases require
additional future assessments); and N indicates that a feature is not applicable
for a method. For example, graphical methods rely on static fields in the TCP
and IP headers that are more immune to dynamic network changes (H) than
methods using packets’ interarrivals (L).

In brief, Table 2.1 shows that payload based methods are usually character-
ized by their high accuracy covering the largest scope of detected applications.

However, non-payload based approaches are still preferred due to privacy
protection and to their potential to detect encrypted applications.

Particularly, ML based approaches are the most reputed in traffic classifi-
cation. Unsupervised ML techniques provide fast classification that does not
depend on training sets and has the ability to classify unknown applications.
These techniques [Erman, 2006] are usually compared according to their ability
for producing a minimal number of clusters that contain the majority of the
classification objects, with the highest predictive power of a single traffic class.
Particularly, AutoClass [Zander, 2005] outperforms other algorithms such as
K-means [Erman, 2007b].

However, it was demonstrated in earlier comparisons [Nguyen, 2008, Maglo-
giannis, 2007, Verticale, 2008, Li, 2008, Erman, 2006] that supervised classifiers
are more accurate than unsupervised ones, despite of being dependent on the
training sets. Particularly, supervised decision trees [Li, 2008] outperform most
clustering algorithms, and are easy to train and update, while still offering fast
classification.

Supervised learning algorithms [Maglogiannis, 2007], are usually compared
according to the speed of learning and classification, tolerance to errors in
attributes, etc. Each algorithm has specific strengths and weaknesses. For
instance, Bayesian [Zhenxiang, 2011] classifiers may be preferred for simplicity
and memory saving. Context-dependent classifiers [Dainotti, 2008] are prefer-
able in describing inter-class dependencies.

Also SVM [Tabatabaei, 2012] and ANN [Gu, 2010] provide complex classi-
fication models that are suited for large sets of traffic attributes.

Recent comparison works emphasize on the preference for supervised deci-
sion trees for real-time [Yang, 2011] and encrypted [Alshammari, 2011] traffic
classifications, particularly, the C4.5 decision tree, which is able to outper-
form both Bayesian [Hu, 2012] and SVM [Yildirim, 2010] classifiers. Although
pointing to some preference for decision trees [Verticale, 2008, Li, 2008], these
comparison results have yet to be validated through appropriate benchmark-
ing, which requires, in turn, standardizations at different levels, as pointed out
in the previous chapter.
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2.2.2 Vendor Classification Engines

This section presents an overview of classification techniques used in commer-
cial products (e.g. [Juniper, 2013, Sourcefire, 2013]) used for traffic-manage-
ment and network-security purposes. These include routers, firewalls, Intrusion
Prevention System (IPS), Secure Web Gateways and traffic shapers. Unfortu-
nately, there is very little information available about the protocol classification
performed in most of these systems. Furthermore, although relying on common
techniques, commercial products often rely on proprietary methods.

An example of a proprietary algorithm used in TippingPoint systems is
Protocol Identification via Statistical Analysis (PISA) [Gomes, 2013]. PISA
creates a 10-dimensional representation of each fingerprint for each protocol,
based on a training set of captured traffic. PISA uses simple average and
standard-deviation values of general flow attributes (packet size and inter ar-
rivals) in both directions, in addition to the Shannon entropy of the data at
the application layer. It uses K-means to cluster flows for standard and P2P
applications including Skype. However, one of PISA’s main limitations is the
required number of packets to be analyzed before a flow is identified. For
example, Skype results stabilize after the 600th packet.

Another example is Juniper’s DPI mechanism [Juniper, 2013] that matches
patterns in the first packet of a session using a deterministic finite states au-
tomata. It has the ability to chain signatures and to specify a maximum
number of transactions wherein the signature must occur to be a match.

Network-based Application Recognition (NBAR) [Cisco, 2013], used by
Cisco routers, relies on DPI and many application-specific attributes. It is
a state-oriented classification mechanism that supports applications with dy-
namically negotiated port numbers, such as RTP. It is able to support sub-
classifications, such as HTTP user agent, content-type and Uniform Resource
Locator (URL). NBAR2 is an extended version of NBAR that supports evasive
applications such as Skype and Tor, cloud-based applications such as Office-
365, and even mobile applications such as FaceTime. Cisco Service Control
Engine (SCE) is a dedicated hardware DPI appliance that incorporates proto-
col state analysis together with behavioral and heuristic analysis.

In most of these commercial products, the increasing requirement for con-
tent awareness and application visibility explains the DPI integration with sta-
tistical and ML techniques together with SSL decryption. Namely, DPI helper
techniques included port heuristic in Juniper [Juniper, 2013], behavioral in
IPOQUE [Mochalski, 2009] and SVM in Websense [Gartner, 2011].

The future requirements that are driving the market for next-generation
products and the key features of future classifiers are considered next.
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2.2.3 Requirements for Future Benchmarks

In the following, basic requirements for future assessment and benchmarking
of traffic classification methods, are listed and discussed from a research stand-
point.

In fact, despite of the remarkable advances in traffic classification, a signifi-
cant portion of today’s network traffic is still being unknown and the best clas-
sification model is not yet defined. The best ever traffic classification method
has not yet been defined. Obviously, one of the main obstacles for advancing
the research in the field is the lack for appropriate benchmarks.

Existing comparisons (e.g. [Yildirim, 2010, Nguyen, 2008]) were ad hoc in
the sense that methods to be compared were randomly chosen. Many authors
compare their obtained results with obsolete or weaker methods (e.g. port
based heuristic) to underline the supposed capabilities of their classifiers.

A core step toward the best traffic classification model is to perform valid
comparisons. Appropriate comparisons should take into consideration both
the used input types and output formats. First, techniques providing the
best output results, while using the same input set, should be elected for each
category group at the technique level. Then, representative techniques for each
category should be assessed.

However, making such rigorous comparisons requires that the Internet re-
search community promotes convergence on common standards covering the
used terminologies, procedures and policies. Table 2.3 shows some basic stan-
dardization requirements on the three levels: the input, the technique and the
output.

In brief, Table 2.3 highlights on:

(i) The lack of one common platform for traffic classification, one standard
validation method and well-defined comparison procedures, at the tech-
nique level.

(ii) The lack of standard formats, metrics and application sets, at the output
level.

(iii) The lack of publicly available traffic traces and defined traffic attributes,
at the input level. At the input level, we suggest creating a standard
list associating discriminative characteristics and protocol signatures for
each application. In the long term, such a list would replace the existing
IANA list, associating registered port numbers to existing applications.

As a result, these requirements are more than crucial for making systematic
comparisons leading to the best future traffic classification model. Neverthe-
less, most of these problems are complex policy rather than purely technical.
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2.3 Open Challenges in Traffic Classification

As mentioned in Chapter 1, this thesis will address part of the open challenges
in the traffic classification literature. Many challenges will be left for future
work as various problems are steadily emerging in face of researchers. In the
following, challenges that were acquired throughout the surveyed works are
listed from the perspective of the proposed taxonomy.

Future traffic classification models, as per Table 2.2, should be able to cope
with various challenges, mostly related to advances in obfuscation techniques,
link speeds and emergent applications.

Basically, future methods should be robust, fast, accurate and easy to up-
date, while protecting the user privacy. Most contemporary applications should
be classified, including P2P, encrypted and possibly all unknown traffic.

Nevertheless, an essential question has to be answered: is it technically
possible to offer all of these features (as per Table 2.2) through one single
method?

Theoretically, defining the best traffic identification method consists on
determining the best path in the taxonomy diagram of Figure 2.1. Practically,
most comparison works [Verticale, 2008, Li, 2008] have shown that no single
ML algorithm is able to uniformly outperform all other algorithms and for all
the applications. This same conclusion applies in the wider context of traffic
classification.

In fact, it was acknowledged [Callado, 2009] that the traffic classification
decision requires a lot of trade-offs in robustness, reliability, performance, and
privacy protection.

From this perspective, it seems reasonable to assert that these trade-offs
can be obtained through the multi-classifier model. This model has to be
generalized to cover various techniques (e.g. DPI, Auto-class, decision trees,
graphical approaches, etc.). In the same direction, semi-supervised learning
and ensemble classifiers are valid attempts but are, however, restricted to ML-
based techniques.

Unfortunately, the potentially high computational cost associated with
multi-classifiers might become a major limitation to further advances in this
direction. For this purpose, future methods might also refer to novel architec-
tural designs which might include specialized hardware [Zhou, 2012].

Future methods should answer the need for modeling hosts running multiple
simultaneous applications or traffic for multi-channel applications. In multi-
label classification [Tsoumakas, 2006], an instance can belong to more than one
class at the same time.

This discipline should be more deeply explored for traffic classification
problems although it is usually applied on other fields as image processing
[Tsoumakas, 2006].
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Table 2.1: Comparison of selected state-of-art methods
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Bayes Flow size, duration, packet size and packet rate [Flow] [Accuracy: 96%] [BitTorrent, eMule,
PPLive, Skype]

H L M M L L H H M L M M H M M M

Huang2009 kNN TCP header fields, packet payload size [Flow] [Accuracy: 90%] [BitTorrent, eMule] M L M H L L H H H L M M L M M M
Tabatabaei2012 SVM Flow duration, idle time, packets, bytes, size and

t interarrival times
[Flow][Accuracy: 84%] [BitTorrent, Gnutella,
live-streaming, Skype]

L H L L L L L H L L M L M M M M

Gu2010 ANN Packet number, size, interarrival time in both di-
rection

[Flow][Accuracy: 86%] [BitTorrent, e-Donkey,
eMule, PPstream, PPlive]

L H L L L L L H L L M L M M M M

Hu2012 Decision
Trees

Packet number, size, interarrival times, trans-
ferred bytes

[Flow] [Accuracy > 90%] [Kazaa, BitTorrent,
GnuTella]

H M H H L L H H L L M H M H M M

Dainotti2008 Markov Packets’ sizes and interarrival times [Flow] [Accuracy > 90%] [e-Donkey, PPlive] M M M M L H M H L L M M H M M M
Zander2005 Unsupervised Flow size, duration, packets’ sizes and interar-

rival times
[Flow] [Accuracy: 80%] [Napster] M M M N N L H H L L M H H M H M

Zhang2012b Semi Su-
perv.

Number of packets and packet size [Flow] [Accuracy > 90%, F-measure 60%-90%]
[BitTorrent]

M M M M M L M H H L M M M M H M

Karagiannis2005

G
ra

p
h
. Graphlets IP addresses, port numbers, number of flow pack-

ets and bytes
[Flow] [Completness:80%-90%, Accuracy:
95%][P2P]

M M M N N L H H H M M M H M L L

Allan2009 Motifs IP addresses; port numbers [Host] [Accuracy: 85%] [Kazaa] M M L N N L L H H M M L M M L L
Jin2009 Social graphs IP addresses [Host-community] [-] [BitTorrent] M M M N N L M H H M M M M M L L
Jinsong2009

S
ta

t. Heuristic Netflow TCP flags [Flow] [Accuracy> 83%] [P2P] M M H N N L H H H L M H H M L L
Zhu2010 Behavioral UDP packet size, IP addresses, port numbers,

traffic volume in both directions
[Flow][Accuracy: 96%] [eMule, Skype, BitTor-
rent]

M M H N N L H H H L M H H M L L

Yeganeh2012

P
ay

. Payload
inspection

First 100 payload bytes [Flow] [precision, recall > 90%] [BitTorrent,
Gnutella]

M M M N N L H L H L M M M L M H

Aceto2010

H
y
b
. Stat. & pay-

load
inspection

IP addresses, port numbers, first 32 payload
bytes

[Byte] [Accuracy: 97%] [BitTorrent, e-Donkey] M M M N N L M L H L M M M L M H
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Table 2.2: Features of future classifiers, defined at the three levels

INPUT • Should include a minimal set of discriminative traffic attributes with less or no
payload.

• Attributes should be difficult to obfuscate, immune to network dynamics and
adapted to new technology trends (e.g. IPv6).

TECHNIQUE • Should train quickly, with less dependence on the training data.
• Should be easy to update with low complexity; Should provide accurate (mini-

mizing error rates) and online classification (minimizing computational costs).
• Should handle multi-label host classification.
• Might integrate more than one technique built on intelligent multi-classifier al-

gorithms
• Should be adapted to new technology trends (e.g. IPv6, CCN, SDN, SaaS, etc.).

OUTPUT • Should identify a wide scope of contemporary application protocols, controlled at
granular level, including multi-channel, Web 2.0, P2P, encrypted tunnels, mobile
and social networking services based applications.

Moreover, future methods should be customized as well for next-generation
and revolutionary network architectures (IPv6, Virtualization Desktop Infras-
tructure (VDI) [Kochut, 2009], Content-Centric Networks (CCN), Software
Defined Networks (SDN), etc.). For instance, with VDI deployment in corpo-
rate networks, the traffic is subject to implicit and legitimate tunneling between
an end station and the central virtualization server, using vendor specific pro-
tocols. With VDI, a new paradigm of traffic identification has thus to be
considered.

In the upcoming years of research, we believe that the multi-classifiers
approach should remain a valid candidate for the future traffic classification
models, and an active research trend in the traffic classification field. This fact
should hold at least until a superior alternative emerges. Future revolutionary
network architectures should bring innovative ideas opening eventually newer
dimensions in network management and traffic classification fields.

In the next chapters, some of the open challenges in the literature of traffic
classification will be addressed. For this purpose, an experimental testbed has
to be setup to provide valid results and inferences.



CHAPTER 2. STATE OF THE ART IN TRAFFIC IDENTIFICATION METHODS 53

Table 2.3: Requirements for the best future traffic classification method, de-
fined at three levels

INPUT • To explore new information sources (e.g. application layer attributes, cloud-
based reputation analysis [Juniper, 2013]-[Gomes, 2013] etc.).

• To have one publicly available, free and open source tool for attributes extraction
(e.g. similar to [Tstat, 2013]).

• To define a standard list of discriminative traffic attributes and protocol sig-
natures associated with each application (similar to [IANA, 2013], the list for
registered port numbers).

• To offer public repositories of recent traffic traces with enough payload obtained
from various real operative networks.

• To establish entities that offer execution on their traces (Move-code-to-data) as
to have minimal privacy sensitivities.

TECHNIQUE • To select main state of art techniques and algorithms for comparison; To accom-
plish community driven and validated benchmarks based on standard formats
and procedures. Techniques that provide the best output results while using the
same input type should be selected from each category. Techniques representing
different categories should be compared.

• To define evaluation metrics and thresholds associated with accurate and on-
line classification; To have one publicly available, free and open source traffic
classification platform (e.g. TIE [Dainotti, 2009]) and validation tool (e.g. [L7-
filter, 2013],[nDPI, 2013]), with well-defined algorithms and consistent signa-
tures. Multi-label [Vens, 2008, Elisseeff, 2001] classification and multi-classifier
[Zhang, 2007, Zhang, 2006] algorithms should be explored in future works.

• To propose new techniques adapted to roaming users (e.g. Software as a Service
classification), high link speeds (e.g. special hardware [Rao, 2010]), and new
technology trends (e.g. SDN).

OUTPUT • To define standard traffic classification objects and classes.
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Chapter 3

The Experimental Setup

One of the main objectives of this thesis, as previously stated, is to develop
and assess new methods to improve current traffic identification systems. The
completion of this objective requires the accomplishment of some additional
objectives related to the handling and acquisition of network traffic data which,
in turn, is essential for developing and evaluating the classification system.

Thus, this chapter is dedicated to the description of the experimental setup
used throughout this thesis, including the details of the captured datasets.
The presented testbed and procedures are targeted at handling raw network
traffic as input and obtaining a suitable representation for the elements that
will be the subjects of the classification. For this, two major questions need
to be addressed for a proper assessment of the classification methods to be
developed and tested: the quality of the captured data and the labeling of the
whole or part of the traffic. According to these concerns, the data acquisition,
the obtention of the ground truth and the parametrization of the traffic will
be described next. Furthermore, the evaluation of the performance of the new
proposals requires of some metrics that will be also introduced and discussed
at the end of the chapter, as there exist different possibilities. Nevertheless,
some details about the datasets and the parametrization that are exclusively
related to a single proposed method are left for those subsequent chapters in
which the associated proposal is described (Chapters 4 through 6).

3.1 Overview of the Data Acquisition

The target of the experimental setup are two-fold. First, it will be used to
obtain the datasets of real traffic and the associated ground truth to be used for
evaluating classification methods; and second, it will be used to extract a large
set of traffic parameters, that are potentially relevant for blind classification
methods and that will be considered as the inputs for the traffic classification
methods.

For this, three main steps (Figure 3.1) are needed:

55
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Figure 3.1: Acquisition of datasets of real traffic for experimental purposes

1) Traffic capture: First, a definition of a method and scenario for capturing
real network traffic is required. The properties of this traffic are relevant
from the point of view of the significance of the results and to enable the
obtention of a reference set of labeled traffic (i.e. ground truth). Once
defined, a capture of traffic with the selected characteristics will be made
by using a set of sensors conveniently deployed at selected points in the
network being monitored.

2) Labeling and classification: Once the traffic is captured, it is necessary to
classify it or a part of it with an accurate enough method as to be able to
compare the results of the proposed methods. This labeled dataset will
be the ground truth. For this, DPI will be used to assign a class to each
packet/flow in the captured traces. Additionally, during the classification
process, the existing flows and their associated packets will be identified
and listed.

3) Parametrization: Third, each flow in the traffic is parameterized accord-
ing to a set of selected parameters, which will be described later in this
chapter.

The appropriate implementation of the previous steps requires handling
different formats for the data and the development of some tools as well as the
adaptation of others. The files, formats and tools involved in the obtention of
the datasets are illustrated in Figure 3.2 and will be detailed in Appendix A,
although a brief description is presented next. As shown, the whole process
is based on the processing of the traffic captured in the selected real scenario,
from which both the ground truth and parameters are extracted. For this,
tcpdump [Jacobson, 1989] is used to capture the traffic from the network in
various sequentially ordered files.
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Figure 3.2: Scheme and tools for reassembly, ground truth classification and
parametrization of PCAP files

Due to the high volume of traffic required and the use of flow based iden-
tification methods, captured traffic files are preprocessed and rearranged so
as to group all the packets from an IP in the same file, which also groups
all the flows from the same source IP in the same file. This preprocessing is
made through a reassembly tool specifically developed to analyze an arbitrary
number of consecutive pieces from the capture.

Next, a customized version of openDPI [nDPI, 2013] is used to label each
individual flow/packet according to a DPI method and to identify all the pack-
ets in a flow for further individual processing of each flow. This way, the output
of this step will be a list of flows with its assigned protocol, i.e. the ground
truth, and the sets of packets in each flow.

Finally, the flows are parameterized through a vector of multiple charac-
teristics by using a tool specifically developed for this purpose that analyzes
all the packets in each flow.

In the following sections, each of the modules in Figure 3.1 will be described
after analyzing the desirable properties of the captured data.

3.2 Acquisition of Traffic

The procedure for the establishment of an appropriate experimental setup
starts with the acquisition of real traffic (Figure 3.1) following various re-
quirements related its final purpose. Thus, before acquiring any dataset it
is necessary to analyze the desirable characteristics of that traffic in order to
be usable for the training and assessment of the traffic classification methods to
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be proposed. From this set of requirements, an scenario and the placement of
the sensors are selected, proceeding with the effective acquisition of the packets
according to the specifications.

3.2.1 Analysis of Traffic Requirements

The requirements and contents for the data to be captured can be mostly
deduced from the targets of this work, as explained in Chapter 1. The two
most relevant aspects to consider are the representativeness of the data and
the need to evaluate the performance of the methods. Regarding the first point,
traffic captures should be representative enough as to be able to accurately infer
the statistics or models associated to the classification methods.

On the other hand, the evaluation part requires of a labeled dataset. Thus,
in a first analysis, the data should be captured in a real typical environment
in a significant volume and including the full payload at least for a part of the
data to enable the use of DPI-based methods.

A more detailed analysis reveals the following questions:

• Headers: It is necessary to acquire network and transport layer headers
within the capture to be able to handle individual packets and flows when
analyzing the traffic stream.

• Payload: The payload beyond transport layer headers is the most crucial
part of the capture for the purposes of this work. This information is
required in order to check the contents of the packets against the appli-
cation signatures used by the validation method, i.e. DPI. In most of the
works described in the literature, only an initial part of the payload or
no payload at all is included in the datasets due to privacy concerns. Ob-
viously, the use of DPI as the validation method requires the obtention
of a part of the payloads. However, to obtain more accurate validation
results, full payload captures are preferred.

• Real traffic: The traffic capture should be generated from a real network
environment. Generating artificial traffic sets is considered of less signif-
icance, as the obtained data will lack of the required representativeness
and generalization rendering the system useless in real scenarios. In fact,
an experimental testbed should resemble, as much as possible, the pro-
duction environment where the traffic classifier is to be finally deployed
and should include a rich set of protocols and services. From this stand-
point, the network infrastructure where the traffic is captured should be
policed by traditional access control devices (firewall, web filter, etc.).
Moreover, real traffic captures should encompass different types of In-
tranet and Internet services (e.g. e-mail, Web, DNS, etc.) and sessions
generated by different user profiles (mobile, desktop, etc.).



CHAPTER 3. THE EXPERIMENTAL SETUP 59

• Volume of data: An additional concern is related to the volume of traffic
required, which should be representative enough as to contain a mixture
of up-to-date application protocols, including challenging ones as P2P
related protocols. As stated earlier, P2P identification is considered as a
key indicator of the classification capabilities of any given method. On
the other hand, there should be enough data from each class so as to be
able to properly model them, possibly through training, and to proceed
with the evaluation and validation. For this, some partitions of the data
are needed. Furthermore, to add a new dimension in this problem, the
relative proportions of each of the classes in the dataset should be that
of the real scenario in order not to bias the results. All these conditions
are difficult to met unless huge volumes of traffic are considered.

• Number of different datasets: Classifiers and classification models trained
on a single dataset risk of being dataset-dependent. To prevent any result
bias, more than one dataset should be captured and tested, and where
possible, from different network environments. This results in a testbed
capable of evaluating the resiliency of a classification model over various
network environments and its independency on the tested captures.

• Duration and timing: Another relevant question is related to the dura-
tions of the captures, that is, for how long should the data be acquired,
and the times at which the captures are made. As it is well-known, net-
work traffic is mostly auto-similar, which means that there exist some
repetitiveness at different time scales. In order to incorporate most of
the variabilities related to this behavior, traces should be captured over
extended periods of time, at different times of the day, different days
of the week, etc. On the other hand, as the network and consequently,
the associated traffic are greatly dynamic and evolve in time, it is ad-
visable to acquire different datasets that are sufficiently spaced in time.
Spacing traffic captures in time is important to assess the resilience of
the methods to the natural evolution of the networks, and consequently,
their generalization capabilities can be better evaluated.

• Sensors placement: The placement of the sensors used to capture the
data can be critical, as the quantity, quality and completeness of the
observed traffic directly depend on the position at which the traffic is
monitored. Thus, the data acquisition should be preferably performed
at a border or WAN router as to be able to monitor all traffic in both
directions: incoming and outgoing. It is also better to capture the traffic
before any NAT or proxy is applied to ensure the visibility of individual
host activities.
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Figure 3.3: Monitoring point emplacement inside the network used for traffic
capture

3.2.2 Scenario and Obtention of the Traffic

The capture process was made after a series of choices that were appropriately
taken, in order to accomplish with the above requirements, considering the
network environment, the sensor emplacement, the number of captures, the
size and properties of each capture and the capture duration, among other less
relevant factors.

First, to obtain real captures in the required volume, the network of a
large-sized academic institution has been chosen as the scenario. Apart from
accomplishing with the requirements, this choice presents some operational
advantages, as the accessibility and availability of the infrastructure by the
researchers involved in this work and the cooperation of the network operators
during the procedures. The network under study uses an hierarchical architec-
ture consisting of several remote branches and campuses networks connected
to one main site in which most of the services reside, both public and private,
as depicted in Figure 3.3. This whole network is connected to internet through
an ISP using a single link. The network infrastructure is policed by traditional
access control devices allowing the access for P2P applications.

In this network, the optimal placement of the sensor to monitor and capture
the traffic is at the main site between the WAN router and the firewall, as shown
in Figure 3.3. This way, the sensor is able to observe the whole traffic from the
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inner nodes to both Internet and the local servers before any NAT or proxy
is applied. Therefore, full flows in both directions reaching any of the inner
nodes can be observed.

The sensor used is a PC-like host (monitoring host in Figure 3.3) config-
ured with tcpdump [Jacobson, 1989], a well-known and widely used powerful
command-line packet analyzer and sniffing tool. This tool allows the use of
widely configurable filters and options including the ability to capture full
packet payload and to split huge captures into separate smaller files, charac-
teristics which are highly desirable for the purposes of this work. To monitor
all the traffic, port mirroring is used in the WAN router.

The full packet payload is captured, as specified. Moreover, this choice is
also mandatory for the DPI assessment study in Chapter 4, where we analyze
the effects of inspecting sampled payload portions instead of the whole payload
on DPI classification performance.

However, as the data to be captured almost surely contain some personal
details and sensitive information, some issues regarding its usage and handling
need to be addressed. For these reasons, IP addresses were randomized using
the method described in the Internet Measurement Data Catalog [Khalife,
2013a] to ensure that no association can be made between content and users (or
IP addresses) while preserving the relationships between IPs and the relevant
properties from the point of view of traffic classification. To add a greater
level of confidentiality, in any further processing of the packets made in this
thesis the headers are treated only in a statistical sense and the payloads are
examined through automatic means only to determine the nature of the traffic.

Moreover, it is important to note that the user payload is not analyzed by
any of the proposed classification methods (in Chapters 5 and 6) which are
based on blind classification techniques. The only exceptions are the obtention
of the ground truth (later in this chapter) and the DPI assessment (Chapter
4), which strongly rely on the payload for the classification.

3.2.3 Captured Datasets

Next, a description of the raw datasets to be used is presented. Beside the
datasets obtained in the previous scenario, and in order to evaluate the classifi-
cation proposals under different network environments, a review of the publicly
available traffic datasets has been carried out.

Although many network traffic captures are available in CAIDA [CAIDA,
2013] and CRAWAD [CRAWAD, 2013], by the time we initiated our work,
none of them met some of the critical requirements as the inclusion of full
payloads or a significant volume of data. In fact, as mentioned in Chapter
1, most of the current works in the literature related to traffic classification
use datasets with limited capabilities in terms of the number of samples and
the considered protocols. As will be shown later in this same subsection, the
volume of the captured data is orders of magnitude bigger than those in the
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Table 3.1: Characteristics of the main traffic datasets

Feature \Dataset CS-A CS-B PS-1

Size [GB] 177 225 4

Unique IPs 656,553 86,938 1981

Total flows 6,430,886 1,144,603 231,493

IP packets 98,548,928 24,541,212 4,394,116

Labeled flows 4,977,123 508,958 199,422

Unknown flows 1,453,763 635,645 32,071

% of Unknown Flows 23% 56% 14%

Duration 3 days 1 hour 31 days

Start Time Wed 2-6-2010
06:07:12

Tue 29-1-2013
09:22:25

Fri 13-11-2009
12:25:17

End time Fri 4-6-2010
05:48:47

Tue 29-1-2013
10:22:18

Mon 14-11-2009
13:54:35

Data Source Locally Captured Locally Captured Publicly Available
[Corpora, 2009]

Used for proposal Graph-based All methods Message size

publicly available datasets.
Furthermore, only a few datasets including the full payload are available

and most of them are from scenarios not relevant for our purposes. Neverthe-
less, in order to check the proposals in a different scenario, we have considered
the [Corpora, 2009] despite its limited size. This dataset includes all the traffic
observed during the first four weeks of corporate history of the M57-Patents
company.

Two separate traces, referred to as Capture Set (CS), CS-A and CS-B, were
collected in the selected scenario during the capture process, over an extended
period of time spanning around six months and totaling around 400 GB of real
traffic. Additionally, the M57-Patents dataset, sizing around 4 GB, is referred
to as Public Set (PS) PS-1. The most relevant characteristics of these datasets
are summarized in Table 3.1.

As previously mentioned, it is noticeable from this table that the size of
the collected traces is relatively large compared to common capture sizes used
in the literature. Figure 3.4 shows the proportions of the sizes of key elements
for the three datasets, evidencing big differences between PS-1 and the other
two datasets. Therefore, the high number of unique IP addresses and the
number of flows for the captured datasets support their representativeness and
significance for evaluating traffic classifiers, especially when compared to other
works in the literature.
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Figure 3.4: Comparison of the volume of traffic for the main traffic datasets

Another interesting observation can be obtained from this table concerning
the high capture sizes, which are not necessarily proportional to the capture du-
ration, to the number of IP addresses, nor to the number of flows and packets.
This is a clear indicator of the differences in traffic properties when different
scenarios are considered and even for the same scenario after some time. As
shown, there is a significant increase in the throughput for CS-B when com-
pared to CS-A despite the network is the same.

The way these captures were used throughout subsequent chapters differs
according to the experiment purposes and conditions. Most of the experiments
are based on the CS-A set which was the first dated capture. Then, for compar-
ison and capture longevity purposes, other captures were used subsequently.
Namely, Chapter 5 uses PS-1 in addition to CS-A, and Chapter 6 uses CS-B
dataset.

However, due to their huge size, the main datasets shown in Table 3.1 were
partially used in most of the cases. Smaller subsets were often extracted to
fit with the experimental purposes and to bypass some technical limitations
(e.g. memory handling of large file sizes). Moreover, only a subset of the
protocols in the main datasets were of interest according to the classification
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Table 3.2: Characteristics of the traffic subsets used throughout the thesis

Feature \Subset CS-A1 CS-A2 CS-A3 CS-A4 CS-B1

Size [GB] 0.2 3.5 80 82 8

Unique IPs 504 29,516 294,672 301,356 35,419

Total flows 7,337 135,202 3,241,395 3,304,819 323,935

IP packets (kpackets) 137 5,211 126,414 134,773 13,700

Known flows 6,655 67,047 3,241,395 3,304,819 323,935

Unk. flows 682 68,155 972,419 925,349 74,505

% Unk. Flows 9% 50% 30% 28% 23%

Used in Chap. 4 4 5 6 6

scenario. For example, protocols with insufficient or highly unbalanced number
of representative flows were omitted (Chapter 5). Similarly, protocols that are
not found in both the training and test datasets (Chapter 6) were excluded
from the set of targeted application protocols. Therefore, once the traffic is
labeled and processed according to the next steps, a division of the datasets
in smaller subsets is made. Obviously, at this point in the processing of the
capture files, the classification of the flows is still undone. Nevertheless, for
completeness, these subsets are described in this subsection.

As a result, a total of 6 different subsets from the captured traffic are
considered for selected experiments (Table 3.2). Thus, up to 4 subsets are set
from CS-A, being named as CS-A1 to CS-A4. Only a subset is obtained from
CS-B, thus being named as CS-B1.

3.2.4 Preprocessing of Capture Files

Once the traffic is captured according to the specifications, the second step in
building the experimental setup (Section 3.1) is to identify and label the flows
in the dataset to obtain both the list of existing flows, and their respective
packets, and the ground truth.

However, as the raw data, as acquired, is composed by a set of limited size
Packet Capture (PCAP) files captured in sequence, it is possible that flows are
split in two or more of these files. As such, before running any classification
tool on the native PCAP files associated with these datasets, and in order to
facilitate the handling of all of this information, a preprocessing phase has first
to be accomplished.

The target of the pre-processing phase is to avoid flows being split in various
files and, whenever possible, to somehow organize the flows sharing a common
address, while keeping the file size below 2 GB in order to be able to handle



CHAPTER 3. THE EXPERIMENTAL SETUP 65

it in most common computers. In fact, the input data consist of 2 GB files
as generated by the used tool (tcpdump). To carry out the preprocessing, an
specialized tool (Figure 3.2) has been developed (Appendix A). This tool parses
all the input files in sequence searching for all the packets with the same lower
IP, being this defined as the lower address, in the numerical sense, from source
and destination IPs. The size limit for the file is taken into account to organize
the packets in such a way that more than one lower IP can be considered in
a single file. In case that all the packets involving the same lower IP exceed
the 2 GB limit, those packets are rearranged so as to include all the packets
involving an upper IP in the same file.

It is worth to mention that after preprocessing, the database shrank around
20% when compared to the original size. This effect is due to non-IP packets
(e.g. Internet Control Message Protocol (ICMP)) and orphan IP fragments
being dropped during the reassembly procedure.

The set of files obtained after preprocessing will be the input to the next
step: labeling and classification.

3.3 Labeling and Classification

In order for the obtained datasets to be useful for the experimental setup, two
major questions need to be addressed next. The first one is related to the
identification of the existing flows, that is, to obtain a list containing all the
flows.

Furthermore, in order to ease the parametrization, also a list of the packets
in each flow is of interest.

On the other hand, ideally each of the flows in this list should be classified
as associated to one protocol using an error-free method, as this will be used
to evaluate the classification performance of the proposed schemes. For this
purpose, a common approach in the literature is to use DPI (see Chapter 2)
as the reference method. This procedure is adopted under the assumption
that DPI, by the time of this writing, is the most accurate traffic classification
method with the minimum possible number of errors.

As previously mentioned, the tool of choice is OpenDPI [nDPI, 2013], a
widely used tool based on DPI with demonstrated high accuracy, although at
the cost of dubious flows not being classified. Due to the relevance of OpenDPI
for a correct assessment of the results, its main characteristics and specifications
are described next.

3.3.1 OpenDPI Classifier

OpenDPI, currently nDPI [nDPI, 2013], is a package of software available
under the GPL license for the classification of flows and packets according to
DPI based methods. To the best of our knowledge, nDPI is the best currently
available open source tool for traffic classification.
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Originally, OpenDPI derived from the popular L7-filter tool [L7-filter, 2013],
including a richer signature library and enhanced classification techniques apart
from pure DPI. OpenDPI was the open source version of IPOQUE’s DPI en-
gine before it evolved into PACE [Mochalski, 2009], a widely used commercial
traffic classifier.

After being discontinued as an open source product, the former OpenDPI
is maintained by ntop [nDPI, 2013] as part of their networking tools under the
name nDPI [nDPI, 2013], which is released under the LGPL license. The main
novelties are that nDPI extends the original OpenDPI library to support new
protocols that are otherwise available only on the paid version of OpenDPI
and that it is able to integrate with ntop tool.

More than 150 different protocols can be identified with the current version
of nDPI, including some P2P and encrypted application protocols. To achieve
this, nDPI (and previously OpenDPI, which recognized up to 101 protocols)
incorporates, in addition to basic signature detection through pattern match-
ing, various additional techniques such as application behavioral and statistical
analysis, described in Chapter 2.

Thus, the used techniques, as stated by IPOQUE [Mochalski, 2009], are:

• Pattern matching, by scanning for strings or generic bit and byte patterns
anywhere in the packet, including the payload portion. This way, DPI
searches for signatures of known protocols.

• Behavioral analysis, by searching for known behavioral patterns of an
application in the monitored traffic. The data used include absolute and
relative packet sizes, per-flow data and packet rates, number of flows and
new flow rate per application.

• Statistical analysis, by calculating some statistical indicators that can be
used to identify transmission types, as mean, median and variation of
values used in behavioral analysis and the entropy of a flow.

Therefore, nDPI is not a pure-DPI product as it is not only signature-based
but also incorporates information from other sources. This way, the classifi-
cation accuracy is improved (no miss-classification according to IPOQUE’s
claims), although some packets and flows still remain unclassified. In fact,
unclassified or unknown traffic is still one of nDPI’s major limitations.

Nevertheless, and according to its functioning, the capabilities of nDPI are
mainly limited by the need to analyze the whole payload of all the packets in a
flow in search of signatures (DPI behavior) and to extract the behavioral and
statistical information from the flows. Therefore, it is basically a full payload
/ full flow analysis which imply a high computational cost.

OpenDPI provides a library for the classification of flows and packets.
Based on this library, we have developed a customized tool (named dpi flows,
see Figure 3.2) which is able to follow and differentiate the packets in each flow
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and provides both the list of flows and packets and the classification of the
flows according to OpenDPI signatures.

Specifically, the most relevant customizations in dpi flows consisted of gen-
erating two types of results: flow-based (a list of labeled flows) and packet-
based (a list of labeled packets). Labeled flows and packets are then inter-
related by simply identifying packets within each flow. On the other hand,
dpi flows operates in batch mode and, once the protocol of a flow is known, all
the packets associated to that flow are relabeled as belonging to the identified
protocol. The details on the customized tool and the input and output formats
are presented in Appendix A.

3.3.2 Results and Analysis

Following the global procedure for the acquisition of the final datasets (Figure
3.1), the classification tool was used over the set of preprocessed files as gen-
erated in the first phase to obtain the lists of labeled flows, i.e., the ground
truth, and the lists of packets in each flow.

The results obtained for each of the aforementioned datasets and subsets
are presented in this section. Figure 3.5 shows the protocol distributions, in
terms of the number of detected flows, in logarithmic scale.

It is important to note that unknown traffic, i.e. unlabeled flows, was ob-
served in each capture (Table 3.1). Its relative high percentage can not be
attributed to a deficiency in the data capture itself, but rather, to the limi-
tations of the classification tool. The fact is that, as previously stated, the
native OpenDPI tool from which the tool is derived was unable to classify
all the flows with its current library of application signatures and inspection
methods. From a research point of view, the presence of unknowns is problem-
atic since validation results should be 100% accurate. To handle this situation,
unlabeled flows will be omitted from the evaluation process, as will be detailed
in Section 3.5.

Another less relevant observation concerns big differences among the prop-
erties or frequencies at flow and packet levels. For instance, Figure 3.5 evi-
dences, for all detected protocols in our dataset, the difference between the
proportions of detected number of packets and flows.

Obviously, the results provided by dpi flows shows different number of
present protocols per dataset. Also, protocols have different distributions
across different sets. Nevertheless, HTTP, SSL and DNS were the most pre-
dominant protocols for all the datasets, which was expected in a real scenario
where most applications and network services are web-based.

As previously stated, an important indicator of the classifier’s capability
is to be able to detect P2P protocols. Figure 3.5 shows the existence of some
P2P protocols in the captured datasets consisting mainly of BitTorrent and
a few Gnutella and e-Donkey flows. Although the P2P set is reduced when
considering the size of other protocols, in fact the associated traffic volume is
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Figure 3.5: Protocol distribution in the main traffic datasets

large enough for experimental purposes due to the large size of the datasets.
As mentioned earlier, only a subset of the protocols detected in the main

datasets (Figure 3.6) was of interest for each of the classification methods pro-
posed in subsequent chapters. Besides standard known protocols (e.g. HTTP,
DNS, FTP, etc.), most of the selected sets includes P2P protocols.

Another relevant issue concerns unknown flows that were remarkably found
in the ground truth results. According to IPOQUE, the non-commercial ver-
sion of OpenDPI is unable to classify encrypted protocols. In fact, based on
our experiments, we validated that most unknown flows (e.g. 98.6% in CS-
A2) belong to encrypted applications using TCP ports 22, 80, and 443. Since
OpenDPI relies on advanced techniques that go beyond simple port-based clas-
sification, these flows were not classified as SSH (for TCP port 22), Web (for
TCP port 80) or secure web traffic (for TCP port 443).
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a) b)

c)

Figure 3.6: Protocol distribution in the subsets: a) CS-A1 and CS-A2 (Chapter
4), b) CS-A3 and PS-1 (Chapter 5), c) CS-A4 and CS-B1 (Chapter 6)

As shown in this section, complete ground truth results were obtained by
analyzing the payload in the traffic captures. However, with blind classifica-
tion methods, various traffic properties should be extracted to be used as the
classifier’s input, which constitutes the next step.

3.4 Traffic Parametrization

The blind classification methods to be proposed and tested should base their
decisions on the analysis of traffic properties that are independent on the con-
tent of the payloads (e.g. packet size, flow duration, etc.). Thus, after complete
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ground truth results were obtained, a parametrization of the flows existing in
the data is made (Figure 3.1) in order to represent each of them as a vector
or set of numerical properties. The resulting data will be the input for each of
the classifiers.

The first decision to be made at this step is related to the particular set of
properties to be considered. As explained in Chapter 2, existing blind classifi-
cation methods consider a wide range of parameters from each of the elements
to be classified. At this stage, the target of the parametrization process in the
experimental setup is not to make a condition on the possible methods to be
explored. Consequently, we extracted all the parameters that are potentially
useful for blind classification as to have a large enough pool of traffic properties
for subsequent experiments.

In particular, we considered all those parameters described in the literature
[Moore, 2005a] and a few additional ones related to higher order statistics.
The set of considered parameters is listed in Table 3.3, which includes up to
60 variables of different natures.

Table 3.3: List of traffic parameters useful for blind classification
Name Type Description

Identification set

FLOW ID ui32 Number of the flow (in the file)

ID PROT ui32 Protocol as identified by dpi flow

IP LOW ui32 Minor IP address in the session tuple

IP UPPER ui32 Greater IP address in the session tuple

PORT1 ui16 Port associated to lower IP (IP LOW)

PORT2 ui16 Port associated to upper IP (IP UPPER)

PROT ui8 Transport protocol (TCP/UDP or as in header: 6/17)

DIR ui8 Direction of the first observed packet (0 or UP if IP LOW →
IP UPPER 1 or DOWN otherwise)

FIRST TIME ui64 Timestamp for the first observed packet (microseconds)

LAST TIME ui64 Timestamp for the last observed packet (microseconds)

Basic data and statistics (Netflow like)

NPACKETS ui64 Number of packets in the flow

NPACKETS UP ui64 Idem UP direction

NPACKETS DOWN ui64 Idem DOWN direction

PACKETS SIZE u16 Total size of the exchanged packets

PACKETS SIZE UP u16 Idem UP

PACKETS SIZE DOWN u16 Idem DOWN

PAYLOAD SIZE u16 Total size of payloads in exchanged packets

PAYLOAD SIZE UP u16 Idem UP

PAYLOAD SIZE DOWN u16 Idem DOWN

DURATION u64 Duration of the flow (in microseconds)

MEAN PACKETS SIZE float Mean size of the packets in the flow

MEAN PACKETS SIZE UP float Idem UP

MEAN PACKETS SIZE DOWN float Idem DOWN

MEAN INTERARRIVAL float Mean time among consecutive packets in flow

MEAN INTERARRIVAL UP float Idem only for UP packets

MEAN INTERARRIVAL DOWN float Idem only for DOWN packets
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Table 3.3: List of traffic parameters useful for blind classification (cont.).

Name Type Description

N SIGNALING u16 Number of packets with flags

N SIGNALING UP u16 Idem UP

N SIGNALING DOWN u16 Idem DOWN

SHORT PACKETS u64 Number of short packets in flow (Default: < 100 packets)

SHORT PACKETS UP u64 Idem UP

SHORT PACKETS DOWN u64 Idem DOWN

LONG PACKETS u64 Number of long packets in flow (Default: ≥ 100 packets)

LONG PACKETS UP u64 Idem UP

LONG PACKETS DOWN u64 Idem DOWN

MAX INTERARRIVAL u64 Maximum time among consecutive packets in flow

MAX INTERARRIVAL UP u64 Idem only for UP packets

MAX INTERARRIVAL DOWN u64 Idem only for DOWN packets

MIN INTERARRIVAL u64 Minimum time among consecutive packets in flow

MIN INTERARRIVAL UP u64 Idem only for UP packets

MIN INTERARRIVAL DOWN u64 Idem only for DOWN packets

MAXLEN u16 Maximum packet size

MAXLEN UP u16 Idem UP

MAXLEN DOWN u16 Idem DOWN

MINLEN u16 Minimum packet size

MINLEN UP u16 Idem UP

MINLEN DOWN u16 Idem DOWN

NACKS u64 Number of packets with ACK flag active

NFIN u64 Idem FIN

NSYN u64 Idem SYN

NRST u64 Idem RST

NPUSH u64 Idem PSH

NURG u64 Idem URG

NECE u64 Idem ECE

NCWD u64 Idem CWD

NACK UP u64 Number of packets with ACK flag (only UP)

NACK DOWN u64 Idem DOWN

NFIN UP u64 Idem FIN and UP

NFIN DOWN u64 Idem FIN and DOWN

NRST UP u64 Idem RST and UP

NRST DOWN u64 Idem RST and DOWN

The values considered in the parameter vector include both basic and ad-
vanced statistical measures and flow properties. Two directions are considered
for most parameters: UP, for the packets traveling from the lowest IP to the
upper IP (when representing IP addresses as integers), and DOWN for the
opposite direction. Among the parameters are also the usual ones included
in most NetFlow-like flow analysis as average packet size, flow duration and
number of packets [Moore, 2005a], while at the same time a more detailed
description at temporary and signaling levels (e.g. interarrival times and num-
ber of URG packets) is included. The complexity of the evaluation is low, as
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only maximum, minimum, count and average values for each parameter are
considered.

Additionally, and in order to ease the assessment of the flows, the categories
of each flow, as assigned by the DPI tool, are also included in the parametriza-
tion. Obviously, this will not be used for determining the class of the flow but
just to account for the correctness of the class as provided by the method being
explored.

By analyzing the nature of the parameters, we can consider a feature vector
as composed by four main parts:

• An identification vector, which includes all the information required to
univocally differentiate each flow and its identification according to the
customized DPI tool.

• A transfer related vector, which considers all the parameters related to
the number of packets and their sizes.

• A time related vector, including parameters related to temporary char-
acteristics of the flow, as duration and time between consecutive packets.

• A signaling vector, that accounts for the number of packets with signaling
information and the associated signals.

As can be deducted from Table 3.3 the values for the parameters are ob-
tained from the list of packets in a flow by analyzing just their sizes, times-
tamps, TCP flags, if any, and the direction of the packets. This way, no
inspection of the payload beyond TCP/UDP headers is made, thus preserving
the privacy of the users at the application layer.

The parametrization of all the flows in the captured datasets was made
through a tool specially developed for this purpose (Figure 3.2). This tool
(dpi bin2params) takes as inputs the files generated by the classification tool
(dpi flows) containing the list of flows and the list of packets per flow. The
details about the tool and the format of the files are provided in Appendix A.

It is important to note that, for the classification scenarios addressed in
this thesis, not all of these parameters are used. In fact, at the parametriza-
tion phase, it was too early to determine, a priori, which traffic parameters
are going to be used specifically. This had to be answered in regard to the re-
search and experimental progress. As such, for each of the proposed methods in
subsequent chapters, a different subset of parameters will be analyzed. More-
over, and despite of the large set of parameters obtained after parametrization,
additional properties were generated in some cases (e.g. in Chapter 5).

3.5 The Evaluation Method

Once the experimental setup to evaluate and compare classification methods
is complete, evaluation metrics should be defined and selected from those de-
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scribed and used in the literature.
An evaluation metric is used to quantify the classification capabilities of a

given method, being used as the main indicators for the choice of one classifica-
tion method over the other. For this purpose, besides the experimental testbed
used for evaluating or comparing classification methods, a critical choice is to
specify which evaluation metrics are going to be measured. They play and
important role in the comparison of techniques and even in the tuning of the
parameters and/or models used by each method. As an example, if the selected
metrics do not take into account the relative percentages of the members in
each class, the effect on the metric of completely mistaken classes for the less
frequent one can be almost void. This is the imbalance problem in pattern
recognition [Theodoridis, 2009].

The most simple metric is the Percent Correct (PC), which accounts for the
total number of elements correctly classified, Nc, related to the total number
of elements to classify, N ,

PC = Nc

N
(3.1)

Unfortunately, in imbalanced datasets [Provost, 2001] as is the case with
the captured traffic, this measure is meaningless. Therefore, other metrics
are required to assess classifiers’ performance when imbalanced datasets are
present.

In the literature, basic and composed evaluation metrics can be found in
the context of traffic classification [Callado, 2009], although most of them are
also useful in other applications. For simplicity reasons, these metrics are
explained next for a two-classes scenario, although the same ones can be used
for multi-class and multi-label classification scenarios 1.

Consider an scenario in which the elements to be classified belong to classes
A or B and the target of the classifier is to identify elements belonging to A,
that is, the classifier is a detector targeted at selecting elements from class A.
Four possible situations can be identified:

• True Positive (TP): an element in class A is correctly classified as be-
longing to class A,

• FP: an element in class B is incorrectly classified as belonging to class B,

• True Negative (TN): an element in class B is correctly labeled as class B,

• FN: an element in class A is incorrectly labeled as class B.

This situation is illustrated in Figure 3.7. Perfect circles represent the
correct classification, i.e. the ground truth. The ellipsoid forms, deviated and
1Performance evaluation of multi-label classification systems is more complex than for mono-
label systems, and is discussed in Chapter 6.
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Figure 3.7: Basic evaluation metrics for a binary classification scenario (classes
A and B)

deformed in relation to the original circles, represent the classifier’s decision.
Unknown classification decisions are illustrated by the zone outside both circles
(for the ground truth) and outside both ellipsoids (for the classifier).

In this case, PC becomes

PC = TP + TN

TP + TN + FP + FN
(3.2)

Ideally, classifiers should maximize TP and TN while minimizing FN and
FP to increase the value of PC. In relation to the illustration in Figure 3.7, this
refers to restoring the two ellipsoids to the original circle places and reshaping
them to near perfect circular shapes. In all cases, unknowns’ zones should
be eliminated as much as possible. But, although the target is clear, the
effects of modifying one of the measures on the overall performance are not
that clear. That is, the impact of increasing TP could not be the same as
that from increasing TN in an imbalanced scenario. Therefore, more complex
measurements are recommended.

Composed evaluation metrics provide deeper insights into the classifier’s
performance. Many papers [Nguyen, 2008, Callado, 2009, Dainotti, 2012] used
composed evaluation metrics to rank the performance of different classification
algorithms. Some of these depend on the used technique (e.g. ML metrics),
and sometimes on the classification context (e.g. Bytes’ accuracy preferred for
differential pricing).

Examples of composed evaluation metrics include precision or accuracy
[Nguyen, 2008, Callado, 2009], completeness [Callado, 2009], correctness [De-
hghani, 2010], and sensitivity or recall [Nguyen, 2008, Dehghani, 2010], among
others. They can be defined as follows:

• Accuracy (Precision): The ratio of instances correctly classified (TP) to
the total number of instances classified positively as belonging to the
class

Precision = TP

TP + FP
(3.3)
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• Sensitivity (Recall): The percentage of TP patterns that are correctly
detected by the classifier

Recall = TP

TP + FN
(3.4)

• Completeness: The ratio of instances detected to the number of actual
instances

Completness = TP + FP

TP + FN
(3.5)

• F-measure: A measure that combines precision and recall. It is the
harmonic mean of recall and precision

F −measure = 2 ·Recall · Precision
Recall + Precision

(3.6)

Nevertheless, analyzing a single metric in separate is not a sufficient indi-
cator of the classifier’s performance. For instance, both precision and recall
should be optimized in order to obtain significant classification results. F-
measure [Dainotti, 2012, Iliofotou, 2011] is an example of a single performance
measure, expressed in function of both precision and recall. In addition, helper
tools, such as Receiver Operating Characteristic Curve (ROC) [Nguyen, 2008],
can be used to correlate and to visualize trade-offs between evaluation metrics.

The overall classification accuracy [Nguyen, 2008, Maglogiannis, 2007] av-
eraged for all classes is the most commonly used measure in the literature.
The accuracy is calculated –Equation 3.3– as the percentage ratio between the
number of instance objects (e.g. flows, hosts, etc.) labeled as belonging to
a protocol with the assessed method, over the total number of instance ob-
jects labeled as belonging to the same protocol in the ground truth. However,
as previously mentioned, when the tested dataset is imbalanced, the overall
accuracy results might be biased by the most dominant applications.

Alternatively, a confusion matrix is able to illustrate the classifier perfor-
mance on a per class basis. It shows the number of instances recognized by the
classifier for each class, given the actual class. Table 3.4 shows an example of a
confusion matrix for a three classes scenario (A, B and C), where Nij denotes
the number of instances with actual class i classified as j. The diagonal of this
matrix represent the correct decisions for each class. Values outside the diag-
onal represent the number of classification errors, which should be minimized.
Precision and recall values can be obtained from this matrix for each class.

It is clear that the literature lacks of any common framework for evaluat-
ing traffic classification methods. Most of the existing works in the literature
consider the classification accuracy as the main evaluation metric, while com-
putational and memory costs are not commonly defined.
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Table 3.4: Confusion matrix for multi-classification scenario (classes A, B and
C)

Actual\Assigned A B C

A

B

C


Naa Nab Nac

Nba Nbb Nbc

Nca Ncb Ncc



To evaluate the classification methods proposed throughout this thesis,
and based on the previous considerations, we select both basic and composed
evaluation metrics that we measure for different classification scenarios.

Particularly, we focus on the flow rather than packet accuracy (Chapters
4 and 5), and the host rather than host-community based accuracy (Chapter
6). In fact, we consider that classifying hosts and flows are semantically more
significant and more adequate to most traffic engineering tasks than classifying
packets (too fine-grained level) or host-community (too coarse-grained level).

As for the computational cost metrics, we choose to measure the processing
time in microseconds, consumed by different tested classification modules. For
this purpose, we use time related function calls inserted into the classifier’s code
at the proper places. Classification programs were compiled with GCC v4.4.3
with -O3 optimization level. The server’s hardware specifications include 16
GB of memory, 2 Intel(R) Xeon(R) 2.66 GHz processors with 4 cores each.

In the next chapters, the experimental testbed defined here will be used to
assess existing traffic identification methods and proposed enhancements. As
per the taxonomy defined in Chapter 2, methods of two main categories, at
the technique level, will be tackled, namely, non-payload and payload based
methods. We start with the assessment of payload-based traffic identification
methods, which is the topic of the next chapter.



Chapter 4

DPI Optimization Through
Minimum Payload Disclosure

In nowadays networks, performance and privacy issues are considered among
the main concerns. However, as mentioned in previous chapters, the native DPI
technique is theoretically based on the disclosure and examination of the full
payloads of the packets. The user privacy and the classification performance
are thus considered among the weaknesses of DPI classifiers.

The work to be presented in this chapter is motivated by the potential
of enhancing the user privacy level while decreasing the inspection overhead
associated with DPI classification. In this context, traffic sampling is a priori
an interesting approach for DPI optimization. It is supposed to decrease the
required computational cost by only inspecting payload samples, instead of
the complete payload data for all the packets in a flow. In addition, sampling
can improve the level of user privacy by disclosing less information from the
payloads.

However, to the best of our knowledge, the literature lacks of analysis stud-
ies of sampling mechanisms customized for DPI, although various sampling
policies can be found [Chen, 2009b]. Moreover, the research community cur-
rently lacks of one commonly defined DPI algorithm where a set of application
signatures is well defined. This fact makes it more difficult to assess sampling
schemes results applied to different DPI classifiers. From a research point of
view, this is problematic especially when the need is to generalize one single
sampling method for DPI optimization.

In this chapter, a general sampling methodology for DPI, leading to mini-
mum payload disclosure, is presented and analyzed. Rather than recommend-
ing a single sampling scheme, a general sampling methodology is proposed,
which can be then customized according to the classification context (e.g. DPI
tool of choice, protocols of interest, etc.).

To accomplish this, an assessment study of DPI classification used jointly
with various sampling schemes is conducted throughout this chapter. The aim

77
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of the experiments is to statistically localize payload sections within a flow
stream where application signatures are frequently matched. These portions
of the payload will be referred to as the classification bytes and will be targeted
for sampling.

Specifically, sampling is applied at four different levels: per-packet, per-
flow, and combined sampling, both with with contiguous and non-contiguous
modes. Complex applications, usually used as key indicators of the classifica-
tion ability (e.g. P2P), are highlighted in the results.

The aims of this chapter are thus summarized as follows:

1) First, to prove that application signatures, the most important factor for
DPI matching process, are usually found at regular locations within the
flow payload stream.

2) Second, to localize application signatures within the flow stream with the
highest level of granularity.

3) Third, to infer one general methodology for DPI sampling, with minimum
payload disclosure to decrease the inspection time, while maintaining the
classification results.

Next, the concept of DPI optimization through sampling is presented and
formalized.

4.1 DPI Optimization

Understanding the operation of DPI methods and their associated costs is
relevant before applying to DPI any sampling or optimization mean. To clarify
it, a simple analogy is presented, thereafter, an estimation of the computational
costs and the potential gains are evaluated in terms of the classification and
inspection times.

4.1.1 A Simplified Analogy

DPI classification is based on the search of any of the elements from a set of
predefined application signatures into the payloads1. In case a match is found,
the packet is classified as belonging to the protocol or application associated
to the signature that provides the match and, in most cases, also the flow to
which the packet belongs is classified accordingly. If none of these signatures
is found, the packet and/or flow will be labeled as ”unknown”.
1Throughout this work, a packet payload is assumed to include the full application layer
content of the packet, thus not including layer 3 (IP) and layer 4 (TCP or UDP) headers,
but including any application specific header. Moreover, TCP flows are considered to include
the 3-way handshaking and the pure acknowledgement packets.
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Figure 4.1: Analogy between DPI classification and table keyword search (table
representation of a flow)

Based on these considerations, the mechanism used to match signatures in
the flow payload stream presents many similarities with the linear search of a
keyword in a bi-dimensional data table [Knuth, 1998].

In this analogy, the complete flow payload is simply represented as a data
table or matrix, as depicted in Figure 4.1. One full packet payload corresponds
to a single row in this table (numbered with row index i), and the payload bytes
of a packet correspond to the cells within that row (numbered with column
index j). Thus, a flow, F , can be considered as a matrix, M = I × J , being I
the number of packets and J the maximum payload length in the flow. Row i
contains ri non-null elements.

Two perspectives are of interest. First, from a sampler point of view, the
table representing a flow can be regarded as vector, −→p , that contains the
payloads of all of the packets, serialized row by row, and composed by P
elements (bytes).

−→p = {m11,m12, · · · ,m1r1 ,m21,m22, · · ·m2r2 , · · · ,mIrI}

P =
∑I
i=1 ri

(4.1)

This vector will be referred to as the flow payload vector in the following.
In any defined sampling scheme, the flow payload vector is subject to partial

inspection, which is equivalent to analyzing selected parts of the table. On the
other hand, from a classifier point of view, matching a signature within the
flow is similar to matching a keyword within the table.

Nevertheless, these two processes –signature and keyword matching– have
some key differences regarding their usual implementation. First, DPI usually
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searches simultaneously for a set of signatures in order to label a flow to one
of many well-known application protocols (i.e. multi-classification), which can
also be accomplished with keyword matching using suitable algorithms. Sec-
ond, unlike a data table where rows and cells are usually sequenced and loaded
into memory with predefined sizes, the packets payloads should be analyzed in
real time and have complex timing characteristics (i.e. packet interarrival time,
denoted as T in Figure 4.1) and variable sizes. This imposes some restrictions
to the way in which the signature matching should be done, although these
differences are mainly operational and are not considered of major importance
to this work.

Based on this analogy, the locations of application signatures will be defined
simultaneously by the range of packet numbers within the flow holding the
signatures and by the range of bytes position numbers where these signatures
are found inside these packets. According to Figure 4.1, signature locations
are simply defined by the value ranges of (i, j).

Throughout this chapter, the term classification bytes is used to refer to reg-
ular signatures’ positions within a flow or to payload sections where application
signatures are frequently matched. Thus, the classification bytes are basically
the ”unknown” that DPI is looking for, similarly to keywords’ locations in the
table search process.

In this context, an important question, relevant for both processes, is to
be answered: Are the classification bytes (respectively, keywords) statistically
located at regular positions within the traffic flow (respectively, the data table)?

In table search scenarios, this is a too general question to be answered as
it strongly depends on the nature of the data being searched. However, for the
considered protocol classification problem, some regularity in the classification
bytes within a flow can be expected due to the presumable similarities in the
signalling phase among flows generated by the same application.

In fact, the flows generated by the same applications might have similar
content (at the application level messages), sequencing and timing, especially
for the first signalling packets. However, this assumption has to be proved
by experiment. Proving this regularity will be the first step toward DPI op-
timization through sampling, as it will point to the most relevant portions of
the flows that, consequently, should be the target for the sampling procedures.
This will be detailed in the experimental sections of this chapter (Section 4.3).

4.1.2 Sampling Policies

For DPI assessment, despite of the diversity of the existing sampling policies
[Chen, 2009b], the schemes to be analyzed are targeted at the following four
levels:

1) Per-packet level sampling, where each packet payload is partially in-
spected.
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2) Per-flow level sampling, where a subset of packets are fully inspected per
flow.

3) Combined level sampling, where a subset of the packets are partially
inspected per flow. Here, two modes of operation can be applied for
inspecting the flow payload vector:

3.a) Non-contiguous inspection mode, where inspected payload chunks
are obtained from a subset of sparse packets in the flow. In this
mode, flow payload vector parts are omitted between the analyzed
samples of the flow payload vector.

3.b) Contiguous inspection mode, where the payload vector is continu-
ously inspected, starting with the first payload byte, until a prede-
fined size is reached. In this mode, the flow payload vector is con-
tinuously inspected without omitting any part of the payload. In
other terms, the payload from a packet cannot be partially or fully
considered unless the payloads for all the previous packets have been
considered.

The main reasoning behind the choice of these sampling policies is related
to the behavior and nature of the packets exchanged by most protocols, as
most of them uses a signalling phase at the beginning or at some points of
the communication to select/set some operative parameters and/or modes of
operation. During this phase, commands related to the protocol and their
functioning are exchanged, including specific protocol-related keywords mostly
at the beginning of those packets. These signalling phases are supposed to
be the most representative for each protocol and, consequently, should be the
target for a sampling method oriented to identify the protocols.

As mentioned earlier, DPI optimization aims to minimize payload inspec-
tion. As such, the primary objective is to specify the minimum payload size
and the location of the bytes that should be sampled without deeply affect-
ing the classification results. For this purpose, sampling policies were applied
in an increasing complexity order, starting with the simplest one (per-packet
sampling), which is also that providing the largest sample size, and down to
reach the one providing the minimum possible size. The main aim behind this
ordering is to be lead to the minimal possible sample size that could provide
the most granular insights location of the classification bytes within a flow.

Another relevant issue is that, at each step where these sampling modes are
applied, the order of subsequent experiments is driven by the obtained results.
In fact, at the beginning of the experiments, no prior idea could be obtained on
the location of the signatures nor on the sampling scheme providing the best
results. The order in which the sampling experiments were conducted aims to:

1) First, to prove the regularity of the locations of application signatures,
and to compare sampling methods, both per-flow and per-packet sam-
pling were assessed separately.
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2) Second, to get more granular insights on the signatures’ locations, and
based on the previous results, per-flow and per-packet sampling tech-
niques were combined using a non-contiguous inspection mode.

3) Third, to get the smallest possible payload sample size while maintaining
the classification results, per-flow and per-packet sampling techniques
were combined using a contiguous inspection mode.

By comparing the results of these sampling schemes, a customized DPI
sampling scheme can be inferred. For such comparisons to be significant, a
study of DPI modules and computational cost analysis is shown next.

4.1.3 DPI Modules and Cost Analysis

An important question for the assessment and comparison of the sampling
methods is how to evaluate the gains from each of them. In this sense, sampling
is supposed to optimize DPI, in terms of computational costs, as less input is to
be analyzed. This should be evidenced through a reduction in the classification
time, that is, in the time it takes to analyze and classify a flow.

Therefore, for the purposes of this work, the main parameter to be consid-
ered is this classification time. In order to have an insight on the computational
costs involved in DPI classification, its operation is briefly presented next. As
proposed in [Cascarano, 2009], a DPI classifier can be modeled as composed
by 5 processing blocks, as shown in Figure 4.2:

1) The SessionID Extraction block extracts the parameters related to the
identification of the session a packet belongs to (i.e., IP addresses, trans-
port-level protocol, port numbers).

2) The Session Lookup block checks whether the session the packet belongs
to is already present in the session table, which is a list of all the active
sessions in the network being monitored. This block and the previous
one process the packet header only for every incoming packet.

3) The Pattern Matching block is devoted to the classification of the packet.
This block implements the pattern matching algorithm that looks for the
presence of a signature in the application payload. This module handles
both the header and the payload of the packet.

4) The Session Update block is executed by the DPI classifier only when the
Pattern Matching block returns a positive match, in which case it stores
the outcome of the classification in the session table.

5) The Correlated Session block looks for data that may lead to the iden-
tification of a correlated session. This block is executed only in case the
application-level protocol may originate correlated sessions (e.g., Session
Initiation Protocol (SIP) or FTP).
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Figure 4.2: DPI packet classification model

According to this model, every packet entering the system is processed
at least by both the SessionID Extraction and the Session Lookup modules,
independently of the current state of the associated flow as already classified
or not. On the contrary, Session Update is executed once per flow, just in case
a category is assigned to it, while the Correlated Session module is executed
after the classification of the flow.

Therefore, three contributions to the processing time of an individual packet,
tpc, can be identified (Fig. 4.2):

tpc = th + ti + ta (4.2)

where th is the packet handling time associated with session identification and
lookup (i.e. SessionID Extraction and Session Lookup); ti is the packet inspec-
tion time, related to the pattern matching procedures; and ta is the annotation
time, related to the storage of the flow classification label and the search for
correlated sessions2. Thus, as previously mentioned, th is always non zero, ti
is incremented while the search for signatures is in process and ta counts, at
most, once per flow.

In the normal usage, ta can be considered negligible in the classification of
a flow when compared with the total contributions from the other two terms.
Thus, when no sampling is applied, all packets are analyzed searching for the
signatures and the average time for analyzing a flow, tfc, composed by Np

packets can be estimated as:

E[tfc] = Np · E[tpc] ' Np · E[th + ti] (4.3)

where E[] is the expected value operator.
It can be easily argued that both the packet handling and packet inspec-

tion times are independent magnitudes. In fact, the packet handling time is
2In this study, we are concerned in analyzing both ti and th, illustrated in Figure 4.2.
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expected to be similar for all the packets, as the processing will be the same.
Its major dependence is related to the size of the active sessions list. On the
other hand, the packet inspection time will be proportional to the size of the
payload and to the number and the length of the signatures to be matched.
Therefore, the average flow classification time can be expressed as:

E[tfc] = Np · (E[th] + E[ti]) (4.4)

Consequently, the optimization of the DPI procedures can be targeted at
reducing the packet handling time, which can be achieved through various
means, as explained in Section 4.2, by improving the performance regarding
the table lookup and the extraction of the packet headers. Nevertheless, this
work is mainly targeted at optimizing the packet inspection time by using
sampling methods, that is, by reducing the number of inspected packets and/or
the volume of analyzed data per packet.

In fact, according to [Cascarano, 2009], the most significant portion of the
flow classification time is related to the pattern matching block, which has a
linear dependence on the number of input characters. A deeper insight into
this question is addressed in Section 4.3.

For the purposes of this work, only the previously mentioned times will
be considered for the comparison of the sampling mechanisms and the derived
gains. In this sense, the classification times are considered proportional to the
involved computational cost.

4.2 Related Work

Before analyzing each of the proposed sampling schemes, the related works
found in the literature are presented in this section in order to place them in
context.

First, the choice of DPI tool is validated in [Bujlow, 2014, Bujlow, 2015].
These recent studies present an evaluation of the accuracy of the most well-
known DPI-based classifiers (i.e., PACE, OpenDPI, L7-filter, nDPI, Libpro-
toident and NBAR) and show that PACE is, for the majority of protocols, ap-
plications, and web services included in their dataset, the most reliable solution
for traffic classification. Among the open-source tools, nDPI and Libprotoident
present the best results. Authors provide accuracy per application, thus, the
robustness of the evaluation methodology is independent of the applications
selected.

Although the study in [Bujlow, 2014, Bujlow, 2015] is complete, the con-
tinuous evolution of the network applications and the DPI-based techniques
allows a periodical updated of the evaluation. For instance, this evaluation
can be updated by adding new applications and web services to the dataset
and by introducing new classification tools to the study.



CHAPTER 4. DPI OPTIMIZATION THROUGH MINIMUM PAYLOAD DISCLOSURE 85

On the other hand, various methods and techniques are described in the
literature to improve the computational efficiency of DPI, while maintaining
the classification results. Some are hardware-based [Rao, 2010] while others
referred to software and algorithm-based enhancements [La Mantia, 2010, Lin,
2008]. Among them, the use of sampling is considered one of the software-
based optimizations, as it is supposed to reduce the size of the inputs to the
classification procedures.

In general terms, sampling the network traffic is the process of taking partial
observations from the monitored traffic, and drawing conclusions about the
system behavior from these sampled observations. It is mainly used for network
management and monitoring [Carela-Español, 2011], although it can be used
as well in classification tasks. In fact, some works [Aceto, 2010, Fernandes,
2009, Ficara, 2010, Guo, 2008, Canini, 2009] integrate sampling within the
traffic classification process itself. Nevertheless, choosing a sampler for DPI
has proven not to be as straightforward as it seems, as the target is to find the
signatures, which can be harder or even impossible depending on the sampled
data [Khalife, 2011b].

The overall concept of input reduction is not new to the traffic classification
field, as it has been addressed for many classification methods. In this context,
it is important to distinguish between DPI and non-DPI classification methods
due to the existing differences at both the algorithm and the input type levels.

For instance, in a ML based classification approach [Nguyen, 2008], special
feature selection mechanisms are used to minimize the set of input traffic pa-
rameters. On the other hand, some non-DPI based works [Hullár, 2011] have
similar targets in reducing the classification input size by considering only the
initial portions of the flows, which is often referred to as early classification
methods.

A detailed taxonomy of sampling techniques for traffic classification accord-
ing to the used method is provided in [Jurga, 2007]. Another way of categoriz-
ing sampling techniques, used throughout this chapter, is related to the target
considered by the sampling method. From this point of view, and regardless
of the sampling policy, techniques can be categorized into per-packet sampling
[Aceto, 2010, Ficara, 2010], or per-flow sampling [Carela-Español, 2011, Jurga,
2007]. It is relevant that the literature shows very few works combining both
techniques (e.g. [Fernandes, 2009]).

According to this criteria, the following relevant works can be identified in
each category:

• Per-packet sampling: per-packet DPI sampling techniques have been
tested with various DPI tools. For instance, using L7-filter [Aceto, 2010],
it was shown that 72% of the matchings take place at the first packet of
a flow, and that almost more than 90% of matching strings falls within
the first 32 bytes of the payload. Another example is shown in [Ficara,
2010], where a novel approach was proposed to bring the sampling idea
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to the regular expression field.

• Per-flow sampling: Per-flow DPI sampling [Chen, 2009b] ranged from
simple techniques, such as Equidistant Invariable Mode (EIM), which
simply involves a fixed sampling rate of full payload packets during the
flow lifetime, to more complex ones, such as stochastic sampling.
In addition, in [Chen, 2009b] six sampling strategies were suggested and
tested with DPI identification systems. However, the obtained results
were difficult to generalize since they were affected by many factors.
Other per-flow sampling strategies were shown in separate works. Us-
ing sampled NetFlow, it was shown [Carela-Español, 2011] that packet
sampling has a severe impact on the classification performance: flow ac-
curacy drops to 85% for a packet sampling rate of 1/100.
Related sampling (RelSamp) [Lee, 2011], proposes that flows that are
parts of the same application session should be given higher probability.
Mask-match sampling method [Cong, 2010] reached a 94% of flow accu-
racy for a packet sampling rate of 1/10. However, this method mainly
focuses on long flows, and the validity of the samples is related to the
randomness of the ID field of the IP packets headers.
Moreover, per-flow sampling techniques were also used to localize appli-
cation signatures. For instance, Canini [Canini, 2009], using L7-filter,
sampled the first 10 packets per flow. However, many FPs were encoun-
tered due to the probabilistic nature of the used Bloom filters.

• Combination of sampling schemes: As mentioned, the combination of
per-flow and per-packet sampling was less addressed in the literature.
Using L7-filter, results in [Fernandes, 2009] showed that most flows can
be classified only with the first 7 packets or a fraction of their payload
without a significant impact on accuracy. Nevertheless, using the same
tool in [Cascarano, 2011], the authors were unable to generalize these
results, which were extremely dependent on the traffic trace considered.
Apparently, none of these methods was able to generalize a sampling
methodology for DPI optimization purposes.

Overall, there is a lack of recommended techniques for a DPI oriented
sampler and, as previously shown, the current studies are limited and do not
present comparative results. Moreover, most existing works do not provide
protocol oriented results and are mostly based on L7-filter, which is currently
outdated as a DPI classifier. On the other hand, those sampling schemes were
proposed regardless of the underlying traffic characteristics, or they analyzed
limited size datasets and are, most often, strongly dependent on the DPI tool.
In this context, the proposed assessment is of interest, as an up-to-date DPI
tool used over a big size real dataset where a comparison of the performance
of the sampling methods is also provided.
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4.3 Assessment of DPI-oriented Sampling Scheme

Next, each of the sampling policies presented in Section 4.1.2 is described and
experimentally evaluated. As previously mentioned, they are presented in the
same chronological order as they were tested, as the results from simpler poli-
cies are used to guide the experimentation with more complex ones. Namely,
per-packet sampling is analyzed first, then, per-flow and combined sampling
policies.

Regarding the experimental setup, the DPI-based tool developed for this
work, dpi flows, is modified to include the sampling policies and to gener-
ate the cost, in terms of computational time together with the classification
results3. The computational cost is expressed in terms of tfc and ti, both of
which are supposed to be reduced when DPI is applied jointly with sampling.
Then, results for each method are compared, both in terms of classification
metrics and computational time, with those obtained when no sampling is
applied.

The datasets selected for this evaluation include CS-A, CS-A1 and CS-A2
(see Chapter 3). Since they present an unbalanced protocol distribution due to
their real nature, experimental results have to be presented on a per-protocol
basis. Though experiments were conducted in the multi-classification context,
binary classification metrics are evaluated for each protocol.

For the purpose of our experiments, we had to choose an appropriate metric
and methodology in order to evaluate the effect of sampling on DPI classifi-
cation. Most importantly, the problem associated with non-classified objects
or unknowns, appearing both at the ground truth (see Chapter 3) and clas-
sification results of the tested datasets, had to be handled by our evaluation
methodology.

First, at the ground truth level, all non-classified flows are omitted from
counting. As mentioned in Chapter 3, this is a common approach followed
by most classification works in the literature to ensure 100% correct validation
results. In addition, as we are comparing the sampled DPI classifier against the
reference DPI classifier in full payload inspection mode (i.e. with no sampling),
eliminating unknowns will permit to highlight on the number of flows which
become unknown particularly as a result of the applied sampling, not due to
any other reason4.

On the other hand, unknown objects might appear during the classification
phase. The number of unclassified objects is problematic from a research point
of view since these cannot be counted when measuring any of the four basic
metrics (TP, TN, FP and FN defined in Chapter 3). In most of literature
works, an underlying assumption is that during classification, each object has
to be either classified or misclassified, therefore, unknowns are not regarded
3Some details regarding this adaptation can be found in Appendix A.
4Reasons for which DPI is unable to classify flow objects in full payload inspection mode are
discussed in Chapter 3.
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Table 4.1: Confusion matrix for sampling-based DPI classification decisions

Assigned\Actual Li non− Li

Li

Non− Li

Unknown


TPi FPi

FNi TNi

UNKi UNKni



when evaluating existing classifiers result.
Nevertheless, and although completely eliminated from the ground truth

results, unknown flows still appeared during the sampling-based DPI experi-
ments that have been conducted throughout this chapter5. In fact, these flows
became unclassified particularly due to payload sampling. Therefore, they had
to be considered during the evaluation process since their ratio is very insight-
ful for studying the effect of sampling on DPI, which is the main purpose of
the study conducted in this chapter. Actually, unclassified flows are the main
detectable effect of applying sampling to DPI.

Formally, the confusion matrix in Table 4.1 shows all of the possible classifi-
cations in a binary classification mode for a given protocol Li, after sampling is
applied to DPI. TPi, FPi, FNi, and TNi are, respectively, the number of TP,
FP, FN, and TN associated with protocol Li. UNKi is the number of flows la-
beled with Li that become unclassified after sampling is applied, and UNKni

is the number of non − Li flows that became unclassified, after sampling is
applied.

It should be noted in this table that there is no Unknown in the actual class
column since, as mentioned previously, all unknown instances were removed
for the ground truth results. Nevertheless, when sampling is applied, a flow
belonging to protocol Li might not be classified (counted as UNKi) or might
retain its class label at the ground truth (counted as TPi). Therefore, and for
the purposes of our experiments, the Detection Percentage (DP) metric has
been defined and customized to include UNKi in order to measure the effect
of sampling as follows:

DPi = TPi
TPi + UNKi

(4.5)

where DPi is the percentage of flows6 that can be still detected as class Li even
after sampling is applied, TPi and UNKi are, respectively, the number of TP
5Sampling results are shown in sections 4.3.1, 4.3.2 and 4.3.4.
6If UNKi is regarded as F Ni, then, DPi is equivalent to the class recall, for F Pi = 0.
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and the number of unknown flows, associated with class Li after sampling is
applied.

The defined DP values are then measured in order to evaluate the effect of
the different sampling policies tested throughout this chapter, as detailed next.

4.3.1 Per-packet based Sampling

Per-packet, also referred to as payload based sampling, attempts to reduce the
computational cost by partially inspecting the payloads of each of the packets
in the flow. Although in general terms it is possible to consider any portion
of the payloads, it seems reasonable to limit the sampling to analyze only the
first bytes of each payload when the nature of the communication protocols is
considered, as the commands and protocol headers will appear at the beginning.
In this later case, the sampling scheme is also referred to as packet truncation,
which is the method that will be analyzed in this subsection.

Thus, in the packet truncation sampling policy, the classifier only parses a
specified number of initial bytes, the payload truncation length, denoted as S,
within each packet payload. This policy can be simply defined as the ”first S
bytes per packet”.

The new overall time to classify a flow, t′fc, can be estimated, in this case,
as:

E[t′fc] = E[Np] · E[th] + E[Np] · E[t′i(S)] (4.6)

being t′i(S) the inspection time of the first S bytes instead of the full packet
payload. The cost of the pattern matching for S bytes is expected to be lower
than that for the whole payload due to its dependence on the length of the
analyzed pattern7. Therefore, t′i(S) ≤ ti.

On the other hand, no reduction is to appear from the other terms in
Equation 4.6, as the number of inspected packets will remain the same as
before applying the sampling policy, and this partial inspection does not affect
th since each packet should be handled by the classifier to determine the flow
it belongs to.

4.3.1.1 Experimental Results

The packet truncation method has been experimentally tested using an adapted
version of the DPI tool (dpi flows) over the CS-A dataset (see Chapter 3).
Specifically, the tool has been further customized to be able to parse only a
specified number of bytes (called the truncation length), within each packet’s
payload by adding packet sampling modules.
7It is possible for some payloads to be shorter than S bytes. Obviously, in this cases the
inspection time will remain the same with or without truncation. The impact of this effect
will depend on the number of packets shorter than S, which will be experimentally addressed.
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Figure 4.3: Average detection percentage results, DP, as a function of the
truncation length of the payloads (per-packet sampling)

In the following, flow and packet DP values are shown as a function of the
payload truncation length, S. However, as stated earlier, most of the analysis
is focused on flow-based results. On the other hand, the results are assessed
at three levels: per protocol, per protocol group 8 and for all the protocols.

The results obtained for all protocols in the CS-A dataset are depicted in
Figure 4.3. As shown in this figure, the truncation length must be at least 1280
bytes to reach 50% of packet classification. This result is not very encouraging
for DPI optimization. Through payload truncation, a 15% reduction in the
payload input size leads to a 50% drop in the DPI packet classification. Al-
though the situation is better at flow level, it is still a very poor result, as only
a 80% of correct classification is achieved using S = 1280 bytes.

On the other hand, this is a surprising result, as it is one of the most used
and analyzed sampling methods. Probably, this is related to the use of NetFlow
as the source for the input data and the availability of some public datasets
with this kind of truncated data. Furthermore, as previously mentioned, is is
expectable to match the signatures for most of the protocols at the beginning
of the payloads. Nevertheless, the experimental results evidences that it is
necessary to analyze bigger chunks of the payloads to reach a reasonable point
of operation.

A common behavior observed for all protocols (Figure 4.3) is that the num-
ber of detected packets and flows increases with the truncation length. How-
ever, DPI shows different behaviors per protocol group, as shown in Figure 4.4,
and per individual protocol, as shown in Figure 4.5.

For example, for Internet Messaging (IM) –Figure 4.4.b– and DNS –Figure
4.4.c– DP is less affected by per-packet sampling when compared to the web
8Protocol groups have been defined according to [Mochalski, 2009].
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a) b)

c) d)

Figure 4.4: Per-packet sampling detection percentage results for various pro-
tocol groups as a function of the truncation length for packets and flows: a)
Web, b) Instant messaging, c) DNS and d) P2P

protocol group, shown in Figure 4.4.a. Another example is that of P2P pro-
tocols –Figure 4.4.d– which exhibit a mixed behavior: P2P results are similar
to that of the web group, at packet level, and to IM and DNS groups, at flow
level.

At this stage, studying eventual computational gain with the per-packet
sampling is considered of less significance since this scheme is unable to main-
tain the DP . Consequently, DPI is assessed next with per-flow sampling,
which is supposed to provide a coarser grained view on the locations of the
classification bytes.

4.3.2 Per-flow Based Sampling

The target of per-flow sampling is to inspect only a subset of the packets in
each flow. In its normal operation mode, DPI inspects all the packets in a
flow. Nevertheless, for flow classification, and assuming that all the packets in
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a) b) c)

d) e) f)

g) h) i)

Figure 4.5: Per-packet sampling detection percentage results for various pro-
tocols as a function of the packet truncation length: a) BitTorrent, b) eDonkey,
c) Gnutella, d) Mail IMAP, e) Mail POP, f) Mail SMTP, g) NTP, h) SNMP
and i) STUN

a flow should correspond to the same protocol, it is not necessary to analyze
packets beyond the first classified one. Thus, an obvious question is whether the
previous operation mode should be modified to reduce the number of analyzed
packets and, therefore, the computational cost, by stoping the analysis once a
packet is classified.

Therefore, a feasible sampling policy is to inspect packets only till one of
them is classified. The ordinal of the packet at which the first detection inside
the flow is achieved is referred to in the following as the flow detection number.

A first potential problem in this scenario is related to the possibility of a
misclassification of this first classified packet, which will produce an error in the
flow classification. On the other hand, this sampling policy is useless for those
flows that remain unclassified after being closed. Both questions may affect
the performance of the system and will be addressed through experimentation.

In the proposed flow truncation sampling policy [Khalife, 2011a], the classi-
fier only inspects the payloads of a specified number of initial packets, the flow
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truncation length, Nmin, in each flow. This policy can be summarized as ”first
Nmin packets per flow”. Thus, the targets of the experiments conducted in
this subsection are to determine the optimal value for Nmin and the associated
computational cost.

Per-flow sampling is supposed to decrease the overall classification time for
the whole traffic. When per-flow sampling is applied, assuming E[Np] > Nmin

9,
the average time required for analyzing a flow, t′′fc, can be estimated as:

E[t′′fc] = E[Np] · E[th] +Nmin · E[ti] (4.7)

In this case, there is a potential reduction in the size of the analyzed pay-
loads and, consequently, in the total inspection time per flow, due to the inspec-
tion of a lower number of packets per flow, not to a reduction of the inspection
time per packet.

It is important to note again that with this sampling mode, beside of in-
specting only the first Nmin packets of the flow for the purpose of classification,
the classifier still needs to handle all the remaining packets. For these packets,
th cannot be avoided since it is evidently impossible to know if a given packet
belongs to an existing flow without parsing its header at least. The decision to
inspect the packet or not depends on its ordinal number being lower or higher
than Nmin.

Therefore, the time to classify a flow, t′′fc is expected to be significantly lower
than that required for inspecting the full flows when no sampling is applied,
tfc –Equation 4.4–. Experimental results associated with per-flow sampling
are detailed next.

4.3.2.1 Experimental Results

As with the packet truncation policy, the flow truncation method has been
experimentally tested using an specifically modified version of the DPI tool
(dpi flows) over the CS-A and CS-A1 datasets (see Chapter 3), to evaluate
DP together with the computational costs.

In this regard, the tool has been customized to operate in two different
modes. In the first one, it shows the flow detection number and measures the
accumulated handling and inspection times for each flow, stoping the inspection
after it is classified. In the second mode of operation, the tool solely inspects,
within each flow, packets whose ordinal number inside the flow is lower than
a predefined threshold (Nmin), also providing the accumulated times. In both
cases, all the packets in a flow have to be handled in order for them to be
assigned to its flow.

Similarly to the previous subsection, flow DP results are extracted as a
function of the number of sampled packets (the flow detection number) from
9In a similar way as in the case of per-packet sampling, it is possible for some flows to be
shorter than Nmin packets. The impact of those flows is expected to be low for low enough
values of Nmin. Anyway, this will be experimentally evaluated.
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Figure 4.6: Results for flow detection percentage as a function of the flow
detection number

the beginning of the flow. Two types of experiments are addressed, according
to both modes of operation.

In the first one, the flow is analyzed till it is classified or it ends. In this case,
the results provide an insight on the number of packets needed for classifying a
flow. Obviously, there is not an upper limit on the number of analyzed packets
in a given flow, which obviously leads to a suboptimal behavior for unclassified
flows.

To avoid this situation, in the second mode, a threshold for the number of
inspected packets is set, which corresponds to the proposed sampling policy.
The reasoning behind this is based on the hypothesis that the probability of a
flow to be classified decreases after some initial packets. Thus, the experiments
are targeted at verifying whether most of the flows can be classified after a
reduced number of packets are observed.

The firsts experiments were made by varying the threshold, Nmin, for the
maximum number of inspected packets. The DP results for all the protocols as
a function of the flow detection number are depicted in Figure 4.6. As shown,
most of the flows from all protocols are classified within the first ten packets
with 99.9% of flow DP . For detection number greater than 10, the resulting
DP ratio is negligible and is not shown in figures.

It can be also noticed from Figure 4.6 the very slight increase in DP for
Nmin values greater than 10. Therefore, there is a big number of flows for
which the detection is achieved with just a few packets. Proportionally, the
number of flows with high flow detection number is almost negligible.

Next, the results are analyzed on a per-protocol group basis to check
whether this behavior is consistent across all of them. The most significant
results are shown in Figure 4.7. As shown, some protocol groups requires even
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a) b)

c) d)

Figure 4.7: Flow detection percentage results for various protocol groups as a
function of the flow detection number: a) Web, b) Instant messaging, c) DNS
and d) P2P

less than 10 packets to be detected. This is specially relevant in the case of DNS
group (Figure 4.7.c) which is detected from the first packet. Therefore, overall,
the proposed sampling method seems to be quite effective without degrading
the classification performance of the system.

Anyway, to have a deeper insight into the behavior of the flow truncation
method, some additional experiments were made in the first of the operational
modes using the CS-A dataset. This way, the results provide a distribution
of the flow detection number for all the flows. Figure 4.8 shows the obtained
results grouped according to P2P or non-P2P protocols. From this histogram,
it is clear that most of the flows are detected within the first few packets.
Nevertheless, a more detailed analysis on a per-protocol basis reveals some
differences in this behavior.

As shown in Figure 4.9, most protocols average the flow detection number
clearly below 10. The associated results per protocol (Figure 4.10) are similar
to the globally obtained results on a per individual protocol basis.

According to Figure 4.9, and in order to classify most protocols, the selected
value for Nmin is 10. Although for protocols whose average flow detection
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Figure 4.8: Histogram showing the number of detected P2P and non-P2P flows
as a function of the flow detection number for flow truncation

number is lower than Nmin the classifier would inspect more packets than
necessary, choosing this value is supposed to guarantee that all protocols can
be detected.

Thus, as a result from the experiments, it seems reasonable to recommend
a value of at least 10 for Nmin.

On the other hand, few but exceptional cases of lately or not classified flows
as well as classification errors were reported during the experiments. Due to
their reduced volume, these cases had no significant impact on the presented
results, but it is worth to analyze them in greater detail.

One of the observed exceptions, together with their preliminary interpreta-
tions, are deviator flows. In fact, there exist flows for which the flow detection
number seems not to belong to the associated distribution, that is, outlier
flows. After a preliminary exploration of these outliers, a possible relationship
emerged. When the first packet holding the application signature is lost or not
captured, the flow detection number becomes much deviated from the calcu-
lated average. Obviously, this situation is more likely to occur at the beginning
of the capture. In fact, it has been discovered that most deviators are flows
that were under course at the start of the capture. As an example, Figure
4.11 shows that most of the deviator HTTP flows (up to a 98%) present a low
FlowID (below 100,000). As explained in Chapter 3, the FlowID parameter is
the sequence number of the flow within the capture, which means that they are
at the beginning of the capture and that there is a high probability of missing
the firsts packets of the flow. Again, this result highlights on the importance
of the first flow packets to DPI classification.

In summary, the results for per-flow sampling shows that inspecting the
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Figure 4.9: Average flow detection number for each individual protocol (per-
flow sampling)

first 4 to 10 packets of a flow can maintain the flow DP at high levels, ranging
from 90% to 99%.

4.3.3 Comparison of Packet and Flow Truncation Sampling
Policies

At this stage, both the per-packet and per-flow sampling are presented. Before
assessing additional sampling schemes, a comparison of the results and an
analysis of the computational costs is relevant to highlight main findings related
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a) b) c)

d) e) f)

Figure 4.10: Percentage of detected flows for selected protocols as a function
of the flow detection number: a) SIP, b) FTP, c) SSL, d) iMESH e) BitTorrent,
and f) HTTP

to DPI optimization with sampling.
As previously stated, the computational cost is evaluated through the time

it takes to classify a flow. As per Equation 4.4, the average flow classification
time depends on the total inspection time which in turn depends on both the
average number of packets per flow and the average packet size.

Obviously, the higher the number of flows with a number of packets Np >
Nmin, the higher is the expected time gain, and consequently, the effectiveness
of the per-flow optimization. Similarly, the higher the percentage of packets
with size over 1408 bytes, the more efficient will be packet truncation. Specifi-
cally, For the CS-A dataset, the packet payload size can be estimated by 1350
bytes for CS-A and the average packet number per flow by 30,000 bytes which
is equivalent to around 22 packets (see Chapter 3).

From this data, and in order to achieve a DP level of 99%, a preliminary
estimate on the volume of data that should be analyzed per flow can be ob-
tained for both cases: it is necessary to inspect up to 13, 500 = 1350 ∗ 10 bytes
in the per-flow compared to 30, 000 = 1350 ∗ 22 bytes in the per-packet case.
As per Equation 4.4, the packet inspection time will be proportional to the
size of the payload.

Consequently, the per-flow sampling scheme should theoretically outper-
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Figure 4.11: Flow identification number (Flow ID) v.s. flow detection number
(HTTP deviators for Nmin > 30)

a) b)

Figure 4.12: Total inspection time ti for dataset CS-A1 as a function of:
a) the packet truncation length (per-packet sampling), b) the flow detection
number(per-flow sampling), v.s. full payload

form the per-packet scheme. To prove this assertion, the computational cost
had to be experimentally measured. From an operational point of view, the
processing time consumed by the inspection and classification modules were
measured in both cases, per-flow and per-packet sampling, by running the
classifier over the CS-A1 dataset.

Figure 4.12 shows the total inspection time, ti, for dataset CS-A1 both when
applying the per-packet and per-flow sampling compared to the full payload
case.
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Table 4.2: Comparison between best case scenario results for per-packet and
per-flow sampling methods

DPI
Experiment Payload DP Total

tfc(µs)
Total
ti (µs)

Total
tfc gain

Total
ti gain

No sampling FULL 100% 2090666 278222 - -

Per-packet
sampling

1408B
per

packet
99% 2058212 245769 1.5 % 11.6 %

Per-flow
sampling

10
Packets
per flow

99% 1944064 131621 7.01 % 52.7 %

As shown in Figure 4.12a), the inspection time increases with the inspected
payload size. Similarly to per-packet sampling, the inspection time associated
with per-flow sampling shown in Figure 4.12b) increases with the flow detection
number, that is, when increasing the inspected payload size. In both cases, the
total inspection time ti is inferior to the time consumed when inspecting the
full traffic payload, that is, when no sampling is applied.

Most importantly, it can be clearly seen that more inspection time can be
saved with per-flow sampling, especially for high accuracy values. However,
saving in inspection time should not be considered regardless of DP values.
As seen previously, to achieve a DP value of 99%, the first 10 packets with
full payload are required, per flow, while the first 1408 bytes of payload are
required per packet in each flow. Considering the points of Figure 4.12a),
where packet truncation length equals 1408, and of Figure 4.12b), where flow
detection number equals 10, these two points represent respectively the best
case scenarios (DP ≥ 99%) for the per-packet and per-flow sampling schemes
where the inspection time is optimized while DP values are maintained.

Obviously, less inspection time is required in the best case scenario for per-
flow sampling, which is more likely the case with the classification time. For
this reason, the total classification time for all flows in dataset CS-A1 using flow
sampling, t′′fc, –Equation 4.7–, and using the packet sampling t′fc, –Equation
4.6–, and the original one, tfc, –Equation 4.4– were measured for the best case
scenarios of each sampling scheme. The obtained results are shown in Table
4.210.

Consequently, at a DP level of 99%, the DPI classification time gain ob-
tained with the proposed per-flow sampler reached 7.01 % while it can barely
10The handling time, th, is included in the evaluated classification time.
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reach 1.5 % with the per-packet sampler.
Important implications that are relevant for the choice of the optimal DPI

oriented sampler can be inferred throughout this comparison:

(i) The classification bytes have proven to be regularly found within the
beginning of each flow, specifically, within the first 10 packets.

(ii) Per-flow sampling proved to be more convenient for DPI classification
than per-packet sampling. It outperformed per-packet sampling in terms
of providing higher DP , at the cost of less input inspection and reduced
inspection and classification times.

As a result, the optimal DPI sampler should thus include a per-flow based
sampling module focusing on the first flow packets. At this level, the combi-
nation of both sampling techniques will be explored to further minimize the
sample size, which is discussed next.

4.3.4 Combined Sampling Schemes

Combining per-flow and per-packet sampling aims to reach an optimized DPI
sampling scheme where the inspected payload size is further minimized. In
this case, two different inspection approaches are considered when combining
sampling schemes, where a subset of the packets are partially inspected per
flow. Namely, these approaches are non-contiguous and contiguous inspection
(see Section 4.1.2), referred to as, respectively, Method-I and Method-II.

In this subsection, both of these approaches will be detailed in the order
they were proposed and assessed. At the end of this section, a comparison of
all the analyzed approaches will be also provided.

The sampling policy to be used in both approaches is described as follows:

(I) Non-contiguous payload sampling (Method-I): In this mode, the payloads
of some selected packets in a flow are partially sampled and inspected.
Specifically, in the analyzed sampling policy, the p first packets are sam-
pled per flow, from which the b initial bytes per packet are considered.
Therefore, this method is the straightforward combination of the per-flow
and per-packet policies previously assessed11.
As per the analogy presented in Section 4.1, the sampled payload chunks
will be non-contiguous since they belong to disparate packets. The in-
spected payload size, I, will be:

I = p ∗ b (4.8)
11Per-packet (Section 4.3.1) is a particular case of non-contiguous payload sampling for p

equals to the number of all packets in the flow.
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As such, the non-contiguous payload sampling scheme in Method I can
be defined as: ”first b bytes from each of the p first packets per flow”

(II) Contiguous payload sampling (Method-II): In this case, the information
considered for the inspection are the c initial bytes of the flow. There-
fore, the basic unit for the input data is the flow itself, as opposite to
the previous methods in which the packets are the basic elements to be
sampled. Thus, the cumulative size of the continuously sampled payload
is counted, starting from the beginning of a flow, i.e., the first byte of
the first packet payload in the flow, till it reaches the established value,
c, independently of the number of processed packets12.
As per the analogy presented in 4.1, the sampled payload chunks are
contiguous, as single packets will not be subject to any payload sampling.
The only exception to this is the last sampled packet, whose payload
might be partially sampled and inspected.
In this mode, the inspected payload size, I ′, will obviously have the same
value of c. If we differentiate between both directions in the flow, it can
be expressed as:

I = c = cu + cd (4.9)

being cu the number of contiguous bytes sampled in the up direction,
and cd the number of contiguous bytes sampled in the down direction13.
This differentiation is supposed to highlight on the flow direction that is
contributing the most in the classification process, which is particularly
relevant for those cases where the classifier is unable to capture traffic in
both directions.
As such, the contiguous payload sampling scheme can be summarized as:
”c initial bytes per flow”.

Combined per-flow and per-packet sampling is supposed to decrease the
overall classification time for the whole traffic. When combined sampling is
applied (whether in contiguous or non-contiguous modes), the average time
required for analyzing a flow, t′′′fc, can be estimated a:

E[t′′′fc] = E[Np] · E[th] + E[t′′′i ] (4.10)

where t′′′i is the inspection time of I bytes per flow instead of the full payload
in the flow. It is supposed that (t′′′i < Np · ti).
12Per-flow (Section 4.3.2) is a particular case of contiguous payload sampling for c equal to

the cumulative size of the first Nmin packets in the flow.
13In this context, the up direction in UDP flows is assumed in the direction from the host

originating the first packet to the receiving host.
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Consequently, and due to inspecting less payload data, the time for inspect-
ing the total payload samples, t′′′fc, should be theoretically lower that the time
required for inspecting the full payload, tfc) –Equation 4.4–, that is, when no
sampling is applied.

In Section 4.3.3, experimental results have shown that the per-flow sam-
pling scheme can outperform per-packet sampling. Since non-contiguous and
contiguous sampling methods can be regarded, respectively, as particular cases
of per-packet and per-flow sampling schemes, it can be inferred that contiguous
sampling method should outperform non-contiguous sampling. However, this
assertion has to be validated through experimentation. For this reason, both
methods will be experimentally evaluated starting with Method-I.

4.3.4.1 Non-Contiguous Sampling Results (Method I)

In order to apply and evaluate non-contiguous sampling, the experimental
setup (see Chapter 3) is customized by conveniently modifying the dpi flows
tool including specific modules involving conditions on the inspected payload
size and its location within a flow. In this assessment part, the CS-A2 dataset
is used.

Flow DP values are shown as a function of the inspected payload length, I,
in Figures 4.13 through 4.16. DP results are shown for different values of the
sampling parameters (p, b). In order to show both the inspected payload size
in bytes and the corresponding sampling parameters, the p × b = I notation
is used for the horizontal axis label, in two dimensional graphs. Moreover, for
illustrative purposes, most relevant results are shown in a three dimensional
graph (Figure 4.14).

The graphs in Figures 4.13 and 4.16 show the percentage of detected flows
for each (p,b) pair on the horizontal axis. Figures 4.13 and 4.16 are shown as
histograms which helps in better illustrating critical values of (p,b) at which
most of the flows are being classified for each individual protocol.

The most relevant observation from Figures 4.13 and 4.16 is that the loca-
tion of the classification bytes is strongly protocol dependent.

In Figure 4.14, DP is averaged for all protocols as a function of the in-
spected payload bytes. As depicted in Figure 4.14.b, 91.50% of DP can be
reached when the inspected payload size is I = 8 × 1152 = 9216 bytes. Nev-
ertheless, averaging the DP for all protocols will be dominated by the ones
having the highest contributions in the dataset. In the case of CS-A2 (see
Chapter 3), DNS, HTTP and BitTorrent are the dominant ones.

With the unbalanced protocol distribution, biased results are most likely
to be obtained. For this reason, and in order to generalize the assumptions
about the location of the classification bytes, DP results are shown on a per
protocol basis in Figures 4.15 and 4.16.

Figure 4.16 shows DP values for various protocols as a function of the
inspected payload length.
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a) b)

Figure 4.13: Detection percentage as a function of the inspected payload
length using non-contiguous sampling for: a) P2P and b) HTTP

Figure 4.15 shows averaged DP values for each individual protocol. Specif-
ically, Figure 4.15 shows the required inspected payload length for DP values
above 90%. As shown, and according to dpi flows annotation, SSL is the
protocol with the highest requirements in the CS-A2 dataset, with I = 11, 264
bytes (≈ 11 KB).

As a result, sampling in non-contiguous mode showed that, according to
the used testbed, the classification bytes are located within the first 11 KB of
the flows for most protocols. Therefore, Method-I results validates again the
matching of the classification bytes at regular locations, specifically, within the
11 KB at the beginning of each flow.

One of the weaknesses of this sampling method is that the first packets
are still subject to partial inspection. Consequently, by further minimizing
the sampled payload size without truncating the first packets of a flow, the
classification results should eventually be enhanced. Therefore, DPI is assessed
next with contiguous sampling mode.

4.3.4.2 Contiguous Sampling Results (Method II)

The main purpose of the analysis shown in this subsection is to check whether
it is possible to obtain similar or better DP results, as compared to Method-I,
by inspecting less payload, that is, by further improving the sampling policy.

For this reason, the testbed customization used for this section consists
mainly on applying the contiguous sampling policy to the dpi flows tool.
The obtained results for flow DP are shown as a function of the inspected
payload length in Figures 4.17 through 4.19. Results are displayed for different
values of the sampling parameters both in the upload and download directions,
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a)

b)

Figure 4.14: Detection percentage as a function of the inspected payload
length using non-contiguous sampling for all protocols: a) three dimensional,
b) two dimensional

(Cu, Cd). In order to show both the inspected payload size in bytes and the
corresponding sampling parameters, the (Cu + Cd) = I notation is used for
the horizontal axis label, in two dimensional graphs. Additionally, some of the
results are shown in three dimensional graph (Figure 4.19).

Figures 4.17 and 4.18 are shown as histograms, which helps in better illus-



106 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

Figure 4.15: Non-contiguous sampling: Payload size to be inspected per pro-
tocol for DP above 90%

trating critical values of (Cu, Cd) at which most of the flows are being classified
for each individual protocol. Similarly, Figure 4.19 shows the DP as a function
of the inspected payload length, averaged for all protocols14. As depicted in
Figure 4.19, a 90% of DP can be reached when the first I=1024 bytes in a
flow are sampled. Figure 4.20 shows the required inspected payload length for
obtaining DP values above 90% for most relevant protocols.

Again, as in Method-I, SSL is the protocol with the highest requirements,
with an average of 2,848 bytes (≈ 3 KB) per flow. The first observation from
the experiments is similar to that noted for Method-I: the location of the
classification bytes is protocol dependent, as shown in Figures 4.17 and 4.18.

Using Method-II, the obtained experimental results showed that the clas-
sification bytes are located within the first 3 KB of a flow for most protocols.
Therefore, this method validates again the hypothesis that the classification
bytes are found at regular locations within the flows. Furthermore, in this case,
the amount of data to be analyzed is smaller (1/4 ratio) than with Method-I.

Up to this level, a comparison of the obtained results, as shown next, is
required to show which method locates the classification bytes accurately and
should thereby, lead to the optimal DPI sampler.

4.4 Comparison of Combined Sampling Policies

In a preliminary evaluation, it seems clear that contiguous sampling is prefer-
able, compared to non-contiguous sampling, when the volume of data to be
14Except for DNS, whose results are separately shown in Figure 4.18.
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Figure 4.16: Non-contiguous sampling: Results for various protocols as a
function of the of the inspected payload length: a) BitTorrent,b) Gnutella,c)
Mail POP,d) Mail SMTP, e) NTP, f) DNS, g) SSL, h) SSH and i) FTP

analyzed is considered. Nevertheless, a more detailed comparison including
the computational costs is required.

For this purpose, a measure of the associated computational cost has been
conducted to assess contiguous and non-contiguous sampling schemes.

Figure 4.21 shows the total inspection time tfc for dataset CS-A1 as a
function of the inspected payload size for both sampling methods (Method-I
and Method-II) v.s. the full payload inspection case.

In Figure 4.21, the classification time required the full payload case is in-
variant in function of the inspected payload size used by the proposed sampler.
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Figure 4.17: Histogram of DPI classification detection percentage for P2P
protocols as a function of the inspected payload size using contiguous sampling

As such, it is shown as a straight line to help in comparing the classification
time with Methods I and II.

As shown in both graphs of Figure 4.21, the inspection time increases with
the inspected payload size and it is always inferior to the time consumed when
inspecting the full traffic payload. However, the overall total classification time
consumed with Method-II (Figure 4.21b)) is lower than that with Method-I
(Figure 4.21a)).

Computational results should be also regarded from a classification point of
view. For this reason, DP results obtained through Figures 4.15 and 4.20 are
summarized in Table 4.3 for all protocols in the CS-A dataset together with
computational results.

In summary, to achieve DP values above 90%, less volume of inspected
payloads is required when using contiguous sampling (I = 1792 bytes) than
when using non-contiguous sampling (I = 9216 bytes). Considering the points
of Figure 4.21a), where inspected payload size equals I = 9216 = 8×1152, and of
Figure 4.21b), where flow detection number equals I = 896 + 896 = 1792 these
two points (highlighted in red) represent respectively the best case scenarios
(DP > 90%) for non-contiguous and contiguous sampling methods.

From this standpoint, contiguous sampling obviously outperforms non-
contiguous sampling in terms of the required payload inspection time which
should be the more likely the case with the classification time. For this reason,
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a) b) c)

d) e) f)

g) h) k)

Figure 4.18: Results for various protocols as a function of the inspected
payload length for contiguous sampling mode: a) BitTorrent, b) Gnutella, c)
Mail POP, d) Mail SMTP, e) NTP, f) DNS, g) SSL, h) SSH and i) FTP

the total classification time for the whole dataset CS-A1 using both methods
I and II, t′′′fc, –Equation 4.10–, and the original one, tfc, –Equation 4.4– were
measured for the best case scenarios in each sampling scheme. The obtained
results are summarized in Table 4.315.

Based on Table 4.3, it can be clearly seen that the best sampling scheme
for DPI, compared to other sampling methods, can be achieved with com-
15The handling time, th, is accounted as part of the evaluated classification time.
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a)

b)

Figure 4.19: DPI classification detection percentage as a function of the
inspected payload size using contiguous sampling, for all protocols (except for
DNS): a) three dimensional and b) two dimensional

bined sampling in contiguous inspection mode (Method-II) where more 95% of
flow DP can be maintained with a classification time gain of 12.47% for and
inspection time gain of 93.73%.

Based on Table 4.3, Method-II will be the basis for the recommended op-
timal sampling policy for DPI classification tools, as proposed next.
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Figure 4.20: Contiguous sampling: Payload size to be inspected per protocol
for DP above 90%

Table 4.3: Comparison between best case scenario results for sampling meth-
ods: Method-I and Method-II

Sampling
Method Payload Flow

DP

tfc

gain
ti

gain

(I) Non-
contiguous

sampling

I = 9216
Bytes

First p = 8 pack-
ets per flow, first
b = 1152 bytes per
packet

91.50% 9.01% 67.70%

(II)
Contiguous

sampling

I = 1792
Bytes

First Cu = 896
bytes UP, first
Cd = 896 bytes
DOWN

95.00% 12.47% 93.72%

4.5 Optimized DPI Sampling

At this point, all of the proposed sampling schemes have been individually
evaluated, based on which, basic recommendations on the optimal DPI sampler
should be presented.
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a) b)

Figure 4.21: Total classification time, tfc, for dataset CS-A1 as a function of
the inspected payload size for: a) Method-I and b) Method-II, v.s. full payload

4.5.1 Proposed DPI Sampling

The proposed sampling scheme is targeted at only inspecting the classification
bytes, which, according to the previous results, can be achieved through con-
tiguous sampling of the initial bytes in each flow, by analyzing only a few initial
packets. The remaining packets in each flow will be analyzed for packet han-
dling purposes, that is, basically for attributing them to the flow they belong
to.

One of the conclusions from the previous assessment is that the DP is
dependent on the inspected payload length and the protocol, that is, each pro-
tocol requires a different value to reach a given DP . Therefore, the location
of the classification bytes will be different for each protocol. This is not a sur-
prising result given the different protocol behaviors in exchanging their initial
signalling messages.

Consequently, it is possible to set up an upper limit for the number of
inspected bytes on a per protocol basis as to include the classification bytes
for this protocol. Thus, by adjusting this upper limit, the sampling policy can
be tuned to reach a required value of DP and to classify one protocol or the
other, by covering the associated classification bytes locations.

Formally, let A0 be a required flow DP value and {Bp} the upper limits
for the position of the classification bytes for each protocol p. According to our
experiments, there should exist a value for the inspected payload size, C0, such
that A0 is achieved when using contiguous sampling with minimum inspection.
Therefore, given the pair (A0, C0), the sampling policy can be stated as:

Given A0, a DP level to be maintained, the DPI sampler should contin-
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uously pick all payload bytes, starting from the beginning of a flow, up to in-
specting C0 bytes.

At this point, the question is how to select the value for C0, given A0. For
different protocols in a given set, C0 should be assigned to the highest positions
of the classification bytes, to be able to cover all remaining protocols with lower
positions. This condition is critical to be able to generalize one DPI sampling
scheme for all protocols.

For example, for the datasets we used, if the classification target is to only
detect P2P protocols, C0 can be chosen equal to 92 bytes to attain A0 = 92%
(see Figure 4.20). When all the protocols are targeted for classification, which
is the most common case, the protocol with the highest value for the upper
limit (SSL according to our results) should imply a value of at least C0 = 1792
bytes to attain A0 = 95%.

4.5.2 Advantages of the Proposed DPI Sampler

The proposed DPI sampling methodology can be easily be evaluated in terms
of DP and computational gain based on the results previously shown in Table
4.3.

Using the proposed sampler, 95% of classification DP could be obtained
for all protocols with 12.47% of classification time gain.

Another relevant issue is to compare our DPI sampler with other sampling
schemes. For example, one of the most referred works, EIM [Chen, 2009b],
which does not necessarily include the first packets of a flow, obtains a DP of
only 15% when using a sampling rate of 8 out of 13 packets, with a gain of 31%
in the inspection time. Clearly, the proposed approach outperforms EIM, that
provides a 93.72% of reduction in the inspection time with 95% of flow DP .

Moreover, with the proposed sampling scheme, the following advantages
could be obtained for DPI classification:

• Maintaining the classification results: With the proposed DPI sampler,
DP level can be maintained for all protocols up to a predefined limit of
choice.

• Enhancing the user privacy level: By minimizing payload disclosure, the
sampler can mitigate privacy breaching and legal concerns which are usu-
ally associated with the native DPI classification based on full inspection.

• Protocol consideration: Most sampling policies were general with no spe-
cific attention on the detection of a particular protocol (or class of pro-
tocols). For example, with EIM, packets are sampled regardless of the
classification bytes locations. However, by sampling the signalling phase
of each application flow, the proposed DPI sampler is more accommo-
dated, in this sense, to the characteristics of the traffic being classified.
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• Minimizing the inspection time: The DPI signature matching process
will be faster due to inspecting less payload data at predefined locations,
instead of applying full flow inspection. Most sampling policies provide
sampling rates, which implies that the number of sampled packets will
increase as long as the flow is under course. In the proposed sampler,
this is fixed to C0 bytes per flow, which yields higher computational
gains especially for large flows. This is of particular importance for cases
where packets holding the signatures are delayed or lost. This might be
the case for flows that are unknown when applying the DPI classifier on
the full flow payload (i.e. before sampling). As such, when the continuous
sampling threshold is reached, the flow will be early labeled as unknown
instead of further inspecting unnecessary packets.

• Defining minimal dataset payload capture: In order to create proper
ground truth results, the captured payload size for the traffic dataset
must be large enough to yield to the highest possible accurate classi-
fication. Most works in the literature used the first 16 to 80 bytes of
the payloads per packet in the tested datasets, since full packet payload
capture is constrained by data confidentiality. The tests made in this
chapter using a nDPI derived tool proved that these values are insuffi-
cient for obtaining valid ground truth results.

4.5.3 Discussion

In order to define an optimal DPI sampler, the work shown in this chapter
has followed a proof by experiment approach due to the lack of documentation
and due to the existing heterogeneity on many levels including: DPI tool,
application signatures, etc.

The most crucial part of our proposal is the ability to generalize one com-
mon value for the number of inspected bytes per flow, C0, since the relevance
and the applicability of this parameter have potential dependencies on the
other related choices, including:

• Traffic dataset choice: C0 depends on the tested dataset as it is specified
based on the protocol requiring the highest amount of sampled payload
size.

• DPI tool choice: The required payload size obtained with nDPI is too
large (C0 = 1792 bytes) compared to other DPI tools such as L7-filter
[Aceto, 2010], which reportedly requires only the first 32 bytes. Ap-
parently, each DPI tool might incorporate different matching algorithms
and application signatures. In fact, L7-filter mainly relies on detecting
protocol patterns while nDPI incorporates other helper techniques such
as statistical analysis and finite state machines to enhance the DP . Ac-
cording to the available evidences, this is affecting some results, especially
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those related to the packet truncation method. Nevertheless, L7-filter
recognizes fewer protocols and is nowadays obsolete. This is particularly
relevant for P2P protocols, which are the hardest ones to detect and were
not included in L7-filter.

As a result, generalizing one consolidated DPI sampling scheme (i.e. one
value of C0) requires in turn a consolidated DPI validation tool. Nevertheless,
the presented recommendations on DPI sampling can be generalized regardless
of the DPI tool of choice and the tested dataset.

This chapter gives end to the payload assessment and optimization part.
One of the major outcomes of this part is the underlined discriminative power
of the first exchanged packets during the establishment of a flow belonging
to a certain application, a characteristic that seems to be intrinsic for most
application protocols.

In the next chapters, though a relatively different discipline in traffic clas-
sification is addressed (blind classification), we attempt to make use of the
experience gained throughout this chapter with DPI assessment.

Specifically, the next chapter shows a proposed blind classifier that explores
the first exchanged application layer messages, instead of the payloads of the
IP packets, at the beginning of each session. Exploring the traffic properties in
the same zone where application signatures are located inside a flow is one of
the main motivations of the blind classification proposal presented in the next
chapter.
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Chapter 5

Network Traffic Application
Identification Based on
Message Size Analysis

In this chapter we present a new blind, efficient and accurate method to identify
the application protocols through the analysis of the sizes of the messages
exchanged between application-level processes. The suggested method is blind
and falls in the category of quintuple-centric classification, where the classified
targets are micro-flows (often simply called flows), identified by the quintuple
(ip1, port1, ip2, port2, transport-protocol).

As we stated in Chapter 2, the selection of a set of traffic parameters is
a strategic choice for traffic classifiers, especially blind ones, which rely on
non-payload traffic features usually extracted at the network and transport
layers of the Open System Interconnection (OSI) model [Khalife, 2014, Moore,
2005a]. Ideally, the selected features should be discriminative, immune to
network dynamics and obfuscation techniques, while still protecting the user
privacy. In [Khalife, 2014] we presented a survey of traffic classification meth-
ods and showed that most of them use non-payload features, usually extracted
at the network and transport layers of the OSI model [Khalife, 2014, Moore,
2005a].

A blind classifier should better use input features that are resilient to the
diversity in the underlying network technology, as well as jitter, congestion
and other random phenomena. In this sense, individual packet sizes depend
on the network technology’s Maximum Transmission Unit (MTU), and, on the
other hand, packet interarrival times are sensitive to jitter. Another aspect of
input resilience concerns traffic obfuscation. For one, the issue of port number
obfuscation is well known and admitted by the research community; so that
classifiers based on port numbers are considered obsolete. Concerning packet
sizes, it was reported in [Iacovazzi, 2010] that some applications use padding to
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tamper the packets and evade packet-size based classifiers, and in [Wu, 2012]
that packet sizes and many other traffic features exhibit similar distributions
through different application protocols (e.g. packet size distributions of Bit-
Torrent and HTTP). In [Yang, 2012], where a Bittorent traffic identifier was
presented, the authors reported that the first three messages of BitTorrent
handshaking have distinctive size properties, but unfortunately they are not
transmitted in single packets; they are rather divided into several packets for
the purpose of obfuscating packet-size based classifiers. As a conclusion, the
authors recommended the use of messages instead of packets to detect the size
features.

Application-level messages are not totally immune to the above mentioned
variations and obfuscations. However, among the commonly used features,
they present the highest resilience, together with the highly desirable property
of being derived directly from the communication of application entities, and
as such, they permit to look straight to the target, the applications they are
supposed to identify.

We present a blind, quintuple centric traffic classifier based on the sizes
of application-level messages, as observed at the transport layer. The aim is
to classify flows (quintuples) through the analysis of the ”message-sequence
patterns”. Although the keyword message designates data units exchanged
at the application layer, we show that the sizes of these messages can be ex-
tracted from layer 4 data headers, without actually inspecting the payloads
of the messages. We then show by experience that by applying a supervised
Bayesian analysis to the sequence pattern (sizes, directions and positions of
the exchanged messages) we can identify the involved application with good
accuracy.

Although at an early stage, it is useful to provide a preliminary discus-
sion of the main novelty of this work, that is, message-size analysis, and the
motivations that lead us to build and evaluate a blind classification method
based on this feature. To the best of our knowledge, the message-size feature
has not been sufficiently investigated and its potential remains to be revealed,
although it has occasionally appeared in the literature, as we will see in the
related work section. In fact, most if not all of the previous similar work has
focused on the analysis of packet sizes, occasionally combined with heuristics
exploiting timing information.

Our main critic to previous work on packet size analysis is that we did
not find enough comprehensive effort to interpret the feature in the particu-
lar target context of network application identification. We have come to the
conclusion that most of the mentioned work aimed to experiment standard
statistical methods to the ”obvious” available feature (packet-size, eventually
timing information), privileging the technical aspects belonging to the science
of data analysis, while almost neglecting the necessity to weigh the ideas and
the results in the specific context of the layered protocol architecture. This
point contrasts with our methodology, as will be better clarified when we pro-
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vide an insight into the message-size feature with a particular regard to the
way network application protocols are usually designed. For instance, we can
remind two main characteristics of the universal layered protocol architecture:

1) Application-level processes exchange messages, not packets; the latter
are subject to segmentations and retransmissions freely decided by the
transport layer in the context of reliable connected transport.

2) Application protocols are designed around methods, which are the basic
semantic units for communication at the application level. Accordingly,
these methods are the generators of the observed messages, and a com-
prehensive study of the characteristics of these methods is essential to
pave the way for a classifier that efficiently exploits the generated obser-
vations.

Arguably, application-level messages are not totally resilient to random
network events and to obfuscation techniques. However, compared to other
commonly used features, such as packet sizes and inter-packet times, they
present the highest resilience and the highly desirable property of being derived
directly from the communication of application entities. As such, they permit
to look straight to the target, the applications they are supposed to identify.

Finally, it is important to stress that the novelty of this work is not re-
stricted to the use of message sizes as the main discriminative feature for
classification. Indeed, the classification method that we will suggest is not
a reform of previous classification techniques by simply substituting packet-
size observations with message-size observations. The road map we followed
starts with a comprehensive insight into the application-level messages and to
the way they are generated in the light of application-level protocols and the
way these latter are designed. The proposed classifier is built on top of this
insight, through the definition of appropriate topological and statistical mod-
els, and the application of Bayesian and machine-learning techniques that are
most convenient to these models.

The road map of the approach is reflected by the structure of this chapter.
After a survey of related previous work from the literature, with particular
attention on similarities and contrasts with respect to our method wherever
appropriate, we will proceed as follows:

• First, an insight into application-level protocols and process-level mes-
sages is made.

• Based on it, a definition and normalization of message size vectors and
an appropriate metric distance to assess their degree of similarity are
proposed.

• Then, to build those parameter vectors, a method to extract the sizes of
the messages from TCP/IP headers is described.
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• Next, we address the definition of statistical models for the message size
vectors.

• The proposed classifier architecture is described next. It is based on
Markov models, which are used to represent the generation of the mes-
sages by the different applications. Obviously, both models, i.e. statis-
tical model for the vectors and the Markov model, should be properly
trained in order to build a profile for each class. Those profiles are then
used to classify flows by a naïve bayesian classifier.

• Finally, the experimental results are shown.

• As a final remark, some conclusions and future work are outlined.

5.1 Related Works

It is widely admitted that payload based techniques, namely DPI [Klaus, 2009],
have the highest classification accuracy thanks to their ability to inspect the
packets’ payloads and match discriminative application signatures. In [Lu,
2014] a hybrid method combining port numbers and packet inspection was
suggested. However, classification based on port numbers is obsolete since
malicious applications can use arbitrary port numbers, including standard ones
for sake of obfuscation. Moreover, packet inspection breaches the users’ privacy
and fails to process encrypted payloads. Additionally, the need to analyze the
whole payloads of every packet in the network represents a big challenge from
the computational point of view.

Blind classifiers rely on the analysis of patterns of traffic observed at the
transport layer without inspecting the packets’ payloads. This grants them
the ability to deal with obfuscation [Zink, 2012], encryption and tunneling
[Mujtaba, 2009], as well as user privacy rules, at the expense of some sacrifice
in accuracy. Blind classifiers usually require less computational power than
DPI classifiers, mainly because the latter have to process a larger amount
of data. The experience has shown that blind classifiers are well suited to
detect non-standard applications (e.g. P2P, BitTorrent [Zink, 2012]), which
are intrinsically hard to detect due to their decentralization and dynamicity
and especially their use of obfuscation and private, non-standard techniques.

Various blind traffic classification techniques are analyzed and experimented
in the literature, mainly falling in two categories: host based techniques, that
classify host activities by analyzing interaction schemes [Karagiannis, 2005];
and quintuple-centric techniques that classify flows based on key features ob-
served at layer 4.

Examples of the latter category include [Zander, 2005, Tabatabaei, 2012,
Gu, 2010, Zhenxiang, 2011, Erman, 2007a, Auld, 2007, Yildirim, 2010, Crotti,
2007, Wang, 2010, Li, 2008, Dainotti, 2008, Huang, 2009] and [Wang, 2007].
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These features typically include the flow size and duration, the packet sizes, the
packet interarrival times [Crotti, 2007, Wang, 2010], and so on. Our work falls
in the latter category, with the distinction of using application-level messages
instead of packets, while ignoring interarrival times.

Different Internet applications present different distributions in their packet
sizes [Wu, 2012], and many classifiers use this property. Some use simple statis-
tical techniques [Yildirim, 2010, Crotti, 2007, Wang, 2010] such as PDFs while
others use advanced ones such as application profiling [Wang, 2009b] or ML
[Zander, 2005, Tabatabaei, 2012, Gu, 2010, Zhenxiang, 2011, Erman, 2007a,
Auld, 2007, Li, 2008, Dainotti, 2008, Huang, 2009, Erman, 2007b, Moore,
2005b]. Some authors [Khalife, 2014, Zhenxiang, 2011, Erman, 2007a] sug-
gested Bayesian supervised classifiers, especially naïve ones, as they are partic-
ularly characterized by their low complexity, fast training and computational
efficiency.

Various relevant ML approaches can also be found in the literature. K-
means [Erman, 2007b] and AutoClass in [Zander, 2005] were reported to iden-
tify some P2P applications with up to 80% of accuracy. Using ANNs in [Gu,
2010] and SVMs in [Tabatabaei, 2012] yielded up to 85% accuracy for detecting
a set of P2P applications. KNN algorithm provides 90% of reported accuracy
[Huang, 2009] for some known applications including BitTorrent. However,
the long training time and high complexity associated with most supervised
learning algorithms (ANN and SVM), the high storage and computational re-
sources, associated with others (i.e. KNN) implies a low scalability and a lack
of generalization capabilities regarding the monitored network and the tem-
porary evolution of the traffic. On the other hand, despite the high reported
accuracy, only a very limited set of protocols have been checked in these con-
tributions. At the time this work was conducted, Rizzi et als. [Rizzi, 2013]
proposed a neuro-fuzzy classifier with low structural complexity, yet compara-
ble results to SVM. There are two major differences to note with this work.
First, the former uses packet sizes and interarrival times as features, while
our method uses message sizes and ignores the timing data. Second, in the
context of network traffic, new applications appear frequently, and a method
based on independently ”profiling” the applications is highly desirable. Our
method follows a profiling approach, where the training consists of profiling
each application standalone.

Bayesian techniques, as in [Zhenxiang, 2011, Auld, 2007, Moore, 2005b],
have particular simplicity and low computational resource requirements [Khal-
ife, 2014]. Given an element, characterized by the observation of its features,
these techniques estimate the probability that a class generates such an ob-
servation and label the element with the class that provides the highest prob-
ability. As such, these methods train very quickly, have low complexity and
require reasonable computational resources. However, the main characteristic
of naïve Bayes classifiers, which is the reason behind their low complexity, is
the assumption that the different features are independent and have standard
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Gaussian distributions under the normality assumption. To overcome some of
its limitations, the naïve Bayes model has been subject to many enhancements,
for example through incorporating neural networks [Auld, 2007] and payload
inspection [Zhenxiang, 2011].

On another approach, the work in [Wang, 2009b] suggested identifying
applications through the detection of the Longest Common Subsequence in
their packet sizes. Reportedly, the idea was successful on a specific set of
four P2P applications (Maze, Thunder, PPLive and Feindian). More general
results are not available, and some preliminary experiments carried out at
our lab did not show such packet-size signatures in a significant number of
applications, even with a reduction of the alphabet by rounding or clustering
methods. Although many applications have some discriminative packet sizes,
the majority of application methods rather generate variable sized packets that
are better described with probability distributions than with discriminative key
values.

In this work, our proposed system analyzes the sizes of application layer
messages using a Bayesian approach to label each flow from the probabilities
provided by a set of Markov models, each one associated to a given protocol.
To the best of our knowledge, we are the first to combine the discriminative
power of messages at the application layer with the simplicity and performance
of Markov-based classifiers and the use of Multi-Peak Gaussian distributions
to characterize message sizes. Our classifier analyzes messages based on their
size, their direction and their specific positions in the flow.

Few approaches analyzed traffic properties at the application layer without
inspecting the payloads. Probably the most related previous works to this one
are [Waizumi, 2011] and [Jaber, 2009]. In [Jaber, 2009], packets sizes are ana-
lyzed instead of message sizes. In the training phase, the authors used K-means
to classify the distributions of the packet sizes and provide one global cluster
model. Then for each target application, and for each packet position in the
flow, a probability was assigned to each cluster. The classification process ex-
amines the packet sizes as they come and computes accordingly the probability
of the flow (packet-size vector) to be generated by an application. The flow is
then assigned to the application providing the highest probability in a naïve
Bayesian way. In [Jaber, 2011], the same authors propose an enhancement via
the use of the packet interarrival times as a feature. Although a previous fea-
ture analysis in [Erman, 2007a], using backward greedy search, reported that
”features that have a time component such as duration, interarrival time, and
throughput were found not to be useful by the feature selection algorithm”,
the proposal in [Jaber, 2011] was to subtract the observed ”monitor-to-server”
round-trip-time from the inter-packet times, and as a result, this feature is
argued to become meaningful when observed at approximate positions in the
flow. Although the reported results suggest a potential usefulness of the inter-
packet time feature, the suggested technique permits to cope only with the
randomness of host locations. The authors admittedly neglected the effect of
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variations in network conditions and jitter, and it is not clear to which ex-
tent this assumption is valid under various network conditions and congestion.
Also, the evaluation, both in [Waizumi, 2011] and [Jaber, 2009], was applied
to only five standard applications (HTTP, SMTP, HTTPS, SSH and IMAP).
As a main difference, packet time information is not used in our model. Other
key differences of our work with [Jaber, 2009] are the use the message level
sizes instead of packet sizes and the use of a per-application profiling model
for clustering the message sizes.

The work presented in [Waizumi, 2011] has a common point with ours
in the fact that it analyzes the message sizes for the classification. Despite
of a different mathematical model, the key difference is that [Waizumi, 2011]
quantifies the message size in terms of number of packets. Our experience
showed that this coarse-grained quantification overlooks important and mean-
ingful characteristics of the message. For instance, following this quantification,
all messages involving one sole packet are considered similar. This does not
permit to identify key message sizes, especially those involved in some applica-
tion level handshaking and methods, such as SMTP ”HELO”, HTTP ”GET”,
FTP ”USER” and so on. These methods often generate one-packet messages;
still their expected sizes are different and provide potential information for
the classifier. For these reasons, our quantification of the message size is fine
grained, based on the total number of bytes in the message and not only the
number of packets.

Finally, we should note that a trend is emerging to monitor message sizes
as the main source of information on encrypted traffic flows. This is noticeable
in [Pironti, 2014] and [Iacovazzi, 2014], and it reveals again the importance of
the message size feature for flow classification.

The main contributions in this work are:

• Message size vectors: the use of message-size parameters instead of packet-
size parameters. Most previous work on identifying applications from
packet lengths used the (non-empty) packets to generate the parameter
vectors, based on their sizes and direction. Although we use the same
notion for the direction, we followed a different approach for the sizes
and the definitions of the parameter vectors, which removes from the
process-level messages the ”’noise’ induced by layer-4 segmentations, re-
transmissions and acknowledgments.

• Message size scaling: definition of a normalized message size measure
and a metric distance that is appropriate to their semantic meanings in
network communications.

• Gaussian mixture: the use of a Multi-Peak Gaussian model (MPG) for
estimating the PDFs of the vectors’ components.

• Profiling: the model is simple and extensible with minimal effort, as
it consists of profiling each application standalone. The addition of a
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new application protocol requires rerunning the training procedure on
a sample set to extract its parameters, without any need to review the
other applications’ model parameters and sampled data.

• Testing: the model was tested on a relevant number of applications mix-
ing standard client-server and P2P protocols. Many previously reported
works were tested on a small and specific set of application protocols.
We tested our method on a dataset containing about 3 million flows and
18 application protocols, 10 using TCP and 8 using UDP.

5.2 Protocol Methods and Messages: an Insight

Since the application-level protocols are the classes of interest for network
traffic classification, it is important to point out some major characteristics that
are common to these protocols, especially those characteristics that have major
impacts on the patterns observed in the flows subject to classification. In this
section we point out some important characteristics that are most relevant to
our approach, since they justify the use of the message size sequence as a main
feature, and further motivate many decisions in the design of the suggested
classifier. The design of any application-level protocol involves the definition
of metadata units called Methods, which specify the syntax and semantics of
the messages exchanged between the application entities that use this protocol.
Our work was mainly motivated by this axiom, which implies that a good
knowledge of the methods and their characteristics should provide a good basis
for the recognition of a protocol. In the context of blind traffic classification,
this knowledge involves the sequencing of the methods as well as the sizes of
the messages they generate.

As we will see later, the basic building block of our suggested classifier is
an application profiler: a systematic machine-learning procedure that captures
the essentials of the methods of a given application protocol. All the protocols
subject to classification are profiled, separately, and the classifier uses these
profiles to find the one that best matches any flow subject to classification.

5.2.1 Protocol Methods

A flow belonging to some protocol X is a sequence of messages, where each
message is an instance of one and only one of the methods of the X proto-
col. This means that the methods of X are the generators of the messages
observed in any X flow. Examples of protocol methods are HTTP ”GET” and
”POST”; SMTP ”HELO”, ”MAIL FROM” and ”RCPT TO”; FTP ”USER”
and ”PASS”, etc.

Any protocol usually defines a set of methods dedicated to some handshak-
ing procedures. In most cases, these handshaking methods generate relatively
small messages, often transportable in one single packet. In this context, the
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definitions of message and packet coincide, so that a packet-based classifier
and a message-based classifier are likely to yield similar results. On the other
hand, some methods involve the transfer of large amounts of data; this data
transfer takes the form of a sequence of full-size packets flowing in one direc-
tion while empty ”ACK” packets flow in the reverse direction. A packet-based
classifier would consider this sequence as a sequence of unrelated packets, but
from the point of view of a message-based classifier, this sequence of packets
is merged into a single large message. It follows that the major difference
between message-size classification and packet-size classification is in the way
large messages (composed of more than one packet) are handled.

Since the methods are the generators of the messages, the question that
arises here is, how similar are the messages generated from the same protocol
method? The answer to this question is empirical and approved by experience.
Some methods generate fixed message sizes (i.e. Bittorent 1.0 handshake: 68
bytes), but in the general case, most methods generate variable size messages.
Most importantly, although the messages generated from the same method
may vary in size, the sizes are almost similar with some reasonable amount
of randomness. In general, the sizes have a distribution centered on a mean
value, and the normality assumption is statistically valid.

It is theoretically possible to profile a protocol by enumerating all its meth-
ods and estimating the Probability Distribution Function (PDF) for each of
them from sampled messages. However, a more practical approach is to esti-
mate these PDFs using an unsupervised learning procedure, eliminating the
need of any prior knowledge of the set of methods. The unsupervised training
procedure will be shown in a subsequent section, dedicated for the training of
the classifier. For instance, we should note that this approach is preferable
because it is practical to apply it on complex protocols, and it also permits to
handle undocumented protocols.

5.2.2 Sequence of Methods

In protocol design, the sequencing of the methods can be quite simple or quite
complex, according to the complexity of the protocol itself. In the simplest
case, the sequence of methods can be rigidly predefined, such as in the DNS
protocol where the flow is an alteration of the request and reply methods.
In the more general case, the sequence of methods is contextual, depending
on the scenario occurring in the application context. For example, HTTP is
a relatively complex protocol with many methods and no single predefined
sequence.

In practice, there always exist some implicit or explicit rules that govern the
sequence of methods, so that some sequences are more likely than others, and
some sequences are even impossible. As a result, the probability of occurrence
of a given method at a given position in the flow depends on the history of the
flow, namely on the methods that preceded it. This raises the question of how
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to model this dependency. There are many ways to address this issue, each
leading to a different model and a different level of complexity.

An obvious way to handle dependency is to represent each message size
vector as a single point in L-dimensional space, where L is the size of the
analyzed message sequence, and to apply some clustering to assess the sim-
ilarity between these vectors by their metric distance. The major drawback
of this approach is the so-called ’curse of dimensionality’ : huge amounts of
sample data would be required for training such a classifier, especially when
the dimension L grows above 3.

Another way to handle the dependency would be the definition of a first
order Markov model, where states represent methods and the transition matrix
reflects the probabilities of succession between the methods. A second order
Markov model would be capable of handling two-step dependencies, but at
the cost of an even higher complexity (more states and bigger matrix). In
fact, each additional level of dependency increases the model complexity and
moreover, it requires much more training data in order to estimate the various
parameters reliably enough.

The models mentioned so far are highly complex. At the other extreme
is the Ostrich model: ignoring the dependency altogether and assuming that
for each method, the probability of occurrence at any position in the flow is
the same, independent of what happened before reaching this position. Poor
accuracy is expected from the Ostrich model, because it treats all the messages
of a flow in a similar way, disregarding very meaningful information.

The solution we adopted is a compromise between accuracy and model com-
plexity. It implicitly handles the dependency by assuming the probabilities of
occurrence vary with the position in the flow. Indeed, application methods
occur at typical positions in network flows. Although this assumption is not
deterministic, it is statistically significant, especially at the beginning of the
flows, in the first exchanged messages which are often dedicated to handshak-
ing. The resulting model, that will be detailed later, is a first-order (observable)
Markov model where each state represents a position in the flow. The profiling
of a protocol consists of applying the training process to each individual state,
in order to capture the most occurring methods at this state as well as the
shapes of the messages they generate. The result of this training is a mixture
model that allows assigning a weight to each individual method; this weight
reflects its probability of occurrence at the given state.

A final note here concerns some particular behavior occurring in the FTP
protocol, where the handshaking occurs in one flow called ”the main connec-
tion”, while the data transfer (upload or download) occurs on a ”secondary
connection”, opened specifically for the data transfer method. The secondary
connection is identified by a different quintuple than the main one, and no
handshaking occurs in the resulting flow; the file transfer takes place immedi-
ately. As a consequence, a quintuple centric classifier will observe some flows
consisting of a single large message. As long as FTP is the only application
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that produces such a scenario, this is not problematic for the classifier. How-
ever, in the presence of other such applications, the classifier needs additional
information to classify the flows consisting of a single large message. In the
current status, one-message flows are ignored, and the classifier was tested on
flows that include at least two messages.

5.2.3 Visibility of Message Sizes from Transport Headers

It is possible to extract message size information from layer-4 headers, without
inspecting the payloads. A method to extract this information will be shown
in a subsequent section.

5.2.4 Message Size Scaling

The protocol methods are encoded inside the payloads, and we seek to establish
a blind classification method that does not investigate these payloads, but
exploits potential information from the sizes of the messages generated by the
methods. In order to be able to estimate the likelihood of a message to be
generated from a method, based on its size, we need a way to assess whether
two messages have similar sizes and to which extent. This is the role of the
metric distance that we should define.

The intuitive Euclidean distance between messages, defined as the ”absolute
difference” in terms of bytes, is a rather naïve choice because in topological
terminology, it possesses the ”translation invariant” property:

DE(x, y) = DE(x+ a, y + a) (5.1)

This property is not appropriate for our application, because it does not
fit well with the way the network applications messages are generated from
protocol methods. As an example, consider a data transfer message. The
transferred data might be a file of 20 Kbytes or 30 Kbytes. The absolute byte-
difference is 10 KB (big), but still, the two messages have the same semantic
meaning, and likely belong to the same method in any network application (i.e.
transfer of an icon or a small image). On the other hand, a ”HELO” message in
SMTP has a typical size of 30 bytes while a HTTP GET request has a typical
size of 300 bytes. The difference here is less than 300 bytes, but it is more
meaningful than the 10 KB difference in the above-mentioned image transfer.
The defined metric distance must point out that the same byte-difference is
more significant between two small messages than between two big ones. The
bigger the message, the less significant is the byte-difference.

Therefore, the metric distance defined on message sizes must consider rela-
tive differences rather than absolute differences. In other words, it should not
be translation invariant. For this reason, we will define later a transforma-
tion that normalizes the message sizes into the ]-1, 1[, together with a metric
distance that permits to assess the degree of similarity between any pair of
messages relatively to their sizes.
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5.2.5 Potential of Message Size Analysis for Identifying TCP
Applications

For TCP-based applications, message size analysis is expected to outperform
packet size analysis, because the former reflects what is really exchanged be-
tween application processes, while the latter is affected by transport layer seg-
mentations and retransmissions, and these can be considered as a source of
noise to the classifier. On the other hand, this assumption is not relevant in
UDP-based applications, because no segmentation or retransmission occurs at
layer-4, and the flowing packets are directly exchanged between end processes.
In this case, the messages are usually the packets themselves.

5.3 Flow Classification Based on Message-Size Vec-
tors

The classification method that we present is based on Markov models with a
training procedure that mixes supervised and unsupervised schemes to produce
a model for each application (model-per-class). The approach consists in con-
sidering the messages’ sizes as the productions (observations) of a first order
Markov model. The training of the models is achieved using randomly sampled
data from each application separately. It consists in estimating the PDFs of
the message sizes at given positions in the flow, with the underlying idea that
these messages are generated from (a-priori unknown) methods defined in the
design of the application protocol. We empirically assume that each method
generates messages with normally distributed sizes. Thus, each observation is
assumed to be generated from a Gaussian Mixture PDF, which is dependent
on:

• the application, and

• the state (position in the flow).

The parameters of the Gaussian mixture associated to each (application,
state) are interpreted as follows:

• Each peak represents a method in the design of the application protocol.

• The mean and variance associated to each peak reflect the distribution
of messages generated by the underlying method.

• Associated to each peak is a weight; this weight corresponds to the prob-
ability of occurrence of the underlying method at the given state.

Finally, when classifying traffic, the class associated to each flow will be that
of the model providing the highest probability. This probability is evaluated by
a näıve Bayes classifier that computes the Bayesian probability that a messages
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size sequence was produced by the model associated to a given application and
assigns the flow to the model (application) that provides the highest probability
score.

5.3.1 System architecture

The proposed system consists of three main components (Figure 5.1):

• Features Extractor: This module extracts, from each flow Fi, the
vector, Oi, of message sizes, sj ,

Oi = {s1, s2, . . . , sL} (5.2)

where L is a parameter of the system specifying the number of messages
to be considered in the classification process.

• Model Set: A set of N Markov models (one per application to be de-
tected), characterized essentially by the probability distributions of the
messages sizes expected at each state (position) in the flow. It is im-
portant to mention here that the underlying first-order Markov model is
simple and presents the same topology for all the applications (providing
one state for each message position), but the probability distributions for
the message sizes at each state differ and are specific to each application.
As we explained earlier, this emanates from the fact that the messages
are usually generated from the ”methods” of the application protocol.
The goal of these models is to provide the ability to compute, given an
observed vector, Oi, and a model, λn, the probability of observation of
the vector being produced by the model:

{P (Oi|λn)/1 ≤ n ≤ N} (5.3)

• Classifier: This is the decision module, which selects the application the
flow belongs to as that of the model providing the maximum probability

class(Fi) = argmaxn{P (Oi|λn)/1 ≤ n ≤ N} (5.4)

Therefore, the system uses a Maximum A posteriori Probability (MAP)
approach in which all the classes are supposed to be equally probable a priori.

A key aspect in the proposal is the evaluation of the observation prob-
abilities for message sizes. For this, as previously mentioned, multivariate
Gaussians dependent upon the state and the class are used as PDFs. That is,
we use a discrete Markov model in which the set of Gaussians associated to
the observable sizes is different for each (class, state) pair. While the Markov
model is discrete, the observable messages sizes are assumed continuous and
distributed according to a Gaussian mixture. Obviously, the training of the
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Figure 5.1: Diagram of the proposed system

system requires the obtention of each of these Gaussians for each of the models
from the training samples.

The details on the operation of each of the modules are described in the
next subsections while a section will be devoted for the details of the training
procedure.

5.3.1.1 Features Extraction

As previously explained, the first step to classify a flow is the extraction of the
features vector which will be used as the input to the models. For this, each
flow is modeled as a vector of relative numbers that parameterizes the sequence
of messages.

Specifically, each message is modeled by its byte length with a sign that
is positive if the message is generated by the flow’s initiator and negative in
the other case. To compute the message sizes, the TCP header information is
taken into account in order to track any sequence of packets that constitute
one message.

In fact, it is known that large data transfers, such as the transfer of an
image, a file, or an HTML document, are decomposed by TCP into many
packets according to the negotiated Maximum Segment Size (MSS), which
derives from the MTU of the underlying network. These data transfers can be
tracked by inspecting the layer-4 headers.

At the same time, tracking the layer-4 headers permits to:

• Remove retransmissions from the flow, which is desirable to improve
the accuracy and focus on the application-level messaging instead of the
”brute” packet flow.

• Remove ”pure acknowledgment” packets, which are relevant to layer 4
but have no relevance to the application level messaging.

The number of messages to be considered in the parameter vector, L, is
predefined globally for the system (or a maximum is fixed). Ideally, L should
be as low as possible in order to classify the flow as soon as possible and to
handle short flows. This factor should be selected during the training of the
system.
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Therefore, the vector generation method acts as follows. Given a flow,
Fi(a→ b), initiated by host a and directed to b, a vector, Oi, of L signed inte-
ger values, corresponding to the message sizes and their direction with respect
to the flow initiator, is built. TCP handshaking packets and pure ACKnowl-
edgment (ACK) packets are removed from the flow and not considered in the
vector. That is,

Oi = {s1, s2, . . . , sL}, sm =

 size(messagem), if messagem(a→ b)

−size(messagem), if messagem(b→ a)
(5.5)

being messagem the m-th message in the flow.
A distinction is made in the treatment between UDP and TCP flows. Obvi-

ously, in UDP flows, packets correspond to messages and there is no distinction
between the two concepts. However, as depicted in Figure 5.2 for TCP flows,
as long as the payload data flows in one direction, the payload sizes are cu-
mulated into the same message (the same vector component), until one of the
following occurs:

• A packet carrying data is detected in the opposite direction.

• A PUSH flag is detected in the TCP header. This flag usually indicates
that the sender process has finished its message. An exception is when
the receiver’s window is full, but this case is ignored in our approach.

• A packet that is smaller than the MSS is detected. This heuristic is based
on the assumption that large data transfers use full MSS packets until
the transfer is over or the window is full (the latter case is ignored as we
stated earlier). Therefore, a small packet usually indicates the end of a
message even if no PUSH is detected.

An important remark is that in some application protocols it is possible that
two consecutive messages follow in the same direction. Chatting protocols (i.e.
MSN) are obvious examples. This rule permits to detect such situations, and
makes an improvement over some previous work (i.e. [Waizumi, 2011]) where
all consecutive non-empty packets flowing in the same direction are considered
as one message.

5.3.1.2 Sequence Evaluation

The proposed method assimilates each application as a pure left-to-right Markov
model (Figure 5.3), where each message in turn is generated from a state of
the chain: the message at index 1 corresponds to state 1, the message at index
2 corresponds to state 2, and so on.

A set Λ composed byN models, one per considered application, is estimated
during the training of the system



132 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

Figure 5.2: Extracting application layer messages from a TCP session

Figure 5.3: Model topology for a single application.

Λ = {λn/1 ≤ n ≤ N} (5.6)

As part of the training of the models, a set of PDF for the observations, G,
is estimated. Each PDF is associated to a model and a state,

G = {g(n, l)/1 ≤ n ≤ N, 1 ≤ l ≤ L} (5.7)

Therefore, for an input vector, Oi, the system has to evaluate all the proba-
bilities of generation of the sequence according to each of the considered models
(applications), as per Equation 5.3.

As a pure left-to-right model is assumed, only the observation probabilities
have to be evaluated. Thus, the probability of vector Oi to be generated from
application n can be computed as the product of the observation probabilities
on all indexes

P (Oi|λn) =
∏L

l=1
P (sl|g(n, l)) (5.8)

It is worth mentioning that the used modeling assumes that the sizes of the
messages at each state (index) are independent from each other. That is, the
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probability of having a certain message size at position l is independent on the
sizes observed at previous positions l − 1, l − 2, . . . , 1.

5.3.1.3 Classification

A flow, Fi, will be classified as belonging to the application whose associated
model, λapp, provides the maximum probability for generating the observations
from the flow, Oi, that is,

class(Fi) = argmax
n
{P (λn|Oi)/1 ≤ n ≤ N} (5.9)

This probability of the model given the sequence of observations is not
directly provided by the set of Markov models, but the opposite, P (Oi|λn),
that is, the probability of the sequence given a model. By applying Bayes’
rule,

P (λn|Oi) = P (λn)P (Oi|λn)
P (Oi)

(5.10)

Assuming that all the models are equally probable a priori, the decision
rule can be rewritten as

class(Fi) = argmax
n
{P (Oi|λn)/1 ≤ n ≤ N} (5.11)

Although the prior class probability, P (λn), might be predefined with prior
knowledge on the network traffic subject to classification, and hence can be set
as a parameter to the method, the proposed approach and the results that we
will show assume no such prior knowledge.

There are three reasons behind this. The first reason is that prior proba-
bilities may not be stationary, but change over time as users come and go or
engage in different kinds of network activities. The second reason is that these
probabilities are highly host dependent and also environment specific. The
third reason comes from the way in which the performance of the classifier will
be assessed.

As will be detailed in later sections, the evaluation of the system is driven
by the ”worst case” detection rate. That is, we consider as a main criteria of
performance the worst case detection rate, which is defined as the percentage
of correctly identified flows from the application that yields the minimum such
percentage.

Following this logic, the classifier should not exploit prior statistics by fa-
voring the predominant applications. This is especially true when a classifier is
evaluated on datasets that have a largely unbalanced number of elements from
each class, as is usual in real traffic, because favoring the predominant appli-
cation misleads to optimistic results. For these reasons the prior probabilities
are ignored and assumed equal for all applications.

In order to evaluate the confidence on the classification of each individual
flow, a probability for the flow belonging to each application is set as
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P (Fi ∈ class(c)) = P (Oi|λc)∑N
n=1 P (Oi|λn)

(5.12)

An ideal system will provide a probability value of 1 for the correct class
and 0 for the incorrect classes. Therefore, the higher the value, the higher the
confidence in the classification provided and a better operation of the system.

Furthermore, this measure could be used to train the system instead of
the most common case in which the training focuses just in maximizing the
production probabilities for the correct classes (maximum mutual information
(MMI) vs. Maximum Entropy (ME) training).

5.4 Training of the System

The method used for training the models plays a fundamental role in the
proposed system. Up to now, its core is a standard Markov model based
recognizer applied to features vectors composed by sizes of the messages.

As the topology and transitions of the Markov models are fixed by design,
the parameters to be obtained through training are the PDF to be used, G.
Therefore, it is in the choice and estimation of these PDF where the major
novelty of the proposal resides. For this, as previously mentioned, we propose
to use model and state dependent PDF based on multi-peak Gaussians.

The fundamentals for using multi-peak Gaussians instead of simple Gaus-
sians are related to the proposed modeling. As previously mentioned, each
model is supposed to represent a single application (protocol) behavior. But
most of the protocols can be split in many methods with different behaviors re-
garding message sizes. Therefore, the model would be a mix of all the observed
methods from a single application.

To account for this, different Gaussians are associated to each state of the
model, as will be detailed in Subsection 5.4.2. Anyway, it is worth to mention
that no differentiation between those methods will be done explicitly nor for
training the system nor for evaluating a sequence.

Estimating one single Gaussian for every model/state would be done by
using just all the samples associated to each model/state and fitting the pa-
rameters. This assignment would be almost trivial as the training samples
should be labeled and each observation is directly associated to a state in the
Markov model according to its position in the sequence. But, as multiple
Gaussians are to be estimated for every state, a method to assign a given ob-
servation to one or many of them is required. For this, the proposed solution
uses a quantization and normalization of message sizes based on a proposed
metric providing a weighting of the belonging of an observation to different
distributions.
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Figure 5.4: Function used to normalize the message sizes (B=350).

5.4.1 Metric and Normalization of Message Sizes

In Section 5.2.4, we explained that a metric distance must be defined in order
to assess the similarity between two observed messages, and that such a metric
distance should not be translation invariant, but more tolerant toward large
messages than toward small ones. In other words, it must take into account the
fact that the same byte-difference is more significant between two small mes-
sages than between two big ones. The bigger the message, the less significant
is the absolute byte-difference.

In the proposed approach, the message sizes are ”normalized” into the
]−1, 1[ space using a transformation that permits to scale the difference between
two messages, in terms of bytes, relatively to the sizes of these messages. The
transformation, T , is defined as:

T (s) : Z∗ → ]− 1, 1[

s→ s′ = s
(B+|s|)

(5.13)

where B is a positive constant that represents the middle of the space, that
is, a threshold for considering a message as big or small. A typical value, as
described in the literature, is around 500 bytes. In our experience, any value
from 300 to 600 bytes would not dramatically change the results. Figure 5.4
graphically shows the proposed rescaling function.

After rescaling the sizes of the messages, a metric distance, D(), between
two messages with sizes s1 and s2 is derived from their signs and the absolute
difference between their normalized sizes, as:
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D(s1, s2) =

 1 if s1 · s2 < 0∣∣∣ s1
(B+|s1|) −

s2
(B+|s2|)

∣∣∣ otherwise
(5.14)

Notice that the distance between a negative value and a positive one is set
to the maximum of 1. This property is motivated by the fact that, in network
communication, two messages flowing in opposite directions are semantically
different even if both have similar sizes.

The defined distance is a metric distance that verifies the following prop-
erties:

Range ∀x, y ∈ Z∗, D(x, y) ∈ [0, 1]

Identity ∀x, y ∈ Z∗, D(x, y) = 0⇔ x = y

Symmetric ∀x, y ∈ Z∗, D(x, y) = D(y, x)

Triangular inequality ∀x, y, z ∈ Z∗Z∗, D(x, z) ≤ D(x, y) +D(y, z)

Translation D is not translation invariant
(5.15)

This metric distance permits to assess the degree of similarity between any
pair of messages from the point of view of the application-level protocols that
generate them.

5.4.2 Gaussian Mixture Model

Once a distance with the desired properties is set, a clustering of the observed
message sizes is made in order to account for different methods of a proto-
col using this distance. In this section, we propose and justify a model for
the Probability Distribution Functions (PDFs) of the observed message sizes.
There are three observations that drove the derivation of the model; in what
follows we will recall these observations and discuss the derivation of the model.

• Observation 1 (re-statement). Application layer messages are generated
from methods defined in the design of application-level protocols. Each
observed message is an occurrence of one of these methods.

• Observation 2. Each method generates similar message sizes with some
reasonable amount of randomness. This similarity is best expressed in
the sense of the metric distance defined previously, which is more tolerant
toward large messages than small ones. Accordingly, we assume that
the normalized message sizes generated from a method follow a normal
distribution, characterized by a mean, µ, and a standard deviation, σ.
Occasionally, a few methods, usually encountered in signaling schemes
(i.e. BitTorrent handshaking), generate fixed size messages (σ = 0).



CHAPTER 5. APPLICATION IDENTIFICATION BASED ON MESSAGE SIZE ANALYSIS 137

• Observation 3. Given an application and a state, the observed message
may be generated from any of the application’s methods, with some prob-
ability for each. For example, the HTTP-GET-request is generally more
frequent than the HTTP-POST-request; an HTTP-GET-response is not
likely to occur as the first message of an HTTP flow, etc.

Combined, observations 2 and 3 imply that the message-size distribution
is close to a multi-peak Gaussian mixture. For a given application/state, each
peak or cluster represents a method, with an underlying mean, µ, standard
deviation, σ, and a weight, w, which is the probability of occurrence of the
method at the given state.

5.4.3 Profiling the Applications

A supervised training approach for the proposed modeling would be based
on the enumeration of the methods for each application. With enough sam-
ples, each method would be analyzed individually and its parameters (µ, σ, w)
estimated. However, this task is likely impractical for several reasons being
the most relevant one the need for a huge volume of traffic labeled accordingly.
Therefore, an unsupervised approach based on clustering is designed to capture
the essentials of the most frequently occurring methods.

The aim of the clustering is, given an application, to provide a means
to estimate the number of methods and their statistical characteristics in an
unsupervised way. This proposal is similar to that in [Jaber, 2012], in which
the authors used K-means to find a global set of clusters from the packet sizes
coming from all the applications, and then to assign a probability to each
(application, state, cluster) triplet.

In our proposed model, a cluster is presumably associated to each individ-
ual method of each application protocol, and the training uses Expectation
Maximization (EM) of a Gaussian mixture. The training process, which ex-
tracts the clusters and their characteristics, is applied to each class separately
(a model-per-class). In a sense, this is a ”profiling” approach: the training pro-
cess applies the profiling routine to each protocol, and extracts its Gaussian
mixture PDF at each state. A few points are important to note here.

First, this approach is easily extensible to new classes. To add a new target
class to the classifier, it is sufficient to apply the profiling routine to samples
of the new class, without any involvement of the already profiled classes and
their sampled data. This advantage is particularly important in the context of
network traffic classification, as the number of network applications is usually
high, and new applications appear regularly on the Internet. This contrasts
to other approaches that use global profiles or models, as SVM or neuro-fuzzy
learning, such as in [Rizzi, 2013], which require rerunning the training process
on the entire sample set when a new class is added to the classifier. This
argument justifies the use of a maximum likelihood approach, such as EM for
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estimating the multi-Gaussian PDFs, though it is arguable whether SVM’s
”optimal separation” would yield a significant improvement on the classifier’s
accuracy. But this potential increase in the accuracy could be obtained at
the cost of increasing the specificity of the obtained models in relation to the
training dataset, which is not desirable.

Finally, the training approach is both supervised and unsupervised, but it
should not to be confused with mixed supervised/unsupervised training. It is
supervised in the sense that the flows are a priori labelled. On the other hand,
it is unsupervised in the sense that in the profiling phase, there is no prior
mapping of individual messages to the application’s methods.

5.4.4 Clustering and Estimation of Gaussian Mixtures

As previously stated, the aim of clustering is to capture the essential methods
and their characteristics for each application/state instance. In our experi-
ments, the method used to estimate the clusters is a combination of K-means
and Dempster’s EM. However, any method for estimating Gaussian mixtures
would be appropriate, such as a greedy learning method [Verbeek, 2003].

Given an application, n, and a position in the flow, l, the first stage of the
training uses iterative K-means to cluster the message-size samples. As usual,
the clustering is applied till a threshold for the distortion or a previously fixed
maximum number of clusters, K, is reached. The result after the clustering is
a certain number of Kn,l < K meaningful clusters.

The Kn,l meaningful clusters from K-means are used as a starting point for
EM algorithm. Each cluster is considered as a cloud around a peak in the multi-
peak normal distribution, and Dempster’s EM algorithm [Dempster, 1977] is
used to estimate for each cluster, Ci,n,l, the centroid, µCi,n,l , the standard
deviation, σCi,n,l , and the weight, wCi,n,l . The aim is to maximize the overall
likelihood of all the observations in the training set.

A certain number of clusters may have all their samples lying exactly on
the centroid, with a null standard deviation. This happens when some protocol
methods have a deterministic message size, but it also might be the result of
random sampling, with ”missing data”. To deal with this phenomenon with-
out losing generality, and in order to ensure a Bayesian analysis, a minimum
standard deviation, σmin, is predefined. Thus, if for a given cluster, Ci,n,l, its
standard deviation, σCi,n,l , is lower than σmin, σmin is used as its standard
deviation.

Given cluster Ci,n,l and an observation sl, the probability density that the
observation belongs to this cluster, P (sl ∈ Ci,n,l) or PCi,n,l(sl), can be computed
as,
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PCi,n,l(sl) = Nc(D(s1, µCi,n,l)) = 1
σCi,n,l

√
2π
· e
−0.5

D(s1,µCi,n,l)
σCi,n,l

2

(5.16)

where Nc() is the normal distribution function.
From this, the probability of the observation being generated from the

application n at position l can be evaluated as

P (si|g(n, l)) =
Kn,l∑
i=1

wCi,n,l · PCi,n,l(sl) (5.17)

It is worth mentioning that the value space is split into two disjoint sub-
spaces before applying the clustering: one for the positive values and another
one for the negative ones. This ”gap at zero” means that the sign of any obser-
vation is its top-level characteristic. Thus, two multi-peak Gaussians will be
estimated: one for positive observations and another for the negative observa-
tions.

5.5 Experimental Results and Assessment

5.5.1 Test bed

As described in Chapter 3, an experimental setup is built to assess the differ-
ent classification proposals, including various datasets of real traffic which are
parameterized and classified using nDPI for its use as training, test, and valida-
tion sets. In that chapter, a parametrization intended for traffic classification
was presented and applied to all the captured datasets.

However, to be able to compute the messages length, as required by the
proposed method, additional traffic parameters need to be extracted during
an extended parametrization phase. In particular, the 7 additional parameters
shown in Table 5.1 have been obtained for each of the packets in the datasets
to be used with this method.

These parameters help in determining the payload size inside IP packets,
which is used in turn to calculate the application layer message’s length, as
required by the proposed classification method..

From these parameters, the sizes for the L = 6 first messages in each flow
are obtained, according to the features extraction procedure. Finally, each flow
is represented by a vector containing the flow identification parameters and the
sequence of messages sizes.

Regarding the MSS condition (Section 5.3.1.1), it is important to note that
we do not extract the MSS from the TCP handshaking packets, but we simply
set it to 576 bytes, which is the smallest MTU specified in RFC-791.
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Table 5.1: Packet parameters obtained for the message analysis based method

Name VarType Description

Application Layer Statistics

IP IHL float IP Header Length

IP ITL float IP Total Length

Timestamp float Packet timestamp

TCP OFFSET float TCP Offset timestamp

TCP SEQ float TCP Sequence Number

TCP ACK Boolean TCP Acknowledgement Flag

TCP PSH Boolean TCP PUSH Flag

One of the requirements of the proposed classifier is to have at least two
messages to classify a flow. Therefore, the flows that have only one message are
ignored. As we stated earlier, this does occur in some protocols such as FTP,
that use signalling on the main TCP connection and open other connections
for large data transfers.

To evaluate the method, the CS-A3 in addition to the public PS-1 datasets
were used. A set of independent experiments are to be made with increasing
values for L. For each of these experiments, a random set of up to 1500 samples
per application protocol is chosen from the dataset as the training set. But,
as not all the applications present in the dataset have enough flows with the
required minimum number of messages, especially when L increases, a strategy
has to be applied to the number of flows in the training set.

Thus, in order to avoid overfitting and counter for the testing, the number
of samples from an application in the dataset is, at most, half the number of
available samples with a maximum of 1500. On the other hand, and in order to
ensure a proper training, a minimum is also set to include the application in the
experiments. This minimum is set to 500 samples for TCP applications and 10
for UDP applications, which leads to the selection of 18 different applications
for the CS-A dataset. The number of training and testing flows per application
is thus the same and is shown in Table 5.2.

With this setup, the obtained results are detailed next.

5.5.2 Experimental Results

In this section we show the experimental results obtained during the training
and the classification phases.

5.5.2.1 Training Phase Results

As previously mentioned, the outcomes of the training process are the clusters
and PDFs associated with each (application, state) couple. Thus, the first
step is to cluster message sizes on a per application and per state basis. As an
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Table 5.2: Number of sample flows for applications in the CS-A dataset

TCPapp #flows #samples UDPapp #flows #samples
BitTorrent 21522 1044 iMesh 386 100

iMesh 1090 500 Pando 446 200
MSN 21241 1205 MSN 800 300
SSL 224646 1480 NTP 616 300

HTTP 2954253 674 RTP 217 100
Gnutella 2876 839 Gnutella 109 98

Oscar 1787 739 Stun 1738 300
POP3 5195 1500 NetBios 516 200
FTP 1892 679 SNMP 25 10

SMTP 2040 800

Figure 5.5: Mean message size (normalized) for the clusters obtained for Bit-
Torrent (L = 6).

example, Figure 5.5 shows some preliminary results for the clusters obtained for
BitTorrent considering the first six message positions (L=6) and a maximum
of 12 clusters (K = 12) per state.

As shown in Figure 5.5, clusters belonging to the same applications may
not be sparse when independently considering different message positions and
directions (e.g clusters 5th and 6th for the up direction for L = 3). This reveals
the number of maximum considered clusters, K, and their associated standard
deviations, σ, as relevant factors for a proper clustering of the data.

Thus, some preliminary experiments were made in order to evaluate the
impact of K and σmin. First, many values of K were tested. Our experience
showed that the method is not highly sensitive to the choice of K. The typical
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a)

b)

Figure 5.6: PDFs associated with a) BitTorrent and b) HTTP for l = 2.

value of K, which is used in the experiments detailed in this paper is K = 12.
On the other hand, the exact value of σmin is not critical, as our experiment

showed that the results are resilient to the choice of mindev in a wide range of
values, from 10−12 to 10−6 (the exact significance of these values derives from
the defined metric distance).

As explained in Section 5.4.2, once the clusters are set, the parameters for
the associated Gaussians are obtained. For illustration purposes Figure 5.6
shows the set of PDFs associated with BitTorrent and HTTP applications for
the second message position (l = 2).

As shown in Figure 5.6, the peaks of the Gaussians (centroids) together
with their deviations partially overlap at some cases. This is an indicator of
the goodness of the obtained clusters and the appropriateness of a multimodal
approach by using multiple Gaussians. On the other hand, an additional rel-
evant observation is related to the final target of the system, that is, to the
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Figure 5.7: Sequences of application message sizes in both directions for sample
BitTorrent, SSL and Gnutella flows.

classification capabilities. Thus, the distributions obtained for BitTorrent and
HTTP are clearly different, which points to the fact that message sizes at the
second position in the flows can discriminate between both applications. How-
ever, as mentioned previously, the discrimination among different applications
is made based on a Markov model which accounts for the different message
sizes at different initial positions in the flow, which is expected to contain
more discriminative information than the individual sizes at a given position.
To further illustrate this idea, Figure 5.7 shows application message sizes for
sample BitTorrent, SSL and Gnutella flows at different message positions.

As shown in Figure 5.7, message sizes for those applications are similar at
particular positions for some of them (e.g. for l = 1 for all applications, l = 5
for SSL and Gnutella) while being clearly different at others. Thus, considering
message sizes at different positions and in both directions can discriminate be-
tween both applications, as intuitively observed in the graph trends of Figure
5.7. To prove the discriminative power of the proposed model for different ap-
plications, we have run many experiments using different datasets, as detailed
next.

5.5.2.2 Classification Phase Results

In this section we show the results of the classification method on 18 applica-
tions, 10 of which use TCP and 8 use UDP.

Various metrics [Khalife, 2014] can be used to evaluate classifiers. Basic
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ones include the rates of TP, TN, FP and FN. Ideally, a good classifier is the
one that maximizes TP and TN rates (the overall rate of correct classifications)
while minimizing FP and FN rates (the overall rate of incorrect classifications).

To reflect the correlation with FP and FN, combined metrics are commonly
used in multi-classification scenarios: precision (or accuracy) and recall (or
sensitivity). Precision is the ratio of traffic instances correctly classified as
class A to the total number of instances classified as class A. Recall is the ratio
of traffic instances correctly classified as class A to the number of actual class
A instances.

At this stage, it is important to explain that according to our experience,
the correct assessment of the classification method should not be based on
overall evaluation metrics (e.g. overall accuracy). This is especially true for
datasets that have largely unbalanced numbers of elements from each class.
This is the case in the considered dataset, which contains an overwhelming per-
centage of HTTP flows. In these situations, assessing a classification method
based on the overall percentage of correctly classified flows is misleading, be-
cause it favors any classifier that is biased towards the most frequent appli-
cation. Since the aim of a classifier is to detect with good percentage all the
applications, a better assessment should be based on the worst case evaluation
metric, that is, to assess the application that exhibits the least such metric.

For these reasons, we choose different metrics (Figures 5.8 through 5.10) to
evaluate our proposed classification model. These include precision and recall.
We also consider classification results for various scenarios: overall applications,
TCP and UDP applications, per application and worst case application.

As a first insight into the results, in Figure 5.8 we show the averaged recall,
that is, the average of the recall rates for all the considered protocols, as a
function of the number of observed messages per flow for TCP and for UDP
applications. As shown, the recall increases up to around 96% for TCP appli-
cations when considering at least L = 3 messages. Also in Figure 5.8 we can
notice a slight decrease in the accuracy for L = 6, which needs some analysis.
On the other hand, UDP average recall rates exhibits a bigger performance
with a maximum of 99.02 for L = 4.

As previously argued, these measures are not the best ones to assess the
performance of the system, as they assume equal relevance to any application
and a balanced dataset, which is not the case. Therefore, we consider the
confusion matrices from which we derive some more meaningful figures. Thus,
Table 5.3 shows the confusion matrix for TCP both as absolute values and
relative to the number of samples in the test set for each application when
using L = 3.

As can be observed, there exist a non-negligible number of classification
errors (Table 5.3.a), mostly related to HTTP and SSL. Nevertheless, when
the percentages for the number of flows in each class are considered, the re-
sults show high recall rates, with a minimum of 88.92 for MSN. The results
are similar for higher values of L, except minor differences for L = 6, as de-
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Figure 5.8: Average classification recall for TCP and UDP applications.

picted in Figure 5.9.a), in which maximum, minimum, overall and dominant
(HTTP) recall rates are shown. It is noticeable a slight drop in HTTP recall
for L = 6 which also induces a slight decrease in the overall recall for L = 6
when compared with that for L = 5. As previously mentioned, the number of
training samples drops with L for some applications, as the number of avail-
able flows with at least this number of messages decreases. For L = 6, there
are three applications with a relatively low number of flows for training (below
300), when compared with those available for the other applications, which is
clearly degrading the quality of the representations for these applications and
introducing classification errors.

On the other hand, Table 5.4 shows the confusion matrix for UDP applica-
tions, both as absolute (Table 5.4.a)) and relative (Table 5.4.b)) values. From
these tables it is clear that the proposed system performs even better for UDP
applications, with less non-null values out of the diagonal. The recall rates as
a function of L are shown in Figure 5.9.b. As in the TCP case, there is a slight
drop in the recall for L = 6, which can be again explained by a bigger decrease
in the training samples from some of the applications. In this case, it is the
number of samples from Gnutella who drops from more than 200 for L = 2 and
L = 3 to below 100 for L = 6, while the decrease for the other applications is
not that big in comparison.

It is relevant to mention that the recall rate reaches up to 98.39% after
L = 3 messages are considered (recall that in the UDP case the messages are
the packets themselves). This suggests that most UDP flows can be classified
very quickly, being this an early classification method.

A different insight into the results can be derived from the precision values.
As shown in Figure 5.10, despite the high recall rates, the values for the preci-
sion are not high for all the applications. This is clearly related to the highly
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Table 5.3: Confusion matrices for TCP applications for L = 3: a) Absolute
number of samples, b) Percentage of samples relative to the total number of
application samples (row)
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BitTorrent 97.00 0.00 0.70 0.10 2.09 0.01 0.10 0.00 0.00 0.00

iMESH 0.00 99.54 0.37 0.00 0.00 0.00 0.09 0.00 0.00 0.00

MSN 0.60 0.00 88.92 0.52 9.74 0.12 0.07 0.01 0.02 0.00

SSL 0.38 0.00 0.26 97.05 1.66 0.01 0.64 0.00 0.00 0.00

HTTP 1.25 0.00 1.22 0.49 96.54 0.20 0.00 0.00 0.30 0.00

Gnutella 0.05 0.00 0.20 0.10 5.14 94.51 0.00 0.00 0.00 0.00

Oscar 0.00 0.00 0.06 0.30 0.36 0.00 99.28 0.00 0.00 0.00

Mail POP 0.00 0.00 0.06 0.00 0.17 0.00 0.00 98.56 1.21 0.00

FTP 0.00 0.00 0.00 0.00 1.04 0.07 0.00 0.67 98.22 0.00

Mail SMTP 0.10 0.00 0.00 0.00 1.37 0.00 0.00 0.15 0.64 97.75

b)

unbalanced nature of the dataset that makes the results for the precision of
those less frequent protocols highly sensitive to even small error rates for the
dominant ones.

As a summary, the results show that using the proposed method it is pos-
sible to correctly classify up to around 98% of the TCP flows and 99% of the
UDP sessions by only analyzing the first 3 to 5 messages.

In order to check the specificity of the obtained distributions, we also
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a)

b)

Figure 5.9: Classification recall as a function of L: a) TCP b) UDP.

tested the models by applying them on the m57-patents public dataset [Cor-
pora, 2009], where we applied the trained distributions obtained from our own
dataset and applied them to detect the applications available in common with
the m57-patents in sufficient number. These are: SSL, HTTP and SMTP.
Again, the overall classification results using our proposed model reached 96%
of recall and 85% of precision. It is remarkable that no additional training
nor tuning was made, which points to a good generalization of the obtained
models.

5.6 Complexity Analysis

As stated earlier, a key advantage of the classifier is that each application is pro-
filed standalone without any involvement of other applications, which is ideal
for extensibility, and particularly important in the context of network traffic
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Table 5.4: Confusion matrices for UDP applications for L = 3: a) Absolute
number of samples, b) Percentage of samples relative to the total number of
application samples (row)
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iMESH 97.63 0.00 0.00 0.00 0.24 0.00 2.13 0.00

Pando 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

MSN 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

NTP 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

RTP 0.00 0.00 0.00 0.00 99.09 0.45 0.45 0.00

Gnutella 0.00 0.00 0.00 0.00 0.00 98.73 1.27 0.00

STUN 0.00 0.00 0.91 0.10 0.15 2.18 96.6 0.05

NETBIOS 0.00 0.00 0.00 0.00 1.29 0.00 0.00 98.71
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classification. This is also important from the point of view of the computa-
tional complexity of the proposed method. But, previous to any cost analysis,
it is important to distinguish between the two modes of operation of the sys-
tem, that is, between training and classification. As previously mentioned, the
training is made only once for each application, which means that the cost of
training is linear with the number of applications (assuming equal number of
samples in each class) and, more importantly, that it will not be the critical
cost for the real usage of the system. On the contrary, in the normal usage,
each time a flow is to be classified it should be analyzed by the system, this
being the relevant cost for the effective deployment of the system.

Regarding the cost associated to the training, it is based on the estimation
of Gaussian mixtures after a clustering of the data.
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a)

b)

Figure 5.10: Precision and recall values for each application (L = 3): a) TCP,
b) UDP.

According to [Verbeek, 2003], the associated computational complexity is
O(k2s), being k the number of clusters and s the number of samples. According
to Equations 5.7 and 5.17, a multipeak Gaussian with up to Kn,l peaks is
evaluated for each application (n) and state of the model (l) during the training
phase. This means that Kn,l clusters have to be estimated per application.

Therefore, the complexity of the training phase is O((KL)2Ns), being:

• N the number of considered applications,

• L the number of messages analyzed from each flow,

• K the maximum number of clusters, and

• s the number of sampled flows per application.
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The evaluation phase consists simply in evaluating the likelihood of the
message size vector versus the Gaussian mixtures and finding the maximum,
so the computational complexity to classify a flow is O(NLK).

Finally, the storage requirements are quite limited, as each flow can be
loaded alone for evaluation. Thus, only the N models need to be stored. As
each model consists on LK Gaussians, each one with 3 parameters -Equations
5.16 and 5.17-, the required storage is O(3NLK).

5.7 Conclusions and Future Work

In this chapter a new blind network traffic classifier has been presented. The
classifier uses the sizes of the initial messages exchanged between the hosts
involved in the communication as inputs. The classification is flow-based and
can be considered an early classification method, as the number of messages
required for the classification can be kept low. Unlike other similar approaches,
this work focuses on the messages, not the packets, that is, which is considered
a differential characteristic of a protocol is the sequence of sizes of the first
messages, not the sizes of the initially exchanged packets. Although both
approaches will be almost the same for protocols with small message sizes, key
differences may appear due to the potential segmentation of the messages into
many packets.

Another differential characteristic of the proposed system is the use of mul-
timodal distributions in an attempt to summarize all the possible methods
included in a protocol in a single model. Thus, the classifier will consist of
as many models as different applications it is able to detect. In this sense,
previous similar works considered a reduced number of protocols (around 4-
6 protocols) while in our proposal up to 18 different applications have been
explored.

The experimental results are promising and an improvement over similar
systems has been demonstrated. Nevertheless, more extensive experiments
using bigger datasets are required in order to be able to improve the system,
increasing the confidence and representativeness of the models and enabling
the use of new and better heuristics. This is not an easy challenge, as the
data to be used has to be properly labeled and has to be big enough. In our
experiments, more than 200 GB of labeled data has proven to be insufficient
for some protocols and only 18 of them could be used with some confidence.

Another relevant challenge for the real usage of the system is related to the
completeness of the models and the classification of a flow not belonging to
any of the trained classes. In this case, it is necessary to develop a rejection
mechanism.

We also suggest as candidate for future work the tracking of host-to-host
activities in order to affect accordingly the prior probabilities of the Bayesian
classifier. We expect interesting improvements from this approach, though at
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the cost of acceptable computational overhead.
Further handling the dependencies of the message sizes at different positions

is another candidate for exploration.
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Chapter 6

Host-Based Multi-label
Classification using Motifs

This chapter addresses blind host-based classification, focusing on network
hosts as the classification object of interest.

As mentioned in Chapter 1, classification methods are implemented as part
of a system designed to detect and respond to security violations and network
monitoring in computer networks. Managing today’s enterprise networks is
increasingly costly since a typical medium sized network is supposed to generate
thousands of traffic flows and millions of packets in daily operation. Monitoring
the network at too fine-grained levels (e.g. packets or flows) has obviously
scaling problems and might become infeasible for large networks.

Consequently, network administrators need to extract some structure and
information from their networks at larger levels of granularity, which helps
them better in analyzing their security logs and in adjusting their security
policy [Verma, 2009]. Adequately monitoring a network at the host level (as
identified by IP addresses) can expose important parts of the logical structure
of a network and the information flows which simplifies network management
and protection tasks.

For these purposes, host-based traffic classification systems are considered
a promising approach and can be regarded as a good tradeoff between too fine-
grained and too coarse-grained (e.g. host-communities) in today’s network
management and security solutions.

However, the literature review (Chapter 2) shows few works based on host
classification. Most of these follow a single-label classification model where a
host is assumed to contribute in a single application. As will be demonstrated
later in this chapter and easily argued, this mode does not reflect real commu-
nication scenarios for most computer communications examined throughout
public and locally captured traffic traces. A typical behavior implies that the
networking activity of a host includes many different protocols and thus the
classification should be based on multi-label approaches.

153
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In this scenario, multi-label classification discipline consists of assigning a
set of application labels, instead of a single label (single-label mode), to each
classified object. To the best of our knowledge, none of the existing host-based
classification works were evaluated in multi-label contexts.

The aim of this chapter is thus to extend host-based classification models
to handle multi-label contexts, simulating real case scenarios, where multiple
applications are simultaneously in use by the same network host. The novelty
of this proposal, by the time of this writing, consists of tackling host-based
classification as a multi-label classification problem.

For this purpose, a classifier of choice [Allan, 2008] is first assessed as the
native host-based classification system, which is then improved at different
levels before being finally extended to handle multi-label classification.

The technique used in [Allan, 2008] relies on graph mining where special
patterns of host communications, called motifs, are detected within the traf-
fic communication graph. This choice is motivated by the promising results
associated with the graphical techniques (Chapter 2) used in modeling host
behavior, and the ability of graphs to capture interactions or relationships be-
tween elements. Thus, the core of the system and, therefore, the classification
of the traffic is based on the interactions between hosts.

As a result, the goals of these chapter are three-fold:

• First, to set and assess a reference system. For this, the native host-
based method in [Allan, 2008] relying on motifs is reproduced as literally
as possible as described in the original work, though tested on different
traffic and application sets.

• Second, to refine and evolve the basic reference system to improve sin-
gle label classification. The native method is then criticized and some
potential improvements, at different levels, are presented. In order to
assess the real capabilities of the method, the proposal aims to enhance
many of the elementary processes described in the reference work (e.g.
parametrization, graph mining, etc.) together with the validation tech-
nique.

• Third, to propose and evaluate a multi-label graph-based and host-based
traffic classification system. Thus, the improved host-based classification
model developed in the previous step is extended at different levels to
handle multi-label classification mode. Here, we reveal the main purpose
of this chapter, which consists of studying the general applicability of
host-based methods in multi-label communication scenarios.

To achieve these goals, experiments are throughout this chapter conducted
in two modes: (i) Single-label, where the native and improved methods are
evaluated; and (ii) Multi-label, where the host-based model is extended and
evaluated based on the improved method. Before getting into the implementa-
tion details, a quick review of similar works in the literature is explored next.
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6.1 Related Work

A review of the literature on traffic classification was introduced in Chapter
2, including most relevant graphical and host-based classification methods. In
this section we review those works in relation to the proposal presented in this
chapter.

Host-based classification methods often follow behavioral approaches (Chap-
ter 2) using attributes that can be expressed in several ways: host interactions
at the application layer [Karagiannis, 2005]; connections and flows character-
istics at the network and transport layers [Cheng, 2007]; graph mining [Allan,
2009]; and active profiling ([Trestian, 2010]).

Graphical techniques are often used to model hosts in computer networks
for traffic classification purposes. First, a seminal work proposed BLINC [Kara-
giannis, 2005] which introduced the notion of graphlets depicting host inter-
action at the application layer. Then, social graphs [Iliofotou, 2007] extended
this concept with traditional graph measures.

However, none of these early graphical approaches included advanced graph
mining techniques and motifs [Milo, 2002].

Network motifs were first explored in [Allan, 2008] and [Allan, 2009] for traf-
fic classification purposes. A classification model based on motifs is proposed
in [Allan, 2008] where authors reported the ability of accurately identifying
85% of the hosts’ activities over a protocol set covering AIM, DNS, HTTP,
MSDS, NETBIOS, SSH and Kazaa. Compared to traditional graph measures,
motif-based classification show an improvement in class recall (greater than
80%) according to the tested traffic datasets. It is remarkable that only one
application was reported as active in each host for these datasets. Thus, this
is a single label scenario. To the best of our knowledge, none of the proposed
host-based traffic classification approaches is designed nor evaluated in a real-
istic scenario in which multiple applications are present per host (multi-label).

On the other hand, multi-label [Spyromitros, 2008] classification techniques
are described for other disciplines as scene classification [Boutell, 2004] and bio-
informatics [Wernicke, 2006a]). Multi-label classification algorithms can be
split into two main categories [Tsoumakas, 2006]: (i) Problem transformation
methods [Boutell, 2004], that transform the multi-label classification problem
either into one or more single-label classification or regression problems; and
(ii) algorithm adaptation methods [Zhang, 2006], that extend specific learning
algorithms in order to handle multi-label data directly.

As an example, Multi-label KNN (ML-KNN) [Zhang, 2006] extends KNN
by using the MAP to determine the set of labels for a sample based on statistical
information associated with neighbor samples found in the training set. Binary
Relevance (BR)-KNN [Spyromitros, 2008] uses BR problem transformation to
provide faster classification in conjunction with the KNN algorithm.

In this chapter, a simple adaptation of the default single-label KNN algo-
rithm is proposed to handle multi-label classification. Our main focus is to
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present a proof of concept by applying host-based classification problems in
the multi-label context1.

Instead of MAP or BR, our proposed model relies on KNN output in re-
gression mode, as detailed later in this chapter. The proposed model is an
adaptation algorithm that explores the closest single-labeled samples and an-
notates the unknown host accordingly in multi-label mode.

6.2 Fundamentals of Graphs and Motifs

Exploring the theoretical background behind motifs and graphs is essential
before detailing the concept of traffic classification based on motifs.

The concept of motifs [Milo, 2002] is derived from graph mining, which is a
general scientific discipline commonly applied in fields as biological networks.
Basic graph concepts are relevant to motifs and graph mining techniques.

6.2.1 Basic Definitions and Concepts in Graphs

Graphs [Kolaczyk, 2009a] are data structures used to model pairwise relations
between objects. Specifically, a graph consists of vertices (or nodes), which are
an abstraction of the objects, linked together by edges (or arcs) depicting a
relationship of interest between the interconnected vertices. Typically, graphs
are represented as a set of dots or circles for the vertices linked by lines or
curves representing the relationships between vertices, that is, between the
objects.

A basic example is shown in Figure 6.1 depicting a simple graph made by
six vertices, illustrated by circles, and seven edges, illustrated by straight lines.

In a wide array of disciplines, data can be intuitively cast into this format.
As a result, many practical problems and networks including biological, social
and computer networks, can be represented by graphs. They can also be used to
model many types of relations and processes in chemical, physical, biological,
social, linguistics, and information systems. Thus, many practical problems
can be represented by graphs.

As an example, social networks consist of individuals and their intercon-
nections which could be any type of relationship. These can be represented by
graphs and, subsequently, using graph analysis some properties or characteris-
tics can be explored, e.g., influence graphs can model whether certain people
can influence the behavior of others.

Another example of an application field can be found in chemistry, where a
molecule can be modeled by a graph in which atoms are represented by vertices
and the attraction between atoms represented by edges.
1Evaluating or comparing multi-label algorithms found in the literature is out of the scope
of this thesis.
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Figure 6.1: A simple graph composed by six vertices and seven edges

Another example is related to biology, where the graph theory can be useful
when looking at tracking, for example, the spread of a disease, using a graph
where a node represents regions and the edges represent species migration
between the regions.

In computer science, graphs can be used to represent data organization,
computational devices, the flow of computation, networks of communication,
etc. They are particularly well suited to represent finite state automatons
and to model sequences of events, as well as dependency relationships between
elements. For instance, the link structure of a web site can be represented by a
graph, in which the vertices represent web pages and directed edges represent
links from one page to another. In network management and security, the most
relevant to this thesis, graphs can be used to identify application types and to
simulate, for example, the propagation of stealth worms on large networks.

In this study, graphs are used to model communication between hosts in
computer networks, specifically for traffic classification purposes.

Particularly, in a graph representing a computer network, hosts or IP ad-
dresses can be represented by vertices and any observed exchanges2 of informa-
tion related to interactions of interest between two vertices [Jungnickel, 2013]
can be represented by edges.

Formally [Kolaczyk, 2009b], a graph, G, is an ordered pair, G = (V,E),
composed by:

• V , a non-empty set of vertices (also called nodes), and
2The input used to build these graphs is mostly extracted from the transport and network
layer headers.
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• E, a set of edges (also called links) connecting vertices together. The
elements in E are unordered pairs, u, v, of vertices, that is,

E ⊆ {(u, v)|u, v ∈ V } (6.1)

The number of vertices in a graph, Nv = |V |, is the order of the graph,
while the number of edges, Ne = |E|, is the size of the graph. As an example,
the graph previously shown in Figure 6.1 has an order of Nv = 6, with six
nodes, and a size of Ne = 7, with seven edges.

Without loss of generality, it is usual to label the vertices using integer
numbers,

V = {u1, u2, u3, . . . , Nv} (6.2)

and thus, the edges connecting vertices ui and uj are referred as ei,j , that
is,

E ⊆ {ei,j = (ui, uj)|ui, uj ∈ V } (6.3)

Given a graph, it is possible to consider smaller parts of it. Thus, a graph
H = (VH , EH) is a subgraph of another graph G = (V,E) if VH ⊆ V and
EH ⊆ E ∩ (VH × VH). Namely, a subgraph is composed by a subset of the
vertices and a subset of the edges between those vertices in the original one.
Analogously, an induced subgraph of G is a subgraph G′ = (V ′, E′), where
V ′ ⊆ V is a pre-specified subset of vertices and E′ ⊆ E is the collection of
edges to be found in G among that subset of vertices, that is E′ contains all
the edges ei,j = (ui, uj)|ui, uj ∈ V ′. Therefore, the concept of subgraph allows
partitioning a given graph in many smaller ones.

Many properties can be defined to characterize graphs, apart from size and
order. Some of them allow categorizing graphs in various classes, being one
of the most relevant that related to the nature of the edges. Thus, a graph
for which each edge in E has an ordering to its vertices, that is, edge ei,j is
different from edge ej,i, is named as a directed graph and the edge is a directed
edge or arc. In this case, the edge ei,j goes from the tail, ui, to the head, uj .
As opposite, a graph without an ordering in the edges is an undirected graph
(e.g. graph in Figure 6.1).

Many types of graphs exist (labeled, colored, mixed, multi-graph, etc.).
Figure 6.2 depicts a sample labeled, undirected graph graph made by eight
vertices, labeled 1 through 8, with eleven edges.

In a directed graph (Figure 6.3), a directed edge is illustrated by an arrow
(compared to straight lines in Figures 6.1 and 6.2). In a colored graph, ver-
tices are decorated or colored, where different tags or, equivalently, colors are
assigned to each vertex.

This later case is especially relevant for the present work, as different types
of vertices are to be considered. Figure 6.3 is also an example of a colored,
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Figure 6.2: A labeled undirected graph composed by eight vertices and eleven
edges

Figure 6.3: A labeled, directed and colored graph with 3 vertices colors, 8
vertices and 11 directed edges

directed graph. In this figure, vertices have one out of three types: 0 (black),
1 (red) or 2 (green).

Given two nodes in a directed graph, the existence of an edge in one direc-
tion does necessarily imply, nor it is equivalent to, the existence of an edge in
the opposite direction. As an example, consider nodes 4 and 8 in the graph of
Figure 6.3, though edge e8,4 is directed from node 8 to node 4, edge e4,8 does
not show in the graph. According to the nature of the problem being modeled
by graphs, the presence or absence of a directed edge - in one or the other
direction has an important significance in analyzing to the type of interaction
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between nodes, 4 and 8 in this example.
On the other hand, a vertex ui ∈ V is said to be incident on an edge

ek,l ∈ E if ui is an endpoint of ek,l, which means that either k or l are equal
to i. From this concept, the degree of a vertex, dv, is defined as the number
of edges incident to this vertex, v. For directed graphs, it is also interesting to
distinguish between the in-degree of a vertex, din,v, and the out-degree, dout,v,
which count the number of edges pointing in towards and out from a vertex,
respectively.

As an example, node 8 in the graph in Figure 6.3 has a din,8 = 3, considering
the number of incident edges with dout,8 = 2, considering the number of edges
pointing out from vertex 8.

The connectivity of a graph can be expressed through the concept of adja-
cency. Two vertices ui, uj ∈ V are said to be adjacent if joined by an edge in
E, that is, if ei,j ∈ E. Similarly, two edges ei,j , ek,l ∈ E are adjacent if joined
by a common endpoint in V , that is, one of the following conditions is met:
i = k or i = l or j = k or j = l.

Instead of relying on visual intuition, analyzing graphs is often formalized.
For this purpose, different data structures are used to represent graphs de-
pending on the structure, the nature of the problem and the used algorithm.
In particular, it is possible and usual to represent and operate on graphs using
matrices and matrix algebra.

Thus, given a graph G = (V,E) its fundamental connectivity can be ex-
pressed through the adjacency matrix, A, composed by Nv × Nv elements,
being the element ai,j equal to 1 when an edge exist from vertex i to vertex j,
that is,

aij =
{

1, if ei,j ∈ E
0, if ei,j /∈ E

(6.4)

Note that, for undirected graphs, the adjacency matrix is symmetric. Ad-
ditionally, if no self-loops are allowed, values on the diagonal will be zero.

As an example, the adjacency matrix associated with the graph in Figure
6.3 , can be written as follows:

A =



0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0


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Some information and properties of G can be obtained from the adjacency
matrix. Thus, for example, for an undirected graph, the row sum Ai+ =

∑
j ai,j

is simply equal to the degree di of vertex i. In the case of directed graphs,
both the in-degree and out-degree of a vertex can also be calculated from the
adjacency matrix as Ai+ =

∑
j ai,j and A+j =

∑
i ai,j , respectively.

Another useful matrix capturing the fundamental structure in G is the
incidence matrix, B, which is an Nv ×Ne matrix with entries

bij =
{

1, if ui is incident to edge j
0, otherwise

(6.5)

Some relationships can be set between A and B [Jungnickel, 2013], enabling
graph analysis through matrix algebra, although this falls out of our scope.

Finally, in order to model complex problems, graphs should hold additional
information. For this purpose, graphs can be extended to include auxiliary
numerical values on its vertices, edges or both. For example, edges e ∈ E
are often accompanied by edge weights representing a magnitude of interest
associated to the relationship between the adjacent vertices.

In many situations, as is the case of this work, there are no self-loops and
thus, each diagonal entry in the adjacency matrix, A, is zero. In these cases,
in some colored graph representations [Wernicke, 2006b], the diagonal value
can be used to point to the vertex color. With this type of representation,
the adjacency matrix associated with the example graph in Figure 6.3 can be
written as follows:

A =



0 1 1 0 0 0 0 0

0 2 1 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 2 1

0 0 0 1 1 0 0 1



In a graph representing a computer network, the vertex color may be used
to indicate different host role (e.g. client, server, and peer), directed edges may
point to the direction of data flow between two hosts while edge weights can
be used to represent traffic exchange properties, such as the size or duration
of the data transfer.



162 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

In the study conducted throughout this chapter, directed graphs with col-
ored vertices are used to model communications in computer networks for traf-
fic classification purposes.

6.2.2 Graph Modeling using Motifs

By analyzing the distinguishing characteristics of graphs, the rules and patterns
that hold for them, different graphs can be compared, and functions specific for
each graph can be revealed. For this, some basic set of graph attributes such as
connectivity degree, graph diameter, centrality, largest connected component,
etc. can be used. This way, relationships between graphs can be defined and
set.

Given a graph representation of a system it is useful to explore its charac-
teristics and structural properties. This can be done through some evaluations
ranging from the calculation of simple metrics summarizing the topological
structure, both local and global, to the unsupervised extraction of complex re-
lational patterns. A set of tools and techniques for such purposes are available
[Wernicke, 2006b, Mfinder, 2013]. Thus, specific functions for each graph can
be revealed.

One of the ways to analyze graphs is through partitioning. This refers to the
segmentation of a set of elements, graphs in this case, into subsets. Formally,
a partition, C = {C1, . . . , CK}, of a finite set, S, is a decomposition of S into
K disjoint, nonempty subsets Ck such that

K⋃
k=1

Ck = S (6.6)

Partitioning can be used to find groups of elements holding some common
property, which can reveal information regarding the underlying relational pat-
terns. In particular, in graph analysis, it is usual to apply partitioning to find
”cohesive” subsets of vertices [Kashtan, 2004], that are well connected among
themselves and, at the same time, are relatively well separated from the remain-
ing vertices. Many graph partitioning algorithms exist, most of them seeking a
partition, C = {C1, . . . , Ck}, of the vertex set, V , of graph G = (V,E) in such
a way that the sets

E(Ck, Ck′) = {eij |ui ∈ Ck, uj ∈ Ck′} (6.7)

of edges from vertices in set Ck to vertices in Ck′ is relatively small when
compared with the set E(Ck, Ck) of edges connecting vertices within Ck.

This way, through partitioning, a networking activity graph could be de-
scribed as an ensemble of smaller pieces which could represent a fundamental
interaction class if a suitable splitting function is defined. Nevertheless, we
are not really interested in analyzing a graph but in finding the elementary
pieces from which this graph is built. The underlying hypothesis is that, for
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networking activity, the observed graph is the result of the mix of elementary
interactions, each of them associated to a different application. Furthermore,
the observed graph is only a sample of the underlying phenomena, as it is
obtained at a given time and most probably in an incomplete way due to the
own nature of networking activity. Thus, we should move from an analysis
approach to a modeling one.

A model for a network graph can be described by [Kashtan, 2004]:

{PΘ(G), G ∈ G : θ ∈ Θ} (6.8)

where G is a collection (or ’ensemble’) of possible graphs, PΘ is a probability
distribution for elements in G, and θ is a vector of parameters.

Thus, the problem of modeling consists in obtaining the elementary graphs,
G ∈ G, a parametrization for each of these graphs, Θ, and the probability of
appearance of each of the graphs in an observed network graph. The quality
of the modeling mainly depends on how the probability distribution, PΘ(G)
is chosen, for which many methods are proposed in the literature. A possible
approach is based on random graph models, which are based on the idea of a
graph being drawn ”at random” from a collection G.

The term random graph model is typically used to refer to a model speci-
fying a collection, G, and a uniform probability PΘ() over G.

Nevertheless, we are more concerned in identifying a representative enough
collection of possible graphs, G ∈ G, and associating them to the applications
to be classified. Thus, we should focus on methods to select these graphs and
evaluate their representativeness instead of obtaining the probability distribu-
tions.

In this context, a possible way to uncover the structural design of a com-
plex network is the use of mining techniques with graphs. With graph mining
[Milo, 2002], the most relevant problem is to find a recurrent subgraph struc-
ture (called motif ) in a given graph. The found subgraphs will constitute the
ensemble of the model.

Motifs [Kashtan, 2004] are small subgraphs occurring far more frequently
in a given network than in comparable random graphs. Thus, they are sup-
posed to be the basic structural elements for broad classes of networks. An
assumption behind the repetition of a topological substructure is that it is of
a particular functional importance. Therefore, the underlying concept is that
many of the complex interconnections that occur within a network are built
up from frequently recurring patterns of basic structural elements, that are
identified as the motifs.

Primarily, motif analysis has been used mostly in biological networks. For
example, protein interaction networks link proteins which must work together
to perform some particular biological function, which can be analyzed using
motifs. Authors in [Milo, 2002] state that the appearance of network motifs
at high frequencies suggests that they may have some specific functions in the
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a)

b)

Figure 6.4: Motifs of order: a) k = 3 and b) k = 4

information processing, and thus in the application interactions, performed
inside the network.

According to the previous definition, motifs are defined as recurrent and
statistically significant3 subgraphs (or patterns) of interconnections. Thus,
motifs can be extracted by searching subgraphs occurring in complex networks
at numbers that are significantly higher than those in similar randomized net-
works, as will be detailed next.

Motifs can be of different orders, k, according to the number of vertices,
although they are supposed to contain a low number of them to be useful.
Figure 6.4 depicts two examples of motif structures (with k = 3 and k = 4).
As shown in this figure, vertices need not to be named in a motif representation,
since they are regarded as recurrent patterns regardless of the vertex or edge
names. Nevertheless, for directed and colored graphs, edge direction and vertex
color are part of the motif structure, as shown in Figure 6.4.

Motifs, as any other graph, can be represented as matrices. Using the
matrical representation in [Wernicke, 2006b], the adjacency matrix associated
with the order-3 motif in Figure 6.4a) can be written as follows4:
3A statistically significant (or simply, significant) motif is a terminology used throughout this
chapter to refer to motifs whose subgraph complies with some specific conditions.

4Assuming: vertex-type 1 (black color) is labeled node as 1, vertex-type 2 (red color) is
labeled as node 2 and vertex-type 1 (green color) is labeled as node 3.
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A =


0 1 1

0 1 0

0 1 2



To detect the motifs in a given network, various algorithms and publicly
available tools exist. According to the definition, it is necessary not only to
obtain the set of subgraphs (potential motifs) to be considered but also to
estimate their relative frequencies of appearance in relation to the possibility
of a random appearance of this subgraph, that is, to assess their significance.
For this, graph randomization techniques [Wernicke, 2006a] are used.

To address this problem, let’s suppose that a graph, Gobs, derived from
observations of some sort, e.g. the observed network communications, is ob-
tained and that we are interested in some structural characteristic, η(), of this
graph. In particular, we are interested in assessing whether the value η(Gobs)
is ”significant”, in the sense of being somehow unusual or unexpected and thus,
it is specific for the graph Gobs. Of course, this significance must be defined
in comparison to an appropriate frame of reference, for which random graph
models are often used.

For this, a collection of random graphs, G, is defined, and the value η(Gobs)
is compared to the set of values {η(G) : G ∈ G}. If the observed value for
the characteristic, η(Gobs), is considered to be extreme with respect to this
set, this is considered as evidence that Gobs is unusual in having this value.
More formally, a random graph model is used to create a reference distribution
which, assuming a uniform likelihood of the elements in G, is

Pη,G(t) = card{G ∈ G : η(G) 6 t}
|G|

(6.9)

Thus, if η(Gobs) results sufficiently unlikely under this distribution, it is
considered as an evidence that Gobs is not a uniform draw from G.

In this scheme, selecting the motifs in a given graph, Gobs, would imply the
extraction of all the subgraphs and the analysis of their likelihoods through
random graphs models, GS . Nevertheless, how to best choose GS is a practical
issue of some importance, since it can have a direct impact on the relevance
of the results of such procedures. It is important that its elements preserve
relevant structural properties of the graph under analysis, Gobs. Furthermore,
we cannot generally hope to be able to explicitly enumerate all of the elements
in GS , and therefore, we cannot expect to be able to calculate the previous
probabilities exactly.

Therefore, the process of motif’s discovery in a network can be split into
three main phases, as depicted in Figure 6.5: the generation of an ensemble of
similar graphs, GS , the enumeration and accounting of the potential motifs, and
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finally, the selection of the significant ones from this set. This is implemented
as [Milo, 2002]:

(1) Graph randomization, which consists of generating a set of random net-
works, GS , conserving some properties of the original graph. The set of
all random graphs obtained at the end of this phase is referred to as the
null-model.

(2) Motif extraction, in which the elementary subgraphs to be potentially
considered as motifs as well as their numbers of occurrences are ob-
tained from the null-model. In this regard, motif discovery algorithms
can be based either on exact enumeration and counting of the existing
subgraphs or on statistical sampling and estimations. Therefore, they
can be roughly classified into:

• Exact search algorithms (e.g. Grochow-Kellis [Grochow, 2007])
which are based on exhaustive searches, that is, counting each pos-
sible subgraphs. The major drawback of this approach is that the
implementation of such algorithms is very computationally and time
demanding.
• Estimation-based algorithms, that takes the advantages of sam-

pling by skipping some subgraphs during the enumeration and per-
forms thus more efficiently. RAND-ESU [Wernicke, 2006a] is an
example of an estimation-based algorithm, and is implemented in
the mfinder-tool [Mfinder, 2013] and Fast Network Motif Detection
(FANMOD) tool [Wernicke, 2006b].

(3) Significant motif detection, which consists in evaluating the statistical
significance of each subgraph basically by comparing the number of its
appearances in the null-model against that in the original input graph
being analyzed. Some additional statistical measures, as will be detailed
next, should be applied to select those subgraphs considered really sig-
nificant and that will be listed as motifs.

At the end of the significant motif detection process, a set of motifs will be
associated with the original input graph, Gobs, providing an ensemble, M, for
it. As previously stated, the input graph, Gobs, is supposed to be generated
from the repetition and combination of subgraphs in this ensemble. Addition-
ally, during the significance analysis of the motifs, a probability distribution
for them is also evaluated. Thus, at the end of the process a model for the
observed graph is set. Nevertheless, it is important to note that the model is
only an approximate one, as not all the existing subgraphs are considered in
M.

Once an overview of the method for motif extraction is presented, some
details and procedures for each of the involved steps are provided. Moreover,
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Figure 6.5: Schematic view of motif detection

an example of the motif extraction process, applied on the input graph of Figure
6.5, will be subsequently detailed considering each of the aforementioned steps.

6.2.2.1 Graph Randomization

The first step for motif detection is to obtain the null-model, which is defined by
an ensemble of graphs, GS , obtained by randomizing the original input graph,
Gobs.

As the purpose of this procedure is to obtain and evaluate the potential
subgraphs, and as previously argued, the randomized graphs should be struc-
turally similar to the original one [Milo, 2002]. For this purpose, the random-
ization process should be controlled with specific conditions. In particular, the
randomized graphs should be isomorphic to the original one.

Formally, graphs R = (V ′, G′) and E = (V,G) are isomorphic if there exists
a bijection between the vertex sets of R and G, f : V ′ → V such that any two
vertices ui and uj of R are adjacent in R if and only if f(ui) and f(uj) are
adjacent in G. The mapping f is called an isomorphism between G and R.

Intuitively, isomorphic graphs are the ”same”, except for ”renamed” ver-
tices. When randomized graphs are isomorphic with the original graph, essen-
tial properties of the original graph (e.g. number of vertices, out-degree, etc.)
will be preserved.

In the case of colored graphs, the isomorphism should also respect the colors
of the vertices, that is, if the color of ui is x, then the color of f(ui) should
also be x.

One way to obtain isomorphic random graphs is through edge switching.
Figure 6.6 illustrates an example of the randomization process through a series
of edge switching operations in a colored directed graph.

As shown in Figure 6.6, edge switching should maintain the colors of the
vertices to generate isomorphic graphs, which implies that edges should be
exchanged only if the endpoint vertices have the same color. Thus, in the
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Figure 6.6: Edge-switching process with regard for a colored directed graph
for generating random networks

example, edges e1,3 and e6,8 become respectively, e1,8 and e6,3 after switching,
given that these edges have the same direction, and set an adjacency between
vertices having the same color.

Another relevant question to generate isomorphic graphs is to maintain the
direction of edges by switching edges with the same direction between endpoint
vertices of the same color. Given this condition, the out-degree reflecting the
number of bidirectional edges incident upon each vertex is maintained after
randomization through edge switching.

By considering a set of random isomorphic graphs, the null-model is sup-
posed to be independent of any structural function related to the original graph,
Gobs.

Formally, there exist an ensemble, GS , of random graphs corresponding
to the null-model associated to graph Gobs. Nevertheless, with the proposed
randomization process, only a subset of N random graphs are considered from
GS .

To illustrate this process, let’s consider the randomization of input graph
Gobs in Figure 6.5 as an example. In this example, the graph is randomized
through edge-switching maintaining the direction of edges and vertices colors.
For simplicity reasons, we show N = 2 isomorphic graphs.

In this example, random graph G2 is obtained after switching edges e1,2,
e1,3, and e6,8 respectively, into edges e1,5, e1,8, and e6,3, given that these edges
have the same direction, and set an adjacency between vertices having the same
color. The same applies to graph G1 which was similarly obtained by switching
edges e1,3, e1,2, e2,3, e7,8 and e8,5 respectively, into edges e1,4, e1,7, e2,4, e7,4 and
e8,2. As an example of maintaining the out-degree for all vertices, vertex 8 has
an out-degree equal to 2 in Gobs and in both random graphs. For the example
illustrated in Figure 6.5, the main outcome of the randomization phase is the
null-model as represented by set of random graphs, GS = {G1, G2}.



CHAPTER 6. HOST-BASED MULTI-LABEL CLASSIFICATION USING MOTIFS 169

6.2.2.2 Motif Enumeration

The next step (Figure 6.5) is to mine the generated random graphs for sig-
nificantly recurrent subgraphs that could be considered motifs. During this
process, the number of occurrences of each subgraph in each of the mined
graphs should be estimated, as it will be the basis for the selection of the
significant ones in the next phase.

As previously mentioned some methods are available for the enumeration
of the subgraphs in a given graph, both through exact search algorithms and
sampling methods.

The complexity of the network graphs creates substantial computational
challenges for the application of exact search methods. Thus, for a given choice
of subgraphs order, k, it is necessary to search for each of the i possible k-
vertex subgraphs and count its number of occurrences, Ni, both in the observed
network Gobs and in each (or at least a large random subset) of the networks,
G, in the null-model GS . But the number, Lk, of possible motifs of order k
grows exponentially with k. For example, in a directed graph, there exists
L3 = 13 distinct types of connected, three-vertex subgraphs, L4 = 199 four-
vertex subgraphs, and up to L5 = 9364 such five-vertex subgraphs.

In this scenario, graph sampling techniques can be used in overcoming this
computational challenge. Specifically, if k-vertex subgraphs H are sampled in
some fashion, then an unbiased estimate of the total number Ni of a given
subgraph type i is just

N̂i =
∑

H of type i

π−1
H (6.10)

where π−1
H is the inclusion probability for H.

Authors in [Kashtan, 2004] proposed a sampling method for the estimation
of this count. Given a network graph, G, a single edge is first selected in a
random way. Then, using the concept of link-tracing [Zhang, 2014], a new
edge to a neighboring vertex is followed, where that edge is selected randomly
from among those in G incident to the two vertices defining the first edge.
This procedure is iterated in such a way that at the m-th stage we follow an
edge randomly selected from among those incident to the collection of available
vertices at the (m− 1)-th stage, excluding those edges that have been already
considered. When a total of k vertices have been included, the final sampled
subgraph, H, is obtained by including in the set of edges any remaining un-
encountered edges among these k vertices. That is, H is defined to be the
induced subgraph on the set of discovered vertices.

An ordered set of k − 1 appropriate edges must be sampled, using this
sampling strategy, in order to sample a given k-vertex subgraph H. Therefore,
the probability of sampling H is the sum of the probabilities of all such possible
ordered edge sets, that is
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PH =
∑
σ∈S

∏
ej∈σ
P(ej |(e1, e2, . . . , ej−1)) (6.11)

where S is the set of all possible sets of k− 1 ordered edges, σ is an element of
that set, and ej is the j-th edge in a specific element, σ.

The probability that subgraph H is included in a collection of n subgraphs
sampled in this way can be evaluated as πH = 1− (1− πH)n.

Thus, given the input network graph, Gobs, the null-model, GS , and a max-
imum order for the considered subgraphs, Kmax, the output from this phase
are three elements:

• an ensemble, M′Kmax , composed by all the possible subgraphs Sik of up
to Kmax vertices

M′Kmax = {Ski : 2 ≤ k ≤ Kmax, 1 ≤ i ≤ Lk} (6.12)

being Lk the number of different k-vertex subgraphs;

• a vector, −→NKmax , composed by the number of occurrences, Ni
k, of sub-

graph Si
k in Gobs

−→
NKmax =< N2

1 , N
2
2 , . . . , N

2
L2 , N

3
1 , . . . , N

3
L3 , . . . , N

Kmax
LKmax

> (6.13)

• A probability distribution, PGS (), for all the subgraphs Ski in M′Kmax
derived from the null-model, GS , or alternatively (used in this chapter) a
vector −→MKmax , composed by the number of occurrences, Mk

i , of subgraph
Ski in GS . In this later case, only the frequencies of each subgraph can
be evaluated.

To illustrate this process, let’s consider the motif extraction related to graph
Gobs of Figure 6.5 as an example.

In this example, the set of random graphs is GS = {G1, G2}. By applying
RAND-ESU [Wernicke, 2006a], an estimation-based motif discovery algorithm
(Section 6.2.2.2) for Kmax = 3, some subgraphs are skipped during the enu-
meration and the result is two subgraphs (or motifs), namely S3

1 ∈ M′3 and
S3

2 ∈M′Kmax=3, of order k = 3.
Together with each subgraph, statistical information related to the number

of occurrence both in the input and random graphs are obtained. As per
the example in Figure 6.5, the number of occurrences of subgraphs S1

3 and
S2

3 in Gobs is represented by −→N 3 =< N3
1 , N

3
2 >=< 2, 1 >. The number of

occurrences, of subgraphs S1
3 and S2

3 in GS , the null-model, becomes −→M3 =
< M3

1 ,M
3
2 > =< 1, 1 >. For the example illustrated in Figure 6.5, the main

outcome of the motif enumeration phase is the set of subgraphs or motifs
GS = {S3

1 , S
3
2} ⊂ M′Kmax together with vectors −→N 3 and −→M3 based on which

most significant motifs will be elected.
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6.2.2.3 Motifs Selection

The next step is to select as motifs, M, only those subgraphs in the set of all
the possible subgraphs, M′Kmax , that are significant.

In order for a subgraph, Ski , to be considered statistically significant, and
thus as a motif, many different parameters can be evaluated and some threshold
is to be set for each of them [Priami, 2005]. The basic approach is to compare
its number of occurrences, Nk

i , to the reference distribution, PGS (), or to the
number of occurrences (used in this chapter) of this subgraph in the null-
model, Mk

i . If the obtained value is found to be extreme, then the subgraph
Ski is declared as a network motif.

Nevertheless, some parameters with different degrees of complexity are de-
scribed in the literature to assess the statistical significance of a subgraph and
the obtained set of motifs [Priami, 2005]. Some of them are:

• Number of random graphs in the null-model: The higher the number
of generated graphs, N , during randomization, the higher will be the
confidence on the subsequently detected motifs. Thus, it is necessary to
establish a minimum number, Ng, of isomorphic graphs to be included
in the null-model so as to consider the found motifs as really significant.
Obviously, this number should depend on the size of the observed graph.
In practice, in the context of networking activity graphs, a starting value
of Ng = 5000 random graphs or above is commonly used [Mfinder, 2013,
Wernicke, 2006b].

• Frequency of a subgraph: The frequency, Fi, of a subgraph, Si, is the
number, Ni, of occurrences of Si in the original input graph, Gobs, in
relation to its occurrences, Mi, in the null-model, Gs:

Fi = Ni/Mi (6.14)

A subgraph Si is called recurrent (or frequent) in Gobs when Fi is above
a predefined threshold value. Subgraphs that comply with the threshold
condition are elected as significantly recurrent subgraphs or motifs.
In practice, a starting frequency value of 10 is commonly used [Mfinder,
2013, Wernicke, 2006b].
Even this is the basic measure to determine if a given subgraph is a
motif or not, the confidence on this choice depends on the probability
distribution for the subgraphs in the null-model. In other words, if all
the subgraphs were equally probable in the null-model, the choice of the
significant ones by simply looking at the observed frequencies would be
appropriate. But, given that this distribution is not expected to be uni-
form, the confidence that an observed value is extreme for this subgraph
is not the same for all of them when using a single threshold. Therefore,
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it is advisable to use additional measures to check the ”extremeness” of
an observed frequency for a subgraph.

• Z-score: The Z-score is a common measure of a motif statistical sig-
nificance. Formally, for a subgraph, Si, the graph Gobs and a set of
randomized networks Gs, the Z-score or Z(Si) is defined as:

Z(Si) = Fi − µGS (Si)
σGs(Si)

(6.15)

where µGS (Si) and σGs(Si) stand, respectively, for the mean and standard
deviation of the frequency values for subgraph Si across all the graphs
in Gs. Obviously, to be able to evaluate this measure, the output of the
motif enumeration phase should be the probability distribution, PGS (),
instead of just the number of occurrences of each subgraph, −→MKmax . The
larger the value for Z(Si), the more significant (extreme) is the motif or
subgraph Si.

• The p-value: The p-value is a measurement in statistical hypothesis test-
ing that can be considered in motif detection. It describes the probability
of obtaining a result at least as extreme as the result observed, given that
the null hypothesis, or expected outcome, is true [Allan, 2008].
Given a graph, Gobs, a subgraph Si of Gobs and an ensemble, Gs, of
random graphs from Gobs, the p-value, P (Si) evaluates the probability of
the null-hypothesis of Si being more frequent in Gs than in Gobs, that is,

P (Si) = 1
|Gs|

∑
R∈Gs

δkr(Fi < Fi(R)) (6.16)

where δkr is the Kronecker delta function and Fi(R) is the probability of
the subgraph Si to appear in graph R of the ensemble, Fi is its probability
to appear in the original input graph, Gobs.
For example, a p-value of 0.01 means that there is only a 1% chance of
seeing a particular pattern (i.e. the motif subgraph) as many or more
times in random graphs than is observed in the original one. Thus, a
subgraph with p-value less than a threshold is another condition for a
motif subgraph to be considered as significant.
In practice, common values of p-value are 0.05 and 0.01 as reported in
[Mfinder, 2013, Wernicke, 2006b].

• Persistence: Another relevant parameter is to evaluate the statistical
persistence of each motif. Whenever the motif detection experiment for
a given graph Gobs is repeated, a motif might not necessarily appear in
all experiments due to the random graph set, Gs, obtained each time.
For a given number of experiments, l, a persistent motif is defined as the
one that is always present over the l experiments.
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In this study, all of these parameters (N , Z-score and p-value) are used in
order to consider a subgraph as a significant motif.

At the end of the motif detection process, the input graph, Gobs (and
thereby the supposed structural components of the graph), will be associated
with a set, M, of Nm motifs:

M = {Mj : Mj ∈M ′kmax : 1 ≤ j ≤ Nm} (6.17)

In some graph problems, the kind of functional activities associated with
each vertex is the main focus. As such, a smooth representation of each vertex
in function of the detected motifs is essential to describe the vertex interactions
and thereby, the type of functions, within the graph.

To illustrate this process, let’s consider the motif selection related to graph
Gobs of Figure 6.5 as an example. For simplicity reasons, we rely in this example
on evaluating whether the frequency value5 is strictly above 1, Fi > 1, to
consider a subgraph Si as a significant motif.

As shown previously for this example, the set of subgraphs or motifs is
GS = {S3

1 , S
3
2}. The question is for now to select which subgraph, S3

1 or S3
2

(or even both) abides to the frequency condition and is, thereby, a significant
motif. By simply comparing vectors −→N 3 =< N3

1 , N
3
2 >=< 2, 1 > and −→M3 =<

M3
1 ,M

3
2 >=< 1, 1 >, it can be easily noticed that in the example of Figure

6.5, and based on the frequency value, a single motif, S3
1 , has to be selected

as a significant motif having 2 occurrences (N3
1 = 2) in the originally observed

graph, compared to a single occurrence (M3
1 = 1), in the 2 random graphs G1

and G2. This fact does not apply, however, to motif S2 which is as equally
observed in the original graph as in random graphs (N3

2 = M3
2 = 1). Subgraph

S2 can now be named M1, standing for the first significant motif associated
with graph Gobs. For the example illustrated in Figure 6.5, the main outcome
of the motif selection phase is the set of significant motifs, M = {M1}, for
Nm = 1} and M1 ∈ M ′3. It’s based on these most significant motifs that
vertices inside a graph can be represented.

6.3 Vertex Representation using Motifs

The addressed problem, that is, the identification of the protocols being used
by a host, is obviously centered on the activity of each host in a network
(a vertex in the graph), as opposed to the analysis of the overall activity in
the network (the whole graph) or each of the individual communications or
flows (the edges). On the other hand, the graph associated to the observed
networking activity is supposedly generated from the repetition of the motifs.
Thus, we are interested in evaluating the involvement of each node in each
5This applies for the example in Figure 6.5. Beside frequency, other parameters, p-value and
the z-score, are regarded for the rest of this chapter.
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of the obtained motifs, that is, in each of the supposed elementary kinds of
interactions.

Therefore, the next problem to address, once the motifs have been iden-
tified, is how to effectively represent the participation of a vertex in one or
more of those motifs instances. Thus, we shift our focus from a graph-centered
description to a vertex-centered one. For this purpose, each vertex, Vi, in the
observed graph Gobs, is associated to a vector, Pi, whose components, pj , de-
scribes the involvement of that vertex in a specific motif, Mj ∈M. The vector,
Pi, is thus a parametrization of the vertex and, consequently, of its activities,
being referred to as the vertex profile.

In an initial approach, the components of the vertex profile may take a
binary value indicating whether it is involved (pj = 1) or not (pj = 0) in a
motif:

Pi =< pj : 1 ≤ j ≤ Nm > (6.18a)

pj =
{

1, if Vi ∈ V (S(Mj , Gobs))
0, Otherwise

(6.18b)

where S(Mj , Gobs) is the ensemble of all the repetitions of motif Mj in Gobs
and V () is the set of vertices in the given set.

To illustrate this process, let’s represent the vertices in the input graph
Gobs shown in Figure 6.5 using the significant motifs associated with graph
Gobs.

As shown previously, a single motif S2 (or M1) has been associated with
graph Gobs. In this case, M = {M1} and the vertex profile is a single-
dimensional vector, Pi =< p1 >, based on a single attribute, p1, associated
to motif M1.

To evaluate attribute p1 for each vertex in the graph, it is sufficient to
answer whether or not the vertex is involved in the motif substructure as
detected in the original input graph, Gobs. An insight6 into the input graph
in Figure 6.5 shows that nodes (1, 2, 3) and (6, 7, 8) are contributing into 2
different instances of motif S3

2 (or M1), highlighted in dashed-green line in the
input graph Figure 6.5. As a result, p1 = 1 for all of these nodes and p1 = 0
for remaining nodes in the graph. Table 6.1 summarizes the vertex profiles of
all nodes in the input graph.

Based on this representation, a vertex may be part of different motifs at
the same time. As such, for cases where Nm > 1 (which are most common)
this process has to be repeated for each motif in the set M. Moreover, there
are cases when the need is to analyze the same vertex through multiple input
graphs at the same time. Here, the result will be a profile vector, Pi, whose
dimension equals to the cardinality of the union set of all significant motifs
6The motif extraction tool (e.g. Fanmod-tool [Wernicke, 2006b]) usually generates for each
vertex, a list of subgraphs in which the vertex is contributing in within the input graph.
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Table 6.1: Example of vertex profiling using a single motif attribute

Node Contributes
in motif S3

2
from Gobs

Profile vector
< Pi >

1 yes P1 =< 1 >
2 yes P2 =< 1 >
3 yes P3 =< 1 >
4 no P4 =< 0 >
5 no P5 =< 0 >
6 yes P6 =< 1 >
7 yes P7 =< 1 >
8 yes P8 =< 1 >

Figure 6.7: An example of a vertex profile using multiple motifs/graphs

selected from each input graph. Figure 6.7 illustrates an example of a 9-
dimensional vertex profile for a node that has been analyzed simultaneously
through three different input graphs, Gobs1, Gobs2, Gobs3, out of which a sum of
9 significant motifs were extracted and selected: {M1,M2,M3} from Gobs1,
{M4,M5,M6} from Gobs2 and {M7,M8,M9} from Gobs3.

The usage of such cases and the interpretation of the vertex profile repre-
sentation across multiple input graphs will be explained later in this chapter.
Up to this point, graph and vertex representation based on motifs is shown in
a general context, that is, associating vertices with profile vectors representing
their contributions in motifs within the mined input graph.

In the following sections, the vertex representation is applied in traffic clas-
sification contexts in computer networks. The motif detection process and the
graph vertex profiles, shown so far, are corner stones in building the traffic
identification solutions that will be presented next.



176 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

6.4 Motif-based Traffic Classification: the Reference
System

Once the basics of motif analysis of graphs has been presented, its application
to traffic classification, as originally proposed in [Allan2009] is described next.
As will be detailed in the next sections, two main building blocks are needed.
The first one is related to the obtention of a suitable profile for the node or
nodes being analyzed, while the second block is devoted to the classification of
those profiles according to the classification method of choice. Thus, a generic
motif-based traffic classification model is presented first independently from
the motif-based classification method in use. In light of this model, a detailed
implementation of the native classification method in [Allan, 2009] will fol-
low7. To the best of our knowledge, the work in [Allan, 2009] (detailed in
[Allan, 2008]) is one of the fewest attempts on using motifs for traffic classi-
fication purposes in computer networks, despite the reported accuracy in this
preliminary setup.

Applying motifs to traffic classification in computer networks relies on the
same assumption reported in [Milo, 2002]: the appearance of network motifs
at high frequencies suggests that they may have some specific functions in
the information processing, and thus in the application interactions performed
inside computer networks. Motif based traffic classification consists thus on
identifying the application(s) associated with each computer host based on its
profile, which should represent each of the host’s contributions in the set of
motifs mined from a traffic exchange graph.

Thereby, given that network traffic and host exchanges can be represented
with colored and directed graphs, as will be detailed next, the same methodol-
ogy used for motif detection and vertex representation described in the previous
section can be applied in traffic identification.

Therefore, a motif-based traffic classification system should be composed
of three basic blocks, as shown in Figure 6.8, namely:

• Preprocessing: This module takes the observed traffic activity and ob-
tains the associated networking graph.

• Motif-based parametrization: The aim of this block is to obtain the rep-
resentation for each host (i.e the vertex profile) as a function of the mined
motifs, according to the procedure in Section 6.3. The main outcome of
this phase is the set of motif-based host vertex profiles. The associa-
tion of motifs to applications is established during the training of the
system, being transparent to the parametrization process. Thus, given
an input graph from an observed network activity and a set of motifs,

7The system proposed in [Allan2009] will be reproduced as literally as possible, although
some adaptations are needed. They will be mentioned when describing the system modules.
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Figure 6.8: Traffic classification system based on motifs

this block will obtain the profiles for that graph by searching for motifs
appearances.

• Classification: This block labels each host by the application in use8 by
analyzing its motif-based vertex profile. The classification method can
be based on any statistical, pattern matching or ML algorithm.

The details of methods applying the aforementioned motif-based classifica-
tion may vary in many aspects, as, for example, the classification method or
the way the used models are estimated. In fact, the objective of this work is to
propose and evaluate some alternatives for a motif based classifier. In order to
compare the proposed methods, and as stated before, a reference system is set
by referring to the original work in [Allan, 2009] and [Allan, 2008]. For this,
it is necessary to obtain the motifs and train the model for each application
(Figure 6.9) for its subsequent use in classifying traffic.

Although the system should operate in training and classification modes
with some different functionalities, we will explain the system as a whole in the
next sections, including the functions required for training in the discussions.

In the remaining of this section, each elementary operation in Figure 6.9
will be detailed and each of the choices taken by authors in the original work
[Allan, 2008] at the input, techniques and output levels will be described.

6.4.1 Preprocessing: Network Graphs Construction

The first stage for motif-based traffic classification consists of handling the
raw captured data in order to obtain the graph representation of the observed
networking activity (preprocessing block in Figure 6.9). Furthermore, during
the training of the system, some additional steps are required to label each of
the flows according to the associated application and to obtain graphs including
just a single application. Thus, the required functionalities are:

• Ground truth generation (only in training mode): As previously men-
tioned, the existence of a set of labeled data is mandatory for the train-
ing of the system. As it is necessary to handle a huge volume of data,

8In the initial approach [Allan, 2009], each host is supposed to contribute in a single appli-
cation.
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Figure 6.9: Modules for motif-based traffic classification including training
stages

the labeling has to be done automatically. In the original work by Al-
lan [Allan, 2008], the authors used a port-based classification, which is
not accurate enough nowadays. Therefore, to build the reference system,
in this work a DPI based approach (”Validation tool” module in Figure
6.9) is used. The details about the labeling procedures and datasets are
shown in Chapter 3.

• Graph generation: Graph representation is the core of the preprocessing
step. Obviously, it takes a capture of traffic, live or from a PCAP file,
and generates the graph for the observed networking activity.
Networking activity is represented by a colored directed graph, G, in
which each of the nodes, H, is associated to a host, that is, a vertex
exists for each different IP observed in the traffic. Arcs between nodes
represent a communication between the associated hosts. In this case,
an arc is created if at least one flow is observed between both hosts. And
the direction of the arc is from the flow initiator to the flow destination.
Finally, each node (host) is associated a color depending on its function
[Allan, 2009]: client, server or peer. Figure 6.10 shows a simple example
of a network graph.
Thus, given a set of input traffic, the associated networking graph, G(H,A),
is obtained as follows. Let I be the set of different IPs in the raw traffic
set

I = {IP1, IP2, . . . , IPM} (6.19)

and F the set of observed flows
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Figure 6.10: Graphical representation of exchanges between two network hosts

F = {f(IPi → IPj)/IPi, IPj ∈ I} (6.20)

where f(IPi → IPj) denotes a flow from IPi to IPj .
The set of vertex, H, is obtained by associating a node, Hi, to each IP
in I

H = {hi/hi ↔ IPi, ∀IPi ∈ I} (6.21)

The set of arcs, A, is obtained from the set of flows by defining an arc
between nodes hi and hj if there exists at least one flow in F between
IPi and IPj

A = {a(i, j)/∃f(IPi → IPj) ∈ F} (6.22)

The direction of the arc is determined by the flow initiator, for which ad-
ditional information from the flow is required. In particular, the initiator
is considered to be the source for the first observed packet in the flow9.
Finally, a color is assigned to each vertex (host) according to its func-
tionality. In [Allan, 2009] this is done, for a given flow10, according to:

color(hi) =


1 (client), if dp ∈ φ
2 (server), if sp ∈ φ
3 (peer), if dp, sp /∈ φ

(6.23)

where dp and sp stand, respectively, for the destination and source ports
of the flow and φ is the set of IANA assigned ports for services.

9As defined, some conflicts can appear if a host participates in more than one flow.
10Again, as defined, some conflicts may appear if more than one application is served by a

single host.



180 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

Two types of graphs are extracted: full traffic and application graphs.
The full traffic graph illustrates host communications for all applications.
Therefore, it cannot be associated in any way with any individual appli-
cation and, usually, contains a huge number of flows, being a complex
graph. On the other hand, application graphs are extracted by filtering
communications on a per application basis. Therefore, in these graphs
all the edges are associated to the same application11.
Application graphs are relevant for training the system, as the motifs
should be associated to an application. Therefore, the graph generation
module in the preprocessing phase when in training mode generates only
application graphs (Figure 6.9). Obviously, to generate them the flows
should be filtered according to their application, for which the ground
truth is used in this work. It is worth mentioning that in the original
work [Allan, 2009] port-based filtering was used for this purpose, which
is coherent with the way in which the ground truth was obtained.
These application graphs are to be mined and associated with motifs
(detailed next in Section 6.4.2). To obtain statistically significant mo-
tifs, more than one graph should be extracted for each application at the
preprocessing phase. The highest the number of application graphs for a
given application the more likely will be the possibility to detect enough
motifs for that application. The upper limit of the number of applica-
tion graphs is limited by the computational cost associated with motif
detection, as will be discussed next in Section 6.4.2. For this purpose,
some time slots in the analyzed traffic can be considered, each of them
generating an application graph.
Another relevant concern is that different application graphs should have
preferably similar number of participating nodes to prevent any bias in
the obtained results. In this regard, many approaches can be considered.
For example, collecting network captures for a fixed amount of time for all
protocols is not efficient because certain applications can be much more
heavily used than others. Another alternative (used in the native ap-
proach [Allan, 2008]) is to analyze application graphs that have a similar
number of participating nodes by allowing the network capture lengths
to vary. In [Allan, 2008], 10 graphs were searched for each application
protocol, and only the first 40 to 80 hosts are considered for each graph.

The output of this phase are the full traffic graph and the set of all filtered
application graphs which will be analyzed for various purposes including motif
detection, training set generation, and motif-based parametrization, as detailed
next in the following sections. From the implementation point of view, the
output should be formatted according to the tool used to detect motifs, that
is, Fanmod-tool [Wernicke, 2006b].
11An illustrative example of application graphs is detailed in Section 6.4.2, Figure 6.11.
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6.4.2 Motif-based Parametrization

The next step in motif-based traffic identification is the host parametrization
(Figure 6.9). The target of this phase is to build a profile for each host in the
graph, that is, the vertex profile for each host (Section 6.3) which, as previously
explained, should reflect the involvement of that host in each of the selected
significant motifs (”Motif sets” in Figure 6.9).

Motif Detection

Obviously, the parametrization depends on the motif set, which should be
obtained during the training of the system. Therefore, when in training mode,
the parametrization phase includes the analysis of the graphs to search and
select those significant motifs (module ”Motif detection” in Figure 6.9). For
this, the application graphs, as provided by the preprocessing step, are used
as the inputs for the motif detection analysis, which is carried out according
to the procedures in Section 6.2. Nevertheless, this analysis is made on a per
application basis, that is, only the application graphs for a selected application
are considered for the motif extraction each time, and the analysis is repeated
for all the applications. This way, the obtained motifs are labeled according to
the application for which they were obtained.

From the implementation point of view, the motif detection process (Figure
6.9) is made by mining application graphs one by one using the Fanmod-tool
[Wernicke, 2006b], similarly as was done in the original work by Allan. This
process is depicted in Figure 6.11, which shows a simplified motif detection
process for three different application graphs. Due to space limitations, graph
randomization, used in the motif detection procedure, is not shown in Figure
6.11. In this example, if the relevance criterion is a frequency of appearance
greater or equal to 2, only a single size 3 motif is selected for each application
(Figure 6.11).

In a real case scenario, an enormous number of motifs (e.g. up to 130
motifs in [Allan, 2008]) can be obtained, which increases the dimensionality of
the profiles and, thus, the complexity of the classification problem. Therefore,
it is necessary to set the required statistical level of significance for a motif to
be selected as significant during the training of the system, being this a key
parameter in this phase. As explained in Section 6.2, some parameters can be
used for this purpose. In [Allan, 2008], the statistical information generated
by the Fanmod-tool is used, and only motifs with a frequency > 1% and a
p− value = 0 are considered relevant.

At the output of the motif detection module, a set of motifs, M, each of
them associated to an application, are obtained.
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Figure 6.11: Motif extraction from network traffic application graphs

Figure 6.12: Building the vertex profile for each host

Motif Analysis

Given the motif set and an input networking graph, the procedure to obtain
the vertex profiles is that described in Section 6.3. The main novelty in this
case is the association of the motifs to the applications as a result of the motif
detection procedure. Thus, the outcome of this phase is the set of vertex
profiles for each of the hosts in the graph, which is composed by binary values
in the original work by Allan [Allan, 2009] and thus in this phase of the work.

Figure 6.12 shows an example of a vertex profile for a host generating HTTP
traffic built from the set of considered motifs. As shown, each of the motifs can
be represented by its extended adjacency matrix and labeled by the application
that generated them. Thus, groups of positions in the vertex profile can be
associated to an application. In this case, positions 4 to 6 correspond to HTTP
and have a value of 1, which means that the considered host, H1, is involved
in the appropriate role (color) in the appearance of those motifs in the input
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graph. In a näıve approach, as HTTP related motifs contribute in the profile,
the traffic from host H1 could be labeled as HTTP. But, as shown in the graph,
one of the BitTorrent related motifs is also contributing to the profile. Thus,
an additional procedure is required to classify the profiles, which constitutes
the next block of the system.

Similarly to the motif detection, the motif analysis is made using the
Fanmod-tool, which generates the lists of vertices (hosts) involved in each of
the considered motifs. Furthermore, as a training procedure is required for the
classifier, it is necessary to obtain the vertex profiles for the training traffic,
that is, for the nodes in the application graphs obtained at the output of the
preprocessing phase, when in training mode (Figure 6.9).

6.4.3 Classification

The classification block (Figure 6.9) is the final phase and aims to classify
the traffic for unknown hosts, given their vertex profiles as defined previously.
Although many options for the classification method could be considered here,
in this subsection, the classification method in [Allan, 2009] is detailed at the
three different levels, as this will be used as the reference system.

1) Classification target: At the output level, the system in [Allan, 2009] is
based on a multi-class, single-labeled host classification.
In particular, the set of considered applications is, L = {AIM, DNS,
HTTP, Microsoft Active Directory Domain Services (MSDS), NetBIOS,
SSH, Kazaa}.

2) Classification input: Based on the vertex profile representation described
previously, the classification input is the set of profile vectors, vx, associ-
ated with each test vertex:

−→vx = [a1, a2, a3, . . . , an] (6.24)

where n is the number of significant motifs. For an unclassified host, Hx,
with profile −→vx, the classification consists in obtaining the application
label, Lx, based on the obtained model from the training profiles.

3) Classification technique: The ML technique used in [Allan, 2008] is KNN
[Huang, 2009], which is a well-known method for classifying objects based
on the closest samples in the model, that is composed by the whole or a
subset of the training samples. Thus, as host vertex profiles are vectors
in the feature space, the classification consists on assigning the class of
the K-nearests profiles in the model to the input profile (Figure 6.13).
To determine the proximity of two objects in the feature space, many
distance types (Euclidean, Cityblock, Manhattan, Chebyshev, etc.) may
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Figure 6.13: KNN classification example

be used. The Euclidean distance (used in [Allan, 2008]) between two
n-dimensional points −→Va = [a1, a2, . . . , an] and −→Vb = [b1, b2, . . . , bn] is cal-
culated as:

d(−→Va,
−→
Vb) =

√√√√ n∑
i=1

(bi − ai)2 (6.25)

In the classification phase, K is a user-defined constant, and a profile is
classified by assigning the label of the nearest neighbor (for K = 1), or through
a majority voting process among the K nearest neighboring samples (for K >
1)12. Hence, K is a critical parameter affecting the classification decision.
As an example, Figure 6.13 shows some labeled samples, H1 to H4 and an
unknown one, Hx. For K = 1, Hx will be classified as SSL, as per the closest
host label, H1. However, it will be classified as HTTP for K = 4, as two of the
four closest samples are labeled HTTP.

Therefore, after identifying the K nearest neighbors in the model set for
an unlabeled host profile, Hx, with vertex profile −→Vx, Hx label can be inferred
exclusively from the closest neighbor (if K=1, as in [Allan, 2008]), or through
a majority voting process if K > 1). It is worth mentioning that, in this case,
as in [Allan, 2008], the model is composed by all the training vertex profiles
obtained from the parametrization.

Up to this point, the native motif-based classification system proposed in
[Allan, 2008] has been described. In the next section this basic approach will
12KNN can be used in voting or regression modes, as shown in Section 6.7.3.
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a) b)

Figure 6.14: Application graph visualization using Graphviz for: a) BitTorrent
and b) Gnutella

be experimentally evaluated and assessed in order to later propose some en-
hancements and be able to measure their impact over this reference system.

6.5 Reference System Results

Classification results are shown in this section for the native method in [Allan,
2008]. In order to test the classification methods proposed in this chapter, two
datasets were used, namely: CS-A4 for training, CS-B1 for classification and
testing. The contents and details for these datasets are shown in Chapter 3.

The analysis of the datasets after preprocessing and motif detection (Fig-
ure 6.9) evidenced that only 14 protocols met the required properties as to be
considered for training and testing the classification methods. These proto-
cols are: BitTorrent, FTP, HTTP, IRC, Mail IMAP, Mail POP, Mail SMTP,
MSN, NTP, Oscar, SIP, SNMP, SSH, SSL. Other applications appearing in the
datasets were discarded due to an insufficient number of samples, not provid-
ing sufficiently representative associated motifs or not appearing in both the
training and testing datasets.

In the preprocessing phase, up to 112 different application graphs for the
14 protocols were obtained and analyzed in search of motifs from the training
dataset, that is, CS-A4. An inspection of the obtained application graphs can
optionally be done using special tools like Graphviz [Gansner, 2006] visualiza-
tion software as shown in Figure 6.14.

Figure 6.14 visualizes network exchanges among hosts specific to a single
application. Namely, Figure 6.14a) depicts a typical BitTorrent application
graph where peers communicate with a server (the tracker), and issues multiple
connections to other peers. Figure 6.14b) depicts two Gnutella central nodes
connected to several peer nodes.



186 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

Table 6.2: Number of selected hosts per application for training in the CS-A4
dataset

Application # Host training
samples

BitTorrent 43
SSL 73

HTTP 61
Mail IMAP 12

NTP 23
Oscar 18
MSN 25

Mail POP 26
FTP 30

SNMP 31
SIP 26
SSH 32

Mail SMTP 21
IRC 27

However, this kind of visual intuition is only suggestive and derived from our
prior knowledge about the applications and the network environment where the
data is captured. Therefore, application graphs intuitions are not and should
not be part of the classifier design. These graphs can be only used for assessing
motif detection.

Based on these application graphs, significant motifs of sizes 3 and 4 were
selected out and used as the elements to build the vertex profile.

After the motif set is chosen, all the application graphs from CS-A4 as
well as the full graph from CS-B1 are used as the inputs for the MOTIF
analysis block (Figure 6.9), thus providing the training and testing sets of
vertex profiles.

6.5.1 Experimental Results

In this section, results obtained for each module of Figure 6.9 are shown.

6.5.1.1 Preliminary Results

Before showing the results for the motif detection process, we start first by
exploring some preliminary results regarding the datasets used for training
from a host classification point of view.

The dataset used for training, CS-A4, contains hosts that are engaged in a
single application activities which are the ideal candidates for the motif analysis
according to the original method in [Allan, 2008]. By parsing the flow-based
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Figure 6.15: Ground truth results for hosts in the test dataset (CS-B1)

ground truth results, single-labeled hosts were selected as training samples.
For this, a simple heuristic is used: a host is single-labeled with application l if
all flows generated by that hosts are labeled by DPI as belonging to application
l.

As show in Table 6.2, the number of selected samples per protocol were
chosen below 100 as to keep the training set balanced to the far most extent.
Using dataset CS-A4, 448 single-labeled hosts were used as training samples.

The distribution of hosts in the test dataset (CS-B1) per protocol are shown
in Figure 6.15. As stated earlier, as not all the hosts contribute in motifs, and
as not all applications can be associated with motifs, a subset of hosts can be
used for classification from each dataset. Using dataset CS-B1, 4333 test hosts
were used for classification.

6.5.1.2 Motif Enumeration and Selection Results

As stated earlier, to detect motifs, the Fanmod-tool is run on application
graphs. The main settings used with the Fanmod-tool for motif detection
are shown, altogether with the parameters for significant motif selection13, in
Table 6.3.
13The same Fanmod-tool settings and parameters are used for subsequent motif detection

and selection experiments in Sections 6.6 and 6.7.3.
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Table 6.3: Fanmod-tool Settings and parameters for significant motif selection

FANMOD Option Possible
Values

Default
Value

Chosen
value

subgraph (motif) size >3 [3] (3-4)
# of random graphs in the

null-model >1 [1000] (5000)

# of samples >1 [100000] (100000)
Frequency of a subgraph >1 - (>10)

p-value 0.01 - (0.01)
Z-score >0 - (>10)

Persistency >1 - ( 6 )
Full enumeration? 1(yes)/0(no) [1] 1 (yes)
Directed graphs? 1(yes)/0(no) [1] 1 (yes)
Colored vertices? 1(yes)/0(no) [0] 1 (yes)
Colored edges? 1(yes)/0(no) [0] 0 (no)

Randomization type
0(no regard)

1(global const)
2(local const 14)

[2] (2)

Regard vertex colors15? 1(yes)/0(no) [0] 1 (yes)
Regard edge colors? 1(yes)/0(no) [0] 0 (no)

Re-estimate subgraph
number? 1(yes)/0(no) [0] 0 (no)

# of exchanges per edge >1 [3] (5)
# of exchange attempts

per edge >1 [3] (5)

Some of the default values did not fit to the the purposes of our experiments,
and had thus to be changed. Most importantly, two values are critical for motif
mining, namely, the regard vertex color condition, to maintain the colors of
vertices, and the number of random networks.

With these conditions, and based on the application graphs generated from
our datasets, 156 significant motifs of sizes 3 and 4 were selected, out of which
36 motifs are considered significant and used as the elements to build the vertex
profile.

Therefore, in our implementation of the reference method, the dimension-
ality of the profiles is 36. The obtained motifs and their associated applications
are shown in Table 6.4.

Table 6.4 shows the number of occurrences for each of the 36 significant
motifs across the 14 tested protocols, over the training dataset16. Moreover,
this table shows that motifs may collide, that is, a motif can be found in more
16Due to the persistency condition, the same set of motifs extracted out of the training dataset

are obtained when mining the test dataset.
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Table 6.4: Number of occurrences for each of the 36 significant motifs, ob-
tained with the native method, across the 14 tested protocol (Training dataset
CS-A4)

M
O

T
IF

-I
D

#
O

cc
ur

en
ce

s

B
it

T
or

re
nt

F
T

P

H
T

T
P

IR
C

M
ai

l
IM

A
P

M
ai

l
P

O
P

M
ai

l
SM

T
P

M
SN

N
T

P

O
sc

ar

SI
P

SN
M

P

SS
H

SS
L

1 13 0 0 7 0 1 0 4 0 1 0 0 0 0 0
2 17 0 0 9 0 0 0 0 0 1 0 0 0 4 3
3 123 0 0 46 0 0 6 6 12 4 3 5 6 7 28
4 36 0 0 18 0 0 3 0 0 0 0 1 4 0 10
5 25 0 0 16 0 0 0 3 0 0 0 0 0 3 3
6 11 0 0 4 0 0 0 4 0 0 0 0 0 0 3
7 15 0 0 11 0 0 0 0 0 0 0 0 0 0 4
8 43 0 0 25 0 3 3 3 0 0 0 0 3 0 6
9 16 0 0 7 0 0 6 0 0 0 0 0 0 0 3
10 17 0 0 9 0 0 0 4 0 0 0 0 4 0 0
11 132 6 0 42 0 3 3 6 27 3 3 3 6 0 30
12 27 0 0 12 0 0 3 3 0 0 3 0 3 0 3
13 11 0 0 3 0 0 0 4 0 0 4 0 0 0 0
14 15 0 0 9 0 0 3 0 0 0 0 0 3 0 0
15 42 27 0 0 3 0 0 0 6 6 0 0 0 0 0
16 65 0 3 0 4 0 0 0 29 27 0 0 0 0 0
17 15 0 1 0 0 0 0 0 14 0 0 0 0 0 0
18 21 0 1 0 0 17 0 0 3 0 0 0 0 0 0
19 7 3 3 0 0 1 0 0 0 0 0 0 0 0 0
20 17 0 3 0 4 0 0 0 10 0 0 0 0 0 0
21 6 0 0 0 0 0 0 0 1 0 5 0 0 0 0
22 3 0 0 1 2 0 0 0 0 0 0 0 0 0 0
23 69 0 3 0 8 0 0 0 27 29 0 0 0 0 0
24 71 0 3 0 10 0 0 0 31 26 0 0 0 0 0
25 11 0 0 0 0 0 4 0 0 6 0 6 0 0 0
26 10 0 0 6 0 1 0 0 0 0 0 0 3 0 0
27 13 0 0 0 0 0 0 0 6 7 0 0 0 0 0
25 13 0 0 0 0 0 0 0 0 12 1 0 0 0 0
29 15 0 0 0 0 6 0 6 0 0 0 0 3 0 0
24 13 9 0 0 0 0 0 0 0 4 0 0 0 0 0
31 45 33 0 0 0 0 0 0 0 12 0 0 0 0 0
32 49 31 0 0 0 0 0 0 0 18 0 0 0 0 0
33 56 36 0 0 0 0 0 0 0 12 0 0 8 0 0
34 71 40 0 0 0 0 0 0 0 31 0 0 0 0 0
35 48 29 0 0 0 0 0 0 0 18 0 0 0 0 0
36 63 30 0 0 0 0 0 0 0 33 0 0 0 0 0
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Figure 6.16: Accuracy average for different values of K

than one application’s graphs. As stated earlier, this proves that the appear-
ance of any single motif is not necessarily an indication of a given application
being in use by a host but, rather, a set of multiple motifs should be regarded
per application.

Table 6.5 shows 5 examples of single-labeled host vertex profiles (see Section
6.3) from the training dataset (CS-A4): H1 (BitTorrent host), H2 (FTP host),
H3 (HTTP host), H4 (IRC host) and H5 (Mail IMAP host).

6.5.1.3 Classification Results

A KNN classifier, as explained in Section 6.4.3, is used to label each of the
profiles in the evaluation set. Therefore, all the training samples are directly
considered as the applications model (Figure 6.9) and used in the classification
procedure without any kind of preprocessing, selection or adjustment of the
model, that is, no training of the model exists in this case.

The implementation of the native motif-based classification in [Allan, 2008]
is ”single nature traffic”, that is, based on single label test hosts, though not
stated explicitly. Despite the fact that hosts might be, and most probably
are, contributing in more than one application, their vertex representations, as
implemented in [Allan, 2008], does not consider host activities in applications,
but rather, for a single application. In fact, each host (or IP address) is assigned
a different identifier in each application graph.

To evaluate the accuracy per application protocol, the value of K should be
chosen first. Figure 6.16 shows the accuracy values averaged on all protocols
for different values of K.

Apparently, increasing the value of K above 2 or 3 does not increase the
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Table 6.5: Examples of host vertex profiles (columns Hi) from the training
dataset (CS-A4)

Motif-
Id

Profile Vector
Attributes pj

H1 H2 H3 H4 H5

1 p1 0 0 0 0 0
2 p2 0 0 1 0 0
3 p3 0 0 1 0 0
4 p4 0 0 1 0 0
5 p5 0 0 0 1 0
6 p6 0 0 1 0 0
7 p7 0 0 1 0 0
8 p8 0 0 1 0 0
9 p9 0 0 0 0 0
10 p10 0 0 1 0 0
11 p11 0 0 1 0 0
12 p12 0 0 1 0 0
13 p13 0 0 0 0 0
14 p14 0 0 1 0 0
15 p15 1 0 0 1 1
16 p16 0 1 0 1 1
17 p17 0 1 0 0 0
18 p18 0 1 0 0 1
19 p19 1 1 0 0 1
20 p20 0 1 0 1 0
21 p21 0 0 0 0 0
22 p22 0 0 0 1 0
23 p23 0 1 0 1 0
24 p24 0 1 0 1 0
25 p25 0 0 0 0 0
26 p26 0 0 0 0 1
27 p27 0 0 0 0 0
28 p28 0 0 0 0 0
29 p29 0 0 0 0 1
30 p30 0 0 0 0 0
31 p31 1 0 0 0 0
32 p32 1 0 0 0 0
33 p33 1 0 0 0 0
34 p34 1 0 0 0 0
35 p35 0 0 0 0 0
36 p36 1 0 0 0 0

overall accuracy (69.81%), but eventually, adds additional computational cost.
In the following, we show the classification results for K = 3.

To start with the classification results, the confusion matrix in Table 6.6
is illustrative from many perspectives. First, to some extent, the native motif
based classification can be considered as accurate for most protocols in the
dataset, given that the diagonal values are the highest in each row.
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Table 6.6: Confusion matrix for reference motif-based classification system
(K=3, dataset CS-B1)

Classified as
→

Input class
↓

a b c d e f g h i j k l m n

a=BitTorrent 507 0 0 0 175 0 0 0 223 0 0 0 0 89
b=SSL 1 349 230 0 0 0 0 0 0 115 1 0 0 16

c=HTTP 0 0 218 0 0 0 57 124 0 0 0 0 0 133
d=Mail IMAP 0 0 1 2 0 0 0 1 0 0 0 0 0 0

e=NTP 59 0 0 0 852 0 23 0 0 0 2 0 0 21
f=Oscar 0 2 5 0 0 39 0 3 0 0 0 0 0 0
g=MSN 7 3 12 0 50 0 668 0 0 0 0 0 0 2

h=Mail POP 0 4 1 0 2 0 0 68 0 0 0 0 0 0
i=FTP 0 0 0 0 3 0 15 0 38 0 0 0 0 3

j=SNMP 0 2 5 0 0 0 0 0 0 12 0 0 0 0
k=SIP 3 1 5 0 0 0 0 1 0 0 64 0 0 0
l=SSH 0 0 4 0 0 0 0 0 0 0 0 6 0 0

m=Mail SMTP 0 0 11 0 0 0 1 0 0 0 0 0 49 0
n=IRC 0 1 0 0 1 0 6 0 1 0 0 0 0 36

On the other hand, the confusion matrix shows the effect of colliding motifs
where application protocols are confused by the motif-based classifier, which
increases the FP rate and thereby, decreases the accuracy for some applications.
Next, the experimental results obtained for different values of K are shown and
discussed.

Figure 6.17 shows the classification accuracy for application protocols in
CS-B1 for K = 3. As shown in this figure, host classification accuracy ranges
from 41.22% to 91.25%. Averaged for all protocols in the dataset, 69.81% of
accuracy can be obtained with the native method.

Up to this level, the native method in [Allan, 2008] has been reproduced
to the far most extent, except for using the same protocols or PCAP datasets
which are beyond our reach as being unpublished by the original authors.

Further analysis and discussions related to these results are presented in
the next section.

6.5.2 Analysis and Discussions

The previous experimental results show promising properties and performance
for the method proposed in [Allan, 2008], although they should be clearly
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Figure 6.17: Accuracy results for the reference system, for the CS-B1 dataset
trained on CS-A4 using K=3

improved. A first preliminary analysis of the results evidences dissimilar results
for different protocols and a low number of significant motifs given the number
of protocols (34 vs. 14). While in the best case a single motif would be
enough to differentiate an application, it is not expected to find this behavior
but the opposite, as many applications are expected to share some schemes of
communications, i.e., motifs. Thus, it is advisable to analyze the number and
nature of the selected motifs.

Furthermore, there can also exist some collisions in the motifs associated
to each protocol, thus generating some problems. In summary, despite the
promising results, it is necessary to address some limitations, analyze some
choices and improve its performance. This can be done from a deeper analysis
of the system at the different levels: preprocessing, parametrization and clas-
sification (Figure 6.9). Next, we review the design decisions and limitations at



194 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

each of those blocks in order to later propose some improvements that will be
explored in this work.

• Preprocessing: The preprocessing stage is targeted at obtaining the set of
graphs (full or application ones) for their further processing. The major
questions at this phase are:

– Ground truth: For the training of the system, the ground truth is
built in the original work using port-based matching. This step is
critical for the generation of the application graphs to be used to
train the system and for the proper assessment of the results. As
previously mentioned, this is not an acceptable method nowadays.
Nevertheless, the previous results have been obtained by using a
DPI tool for labeling the ground truth, which solves the related
problem up to a reasonable limit.

– Colors: To estimate each host type (client, server, or peer) and thus
the color of the associated node, an exact match to the IANA set of
assigned port numbers is used. Similarly to the previous problem,
this is not a reliable solution nowadays.

– Edges: An edge is created if a single packet is exchanged between
two hosts (nodes). In fact, this condition takes no robust implica-
tions about whether the two hosts are really communicating or not,
as most applications require at least 4 exchanged packets in order
to build a session.

– Single nature traffic: An underlying strong hypothesis is that each
host only generates traffic from a single application. Clearly, this
is not true in most common scenarios. In this regard, there is no
distinction between different applications in the created edges even
when using port-based labeling.

• Parametrization: Once the graphs are created, they are analyzed in
search of motifs both for choosing those representative ones, when in
training mode, and/or to obtain the profiles. The related major limita-
tions are:

– Number of motifs: Potentially, a big number of motifs can be ob-
tained (up to 156 in the previous experiments for orders 3 and 4).
The choice of the significant ones is relevant as the dimensionality
of the profiles is the number of selected motifs. Thus, a compromise
is needed, as they should include all the discriminant information



CHAPTER 6. HOST-BASED MULTI-LABEL CLASSIFICATION USING MOTIFS 195

for the classification process, that is, they should be representative,
while not introducing a big data problem due to a high dimension-
ality. This choice is not analyzed in [Allan, 2008].

– Binary parametrization: The construction of the profiles is made
on an on/off basis, as each of the parameters can take a value 0 or
1 depending on whether the node is involved in any occurrence of
the associated motif. Obviously, this does not take into account the
volume of related activity for the node, making impossible to even
select the majority traffic. Furthermore, this criterion, together with
the single nature traffic one, makes the discrimination of each of the
activities from a node almost impossible.

– Collision of motifs: The same motif can appear associated to more
than one application during training. In the current approach, they
will be considered as different, as they are obtained from differ-
ent application graphs. This obviously introduces confusion for the
classification process.

• Classification: Finally, a classification method is applied to the obtained
parameter vectors. In this regard, the original work could be improved
by addressing:

– Labels: In concordance with the single nature traffic hypothesis,
the original method in [Allan, 2008] follows a single-label classi-
fication model where a host is assumed to contribute in a single
application. Obviously, as previously mentioned, this mode does
not reflect real communication scenarios for most computer commu-
nications examined throughout public and locally captured traffic
traces. In the real traffic, the host behavior is implicitly applica-
ble into multi-applications context. In fact, a typical user behav-
ior might be browsing the web, receiving an email while a system
background task is fetching the latest updates through the Internet,
which implies that the classification at the network host level should
be multi-labeled.

In the next sections, some proposals targeted at improving the system by
addressing some of the previous limitations are presented and assessed. In this
regard, two main aspects are considered. First, an improved parametrization
and profile creation method is proposed. The second aspect is to extend the
modeling so as to consider a multi-label classification scenario in which each
node should be labeled according to those most used applications.
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6.6 Improved Motif-based Classification Method

Once the native system is implemented and its limitations highlighted, next
we propose and evaluate some enhancements targeted at improving the per-
formance of the method. In a first step, the changes will focus on the prepro-
cessing and parametrization while keeping the condition of a single application
per host.

The proposed enhancements regarding the preprocessing phase are:

• Edges: An edge is considered to occur between two vertices once one or
more flows between the two corresponding hosts are observed, if the traffic
is TCP, or once more than one data packet is exchanged, in case it is UDP.
This way, signaling packets alone are not considered a communication.

• Colors: To estimate each host type or color an improved method is used.
As previously shown (Section 6.4), in the native system the differentia-
tion among these types is based on the exact match of IANA assigned
port numbers. In the improved proposed method, port ranges are used
instead to estimate the node types. This is motivated by the use of port
obfuscation and this method is supposed to mitigate its effects when
compared to exact port matching. Thus, estimating the node role relies
on the port number ranges as defined by IANA: client port numbers are
usually chosen in the range [1024-65535] while server port numbers are
below 1024. The algorithm, shown in Algorithm 6.1, checks the source
and destination port numbers together with the flow direction between
the two nodes to distinguish the client role (outgoing edge) from the
server role (incident edge). For other cases, nodes are assigned the peer
roles, except for a few known protocols (not shown in Algorithm 6.1)
above 1024 or protocols that use the same port source and destination
numbers (e.g. Network Time Protocol (NTP) using UDP port 123).

Regarding the parametrization, some improvements are proposed for the
motif detection and selection processes, as well as for the profile creation:

• Number of motifs: The choice of the significant motifs is the core for the
parametrization. Thus, the major focus in the improvements is targeted
at selecting those really relevant motifs by analyzing their statistical sig-
nificance. The procedure is as follows. First, similarly to the native
method, a limited number of application graphs per application are con-
sidered, each one involving a maximum number of nodes. Then, the
potentially high number of motifs derived from the training set are ana-
lyzed to select those really significant ones by filtering out those that do
not fit in the accepted values or ranges for the following magnitudes:
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Algorithm 6.1 Algorithm for node type selection based on the transport layer
port number ranges

.

% Let G = (V,E) be an application graph for application A, consisting of
vertices V and edges E
% Let node v ∈ V of unknown type (client, server, peer)
% For the observed flows between nodes u ∈ V, v ∈ V , let Dp and Sp be,
respectively, the destination and source port numbers, at the transport layer.
% To get the type of node v
if ((Dp ≥ 1024) && (Sp ≥ 1024)) | | ((Dp <1024) && (Sp <1024)) then

v is a peer node, and labeled as type vp
else
% v is a directed flow source and a directed flow destination

if ∃ev,u, eu,v ∈ E then
v is a peer node, labeled vp

else
% v is a directed flow destination

if ∃eu,v ∈ E then
v is a server node, and labeled as vs

else
% v is a directed flow source

if ∃ev,u ∈ E then
v is a client node, and labeled as vc

end if
end if

end if
end if

– P-value, Z-score and frequency.

– Persistency. As defined in Section 6.2.2.3, this property refers to the
frequency of appearance of a motif across several repetitive detection
experiments. Therefore, a motif is considered to be persistent and
thus relevant if it appears across each of those experiments.

The final motif set will be composed only by those considered relevant.
It is relevant to note that this new condition reveals important since
otherwise the training and test datasets would result in different motif
sets and thus, would generate poor or inconsistent vertex profiles.

• Collision of motifs: The colliding motifs are to be identified and joined
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during the vertex profile creation.

• Values for the parameters: Instead of using a binary value for each of the
parameters, it is proposed to use the number of appearances of the cor-
responding motif to account for the volume of traffic and the proportions
for each of the different motifs.

6.6.1 Evaluation of the Improvements

Based on the previous proposals, a set of experiments are carried out to evaluate
them. Obviously, in order to compare the results, the same datasets used to
train and evaluate the native method in the previous section are used. Thus,
a set of 14 protocols is considered.

The particularization of the relevant motif selection was made as follows.
First, similarly to the previous implementation of the native method, up to 10
application graphs per application composed by up to 100 nodes are consid-
ered. The extraction of the motifs was repeated 6 times, to account for the
randomization of the graphs during the procedure. This provided 345 different
motifs, which were filtered by using the same values for P-value, Z-score and
frequency as those used in the implementation of the native method (Section
6.5.1.2, Table 6.3) and taking only those appearing in all the 6 repetitions. Af-
ter that, a post-processing of the obtained motifs to join those repeated ones is
carried out. The output of this phase is a set of n=24 motifs, shown in Figure
6.18 using the < MotifID−Adjacency matrix > notation. Obviously, due to
adding the persistency condition, a lower number of motifs are obtained in the
improved method as compared to the reference one, although they are more
significant due to this.

As shown in Figure 6.18, the motif set consists of 16 order-3 and 8 order-4
motifs. As expected, experimental results show that some motifs are exhibited
by more than one application and that a single application might be associated
with more than one motif.

Accordingly to the cardinality of the motif set, each of the hosts (nodes)
in the training and testing sets is associated to a vertex profile composed by
24 parameters. For this, a preliminary assignment was made by applying the
frequency of appearance proposal. Unfortunately, the resulting datasets were
too sparse and thus not representative due to the lack of data. Consequently,
we had to dismiss this approach and applied the binary parametrization as
in the native method. It is worth to note at this point that the sizes of the
training and testing datasets are huge when compared with other works in this
field. This issue will be discussed in the conclusions.
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Figure 6.18: The 24 selected significant and persistent motifs in CS-A4: order-3
(1 through 16) and order-4 (17 through 24)

After obtaining the profiles for the testing dataset, the classification per-
formance is evaluated.

Figure 6.19 shows the classification accuracy for the same set of application
protocols and test sets used in the reference system. As shown in this figure,
the improved method outperforms the native one on almost all of the ana-
lyzed protocols, achieving remarkable enhancements in the host classification
accuracy for some of them as BitTorrent (36.7% increase), HTTP (37%), SSL
(8.9%) and SSH (31%).

As a result, averaged for all protocols, 82% of accuracy was obtained with
the improved method compared to 70% with the native one.
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Figure 6.19: Improved v.s. native method per protocol accuracy results for the
CS-B1 trained on CS-A4 dataset

6.6.2 Analysis and Discussions

In the light of the proposed improvements and experimental results, the appli-
cability of the motif technique for host-based classification are discussed next.

Previous results show that the improved method outperforms [Allan, 2008].
Nevertheless, motif-based classification accuracy did not reach more than 82%
on average, even after improvements. The main limitation seems to come from
the fact that in some cases the same motif is exhibited by more than one appli-
cation, thus not being discriminative enough among them. In addition, some
applications might be associated with few or no motifs during motif detection
phase. On the other hand, our results show that no single motif is indicative of
a particular application, and the presence of applications with many motifs in
common decreases the overall accuracy. Therefore, adding more discriminative
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information during the motif selection and building of representative applica-
tion profiles or models is required to enhance the system performance. Thus,
two main lines of research are to be explored. On the one hand, richer profiles
and an enhanced parametrization can provide the required additional informa-
tion. Unfortunately, as previously mentioned, the volumes of required traffic to
obtain statistically significant data is huge. On the other hand, it seems clear
that it is the combination of motifs which is associated to the application and
that some overlapping occurs. In this scenario, other classification methods
different from KNN are probably better suited to represent each of the classes.

Another relevant issue concerns the potential online deployment of the
method. The study presented so far and throughout this chapter focuses on
assessing the classification accuracy of the system. Unfortunately, motif-based
classification requires high computational costs, especially during the motif
detection phase, and significant information gathering to obtain the required
graphs from which to check the presence of each of the motifs. This introduces
a significant delay in the classification of the activities of each of the hosts.
Therefore, in its current state, the online deployment seems unfeasible.

Up to this level, host-based classification with motifs is assessed and im-
proved. To be practical, motif-based classification should be extended to han-
dle a multi-label classification context which is a new paradigm of host-based
classification, as discussed next.

6.7 Extended Multi-label Motif-based Classification

In this section, motif-based classification is further extended to handle multi-
label classification in order to be able to label a host as associated to more
than one application type.

In the proposed extension, during the training phase, the motif detection
process and selection are kept the same as in the previous approach (Section
6.4.2). Nevertheless, and from the perspective of the taxonomy presented in
Chapter 2, key changes are proposed in the classification technique, the input
and the output to adapt the system for multi-label mode.

6.7.1 Classifier Target

As mentioned, the motif-based classification methods described earlier are only
applicable in single-label classification mode, that is, are able to classify a host
as generating networking traffic associated just to a single class from the set
of available applications. To handle multi-label classification, the classification
targets should be evidently redefined.
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Formally, let L be a set of disjoint labels, being M the cardinality of L.
The result of the classification process is the assignment of a set L of unique
labels from L, that is, L ⊆ L, to the entity to be classified. Thus, in multi-
class classification17, which is the case considered so far, M ≥ 2 and |L| = 1,
whereas in multi-label classification M ≥ 2 and |L| > 1.

In the considered multi-label scenario, the same set of application protocols
used in Section 6.6 is targeted for classification although in a multi-label host
classification context. Therefore, in this case, L = 14 and 1 ≤ |L| ≤ 14. Each
of the 14 applications found in our dataset is associated to an index, i = 1 to
i = 14, as shown in the first column of Table 6.8.

Therefore, in our case, in single label classification mode (Section 6.4.3), an
unclassified host, e.g. Hx in Figure 6.13, is annotated with a single application
label L(Hx) = {SSL}.

In the multi-label mode, the annotation consists of a set of application
labels L ⊆ L, where L is the set of all possible applications (see Table 6.7). For
example, host Hx can be annotated with the subset L(Hx) = {HTTP, SSL}.

To ease the handling and evaluation of the labels, a vector of binary at-
tributes18 , Lx, is used to represent the involvement of host Hx in any of the
labels (applications). Thus, host Hx is assigned a classes vector :

Lx = [l1, l2 · · · lM ] (6.26)

where li is a binary attribute whose value is 1 if the i-th label (class) is
present and 0 otherwise. For example, if the multi-label annotation subset
of Hx is L(Hx) = {HTTP, SSL}, then the multi-label vector Lx becomes
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

This representation can be used for associating labels to host Hx both for
the classification and for the ground truth results. Thus, host Hx will be
assigned two multi-label vectors:

• Lx = [lx1 , lx2 , · · · , lxM ], as generated by the multi-label classifier, and

• Gx = [gx1 , gx2 , · · · , gxM ], according to the ground truth results, generated
by the DPI validation tool.

Table 6.7 summarizes the key differences between the evaluated classifica-
tion methods in single and multi-label classification modes.
17Binary classification is a particular mode where M = 2 and |L| = 1.
18Decimal weighted attributes could be used to measure the level of host involvement in each

of the detected applications. For instance, a 0.8 weight of attribute l1 (BitTorrent applica-
tion) would point to 80% of BitTorrent activities in terms of number of flows, connection
time, etc. In this study, binary attributes are considered for simplicity reasons.
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Table 6.7: Main differences between the motif-based classification in single
vs. multi-label modes

Level Single-label Motif-based
Classification Model

Multi-label Motif-based
Classification Model

Input
Vertex profile built considering
single application is in use at any
time

Vertex profile built considering
multiple applications are in use
at the same time

Technique KNN algorithm based classifica-
tion in single-label mode

Customized KNN algorithm in
multi-label mode

Output

Single class, L(Hx) = l, l ∈ L
where L={BitTorrent, FTP,

HTTP, IRC, Mail IMAP,
Mail POP, Mail SMTP, MSN,
NTP, Oscar, SIP, SNMP, SSH,

SSL}

Protocol sets,
L(Hx) = {li|li ∈ L} where

L={BitTorrent, FTP, HTTP,
IRC, Mail IMAP, Mail POP,

Mail SMTP, MSN, NTP, Oscar,
SIP, SNMP, SSH, SSL}

6.7.2 Multi-label Classification Input

In this subsection, extensions of the single-label motif-based classification model
are shown at the input level. Similarly to most host-based classification works
in the literature, the observed host behavior in [Allan, 2008] is seen from a
single application perspective, that is, assuming that the host is exclusively
involved in one application.

Ideally, a multi-label mode classifier should reveal the set of applications a
host is involved with. Therefore, the vertex profile should be extended to an-
swer this additional requirement. The purpose of this extension is to reveal si-
multaneous host involvements in each of the detected motifs, and consequently,
in each application in the dataset. For example, the vertex profile depicted in
Figure 6.12 shows that host H1 is likely to be involved in two applications at
the same time19, HTTP and BitTorrent.

In order to implement single-label classification, in [Allan, 2008], host in-
volvements in different applications are observed in separate. The underlying
assumption is that a host is involved in a single application at a time20. As
19This is relative to the length of the observation time window. Host activities within the

same time window are only considered. In this chapter, the time window is constrained by
experimental and graph mining requirements, that is, to capture enough host exchanges,
as explained in Section 6.4.2.

20The implementation details in [Allan, 2009] show that vertex profiles associated with the
same host or IP address are assigned different identifiers within different application graphs.
Although the dataset is obtained from real captures where hosts are likely engaged in
multiple applications, [Allan, 2009] enforces a single-label host context.
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such, by considering the targets defined in Section 6.7.1, neither of the two
methods presented in [Allan, 2008] and improved in Section 6.6 can be appli-
cable in multi-label mode.

In the extended model, we consider that hosts may be involved in multiple
applications, which is the case for most real traffic captures. For this reason,
vertex profiles had to be built differently. Thus, in the proposed extension,
involvements of each host in various motifs are tracked across different appli-
cation graphs according to the host IP address and cumulated altogether into
one vertex profile.

Figure 6.20 shows examples of vertex profiles belonging to test host H1 in
single and multi-label classification. In this example, only 3 applications, FTP,
HTTP and BitTorrent, are considered for illustration purposes. As shown in
Figure 6.20a)), H1 is involved in the 3 protocols, but they are evaluated in
three separate instances though belonging to the same host as it identity is
not preserved across the different profiles, referred to as H1 1,H1 2 and H1 3.
However, the extended vertex profile, shown in Figure 6.20b)) represents the
activities of all applications in which H1 is engaged, by referring to H1’s IP
address.

6.7.3 Multi-label Classification Technique

Hosts are to be classified according to the vertex profile showing their involve-
ments in each application. Nevertheless, to handle multi-label classification, a
customized algorithm is used at the technique level, as described next.

In most multi-label classification algorithms (e.g. ML-KNN [Zhang, 2007]
and BR-KNN [Spyromitros, 2008]), the closest neighbors are considered to
infer the set of classes of the sample to be classified. For this, training samples
are usually multi-labeled instances. This way, the same kind of data is used
both for training and evaluation, as in both cases each sample is associated to
multiple classes.

Even in this case, there exist different approaches to assign the set of classes
to a test sample. In the most simple one, the sample to be classified is assigned
the same set of labels (classes) as those the nearest neighbor has. Nevertheless,
other more complex approaches are preferred. For example, ML-KNN [Zhang,
2007] uses the KNN algorithm independently for each class l: It finds the K
nearest points to the test instance and considers those that are labeled at least
with class l as positive votes and the rest as negative. The class l is assigned
if the result of the voting is positive.

Nevertheless, to handle multi-label classification we followed a different
approach. The idea is to infer the classes vector associated to a host based
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a)

b)

Figure 6.20: Building the vertex profile in: a) single-label mode vs. b)
extended Multi-label

on the output provided by various KNN models operating in single-label and
based on single-labeled training samples.

To achieve this, we had to use KNN in regression mode and to infer the
multi-label annotation based on the closest single-labeled neighbors. Fortu-
nately, KNN in regression mode is able to generate the so called Protocol
Probability Distribution (PPD) for each protocol, given a test sample, accord-
ing to the labels and to the inverse distances to each of the closest neighbors, as
will be explained next. Based on this output, a customized ML-KNN version
is used accordingly to infer the classes vector, Lx. The procedure is detailed
in Algorithm 6.2.

As shown in Algorithm 6.2, in regression mode, KNN computes a weighted
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Algorithm 6.2 The customized ML-KNN multi-label classification
% Notation:
% M: Set of samples (hosts) in the model
% Hx: Host to classify
% −→VJ : Profile for host Hj

% Lj = ljt |1 ≤ t ≤M : Classes vector for host Hj

% K: Number of neighbors
% N: Set of nearest neighbors
% M: Number of classes
% δ: Dirac’s delta

% Initialization
Lx = 0
N = ∅
% Evaluation of distances to model profiles
D := {dl = d(−→Vx,

−→
Vl )|Hl ∈M}

% Selection of k nearest neighbors
% Repeat K times
N := N ∪ {Hargmin(D)}
dargmin(D) =∞

% Evaluate the total weights (inverse distances) of k nearest neighbors
W =

∑
t∈N

1
d(−→Vx,

−→
Vt)

% Evaluate the Protocol Probability Distribution (regression mode)
P := {ppdj |1 ≤ j ≤M} being ppdj = 1

W

∑
t∈N

1
d(−→Vx,

−→
Vt)

δ(ltj = 1)

% Assign labels

Lx := {lxj |1 ≤ j ≤M} being lxj =

1 if ppdj > 0
0 otherwise

average of the K nearest neighbors according to the inverse of their distance
to the sample to classify. Thus, the distances from each of the samples in the
model to the test profile are ordered in increasing order, and then, an inverse
distance weighted average (referred here to as PPD) is calculated using only the
K-nearest neighbors (K lowest distances). Therefore, rather than a majority
voting based on the nearest neighbors labels, the multi-label annotation of
an unclassified host is directly obtained from the PPD values for each of the
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Table 6.8: Protocol indexes and example of the use of the customized ML-
KNN

Application Protocol ppd values for Hx li values for Hx

BitTorrent (i=1) 0.01 1
FTP (i=2) 0 0

HTTP (i=3) *0.9 1
IRC (i=4) 0 0

Mail IMAP (i=5) 0 0
Mail POP (i=6) 0 0

Mail SMTP (i=7) 0 0
MSN (i=8) 0 0
NTP (i=9) 0 0

Oscar (i=10) 0 0
SIP (i=11) 0 0

SNMP (i=12) 0 0
SSH (i=13) 0.009 1
SSL (i=14) 0.081 1

protocols 21. An example including the values for the PPD values is provided
in Table 6.8.

According to the procedure, a value ppdi > 0 for application i indicates
that at least one of the nearest neighbors to the test sample is labeled with
that application and, therefore, according to the model, the host is involved
with activities belonging to application i.

In our case, as previously stated, binary attributes are considered. Thus,
the components of the classes vector, li, will be assigned to 1 if ppdi > 0 and 0
if it is 0. Attributes of the classes vector, Lx, for the sample node Hx in Figure
6.13 are depicted accordingly in the third column of Table 6.8. Obviously,
as previously stated, a more sophisticated approach is possible if non binary
values are used for the classes vector. In fact, it is almost straightforward to
use percentages of involvement of a node from the ppdi values itself. This last
option has not been considered in a first approach due to the lack of data to
obtain a significant result.

On the other hand, it is relevant to mention that, in the current approach,
a host is labeled as involved in i-th protocol if just a single one of the K nearest
neighbors is labeled as i-th protocol, independently of its distance. It is the
21In Table 6.8, ppd values are used in regression mode, to predict the single class label for a

host having the highest probability value. The * mark indicates the classifier’s decision in
single-label mode. If an instance is unclassified, the returned vector elements must be all
zero.
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ppdi value which takes this distance into account. Thus, it can be advisable to
set a minimum threshold for ppdi instead of its value being not null.

Therefore, it is almost evident that the obtained classes vector Lx strongly
depends on the values of K and ppd. Both of these parameters affect the
number of protocol annotations in the multi-label classification format. If a
high threshold for ppd is used, low probability protocols might not be included
in the classes vector of any host (e.g. BitTorrent in Table 6.8). However, at
higher values of K, more annotations are likely to be added to the multi-label
classification.

Referring back to the example in Figure 6.13, if we set the threshold ppd >
0, and for K = 3, Hx is considered as involved in activities related to HTTP
and SSL, therefore, Lx = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], whereas for K = 5,
BitTorrent protocol is added and Lx = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1].

Similarly, setting a minimal value on ppd will further affect the obtained
classes vector. For example, for a fixed value of K = 5, if the threshold is
set to ppd ≥ 0.001 Lx = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], whereas for a threshold
ppd ≥ 0.08 then Lx = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

To experimentally implement the customized ML-KNN, the classifier com-
ponents are built and customized in WEKA based on the default Ibk-Classifier,
where KNN is implemented in single-label mode in [WEKA, 2013].

6.7.4 Evaluation Metrics

A relevant issue associated with multi-label extension is the choice of the eval-
uation metrics and methodology. Multi-label classification requires different
metrics than those used in traditional single-label classification. Common
multi-label metrics [Tsoumakas, 2006] include measures as Hamming Loss,
accuracy, or recall. most of which considers that training points are multi-
labeled.

In this study, the classification accuracy [Tsoumakas, 2006] in multi-label
mode is used to evaluate the proposed classifier. Thus, considering the multi-
label classified hosts, the accuracy is measured in separate for each individual
application.

For this purpose, we refer to problem transformation [Boutell, 2004] where
M binary classifiers, Ci : X → {i, ī}, one for each different label i in M, are
considered instead of one multi-label classifier. Consequently, the original data
set is transformed into M data sets, Mi, each containing all the samples from
the original dataset, labeled as application i if the labels of the original sample
contained i, and as ī otherwise. Therefore, in multi-label evaluation mode, the
accuracy in classifying application i (or Accuracyi) equals to the accuracy of
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the binary classifier Ci.
Formally, let A be the set of all the hosts, Hx, in the test set. As mentioned

previously, every host Hx ∈ A is associated to two classes vectors: the classes
assigned by the classifier, Lx, and the real classes as assigned by DPI in our
case, Gx.

A classification decision, in Lx, associated with host, Hx ∈ A is necessarily
in one of the following situations (Chapter 3): it is a TP, a FP, a FN or a TN,
according to:



TP, if (lxi = 1 & gxi = 1)
FP, if (lxi = 1 & gxi = 0)
FN, if (lxi = 0 & gxi = 1)
TN, if (lxi = 0 & gxi = 0)

(6.27)

Consequently, four measures can be defined for each application, i, as:

TPi =
∑
Hx∈A

δ(lxi = 1)δ(gxi = 1) (6.28a)

FPi =
∑
Hx∈A

δ(lxi = 1)δ(gxi = 0) (6.28b)

FNi =
∑
Hx∈A

δ(lxi = 0)δ(gxi = 1) (6.28c)

TNi =
∑
Hx∈A

δ(lxi = 0)δ(gxi = 0) (6.28d)

Some evaluation metrics can be defined from this measures (Chapter 3).
In particular, we are interested in the accuracy for Applicationi, that can be
obtained as:

Accuracyi = |TPi|
|TPi|+ |FPi|

=
∑
Hx∈A δ(l

x
i = 1)δ(gxi = 1)∑

Hx∈A δ(lxi = 1) (6.29)

The overall multi-label classification accuracy of the classifier Ci can be
evaluated as:

Accuracy = 1
M
·
M∑
i=1

Accuracyi (6.30)

The extended multi-label (Section 6.7) and the single-label motif-based
classification models (Section 6.6) have different classification targets. Despite
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of this fact, the problem transformation methodology used in multi-label mode
makes it easier to compare both disciplines (single and multi-label), using the
accuracy metric defined on a per application basis. In the next section, the
proposed multi-label host classifier is evaluated and then compared to the
single-label classifier.

6.7.5 Experimental Results

In this section, multi-label classification results are shown for the extended
model presented in Section 6.7. For comparison purposes, the extended multi-
label classifier is tested on the same datasets used with the native system
(Section 6.6.1): the CS-A4 dataset is used for training while CS-B1 is used for
testing. Using the same training dataset and the same conditions for significant
motif detection, the same set of significant motifs detected in single-label mode
(Section 6.6) is used in multi-label mode.

As mentioned earlier, both K and ppd parameters affect the number of
protocol annotations in the classes vectors. As previously discussed, it is nec-
essary to find a compromise between the number of protocols considered in
each classes vector and their representativeness. Thus, after some preliminary
tests, we chose a threshold of 0.01 for ppd and K = 3.

6.7.5.1 Multi-label Classification Results

Host classification accuracy (Equation 6.29) is shown in Figure 6.21 on a per
application basis, for the native, improved (Section 6.6) and multi-label meth-
ods.

It can be clearly observed in Figure 6.21 that in multi-label mode, the
accuracy (Equation 6.30) is improved to 91.71%, averaged on all protocols, as
compared to 82% as previously obtained with the improved method, or the
69.81% obtained with the native one in single-label classification mode.

Setting a threshold (red line in Figure 6.21) of 90%, the multi-label ver-
sion of motif based classification seems to be convenient for most protocols like
BitTorrent, SSH, Oscar and IRC. For few other protocols like Mail POP and
NTP, the accuracy is slightly degraded compared to single-label mode. More-
over, when applied in multi-label mode, host-based classification accuracy using
motifs has been improved. To further illustrate this observation, Figure 6.22
shows the same results in binary classification mode: P2P vs. non-P2P.

The results in Figure 6.22 show again that extending host-based classifica-
tion using motifs to multi-label mode is particularly improving P2P classifica-
tion with 99.12% of accuracy22, compared to 91.15% for non-P2P applications.
22Although not shown in figures, BitTorrent accuracy is maintained above 95% regardless of
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Figure 6.21: Per protocol accuracy for native, improved and multi-label mod-
els for CS-B1 dataset trained on CS-A4

Another relevant result is the average number of labels per host, both in the
multi-label classification results and in the ground truth results. To enhance
the classifier’s performance, the average values in these results should be close,
as much as possible. However, the average number of labels per host strongly
depends on the choices of K and PPD values, as shown previously. In our
case, for K = 3 and PPD > 0.01, the average number of labels per host in the
ground truth is 2.7, compared to 2.1 in classification.

Further analysis of these results is provided in the next section.

P P D and K values.
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Figure 6.22: P2P v.s. non-P2P classification accuracy for CS-B1 trained on
CS-A4

6.7.6 Analysis and Discussions

In this subsection, multi-label classification results are further discussed with
regard to different aspects. They are:

• Extensions to multi-label mode: As per our experiments, multi-label
mode is an advanced context for host classification. Extending single-
label methods in the literature requires, as we have shown, extensions at
the three different levels of the classifier.

It is also important to note that in most literature work, including motif-
based classification, the tested traffic is sometimes based on artificially
generated traffic where the single-application behavior may be applicable.
However, in real traffic captures, the host behavior is implicitly applicable
to the multi-applications context. As we have shown, even when using
real traffic captures, it is the classifier’s design that dictates whether the
classification context is in single or multi-label one.

According to our experiments, although an observed host, in the traf-
fic capture, might be engaged in multiple applications, considering that
host’s activities for each application in separate simulates single-label
mode, while considering these activities altogether is supposed to simu-
late the multi-label mode. Particularly, taking motif-based classification
as an example, the main difference between single and multi-label modes
relies in the way a vertex profile is built, although the same set of motifs
is used during training.

• Classification accuracy improvement in multi-label mode: In multi-label
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classification mode, host-based classification using motifs showed better
performance for most applications, especially for P2P. For few non-P2P
protocols, accuracy is slightly degraded compared to single mode clas-
sification. For these protocols, host classification, using regression in
multi-label mode, did not yield the same results as in single mode, where
voting is used, that is, the classes with greater PPD values were not
necessarily the most frequent ones within the set of closest neighbors as-
sociated with a host. For such cases, KNN with voting showed better
results than with regression.
On the other hand, the reason why P2P applications were detectable
with very high accuracy, both in single and multi-label modes, might be
referred back to the distinctive patterns of P2P traffic exchanges com-
pared to other applications. In fact, P2P motifs were distinguished with
the least number of collisions compared to others. For this reason, they
showed very high discriminative power for P2P detection, as compared
to other applications.

• Classifier tuning in multi-label mode: The multi-label classifier’s perfor-
mance proposed in this chapter is strongly related to the values of both
K and PPD. From one hand, an increased value of K (or a decreased
value of PPD) is supposed to include a higher number of protocols in
the classes vector of each host. Although this might raise the problem of
predominant protocols in the training datasets, it is supposed, however,
to increase the accuracy for some protocols for which additional closest
neighbors, and therefore class labels, are the more likely to be included
in the classes vector. Consequently, the optimal choices of these values
depend on the training dataset.

The general inference underlined by our study, in the wider context, is
that host-based classification methods described in the literature, should be
re-evaluated in multi-label classification contexts. This will permit to assess
traffic classification in real case scenarios, where multiple applications are si-
multaneously used by each host. From this standpoint, and based on our
acquired experience, we believe that to increase the confidence in the results
obtained with most host classifiers found in the literature, their evaluation in
multi-label mode should be considered to simulate real traffic environments.

The analysis presented in previous chapters highlighted on key findings
in payload, flow, and host-based classification techniques. This chapter dis-
cussed particularly the applicability and evaluation of host-based classification
in multi-label mode. With this chapter, experimental and assessment parts of
this thesis are completed.
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The main outcomes and summary findings are presented in the next chap-
ter, where rooms for future enhancements are highlighted for future works.



Chapter 7

Conclusions and Future Work

This chapter concludes the main results and the key findings obtained through-
out this thesis. At the end of this chapter, discussions are issued in light of the
obtained results, opening the doors for future works and follow-ups.

7.1 Conclusions

Identifying Internet traffic applications is a challenging and hot research topic
for both network security and management. Throughout this thesis, we have
presented an analytical review of the different approaches in the literature of
Internet traffic identification. We criticized the current state of art, assessed
methods for main research trends, proposed and experimentally evaluated im-
provements with new classification models. Our investigations highlighted on
the need to reconsider some of the conventional concepts in the literature,
starting by the underlined weaknesses of the existing taxonomies and reaching
advanced and complex classification models in the current state of the art.

The main outcomes that can be concluded from this thesis can be summa-
rized as follows:

• Multilateral Taxonomy: As the research community has neither de-
fined a consistent terminology nor elected the best traffic identification
model yet, the multilateral taxonomy proposed in this thesis helps in
promoting and unifying the research efforts. In fact, with the diversity in
the deployed techniques and data formats, referring to one consolidated
terminology is useful for standardized benchmarks and comparison pur-
poses.

Amongst the different proposed categories, payload-based methods, de-
spite of their high accuracy results, are less recommended when privacy

215
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is the major concern and present scalability problems for high speed net-
works. As an alternative, non-payload methods are effective for protect-
ing the user privacy and when the payload is encrypted. In this context,
statistical and machine learning techniques were widely used. Graphical
methods are used often as helper technologies. Although a slight bias
toward hybrid techniques and decision trees was detected, our investi-
gation has underlined the lack of an optimal model elected for traffic
classification.

From the perspective of the proposed multilateral taxonomy, main re-
search requirements were highlighted in this thesis. Various aspects of
the existing and future methods were categorized at the input, technique
and output levels.

To study payload based methods, we chose the most commonly known
DPI classifiers. For blind classification, we chose to analyze flow and host,
based methods as a trade-off between too fine-grained (packet-based) and
too coarse-grained (community-based) classification methods.

• An Experimental Setup for Traffic Classification: To achieve our
stated purposes, an experimental setup, based on real traffic captures,
was prepared. To build this setup, several traffic sets were captured from
a real network environment of a multi-branch institution, then, the DPI
tool was customized to generate, for each of these captures, parametriza-
tion data and ground truth results that are used for the assessment of
the proposals. It is remarkable the availability of a high volume of data
and the inclusion of full payload in these captures.

• DPI Optimization: Payload-based classification was assessed and opti-
mized using sampling techniques, applied to a DPI classifier. In the light
of the obtained experiments, we proposed an optimization method for
DPI classification with which payload disclosure is minimized to protect
the user privacy while accuracy is maintained at acceptable levels.

Specifically, we proposed a general methodology for optimizing DPI by
integrating per-flow and per-packet sampling methods. Our results high-
lighted the importance of the first flow packets for DPI classification as
holding most of the application signatures DPI is looking for. According
to our testbed, a significant gain in classification time (12.47%) can be
obtained by inspecting less payload (the first 1792 bytes per flow) while
maintaining around 95% of the DP for most of the tested protocols.

The major outcome of the payload assessment study is that we have
proven the feasibility of DPI optimization through sampling, and, based
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on experimental results, we managed to elect the best sampling model
for DPI classification achieving the best possible trade-offs between per-
formance and privacy considerations.

• Identification Based on Message Size Analysis: A novel flow-based
blind identification model is proposed, relying on application-layer mes-
sages and using ML techniques. The proposed classifier uses the sizes of
the initial messages exchanged between the hosts involved in the com-
munication as inputs. Unlike other similar approaches, our work focused
on the messages, not the packets; which is considered a differential char-
acteristic of a protocol is the sequence of sizes of the first messages, not
the sizes of the initially exchanged packets.

Another differential characteristic of the proposed system is the use of
multi-modal distributions in an attempt to summarize all the possible
methods included in a protocol in a single model. Evaluated on a real
captured dataset the proposed classifier showed promising results with
98% to 99% of recall levels.

Our approach analyzes application layer messages without breaching the
user privacy. Most of the previous approaches in the literature either
disclosed the user payload to match application layer signatures or an-
alyzed traffic properties at the network and transport layers with less
discriminative power. An important outcome of this study is that we
proved that the actual semantics of user sessions at the application layer
have discriminative features that can be explored without breaching the
user privacy.

• Multi-label Host Classification: A new context of host-based blind
identification model is tested and discussed. In the new context, we dis-
cuss multi-label host classification to simulate real case scenarios where
more than one application is often in use by the same host. For this
purpose, we chose first to improve a host based method relying on graph
mining (or motifs), second, we extend the method for multi-label identi-
fication. The method’s applicability in the multi-label was discussed and
conclusions were inferred for multi-label host classification in general.

With this study, we were able to particularly surpass some of the short-
comings of native motif-based classification and, most importantly, to
derive a multi-label version of the method that we evaluate for host iden-
tification. In the multi-label context, our results show classification ac-
curacy improvement for most protocols. Particularly, P2P applications
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were detectable with the highest accuracy due to the the distinctive pat-
terns of P2P traffic exchanges.

The novelty of our work resides in tackling, for the first time in the
literature, host-based classification as a multi-label classification problem.
From this standpoint, and based on our acquired experience, we believe
that in order to increase the confidence in the results obtained with most
host classifiers found in the literature, their evaluation in multi-label
mode should be considered.

7.2 Future Work

Throughout this thesis, many aspects of the classification methods were studied
and analyzed. Although many of the obtained results were promising in most of
the cases, our work is still opening the door for future follow-ups and additional
improvements. Based on our gained experience, we present in this section
our perspective for the future directions and follow-ups to the work presented
throughout this thesis and the main research trends in the field.

First, in regard to the payload based study of this work, future benchmarks
in DPI optimization should assess various tools with respect to larger traffic
sets and many additional application protocols. Once the minimal useful DPI
input is defined, algorithm and even hardware-based optimizers are supposed
to become more efficient.

Critical DPI scenarios should be studied addressing cases where the first
packets are delayed or lost, or when fake application signatures are intentionally
inserted into the beginning of a flow to disguise network monitoring devices.
Automating DPI signature extraction and adapting DPI sampling to their
location should take more attention, especially when considering the steady
emergence of new Internet applications.

As being the reference method in the literature, DPI should become more
and more robust and accurate, yet with affordable computational costs. For
this purpose, future DPI methods might need to explore the actual semantics
of user sessions, not only the syntax and signatures of application protocols.
Coping with newly emerging Internet applications and very high link speeds is
essentially relevant to any future research related to DPI classification.

Second, in regard to the blind flow-based classification method proposed
in this work, more extensive experiments using larger datasets are required
in order to improve the message based classification system, and to increase
the confidence and representativeness of the models. Future work should also
enable the use of new and better heuristics. This is not an easy challenge, as
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the data to be used has to be properly labeled and has to be big enough. In our
experiments, more than 200 GB of labeled data has proven to be insufficient
for some protocols and only 19 of them could be used with some confidence.
We also suggested as candidate for future work the tracking of host-to-host
activities in order to affect accordingly the prior probabilities of the Bayesian
classifier. We expect interesting improvements from this approach, though at
the cost of acceptable computational overhead.

Exploring new traffic features is essential for future blind traffic classifica-
tion methods. In contrast to the conventional traffic properties obtained at the
network and transport layers, application layer characteristics, beyond message
sizes, can be regarded as the new generation of discriminative features that can
be used for blind traffic classification.

Third, in regard to the blind host-based classification model proposed in
this thesis, future works should extend many of the existing single-label host
classifiers in the literature to multi-label mode. Though tested with a sin-
gle method, namely motifs, our investigations have the potential to radically
change the conventional view of single-label host classification. Hence, many
existing host classifiers will need to be assessed in multi-label classification sce-
narios. As we believe that many of the existing literature works would decrease
in performance when assessed in the context of multi-label classification, we
urge future researchers to give more attention to the multi-label mode in traffic
classification problems.

Moreover, multi-label classification can be extended further as to include
weighted input and output formats and other targets (e.g. flows, host com-
munities). In such scenario, the classification results of an object consist of
probabilistic, rather than deterministic, values regarding each application la-
bel. Furthermore, the use of extended vertex profiles with non-binary values
as inputs, as well as including additional information regarding the observed
interactions, would significantly increase the semantic information for the clas-
sification phase.

Fourth, in the particular context of graph mining and motif-based classi-
fication, many rooms for enhancements exist. For example, motif attributes
should be normalized as to mitigate any bias effect to applications having a
higher number of motifs. Additional distance types should be tested in measur-
ing the vertex profile similarity for motif KNN based classification (e.g. Cheby-
shev, Cityblock, Manhattan). Future accuracy improvements might need to
refer to more complex motif structures such as weighted, augmented and/or
higher order motif. For example, supplementary information related to both
edges and nodes (e.g. the size of the transfer, number of packets, etc.) could be
introduced into the motif structure. However, an important issue to be raised
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concerns the location of the monitoring point, which is relevant for capturing
a number of host interactions enough to build higher order motifs. Thus, ob-
taining higher order motifs might imply the deployment of several monitoring
points at different locations.

Additionally, one of their current limitations is the lack of temporal related
properties that is able to represent dynamic network interactions and their
evolution over time. In the current approach, motifs are observed within a
relatively small time window. In order to include time related properties in
motif-based analysis, network interactions should be observed during larger
time periods, and the motif structure might need to be extended accordingly.

Finally, opening new dimensions in the field of traffic classification is vi-
tal for managing future networks. Future traffic classifiers’ designs should be
adapted for next-generation technologies (IPv6, VDI, CCN, SDN, etc.) as be-
ing part of their network management portfolio in the long-term. Nevertheless,
many trade-offs in applicability, performance, and privacy protection should be
considered. Studying a relevant design and analyzing efficiency is an important
part of any future work in this regard.
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Appendix A1

The Customized DPI Tool

In this appendix, we detail the experimental setup (Chapter 3) used to evalu-
ate each of the traffic classification methods addressed throughout this thesis.
Given a preprocessed traffic capture file, an essential part of the experimental
setup, besides the obtention of the classification results, is to extract a large
set of traffic parameters that will be used for classification purposes, as well as
to label all or part of the traffic according to their class.

Specifically, we detail the labeling and parametrization blocks of the ex-
perimental setup shown in Chapter 3. The operational details shown in this
appendix include file formats and tools involved in the appropriate implementa-
tion of labeling and parametrization that are based on a customized version of
openDPI [nDPI, 2013], (dpi flows). The customized version generates a list of
protocol annotated packets and flows, together with a rich set of parametriza-
tion data.

The customized tool diagram is shown in Figure A1.1 where 3 programs
were developed: dpi flows, dpi bin2asc and dpi bin2params, generating
files in different formats as detailed next.
The customized DPI programs’s, their input and output files are detailed as
follows:

• dpi flows: which processes PCAP files and annotates both packets and
flows, according to openDPI library, using a customized output format.
It takes PCAP files as input, and generates a summary of the number of
flows per protocol in binary and ASCII formats.

• dpi bin2params: which processes the binary files generated by dpi flows
and parameterizes the flows. It takes binary files as input and generates
ASCII file format (.PARAM).

• dpi bin2asc: which converts files from binary to ASCII format.

223



224 NOVEL APPROACHES IN TRAFFIC CLASSIFICATION

Figure A1.1: Flow diagram of the process and tools used to label and param-
eterize flows

The used file types are detailed as follows:

• PCAP: These are standard PCAP files.

• DPI Binary: List of packets and packet related information, in binary
format (a non-readable memory dump, used for fast data handling).

• DPI Binary: List of flows containing flow related information, in binary
format (a non-readable memory dump, used for fast data handling).

• DPI ASCII: List of packets and packet related information, in ASCII
format (readable by any text editor).

• DPI ASCII: List of flows containing flow related information, in ASCII
format (readable by any text editor).

• DPI ASCII: List of packets in each flow in ASCII format (readable by
any text editor).

• PARAM: List of parameters for each flow in ASCII format (readable by
any text editor).

An example of .flow ASCII file can be shown as follows:
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# Flows from file [/home/data/f1-test.pcap]
# Date: [14/5/2013 8:16:55]
# Number of flows: [2]
# Format: Id; Detected; IP1; IP2 ; Port1; Port2; Prot; Npac;
NUp; NDown; Dir; Packets size; Packets size up; Packets size down;
Payload size; Payload size up; Payload size down; First; Last
1; unknown; 172.16.13.4; 172.16.13.9; 22; 36557; TCP; 3; 2; 1; UP;
382; 336; 46; 256; 256; 0; 1275473232292; 1275473232293
2; HTTP; 10.81.140.1; 92.122.212.32; 10243; 80; TCP; 21; 10; 11; DOWN;
12818; 1587; 11231; 11930; 1145; 10785; 1275473232293; 1275473398474

An example of .flowlist ASCII file can be shown as follows:

# Flows lists from file [/home/data/f1-test.pcap]
# Date: [14/5/2013 8:16:55]
# Number of flows: [2] # Format: Id; Detected; IP1; IP2; Port1;
Port2; Npackets in flow; Packet list
1; unknown; 172.16.13.4; 172.16.13.9; 22; 36557; 3; 1; 2; 6
2; HTTP; 10.81.140.1; 92.122.212.32; 10243; 80; 21; 3; 7; 8; 1062;
158040; 160758; 160760; 160761; 160975; 161901; 597111; 598994;
598995; 599034; 631141; 633149; 633152; 633358; 633359; 635342; 635800

An example of .packets ASCII file can be shown as follows:

# Packets from file [/home/data/f1-test.pcap]
# Date: [14/5/2013 8:16:55]
# Number of packets: [2] (1 fragmented or not IP)
#Format: Id; Detected protocol; Flow id; IP1; IP2; port1; port2; Prot;
Direction; Packet size; Payload size; Timestamp; Flags[; ACTIVE FLAGS]
1; unknown; 1; 172.16.13.4; 172.16.13.9; 22; 36557; TCP; UP; 168; 128;
1275473232292; 24; PUSH; ACK
2; HTTP; 1; 172.16.13.4; 172.16.13.9; 22; 36557; TCP; UP; 168; 128;
1275473232292; 24; PUSH; ACK

An example of .param parametrization file can be shown as follows:
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### Input file [f1-test.param] ### Processed [14/5/2013 9:16:55]
### PARAMETERS: identification, basic stats ### FROM: pcapfile
[f1-test.pcap] # Flows from file [f1-test.pcap] # Date: [14/5/2013
9:16:55] # Number of flows: [2] # Format: BINARY OUTPUT (MEMORY
DUMP) # Packets from file [f1-test.pcap] # Date: [14/5/2013
9:16:55] # Number of packets: [24] (3 fragmented or not IP) #
Format: FLOW ID; ID PROT; IP LOW; IP UPPPER; PORT1; PORT2; PROT;
DIR; FIRST TIME; LAST TIME; NPACKETS; NPACKETS UP; NPACKETS DOWN;
PACKETS SIZE; PACKETS SIZE UP; PACKETS SIZE DOWN; PAYLOAD SIZE;
PAYLOAD SIZE UP; PAYLOAD SIZE DOWN; DURATION; MEAN PACKETS SIZE;
MEAN PACKETS SIZE UP; MEAN PACKETS SIZE DOWN; MEAN INTERARRIVAL;
MEAN INTERARRIVAL UP; MEAN INTERARRIVAL DOWN; N SIGNALING;
N SIGNALING UP; N SIGNALING DOWN; SHORT PACKETS; SHORT PACKETS UP;
SHORT PACKETS DOWN; LONG PACKETS; LONG PACKETS UP; LONG PACKETS DOWN;
MAX INTERARRIVAL; MAX INTERARRIVAL UP; MAX INTERARRIVAL DOWN;
MIN INTERARRIVAL; MIN INTERARRIVAL UP; MIN INTERARRIVAL DOWN; MAXLEN;
MAXLEN UP; MAXLEN DOWN; MINLEN; MINLEN UP; MINLEN DOWN; NACKS; NFIN;
NSYN; NRST; NPUSH; NURG; NECE; NCWR; NACK UP; NACK DOWN; NFIN UP;
NFIN DOWN; NRST UP; NRST DOWN
1; unknown; 172.16.13.4; 172.16.11.9; 22; 36557; TCP; UP;
1275473232292911; 1275473232293779; 3; 2; 1; 382; 336; 46; 262; 256;
6; 868; 127.333336; 168.000000; 46.000000; 434.000000; 82.000000;
0.000000; 0; 0; 0; 1; 0; 1; 2; 2; 0; 786; 82; 0; 82; 82; 4294967295;
168; 168; 46; 46; 168; 46; 3; 0; 0; 0; 2; 0; 0; 0; 2; 1; 0; 0; 0; 0
2; HTTP; 10.81.140.1; 92.122.212.32; 10243; 80; TCP; DOWN;
1275473232293600; 1275473398474472; 21; 10; 11; 12818; 1587; 11231;
11978; 1187; 10791; 166180872; 610.380981; 158.699997; 1021.000000;
8309043.500000; 18434614.000000; 16606995.000000; 0; 0; 0; 9; 7; 2;
12; 3; 9; 113468180; 113468180; 114245394; 3; 3; 7; 1420; 445; 1420;
46; 46; 46; 21; 2; 0; 0; 7; 0; 0; 0; 10; 11; 1; 1; 0; 0

An example of .packets ASCII file format used for message analysis (Chapter
5) can be shown as follows:

# Packets from file [/home/data/f1-test.pcap]
# Date: [14/5/2013 8:16:55]
# Number of packets: [2] (1 fragmented or not IP)
# Format: Id; Detected protocol; Flow id; IP1; IP2 ; Port1; Port2;
Prot; Direction; IP IHL; IP ITL; Timestamp; TCP OFFSET; TCP SEQ;
TCP ACK; Flags
1; FTP; 1; 209.85.135.103; 192.168.1.190; 80; 1196; TCP; DOWN; 5;
13312; 1252655468737751; 8; 1977319717; 0; 2
2; HTTP; 1; 209.85.135.103; 192.168.1.190; 80; 1196; TCP; DOWN; 5;
39938; 1252655468781809; 5; 1994096933; 1; 24



Appendix A2

Resumen

A2.1 Introducción

Las redes actuales rigen cada vez más la forma en que vivimos: aplicaciones
de red como las redes sociales, el e-learning o el comercio electrónico, están
cambiando la forma en que se llevan a cabo las interacciones sociales, educativas
y comerciales. Estas aplicaciones son diversas y están en constante evolución
con el fin de cubrir las necesidades de los nuevos usuarios y ofrecer nuevos
servicios. Consecuentemente, las tecnologías de red subyacentes deben ser
adaptadas y / o mejoradas para proporcionar los nuevos servicios.

Como resultado de la gran impacto y uso de Internet, el tráfico de red
está en constante crecimiento [Brodkin, 2012, Kende, 2012] y la propia red
se está volviendo cada vez más compleja. Así, el ancho de banda disponible
para los usuarios finales ha crecido hasta 2 órdenes de magnitud en la última
década, mientras que, al mismo tiempo, el número de usuarios está aumentando
exponencialmente. Desde la perspectiva de la gestión de red, este continuo
aumento de los requisitos y la complejidad representa un gran reto en muchos
aspectos. Entre ellos, el incremento en el tráfico puede afectar a la calidad
del servicio (QoS, del inglés Quality of Service). La influencia del tráfico en
la infraestructura de la red y sobre los servicios alojados es evidente. Si no se
gestiona correctamente, la red podría ser abrumada con enormes cantidades de
tráfico incontrolado que afectaría el rendimiento general de la red, llegando a
la congestión e incluso interrupción de los servicios. Por otro lado, al aumentar
el volumen de tráfico, será más difícil diferenciar el tráfico ilegítimo que puede
representar un problema de seguridad.

Para proporcionar la calidad de servicio demandada, es necesaria una ade-
cuada gestión de la infraestructura de red subyacente. En este sentido, una
de las tareas más comunes consiste en monitorizar constantemente los flujos
de tráfico y establecer su naturaleza en tiempo real, lo que es relevante desde
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los puntos de vista de seguridad y de rendimiento. A partir de esta identifi-
cación, será posible proporcionar a cada servicio/flujo la QoS requerida o, si
es necesario, incluso proceder a su filtrado. En este sentido, la descripción del
tráfico de red a partir del ancho de banda consumido, aunque importante, no
es suficiente. Por lo tanto, un paso importante en cualquier análisis de tráfico
es identificar lo que el usuario está realmente haciendo en cada sesión, es decir,
identificar la aplicación en uso.

La identificación de las aplicaciones de red, es decir, la atribución de tráfico
de red a la aplicación o tipo de aplicación que la genera [Callado, 2009], es,
por tanto, la piedra angular para una adecuada ingeniería del tráfico en la
red. A partir de ella será posible, por ejemplo, proporcionar diferentes QoS
a los distintos servicios, deshabilitar el tráfico de una aplicación dada o pla-
nificar la mejora de la infraestructura como respuesta a un nuevo servicio de
alto consumo. Por otra parte, el tráfico ilegítimo puede utilizar técnicas de
ofuscación en un intento de atravesar los mecanismos de seguridad tales como
los cortafuegos. En este escenario, la identificación del tráfico se hace también
necesaria para aplicar las acciones correctivas.

En un enfoque ingenuo en la actualidad, el tráfico se puede atribuir a una
aplicación o servicio a partir de los puertos asociados al servicio [IANA, 2013].
Históricamente, esta aproximación se ha venido usando por ser la más rápi-
da, simple y precisa. Sin embargo, prácticas actualmente habituales como
la ofuscación de puertos, la traducción de direcciones (NAT, del inglés, Net-
work Address Translation), la redirección de puertos y los túneles, junto con
el uso de puertos no registrados y aplicaciones multicanal, han invalidado esta
técnica. Se necesitan, en consecuencia, aproximaciones más sofisticadas que
deben implicar el análisis de múltiples aspectos y características del tráfico,
como las cargas útiles, las propiedades generales de los flujos y paquetes, o
incluso las interacciones entre los hosts, por mencionar algunas. A modo de
ejemplo, los paquetes de gran tamaño y/o flujos de larga duración podrían ser
indicadores de una transferencia de archivos de gran tamaño; un gran número
de conexiones podría apuntar a la utilización de aplicaciones peer-to-peer; etc.
En un sentido similar, la existencia de paquetes malformados o flujos incom-
pletamente establecidos puede indicar anomalías en el uso de un protocolo y/o
actividades sospechosas.

En consecuencia, la identificación de las aplicaciones de red no responde
exclusivamente a la simple necesidad de asociar el tráfico a las aplicaciones.
A pesar de que no es suficiente por sí misma para mejorar la gestión de la
red y la seguridad, puede ayudar a proporcionar una visión más profunda
de lo que está ocurriendo en la red, resultando relevante para muchas tareas
relacionadas, en especial las relativas a la ingeniería de tráfico. Por otra parte,
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un paso preliminar antes de la aplicación de cualquier política de acceso a la
red es la identificación de la aplicación en uso, ya que dichas políticas a menudo
implican condiciones sobre el tipo de aplicación utilizado.

En este contexto, la constante aparición de nuevas aplicaciones, junto con
los avances en los mecanismos de ofuscación que se utilizan para evitar los
mecanismos de control, hacen de la identificación de tráfico un tema candente
de investigación.

A2.2 Clasificación del tráfico de red

Como se ha mencionado con anterioridad, la clasificación del tráfico [Callado,
2009] consiste en atribuir los diferentes elementos que constituyen el tráfico
de red a las aplicaciones o tipos de aplicación que los generan. De acuerdo al
tipo de elemento a clasificar se pueden diferenciar tres niveles básicos [Callado,
2009]: a nivel de flujo, a nivel de paquetes y a nivel de host. En el primer
caso, los elementos a clasificar son los flujos en la red, mientras que en el
segundo caso, se consideran los paquetes individuales. Por el contrario, la
clasificación a nivel de host consiste en etiquetar cada host de acuerdo a la
aplicación o aplicaciones en uso por el mismo. El caso más habitual es la
clasificación de flujos, ya que este es el elemento más directamente relacionado
con la conformación del tráfico y la QoS, a la vez que constituye la unidad
natural de comunicación entre aplicaciones. Por otra parte, la clasificación a
nivel de host, a pesar de ser un problema más complejo, resulta un escenario
de enorme interés para la planificación de la red y cuestiones relacionadas
con la seguridad, ya que permitiría la identificación de equipos que realizan
actividades maliciosas.

La identificación de tráfico es un término que también se utiliza en este
contexto para referirse a la clasificación de tráfico, aunque, estrictamente, se
refiere a la categorización del tráfico a un mayor nivel de granularidad que en
el caso de clasificación. En cualquier caso, es habitual utilizar indistintamente
ambos términos, que será el caso utilizado en la presente tesis.

Por otra parte, de acuerdo con el número de clases utilizadas en la clasifi-
cación, se pueden considerar algunas variantes del problema. Así, en escena-
rios de clasificación binaria, el problema es decidir si una instancia a clasificar
pertenece o no a una categoría determinada. Por el contrario, en la clasificación
multiclase, que es la habitualmente considerada, una instancia debe ser asig-
nada a una de las múltiples clases existentes. Sin embargo, existen escenarios
en los que se requiere una clasificación multietiqueta. En estos casos, por lo
general relacionados con la clasificación basada en hosts, cada elemento puede
ser asignado a varias de las categorías consideradas. Este es el escenario más
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complejo desde el punto de vista de la clasificación, ya que por lo general el
número de clases (etiquetas) que se deben asignar a cada elemento es también
desconocido.

A2.2.1 Aproximaciones básicas

Aunque se incluye un análisis detallado del estado del arte en la clasificación
del tráfico en el Capítulo 2, a continuación se presenta una visión general de los
enfoques de clasificación de tráfico existentes y los principales desafíos, a fin de
situar el trabajo en el contexto adecuado. En resumen, los métodos descritos
en la literatura analizan bytes de la carga útil [Erman, 2007a], los paquetes
[Sen, 2004b], los flujos [Zhang, 2013], o los hosts [Karagiannis, 2005], siendo
la clasificación basada en flujos la más usada. El alcance de las aplicaciones
detectadas varía de protocolos conocidos (por ejemplo, HTTP, SMTP) a apli-
caciones que entrañan mayor dificultad de clasificación, como P2P o tráfico
cifrado (por ejemplo, SSL [McCarthy, 2011] y túneles de red encriptados [10]).

Por otra parte, la mayoría de los enfoques existentes en la actualidad se
pueden clasificar en dos grandes grupos: los basados en el análisis de la carga
útil, (DPI, del inglés Deep Packet Inspection) [Sen, 2004b] y aquellos que no
inspeccionan dicha carga útil. Estos últimos se denominan ciegos (blind, en
inglés). Históricamente, los métodos de clasificación se basaban en los números
de puerto a nivel de la capa de transporte [IANA, 2013]. Con la ofuscación de
puertos, este método resulta obviamente obsoleto. En cualquier caso, puede ser
de utilidad para algunas aplicaciones concretas como DNS o SMTP [Callado,
2009, Aceto, 2010], como método auxiliar o incluso en los casos en los que la
precisión en la clasificación no sea relevante.

Como consecuencia, surgen los métodos basados en la inspección de la carga
útil [Sen, 2004b], siendo los más precisos que actualmente se encuentran en la
literatura. Estos identifican las aplicaciones a partir de la búsqueda de cadenas
o firmas conocidas dentro de las cargas útiles de los paquetes, lo que plantea, sin
embargo, importantes limitaciones relacionadas con el rendimiento, el tráfico
cifrado y la privacidad del usuario. Por lo tanto, existe un gran interés en el de-
sarrollo de métodos ciegos, esto es, no basados en la inspección de la carga útil,
ya que teóricamente son capaces de analizar el tráfico cifrado y no plantean
problemas respecto de la privacidad del usuario. En este caso, cada unidad
objeto de análisis, típicamente flujos, se representa mediante un conjunto de
parámetros que se utiliza posteriormente como entrada para el método de clasi-
ficación de elección. En este sentido, son múltiples las técnicas descritas en la
literatura, con distinto éxito, incluyendo técnicas estadísticas [Yildirim, 2010],
basadas en aprendizaje automático [Nguyen, 2008] y/o aproximaciones gráficas
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[Iliofotou, 2007], así como algunas híbridas [Keralapura, 2010, Trestian, 2010].

A2.2.2 Retos

La clasificación de tráfico constituye una tarea de enorme dificultad por múlti-
ples motivos. En particular, algunas aplicaciones pueden utilizar protocolos
complejos y dinámicos y que incluyen técnicas avanzadas de ofuscación de trá-
fico [Zink, 2012], como por ejemplo, la ofuscación de puertos, la traducción de
direcciones de red (NAT), túneles y cifrado [McCarthy, 2011]. Adicionalmente,
el cifrado hace que sea muy difícil clasificar el tráfico en base a los mecanismos
de inspección de carga útil, lo que se ve agravado por la existencia de protocolos
propietarios cerrados (por ejemplo, Skype [Sen, 2004b]).

Otras cuestiones pueden constituir un reto adicional para el desarrollo de
técnicas de clasificación de tráfico. En particular, son relevantes la protección
de la privacidad del usuario, que limita e incluso prohíbe la inspección de los
contenidos de los paquetes, así como las altas velocidades de comunicación, que
plantean problemas de escalabilidad.

Desde el punto de vista científico, y a pesar del enorme interés evidenciado
en los últimos años en este problema, no existe ningún estudio reciente y de
suficiente extensión que posibilite una comparativa adecuada de las numerosas
técnicas descritas en la literatura. En este sentido, la mayoría de los clasifi-
cadores existentes carecen de generalidad, ya que a menudo son evaluados en
contextos especiales (aplicaciones y/o entorno de red específicos), sobre con-
juntos de datos muy diversos, y en muy pocas ocasiones se comparan los resul-
tados obtenidos por la técnica propuesta con otras descritas en la bibliografía.
Para añadir mayor complejidad al problema, se consideran diferentes niveles
de granularidad en la clasificación, tanto desde el punto de vista del elemento
a clasificar, como las categorías o tipos de categorías en las que deben catego-
rizarse. Así, se aborda la clasificación de diversos elementos, desde paquetes
individuales a grupos de ordenadores, pasando, obviamente, por los flujos. En
este contexto, con la diversidad en las técnicas desplegadas y formatos de datos
considerados, la literatura actual todavía carece de puntos de referencia ade-
cuados, que consideren capturas de tráfico de referencia y que se expresen en
una terminología consistente [Khalife, 2014].

A2.3 Objetivos y contribuciones

El principal objetivo del presente trabajo es desarrollar y evaluar nuevos méto-
dos de clasificación ciega de tráfico, tanto a nivel de flujo como de host. Para
ello, también es necesario establecer un marco experimental que incluya cap-
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turas de tráfico reales, que deben ser etiquetadas de acuerdo a sus clases,
y que se utilizará como referencia para entrenar y evaluar los clasificadores.
Adicionalmente, es necesario desarrollar los programas y algoritmos necesarios
para parametrizar el tráfico, de acuerdo con las necesidades de los métodos de
clasificación propuestos.

Los sistemas explorados para la clasificación de tráfico se basan en análisis
del tamaño de los mensajes, para el caso de los flujos, y en la descomposición en
grafos elementales, denominados motif, del grafo de interacciones de red, para
el caso de los host. Antes de presentar estas propuestas, se hace una revisión
a fondo del estado de la técnica y se realiza una propuesta de taxonomía para
categorizar las diferentes aproximaciones y variantes. Adicionalmente, tras el
procesamiento para clasificar el tráfico adquirido utilizando DPI, se proponen
y se evaluan algunas optimizaciones basadas en el muestreo. De este modo, las
contribuciones de esta tesis pueden resumirse de la siguiente manera:

a) Propuesta de una taxonomía: El número de trabajos en la bibliografía
reciente relacionados con la clasificación del tráfico es elevado. Sin em-
bargo, existen pocos tutoriales y/o artículos que proporcionen una visión
general del estado de la técnica y menos aun son los que clasifican sis-
temáticamente las contribuciones existentes. En este contexto, se pro-
pone una taxonomía en tres niveles diferentes (entrada, técnica y salida)
que permite categorizar los métodos existentes, a la luz de la que se pre-
sentan las técnicas y trabajos más destacados en cada categoría. Como
resultado del estudio del estado de la técnica, se analizan los principales
retos existentes y las características que debería presentar un clasificador
de tráfico ideal.

b) Escenario experimental: La evaluación y comparación de métodos de
clasificación de tráfico requiere de la utilización de trazas de tráfico signi-
ficativas. Dada la inexistencia de conjuntos de datos de referencia, se pro-
cedió a la captura de tráfico real en un volumen significativo después de
analizar los requisitos que debería reunir para posibilitar una evaluación
adecuada. Adicionalmente, se desarrolla un conjunto de herramientas
para manejar las bases de datos y extraer todos los parámetros descritos
en la literatura para su uso potencial en el proceso de clasificación. Tam-
bién se adapta una herramienta de clasificación basada en DPI para el
etiquetado de las capturas obtenidas a fin de su utilización como técnica
de referencia.

c) Evaluación y optimización de los métodos de clasificación basados en
DPI: Los principales factores limitantes para el uso de la clasificación
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DPI son la invasión de la privacidad del usuario y el elevado coste com-
putacional asociado. Tras evaluar el rendimiento de la técnica DPI, se
presenta una optimización basada en diversas políticas de muestreo para
las cargas útiles en cada flujo. Usando esta técnica, se evalúa experi-
mentalmente el mejor compromiso entre el rendimiento, la precisión y la
privacidad de los usuarios.

d) Método de clasificación ciega basada en flujo: Los mensajes intercambia-
dos por entidades pares en la capa de aplicación incluyen información que
podría enriquecer las capacidades de un clasificador. Desde este punto de
vista, se propone un nuevo método ciego para explorar el poder discrimi-
nativo de los mensajes de la capa de aplicación. La novedad de nuestro
enfoque consiste en basarse en el tamaño y la dirección de los mensajes,
en lugar de en la de los paquetes, y la aplicación de un modelado de
Markov junto con gaussianas multipico para representar las posibles dis-
tribuciones de tamaño de los diferentes métodos en cada protocolo de la
capa de aplicación. Los resultados evidencian la bondad de la propuesta
y la existencia de información discriminativa respecto a la clasificación
del tráfico en los tamaños de los mensajes intercambiados.

e) Evaluación y mejora de modelos ciegos de clasificación basados en host:
Los modelos actuales de clasificación basados en host no reflejan esce-
narios de uso reales, en los que un host puede estar usando más de una
aplicación en el periodo de tiempo considerado. Por lo tanto, tras selec-
cionar un método basado en host descrito en la bibliografía, exploramos
la aplicación de una clasificación multi-etiqueta. El método elegido se
basa en una descripción gráfica de las interacciones entre hosts, que se
representan a partir de unas unidades elementales denominadas motifs.
El método original se evalúa y, a continuación, se proponen y evalúan
algunas mejoras a nivel de parametrización. Por último, se explora la
extensión del método para la identificación de host multi-etiqueta.

La presente tesis se estructura en 5 capítulos adicionales a la introducción,
que se resumen a continuación.

A2.4 Estado del arte en clasificación de tráfico

En primer lugar, en el capítulo 2, se analiza el estado de la técnica de una
manera integral tras proponer una taxonomía, que se utiliza para describir
y organizar las aportaciones existentes. Si bien en la última década varios
grupos de investigación han estado trabajando en el tema de la clasificación
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del tráfico, lo que ha generado una gran cantidad de publicaciones, no existía
ningún estudio significativo que proporcionase una visión global del campo.
La mayoría de los existentes se encontraban anticuados [Zhang, 2009, Callado,
2009], puesto que el número de las contribuciones se ha duplicado en los últi-
mos años, incluyendo una gran cantidad de enfoques recientes y prometedores;
mientras que otros se centraban en una línea de investigación específica. En
este sentido, aunque cada uno de los métodos de identificación descritos en
la literatura se considera óptima o relevante desde el punto de vista de sus
autores, en la mayoría de los casos se consideran condiciones específicas y/o
aplicaciones particulares. Además, las comparaciones existentes utilizan so-
lamente algunas técnicas de identificación, presentando resultados raramente
verificables y centrados en la reducción de las tasas de error. Al parecer, no
hay tendencias claras de investigación hacia la definición del mejor modelo de
identificación del tráfico.

Por lo tanto, este capítulo tiene como objetivo proporcionar un enfoque sis-
temático para clasificar y caracterizar los métodos de identificación del tráfico
a través de una taxonomía jerárquica integral de tres niveles. De acuerdo con
esta, cada método se clasifica en tres categorías diferentes respecto de: el tipo
de elementos de entrada, la técnica utilizada para la clasificación y la salida
proporcionada, esto es, los tipos de clasificaciones obtenidas. De esta forma,
cada técnica descrita en la bibliografía se puede categorizar según cada uno
de estos tres criterios, quedando caracterizada por una tríada, lo que permite
determinar qué sistemas pueden ser adecuadamente comparados entre sí.

A continuación, esta taxonomía se utiliza como vehículo para presentar la
literatura actual existente en la clasificación de tráfico a partir del análisis de
un volumen significativo de los trabajos existentes y recientes en el campo.
Estos trabajos se describen de acuerdo con la terminología y las categorías
establecidas en la taxonomía propuesta. A partir de este estudio, se presentan
y discuten los requisitos que debe cumplir el método óptimo para la identifi-
cación del tráfico y se destacan los desafíos existentes en la investigación en
este campo.

A2.5 Escenario experimental

Uno de los principales objetivos de esta tesis, como se dijo anteriormente, es de-
sarrollar y evaluar nuevos métodos para mejorar los sistemas de identificación
de tráfico actuales. La consecución de estos objetivos requiere de algunos ob-
jetivos adicionales relacionados con el manejo y adquisición de datos de tráfico
de la red que, a su vez, son esenciales para el desarrollo y la evaluación del
sistema de clasificación.
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En este sentido, antes de pasar a cada una de las nuevas propuestas que re-
quieren la validación experimental, tenemos que establecer un banco de pruebas
apropiado. Por lo tanto, el Capítulo 3 está dedicado a explicar la configuración
experimental y el escenario de pruebas utilizado en esta tesis, incluyendo la des-
cripción de los conjuntos de datos capturados. El capítulo comienza con una
discusión sobre los requisitos para los conjuntos de datos y el escenario con
el fin de ser capaz de evaluar adecuadamente los métodos que se propongan.
A partir de este análisis, se concluye que, entre otras propiedades, se necesita
un conjunto de datos de tráfico real y etiquetado adecuado Esto representa un
reto importante, ya que no es trivial etiquetar cada uno de los elementos en
el conjunto de datos reales. Por lo tanto, después de describir el escenario de
red y los procedimientos de adquisición de datos, se presentan el método y las
herramientas utilizadas para etiquetar cada una de las muestras. El capítulo
continúa con una descripción de los conjuntos de datos capturados y las dis-
tintas particiones establecidos para entrenar, evaluar y validar cada uno de los
métodos de clasificación de tráfico propuestos en esta tesis. A continuación, se
describen los procedimientos de extracción de características y los parámetros
obtenidos.

Por otra parte, la evaluación del desempeño de las nuevas propuestas re-
quiere de algunas métricas que son descritas y discutidas al final del capítulo,
ya que existen diferentes posibilidades.

A2.6 Optimización de las técnicas DPI mediante
muestreo

Como se mencionó con anterioridad, la clasificación de tráfico mediante DPI
se basa en el examen completo de la carga útil de todos los paquetes. Conse-
cuentemente, la invasión de privacidad de las comunicaciones y el rendimiento,
en términos de coste computacional, constituyen las mayores debilidades de los
clasificadores DPI.

A lo largo de este capítulo, proponemos y evaluamos una metodología ge-
neral para la optimización de DPI mediante muestreo. La propuesta está mo-
tivada por el potencial para reducir el coste computacional de la inspección de
las cargas útiles y mejorar la privacidad de los usuarios al reducir la cantidad
de bytes de carga útil analizados. A pesar de su interés, no se describe en
la bibliografía ningún estudio detallado ni comparativo del impacto sobre el
rendimiento de DPI de la aplicación de diversas políticas de muestreo, a pesar
de la existencia de algunas propuestas al respecto [Chen, 2009b]. Por tanto,
se estudian y evalúan diversas políticas de muestreo. En particular, se con-
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sideran 4 aproximaciones básicas: limitar el tamaño inspeccionado de la carga
útil, limitar el número de paquetes inspeccionados por flujo, la combinación de
ambos y, finalmente, limitar el número de bytes inspeccionados al comienzo de
un flujo, independientemente del número de paquetes necesarios.

El objetivo de la experimentación es determinar la existencia, y, en su caso,
su ubicación, de secciones de la carga útil en los flujos en las que se identifican
con frecuencia las firmas de aplicación utilizadas por DPI. Analizar estas partes
de la carga útil debe ser, naturalmente, el objetivo de las técnicas de muestreo
a aplicar.

La evaluación experimental de las optimizaciones propuestas evidencia que
las firmas de aplicación suelen encontrarse en posiciones regulares al inicio de
los flujos. Consecuentemente, la técnica de muestreo que mejores prestaciones
proporciona es la que se ha denominado muestreo contiguo de flujo, que se basa
en el análisis de los bytes al inicio de cada flujo. Mediante esta aproximación,
es posible reducir significativamente los tiempos necesarios para clasificar un
flujo, esto es, el coste computacional asociado, a la vez que se minimiza la
invasión de la privacidad, sin apenas impacto en el número de flujos clasificados
correctamente.

Durante el análisis experimental de la propuesta se evidencia que el número
de bytes a analizar depende de la aplicación concreta a clasificar, siendo posi-
ble determinar un umbral mínimo para este valor a partir del conjunto de
aplicaciones que se pretende clasificar y del porcentaje de clasificación correcta
deseado. Evidentemente, estos umbrales deben ser determinados experimen-
talmente.

A2.7 Clasificación de tráfico basada en el tamaño de
los mensajes

En este capítulo se propone un nuevo método para la identificación del tráfico.
Después de concluir en el estudio anterior que la mayoría de las firmas utilizadas
por DPI se encuentran dentro de los paquetes iniciales de los flujos, el método
propuesto se centra en los mensajes iniciales intercambiados en cada flujo por
las entidades de nivel de aplicación.

Como se indica en el Capítulo 2, la selección del conjunto de parámetros
a utilizar es una opción estratégica para los clasificadores de tráfico, especial-
mente para los ciegos, ya que se basan en características extraídas general-
mente de las capas de red y de transporte [Khalife, 2014, Moore, 2005a]. Lo
ideal sería que las propiedades seleccionadas resulten discriminativas, inmunes
a la dinámica de la red y las técnicas de ofuscación, al tiempo que protejan la
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privacidad del usuario.
Así, en la técnica propuesta se analizan los tamaños y sentidos relativos de

los mensajes iniciales en cada flujo. El método sugerido es ciego, ya que no se
requiere de la inspección de la carga útil, ya que los tamaños de los mensajes
se pueden inferir directamente a partir de las cabeceras de la capa de trans-
porte mediante una heurística diseñada al efecto. Consecuentemente, cada
flujo queda parametrizado por un vector cuyas componentes son los tamaños
de los L mensajes iniciales, con un signo que depende del sentido en el que se
intercambia dicho mensaje.

La clasificación de cada flujo se realiza, a partir de dicho vector, mediante
un clasificador basado en modelos de Markov cuyas probabilidades de obser-
vación se obtienen a partir de distribuciones gaussianas multipico. Cada una de
dichas distribuciones es obtenida experimentalmente a partir de la aplicación
de un algoritmo de agrupamiento basado en k-medias iterativo a los vectores
de entrenamiento en el que se usa una métrica no euclídea. Dicha métrica,
propuesta y evaluada también en conjunción con el método de clasificación,
tiene como finalidad evaluar el grado de similitud de dos mensajes en base a
sus diferencias relativas de tamaño.

Los resultados experimentales obtenidos muestran un buen comportamiento
de la técnica propuesta, tanto a nivel de clasificación como de coste computa-
cional. Además, dada la naturaleza de la misma, constituye un método de
clasificación temprana, puesto que únicamente se requiere un reducido número
de paquetes al inicio de cada flujo para clasificarlo con un alto nivel de con-
fianza.

A2.8 Clasificación basada en hosts mediante motifs

Después de proponer un método de clasificación de flujo, el capítulo 6 se centra
en la clasificación basada en host. En particular, se dedica a la evaluación de
un enfoque basado en la descomposición de la actividad de red observada en
grafos elementales denominados motifs.

Este enfoque fue propuesto y explorado por otros autores con anterioridad
[nDPI, 2013], aunque presenta algunas limitaciones. En este sentido, la revisión
de la bibliografía (Capítulo 2) revela la existencia de varias contribuciones de
interés basadas en la clasificación de host. Sin embargo, la mayoría de ellas
siguen un modelo de clasificación de etiqueta única, asumiendo que cada host
sólo presenta actividad asociada a una única aplicación. Como se puede argu-
mentar fácilmente, este modo de operación no refleja situaciones reales, ya que
un comportamiento típico implica que la actividad de red de un host incluye
protocolos diferentes. En consecuencia, la clasificación debería realizarse aten-
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diendo a varias etiquetas. Por lo tanto, el objetivo principal de este trabajo es
extender estos métodos a un escenario de clasificación multi-etiqueta.

Para abordar las técnicas propuestas en [nDPI, 2013], se describen los fun-
damentos de la teoría de grafos subyacente y la extracción de los llamados motif
a partir de un gráfico que representa las interacciones entre los ordenadores.
A continuación, cada host se parametriza mediante un perfil que representa su
participación en cada uno de los motif obtenidos.

Tras valorar y evaluar los resultados obtenidos a partir de este método
en un escenario real, se identifican las limitaciones del método utilizado. En
este sentido, se proponen y evalúan algunas mejoras relativas a la extracción de
características y la parametrización. A continuación, con el fin de ser realmente
aplicable en escenarios reales, el clasificador debe ser capaz de clasificar los
hosts de acuerdo con el conjunto de aplicaciones en uso, en lugar de sólo uno
de ellos.

Los resultados obtenidos muestran una mejora en la precisión de la clasi-
ficación, tanto en el escenario multi-clase como en el multi-etiqueta, aunque
es evidente que el sistema debe ser mejorado aún más. En este sentido, para
finalizar el capítulo se identifican las posibles actuaciones de mejora.
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