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Abstract

In this thesis we make two investigations in the context of precision physics,
firstly in the multi-leg and secondly in the multi-loop frontier. In the first
part, we approach the problem of making automated NLO phenomenologi-
cal studies of gluon fusion driven Higgs production. Here we calculate the
R2 vertices necessary to use the effective theory of Higgs/gluon interac-
tions at one loop in MadGraph5 aMC@NLO for both a scalar and pseu-
doscalar coupling. This has allowed for a study of the CP properties of the
Higgs/top-quark coupling where it is found that correlations between the
di-jet azimuthal angles in Higgs + 2 jets provide valuable CP information.
In the second part we work in the framework of the Four Dimensional Reg-
ularization (FDR) approach, where we develop two-loop translation rules
between FDR and dimensional regularization in massless QCD in the form
of a coupling constant shift. To achieve this we set up a framework for
comparison between the two strategies and develop an algorithm for the
automation of the FDR defining expansion at two loops. During the in-
vestigation we find that a naive global prescription in the scheme breaks
locality and universality in correlation functions with external fermions and
so we introduce a “sub-prescription” to deal with this. In this way we solve
a problem analogous to the breakdown of unitarity at two loops in the four
dimensional helicity method and provide explicit evidence of the consistency
of FDR at two loops. Furthermore we gain insight into the relation between
the FDR approach and a canonical counterterm picture, witnessing a direct
cancellation between FDR sub-vacua and counterterms.
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Abstracto

En esta tesis, llevo a cabo dos investigaciones en el contexto de f́ısica de pre-
cisión, primero en la frontera “multi-leg” y segundo en la frontera “multi-
loop”. En la primera parte, considero el problema de poder hacer estu-
dios fenomenológicos automatizados NLO de producción del boson de Higgs
dominada por la fusion de gluones. Aqúı calculo los vértices necesarios para
utilizar la teoŕıa efectiva de interacciones del boson de Higgs y gluones para
cálculos de 1-loop enMadGraph5 aMC@NLO para casos de acoplamiento
escalar y pseudoescalar. Esto ha permitido el estudio del las propiedades de
CP del acoplamiento del quark top y boson de Higgs, donde se encuentra
que las correlaciones entre los ángulos azimutales en el sistema de di-jet en
la producción de Higgs + 2 jets proporcionan información valiosa.

En la segunda parte, trabajo con el método de “Four Dimensional Reg-
ularization” (FDR) donde desarrollo reglas de transición de dos-lazos entre
FDR y regularización dimensional en QCD sin masas en la forma de un cam-
bio de constante de acoplamiento. Para lograr esto, construyo un método
para comparar los dos estrategias y desarrollo un algoritmo para la autom-
atización del “FDR defining expansion” a 2-loops. Durante la investigación
encuentro que una “global prescription” ingenua en el esquema rompe la
localidad y la universalidad en funciones de correlación con fermiones exter-
nos y por eso introduzco una “sub-prescription”. De esta manera, soluciono
un problema que es análago al experimentado en el método de “Four Di-
mensional Helicity” donde se rompe la unitaridad y proporciono pruebas
expĺıcitas de la consistenćıa de FDR a 2-loops. Además mi análisis ayuda a
entender la relación entre el método FDR y un punto de visto canónico de
contratérminos ya que muestra una cancelación directa entre contratérminos
y “FDR sub-vacua”.
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Chapter 1

Introduction

Modern particle physics is the culmination of a long quest for an improved
understanding of the nature of the universe in which we live. In searching for
insight into the mechanisms which drive and the components which make up
our world we have been compelled to investigate things on an increasingly
small scale. The most adept tool we have for this search is the high energy
particle collider, currently well represented by the Large Hadron Collider
(LHC) at CERN in Geneva, Switzerland. Many years of investigation have
led to the conclusion that the small scale structure of our universe is governed
by the rules of quantum field theory (QFT) and that all collider data can
be explained, within experimental limits, by the Standard Model (SM). Yet,
when we move outside the world of colliders we find a number of phenomena
whose explanation remains elusive. The hierarchy problem, dark matter and
dark energy, the quantum nature of gravity, neutrino masses and the strong
CP problem are just some of the indications that our understanding of the
universe is incomplete.

Nevertheless, in spite of this evidence of the incompleteness of our pic-
ture, all current collider data is consistent with the theoretical predictions
given by the SM. As we push the energy and luminosity frontiers at the
LHC it is expected that new physics will emerge from small, but statisti-
cally significant discrepancies between the theoretical predictions of the SM
and experimental measurement. It is then the work of the model builder to
try to solve the problems of our incomplete picture whilst remaining within
the tight constraints of SM data. If there truly are new physics signals hid-
ing in the experimental statistics then it is important that we have very
precise SM predictions with which to compare them. In this thesis we are
going to introduce the need for such “precision physics” and make two dif-
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ferent investigations into problems experienced in such work. Firstly, in this
chapter we outline the necessity of such work, the relevant physics, and the
typical technology that one employs. Chapter 2 is our first investigation into
the practical problems of making predictions, where we perform necessary
calculations to make automated “loop corrections” in an effective theory
of Higgs/gluon interactions. In Chapter 3 we lay out the FDR method of
calculation within perturbative QFT, and in chapter 4 we perform work to
be able to make translations between the DR/MS scheme and FDR. We
present our conclusions in chapter 5.

1.1 Precision Physics at the LHC

The Large Hadron Collider (LHC) is the largest, highest energy particle
collider currently available. The LHC is a proton collider, set to begin its
second run at a centre of mass energy of 13 TeV. These proton collisions
often result in the creation of many particles not in the initial state and the
precise measurement of the properties of these outgoing particles allows one
to elucidate the underlying dynamics. Accordingly, the LHC is a machine
reaching historically unprecedented levels of experimental precision and in
order to undertake new physics searches one must be able to match the
experimental precision on the theory side. In practice, this proves a more
tricky proposition than perhaps naively thought as the current state of QFT
is that it is not possible to compute observables 100% precisely, and so one
must use an approximation. Perturbative Quantum Field Theory (pQFT)
provides such an approximation which is well understood in a way which
is possible to systematically improve. It prescribes that all observables can
be given as perturbative series in the relevant coupling constants such that
one can truncate the series in order to reach a certain precision. The orders
of approximation are commonly referred to as leading order (LO), next-to-
leading order (NLO), next-to-next-to-leading order (NNLO) etc. Over a
number of decades this has been shown to be a valid and useful strategy
in situations of weak coupling, where the perturbative series parameter is
small.

Of the fundamental forces, the one that presides at the LHC is Quantum
Chromodynamics (QCD), as the machine is a proton collider. Naively this
could cause problems as at low energies QCD is a strongly coupled theory.
However, as QCD is asymptotically free, at LHC energies a large amount of
the physics can still be described in the framework of pQFT. Nevertheless,
at these energies the strong coupling is of O(0.1) and so the task of making
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theoretical predictions is notoriously difficult as to reach an appropriate level
of approximation, one must move beyond leading order in the perturbative
series. This is made increasingly tough at the LHC as there are many jets,
and so it is necessary to be able to describe processes with a large number
of outgoing particles.

For this reason, the technical difficulty of this task precludes the knowl-
edge of any desired observable to arbitrary precision and so the community
is forced to focus its efforts in improving perturbative approximations. Cur-
rently, the field of Higgs physics makes strong demands of precision physics.
In measuring Higgs observables one must have strong control over the pro-
duction cross-section which is predominantly driven by gluon fusion. Ever
since the calculation of the larger than expected NLO corrections it has been
known that the perturbative expansion converges slowly in this channel. For
this reason a great deal of effort has been put into improving the theoret-
ical precision, recently culminating in the calculation of the inclusive cross
section to N3LO [1].

When one considers pp → WZ it is also found that there is some degree
of tension between theory and data, in this case all measured cross sections
are bigger than the theory predictions. Similarly for W+W− production
there was recently tension as combined CMS and ATLAS results placed the
cross section at 3.5σ beyond the theory predictions [2, 3, 4]. For this reason,
studies of weak boson production have been performed including NNLO
results for both ZZ and W+W− [5, 6].

Also in recent history, top physics has been a driving force for precision
calculation. Historically, the Tevatron top forward backward asymmetry
has been an outstanding experimental deviation from SM predictions, but
recently this has been weakened through the calculation of NNLO correc-
tions [7]. In general, the large tt cross section makes it of great importance
to have precise predictions [8].

Additionally, the understanding of the non-perturbative QCD phenom-
ena at the LHC is greatly improved through improved NNLO techniques.
Jets at hadron colliders are ubiquitous and important to study due to their
sensitivity to the strong coupling, parton distribution functions (PDFs) and
physics beyond the standard model (BSM). The high experimental precision
available from the LHC again begets the need for NNLO studies [9]. What’s
more, the study of PDFs themselves is required at the LHC due to their large
contribution to the overall theoretical uncertainties, and so efforts must be
undertaken to extract them from NNLO predictions [10, 11].
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1.2 Quantum Chromodynamics at Colliders

At the LHC as one collides protons we are immediately brought into the
world of Quantum Chromodynamics. QCD, as it is more commonly known,
is the currently accepted theory for describing the strong interactions which
govern the proton, a bound state of the model. The strength of its coupling
make it firmly different to weakly coupled theories at low energies, but it
displays an important property known as asymptotic freedom which allows
it to be described in the same framework as weakly coupled theories in col-
liders. Whilst the coupling strength at modern collider energies is small
enough to be handled perturbatively, it is large enough that the slow con-
vergence of the series causes programs of precision physics to be dominated
by QCD calculations. For this reason, the discussion of this thesis focuses
around QCD.

QCD is the special case of Yang-Mills theory [12] with Nf = 6 fermions
connected by an SU(Nc = 3) gauge symmetry. The covariantly gauge fixed
Lagrangian of the model is

LQCD = ψ
f
j

(
i /Djk −mf

)
ψf
k −

1

4
GµνaGµνa + ∂µc̄

a∂µca

+ gfabc (∂µc̄a)Gb
µc

c −
1

2ξ
(∂µG

µa) .
(1.2.1)

The index f runs over our Nf quark flavours each with different masses. The
quarks themselves transform in the fundamental representation of SU(Nc),
whereas the gluon field Gµa transforms in the adjoint representation and so
the gauge covariant derivative is given by

Dµ
jk = ∂µ − igGµatajk, (1.2.2)

and the field strength tensor is non abelian, such that

Gµνa = ∂µGνa − ∂νGµa − gfabcGµbGνc. (1.2.3)

The matrices ta are the generators of SU(Nc) and the coefficients fabc are
the completely antisymmetric “structure factors” of the group. The fields
ca are Fadeev-Popov ghosts and are necessary to perform the gauge fixing
covariantly. In contrast to QED, where the ghosts decouple, the non-abelian
nature of QCD renders them a necessity. In the Standard Model all of the
quarks have different, independent masses. However it is often useful to
consider the limit mf = 0 for calculational purposes. The Feynman rules
for this model can be found in appendix A.1.
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At low energies, QCD is strongly coupled i.e. g >> 1. For this reason, if
one wishes to describe the low energy phenomena of QCD the perturbative
toolbox is not applicable and currently the most promising results are found
in lattice calculations [13], however at collider energies all is not lost. It is
well known that when one renormalizes a quantum field theory the effective
value of the coupling changes with the characteristic energy scale that is
being probed. In QCD this running of the coupling means that the coupling
decreases with increasing energy, such that as the energy scale increases
arbitrarily the coupling flows to 0. This is known as asymptotic freedom,
and at the LHC it is the case that the coupling is weak enough to be worked
perturbatively as for example at the Z mass [14],

αS(mZ) = 0.1190 ± 0.0012 (68% C.L.). (1.2.4)

1.3 Regularization

In QCD, as in many quantum field theories, when one attempts to move
beyond leading order in the perturbative expansion it is discovered that
the naively constructed theory is inconsistent and calculations give infinite
results. The canonical solution to this problem is to define a “regulated”
theory through which one can recover the original theory by taking an ap-
propriate limit. One is then able to perform all necessary calculation in the
regulated theory, with the hopes of recovering physical results by taking this
limit. Over the years many different methods of regularization have been
invented such as cut off regularization, Pauli-Villars [15], dimensional regu-
larization [16] and more recently differential renormalization [17, 18, 19, 20],
implicit regularization [21, 22] and (to be discussed in this thesis) FDR
[23]. Though incomplete, this list is quite long as it has proven difficult
to construct regularizations that don’t obscure properties of the original,
unregulated theory.

Gauge theories such as QCD have historically proven especially difficult
to regulate as many regulators will break the gauge invariance of the theory.
At the level of amplitude calculations, the gauge invariance of the theory
manifests in the form of Ward-Takahashi identities [24]. Schematically these
can be thought of as relationships between correlation functions with differ-
ing numbers of legs. For gauge theories these are a necessary requirement
for the unitarity of the theory, and so if the regulated theory is not gauge
invariant it is inconsistent. An important condition needed for the proof of
the Ward identities in gauge theories is that the loop integrals are defined in
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such a way that two integrals related by a shift of the integration momentum
are identical, this is known as “shift invariance”.

Cut-off regularization is conceptually quite simple, especially when con-
sidered in the context of effective field theory, but is unsuitable for use in any
physical theory because it breaks both shift and gauge invariance. Pauli-
Villars regularization was originally used in the context of QED, where
it maintains gauge invariance, but was unsuitable for more general, non-
abelian gauge theories. Here, dimensional regularization was the first method
which respects gauge and shift invariance, and for this reason it is heavily
used in modern precision physics.

In practice, when making predictions for colliders, the most common tool
is dimensional regularization. Principally this is because, when working in
gauge theories, it has been the simplest available tool which has respected
all symmetries of the necessary theories. It also has the practical advantage
of regulating both IR and UV infinities with the same parameter, thereby
reducing the complexity in calculations. Since its invention, a number of
sister techniques have been developed in order to solve particular difficul-
ties presented in the standard formulation. For example, in supersymmetric
theories it is required that the number of degrees of freedom of fermionic
and bosonic states coincide, however, when one moves away from 4 dimen-
sions, this no longer holds. In 1979, the method of dimensional reduction
[25] was invented to solve this issue by changing the number of dimensions
through compactification thereby preserving the relation between fermionic
and bosonic degrees of freedom. More recently the four dimensional helicity
method, FDH [26], was developed in order to facilitate the use of on-shell
helicity methods within unitarity based loop calculations.

1.4 Theory Meets Experiment: Cross Sections

When working within particle physics, wishing to connect theory to data,
the standard tool is the cross section (or sometimes the related branching
ratio). It is a way to express the likelihood of interaction between particles
within the context of scattering experiments. For asymptotic incoming and
outgoing states the general form for a 2 → n cross section where the centre
of mass energy is much greater than the incoming masses is given by

σ(s) =
1

2s

∫ [
Πn

i=1
d3qi

(2π)32Ei

] [
(2π)4δ4 (Σik

µ
i − (p1 + p2)

µ)
]
|M|2. (1.4.1)

Here, p1 and p2 are the momenta of the incoming particles, s = (p1 + p2)2

and ki are the momenta of the n outgoing particles. The first factor in
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the integral gives the density of states for the final state particles and the
second enforces momentum conservation between the incoming and outgoing
particles. The final factor |M|2 is the squared matrix element for the process.
At the LHC, the incoming states are protons, which are strongly bound
states of QCD and so one cannot naively use (1.4.1). Fortunately, at high
enough energies, the asymptotic freedom of QCD results in the validity of
the so-called factorization formula,

dσ

dX
=
∑

j,k

∫

X̂
fj(x1)fk(x2)

dσ̂j,k

dX̂
F (X̂ → X). (1.4.2)

This expresses that we can calculate the cross section from the collision
of two bound states (e.g. protons) by convolving the partonic cross sec-
tions (σ̂j,k) with the parton densities (fj) and a function F which contains
the hadronization physics1. The partonic cross sections can again be cal-
culated perturbatively, but the PDFs and hadronization effects are of a
non-perturbative origin and must be determined from data as no practical
tools exist to compute them from first principles. In this thesis our focus
lies in techniques for the computation of these partonic cross sections.

When computing a cross section, phase space integration is usually han-
dled numerically and most of the difficulty lies in the evaluation of the
matrix element. Typically this calculation can only be handled perturba-
tively, usually through the Feynman diagram expansion. The leading order
(LO) approximation is given in terms of tree level Feynman diagrams, which
can be converted into mathematical expressions through the use of Feynman
rules. Consider, for instance, the process gg → gg, given at tree level by the
diagrammatic expression

+ + + .

(1.4.3)
This is purely gluonic at tree level, and very important at the LHC due to
the high gluon flux. Naively, the next order of approximation is given by

1For final states which do not involve hadrons, F is 1.
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loop diagrams, i.e.

+ + + · · · . (1.4.4)

Here we have not listed the full expression as it contains 92 terms. In a
loop diagram, the unconstrained degree of freedom is integrated over. For
a covariant method of gauge fixing, e.g. via Faddeev-Popov ghosts, all of
these integrals are given in terms of rational functions of tensor structure
and local propagators, for example

∫
d4q

qµ

q2(q + k1 + k2)2
or

∫
d4q

1

q2(q − k1)2(q + k2)2
. (1.4.5)

Looking at the unregulated integrals in equation (1.4.5) we can see how
the need for regularization manifests at the cross section level - the two
presented integrals are not well defined as they are divergent. As it turns
out, these divergences are the result of a naive treatment failing to correctly
incorporate important physical effects. The first integral contains a UV
divergence, as the integral does not go to zero fast enough for large q2

and so the theory needs to be renormalized. The second integral, for on-
shell kinematics displays an IR divergence. The origin of this divergence
is that when there are massless fields in the theory, a 2 → 2 process is
indistinguishable from a 2 → 3 process with a sufficiently soft/collinear
outgoing massless particle [27, 28]. That is, beyond tree level, the definition
of 2 → 2 is not a priori well defined, and a good definition is “sufficiently
inclusive” - this is known as IR safety. In practice these infinities are removed
in two separate ways. Firstly we must add contributions from the cross
section of the 2 → 3 where one cannot resolve the extra parton. This is
known as the real contribution2 and requires the calculation of diagrams

2In contrast, the one-loop diagrams of equation (1.4.4) are known as the virtual con-
tribution.
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such as

+ + + · · · (1.4.6)

where again we have not listed the full expression as it has 25 terms. Sec-
ondly, to remove the collinear poles due to initial state radiation, one absorbs
them into a renormalization of the PDFs. In order to be able to perform this
in any practical way, one employs a regularization procedure as described in
section 1.3. When coupled with an appropriate method of renormalization,
all IR safe observables are well defined and can be calculated by virtue of
equation (1.4.2).

In practice, this discussion needs to be greatly extended to become work-
able. When making computations with a large number of legs, even at tree
level, the number of Feynman diagrams which one is required to draw grows
exponentially. Similarly, when we move to to higher loop orders, these calcu-
lations involve a very large number of terms. This is a natural consequence
of the perturbative expansion, but it is exacerbated in gauge theories such
as QCD due to self interactions and the ghost fields. Furthermore, the
Feynman rules for each interaction are complicated and lead to large ana-
lytic expressions for any given diagram, made even more complicated by the
QCD colour structure. Overall it is a hard problem to even generate the
required amplitudes. For this reason, it is more often the case that the gen-
eration of the amplitudes is performed using more sophisticated techniques
than Feynman diagrams. At tree level recursion relations such as BCFW
[29, 30], Dyson-Schwinger and Berends-Giele [31] provide valuable tools for
the generation of amplitudes. Beyond tree level, techniques such as Open
Loops [32] attempt to generalize the recursion relations to NLO calculations.

The generation of the amplitudes aside, it is typically of great difficulty
to perform the integrals found in higher order calculations. In the context of
loop integrals, one finds a very large number of difficult Feynman integrals
to evaluate. The standard strategy to compute amplitudes composed of
loop integrals is to reduce them to a smaller set of “master integrals” which
one then directly computes. For multi-leg or multi-loop processes this re-
duction is often computationally complex but in the last few years at NLO
the practical possibilities have been greatly improved by the development
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of numerically efficient methods such as OPP [33, 34] and unitarity inspired
techniques [35, 36, 37, 38, 39]. At higher orders, the situation is increasingly
more complex and the whilst there exist general techniques, such as gen-
eralizations of OPP/unitarity together with integration by parts relations
in various forms of the Laporta algorithm [40], they are not yet efficient
enough. The other key component is the evaluation of the master integrals.
For one loop integrals the basis of master integrals is known and all relevant
integrals have been calculated. However, at higher orders the situation is
not so simple - integral bases for all final state multiplicities have not been
found, and many relevant Feynman integrals prove difficult to compute.

The other technical difficulties lie with the real radiation. The picture
previously presented of the infra-red divergences cancelling between real and
virtual is practically difficult to realize in a numerical way as the divergences
arise differently. In the real contribution, the divergence occurs when inte-
grating over a certain region of phase space, whereas in the virtual part the
divergences arise in the evaluation of the matrix element. To make these
two cancel, one commonly adds a part to the real, and subtracts the same
part from the virtual in such a way that the divergences manifestly cancel
separately in each contribution. Consider the situation for an m body cross
section at NLO

σNLO =

∫

m
dσB +

∫

m

(
dσV +

∫

1
dσA

)
+

∫

m+1

(
dσR − dσA

)
. (1.4.7)

Here σNLO is the NLO cross section,
∫
n is the n body phase space integral,

dσV is the differential virtual cross section, dσR is the differential real cross
section. The crucial part is dσA, an approximation to the singular behaviour
of dσR. This is subtracted from the real part directly, and then integrated
over the phase-space of the unresolved parton and added to the virtual
part. The main difficulty is the construction of an approximation that can
be easily analytically integrated in order to cancel the IR poles in dσV .

A number of strategies to write down these IR counterterms exist. Those
commonly implemented in NLO generators are Catani-Seymour subtraction
[41] and FKS [42]. Beyond NLO the construction of the counterterms proves
more intricate and whilst there are a number of available procedures such
as Antenna subtraction [43], it is not currently clear which strategy is most
successful. Nevertheless, with a given strategy it is possible to perform such
phase space integration numerically.
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Chapter 2

Automating NLO
Corrections to gg → H + n

Jets

2.1 Gluon Gluon Fusion and Effective Theories

As discussed in section 1.1 it is important to identify physics processes which
require higher theoretical precision in order to allow experiment to make dis-
criminating claims about deviations from the SM. Since the discovery of a
SM-like Higgs boson it has been of importance to investigate the properties
of the Higgs boson at the LHC in order to elucidate the nature of Elec-
troweak symmetry breaking. Efforts in this direction require very precise
determination of its production.

At the LHC, the main process driving Higgs production is that of gluon-
gluon fusion (the first diagram in figure 2.1). At first glance this is not to
be expected - gluon gluon fusion is a loop induced process and so naively
one would expect it to be small. However, a variety of factors conspire
to make this the dominant production channel. Firstly, relative to other
production mechanisms the process is enhanced by the top Yukawa coupling
which is of O(1) due to the top being so massive. Secondly, this production
mechanism directly produces a Higgs without requiring the creation of any
other particles (as is the case in gg → Htt̄), and so has a comparitively low
energy cost. Finally, the gluon flux is high at the LHC - i.e. the gluon PDF
dominates at the LHC.

Recently, a lot of effort has been put into pushing the loop frontier for
this production channel and the fully inclusive production process has been
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calculated at N3LO [1] 1. In tandem, it is also of importance to advance the
limits of multi-leg calculations. This has been our motivation for the work
presented in this chapter on automating the NLO corrections to gg → H+n
jets.

For such an important process, the fact that it is loop induced makes the
act of obtaining a quantitive prediction more difficult. In order to calculate
even the leading order one must undergo a loop calculation. A common
technique to overcome this difficulty is that of effective field theory (EFT).
This tool allows us to discard irrelevant degrees of freedom when performing
calculations and reduce the complexity of our calculations. In the case of
gluon fusion, it is of benefit to employ an EFT which has a direct coupling
between the Higgs and gluon fields.

To understand this, let us roughly illustrate how we arrive at this EFT
from the SM. In the SM the interactions between the Higgs boson and gluons
are mediated by a fermion loop giving diagrams such as those in figure 2.1.
Importantly, the coupling of the Higgs to a fermion is proportional to its
mass and so the largest contribution to a Higgs/gluon transition amplitude
is due to diagrams with a top loop, as it is by far the most massive quark at
∼ 173GeV [44]. Schematically, as long as the higgs mass meets the constraint
mh < 2mt, where mt is the top mass, then it is fair to consider an expansion
where the top mass is larger than the other scales in the problem, i.e. taking
mt → ∞. If we calculate the amplitudes of Higgs to n gluons in the limit
of a large top mass, we see that only the three diagrams in figure 2.1 have
a non-zero contribution.

Figure 2.1: The contributing 1 loop diagrams linking an incoming Higgs to
outgoing gluons in the infinite top mass limit.

Let us sketch an argument to understand this. As the top mass is the

1Indeed, this is the first process relevant to hadron colliders to have been calculated at
N3LO.
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only scale in the integrals, the diagrams must behave as ∼ md+1
t /Mw, where

d is the mass dimension of the diagram and there is an extra mt/Mw factor
coming from the tt̄H Yukawa coupling. This implies that if the mass di-
mension of the diagram is less than −1, the diagram will vanish in the limit
mt → ∞. The mass dimension of the diagram with two external gluons is
+2, and with every additional gluon leg we have another fermion propaga-
tor in the calculation which reduces the dimension by 1. We can therefore
discard diagrams with five external legs or more.

This suggests the properties of the EFT found by integrating out the
top quark it is an EFT with a direct Higgs/gluon field coupling. The full
EFT that describes these interactions is given by the following Lagrangian
[45, 46]

Leff = −
1

4
gHHGa

µνG
aµν , (2.1.1)

where Ga
µν is the gluon field strength tensor, H is the Higgs field and gH is

the Wilson coefficient, known to N4LO [47] but here given to O(α2
S)

gH =
αS

3πv

(
1 +

11

4

αS

π

)
+O(α3

S). (2.1.2)

The Feynman rules for this model correspond to a Hgg, Hggg and Hgggg
vertex which we give in appendix A.2. Within the correct kinematic region
we are now able to use this effective field theory to use tree level technology
to calculate the leading order effects. What’s more, we can now perform
calculations that would previously require two loop technique using only
one-loop methods.

This technology readily allows us to study Higgs processes through im-
proved control over the perturbative corrections to its production. Further
to this, we can also probe the nature of the Higgs/top coupling with a sim-
ilar method. Whilst the Standard Model predicts that the Higgs boson is a
scalar field, other models predict that it may also couple to the top quark
in a pseudo-scalar like way. We can understand this in the same framework
through a pseudo-scalar effective Lagrangian [48]

Leff = −
1

4
gAAG

a
µνG̃

aµν , (2.1.3)

where the dual field strength tensor G̃aµν = 1
2ϵ

µνρσGa
ρσ , A is the pseudoscalar

field and gA is the effective coupling, given exactly to all orders in αS by
[49]

gA = −
αS

2πv
. (2.1.4)
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The Feynman rules for this Lagrangian are also given in appendix A.2.
With this in hand we can state the aim of this chapter of the thesis. We

wish to undertake all necessary calculations to be able to perform multi-leg
computations at NLO in HEFT complete with the pseudo-scalar in an au-
tomated fashion using programs such as MadGraph5 aMC@NLO [50] or
HELAC-NLO [51]. In the following sections we will discuss the limiting fac-
tor - virtual corrections, and how they are mastered with the OPP method.
Beyond this we will present our work on computing the last required compo-
nent to be able to perform automated computations with the OPP method
- effective R2 Feynman rules.

2.2 The Problem of Virtual Corrections

Over the last 20 years, many strides have been made towards the ultimate
goal of being able to automatically perform NLO2 computations in order
to boost the available precision of QCD dominated observables for hadron
colliders such as the LHC. As discussed in section 1.4 there are two principal
components of this style of calculation, each of comparable complexity - the
virtual and real emission parts. Frameworks for the automation of real
emission were developed quite early on [42, 52, 53, 41, 54, 51], but only
recently has the automation of the virtual part received the necessary boost
to be able to automatically treat high multiplicity processes at NLO.

The principal issue with the virtual part is its complexity. In any ob-
servable relevant to a hadronic collider, one must deal with high final state
multiplicities. Firstly, this means that we will be faced with a large num-
ber of Feynman diagrams. Secondly, in the language of computing virtual
corrections, this implies that each diagram will have a large number of legs
and we must be able to deal with this. Multi-leg calculations within the
framework of QCD are of great complexity, principally due to the Feynman
rules. For any given diagram with a large number of legs, these lead to a
very complicated numerator structure in the loop integrals. In principle, the
ideas necessary for computing the loop integrals have been well established
for a number of years - one exploits the Lorentz covariance of the integrals
[55], together with the fact that one can span the momentum basis with
external loop momenta [56] to reduce tensorial loop integrals to a small set
of so-called “master integrals”3. At one loop this basis of master integrals is
simply four scalar integrals - the box, triangle, bubble and tadpole as given

2Including also LO loop induced processes.
3This process is explored in more depth in section 4.3.1.
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Figure 2.2: The four master integrals in one loop calculations - box, triangle,
bubble and tadpole graphs.

in figure 2.2. However, in practice, the original analytical techniques are
not well suited for multi-leg processes as the complexity rises. For example,
even the rank-4 box creates a large amount of algebra when computed in
Passarino-Veltman reduction.

This led to the search for methods which could better leverage current
computing power. Implicitly this meant solutions that did not perform this
manipulation analytically, but numerically. Around 2007, two methods arose
to solve this problem conclusively - unitarity inspired methods and the OPP
method. Both approaches take advantage of analytical properties of the loop
integrals in order to perform a reduction to the scalar basis. The principal
difference between the two techniques is that unitarity methods work by ma-
nipulating the integrals, whereas the OPP method works at the integrand
level. The work presented in this chapter of the thesis is a study of a compo-
nent that must be computed separately in order to apply the OPP method,
within the context of physics programs such as MadGraph5 aMC@NLO

or HELAC-NLO, to the study of Higgs +n jets processes at the LHC.

2.3 The OPP Method

The Ossola, Papadopoulos, Pittau (OPP) method is a technique for the
rapid reduction of one-loop tensorial integrals to a linear combination of
the one-loop master integrals4. In this section we will introduce the OPP
method in order to motivate the specific calculation we undertake in this
chapter.

The insight of the OPP method is that it is possible to perform reduction
of one-loop amplitudes directly at the integrand level. In a nutshell, one
can rewrite the numerator of a dimensionally regulated integrand in terms

4See figure 2.2.
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of a linear combination of products of denominators plus a piece which is
“spurious” - vanishes upon integration. Let us illustrate what this means
with a generic DR (sub-)amplitude. We begin by placing everything over a
common denominator, writing the integrand as

A(q̄, n) =
N(q̄, n)

D̄0D̄1 . . . D̄m−1
, D̄i = (q̄ + pi)

2 −m2
i , (2.3.1)

where all barred objects are explicitly n-dimensional, q̄ is the loop momenta
and pi are linear combinations of external momenta. The OPP reduction
makes use of four dimensional algebra, and so one must separate out the
(n − 4) dimensional parts of the numerator, and recover them later. We
write this splitting as

N(q̄, n) = N(q, 4) + Ñ(q, q̃, ϵ), (2.3.2)

where q and q̃ are the 4 and (n− 4) dimensional parts of q̄ respectively. In
general we will use a similar notation throughout this discussion, represent-
ing quantities in n-dimensions with bars, (n− 4) dimensions with tildes and
leaving unmarked the objects living in 4-dimensions. The Ñ part gives a
necessary contribution called R2 which we leave to section 2.4.1 to discuss.

The OPP method tells us that the 4-dimensional numerator of the inte-
grand N(q, 4), can be written as

N(q, 4) =
m−1∑

i0<i1<i2<i3

[
d(i0i1i2i3) + d̃(q; i0i1i2i3)

] ∏

i ̸=i0,i1,i2,i3

Di

+
m−1∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
∏

i ̸=i0,i1,i2

Di

+
m−1∑

i0<i1

[
b(i0i1) + b̃(q; i0i1)

] ∏

i ̸=i0,i1

Di

+
m−1∑

i0

[a(i0) + ã(q; i0)]
∏

i ̸=i0

Di

+ P̃ (q)
∏

i

Di. (2.3.3)

To understand this equation, consider placing it into the expression for
A(q̄, n). If we temporarily ignore the difference between barred and un-
barred denominators we see that the terms without tildes, a, b, c and d in
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equation (2.3.3), correspond to tadpole, bubble, triangle and box integrals
respectively. Their tilded counterparts, ã, b̃, c̃ and d̃, still depend on the loop
momenta q, however, the dependence is such that these terms are spurious
and vanish after integration. Furthermore, this dependence is universal and
was determined once and for all in the original OPP paper [33].

The difference to this picture that is caused by the numerator being in
terms of 4 dimensionalDi and the denominator in terms of the n dimensional
D̄i can be understood by employing the following identity

1

D̄i
=

1

Di

(
1−

q̃2

D̄i

)
. (2.3.4)

This tells us that the naive cancellation between numerator and denominator
occurs, but we also create extra terms, known as the R1 contribution, which
we will discuss in section 2.4.1.

All of the information in the amplitude is then encoded in the coefficients
a, b, c and d, and OPP gives a method to extract these coefficients. Notably,
these coefficients correspond to all of the “cut constructible” information.
That is, information which is recoverable through its analytic structure be-
cause it contains logarithms or other functions with branch cuts. After some
work, one finds that the parts R1 and R2, collectively known as R, are poly-
nomials in scales of the problem and are known as “rational parts”. The
method of extracting these coefficients which OPP employs is to take ad-
vantage of the simplifications of the system of equations which occur when
one chooses a value of q for which some denominators are 0. This simplifies
the determination to a triangular system of equations from which one can
easily obtain the coefficients. An automated implementation of the method
is available in the package CutTools [34]. Together with an efficient method
for generating the numerator function N(q, 4), such as that of OpenLoops or
HELAC-NLO, this provides an extremely rapid way of performing one-loop
virtual calculations.

In the following sections we will discuss rational parts within the context
of the OPP method and the difficulties these cause for the automation of
one-loop calculations.

2.4 Rational Parts

In the discussion of section 2.3 we note how the OPP method allows rapid
access to the cut constructible part of an amplitude, but fails to account for
the so-called “rational parts”. It should be noted that these contributions
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arise in any attempt to perform integral reduction and are not unique to
OPP. Before we examine how one recovers these rational parts in the OPP
method, let us give a clear demonstration of what they are and why they
are present.

In any given virtual amplitude calculation which is complicated enough
to require the use of integral reduction techniques, one necessarily finds
contributions to the expressions which, when taking the n → 4 limit, cannot
be expressed as a numerical constant pre-multiplying a master integral. To
demonstrate this, let us take a specific example and perform the classic
technique of Passarino-Veltman reduction [55]. Over the course of this short
calculation we will find a constant term due to a cancellation of the form
ϵ/ϵ, where ϵ = (n− 4). Consider the following tensor integral

∫
dnq

µϵR

q̄µq̄ν

q̄2(q̄ + p)2
= Aḡµ̄ν̄ +Bpµpν . (2.4.1)

Here the barring is to make explicit the objects that live in n dimensions.
The next step is to construct two equations to determine the coefficients
A and B by contracting with gµ̄ν̄ and pµ. Crucially, as the numerator q̄
are n dimensional objects, when we perform contraction with gµ̄ν̄ we must
recognise that this is an n dimensional metric such that gµ̄ν̄gµ̄ν̄ = n. The
two equations which we construct are then

∫
dnq

µϵR

q̄2

q̄2(q̄ + p)2
= nA+ p2B

∫
dnq

µϵR

(q · p)q̄µ

q̄2(q̄ + p)2
= Apµ +Bp2pµ.

(2.4.2)

Now we perform the standard method of reconstructing the numerators in
terms of the denominators and repeating the process for any remaining ten-
sor integrals5. This allows us to write a matrix equation for the coefficients
A and B,

(
A
B

)
=

1

(n− 1)p2

(
p2 −p2

−1 n

)(
0
I1

)
, (2.4.3)

where

I1 =
p2

4

∫
dnq

µϵR

1

D̄0D̄1
. (2.4.4)

The rational part turns up when taking the limit n → 4. The integral
I1 contains a pole in ϵ. In calculating A and B we have multiplied I1 by a

5This is covered in more detail in section 4.3.1.
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function of n = 4 + ϵ, and so when we take the limit ϵ → 0 these leave a
finite contribution of the form ϵ/ϵ. This finite contribution is proportional
to p2 - a rational part.

2.4.1 Rational Parts in OPP

Now that we understand the origin of rational parts when computing one-
loop amplitudes, we shall discuss how they arise in the OPP method. In this
context as we shall see it turns out that in OPP there is a natural splitting
of the rational terms into two categories - R1 and R2. As it turns out, it is
possible to automatically calculate R1 within the OPP framework, however
R2 requries special, theory dependent attention.

Type 1 - R1

R1 can be thought of as the consequence of cancelling a numerator computed
in 4 dimensions with a denominator that exists in n-dimensions. In order
to explain this, let us take a simple example integrand

A =
D0D1

D̄0D̄1D̄2D̄3
. (2.4.5)

Here we can imagine that an OPP treatment has reconstructed the numer-
ator, in 4-dimensions, as N(q) = D0D1. To proceed, we apply equation
(2.3.4) leading to the naive (i.e. ignoring bars) result, along with a number
of integrands with q̃2 in the numerator

A =
1

D̄2D̄3
−

q̃2

D̄0D̄2D̄3
−

q̃2

D̄1D̄2D̄3
−

q̃4

D̄0D̄1D̄2D̄3
. (2.4.6)

The integrands with q̃2 in the numerator are R1 parts.
In principle this method can be used to extract any R1 part, however it

is not practical for calculating R1 on a large scale - we have only presented it
as an effort to make its origin clearer. The computation of R1 in a practical
sense is easily automated because one can recover these terms by shifting
the mass of all propagators by q̃2. In this way, one can find the coefficients
of all relevant R1 integrals in a method very similar to that of OPP [57]. As
this is a solved problem, we move onto the topic of relevance for this chapter
- R2.
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Type 2 - R2

R2 is the second category of rational part encountered in the OPP method.
At present, no automatic methods exist for its calculation that are inequiv-
alent to simply computing the component by hand or computing the full
theory for n ̸= 4. As we shall see, the R2 component can be fully recovered
by calculating a small set of tree-level Feynman rules. This takes place in a
theory dependent way, and so in order to be able to use the OPP method
with a new theory, one must undertake this calculation. This chapter de-
scribes our calculation of these rules for HEFT complete with a pseudoscalar
as described in section 2.1.

In order to be able to perform this calculation, let us describe how to
extract the R2 part in some detail. We begin by remembering that the OPP
method is based upon a treatment of the numerator using 4-dimensional
algebra. However, the numerator function in dimensional regularization
exists in n dimensions and so this treatment misses the part of the numerator
which lives in the (n − 4) dimensional space. Schematically we can see the
origin of the R2 contribution by writing the integrand as

A(q̄, n) =
N(q̄, n)

D̄0D̄1 . . . D̄m−1
=

N(q, 4)

D̄0D̄1 . . . D̄m−1
+

Ñ(q, q̃, ϵ)

D̄0D̄1 . . . D̄m−1
. (2.4.7)

Here we take the integrand of a one-loop amplitude defined in n dimen-
sions with n-dimensional loop momenta q̄. The original numerator function,
N(q̄, n), is defined explicitly in terms of these two objects. This is because,
in DR, the gauge fields live in n dimensions and so when constructing the
expressions corresponding to Feynman diagrams one must compute any fully
contracted metrics as ḡµ̄ν̄ ḡµ̄ν̄ = n 6. The OPP treatment effectively sepa-
rates the numerator on the LHS into a purely 4-dimensional part, which can
be captured by the numerical treatment, and an ϵ = (n − 4) dimensional
part which cannot be. Note that the 4 dimensional part of the RHS, N(q, 4)
is the exact same function N , but evaluated with q̄ = q, n = 4. Explicitly
then, the R2 component of A(q̄, n) is given by the second term of the RHS
of equation (2.4.7), i.e.

R2 [A(q̄, n)] =
Ñ(q, q̃, ϵ)

D̄0D̄1 . . . D̄m−1
. (2.4.8)

6The FDH flavour of dimensional regularization allows us to take this n as 4, so as we
shall see the (n− 4) component is independently gauge invariant. However, it turns out
that this is a quirk of one loop calculations as this treatment is inconsistent at higher loop
orders [58].
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In order to be able to fully understand how to calculate this R2 component,
we need a precise definition of how to separate N(q̄, n) into it’s 4 and ϵ
dimensional parts.

This separation is achieved, at a practical level, by considering which
objects live in 4 dimensions, and which live in n dimensions. We work in
the ’t Hooft-Veltman (TV) scheme of dimensional regularization. In this
scheme, all external objects are considered to live in 4-dimensions, whereas
internal objects live in n dimensions. We can understand this in a simple
manner by realizing that this amounts to constructing a virtual amplitude in
n dimensions and then demoting everything with an uncontracted Lorentz
index to 4 dimensions. For example

∫
dnq̄

µϵR

q̄2q̄µ̄q̄ν̄

D̄0D̄1D̄2
→
∫

dnq̄

µϵR

q̄2qµqν

D̄0D̄1D̄2
, (2.4.9)

where we have denoted objects living in n dimensions with a bar, and ob-
jects living in 4 dimensions without. We can see this to be valid as these
uncontracted indices indicate that we are to contract with a four dimensional
object, be it a momentum or possibly an external wave function. This is
clear because a vector which lives in (n − 4) dimensions will always be or-
thogonal to one living in 4. More explicitly for any 4-dimensional vector v
it holds that

q̄ · v = q · v, vµḡµ̄ν̄ = vν , γ̄µ̄vµ = γµvµ. (2.4.10)

Therefore, as the external indices are always to be contracted with a 4-
dimensional object, we never need to treat the (n− 4) dimensional part, so
the objects with uncontracted indices can be considered in 4 dimensions. It
is important to realize that any occurrence of a squared loop momentum,
when constructed from Feynman rules, always exists in n dimensions, that
is it is a q̄2. Furthermore, any internally contracted gamma matrices and
metrics live in n dimensions, such that

γ̄µ̄γ̄µ̄ = ḡµ̄ν̄ ḡµ̄ν̄ = n. (2.4.11)

With a clear understanding of how to construct the amplitudes in n
dimensions we can now discuss how to separate out the R2 part. At a
conceptual level, what we wish to do is separate the (n − 4) dimensional
part from the 4 dimensional part. That is, we would take our amplitude
and, in the numerator, apply the identities7

q̄ = q + q̃, γ̄µ̄ = γµ + γ̃µ̃, ḡµ̄ν̄ = gµν + g̃µ̃ν̃ . (2.4.12)

7The (n− 4) dimensional gamma matrices freely anti-commute with the 4 dimensional
ones.
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Here we represent objects living in n dimensions with a bar, 4 dimensions
with no barring and (n − 4) dimensions with a tilde. The R2 part is now
any integral which has a numerator that contains a part that lives in (n−4)
dimensions. It should be noted that, in order to be able to perform the
integration, we also rewrite the integral measure as

dnq̄ = d4q dϵq̃. (2.4.13)

There are other ways extracting R2 which are equivalent to a splitting of
objects into 4 dimensional and (n− 4) dimensional parts at the beginning of
the calculation. Indeed, to ease the calculation in section 2.5, we perform
this separation differently.

A priori it could be the case that these R2 parts are a purely analytical
piece which must always be calculated independently for any number of
legs. Fortunately, one can show that the entire R2 contribution can be
recovered by using effective R2 Feynman rules. The calculation needs to be
performed once and for all for a given theory and this approach has indeed
been used for a number of theories, including QCD [59] and the Electroweak
model [60]. The reason for this simplicity is that R2 is an effect of UV
origin, i.e. it vanishes when the loop which one is computing is UV finite.
At one-loop it is quite simple to show that with an increasing number of
legs, the amplitudes under consideration become more and more UV finite.
This can be understood by simple power counting arguments8. The degree
of divergence is related to the mass dimension of the integrals, such that
once the mass dimension of the integrals is less than 0 they converge. In a
renormalizable theory one can show that when a loop has more than four
legs the mass dimension of all integrals is indeed less than 0, and therefore
there is no R2 for more than four legs. In the case of HEFT, which we will
consider in the next section, the logic is similar and we find that there are no
R2 contributions for more than five legs. This argumentation implies that
the R2 contribution can be fully captured by a series of effective Feynman
rules with (for HEFT) three to five external legs.

2.5 R2 for HEFT + Pseudoscalar

As we have discussed in section 2.4.1, if we wish to use the OPP method
for HEFT with a pseudo scalar we must calculate the R2 Feynman rules
for the theory. Once this calculation is performed, HEFT will be open to

8These are explained in detail in section 3.2.4.
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Figure 2.3: Feynman diagrams representing the relevant processes to which
we calculate the R2 part of the NLO QCD corrections. As we work in the
theory of HEFT + pseudoscalar we compute the R2 component with both
the dotted line as the Higgs and as the pseudoscalar.

NLO studies in frameworks such as MadGraph5 aMC@NLO or HELAC-
NLO. These R2 vertices that we compute come from the NLO corrections
to a number of processes. Specifically, we will need to compute R2 for
Higgs/Pseudoscalar to gluons and to quarks. The relevant processes for
which we will need to compute the R2 component of the one loop QCD
corrections are given in figure 2.3.

In order to calculate the R2 parts of the NLO corrections to the diagrams
of figure 2.3, we will need to develop some technology, which we do in the
following sections. Firstly we will need to be able to construct the relevant
Feynman diagrams to our calculation. For the specific calculation of the R2

part of the QCD corrections to H → gg we list the diagrams in figure 2.4 9.
In general, drawing all of the Feynman diagrams is non-trivial as we increase

V1 V2 V3 V4

Figure 2.4: The four diagrams that contribute to the 1-loop corrections to
the Higgs-Gluon-Gluon vertex in the Higgs effective field theory. V3 and V4

belong to the same topology.

the number of legs and so we employ the program QGRAF [61] to generate

9We omit the diagram which is zero in dimensional regularization due to scalelessness.
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them. The next step is to convert the diagrams into analytic, dimensionally
regulated expressions. To do this we need the Feynman rules for both HEFT
and QCD which are given in appendices A.2 and A.1 respectively, which we
implemented in a FORM [62] code.

In the following sections we shall discuss the methodology which we
employed to calculate the R2 component of the one loop QCD corrections
to the processes in figure 2.3. In summary we:

1. Perform the colour algebra.

2. Perform gamma algebra to put integrals into a regular form.

3. Perform Feynman parameterization.

4. Extract the R2 contribution from the now simple integrals.

5. Perform the loop momentum integration.

6. Integrate all Feynman parameters.

2.5.1 A Naive Approach to Colour Algebra

The first challenge that we face is to be able to thoroughly understand the
colour structure of our problem. What’s more, all of the discussion here will
be useful later on in chapter 4. The colour structure, built as dictated by the
Feynman diagrams, can often be reduced to much simpler structures. In this
way, the complexity of our calculation decreases as parts which previously
did not communicate are brought together.

In our calculations we are working with the SU(3) colour algebra, how-
ever it is often more illuminating to work considering a more general SU(Nc)
algebra. One benefit is that during the calculation one often finds contri-
butions which are independent due to their structure in Nc, which can aid
in cross checks. In this section, our aim is to reduce the strings of colour
structure that we find to a minimal basis. For example, one would expect
the following style of relationship

cm1n1n2cm2n1n2 = A · δm1m2 . (2.5.1)

That is, this combination of colour factors should reduce to a form propor-
tional to the Kronecker delta, as it is the only structure available within the
algebra. In general, and especially at two-loop in chapter 4, we will meet
long strings of colour factors with repeated, summed over indices which we
will wish to reduce to a simpler form.
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To see how colour structure arises in our diagrams we look to the feyn-
man rules in appendix A. We see that within the bosonic Feynman rules,
the colour structure always arises as structure factors cabc. Therefore, in our
calculation of the R2 Feynman rules with external gluons, we only ever need
consider strings of structure factors. However, as we also discuss fermions
lines, we notice that the generators of the SU(Nc) algebra, ta, also enter
our calculation and so we need to be able to deal with these as well. These
matrices are in the fundamental representation, and so are Nc by Nc, trace-
less matrices. Here we present a number of properties of these matrices
which will prove crucial in our task of simplifying the colour structure of
our diagrams

[ta, tb] = icabctc. (2.5.2)

taijt
a
kl =

1

2

[
δilδkj −

1

Nc
δijδkl

]
, (2.5.3)

Tr(tatb) =
δab

2
. (2.5.4)

Note that for a given generator taij , the indices i and j are in the funda-
mental representation and the index a is in the adjoint representation. The
anticommutation relation, equation (2.5.2), provides the link between the
structure factor and the generator matrices. Equation (2.5.3) describes the
completeness relation obeyed by the generators. Finally we have equation
(2.5.4), which describes the normalization of the generators10. As it turns
out, we can combine the commutation relation and equation (2.5.4) to write
the structure factor cabc in terms of the generating matrices, i.e.

cabc = −2iT r([ta, tb]tc). (2.5.5)

With this information in hand, we are now able to state our naive ap-
proach to colour algebra. In general, finding good methods for manipulating
the colour structure is a topic under study, however during our calculations
there is no need for such advanced treatments. For this reason we make no
suggestion that the following methods will scale in any reasonable way. To
reduce colour factors we:

1. Use equation (2.5.5) to write the colour factors as traces of generators.

2. Use the completeness relation, equation (2.5.3), to remove any pairs
of generators with the same adjoint indices.

10Often in the literature this normalization is parametrised with a coefficient Tf , so in
our scheme, Tf = 1/2.
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3. Use the relations for the trace of a product of generators (equation
(2.5.4)) and a single (traceless) generator to further simplify the result.

During this process, one will often meet dirac deltas with repeatedly summed
over fundamental indices. As these represent the dimensionality of the ma-
trices they are given by Nc, i.e. δii = Nc. It is important to remember to
write the traces in component form in order to fully exploit the generator
completeness relation, i.e.

Tr(A) = Aii, (2.5.6)

where A is a matrix in colour space.
A few examples of results easily found with this naive application of

colour algebra are

cm1n1n2cm2n1n2 = Nc · δm1m2 , (2.5.7)

cm1n1n2cm2n2n3cm3n3n1 =
Nc

2
· cm1m2m3 . (2.5.8)

2.5.2 Gamma Algebra

The next step which we must undertake is to peform any necessary gamma
algebra. In the context of the vertices with external gluons this section is
inert, but for external fermions the discussion of the following sections would
be incorrect without taking into account the gamma matrices. As stated in
section 2.4.1 we may take multiple approaches to extract the R2 component
of our amplitudes. The simplistic approach which we take in section 2.5.4
is only possible because all n dimensional objects are easily collected. In
the context of the one loop corrections with fermion lines this is not the
case because the gamma matrices stop this. Specifically we find strings of
gamma matrices separating n dimensional objects

(
· · · γ̄µ̄γν1 · · · γνn γ̄µ̄ · · ·

)
or

(
· · · /̄qγν1 · · · γνn /̄q · · ·

)
. (2.5.9)

In order to separate the n dimensional objects explicitly we can use the
anti-commutation relation,

{
γ̄µ̄, γ̄ν̄

}
= 2ḡµ̄ν̄ , (2.5.10)

to bring the two γ̄µ̄ and /̄q together. This then allows us to use the identities

γ̄µ̄γ̄µ̄ = n, (2.5.11)

/̄q/̄q = q̄2. (2.5.12)
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Once this has been performed it is simple to access all relevant n dimensional
objects for the computation of the R2 part. It is sufficient to separate
out only the q̄2 terms as, strings containing only a single /̄q do not make a
contribution to the R2 part.

2.5.3 Feynman Parameterization

At this point we perform a Feynman parameterization of our integrals. It
is not typical to perform the Feynman parameterization early on in a loop
computation as one introduces a large number of difficult Feynman parame-
ter integrals. However, due to the nature of our calculation, in the following
sections we see that the Feynman parameter integrals which we perform are
quite simple.

We perform the parameterization as it greatly aids in the momentum
integration which we perform in the following section. Feynman integrals,
even scalar ones, are not trivial to perform because of the momentum scales
that we find in the denominator. In practice it is best to employ a method
which exploits as much symmetry as possible to perform the integration.
The angular dependence that one finds in the integrand often complicates
this. We can see that the origin of this dependence is the dot product found
in the denominator

D̄i = (q̄ + pi)
2 −m2

i = q̄2 + p2i + 2q · pi −m2
i . (2.5.13)

Feynman parameterization solves this problem by combining all of the de-
nominators in a linear fashion, at the expense of introducing a new integra-
tion variable for each denominator. The result is a denominator structure
which is a perfect square and so a shift in the integration momentum re-
moves all angular dependence of the integral. Let us consider this process
with a general, potentially tensorial Feynman integral with numerator f(q̄),
we perform Feynman parameterization as

I =

∫
dnq

µϵR

f(q̄)

([q̄ + p0]2 −m2
0) · · · ([q̄ + pr−1]2 −m2

r−1)
(2.5.14)

= (r − 1)!

∫
[dx]

∫
dnq

µϵR

f(q̄)(∑r−1
i=0 xi([q̄ + pi]2 −m2

i )
)r , (2.5.15)

where, without loss of generality, we use n dimensional q̄. Here [dx] means
that we integrate over the space of Feynman parameters. That is, there are
r Feynman parameters each integrated from 0 to 1 under the constraint that
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they all sum to one. More explicitly we can write this as

∫
[dx] =

∫ 1

0
dx0

∫ 1

0
dx1 · · ·

∫ 1

0
dxr−1 δ

(

1−
i=r−1∑

i=0

xi

)

. (2.5.16)

Expanding out the denominator and using the delta function constraint to
set the prefactor of q̄2 to 1 we can see that our expression is equal to

(r − 1)!

∫
[dx]

∫
dnq

µϵR

f(q̄)(
q̄2 +

∑
i

{
2xipi · q + xi[p2i −m2

i ]
})r . (2.5.17)

Now it is apparent that we can complete the square, suggesting we shift the
denominator in order to remove the dot products, q̄ → q̄ −Π such that

I = (r − 1)!

∫
[dx]

dnq

µϵR

f(q̄ −Π)

(q̄2 − χ2)r
, (2.5.18)

χ =
∑

i

xi(m
2
i − p2i ) +

∑

i,j

xixj pi · pj, (2.5.19)

Π =
∑

xipi. (2.5.20)

2.5.4 One Loop Momentum Integration

Now that we are in a Feynman parameterized form, all of our integrals only
have mass scales. To reduce our integrals to a simple common form we
exploit the Lorentz covariance and replace

qµ1 · · · qµ2r →
2

(2r + 2)!!
q2rgµ1...µ2r , (2.5.21)

where gµ1...µ2r is the totally symmetric metric tensor with 2r indices. The
prefactor here is given by the reciprocal of gµ1...µ2rgµ1...mu2r . This is because,
as we are in the ’t Hooft Veltman scheme, the indices live in 4 dimensions.
In this way we avoid introducing any n dependent pre-factors. In general,
our expression is in terms of integrals of the form

∫
dnq

µϵR

(q2)i(q̄2)j

(q̄2 − χ2)k
. (2.5.22)

At this point, we can now quite easily separate the R2 parts of our
amplitude. To do this we simply have to make the separations

q̄2 = q2 + q̃2 and n = 4 + ϵ. (2.5.23)
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Any integral which contains an object that lives in ϵ dimensions in the
numerator is part of R2. The integrals which do not we discard as they
contribute to N(q, 4). We must also throw away any terms with a prefactor
of ϵr, where r > 1, as these vanish (even when hitting a UV pole) in the
limit ϵ → 0. Next we discard any integrals which do not have a q̃2 or ϵ in
the numerator, as these are contributions to the N(q, 4) part that OPP can
handle. Our expression for the R2 part of our (sub-amplitude) is now given
in terms of integrals of the form

Ji,j,r =

∫
dnq

µϵR

(q2)i(q̃2)j

(q̄2 − χ2)r
, (2.5.24)

where they possibly have a prefactor of ϵ. In fact, as we will soon prove, the
integrals with a prefactor of ϵ vanish if j ̸= 0. In the following steps we will
evaluate this integral, throwing away terms of O(ϵ).

We start by remembering that we can write the n dimensional measure
as dnq̄ = d4q dϵq̃. Importantly we must perform the ϵ dimensional integra-
tion first, or the integral is not well defined. We begin by Wick rotating to
Euclidean space. The Wick rotation in n dimensions, in our metric conven-
tion, is given by q̄2 → −q̄2. Therefore, to be consistent we must Wick rotate
the 4 and ϵ dimensional parts accordingly, i.e. q2 → −q2 and q̃2 → −q̃2. We
can now perform the integration over q̃

Ji,j,r = (−1)i+j+r iπ
ϵ
2Γ(j + ϵ

2)Γ(r − j − ϵ
2 )

µϵRΓ(
ϵ
2)Γ(r)

∫
d4q

q2i

(q2 + χ)r−j− ϵ
2

. (2.5.25)

For j > 0 we can simplify the ratio of gamma functions involving j by using
the gamma function recursion relation and expanding to O(ϵ), such that

Γ(j + ϵ
2)

Γ( ϵ2)
= (j − 1)!

ϵ

2
+O(ϵ2). (2.5.26)

For the j = 0 case this ratio is clearly 1 to all orders in epsilon. However, the
j = 0 case only ever arises as an R2 contribution when the entire integral is
premultiplied by an ϵ. In this way, we can return to the practical j = 0 case
by dropping the factor of (j − 1)!/2.

Now we can perform the integral over the 4-dimensional q, giving

(−1)i+j+r iπ
2+ ϵ

2 (j − 1)! ϵ2Γ(i+ 2)Γ(r − j − i− 2− ϵ
2)

µϵRΓ(r)
χi+j+2−r+ ϵ

2 . (2.5.27)

Computing this integral introduces a Γ-function that potentially has a pole
as ϵ → 0. In order to compute the O(1) part of this expression, as there is
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a prefactor of ϵ we need to know the pole part of this Γ-function. Writing
d/2 = j + i+ 2− k, we find the pole part to be

p.p.

{
Γ

(
−
d+ ϵ

2

)}
=

{
0, if d is negative
(−1)d/2

(d/2)! p.p.
{
Γ(− ϵ

2)
}

if d is positive.
(2.5.28)

This implies that for d < 0 the integral is O(ϵ). Note that d corresponds
to the mass dimension of the integral as ϵ → 0. Therefore, the R2 integrals
only contribes as ϵ→ 0 if the integrals are UV divergent.

Expanding now to O(1) we can write down a simple formula for our
general integral, for j > 0

Ji,j,r = −iπ2
(j − 1)!(i + 1)!

(r − 1)!(j + i+ 2− r)!
χi+j+2−r. (2.5.29)

As previously mentioned we can now use this to recover the j = 0 case when
it is multiplied by ϵ

ϵJi,0,r = −2iπ2
(i+ 1)!

(r − 1)!(i + 2− r)!
χi+2−r. (2.5.30)

Furthermore, note that any term with a q̃ and a factor of ϵ will be O(ϵ) as
it is given by ϵJi,j,r.

Having computed all momentum integrals, our expression is now given
in terms of various powers of Πµ and χ. Expanding these in terms of scales
and feynman parameters can easily be achieved using computer algebra, and
so we are left with integrating the Feynman parameters that arise.

2.5.5 Feynman Parameter Monomials

We can observe from the discussion of section 2.5.4 that our expression is
given in terms of only positive powers of χ and Π. Therefore, when we
use equations (2.5.20) and (2.5.19) to expand these functions in terms of
the momenta and masses we will always end up with polynomials in the
Feynman parameters. The remaining, quite tractable task is to integrate
monomials of these parameters over the Feynman parameter space. Here
we will deal with n Feynman parameters, where in our practical application
n = r − 1. We can see that for any monomial of Feynman parameters,
integrating over x0 simply implements the delta function constraint. That
is, defining An as

An = 1− (x1 + · · ·+ xn), (2.5.31)
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then we make the substitution x0 = An. The result is still a polynomial
in the Feynman parameters x1, . . . , xn, so we have to be able to perform
integrals of the form

X({j}) =
∫

dx1x
j1
1

∫
dx2x

j2
2 · · ·

∫
dxnx

jn
n , (2.5.32)

where {j} is the set of powers associated with each Feynman parameter and
the integral over xi is from 0 to Ai−1. To perform this integral, let us first
observe that

∫
dxnx

i
nA

j
n = Ai+j+1

n−1

j∑

m=0

(
j

m

)
(−1)m

i+m+ 1
, (2.5.33)

where we have pulled xn out ofAn using the binomial theorem and integrated
over xn. Whilst this might seem peculiar, if we consider the case i = jn and
j = 0 we have just solved the innermost integral in such a way that the next
integral we have to perform looks again like the LHS of equation (2.5.33).
In this way, we can use this formula to recurse through all of the integrals.

We can further simplify the RHS of (2.5.33) by casting it as a simple
integral

j∑

m=0

(
j

m

)
(−1)m

i+m+ 1
= (−1)i

∫ 0

−1
dxxi(1 + x)j ≡ Fi,j. (2.5.34)

We can perform this integral by using IBP to recurse to F0,i+j which is
simple to evaluate, i.e.

Fi,j = (−1)i
∫ 0

−1
dxxi(1 + x)j = −(−1)i

i

j + 1
Fi−1,j+1 =

F0,i+j(i+j
i

)

=
1

(j + i+ 1)
(i+j

i

) .
(2.5.35)

To find a simple form forX({j}) we first use equation (2.5.33) to perform
all n Feynman parameter integrals. Next we write it in the simplified form
of equation (2.5.35) at which point we notice that it is in the form of a
telescoping product

X({j}) =
n−1∏

i=0

[(

i+ 1 +
i∑

m=0

jn−m

)(
i+
∑i

m=0 jn−m

jn−i

)]−1

=

∏n
i=1 ji!

(n+
∑n

i=1 ji)!
. (2.5.36)
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In equation (2.5.36) we have now solved all arising full Feynman parameter
integrals in such a way that we only need to replace them with a number. At
this point we have performed all integrals over auxilliary parameters, be they
momenta or Feynman parameters and so we now have the expressions for
the R2 components simply as linear combinations of tensor/gamma matrix
structure.

2.6 Checks

For all of the vertices in figure 2.3 we performed two different calculations
of the R2 component. The first is as described in this chapter. The second
was performed by separating the R2 contributing integrals before Feynman
parameterization which were then independently calculated. The two cal-
culations gave identical results, which we present in appendix A.3.

A further check can be performed by considering the difference between
FDH/DRed (λHV = 0) and DR (λHV = 1). Noticably, the Feynman rules
with external gluons are devoid of λHV . We can see that this should be the
case by considering the following argument. Firstly, we note that at NLO
the difference between FDH and DR can be understood as a shift in the
coupling constant αS , such that

(αS)FDH = (αS)DR [1 + c · (αS)DR] , (2.6.1)

for some constant c. This shift in coupling constant is relevant to physical
combinations, for example we could consider the inclusive cross section in
one scheme, and convert it to the other by using equation (2.6.1). However,
within HEFT, αS enters for the first time at one-loop level. Therefore,
employing equation (2.6.1) leads to no change at O(A·αS). That is, physical
combinations are the same between DR and FDH. For this reason the R2

diagrams with external gluons do not depend on λHV . Considering the
Hqq̄ vertex, we see that it vanishes on-shell, so its λHV dependence is of no
concern. Moreover, we are required that the physical combination

+ + ,

does not depend on λHV , which we have verified.
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2.7 HEFT Phenomenology

The R2 vertices which we present in appendix A.3 were published in [63]
and [64], where they were used to perform studies of Higgs phenomenol-
ogy. As stated at the beginning of this chapter, it is currently of immense
importance to study Higgs properties and one fundamental question is the
CP nature of the Higgs/top-quark coupling, i.e. whether the Higgs couples
to the top quark as a scalar or pseudo-scalar. At the LHC, to be able to
study the CP properties of the Higgs/top-quark interaction one must focus
on Higgs production as the decay modes involving top quarks cannot be ef-
fectively studied. Further to this, one must design CP sensitive observables
to be able to extract these properties from the production rates. In inclusive
Higgs production one needs to consider a final state with at least two jets
to be able to construct such observables. This is because information on
the CP properties of the interaction is encoded in the jet correlations. The
aim of the work of [64] was to make studies of these CP sensitive observ-
ables to NLO precision in QCD and was performed in the context of the
MadGraph5 aMC@NLO framework. This implies the ability to perform
NLO corrections to ttH and gluon fusion. The first requires the standard
QCD R2 counterterms known for a long time [65], but as gluon fusion is a
loop induced process, to perform NLO studies in a one-loop generator we
must work in the effective field theory framework of this chapter and so we
require its corresponding R2 counterterms. In the following we will discuss
the results obtained in [64] made possible by the calculations of this thesis
- the gluon fusion-like production channels.

The framework employed was to consider Higgs + jet(s) production
whilst parameterizing the CP properties of the Higgs using a linear com-
bination of the scalar and pseudoscalar effective field theories. Specifically
we use

L = −
1

4

[
cαgH Ga

µνG
a,µν + sαgA Ga

µνG̃
a,µν
]
X0 , (2.7.1)

as we are only considering NLO QCD corrections. Here, sα and cα are
the sine and cosine of a mixing angle α and X0 is a general scalar boson,
identified with the SM Higgs in the limit α = 0. This framework allows us
to easily investigate three different characteristic scenarios as presented in
table 2.1 - pure scalar (0+), pure pseudoscalar (0−) and (maximally) mixed
(0±).

With this physics aim, studies were carried out inMadGraph5 aMC@NLO,
simulating events for the LHC at a center of mass energy of

√
s = 8 and 13 TeV

with the mass of the X0 resonance at 125 GeV. Parton density functions
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scenario parameter choice

0+(SM) cα = 1

0− cα = 0

0± cα = 1/
√
2

Table 2.1: Studied scenarios for gluon fusion.

were evaluated in the NNPDF parameterization [66]. The sources of un-
certainty within this simulation are from missing higher order corrections,
PDF uncertainty and uncertainty on the measurement of αS . The PDF
uncertainty in NLO predictions is computed along with the uncertainty in
αS(mZ) according to [14] with αS(mZ) taken to be distributed as a gaussian
around

α(NLO)
S (mZ) = 0.1190 ± 0.0012 (68% C.L.), (2.7.2)

according to [67, 68]. For leading order this is not possible, so the uncertainty

comes solely from the PDF and a fixed α(LO)
S (mZ) = 0.130 is taken [69, 70].

The uncertainty from the missing higher order corrections is estimated by
scale variation - specifically µR and µF are varied independently by a factor
of 2 around a central scale µ0. This central value is given by µ0 = HT /2,
where HT is the sum of the transverse masses of the particles in the final
state. Parton shower and hadronisation was achieved with HERWIG6 [71]
and the employed jet algorithm was anti-kT [72] as implemented in FastJet

[73]. Finally, the imposed acceptance cuts were

pT (j) > 30 GeV, |η(j)| < 4.5. (2.7.3)

We begin by stating the results for inclusive cross sections for Higgs
plus jet production for gluon fusion. We present the leading order, next
to leading order (NLO) and NLO with parton shower for Higgs + jet and
Higgs + 2 jets in tables 2.2 and 2.3 respectively. Here the acceptance cuts
of equation (2.7.3) were imposed. The number in brackets is the integration
error, the first uncertainty comes from scale variation and the second from
the combined PDF+αS uncertainty.

Let us make a few observations. Firstly, the ratio σNLO/σNLO+PS is
∼ 0.85 as the extra radiation generated by the parton shower spreads the
energy of the unshowered partons such that there are more events which
fail to pass the acceptance cuts. Effectively the reconstructed jets after
the parton shower are different to those from the fixed order prediction.
Secondly, the mixed scalar/pseudoscalar scenario, 0± is equal to the average
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scenario σLO (pb) σNLO (pb) σNLO+PS (pb)

0+ 4.002(4) +46.8
−29.6 ±3.3% 5.484(7) +17.0

−16.8 ±1.2% 4.618 +21.8
−18.8 ±1.2%

LHC8 0− 9.009(9) +46.8
−29.6 ±3.3% 12.34(2) +17.1

−16.8 ±1.2% 10.38 +21.7
−18.8 ±1.2%

0± 6.511(6) +46.8
−29.6 ±3.3% 8.860(14) +16.9

−16.8 ±1.2% 7.474 +21.7
−18.8 ±1.2%

0+ 10.67(1) +41.7
−27.5 ±2.6% 14.09(2) +16.2

−14.9 ±1.1% 12.08 +19.8
−16.7 ±1.0%

LHC13 0− 24.01(2) +41.7
−27.5 ±2.6% 31.67(6) +16.2

−14.9 ±1.1% 27.14 +20.3
−16.4 ±1.0%

0± 17.36(2) +41.7
−27.5 ±2.6% 22.83(3) +16.2

−14.9 ±1.1% 19.59 +19.5
−16.6 ±1.0%

Table 2.2: LO and NLO cross sections for X0 + 1 jet at the 8- and 13-TeV
LHC, for the three scenarios defined in table 2.1. The K factor, σNLO/σLO
is ∼ 1.35. The integration error in the last digit(s) (in parentheses), and
the fractional scale variation (left) and PDF(+αs) (right) uncertainties are
also reported. In addition to fixed-order results, the PS-matched NLO cross
sections and are shown displaying an R factor, σNLO+PS/σNLO of ∼ 0.85.

of the pure scalar and pure pseudoscalar scenarios. This implies that there
are no interference effects.

Now that we see that the CP properties of the Higgs/top-quark inter-
action can affect the inclusive cross section, we move to the discussion of
distributions. Here we wish to discuss jet-jet correlations as they are known
tools to determine Higgs CP properties. We begin with figures 2.5 and 2.6.
Here we present shape comparisons for both the rapidity, η, and transverse
momentum, pT , distributions of the scalar boson X0 and the leading jet re-
spectively. We first apply only the acceptance cuts and then we cut on the
invariant mass of the jet system, discarding events with m(j1, j2) < 250GeV
and m(j1, j2) < 500GeV. This cut is more typically associated with vector
boson fusion, because it leads to enhancement of the t-channel contributions.
This is because, kinematically, strongly forward and backward jets make up
the majority of the high m(j1, j2) events which this cut selects for. In this
case it leads to the enhancement of contributions which are more sensitive
to the CP properties of X0. In making this cut we can see that propor-
tion of events with hard X0 pT increases, and the resonance is produced
increasingly centrally. In parallel the leading jet is produced more and more
forward/backward as expected due to the enhancement of the t-channel con-
tributions. However, in these two figures we see that these observables do
not provide any discriminatory power between the three scenarios, though
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scenario σLO (pb) σNLO (pb) σNLO+PS (pb)

0+ 1.351(1) +67.1
−36.8 ±4.3% 1.702(6) +19.7

−20.8 ±1.7% 1.276 +29.4
−23.9 ±1.7%

LHC8 0− 2.951(3) +67.2
−36.8 ±4.4% 3.660(15) +19.1

−20.6 ±1.7% 2.755 +29.8
−24.1 ±1.8%

0± 2.142(2) +67.1
−36.8 ±4.4% 2.687(10) +19.6

−20.8 ±1.7% 2.022 +29.7
−24.1 ±1.8%

0+ 4.265(4) +61.5
−34.9 ±3.3% 5.092(23) +15.4

−17.9 ±1.2% 4.025 +23.9
−21.3 ±1.2%

LHC13 0− 9.304(9) +61.6
−34.9 ±3.4% 11.29(4) +16.0

−18.2 ±1.2% 8.701 +24.6
−21.6 ±1.3%

0± 6.775(6) +61.5
−34.9 ±3.3% 8.055(35) +15.8

−18.2 ±1.2% 6.414 +24.4
−21.5 ±1.2%

Table 2.3: Same as table 2.2, but for X0 + 2 jets. Here the K factor,
σNLO/σLO, is ∼ 1.22 and the R factor, σNLO+PS/σNLO is ∼ 0.77

this is expected. Now moving to figure 2.7 we see distributions for the rapid-
ity difference of the jets, ∆η, and the difference in azimuthal angle, ∆φ. In
general it is expected that these will be sensitive observables for the CP na-
ture of the Higgs/top-quark coupling, however the rapidity difference offers
little discriminatory power. On the other hand, the difference in azimuthal
angle does exhibit different shapes in each scenarios, with the difference be-
coming more pronounced under the cuts on m(j1, j2). Most interestingly
is that reordering the jets in pseudorapdity, as opposed to the usual pT jet
ordering, strengthens this difference.

In conclusion, it is confirmed through these results that the difference in
azimuthal angle between the two jets in in Higgs + 2 jets production is a
sensitive probe of the CP nature of the Higgs/top-quark coupling.
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Figure 2.5: Normalized distributions (shape comparison) in pT and η of
the resonance X0, with the acceptance cuts for jets (top), plus m(j1, j2) >
250 GeV (centre) and 500 GeV (bottom). The three spin-0 hypotheses are
defined in table 2.1.
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Figure 2.6: Same as fig. 2.5, but for the leading jet.
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Figure 2.7: Same as fig. 2.5, but for ∆η and ∆φ distributions between the
two tagging jets. For ∆φ, the distribution with the additional η jet ordering
is also shown by a dashed line for the 0± case.
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Chapter 3

The FDR Approach to QFT

Calculations in perturbative quantum field theory are notoriously difficult.
Working in a theory such as QCD and trying to make precise predictions
for processes at hadron colliders such as the LHC is a daunting prospect.
Processes that require high precision beget higher loop integrals that are
technically demanding and currently cannot be performed in any general
way. Processes that have large numbers of legs exhibit a great deal of com-
plexity through large algebraic expressions, which the community has only
recently begun to be able to handle.

An interesting question to ask in all of this complication is how much
we are limited by our current tools. One of the immediate technical difficul-
ties that one finds in perturbative calculations is handling the intermediate
infinitees that arise in the calculations. The standard method of doing this
is to use dimensional regularization (DR)[16] alongside a suitable renormal-
ization procedure. We analytically continue our integrals to n dimensions
and then in order to obtain finite results as n → 4 we renormalize the the-
ory, introducing counterterms or subtractions. All of this is a great deal
of intermediate work. What’s more, a regularization scheme defined in a
continuous number of dimensions is not immediately amenable to numerical
approaches.

FDR or “Four/Finite Dimensional Regularization/Renormalization” [23]
is a new technique for performing calculations in Quantum Field Theory
aiming to provide a solution to these problems by defining a purely 4-
dimensional integral. It provides all of the important properties of a “good”
regulator such as preserving gauge and shift invariance [23, 74] of the inte-
gral whilst also providing new features such as remaining in a fixed number
of dimensions and not needing counter-terms.
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When attempting to automate one loop calculations the complexity be-
comes a limiting factor. Standard techniques for dealing with this complex-
ity manipulate the n-dimensional calculation in 4-dimensions as much as
possible. Amplitude reduction techniques at one loop, such as OPP and
generalized unitarity are based (in their most frequent uses) on performing
the difficult 4-dimensional part first and then afterwards recovering extra
terms1 resulting from the n-dimensional nature of the regularization. In the
context of generalized unitarity, to help this endeavour, a new flavour of
dimensional regularization, FDH [26, 75], was introduced to aid this effort
even further. FDR, then, is a natural conclusion of keeping this work in four
dimensions.

In principle the reason for using methods based upon dimensional con-
tinuation has been one of necessity. DR was the first method available that
preserved both the gauge invariance and unitarity of the calculation and no
other method had succeeded beyond one loop. For this reason we have only
seen success in different flavours of dimensional continuation. FDR, despite
not being a dimensional method, has been possible because of inspiration
from many years of experience with DR. We imagine that we could define a
4-dimensional multi loop integration,

∫
[d4q1] · · · [d4ql]J(q1, · · · , ql). (3.0.1)

In order to be a good definition of integration which respects gauge invari-
ance, we must satisfy a number of properties. It must

• Be coincident with normal integration for UV finite integrals.

• Be independent of any UV cutoff, but dependent on the renormaliza-
tion scale µR.

• Be invariant under the shift of any integration variable:
∫

[d4q1] · · · [d4ql]J(q1, · · · , ql)

=

∫
[d4q1] · · · [d4ql]J(q1 + p1, · · · , ql + pl).

(3.0.2)

1Historical note - trying to solve this difficulty was one of the original motivations for
FDR.
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• Maintain simplifications between numerators and denominators:

∫
[d4q1] · · · [d4ql]

q2i −M2
i

(q2i −M2
i )

m · · ·

=

∫
[d4q1] · · · [d4ql]

1

(q2i −M2
i )

m−1 · · ·
.

(3.0.3)

The FDR integral is such a definition. In the following chapter we shall
discuss how FDR realizes these properties all in a manner that is UV finite
by construction, and in 4-dimensions.

3.1 A Practical Exposition

In order to start to understand the FDR approach and introduce a number
of the concepts required, we will begin with a practical example. This way,
one can see where all of the elements come in, step by step. Then, in the
following sections, we shall explain each idea in much greater detail. As
our example, we shall consider the gluonic contribution to the 1-loop gluon
propagator corrections

µ ν

p

q

q + p

=
gµν(q2 + p · q + 5/2p2)− pµpν + 5qµqν + 5

2q
µpν + 5

2p
µqν

q2(q + p)2
. (3.1.1)

Here we have suppressed the regulation in (3.1.1) in order to now em-
phasise what it means to regulate in FDR. When interpreted in the FDR
sense we write the regulated form as

∫
[d4q]

gµν(q2 + p · q + 5/2p2)− pµpν + 5qµqν + 5
2q

µpν + 5
2p

µqν

q2(q + p)2
, (3.1.2)

where for notational convenience we write

(q + p)2 ≡ q2 + p2 + 2q · p and q2 = q2 − µ2. (3.1.3)
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The FDR treatment demands that here we introduce a fictitious mass to
each propagator through q2 → q2 = q2 − µ2. Crucially, for this process to
be consistent and to keep gauge invariance this must also be performed in
the numerator. To be clear, the q2 in both the numerator and denominator
have been promoted to q2. This is known as the global prescription. To
proceed, one now uses the standard techniques of reconstructing numerators
in terms of denominators. This gives us

∫
[d4q]

1

q2(q + p)2

(
2gµνp2 − pµpν + 5qµqν +

5

2
qµpν +

5

2
pµqν

)
(3.1.4)

We note that the global prescription results in the q2 exactly cancelling with
the denominator. What is more, dot products cancel without creating any
µ2 like terms because

q · p =
1

2

(
(q + p)2 − q2 − p2

)
. (3.1.5)

Finally, we have been able to set a number of integrals to zero. This is for
two different reasons. Firstly, UV divergent scaleless integrals are zero in
FDR, i.e. ∫

[d4q]
1

q2α
= 0, (α < 2). (3.1.6)

Secondly, FDR integrals are shift invariant, in our case allowing us to write
∫
[d4q]

1

(q + p)2
=

∫
[d4q]

1

q2
= 0. (3.1.7)

At this point we are left with tensor integrals that have loose indices
and so we need to use Passarino-Veltman reduction (PV) in FDR. For the
rank 1 integral there are no surprises and the direct analogue to the DR
calculation follows, i.e.

∫
[d4q]

qµ

q2(q + p)2
= −

pµ

2

∫
[d4q]

1

q2(q + p)2
. (3.1.8)

The rank 2 PV reduction, however, does not proceed in direct coincidence
with the DR calculation. Our starting point is the analogous

∫
[d4q]

qµqν

q2(q + p)2
= Agµν +Bpµpν . (3.1.9)

In the FDR calculation, contracting with the metric tensor leads to
∫

[d4q]
q2

q2(q + p)2
=

∫
[d4q]

µ2

q2(q + p)2
= 4A+ p2B. (3.1.10)
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Note that qµqνgµν = q2 ̸= q2. This means that, unlike that which one finds
in the DR calculation, the integrals of (3.1.10) are non-zero. We end up
with an integral with µ2 in the numerator. These integrals are known as
extra integrals and are crucial for maintaining gauge invariance. What’s
more, in FDR gµνgµν = 4. From here, the logic of PV is entirely standard
and leads us to the result of

∫
[d4q]

qµqν

q2(q + p)2

=

∫
[d4q]

1

q2(q + p)2

[
p2gµν

(
−

1

12
+

1

3

µ2

p2

)
+ pµpν

(
1

3
−

1

3

µ2

p2

)]
.

(3.1.11)

Inserting these results into the expression for our gluonic diagram, (3.1.4),
we find the result
∫

[d4q]
1

q2(q + p)2

[
p2gµν

(
19

12
+

5

3

µ2

p2

)
− pµpν

(
11

6
+

5

3

µ2

p2

)]
. (3.1.12)

To demonstrate the gauge invariance of the method we must calculate a
gauge invariant set of diagrams, so we also add in the ghost contribution

µ ν

p

q

q + p

=

∫
[d4q]

1

q2(q + p)2

[
p2gµν

(
1

12
−

1

3

µ2

p2

)
+ pµpν

(
1

6
+

1

3

µ2

p2

)]
, (3.1.13)

where the momentum routing follows the fermion lines. The sum is the
manifestly gauge invariant result

∫
[d4q]

p2gµν − pµpν

q2(q + p)2

[
5

3
+

4

3

µ2

p2

]
. (3.1.14)

We are now left with the final task of evaluating this scalar integral in
FDR. The FDR integral can be defined in two different, but equivalent ways.
Firstly we can define it through the subtraction of the FDR vacuum, found
through the FDR defining expansion. Alternatively we can perform
the defining expansion directly, throwing away scaleless integrals, until all
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integrals are manifestly UV finite and so can be performed in 4 dimensions.
For the moment, we shall simply state that the above integral can be defined
through the relation

∫
[d4q]

1

q2(q + p)2
≡ lim

µ2

∫
dnq

µϵR

(
1

q2(q + p)2
−

1

q4

)

= −iπ2
(
log

p2

µ2
R

− 2

) (3.1.15)

Similarly, the extra integral can be defined through (throwing away trivially
zero terms in DR)

∫
[d4q]

µ2

q2(q + p)2
≡ lim

µ2

∫
dnq

µϵR

(
µ2

q2(q + p)2
−

4(q · p)2µ2

q8

)

= −
iπ2

3
p2.

(3.1.16)

Here we have used the notation limµ2 to indicate that we should remove the
fictitious mass taking the limit µ2 → 0 apart from where we find a fictitious
IR divergence and here we trade µ2 → µ2

R. This is how the renormalization
scale enters in FDR.

3.2 The Main Ingredients

3.2.1 Global Prescription

After writing down the expression corresponding to a Feynman diagram
taking gµνgµν = 4, the first step in an FDR calculation is to introduce the
fictitious mass µ2. One of the defining features of FDR is that it maintains
the gauge invariance of the original theory. It does this by maintaining
the cancellation structure of the unregulated Feynman integrals. However,
introducing the fictitious mass in the denominator alone would break gauge
invariance - so we must consistently introduce the mass into the numerator.
More technically speaking, we must introduce the fictitious mass such that
cancellations are maintained in any equivalent form.

The process amounts to “barring” all squared momenta that come from
Feynman rules. To begin, let us consider the style of integral that could
appear in a purely bosonic calculation. Here this process is quite simple,
and we can also easily see why it is important. Consider the unregulated
integrand

q2 − 4qµqν

(q2 −m2)3
. (3.2.1)
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Here it is understood that the q2 has come from Feynman rules. To regulate
this in FDR one must consistently perform the deformation of introducing
the fictitious mass, therefore the regulated form is given by

∫
[d4q]

q2 − 4qµqν

(q2 −m2)3
. (3.2.2)

When one performs Passarino-Veltman reduction on the above integral, the
result is non-zero, ∫

[d4q]
−µ2

(q2 −m2)3
. (3.2.3)

This is an “extra integral”, a constant at one loop that is required to main-
tain gauge invariance (see section 3.2.3).

If we now move to a theory with fermions it is naively less clear how to
promote q2 → q2 as the numerator is written in terms of a string of gamma
matrices. The guiding principle here is that we should have all representa-
tions of the numerator resulting in the same global prescription. Consider a
diagram with an internal fermion loop. Here the gamma matrices are traced
over, and once the trace is computed we find ourselves in a situation with
q2 once again. In this traced form it is now clear how to “bar” the q2. If we
wish to do this without performing the trace then the following algorithm
can be employed to give the same results2. For a given trace where all in-
ternal indices have been summed over, find the first loop momenta /q and
promote it to /q±µ where the sign is arbitrary. The next /q is then promoted
with a sign that is alternated depending on the number of enclosed gamma
matrices. Explicitly we can write this as

(· · · /qγα1 · · · γαn/q · · · ) = (· · · (/q ± µ)γα1 · · · γαn(/q ∓ (−1)nµ) · · · ). (3.2.4)

Where the intervening gamma matrices could (but need not) be contracted
with appropriate tensors. The next /q is promoted according to the number
of γ between it and the preceding /q and we continue with all /q. The above
algorithm also can be shown to work for strings of gamma matrices which are
not traced over. This is because one can write a string of gamma matrices
as a trace.

When moving to two loops the prescription is more complicated because
of the variety of possible products between loop momenta which need to
maintain their cancellation structure. As it is possible to write diagrams

2This only applies in a situation where there is a single fermion line, if there are multiple
that are connected the situation is more complicated, see [74].

48



in terms of local propagators depending on loop momenta as q1, q2 and
q12 = q1+ q2 then we have three different squares which we need to promote
- q21 , q

2
2 and q212. There also exist three scalar products between these loop

momenta, but these are all linearly dependent on the squares, for example

q1 · q2 =
1

2

(
q212 − q21 − q22

)
. (3.2.5)

In a purely bosonic calculation it suffices to write the (sub-)amplitude in
terms of these squares and promote them. Here we point out a confusing
case. Consider the factorizable integrand

q1 · q2(
q21 −M2

) (
q22 −M2

) . (3.2.6)

Here we do not rewrite q1 · q2 in terms of squares and then promote because
there is no cancellation possible. From the perspective of rewriting in terms
of squares we would see that the q212 term does not cancel.

A subtlety in promoting q2i → q2i = q2i − µ2 at two loop is related to
maintaining the algebraic consistency of the global prescription. As ex-
plained more completely in section 3.2.3, whilst there is only one µ2 we
must keep a record of the origin of the µ2 in order to make a consistent
defining expansion. At a practical level3 this means that (notationally) our
promotion in the numerator occurs as q2i → q2i = q2i − µ2

i .
In order to correctly regulate fermions at two loops we must once again

work algorithmically. To make this discussion concrete, consider the follow-
ing trace in the numerator

Γµν = Tr
(
/q1γ

µ
/q1 /q2γ

ν
/q2.
)

(3.2.7)

After global prescription we find

Γ
µν

= Γµν + µ2
1 Tr

(
γµ /q2γ

ν
/q2
)
+ µ2

2Tr
(
/q1γ

µ
/q1γ

ν
)

+ µ2
1µ

2
2 Tr (γ

µγν)− 16µ̃2
12q

µ
1 q

ν
2 ,

(3.2.8)

where µ̃2
12 = 1

2

(
µ2
12 − µ2

1 − µ2
2

)
. This is obtained by first replacing, one

after the other, q1 → q1 and q2 → q2. Then we simultaneously apply these
replacements and subtract any double counting. The resulting µ1µ2 term is
then realized as µ2

12. When making these replacements one should adhere
to the rule of equation (3.2.4) to determine the signs of the µi.

3Even more practically speaking, without external fermions this is not a distinction one
has to care about when performing the global prescription. Without external fermions
one can simply perform the cancellation without extra µ2

i terms appearing.
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Whilst this completes the definition of the global prescription, this method
is not necessarily the easiest to implement. At a practical level, as packages,
such as FORM[62], are available to easily perform the traces over fermion
lines, the simplest form of the algorithm is given by

1. Trace all internal fermion loops.

2. Rewrite all loop momenta scalar products as squares and reconstruct
these squares in terms of denominators.

3. Perform the FDR µ2 deformation, now only in the denominator4.

If we also have external fermions as we cannot trace we have the extra step
of performing the global prescription along this line. This can be simply
performed as

4. Anti-commute /qi such that all possible applications of /qi /qi = q2i are
made

5. At two loops, make the substitution /q1 /q2 → /q1 /q2 − µ̃2
12.

It is possible to perform the anti-commutation of step 4 before global pre-
scription as it results in simply another equivalent representation. It is
sufficient to perform step 5 as by performing the anti-commutation the only
remaining string of gamma matrices involving loop momenta are either sin-
gle /qi or /q1 /q2. This is the approach used in section 4.5.

3.2.2 The FDR Defining Expansion and Renormalization

Whilst all manipulations in FDR are valid in 4 dimensions and so standard
strategies of reduction to master integrals are still valid within the technique,
eventually one arrives at the point of needing to calculate these integrals.
At this point one must reach for the definition of the FDR integral. The
FDR integral is defined by using partial fractions/stepwise Taylor expansion
identities to remove the large momentum configurations. At one loop the
operative identity is

1

(q + p)2 −M2
=

1

q2

[
1 +

M2 − 2q · p
(q + p)2 −M2

]
(3.2.9)

As one can see, the first term on the RHS depends on no scales, and the
second term on the right hand side is more UV convergent - this is no

4For no external fermions, there are no longer any places to perform it in the numerator.
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accident. To understand what we are doing here, consider expanding a
propagator in the large q2 limit (taking p = 0 for simplicity)

1

q2 −M2
=

1

q2
1

1− M2

q2

=
1

q2

(

1 +
M2

q2
+

(
M2

q2

)2

+ · · ·

) (3.2.10)

Obviously within our integral this is not exact as q2 is not always large.
However, we can see that each term, by power counting, is progressively
more and more UV convergent. Note that as this is a geometric series, we
can factor out an appropriate power of M2/q2 at any point allowing us to
resum

=
1

q2

(
1 +

M2

q2

(
1 +

(
M2

q2

)
+ · · ·

))
(3.2.11)

=
1

q2

(
1 +

M2

q2 −M2

)
. (3.2.12)

We now end up with the form of equation (3.2.9). From this argumentation
we can see what equation (3.2.9) is doing - in effect we are separating out
UV divergent pieces. What’s more, repeated application of (3.2.9) will have
the effect of resumming further down the series. The FDR integral is de-

fined through this operation - we expand an integrand into manifestly UV
divergent and convergent parts and then throw away the UV divergence.
Crucially we can achieve this without introducing any IR divergences that
are worse than logarithmic. The simplest example is

I =

∫
[d4q]

1

(q2 −M2)

=

∫
[d4q]

(
1

q2
+

M2

q2(q2 −M2)

)

=

∫
[d4q]

(
1

q2
+

M2

q4
+

M4

q4(q2 −M2)

)

=

∫
[d4q]

M4

q4(q2 −M2)

(3.2.13)

In the final line we have used the fact that scaleless UV divergent integrals
in FDR are zero.

51



Notice that in performing this expansion we have introduced a fictitious,
logarithmic, IR divergence. This is a general statement in FDR, by removing
the UV divergences we introduce fictitious IR ones. What is the origin of
this divergence? Consider the logarithmic scaleless integral which we just set
to zero. Our aim is to remove all UV divergences in a gauge invariant way.
Working at the integrand level, the defining expansion manifestly maintains
gauge invariance, but there is a problem with discarding logarithmically UV
divergent integrals. Let us investigate by parameterizing this via a cut off

∫

Λ

1

q4
=

∫ Λ

0

1

(q2 − µ2)2
. (3.2.14)

Note that this integral contains more than just a UV divergence, it contains
the IR divergence as µ → 0. Our aim, however, is to only throw away the
UV divergences. To do this, without introducing any IR divergences we only
want to throw away the high frequency components of this integral. Sepa-
rating the high momentum region from the low momentum region requires
a separation scale, which represents an arbitrariness in how we remove our
divergences. This is where the renormalization scale, µR, enters. Performing
this split we find

∫ Λ

µR

1

(q2 − µ2)2
+

∫ µR

0

1

(q2 − µ2)2
. (3.2.15)

Our intention is to only throw away the first term. Once we have arranged
our calculation to be IR convergent (through making our calculation “suffi-
ciently inclusive”) we can exploit this. The fictitious divergences we create
correspond exactly to the IR divergence of (3.2.15). Therefore, reintroduc-
ing the IR divergence of the (3.2.15) is equivalent to trading µ for µR in the
fictitious divergence. This mechanism can be shown to apply at all orders
in perturbation theory.

We did not just throw away a logarithmic integral, however. We also
threw away a quadratically divergent vacuum integral. How do we interpret
this? Similarly to the logarithmic case, we are free to throw away the UV
behaviour. However, here we lack the previous problem in the IR. In the
IR the integral behaves as µ2 and so falls to 0 in the limit µ2 → 0. We
therefore see a general strategy - we can completely remove UV divergences
and only consider the finite part by taking µ2 → 0 and trading µ → µR

where we find a fictitious IR divergence. In FDR, polynomial divergences
decouple completely and UV divergences leave behind a dependence on the
renormalization scale.
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One may wonder how the discarding of the vacuum relates to a canoni-
cal picture of counterterms and order by order renormalization. Naturally,
one must be able to view the FDR procedure at any given order of per-
turbation theory from the perspective of counterterms, even though their
explicit calculation is unnecessary. We understand that this is the case as
the method renders amplitudes finite in a gauge invariant and unitary way.
However, we shall see in chapter 4 that for this to be true the discussion
of the global prescription we made in section 3.2.1 is incomplete without a
further “sub-prescription” which we present in section 4.4.

3.2.3 Extra Integrals

“Extra integrals” in FDR are integrals with a µ2 in the numerator. These
terms are necessary to maintain gauge invariance and are defined through
the need to be algebraically consistent. Consider the extra integral

gµν
∫

[d4q]
−µ2

(q2 −M2)3
=

∫
[d4q]

(
gµν

(q2 −M2)2
+

gµνM2 − 4qµqν

(q2 −M2)3

)
.

(3.2.16)
We can see that though naively one would drop these extra integrals as
µ2 → 0, this is inconsistent with the right hand side of (3.2.16). Here, the
implication is that these integrals must be expanded as if the µ2 were a q2.
This is made more intuitive by writing the above as

gµν
∫
[d4q]

µ2

(q2 −M2)3
= −

∫
[d4q]

q2 − 4qµqν

(q2 −M2)3
. (3.2.17)

Typically one will want to calculate these through the following trick of
converting them into vacuum integrals, resulting in a simple calculation.
Consider the following integral as an example of the mechanism

∫
[d4q]

µ2

(q2 −M2)3
= lim

µ2→0
µ2
∫

dnq

(
1

(q2 −M2)3
− V6

[
1

(q2 −M2)3

])
,

(3.2.18)
where we use the notation V6 to note that once the µ2 is factorized out,
we find the vacuum part of the integrand as if it were in 6 dimensions.5

The first term on the RHS is manifestly zero as there is no IR divergence as
µ2 → 0. The second term is to be expanded performing the expansion as if

5This is reminiscent to the idea of representing q̃2 integrals as “dimensionally shifted”
integrals in DR.
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the µ2 was a q2. Computing this we find:
∫

[d4q]
µ2

(q2 −M2)3
= −

∫
d4q

µ2

q6
, (3.2.19)

where we have directly taken n → 4 as the integral is UV finite. This is now
a rather simple integral to perform. At any loop order one can see that a
similar treatment is always available. The vacuum structure of an n loop
integral, due to the defining expansion, is always in terms of n loop vacuum
bubbles and arbitrary integrals in up to (n−1) loops. This indicates that the
calculation of the extra integrals is always a degree easier than computing
the other integrals. For this reason they are often regarded as trivial. At
one loop we can see that all extra integrals are given by constants. Further,
at one loop one can see a relationship between the extra integrals in FDR
and the ϵ-dimensional integrals in DR, for example

∫
dnq

q̃2

(q2 −M2)3
= −

∫
[d4q]

µ2

(q2 −M2)3
. (3.2.20)

This holds true at one loop for any naive swapping of µ2 → −q̃2.
When extending to two loop the same logic as in the one loop case

applies. However, for reasons very similar to that demonstrated in equation
(3.2.16) the µ2 at two loop must now be labelled to indicate to which loop
momenta it corresponds. That is the label tells us if we should expand as if
it were a q1, q2 or q12 (as these expansions are not the same). For example,
this means that:

∫
[d4q1][d

4q2]
µ2
1

D
3
1D2D12

̸=
∫

[d4q1][d
4q2]

µ2
2

D
3
1D2D12

̸=
∫

[d4q1][d
4q2]

µ2
12

D
3
1D2D12

,

(3.2.21)

where Di = q2i − M2
i , as the differing expansions give different results for

each µ2
i . It should be noted that when calculating the extra integrals at two

loop using this trick to relate them to the “negative vacuum”, as in equation
(3.2.18), we find that term by term the integrals are not UV convergent -
only the resultant expression is.

3.2.4 Power Counting at 2-Loop

In order to be able to perform an FDR defining expansion at two loops, one
needs to have a solid understanding of when the integrals are convergent and
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when they are divergent. The principal tool that we have for this is power
counting. At one loop this situation is quite simple. Consider the integrand

J =
qµqν

(q2 −m2)2
. (3.2.22)

To understand whether or not this integral is divergent we consider what
happens in the large loop momentum limit. One can see that this can be per-
formed by simply counting the “power” of q. If this power is sufficiently large
then the integral diverges, and below a dimensionality dependent threshold
it converges. In this example the numerator contributes +2 and the denomi-
nator contributes −4. Interpreting this as a 4-dimensional Feynman integral
then the measure of phase space also contributes +4. This integral therefore
has a degree of divergence of +2, commonly referred to as “quadratically
divergent”. At one loop we calculate our discriminant α through

α = (Power of q in denominator)− (Power of q in numerator) . (3.2.23)

In 4 dimensions our integral is convergent if and only if α > 4.
When moving to 2-loop this logic becomes more complicated. There

is more than a single way for the large momentum behaviour to cause the
integral to diverge. It is enough6 to consider the two loop vacuum bubble
with equal internal masses M

1

(q21 −M2)α1/2(q22 −M2)α2/2(q212 −M2)α12/2
(3.2.24)

Here our two loop momenta are q1 and q2 with their sum cast as q12 = q1+q2.
The operative question is for what values of {αi} is this integral divergent?
First we consider all loop momenta to be large. Assuming that we are
working in a 4-dimensional theory, then parameterizing with a cutoff Λ, the
large momentum behaviour is

Λ8−(α1+α2+α12). (3.2.25)

If this exponent is non-negative, then the integral is said to be “globally
divergent”. We also have to consider the case where one loop momentum is
larger than another. This can happen in three ways, but can be exemplified
by considering q2 fixed and q1 large. In this situation, q12 effectively becomes
q1 and we find that the large momentum behaviour of this sub-integral is

Λ4−(α1+α12). (3.2.26)

6Tensorial cases follow from calculating αi by also subtracting the powers of appropriate
qi in the numerator.
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If this exponent is non-negative then the integral is said to be “sub-divergent”.
In general we can say that our integral is (UV) convergent if the following
conditions are met

α1 + α2 + α12 > 8 (3.2.27)

α1 + α2 > 4 (3.2.28)

α1 + α12 > 4 (3.2.29)

α2 + α12 > 4. (3.2.30)

There is a second style of power counting to consider, the IR power
counting. This helps us understand the style of IR divergence that an in-
tegral is displaying. An IR divergence can occur in all three of the loop
momenta - q1, q2 or q12. Consider the two loop vacuum bubble with some
massless propagators

1

(q21)
β1/2Dγ1/2

1 (q22)
β2/2Dγ2/2

2 (q212)
β12/2Dγ12/2

12

, (3.2.31)

where Di = q2i − M2. We can see that UV power counting parameters
αi = βi + γi, but this view gives us an explicit handle on massless propaga-
tors. Here we wish to consider the divergence behaviour as qi → 0, an IR
divergence. If we parameterize the behaviour with a vanishing mass µ we
can see that the propagators protected by masses do not contribute and it
behaves as

lim
µ→0

µ4−βi . (3.2.32)

This is only divergent if βi ≥ 4. In FDR it is not necessary to create an IR
divergence, through the vacuum expansion, that is “worse” than logarithmic.
That is, we should never find an integral with β > 4.

There is a final style of two loop power counting that proves useful in the
algorithm for the defining expansion given in section 3.2.5. We often wish
to consider if the integral over qi is convergent ignoring the other factors.
That is, we could consider if the integral over q1 is convergent ignoring both

q2 and q12. This is given by the simple 1 loop power counting of αi > 4.

3.2.5 Two Loop Defining Expansion Algorithm

The FDR defining expansion is the crux of the FDR technique. Its exis-
tence allows for a finite, shift invariant regularization of Feynman integrals.
Naively one should only need to apply the defining expansion to the mas-
ter integrals of any given process. Instead of automating this, therefore,
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one could simply perform this process by hand and provide a dictionary of
two loop integrals calculated in FDR. However the extra integrals make this
somewhat more difficult as the set of “master” extra integrals is quite large.
Nevertheless, as indicated in section 3.2.3, they are quite simple to calculate
in terms of vacuum integrals. Therefore, in any practical calculation one will
need an automated way of performing the FDR defining expansion in order
to calculate the extra integrals. What’s more, in section 4.5 it will prove
invaluable as we can immediately find the 2-loop vacuum and so all work
is reduced to manipulating 2-loop vacuum bubble integrals and arbitrary
one-loop integrals, thereby avoiding a large amount of 2-loop work. In this
section we will present a systematic implementation of the FDR defining
expansion at both one and two loops. These have been implemented in a
FORM code which is used extensively throughout the work of this chapter.

We will begin with the algorithm for calculating the FDR vacuum of
a given 1-loop integral. This is relevant also for two loop calculations as
one calculates factorizable two loop integrals by separately calculating each
factor, which is defined through the one loop vacuum subtraction. The
structure of the algorithm is inherently recursive. Roughly speaking, one
judiciously applies the stepwise Taylor expansion identities to an expression
term by term until each term is either a vacuum or a UV finite integral. The
truly important part of the algorithm, therefore is how to make this judicious
expansion - what operation should one make on an arbitary term? The rest
of the algorithm is simply ensuring that we make these operations termwise
and stop when we have the vacuum. In order to focus on the important
part, let us factor away the logic of the algorithm that makes it termwise
and terminating by defining two functions - V and Vs. The first function
V , when applied to any linear combination of Feynman integrals such as
a (sub-)amplitude or even a single integral will give its vacuum part. The
function Vs however will only make a single step towards this goal, applying
whichever expansion identity is necessary only once. Letting our expression
be a sum over Feynman integrals Ii, and denoting any FDR vacuum integral
as Ivac, any UV divergent integral which is not a vacuum integral as Iinf and
any UV finite integral integral be as Ifin we can write our algorithm as

V

[
∑

i

Ii

]

=
∑

i

V [Ii], (3.2.33)

V [Iinf] = V [Vs[Iinf]], (3.2.34)

V [Ivac] = Ivac, (3.2.35)

V [Ifin] = 0. (3.2.36)
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Equation (3.2.33) tells us we should apply the algorithm term by term. That
is, for any sum of integrals we should apply the function to each integral.
In the language of functional programming we are “mapping” the vacuum
function over our expression. Equation (3.2.34) tells us to apply the stepwise
identities and perform vacuum extraction on the output. Equations (3.2.35)
and (3.2.36) tell our function to stop processing a given integral if it is either
a vacuum term or finite7 (throwing away the finite terms)8. In this way the
function will terminate when all remaining terms are vacuum integrals. As in
standard functional style, the definitions are applied top to bottom, what’s
more the definitions of Vs must be applied in the order in which they are
presented. The key is now to define Vs. In the one loop case this is simple
- one applies the FDR fundamental identity 9

1

(q + p)2 −M2
=

1

q2

[
1 +

M2 − 2q · p
(q + p)2 −M2

]
(3.2.9)

To clarify the distinction between V and Vs as well as the action of Vs,
consider the following equations

V

[
1

(q2 −M2)2

]
=

1

q4
, (3.2.37)

Vs

[
1

(q2 −M2)2

]
=

1

q2(q2 −M2)
+

M2

q2(q2 −M2)2
. (3.2.38)

As you can see, the one loop implementation is remarkably simple. This is
because there is only one possible course of action and the resulting integrals
are always more UV convergent or more “vacuum like”. What is more, as
the algorithm never uses the FDR fundamental identity on finite integrals
it is impossible to create a fictitious IR divergence which is “worse” than
logarithmic. At two loop this is not the case.

To begin constructing a two loop algorithm, we must introduce a number
of identities that help us extract the sub-vacua. These identities effectively
perform a stepwise Taylor expansion for the case qi > qj. The numerator

7See section 3.2.4 for the required definitions of UV finite and infinite.
8The generalisation of the algorithm to only give the finite part or simply split into

finite and vacuum are achieved by setting the appropriate parts to zero.
9There is some ambiguity in which propagator to apply this to, but (importantly) it

doesn’t actually matter. At the level of an efficient implementation, however, it is wise to
first choose the momentumless propagator.
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identities are trivial, but worth stating for completeness

q1 = q12 − q2 (3.2.39)

q2 = q12 − q1 (3.2.40)

q12 = q1 + q2 (3.2.41)

In the context of the defining expansion, it is important to view these as
(simple) Taylor expansions when a given loop momentum is large. From this
perspective, there should be 6 identities, but 3 are redundant as addition
is commutative. The denominator Taylor expansions are more complicated
and are given by

1

q21
=

1

q22

(
1−

q212 − 2q2 · q12
q21

)
,

1

q21
=

1

q212

(
1 +

q22 + 2q1 · q2
q21

)
,

1

q22
=

1

q21

(
1−

q212 − 2q1 · q12
q22

)
,

1

q22
=

1

q212

(
1 +

q21 + 2q1 · q2
q22

)
,

1

q212
=

1

q22

(
1−

q21 + 2q1 · q2
q212

)
,

1

q212
=

1

q21

(
1−

q22 + 2q1 · q2
q212

)
.

(3.2.42)

These can be derived through the application of (3.2.9) to expand each loop
momenta when another is large. To understand, consider the q12 identities.
It is quite natural to think of expanding q12 around the point where either q1
or q2 is big. The remaining four are analogous as shift invariance makes the
naming of the integration variables q1, q2 or q12 arbitrary. So, for example,
expanding q1 around the point where q2 is large involves the use of q12.
Naively speaking, one may expect it wise to give these identities raised to
an arbitrary power. However, we do not write them in this way in order to
be compact, it is important algorithmically to only perform one step and
then reassess the UV convergence of the integrals. With the correct tools
at hand, we can now describe the algorithm. Inherently there will be a lot
of symmetry in the different loop momenta as we engage in the following
discussion - so it is best to keep this in mind.

The first step is to attempt to apply the FDR fundamental identity in
order to make a single sub-integral finite, without introducing IR divergences
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worse than logarithmic. That is, once the sub-integral is finite we move
onto the next step. (Once a sub-integral is finite we wish to arrange the
other factor to be a 1-loop vacuum.) Letting fi be the application of the
fundamental identity in loop momenta i, we have the following definition
for all of the loop momenta, {qi}

Vs[I] = fi[I], where I has an infinite sub-integral i. (3.2.43)

Note that this rule is enough to generate the global vacuum. The rule
generates at least two terms, the first has exactly the same UV convergence
as the original I, and, only thinking of the first term, repeated application
of this rule to it will move through all of the loop momenta qi until the
resulting first term is a global vacuum. The sub-integral finiteness condition
effectively stops us from applying the fundamental identity when we would
create an IR divergence worse than log(µ2). For example, the correct thing
to do here

1

q41D1D2D12
, (3.2.44)

where Di = q2i −M2, is to apply f2 or f12.
The next step deals with an “extreme” case which can occur - a divergent

integral with two finite sub-integrals. Consider

(q1 · p)(q2 · p)3(q12 · p)
q41D1D2q412D12

(3.2.45)

This integral has finite sub-integrals if we consider the sub-integral in q1 or in
q12. It is divergent for fixed q1 and large q2, i.e. α2 = 1. We cannot proceed
with denominator expansions as we will always reach an unnacceptable IR
divergence. This is rectified by making an appropriate numerator Taylor
expansion, (here q2 = q12 − q1). Writing the ni to mean “expand numerator
momentum i”, we can generally fix this problem by performing

Vs[I] = ni[I], where I has two finite sub-integrals, not in qi. (3.2.46)

The next, and more obvious task given that we have a convergent sub
integral, is to try and arrange the other factor to be a one loop divergence.
The first step is to remove all scales

Vs[I] = fi ̸=j[I] where I has a finite sub-integral in qj. (3.2.47)

This is the step that could move us into the situation of having two finite
sub-integrals, whilst still being UV divergent. From now, if our integral is
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still divergent then it is in quite a simple form - all scales must be in the
convergent sub-integral. We can write a schematic version of the general
form as

f(q1)
qa2q

b
12

q2c2 q2d12
, (3.2.48)

where a and b represent powers of the loop momenta. The remaining task
is then to expand in such a way as to write the divergence of this factor as a
one loop vacuum. One “problem” is that if at any point we split q2 = q12−q1
(or similarly for q12) then it is quite possible for this to render infinite our
finite sub-integral in q1. However, this possibility is handled by the next
application of Vs which attempts all of the previous steps first. The choice
of whether to expand in q2 or q12 here is arbitrary, so we are free to chose.
However, our choice must be made in in such a way that a few steps down
the line, we do not make the opposite choice. That is, any good algorithm
cannot make an expansion considering q2 large and then a few terms later
decide that q12 should be large - one would find an infinite loop. In an effort
to reduce the number of terms, our methodology is to expand assuming the
most common numerator momentum to be large. In equation (3.2.48) this
means that if b < a, then we expand q12, otherwise we expand q2. For the
case b = a we make an arbitrary choice based upon lexicographic ranking
of the loop momenta. With this criteria, one first applies the numerator
identities as much as possible, without creating IR divergences, and when
this is no longer possible, one applies the appropriate denominator identity.
This can help the IR convergence to permit more numerator expansions.
We write this as

Vs[I] = ni[I],
where i is the least common numerator momen-
tum not in the finite sub-integral and applica-
tion of ni will not produce an IR divergence.

(3.2.49)

Vs[I] = fi/j[I],
where i and j are the momenta not in the finite
sub-integral, and i is the least common.

(3.2.50)

Here application of fi/j uses the appropriate identity from equation (3.2.42)
for expanding qi in terms of large qj . This completes the algorithm definition
- application will exactly extract the FDR vacuum part. Moreover, the
description we have given here can be applied without any re-naming of the
loop momenta, and so one can always check that the final integrand and the
initial integrand agree numerically.
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Chapter 4

QCD Renormalization in
FDR

Having introduced the FDR approach in the previous chapter we now wish
to discuss the investigation we undertook within said framework. In order
to make predictions in a model with a given regularization scheme, one must
have control over the running of the appropriate parameters. As of yet it has
not been possible to undertake two loop studies within FDR which require
this control of the two loop renormalization, and we wish to rectify this.

Our aim, therefore, in this chapter is to compute the relation between
DR/MS and FDR within QCD caused by the different treatments of the UV
divergences [76]. In principle this allows us to quickly and universally estab-
lish the difference between results computed in DR/MS and FDR once the
differences in infra-red divergent structure have been taken into account. We
should note that understanding of the infra-red structure of FDR regulated
amplitudes is equally important, for example, one needs an IR translation
in order to be able to map to PDFs. Both translations are needed and we
simply choose to start with the UV structure.

In this chapter we will begin by reviewing the canonical method of renor-
malization with counterterms, and then we will move on to setting up and
performing the calculation of the effective FDR renormalization constants
in DR. Schematically this is achieved by computing in DR the vacuum part
of the integrand which is thrown away by the FDR defining expansion.
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4.1 QCD and Canonical Renormalization

4.1.1 The Renormalized QCD Lagrangian

In section 1.2 we introduced the Lagrangian of QCD and although this is
what one finds when trying to write down a picture consistent with gauge
invariance, after gauge fixing, this necessarily breaks down when one at-
tempts to use it to calculate higher order corrections. Canonically[77], in
order to extract physical results from the naively infinite calculations one
must have a proper procedure to both regulate and renormalize the theory.
For our discussion of canonical renormalization we shall consider our cal-
culations to be regulated in dimensional regularization. Renormalizing our
theory involves taking the original quantities in the theory and rewriting
them in terms of their renormalized counterparts. In QCD this involves the
following renormalizations

GB
µa → ZG ·GR

µa,

gB → Zg · gR,
ψB → Zψ · ψR,

cBa → Zc · cRa ,
ξB → Zξ · ξR.

(4.1.1)

Our renormalized Lagrangian is now markedly less simple. Terms that pre-
viously could be factored together (for example the gauge covariant deriva-
tive and the field strength tensor) no longer display this structure in the
renormalized theory
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)
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µ cRc

(4.1.2)

This process of renormalization is then performed in such a way that our
Green’s functions are finite. In the case of the gauge fixing renormalization,

63



in order to keep the renormalized propagator finite we are constrained to
have Zξ = Z−2

G [78]1. Note that whilst the structure is complicated, the
number of operators that we have is much larger than the degrees of freedom
which we have. That is, the renormalization constants for different operators
are related. These relations are known as Slavnov-Taylor identities[79]. The
structure of the renormalization is protected by the gauge invariance of the
bare theory.

4.1.2 Perturbative Renormalization and Counterterms

In order to make a perturbative treatment of this renormalized theory we
are forced to rewrite equation (4.1.2). We can only perform a perturbative
expansion around the free theory, and we don’t a priori know the values
of the renormalization constants - we must determine these perturbatively.
This forces us to write our Lagrangian in two parts. The first very similar
to the bare Lagrangian, but now in terms of renormalized fields, and the
second is known as the counterterm Lagrangian.

LQCD = LR
QCD + LCounterterms, (4.1.3)

LR
QCD = ψ

Rf
j iγµD

µ
jkψ

Rf
k −

1

4
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(4.1.4)
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(4.1.5)

The Feynman rules for this renormalized theory are the same as the set in
the bare theory given in appendix A.1 (with the replacement g → gR), but

1This is only for a minimal scheme. More generally we can set Zξ = (c + 1)Z−2

G for
finite c, but the only result that this has is to change the counterterm to a form that is
both dependent on ξ and non-transverse.
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we also have a new set of counterterm Feynman rules which can be found
in appendix A.4.

The Zi are then defined in such a way that we remove all UV diver-
gences. For a given theory, it is not trivial that one necessarily can remove
the divergences without introducing new terms in the bare Lagrangian and
the property of a theory which allows this is called renormalizability. In
order to realize this within our standard perturbative framework one per-
forms calculations order by order, defining the Zi such that the counterterm
diagrams cancel the divergences. That is, we expand the renormalization
constants in our theory as

Zi = 1 + αR
SZ

i
1 +

(
αR
S

)2
Zi
2 + · · · . (4.1.6)

In order to represent this expansion in the diagrammatic expressions, we
will represent the order of the renormalization that enters by an appropriate
number of crosses in the counter-term insertion.

At one loop this appears as a simple subtraction. For example, consider
the renormalized gluon propagator

+ + +

(4.1.7)
As stated in appendix A.4 the exact form of the counterterm is

(ZGG − 1)
(
pµpν − gµνp2

)
. (4.1.8)

This is an interesting, and quite constraining consequence of renormalizabil-
ity. For equation (4.1.7) to be finite, the pole structure of the remainder of
the expression must be cancelled by the counterterm. A priori simply im-
posing Lorentz covariance tells us that we have these two tensor structures.
Renormalizability gives us a relation between the coefficients of the pole
parts of each structure2. This gives us quite a strong check on our result.

This extra diagram that has turned up can be thought of as a tree-
level like contribution (this is more easily seen in vertex renormalizations).
When one moves to two and higher loop orders, one finds that there are
contributions of the form of all lower orders. As an example, let us consider

2In case of the propagator this is also true for the finite part, however this follows
from the extra constraint of gauge invariance. In higher point correlation functions gauge
invariance is not so constraining but renormalizability still implies a tree level structure
for the pole part.
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the counterterms that contribute to the two-loop renormalization of the
gluon propagator

x 2

x 2

As we can see, here we not only get extra diagrams similar to the tree
level (the double crossed counterterm) but also a plethora of diagrams sim-
ilar to the one loop. These play an important role in our calculation. When
computing a bare two-loop diagram, one finds a more complicated divergence
structure than in the one-loop case. In the one loop case, the poles of any
given integral were always “local” - that is, they were proportional to a poly-
nomial in the relevant scales, e.g. p2/ϵ. When moving to two loop the bare
amplitudes contain both double and single UV poles. The double UV poles
are still local, but the single UV poles can be “non-local” which means that
they can depend on a logarithm of a relevant scale, e.g. log(p2)/ϵ. Absorbing
logarithms into the renormalization constants Zi is not possible because the
theory would become non-local under radiative corrections. However, the
loop counterterms in equation (4.1.2) give us hope. They contain insertions
of the 1-loop renormalization, and so themselves contain terms of the form
log(p2)/ϵ. If the theory is suitably renormalizable (as QCD is) these loop
diagrams then give us the exact contribution required to make the resulting
contribution to the second order CT completely local.

Conversely, imagine that for some reason these arguments about locality
did not concern you. Do we still need these loop counterterms? Could we
not simply define a subtraction that removes all poles, regardless of their
locality? The answer, however, is no. These loop counterterms also provide
a route to maintaining gauge invariance and unitarity in the finite part.

Consider the simple example of one particle reducible Nf corrections to
the gluonic propagator in QCD at two-loop. This is a gauge invariant set of
diagrams and so it is fair to consider on its own. As this is factorizable the
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correct approach is to calculate the one loop bare Nf contribution to O(ϵ)

µ ν

p

q

q + p

= i
(
gµνp2 − pµpν

)(1

ϵ
Π−1 +Π0 + ϵΠ1

)
(4.1.9)

and then we “square” it

µ ν

p

= i
(
gµνp2 − pµpν

)( 1

ϵ2
Π2

−1 +
1

ϵ
2Π−1Π0 +Π2

0 +Π−1Π0 +O(ϵ)

)
(4.1.10)

In order to calculate the renormalized result, we can make use of the fac-
torizability again and realize that the 1PR set of diagrams is the square of
the renormalized one loop. The renormalized one loop in MS subtracts the
pole to give

µ ν

p

q

q + p

+
µ ν

p

= i
(
gµνp2 − pµpν

)
(Π0 +O(ϵ))

(4.1.11)

Therefore the renormalized two loop result is simply given by

= i
(
gµνp2 − pµpν

)
Π2

0 +O(ϵ) (4.1.12)

From this it is quite clear that simply subtracting poles is not enough - the
counterterms also remove finite constants necessary for maintaining unitar-
ity. It is necessary to remove these extra constants in this case because, DR
does not recognize that there are some ϵ/ϵ terms which are unnecessary.

4.2 FDR vs Renormalization

4.2.1 FDR as a Canonical Renormalization Scheme

In order to find the relationship between an FDR style subtraction and a
standard counterterm picture we must find a way to define both of them
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in a single calculation. The way we achieve this is by considering the value
of the FDR amplitude as the definition of the FDR “scheme”. To find
the renormalization constants in this scheme we start with an amplitude
renormalized with unspecified constants and then define them to coincide
with the FDR amplitude.

To be able to do this we will need to be able to relate a bare dimension-
ally regulated amplitude and an FDR renormalized amplitude. Naively, as
the FDR integral can be written as the difference of two DR integrals we
expect some connection. However, upon closer inspection we notice a diffi-
culty because the two methods treat infra-red divergences differently. Our
aim is to understand the renormalization procedure so IR information is
extraneous. However, disentangling the two can be tricky as in dimensional
regularization one can often find cancellation between IR and UV poles. For
example consider the one loop integral

∫
dnq

1

q4
(4.2.1)

This is zero because the poles of two different origins cancel. In order to
avoid disentangling these two structures we can work in off-shell kinematics.
The amplitudes are only IR divergent when on-shell and so by working off
shell we have nothing to disentangle. What’s more this offers us a powerful
relation which will lead us to the FDR integral. Consider the following
identity

∫
dnq lim

µ2→0

1

(q2 −m2 − µ2)
= lim

µ2→0

∫
dnq

1

(q2 −m2 − µ2)
. (4.2.2)

This is an example of a general principle - if one adds a fictitious mass to
an IR convergent integral then the result is the same if it is removed before
or after the act of integration.

With these ideas in hand, let us now move to our task - constructing an
FDR amplitude from a bare, dimensionally regulated (sub-)amplitude, J .
An important consideration here is the different state counting relationships
between DR and FDR. In general gµνgµν = nγ where in DR nγ = n and in
FDR nγ = 4. Naively this could cause problems, so we shall keep this in
mind in the following treatment. Our first step in making this look more
“FDR-like” is to perform the global prescription J → J̄

∫
dnq1d

nq2J(q1, q2) = lim
µ2→0

∫
dnq1d

nq2J̄(q1, q2). (4.2.3)
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As we avoid the problem of IR divergences by calculating off shell we can
take the µ2 limit after integration. To be clear - the symbol J̄ represents
introducing the ficitious mass µ2 in the same way which one would perform
the FDR global prescription3. We now perform the FDR defining expansion
on this expression, separating finite from vacuum at the integrand level to
give

lim
µ2→0

∫
dnq1d

nq2 [JF (q1, q2) + JV (q1, q2)] . (4.2.4)

Here we can return to the “problem” of different state countings in FDR vs
DR. In the finite part JF there are no 1/ϵ poles by construction, and so the
state counting parameter nγ can be set to four here. Crucially this should
not be performed in JV as we would lose finite terms.

The final step that we must take is to split the above into two integrals.
However, we can no longer do this naively as the two terms are not individ-
ually IR convergent. This is fixed by the FDR prescription4 of only taking
the limµ2→0 in places where µ2 appears polynomially and taking the limit
µ2 → µ2

R in places where it appears logarithmically. This successfully takes
care of this fictitious IR divergence, such that we end up with

(
lim
µ2

∫

ϵ
JF

)
+

(
lim
µ2

∫

ϵ
JV

)
=

(∫
[d4q1][d

4q2]J

)
+

(
lim
µ2

∫

ϵ
V [J ]|nγ=n

)
.

(4.2.5)
Here the first term is recognized as the FDR integral. The second term
cannot be directly identified with the dimensionally regulated FDR vacuum
as the algebra required to arrive at this point has taken the state counting
parameter nγ = n. However, in performing this calculation the technology
is equivalent at a practical level to calculating the FDR vacuum. This com-
pletes our relating of an off shell, dimensionally regulated, bare amplitude
to an off shell FDR amplitude.

At this point we need to discuss renormalizing the bare amplitude in
order to give the FDR result. As explained in section 4.1.2, renormalizing
the theory introduces higher order interactions which we must include. At
one loop, this manifests itself as a constant, which we call Z1, premultiplying
the tree level structure5, which we call M0. Writing the bare one loop
correlation function asM1 we find that the renormalized correlation function

3Described in section 3.2.1.
4See section 3.2.2.
5In the case of two point correlation functions tree-level is a misnomer and we really

mean the inverse propagator.
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MR
1 is given by

MR
1 = M1 + Z1 ·M0. (4.2.6)

Our task is then to define Z1 such that MR
1 is the FDR renormalized re-

sult. From the opposite perspective, this implies that we can determine the
renormalization constant corresponding to the FDR scheme from knowledge
of the FDR result, i.e.

(Z1)FDR ·M0 = (M1)FDR −M1. (4.2.7)

Note that it is non-trivial that the FDR method is equivalent to subtracting
a gauge invariant term from the DR regulated bare correlation function M1,
and this sets strong constraints on the FDR method. Our previous discus-
sion of relating the bare correlation function simplifies this determination
greatly as using equation (4.2.5) on M1 we can see that this simplifies to

(Z1)FDR ·M0 = − V [M1]|nγ=n , (4.2.8)

where V implies the V term from equation (4.2.5). That is, we can determine
the renormalization constant of this FDR “scheme” simply by knowing the
structure of the vacuum extraction. It is worth pointing out that, unlike
MS, (Z1)FDR contains a universal finite part as well as poles.

Promoting this discussion to 2 loop level is made more complicated be-
cause of the introduction of loop counterterms. These are diagrams which
contain insertions of the one loop Green’s function renormalization. In order
to have a consistent renormalization scheme description of our regulariza-
tion then these renormalization insertions must be the ones that we have
calculated at one loop.

For our FDR scheme, this means that we must (unlike in an MS scheme)
include constant parts in the counterterm insertions which come from the
factors of n that hit poles in the vacuum. Understanding this allows us to
write down the two loop analogue of equation (4.2.7)

(Z2)FDR ·M0 = (M2)FDR −M2 − (Loop CTs)|FDR , (4.2.9)

where Z2 is the two loop contribution to the renormalization of the correla-
tion function, M2 is the bare dimensionally regulated two loop correlation
function and (M2)FDR is the two loop FDR regulated correlation function.
From this equation we can determine the implied renormalization constant
in DR when one uses the FDR method. Once again this simplifies greatly
using equation (4.2.5)

(Z2)FDR ·M0 = − V [M2]|nγ=n − (Loop CTs)|FDR . (4.2.10)
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Similar to the one loop case, we are able to determine (Z2)FDR only with
knowledge of the FDR vacuum. What’s more, in order for the FDR method
to be a good definition of quantum field theory, we must find dramatic
cancellations on the RHS of (4.2.10) in order for it to match the form of the
LHS.

4.2.2 Renormalizing Massless QCD in FDR

Here we begin the exposition of the calculation we performed in the frame-
work described in section 4.2.1. It should be noted that these calculations
are theory dependent and so if one wished to develop translation rules be-
tween MS and FDR for a theory other than QCD, the calculation would
need to be repeated. In order to establish the UV translation between FDR
and DR/MS at a given loop order it is sufficient (given universality) to
calculate all of the renormalization constants in QCD as given in (4.1.1).
As finite integrals in FDR are coincident with unregulated integrals we find
the same condition as in MS: Zξ = Z−2

G , leaving us with 4 renormalization
constants to calculate. Our methodology was to extract them by renor-
malizing the correlation functions given in figure 4.1. It is enough to only
use 4 correlation functions, however, in order to check the consistency of
our calculations we have extracted the coupling constant renormalization,
ZαS

6 from all three point vertices in the theory. This explicitly verifies both
the universality of the renormalizations and the treatments of bosonic and
fermionic sectors.

Let us briefly describe the first few common steps of the calculation
at both one and two loop. Just as in our work on integrand reduction at
one loop in chapter 2, here the complexity obliges us to employ computer
algebra systems. Once again we use QGRAF to generate the diagrams,
implementing our QCDmodel by hand. The momentum routing conventions
that we have used for the three point correlation funtions are all momenta
ki incoming, such that

k1 + k2 + k3 = 0. (4.2.11)

Next, to generate the expressions corresponding to any given diagram we
use FORM, together with an in-house implementation in of the Feynman
rules from appendices A.1 and A.4. We should note that, in order to greatly
simplify the calculational load, we are working in the Feynman gauge, ξR =
1.7 Also note that as we are using the method described in section 4.2.1

6From here onwards, we shall discuss the αS instead of gs, where ZαS
= Z2

gS .
7The degree of simplification here can be huge. At two loop, a diagram which is a
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∼ ZGG = Z2
G

⑦
∼ ZGGG = Z1/2

αS Z3
G⑦

k2

k1

k3

∼ Zcc = Z2
ca

⑦
∼ ZGcc = Z1/2

αS ZGZ2
ca⑦

k2

k1

k3

∼ Zψψ = Z2
ψ

⑦
∼ ZGψψ = Z1/2

αS ZGZ2
Q⑦

k2

k1

k3

Figure 4.1: The collection of correlation functions which we will renormalize
in order to discern the renormalization constants of QCD in FDR. We also
list their relation to QCD’s renormalization constants given the Slavnov-
Taylor identities. All momenta are incoming.

we are constructing the off-shell dimensionally regulated integral and so we
take gµνgµν = n. Next, with the algebraic expressions correspending to
the diagrams in hand, we find it wise to perform the colour algebra first
in order to collect similar integrals.8 The procedure that we have used is
that described in section 2.5.1. At this point we continue the procedure of
section 4.2.1 and perform the global prescription and vacuum expansion as
described in sections 3.2.1 and 3.2.5 respectively.

All of the work to be described in the following sections was implemented
using a mixture of Mathematica and FORM in order to strike a balance
between the user friendliness of Mathematica and the speed of FORM.

single term in the Feynman gauge could be hundreds of terms in the general Rξ gauge.
8This is essentially because we are only considering low-point correlation functions.

The most complex colour structure is in the 4 point vertex, but this only occurs at one
loop and so is easily manageable.
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4.2.3 A One Loop Warmup

We obtain the one loop renormalization constants of QCD in FDR using
equation (4.2.8) to calculate them in terms of the one loop vacuum. We
remind the reader that we are constructing FDR from the DR integral,
and so need to take gµνgµν = nγ = n, as well as use off shell kinematics,
though we choose no special point. The resulting expression is a series of
vacuum integrals regulated in dimensional regularization. Examples from
the renormalization of the gluon propagator include

∫
dnq

µϵR

qµqν

q6
,

∫
dnq

µϵR

qµqν(q · p)2

q8
,

∫
dnq

µϵR

qµqν(q · p)4

q10
. (4.2.12)

Importantly they are always of a form where the integral only depends on
µ2. It is interesting to note that we do not have any FDR extra integrals
in our vacuum. We can see that this is always the case as after performing
the global prescription we can perform cancellations between numerator and
denominator without introducing µ2 terms, we then take the vacuum at this
point. At this stage we drop all integrals which represent polynomial diver-
gences due to the FDR prescription of removing the fictitious µ2, leaving
us with only logarithmically divergent integrals to be evaluated at µ = µR
9. This expression can be greatly simplified using consistency conditions for
1-loop regularizations[21]. These are relations between tensor integrals of a
single mass scale, such of those in equation and (4.2.12), and a scalar inte-
gral. In section 4.3.2 we will derive these relations in full generality using
integration by parts relations, but at this point the relevant equation is

∫
dnq

qα1 · · · qα2r

(q2 − µ2)r+2
= 2 ∗

1

(2r + 2)!!
gα1···α2r

∫
dnq

1

(q2 − µ2)2
. (4.2.13)

Here the gα1···α2r is the totally symmetric metric tensor with 2r indices, and
m!! denotes the double factorial of m. This identity allows us to reduce our
vacuum expressions to scalars without introducing any dependence on n such
that it is entirely proportional to the fundamental logarithmic divergence in
four dimensions -

∫
dnq

µϵR

1

q4

∣∣∣∣
µ=µR

= −iπ2
(
2

ϵ
+ L

)
+O(ϵ), (4.2.14)

where L = γe + log(π) (γe is the Euler-Mascheroni constant) and n = 4+ ϵ.
In this way we can see that the constant part we subtract is entirely due to
nγ hitting a 1/ϵ pole.

The full process to calculate these renormalization constants is then
9See the end of section 3.2.2.
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1. Construct the appropriate DR one loop amplitude, keeping nγ = n.

2. Perform the global prescription.

3. Perform the FDR defining expansion to find the vacuum.

4. Drop polynomial integrals and use consistency relations to relate to
the one loop scalar vacuum.

5. Use equation (4.2.14) to evaluate the scalar vacuum at µ = µR.

6. Use equation (4.2.7) to find the renormalization constant for the cor-
relation function.

The results of this process we give in appendix B.1. The finite part in the
renormalization constant gives rise to a coupling constant shift with respect
to DR/MS which we describe in section 4.5.

Something further can be divined from the process we have just explored.
Starting with a different perspective we can see that the fact that this is
always achievable amounts to a proof that, at one loop, the treatment of UV
infinities in FDR is equivalent to that of DRed and FDH. More precisely
stated - the coupling constant shift elucidated in section 4.5 is the same
as in DRed and FDH. Intuitively this is because our calculations tell us
that the finite part in our renormalization constant is only due to FDR’s
state counting nγ = 4, which is also the of the finite difference between
DRed/FDH and DR.

4.3 Two Loop Renormalization with External Gauge

States

At this point, we wish to use the discussion presented in section 4.2.1 to
calculate the effective FDR renormalization constants. We present this work
in two parts - firstly the correlation functions with external ghosts and gluons
which we present here, and secondly the correlation functions with external
quarks which we present in section 4.4. The reason for this is that the
quark sector of QCD presents extra conceptual difficulties which need to be
stressed, however all of the technology which we present in this section is
still needed.

Let us begin to discuss the effective FDR renormalization constants in
QCD at two loop. The procedure is is similar to the one loop procedure
described in section 4.2.3. In principle, however, with the addition of the
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loop counterterms there is more to consider and in practice the complexity of
the two loop vacuum is much higher. The task is to perform the calculation
prescribed by equation (4.2.10). At two-loop to reduce the complexity of the
calculation in the three point functions we take advantage of the off-shell
nature by using a symmetric off-shell point

k21 = k22 = k23 = M2, (4.3.1)

where ki is the momenta flowing into leg i. This point is euclidean in nature,
and has often been used for defining momentum subtraction schemes[80].
For a massless theory this eases our calculation by reducing it to a single
scale problem. Note that momentum conservation is still respected and so
all scalar products are defined in terms of M2, for example

k1 · k2 = −
1

2
M2. (4.3.2)

In principle there are two distinct parts to be calculated - the dimen-
sionally regulated FDR vacuum (taking gµνgµν = nγ = n) and the DR
loop counterterms. The construction of the relevant expressions has been
discussed previously and so here we shall discuss our general strategy for
their calculation before delving into the specifics. We perform the work by
reducing the integrals to a non over complete basis of integrals and then
integrating. The exact nature of the basis differs between the global vacua,
sub vacua and loop counterterms. Note that in the case of the sub vacua
and loop counterterms a well chosen basis will make it easier to divine any
relationship.

In practice the style of work required for the global vacua and the sub-
vacua is very different. Inherently the sub-vacua are given by factorizable
one loop integrals with scales and so a complete one loop toolbox will be
necessary. When calculating the global vacuum our endeavour is simpler
as we only need to be able to handle two loop vacuum bubbles. For this
reason, an explanation of our work is most naturally achieved by splitting
the vacuum work into global and sub-vacua.

To begin discussing this work we must first take a detour to discuss
some common technologies. Specifically we will need to understand integral
reduction techniques and integration by parts identities. These are two
technologies which allow us to take a collection of integrals and reduce them
to linear combinations of a smaller set of integrals. Within our work these
technologies will allow us to greatly simplify expressions and write them
in terms of a small number of scalar integrals. We will start with integral
reduction in section 4.3.1 and then discuss integration by parts identities in
section 4.3.2.
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4.3.1 Integral Reduction

Integral reduction is the process of taking an expression defined in terms of
a large number of tensor integrals and exploiting their properties to rewrite
them in terms of a smaller basis. At one loop these techniques are enough
to cast scattering amplitudes in terms of 4 styles of scalar integrals - the
tadpole, bubble, triangle and box. Until recently, in NLO calculations,
techniques to achieve this style of process were the bottleneck in reaching
calculations with large numbers of legs. However, with the recent invention
of the OPP method and unitarity methods these can be performed in a fast
and automated way. Nevertheless in our work we will not need such calcula-
tional power and so we discuss the original formulation of these techniques,
invented by Passarino and Veltman [55].

The powerful idea of PV reduction is to exploit the Lorentz covariance
of the integrals to rewrite tensor integrals in terms of other integrals whose
numerator is given in terms of reducible scalar products - scalar products
that can be written in terms of denominators. In our work we will need to
apply these relations to integrals with both momentum and mass scales at
both one and two loop. To begin we will start with simple examples with-
out momentum scales. These will be necessary when considering vacuum
integrals where the only scale is the FDR fictitious mass µ2. As we are
discussing integral reduction within the context of our calculation, all of our
integrals are dimensionally regulated. Consider the integral

Iµ =

∫
dnq

qµ

(q2 −m2)2
. (4.3.3)

The integrand of (4.3.3) is a Lorentz covariant function, and our regulator
(DR) does not break Lorentz covariance. Therefore, the final answer must
be Lorentz covariant. However, after integration we have no rank 1 Lorentz
covariant tensors that we can use to build the answer. Therefore, by Lorentz
covariance, we can say that Iµ = 0. Indeed, this will follow for any integral
without momentum scales of odd rank - there are no odd rank tensors. If
we move to even ranks, e.g. rank 2

Iµν =

∫
dnq

qµqν

(q2 −m2)3
, (4.3.4)

then we have a Lorentz covariant object available - the metric tensor. We
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therefore observe that

Iµν = I2 · gµν (4.3.5)

I2 =
1

n

[∫
dnq

1

(q2 −m2)3
+

∫
dnq

m2

(q2 −m2)3

]
. (4.3.6)

Where we have solved for I2 by contracting with the metric and cancelling
the resulting q2 in the numerator10. Note the introduction of the dimen-
sionality of our integral, n. This arises because when contracting with the
metric we compute in n-dimensions gµνgµν = n.

When we move to higher (even) ranks we have a number of metric tensors
to take into account. Consider the rank 4 example

Iµνρσ =

∫
dnq

qµqνqρqσ

(q2 −m2)4
, (4.3.7)

Iµνρσ = I4 (g
µνgρσ + gµρgνσ + gµσgνρ) . (4.3.8)

In (4.3.8) we only have one coefficient because Iµνρσ is manifestly symmetric
in all of its indices. When we move to two loop, however, it is not necessarily
the case and so we would need to maintain independent coefficients.

In our work, because of the sub-vacuum and the loop counterterms we
also require the use of PV reduction in the case where we have momen-
tum scales. Let us explain the differences with the simple, concrete 1-loop
example of the rank one bubble with no internal masses

Bµ =

∫
dnq

qµ

q2(q + k1)2
(4.3.9)

To begin, we observe that this integral depends on a single momentum
scale k1. The integral can only depend on k1 and the only Lorentz covariant
object we have is kµ1 , so our answer must be proportional. That is

Bµ = A · kµ1 , (4.3.10)

A =
1

k21

∫
dnq

q · k1
q2(q + k1)2

. (4.3.11)

However, we can reconstruct this scalar product by noting the identity

q · ki =
1

2
[(q + ki)

2 − q2 − k2i ]. (4.3.12)

10We will work to simplify this expression further in section 4.3.2.
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Now, shifting the integral as well as setting scaleless terms to zero in the
appropriate places, we find the scalarized result

Bµ = −
1

2
kµ1

∫
dnq

1

q2(q + k1)2
(4.3.13)

In the case of integrals with momentum scales, the automation is highly
non trivial. As we have a large number of these in our work we shall now
discuss an algorithm to perform this task.

Automating Integral Reduction at One Loop

The technique of PV reduction is conceptually quite pleasing, but in practice
quite technically demanding. In our QCD driven calculation, the nature of
the FDR vacuum makes it infeasible to perform this by hand. For any
given integral, the high rank will lead to a long calculation, but what is yet
more problematic is the fact that there are a large number of these integrals
which all need to be individually reduced. Here then, we shall discuss the
necessary techniques for reducing tensor integrals to a scalar basis in our
work. The tensor integrals that we will be considering are of two and three
point functions with possibly repeated propagators of arbitrary rank, for
example

∫
dnq

µϵR

(q · k1)2(q · k2)
q2(q + k1)2

or

∫
dnq

µϵR

qµqν(q · k3)2

q4(q + k1)2(q − k2)2
.

In this work, we have one large advantage - the symmetric off shell point as
given in equation (4.3.1). This leads to a dramatic reduction in complexity
in the three point correlation functions. First of all when performing PV
reduction one often introduces inverse Gram determinant factors that can
make algebraic simplification of the result strongly difficult. In our case,
as we have only one scale - M2 - one can always write these as a numeric
factor premultiplying a particular power of our scale. Finding cancellations
of the gram determinant in our final result is therefore entirely unnecessary.
What is more, the symmetric point reduces the size of our scalar basis as a
number of integrals are the same, for example
∫

dnq

µϵR

1

q2(q + k1)2
=

∫
dnq

µϵR

1

q2(q + k2)2
=

∫
dnq

µϵR

1

q2(q + k3)2
. (4.3.14)

Let us now discuss the ideas that we need to construct the algorithm.
In the following we will consider integrals including the FDR fictitious mass
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µ2, that is all denominators will be barred. One can infer the cases without
µ2 by setting it to zero. The first step we must take is to reconstruct all
reducible numerators in terms of propagators. This means that we make use
of equation (4.3.12), which we state here including the FDR fictitious mass

q · ki =
1

2
[(q + ki)

2 − q2 − k2i ]. (4.3.12)

We make this substitution in any situation where the propagator-like terms
on the RHS cancel completely, thereby decreasing the rank of the integral.
This process is commonly referred to as “numerator reconstruction”.

We are now left in a situation where, at the integrand level we only
have irreducible loop momenta in the numerator11. Examples of this include

∫
dnq

µϵR

qµ

q2(q + k1)2
,

∫
dnq

µϵR

(q · k2)
q2(q + k1)2

. (4.3.15)

In the first case we have a loose tensor index which is not a scalar product
and so cannot be reconstructed. In the second case we are not able to recon-
struct the scalar product in terms of the available denominators. However,
note that as we can factorize the scalar product and take k2 outside of the
integral, solving the first problem will also solve the second. From now on
we implicitly assume that we always do this, allowing us to discuss as if we
only have integrals with loose tensor indices.

The first step in performing a PV reduction is to find the form the
integrated expression must take as dictated by Lorentz covariance. This
means writing a linear combination, with coefficients to be determined, of all
of the tensors of appropriate rank, which can be built with the momentum
scales we have available and are compatible with any symmetries of the
integral. In our work it is not necessary to be able to do this for arbitrary
rank or points and so we will not describe a general algorithm to be able to
do this, however, let us elucidate what the this means with a few examples.
Consider the rank 2 two point function in k1 and its related equation

Bµν =

∫
dnq

qµqν

q2(q + k1)2
= b0g

µν + b1k
µ
1k

ν
1 . (4.3.16)

The RHS of this equation contains the two tensors gµν and kµ1 k
ν
1 , the two

tensors we can build of rank 2 using k1. We also have to respect a symmetry

11Technically this is not true and it is this subtle observation that allows for OPP style
reductions. For now we shall ignore this.
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in swapping the tensor indices, µ ↔ ν. Here, enforcing this has no extra
effect, but consider the case of the rank two 3 point integral

Cµν =

∫
dnq

qµqν

q2(q + k1)2(q − k2)2

= c0g
µν + c1 (k

µ
1 k

ν
1 + kµ2 k

ν
2 ) + c2 (k

µ
1 k

ν
2 + kµ2 k

ν
1 ) .

(4.3.17)

Here we have less coefficients than tensors because the RHS must respect
(as the integral does) the swaps µ ↔ ν and k1 ↔ −k2.

We will continue using Cµν as an example of a general strategy, but
bear in mind that we will need to be able to treat tensors of higher rank and
integrals with doubled propagators. In order to solve for the ci we construct
equations by contracting with relevant tensors. The first is the metric tensor
gµν . This leads to

Cµ
µ =

∫
dnq

q2

q2(q + k1)2(q − k2)2
= c0n+ (2c1 − c2)M

2.

=

∫
dnq

µϵR

(
1

(q + k1)2(q − k2)2
+

µ2

q2(q + k1)2(q − k2)2

)

=

∫
dnq

µϵR

1

(q + k1)2(q − k2)2

(4.3.18)

Here, as we are in dimensional regularization gµνgµν = n. We reconstruct
the square, and are able to set the second term to 0 as it vanishes12 in
the limit µ2 → 0. Here the integrals with which we are left are scalars.
Implicitly, if we can find three such equations we can solve for the ci in
terms of scalar integrals. Note that if we had chosen an integral with higher
rank than 2 as our example then we would still have loose vectors, we will
discuss how to deal with this in due course. Our next step is to contract
with the vector kµ1

Cµνk1µ =

∫
dnq

µϵR

(q · k1)qν

q2(q + k1)2(q − k2)2

=
(
c0 +

(
c1 −

c2
2

)
M2
)
kν1 +

(
−
c1
2

+ c2
)
M2kν2

=
1

2

∫
dnq

µϵR

(
qν

q2(q − k2)2
−

qν

(q + k1)2(q − k2)2
−

(p2)qν

q2(q + k1)2(q − k2)2

)
,

(4.3.19)

12For this style of term to give a non-zero contribution the integral would have to
contribute as 1/µ2.
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where again we have reconstructed the scalar product. The choice of k1 vs
k2 here is arbitrary as the integral is symmetric in the two. We could have
chosen to contract with one of the other two tensors in equation (4.3.17),
but on the LHS of equation (4.3.19) we would only be able to reconstruct
one scalar product and the other adds unnecessary complication.

At this point, in order to find our next two equations for the ci we need
to find the coefficients of kν1 and kν2 . However, unlike in equation (4.3.18),
we do not have scalar integrals and so this is not manifest. In order to deal
with this, we need to repeat all previous steps in this process, so the algo-
rithm must recurse. Before we do this, however, we should note that in a
few integrals, for reasons of simplicity, it is necessary to make a shift in the
integration momentum so that at least one of the denominators is momen-
tumless. In doing this we should make use of the symmetric kinematic point
to rewrite all scalar integrals in terms of a single one à la equation (4.3.14).

A special comment should be made when performing integral reduction
in the context of removing the fictitious mass according to the FDR pre-
scription. When one reconstructs the products, it is possible that one of
the integrals with which we end up has only the fictitious mass as its scale.
In accordance with the FDR prescription we will discard all those which
diverge polynomially.

In summary, our algorithm for integral reduction is as follows:

1. Reconstruct numerators then shifting integrals to have one momen-
tumless propagator. Then apply any symmetric kinematic point iden-
tities, dropping polynomially divergent vacuum integrals.

2. Write down the equation prescribed by Lorentz covariance, respecting
symmetries in indices and momenta.

3. Construct up to two equations, first by contracting with a momenta
and the second (if possible) by contracting with the metric tensor.

4. Repeat the reduction process on each equation if they are not in terms
of scalar integrals.13

5. Extract the independent equations using the linear independence of
tensors and solve them.

Using this approach we see why we always reach scalars - we only ever create
scalar products in the numerator which can be reconstructed.

13This does imply that in one recursion the step of writing down the Lorentz covariance
equations is inert, but this is to keep the explanation simple.
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4.3.2 Integration By Parts

Another tool that we will require to reach a non-redundant basis of integrals
is integration by parts (IBP) identities [81]. Once we have reduced our
integrals to a scalar basis according to the techniques of section 4.3.1 we
will find that we have scalar integrals which look very similar, but have
different numbers of propagators. We can often then use the technique of
integration by parts to show that they are related. To give an example, we
will soon show that there is a relation between

∫
dnq

µϵR

1

(q2 −m2)3
and

∫
dnq

µϵR

1

(q2 −m2)2
.

Integration by parts identities are relations between integrals that arise
from the observation that the integration of a total derivative is zero. This
can be seen as a consequence of the shift invariance of the dimenionsally
regulated integral. To demonstrate this concretely let us write down the
definition of shift invariance, taking the time to taylor expand the shifted
function

∫
dnqf(q) =

∫
dnqf(q + p) (4.3.20)

=

∫
dnqf(q) + pµ

∫
dnq

∂

∂qµ
f(q) + · · · (4.3.21)

The first term on either side of this integral is the same, so the infinite sum
on the right hand side must be equal to zero. One can demonstrate that
any term in this sum is identically zero by differentiating with respect to
an appropriate number of p, and then setting pµ = 0 (as this identity is
true for any value of pµ). The first term in this series is exactly enough to
allow us to write down the integration by parts identity. Clearly, then, any
definition of an integral which is shift invariant will permit integration by
parts - including FDR [82].

To see how we can use these identities, let us find the relation we pre-
viously alluded to. We start by taking the integral of a judicious total
derivative and setting it to zero

0 =

∫
dnq

∂

∂qµ

(
qµ

(q2 −m2)2

)
(4.3.22)

If we now take the time to expand the derivative we gain a relation between
a set of integrals. One important thing to remember when performing this
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calculation is that we are working in n dimensions, so that

∂qµ

∂qµ
= n. (4.3.23)

Knowing this we can take equation (4.3.22) and rearrange to give

∫
dnq

m2

(q2 −m2)3
=

n− 4

4

∫
dnq

1

(q2 −m2)2
. (4.3.24)

It is fairly easy to see that choosing an arbitrary power of the propaga-
tor within the original derivative will get us a more general version of this
relationship

(n− 2α)

∫
dnq

1

(q2 −m2)α
= 2α

∫
dnq

m2

(q2 −m2)α+1
(4.3.25)

This style of relation is not limited to one style of propagator or even one
loop14. In common practice these identities are most often used to reduce a
large set of irreducible two loop integrals down to a set of master integrals.
In standard one loop computations their applicability is limited because the
derivative always creates doubled propagators, which are topologically for-
bidden. However, within our calculation of the two loop vacuum part we find
these relations invaluable. Within both the subvacuum and loop countert-
erms one often ends up with one loop integrals with doubled propagators.
In the following sections there is one set of relations that turn up multiple
times and so we shall discuss them here. Further use of these techniques
will be necessary, but there are a number of details better understood in
context.

When computing the one loop vacuum in 4D, without tensor reduction,
we find a basis of integrals of the form

∫
dnq

qα1 · · · qα2r

(q2 − µ2)r+2
. (4.3.26)

Application of PV reduction in this case creates a large number of integrals
with µ2 in the numerator. We can then apply, in general, equation (4.3.25)

14A similar style of identity is available in FDR, though they are structurally quite
different as FDR’s manipulations take place in 4-dimensions and we have the fictitious
mass µ2 to take into account.
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with m2 = µ2. The explicit proof of this requires an amount of algebra
involving combinatorics, but in the end we find that

∫
dnq

qα1 · · · qα2r

(q2 − µ2)r+2
=

2

(2r + 2)!!
gα1···α2r

∫
dnq

1

(q2 − µ2)2
. (4.2.13)

Though this form is not very transparent, evaluating for specific values of r
gives very intuitive answers. The prefactor is exactly what you would expect
doing the reduction, throwing away all of the mass terms and setting n to
4 - the mass dimension of the integral. It is of no surprise, therefore that
similar identities hold for analogous integrals of different mass dimension.

4.3.3 Reducing The Global Vacuum

Now that we have undergone a technological interlude, we must return to
the task of calculating the renormalization constants in DR which give us
the FDR scheme. As previously noted, we will break the calculation down
into its constituent parts. We begin with the general method for calculating
the global vacuum of either a two or three point correlation function.

The global vacuum is defined through the FDR defining expansion as
the parts of the FDR vacuum which are not sub-vacua. It is given by a
series of two loop integrals which depend only on the FDR fictitious mass
µ2. These integrals come in two different flavours - factorizable and “pure”
two loop integrals. Factorizable vacuum integrals are simply a product of
two one loop vacuum integrals, depending only on µ2. Some examples of
this are

∫
dnq1
µϵR

1

q41

∫
dnq2
µϵR

1

q42
, or

∫
dnq1
µϵR

qµ1 q
ν
1

q61

∫
dnq2
µϵR

1

q42
. (4.3.27)

We note that in this discussion we are not limited to scalar integrals, but
we will also have to be able to deal with tensor integrals. Pure two loop
global vacuum integrals are similar, depending only on the fictitious mass
µ2, but they also have propagators in q12. Some representative examples of
pure vacua are

∫
dnq1
µϵR

dnq2
µϵR

1

q41q
2
2q

2
12

,

∫
dnq1
µϵR

dnq2
µϵR

qµ1 q
ν
1

q41q
4
2q

2
12

,

∫
dnq1
µϵR

dnq2
µϵR

qµ1 q
ν
1 (q1 · p)(q2 · p)
q41q

4
2q

4
12

.

(4.3.28)
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Our aim now is to reduce this expression to a non-redundant basis of
scalar, logarithmically divergent integrals. The first step of calculation is to
throw away the polynomial divergences that vanish in the µ2 → 0 limit. We
are left with logarithmically divergent integrals and to be able to calculate
these, we wish to reduce them to scalar integrals through PV reduction.
Firstly, the factorizable integrals can be handled using the one loop consis-
tency relations. Next, for the pure integrals we can remember the discussion
of section 4.3.1. It is always possible to reduce to scalars as in the inter-
mediate steps we can reconstruct products of the form qi · qj in terms of
denominators unless, in an intermediate step, we produce an integral with
q1 · q2 in the numerator which factorises. However, here, we can again apply
the one-loop consistency relations to each factor. We should note that there
is a subtlety in the PV reduction of pure two loop vacuum integrals that is
not present in one loop vacuum integrals. Specifically, at two loop, we have
no guarantee that there is a symmetry in the exchange of tensor indices (of-
ten it is there, but not manifest). Let us write down the Lorentz covariance
equation for a representative integral
∫

dnq1
µϵR

dnq2
µϵR

qµ1 q
ν
1q
ρ
2q
σ
2

q81q
2
2q

2
12

= a1 · gµνgρσ + a2 · gµρgνσ + a3 · gµσgνρ. (4.3.29)

As it is not clear that we can exchange the indices in the numerator, we must
leave open the possibility that tensors on the RHS have different coefficients.
Nevertheless, we can always reduce to scalars.

Once our expression is in terms of scalars we have a redundant basis of
integrals. For example

∫
dnq1
µϵR

dnq2
µϵR

qµ2 q
ν
2

q41q
4
2q

2
12

=
1

n
gµν

∫
dnq1
µϵR

dnq2
µϵR

(
1

q41q
2
2q

2
12

+
µ2

q41q
4
2q

2
12

)
.

(4.3.30)
In performing the PV reduction we meet a large number of scalar integrals
with µ2 in the numerator and we can show that they are dependent through
IBP relations. In fact, we can actually relate them to two integrals, the
logarithmic factorizable integral and the pure logarithmic two loop integral

∫
dnq1
µϵR

dnq2
µϵR

1

q41

1

q42
, (4.3.31)

∫
dnq1
µϵR

dnq2
µϵR

1

q41q
2
2q

2
12

. (4.3.32)

Unlike in the case of the one-loop consistency relations we have not used the
IBP relations to find a simple formula to relate any given tensor integral to
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these fundamental integrals. If it exists, it is currently not worth the effort
due to the simple way in which we can use the IBP relations. The following
relation allows us to relate any integral with µ2 in the numerator to other
integrals of higher mass dimension without this µ2: 15

µ2Vabc = Ô Vabc, (4.3.33)

Ô =
n− 3(a− 1)

3(a− 1)
1− + 2c

(
1−2−12+ − 12−12+

)

+ (a− 1) (12− − 2−)

(4.3.34)

Vabc =

∫
dnq1
µϵR

dnq2
µϵR

1

q2a1 q2b2 q2c12
(4.3.35)

Here Ô is an operator and we have used the compact notation that i± is an
operator which increases or decreases the count of an denominator i within
Vabc. We can see that appropriate use of this can always bring us back
to the scalar logarithmic integrals. Firstly, note that the integrals on the
RHS are of higher mass dimension than on the LHS, or alternatively every
application of the identity always decreases a+ b+ c. This implies that the
integral leads back towards cases of logarithmic mass dimension - our two
fundamental integrals. Next, note that the only situation which could move
away from the Vabc structure is if the 12− operator hits an integral where
a = 1 as this would put a q21 in the numerator. However, the naming of q1,
q2 and q12 is arbitrary and so we can always rename to avoid this and if we
could not, then we have already stepped past logarithmic.

Employing this process has allowed us to write our global vacuum in
terms of the logarithmic factorizable and pure integrals. As in the case of
the sub vacuum this has been allowed at the cost of introducing a prefactor
which depends on n. A priori we do not have reason to expect a specific
form for this prefactor but our experience allows us to write, in every tested
case, the following expression for a global vacuum

∫
dnq1d

nq2

( [
α+ (nγ − 4)α′ +

γ + (nγ − 4)γ′

n

]
1

q41q
2
2q

2
12

+

[
β + (nγ − 4)β′ −

γ + (nγ − 4)γ′

n

]
1

q41q
4
2

)
.

(4.3.36)

Here, in order to show the simple structure, we explicitly label the nγ . This
form is quite simple and perhaps it suggests that there exists some currently

15The derivation of this relation is quite technical and offers no further clarification, so
we leave this for appendix C.2.
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not understood structure. That is, intermediate steps produce greatly more
complicated structure in n than a simple 1/n factor, but when cast into
this form it disappears. Further, the coefficients of the 1/n structures are
inexplicably linked between the two integrals. We have no explanation at
this time.

We now move onto the calculation of the sub vacuum, to complete the
calculation of the FDR vacuum in n dimensions.

4.3.4 Reducing The Sub-Vacuum

The calculation of the sub-vacuum that we perform amounts to the applica-
tion of standard one-loop techniques to reach a simple form. In the following
we shall discuss the sub-vacuum of two or three point correlation functions
in full generality. In order to do this we shall suppress all structure that is
not explicitly part of the integrals, i.e. factors of gamma matrices, metrics
and other tensors. Note that due to our kinematic point we can discuss two
and three point functions at the same time - in the case of the two point cor-
relation functions the style of integral which produces three point one loop
integrals simply never occur. We shall begin by noting that, after vacuum
extraction, all dimensionally regulated sub vacuum terms can be written as

∫
dnq1
µϵR

fα1···αm(q1)

∫
dnq2
µϵR

vα1···αm(q2). (4.3.37)

That is, they can be factorised into two one loop integrals of functions f
and v. Here f is a function that when integrated in n-dimensions exists as
n → 4. The function v is a series of one loop vacuum integrals. We write
the tensor indices to highlight that the numerator structure is contracted
between the two integrals, but the numerator may also contain products
with other momenta (e.g. q1 · ki), contractions with gamma matrices or
even external Lorentz indices. Note that these indices are all n-dimensional,
so that if we have a factors of gamma matrices, these are to be treated n
dimensionally, such that after integral reduction if we find gµνγµγν then this
must be set to n. To clarify our notation in equation (4.3.37) we list some
examples

∫
dnq1
µϵR

qα1 q
β
1 (q1 · k1)

q61(q1 + k1)2

∫
dnq2
µϵR

q2αq2β
q6

,

∫
dnq1
µϵR

qα1 q
β
1 /q1

q41(q1 + k1)2(q1 − k2)2

∫
dnq2
µϵR

q2αq2β
q6

.

(4.3.38)
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Note that it is likely that all sub vacuum terms only appear in this form
after an appropriate renaming of q1 and q2. Further, note that even though
the integral in q1 exists in the n → 4 limit, as it is multiplied by an infinite

integral in q2 we cannot set n to 4 as we need to keep track of any ϵ/ϵ terms.
The first step is to perform the exact reduction of the q2 integral using the

one loop consistency relations, equation (4.2.13), whilst also dropping any
integrals in q2 which go as µr, r > 0. We are safe to do this as the integral
in q1 can by at worse logarithmic, i.e. µ0 behaviour. This is because, by
construction, the finite factor of the sub-vacuum cannot have worse than a
logarithmic IR divergence in µ2. From this point onwards the factor in q2 is
given by the fundamental logarithmic divergence in four dimensions. That
is, our general form is now

∫
dnq1
µϵR

f ′(q1)

∫
dnq2
µϵR

1

q24
, (4.3.39)

where f ′ is now different to the original f because of the steps just taken.
It will possibly involve factors of q21 in the numerator.

From here, all work takes place in the factor which is an integral in q1.
Our aim is to reduce this factor into a minimal basis. To illustrate our
approach let us consider the following integral

∫
dnq1
µϵR

(k21 + 2q1 · k1)qµqν

q61(q + k1)2
. (4.3.40)

As required, this is finite as n → 4. The first step is to reconstruct the
product, leading to

∫
dnq1
µϵR

(
qµqν

q61
−

qµqν

q41(q + k1)2

)
. (4.3.41)

This is the difference of two UV infinite functions, however, the poles cancel
between the two such that the difference remains finite. As we shall see, this
is a general feature and dictates the ultimate form of sub vacuum expression
once reduced. The two integrals here are representative of the challenges
found in the complete calculation. First we deal with the integrals that
depend only on µ2. If they are of logarithmic nature then we relate them
to the fundamental logarithmic divergence using the one-loop consistency
relations. If they are polynomial in nature we simply discard as they vanish
as µ2 → 0. For the second style of integral we must now use Passarino
Veltman techniques as discussed in section 4.3.1.
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Here we can see that the result will involve an integral with a doubled
propagator therefore we must employ the IBP relations as discussed in sec-
tion 4.3.2. In an arbitrary sub-vacua, because of our off-shell kinematic
point there are only two possible integrals with doubled propagators which
we will need to relate to their cousins with single propagators. These two
are

I1 =

∫
dnq

1

q4(q + k1)2
, (4.3.42)

I2 =

∫
dnq

1

q4(q − k1)2(q + k2)2
. (4.3.43)

To find their expressions in terms of scalar integrals with single propagators
we must employ the technique of integration by parts. The derivation of
these relations is somewhat technical and not very illuminating so we leave
this to appendix C.2. We find that

I1 =
1

M2

∫
dnq

µϵR

(
1

q4
+

3− n

q2(q + k1)2

)
, (4.3.44)

I2 =
1

M4

∫
dnq

µϵR

(
M2

2

4− n

q2(q − k1)2(q + k2)2
+

1

q4
+

3− n

q2(q + k1)2

)
. (4.3.45)

Note that our original expressions for I1 and I2 are UV finite, i.e. there are
no poles in ϵ. However, there do contain IR divergences as µ2 goes to zero.
We can see that this is still respected in by our new form. As we take n → 4
in these expressions there is no UV pole as the 1/ϵ in each integral cancels.
What’s more the log µ2 due to the double propagators is now being held in
the fundamental logarithmic vacuum.

At this point we are ready to write down the general form which our
sub-vacuum must take
∫

dnq1
µϵR

dnq2
µϵR

1

q42

[
A(n)

q41
−

A′(n)

q21(q1 + k1)2
+M2 B(n)

q21(q1 − k1)2(q1 + k2)2

]
.

(4.3.46)
We have been successful in reducing our expression to scalar integrals and
in doing so we have had to allow their coefficients to depend upon n. Note
that we label the coefficients of the fundamental logarithmic vacuum and
the two point function A(n) and A′(n) respectively. This is to signify that
they coincide at n = 4, i.e. A(4) = A′(4), such that the integral over q1 has
no UV pole. We recall that this is because one factor of the sub-vacuum is
UV finite, but as we have written it in terms of UV infinite integrals their
coefficients must conspire to cancel the pole. Finally, we point out that
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there are so few integrals because many are related through the symmetric
off-shell kinematic point.

At this point, we are able to make two judicious steps which will help us
make cancellations with the loop counterterms calculated in section 4.3.5.
The first is to note that the A′ and B terms in equation (4.3.46) are IR
convergent, and so we can take the limit µ2 → 0 within the integral here.
Further, as the q1 integral is finite as ϵ→ 0 we do not need to keep the O(ϵ)
terms in the q2 integral. We write this as a ϵ → 0 next to the q2 integral
(though we do keep the poles)

V0

∫
dnq1
µϵR

[
A(n)

q41
−

A′(n)

q21(q1 + k1)2
+M2 B(n)

q21(q1 − k1)2(q1 + k2)2

]
, (4.3.47)

where V0 =

[∫
dnq2
µϵR

1

q42

∣∣∣∣
ϵ→0

]
. (4.3.48)

We remind the reader that this is the form for both the two point and
three point functions, however B(n) = 0 in the two point functions as these
integrals do not appear by construction.

4.3.5 Reducing The Loop Counterterms

The loop counterterms were introduced in section 4.1.2 as a natural conse-
quence of removing the infinities through renormalization of the bare param-
eters in the Lagrangian. This creates new, higher order interactions which
must be included in calculations of radiative corrections. The first step,
therefore, is to renormalize the theory at one-loop, just as we did in section
4.2.3. The necessary renormalizations are given in appendix B.1. For the
following discussion, to ease making contact with the FDR vacuum, we will
rewrite the renormalization constants in terms of the one-loop fundamental
logarithmic divergence. This essentially amounts to not having expanded
the logarithmic divergence in terms of ϵ in the first place, i.e. we rewrite

− iπ2
(
2

ϵ
+ L+ c

)
→ (1 + c[n − 4]) V0, (4.3.49)

where we take n = 4 + ϵ and L = γe + log(π) and V0 is defined in equation
(4.3.48). It is important to remember that the counterterm insertions must

contain any constant part that we absorb at the one loop level (c in equation
4.3.49) otherwise we are not consistently performing the renormalization.

To give an example of the kind of diagram which we are computing
here, consider the diagrams given in figure 4.2 as examples of contributing
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to the loop counterterms in the renormalization of gluon two point, gluon
three point and gluon/ghost/anti-ghost functions respectively. Note the

Figure 4.2: Example loop counterterm diagrams required for calculating the
FDR scheme renormalization constants.

diagram given as example of a gluon two point function loop counterterm.
This contains a counterterm insertion along a propagator and so has two
propagators with the same momentum flowing through them - a topology
not found in NLO calculations. For this reason, similar to the sub-vacuum
calculation we will have one loop integrals with doubled propagators.

With these diagrams in hand, we face a very similar treatment to that
of section 4.3.4, using one loop technology. There is, however, one principal
difference - these integrals lack the FDR fictitious mass µ2. In the discus-
sion of section 4.2.1 introduce the fictitious mass only in the bare integral,
in order to extract the FDR integral. This might suggest that we could
have differences in IR behaviour, but this was the benefit of performing the
calculation off-shell - we are completely IR convergent and all divergences
are of UV origin.

The work to reduce to scalar integrals that we perform is only slightly
different now that we lack a µ2. Let us again choose a representative integral
which allows us to explore the process and highlight the subtleties

∫
dnq1
µϵR

qµ1 q
ν
1

q41(q1 + k1)2
. (4.3.50)

This integral is purely UV divergent, as required, and the first step is to
perform integral reduction. We observe that the difference between this
case and the case where there are IR divergences is minor - we can find
the reduction by taking the reduction with µ2 and taking µ2 = 0 inside the
integral. Note that this is not taking a limit, it is simply an algebraic trick.
The only place where this results in a different calculation to the µ2 ̸= 0
case is if we find an integral whose only scale is µ2. Without the support of
this scale, these integrals are now scaleless and so we can set them to zero,
for example ∫

dnq1
µϵR

1

q41
= 0. (4.3.51)
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If this integral were in terms of q we would not be able to set it to 0 as
it diverges logarithmically in µ2. In equation (4.3.51), we remember that
this integral is zero because it contains both an IR divergence and a UV
divergence which cancel. In the presence of (even a vanishing) mass µ2, the
two cannot cancel because they are regulated in different ways.

In performing the PV reduction we often end up with scalar integrals
with doubled propagators. In the case of equation (4.3.50) we find the scalar
integral

Ī1 =

∫
dnq1
µϵR

1

q41(q1 + k1)2
. (4.3.52)

Similar to the treatment of the subvacua in section 4.3.4, in considering
the loop counterterms for any of our correlation functions the only other
example of an integral with a doubled propagator that we meet is

Ī2 =

∫
dnq1
µϵR

1

q41(q1 − k1)2(q1 + k2)2
. (4.3.53)

Before we move to rewrite them using IBP relations, let us note something
that naively may be of concern - these two integrals are IR divergent, i.e.
they contain a 1/ϵ pole of IR origin. After a short pause we realize that this
is no problem - the off-shell kinematic point assures us that the correlation
function is IR convergent. These intermediate IR poles are, in fact, repre-
sentations of the original UV pole. This is made more transparent by using
IBP to remove the doubled propagator. Once again we can use the relations
with µ2 to find the relevant equations by taking µ2 = 0 inside the integral.
This tells us that

Ī1 = =
1

M2

∫
dnq1
µϵR

(
3− n

q21(q1 + k1)2

)
, (4.3.54)

Ī2 = =
1

M4

∫
dnq1
µϵR

(
M2

2

4− n

q21(q1 − k1)2(q1 + k2)2
+

3− n

q21(q1 + k1)2

)
.

(4.3.55)

Once again, we see that the 1/ϵ pole manifests in a UV divergent integral.
Finally we can see that we can reduce the loop counterterms down to

scalars and due to the benefits of the off-shell kinematic point we can write
them as

V0

∫
dnq1
µϵR

[
a′(n)

q21(q1 + p)2
−M2 b(n)

q21(q1 − k1)2(q1 + k2)2

]
, (4.3.56)

Note that here we have named our coefficients in judicious correspondence
with the names that we gave in our discussion of sub vacuum in section
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4.3.4. In this way, we are also aided by the rewriting of the 1/ϵ pole from
the counterterm insertion in terms of the fundamental logarithmic vacuum.
Finally, note that, as in the case of the sub-vacuum, this is a description
valid for both two and three point correlation functions, but in the case of
two point correlation functions b(n) = 0 by construction.

4.3.6 FDR Renormalized Correlation Functions

At this point we have all of the components required to compute the renor-
malization constants of our chosen correlation functions with external gauge
states in QCD in FDR at two loop. Let us see how they fit together, as there
are a few interesting comments that we can make.

We recall the equation defining the second order correction to the renor-
malization constant for any correlation function

(Z2)FDR ·M0 = − V [M2]|nγ=n − (Loop CTs)|FDR . (4.2.10)

Here, we remind the reader that Z2 is the second order correction to the
renormalization constant for our given correlation function, M0 is the tree
level form of the correlation function16 and V [M2]|nγ=n represents the FDR
vacuum of the 2-loop corrections to the correlation function calculated with
nγ = n. For the following discussion we split the vacuum term into the
global vacuum (GV) and sub-vacuum (SV)

(Z2)FDR ·M0 = − (GV[M2] + SV[M2])nγ=n − (Loop CTs)|FDR . (4.3.57)

As previously discussed, this form sets some strong constraints for the FDR
vacuum which we must now find as we put the components together. Firstly,
the LHS factorises the tree level, so as radiative corrections in general allow
for more complex structures there must be some dramatic cancellation in
the RHS. Secondly, we want the form of Z2 to be local - containing no logs
of any scales. In order for this to happen, the logs in the sub vacuum and
the loop counterterms must cancel.

If we remember the forms given in sections 4.3.4 and 4.3.5 on the sub
vacua and loop counterterms respectively then we can write down the equa-
tion

SV + Loop CTs =

V0

∫
dnq1
µϵR

[
A(n)

q41
+

a′(n)−A′(n)

q21(q1 + k1)2
+M2 B(n)− b(n)

q21(q1 − k1)2(q1 + k2)2

]
.
(4.3.58)

16See footnote 5 on page 69.
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We see, therefore, that in order to drop the logarithms we have strong con-
straints on the coefficient functions, specifically both [A′(n) − a′(n)] and
[B(n) − b(n)] should be O(ϵ). However, upon performing the calculation,
we have found a much stronger condition: A′(n) = a′(n) and B(n) = b(n),
such that

SV + Loop CTs = V0

∫
dnq1
µϵR

A(n)

q41
. (4.3.59)

We do not have a thorough explanation of this phenomena to hand at this
time. It is interesting to note that we can quite easily repeat the discussion of
this chapter using the four dimensional helicity scheme, FDH. The principal
difference is that when constructing the FDR integral from the FDH, there
is no longer any difference in the state counting parameter nγ . That is, in
FDH nγ = 4 and so we can achieve the FDH version of this calculation by
setting nγ = 4 in our construction of the vacuum 17. This has the effect
of changing the coefficient functions in the numerators of equation (4.3.58).
Here we also find the exact cancellation of integrals with momentum scales,
leaving again the form of equation (4.3.59).

Having noticed exactly how the sub-vacuum and loop counterterms can-
cel we see that only the part depending on µ2 remains and so contributes
to the determination of the renormalization constant. This leads us to con-
jecture that one could calculate the renormalization constants of the FDR
scheme without calculating the loop counterterms. In our calculation we
see that we are able to extract this term directly, without performing the
reduction of the entire sub vacuum by observing that it represents the IR
divergence, as µ2 → 0 of the sub vacuum. In our case we have explicitly
performed this by extracting the IR divergence using the identity

1

(q + ki)2
=

1

M2

(
1−

2(q · ki) + q2

(q + ki)2

)
(4.3.60)

This works in a similar way to the FDR vacuum extraction - the second and
third terms are less IR divergent than the first. Consider as an example

∫
dnq1
µϵR

qµqν

q6(q + k1)2
=

1

M2

∫
dnq1
µϵR

(
qµqν

q6
−

qµqν [2(q · ki) + q2]

q6(q + k1)2

)

(4.3.61)
The first term is exactly a one-loop vacuum integral which, after application
of the one-loop consistency relations, contributes to the A(n) part of the

17Importantly, we must also perform this in the one-loop counterterm insertions that
we find in the loop counterterms. This amounts to removing the constant part of the
counterterm insertion as FDH and FDR share the same coupling constant at one loop.
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sub vacuum. The rest of the terms are all IR convergent, and so we can
take the µ2 → 0 limit inside the integral, implying that they will reduce
to A′ style terms which then match with counterterms. Intuitively this
observation of how to extract the renormalization constants makes sense
- the renormalization scale dependence of the finite part is given by the
dependence on µ2, which behaves as a fictitious IR divergence in µ2. We
could therefore find the renormalization constants of our given correlation
function directly from the vacuum by extracting its IR divergent part.

Before moving on to the relations that we need to finally compute the
renormalization constants in the FDR scheme, we remark that when one
brings together the sub vacuum and the global vacuum we notice a corre-
spendence in their pole structure. To be able to express this, let us write a
Laurent series in ϵ = n−4 form for both the global vacuum and sub vacuum
of our correlation functions

GV =
G−2

ϵ2
+

G−1

ϵ
+G0, (4.3.62)

SV =

(
Sa

−2

ϵ2
+

Sa
−1

ϵ
+ Sa

0

)
+

(
Sb

−2

ϵ2
+

Sb
−1

ϵ
+ Sb

0

)
. (4.3.63)

Note that equation (4.3.63) is not simply the Laurent series in epsilon of
the sub vacuum, but the sub vacuum written as the sum of two different
Laurent series - Sa and Sb. We point out that as the sub-vacuum has only
a 1/ϵ pole then clearly Sa

−2 = −Sb
−2. In order to explain the origin of these

two series, let us recall the general form of the reduced sub-vacuum from
section 4.3.4

V0

∫
dnq1
µϵR

[
A(n)

q41
−

A′(n)

q21(q1 + k1)2
+M2 B(n)

q21(q1 − k1)2(q1 + k2)2

]
. (4.3.47)

Here we have achieved a separation into the part which depends only on
µ2 and a part which, in practice, cancels with the counterterms. From this
perspective, the series Sa is the µ2 dependent part, the A(n) term and the
series Sb correspends to the other part, the A′ and B terms. Understanding
this, we can state that in our experience, the relation we then find by explicit
calculation for all of our correlation functions is

Sa−2 = −Sb−2 = −2G−2. (4.3.64)

Naively one may expect this to be due to a consistency relation that is not
known to us which constrains the amplitude. However, we can take any two
loop integral and reduce it to the form of equation (4.3.47). Experimentation
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therefore leads us to conjecture that equation (4.3.64) is true for any two
loop integral, not just correlation functions.

We are now ready to compute the renormalization constant for our given
correlation function. We leave discussion of the extraction of the renormal-
ization of αS and the various fields to section 4.5. The previous discussion
allows us to compute this by integrating the global vacuum and the A(n)
term from the sub vacuum. That is, we can write a general form of the
renormalization constant as

Zi =

(∫
dnq1
µϵR

dnq2
µϵR

G1(n)

q41q
4
2

+
G2(n)

q41q
2
2q

2
12

)
+ V0

∫
dnq1
µϵR

A(n)

q41
, (4.3.65)

where all integrals are evaluated at the point µ = µR. Here, the Gi terms
represent the contribution from the global vacuum, where we have written
the n dependence of the coefficients from equation (4.3.36) as the Gi(n). The
A term is the result of the sub vacuum/loop counterterm cancellation. The
integrals required to compute equation (4.3.65) are presented in appendix
C.1 evaluated at the point µ = µR. We now comment on the form of the
renormalization constants in the FDR scheme. In general we can write the
renormalization constants in the form

Zi =
c−2

ϵ2
+

c−1

ϵ
+ c00 + c01f11. (4.3.66)

where the ci are coefficients that depend on the correlation function we
renormalize. At one-loop the FDR scheme is equivalent to FDH and DRED,
but at two loop this is not the case - the renormalization constants differ
by a finite amount18. What is noticeably distinct from an MS inspired
scheme is that this finite difference involves the coefficient f11, a numerical
constant given in terms of the polygamma function19. This is a pure two
loop renormalization effect, and so did not turn up in the work of Pittau and
Donati[74]. Another further point that we can observe is that, despite the
integrals in equation (4.3.65) all containing terms proportional to π6, these
cancel in the final result. Notably this is an effect of the choice of 1-loop
renormalization. If we had chosen to subtract V and not V0 we would find
a π6 contribution20.

This completes the discussion of the renormalization of correlation func-
tions with external ghosts and gluons in QCD. Now we must consider corre-
lation functions with external quarks and the extra difficulties which arise.

18Note that their 1/ϵ structure is the same because this is controlled by the 1-loop
renormalization, see section 4.5.

19See appendix C.1.
20This would have no effect on the one-loop amplitude as there is no difference between

V and V0 as ϵ → 0.
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4.4 Two Loop Renormalization with External Quarks

In the discussion of section 4.3 we restricted ourselves to the renormalization
of correlation functions with external gluons and ghosts. We have made this
separation as when we move to extend this work to the case of external
fermions, we find that there is no longer the clean cancellation between
the sub-vacuum and loop counterterms that we observe in section 4.3.6. A
priori this doesn’t have to be disastrous - previously we were surprised by
how clean the cancellation was. We do not require this neat cancellation
between the loop counterterms and sub vacuum, it is only required that
the cancellation leaves us with a renormalization constant which is local
and universal. However, we find that in a naive treatment this turns out
to not be the case. Therefore it seems that our calculation appears to
have catastrophic results - a naive global prescription performs a non-local
subtraction at two loop when we have external fermions.

In this section we discuss the origin of this sickness and in turn its req-
uisite remedy. In order to cure the patient we realize that there are “extra”
extra integrals required in the case of external fermions which restore this
sub-vacuum/loop counterterm cancellation.

4.4.1 Inconsistency in Iterated Integration

At two loops, the naive global prescription fails because it breaks a key
property required for computing loop integrals - in a two loop diagram,
one should be able to compute a sub-diagram and insert the integrated
form into the full diagram and get the same answer. We can see that this
fails by considering the expected cancellation in the Nf contribution to the
renormalization of the fermion propagator -

(S.V.)

[ ]

+ (Nf )

[ ]

= 0, (4.4.1)

where we use the notation (Nf )[x] to indicate that we discuss only the
parts proportional to Nf and with the notation (S.V.)[x] we consider the
parts of the sub vacuum which we expect to cancel the counterterms21.
When we calculate the loop counterterm diagram, we find that it is exactly
zero in DR because of the form of the insertion. That is, the counterterm
insertion is purely transverse, and for this reason the diagram evaluates to
zero, regardless of the renormalization. When we calculate the sub vacuum

21See section 4.3.6 for a more precise definition.
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of the two loop diagram we find that it does not evaluate to zero. This is
quite striking as it was only the form of the counterterm which caused the
diagram to give zero. Naively speaking, as the fermion loop is transverse at
one loop, it should manifest as a transverse sub-diagram.

For this reason, let us consider the sub diagram more closely. We recall
that in section 3.1 we performed a very similar calculation - the flavourless
corrections to the gluon propagator. The sub diagram which we wish to
insert here will take a very similar form which we parameterize as

µ ν

q1

q2

q12

=

∫
[d4q2]

q21g
µν − qµ1 q

ν
1

q22q
2
12

[
A+B

µ2
2

q12

]
. (4.4.2)

Inserting this into equation (4.4.1) in place of the fermion loop yields a
startling result - indeed the S.V. term is zero as we had expected. This is of
great concern - we have performed the integration in two ways which should
be equivalent and found different answers.

To begin to understand the origin of this problem, let us consider a
specific integral which arises:

∫
[d4q1][d

4q2]
γµγνq

µ
2 q

ν
2

q41(q1 + p)2q22q
2
12

=

∫
[d4q1]

γµγν
q41(q1 + p)2

∫
[d4q2]

qµ2 q
ν
2

q22q
2
12

,

(4.4.3)
where we have still not performed any global prescription. Notably, once we
have performed the global prescription this integral is identically zero. We
write the RHS in a factorized form to highlight that the integral over q2 is
exactly that of the fermion loop sub diagram. We will only be consistent
with the one loop result if we treat this sub-diagram in the same way as the
one loop diagram. We should therefore be able to perform integral reduction
on the q2 integral. Recalling this integral reduction from equation (3.1.11)
we find the result

∫
[d4q1]

1

q41(q1 + p)2

∫
[d4q2]

µ̂2
2

q22q
2
12

. (4.4.4)

Here, we mark the µ̂2
2 with a hat because it is acting only on the sub integral,

that is we wish to perform the defining expansion in the sub integral only.
This will be further explained in section 4.4.2. Importantly, this means that
as we are making efforts to be consistent with the one loop result, the integral
no longer evaluates to its naive value of zero. In the coming section we will
consider this in more detail and provide a general strategy that restores the
cancellation between sub vacua and loop counterterms.
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4.4.2 The “Sub-prescription”

As we have discussed, we can see that the problem which the global prescrip-
tion experiences is an incorrect treatment of the sub diagram. In order to fix
this, we here introduce the idea of the “sub-prescription”. This prescription
allows to identify where we should introduce further extra integrals in order
to implement the correct promotion of the sub diagram in the context of the
larger diagram.

The process which we wish to undergo is to subtract the incorrect promo-
tion of q22 → q22 in the sub diagram and then add back the correct promotion.
In this section we will discuss them in the context of a standard FDR calcula-
tion and leave the discussion of how this is incorporated into the calculation
of the effective FDR renormalization constants to section 4.4.3. Let us begin
by writing the full unregulated integrand of our example diagram, where we
have performed the trace over the fermion loop.

q1 + p

q1 q1

q2

q12 =
N

q41(q1 + p)2q22q
2
12

(4.4.5)

N = 4γµ
(
/q1 + /p

)
γν {−gµνq2 · q12 + qµ12q

ν
2 + qµ2 q

ν
12} , (4.4.6)

where, for clarity, we have only kept the parts of the expression relevant
to the integration. We wish to identify all promotions of the sub graph
integration momentum q2. The first step is to disconnect the divergent sub
graph from the rest of the diagram:

µ̂

µ

ν̂

ν

(4.4.7)

We denote the separation of the parts “external” to the sub diagram by
placing hats on the lorentz indices (here this is just a notational convenience
to help perform our strategy). We can identify the numerator terms which
cause sub divergencies in q2 as

Ndiv
2 = 4γµ̂

(
/q1 + /p

)
γν̂
{
−gµνq22 + 2qµ2 q

ν
2

}

= −4γν̂
(
/q1 + /p

)
γν̂q

2
2 + 8/̂q2

(
/q1 + /p

)
/̂q2

(4.4.8)
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Algebraically the hats do not make any difference other than to denote the
fact that they are of an origin which is external to the sub diagram, so all
standard identities apply, for example

γα̂γ
α̂ = γαγ

α̂ = 4 γα̂q
α
2 = /̂q2. (4.4.9)

We can extract the promotion which the global prescription performs by
performing the anti-commutation to bring all q22 terms out, giving an extra
integral of the form

∫
[d4q1][d

4q2]
4(4− 4)(/q1 + /p)µ̂2

2

q41(q1 + p)2q22q
2
12

= 0, (4.4.10)

where this cancels due to 4-dimensional gamma algebra. To perform the
correct sub-promotion we look at the sub diagram and perform the promo-
tion which it suggests, i.e. we bar only the q2 internal to the sub graph.
In this case we only bar the term with q22, which we can see as there are
no hats. In general, any q̂2 are not to be promoted. We find the correct
promotion of the sub diagram gives rise to an extra integral of the form

∫
[d4q1][d

4q2]
−8(/q1 + /p)µ̂2

2

q41(q1 + p)2q22q
2
12

. (4.4.11)

To perform the sub-prescription we must then subtract the incorrect global
promotion and reintroduce the sub promotion, i.e.

sub-prescription = −(global promotion) + (sub promotion)

=

∫
[d4q1][d

4q2]
−8(/q1 + /p)µ̂2

2

q41(q1 + p)2q22q
2
12

.
(4.4.12)

We then calculate this integral by first performing the FDR integral over q2.
To perform this illustratively let us begin by using a Feynman parameteri-
zation:

I = −8

∫
[d4q1]

/q1 + /p

q41(q1 + p)2

∫
[d4q2]

µ̂2
2

q22q
2
12

= −8

∫
[d4q1]

/q1 + /p

q41(q1 + p)2

∫ 1

0
dx

∫
[d4q2]

µ̂2
2

(q22 − [−q21 x(1− x)])2

(4.4.13)

Notice that the q1 in the extra integral is explicitly barred. Performing this
parameterization allows us to easily calculate this integral by recalling the
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discussion of extra integrals in section 3.2.3. We replace the integral by
minus the vacuum content, making the integral trivial to perform, giving

I = 8iπ2
(∫ 1

0
dxx(1− x)

)∫
[d4q1]

/q1 + /p

q21(q1 + p)2

=
2iπ2

3
/p

∫
[d4q1]

1

q21(q1 + p)2

(4.4.14)

In this specific example, this extra contribution is exactly what is re-
quired to again cleanly cancel the counterterm in equation (4.4.1). To extend
this treatment to the case of multiple divergent sub graphs, one only need
to repeat this process for each divergent sub-graph. For further examples,
see appendix D.

4.4.3 Renormalizing the Quark Sector

Now that we have the sub-prescription, we can link back to our discussion
of the renormalization of the correlation functions with external quarks. We
can see how to incorporate the sub-prescription into the calculation of the
renormalization constants for the correlation functions by returning to the
relation of the FDR amplitude to the renormalized DR amplitude. Firstly
we recall where we performed the global prescription, equation (4.2.3)

∫
dnq1d

nq2J(q1, q2) = lim
µ2→0

∫
dnq1d

nq2J̄(q1, q2). (4.2.3)

It is clear that here we must also perform the sub-prescription in the case
of fermions. This has an effect when we decompose the DR bare amplitude
into the FDR vacuum and integral. We recall equation (4.2.5),
(
lim
µ2

∫

ϵ
JF

)
+

(
lim
µ2

∫

ϵ
JV

)
=

(∫
[d4q1][d

4q2]J

)
+

(
lim
µ2

∫

ϵ
V [J ]|nγ=n

)
.

(4.2.5)
Here, both the vacuum and the FDR integral now contain contributions
from the sub-prescription. In practice this means that we can follow the
discussion of section 4.3, calculating the global vacuum, sub vacuum and
counterterms and then add in the terms from the sub-prescription. We
remind the reader that this means that in performing the calculation of the
FDR vacuum one must take care to use the DR space time dimensionality
n when constructing the amplitude.

A further consideration to make is how to fit the new extra integrals into
a sub vacuum like framework. If we wish them to engage in the cancellation

101



at the integral level, they must be set into the same basis. Naively, when
we perform the integration in the divergent extra sub-integral, this leaves
us with a constant which does not fit into our basis. The solution is to first
re-express the sub integral using the extra integral vacuum trick and then
write the other factor as the difference of the DR regulated integral and
vacuum. Then we can use the integration by parts identities to relate the
extra integral factor to V0 and finally, if necessary, perform integral reduction
on the other factor. As an example, consider

∫
[d4q1][d

4q2]
µ̂2
2

q21(q1 + p)2q24q212

= −
∫

dnq2
µϵR

µ2

q62

∫
dnq1
µϵR

(
1

q21(q1 + p)2
−

1

q41

)

=
(4− n)

4
V0

∫
dnq1
µϵR

(
1

q21(q1 + p)2
−

1

q41

)
(4.4.15)

With this understanding in hand we are able to present the renormal-
ization constants of the quark sector of massless QCD in appendix B.1. As
this has been the first calculation involving the sub-prescription, let us com-
ment on a few points of interest. Principally there are a number of diagrams
for which the extra extra integrals immediately vanish because the act of
removing the “bad prescription” and replacing it with the “good prescrip-
tion” which we describe in section 4.4.2 is inert. That is, the part removed
is equal to the part reintroduced, or both actions do nothing. Consider the
following two loop sub vacuum/counterterm cancellation,

+ = 0 (4.4.16)

Here we find that the cancellation occurs immediately without the need of
performing the sub-prescription. We can understand this by realizing that
the sub diagram is simplistic enough to not require global prescription at
one loop. I.e. we have no need for it in the diagram

p

q + p

q

∼
∫

[d4q]
γµ /q1γµ
q(q + p)2

. (4.4.17)

Similarly, in the renormalization of the quark/anti-quark/gluon correlation
function, the diagrams with a quark propagator insertion do not require
sub-prescription to match their counterterms.

102



There is a further case where the diagram/counterterm cancellation hap-
pens without sub-prescription. This is when the bosonic part of the diver-
gent sub diagram does not reconnect with the rest of the graph. Consider
the following two diagrams which have the same divergent sub graph, the
triangular part with the gluon three point vertex,

vs .

The first requires a sub-prescription, whilst the second does not. We can
understand this because in the second, the part of the sub diagram which is
incorrectly identified by the global prescription in the first, remains external
and so is treated correctly as it is untreated by the global prescription.

4.4.4 The Sub-prescription and FDR vs FDH

In section 4.3 we observed that as well as renormalizing à la FDR starting
from a DR viewpoint we could also work in the framework of the four di-
mensional helicity scheme (FDH). Here, the crucial difference is that in DR
one constructs the amplitudes taking the dimensionality of the fields, nγ to
be n, but in FDH the amplitudes are constructed with nγ = 4. It is then an
interesting question to see what happens if we move the renormalization of
correlation functions with external fermions to an FDH based approach. We
find that in FDH we observe cancellation between sub vacuum and countert-
erms without the introduction of the sub-prescription. That is, for external
fermions FDH suggests that we do not make the sub-prescription, whilst DR
suggests that we do perform it.

This seemingly inconsistent result begins to make sense when considered
in the context of the recent literature on FDH. In 2012, Kilgore [58] showed
that at two loop FDH is not unitary in the presence of external fermions.
More specifically it was shown that the standard renormalization procedure
does not give results consistent with the literature at two loops and even
fails to make the result finite at three loops. However, FDH has been shown
to give completely consistent results in purely gluonic QCD.

It is interesting to consider that our work here demonstrates that with-
out the sub-prescription FDR would fall into the same trap as FDH. In
some ways this is not strongly surprising as without the sub-prescription
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they both employ the same 4-dimensional algebra and preserve numera-
tor/denominator cancellation to enforce gauge invariance - hence why the
sub vacua and counterterms match when working in an FDH based frame-
work. Since the discovery of the non-unitarity of FDH a number of attempts
to resolve it have been made - [83, 84]. It would be interesting to investi-
gate a sub-prescription inspired approach to solving the issues experienced
by FDH. Here we stress that similar to FDH, a naive application of the
global prescription in FDR yields physically consistent results when applied
to purely gluonic QCD. That is, in the calculations of section 4.3 we have
not included the sub-prescription and still found consistently universal re-
sults with the quark sector. Therefore, it would be of immediate interest to
understand why purely gluonic QCD does not require the sub-prescription
and to see if this has an analogy in the context of FDH.

4.5 Parameter Renormalization, Universality and

Shifts

In the previous sections we have calculated the renormalization constants
in the FDR scheme for all of the correlation functions given in figure 4.1.
As stated in figure 4.1, these renormalization constants are related to the
renormalization constants of the bare parameters of the theory through the
Slavnov-Taylor identities. We can solve for the renormaliation constants of
the parameters giving us

ZG = Z1/2
GG, (4.5.1)

Zca = Z1/2
cc , (4.5.2)

Zψ = Z1/2
ψψ , (4.5.3)

ZαS =
Z2
GGG

Z3
GG

=
Z2
Gcc

ZGGZ2
cc

=
Z2
Gψψ

ZGGZ2
ψψ

. (4.5.4)

The last expression shows us that for a consistent renormalization method
the renormalization constants we extract from each three point vertex are
related, i.e. a good method of renormalization treats all correlation func-
tions in a universal way. It is therefore a strong test of FDR’s approach to
verify the universality of the renormalization constants. The renormaliza-
tion constants for all of the parameters are presented in appendix B.1, and
we find that computing ZαS in all possible ways gives the same result. In
this way, we verify the universality of FDR’s approach to renormalization.
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Note that the renormalization constants presented in appendix B.1 are
expanded as a series in ϵ = n − 4. Over the course of this work, we have
been surprised at the benefits gained by keeping the calculation at the un-
integrated level. Specifically, if we were to have expanded the global and
sub-vacua in ϵ, we would not have witnessed such a dramatically clean can-
cellation. An interesting question, therefore, is whether or not we find that
the universality of the renormalization constants is present before expanding
around n = 4, and thereby true to all orders in ϵ. From the perspective of
DR/MS we have no reason to expect this - we have multiple representa-
tions of the same 1/ϵ pole, and no reason to expect that they would not mix
when comparing the different calculations of the renormalization constants.
To discuss this, let us consider the form of ZαS as extracted from vertex j.
We can write this as

ZαS |j =
∫

dnq1
µϵR

dnq2
µϵR

(
dj1

q41q
2
2q

2
12

+
dj2
q41q

4
2

)

+ dj3

∫
dnq1
µϵR

1

q41

[∫
dnq2
µϵR

1

q42

∣∣∣∣
ϵ→0

]

+ dj4

[∫
dnq1
µϵR

1

q41

∣∣∣∣
ϵ→0

] [∫
dnq2
µϵR

1

q42

∣∣∣∣
ϵ→0

]
.

(4.5.5)

Here all coefficients dji are functions of n, that a priori could depend on the
vertex we choose to calculate ZαS . Upon investigation, using the two vertices
j = GGG and j = Gcc we find that indeed this coefficients do depend on
the vertex used - that is universality is not manifest. However, we observe
two things. Firstly, as the two expressions coincide when integrated and as
n → 4, then the difference must be O(ϵ). Secondly, the first coefficient, dj1,
is the same between the two vertices so there is some universality between
the two vertices. When we compute this difference we find that it can be
written

ZαS |GGG − ZαS |Gcc ∼
(∫

dnq1
µϵR

1

q41
−
[∫

dnq1
µϵR

1

q41

∣∣∣∣
ϵ→0

])2

, (4.5.6)

that is, the difference is proportional to a quantity which vanishes as n → 4.
The form of this leads us to an interesting suggestion. The second term, V0

is only present in our calculation because we renormalize the one loop by
subtracting the 1/ϵ pole and a universal constant. However, at one loop it
would make no difference as n → 4 to subtract exactly V , as the difference
is vanishing. In doing this all V0 in our calculations would be replaced by V
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and so the difference in equation (4.5.6) would vanish, such that we indeed
would have universality at all orders in ϵ.

Now we move to the principal relation of physical interest - the rule for
understanding the UV effects of switching schemes from DR/MS to FDR.
We parameterize this as a shift in the coupling constant. The two schemes
effectively differ by the different constants that they subtract at one and two
loop level. As this is universal it amounts to a shift in the coupling constant,
which we write up to NNLO as

αMS

4π
=
αFDR

4π

[
1 + c1 ·

αFDR

4π
+ c2 ·

(αFDR

4π

)2]
. (4.5.7)

To find c1 and c2 we realize that we can relate the two coupling constants
through their original connection to the bare coupling,

α0 = ZMS · αMS = ZFDR · αFDR. (4.5.8)

Writing it in this form, it is clear that the constants ci find their origin the
ratio of the two renormalization constants. Let us write out the renormal-
ization constants to NNLO,

ZMS = 1 + αMS

[
A

ϵ

]
+ α2

MS

[
C

ϵ2
+

D

ϵ

]
(4.5.9)

ZFDR = 1 + αFDR

[
A

ϵ
+B

]
+ α2

FDR

[
C

ϵ2
+

D′

ϵ
+ E

]
. (4.5.10)

For the purpose of clarity, we have left out the appropriate factors of (eγeπ)ϵ

which define the difference between MS and MS (and are also present in
the FDR scheme). Therefore the MS renormalization constants are given
strictly in terms of poles, but the FDR scheme also contains constant parts.
A number of the coefficients are the same between the two renormalization
constants, but notably the single pole of the NNLO correction is different
between the two. Now we can insert the expressions for the two Zs into
equation (4.5.8), and so we find the following relations,

c1 = D, (4.5.11)

c2 = E, (4.5.12)

D′ = D + 2AB. (4.5.13)

The third equation is a consistency constraint which we need to satisfy. It
is essentially a statement that the difference between the 1/ϵ poles in the
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second order corrections to the renormalization constants is controlled by
the constant difference at one loop.

In order to be able to find values for c1 and c2, we need the explicit
value of the renormalization constant in MS. Further, if we extend this
calculation to all correlation functions we have independent determinations
of the QCD renormalization constants which we can compare to literature
in order to ascertain the soundness of our computational machinery. To
be able to calculate the renormalization constants in MS we need to be
able to extract the pole part of our correlation functions. Remembering our
discussion in section 4.2.1 we realize that we can do this by taking the pole
part of the FDR vacuum as

p.p.

[∫

ϵ
J

]
= p.p.

[(
lim
µ2

∫

ϵ
JF

)
+

(
lim
µ2

∫

ϵ
V [J ]|nγ=n

)]

= p.p.

[(
lim
µ2

∫

ϵ
V [J ]|nγ=n

)]
,

(4.5.14)

where we use the subscript ϵ to denote DR at the appropriate loop order.
Equation (4.5.14) then tells us that the pole part of a dimensionally regulated
integrand J is given by the pole part of the FDR vacuum of J as we can split
J into the FDR vacuum and the FDR finite part which, by construction,
has no poles in ϵ. We can then calculate the renormalization constants in
MS up to two loop using

(Z1)MS ·M0 = p.p.
(
− V [M1]|nγ=n

)
, (4.5.15)

(Z2)MS ·M0 = p.p.
(
− V [M2]|nγ=n − (Loop CTs)|MS

)
. (4.5.16)

Here Z1 and Z2 are respectively the one and two loop renormalization con-
stants of the given correlation function and M0 is the tree level form22 of
the correlation function. We remind the reader that the loop counterterms
in equation (4.5.16) are constructed using the MS 1-loop counterterm inser-
tions which, in comparison to FDR, have no finite part. A technical subtlety
here is that, unlike in the computations for the FDR scheme, the loop coun-
terterms and sub-vacua do not cancel exactly. In general we find that they
differ by terms of O(1/ϵ). In principle this is of no concern as we are only
required to find that the non-local terms drop, i.e. there are no terms of the
form log(M2)/ϵ, however in practice it is worth being aware of. We have
computed these renormalization constants and give them in appendix B.2.

22See footnote 5 on page 69.

107



Further, we have compared them to literature [85, 86, 87] and found them to
be in agreement, supporting the soundness of our computational machinery.

At this point we have everything in hand to state the coupling constant
shift between DR/MS and FDR. Firstly, let us note that we verify that the
FDR scheme satisfies equation (4.5.13). Next we present the values of ci in
the coupling constant shift:

c1 =
−Nc

3
,

c2 = N2
c

[
−
85

18
− 8f11

]
+

Nf

6
[Nc (−6 + 4f11) + T2 (9 + 8f11)] ,

(4.5.17)

where T2 =
N2

c − 1

2Nc
. (4.5.18)

As previously stated, the FDR scheme is equivalent to FDH/DRed at NLO
in the UV as to this order the shift in the coupling is the same [75]. However,
the schemes differ at NNLO in the UV.
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Chapter 5

Conclusions and Perspectives

In this thesis we have made two different attacks on the problem of loop
computations in precision physics. The first was an investigation in the
context of the multi-leg frontier. Here we worked in the framework of the
OPP method, which allows automatic integral reduction for one loop virtual
amplitudes. In order to be able to use the OPP method with HEFT and its
pseudoscalar analogue we have computed the required effective R2 Feynman
rules for both Lagrangians. In the latter publication this allowed for the
first non-standard model one loop studies in the MadGraph5 aMC@NLO

framework, a study of the CP properties of the top quark/Higgs interaction.
Here it was shown that di-jet correlations in Higgs + 2 jets can provide a
valuable tool for discerning the CP properties of this coupling. In the time
since this R2 investigation was undertaken, a package for the automatic
computation of both R2 and UV counterterms in renormalizable quantum
field theories has been built, NLOCT [88]. In this way, within the context
of frameworks such as MadGraph5 aMC@NLO or HELAC-NLO there is
currently no need for further computations of R2 vertices in renormalizable
theories to be performed manually. In the future, one may still need to
undergo such tasks by hand in non-renormalizable theories, but there are
also plans for the extension of NLOCT to non-renormalizable theories.

The second attack which we have made in this thesis has been on the loop
frontier in massless QCD. We have undertaken an investigation within the
framework of FDR, a four dimensional approach for regularizing quantum
field theories. Our chief goal has been to understand the renormalization of
αS in this scheme and to develop transition rules between FDR and DR/MS.

To achieve this, we have developed a framework to identify the effective
renormalization constants implied by the FDR approach and applied them
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to DR amplitudes in a canonical counterterm picture. In this endeavour, we
have been greatly aided by our automation of the FDR defining expansion
at both one and two loops. Over the course of this calculation we have been
able to prove the identity of the one-loop UV treatments performed by FDR
and DRed/FDH. We have also seen exactly how the FDR vacuum fits into a
canonical picture of order by order renormalization through the observation
of how the FDR vacuum cleanly matches the loop counterterms. What’s
more, we have identified the need, when studying processes with external
fermions, of the sub-prescription within the FDR treatment. This has been
necessary to preserve the locality and universality of the FDR approach.

In summary we have calculated the renormalization constants of massless
QCD in FDR through the lens of dimensional regularization. The univer-
sality of the renormalization constants which we have found amount to an
explicit confirmation of the existence of a finite approach for computing pre-
dictions in gauge theories concretely within 4-dimensions. The computation
of the renormalization constants has allowed us to understand the relation-
ship between the renormalization of αS in FDR and DR. For any QCD
calculation in DR, free of IR divergence effects, this allows one to elucidate
the FDR result.

There are still many challenges in the road ahead for FDR. A simple
next step is to extend the calculation presented here to the case of massive
QCD and it would not prove difficult to repeat the work for other theories
such as the electro-weak model. In order to be able to approach complete
two loop calculations within the context of FDR one also needs an FDR
prescription for the double real phase space. Additionally, for processes with
incoming quarks one would need a prescription to map the IR treatments
of FDR and CDR in order to match to PDFs which are all given in terms
of conventional dimensional regularization. Nevertheless, now with a full
understanding of renormalization in FDR under control, it is now possible
to be able to undertake investigation into purely numerical approaches for
the virtual amplitudes.

Another potentially fruitful ground for further investigation is the sub-
prescription presented in this thesis. Firstly it needs to be better understood
in contexts where it does not appear, such as calculations within purely glu-
onic QCD. What’s more, it would be very intriguing to understand the anal-
ogy between the respective problems suffered by FDR with a naive global
prescription and FDH at two loop. Specifically we have observed that the
breakdown of a naive global prescription, like the failure of unitarity suffered
in FDH, occurs only in the case of external fermions, and not with external
gluons and ghosts. It would therefore be interesting to investigate this du-
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ality between FDR and FDH and to see if the sub-prescription proposed in
this thesis could be extended to solve the problem of FDH.
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Appendix A

Feynman Rules

Here we present the complete collection of Feynman rules relevant to the
calculations performed in this thesis. Firstly in appendix A.1 we present the
Feynman rules for bare QCD. Next in appendix A.2 we present the Feynman
rules for the HEFT, followed in appendix A.3 by the R2 vertices for HEFT +
pseudoscalar. Finally we present in appendix A.4 the counterterm vertices
in renormalized massless QCD.

A.1 Bare Massless QCD

= iδs1s2 1
/q

s1 s2
q

= −igγµtas1s2
s1

µ

s2

Figure A.1: The Feynman rules for the quark sector of massless QCD. All
momenta are incoming.
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= −iδmn 1
q2

(
gµν + (ξ − 1) qµqν

q2

)µ, m ν, n
q

= iδmn 1
q2

m n
q

= g fm1m2m3

[
gµ1µ2 (p1 − p2)

µ3

+gµ2µ3 (p2 − p3)
µ1

+gµ3µ1 (p3 − p1)
µ2

]p1, µ1, m1

p2, µ2, m2

p3, µ3, m3

= −i g2
[

fm1m2bfm3m4b (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+fm1m3bfm2m4b (gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fm1m4bfm2m3b (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
]

µ1, m1

µ2, m2 µ3, m3

µ4, m4

= gfm1m2m3pµ3

p1, µ1, m1

p2, µ2, m2

p3, µ3, m3

Figure A.2: The Feynman rules for the gauge sector of massless QCD. All
momenta are incoming. ξ is the gauge parameter which is set to 1 in the
Feynman gauge.
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A.2 Higgs Effective Field Theory with Pseudoscalar

= −i gH δm1m2

(
pµ1

2 pµ2

1 − gµ1µ2 p1 ·p2
)

p1, µ1, m1 p2, µ2, m2

H

= −gH g fm1m2m3

[
gµ1µ2 (p1 − p2)

µ3

+gµ2µ3 (p2 − p3)
µ1

+gµ3µ1 (p3 − p1)
µ2

]

p2, µ2, m2

p1, µ1, m1 p3, µ3, m3

H

= −i gH g2 Fµ1µ2µ3µ4
m1m2m3m4

µ2, m2 µ3, m3

µ4, m4µ1, m1
H

Figure A.3: The tree level Feynman rules for the HEFT Lagrangian in
equation (2.1.1). Momenta are incoming, fabc is the SU(3) structure factor.
The dashed line represents the Higgs field. The tensor F is given by (A.2.1).

Fµ1µ2µ3µ4

m1m2m3m4
=
[

fm1m2bfm3m4b (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+fm1m3bfm2m4b (gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fm1m4bfm2m3b (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
]

(A.2.1)
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= − i gA δm1m2 ϵµ1µ2ρσ p1ρ p2σ

p1, µ1, m1 p2, µ2, m2

A

= −gA g fm1m2m3 ϵµ1µ2µ3ρ (p1 + p2 + p3)ρ

p2, µ2, m2

p1, µ1, m1 p3, µ3, m3

A

Figure A.4: The tree level Feynman rules for the pseudoscalar Lagrangian
in equation (2.1.3). All momenta are incoming, where fabc is the SU(3)
structure factor. The dashed line represents the pseudoscalar field. Note
that in the limit pA → 0 the amplitudes vanish.
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A.3 HEFT+Psuedoscalar R2

= igHg2Nc

384π2 δm1m2 T µ1µ2

p1, µ1, m1 p2, µ2, m2

H

=
gHg315Nc

128π2
fm1m2m3

[
gµ1µ2 (p1 − p2)

µ3

+gµ2µ3 (p2 − p3)
µ1

+gµ3µ1 (p3 − p1)
µ2

]

p2, µ2, m2

p1, µ1, m1 p3, µ3, m3

H

= igHg4

128π2 X
µ1µ2µ3µ4
m1m2m3m4

µ2, m2 µ3, m3

µ4, m4µ1, m1
H

Figure A.5: The R2 vertices generated by the effective Lagrangian in (2.1.1).
All momenta are incoming, Nc is the number of colors. The dashed line
represents the Higgs field. The tensors T and X are defined in equations
(A.3.1) and (A.3.2) respectively.
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=
igHg2

32π2

(
N2

c − 1

2Nc

)
δj1j2λHV(/p1 − /p2)

p1, j1 p2, j2

H

j1

j2

µ, m
=

igHg3

64π2
γµt

m
j2j1

[
2λHV + 1

Nc
− (2λHV + 3)Nc

]

H

Figure A.6: The R2 vertices generated by the effective Lagrangian in (2.1.1).
Momenta are incoming, Nc is the number of colors, λHV = 1 (λHV = 0) in
DR (DRed), quarks are massless and the dashed line is the Higgs.

= i gA
g2sNc

96π2 δm1m2 ϵµ1µ2ρσ p1ρ p2σ

p1, µ1, m1 p2, µ2, m2

A

= gA
g3sNc

64π2 fm1m2m3 ϵµ1µ2µ3ρ (p1 + p2 + p3)ρ

p2, µ2, m2

p1, µ1, m1 p3, µ3, m3

A

Figure A.7: The R2 vertices generated by the effective Lagrangian for the
pseudoscalar interactions, equation (2.1.3). All momenta are incoming, Nc

is the number of colors. The dashed line represents the pseudoscalar field.
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T µ1µ2 =
[

pµ1

1 pµ2

2 + 89 pµ2

1 pµ1

2 + 14 (pµ1

1 pµ2

1 + pµ1

2 pµ2

2 )

−
[
17 (p21 + p22) + 93 (p1 · p2)

]
gµ1µ2

]
,

(A.3.1)

Xµ1µ2µ3µ4

m1m2m3m4
=
[

Cm1m2m3m4Dµ1µ2µ3µ4 +Cm1m2m4m3Dµ1µ2µ4µ3

+ Cm1m3m2m4Dµ1µ3µ2µ4

]
,

(A.3.2)

Cm1m2m3m4 = fm1bcfm2cdfm3defm4eb, (A.3.3)

Dµ1µ2µ3µ4 = 21gµ1µ2gµ3µ4 − 41gµ1µ3gµ2µ4 + 21gµ1µ4gµ2µ3 . (A.3.4)

A.4 Renormalized Massless QCD

= i (Zψψ − 1) δs1s2/q
s1 s2

= −i (ZGψψ − 1) gγµtas1s2
s1

µ

s2

Figure A.8: Counterterm vertices for the quark sector of massless QCD.
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= −i(ZGG − 1)δmn
(
q2gµν − qµqν

)µ, m ν, n
q

= i(Zcc − 1)δmnq2
m n

q

= (ZGGG − 1)g fm1m2m3

[
gµ1µ2 (p1 − p2)

µ3

+gµ2µ3 (p2 − p3)
µ1

+gµ3µ1 (p3 − p1)
µ2

]p1, µ1, m1

p2, µ2, m2

p3, µ3, m3

= −i (ZGGGG − 1) g2 Fµ1µ2µ3µ4
m1m2m3m4

µ1, m1

µ2, m2 µ3, m3

µ4, m4

= (ZGcc − 1) gfm1m2m3pµ3

p1, µ1, m1

p2, µ2, m2

p3, µ3, m3

Figure A.9: Counterterm vertices for the gauge sector of massless QCD.
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Appendix B

Renormalization Constants

Here we list the renormalization constants for both the MS and FDR
scheme. We remind the reader that by calling FDR a scheme, we have
regularized in DR and defined the scheme by matching to the result as reg-
ularized in FDR.

B.1 FDR At Two Loop

Here we list the correlation function renormalization constants calculated
in section 4.2.3. As the FDR scheme is equivalent at one-loop to DRed
and FDH, one can truncate at O(αS) to find the one-loop renormalization
constants for those two schemes.

ZGG = 1 +
αS

4π

[
1

ϵ

(
−
10

3
Nc +

4

3
Nf

)
+

1

3
Nc

]

+
(αS

4π

)2 [ 1
ϵ2

(
−
25

3
N2

c +
10

3
NcNf

)
+

1

ϵ

(
−
65

12
N2

c +Nf

(
5

2
Nc + 2T2

))
+

39

16
N2

c +
7

2
N2

c f11+

Nf

(
7

8
Nc −

3

2
T2 + f11

(
−
4

3
T2 −

1

3
Nc

))]

(B.1.1)
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ZGGG = 1 +
αS

4π

[
1

ϵ

(
−
4

3
(Nc +−Nf )

)
+

1

3
Nc

]

+
(αS

4π

)2 [ 1
ϵ2

(
−
13

2
N2

c + 5NcNf

)
+

1

ϵ

(
−
59

24
N2

c +Nf

(
25

12
Nc + 2T2

))
+

119

96
N2

c +
5

4
N2

c f11+

Nf

(
13

16
Nc −

3

2
T2 + f11

(
−
4

3
T2 −

1

6
Nc

))]

(B.1.2)

Zcc = 1 +
αS

4π

1

ϵ
(−Nc)

+
(αS

4π

)2 [ 1
ϵ2
(
−4N2

c +NcNf

)
+

1

ϵ

(
−
37

24
N2

c +
5

12
NcNf

)
+

79

96
N2

c +
3

2
N2

c f11 +Nf

(
1

16
Nc +−

1

6
Ncf11

)]

(B.1.3)

ZGcc = 1 +
αS

4π

1

ϵ
(Nc)

+
(αS

4π

)2 [ 1
ϵ2

(
5

2
N2

c

)
+

1

ϵ

(
3

4
N2

c

)
+

−
3

8
N2

c +−
3

4
N2

c f11

]
(B.1.4)

ZΨΨ = 1 +
αS

4π

[
1

ϵ
(2T2) + T2

]

+
(αS

4π

)2 [ 1
ϵ2
(
−2 + 2N2

c + 2T 2
2

)
+

1

ϵ

(
−
17

4
+

17

4
N2

c +
1

2
T 2
2 −NfT2

)
+

−
7

16
+

7

16
N2

c −
5

8
T 2
2 + f11

(
2−

1

3
T 2
2 − 2N2

c

)
+

Nf

(
1

4
T2 +

4

3
T2f11

)]

(B.1.5)
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ZGΨΨ = 1 +
αS

4π

[
1

ϵ
(2 (Nc + T2)) + T2

]

+
(αS

4π

)2 [ 1
ϵ2

(
−4 +

25

2
N2

c + 2T 2
2 −NcNf

)
+

1

ϵ

(
−
21

4
+

181

24
N2

c +
1

2
T 2
2 +Nf

(
−T2 −

5

12
Nc

))
+

−
7

16
−

5

8
T 2
2 −

73

96
N2

c + f11

(
2−

1

3
T 2
2 −

17

4
N2

c

)
+

Nf

(
1

4
T2 −

1

16
Nc + f11

(
1

6
Nc +

4

3
T2

))]

(B.1.6)

Further, using the Slavnov-Taylor identities we can relate these to the
renormalization constants of αS and the various fields:

ZαS = 1 +
αS

4π

[
1

ϵ

(
22

3
Nc +−

4

3
Nf

)
+−

1

3
Nc

]

+
(αS

4π

)2 [ 1
ϵ2

(
484

9
N2

c +
16

9
N2

f +−
176

9
NcNf

)
+

1

ϵ

(
58

9
N2

c +Nf

(
−2T2 −

22

9
Nc

))
+

−
85

18
N2

c +−8N2
c f11+

Nf

(
3

2
T2 −Nc + f11

(
2

3
Nc +

4

3
T2

))]

(B.1.7)

ZG = 1 +
αS

4π

[
1

ϵ

(
−
5

3
Nc +

2

3
Nf

)
+

1

6
Nc

]

+
(αS

4π

)2 [ 1
ϵ2

(
−
2

9
N2

f −
50

9
N2

c +
25

9
NcNf

)
+

1

ϵ

(
−
175

72
N2

c +Nf

(
41

36
Nc + T2

))
+

347

288
N2

c +
7

4
N2

c f11+

Nf

(
7

16
Nc −

3

4
T2 + f11

(
−
2

3
T2 −

1

6
Nc

))]

(B.1.8)
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Zc = 1 +
αS

4π

1

ϵ

(
−
1

2
Nc

)

+
(αS

4π

)2 [ 1
ϵ2

(
−
17

8
N2

c +
1

2
NcNf

)
+

1

ϵ

(
−
37

48
N2

c +
5

24
NcNf

)
+

79

192
N2

c +
3

4
N2

c f11 +Nf

(
1

32
Nc +−

1

12
Ncf11

)]

(B.1.9)

ZΨ = 1 +
αS

4π

[
1

ϵ
(T2) +

1

2
T2

]

+
(αS

4π

)2 [ 1
ϵ2

(
−1 +N2

c +
1

2
T 2
2

)
+

1

ϵ

(
−
17

8
+

17

8
N2

c −
1

4
T 2
2 +−

1

2
NfT2

)
+

−
7

32
+

7

32
N2

c −
7

16
T 2
2 + f11

(
1−

1

6
T 2
2 −N2

c

)
+

Nf

(
1

8
T2 +

2

3
T2f11

)]

(B.1.10)

B.2 MS At Two Loop

Here we list the MS renormalization constants calculated in section 4.5.
They coincide with Mihaila [85], Egorian [86] and Muta [87]. Here we take
αS to be αS |MS.

ZGG = 1 +
αS

4π

1

ϵ

(
−
10

3
Nc +

4

3
Nf

)

+
(αS

4π

)2 [ 1
ϵ2

(
−
25

3
N2

c +
10

3
NcNf

)
+

1

ϵ

(
−
23

4
N2

c +Nf

(
5

2
Nc + 2T2

))]
(B.2.1)
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(B.2.2)

ZGGG = 1 +
αS

4π

1

ϵ

(
−
4

3
Nc +

4

3
Nf

)

+
(αS

4π

)2 [ 1
ϵ2

(
−
13

2
N2

c + 5NcNf

)
+

1

ϵ

(
−
71

24
N2

c +Nf

(
25

12
Nc + 2T2

))]
(B.2.3)

Zcc = 1 +
αS

4π

1

ϵ
(−Nc)

+
(αS

4π

)2 [ 1
ϵ2
(
−4N2

c +NcNf

)
+

1

ϵ

(
−
49

24
N2

c +
5

12
NcNf

)]

(B.2.4)

ZGcc = 1 +
αS

4π

1

ϵ
(Nc)

+
(αS

4π

)2 [ 1
ϵ2

(
5

2
N2

c

)
+

1

ϵ

(
3

4
N2

c

)] (B.2.5)

ZΨΨ = 1 +
αS

4π

1

ϵ
(2T2)

+
(αS

4π

)2 [ 1
ϵ2
(
−2 + 2N2

c + 2T 2
2

)
+

1

ϵ

(
−
17

4
+

17

4
N2

c −
3

2
T 2
2 −NfT2

)]
(B.2.6)

ZGΨΨ = 1 +
αS

4π

1

ϵ
(2Nc + 2T2)

+
(αS

4π

)2 [ 1
ϵ2

(
−4 +

25

2
N2

c + 2T 2
2 −NcNf

)
+

1

ϵ

(
−
17

4
+

169

24
N2

c −
3

2
T 2
2 +Nf

(
−T2 −

5

12
Nc

))]

(B.2.7)

Further, using the Slavnov-Taylor identities we can relate these to the
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renormalization constants of αS and the various fields:

ZαS = 1 +
αS

4π

1

ϵ

(
22

3
Nc +−

4

3
Nf

)

+
(αS

4π

)2 [ 1
ϵ2

(
484

9
N2

c +
16

9
N2

f +−
176

9
NcNf

)
+

1

ϵ

(
34

3
N2

c +Nf

(
−2T2 −

10

3
Nc

))]
(B.2.8)

ZG = 1 +
αS

4π

1

ϵ

(
−
5

3
Nc +

2

3
Nf

)

+
(αS

4π

)2 [ 1
ϵ2

(
−
2

9
N2

f −
50

9
N2

c +
25

9
NcNf

)
+

1

ϵ

(
−
23

8
N2

c +Nf

(
5

4
Nc + T2

))]
(B.2.9)

Zc = 1 +
αS

4π

1

ϵ

(
−
1

2
Nc

)

+
(αS

4π

)2 [ 1
ϵ2

(
−
17

8
N2

c +
1

2
NcNf

)
+

1

ϵ

(
−
49

48
N2

c +
5

24
NcNf

)]

(B.2.10)

ZΨ = 1 +
αS

4π

1

ϵ
(T2)

+
(αS

4π

)2 [ 1
ϵ2

(
−1 +N2

c +
1

2
T 2
2

)
+

1

ϵ

(
−
17

8
+

17

8
N2

c −
3

4
T 2
2 +−

1

2
NfT2

)]
(B.2.11)
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Appendix C

Useful Identities

C.1 Vacuum Integrals

Here we present the small set of integrals that were required in our method-
ology in order to calculate the renormalization constants of FDR. We begin
with the one loop fundamental logarithmic vacuum:

∫
dnq

µϵR

1

q4

∣∣∣∣
µ=µR

= −iπ2 (eγeπ)ϵ
(
2

ϵ
+ ϵ

π2

24

)
+O(ϵ2), (C.1.1)

where n = 4 + ϵ, as it shall be for all of the following integrals. This is
both necessary for calculating the one loop renormalization but also for
calculating the integrals required in the two loop renormalization where it
appears both squared, and premultiplied by V0. For this reason we have
given it to O(ϵ), allowing us to calculate:

∫
dnq1
µϵR

dnq2
µϵR

1

q41

1

q42

∣∣∣∣
µ=µR

= −π4 (eγeπ)2ϵ
(

4

ϵ2
+
π2

6

)
+O(ϵ)

(C.1.2)
[∫

dnq2
µϵR

1

q42

∣∣∣∣
ϵ→0

] ∫
dnq1
µϵR

1

q41

∣∣∣∣
µ=µR

= −π4 (eγeπ)2ϵ
(

4

ϵ2
+
π2

12

)
+O(ϵ)

(C.1.3)

The pure two loop logarithmic vacuum is given by [90]:

∫
dnq1
µϵR

dnq2
µϵR

1

q41q
2
2q

2
12

∣∣∣∣
µ=µR

= −π4 (eγeπ)2ϵ
(

2

ϵ2
−

1

ϵ
+

1

2
+
π2

12
+ f11

)
+O(ϵ).

(C.1.4)
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Here, f11 is a numerical value that can be calculated in terms of dilogarithms
or the polygamma function:

f11 =
i√
3

(
Li2(e

iπ
3 )− Li2(e

−iπ
3 )
)

(C.1.5)

=
1

36

[
−ψ1

(
1

6

)
− ψ1

(
1

3

)
+ ψ1

(
2

3

)
+ ψ1

(
5

6

)]
. (C.1.6)

= −1.17195361 . . . (C.1.7)

C.2 IBP Identities

Here we derive the few integration by parts identities that have been neces-
sary to calculate the FDR scheme renormalization constants.

Firstly, we begin by expanding this derivative in

0 =

∫
dnq

µϵR

∂

∂qµ

(
qµ

q2(q + k1)2

)
. (C.2.1)

Then it is a simple matter of reconstructing denominators and rearranging
to find the identity:

∫
dnq

1

q4(q + k1)2
=

1

M2

∫
dnq

µϵR

(
1

q4
+

3− n

q2(q + k1)2

)
. (C.2.2)

To derive the relation for the three point integral with a doubled prop-
agator we need to do more work. We begin by computing the derivative.

0 = kµ1

∫
dnq

µϵR

∂

∂qµ

(
1

q2(q − k1)2(q + k2)2

)
, (C.2.3)

0 =

∫
dnq

µϵR

∂

∂qµ

(
qµ

q2(q − k1)2(q + k2)2

)
. (C.2.4)

The first derivative gives us relations which look similar to shift invariance
without the doubled propagator:

∫
dnq

µϵR

(
1

q4(q − k1)2(q + k2)2

)
=

∫
dnq

µϵR

(
1

q4(q + k1)2(q − k3)2

)

=

∫
dnq

µϵR

(
1

q4(q + k2)2(q − k3)2

)
,

(C.2.5)
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This then proves useful when we compute the second derivative. Together
with equation (C.2.2) we are able to write the equation:

∫
dnq

µϵR

M2

q4(q − k1)2(q + k2)2

=
1

M2

∫
dnq

µϵR

(
4− n

2

M2

q2(q − k1)2(q + k2)2
+

1

q4
+

3− n

q2(q + k1)2

) (C.2.6)

In order to derive the recursion relation used to simplify two loop global
vacua, we need a global vacuum with an arbitrary number of propagators.
Judiciously we compute the folloing total derivative, which can be easily
rearranged to give equation (4.3.33):

0 =

∫
dnq1d

nq2
∂

∂qµ1

qµ1 − qµ2
qα1

1 qα2

2 qα12

12
(C.2.7)
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Appendix D

Sub-prescription Example

Here we will discuss further examples of the sub-prescription in order to aid
the understanding of the reader for future FDR calculations. Consider the
following contribution to the two loop corrections to the fermionic propaga-
tor in FDR:

q1

q2

p q1 + p

q12 + p

q2 + p

=

∫
[d4q1][d

4q2]
γβ(/q2 + /p)γα(/q12 + /p)γβ(/q1 + /p)γα

q21q
2
2D1D2D12

where Di = (qi + p)2
(D.0.1)

Here the fermion momenta follows the fermion line. We wish to discuss how
to extract the terms resulting from the sub-prescription, so as in the main
text we consider the un-promoted numerator in order to find these terms.
In this diagram we have two sub divergences, one for fixed q1 and another
fixed q2. The terms from the sub-prescription of each can be extracted
considering the sub-divergences independently. First we shall consider q1
fixed. Let us disconnect the divergent sub diagram and write the numerator
with its appropriate hatting:
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α̂ α

β β

N = γβ(/q2 + /p)γα(/q12 + /p)γ
β(/q1 + /p)γ

α̂ (D.0.2)

Here we see that the numerator terms which give logarithmic divergences in
q2 are:

N (2)
div = γβ/q2γα/q2γ

β(/q1 + /p)γ
α (D.0.3)

Making the sub promotion here we find:

N (2)
div → N̂ (2)

div = γβ(/q2 + µ̂2)γα(/q2 + µ̂2)γ
β(/q1 + /p)γ

α̂

= N (2)
div + 4µ̂2

2(/q1 + /p)
(D.0.4)

Next we need to find the global promotion to remove. In this case this can
be performed by anticommuting until all q2 meet, and then we ignore hats
and perform the promotion

q22 → q22 − µ̂2
2. (D.0.5)

Here, due to the 4-dimensional gamma algebra, we find this evaluates to
zero. We find the resulting contribution by subtracting the (zero) global
promotion and adding in the sub promotion, leading to an extra integral of
the form:

I = 4

∫
[d4q1][d

4q2]
µ̂2
2(/q1 + /p)

q21q
2
2D1D2D12

. (D.0.6)

We calculate the extra integral by first performing the integral over q2, a
simple calculation because the sub integral is a logarithmically divergent
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extra integral.

I = 4

∫
[d4q1]

/q1 + /p

q21D1

∫
[d4q2]

µ̂2
2

q22D2D12

= −4

∫
[d4q1]

/q1 + /p

q21D1

∫
[d4q2]

µ̂2
2

q62

= 2iπ2
∫

[d4q1]
/q1 + /p

q21D1

= iπ2
∫

[d4q1]
/p

q21D1

(D.0.7)

Where we have employed the vacuum trick on the sub integral in the second
line. When we move to perform the sub-prescription in the second sub
divergence, i.e. fixed q2, we make a similar treatment and find that the
sub-prescription gives an identical contribution due to the symmetry of the
diagram.
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