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"[. . . ] los sistemas biológicos son producto de la evolución. Si
las matemáticas son el arte de lo perfecto y la física es el arte de
lo óptimo, la biología no es más que el arte de lo satisfactorio:
cualquier cosa sirve, siempre que funcione. [. . . ]"

— Sidney Brenner, El Pais, 12-01-1999
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Resumen en castellano

La investigación llevada a cabo ha tenido como objetivo fundamental la imple-
mentación, puesta a punto y análisis preliminar de un procedimiento original
para la discriminación sistémica, de alta sensibilidad, de genomas o epigenomas
representativos de condiciones tipo.

Los resultados obtenidos, presentados en esta memoria, avalan el enfoque
sistémico propuesto, que se basa en dos conjeturas fundamentales: por una
parte la consideración de que las dinámicas adaptativas a las que se ven someti-
dos los Genomas pueden ser analizadas desde la óptica de los Sistemas Com-
plejos Adaptativos y, en particular, desde el marco conceptual y metodológico
de las teorías que sobre Complejidad y Caos determinista han venido desar-
rollándose durante los últimos veinte años y que se han aplicado con éxito en
otros campos. Por otra parte, la presunción de que las secuencias de ADN
pueden ser conceptualizadas como series temporales multivariantes no lineales
y ser tratadas como tales a nivel de modelos formales. Ello es posible porque
conceptualmente una serie temporal es en esencia una colección ordenada de
valores observacionales relativos a una de las variables de estado del sistema.
No es la temporalidad en sentido estricto sino la ordinalidad de los datos lo que
determina su dimensión "temporal", de tal modo que para todo valor vi de la
variable considerada puede establecerse de manera unívoca el valor precedente
vv−1 y el subsecuente vi+1.

Aunque no conocemos la existencia, por el momento, de ningún planteamiento
teórico riguroso al respecto, ninguno de estos dos presupuestos son extraños al
campo del Análisis del DNA2,3. La aplicación de métodos de análisis de Time
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Series a secuencias de DNA viene ya, de hecho, empleándose de forma puntual
desde finales de los ochenta4–7. Por otra parte, la representación de genomas,
interactomas, proteomas y otros en términos de Redes Complejas Adaptativas
(una estrategia frecuente en análisis de Sistemas Complejos) es ya habitual en
numerosos contextos de la moderna Biología de Sistemas7–10,3. Se trata este
último de un enfoque singularmente potente, ya que desde los trabajos pio-
neros de de Erdós y Rennyi11,12, el marco formal y metodológico del análisis
de redes aleatorias está muy bien establecido y es fácil extrapolar las conclu-
siones obtenidas de los modelos de red a los Sistemas Complejos originales, más
elusivos al análisis.

Este tipo de enfoque puede además revelar datos no solo acerca la estructura
del Sistema Complejo original al que representa sino también acerca de sus
propiedades dinámicas. Es el caso, por ejemplo, del notable trabajo de Albert
Barabasi y otros acerca de la naturaleza autosimilar de la estructura de muchas
de las redes de sistemas biológicos, de su particular resistencia a perturbaciones
aleatorias o de su tolerancia a los errores8. Bastante menos frecuentes son, con
alguna excepción de ámbito limitado13, los modelos dinámicos no lineales en
el campo de la Genómica, en comparación, sobre todo, con la amplia variedad
de problemas de física, química ingeniería y biomedicina donde este tipo de
metodología se ha aplicado con éxito.

Barabasi señala que en tanto que la emergencia de las redes biológicas com-
plejas es el resultado de dinámicas de autoorganización gobernadas por leyes
simples de carácter genérico, comparten características prominentes que las de-
finen9. Entre ellas están la estructura de escala libre y la organización jerárquica
de los módulos funcionales. Desde esta perspectiva debe admitirse que junto al
carácter intrínsecamente estocástico de muchos de los procesos dinámicos en
biología, sus atractores serán con frecuencia atractores extraños (en el sentido
de Prigogine) que incluyan en mayor o menor medida una componentes de caos
determinista capaz de ser reconocida en la estructura de las redes complejas
que los representan. Y en efecto, el carácter autosimilar de la distribución de
nodos en muchas de estas redes -que siguen una ley potencial- confirmaría en
efecto ese carácter determinista.

A nivel de mutación, los cambios observados en el genoma de las células
tumorales son de carácter puntual y afectan a elementos clave del proceso
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tumorigénico. Con frecuencia son cambios acumulativos que se producen en un
conjunto muy específico de genes y cuya “lógica” puede ser establecida de modo
directo porque afectan a elementos directamente implicados en los procesos de
diferenciación y proliferación celular, supresión de tumores, organización del
material nuclear, vulnerabilidad frente a determinados agentes o en procesos
de comunicación y adherencia celular. Este conjunto singular, y relativamente
reducido, de oncogenes que sufren alteraciones altamente correlacionables con
el proceso de malignización celular y carcinogénesis ha permitido la definición
de marcadores tumorales con un valor diagnóstico reconocido. El análisis de
estos marcadores permite, en efecto, apoyar el diagnóstico de determinados
tipos de cánceres y estimar su agresividad y, en definitiva, el pronóstico de la
enfermedad.

Que el proceso de malignización celular va igualmente acompañado de cam-
bios específicos en la metilación del DNA y que estos cambios son determinantes
para la implantación y el desarrollo del tumor son hechos reconocidos desde hace
tiempo Feinberg and Vogelstein 14 . No es extraño que los primeros esfuerzos
fuesen orientados a la identificación de alteraciones específicas en la metilación
del DNA equiparables a los marcadores tumorales anteriormente descubiertos.
Sorprendentemente, y a la luz sobre todo de los numerosos estudios llevados
a cabo a partir de análisis de metilación a escala genómica de DNA humano,
hoy sabemos que los cambios epigenéticos que acompañan al proceso de car-
cinogénesis son sustancialmente diferentes. Pese a que se han identificado
modificaciones específicas en la metilación de las islas CpG de promotores de
determinados factores de transcripción y otros elementos directamente implica-
dos en la implantación del tumor, lo que apuntaría hacia la existencia de unos
“marcadores tumorales de metilación”, estadísticamente correlacionables y po-
tencialmente equivalentes a los marcadores mutacionales, lo cierto es que la
metilación del DNA en células tumorales es cualitativa y radicalmente diferente
a la de sus correspondientes homólogos celulares sanos.

De hecho las modificaciones epigenéticas observadas en las células tumorales
afectan a extensas regiones del genoma y presentan además una característica
adicional inesperada: las modificaciones no son únicas sino que muestran una
manifiesta heterogeneidad entre los diferentes clones tumorales. Es por ello que
numerosos autores hablan de una "desregulación epigenética" que acompañaría
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al proceso de tumorigénesis. Más que como un proceso de desregulación, al-
gunos autores han vinculado estos cambios a un hipotético proceso potencial de
adaptación Darwiniana de los diferentes clones mediante ajuste epigenético de
su reguloma15,16. Según esta perspectiva, la metilación diferencial de los difer-
entes clones tumorales incrementaría las posibilidades de implantación del tumor
mediante un proceso intraevolutivo de selección natural de aquellos metilomas
que mejor favoreciesen su desarrollo.

Los datos actuales son todavía insuficientes para poder asegurar que tal tipo
de proceso tenga entidad real y mucho menos para, en caso positivo, estimar
su relevancia potencial o su universalidad en el mecanismo de tumorigénesis.
Entre otras cosas porque en la actualidad no disponemos aún de un modelo
coherente y bien definido del papel de la regulación Epigenética del genoma ni
ontogénica ni filogénicamente hablando.

Circunstancialmente, y a falta de pruebas directas, la hipotética existencia
de tal tipo de mecanismos vendría avalada por dos características: a) Las
modificaciones epigenéticas serían variables y heterogéneas y b) una vez des-
encadenado el proceso por uno o varios mecanismos (aún desconocidos), las
metilaciones diferenciales deberían ser numerosas (a escala genómica) y seguir
patrones sistémicos. Ambas características coinciden con los datos observados.

Tal dispositivo epigenético de optimización adaptativa, en caso de existir,
conferiría al biosistema una ventaja evolutiva muy relevante: constituiría un
auténtico dispositivo de plasticidad adaptativa de carácter reversible y rápido.
Un sistema de optimización mediante aprendizaje (al modo de un algoritmo de
"machine learning"), que a) debería probablemente estar sujeto a un control
preciso; b) tendría naturaleza sistémica, de modo que las diferentes configu-
raciones alcanzadas podrían ser consideradas como atractores alternativos o
propiedades emergentes y c) no podría ser identificado/interpretado fácilmente
mediante las técnicas estadísticas convencionales. Para su análisis se requerirían
métodos no lineales propios de la dinámica de sistemas complejos adaptativos.

El análisis de recurrencia de los atractores desplegados mediante embedding
de series temporales de densidad de metilación de DNA, de densidad de pares
GC y de otras posibles variables genómicas relevantes, mediante aplicación de
los teoremas de Taken-Ruelle17–19 y Poincaré20 se nos planteó claramente, en
este contexto, como una de las posibilidades a investigar y por ello buena parte
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de este trabajo se ha centrado en el desarrollo de un protocolo metodológico
completo que permitiese trasladar su probado potencial al campo de la genómica
estructural, la filogenómica y la epigenómica de metilación de ADN.

De manera global, los resultados obtenidos indican que este planteamiento
no solo es posible sino que nos ha permitido obtener descripciones altamente
compactas de secuencias de ADN que retienen muchas de las características
estructurales esenciales de los sistemas originales, hasta el punto de poder ser
discriminados eficientemente mediante métodos de inteligencia artificial basados
en algoritmos de aprendizaje automático ("machine learning"), en nuestro caso
del tipo de vectores soporte ("support vector machines").

Quedan pendientes, sin duda, cuestiones relevantes, como la posibilidad
de aplicar el teorema de ergodicidad21 a las series temporales de DNA, sobre
las que se mantiene todavía un encendido debate teórico acerca del ámbito
de aplicación de los modelos empleados22,10,23, pero que, de cualquier forma,
no nos ha impedido en nuestro caso llevar a cabo predicciones precisas en el
terreno de la Epigenética del cáncer o la relación filogenética de comunidades
de chimpancés en el áfrica Central. También nos ha permitido acercarnos a
la estructura del genoma del tomate desde una perspectiva sistémica que abre
nuevas perspectivas sobre su anotación, en la que también se ha participado.

Así por ejemplo, mediante el protocolo de análisis cuantitativo de recurrencia
implementado en este trabajo ha sido posible representar fragmentos de DNA
de 240 megabases (cromosoma I humano completo) en términos de solo siete
valores escalares. Cuando la representación corresponde a la secuencia de meti-
lación de muestras procedentes de células sanas o cancerosas, este único vector
7-dimensional permite discriminar los patrones epigenéticos con porcentajes de
acierto superiores, en ocasiones, al 98%. Cuando la serie temporal procede de
distancias intergénicas, es posible representar el Genoma completo del tomate
en términos de 12 vectores 7-dimensionales (84 valores), que deberían ser po-
tencialmente suficientes para abordar una gran variedad de problemas, a medida
que se vayan disponiendo de datos suficientes en el futuro.

La implementación del protocolo propuesto ha requerido abordar previa-
mente una serie de aspectos metodológicos fundamentales. La teoría establece
que para desplegar el atractor del sistema en el espacio n-dimensional adecuado,
las coordenadas de los hiperpuntos se construyen a partir de la serie temporal
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inicial, tomando valores sucesivos desfasados en un cierto desplazamiento ("de-
lay") que debe ser previamente estimado. Además la propia dimensionalidad
del espacio de fases debe ser también determinada de forma adecuada. La es-
timación adecuada de ambos parámetros no es sencilla: el algoritmo de "falso
vecino más proximo" ("false nearest neighbor" o FFN) empleado para estimar
la dimensión del despliegue del atractor en el espacio de fases ("embedding")
depende de la elección del umbral y, por su parte, la estimación del desplaza-
miento requiere fijar estrategias adecuadas para la detección de mínimos. Por
estas razones y porque interesaba además comprobar que el software desarrol-
lado por nosotros se comportaba de la manera adecuada, fue necesario emplear
un modelo de referencia conocido – el atractor de Roessler en nuestro caso
– que se empleó como banco de pruebas de nuestro protocolo experimental.
Las pruebas llevadas a cabo con este modelo nos permitieron poner a punto el
método y confirmar su efectividad para desplegar el atractor a partir de series
temporales de una de sus variables, verificándose que, como predice el Teorema
de Takens, el atractor reconstruido retiene las características topológicas del
original.

Una vez establecida de forma preliminar su validez, la herramienta desarrol-
lada se aplicó al estudio de la deriva Epigenética que, en términos de metilación
de DNA, acompaña al proceso de carcinogénesis. El estudio se hizo, además,
con el objetivo de establecer la importancia del enfoque sistémico, en el sentido
indicado anteriormente, como enfoque capaz de desvelar aspectos sistémicos,
difícilmente identificables con las aproximaciones convencionales. Para ello se
implementó un procedimiento de análisis cuantitativo de recurrencia (RQA) de
los diagramas de recurrencia obtenidos a partir de los mapas de distancia de los
puntos del atractor desplegado a partir de las series temporales iniciales (ver
Material y Métodos). Los parámetros de RQA obtenidos fueron empleados,
en la mayoría de los casos, para efectuar clasificaciones binarias mediante un
algoritmo de aprendizaje automático basado en vectores soporte (SVM).

Estos resultados confirman que la compresión de la secuencia de metilación
de un cromosoma humano completo en un único vector RQA 7-dimensional
retiene la información necesaria para identificar de forma muy efectiva la deriva
epigenética que acompaña al proceso de malignización celular, al menos en
los tipos estudiados. En realidad, el protocolo es lo suficientemente sensible
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como para que el simple examen visual de las proyecciones bidimensionales de
los vectores de RQA nos permita ya establecer diferencias manifiestas entre
células normales y células tumorales, con independencia del cáncer de que se
trate. Resulta llamativo constatar la dispersión de los patrones de metilación
en células tumorales cuando se comparan con los correspondientes valores de
células sanas señalada anteriormente.

Como ya se ha mencionado, desde los trabajos pioneros de Prigogine24–26
y otros, sabemos que los sistemas complejos adaptativos (CAS) se comportan
dinámicamente como sistemas no lineales cuyos atractores finales comportan
a menudo "escenarios" de estabilidad singularmente complicados ("atractores
extraños"). Aunque normalmente no es posible saber cómo son en realidad es-
tos atractores, la reconstrucción a partir de series temporales permitiría, como
es nuestro caso, disponer de modelos topológicamente equivalentes, que aún
retienen una información valiosa sobre el sistema original. Según lo dicho ante-
riormente, desde esta perspectiva se podría considerar que la metilación diferen-
cial de los clones tumorales que aparecen durante la carcinogénesis representan,
de hecho, "soluciones adaptativas" del metabolismo tumoral (cuya deriva sería
aquí considerada como la dinámica de un sistema CAS) y, por tanto, como
configuraciones estables de atractores sistémicos no lineales, susceptibles de ser
analizados mediante nuestro protocolo experimental.

Si esta premisa fuese correcta, la deriva epigenética ("desregulación" para al-
gunos autores) no podría ser satisfactoriamente explicada en términos de “mar-
cadores” epigenéticos. En otras palabras, los cambios no obedecerian necesari-
amente a modificaciones específicas de la metilación de posiciones concretas
(como sí tiende a suceder en el caso de los cambios mutacionales). Por el
contrario, la "deriva metilacional" sería una consecuencia de los mecanismos
intraevolutivos potenciales que operarían durante la carcinogenesis. Mecanis-
mos que, por otra parte, no implican en absoluto que tengan que descartarse
la existencia de posiciones específicas cuyos cambios en el estado de metilación
son estadísticamente correlacionables con el proceso de carcinogénesis. Por el
contrario, la deriva epigenética asociada al proceso de implantación del tumor
sería compatible con la existencia de ciertas posiciones esenciales para alcan-
zar el "nicho" adaptativo (cuyos cambios en el estado de metilación fuesen
por tanto invariantes) y pese a ello seguir siendo un proceso esencialmente
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sistémico, difícilmente caracterizable en su totalidad por la sola presencia de
estas invariancias. En otras palabras, es concebible que todas la "soluciones
adaptativas" compartan ciertas invariancias pero respondan a una dinámica
propia de sistemas CAS.

Aunque al comienzo de este trabajo no disponíamos aún de pruebas con-
cluyentes acerca de la existencia de una dinámica sistémica de este tipo, dos
argumentos diferentes apoyaban dicha posibilidad: por una parte el entorno
ambiental del tumor durante su fase de implantación es manifiestamente hostil,
por lo que las células tumorales se encuentran inicialmente bastante lejos de
su óptimo adaptativo. Por otra parte, la posible implantación de mecanismos
intraevolutivos de tipo Darwianiano estaría facilitada en el tumor emergente
por su intrínsecamente rápida velocidad de crecimiento. En caso de ocurrir, un
mecanismo de sistémico de este tipo sería, además, difícil de detectar mediante
procedimientos convencionales.

Para profundizar en torno a esta cuestión fundamental se diseñaron estrate-
gias diferentes para valorar la eficacia de las predicciones basadas en marcadores
tumorales (basadas en metilación diferencial de sitios CpG) y las predicciones
basadas en criterios sistémicos (markerless). En un primer grupo de experi-
mentos se compiló una lista de sitios CpG metilados diferencialmente en células
sanas y tumorales. Por otra parte se identificaron dos tipos de motivos con
significación Epigenética que han sido descritos en la literatura con anteriori-
dad. En su conjunto los tres tipos de elementos constituían más del 50% del
cromosoma I. A continuación se crearon series temporales en las que se elim-
inaron sistemáticamente estos elementos relacionados con cáncer del material
genético de partida, de modo que las time series solo contenían el material
restante. Globalmente, los resultados obtenidos demostraron que la fracción de
cromosoma restante retiene aún la firma epigenética que permite discriminar
las células normales de las cancerosas. Una posible interpretación de los re-
sultados obtenidos es que, en efecto, se confirma que la firma epigenética que
caracteriza la malignización celular “está en el todo y en la parte”. Se trataría
en otras palabras de una característica emergente de carácter significativamente
sistémico.

Ciertamente, otra posible interpretación es que no todos los elementos sig-
nificativos en el proceso han sido identificados en la actualidad. Aun cuando
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esta posibilidad es, por razones obvias, muy difícil de descartar por completo,
resulta a nuestro juicio bastante más difícil de justificar. Suponiendo que la
pérdida de capacidad discriminativa del clasificador empleado sea una medida
del peso relativo que los supuestos elementos desconocidos tendrían sobre el
total, estaríamos hablando de que aún faltarían por identificar entre un 20%
Y un 40% de elementos relevantes en el proceso de carcinogénesis. Y que es-
tos hipotéticos elementos desconocidos serían además comunes a la práctica
totalidad de los 11 cánceres estudiados.

La validez atribuida en la literatura por otros autores a los marcadores
de metilación se vió claramente confirmada cuando se compararon las predic-
ciones realizadas con nuestro protocolo experimental y las llevadas a cabo con
diferentes sets de símbolos relacionados con cáncer, mediante entrenamiento
directo (sin reconstitución de series temporales en el espacio de fases ni RQA)
del mismo algoritmo de aprendizaje, en condiciones comparables. Los resul-
tados obtenidos para cáncer de cabeza y cuello mostraron performances muy
elevadas prácticamente idénticas en ambos casos. Sorprendentemente, bastó
un número relativamente reducido de marcadores para lograr un AUC de 97.4%
frente a 98.6% en la predicción sin marcadores.

Por ello y para recabar más datos acerca del posible carácter sistémico de la
deriva epigenética asociada a la carcinogénesis se llevó a cabo un tercer tipo de
experimentos en los que las predicciones se realizaron previo entrenamiento del
algoritmo de aprendizaje con muestras aleatorias de sitios de metilación no rela-
cionados con cáncer (de tamaño reducido, comparable al número de marcadores
empleados anteriormente). Aunque el estudio llevado a cabo es aún prelimi-
nar, los resultados obtenidos, sorprendentemente, continuaron siendo buenos
(AUC mayores que 90%) incluso limitando el tamaño de las muestras a solo
18 pseudomarcadores. La validez de estos resultados fue confirmada emple-
ando controles compuestos por muestras idénticas aunque con las posiciones
aleatorizadas.

En su conjunto, nuestros datos sugieren que las diferencias en el patrón
epigenético de las células cancerosas respecto a las normales se debe no solo a
la existencia de unos marcadores de metilación bien definidos, cuya correlación
con el proceso de malignización celular, ya establecida en la literatura, ha sido
confirmada por nuestras observaciones con un procedimiento alternativo basado
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en un algoritmo de SVM, sino que también tienen un carácter sistémico que
se potencialmente se extiende a toda la secuencia de DNA y que puede pon-
erse de manifiesto con un número muy reducido de posiciones potencialmente
metilables.

Asumiendo que las diferencias de valores beta se extienden a toda la se-
cuencia, pareció interesante investigar si la simple estimación total del grado
de metilación (suma total de valores beta) sería suficiente para discriminar en-
tre células controles y tumorales, pese a que no tenemos constancia de ningún
estudio previo que apoye tal suposición. Por ello se diseñaron una serie de
experimentos destinados a comparar las distribuciones de sumas beta en mues-
tras de células tumorales frente a sanas, bajo diferentes condiciones, empleando
como criterio de discriminación los valores de p obtenidos mediante el test no
paramétrico de Wilcoxon para suma de rangos con corrección.

Hemos encontrado que cuando se incluyen en el análisis todos los sitios CpG
nuestros resultados indican por una parte que los valores de sumas beta son
bastante parecidos entre células normales y cancerosas, por lo que la discrim-
inación es generalmente difícil tanto si los resultados se estiman en términos
de promedios de sumas beta, como si se interpreta en términos de p de test
de Wilcoxon o se emplea un algoritmo de clasificación basado en SVM. Por
otra parte, cuando se incluyen todos los sitios CpG se constata que cada tumor
ofrece una respuesta diferente: en tanto que en el caso del carcinoma hep-
atocelular (LIHC) la discriminación es relativamente buena con cualquiera de
los estimadores empleados, el carcinoma tiroideo papilar (THCA) no puede ser
discriminado en ningún caso a partir de los valores de suma beta.

Más interesante fue el comportamiento heterogéneo de los diferentes tu-
mores en relación con la posibilidad de ser discriminados en términos de suma
beta, cuando las muestras se restringen a los elementos relacionados con la
deriva Epigenética del cáncer. Así por ejemplo, los símbolos de genes rela-
cionados al cancer (CRGS), compilados ad hoc en este estudio, permiten una
discriminación relativamente buena en el caso de cáncer de mama (BRCA),
colon and adenocarcinoma rectal (COAD), LIHC y en menor medida adeno-
carcinoma de pulmón (LUAD) y carcinoma renal papilar (KIRP), en tanto que
el carcinoma pulmonar de células escamosas (LUSC), THCA y carcinoma en-
dometrial (UCEC) se muestran refractarios con esta muestra.
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Cuando se consideran las sumas beta de los dominios hipometilados BLOCKS,
la capacidad de discriminación entre células normales y tumorales aumentó en
casi todos los casos, aunque fue insuficiente para discriminar dos de ellos: PRAD
y THCA.

Finalmente, cuando las muestras corresponden a los dominios hipermetila-
dos cDMR, todos los tumores pueden ser discriminados en términos de suma
beta con una elevada significación estadística, con la excepción de THCA. Si
las muestras se construyen a partir de regiones hiper- e hipometiladas los re-
sultados obtenidos son, como cabía suponer, notablemente peores, ya que los
valores globales de suma beta se componen de elementos positivos y negativos
que se cancelan mutuamente.

Teniendo en cuenta la heterogeneidad de muestras y procedimientos, los
resultados obtenidos mostraron una coherencia bastante razonable. En su con-
junto, estos resultados dibujan un escenario en el que se confirma claramente
que la deriva Epigenética que acompaña al proceso de carcinogénesis en to-
dos los tumores estudiados gravita sobre las regiones hipermetiladas cDMR,
que resultan fundamentales para la caracterización de las células tumorales
en todos los casos excepto en THCA y extensas regiones hipometiladas, cuya
aportación al perfil epigenético de los diferentes cánceres es variable y podría
estar ausente en dos de ellos, PRAD y THCA. Claramente los "símbolos" o "mo-
tivos" (CRGS) resultan más específicos y tendrían poco peso en la definición
del perfil epigenético de LUSC, THCA y UCEC.

En tanto que LIHC puede ser prácticamente discriminado en cualquiera de
las condiciones del ensayo y THCA es difícilmente discriminable en casi todas
las condiciones, ambos tipos de tumor podrían representar los dos extremos en
relación a su carácter sistémico. Así, el perfil epigenético de LIHC afectaría a
una gran parte del cromosoma, indicando que la deriva es en este caso muy acu-
sada o que tiene una importante componente sistémica. THCA representaría el
otro extremo: los cambios epigenéticos que acompañan el proceso de génesis
tumoral serían mínimos en este caso, lo que lo alejaría del modelo sistémico,
y tendrían un carácter bastante más específico o no sufrirían una deriva sig-
nificativa, lo que, en cualquier caso, indicaría que las células malignizadas se
encontrarían mucho más cerca de su nicho adaptativo óptimo, ya desde el prin-
cipio. Quedaría por tanto justificado el hecho de que THCA es también el único
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de los tumores estudiados frente al que nuestro análisis sistémico obtuvo malos
resultados.

Otro conjunto de experimentos incluidos en esta memoria estuvieron des-
tinados a la posible aplicación de nuestro protocolo experimental al análisis
estructural de genomas. El estudio se llevó a cabo sobre el genoma completo
del tomate, dado que una parte del desarrollo de esta memoria ha sido realizado
por mi dentro del "Plant Computational Biology"-group (PCB) del Max-Planck-
Institute for Plant Breeding Research, como parte del International Tomato
Annotation Group (ITAG) y del Tomato Genome Consortium, contribuyendo
al GO anotación funcional del genoma del tomate (Solanum lycopersicum). A
partir de los 19662 genes anotados (57% del total de genes codificantes) y de la
secuencia completa del genoma, se intentó analizar la posible existencia de cor-
relaciones significativas entre distancia física intergénica y distancia funcional a
partir de las tres ontologías de genes (GO): procesos biológicos (BP), función
molecular (MF) and componente celular (CC). El segundo objetivo de este ex-
perimento era el de obtener los doce vectores RQA que representan en nuestro
modelo sistémico al genoma completo del tomate, en términos de distancias
intergénicas.

Nuestros resultados apuntan a que no existe una correlación obvia entre
distancia física y distancia funcional a partir de ninguna de las GO empleadas.
Las tendencias de los perfiles obtenidos se explican en todos los casos a partir
de las distribuciones observadas entre las distancias intergénicas. Con los datos
actuales no es posible, de todas formas, completar este análisis con el nivel
resolutivo que sería necesario para llevar a cabo RQA a partir de las distancias
funcionales. En tanto que la metodología está disponible, la disponibilidad de
nuevos datos permitirá avanzar en esta dirección en el futuro.

En cuanto a los resultados de RQA de los doce cromosomas del tomate, nue-
stros datos revelan RPs muy diferentes a los obtenidos a partir del epigenoma
del cromosoma I humano. Algunos de los valores encontrados indicarían que
se trata de un sistema con una baja predictibilidad, contrariamente a lo que
sugerían los RPs procedentes de genoma humano. Puesto que el alcance de
nuestros datos es aún muy limitado, también en este caso será preciso carac-
terizar un mayor número de genomas para poder interpretar correctamente el
significado de estas diferencias.
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El último bloque de experimentos incluidos en este estudio tuvo como prin-
cipal motivación explorar la utilidad potencial de la metodología propuesta para
analizar procesos de divergencia adaptativa entre organismos próximos. En este
caso, nuestro estudio se centró en la discriminación de genomas mitocondriales
porque el número de organismos secuenciados es notablemente mayor que el
de genomas nucleares: actualmente 8753 genomas completos. Otra diferencia
básica con los experimentos anteriores es que en este caso el análisis se real-
izó sobre series temporales de densidad de pares CGs. Los resultados de estos
experimentos nos han permitido, en el primer caso, predecir tres posibles migra-
ciones de tres subespecies del chimpancé común y en el segundo caso, clasificar
perfectamente cinco especies de la superfamilia/suborden Caniformia.
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Introduction

2.1 Complex systems

According to the reductionist hypothesis any matter and process, for instance,
– me – thinking of and writing this text, storing it on the hard disk or printing
it and of course – you – reading it, is in the end controlled by the same fun-
damental laws acting on some elementary particles. But, from the bottom up,
predicting the next word I am going to write based on observations of some
elementary particles located in my brain would break down already on quan-
tum mechanic level. In 1972, the later Nobel laureate, Anderson 27 was one of
the first motivating for complex systems science. He mentioned that if we or-
der science disciplines hierarchically (elementary particle physics → many body
physics → chemistry → molecular biology → cell biology → . . . → psychol-
ogy → social sciences), at each level of complexity new properties appear and
new own laws and concepts to describe them are necessary.

Now, more then 40 years later, "Complex system" is still one of those terms
used in the scientific and philosophical literature which leak a precise definition.
Nevertheless, a minimal consensus, to which probably most researchers would
agree may be stated as follows:

Definition 1. A complex system is build of interacting parts or agents that
show emergent behavior which can not be trivially deduced from the behavior
of the individual agents28.

15
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Figure 2.1: Research fields associated with complexity science. Created by
Hiroki Sayama, D.Sc., Collective Dynamics of Complex Systems (CoCo) Re-
search Group at Binghamton University, State University of New York, 26
November 2010, Creative Commons Attribution-ShareAlike 3.0 Unported
License (CC-BY-SA 3.0), link to the license, cf.30.

There are many examples of complex systems including for instance ecosys-
tems, financial markets, the brain, the immune system, insect colonies, flocking
or schooling behavior in birds or fish, human societies, the cosmos itself28 and
cancer15,29. Complex systems are also subject of numerous research fields (Fig-
ure 2.1).

http://creativecommons.org/licenses/by/3.0/legalcode
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2.1.1 Features of complex systems

To define complex systems it is fundamental to figure out whether complexity
is a single natural phenomenon found to be present in various different systems,
which could be the subject of a single theory, or is it domain-specific, and no
common features and laws can be identified31. Ladyman et al. 31 reviewed vari-
ous attempts to characterize complex systems and they compiled some features
widely associated with this topic.

Nonlinearity

Homogeneity and superposition are together necessary and sufficient conditions
for linear systems:

Definition 2. A system is called linear if and only if it possesses both
homogeneity and superposition properties. That is, if x1(t) → y1(t) and
x2(t)→ y2(t) and for any real numbers k1 and k2, the relationship

{k1x1(t) + k2x2(t)} → {k1y1(t) + k2y2(t)} (2.1)

is true, then the system is linear32 . . .

. . . otherwise, it is nonlinear. Complex systems are often said to be non-
linear. Rickles et al. 33 , for instance, state: "A necessary condition, owing to
nonlinearity, of both chaos and complexity is sensitivity to initial conditions."
In contrast, others31,34 argue that there are examples of complex systems sub-
ject to game-theoretic and quantum dynamics which obey linear dynamics and
therefore nonlinearity is not a necessary condition. It is also not a sufficient
condition because there are nonlinear systems which are not complex (e.g. a
single chaotic pendulum). Unfortunately, the authors do not provide concrete
examples neither citations which make it difficult to follow their arguments.
Moreover, Xiao-Feng and Yuan-Ping 35 state that the linearity of quantum
mechanics (which is mathematically described by linear quantum dynamics,
cf36) limits their application and it can not be used to study complex systems.
Whether nonlinearity is a necessary condition for complex systems or not, these
contradictions do not restrict to argue that nonlinearity is at least important
for some complex systems.
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Feedback

Feedback is a necessary condition for complex systems31. Simplified, feedback
means that the output of some process becomes an input to another. In complex
systems feedback occurs between levels of organization in the way that lower
level interactions between agents generate some pattern in a higher level which
back-react causing new patterns on the lower level, and so on. Feedback can
be either positive or negative. A positive feedback enhances or amplifies an
effect or variable, a negative one reduces it33.

An example for an effective and complex feedback-control mechanism are
tumor cells that turn on the expression of the multi-drug-resistance 1 (MDR1)
gene. This gene encodes the P-glycoprotein, an ATP-dependent efflux pump,
which exports drugs out of the cells and thereby giving rise to multi drug
resistance29,37.

Feedback is not a sufficient condition for complexity. Cruise controls, as used
in modern cars, consist basically of four components: a sensor which measures
the vehicle speed, a cruise control unit, the throttle valve and a throttle position
sensor. In fact, the control unit receives feedback from the sensors and operates
appropriate on the throttle valve, but the system is not complex.

Spontaneous order

For complex systems it is a necessary condition that they exhibit "some kind
of spontaneous order"31. I use quotation marks here, because it’s a citation,
but also to point out that the notion of order is not necessary clear. How-
ever, according to the authors, it should be related to symmetry, organization,
periodicity, determinism and pattern. Whatsoever order exactly is, pure ran-
domness and total order is incompatible with complexity. Spontaneous order
implies that disorder is also a necessary condition for complex systems. If not,
from where does spontaneous order emerge?

The concept of spontaneous order seems quite strange and is not always
comprehensible for everyone. In political and economical discourses you may
even find derogative comments like this one, where Damon Linker, a senior
correspondent at TheWeek.com, abused Friedrich August von Hayek (a pioneer
of the concept of spontaneous order): "[. . . ] the idea of spontaneous order
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might be the silliest and most harmful of all [. . . ]"38,39.

Robustness and lack of central control

Flocks of birds like greylag gooses (Anser anser) or common starlings (Sturnus
vulgaris) are beautiful and fascinating examples for complex systems and their
robustness. Robustness is a central and also necessary condition for complexity.
The order, in our example the typical flock form, which emerges spontaneously
from the interactions and feedback of neighbored birds is stable under perturba-
tions like gusts of wind, erratic motions or random elimination of some birds31.
Furthermore, the lack of central control is fundamental to the robustness of
complex systems. It is not possible to knock out leading birds and break down
the flock formation, simply because they do not exist. Lack of central control
is another necessary condition for complexity.

Emergence

In the first paragraphs of this introduction it has been already mentioned that
emergence is a necessary condition of complexity. Emergence is a quiet mystic
notion. It seems, that one characteristic of emergence is a ’downwards causa-
tion’, where the emerged properties have an effect on the lower levels of the
system. Emergence is either purely epistemological; or it is ontological, in which
case we could not understand it31. Although, emergence is difficult to grasp –
its there. Just think about the following words from Jochen Fromm 40 :

• one water molecule is not fluid

• one gold atom is not metallic

• one neuron is not conscious

• one amino acid is not alive

2.1.2 Mathematical background

As shown in figure 2.1 there are many ways to make complex systems math-
ematically accessible. In live science the most known approach is probably
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through networks41,42. In this work we have focused on nonlinear dynamics,
whose mathematical background is given in detail in chapter 4 "Methods".

Just one word more before closing this section. The term "attractor" is used
from time to time in this work. Figure 2.2 gives an illustrative explanation of
its meaning.43
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Figure 2.2: Robust reactions of the system: to stay or to change. The state
of a system can be shown as a point in the state space. In this case, the state
space is simplified into two dimensions. Perturbations forcefully move the
point representing the system’s state. The state of the system might return
to its original attractor by adapting to perturbations, often using a nega-
tive feedback loop. Bacterial chemotaxis is an example. There are basins
of attractions in the state space within which the state of the system moves
back to that attractor. If the boundary is exceeded, the system might move
into an unstable region or move to other attractors. Positive feedback can
either move the system’s state away from the current attractor, or push the
system towards a new state. The cell cycle involves a combination of posi-
tive and negative feedbacks that facilitate transition between two attractors
(G1 and S/G2/M) creating a bistable system. Often, stochastic processes
affect transition between attractors, as seen in λ-phage fate decision, but
maintenance of a new state has to be robust against minor perturbations.
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews
Genetics 5, 826-837, copyright (November 2004)

http://www.nature.com/nrg/index.html
http://www.nature.com/nrg/index.html
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2.2 Cancer

2.2.1 Clonal evolution in cancer

The first impulsions to the hypothesis that neoplasms develop as a clone from
a single cell of origin and that the neoplastic progression appears to be driven
by sub-clonal selection have arisen in the fifties of the last century. More
then 20 years later, in 1976, Nowell 16 established the evolutionary theory of
cancer. Within this concept cancer clones are interpreted as asexual unicellular
organisms, the clonal selection is equivalent to the Darwinian natural selection
and the affected tissue becomes the ecosystem where a kind of micro-evolution
takes place. In addition, cancer has been validated as a complex adaptive
system44–46.

In terms of clonal dynamics, cancer cell doubling time (approximately 1-2
days) is much faster than tumor doubling time (60-200 days) which means
that most tumor cells die in the competition for space and resources47,48. But,
on the one hand, it means also that "survivors" are each time better adapted
and more resistant. Cancer treatment, which is a sort of artificially induced
extreme stress, does not inhibit the evolutionary process, but "provides a selec-
tive pressure for the proliferation of variant cells that resist the treatment"44.
If a treatment is not 100% successful it can, (in my opinion) by analogy with
antibiotic resistance, result "in cells with improved fitness and malignant poten-
tial"44. As the tissue ecosystems are open systems, the selective pressure applies
in a similar way to the exposure of genotoxines, such as cigarette carcinogens
or ultraviolet light, infection, hormone or inflammatory levels and other stress
factors. On the other hand, mathematical modeling49 has shown that more
robust and malignant phenotypes of cancer clones are less likely in stable or
homogeneous micro-environments.

Cancer stem cells exhibit a mandatory trait of self-renewal. Apart from
that, any phenotypic feature that allows the cells to continue to survive and
proliferate within its micro-environment can lead to almost infinite evolutionary
trajectories which may end in extreme sub-clonal (epi)genetic heterogeneity and
unique genomic profiles50–53.
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2.2.2 Epigenetics in cancer

Classical genetics and genomics alone can neither explain embryogenesis nor
phenotypical differences in monocygotic twins or cloned animals, but this gap of
knowledge can be filled by epigenetics54. Epigenetics refers to mechanisms that
initiate, in response to environmental stimuli (in a wider sense), and maintain
heritable patterns of gene function and regulation without changing the genomic
sequence. The underlying epigenetical mechanisms which can rise to different
phenotypes are one or a combination of the following: DNA methylation, post-
translational modifications of histone proteins, chromatin remodeling, and non-
coding RNAs (for instance miRNA)55. Epigenetics has also an important impact
in disease development, especially cancer. Figure 2.3 depicts briefly epigenomic
aberrations during oncogenesis. In this work we focus on DNA methylation
which is the only known epigenetic modification of the DNA56 and is found
in approximately 70-80% of CpG dinucleotides in adult mammalian somatic
cells57,58. Non-CpG methylation is prevalent in embryonic stem cells59,60,57 and
has also been observed in neural development61.

Definition 3. DNA methylation is the addition of a methyl group to DNA
at the 5-carbon of the cytosine pyrimidine ring.

DNA Methylation plays a key role in the control of gene expression and
genomic stability in cells. It regulates important biological processes, such as
embryonic development, genomic imprinting, X chromosome inactivation and
carcinogenesis56,62.

In contrast to normal cells, cancer cells suffer drastic aberrations in DNA
methylation which can be of either directions hyper- or hypomethylation. It has
been widely accepted that hypermethylations are often observed in promoter
CpG islands (CGIs) and also in non-promotor CGI shores whereas hypomethy-
lation occurs mainly genome-wide in gen-poor areas, repetitive elements, retro-
transposons and introns and can lead to genomic instability55,54,63.

Newer investigations based on bisulfite sequencing, however, have revealed
additional cancer-specific differentially methylated regions (cDMRs) with in-
creased stochastic variation in CpGs mainly far from islands and shores and
large blocks of contiguous hypomethylation affecting more than half of the
genome. Due to their results, the authors suggest in future efforts to DNA
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Figure 2.3: Global depiction of epigenomic alterations during oncogenesis.
In conjunction with accumulation of genetic lesions, there is an aberrant
pattern for the different epigenetic effectors: DNA methylation, histone
modifications, and miRNAs. In normal cells, the interplay between the epi-
genetic factors and the chromatin structure leads to a tuned gene regulation.
However, in cancer cells tumor suppressor genes promoters become hyper-
methylated and with an altered global pattern of histone modifications re-
sulting in aberrant gene silencing. Moreover, global hypomethylation leads
to chromosome instability and fragility. Epigenetic changes, including DNA
methylation and histone modifications are responsible for abnormal mRNA
and miRNA expression producing altered activation of oncogenes and si-
lencing of tumor suppressor genes. Reprinted by permission fromMacmillan
Publishers Ltd: Current Opinion in Genetics & Development Volume 22,
Issue 1, 50-55, copyright (February 2012)55

http://www.sciencedirect.com/science/journal/0959437X
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methylation for cancer screening, not only to focus on cancer specific profiles,
but more at defining the cancer-specific DNA methylation "as the departure
from a narrowly defined normal profile"64.

Much has been written and speculated about the underlying mechanisms
which could explain the high variability of cancer DNA signatures, but – to
my knowledge – no satisfactory standard model has been approved yet. In
acute myeloid leukemia as an example65, mutations in epigenetic regulator
proteins, including isocitrate dehydrogenases (IDH1/2), methylcytosine dioxyge-
nases (TET2) and DNAmethyltransferases (DNMT3A), have been described66–68

and may be interpreted as drivers of aberrant DNA methylations. Some func-
tional studies have also linked these proteins to distinct DNA methylation phe-
notypes69–73.

Another substantial question is whether and how can cancer development
be linked to aging. Resent research has shown the relation between aging and
DNA methylation alterations74–77. Consistent, yet tissue-specific changes in
DNA methylation have been reported to come along with age78,79 and result
into a diverging epigenomic landscape.

This phenomenon is often referred to as ’epigenetic drift’65. Coherent
explanation for the ’epigenetic drift’, whether based on the assumption that
it results from stochastic events or environmental factors, remain to be dis-
puted78,80. For both hypotheses arguments can be found. On the one hand, it
has been shown in mice that environmental factors can indeed lead to epige-
netic deregulation80–82. On the other hand, a notion of increasing entropy of
DNA methylation along with age has been proposed78,79.

A study on Illumina Infinium HumanMethylation450 BeadChip © based
DNA methylation pattern across whole blood samples from 656 individuals (19
to 101 years old) has revealed more then 70000 CpG sites associated with the
age-depend ’epigenetic drift’. These sites have been used to create a linear
model which was able to predict the age of an individual with 96% accuracy78.
Different tissues and gender have been fitted to this model. Considering this
data it seems evident that the ’epigenetic drift’ develop genome-wide and across
tissues. Characteristic for the ’epigenetic drift’ is that the high variability in
DNA methylation or increase in methylation entropy can be found between
individuals as well as neighboring CpG sites. These results are fairly similar to
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the stochastic variation reported by Hansen et al. 64 (see two paragraphs above)
and allow to conclude that cancerous tissues may be considered as prematurely
aged65.

2.3 Guanine-cytosine content
The base composition, in particular the guanine-cytosine content (GC con-
tent), is a fundamental genomic property and a standard measure in genome
projects. In absence of whole genome DNA sequences the base composition can
be estimated, for instance, biochemically by DNA temperature melting analysis
(TMA). This method takes into account that the double hydrogen bond con-
necting adenine with thymine is weaker than the triple hydrogen bond which
binds guanine and cytosine. Thus, the difference in GC content results in differ-
ent melting temperatures83. Ones the melting temperature is known, the GC
content can be calculated as follows: %GC = 2.44(Tm−81.5−16.6log[Na+]),
where %GC is the GC content, Tm is the melting temperature and [Na+] is
the concentration of sodium ions84. Easier, faster and cheaper is the measure-
ments of the GC content via flow cytometry (FCM). This method is based on
synchronous measurements of a sample and a control, each with two different
dyes. One dye measures the total DNA content and the other, base specific
one, is used to calculated the portion of adenine and thymine, for instance.
Ones a portion is know, the others can be calculated easily: %C = %G; %A =
%T ; %G+%C = 100−(%A+%T ), where %G,%C,%A,%T are the portions
of guanine, cytosine, adenine and thymine respectively Šmarda et al. 85 . If the
complete genome sequence is available, then the GC content is simply calcu-
lated by the formula %GC = (G+ C)/(A+ T +G+ C), where %GC is the
GC-content and A, T,G and C are the counts of adenine, thymine, guanine
and cytosine, respectively. For complete and high quality genome sequences
this is the most accurate method to obtain the GC-content.

The GC-content in genome sequences of prokaryotes, eukaryotes and or-
ganelles shows a wide spectra and is often highly variable. Processes which
might in combination influence the base composition of a genome are, inter
alia, mutation, recombination, random genetic drift and selection86,87. It’s ev-
ident to guess that this high variability might be connected to some function
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and it is therefore not surprising that already in the fifties of the last century
its relation to phylogeny has been predicted88.

2.3.1 GC-content in prokaryotes

Mann and Chen 89 state in there review that the GC-content in bacteria genomes
range between 20% and 75%. Recently, even values between 17% and 75%
have been reported90. This high variability of the GC-content is discussed to
form part of a response to environmental adaptation, whereat two trends can
be observed. On the one hand, the GC-content is correlated to environmental
niches and lifestyle. On the other hand, bacteria are able to apply incongruence
in GC-content to delineate horizontally transferred genetic elements89. Two
major processes have arisen from long debates to explain the extreme variabil-
ity of the GC-content in bacteria. The mutual hypothesis propose that the
GC-content is driven by genome-specific mutational biases, whereas the selec-
tionist hypothesis based on selective processes in different organisms. The latter
implies also codon position specific GC-content variation pattern90. This hy-
pothesis will be resumed below. Free-living bacteria tend to higher GC-content
and larger genome sizes, as a result to more complex and highly alterable en-
vironments (also reviewed by Bentley and Parkhill 91). Whereas, parasites and
endosymbionts occupying poor or limited environments show smaller genome
sizes and higher AT-content, which may have been induced by translesion re-
pair mechanism, phage insertion or cytosine degradation. The synthesis of GTP
and CTP requieres more energy, therefore the mutational bias towards a higher
AT-content may confer a selective advantage. Higher AT-content impact also
the length of coding sequences92 because the probability towards stop codons
increases and consequently the length of the coding sequences decreases.

Three major processes, transduction, transformation and conjugation, con-
tribute to lateral DNA transfer of free-living organisms and impact their genomic
GC-content93,94. Generalized transduction is an integration of non-specific DNA
fragments from a donor organism via a bacteriophage. In contrast, specialized
transduction means the incorporation of phage specific genetic material. Trans-
formation is the process where the incorporation of exogenous DNA into the
cell from its environment is directly taken up through the cell membrane. Con-
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jugation implies direct contact between cells where the transmission of genetic
material is typically assist by plasmids.

The integrated external DNA may show abrupt differential GC-content re-
spectively to the background base composition of the host genome. This char-
acteristic has been used as a indicator of non-self genomic content to detect
pathogenicity islands (PAIs) in a host genome95. But GC-content is not suf-
ficient to identify PAIs accurately96. With the age of the insert this effect
obfuscate.

A relationship between GC-content and optimal growth temperature has
been debated97–99 and has not been sufficiently verified. In contrast, an in-
creased GC-content for aerobes has been shown by Naya et al. 100 .

2.3.2 GC-content in mitochondria

Analyzing the base composition of complete mitochondrial and plastid DNA se-
quences shows a strong bias towards a high adenine and thymine content101,102.
This phenomenon remains poorly understood. However, recently it was also
shown that GC-rich organelles exist. Figure 2.4 shows nicely the wide spectra
of base compositions in organelles. "The origins of AT richness within mtDNAs
and ptDNAs are thought to reflect the endosymbiotic history of these genomes,
their location within the cell, the unique population-genetic features that define
organelles, and selection for metabolic and translational efficiency"103. Reasons
that explain the persisting bias towards AT-richness might be that organelle
DNAs inhabit a highly mutagenic environment where high concentrations of
reactive oxygen species benefits GC −→ AT mutations104.
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Figure 2.4: Nucleotide composition continuum of completely sequenced mi-
tochondrial DNA (mtDNA) and plastid DNA (ptDNA) sequences. Most of
the complete organelle genome sequences deposited in GenBank have a GC
content below 50%, with the exception of those from certain green algae,
lycophytes, fish, and fungi. The number of genome sequences (n) within
each group is shown beside the y-axis. Mitochondrial and plastid genome
sequences were downloaded from GenBank on January 1, 2012. This figure
is taken from Smith 103 respecting the CC-BY-SA 3.0 license.

2.4 Support Vector Machines

Support vector machines (SVM) are outstanding machine learning algorithms
that have been successfully applied to a wide variety of problems in very different
fields. Together with neural netwoks, they are referred, sometimes, like “black
box” algorithms, indicating that their performances are founded on rather hid-
den relationships among the income data that have to be discovered along the
training process and that have no obvious relationships with the final model
outcomes.

SVM have recently gained considerable popularity mostly due to its very suc-
cess in mining, classification, regression and other complex prospective analysis.
A second reason of its favor among massive data analyzers is that many good
libraries in different programming environment have implemented excellent (and
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fast) algorithms that make reasonably easy working with SVM models, despite
that procedures to identify the support vectors relies on fairly technical vector
geometry handling and some other tricky math difficult to interpret for non
specialists. Some good introductions to SVM can be found in105–107.

Conceptually, SVM algorithms are nonlinear generalizations of the general-
ized portrait algorithm developed in Russia in the sixties108,109. In this context,
they come from the so called statistical learning theory (SLT), later developed
by Vapnik and others110–112. In one paragraph, SLT theory tries to characterize
properties of learning machines which enable them to generalize models built
by training with known data, to unseen data.

Traditionally, SVM have been used in binary classification problems. They
can be used, however, in almost any numeric machine learning scenery, including
regression and a variety of prediction, mining and pattern recognition models.
They have been widely used in bioinformatics and biomedicine as well as in
many other areas of experimental sciences and engineering. Classical works
where SVM have largely demonstrated their potential includes, for example,
languages and text categorization and analysis, speech recognition, industrial
failure analysis, security breaches, intelligent search algorithms, terrorism pre-
vention or earthquakes prediction.

Essentially, a support vector machines algorithm works on an n-dimensional
space where points are the features vectors of each sample data (“training”
data). An SVM can be imagined as a surface model that defines a boundary
between two sets of data that share a binary condition. The target of an SVM
is finding hyperplanes which leads to fairly homogeneous partitions of data on
either side on the base of that condition (see figure 2.5).

2.4.1 Linearly separable binary classication

When performing binary classification and at least one hyperplane exists able
to completely separate all the elements on the basis of the binary condition, we
refer the sample as to be linearly separable. The main goal of the algorithm,
in this straightforward case, is to find the optimum hyperplane among all the
matching possibilities. To achieve that, SVM algorithms search for the maxi-
mum margin hyperplane (MMH) that creates the greatest separation between
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Figure 2.5: Support vector maschines: Finding hyperplanes.

the two classes. (see figure 2.5, where three possible planes have been drawn,
but where it can be supposed that the ones leading to the greatest separa-
tion will generalize the best to future data). The support vectors (shown in
figure 2.6 as dashed lines) are those related to the MMH closest points from
each condition. Each class (condition) may have one or more support vector
and, reciprocally, support vectors can be used to calculate the maximum margin
hyperplane in a very efficient way, even if the number of features is extremely
large.

One way of calculating the MMH is by previous finding of what is called the
“convex hull” of each binary condition (defined as the closed polyline drawn
from the outer boundaries of the two groups of data points. The MMH can
be, then, calculated as the perpendicular bisector of the shortest line between
the two convex hulls (see figure 2.7). This is usually a complex calculation that
usually has to be carried out by sophisticated quadratic optimization algorithms
(See details in Method). This step can be processor intensive. However, there
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Figure 2.6: Support vector maschines: Search for the maximum margin
hyperplane.

are a number of very efficient algorithms able to quickly achieve the solution
even starting with very large training datasets.

2.4.2 Using soft hyperplanes for binary classication
with not-linearly separable data

Frequently, the full splitting of binary classes in two groups linearly divided by
a hyperplane is not possible as some data points can fall on the wrong side
of margins. To challenge this more than usual contingency, SVM algorithms
can define “slack variables”, able of creating soft- margin hyperplanes in which
some point are allowed to fall on the incorrect side of the margin with a “cost”
that can be conveniently adjusted by the model. All the point that violates the
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Figure 2.7: Support vector maschines: Finding the “convex hull”.

constraints are penalized with this cost value, so that rather than finding the
maximum margin, the algorithm will try to minimize an overall cost function
(further details can be found in Method). High costs will restrict tolerance to
achieve full separation, determining harder boundaries. On the opposite, low
values of the cost parameter will give priority to a wider, soft overall margin. To
achieve the appropriate generalization capacity, it will be usually important to
ensure the proper balance between these two priorities when training the SVM
model.

2.4.3 Dimensional scaling-up with kernels to
perform non-linear classification

Using a slack variable to define soft hyperplanes is not the only way to ap-
proach the problem of non-linearity. A remarkable capacity of SVM algorithms
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Figure 2.8: Support vector maschines: Mapping into higher dimension
spaces.

is their ability to map the problem into a higher dimension space using the so
called “kernel functions”. Upgrading dimensionality is actually an important
option to linearize non-linear classifications. This concept can be visualized
in figure 2.8, where some gaussian function can map into a three-dimensional
space a non-linearly classifiable bi-dimensional sample, on the basis of a “color”
condition (green versus red in the picture). It is fairly intuitive that while there
is not possible to linearly separate points by color in the 2D space, the gaussian
transformed 3D points can be neatly split by the plane (see figure 4). In gen-
eral terms, by using a variety of non-linear kernels, SVMs can add additional
dimensions to the data to generate upgraded distributions susceptible of linear
splitting in the way of the example. Conceptually, the kernel mapping adds new
features to the model by defining new mathematical relationships among the
initial, measured characteristics. In this way, SVM models become extremely
powerful classifiers that can learn concepts that were not explicitly described
by the original (observed) measures.

There are a number of kernel functions that have been widely used and
are implemented in most libraries (i.e.: linear, polynomial, sigmoid, gaussian,
etc). Unfortunately, there are no objective nor reliable criteria for choosing a
particular kernel in a given learning problem. Kernel performance will heavily
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depend on the concept to be learned, the training-set size and composition and
the relationships among the features. In other words, the choice of kernel is
arbitrary in many cases and frequently a trial and error protocol, including the
evaluation of candidate models on a validation dataset, is advised.
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Objectives

The main objectives in this thesis are:

1. To develop a protocol or work flow which details the steps necessary to
apply recurrence based nonlinear systemic analysis on complete genomes.
This implies, in a first phase, data acquisition and preprocessing, genera-
tion of time series, phase space reconstruction via embedding as proposed
by Taken19, obtaining characteristics recurrence plots and their recurrence
quantitative analysis.

2. To develop and implement a software which operates this work flow and
is apt for high-throughput analyses and reproducible research. The aim
is that the software takes as input the genomic data, for instance DNA
methylation data, and performs automatically the analyses and evalua-
tions.

3. to characterize nuclear and mitochondrial genomes in terms of recurrences
fingerprints.

4. To study the utility of this patterns with the aim to learn about the dy-
namical structure, its relation to function and other properties of genomes
in different setting of genetic adaptation.

5. In the case that the objective mentioned above have an positive outcome,
we want to extend the work flow setting up predictive or diagnostic tools
based on machine learning, specially support vector machines, and explore

37



38 CHAPTER 3. OBJECTIVES

possible applications to problems emerging from adaptation to stress, in a
wider sense, including diseases like cancer or species diversification. The
latter would be an alignment-free approach.
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Methods

4.1 Recurrence analysis

4.1.1 Phase space reconstruction

A time series describes the changes of a single system variable (e.g. DNA
Methylation Density) over the time (which is any ordered sequence). In con-
trast, a phase space (or state space) represents all possible states of a system.
We can describe a state at time t by its state variables x1(t), x2(t), . . . , xd(t)
that form a vector in a d dimensional space (please note: variable and param-
eter names taken from the references may have changed in this text to keep a
consistent terminology). The trajectory of the vector over the time shows the
temporal evolution of the system113 – the so called phase orbit114.

Natural systems such as genomes are multivariate and there models usually
don’t cover the complete set of state variables. Reasons to this might be
a) a leak of knowledge; b) experimenters are technically not able to measure
all variables; or c) the data volume is not viable. Nevertheless, it might be
possible to reconstruct an image of the phase space from a single signal using
time delays115,19 if we can map the time series Y = {yn} by yn = f(xn). The
sequences of the reconstruction vectors would be

{(yn, yn+τ , . . . , yn+(m−1)τ ) ∈ Rm}N−(m−1)
n (4.1)

where m is the dimension of the reconstructed phase space, τ is the time delay,
N is the number of measures and ideally the condition m > 2d is fulfilled (see

39
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also Schelter 116 or Casdagli et al. 117)
To get a time delayed reconstruction from a time series an adequate time

delay τ has to be estimated to capture the dynamics of the system. To take non-
linear correlations into account Fraser and Swinney 118 proposed time delayed
mutual information to determine the delay τ . Mutual information measures the
general dependency of two variables. Its definition as a function of τ is:

S = −
∑
ij

pij(τ)lnpij(τ)
pipj

, (4.2)

where pi and pj are the probabilities to find a value in the i-th or j-th position
of a time series, and pij(τ) is the joint probability to observe the values for i
and j at distance τ 119,120. We use the function mutual from the R-package
timeseriesChaos 121 and choose the delay which produces the first local minimum
of mutual information for the reconstruction.

The second parameter we have to choice to reconstruct from the time series
is the embedding dimension m. With an adequate dimension the univariate
projection (the time series) can be unfolded to a multivariate state space that
restores the topology of the original system. Takens 19 proofed that the attractor
is unfolded and all self-crossings of the orbit disappear when when m > 2d,
where d is the dimension of the original system.

Actually, in our experiments we can not verify whether the conditions of
Takens’ theorem are fulfilled or not because the dimension of the original system
and also the appropriate mapping function are unknown to us. Nevertheless,
m > 2d is a sufficient condition and successful embeddings of unknown systems
have been described in the literature. A classical example is the phase space
reconstruction from a time series of measured time intervals between successive
drops falling from a dripping tap122,123 More recently, it has been shown that
the reconstruction of apparent random gamma-ray bursts time profiles reveal
the existence of a well-defined strange attractor124 or, to have also a life science
example, Beninca et al. 125 have used embedding of time series to calculate the
Lyapunov exponents and demonstrate chaos in a plankton food web.

A frequently used way to estimate the minimum embedding dimension is
the method of false nearest neighbors proposed by Kennel et al. 126 . We
have implemented this method in our R-package bract following the original



4.1. RECURRENCE ANALYSIS 41

idea: A projection may place points into neighborhood which in the orbit of the
unfolded attractor are far a way from each other. If we increment the dimension
and observe that the number of false nearest neighbors drop to zero, we have
embedded the attractor. The square of the Euclidean distance between the
point y(n) and its rth nearest neighbour y(r)(n) in d dimensions is

R2
d(n, r) =

d−1∑
k=0

[x(n+ kτ)− x(r)(n+ kτ)]2. (4.3)

To increment the dimension we add a (d+1)th coordinate to each of the vectors
y(n). The new coordinate is just x(n + dτ). The distance between the same
points in the new dimension is now

R2
d+1(n, r) = R2

d(n, r) + [x(n+ dτ)− x(r)(n+ dτ)]2. (4.4)

If we notice that, when passing to the next higher dimension, the distance
between y(n) and y(r)(n) increase much, then the embedding has still errors.
An increase of[

R2
d+1(n, r)−R2

d(n, r)
R2
d(n, r)

]1/2

= |x(n+ τd)− x(r)(n+ τd)|
Rd(n, r)

> Rtol, (4.5)

reveals false neighbors. As threshold we used the authors suggestion Rtol = 10.
To exclude neighbors which are nearest but distant Kennel et al. 126 propose

a second criterion:
Rd+1(n)
RA

> Atol (4.6)

where Atol is a threshold which we set to two and

R2
A = 1

N

N∑
n=1

[x(n)− x̄]2 (4.7)

and

x̄ = 1
N

N∑
n−1

x(n) (4.8)

In our experiments, we used, if possible, the dimension where for the first time
the percentage of false nearest neighbors reaches 0%.
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4.1.2 Recurrence plots

Recurrences are a fundamental but undervalued characteristic of chromosomes.
To study recurrences in dynamical systems Eckmann et al. 17 introduced a
method which reduced the multidimensional trajectory of the attractor to a
two-dimensional recurrence plot (RP). The RP can be described by the matrix

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), i, j = 1, . . . , N, (4.9)

where ~xi is a point in the embedding at time i, N the number of points, ε an
arbitrary threshold, ‖ · ‖ is a norm and Θ(·) is the Heaviside function127,128

Θ(x) =

0 if x < 0
1 if x ≥ 0

(4.10)

4.1.3 Recurrence quantitative analysis and
lacunarity

To quantify the recurrence plots we calculate for each of them the lacunar-
ity129 and the recurrence quantification analysis (RQA) variables recurrence rate
RR, determinism DET , entropy ENTR, ratio RATIO, laminarity LAM and
trapping time TT 130,128. We calculate the recurrence rate (RR) or density of
recurrent points by the formula

RR(ε) = 1
N2

N∑
i,j=1

Ri,j(ε) (4.11)

DET , ENTR and RATIO are measures based on the frequencies of diagonal
line lengths. Its histogram P (ε, l) is

P (ε, l) =
N∑

i,j=1
(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))

l−1∏
k=0

Ri+k,j+k(ε) (4.12)

The predictability or determinism of the system increases with the amount of
diagonal lines in the recurrence plot. We measure it by

DET =
∑N
l=lmin lP (ε, l)∑N
l=1 lP (ε, l)

, (4.13)
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where lmin is the minimum length of a diagonal line. We use lmin = 7. To
measure the complexity of the system we calculate the Shannon information
entropy of all diagonal lines lengths distributed over the histogram. It is based
on the probability p(l) = P (l)/Nl to find a diagonal line of length l in the
recurrence plot.

ENTR = −
N∑

l=lmin
p(l) ln p(l) (4.14)

The RQA measure ratio is just

RATIO = DET

RR
(4.15)

and may reveal transitions in the dynamics.
LAM and TT are measures based on the frequencies of vertical lines lengths

v.The histogram is

P (ε, v) =
N∑

i,j=1
(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))

v−1∏
k=0

Ri+k,j+k(ε) (4.16)

In analogy to the determinism we can calculate the laminarity

LAM =
∑N
v=vmin vP (v)∑N
v=1 vP (v)

, (4.17)

where vmin is the minimal length of a vertical line. We use vmin = 7. The time
where the state of the system is trapped we compute by the average vertical
line length

TT =
∑N
v=vmin vP (v)∑N
v=vmin P (v)

(4.18)

We recommend to read the review written by Marwan et al. 128 to get fur-
ther details about the theory and application of the recurrence quantification
analysis.

To calculate the lacurarity we used the gliding box algorithm re-described by
Plotnick et al. 131 . It requires a r×r box that moves column- and row-wise over
the entire RP matrix to count the box mass S (number of 1’s) for each box. This
gives us the frequency distribution of box masses n(S, r). The number of total
boxes is N(r) = (M − r+ 1)2, where M is the size of the matrix (e.g. number
of columns). The probability distribution is given by Q(S, r) = n(S, r)/N(r).
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Now we can determine the first and the second moment of the distribution
which are Z(1) = ΣS Q(S, r) and Z(2) = ΣS2 Q(S, r) and finally the lacunarity
Λ(r) = Z(2)/(Z(1))2.

4.2 Classification

We used the RQA measures RR, DET, ENTR, RATIO, LAM and TT and the
lacunarity for binary classifications of tumor and normal cells, subspecies of
chimpanzee and species belonging to the superfamily Caniformia. To avoid
that very sparse or dense recurrence plots bias the classification we accepted
only samples which meet the condition 0.05 ≤ RR ≤ 0.2. From the filtered
data entries for each class, cases and controls, we selected 80% for model
training and the rest to perform the tests. We scaled the training and test
data with the R function scale. To train the support vector machine we used
the function svm from the R-package e1071132. We applied, accept for the
parameter scale, the default configuration for classifications: scale=FALSE,
type=C-classification, kernel=radial, gamma=1/(data dimension), cost=1, tol-
erance=0.001, epsilon=0.1, fitted=TRUE, seed=1, probability=TRUE. The
tests or predictions based on the obtained models we performed with the func-
tion predict.svm from the same package. If necessary, we use the function
tune to optimize classification parameters.

4.2.1 Support vector maschines

The following lines, inspired by a tutorial from Tristan Fletcher 133 , provide the
mathematical background to support vector machines.

Linearly separable binary classification

Let’s consider that we have a sample with L training points xi, each of them
having N features (dimension N) and can be binary classify in terms of a binary
condition y (see figure 2.5, where that condition would be the points “color”),
whose possible values are: +1 or −1. That is, suppose a set: {xi, yi} where
i = 1 . . . L, yi ∈ {−1, 1}, x ∈ RD
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Let’s also presume that our sample is linearly separable in terms of y. That
means that we could separate both classes with an hyperplane that, in case of
dimension 2 (as in figures 2.5 or 2.6), would be a line. The equation of this
general hyperplane would be: w ·x+b = 0 where w is normal to the hyperplane,
b
‖w‖ is the perpendicular distance from the hyperplane to the origin and 2

‖w‖ is
the distance between these two planes.

Basically, the problem is to find the values of w and b so that our training
set can be described by:

xi · w + b ≥ +1 if yi = +1 (4.19)
xi · w + b ≤ −1 if yi = −1 (4.20)

We can combine both equations to give:

yi(xi · w + b)− 1 ≥ 0, ∀i (4.21)

As 2
‖w‖ is the distance between planes, each margin is given by 1

‖w‖ , a
quantity usually named “SVM margin”. The idea here is, consequently, max-
imize this margin or, in other words, minimize the Euclidean norm ‖w‖. To
make easier the handling of this problem, it is convenient to reformulate the
goal as minimizing 1

2‖w‖
2, which is equivalent and make it possible to perform

quadratic programming (QP) optimization, a very efficient way to achieve the
solution. In summary, we need to find:

min
1
2‖w‖

2 such that yi(xi · w + b)− 1 ≥ 0, ∀i (4.22)

To manage the constrains in this minimization, we need to allocate them
Lagrange multipliers α, where αi ≥ 0,∀i:

Lp ≡
1
2‖w‖

2 − α[yi(xi · w + b)− 1],∀i (4.23)

≡ 1
2‖w‖

2 −
L∑
i=1

αi[yi(xi · w + b)− 1] (4.24)

≡ 1
2‖w‖

2 −
L∑
i=1

αiyi(xi · w + b) +
L∑
i=1

αi (4.25)

We must find the values of w and b which minimize, and the α that maximize
the expression. This can be done by differentiation of Lp with respect to w and
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b and making these derivatives equal to zero:

δLp
δw

= 0→ w =
L∑
i=1

αiyixi (4.26)

δLp
δb

= 0→
L∑
i=1

αiyi = 0 (4.27)

Now we can substitute these equivalences into Lp expression:

LD ≡
L∑
i=1

αi −
1
2

L∑
i,j=1

αiαjyiyjxi · xj s.t. αi ≥ 0,∀i,
L∑
i=1

αiyi = 0

(4.28)

≡
L∑
i=1

αi −
1
2
∑
i,j

αiHi,jαj s.t. Hij ≡ yiyjxi · xj (4.29)

≡
L∑
i=1

αi −
1
2α

THα s.t. αi ≥ 0,∀i,
L∑
i=1

αiyi = 0 (4.30)

A new expression, known as Dual Form of the Primary Lp that only requires dot
products of each input vector xi to be calculated (something being important
when using Kernels).

Rather than minimizing Lp, we have now to maximize LD:

max
α

[
L∑
i=1

αi −
1
2α

THα

]
s.t. αi ≥ 0, ∀i,

L∑
i=1

αiyi = 0 (4.31)

Using a QP solver algorithm we can calculate and then w as ∑L
i=1 αiyixi. This

last relationship can also be used to calculate b, having in mind that any point
being a support vector has to verify yi(xi · w + b) = 1 or, substituting by the
above expression:

ys

(∑
m∈S

αmymxm · xs + b

)
= 1 (4.32)

We can now multiply both sides by ys (s is the set of index of support vectors):

y2
S

(∑
m∈S

αmymxm · xs + b

)
= ys (4.33)

An having in mind that the only values of ys can be ±1, b can be expressed as:

b = ys −
∑
m∈s

αmymxm · xs (4.34)
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Rather than using only one arbitrary support vector we can make the average
of all of them. So, finally:

b = 1
Ns

∑
s∈s

(ys −
∑
m∈s

αmymxm · xs) (4.35)

Non-linearly separable binary classification

When data point cannot be linearly separated we can use two different strate-
gies: soften hyperplane margins or using a so called kernel trick. Softening
margins can be achieved by introducing a positive slack variable ξi, i = 1 . . . L:

xi · w + b ≥ +1− ξi, ξi ≥ 0,∀i if yi = +1 (4.36)
xi · w + b ≤ −1 + ξi, ξi ≥ 0, ∀i if yi = −1 (4.37)

That, by combining, gives:

yi(xi · w + b)− 1 + ξi ≥= 0, ξi ≥= 0,∀i (4.38)

In this case, those points falling in the wrong side of the hyperplane are penalized
proportionally to the distance. To do that, the objective function has to be
reformulated by introducing a parameter C that weighs the trade-off between
the slack variable and the size of margins:

min
1
2‖w‖

2 + C
L∑
i=1

ξi such that yi(xi · w + b)− 1 + ξi ≥ 0, ∀i (4.39)

As above, we can reformulate this objective function as a Lagrangian that has
to be minimize with respect to w, b and and maximize with respect to α. The
resulting expression for LD has the same form than before, however, it can be
shown that has to be α ≤ C. So the target will be:

max
α

[
L∑
i=1

αi −
1
2α

THα

]
s.t. 0 ≤ ai ≤ C, ∀i,

L∑
i=1

αiyi = 0 (4.40)

And parameters can be calculated in the same way.
The alternative approach is to use Kernel functions. Kernels are, in general,

functions of the form:

K(xi, xj) = φ(xi) · φ(xj) (4.41)
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There are many different possibilities. Probably the most commonly used kernel
functions (included in all the most popular libraries) are the linear, polynomial,
sigmoidal and gausian:

Linear K(xi, xj) = xi · xj (4.42)
Polynomial K(xi, xj) = (xi · xj + 1)d (4.43)

Sigmoid K(xi, xj) = tanh(Kxi · xj − δ) (4.44)

Gaussian K(xi, xj) = e
‖xi−xj‖

2

2α2 (4.45)

4.3 Evaluation
With the known labels and the predictions as input we have drawn receiver
operating characteristic curves (ROC, sensitivity versus specificity) and have
determined the areas under curve (AUC) for all performed classifications using
the R-package pROC134.

Besides, we have carried out cluster analysis on the AUCs using the Biocon-
ductor R-package ComplexHeatmap135. We have clustered the RQA measures
and lucunarity in the same way for each cancer type separately and also taking
all together.

To see the distributions of RQA measure pairs for cases and controls of each
cancer type we have produced multi scatter plots using the function splom from
the R-package lattice on the filtered RQA and lacunarity data.
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Results

In this chapter we demonstrate that viewing genomes as adaptive complex
systems opens a innovative macroscopic perspective to genome analysis with
new possibilities alongside classical statistics.

5.1 Work flow
Curiously, just in very few occasions recurrence plot based analysis have been
applied to genomes, limited to study structural correlations in a human DNA
fragment as well as in the yeast and Caenorhabditis elegans genomes13,136.
Although recurrence quantification analysis has a history which goes back to
the early nineties there is, to our knowledge, no further application to genomic
problems neither a protocol or a software, which can be used without expert
knowledge and strong mathematical background, for biological or medical re-
search in this field available. In this work we have developed a new protocol and
its accompanying software (bract) providing a nonlinear systemic approach to
genome analysis. The work flow is robust and adaptable enabling us to perform
a variety of experiments. The figure 5.1 shows an activity diagram of the work
flow. Its has four mayor components: 1) Data acquisition and preparation;
2) recurrence analysis; 3) classification by support vector machines and 4) eval-
uation. Naturally, the data acquisition and preparation is the most variable part
of the work flow and will therefore be described separately for each experiment
in the corresponding sections. In contrast, the steps to process the recur-
rence analysis are invariant, but include, of course, minor configuration changes

49
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Figure 1: Diagram of the main activities of the method.

1

Figure 5.1: Work flow of a nonlinear systemic approach for genome analysis.

which adapt the work flow to the experimental problems. Although, some
software packages to perform the complete recurrence quantification analy-
sis are available (see http://www.recurrence-plot.tk/programmes.php),
non was apt for our purposes. Either the projects were out dated, the methods
were only accessible through GUIs and could not be used in a batch comput-
ing system, the software could not be extended easily or was not open source.
These have been arguments enough to start the development from the scratch
in R – having a future integration into bioconductor137,138 in mind.

Basically, each step of this part of the work flow is extensively discussed
in the literature (see methods), but even so we have been confronted with
some pitfalls. Specially, we found it difficult to estimate the embedding dimen-
sion. Most, if not all, software related to this field, among them the R-package
tseriesChaos121 and TISEAN119, include a function to estimate the embedding

http://www.recurrence-plot.tk/programmes.php
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dimension referring to the method of false nearest neighbors (FNN) proposed
by Kennel et al. 126 . But, these software functions are variants of the Kennel-
method and need additional parameters. The most critical one was a threshold
which restricts the radius of nearest neighbors to be include in the statistics.
We have not been able to set this parameter with reasonable values. All intents
failed. Plotting FNN as a function of embedding dimension we got fluctuating
curves with first local minima often close to 40% of false nearest neighbors
and reaching 0% FNN at very high dimension or never. We reimplemented the
FNN method in our software package bract as described in 40. Finally we got
useful graphs (see figure 5.9b) and have been able to estimate the embedding
dimension choosing the dimension where for the first time the percentage of
false nearest neighbors reaches 0% or alternatively 1%. Another, similar prob-
lem was to set the threshold radius, ε, necessary to get the recurrence plots
from the distance matrices. No hint from the literature was applicable to our
data sets. We estimated an approximate value for ε empirically, supported by
contour distance plots and graphs showing ε as a function of the recurrence
quantification analysis (RQA) measures as shown here for the Rössler attractor
in figure 5.2. Finally, based on that, we defined a factor a which is part of the
equation to calculated the threshold radius:

ε = aσD (5.1)

where σD is the standard deviation of the euclidean distance matrix of the
reconstructed phase space. This has to be done only ones for each kind of
experiment (Rössler, systemic cancer classification, systemic identification of
taxa, etc.). After setting a in equation 5.1 the bract pipeline runs each steps
of the work flow automatically.

To test if our time series reconstructions and RQAs are reasonable, we
applied our software to the well studied Rössler attractor (see figure 5.3). The
Rössler attractor is defined by three nonlinear differential equations formulated
as follows:

Ẋ = −(Y + Z) (5.2)
Ẏ = X + aY (5.3)
Ż = b+ (X − c)Z (5.4)
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Figure 5.2: Influence of the threshold ε on the RQA measures a) RR, b)
DIV, c) ENTR, d) RATIO, e) LAM and f) TT shown for the standard
Rössler system.

We created a time series from the equation Ẏ = X + aY and submitted it
to our pipeline. The initial conditions, estimations for τ and m and resulting
graphs we show in figure 5.4. Comparing the reconstructed phase space with
the original attractor one recognize their eye-catching similarity (note that the
reconstruction is rotated). For the reconstructed phase space we created a
recurrence plot with ε = 0.22. The obtained recurrence plot (figure 5.5) is very
similar to others described in the literature (for instance here Marwan 139). The
recurrence quantification analysis of this RP also results in plausible values –
RR = 0.14, DET = 0.991 and RATIO = 7.1 – where the high values of DET
and RATIO indicate a high predictability of the Rössler attractor. In summary
– the new bract pipeline which processes our work flow passed the tests and
is ready to make a nonlinear systemic approach applicable for genome analysis.
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Figure 5.3: Standard Rössler attractor for a = 0.2; b = 0.2; c = 5.7. The
initial conditions have been x0 = −1.894; y0 = −9.92; z0 = 0.025. The
time measure started at 0.0 and ended at 40 incrementing 0.05 between the
observations.
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(a)

(b) (c)

Figure 5.4: a) Time series build from the y-coordinates of a standard Rössler
system. The time measure started at time t = 0.0 and ended at time t =
40.0. The time between observations was ∆ = 0.05. The initial conditions
were x = −1.894, y = −9.92 and z = 0.025. Further we set a = 0.2,
b = 0.2 and c = 5.7. b) Multi-scatter plot and c) 3d plot of its phase space
reconstruction (τ = 25 and m = 3). To get τ we used the first minimum
of the average mutual information index and m was obtained when the
percentage of false nearest neighbors had reached less than 1%.
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(a) (b)

Figure 5.5: Distance contour plot and recurrence plot (ε = 0.22) for the
reconstruction shown in 5.4.
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5.2 Marker-less cancer classification

5.2.1 Data acquisition and preparation

The original DNA methylation data

We obtained the data samples for our experiments from The Cancer Genome
Atlas (TCGA) 140. We used the data access matrix141 to download public avail-
able, from Illumina Infinium HumanMethylation450 BeadChip140derived, level
3, tumor- and normal-matched data from all batches for different diseases.
We selected the following diseases which are not restricted under the term
of the TCGA’s publication guidelines and having a sample set size stumor >

30 ∧ snormal > 30: Breast cancer (BRCA), colon and rectal adenocarci-
noma (COAD), head and neck squamous cell carcinoma (HNSC), liver hepato-
cellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), clear cell kidney carcinoma (KIRC), papillary kidney carci-
noma (KIRP), prostate adenocarcinoma (PRAD), papillary thyroid carcinoma
(THCA) and uterine corpus endometrial carcinoma (UCEC).

TCGA compiles the requested data to a uncompressed or, if desired, com-
pressed tarball. The size of uncompressed tumor DNA methylation data pack-
ages is quite huge and can easily pass ten gigabytes. The size of normal tissue
DNA methylation data packages is notably lower, about one gigabyte.

The accompanying meta-data describes the relationship between impor-
tant entities of the experiment. This information is basically provided by two
tab-delimited MAGE-TAB documents with standard format142,143. One is the
Investigation Description Format (IDF), which contains information about the
submitter contact details, the experiment and protocols. It links to an other
file in Sample and Data Relationship Format (SDRF), which describes exactly
what its format name says. Moreover, the SDRF is a textual description of
a directed acyclic graph (DAG). Detailed guidelines on the creation of SDRF
files for TCGA can be read on the National Cancer Institute (NCI) wiki144.
On the same page it is recommended to visualize the SDRF with the script
expt_check.pl from the EBI’s TAB2MAGE perl package145. But TAB2MAGE
depends on the outdated version 2.7.0 of the XML parser Xerces-C++146 and
its installation requires a disproportionate effort. We chose the perl module
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Bio::MAGETAB instead147. The figure 5.6 shows a fraction of the DAG build
from the IDF file

jhu-usc.edu_LIHC.HumanMethylation450.1.11.0.idf.txt

and its corresponding SDRF file

jhu-usc.edu_LIHC.HumanMethylation450.1.11.0.sdrf.txt

By the way, we found that the protocol name entry of the IDF file was incom-
plete. We corrected the file appending

jhu-usc.edu:image_acquisition:HumanMethylation450:01,
jhu-usc.edu:feature_extraction:HumanMethylation450:01 and
jhu-usc.edu:within_bioassay_data_set_function:
HumanMethylation450:01

↪→

↪→

↪→

to the corresponding line. The complete, huge, DAG can be visualized executing
the following command with a command-line interpreter (shell):

read_magetab.pl -x -r -g
"jhu-usc.edu_LIHC.HumanMethylation450.1.11.0.png" -i
"jhu-usc.edu_LIHC.HumanMethylation450.1.11.0.idf.txt"

↪→

↪→

The level three DNA methylation data, namely the β-values, are stored in
tab-delimited ASCII text files inside the directory

.../DNA_Methylation/JHU_USC__HumanMethylation450/Level_3

of the tarball. There is one data file for each sample containing information
about the references to the composite element, calculated β-values, gene sym-
bols, chromosome names and genomic coordinates (according to the human
genome version hg18). A TCGA, level three, HumanMethylation450 data file
has 485579 rows whereof 485577 contain data. Its size is about 21Mb. Table
5.1 shows part of the head of the data file

jhu-usc.edu_LIHC.HumanMethylation450.1.lvl-3.
TCGA-BC-A10Q-01A-11D-A132-05.txt↪→

How we use each column of the data file is described in the corresponding
sections below.
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Table 5.1: The head of a TCGA 3rd level HumanMethylation450 data file.
Shown are the rows from number two to six.

Composite Element REF Beta_value Gene_Symbol Chromosome Genomic_Coordinate
cg00000029 0.72753994338749 RBL2 16 53468112
cg00000108 NA C3orf35 3 37459206
cg00000109 NA FNDC3B 3 171916037
cg00000165 0.786574582300652 1 91194674
...

...
...

...
...

Preparation of the data files and working directories

We have seen already that the size of the original data files is large. To decrease
CPU-usages and upload-time to the high performance clusters (HPC) we extract
the data for the chromosome of interest from the original data. This is done
using a script from our R-package bract in the following way:

extractChrS.R --chromosome="1"
"([:print:]*)HumanMethylation450([[:print:]]*)\\.txt" %$"
%@TODO: put $ after txt when methods is finished

↪→

↪→

The size of a single file containing chromosome 1 data is now reduced to 2Mb.
The names of the data files have the following pattern:

<domain for a TCGA center>_<disease study>.<vendor-specific
technology platform>.<batch>.<data level>.<barcode>.txt↪→

During our analysis the name of the DNA methylation data file serve as a stem
for resulting files and will be extended by some more tags. To reduce the length
of the file names, we eliminate redundant or (for us) irrelevant parts applying
simple bash commands inside the data directory:

for file in *.txt ; do mv $file
${file//HumanMethylation450./} ; done↪→

for file in *.txt ; do mv $file ${file//lvl-3./} ; done
for file in *.txt ; do mv $file ${file//jhu-usc.edu_/} ; done

The primary identifier of a sample is its universally unique identifier (UUID)148.
It is a 128 bit number represented by 32 lowercase hexadecimal digits looking
like this: 506c8b0c-c7cf-4f9b-8289-73106563c9f9. I mention the UUID here
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Figure 5.6: Visualization of the directed acyclic graph de-
scribing the first entry from the magetab document jhu-
usc.edu_LIHC.HumanMethylation450.1.11.0

just for completeness, it’s currently not directly relevant to the data we use
or produce, but it may be useful to get further information on the samples in
future investigations. The bar code149 is a human readable identifier for each
sample. It is important to know that a bar code can change if the associated
meta data changes. The bar code, in the file names allows to distinguish tumor
from normal data in a cumbersome way (see Tab.5.2). To identify normal tissue
data files at first sight we append the tag NRML to the disease type. This is
also done by a simple replace statement:

for file in *.txt ; do mv $file ${file//LIHC/LIHCNRML} ; done

For example, the tumor tissue data file

jhu-usc.edu_LIHC.HumanMethylation450.1.lvl-3.
TCGA-BC-A10Q-01A-11D-A132-05.txt↪→

has been renamed to

LIHC.1.TCGA-BC-A10Q-01A-11D-A132-05.txt

and the normal tissue data file

jhu-usc.edu_LIHC.HumanMethylation450.4.lvl-3.
TCGA-AV-A03D-20A-01D-A17Z-05.txt↪→

has been shortened to

LIHCNRML.4.TCGA-AV-A03D-20A-01D-A17Z-05.txt

remaining the most important information.
To guarantee that the results of the quite complex and cpu-intensive ex-

periments on marker-less cancer classification are reproducible, we created a
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directory structure as shown in figure 5.7 with all necessary input data and
configurations inside (electronic supplement). To launch the processes which
perform the time series generation and recurrence analysis to a HPC batch
system, the script run_svm_ch32rqa.sh has to be executed. The SVM clas-
sifications and their evaluation starts running the script run_svm_eval.sh.
Both has to be done for each cancer type separately.

DNA methylation density time series

For each sample we construct a series of consecutive chromosomal fragments
applying a sliding window which moves from the first base position up to the ge-
nomic coordinate of the last data record of the respective chromosome. Within
each window we sum the beta values and divide by the window size. The size
and the overlap of the windows depend on the chromosome sequence size, the
wanted time series resolution and computational power. We use for the anal-
ysis of chromosome 1 a window size of 1Mb and move the window by 100000
positions.

During the execution of the experiments presented in this section we have
created a total of 61604 time series. Figure 5.8 shows a typical example of a
DNA methylation density time series. Characteristic for this kind of time series
is the dominant peak at the beginning, a length of roughly 2500 time units and
a large horizontal line in the middle.

The noticeably, more or less centric line at zero methylation density level
is technically a gap caused by the centromere. But time series gaps are not
allowed in the analyses, therefore missing values had to be replaced with a
numeric value. We have chosen zero because it is intuitively associated with
nothing. This produced a systematic bias, because these zeros can be confused
with zero methylation density. Though no harm has been done as this bias
is present in the same way in all time series it has no major impact on the
classification performance.

It is important to note that the values on the abscissa represent the ordered
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HNSC
chr01

complete_auto
1000000_100000

bract_options.R
ch3

HNSC.1.TCGA-BA-4078-01A-01D-1433-05.txt
HNSC.9.TCGA-HL-7533-01A-11D-2230-05.txt
HNSCNRML.2.TCGA-CV-5431-11A-01D-1511-05.txt
...

hansen.csv
hansen_ng.865-S2.csv
hansen_ng.865-S2.xls
hansen_ng.865-S3.xls
hansen_ng.865-S3_minus_k_column.csv
hansen_ng.865-S3_minus_k_column_wo_header.csv
header.csv
methylation_cancer_genes.lst
reconstruction............................auto-generated
recurrence ................................ auto-generated
rqa ........................................ auto-generated
svm ........................................ auto-generated
time_series ............................... auto-generated
run_ch32rqa.sh
run_svm_eval.sh

exclude_blocks_auto
exclude_crgs_auto
exclude_crgs_blocks_auto
exclude_crgs_blocks_dmr_auto
exclude_crgs_dmr_auto
exclude_dmr_auto

README
delres.sh
run_ch3_all.sh
run_svm_eval_all.sh

Figure 5.7: Structure of an analysis working directory.



62 CHAPTER 5. RESULTS

Label Identifier for Value Value description Possible values

Project Project name TCGA TCGA project TCGA
TSS Tissue source site BC Liver hepatocellu-

lar carcinoma from
UNC

See Code Tables Report150

−→ select "Tissue Source Site"

Participant Study participant A10Q – Any alpha-numeric value
Sample Sample type 01 A solid tumor Tumor types range from 01 -

09, normal types from 10 - 19
and control samples from 20
- 29. See Code Tables Re-
port150 for a complete list of
sample codes −→ select "Sam-
ple Type"

Vial Order of sample in
a sequence of sam-
ples

A The first vial A to Z

Portion Order of portion in
a sequence of 100 -
120 mg sample por-
tions

11 The 11th portion of
the sample

01-99

Analyte Molecular type of
analyte for analysis

D The analyte is a
DNA sample

See Code Tables Report150 |
select "Portion Analyte"

Plate Order of plate in a
sequence of 96-well
plates

A132 The A132nd plate 4-digit alphanumeric value

Center Sequencing or
characterization
center that will
receive the aliquot
for analysis

05 Johns Hopkins
/ University of
Southern Califor-
nia, GCC

See Code Tables Report150 |
select "Center"

Table 5.2: Description of the bar code meta data taken from the bar code
page of the NCI wiki149 and adapted to an example used in this section.

sequence of the window numbers, not the base position on the chromosome.
To get the starting base positions of the window on the chromosome one has
to add the observation time interval in the following manner:

p = 1 + (w − 1)dt (5.5)

where p is a starting position of the window on the chromosome, w is a window
number taken from the abscissa shown in figure 5.8 and dt is the observation
time interval or in other words, how many positions the window has been moved
in the density time series generation process.

Another important issue is to remember that the ordinates are a kind of
maximum-value-scaled relative densities. Therefore, the y-values shown in fig-
ure 5.8 do not allow conclusions to be drawn for the average β-value of the
respective windows.
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Figure 5.8: DNA methylation density time series from a normal head and
neck sample (TCGA-CV-5431-11A-01D-1511-05). The settings used to cre-
ate this time series have been: window size w = 1000000, Observation
time interval (means by how many positions the window has been moved)
dt = 100000.

5.2.2 Time delayed reconstruction

To perform a time delayed reconstruction two parameters, the delay and the
embedding dimension, have to be estimated.

To get the delays we have calculated the intrinsic average mutual informa-
tion index (AMI) considering time lags in a range from 1 to 200 for all 61604
time series. The example in figure 5.9a shows that the dependency of two vari-
ables decreases exponentially and then stabilize having an AMI between 0.2 and
0.3. No prominent minimum can be identified. We estimate the delays follow-
ing the recommendation about the frequently used criteria proposed by Fraser
and Swinney 118 taking the time lag which produces the first local minimum of
mutual information. In the example the chosen delay is 18.

Considering all delays calculated for the marker-less cancer classification,
the values range between 7.00 and 42.00. The mean of the delays is 20.43 and
the median is 19.00 (see also table 5.3).

In addition, to get the embedding dimensions used in the time delayed
reconstructions, we have calculated, with a custom function from our bract
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(a) (b)

Figure 5.9: Graphical representation of a) the average mutual information
for different time lags and b) the percentage of false nearest neighbours for
different dimensions calculated for the time series show in figure 5.8.

package, the percentage of false nearest neighbors for each time series following
strictly the method described by Kennel et al. 126 examining embedding dimen-
sions in a range from 1 to 20. The example in figure 5.9b shows that this
curve also decreases exponentially, but than stabilize having 0% false nearest
neighbors. The dimension chosen for the embedding is the first one reaching
0% false nearest neighbors, in this case 14.

Considering all embedding dimensions calculated for the marker-less can-
cer classification, the values range between 5.0 and 20.0. The mean of the
embedding dimensions is 15.5 and the median is 16.0 (see also table 5.4).

We have already seen that the embedding dimensions used to reconstruct
the phase spaces in our experiments on marker-less cancer classification are
mostly very high. To see whether the phase spaces are regular or even strange
attractors are present, we visualize them using multi-scatter plots showing all
possible pairs of 2-dimensional projections (see figure 5.10). We also have
projected the phase spaces into their first three dimensions and plot them as
shown in figure 5.11.
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Figure 5.10: Multi scatter plot of a reconstructed phase space for a DNA
methylation density time series from a normal head and neck sample
(TCGA-CV-5431-11A-01D-1511-05). For this reconstruction a delay τ = 18
and an embedding dimension m = 14 have been used.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

7.00 18.00 19.00 20.43 23.00 42.00

Table 5.3: Statistical summary of all delays calculated for the marker-less
cancer classification.

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.0 13.0 16.0 15.5 19.0 20.0

Table 5.4: Statistical summary of all embedding dimensions calculated for
the marker-less cancer classification.

Figure 5.11: Projection of the reconstructed phase space to the first three
dimensions for a DNA methylation density time series from a normal head
and neck sample (TCGA-CV-5431-11A-01D-1511-05). For this reconstruc-
tion a delay τ = 18 and an embedding dimension m = 14 have been used.
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5.2.3 Systemic characterization of epigenetic
changes in different cancer types: Binary
classification of tumor and normal cells

Adaptive Complex Systems (ACS) with no freedom restricts tend to behave dy-
namically as nonlinear systems exhibiting complex stability landscapes (“strange
attractors”) that can be analyzed by a variety of well known approaches151.
From this perspective, we have considered clonal methylomas as “adaptive
solutions” of the tumor metabolism drift (here considered as a case of ACS
dynamics) and, thus, as a stable setting of the complex, nonlinear system at-
tractor, susceptible of systemic characterization by an appropriate procedural
work flow.

In our methodological strategy (summarized in figure 5.1), chromosome-1-
DNA-methylation density data, obtained from Illumina Infinium HumanMethy-
lation450 BeadChip © 152, were used to create density time series and sub-
mitted to an embedding procedure, as proposed by Takens 19 . This embedding
procedure is able to provide the reconstruction of topologically equivalent im-
ages of their phase space by unfold the system attractor with the fitting delay
and embedding dimension (see details in Methods, page 39). We have used this
protocol/theorem to reconstruct phase spaces for TCGA samples of 11 different
cancer types (with a total sample number of ncases = 4363 and ncontrols = 652):
Breast cancer (BRCA), colon and rectal adenocarcinoma (COAD), head and
neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), clear cell
kidney carcinoma (KIRC), papillary kidney carcinoma (KIRP), prostate adeno-
carcinoma (PRAD), papillary thyroid carcinoma (THCA) and uterine corpus
endometrial carcinoma (UCEC). We have determined delay and embedding (by
mutual information118 and false nearest neighbor methods, respectively126) and
found that optimum delay ranges between 7 and 42 while embedding dimension
typically spans from values of 5 to 20 (table 5.3 and table 5.4).

Recurrence plots (RP) (e.g figure 5.12 (b)) built from the distance-maps
(e.g figure 5.12 (a)) of these unfolded phase space images showed tumor spe-
cific, consistent pattern that reveal an underlying stochastic structure ostensibly
compatible with the existence of deterministic components. In all cases, tumor
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(a) (b)

Figure 5.12: a) Distance contour plot and b) recurrence plot (ε = 0.126)
for the reconstruction shown in 5.10.

and normal tissues samples showed roughly similar recurrence patterns, although
minor differences with no obvious trends can be visualized by differential plots
(see figure 5.13 (c)), indicating that the obtained RPs were potentially sensible
to epigenetic changes during carcinogenesis.

To explore if embedded RPs of methylation density time series produced
can be used to characterize complex and adaptive dynamics of tumor epigenet-
ics, recurrence quantification analysis (RQA)153,154,128,155–157 was carried out on
these images, by measuring six RP standard parameters: recurrence rate (RR),
determinism (DET), entropy (ENTR), ratio (RATIO), laminarity (LAM) and
trapping time (TT) as well as the lacunarity (LAC) of each sample131 (see def-
initions and additional information in Methods). As a representative example,
in figure 5.15, the scatter plots show all pair projection of these parameters in
six different cancer types.

Heat maps shown in figures 5.14 evidenced again that RQA parameters
from tumors are fairly more heterogeneous than those of controls, giving rise
to broader clustered dendrograms. This feature can be more clearly seen in the
scatter plots of figure 5.15.

We have seen in all cases a markedly greater dispersion of RQA values in
tumor tissues when compared to normal (control) tissues (figures 5.15 (a) –
(f)). This result not only confirm that methylation changes during carcino-
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(a) (b) (c)

Figure 5.13: Recurrence plots of phase spaces representing a) colon and rec-
tal adenocarcinoma, b) normal colon tissue and c) a difference plot (AJRP)
of both.

genesis also increment heterogeneity of epigenetic patterns in tumor tissues,
as previously reported64, but also indicates that our RQA protocol is able to
capture this differences. In some cases, like in endometrial samples, normal
tissues tend to show one only cluster in all projections (figure 5.15 (f)). More
frequently, however, normal tissues display more than one definite spot (fig-
ures 5.15 (e)). Current data situation make impossible to decide whether this
tendency to exhibit multi-cluster patterns is due to the cellular heterogeneity
of samples (organ biopsies) or due to the existence of alternative, stable epi-
genetic landscapes. In tumor tissues, the observed dispersion is mainly diffuse
or, at least, not as definite as in normal tissues, occupying wider regions of the
phase space projections and showing in almost all cases centroids neatly dif-
ferent. Spots pattern are strikingly more similar when tumors affect the same
organ. That is the case in the lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC) (figures 5.15 (a) and (b)) and in clear cell kidney car-
cinoma (KIRC) and papillary kidney carcinoma (KIRP) (figures 5.15 (c) and
(d)). These features are consistent with the epigenetic specificity that would
be presumably in an adaptive scenario with different tumors and tissues.

We used these seven-dimensional RQA vectors as the starting point for
training a machine learning algorithm based on support vectors and built binary
classification models for each of the studied cancer types. Table 5.5 summarize
number distribution of samples for the different data sets. For all data sets the
number of tumor samples is notably larger than the number of normal samples.
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(a)

(b) (c)

(d) (e)

Figure 5.14: Cluster analysis of RQA measures and lacunarity showing a)
all cases and controls for all cancer types, b) cases for all tumor types, c)
controls for all cancer types and cases and controls for each tumor d) BRCA,
e) COAD, f) HNSC, g) KIRC, h) KIRP, i) LIHC, j) LUAD, k) LUSC, l)
PRAD, m) THCA and n) UCEC.
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(f)

(g) (h)

(i)

Figure 5.14: Cluster analysis of RQA measures and lacunarity. Continued
. . .
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(j) (k)

(l)

(m) (n)

Figure 5.14: Cluster analysis of RQA measures and lacunarity. Continued
. . .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Pairwise comparison of RQA measures and lacunarity showing
cases and controls from the tumor types a) LUSC, b) LUAD, c) KIRC, d)
KIRP, e) BRCA and f) UCEC.
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Table 5.5: Sample number distribution for the different data sets used in the
tumor versus normal tissue classification on systemic features and complete
CpG sets.

brca coad hnsc kirc kirp lihc luad lusc prad thca ucec

tumor matched 725 291 530 301 156 257 465 359 340 515 424
normal matched 96 38 50 160 45 50 32 42 49 56 34

TM training 566 232 420 240 123 196 361 284 268 331 326
NM training 76 30 39 128 36 40 25 33 39 44 27
TM testing 142 58 106 60 31 49 91 72 68 83 82
NM testing 20 8 10 32 9 10 7 9 10 11 7

Table 5.6: Areas under the curve (AUC) in % for marker-less classifica-
tions on complete and reduced DNA methylation data sets of different can-
cer types versus there corresponding normal samples. BLOCKS, CRGS,
cDMR and their combinations have been eliminated from the original data
sets. From BLOCKS and cDMR we have considered those CpG-sites which
match the HumanMethylation450 chip and their evidence threshold (Wat-
son strand, cancer) is E > 0.5.

Cancer type All CpG sites BLOCKS CRGS CRGS & BLOCKS

BRCA 90.1 95.3 97.3 95.6
COAD 87.9 97.0 92.2 97.0
HNSC 96.4 83.2 94.5 91.0
KIRC 95.5 91.3 88.6 88.4
KIRP 92.1 99.6 91.3 80.8
LIHC 84.5 95.9 97.8 97.4
LUAD 98.1 96.3 98.1 99.3
LUSC 99.7 98.4 100.0 100.0
PRAD 89.9 85.4 92.5 88.6
THCA 74.6 88.8 93.4 77.1
UCEC 98.6 98.7 100.0 92.2

Table 5.7: Areas under the curve (AUC) in % for marker-less classifications.
Continued . . .

Cancer type CRGS & BLOCKS & cDMR CRGS & cDMR cDMR

BRCA 83.4 94.9 95.6
COAD 94.7 90.0 76.3
HNSC 81.0 90.6 90.7
KIRC 86.4 90.2 92.2
KIRP 80.0 91.6 78.5
LIHC 93.8 88.5 87.3
LUAD 98.3 93.9 98.5
LUSC 89.7 93.0 79.9
PRAD 87.3 86.6 79.7
THCA 85.9 79.5 65.5
UCEC 89.5 98.0 96.9
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When using all CpG site methylation density time series from chromosome
I, we could successfully train and predict tumor and normal tissues of the em-
bedded RQA in all cases. Every tumor except one (THCA, 74.6%), showed
performances that were, in terms of AUCs, on or above 84.5% and most of
them (seven cases from eleven) were 90% or better (Table 5.6, column "All
CpG sites" and figure 5.16).

If tumor specific alterations of DNA-methylation were systemic then we
should still be able to classify the samples with similar performance though
we exclude cancer related CpG sites from the original data sets. To test this
assumption we first compiled CpG sites that have been previously associated
and documented with cancer related gene symbols (CRGS)158–165 (electronic
supplement). Again, chromosome I was used in this study as it holds the
highest number of such sites. After applying the same work flow on the reduced
data sets (excluding 6386 CpG sites or 16,65%) we obtained indeed mainly
comparable results.

We have extended this rule out analysis to other two types of specific cancer
related CpG regions, known to undergo well defined methylation changes dur-
ing carcinogenesis: BLOCKS (large, up to several Mb, blocks of hypomethyla-
tion64) and cDMRs (regions of cancer specific DNA methylation variation64). In
summary, the exclusion of one single or a combination of these sections (CRGS,
BLOCKS or cDMR), our SVM-based classification approach still worked prop-
erly, preserving (or even improving) in most of cases its predictive performance
(Table 5.6 and 5.7 and electronic supplement). This resilience cannot be ex-
plained by classical statistical correlations.
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Figure 5.16: ROCs and AUCs used to evaluate the binary classifications of
complete data sets for a) LUSC, b) LUAD, c) KIRC, d) KIRP, e) BRCA
and f) UCEC
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5.2.4 Comparison of tumor versus normal
classification on CpG sites with cancer specific
differential methylation and systemic features

To see if there is any difference between the performance of marker (based on
differential DNA-methylated CpG sites) and marker-less (systemic) predictions
we compared both methods each other on the classification of head and neck
tumor and normal tissues. For that purpose we first had to ensure that both
kind of classifications run under comparable conditions. Therefore, for all results
shown here we have reused the same HNSC samples mentioned above – more
precisely ncases = 403 and ncontrols = 40 for training and ncases = 101 and
ncontrols = 10 for testing. We chose head and neck cancers (HNSC) to compare
both methods because on the one hand we needed many samples to train our
supervised method and on the other hand was a large number of markers an
advantage to test various combinations.

We classified the original TCGA data with a support vector machine on
CpG sites with head and neck cancer specific differential DNA-methylation
taken from the supplementary table 7 published by Fernandez et al. 161 . We se-
lected only those cancer specific differential DNA-methylation CpG sites which
are also present in the Illumina Infinium HumanMethylation450 BeadChip ©
- the data type we have used for systemic classifications - and having an av-
erage β-value assigned (n = 54). To observe roughly how the number of
CpG sites bias the performance, we run classifications with different data sets
(m8, m15, · · · , m23, m54) variating the number of hypermethylated CpG sites
(m) and using always all (eight) differential hypomethylated CpG sites. There-
fore m23 is a marker data set with eight hypomethylated and ,from the list, the
first 15 mappable sites having an average β value assigned in the TCGA data
set. The binary classifications performed, as expected, with AUCs > 94%,
which means simplified, the markers archive their function.

It turns out that the classification with 18 "markers" gives a slightly better
result, having an AUCm18 = 97.4%, than the others which range between
AUCm8 = 94.5% and AUCm17 = 96.9% (electronic supplement). Details of
the best result and its comparison to the marker-less performance we show
in figure 5.17. In summary, the performance of the marker-less classification
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Figure 5.17: Performance of a marker-based (a) and a marker-less (b) head
and neck cancer (ncases = 106) versus normal (ncontrols = 10) tissue SVM
binary classification.

(AUC: 98.8%) is comparable or even slightly better than the best one obtained
for marker-based classifications (AUC: 97.4%).

Finally, we tested also if there is a difference from which part of the list we
take the marker CpG sites. This was not the case because reverting the order
of the CpG sites in the list, we obtain similar results (electronic supplement).
This time, we have obtained the best performance using the combination of
nine hypo- and eight hypo-methylated CpG sites (AUCmr17 = 97.4%).

5.2.5 Tumor versus normal classification on
randomly selected non cancer specific
DNA-methylation sites.

The omnipresence of variations in DNA-methylation typically observed in tumor
cells compared to controls – specially the global hypomethylation – has give us
reason to test if combinations of β-values from arbitrary non cancer specific CpG
sites are suitable to classify both kind of tissues. From the 395885 measured
CpG sites of the Illumina Infinium HumanMethylation450 BeadChip © data for
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Figure 5.18: ROC curves and AUCs for head and neck tumor (ncases = 98) versus normal
(ncontrols = 10) tissue SVM binary classification based on DNA-methylation data from TCGA.
a) 100 non cancer specific CpG sites selected randomly from CpG sites of the Illumina Human-
Methylation450 bead chip, b) 18 non cancer specific CpG sites selected randomly and c) the
same 18 non cancer specific CpG sites, but trained on an randomly shuffled data set.

head and neck normal sample TCGA-CV-7263-11A-01D-2014-05 we exclude
71701 sites labeled with around 3210 different cancer related gene symbols.
From the remaining 324184 supposed non-cancer specific CpG sites we select
randomly 100 and 18 CpG sites, respectively, to use them as "pseudo-markers"
in head and neck tumor versus normal tissue classifications.

We found that 18 pseudo markers (AUCpm18 = 98.5%) predict better
than 100 (AUCpm100 = 91.1%) giving a predictive capability comparable to
the cancer specific differential DNA-methylation CpG sites shown above (see
figure 5.18).

5.2.6 Tumor versus normal classification on global
β-value sums

The total levels of DNA methylation decrease within repeat sequences, peri-
centromeric regions of chromosomes, some genes and most notably in megabase-
large regions distributed over all chromosomes166,167. Our question was, if it
would be possible to capture this phenomenon by a simple measure like the
total β-value sums . We have compared distributions of β-value sums in tumor
samples to distributions in normal samples under different conditions.

The box plots in figure 5.19 (a) show that the β-value sums , including all
CpG sites, are for most samples relatively similar and difficult to discriminate.
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Figure 5.19: Boxplots of a) β-value sums including all CpG sites and b) β-
value sums including CpG sites located only in regions belonging to cancer
related gene symbols.

This is also supported by the p-values from the Wilcoxon rank sums test shown
in the column All CpG of the table 5.8. However, tumor and normal samples for
the experiments labeled with KIRP, LIHC and PRAD can be separated clearly.

If we concentrate our observations only to BLOCKS64, then the β-value
sums are, as expected, sufficient to separate tumor and normal tissues in almost
all cases. The box plots in figure 5.20 show clear separated medians and also the
p-values calculated by the Wilcoxon rank sums test demonstrate the differences.
An exception is again PRAD which is the only cancer type which can not
be distinguished from normal tissues. The p-values range from 9.07e−01 to
2.58e−23 in the case that all CpG sites which match BLOCKS and the Illumina
Infinium HumanMethylation450 BeadChip © are considered in the calculus. If
we apply a evidence threshold E > 0.5 for the BLOCKS, the p-values range
from 8.24e−01 to 8.94e−24 (see also table 5.8).

Calculating β-value sums including only CpG sites located in regions be-
longing to cancer related gene symbols (CRGS) or CpG-sites situated a union
of CRGS & BLOCKS & cDMR shows that in the half of the cases tumor tis-
sues can be distinguished from normal ones (see figures 5.19 (b) and 5.21 and
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Table 5.8: Wilcoxon rank sum test with continuity correction on β value
sums for complete and reduced DNA methylation data sets of different can-
cer types versus there corresponding normal samples. BLOCKS, CRGS,
cDMR and their combinations have been analyzed excluding other CpG-
sites from the original data sets. From BLOCKS and cDMR we have con-
sidered those CpG-sites which match the HumanMethylation450 chip and
their evidence threshold (Watson strand, cancer) is E > 0.5.

Type All CpG blocks crgs crgs & blocks & cdmr crgs & cdmr cdmr

brca 1.89e-02 2.46e-12 5.79e-09 9.37e-01 3.79e-37 1.15e-36
coad 8.53e-01 3.24e-10 1.00e-10 1.32e-05 1.59e-18 2.80e-18
hnsc 4.54e-01 1.17e-11 1.14e-03 7.29e-01 6.21e-24 2.99e-23
kirc 1.32e-04 8.94e-24 4.91e-02 1.75e-01 7.24e-40 4.09e-36
kirp 1.53e-09 5.16e-06 2.40e-09 2.18e-07 9.18e-10 8.25e-12
lihc 2.52e-10 6.01e-16 6.43e-05 2.14e-07 5.69e-10 3.67e-08
luad 6.42e-01 2.10e-06 1.21e-05 1.66e-03 2.86e-16 8.70e-16
lusc 2.46e-03 4.98e-13 8.57e-01 1.64e-03 5.54e-20 1.01e-19
prad 3.04e-07 8.24e-01 1.56e-12 5.67e-06 1.04e-17 1.57e-17
thca 9.92e-03 2.34e-03 2.04e-01 2.46e-03 1.63e-06 1.90e-05
ucec 1.37e-02 9.64e-12 4.54e-01 6.61e-03 2.15e-15 1.22e-15
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Figure 5.20: Boxplots of β-value sums including CpG sites located only in
BLOCKS. In a) we have considered all CpG-sites which match the BLOCKS
and the HumanMethylation450 chip and in b) we have selected only those
from the BLOCKS having an evidance (Watson strand, cancer) E > 0.5
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Figure 5.21: Boxplots of β-value sums including CpG sites located only in
regions belonging to cancer related gene symbols, BLOCKS and cDMR. In
a) we have considered all CpG-sites which match the BLOCKS or cDMR
and the Illumina Infinium HumanMethylation450 BeadChip © and in b) we
have selected only those from the BLOCKS and cDMR having an evidance
(Watson strand, cancer) E > 0.5

table 5.8).
An outstanding differentiation between tumor and normal tissues we have

obtained applying the β-value sums to CRGS & cDMR or cDMR only, which
are known to be hypermethylate. The p-values calculated by the Wilcoxon rank
sums test range from 1.90e−05to1.57e−41 on a union of values from both kind of
experiments (see again table 5.8). The performance is also supported visually
by clear separated medians shown in the box plots of the figures 5.22 and 5.23.
These results are conform with the findings reported in Hansen et al. 64 .

The AUCs obtained by the evaluation of the tumor versus normal tissue clas-
sification on β-value sums are conform with our observations described above.
β-value sums including all CpG sites, BLOCKS, CRGS, CRGS & BLOCKS and
CRGS & BLOCKS & cDMR perform, with single exceptions, relatively poor
having median AUCs around 70%. Here again the groups CRGS & cDMR and
cDMR differ from the other results and show a markable performance having
a median closed to 92%. Only the classification of THCA fails completely us-
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Figure 5.22: Boxplots of β-value sums including CpG sites located only in
regions belonging to cancer related gene symbols and cDMR. In a) we have
considered all CpG-sites which match the cDMR and the Illumina Infinium
HumanMethylation450 BeadChip © and in b) we have selected only those
from the cDMR having an evidance (Watson strand, cancer) E > 0.5

ing support vector machines in all experiments based on β-value sums . All
calculated AUCs based on β-value sum -based classifications and a statistical
summary we show in table 5.9.

For us these experiments have been important, because they show that the
effects or signals of hyper- and hypomethylation along a whole chromosome
cancel each other out and can not be detected by a simple global β-value sum
without prior knowledge on hyper- and hypomethylated regions.
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Figure 5.23: Boxplots of β-value sums including CpG sites located only
in cDMR. In a) we have considered all CpG-sites which match the cDMR
and the Illumina Infinium HumanMethylation450 BeadChip © and in b)
we have selected only those from the cDMR having an evidance (Watson
strand, cancer) E > 0.5

Table 5.9: Areas under the curve (AUCs) in % for the β-value sum clas-
sifications on various DNA methylation data sets of different cancer types
versus their corresponding normal samples. BLOCKS, CRGS, cDMR and
their combinations have been analyzed excluding other CpG-sites from the
original data sets. From BLOCKS and cDMR we have considered those
CpG-sites which match the HumanMethylation450 chip and their evidence
threshold (Watson strand, cancer) is E > 0.5.

Cancer type All CpG sites blocks crgs crgs & blocks & cdmr crgs & cdmr cdmr

BRCA 69.48 74.34 54.1 77.28 92.07 92
COAD 77.97 80.3 81.14 82.84 97.46 96.61
HNSC 70.57 68.49 65.09 83.02 91.6 87.08
KIRC 72.34 81.2 64.5 64.14 97.44 96.36
KIRP 89.93 85.42 92.01 85.76 89.24 95.83
LIHC 91.54 80.96 93.27 95.96 58.85 77.88
LUAD 60.68 70.35 84.79 60.06 95.24 93.55
LUSC 56.17 96.91 65.28 66.82 98.46 98.46
PRAD 56.32 65.88 84.26 67.79 90.74 90.74
THCA 57.85 56.23 65.29 54.53 53.56 58.25
UCEC 75.63 93.11 64.37 81.68 100 98.99
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5.3 Functional and gene position distances
in the tomato genome

Lieberman-Aiden et al. 168 have shown that the local packing of chromatin is
comparable with a fractal globule. They support this finding, for instance,
showing a power law in measured and simulated contact probabilities as a func-
tion of genomic distances. In analogy, we have been interested to investigate
if a similar behavior can be found observing protein functional distances as a
function of gene base position distances in the tomato genome.

A prerequisite to investigate the relations between functional and gene po-
sition distances in tomato (Solanum lycopersicum) has been the availability of
the chromosome sequences together with their structural and functional annota-
tion. We, the "Plant Computational Biology"-group (PCB )at the Max-Planck-
Institute for Plant Breeding Research, as part of the International Tomato An-
notation Group (ITAG) and the Tomato Genome Consortium, have contributed
the gene ontology (GO)169 annotation and human readable descriptions170 for
protein sequences1. To perform the GO-term assignment we used, inter alia,
the custom annotation platform MANOS 1 2 (electronic supplement)
to launch the steps of our annotation protocol shown in figure 5.24 to our batch
system. Interpro2go171,172, blast2go173 and the in-house PhyloFUN174,175,
an extension of the sifter pipeline176,177, have been used to map the GO an-
notation to the protein sequences. To avoid GO-term incongruities between
the three methods, MANOS has been designed in the way that it syn-
chronized and updated the outcomes of the integrated methods to the latest
gene ontology version before the final results has been compiled and submitted
to the ITAG repository. For the official ITAG2.3 tomato genome annotation
release we have annotated 19662 or 57 % of 34727 tomato proteins with 39192
GO terms. 2108 GO terms of them are unique1. The gene models (including
our GO annotation) of the ITAG 2.3 release are publicly available to download
on the MIPS and SGN web sites178,179.

Taking the annotation, we have produces gene and functional distance pairs

1Developed specifically for this project by the author of this memory – Jens Warfs-
mann.

2Logos designed and drawn by Alexander, Noelia and Irene
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Figure 5.24: The ITAG annotation pipeline1 and the activity diagram of
the PCB gene ontology annotation protocol.
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for all 12 tomato chromosomes with a custom script from our bract package
(electronic supplement) as follows:

funseqdistS.R "ITAG2.3\_gene\_models.gff3"

In this experiment we have restricted our focus to genes located on the +
strand only. We have calculated the distance of two genes as follows: Dn =
pstartn+1 − pendn . In the case that the annotations overlap we apply the formula:
Dn = pstartn+1 − pstartn . In both equations D is the distance measured in base
positions and p the position where the gene starts or ends. The functional
distances we have calculated using the R-package GOSemSim180 which combines
information content (IC) and graph-based methods. It should be mentioned
that the calculation of all versus all chromosomal functional distances (more
than 9e + 08 combinations) are very cpu-intensive (and can take more then a
week running on a state of art HPC-cluster). Therefore we have restricted the
data sets selecting randomly 100000 samples of genes pairs from the tomato
annotation.

Table 5.10: Here we show the functional distances as a
function of inter gene distances of the + strand for the
tomato chromosomes 1 – 12. From all possible gene pair
combinations we toke here randomly 100000 samples.

Biological process Molecular function Celular component
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Table 5.10: Continued . . .
Biological process Molecular function Celular componment
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Table 5.10: Continued . . .
Biological process Molecular function Celular componment

Ch
ro

m
os

om
e

9
Ch

ro
m

os
om

e
10

Ch
ro

m
os

om
e

11
Ch

ro
m

os
om

e
12

The results of this experiment are shown in table 5.10. The plots indicate
that there is no obvious correlation between the functional and genomic dis-
tance. But some curious details can be observed. The most plots show that,
considering the ontologies "biological process (BP)" and "celular component
(CC)", very short or large functional distances occur more frequently. However,
in the ontology "molecular function (MF)" this trend is less pronounced. Many
plots also leak medium inter gene distances.

Not clearly visible in the plots, but striking, if one inspects the underlying
data matrix, is that it was frequently impossible to get the functional distance
of gene pairs, because the assigned GO terms belong to different ontologies
(BP, MF or CC). For instance, from 100000 measured chromosome 1 pairs we
have obtained only 7661 (∼ 8%), 15587 (∼ 16%) and 4212 (∼ 4%) functional
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distances bases on the BP, MF and CC ontology respectively (electronic sup-
plement). This was also the reason why we could not create useful functional
distance time series and perform the recurrence analysis to study their systemic
properties. The obtained time series were too sparse, they do not even present
long enough fragments with consecutive values.

To study dynamical aspects of the tomato (Solanum lycopersicum) genome
we created time series based on consecutive gene base position distances for all
12 chromosomes and have analyzed recurrences with our bract pipeline. The
pipeline is described in detail in the section 5.2 marker-less cancer classification.

Table 5.11: Gene base position distance time series (a),
their reconstructed phase space distance plots (b) and the
corresponding recurrences plots (c) for all twelve tomato
chromosomes.

Time series Distance plot Recurrence plot
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Table 5.11: Continued . . .
Time series Distance plot Recurrence plot
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Table 5.11: Continued . . .
Time series Distance plot Recurrence plot
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The plots in table 5.11 show that gene distances along the chromosomes
are dominated mainly by two kind of blocks – short distances and longer ones.
On the laterals we found mainly short distances blocks and between them a
long distance block whose position varies. Some chromosomes, for instance
chromosome 12, show a short-long-short-long-short pattern. In total, we found
three different pattern (L, + and #) which in addition correlate with the main
pattern classes found in the functional and gene position distance experiment
(table 5.10). The mated pattern from both experiments we shown in the draw-
ings of figure 5.25

DET (values between 0 and 1) and RATIO are both measures for the pre-
dictability of a system. As higher their values as better the predictability. From
our recurrence quantification analysis of the tomato gene distance time se-
ries (electronic supplement) we have obtained DETs, which range between
0.0002895 and 0.2282000, and the RATIOs, ranging from 0.003456 to 1.264,
that indicate a poor predictability of the system.
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Figure 5.25: A casual drawing of mated distance patterns of the tomato
genome. The main patterns found in the plots of protein functional dis-
tances as a function of intra-chromosomal gene base position distances are
shown on the left side. The corresponding patterns from the recurrence
analyses of reconstructed phase spaces based on gene distance time series
are shown on the right side.
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5.4 Systemic identification of taxa

As mentioned before, we consider genomes as adaptive complex systems which
are solutions to selective pressure and contribute to the species diversification
process. Under this assumption genomes should behave dynamically as non-
linear systems and should manifest attractors which can be characterized and
analyzed with our bract pipeline. Our principle motivation for the experiments
in this section was to explore if under this assumption our proposed work flow is
apt to analyze adaptive divergence processes between closely relate organisms.

The principal problem to affront planning such an experiment is the poor
data situation. There are not enough completely sequenced nuclear genomes
available which allow us to train any model. However, the number of completely
sequenced mitochondrial genomes is relatively high. On the ENA database181,182
are currently 8753 (06.11.2015) mitochondrial genomes available. Moreover,
the high variable mitochondrial DNA has been used, inter alia, for species bar-
coding102, as a marker of molecular diversity183 and phylogenetic reconstruc-
tion184. In genome papers, along graphical representation of chromosomes, is
often displayed a track of GC content. The GC-content is found to be vari-
able within different organisms and it is simple to calculate. These facts have
motivated us to use the GC-content as the basis for the analyses shown here.

Our criteria to select the species to analyze were simple: We wanted one
group of close and another of farer related species. Both groups should contain
more than two species and for each of them have to be at least 15 different
complete Mt genome sequences available. These criteria have reduced the
large amount of mitochondrial data to a few completely sequenced Mt-genomes
belonging to the genus Pan (chimpanzees) and the suborder Caniformia (or
Canoidea, dog-like).

It should be mentioned also that we used for the taxa identification experi-
ments our bract pipeline basically in the same way as in the marker-less cancer
classification (see above in subsection 5.2). Both experiments differ only in the
way the time series have been created and, with minor modifications, how the
classifications have been evaluated. In this experiment we are affronted with the
problem of multi-class classification. There are three solutions to this problem:
directly using a pure multi-class algorithm or reducing the problem to multiple
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binary classifications using a one versus rest or the one versus one strategy.
As we are interested in evolutionary divergences between pairs of organisms we
chose the one versus one strategy.

5.4.1 Data acquisition and preparation

To realize this experiment we have downloaded on October 06, 2015 all public
available mitochondrial (Mt) genomes (n = 8753) from the European Nu-
cleotide Archive (ENA)181 with the help of a script which is part of our R
package bract:

download_ena.py -w organelle_genome -s mitochondria

This is done ones and allows us henceforth to work off-line. We have copied then
only the wanted sequence files from our local mitochondrial genome sequence
repository to the respective analysis working directories and have converted
them from the EMBL to FASTA format. The criteria for the further species
selection has been described already above.

For each Mt-genome we have generated a series of consecutive fragments
applying a sliding window which moves from the first base position up to the
last genomic coordinate of the DNA sequence. Within each window we sum the
occurrences of both guanine and cytosine and divide by the window size. The
size and the overlap of the windows depend on the sequence size, the wanted
time series resolution and computational power. We use for the analysis of
the Mt-genome sequences a window size of 1000 and move the window by 10
positions. This produce GC content time series with approximate 1500 values.

5.4.2 Pan

We have analyzed 124 mitochondrial genome sequences belonging to the genus
Pan whose detailed distribution is shown in table 5.12. The number of available
samples is notably lesser than in the cancer epigenomics experiment (see above
in subsection 5.2). For each sequence we have create GC-content time series
which have been analyzed by our bract pipeline. We excepted 1% false nearest
neighbors to estimate the embedding dimension . We have used a = 1.2 as
factor in the formula (see equation 5.1) to get the cut off threshold ε. For each
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Table 5.12: Sample number distribution for Mt genomes of the genus Pan.

# used for training # used for testing total #

Pan paniscus 25 7 32
Pan troglodytes schweinfurthii 18 5 23
Pan troglodytes troglodytes 33 9 42
Pan troglodytes verus 16 5 21

species or subspecies, namely Pan paniscus, Pan troglodytes schweinfurthii,
Pan troglodytes troglodytes and Pan troglodytes verus we have been able to
reconstruct the time series, calculate the RQA measures and build a SVM model
which could be used for classification. In figure 5.13 we show and compare the
results of the most important pipeline steps. At first glance, images belonging
to the same row are difficult to distinguish, except the recurrence plots. The
time series look like semi-periodical serrated lines and exceed slightly 1500 time
units. The graphs showing the average mutual information as a function of
time delays decrease exponentially and stabilize, more or less, afterwards having
AMIs below 0.5. the delays used for reconstruction range between τ = 37 and
τ = 39. The false nearest neighbors decrease fast from 20% to 0% giving
embedding dimensions of m = 4 and m = 5

All classification which include P. troglodytes troglodytes failed or have per-
formed poorly, all others – in contrast – show outstanding results (table 5.14).
Hence, we can conclude that Pan troglodytes troglodytes and Pan troglodytes
schweinfurthii as well as Pan troglodytes troglodytes and Pan troglodytes verus
are among each other more closely related than Pan troglodytes schweinfurthii
and Pan troglodytes verus. Under this assumption we propose some plausible
emigration and diversification path which are shown in the casual figure 5.26.

5.4.3 Caniformia

From the suborder Caniformia we have analyzed 407 mitochondrial genome se-
quences. The sample number distribution for the species Canis lupus familiaris,
Martes pennanti, Urocyon cinereoargenteus, Ursus arctos and Ursus maritimus
is shown in table 5.15. The analyses of the Caniformia species have been per-
formed under the same configuration as described for the genus Pan above.
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Figure 5.26: Casual drawing of plausible and not plausible Chimpanzee
(Pan troglodytes) migrations and diversification paths. N Pan troglodytes
verus;  Pan troglodytes troglodytes; � Pan troglodytes schweinfurthii.

The results for each step of the pipeline are similar to the ones for the genus
Pan and shown in figure 5.16
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Table 5.13: Interim graphical results from the recurrence analysis of time
series based on the CG content of Pan Mt-genome sequences.
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Table 5.14: ROCs and AUCs for systemic classifications on CG content of
Mt-genome sequences from the genus Pan.

The results of the performance evaluation can be shortly described: All
species of the suborder Caniformia can classified correctly using an all versus
all strategy. All AUCs are 100% (electronic supplement).
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Table 5.15: Sample number distribution for Mt genomes of the suborder
Caniformia.

Species # used for training # used for testing total #

Canis lupus familiaris 105 27 132
Martes pennanti 12 4 16
Urocyon cinereoargenteus 17 5 22
Ursus arctos 53 14 67
Ursus maritimus 19 5 24
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Table 5.16: Interim graphical results from the recurrence analysis of time
series based on the CG content of Caniformia Mt-genome sequences.
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5.5 Anti joint recurrence plot
To detect and visualize non synchronized regions in the comparison of two
recurrence plots we formulate the new anti joined recurrence plot (AJRP) with
the following equations:

Raj = Ξ(R1 −R2) (5.6)

whereR1 andR2 are arbitrary recurrence plot matrices with identical dimensions
and Ξ is

Ξ(x) =

0 if x = 0
1 if x 6= 0

(5.7)

An example of its application is shown in figure 5.13.



6

Discussion

While quantitative discrimination of gene-sized DNA fragments by standard
alignment strategies and homology analysis can be easily achieved in a success
and straightforward way, trying to scale up those approaches deeply further –
as to chromosome wide or even genome wide sizes – is considerably very much
difficult and, generally, much less meaningful185. Virtually all these alterna-
tives are founded on local alignments or tree-guided alignment based algorithm
pipelines186–189. They are computational costly and their efficiency drop rapidly
with size and, overall, with evolutive distance. It has been recognized, however,
that robust whole-genome alignment tools are going to be critical for the future
of comparative genomics, despite there are a number of significant questions
that haven’t been properly addressed yet185.

In essence, our work cope this problem from a different perspective. The
major aim of this research was, in fact, designing, implementing and preliminary
characterizing of an original workflow able to make high-performance, systemic
discrimination of genomes or epigenomes. This workflow can be flexibly applied
to get binary classification of sequences without needing of previous alignment.

Globally, most of results included in this memory support the idea that
genomes can be approached from a systemic perspective that we justify in two
basic proposals: on the one hand, the assumption that genomes are subjected to
adaptive dynamics that can be approached as complex adaptive systems (CAS).
Consequently, they should be susceptible to be analyzed within the conceptual
and methodological framework that complex theories and deterministic chaos
theory have been developed and successfully applied during last twenty years

105
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in many different fields151. On the other hand, the presumption that DNA
sequences can be properly conceptualized as nonlinear time series – and be
treated as such – at the level of formal models. It would be possible because,
in essence, a time series is simply an ordered collection of observational data
related to one of the state variables of the reference system. Thus, it is not
temporality, sensum strictum, what determines its “temporal” dimension but
the data ordinality, meaning that for each value vi it is always possible to
determine the precedent value vv−1 and the subsequent value vi+1.

Although, to our knowledge, we do not have still any systematic formula-
tion about it, none of these premises are completely aliens in the fields of DNA
and genome analysis2,3. The using of time series analysis methodologies with
DNA sequences are being used, punctually, since late eighties4–7. On the other
hand, the mapping of genomes, proteomes, interactomes, and others biologi-
cal systems objects in terms of complex adaptive networks (a frequently used
approach in complex systems analysis) is already usual in numerous context of
systems biology7–10,3. In fact, it has become a singularly powerful tool, due
to its very well established framework, initially defined by the pioneer work of
Erdos and Rennyi11,12.

When working with networks it is easy, actually, to extrapolate the obtained
results to the original complex systems, largely more elusive. This kind of
approach can provide information not only about the structure of the mapped
complex system but also about its dynamic behavior and properties. It is the
case, for example, of the outstanding work of Barabási and others about the
self-similar nature of many biological system networks, their high resilience to
random attacks or their high tolerance to errors8. With few exceptions of limited
scope13, applying non linear dynamic models or analytical tools to the field of
genomic or epigenomic are still rather unusual, particularly if compared to the
very wide range of problems in physics, chemistry, biomedicine and engineering
where these methodologies have been successfully applied.

Barabási and others have proposed that as topologies of biological com-
plex networks are consequences of emergent properties determined by self-
organization dynamics, ultimately ruled by simple laws of generic character,
they should share a number of prominent features that define them9. Free-
scale topologies and hierarchic organization of functional modules are two of
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them. Since this perspective, it should be admitted that even considering the
essentially stochastic nature of many dynamic processes in biology, their at-
tractors must be frequently “strange attractors” (in the sense of Prigogine24).
Consequently, they should have, in greater or less extension, a component of
deterministic chaos that should be identify as structural features of the com-
plex networks that maps them. And, in fact, the self-similar topology of nodes
distribution in many of these networks – following a power law – would confirm
that deterministic character.

In this context, recurrence analysis of unfolded attractors, shown up by
reconstructed time series based on different DNA features (methylation density,
GC content, gene distance and other potentially relevant genomic variables) by
applying the Taken - Ruelle17–19 and Poincaré20 theorems, seemed to us as a
clear possibility to investigate. Thus, most of the work described in this memory
was focused to develop a complete methodological protocol that would allow
translating this theoretical framework, proved to have a high potential, to the
field of structural genomics, phylogenomics and DNA methylation epigenomics.

In summary, our results indicate that this approach is not only possible but
also can be effectively used to get highly compact descriptions of large DNA
sequences (for instance chromosomes) that still retain many of the essential
structural features of the original entities. Further, based on these descriptions
(or pattern), models can be trained by machine learning algorithms, in our
case support vector machines, and efficiently used to discriminate and classify
unknown samples.

There are, undoubtedly, pending questions that might be relevant in the
future, like the feasibility of applying the ergodicity theorem21 to DNA time
series, a controversial issue that still promotes vivid debates among theorist
about the application scopes of the models and their meaning limits22,10,23.
Anyway, it didn’t prevent, in our case, reaching precise predictions in the field of
cancer epigenetics or the genetic divergence among chimpanzees communities in
Central Africa. It was also possible to do a preliminary systemic characterization
of the tomato genome with regard to its functional annotation.

By means of our recurrence quantitative analysis protocol, we could analyze
sequences up to 240 megabases (complete human chromosome I) and represent
it by seven scalar values. When this analysis is made from DNA methylation
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density time series coming from normal and tumor cells, our workflow enables
us to discriminate their epigenetic patterns with performances that sometimes
reached 98%. Starting from gene distances time series derived from the tomato
genome we could map the complete genome in terms of 12 seven-dimensional
vectors (84 scalar values) that can be used to challenge a wide variety of prob-
lems once we have the appropriate input data in the future.

A number of previous problems had to be afforded to get ready the imple-
mentation of the proposed workflow. As established by the theory, to unfold
the reconstructed attractor in the appropriate n-dimensional space, coordinates
of hyper-points must be defined from the starting time series, taking successive
values with an appropriate delay that must be previously estimated. Moreover,
dimensionality of the phase-space must be also determined in the appropriate
way. None of these two parameters can be straightforwardly determined: the
false nearest neighbor algorithm used to estimate the embedding dimension de-
pends on the election of a bias value and, on the other hand, the estimate of
a proper delay by computing the mutual information implies the adoption of
adequate strategies for minimum detection.

For all these reasons and also to check the correct functioning of our software
developed ad hoc for this purpose, it became necessary to use a well known
reference model – the Rössler attractor in our case – as “workbench” to test the
workflow. Preliminary experiments let us confirm that it was able to properly
and efficiently unfold the Rössler attractor from time series built from one of its
state variables and verify that the reconstructed attractor retained topological
characteristics of the original.

Once established its validity, the RQA workflow was used to study the epi-
genetic drift that, in terms of DNA methylations, take place during the carcino-
genesis process. This study was also aimed to establish the importance of the
systemic approach, in the sense above mentioned, to get insights on systemic
features that are difficult to capture using more conventional approaches.

6.1 On cancer
When referred to mutations, genomic changes encompassing the carcinogene-
sis process have been proved to be highly specific and particularly targeted to
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key elements in tumor appearance and development. They progress as cumu-
lative changes restricted to a very specific set of genes or regulatory elements
whose implicit “logic” can be frequently established in a very clear manner as
they are involved in either development, cell cycle regulation, cell proliferation,
migration, differentiation, cells survival or apoptosis. Changes in this singular
and relatively small set of genetic elements (proto-oncogenes) have proved to
be strongly correlated, statistically, with cellular malignancy and carcinogenesis
drive. Thus, despite their intrinsic value as potential research and/or thera-
peutic targets, they are usually referred as true cancer markers and have been
largely recognized as predictive tools with increasing potential in cancer diagno-
sis. The analysis of some well defined tumor markers leads actually not only to
determine the cancer type but also estimates tumor malignity and ultimately,
illness prognosis.

The fact that carcinogenesis process is also linked to specific changes in
methylation of DNA (firstly reported by Feinberg and Vogelstein 14) and that
these changes are indeed determinant in the tumor implant and development
have been firmly establish along the last two decades. It is not surprising
that many early efforts were intended to identify altered DNA methylation in
located, specific positions or narrow regions confined to certain putative reg-
ulatory targets, in the same fashion as mutational tumor markers do. In fact,
altered methylation of CpG islands within promoters of key transcription factors
or genes involved in chromatin rearrangement, DNA methylation, cell prolifer-
ation and tumor repression have been reported as targets of these methylation
changes and could have lead to support the existence of true “methylation
markers”, statistically correlated with tumor cells and potentially equivalent to
“classical” mutation markers.

Astoundingly, detailed methylation analysis, (especially after genome-wide
Bisulfite sequencing methods became recently available) has revealed an en-
tirely different genome methylation landscape, deeply altered in cancer cells
and affecting up to 40% of the whole genome.

Suggestively, this cancer epigenetic drift has also revealed another essen-
tial characteristic: It cannot be considered as a well defined, unique shift from
something like “normal epigenetic landscape” to something like “cancer epige-
netic landscape”. In fact, alterations in DNA methylation across-cancer have
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shown noticeable heterogeneity among different tumor clones (especially when
compared to “normal” landscape). Some authors refer this situation as a tumor
induced “epigenetic deregulation” where the observed changes in DNA methyla-
tion are essentially of stochastic nature, beyond the possibility of merely defining
boundaries of generic hypomethylated and hypermethylated genomic regions64.

This point of view could implicitly lead to a model were stochasticity is
particularly linked to randomness and, thus, make cancer epigenetic landscapes
intrinsically unpredictable (at least, within the vast hypomethylated and hyper-
methylated entities above mentioned). This is of course a possibility that still
would explain most of experimental observations and has been implicitly pro-
posed by many previous studies analyzed by a variety of conventional statistic
correlations.

To our mind there is a plausible alternative that would offer a suitable
perspective of the reported potential Darwinian intra-evolutive mechanisms that
might be operating during tumor development15,16. To this view, each clone
would represent an adaptive “solution” to the effective process of carcinogenesis
driving, whose final survival (and establishment) will be decided by a competitive
selection process.

Taking these arguments, the existence of Darwinian intra-evolutive mecha-
nisms of adaptation during tumor implant seems a rather plausible possibility.
If that is the case, apparent stochasticity now should not arise from pure ran-
domness but should have some kind of “structure”. In other words, changes
in methylation of the different solutions (clones) should follow some particular
patterns, better described from deterministic premises and hardly visible from
conventional statistic correlation measures. We would be facing here, in other
words, a deterministic chaos scenery.

To uncover those weak signals we have developed a model framework in
which genome methylation patterns are considered time-dependent dynami-
cal systems whose topological properties can be captured by embedding to a
higher dimension128 and properly described by subsequent recurrence quanti-
tative analysis (RQA) by the six standard recurrence parameters described in
methods (recurrence rate, determinism, entropy, ratio, laminarity and trapping
time154,190) together with the additional measure of lacunarity129,131, to capture
how gappy the structures are.
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In total, we have analyzed data of eleven different cancer types (more than
4000 samples obtained from the Illumina Infinium HumanMethylation450 Bead-
Chip © repository of The Cancer Genome Atlas Project). Taking chromosome
I as the starting model we have analyzed more than fifty thousand CpG site
methylation density time series. We have been able to successfully train binary
classification models by support vector machines and used them to predict tu-
mor and normal tissues on their embedded RQA in all cases. Except in one case
(papillary thyroid carcinoma, 74.6%), all tumors showed good or very good per-
formances that were, in terms of AUCs, on or above 84.5% and most of them
(seven cases from eleven) were 90% or better.

These results suppose a strong evidence that compressing the methylation
sequence of a complete human chromosome in a unique RQA 7-dimensional
vector preserve the needed information to identify very effectively the epigenetic
drift that take place during cellular malignancy, at least, in the studied models.
In fact our protocol is sensible enough as to perceive significant differences
between normal and tumor samples by simple visual inspection of 2-dimensional
projections of the RQA vectors, independently of the type of tumor. It was
rather evident that tumor cells show a markedly higher heterogeneity in their
methylation patterns than the corresponding normal cells.

As mentioned above, from pioneer work of Prigogine24–26, complex adaptive
systems can behave dynamically as nonlinear systems able to exhibit complex
stability landscapes usually referred as “strange attractors”. Although it is not
possible to know how these attractors look like, the ones that we have recon-
structed here should be topologically related with them. From this perspective,
it could be considered that during the carcinogenesis process, clonal methy-
lomas, as mention above, would represent in fact “adaptive solutions” of the
tumor metabolism drift (here considered as a case of CAS dynamics) and, thus,
stable setting of the complex, nonlinear system attractor, susceptible of sys-
temic characterization by our procedural workflow.

If this premise is correct, cancer epigenetic drift hardly could be satisfactorily
explained in terms of epigenetic “markers”. In other words, the observed changes
wouldn’t be caused by specific changes of concrete positions (as actually happen
in the case of mutational changes). By the contrary, methylation drift would
be a consequence – as mentioned – of potential intraevolutive mechanisms
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that would take place during carcinogenesis. It doesn’t mean, of course, that
the existence of specific positions or well defined locations whose methylation
state correlates well with the carcinogenesis process have to be discarded. By
the contrary, the cancer adaptive epigenetic drift could have some common
invariances that could be essential to reach the new adaptive niche and still be an
essentially systemic process that hardly could be explained or fully characterized,
anyway, by these invariances. In other words, it would be conceivable that all
adaptive “solutions” share some invariants but keep a CAS dynamic behavior.

While we did not have conclusive proofs of such a mechanism before our
next set of experiments, there were two hypothetical reasons to support its
feasibility. On the ones hand, the environmental scenario in which the tumor
has to grow is highly hostile and thus, tumor cells are initially quite a far of
having a good adaptive fitness. On the other hand, these Darwinian intra-
evolutive-like mechanisms are presumably easy to implement for the emergent
tumor due to its intrinsically high growing speed. Moreover, such a kind of
mechanism, in case of happen, would probably be rather elusive to be detected
by classical approaches.

To evaluate the performance of marker predictions (based on differential
DNA-methylated CpG sites) and markerless prediction (based on systemic cri-
teria) we carried out different types of experiments. In a first set of experi-
ments, we compiled a list of differential DNA-methylated CpG sites (or Cancer
Related Gene Symbols, CRGS). We also identified two types of regions with
epigenetic significance previously described in the bibliography: large BLOCKS
of hypomethylated regions and cDMR hypermethylated regions. As a whole,
these three regions represented about 50% of the chromosome I. We derived
different sets of time series in which systematically we eliminate one or more of
these regions and proceeded to analyze them by RQA and performed support
vector machine classifications.

In summary, this set of experiments showed that the remaining fraction of
the chromosome still retained the epigenetic signature that permit to discrim-
inate between normal and tumor cells. One plausible interpretation of these
results is that such a epigenetic signature “is in the whole and in the part”. It
would be, in other words, an emergent characteristic of systemic nature.

Certainly, another possible interpretation is that not all the epigenetic sig-
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nificant elements have been identified yet. Even when this option cannot be
completely discarded, it hardly can be considered as the major cause of the
obtained results. First of all, because assuming that the lost of the SVM
discriminative capacity is a measure of the relative weight that hypothetical
unknown elements would have on the entire response, we would be talking of
about 20% to 40% of total cancer related (epigenetic) elements. In second
term, these elements would be practically affecting all types of cancers and,
finally, the following set of experiments were more coherent with a systemic
behavior.

In fact, the weight attributed in the literature to the other methylation
related regions was clearly confirmed when we compared predictions made by
our approach and those obtained from different sets of cancer related elements
through direct training (without embedding and RQA) of the same learning
machine algorithm, in comparable conditions. Our results for the head and neck
squamous cell carcinoma (HNSC) showed very high (and similar) performances
in both cases. Surprisingly, it was enough a relatively reduced number of markers
to get an AUC of 97.4% (against 98.6% reached with the markerless prediction).

To get further insights about the possible systemic character of the epige-
netic drive associated to the carcinogenesis process, we planned a third kind of
experiment in which predictions were made after training the machine learning
algorithm with random, cancer unrelated methylation sites of similar sizes to
the markers previously used. Although this is a preliminary study, our results
were unexpectedly good (AUC > 90%), even limiting the number of pseudo-
markers to only 18. The validity of these results was confirmed, nevertheless,
by using controls made by shuffled samples (showing totally negative results).

Globally, our results suggested that epigenetic differences found between
tumor cells and normal cells not only are due to well defined methylation mark-
ers, whose correlation with the cell malignancy has been previously established
and now confirmed by our own experiments (founded in an alternative machine
learning procedure). These differences are also due to a systemic component
that potentially expand all the DNA sequence and whose presence can be made
visible with only a few positions potentially methylables.

Assuming that differences in β-values expands along the sequence, it seemed
interesting to investigate if a single estimation of the total degree of methylation
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(total β-value sum ) would be enough to discriminate between normal and tumor
cells. With that aim we planned a new set of experiments to compare total β-
value sum distributions in tumor and control samples under different conditions
and using three different estimation criteria: average of total β-value sums ,
p-values given by the Wilcoxon rank sum test with continuity correction and
support vector machine based binary classification.

We have found that when including all CpG sites, total β-value sums are
rather similar between normal and tumor cells and to discriminate them is
generally difficult as if it is made on the base of averages, Wilcoxon based p-
values or SVM binary classification. We have also observed a tumor dependent
react: while liver hepatocellular carcinoma (LIHC) can be discriminated with
any of the estimation criteria, papillary thyroid carcinoma (THCA) is refractory
to classification on the basis of total β-value sums .

When samples are restricted to cancer related epigenetic elements (CRGS,
BLOCKS and cDRM) the answers of different tumors is much more heteroge-
neous. CRGS, for example, lead to easily discriminate BRCA, COAD and LIHC
and in less extension LUAD and KIRKP while LUSC, THCA and UCEC cannot
be discriminated in most of cases.

When computing total β-value sums of hypomethylated BLOCKs regions,
the discrimination capacity significantly increased in almost all cases, although
it was not sufficient to classify PRAD and THCA cancers.

Finally, when samples were composed by hypermethylated cDMR domains,
all tumors could be easily discriminated in terms of β-value sums with high
statistic significance with the exception of THCA. If hyper- and hypomethylated
domains are mixed, the discrimination capacity decrease notably, as expected,
because total β-value sums in this case is composed by positive and negative
terms that mutually cancel themselves.

Having in mind the heterogeneity of samples and procedures, our result
showed reasonable coherence. In summary, they suggest that cancer epigenetic
drive has a strong relationship with changes in cDMR hypomethylated regions
in practically all cancer studied. This region is essential to characterize tumor
cells in all cases except THCA. Large hypomethylated regions also contribute
in a more variable proportion, depending of the type of cancer. Its contribution
to PRAD and THCA is probably small. Finally, CRGS symbols are much more



6.2. ON TOMATO 115

specific and would have less weight in the epigenetic profile of LUSC, THCA
and UCEC.

While liver hepatocellular carcinoma (LIHC) can be practically discriminated
in any condition, THCA is difficult to classify, again, in most of conditions.
They could represent extremes with regard their systemic character. LIHC
epigenetic profile would potentially affect extensive regions of chromosome I,
suggesting that in this case the epigenetic drift is very important (intense) and
probably has an important systemic component. THCA, would represent the
other extreme. Epigenetic changes in this case would be minimal or would affect
other chromosomes. It is obvious that this study should be extended to the rest
of chromosomes. In any case, a poor response in all the chromosomes would
indicate that tumor cells are closer to their optimum adaptive niche from the
very beginning and would be more distant from a systemic model. It seemed
meaningful to us that THCA is also the only cancer that we couldn’t predict
properly.

In summary, we show that data driven or agnostic approaches which base
exclusively on data intrinsic signals can solve problems even where knowledge
based models are incomplete or not available. Nevertheless, we have to admit
that the machine learning part of our analysis pipeline is limited to problems
for which we have access to large data sets and as a consequence the answers
to the following two important questions still remain open and are postponed
to the near future: Can we classify pre or early neoplastic cells from normal
ones? Are the non-normal systemic patterns only characteristic for tumors or
in general for inflammations? Despite the data-poor situation we currently try
to extent the application of our pipeline to other diseases (e.g. Alzheimer) and
– motivated by preliminary experiments – also to the analysis of epigenomic
stress response.

6.2 On tomato
Another different set of experiments included in this memory we focused to the
potential application of our methodological tool to structural and functional
genome analysis. In this case, the study was carried out on the complete tomato
genome, as one part of this work was developed by me as a member of the del
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"Plant Computational Biology"-group (PCB) at the Max-Planck-Institute for
Plant Breeding Research, as part of the International Tomato Annotation Group
(ITAG) and the Tomato Genome Consortium, where I contributed to the func-
tional GO annotation of tomato genome. From 19662 annotated genes (57% of
the total) and the complete genome sequence, we treated to analyze any possi-
ble correlation between gene physical distance and functional distance in terms
of three standard ontologies: biological process (BP), molecular function (MF)
and cellular component (CC). A second objective of these experiments was to
obtain the twelve RQA vectors that represent the complete tomato genome, in
terms of intergenic distances, in our systemic model.

Our results pointed out that there isn’t any detectable correlation between
physical distance and functional distance from any of the gene ontologies stud-
ied. Profiles can be actually explained in all cases from the particular distribu-
tion of intergenic distances calculated for each chromosome. With our current
information, it is not possible for the moment to complete this functional anal-
ysis with the resolution level that would be necessary to get the RQA from
functional distances. As the methodological workflow is ready and proved, the
existence of new data would permit us going further in this direction.

With regard to embedding and RQA of tomato genome, we have analyzed
them and found deep differences with respect to the ones that we got with
the human epigenome (chromosome I). Some of the RQA parameters would
suggest that tomato system has a very low predictability (opposite to our data
from human genome). Also in this case it would be necessary characterize a
significant number of genomes to be able of make a proper interpretation of
the found differences.

6.3 On chimpazees and Caniformia
The last block of experiments included in this study had as major motivation
to explore the potential of our systemic approach to analyze adaptive diver-
gence among closely related genomes. Our study focused on classification of
mitochondrial genomes because the number of sequenced organisms is notably
higher than in the case of nuclear genomes: currently there are 8753 complete
mitochondrial genomes available. In this case, our analysis was centered on CG
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pairs density. We have carry out two sets of preliminary experiments focused
on two animal groups well represented in the Mt-DNA database.

The first set was addressed to three chimpanzee (Pan troglodytes) sub-
species: schweinfurthii, troglodytes and verus. RQ analysis of the embedded
Mt-DNA have led us to get insights on the phylogenetic relationship of three
subspecies of chimpanzee from Central Africa and confirm that our data are in
good agreement with mainstream finding of previous studies.

It has been established191 that Central and Western Africa populations of
chimpanzees are divided into two geographically- and genetically-defined groups
separated by the Sanaga river along East Nigeria and Cameroon. This first
population split seemed to happen 250 kya ago and left P.t. ellioti and P.t.
verus (in the west) in the north river side while P.t. troglodytes and P. t.
schweinfurthii remained in the south riverside. Although there is not a definite
consensus about the phylogenetic history of these populations192, it has been
noticed that P.t. troglodytes and P. t. schweinfurthii are closer related between
them than they are with P.t. verus and that, at least in part, divergences can
be explained by an isolation-with-migration model191. Our results, by alone,
would essentially confirm this relative distances and would reduce the number
of possible migrations from 9 to only three (see figure 5.26).

Finally, the second set of experiments was devoted to test the potential effi-
ciency of our workflow in the binary classification of Caniformia species. A total
of 407 Mt genomes belonging to five different species of the suborder Califormia
were employed to carry out the study by recurrence analysis of time series based
on the CG content of the Mt-genome sequences. RQA parameters were then
used to train the SVM-based binary classification algorithm. Achieved perfor-
mances were outstanding in all cases giving optimal values of both, sensibility
and specificity (100% AUC). Even being a very preliminary result, these data
pointed out the potential of the method and encourage us to perform further
exploratory studies in different directions to find out new possibly applications
of the proposed model.
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Conclusions

1. A new procedural workflow has been designed to perform genome analysis
from a systemic perspective. The protocol has been pipelined and au-
tomated as open software (“bract”) accessible through the net (https:
//github.com/bractproject/bract). The tool has proved to be very
efficient in discriminating closely related DNA sequences (genome sized)
on the basis of their systemic features. Our results indicate that this
approach can be effectively used to perform embedding and recurrence
quantitative analysis of DNA time series to get highly compact descrip-
tions of large DNA sequences by mapping them into one or a small set of
7-dimensional vectors that still retain many of the systemic features of the
original entities. These compressed fingerprints can be used to efficiently
train a support vectors-based, machine learning algorithm, able to do bi-
nary classification of the RQA parameters and to efficiently discriminate
the original DNA on the base of those features.

2. This approach has been used to analyze the DNA methylation epigenetic
drift that take place during carcinogenesis process in eleven different can-
cer types ( more than 4000 samples) obtained from the Cancer Genome
Atlas project. Aside generating well defined hyper- and hypomethylated
regions, as mentioned in the literature, our results have revealed that
cancer epigenetic drift might also involve further along-the-genome, ex-
tensive changes that cannot be assimilated to any previously described
entity and entailed a patent increase in heterogeneity. These epigenetic
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changes, noticeably detected by our methodological approach, point out
the existence of a systemic component that in some cases, like in the
liver hepatocellular carcinoma, could be decisive and can be interpreted
in terms of potential intra-evolutive (Darwinian) mechanisms where in-
dividual “clonal methylomas” would represent adaptive solutions of the
demanding tumor metabolic requirements that have been presumably se-
lected in a highly hostile environment. As shown by our results, different
tumors could actually follow different adaptive epigenetic drifts or “cancer
epigenetic landscapes” that can be also captured by the model.

3. Bract has been used to find potential non linear correlations between
physic and functional gene distance, on the basis of the annotation of
the tomato genome. While no apparent correlation could be detected,
a mapping of the complete genome into twelve RQA vectors has been
performed. Some of the RQA parameters would suggest that tomato
system has a very low predictability (opposite to our data from human
epigenomes). With our current information, it is not possible for the
moment to complete this functional analysis with the resolution level
that would be necessary to get the RQA from functional distances. The
acquiring of new data about functional GO-annotation would be necessary
to permit us going further in this direction.

4. Our protocol has proved to be useful to analyze adaptive divergence
among closely related genomes. In the case of three major subspecies of
Central and West Africa populations of chimpanzee, the systemic char-
acterization of their mitochondrial genomes have permitted get insight
about the possible phylogenetic relationships among these populations.
Our results, by alone, would essentially confirm that Pan troglodytes
troglodytes and Pan troglodytes schweinfurthii are closer related between
them than they are with Pan troglodytes verus and that, at least in
part, divergences can be explained by an isolation-with-migration model
in what the suggested potential migrations, as directly deduced from the
performed Mt-DNA analysis, match the (still no definite) consensus about
the phylogenetic history of these populations.
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In the context of systemic identification of taxa, bract shows to be ex-
tremely sensible in performing binary classification of Caniformia species.
A total of 407 mitochondrial genomes belonging to five different species
of the suborder Califormia were employed to carry out a study by recur-
rence quantitative analysis of time series based on the CG content of the
sequences. The achieved performances were outstanding in all cases, giv-
ing optimal values of both, sensibility and specificity (100% AUC). Even
being a very preliminary result, these data pointed out the potential of
the method and encourage us to perform further exploratory studies in
different directions to find out new possibly applications of the proposed
model.
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