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Abstract

The present manuscript covers the following subjects, all related to the study of non-
negative integer solutions of linear systems of Diophantine equations.

• The justification and implementation of the software DPSolve to compute the
nonnegative integer solutions of systems of linear Diophantine equations, which
improves a previous procedure based on Dickson’s lemma.
• The introduction and study of affine convex body semigroups, and in particular

the calculation of their minimal generating sets (whenever finitely generated)
and a procedure to determine when they are Buchsbaum, providing in this way
plenty of examples of semigroups with this property. These methods have been
implemented in Mathematica.
• The study of some factorization invariants in half-factorial monoids and the in-

troduction of a new invariant called the homogeneous catenary degree. Both
theoretical and algorithmic results are provided; implementations have been per-
formed in GAP ([16]).
• In order to deal with the problems in the preceding paragraph we have imple-

mented and published the 4ti2gap package, which is a GAP wrapper for 4ti2
([30]).

Resumen

El presente trabajo abarca las siguientes temáticas, relacionadas con el estudio de las
soluciones positivas de sistemas de ecuaciones Diofánticas lineales.

• La justificación e implementación del software DPSolve para el cálculo de las
soluciones enteras positivas de sistemas de ecuaciones Diofánticas lineales, que
mejora un algoritmo previo basado en el lema de Dickson.
• La introducción y estudio de los semigrupos afines de cuerpo convexo, y en par-

ticular el cálculo de su conjunto minimal de generadores (cuando es finitamente
generado) y de un procedimiento para determinar cuando esos semigrupos son
Buchsbaum, lo que permite obtener ejemplos de semigrupos con esta propiedad.
Loa algoritmos relacionados se han implementado en Mathematica.
• El estudio de algunos invariantes de factorización en monoides de factorización

media y la introducción de un nuevo invariante llamado grado de catenaridad
homogénea. Se aportan tanto resultados teóricos como algorítmicos; así como
implementaciones en GAP ([16]).
• Para el tratamiento computacional de problemas relacionados con lo indicado en

el párrafo anterior, se ha desarrollado y publicado el paquete 4ti2gap para GAP,
para disponer de herramientas que aporta 4ti2 mediante sus librerías.
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Introduction

The resolution of systems of linear Diophantine equations is a well known complex
problem with many applications. In this work we are concerned with the computation of
the integer non-negative solutions of this kind of systems. Let A be a matrix with integer
entries. The set of nonnegative integer solutions of Ax = 0 is a submonoid, M, of Nk,
where k is the number of unknowns of the system. Minimal nonzero elements of M with
respect to the usual partial ordering can be used to compute every other element of this set;
these are usually named the generators of M. These minimal elements are a Hilbert basis
of M. Computing the non-negative integer solutions of a system of linear Diophantine
equations is thus equivalent to the computation of the Hilbert basis (see for instance [40])
for M.

Knowing if a system of linear Diophantine equations has or not any solution is a NP-
complete problem. However a series of significant methods have progressively appeared
in the literature offering responses at reasonable times, or in other words, useful when the
input is not too unpleasant. In the last decade of the past century appeared the first of
them, see for example in [10, 11, 40, 41]. Other more recent methods appeared in this
century, such as in [5] and [29] have been used to develop software packages providing
computation results at reasonable execution times (see [6] and [30] respectively). What
we mean with reasonable times is that for systems of equations with k ≤ 10, a personal
computer can be used, by expecting a waiting time of a few minutes (as we have experi-
enced in different examples, but not as a rule of thumb in any case). For larger systems, a
supercomputer is indeed necessary to get an output in an acceptable period of time.

With all these considerations in mind, and the opportunity of the state of the art of the
computing hardware and software technology available, we decided to face the problem
of solving this type of equations systems developing some refinements to the algorithm
by Pisón and Vigneron-Tenorio ([39]). This is the fundamental content of the first chapter
of the present work, where we will present the component algorithms to be used in order
to compute the solutions of a system of linear Diophantine equations using our program
DPSolve.

One of the refinements in DPSolve relies in the following idea. The relations between
the columns of A can be represented by considering the semigroup ideal defined as the
kernel of the ring morphism that assigns to each variable in k[x1, . . . ,xk] the value Y c

with c ranging in the columns of A. These relations can be obtained by Gröbner basis
computations. By [32], this semigroup ideal is generated by binomials, 〈Xα −Xβ | Aα =

1



2 INTRODUCTION

Aβ 〉. Besides, from [56] we know how to check for a solution of Ax = 0 (even for non-
homogeneous systems) by looking for the existence of certain binomial in a Gröbner
basis of the semigroup ideal. We use a suited order for this Gröbner basis computation,
in order to feed DPSolve with particular solutions. This computation is done by means
of the effective software tool 4ti2 (see [30]), doing direct library calls in our code. An
additional refinement is in the slicing of the values of possible solutions to check, driven
by the progress of the algorithm and the solutions obtained consecutively. At the end
part of this chapter, we discuss a brief comparison with programs hilbert (a component
program included in 4ti2) and Normaliz (see [6]).

The second chapter presents a generalization in two dimensions of proportionally
modular numerical semigroups. Proportionally modular numerical semigroups consist in
the set of numerators of rational numbers belonging to a given interval I = [α,β ] ⊆ R≥,
with α < β , that is, proportionally modular numerical semigroups are monoids of the
form

⋃
n∈N nI ∩N. Equivalently, they are the set of nonnegative integer solutions of the

inequality axmod b ≤ cx, with a,b,c ∈ Z+ (see [49]). We introduce affine convex body
semigroups defined as F =

⋃
n∈N nF ∩Nk, with F ⊆ Rk

≥ a compact convex body. We
particularize our study to k = 2. In general, convex body semigroups are not finitely gen-
erated, but under conditions related with the slopes of the extremal rays of the minimal
cone containing F, it is possible to compute its minimal generating set. Those convex
body semigroups that are finitely generated are called affine convex body semigroups,
and are characterized when F is a convex polygon or a circle. The characterization is
based on the fact that the intersection of F and the rays of the pointed cone associated
to F contains rational points. The non-negative integer solutions of a system of linear
Diophantine equations can be used to obtain a system of generators of the pointed cone
associated to a convex body semigroup (see [43]). This is the approach that we adopted
in [17], whose content corresponds to the first sections of the second chapter. However
here we have chosen an approach based in [51] that uses Bézout sequences (unimodular
decomposition of cones in this setting) with much better results in computation time.

Most of the results in Chapter 2 are tailored for affine convex body semigroups. First
we focus on procedures to compute the minimal generating set of affine convex body
semigroups. For the case of the circles, the resulting method has been implemented as a
Mathematica1 package, called CircleSG (see [19]). In Appendix A we provide a block
diagram describing the procedure.

The last sections of Chapter 2 show how to determine whether or not affine circles
or convex polygonal semigroups are Buchsbaum. We make use of a characterization of
Buchsbaum simplicial affine semigroups, based on the property of being Cohen-Macaulay
([21] and [24]). We also benefit from the fact that membership to these affine convex body

1Every reference to the term Mathematica in this document, is referred to the set of programs of Wol-
fram Research, except where it is otherwise stated. Mathematica is a registered trademark of Wolfram
Research Inc.
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semigroups is easy to accomplish. The test is implemented for affine polygonal convex
semigroups in the Mathematica package PolySGTools (see [20]), which needs a more
involved processing than the circle case. In Appendix B the process is illustrated also
with a block diagram.

The non-negative integer solutions of a system of linear Diophantine equations appear
in the context of the study of factorizations on affine semigroups: computing the set of
factorizations of m in the affine semigroup M is equivalent to finding the set of nonneg-
ative integer solutions of the system of linear Diophantine equations Ax = m, where A is
a matrix whose columns are the generators of M. Under this perspective, the last chapter
reviews invariants related with factorizations of elements in affine semigroups, with spe-
cial focus on half-factorial monoids. Since in a half-factorial monoid all the lengths of
factorizations of an element are the same, invariants such as elasticity, sets of lengths and
Delta sets yield no information about how wild are the factorizations in these monoids. To
this end a distance between factorizations was introduced in the literature, together with
several invariants related to distances (see for example [26]). We will review these and
see how they can be computed in the scope of affine semigroups. For the particular case
of half-factorial affine semigroups we will show that every possible catenary degree is at-
tained in a Betti element of the monoid (which is far from being true in general). Also we
will prove that the tame degree and ω-primality coincide for half-factorial monoids. We
introduce a new invariant: the homogeneous catenary degree, which is an upper bound
for the catenary degree and a lower bound for the monotone catenary degree.

From any affine semigroup M we define two new affine semigroups: Meq and Mhom.
Both monoids are half-factorial, and the catenary degree of the first coincides with the
equal catenary degree of M, while that of the second with the homogeneous catenary
degree of M.

In Appendix C we introduce the GAP package 4ti2gap ([25]), which is a wrapper
designed to give us an affordable way to perform affine computations using the software
4ti2 ([30]). In fact the main motivation to develop this package were the algorithms
presented in Chapter 3 that rely on solving systems of linear Diophantine equations or
(binomial) Gröbner basis computations. We provide an implementation in GAP of the
procedures presented in Chapter 3. The corresponding functions are listed in Appendix
D. Thanks to 4ti2gap we are able to provide the versions for the affine semigroup case
that now are integrated in the numericalsgps package (see [13]).

Objectives

The main goals of this work are the following.

• Improve the algorithm by Pisón and Vigneron ([39]) for the computation of the
set of nonnegative integer solutions of systems of linear Diophantine equations,
and compare its performance with other programs.
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• Develop software tools to compute the minimal generating set of affine semi-
groups defined by a convex body in N2. To this end some previous theoretical
results are needed.
• Give procedures to determine whether or not a given affine convex semigroup

is Buchsbaum; find families of semigroups with this property, which have ring
theoretic interest by their own.
• Introduce a new invariant (homogeneous catenary degree) to better understand

the monotone catenary degree, inspired in the projective closure of an affine
variety.
• Find alternative characterizations of the equal and homogeneous catenary de-

gree, based on the construction of new half-factorial monoids associated to a
given affine semigroup.
• Study properties of the rest of well known invariants in the scope of half-factorial

affine semigroups. In particular study the possible values of the catenary degree
in these monoids, and the relationship between tame degree and ω-primality.
• Improve and make widely accessible the computation of factorization invariants

for affine semigroups by means of a package can make use of 4ti2 ([30]) from
GAP.

Methodology

This thesis was meant initially to be almost fully computational. However the search
of new algorithms and procedures required the study of theoretical properties of the ob-
jects we were dealing with (mainly affine semigroups).

From the computational experiments we were able to find clues to determine new
properties, and this at the same time fed the results needed to improve our algorithms.

The methodology we used is the following.

• Bound and determine the problems we wanted to study.
• Find the necessary theoretical tools to develop our algorithms.
• From the outputs of this algorithms try to find new ideas and results that eventu-

ally will improve our procedures.
• Find new places where our algorithms can be used, and related problems where

these apply.
• Take advantage of computer experiments to infer new properties.
• Implement the necessary software tools, and make them publicly available. In-

teract and discuss with other developers.
• Contrast results and collaborate with other authors.



CHAPTER 1

Solving systems of linear Diophantine equations

1. Notations and some fundamental concepts

As highlighted in the Introduction, linear systems of Diophantine equations are fun-
damental in the development of this monograph. We fix in this section the basic notations
and definitions used in the rest of the chapters. Also we include an algorithm based on
[39].

1.1. Monoids and semigroups. A monoid M is a semigroup with identity element.
Being a semigroup means that it is a set with an inner binary associative operation (we
denote it with the sum sign +). In this work we only consider commutative monoids and
semigroups, though it will not be written explicitly.

A monoid M is cancellative if given any elements a,b,c ∈M, a+ b = a+ c implies
b = c.

If there exists a finite collection of elements {m1, . . . ,mk} of a monoid (or a semi-
group) with which, through linear combinations using naturals, it is possible to generate
every element of the monoid M, then we say that the monoid is finitely generated. We
denote this by M = 〈m1, . . . ,mk〉. If no proper subset of {m1, . . . ,mk} generates M, then
this set is called a minimal system of generators of M. Finitely generated cancellative
monoids have a unique minimal generating system. We will frequently deal with finitely
generated submonoids of Nn, which are called affine semigroups.

1.2. Lattices. Given a set S ⊆ Rn, we denote with span(S) the linear space spanned
by the vectors in S, that is, span(S) = {∑k

i=0 λisi | λi ∈ R,si ∈ S,k ∈ N}.
Recall that B⊆ Rn is a subgroup of (Rn,+) if for all x,y ∈ B, x− y ∈ B.
Let L be a linear subspace of Rn, a subgroup L is called a lattice of L, if span(L) = L.

A basis for a lattice in L is a set of linearly independent vectors a1, . . . ,as ∈ L such that
L = {µ1a1 + · · ·+µsas | µ1, . . . ,µs ∈ Z}.

1.3. Monomials and binomials. Let k be a field, and k[x1, . . . ,xk] be the ring of poly-
nomials over the unknowns x1, . . . ,xk. A monomial is an expression of the form xa1

1 . . .xak
k ,

where α = (a1, . . . ,ak) ∈ Nk. We will write for short Xα = xa1
1 · · ·x

ak
k . A binomial is the

difference of two (monic) monomials, Xα −Xβ .

1.4. Semigroup rings and lattice ideals. Let A be a n×k matrix with integer entries,
and let M ⊂ Zn be the monoid generated by the columns of A. We will assume that M is
reduced, that is, if a+b = 0 for some a,b ∈M, then a = b = 0.

5



6 1. SOLVING SYSTEMS OF LINEAR DIOPHANTINE EQUATIONS

Let χ be a symbol. Define k[M] = ⊕m∈Mkχm. This set is a commutative ring with
componentwise addition, and with multiplication performed following the rule χuχv =

χu+v (together with the distributive law). Let π : k[x1, . . . ,xk]→ k[M] be the ring mor-
phism determined by π(xi) = χmi , where mi = (a1i, . . . ,ani)

T is the ith column of A.
The kernel of π , ker(π) = { f ∈ k[x1, . . . ,xk] | π( f ) = 0} is usually denoted as IM,

which is an ideal of k[x1, . . . ,xk] (recall that I is an ideal of a commutative ring R if it is
a subgroup of R such that IR ⊂ I). It is well known (see [32]) that IM is a binomial ideal
generated by

〈Xα −Xβ | π(Xα) = π(Xβ )〉= 〈Xα −Xβ | Aα = Aβ 〉,

and every ideal of k[x1, . . . ,xn] is finitely generated by the Hilbert Basis Theorem (see for
instance [12, Chapter 2]).

Let L be a subgroup of Zn. Define IL to be the ideal 〈Xα −Xβ | α,β ∈ Nn,α−β ∈
L〉; the ideal associated to L. These ideals are known in the literature as lattice ideals.
Lemma 9 in [56] states, IM = Iker(A) (recall that ker(A)= {z∈Zn |Az= 0}). The morphism
π is surjective, and thus k[x1, . . . ,xk]/IM is isomorphic to k[M], whence IM is a prime ideal,
since k[M] is a domain.

1.5. Computing IM. We briefly enumerate some well known methods to compute
the semigroup ideal IM that rely on Gröbner bases computations (we will introduce this
concept and monomial orders in Section 1.6).

Elimination: A well known method (see [11], [14]) to obtain the semigroup ideal
IM is elimination with Gröbner bases. It takes the auxiliary polynomial ring with
n+ 1 extra coordinates, k[y1, . . . ,yn, t,x1, . . . ,xk], and an ideal I = 〈y1 · · ·yn · t−
1,Y m+

j −Y m−j x j〉 for j ∈ {1, . . . ,k}, where we denote

m+
j = (max{m1 j,0}, . . . ,max{mi j,0}, . . . ,max{mn j,0})

and

m−i = (−min{m1 j,0}, . . . ,−min{mi j,0}, . . . ,−min{mn j,0}),

and use the convention Y m = ym1
1 · · ·ymn

n as above. Using an elimination order
with y j ≥ t ≥ xi (for all i, j) the Gröbner basis of I, G, is calculated. The intersec-
tion G∩k[X ] is a generating set IM. The computation with this method requires
to deal with Gröbner basis on a polynomial ring with n+ k+ 1 variables. It is
considered slow, because for binomial ideals the Gröbner bases computation cost
grows exponentially with the number of variables ([35, Theorem 20]).

Sturmfels: This is performed as an iterative computation ([54, Chapter 12]). It
starts from W , a lattice basis of ker(A), that is, any independent set of Z-solutions
of Ax = 0, which can be obtained in polynomial time using the Hermite normal
form of A. Then the iterations begin with the assignment J0 = 〈Y b+i −Y b−i |bi ∈
W 〉. Next for i ∈ {1, . . . ,k}, a reduced Gröbner bases is calculated in order to
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obtain Ji as the set of elements g ∈ k[Y ], such that there exists r ∈ N such that
yr

i g ∈ Ji−1. Finally, from the reduced Gröbner basis of Jk a minimal generating
set is obtained.

DiBiase-Urbanke: Another iterative method which reduces the number of steps
with respect the previous one is in [14] and [33]. It transforms some columns
of the matrix A in order to have a row with all positive values, this new matrix
is denoted A′. It is the number of matrix operations to find A′ what sets the
number of iterations (that involves Gröbner bases computations) needed to end
the algorithm. Before these iterations, from A′ a lattice basis is obtained, which
is used as the boot up point to calculate ker(A) by successively reversing the
previous transformations.

Hemmecke-Malkin: It is an approach similar to that of Sturmfels. The starting
point is a projection of L= ker(A). Let σ ⊆{1, . . . ,k} and denote Lσ = ρσ (L),
where ρσ is the projection operator based on the index set σ . The most relevant
aspect that differences this method is that in each iteration the dimension of the
working sets is smaller than the original dimension of the problem. For each
step a partial generating set is obtained from the projected lattice as in [54], and
a inverse projection is computed in order to recover the original index set. The
last operation is realizable because the index set σ should be computed such that
ker(πσ )∩L = {0}. Also when σ is available, a generating set of Lσ is com-
puted as an additional input for the so called "Project-and-Lift" algorithm. By
means of a single Gröbner basis computation on the generating set obtained from
the iterative steps, a minimal generating set is obtained. For the computation of
the intermediate generating sets in each iteration, the authors use a completion
method expressed in geometric terms, as a process that computes a connected
graph. The implementation of this algorithm, among others, is present in the
software package 4ti2 ([30]) and its theory is in [31].

Hilbert Bases: In [40] an algorithm to compute a Hilbert basis of a linear Diophan-
tine system of homogeneous equations (actually this is one of the approaches that
Normaliz offers [6]) is proposed; see the definition of Hilbert basis in Section
3. Hence we can apply it to (A|−A)(X |Y )T = 0. Along this line, one can also
use any algorithm to compute Hilbert basis of systems of linear Diophantine
homogeneous equations (for instance [10]), and then duplicate the number of
variables. In order to avoid this duplication of variables a different approach is
given in [9], though the efficiency is not yet proved to be better than the latter
approaches in all cases (see the execution time tables included in that paper).

1.6. Gröbner bases. In the “world” of polynomial ideals, Gröbner bases are spe-
cially useful, since they generalize the concept of division for a single variable. It is well
known that k[x] is an Euclidean domain, and thus membership to an ideal becomes trivial,
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since every ideal I of k[x] is principal. That is, f ∈ I = 〈g〉 if and only if g divides f , or in
other words, the remainder of the division of f by g is zero.

In order to generalize the concept of division by several polynomials, we first need
to arrange the monomials in a polynomial, or equivalently, the exponents of monomials,
so that the independent term is the least possible element (and thus 0 is the least possible
exponent). We also need that these orderings are compatible with multiplication, or if
we look at the exponents, with addition. Thus we need a total ordering compatible with
addition in Nk. This is known in the literature as an admissible ordering. Summarizing,
we need an ordering � on Nk such that

• for every a,b ∈ Nk, either a� b or b� a,
• for all a ∈ Nk, 0� a,
• for every a,b,c ∈ Nk, if a� b, then a+ c� b+ c.

These conditions, together with Dickson’s Lemma, imply that� is a well ordering on Nk.
In this work we use different orderings (as in [12, Chapter 2]) to check when Xα <Xβ .

Lexicographic: the leftmost non-zero component of β −α ∈ Zk is positive.
Graded Reverse Lex: ∑

k
i=1 αi < ∑

k
i=1 βi or if ∑

k
i=1 αi = ∑

k
i=1 βi the leftmost non-

zero component of β −α ∈ Zk is negative.
Matrix: the first non-zero entry of O(β −α) is positive, where O ∈ Zk×k is an

invertible matrix with the elements in the first row zero or positive.
Product: this order combines various orders on disjoint sets of monomial vari-

ables. Given a sequence of monomial orders <1,<2, . . . then Xα <1 Xβ or
Xα =1 Xβ and Xα <2 Xβ , or Xα =1,2 Xβ and Xα <3 Xβ , . . .

The matrix order may be used to encode other orders. For instance lexicographic
corresponds with O equal to the identity matrix. The graded reverse lexicographic is
represented by the matrix: 

1 1 1 · · · 1 1
0 0 0 · · · 0 −1
0 0 0 · · · −1 0
...

...
... . . . ...

...
0 0 −1 · · · 0 0
0 −1 0 · · · 0 0


,

and the product order: 

1 0 0 · · · 0 0
0 1 1 · · · 1 1
0 0 0 · · · 0 −1
...

...
... . . . ... 0

0 0 −1 · · · 0 0
0 −1 0 · · · 0 0


,
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which in this case combines a lexicographic on the first variable and a graded reverse
lexicographic order for the rest.

Fixed a monomial order, we can choose the largest monomial in a polynomial with
respect to the fixed monomial order. This monomial is known as the leading monomial
of the polynomial. We denote by in( f ) the leading monomial of f . A finite set G =

{g1, . . . ,gn} is a Gröbner basis for I if the leading monomial set of the elements of G
generates the same ideal as the leading monomials of I. As a consequence, we can divide
any polynomial f by G in the following way: find the first i such that the leading monomial
of gi divides the leading monomial of f (we can assume that f is monic, and the same for
all gi’s); then replace f by f − (in( f )/in(gi))gi, and repeat the process until no leading
monomial of G divides the leading monomial of f . This process stops after a finite number
of steps, and the resulting polynomial is known as the normal form of f with respect to G
(and the fixed monomial ordering). As a byproduct, a polynomial f is in I if and only if
its normal form with respect to G is zero.

A Gröbner basis G is reduced if every g ∈ Gred is monic and no leading monomial in
G\{g} divides in(g). Reduced Gröbner basis are unique (see for instance [12]).

2. Linear Diophantine equations

Let ai j ∈ Z, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,k}, and let x1, . . . ,xk be unknowns. A system of
linear Diophantine equations is a system of equations of the form:

(1)


a11x1 + · · ·+a1kxk = 0,

...
...

an1x1 + · · ·+ankxk = 0.

From now on, when we use the expression Diophantine system we will be talking about
a system like this.

The method to obtain the solutions of the system depends on the domain of the so-
lutions. In our case, we are interested in the set of non-negative integer solutions of (1)
which is a finitely generated commutative submonoid of Nk. The problem of determining
the generators of this monoid is a NP-complete complexity problem (see [52, Corollary
18.1a]), which depends strongly on the number of variables of the system.

Equation (1) is a homogeneous system: Ax = 0, in matrix form. We will focus on this
format as the solutions of a non-homogenous system

(2) Ax = b,

with bT = (b1, . . . ,bn) can be obtained from those of Cx = 0 adding the independent term
as a new column to A,

C = (A|−b).

Bounds for the minimal solutions to the Diophantine systems can be found in [43] includ-
ing systems with congruences. A method to determine if there exist a solution based on
Gröbner basis computations is presented in [56], we recall it next.
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2.1. An approach with Gröbner bases to find a particular solution. According
to [56] to know if there exists a solution in Nk for (1), requires searching for an special
element in the ideal IM of the monoid M generated by the columns of the coefficients mT

j =

(a1 j, . . . ,an j) = (ai j)i=1,...,n. If there is a binomial Xα − 1 in IM, with α = (α1, . . . ,αk),
then ∑αimi = 0 and (α1, . . . ,αk) is a solution.

For the non-homogeneous system case, let mT
k+1 = bT = (b1, . . . ,bn) be the column

vector of the independent terms and M | b ⊂ Zk+1 be the monoid generated by the set
{m1,m2, . . . ,mk,mk+1}. So to check the existence of a N-solution we search for a binomial
xk+1−Xβ in IM|b, where X does not contain the variable xk+1 (see [56, Proposition 16]), or
fixed an order with xk+1 greater than the other variables, we search a binomial ±(xk+1−
Xβ ) in the reduced Gröbner basis of IM|b (in [56, Lemma 17]).

This procedure can be extrapolated to a system of equations with congruences

(3)


a11x1 + · · ·+a1kxk ≡ b1 mod d1,

...
...

an1x1 + · · ·+ankxk ≡ bn mod dn,

with the following remarks ([56, Lemma 9]). Let s be the number of equations with di 6= 0
(s≤ n). We construct a new matrix A′ to avoid the torsion terms di ∈ N. Assume that the
equations of (3) with di = 0, s < i ≤ n are those appearing at the end of (3). For i ∈
{1, . . . ,k}, set m′i = mi with s zeros appended at the end, and for i ∈ {k+2, . . . ,k+1+ s},

m′Ti = (

n︷ ︸︸ ︷
0, . . . ,0,

s︷ ︸︸ ︷
0, . . . ,di−k, . . . ,0).

Now by Lemma 11 in [56], after the computation of the generators of ker(A′), by project-
ing onto the first k+ 1 components of its elements we get a generating set of ker(A|b),
now without congruences, and we can proceed as described above.

Next proposition summarizes how to check for a solution using Gröbner bases.

PROPOSITION 1.1. [56] Let Ax = b mod d be a Diophantine system as (3).

• For b = 0, the following statements are equivalent:
– The system Ax = 0 mod d admits solutions in Nk.
– For some α ∈ Nk, Xα −1 in Iker(A).

– There is a polynomial of the form±(Xα−1) in any binomial generating set
of Iker(A).

• For b 6= 0, the following statements are equivalent:
– The system Ax = b mod d admits solutions in Nk.
– There is a binomial of the form xk+1−Xβ in Iker(A|b)⊂ k[x1, . . . ,xk+1], where

X does not contain the variable xk+1.

– There is a binomial of the form ±(xk+1−Xβ ) in the reduced Gröbner basis
of Iker(A|b) for any monomial order satisfying xk+1 > x j for all j ∈ {1, . . . ,k}.
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The case with congruences, (3), needs a preparation step, for this reason, unless nec-
essary, it will be omitted in the next sections of this work, although applicable.

REMARK 1.2. Our implementation of Proposition 1.1 is based in the software package
4ti2 ([30]), in particular we use the results of the program groebner. For our purposes,
this program takes only two arguments: the matrix A, and as an option, an order matrix
for the computation of the binomial ideal associated to ker(A). Both inputs are given as
text files formatted according to the manual of the program. For speed reasons we have
developed a direct link with the corresponding library to avoid reading from and writing
to disk.

2.2. Optimal solution. As we will expose in Section 3, the iterative searching pro-
cess to obtain the minimal non negative solutions of a Diophantine system, needs a par-
ticular solution s ∈ Nk, that rules, and may reduce, the number of those iterations. The
values of the components of s set the range of the search. If the 1−norm of s, ||s||1 =∑i |si|
is a small number, it is presumable that the number of iterations will be lower than
with a particular solution with a bigger 1−norm. Thus, we call optimal solution to any
N−solution with minimal 1−norm.

Gröbner bases can be used to compute an optimal solution through the use of suitable
monomial orders. The next two lemmas expose the monomial orders used in this work
for the homogeneous and non-homogeneous cases.

LEMMA 1.3. Given a system Ax = 0 with some nonzero N−solution, there exists a
monomial order such that a polynomial of the form Xα − 1 (αk+1 = 0) is in the reduced
Gröbner basis of IM with α an optimal solution.

PROOF. We only need to consider a total degree order (first compares the total de-
gree). �

For the homogeneous setting, among all possible graded orderings, we propose the
graded reverse lexicographic order due to its best computational behavior.

LEMMA 1.4. Ax = b admits an N−solution if and only if there is a binomial of the
form xk+1−Xβ , with βk+1 = 0, in the reduced Gröbner basis of Iker(A|b) respect to a matrix
ordering defined by a matrix of the form

(4)


0 0 · · · 0 1
1 1 · · · 1 0

0

O′
...
0

 ∈ Z(k+1)×(k+1),

with O′ ∈ Z(k−1)×k. Also β is an optimal solution.

PROOF. Fixed this monomial order, the proof is obtained from the definition of the
reduced Gröbner basis and Proposition 1.1. �
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For the non-homogeneous case we propose to use the matrix ordering defined by

(5)



0 0 0 · · · 0 0 1
1 1 1 · · · 1 1 0
0 0 0 · · · 0 −1 0
0 0 0 · · · −1 0 0
...

...
... . . . ...

...
...

0 0 −1 · · · 0 0 0
0 −1 0 · · · 0 0 0


∈ {0,±1}(k+1)×(k+1).

In Table 1 we see the behavior for this product order against the lexicographic order,
which is compatible with the requirements of Proposition 1.1 for non-homogeneous sys-
tems of Diophantine equations. We omit some results where both orders end to the same
particular solution. For these cases the computing times are similar and if it is not the
case, the product order is fastest. When the solutions are different, the product order ends
first or, as expected, it offers a solution with smaller 1−norm.

Algorithm 1.5 returns true if a solution s of a linear system of Diophantine homoge-
neous equations exists, and because of the orders used, it will have minimum 1−norm.
Otherwise, if there is no solution it returns false . The link with 4ti2 software package is
done in the line 9.

3. Computing non-negative integer solutions of linear Diophantine systems

Let R ⊂ Nk be the set of N−solutions of a system of linear Diophantine equations
of the form (1). Then R is an affine semigroup and it is generated by its nonzero min-
imal elements with respect to the usual partial ordering on Nk. Let us denote this set
by H(R), which is usually known as the Hilbert basis of R. When we deal with a non-
homogeneous system, R is the set

⋃
α∈H(R)(α + R′) where R′ is the semigroup of the

N−solutions of Ax = 0. So R is determined by its minimal elements and/or the Hilbert
basis of the N−solutions of its associated homogeneous system (see [38, Section 1] for
details).

Denote by R(i,β )⊂Nk the set {x∈ R | xi = β}. There is a one-to-one correspondence
between this set and the set of N−solutions of

(6) A(x1, . . . ,xi−1,0,xi+1, . . . ,xk)
T =−βmi,

with k−1 indeterminates. We can repeat the process for R( j,α), obtaining R( j,α)(i,β )⊆
Nk, which is the set {x ∈ R( j,α) | xi = β} that corresponds with the set of N-solutions of

A(x1, . . . ,x j−1,0,x j+1, . . . ,xi−1,0,xi+1, . . . ,xk)
T =−αm j−βmi,

and so on.
Algorithm 1.7 states how to obtain H(R) based on the following result:
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TABLE 1. Non-homogeneous Diophantine system solutions with the lex-
icographic and the product order.

2x7 systems
Lexicographic order Product order

T(s) 1−norm solution T(s) 1−norm solution
0,001 87 0 0 0 3 39 45 0 0,001 26 0 18 5 0 3 0 0
0,001 63 0 0 0 0 0 41 22 0,001 24 0 4 0 0 18 1 1
0,002 95 0 0 0 0 1 50 44 0,001 17 1 0 2 7 0 1 6
0,002 43 0 0 6 0 12 23 2 0 29 6 0 0 0 5 18 0

4x7 systems
Lexicographic order Product order

T(s) 1−norm solution T(s) 1−norm solution
0,002 399 0 4 59 82 101 153 0 0,001 57 19 0 3 21 3 0 11
0,003 134 0 21 18 2 39 3 51 0,002 63 15 2 9 21 1 1 14
0,001 160 0 0 7 63 50 14 26 0,001 64 0 13 0 15 5 14 17
0,001 115 0 1 11 21 8 38 36 0,001 55 22 5 1 15 2 0 10
0,002 1113 1 0 42 1 96 542 431 0 95 23 12 17 19 17 3 4
0,003 178 0 53 33 6 46 39 1 0,002 41 14 18 0 4 2 3 0
0,002 267 0 0 82 54 38 56 37 0,003 61 10 8 0 2 10 20 11

6x10 systems
Lexicographic order Product order

T(s) 1−norm solution T(s) 1−norm solution
0,242 389 0 10 27 8 51 118 24 90 21 40 0,048 45 12 15 16 24 10 15 22 4 15 12
0,239 150 14 23 6 8 11 13 28 4 20 23 0,062 113 15 5 3 3 15 14 17 9 11 21
0,021 299 1 1 74 3 10 52 46 24 48 40 0,052 111 21 22 20 0 6 2 18 1 9 12
0,131 126 6 19 11 10 9 15 5 18 22 11 0,067 126 6 19 11 10 9 15 5 18 22 11
0,004 6518 0 0 1120 1375 812 415 2333 75 2

386
0,099 118 22 21 16 23 7 5 5 14 0 5

0,223 144 20 7 22 24 14 15 19 14 2 7 0,218 144 23 1 21 27 7 22 15 14 5 9
0,251 146 17 18 15 16 20 0 24 3 20 13 0,157 146 17 18 15 16 20 0 24 3 20 13
0,074 118 16 21 23 1 13 3 18 21 1 1 0,012 118 16 21 23 1 13 3 18 21 1 1
0,008 992 0 102 190 1 12 158 54 205 208 62 0,04 146 18 24 10 2 16 23 10 21 19 3
0,007 501 0 0 65 97 1 48 107 30 130 23 0,071 107 0 1 9 11 3 24 23 23 13 0
0,009 586 0 75 16 100 181 48 12 134 16 4 0,023 143 21 17 15 22 4 1 22 20 10 11
0,017 127 1 9 12 22 15 7 3 23 18 17 0,017 127 1 9 12 22 15 7 3 23 18 17
0,122 118 22 7 15 17 16 12 9 10 4 6 0,02 118 22 7 15 17 16 12 9 10 4 6
0,009 367 0 74 67 49 13 37 40 49 33 5 0,015 100 15 1 11 8 4 9 20 14 3 15
0,051 209 18 51 58 3 21 3 24 2 4 25 0,016 128 22 9 22 15 3 11 16 15 10 5

LEMMA 1.6. ([39, Lemma 2.4]) Let s = (s1, . . . ,sk) ∈ R\{0} and

(7) F = {s}∪
k⋃

i=1

si−1⊔
β=0

H(R(i,β )).
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Algorithm 1.5 Particular N−solution of a linear Diophantine system
1: function SOLBYIDEAL(A,b,s)
2: if b 6= 0 then
3: A′ = A|b . A′ is A with b as an additional last column
4: O = order matrix in (5)
5: else
6: A′ = A
7: O = order matrix in (4)
8: end if
9: (4ti2) G = Reduced_Gröbner_basis(A′,O)

10: if b 6= 0 then
11: if xk+1−Xβ ∈ G then
12: s = β

13: return true
14: end if
15: else
16: if Xα −1 ∈ G then
17: s = α

18: return true
19: end if
20: end if
21: return false
22: end function

Then, H(R) = H(F) (
⊔

denotes disjoint union).

In Algorithm 1.7, every iteration controlled by the outer loop with the index i implies a
reduction in one column from the original matrix A, which is translated to the independent
term of the system. This reduction is a clear advantage because we use Gröbner basis to
get a particular solution for each of these systems.

In order to improve it we show some interesting properties of the sets H(R(i,β )). But
first, if Q and L are two sets of non-negative vectors, then we say that QD L if for all
α ∈ Q, there exists β ∈ L such that α ≥ β .

LEMMA 1.8. Let i, j ∈ {1, . . . ,k}, with i 6= j, and α,β ∈ N. Then

H
(

R( j,α)(i,β )
)
DH(R(i,β )).

PROOF. It is trivial the inclusion H
(

R( j,α)(i,β )
)
⊆ R(i,β ), this implies that for any

s ∈ H
(

R( j,α)(i,β )
)
, by choosing an element s′ ∈ H(R(i,β )) with a value in the j−th

component less or equal to α ensures that s≥ s′. �
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Algorithm 1.7 Computing the minimal N−solutions of a Diophantine system
Input: A system as (1).

Output: The minimal elements of R.

Take a particular N−solution s = (s1, . . . ,sk) ∈ R\{0}
if R is {0} or the empty set then

H(R) = R
else

for i = 1, . . . ,k do
for β = 0, . . . ,si−1 do

Compute H(R(i,β )) by recursively calling Algorithm 1.7 for the system

A(x1, . . . ,xi−1,0,xi+1, . . . ,xk)
T =−βmi.

end for
end for
Compute H(F) for

F = {s}∪
k⋃

i=1

si−1⊔
β=0

H(R(i,β )).

H(R) = H(F).
end if

LEMMA 1.9. Let s = (s1, . . . ,sk) be an N−solution of the system Ax = 0, and

s′ = (s′1, . . . ,s
′
j−1,0,s

′
j+1, . . . ,s

′
k)

an N−solution of the system

A(x1, . . . ,x j−1,0,x j+1, . . . ,xk)
T =−αm j

with 1≤ j ≤ k and α ∈ N such that 0≤ α ≤ s j−1. Then

(8) H(R( j,α))DH

{s′}∪ j−1⋃
i=1

fi−1⊔
β=0

H(R(i,β ))∪
k⋃

i=1
i6= j

s′i−1⊔
β= fi

H(R( j,α)(i,β ))

 ,

where f = (s1, . . . ,s j−1,0, . . . ,0) ∈ Nk are the first j−1 components of s.

PROOF. By Lemma 1.6,

H(R( j,α)) = H

{s′}∪ k⋃
i=1
i6= j

s′i−1⊔
β=0

H(R( j,α)(i,β ))

 ,
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we can split the outer union as follows:

H(R( j,α))DH

{s′}∪ j−1⋃
i=1

fi−1⊔
β=0

H(R( j,α)(i,β ))∪
k⋃

i=1
i6= j

s′i−1⊔
β= fi

H(R( j,α)(i,β ))

 .

As we are looking for the minimal value solutions, the first union takes into account any
solution with lower values than those of s in some or all the j− 1 firsts components.
Besides the second union considers the values greater than those in the first union with
respect to s. Then by Lemma 1.8,

H(R( j,α))DH

{s′}∪ j−1⋃
i=1

fi−1⊔
β=0

H(R(i,β ))∪
k⋃

i=1
i6= j

s′i−1⊔
β= fi

H(R( j,α)(i,β ))

 . �

Algorithm 1.10 is a reformulation of Algorithm 1.7 that embodies the result of Lemma
1.9. As in the first version, each variable, one by one, is explored for possible values (test
values), leaving the rest free. Test values are upper limited by the value of the solution s
as shown in Equation (7) in the upper limits of each union

⊔
. From the last result, another

limit on the test values is established in the lower limit of β from the components of vector
f . In order to avoid redundant computations, this vector stores for each unknown variable
the respective values explored by the algorithm. In this way we are narrowing the search
space. f is initialized as (0, . . . ,0) at the beginning of the process.

For each of the test values assigned to a variable, we use Algorithm 1.5 (function
SOLBYIDEAL) to get a particular solution for a system of the form (6). If there is one, we
proceed next by fixing each of the other variables, and we repeat the same process, now
with two variables fixed to their test values.

Figure 1 shows a partial scheme of the process. For the initial system of equations,
a solution is found, (1,3,1,2,0). When this happens, a series of branches are generated,
each one to test lower values than those of the given solution, for the respective variable.
From the initial system, the figure shows the branch generated when the x1 variable is
assigned to the first test value, in this case 0. The dotted lines show the independent terms
of the systems obtained from the assignation of the corresponding test values to the fixed
variable (we have omitted the left side of the equations).

Figure 2 shows the process on the subsystem generated from the initial by substitution
of the variable x1 = 0. Every subsystem showed in this figure and the previous is checked
for a solution using function SOLBYIDEAL. In this figure some branches do not produce
more checks for a solution, while others do not check for substitutions from previous
checked variables as pointed in Lemma 1.9.
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Algorithm 1.10 Computing the minimal N−solutions of a Diophantine system
Input: A Diophantine system as (1) and f .

Output: The minimal elements of R.

Take a particular N−solution s = (s1, . . . ,sk) ∈ R\{0}
if R is {0} or the empty set then

H(R) = R
else

for i = 1, . . . ,k do
for β = fi, . . . ,si−1 do

Compute H(R(i,β )) by recursively calling Algorithm 1.10 for the system

A(x1, . . . ,xi−1,0,xi+1, . . . ,xk)
T =−βmi and f

end for
fi = si

end for
Compute H(F) for

F = {s}∪
k⋃

i=1

si−1⊔
β=0

H(R(i,β ))

H(R) = H(F)

end if
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x1 +2x2−3x3−2x4−4x5 = 0,
2x1− x2−3x3 +2x4 +5x5 = 0.

Solution: {1,3,1,2,0}

2x2−3x3−2x4−4x5 = 0,
−x2−3x3 +2x4 +5x5 = 0.

In Figure 2

x1 ∈ {0}

x1−3x3−2x4−4x5 = 0,
2x1−3x3 +2x4 +5x5 = 0.

x2 ∈ {0,1,2}

x1− x2−2x4−4x5 = 0,
2x1− x2 +2x4 +5x5 = 0.

x3 ∈ {0}

. . .

= −2,
= 1.
= −4,
= 2.

FIGURE 1. The initial explorations of the recursive process to find the
minimal solutions of a linear Diophantine system of equations.
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2x2−3x3−2x4−4x5 = 0,
−x2−3x3 +2x4 +5x5 = 0.

Solution: {9,2,0,3}

−3x3−2x4−4x5 = 0,
−3x3 +2x4 +5x5 = 0.

x2 ∈ {0, . . . ,8}

2x2−2x4−4x5 = 0,
−x2 +2x4 +5x5 = 0.

x3 ∈ {0,1} No way

x4 ∈ { /0}

2x2−3x3−2x4 = 0,
−x2−3x3 +2x4 = 0.

Solution: {12,2,9}

−3x3−2x4 = −18,
−3x3 +2x4 = 9.

x2 ∈ {9,10,11}
No way

x3 ∈ { /0}

2x2−3x3 = 0,
−x2−3x3 = 0.

x4 ∈ {0, . . . ,8}

x5 ∈ {0,1,2}
= −2,
= 1.
= −4,
= 2.
= −6,
= 3.
= −8,
= 4.

...

= −16,
= 8.

= 3,
= 3.

= −20,
= 10.
= −21,
= 11.

= 2,
= −2.

...

= 16,
= −16.

= 4,
= −5.
= 8,
= −10.

Solution: {10,2,3}

−3x3−2x4 = −10,
−3x3 +2x4 = −1.

x2 ∈ {9}

No way

x3 ∈ { /0}

2x2−3x3 = 8,
−x2−3x3 = −10.

...

x4 ∈ {0,1,2}

FIGURE 2. Recursive process to find the minimal solutions of a linear Diophantine system of equations.
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COROLLARY 1.11. Let t ∈ N, Ax = tb admits an N−solution and Ax = jb does not
admit N−solution for j ∈ {1, . . . , t−1} if and only if there is a binomial as xt

k+1−Xβ in
the reduced Gröbner basis of Iker(A|b) respect to a matrix ordering defined by

0 0 · · · 0 1
1 1 · · · 1 0
... . . . ...
... · · · 0

 ∈ Z(k+1)×(k+1).

So β is an optimal solution of Ax = tb.
Moreover, for j > t, Ax = jb admits an N−solution if and only if the normal form

of the monomial x j
k+1 modulo the ideal Iker(A|b) is a monomial Xβ ′ ∈ k[x1, . . . ,xk]. The

exponent β ′ is an optimal solution of Ax = jb.

This result reduces the number of iterations in Algorithm 1.10 for some subsystems
obtained from homogeneous systems. In these cases, we only need to compute an optimal
solution of the system A(x1, . . . ,xi−1,0,xi+1, . . . ,xk)

T = −αmi for α = 1, . . . ,si− 1, and
these optimal solutions can be obtained by using the normal form.

3.1. Improvement for the homogeneous case. Algorithm 1.12 shows the procedure
DPSOLVE as a more detailed version of Algorithm 1.10. We are going to discuss a little
improvement based on the steps of this procedure.

Observe that inside the scope of the loop from lines 12 to 18 (Algorithm 1.12), a series
of linear Diophantine equations systems are constructed. From one of the columns of A, a
new independent term b′ is computed for every value of α . Besides, in line 14, a Gröbner
basis is computed for each one. When b′ = 0, it is possible to process this new system
without computing a Gröbner basis for every value of α .

From a matrix A = (m1|m2| . . . |mk) ∈ Zn×k, being m j its columns, consider a sub-
matrix A′ = (m j1|m j2| . . . |m jk−1) of A obtained as in Algorithm 1.12, line 8, and b′ = 0
computed in line 13. Let s′ be a particular solution for this homogeneous system of Dio-
phantine equations A′x′ = 0 (recall that s′ comes from a binomial in IM′). We use the
letter j to identify the index of the columns of the matrix A′, which are processed for the
possible values of α = {0, . . . ,s′j−1}. For these values we have the following cases.

• When α = 0, then we have a new system of linear Diophantine equations: A′x′=
0, which produces a new recursive call on procedure DPSOLVE.
• If α = 1, let IM′j denote the ideal of the monoid M′j generated by the columns of

A′ with the sign of column m j reversed. The computation of IM′j Gröbner basis
is done using IM′: from [54, Proposition 12.5], we calculate a generating set of
IM′j by flipping the variable x j in the binomials of a Gröbner basis of IM′ using an
elimination order on x j. In this situation, we apply Corollary 1.11 to solve the
problem.
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Algorithm 1.12 Non-negative integer solutions of linear Diophantine systems
1: procedure DPSOLVE(A,b, f ,s,S)
2: k← number of columns of A
3: if k = 1 and (@s ∈ Nk,s′ 6= 0, where As′ = b) then
4: return H{s,s′}
5: end if
6: Q := {s}
7: for j← 1, . . . ,k do
8: A′← A\ (m j) . delete the j−column of A
9: f ′← f \ ( f j) . delete the j−coordinate of f

10: x′← x\ (x j) . delete the j−coordinate of x
11: α ← f j

12: while f j ≤ α ≤ s j−1 do
13: b′← b−αm j

14: if SOLBYIDEAL(A′,b′,s′) then
15: DPSOLVE(A′,b′, f ′,s′,T )
16: T ←{(β1, . . . ,β j−1,α,β j+1, . . . ,βk)|β ∈ T}
17: Q← H(Q∪T )
18: end if
19: α ← α +1
20: end while
21: f j← s j

22: end for
23: S← H(Q)

24: end procedure

With this exposed treatment, given a particular solution with high values for the vari-
ables of the system, we can suppress the computation of an important number of Gröbner
basis. Unfortunately, it is very unlikely to get to homogeneous systems during the algo-
rithm computation. For this reason, and after different essays, we discarded this modifi-
cation of the algorithm.

3.2. Performance of DPSolve compared to other related software. When we fini-
shed the first implementation of DPSolve, we had the intention of characterizing suitable
systems that would, in a reasonable amount of time, work well with this algorithm. We
began with exploratory comparisons with an efficient implementation called sistema1 of
the procedure proposed by Contejean and Devie in [10]. Also, we used hilbert from the
software package 4ti2 (see [30]) and the program normaliz (see [6]). The election of
these tools was driven mainly by the easy or public access to them.

1by Pablo Rodriguez Archilla for the Dept. of Algebra, Univ. of Granada.
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Each of these tools needs one file with the system of equations expressed with its
own format. The name of this file is one of the arguments to specify in a command-line
(these tools do not have a graphical interface, except Normaliz which has both types of
interfaces). For sistema and DPSolve it is a text file with a series of lines, corresponding
with an equation, separated by commas, with the last one ending with a point. sistema
can take also another file to specify the torsion terms. An example of an input to sistema
or DPSolve could be the next:

2 5 -3 7 11 15 -4 = 12,
7 9 2 -22 1 17 5 = 9,
5 -1 9 33 -4 15 -23 = 35.

The result of the computations is showed to the standard output, then it can be redirected
to a file. The default mode of computation of this programs uses 64 bits arithmetic.

The name of the input file for hilbert must end with the letters .mat. It should
contain the matrix size, in the first line, and each of its rows in the next rows. The input
equivalent to the previous programs could be:

3 8
2 5 -3 7 11 15 -4 -12
7 9 2 -22 1 17 5 -9
5 -1 9 33 -4 15 -23 -35

Note that it is necessary to homogenize the equations. The output of hilbert is a file
named as the input file, but with the letters .mat changed to .hil. With the parameter
-p=32 and -p=64 it is possible to choose between 32 or 64 bits arithmetic mode. The
default mode is 32 bits.

The expected name for the input file to Normaliz ends with the sequence of letters
.in. Its format is similar to this previous, but in this case, we can specify that the system
is inhomogeneous:

3 8
2 5 -3 7 11 15 -4 -12
7 9 2 -22 1 17 5 -9
5 -1 9 33 -4 15 -23 -35
inhom_equations

By changing inhom_equations to equations, the input rows are treated as homoge-
neous equations. The output file name changes the .in ending part of original input name
to .out. For our purposes, the parameters necessary to execute Normaliz are -N or -d,
and -x=1 to force just one thread of execution for comparison with the other programs.
By default, it uses as many as the operating system allows. The parameters -N and -d
enable to choose between two methods to get the Hilbert basis of the monoid genarated
by the column vectors, that is, the minimal solutions we are interested in. The authors
of Normaliz recommend the use of the -d option for computations like the ones we are
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dealing with. Indeed, from the computation experiments accomplished, we detected that
some inputs generated errors due to overflows. In this cases, the parameter -d avoids
this problem, being more convenient than trying the computation with multiple precision
based on the GnuMP library ([42]). In general, we have avoided the use of this option with
hilbert and Normaliz since it slows down seriously the process. The default mode of
computation of Normaliz uses 64 bits arithmetic.

From the initial tests for debugging and comparison we found examples where DPSol-
ve performance was worst than the others, and in other cases, the others where slower to
end. As we have noted, the problem we are facing is complex enough to expect this kind
of results. Even, for some particular examples, hilbert program and Normaliz often
ended with an error, or aborted its execution unexpectedly. But in recent versions of this
programs they have corrected these problems, and improved the running times. As we
have observed in several examples, there is a big difference with DPSolve and sistema.
Usually, for the problem we are interested in, Normaliz achieves the quickest outputs.

We present an anecdotic example, for which DPSolve is the only that has ended in a
reasonable amount of time, while the other programs did not.

EXAMPLE 1.13. The input file is an inhomogeneous Diophantine system with 6 equa-
tion and 12 variables:

2 -7 -3 -1 -2 -4 -7 -1 3 -7 5 3 = -222,
1 -3 1 -5 1 0 -3 0 0 7 -2 -7 = -331,
6 -3 -5 6 1 4 1 -2 0 -4 -6 6 = 267,
1 5 4 5 -7 -6 -3 7 -5 7 7 4 = 139,
6 -5 -1 2 3 5 1 0 6 0 5 2 = 170,
2 1 -1 -6 -2 0 5 6 -5 2 2 2 = -8.

With 18 solutions:

2 12 8 20 11 9 16 2 6 4 0 28
0 21 3 14 24 11 5 4 7 8 0 38
0 15 1 23 35 2 10 13 2 4 1 29
1 16 0 22 14 10 13 8 7 3 1 24
1 11 9 21 32 1 13 7 1 5 0 33
1 20 5 16 11 21 5 3 4 3 2 30
2 6 6 29 22 0 21 11 1 0 1 19

10 27 2 15 26 3 8 4 9 4 0 31
6 24 3 15 8 16 8 1 9 3 1 28

15 29 3 17 31 0 8 6 6 0 1 26
5 23 4 16 29 8 5 6 4 4 1 33

10 25 5 18 34 5 5 8 1 0 2 28
14 34 6 9 41 1 0 2 6 5 0 40
12 18 7 21 13 1 19 2 8 0 0 21
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15 33 8 11 28 11 0 1 3 0 2 32
6 19 12 14 26 7 8 0 3 5 0 37

11 21 13 16 31 4 8 2 0 1 1 32
7 14 9 22 16 6 16 4 3 0 1 23

For this example, testing hilbert program we observe that after several hours, it be-
gan to consume all the available memory, and we killed the process. Normaliz aborted
the computation almost inmediatelly. And we killed sistema after several hours of com-
putation. DPSolve ended in 331.937 seconds.



CHAPTER 2

Affine convex body semigroups in N2

A convex body of Rk is a compact (closed and bounded) convex subset with non-empty
interior. Associated to a convex body F ⊆ Rk

≥ we can define the following cone

LQ≥(F) =

{
p

∑
i=1

qi fi

∣∣∣ p ∈ N,qi ∈Q≥, fi ∈ F

}
.

From F also we are going to define the set F that we will call a convex body monoid
(see Proposition 2.1), contained in LQ≥(F). Membership to this kind of monoids is easy
to test.

In some cases the generating system of F∩Nk is finite. We characterize conditions
for those cases in N2, and if so, we present procedures to compute its minimal generating
set. In particular, we study the cases when F is a circle or a polygon. Finally, we give a
way to check if these affine convex body semigroups are Buchsbaum.

1. Preliminary concepts and results

Let F be a convex body of R2
≥. A ray τ of LQ≥(F) is a halfline such that 0 ∈ τ ⊆

LQ≥(F), and thus it is determined by any of its nonzero elements.
For k = 2, denote by {τ1,τ2} a set of extremal rays of LQ≥(F), that is, LQ≥({τ1,τ2})=

LQ≥(F). We will assume without loss of generality that the slope of τ1 is greater than the
slope of τ2.

Define

F =

{
X ∈ R2

≥
∣∣ there exists i ∈ N such that

X
i
∈ F
}
∪{0}=

∞⋃
i=0

iF ⊆ LQ≥(F),

where iF = {iX | X ∈ F} with i ∈ N. Define F =
⋃

∞
i=0 iF ∩N2. The next result shows

that being F a convex body, the set F is a monoid and F is a semigroup.

PROPOSITION 2.1. Under the standing hypothesis, F is a submonoid of R2.

PROOF. Let P,Q∈F. There exist i, j∈N and P′,Q′ ∈F such that P= iP′ and Q= jQ′.
Then

P+Q = iP′+ jQ′ = (i+ j)
(

i
i+ j

P′+(1− i
i+ j

)Q′
)
.

Using the convexity of F we obtain i
i+ j P

′+(1− i
i+ j )Q

′ ∈ F and so P+Q ∈ F. �

25
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FIGURE 1. {X ∈ R2
≥ | 3≤ d(X)≤ 5}.

Denote by d(P,Q) the Euclidean distance between two elements P,Q ∈ R2 and by
d(P) the distance d(P,0). We see the convexity property is necessary to F be a monoid. If
F is the compact and not convex set

{X ∈ R2
≥ | 3≤ d(X)≤ 5},

the elements (4,0),(0,4) are in F but (4,0)+(0,4) is not in F (see Figure 1).
Given a convex body F , we say that F is the convex body monoid generated by F .

Respectively, F is the convex body semigroup generated by F , or in other words, it is
the intersection of the convex body monoid F with N2. In general, these semigroups are
not full affine semigroups. An affine semigroup S ⊆ Nk is full if G(S)∩Nk = S (see [45,
Chapther 7]; G(S) stands for the group generated by S, that is, linear combinations of
elements from S with integer coefficients). To see this, take F to be the convex hull of
{(0,0),(2,1),(1,2)}. As (1,1) ∈ F ∩N2 ⊆F, we deduce that (1,0) = (2,1)− (1,1) ∈
G(F) and analogously, (0,1) = (1,2)− (1,1) ∈ G(F). Hence G(F) = Z2, which yields
G(F)∩N2 = N2 6= F, because for instance (1,0) ∈ N2 \F.

Let T be a submonoid of R+
0 generated by the interval [α,β ] = {x ∈ R | α ≤ x ≤

β} with α,β ∈ R+ and α < β . A proportionally modular Diophantine inequality is an
expression of the form: ax mod b≤ cx, with a, b and c positive integers (this equation has
the same nonnegative integer solutions as a

c mod b
c ≤ x, and so we could have defined a

proportionally modular Diophantine inequality as an expression of the form ax mod b ≤
x with a,b ∈ R+). In [49] this expression is used to characterize submonoids of R+

0
generated by intervals, where it is shown that every submonoid of this form is the set of
nonnegative integer solutions of a proportionally modular Diophantine inequality. The
integers a, b and c are called the factor, modulus and proportionality, respectively. The
following result is a generalization in R2 of [49, Theorem 8] for convex body monoids
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and semigroups and it provides an inequality which characterizes the elements of a convex
body monoid of R2 (the same works in higher dimensions).

Observe that if a ray intersects with F in only a point (respectively a segment), then
the intersection of the ray with any other iF with i > 1 is also a point (respectively a
segment). We denote by PQ the segment joining P and Q.

PROPOSITION 2.2. Let τ be a ray of LQ≥(F). Then, for all X ∈ F∩ τ there exist
a,b ∈ R≥ with 1 < a < b, such that

(9) a ·d(X)mod b≤ d(X).

PROOF. If X ∈ F∩ τ , then there exists i ∈ N such that X ∈ iF . If i = 0, then X = 0
and there exist a,b ∈ R≥ such that the inequality is clearly satisfied.

Assume that X ∈ iF , with i > 0. We have two cases:

• If τ ∩ iF = {X}, then there exists P ∈ F such that X = iP and d(X) = id(P).
Taking now a number a ∈ (1,∞) we obtain a < ai and ad(X) mod aid(P) = 0≤
d(X).

• If τ ∩ iF = PQ (assume d(P) < d(Q)), then X ∈ iPQ and d(X) belongs to a
submonoid of R≥ generated by [d(P),d(Q)]. By Theorem 8 of [49] we conclude
there exist a,b ∈ (1,∞) with a < b such that ad(X)mod b≤ d(X).

�

From the above proposition it can be deduced that a and b depend only of the vector
−→
OX . This fact allows us to characterize the elements of a convex body semigroup from an
inequality. Denote by τ the ray containing the point X .

In the following, when we talk about interior of F, denoted by int(F), we mean the set
of elements in F that are not in τ1∪ τ2 (the extremal rays of the cone spanned by F).

COROLLARY 2.3. Let X ∈ Nk and τ be the ray (half-line) determined by X. Then X
belongs to int(F) if and only if the following conditions are fulfilled:

(1) τ ∩F is a segment PQ with P,Q ∈ int(F),

(2)
d(Q)

d(Q)−d(P)
d(X)mod

d(P)d(Q)

d(Q)−d(P)
≤ d(X).

PROOF. It is straightforward from Proposition 2.2 and the proof of Theorem 8 in
[49]. �

Let F be a convex body of R2
≥ with non-empty (topological) interior, and τ1,τ2 be

the extremal rays of LQ≥(F) (assume that the slope of τ1 is greater than the slope of τ2).
Observe that F is contained in the cone LQ≥(F). We denote by C the monoid LQ≥(F)∩
N2.

2. Finding a system of generators of convex body semigroups

The present section shows instrumental results that we will use to compute the mini-
mal generating set for a convex body semigroup F from the cone associated LQ≥(F)∩N2.
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Some of them are very specific and with strong hypothesis, but the reader must keep in
mind that they are specifically made for dealing with convex body semigroups.

We start by showing how to compute the minimal generators of “linear slices” of F.

LEMMA 2.4. Let τ be a ray and let P,Q ∈ τ (assume d(P) < d(Q)). Then the semi-
group I =

(⋃
i∈N iPQ

)
∩N2 is finitely generated and there exists an algorithm for com-

puting its minimal system of generators.

PROOF. If τ is the y-axis, then the set of y-coordinates of I is a proportionally modu-
lar numerical semigroup. Hence we can use [49] to find the minimal generating system
of I. So we may assume that the first coordinate of P (and thus Q) is nonzero. If τ does
not intersect N2 \{0}, then I = {0}, and trivially is finitely generated (this may happen
if the slope of τ is irrational or if τ is not in the positive orthant of N2). Thus, we assume
that τ is included in the positive orthant and that its slope is rational, say a/b with a, b
positive coprime integers. This means that the elements in I are of the form (x,ax/b),
with x ∈ N, and consequently b | x (or in other words x ∈ bN).

Now let us consider π to be the projection on the x-coordinate. Then π(I) is a
submonoid of N (in fact of bN). Let us determine this monoid. Set I to be the inter-
val [π(P),π(Q)], and S be the proportionally modular numerical semigroup S =

⋃
i∈N iI

([49]). We prove that π(I) = S∩bN.
Take x ∈ π(I). Then as we have seen above, x ∈ bN. Also there exists y, i ∈ N such

that (x,y) ∈ iPQ∩N2. Hence x ∈ i[π(P),π(Q)]∩N= iI∩N⊆ S.
Now let x ∈ S∩ bN. Take y = ax/b, which is in N. Since x ∈ S, there exists i ∈ N

such that x ∈ iI ∩N = i[π(P),π(Q)]∩N. It follows that (x,y) ∈ iPQ∩N2 ⊆ I, and
consequentely x ∈ π(I).

The fact that I is finitely generated follows from the fact that I is isomorphic to the
its projection on the x-coordinate, which is a submonoid of N. Let us see how to compute
its minimal system of generators.

Consider S/b = {x ∈ N | bx ∈ S}. This is again a numerical semigroup which can
be calculated with [49, Lemma 18]. Observe that S∩ bN = b(S/b). Thus once we have
a minimal generating system for S/b, we multiply its elements by b and we obtain a
minimal generating system for S∩bN. �

Next result will help us to add the generators in the extremal rays of affine convex
semigroups, once we have computed the generators in the interior. Though the hypothesis
might seem extremely specific, this is actually the situation we will afford later.

LEMMA 2.5. Let {g1, . . . ,gp} ⊂ N2 be the minimal system of generators of an affine
semigroup M. Assume that τ = g1Q≥ is an extremal ray of LQ≥(M) and that g1 generates
N2∩ τ . Let {s1, . . . ,st} be the minimal system of generators of a subsemigroup of N2∩ τ .
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Let M′ be the semigroup generated by B = B1∪B2 with

B1 =
{

s1, . . . ,st ,g2, . . . ,gp
}
,

B2 =
p⋃

i=2

{
gi +g1,gi +2g1, . . . ,gi +(λt−2)g1,gi +(λt−1)g1

}
,

where 0 < λ1 < · · · < λt are the integers such that si = λig1. Then the semigroup M′

verifies:

• M′∩ τ = 〈s1, . . . ,st〉,
• M′ \ τ = M \ τ .

PROOF. Clearly M′∩ τ = 〈s1, . . . ,st〉.
Let g ∈ M \ τ. There exist µ1, . . . ,µp ∈ N with ∑

p
i=2 µi 6= 0, such that g = ∑

p
i=1 µigi.

Without loss of generality we can assume that µ2 ≥ 1. There are three possibilities.

• If µ1 = 0, then it is trivial that g ∈M′ \ τ.

• If λt > µ1 > 0, then g = g2 +µ1g1︸ ︷︷ ︸
∈B2

+(µ2−1) g2︸︷︷︸
∈B1

+∑
p
i=3 µi gi︸︷︷︸

∈B1

.

• If µ1 ≥ λt > 0, then there exist u,v∈N such that µ1 = uλt +v, with λt > v. Thus,
g = u(λtg1)︸ ︷︷ ︸

∈B1

+g2 + vg1︸ ︷︷ ︸
∈B2

+(µ2−1) g2︸︷︷︸
∈B1

+∑
p
i=3 µi gi︸︷︷︸

∈B1

.

In any of the above cases we obtain that g ∈M′ \τ and we can conclude that M′ \τ =

M \ τ (trivially M′ \ τ ⊂M \ τ). �

The first part of following lemma is a well known result particularized to affine semi-
groups of N2 (see [46, Lemma 1.3]).

LEMMA 2.6. Let M ⊂ N2 be an affine semigroup and a ∈M \{0}. The set M \{a} is
a semigroup if and only if a is a minimal generator of M. Moreover, if B = {a, f2, . . . , ft}
is the minimal system of generators of M, then the semigroup M \{a} is generated by

{ f2, . . . , ft , f2 +a, . . . , ft +a,2a,3a} .

PROOF. Assume that M \{a} is a semigroup and that a is not a minimal generator of
M. Then there exist a1,a2 ∈M \{a} such that a = a1+a2, which contradicts the fact that
M \{a} is a semigroup.

Conversely, assume that a is a minimal generator of M (remind the semigroup M has
a unique minimal system of generators). To prove that M \ {a} is a semigroup it is only
necessary to show that the addition is an operation on this set. Let x,y ∈ M \ {a}, then
x+y ∈M \{a} (if not we have that x+y = a, which is impossible because a is a minimal
generator of M).

Let B = {a, f2, . . . , ft} be the minimal set of generators of M (without lost of gen-
erality we assume that a is the first element of B). Trivially, { f2, . . . , ft , f2 + a, . . . , ft +
a,2a,3a} ⊂ M \ {a}. Let f ∈ M \ {a} ⊂ M, therefore there exists λ ,λ2, . . .λt ∈ N such
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that f = λa+∑
t
i=2 λi fi. If λ 6= 1, there exist α,β ∈ N verifying that λ = 2α +3β , thus

f = λa+
t

∑
i=2

λi fi = α(2a)+β (3a)+
t

∑
i=2

λi fi.

If λ = 1, since a /∈M \{a}, there exists λi0 ≥ 1, such that

f = a+
t

∑
i=2

λi fi = ( fi0 +a)+(λi0−1) fi0 +
t

∑
i=2, i6=i0

λi fi.

In any case, { f2, . . . , ft , f2 +a, . . . , ft +a,2a,3a} is a system of generators of M\{a}. �

COROLLARY 2.7. Let M be a finitely generated semigroup and A ⊂ M be a finite
subset. If M\A is a semigroup, then M\A is a finitely generated semigroup. Furthermore,
there exists an algorithm to compute a system of generators of M \A.

PROOF. Assume that A = {a1, . . . ,an} ⊂M and assume that B is the minimal system
of generators of M. Using the proof of Lemma 2.6, at least an element of A has to be
an element of B. Take a1 ∈ B, then we obtain that M1 = M \ {a1} is a subsemigroup
of N2. Denote by B1 to the minimal system of generators of the semigroup M1 which is
obtained from the system of generators of M1 constructed as in Lemma 2.6. Using again
the above reasoning with the sets A1 = A\{a1}, M1 and B1, we obtain a new semigroup
M2 = M1 \ {ai}, where ai ∈ A1 ∩B1 with i ∈ {2, . . . ,n}. Since A is finite, this method
stops after a finite number of steps and we obtain a finite system of generators Bn of the
semigroup Mn = M \A. �

To end this section we recall how to compute a minimal generating system (a Hilbert
basis) of a cone in the positive orthant of N2 with rational extremal rays. We follow [22],
though there are other approaches using continued fractions (see for instance [36, Section
1.6]).

LEMMA 2.8. Let a,b ∈ N2 with det(a,b) = 1. Then LQ≥(a,b)∩N2 = 〈a,b〉.

PROOF. Let x ∈ LQ≥(a,b)∩N2. Then there exists λ ,µ ∈Q≥ such that x = λa+µb.
The fact det(a,b) = 1 implies that Z2 is generated as a group by {a,b}. Whence there
exists α,β ∈ Z such that x = αa+βb. Since {a,b} is also a basis of R2 and coordinates
with respect to a basis are unique, we obtain λ = α and µ = β . This yields λ ,µ ∈ N,
and consequently x ∈ 〈a,b〉. This proves LQ≥(a,b)∩N2 ⊆ 〈a,b〉. The other inclusion is
trivial. �

Observe that if a,b ∈ Q2, then LQ≥(a,b) = LQ≥(λa,λb) for every positive rational
number λ . This in particular implies that whenever the extremal rays are rational, we can
replace them with vectors with integer coordinates.

LEMMA 2.9. Let a,b ∈ N2 \ {0}. Assume that there exists a = a1, . . . ,an = b ∈ N2

such that for all i∈ {1, . . . ,n−1}, det(ai,ai+1) = 1. Then LQ≥(a,b) = LQ≥(a1,a2)∪·· ·∪
LQ≥(an−1,an). In particular, LQ≥(a,b)∩N2 = 〈a1, . . . ,an〉.
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PROOF. Write ai = (ai1,ai2). The condition det(ai,ai+1) = 1 implies that the slope
of the ray Q≥ai is greater than that of Q≥ai+1. Hence every element in LQ≥(a,b) must
be in one of the cones LQ≥(ai,ai+1) for some i. The second assertion now follows from
Lemma 2.8. �

We say that a sequence of fractions
a11
a12

< · · · < an1
an2

is a Bézout sequence if for every

i ∈ {1, . . . ,n− 1}, ai1a(i+1)2
− ai2a(i+1)1

= 1. We allow the fraction 1
0 to occur in the

sequence. We say that the sequence is proper if it cannot be refined to another Bézout
sequence, that is, one cannot find i < j with j 6= i+ 1 such that

ai1
ai2

<
a j1
a j2

is a Bézout
sequence. In [51, Theorem 7] there is a procedure to compute a proper Bézout sequence
joining two fractions a1

a2
< b1

b2
.

Observe that for a = (a1,a2) and b = (b1,b2), det(a,b) = 1 if and only if a1b2−
a2b1 = 1. As in the proof of the Lemma 2.8, this in particular implies that gcd(a1,a2) =

gcd(b1,b2) = 1. Also, the sequence of fractions b1
b2

< a1
a2

is a Bézout sequence.

PROPOSITION 2.10. Let a,b ∈ Q2. Then there is a procedure to compute a minimal
generating system of LQ≥(a,b)∩N2.

PROOF. As we have pointed out already, we can assume that a,b ∈ N2. Also we can
take them so that their coordinates are coprime (just dividing by their greatest common
divisor). Assume that a = (a1,a2) and that b = (b1,b2). Without loss of generality we can
also assume that a1

a2
< b1

b2
. Construct as explained in [51] a proper Bézout sequence joining

a1
a2

and b1
b2

. Assume that this sequence is a1
a2

=
p11
p12

< · · ·< pn1
pn2

= b1
b2

. Set αi = (pi1, pi2) for

i ∈ {1, . . . ,n}. As a consequence of Lemma 2.9, LQ≥(a,b)∩N2 = 〈α1, . . . ,αn〉.
In order to prove that {α1, . . . ,αn} is a minimal generating system, we use that the

Bézout sequence we used to define it is proper and that in this setting there exists h ∈
{1, . . . ,n} such that

p11 ≥ p21 ≥ ·· · ≥ ph1 ≤ p(h+1)1
≤ ·· · ≤ pn1

(this is a direct consequence of [51, Corollary 18]). �

As a direct consequence of the proof of this last result, the minimal generators of
LQ≥(a,b)∩N2 can be arranged so that their slopes are in a (strictly) decreasing sequence.
Hence we obtain the following corollary.

COROLLARY 2.11. Let a,b ∈ Q2 and let {m1, . . . ,mk} be a minimal generating sys-
tem of LQ≥(a,b)∩N2. For every i 6= j, mi 6∈ LQ≥(m j). In particular, for i ∈ {1,2},
(LQ≥(a,b)∩N2)∩ τi = 〈m ji〉 for some ji ∈ {1, . . . ,k}.

2.1. Circle semigroups. Let C be the circle with center (a,b) and positive radius r,
which is a particular case of convex body. Denote by Ci the circle with center (ia, ib) and
radius ir, that is, Ci = iC. Let S =

⋃
∞
i=0Ci ∩N2 be the semigroup of the non-negative

points inside C and its multiples Ci. Again, denote by τ1 and τ2 the extremal rays of
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LQ≥(C∩R2
≥) =

{
∑

p
i=1 qiai | p ∈ N,qi ∈Q≥,ai ∈C∩R2

≥
}

, choosing the ray with greatest
slope1 as τ1. Let C denote the positive integer cone LQ≥(C∩R2

≥)∩N2. In this setting,
int(C) = C\{τ1,τ2}.

g1
g2

FIGURE 2. The minimal generator set of the semigroup of the cone gen-
erated by the circle with center (7/3,4/3) and radius 1/3. The integer
vectors g1 and g2 are the generators of the rays.

Consider the circle C centered in (7/3,4/3) with radius 1/3 and the sequence of cir-
cles Ci. The integer cone C has minimal generating set {(4,3),(12,5),(2,1),(3,2),(7,3)}
(the green points in Figure 2). In the next sections we will show how to obtain S from
this set.

2.1.1. Computing the minimal generators of the rays. In oder to find the minimal
generators of C = LQ≥(C∩R2

≥)∩N2 we first find the pair of tangent lines to the circle
that passes through (0,0), and intersects in one point to the circle, to get the cone extremal
rays. We take into account the case when the circle cuts x-axis or y-axis, in which case the
intersection will be a segment. It will be shown (Theorem 2.16) that the intersection of
rays and C must have rational points in order to S be finitely generated. Hence we assume
that the extremal rays are generated by a rational point. We can now use Proposition 2.10
to compute a minimal generating system of C.

If an extremal ray τ is tangent to the circle C, then the semigroup of elements in S

that are in this ray is generated by multiples of the tangent point. Let P = (a/b,c/d) be
the tangent point (the irrational setting is not finitely generated as mentioned above, so
we focus in the rational case). Assume that gcd(a,b) = gcd(c,d) = 1. Then lcm(b,d)P
generates τ ∩S.

1We will use the name of the rays τ1 and τ2 to reference its slopes, where necessary.
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If we are not in the case described in the preceding paragraph, then C cuts one of the
axis (or both) in a segment. Thus this axis becomes a extremal ray of C, and the set of
elements in S and in this extremal ray are a proportionally modular numerical semigroup.
Consequently we can compute its minimal generators by using either [49] or [51].

2.1.2. Affine convex body semigroup generators. At this point, from the previous sec-
tion, we have a set of minimal generators of the cone C, say {g1, . . . ,gn}. Using this set
as the input data, we want to find the corresponding set of minimal generators of the circle
convex body semigroup.

Assume without loss of generality that g1 ∈ τ1 and g2 ∈ τ2. From the way the minimal
generating set of C is constructed, it follows that no other minimal generators will be in
the extremal rays of C. Therefore 〈gi〉= τi∩ C, for i ∈ {1,2}. Hence we can use Lemma
2.5 to replace g1 and g2 in C with the generators of S that are in the extremal rays.

So for now, we focus on the interior points of the cone. The next results are needed to
prove that int(C)\ int(S) has a finite number of points if C ⊂ R2

≥ (Lemma 2.15).

LEMMA 2.12. Let τ be a ray with a rational point. Let g ∈ τ ∩Q2
≥, s ∈ τ ∩N2 and

−→u ∈R2. Define Ri to be the parallelogram determined by the elements g+(i−1)s, g+ is
and g+(i−1)s+−→u with i ∈ N. If R1 ⊂ R2

≥, then Ri∩N2 = (R1∩N2)+(i−1)s.

PROOF. By construction Ri = R1 +(i− 1)s for every i ∈ N. Since s ∈ N2, then Ri ∩
Z2 = (R1 ∩Z2)+ (i− 1)s. In the case R1 ⊂ R2

≥, we obtain Ri ∩N2 = (R1 ∩N2)+ (i−
1)s. �

LEMMA 2.13. Suppose that C∩ τ2 is a point (τ2 is tangent to C). If Pi is the closest
point to τ2 belonging to Ci∩Ci+1

2, then lim
i→∞

d(Pi,τ2) = 0.

PROOF. Observe that whenever Ci intersects Ci+1, the set Ci∩Ci+1 is a compact, and
thus Pi exists. Denote by hi the distance d(Pi,τ2). Without loss of generality, assume
that τ2 is the line {y = 0}. This is possible since the distances between the points of our
construction are invariant under rotation. Graphically the situation is as shown in Figure
3.

Since the slope of τ2 is zero, the circles have radius bi and therefore hi = d(Pi,τ2) is
equal to the second coordinate of Pi.

With these hypothesis, the point Pi is the solution of the following system of equations
closest to the axis OX :

Ci ≡ (x−ai)2 +(y−bi)2 = (bi)2

Ci+1 ≡
(

x−a(i+1)
)2

+
(

y−b(i+1)
)2

= b2(i+1)2.

That is,

x =
a3 +2a3i+

√
−a4b2 +4a2b4i+4a2b4i2

2(a2 +b2)
,

2For the initial values of i it is possible to obtain that Ci∩Ci+1 = /0, see Figure 3.
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distance h2

FIGURE 3. Distance h2.

y =
a2b2(1+2i)−a

√
−a2b2(a2−4b2i−4b2i2)

2b(a2 +b2)
.

Then the distance is

(10) hi = d(Pi,τ2) =
a2b2(1+2i)−a

√
−a2b2(a2−4b2i−4b2i2)

2b(a2 +b2)
.

It is easy to prove that lim
i→∞

hi = 0. �

REMARK 2.14. Assume that C∩ τ1 has only a point (τ1 is tangent to C). Denote by
P′i the point of Ci∩Ci+1 closest to τ1 (whenever this intersection is not empty). Using the
symmetry of

⋃
∞
i=0Ci with respect to the line joining the centers of the circles, we obtain

that d(P′i ,τ1) = d(Pi,τ2).

LEMMA 2.15. Let C ⊂ R2
≥ be a circle. There exists d ∈ R≥ such that

{P ∈ int(C) | d(P)> d} ⊂S.

Furthermore, d can be computed algorithmically.

PROOF. Consider two rectangles in C whose bases are segments determined by the
first two consecutive points of the semigroup in τ1 for the first rectangle and in τ2 for the
second, and with height (the same for both) a value small enough to obtain no points of
N2 in them (except in their bases). Denote by d′ this height. For τ2 = {y = 0}, these
rectangles are as in Figure 4.

Denote by T1,T2 ∈S the vertices of the base of the rectangle over the line τ2.

Consider now the region of the cone obtained applying to the above rectangle all the
translations defined by the vector

−−→
OT1 and all its positive multiples. This construction is
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FIGURE 4. Construction 1.

done over τ1 and over τ2 (see Figure 5). In this region there are no integer points (Lemma
2.12).

T
2

T
1

FIGURE 5. Construction 2.
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Let i0 ∈N be the first term of the sequence of heights {hi}i (defined in (10)) such that
hi0 < d′. Lemma 2.13 asserts the existence of i0.

Then there exists d ∈ R≥ determined by the circle Ci0 such that {P ∈ int(C) | d(P)>
d} ⊂

⋃
∞
i≥i0 Ci∩N2 ⊂S. �

In Figure 6, observe that i0 from the above prove equals 6.

d

FIGURE 6. Construction 3.

From the generating set of C, and the generators of S∩ τ1 and S∩ τ2, using now
Lemma 2.5 we can construct S′ such that S′ \ τ1∪ τ2 = S\ τ1∪ τ2 and S′∩ τi = S∩ τi

for i ∈ {1,2}. It follows from Lemma 2.15 that S′ \S has finitely many elements and
consequently we can now use Corollary 2.7 to compute a minimal generating system of
S. This proves one of the directions of the following theorem. Recall that membership
to S is computationally easy to check.

THEOREM 2.16. The semigroup S is finitely generated if and only if C∩τ1 and C∩τ2

have rational points. Furthermore, in such case the minimal system of generators of S

can be computed algorithmically.

PROOF. The sufficiency is already proven. For the necessity assume that S is finitely
generated and that C∩τ1 ⊆R2

≥ \Q2. Let G = {s1,s2, . . . ,sr} be a system of generators of
S. This implies that S∩ τ1 = /0. Consider sk ∈ G such that the vector

−→
Osk has maximum

slope respect to the points of G. There exists at least an element Q ∈ Q2 in the interior
of the cone delimited by τ1 and the ray defined by sk. There exists u ∈ N such that uQ
belongs to a circle Ci0 ∩N2 ⊆S. However uQ is not in 〈G〉, which is a contradiction. If
C∩ τ2 has not rational points, the proof follows analogously. �
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EXAMPLE 2.17. We complete now the example of the circle C centered in (7/3,4/3)
with radius 1/3. By using the procedure proposed in Proposition 2.10, we have for the
integer cone C the generators

{(4,3),(12,5),(2,1),(3,2),(7,3)}

(see Figure 2 on page 32).
Now using Lemma 2.5, the semigroup S′ is minimally generated by{
(2,1),(3,2),(7,3),(7,5),(11,8),(15,11),(19,14),(23,17),(27,20),(31,23),

(32,24),(96,40),(19,8),(31,13),(43,18),(55,23),(67,28),(79,33),(91,38)
}
.

s1

s2

d

FIGURE 7. Generators of the semigroup {S′∩ τ1}∪{S′∩ τ2}∪ int(C).

This semigroup is equal to S in their extreme rays and equal to C in its interior (see
Figure 7).

The finite set S′\S has 13 points (see Figure 8). By using Corollary 2.7, we eliminate
every point of S′ \S from S′ obtaining the minimal system of generators of S (see
Figure 9):{

(5,3),(6,4),(7,3),(7,4),(7,5),(8,4),(9,5),(9,6),(10,5),(11,6),(11,8),

(13,6),(15,11),(18,8),(19,14),(23,10),23,17),(27,20),(31,23),(32,24),

(33,14),(35,26),(38,16),(50,21),(55,23),(67,28),(79,33),(91,38),(96,40),

(115,48),(127,53),(139,58)
}
.
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FIGURE 8. S′ \S.

FIGURE 9. S minimal generating set.

The results of this section are used in the developed CircleSG Mathematica3 package,
which is described in Appendix A. The implementation presented in our work [17] is
slightly different to that given in [19], mainly due to the fact that we are using [22], which
simplifies the explanation of the algorithm for the step where it computes the minimal
generating set of the cone associated. Fortunately, we do not only obtain a simplification
of the theory, but also a faster procedure to make this initial computation.

3Every reference to the term Mathematica in this document, is referred to the set of programs of Wol-
fram Research, except where it is otherwise stated. Mathematica is a registered trademark of Wolfram
Research Inc.
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2.2. Convex polygonal semigroups. In this section some results on semigroups gen-
erated by convex polygons are presented and the affine convex polygonal semigroups are
characterized.

Denote by Pi = (pi1, pi2) with i ∈ {1, . . . ,n} the vertices of a compact convex polygon
F ⊂ R2

≥ ordered in the clockwise direction. We set P = {P1, . . . ,Pn} and denote by P

the associated semigroup, P=
⋃

i∈N iF ∩N2. As in the preceding section, we denote by
C = LQ≥(F)∩N2.

PROPOSITION 2.18. If P ⊂ Q2
≥, then P is finitely generated. Furthermore, there

exists an algorithm which determines its minimal system of generators.

PROOF. Let P = {P1, . . . ,Pn} the set of vertices of F and consider the set of points
P′ = {(P1,1), . . . ,(Pn,1)} ⊂ Q3

≥. Take now the cone C = LQ≥(P′)∩N3. Since this cone
is defined by rational inequalities, it is finitely generated.

Let (x,y,z)∈ C. Then there exists λ1, . . . ,λn ∈Q≥ such that (x,y,z) =∑
n
i=1 λiP′i . Thus

(x,y) = ∑
n
i=1 λiPi and z = ∑

n
i=1 λi ∈ N. Hence (x,y) = ∑

n
i=1

λi
z zPi, with ∑

n
i=1

λi
z = 1. This

implies that (x,y) ∈ zF , and consequently (x,y) ∈P.
Now take (x,y) ∈P. Then there exists z ∈ N such that (x,y) ∈ zF . Hence (x,y) =

∑
n
i=1 λizPi with λ1, . . . ,λn ∈Q≥ and ∑

n
i=1 λi = 1. This implies that (x,y,z) = ∑

n
i=1(zλi)P′i ,

and clearly zλ1, . . . ,zλn ∈Q≥, which means that (x,y,z) ∈ C.
Therefore, a system of generators of P is the set formed by the projection onto the

first two coordinates of a system of generators of C. From this set of generators of P one
can compute its minimal system of generators. �

We will show that even if some of the vertices have not rational coordinates, the
finitely generated condition can prevail. Actually the condition is that in the intersection
of F with extremal rays there are points with rational coordinates. The idea is that we
can perturbate slightly the vertices in the interior of C so that we can choose them to
be rational and P remains the same, as occurs with the intervals defining proportionally
modular numerical semigroups (see [49]). In order to prove this fact, we will slice F in at
most three pieces. Two triangles if the intersection of F with the rays are single vertices,
and a central polygon (see Figure 13), for which the complement in the corresponding
cone will be finite.

Suppose now that τ1 ∩F = {P1}. Denote by Vi the intersection of the lines passing
through iP1 and iP2, and (i+ 1)Pn and (i+ 1)P1 for every i ∈ N. Note that for the initial
values of i it is possible that these points are out C (see Figure 10).

LEMMA 2.19. Every point Vi belongs to a parallel line to τ1.

PROOF. Clearly (iP1)(iP2) and ((i+1)Pn)((i+1)P1) are not parallel, their lengths
increase with no limit and keep one of their vertices in the ray τ1. The lines passing
through these segments intersect in only one point Vi for any i≥ 0.
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After some basic computations the reader can check that the distance between Vi and
τ1 is constant and equal to∣∣∣∣∣ p12

2 p21 pn1− p12 p21 p11 pn2 +a1
2 pn2 p22− p11 p22 p12 pn1

(−p22 pn1 + p11 p22 + p12 pn1 + pn2 p21− pn2 p11−b1 p21)
√

p122 + p112

∣∣∣∣∣ .
Thus, the points Vi are in a line parallel to τ1. �

Thus, in this case there exists i0 such that Vi ∈ LQ≥(F) for all i≥ i0. It follows that

P\ (τ1∪ τ2)⊂ int(C)\∪i≥i0triangle({iP1,(i+1)P1,Vi}).

For instance, in Figure 10 i0 = 5.

FIGURE 10. Image of a convex polygonal semigroup.

For the sake of simplicity we have used the points P1, P2 and Pn in the above results,
but the result can be extended to the intersection of F and an extremal ray when this
intersection is only a point.

We focus now our attention when F is a particular triangle.

PROPOSITION 2.20. Let F be a triangle delimited by {P1,P2,P3} with P1 ∈ Q2
≥ and

P2,P3 ∈ R2
≥ \Q2, such that P1 ∈ τ1 and P2P3 ⊂ τ2, where τ1 and τ2 are the extremal rays

of LQ≥(F) and the slope of τ2 is rational. Then P is finitely generated and there exists an
algorithm to compute its minimal system of generators.

PROOF. As in the case of circles, the semigroup τ1∩P is generated by a multiple of
P1, say s1.

In light of Lemma 2.19 the elements Vi are all in the same line. Let j0 be the least
positive integer such that Vj0 ∈ LQ≥(F). Then j0P1 + s1 is a multiple of P1, since s1 is a
multiple of P1. Hence there exists a positive integer j1 such that j1P1 = j0P1 + s1.
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Let T1 the set of integer points in the triangle with vertices O, j0P1 and j0P2. Let T2 be
the parallelogram determined by j0P1, j1P1 and Vj0 . Define T = T1∪T2 (see Figure 11).

From the construction of T2, Lemma 2.19, and Lemma 2.12, we know that the ele-
ments of P that are not in P∪T1 are in a translation of T2. Hence the distance from the
elements with integer coordinates that are in LQ≥(F)\P to those in P is reached in the
region T1∪T2, and thus is a positive amount. We can move in τ2 the vertices P2 and P3

��

����

��

�� ��

�� ��

�

��

��

FIGURE 11. Set T = T1∪T2.

until we reach two rational points P′2 and P′3 (since the slope of τ2 is rational, there are
an infinite number of possibilities to take these points into segments including P2P3) to
form a new triangle F ′ with rational vertices {P1,P′2,P

′
3} such that F ⊆ F ′ and iF ′ does

not contain any point with integer coordinates that is not in P. It follows that

P=

(⋃
i∈N

iF ′
)
∩N2,

as shown in Figure 12, where dotted lines correspond to the new rational triangle with
rational vertices. As the vertices of F ′ are rational, the semigroup P is finitely generated
and its minimal system of generators can be computed as explained in Proposition 2.18.

�

The following result considers convex polygons with two sides as segments over the
rays of the cone. These will play the role of the central slice in the general case.

PROPOSITION 2.21. Let F ⊂ R2
≥ be a convex polygon fulfilling that τ1 and τ2 have

rational points and τ1∩F and τ2∩F are segments. Then P is finitely generated and there
exists an algorithm which determines its minimal system of generators.
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P1

j0 P1

j1 P1

FIGURE 12. Construction of a triangle with rational vertices.

PROOF. Let τ1∩F = S1 = P1P2 and τ2∩F = S2 = Pl+1Pl. By construction there exists
a least integer j, such that the segments jS1 and ( j+ 1)S1 overlap, and the same for S2.
Let T be the triangle with vertices O, jP1 and jPl+1. Every element in C that is not in
T belongs to P, which in particular means that there are only finitely many elements in
C \ (τ1 ∪ τ2) that are not in P. We can proceed now as with circle convex body affine
semigroups.

By using Lemma 2.4 we compute generators for P∩τ1 and P∩τ2. Next we construct
a semigroup P′ verifying C′ ∩ τ1 =P∩ τ1, C′ ∩ τ2 =P∩ τ2 and C′ \ (τ1 ∪ τ2) = C \
(τ1 ∪ τ2) (use Lemma 2.5). It follows that C′ \P has finitely many elements. Thus by
using Lemma 2.6 we find a minimal generating system of P. �

THEOREM 2.22. The semigroup P is finitely generated if and only if F∩τ1 and F∩τ2

contain rational points. Furthermore, in such case there exists an algorithm to compute
the minimal system of generators of P.

PROOF. The necessity goes as in the proof of Theorem 2.16.
For the sufficiency, assume the intersections of F with τ1 and τ2 contain rational

points. We will slice our polygon so that the pieces fit in one of the above propositions.

(1) If τ1∩F and τ2∩F are segments, the result is just Proposition 2.21.
(2) If τ1∩F has only a point and τ2∩F is a segment, then take τ ′1 a ray with rational

point such that the intersection of the polygon F with the region delimited by τ1

and τ ′1 is a triangle F ′1. The set F ′2 = F \F ′1 verifies the conditions of Proposition
2.21.

The minimal system of generators of the semigroup generated by F ′1 can be
computed in light of Proposition 2.20.
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Analogously, the minimal system of generators of the semigroup generated
by F ′2 can be computed with Proposition 2.21. Since P is the union of the semi-
groups generated by F ′1 and F ′2, the semigroup P is finitely generated by the
union of the above systems of generators.

(3) If τ1∩F and τ2∩F are two points, we proceed as follows. Take τ ′1 and τ ′2 two
rays with rational points such that the polygons obtained from the intersection of
F and the region delimited by τ1 and τ ′1, and by τ2 and τ ′2, are two triangles. The
intersection of the polygon F and the region delimited by τ ′1 and τ ′2 verifies the
condition of Proposition 2.21 (see Figure 13).

Τ1

Τ2

Τ
¢
1

Τ
¢
2

FIGURE 13. Polygon with only a vertex in each extremal rays.

Once again, a system of generators of P can be obtained by applying Propo-
sition 2.20 and Proposition 2.21 to the above regions.

In any case the semigroup P is finitely generated and its minimal system of generated
can be computed algorithmically. �

3. Affine convex body semigroups and Buchsbaum rings

Recall that a numerical semigroup is a submonoid of N with finite complement in N
and from [46, Proposition 1.2] every affine semigroup in N is isomorphic to a numerical
semigroup (just dividing the affine semigroup by its greatest common divisor). Let S be a
numerical semigroup. Fix m ∈ S\{0} and let s ∈ S. Then ([46, Lemma 1.6]) there exists
unique k,w ∈ N such that

• s = km+w,
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• w ∈ S and w−m 6∈ S.

Actually there are exactly m elements w in S such that w−m 6∈ S (this is known as the
Apéry set of m in S, we will come back to this concept later).

We can think of a direct generalization to this fact for two dimensions. Let M be an
affine semigroup with M ⊆ N2. If we fix m ∈ M \ {0}, the set of elements w ∈ M such
that w−m 6∈ M has infinite cardinality. So we do not recover a result as nice as for the
numerical case.

Assume that {m1, . . . ,me} is the minimal generating system of M. Also suppose with-
out loss of generality that m1 and m2 generate the extremal rays of LQ≥(M) (in this way
M is not isomorphic to a numerical semigroup and LQ≥(M) = LQ≥(m1,m2)). The set of
elements w ∈M such that w−m1 6∈M and w−m2 6∈M has finitely many elements (see
for instance [44]). So we can think about writing any s ∈M as s = k1m1 + k2m2 +w with
(k1,k2)∈N2 and w∈M such that w−m1,w−m2 6∈M. We say that M is Cohen-Macaulay
if (k1,k2) and w are unique (these monoids are named in this way because it is known that
M is Cohen-Macaulay if and only the semigroup ring k[M] is Cohen-Macaulay in the
classical Commutative Algebra sense; see [44], though we will not deal with the Commu-
tative Algebra definition). Notice that for the numerical semigroup case, every m∈ S\{0}
becomes a generator of the unique extremal ray of Q≥(= LQ≥(m) = LQ≥(S)), and so this
concept generalizes the idea of numerical semigroup in two dimensions.

Let M be as above, we define the closure of M as M = {a∈N2 | a+M ⊆M} . We say
that M is Buchsbaum if and only if M is Cohen-Macaulay (again this name is inherited
from the Buchsbaum property of the semigroup ring k[M], see [24]).

The above idea can be generalized to any simplicial affine semigroup of Nr for any
positive integer r. By simplicial we mean that the cone spanned by the monoid is the same
as the cone spanned by r of its minimal generators (these do not be to be unique). Notice
that any affine semigroup in N2 is simplicial. Since we are working in dimension two, we
will omit this adjective.

Convex affine semigroups that are Cohen-Macaulay are characterized in [21]. In this
section we are interested in determining whether or not a given affine convex body semi-
group is Buchsbaum. Some examples of papers devoted to the study of Buchsbaum affine
semigroup rings are [3, 4, 24, 34, 53, 55] and the references therein. Our aim is to find
easy examples of Buchsbaum semigroup rings.

Notice that if a ∈M, then in particular a+m1,a+m2 ∈M ⊆ C = LQ≥(M)∩N2. It
follows that a ∈ C. Hence M ⊆M ⊆ C.

We are going to use the following two results from [21]. For M ⊆ N2 an affine semi-
group, let m1 ∈ τ1 be the element of M∩τ1 with less module. Define m2 ∈ τ2 analogously.

COROLLARY 2.23. [21, Corollary 2] Let M ⊆N2, the following conditions are equiv-
alent:

(1) M is Cohen-Macaulay.
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(2) For all a ∈ C\M, a+m1 or a+m2 does not belong to M.

LEMMA 2.24. [21, Lemma 3] Let M ⊆ N2 be an affine semigroup such that int(C)\
int(M) is a non-empty finite set. Then M is not Cohen-Macaulay.

3.1. Buchsbaum affine circle semigroups. Let C ⊆ R2 be a circle. Recall that S =⋃
∞
i=0Ci∩N2 is the circle semigroup associated to C, and that Theorem 2.16 characterizes

these circle semigroups that are affine (finitely generated). In this section, we consider
that S is always a simplicial affine circle semigroup. Let S be the closure of S, and let
{m1,m2, . . . ,mk} be the minimal system of generators of S.

PROPOSITION 2.25. Let S ⊂ N2 be an affine circle semigroup. The semigroup S is
Buchsbaum if and only if int(C) = int(S) and S∩ τ j is generated only by one element
for j ∈ {1,2}.

PROOF. Since S is Buchsbaum if and only if S is Cohen-Macaulay, we prove that
S is Cohen-Macaulay if and only if int(C) = int(S) and S∩τ j is generated by only one
element for j ∈ {1,2}.

Assume that S is Cohen-Macaulay and suppose that int(C)\ int(S) 6= /0. Let m′j be
an element in the minimal system of generators of S∩ τ j with j ∈ {1,2}. Since there
exists a real number d > 0 such that {a ∈ int(C) | d(a)> d} ⊂S (see Lemma 2.15), the
set int(C)\ int(S) is finite, and thus int(C)\ int(S) is finite too. Take a∈ int(C)\ int(S)

verifying that d(a) = max{d(a′) | a′ ∈ int(C)\ int(S)}. The elements a+m′1 and a+m′2
are in S and by Corollary 2.23 the semigroup S is not Cohen-Macaulay which is a
contradiction.

Let us prove now that S∩ τ j is generated by only one element for j ∈ {1,2}. We
consider two different cases depending on if S∩ τ j is generated only by one element or
not.

• If there exist m j ∈ N2 such that S∩ τ j = 〈m j〉 for some j ∈ {1,2}, then for every
a ∈ (τ j \S)∩N2 we have that a+m j ∈ τ j \S and hence we have that a /∈S. Then
S∩ τ j = S∩ τ j = 〈m j〉.
• We consider now the case that S∩ τ j is minimally generated by two or more elements

with j ∈ {1,2}. We have that C∩ τ j is a segment and that (C \S)∩ τ j is a finite non-
empty set. This implies that (C \S)∩ τ j is finite. If it is a non-empty set, take the
element a ∈ (C \S)∩ τ j such that d(a) = max{d(a′) | a′ ∈ (C \S)∩ τ j}. It verifies
that a+m′1 and a+m′2 belong to S and therefore S is not Cohen-Macaulay (Corollary
2.23). Hence C∩ τ j = S∩ τ j. By Corollary 2.11, C∩ τ j = 〈m〉 for some m ∈ N2, and
consequently S∩ τ j = 〈m〉.

Assume now that int(C)= int(S) and that S∩τ j is generated by only one element for
j ∈ {1,2}. Let m′j ∈N2 such that S∩τ j = 〈m′j〉 for j ∈ {1,2}. From the first assumption,
any a∈ C\S has to be on the rays of C, either τ1 or τ2. If we suppose that a+m′1 ∈S and
a+m′2 ∈S, then for a ∈ τ1, saying a+m′1 ∈S is equivalent to say that a+m′1 = tm′1 for
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some t ∈N, then a = (t−1)m′1 ∈S. This contradicts that a ∈ C\S. The same argument
can be repeated for a ∈ τ2. Finally, by Corollary 2.23, S is Cohen-Macaulay. �

By using the above proof, the conditions of Proposition 2.25 can be determined from
the initial circle. To check whether int(C) = int(S), we only have to compute the finite
set int(C)\ int(S) by using the bound provided by Lemma 2.15. The second condition is
satisfied whether C∩τ j is a point or, in case C∩τ j is a segment, if the generator of C∩τ j

belongs to S. Both conditions can be checked algorithmically.

EXAMPLE 2.26. Let C be the circle with center (7/5,4/5) and radius 1/5. Computing
with the program CircleSG (see [19]), we obtain that the affine circle semigroup4 S

associated to C is minimally generated by the set{
(4,2),(5,3),(6,3),(6,4),(7,3),(7,4),(7,5),(8,5),(9,4),(9,6),(10,7),

(11,8),(15,11),(19,8),(19,14),(23,17),(27,20),(31,13),(31,23),(32,24),

(35,26),(43,18),(55,23),(67,28),(79,33),(91,38),(96,40)
}

and int(C) \ int(S) is {(2,1),(3,2)} (see Figure 14). It is easy to check that the points

FIGURE 14. Affine circle semigroup associated to the circle with center
(7/5,4/5) and radius 1/5.

(2,1) and (3,2) belong to S. Thus, we obtain int(C) = int(S). Besides, S∩ τ1 =

〈(32,24)〉 and S∩ τ2 = 〈(96,40)〉. By Proposition 2.25, the affine circle semigroup S is
Buchsbaum.

4Note that C∩ τ1 = (32/25,24/25) and C∩ τ2 = (96/65,8/13).
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3.2. Buschsbaum affine convex polygonal semigroups. We assume that P is a sim-
plicial affine convex polygonal semigroup. Denote P be the closure of P. As in Section
2.2, we assume that P = {P1, . . . ,Pn}.

In this section, we consider different subsets of the cone C and some points and lines
in LQ≥(F ∩R2

≥). We distinguish two cases, F ∩ τi is a point or it is formed by more than
one point.

Assume F ∩ τ1 = {P1} ⊂ P. Recall that P∩ τ1 is generated by a multiple of P1, say
m1. Also, in this setting, there exists a least positive integer j such that jP1P2∩( j+1)P1Pn

is not empty. Let {V1} = jP1P2 ∩ ( j+ 1)P1Pn. Recall that Lemma 2.19 ensures that the
intersections of iP1P2∩ (i+1)P1Pn, i ∈N\{0}, are all in a line parallel to τ1. Denote this
line by ν1.

Denote by T1 the triangle with vertex set {O,P1,V1− jP1}, and by T̊1 its topological
interior. Note that T̊1∩P= /0 and also that (µP1+(T̊1∪ (OP1 \{O,P1})))∩P= /0 for all
µ ∈ Z≥. This construction allows us to define the set

L1 = {D+λm1 | D ∈ ( jP1)V1 and λ ∈Q≥}∩ C

whose elements are in P or they are in
⋃

µ∈N,µ≥ j
(
µP1 +(T̊1 ∪ (OP1 \ {O,P1}))

)
(see

T1

L1

Τ1

Τ2

FIGURE 15. Regions T1 and L1.

Figure 15). The elements of L1 verify that if P∈ L1\P, then P+m1 6∈P, and thus P /∈P.
This implies thatP∩L1 =P∩L1. Denote by ϒ1 the finite set ConvexHull({O, jP1,V1,ν1∩
τ2})∩N2 (see Figure 16).

Analogously, if the set F ∩ τ2 = {P1} ⊂ P, we call it again P1 for sake of simplicity,
there exists the least integer j such that jP1P2∩ ( j+1)P1Pn is equal to {V2}. Let T2 be the
triangle with vertex set {O,P1,V2− jP1}, and denote by ν2 the line containing the points
{hP1P2∩ (h+ 1)P1Pn | h ≥ j,h ∈ N} and by L2 the set {D+λm2 | D ∈ ( jP1)V2 and λ ∈
Q≥}∩ C. All of the properties of these sets are analogous to the properties of the sets
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U1

Ν1

Τ1

Τ2

FIGURE 16. Region ϒ1.

defined previously for τ1. Denote by ϒ2 the finite set ConvexHull({O, jP2,V2,ν2∩ τ1})∩
N2.

In case F ∩ τi is a segment for some i ∈ {1,2}, we take νi = τi and ϒi = {O}.
We define the set ϒ = (Q+LQ≥(F))∩N2 ⊂ C with {Q} = ν1 ∩ ν2 ⊂ LQ≥(F) (see

Figure 17). Note that the boundary lines of the set ϒ intersect with two different sides of

U

Ν1

Ν2

Τ1

Τ2

FIGURE 17. Region ϒ.

the polygon i0F when i0� 0 and therefore the sets ϒ \P and ϒ \P are finite. The last
set we define is the finite set ϒ′ = {a ∈ (ϒ1∪ϒ2)\P | a+m′1,a+m′2 ∈P}, where m′i is
a minimal generator of P in τi, i ∈ {1,2}. It is straightforward to prove that the cone C

is the union of L1, L2, ϒ1, ϒ2 and ϒ.

THEOREM 2.27. Let P be a simplicial affine convex polygonal semigroup. Then



3. AFFINE CONVEX BODY SEMIGROUPS AND BUCHSBAUM RINGS 49

(1) if int(C) = int(P), the semigroup P is Buchsbaum if and only if for j = {1,2},
P∩ τ j is generated by only one element,

(2) if int(C) 6= int(P), the semigroup P is Buchsbaum if and only if ϒ′ = /0 and
ϒ⊂P.

PROOF. We prove that P is Cohen-Macaulay if and only if the conditions of the
theorem are fulfilled.

Case (1) is similar to the Proposition 2.25. We begin assuming that P is Cohen-
Macaulay. Again we have to check two different possibilities: P∩ τ j is generated only
by one element or not.

• If there exists m j ∈ N2 such that P∩ τ j = 〈m j〉 for some j ∈ {1,2}, then for every
a ∈ (τ j \P)∩N2 we have that a+m j ∈ τ j \P, whence we have that a /∈P. Then
P∩ τ j =P∩ τ j.
• The other possibility is P∩ τ j is minimally generated by two or more elements for

some j ∈ {1,2}, that is F ∩ τ j is a segment and so (C \P)∩ τ j is a finite non-empty
set. This implies that (C\P)∩τ j is a finite set. The argument follows as in Proposition
2.25.

The converse of Case (1) is analogous to the converse of Propositions 2.25.
To prove Case (2), assume that int(C) 6= int(P) and that P is Cohen-Macaulay. By

Corollary 2.23, the set ϒ′ has to be empty. If ϒ 6⊂P, choose a ∈ ϒ\P such that d(a) =
max{d(a′) | a′ ∈ ϒ\P}. Then a+m′1 and a+m′2 belong to P, which implies that P is
not Cohen-Macaulay (again by Corollary 2.23). Thus ϒ⊂P.

Conversely, assume that ϒ′= /0 and ϒ⊂P and let us prove that P is Cohen-Macaulay.
We use Corollary 2.23. Let a be an element of C\P. We have to prove that either a+m′1
or a+m′2 is not in P. Note that if F ∩ τ1 and F ∩ τ2 are both segments, by construction,
C = ϒ and consequently C =P, and thus there is no a to consider. So we may assume
that either F ∩ τ1 or F ∩ τ2 is a single point.

As ϒ ⊂P, we have that a /∈ ϒ ⊂P. Hence either a belongs to the strip bounded by
τ1 and ν1 or in the strip determined by ν2 and τ2. We distinguish these two cases.

• Assume that a belongs to the strip bounded by the parallel lines τ1 and ν1.
- If F ∩ τ1 = {P1}, then we know that P∩ τ1 = 〈m1〉. By using the argument in

Case (1), we deduce that P∩ τ1 = P∩ τ1 and m1 = m′1. By construction of L1

and ϒ1, the element a belongs to ϒ1 \P or it belongs to L1 \P. Since ϒ′ = /0, if
a ∈ ϒ1 \P, the element a+m′1 or a+m′2 does not belong to P. If a ∈ L1 \P, then
a+m1 = a+m′1 /∈P.

- If F ∩ τ1 is a segment, by construction a ∈ τ1 = ν1. Also a would be in the strip
bounded by ν2 and τ2. We are assuming that F∩τ2 is not a segment (F∩τ1 is already
a segment), and so it is a point and we can apply the argument of the preceding
paragraph.

• The case a is in the strip bounded by ν2 and τ2 follows by symmetry. �
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3.3. Effective test for the Buchsbaum property in affine convex polygonal semi-
groups. According to Theorem 2.27, in order to determine whether or not P is Buchs-
baum, we need to check if int(C) = int(P). The different situations are the following.

(1) If F∩τ1 and F∩τ2 are segments, say P1Pt and Pd−1Pd , the set ϒ is equal to the positive
integer cone C and the sets C\P and C\P are finite. Let j ∈N be the least integer
such that jP1Pt ∩ ( j+ 1)P1Pt 6= /0 and jPd−1Pd ∩ ( j+ 1)Pd−1Pd 6= /0, and let T be the
triangle with vertex set {O, jP1, jPd}. Clearly, T ∩N2 is finite and int(C)\ int(P)⊆
T ∩N2. This is illustrated in Figure 18. In this particular example, P∩ τ1 = 〈m1 =

(52,25)〉, and P∩ τ2 = 〈m2 = (8,1)〉. As shown in the proof of Theorem 2.27, this
forces P∩ τ j to be generated by a single element for j ∈ {1,2}. The points (4,1)
and (7,3) are in P (in color red in the Figure 18). Therefore P in this example is
Buchsbaum.

T

FIGURE 18. Affine polygonal semigroup P associated to the polygon
{(2,0.25),(3,0.375),(2.6,1.25),(3.12,1.5)}.

(2) If F ∩ τ1 and F ∩ τ2 are points, say P1 and Pd , we need to consider the following
different areas inside the cone.
• For P∈ (int(C)∩(L1∪L2))\ int(P), the elements P+m1 and P+m2 do not belong

to P and thus P 6∈P (Corollary 2.23). This implies that P∩ (L1 ∪ L2) = P∩
(L1∪L2). Let j ∈ N such that jP1P2∩ ( j+1)P1Pn = {V1} and let t ∈ N satisfying
tP1 = m1. For every r,k ∈ Z≥ there exists h ∈ {0, . . . , t − 1} such that (T̊1 +(r +
j)P1)∩N2 = (T̊1 + (h+ j)P1)∩N2 + km1. Note that this construction is for L1

and that for L2 we must proceed similarly with the triangle T2. So to compare
int(C)∩ (L1 ∪ L2) with int(P)∩ (L1 ∪ L2) it is only necessary to check if there
are nonnegative integer points in the sets T̊1 +(h+ j)P1 (with h ∈ {0, . . . , t− 1}).
If there exists such points, then int(C) 6= int(P). This process has to be done,
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m1

m2

FIGURE 19. Affine polygonal semigroup P associated to the polygon
{(3.9,2.1),(3.9,0.8),(3.5,1.45),(4.5,1.7),(4.44,1.1)}.

analogously, in corresponding translations of T̊2 in the direction of Pd . In Figure
19, the shaded areas between the rays and the affine polygonal semigroup are the
sets {T̊1 +(h+5)(39/10,21/10) | h ∈ {0,9}} and {T̊2 +(h+7)(39/10,4/5) | h ∈
{0,9}}, respectively.
• Besides, since ϒ1 and ϒ2 are parallelograms (see for instance Figure 16 to get

an idea on how these sets look like), (ϒ1 ∪ϒ2)∩N2 is a finite set and therefore
(int(C)∩ (ϒ1∪ϒ2))\ int(P) can be computed.
• Finally, in order to compute (int(C)∩ϒ) \ int(P), just take j ∈ N to be the least

integer such that both sets jP1Pt ∩ ( j + 1)P1P2 and jPdPd+1 ∩ ( j + 1)PdPd−1 are
singletons. Assume that jP1Pt ∩ ( j+1)P1P2 = {V} and jPdPd+1∩ ( j+1)PdPd−1 =

{V ′}, and let T be the triangle with vertex set {Q,V,V ′}. By construction, the sets
(int(C)∩ϒ)\T and (int(P)∩ϒ)\T are equal. Therefore int(C)∩ϒ = int(P)∩ϒ

if and only if the finite sets int(C)∩T and {a ∈ int(P)∩T |a+P∈P} are equal
(in order to check that a+P ⊆P, we only have to see if a+m ∈P for every
minimal generator m of P). This case is illustrated in Example 2.28 (see Figure
20).

(3) If F ∩ τ1 = {P1} and F ∩ τ2 is a segment Pd−1Pd , for comparing the sets int(C) \ϒ

and int(P) \ϒ, we proceed as in the second case with the sets L1 and ϒ1. Let now
j ∈ N be the least integer such that jP1Pt ∩ ( j + 1)P1P2 is a point V and jPd−1Pd ∩
( j+ 1)Pd−1Pd 6= /0, and let T be the triangle with vertex set {Q,V, jPd} (in this case
Q ∈ τ2). Then int(C)∩ϒ = int(P)∩ϒ if and only if the finite sets int(C)∩T and
int(P)∩T are equal.

(4) Finally, the case F ∩ τ2 is a point and F ∩ τ1 is a segment is analogous to the above
case.
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In any case, all the necessary sets required to compare int(C) and int(P) are finite
and can be obtained algorithmically. Besides, the conditions ϒ′ = /0 and ϒ ⊂P can be
checked algorithmically and “P∩τ j is generated by only one element” can be tested in a
similar way to the case of circle semigroups.

EXAMPLE 2.28. Let F be the polygon determined by the rational points

{(3.6,1.8),(3.6,0.6),(3.3,1.05),(4.2,1.5),(4.14,0.99)}

and P its associated affine convex polygonal semigroup (the region confined inside the
polygons series in Figure 20). The minimal system of generators of P can be computed
with the program PolygonalSG of the PolySGTools package (see [20]),

In[1]:= PolygonalSG[{{3.6,1.8},{3.6,0.6},{3.3,1.05},
{4.2,1.5},{4.14,0.99}}]

Out[1]= {{4,1},{7,2},{7,3},{8,3},{10,3},{11,2},{11,5},{14,3},
{18,3},{18,9},{20,8},{23,10}}

We obtain that P is minimally generated by

G = {(18,9),(18,3),(4,1),(20,8),(23,10),(8,3),
(11,5),(11,2),(10,3),(14,3),(7,2),(7,3)}.

Using basic tools of Linear Algebra we compute the sets ϒ1, ϒ2, the triangle T and the
necessary translations of T1 and T2 (the above sets are needed to check the conditions of
Theorem 2.27). Those translations are the brown triangles in Figure 20, (ϒ1∪ϒ2)\P is
the region in green. The dashed edges region encloses (int(C)\ int(P))∩ϒ = (T ∩N2)\
P= {(13,4)}. Since (13,4) does not belong to P, by Corollary 2.23, the semigroup P

is not Cohen-Macaulay. We also have (13,4)+m ∈P for all m ∈ G. Thus (13,4) ∈P

and therefore ϒ ⊂P. This can be checked with the function BelongToSG also in the
PolySGTools package ([20]). For example,

In[2]:= BelongToSG[{13,4}+{18,9},{{3.6,1.8},{3.6,0.6},
{3.3,1.05},{4.2,1.5},{4.14,0.99}}]

Out[2]= True

The set (int(C)\ int(P))∩ (ϒ1∪ϒ2) is equal to

D = {(3,1),(5,1),(5,2),(6,2),(9,2),(10,2),(9,3),(13,3),
(16,3),(17,3),(9,4),(10,4),(17,4),(12,5),(13,5),(13,6)},

but none of these points are in P. Besides, for all a ∈ D, a+m′1 or a+m′2 does not
belong to P. Therefore ϒ′ is the empty set. By Theorem 2.27, we conclude that P is a
non-Cohen-Macaulay Buchsbaum affine semigroup.

If we use the method of Theorem 9 in [24], it is necessary to compute the intersection
of the Apéry set of m1 and the Apéry set of m2 by checking if 2× 7771556800000
elements belong to P; clearly, for this class of semigroups, the cost of the computation
described in the present section is more affordable.
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Υ

FIGURE 20. Affine polygonal semigroup P associated to the polygon
{(3.6,1.8),(3.6,0.6),(3.3,1.05),(4.2,1.5),(4.14,0.99)}.

The description made in the previously to check if a affine convex polygonal semi-
group is Buchsbaum, and either the more detailed before in this actual Section, is imple-
mented as part of the cited package PolySGTools. It includes a function called PSGIs-
BuchsbaumQ to answer True or False, given an polygon as the input parameter. See
Appendix B for further description.

3.4. Buchsbaum rings examples. In Example 2.28, it is used only Elementary Al-
gebra, but Buchsbaum semigroups can be generated using an even simpler approach. The
following results provide two user-friendly properties which allow us to obtain easily
Buchsbaum rings.

COROLLARY 2.29. Every affine convex polygonal semigroup associated to a triangle
with rational vertices is Buchsbaum.

PROOF. Let T2 be the triangle defined as in Proposition 2.20, and let m1 be the gen-
erator of P∩ τ1. Then every element in the cone that is not in P is a translation of an
element in T2 by a multiple of m1. In particular this implies that P and P are equal.
Corollary 12 in [21] proves that every affine convex polygonal semigroup associated to
a triangle with rational vertices is Cohen-Macaulay. Thus, P is Cohen-Macaulay and
therefore P is Buchsbaum. �

COROLLARY 2.30. Let F be a convex polygon with vertices P1, . . . ,P4 ∈ Q2
≥ and let

P be its associated affine convex polygonal semigroup. If P1 ∈P∩ τ1, P3 ∈P∩ τ2 and
the points O, P2 and P4 are aligned, P is Buchsbaum.

PROOF. Let C1 be the positive integer cone delimited by the ray τ1 and the line OP2,
and let C2 be the cone delimited by the ray τ2 and the line OP2. Trivially C = LQ≥(F)∩
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N2 is the union of C1 and C2, and the semigroup P is the union of the affine convex
polygonal semigroups, P1 and P2, associated to the triangles with vertex sets {P1,P2,P4}
and {P2,P3,P4}, respectively. With that decomposition of the affine convex polygonal
semigroup P and from the hypothesis, we can assert P is equal to P, ϒ⊂P and P∩τ1

and P∩ τ2 are generated by only one element each (Figure 21 illustrates this situation).
Under such conditions, let a be an element belonging to C \P. Note that if a ∈ C1 \P1

FIGURE 21. Affine polygonal semigroup P associated to the polygon
{(3.6,1.2),(4.8,1.6),(4,2),(4,1)}.

then a+m1 /∈P, otherwise, if a∈ C2\P2 then a+m2 /∈P. In any case, a+m1 or a+m2

does not belong to P. Thus P (=P) is Cohen-Macaulay (Corollary 2.23) and then P is
Buchsbaum. �



CHAPTER 3

Factorizations in affine semigroups

1. Preliminaries

Let M be a monoid, an element m ∈ M is a unit if there exists m′ ∈ M such that
m+m′ = 0. Recall that a monoid is called reduced when its only unit is the 0 element.
The monoid M is torsion free if for every m,m′ ∈M and c∈N\{0}, the equality cm= cm′

implies m = m′.
Recall that an affine semigroup is finitely generated, cancellative, torsion free and

reduced monoid whose elements are in Nk. An affine semigroup M admits a unique
minimal system of generators, that is, the elements in M that cannot be expressed as a
sum of two nonzero elements. These elements are known in the literature as atoms or
irreducibles.

Let M = 〈m1, . . . ,mk〉 ⊆ Zn be an affine semigroup. The morphism

φ : Nk −→M,

φ(a1, . . . ,ak) = ∑
k
i=1 aimi,

is an epimorphism (known as the factorization homomorphism of M). Thus M is isomor-
phic to Nk/ker(φ) (see for instance [45, Theorem 1.2]), where

ker(φ) = {(a,b) ∈ Nk×Nk | φ(a) = φ(b)}

is the kernel congruence of φ .
A presentation of M is a generating system of ker(φ) as a congruence. By Redei’s

theorem, M is finitely presented, that is, it admits a finite presentation. If {m1, . . . ,mk}
is the minimal generating system of M, a minimal presentation is a minimal generating
system of ker(φ) with respect to cardinality and set inclusion (see [45]).

Let m∈M. The set φ−1(m) corresponds with all the possible expressions of m in terms
of the generators of M. We denote this set by Z(m), and we call it the set of factorizations
of m in M.

The associated graph to an element m∈M is Gm =(Vm,Em), with Vm = {mi |m−mi ∈
M} and Em = {mim j | i 6= j, m− (mi + m j) ∈ M}. In this graph the vertices are the
generators that occur in a factorization of m. When there is no edge between two vertices,
then these two generators can not appear in the same expression of m. An element m ∈M
is a Betti element of M if Gm is not connected. We denote by Betti(M) the set of Betti
elements of M.

Following [50] (or [45, Chapter 9]), for every m ∈M we define on Z(m) the relation:
given a,b ∈ Z(m), aRb if there exists z1, . . . ,zt ⊂ Z(m) such that z1 = a, zt = b and zi ·

55



56 3. FACTORIZATIONS IN AFFINE SEMIGROUPS

zi+1 6= 0 for i ∈ {1, . . . , t−1}. It can be shown that the number of connected components
of Gm coincides with the number of R-classes of Z(m) (see for instance [45, Proposition
9.7]). Thus an element m is a Betti element of M if Z(m) has more than one R-class.

Observe that the R-classes of Z(m) correspond with the connected components of the
graph ∇(m) with vertices Z(m) and edges ab such that a ·b 6= 0.

For every m ∈ M, set ρm = /0 when Gm is connected, otherwise if Gm is not con-
nected and R1, . . . ,Rq are the different R-classes of Z(m), then choose zi ∈ Ri for all
i ∈ {1, . . . ,q} and set ρm = {(z1,z2), . . . ,(z1,zq)}. Then ρ =

⋃
m∈M ρm is a minimal pre-

sentation of M. Indeed, any minimal presentation can be constructed in this way: the only
pairs we need are those that “connect” all possible R-classes ([45, Proposition 9.2]).

EXAMPLE 3.1. Let M = 〈10,11,23,35〉 ⊂ N. Let us compute its Betti elements, and
from its factorizations a minimal presentation for M.

gap> s:=NumericalSemigroup(10,11,23,35);
<Numerical semigroup with 4 generators>
gap> BettiElementsOfNumericalSemigroup(s);
[ 33, 45, 46, 70 ]
gap> List(last,x->FactorizationsElementWRTNumericalSemigroup(x,s));
[ [ [ 0, 3, 0, 0 ], [ 1, 0, 1, 0 ] ],
[ [ 0, 2, 1, 0 ], [ 1, 0, 0, 1 ] ],
[ [ 0, 0, 2, 0 ], [ 0, 1, 0, 1 ] ],
[ [ 7, 0, 0, 0 ], [ 0, 0, 0, 2 ] ] ]

Note that in this example every Betti element has exactly two R-classes, and each R-class
is a singleton. So to compute a minimal presentation it suffices to take pairs formed by
factorizations in each of these R-classes.

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 0, 2, 0 ], [ 0, 1, 0, 1 ] ],
[ [ 0, 2, 1, 0 ], [ 1, 0, 0, 1 ] ],
[ [ 0, 3, 0, 0 ], [ 1, 0, 1, 0 ] ],
[ [ 7, 0, 0, 0 ], [ 0, 0, 0, 2 ] ] ]

Let us compute now the set of factorizations of 77 and its R-classes.

gap> FactorizationsElementWRTNumericalSemigroup(77,s);
[ [ 0, 7, 0, 0 ], [ 1, 4, 1, 0 ], [ 2, 1, 2, 0 ], [ 2, 2, 0, 1 ] ]
gap> RClassesOfSetOfFactorizations(last);
[ [ [ 0, 7, 0, 0 ], [ 1, 4, 1, 0 ], [ 2, 1, 2, 0 ],
[ 2, 2, 0, 1 ] ] ]

Finally, let us draw a couple of graphs associated to elements in M.

gap> GraphAssociatedToElementInNumericalSemigroup(46,s);
[ [ 11, 23, 35 ], [ [ 11, 35 ] ] ]
gap> GraphAssociatedToElementInNumericalSemigroup(77,s);
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[ [ 10, 11, 23, 35 ],
[ [ 10, 11 ], [ 10, 23 ], [ 10, 35 ], [ 11, 23 ], [ 11, 35 ] ] ]

11

23

35

G46

10

11

23

35
G77

To end with this preliminaries review, recall that a numerical monoid is a submonoid
of N with finite complement in N. Let M = 〈m1, . . . ,mk〉 be a numerical monoid, we
define the Apéry set of m in M, as

Ap(M,m) = {n ∈M | n−m /∈M},

which has exactly m elements, one in each congruence class modulo m. Thus this set
can be written as Ap(M,m) = {0 = w0,w1, . . . ,wm−1}, with wi the least element in M
congruent with i modulo m. Membership problem to M is trivial once we know Ap(M,m)

for some nonzero integer m∈M. This is due to the following property: for n∈Z, n∈M if
and only if wn mod m ≤ n (see for instance [46, Chapter 1]). In particular, the computation
of Gn becomes trivial once one of the Apéry sets is known; if Gn is not connected, then
n = ω +m j for some ω ∈ Ap(M,m1)\{0} and j ∈ {2, . . . ,k} ([46, Proposition 8.19]).

EXAMPLE 3.2. We continue with M = 〈10,11,23,35〉.
gap> AperyListOfNumericalSemigroup(s);
[ 0, 11, 22, 23, 34, 35, 46, 57, 58, 69 ]

We already know that 33 is a Betti element of M, and 33 = 22+11, with 22 ∈Ap(M,10)
and j = 2 in this setting.

2. Factorizations and linear Diophantine equations

Recall that we use Z(m) to denote the set of factorizations of an element m ∈ M.
Taking A as the matrix whose columns are m1, . . . ,mk, Z(m) is the set of nonnegative
integer solutions of the system of linear Diophantine equations, Ax = m.

The set Z(m) has finitely many elements. We can see this by considering x,x′ ∈ Nk

such that Ax = m and Ax′ = m. If x ≤ x′, with the usual product order, then x′ = x+ y,
with y ∈Nk, and Ax = m = Ax′ = Ax+Ay. In consequence Ay = 0. If y = ei, then mi = 0,
this a contradiction. And if y = y1 + y2, with y1 6= 0 6= y2, Ay1 = s1 and Ay2 = s2, then
s1+s2 = 0. If s1 = 0, then we replace y by s1 and argue in the same way. Since y1 < y, this
process stops after a finite number of steps, arriving either to y1 = ei (which we know it is
impossible) or to s1 + s2 = 0 with s1 6= 0 6= s2. But this implies that M has units, another
contradiction. We have shown that the elements of Z(m) are not comparable. Then by
Dickson’s Lemma, this implies that Z(m) is finite.
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The elements of ker(φ) are couples of factorizations of elements of M. The congru-
ence ker(φ) is also a cancellative monoid and it is generated by its irreducible elements.

To see which are these irreducibles we follow [45]. Let H be the subgroup of Zk

defined by the n equations Ax = 0. Since M is cancellative, from [45, Proposition 1.4]), it
follows that ker(φ) =∼M, where

(11) ∼M= {(a,b) ∈ Nk×Nk | a−b ∈ H}.

Hence (x,y) ∈ ker(φ) if and only if

(12) (A | −A)

(
x
y

)
= 0,

which is a system of linear Diophantine equations with n equations and 2k unknowns.
The set of atoms (or irreducibles) of ker(φ), denoted by I(∼M) coincides with the set
Minimals≤(ker(φ) \ {(0,0)}), where ≤ is the usual partial ordering. I(∼M) is itself a
“redundant” presentation of M. Redundant because every time (a,b) ∈ ker(φ), (b,a) ∈
ker(φ), and we can remove one of them in a presentation. Also (ei,ei) ∈ I(∼M), for
i ∈ {1, . . . ,k}, which are not needed in a presentation. The set I(∼M) \ {(ei,ei) | i ∈
{1, . . . ,k}} are known as primitive elements of ∼M. For (a,b) primitive, by abusing of
notation, we say that φ(a) (= φ(b)) is a primitive element of M.

EXAMPLE 3.3. Let M be as in Example 3.1. Recall that a minimal presentation for M
is

{((0,0,2,0),(0,1,0,1)),((0,2,1,0),(1,0,0,1)),((0,3,0,0),(1,0,1,0)),

((7,0,0,0),(0,0,0,2))}.

However I(∼M) has 256 elements. Even dividing by two and removing the elements
(ei,ei) we still have 124.

3. Length dependent invariants

In this section we recall some factorization invariants related with the concept of the
length of a factorization (see [7] and [48]).

The length of a factorization is the number of atoms appearing in it. If m ∈ M with
m = ∑

k
i=1 aimi, we have a = (a1, . . . ,ak) ∈ Z(m), and its length is |a|= ∑

k
i=1 ai.

The set of lengths of m ∈M is

L(m) = {|a| | a ∈ Z(m)} .

For M, the set of lengths of factorizations is L(M) =
⋃

m∈M L(m).
The set L(m) is bounded since ]Z(m) < ∞ . Hence L(m) is of the form {l1, . . . , lp}

with l1 < · · · < lp. The Delta set of m ∈ M is ∆(m) = {li− li−1 | 2 ≤ i ≤ p} (if p = 1,
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∆(m) = /0). And for the entire monoid

∆(M) =
⋃

m∈M

∆(m).

In [7, Theorem 2.5] it is shown that the maximum of ∆(M) is reached on the maximum
of the set ⋃

m∈Betti(M)

∆(m).

A monoid is half-factorial when its elements have all its factorizations with the same
length. Note that if M is half-factorial, then ]L(m) = 1 for all m ∈M and ∆(M) = /0. The
elasticity was introduced to measure how far a monoid is from being half-factorial. The
elasticity e(m) is

e(m) =
maxL(m)

minL(m)
.

For the monoid M the elasticity is defined by e(M) = supm∈M e(m).
In [48, Corollary 20] it is shown that for affine semigroups this supremum is a maxi-

mum, i.e. there is m∈M with e(m) = e(M). The elasticity can be computed from I(∼M)

(see [48, Theorem 15]). Philipp proved in [37, Lemma 2.3.5]) that we do not need all the
elements in this set. Indeed he showed that e(M) = max{|a|/|b| | (a,b) a circuit of ∼M

}, where a circuit is an element of minimal support in ∼M (the support of a ∈ Nk is
supp (a) = {i ∈ {1, . . . ,k} | ai 6= 0}). Circuits can be easily computed by using determi-
nants, [15, Lemma 8.8].

EXAMPLE 3.4. In Example 3.1 we saw the set of factorizations of 77 were

{(0,7,0,0),(1,4,1,0),(2,1,2,0),(2,2,0,1)}.

Hence L(77) = {5,6,7}, ∆(77) = {1}, and e(77) = 7/5.

4. Distance dependent invariants

For half-factorial monoids, the invariants presented in the preceding section give no
relevant information. So we need new invariants, and these are based on the concept of
distance between factorizations. We first define this measure as in [26] but with additive
notation.

For the elements of Nk, a = (a1, . . . ,ak) and b = (b1, . . . ,bk) we write

a∧b = (min{a1,b1}, . . . ,min{ak,bk}),

which is the analog to greatest common divisor. Now the distance between the factoriza-
tions a and b is

d(a,b) = max{|a−a∧b|, |b−a∧b|}
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4.1. Catenary degree. Given m ∈M, an N-chain of factorizations from a,b ∈ Z(m)

is a sequence z0, . . . ,zt ∈ Z(m) such that z0 = a and zt = b and d(zi,zi+1) ≤ N, for all
i ∈ {0, . . . , t−1}.

The catenary degree of m, c(m) is the minimum N ∈ N0∪{∞} such that for any two
factorizations a,b ∈ Z(m) there is an N-chain from a to b. The catenary degree for M,
c(M), is defined by

c(M) = sup{c(m) | m ∈M}.

An algorithm to compute c(m) first computes Z(m) and next the complete graph with
vertices Z(m), and edges labelled with the distances between the ends. Then it proceeds
by eliminating first the edges with greater weight. The algorithm stops when a new dele-
tion of the candidate edge produces a non connected graph. The weight of this candidate
edge is the catenary degree of the element. Listing D.2 reproduces the code in GAP ([16])
to compute the catenary degree of a set of factorizations.

From the proof of [8, Theorem 3.1] it follows that the catenary degree of M is reached
in one of its Betti elements and thus the above supremum is a maximum:

c(M) = max{c(m) | m ∈ Betti(M)}.

This theorem also gives a procedure to compute c(M): first we obtain the R-classes of
the Betti elements, and then we find the minimum length of the factorizations in each R-
class; finally we take the maximum of these lengths as c(M). Basically, it computes the
maximum of c(m), with m ranging in the Betti elements of M. For numerical semigroups,
recall that the Betti elements can be described with the Apéry set of one of the minimal
generators (see Section 1).

For the affine case see Listing D.5, where we take the maximum catenary of the Betti
elements.

EXAMPLE 3.5. We now compute the catenary degree of 77 ∈ M = 〈10,11,23,35〉
(Example 3.1). The set Z(77) = {(0,7,0,0),(1,4,1,0),(2,1,2,0),(2,2,0,1)}. We start
by drawing a complete graph with vertices the factorizations of 77 and edges labelled
with the distances between them. Then we remove the edge with maximum distance, and
we repeat the process until we find a bridge.

(0,7,0,0)

(1,4,1,0)

(2,1,2,0)

(2,2,0,1)3

6

23
5 3

(0,7,0,0)

(1,4,1,0)

(2,1,2,0)

(2,2,0,1)3

23
5 3

(0,7,0,0)

(1,4,1,0)

(2,1,2,0)

(2,2,0,1)3

23
3

(0,7,0,0)

(1,4,1,0)

(2,1,2,0)

(2,2,0,1)

23
3

The catenary degree of M is 7, which is the catenary degree of the Betti element 70:
Z(70) = {(7,0,0,0),(0,0,0,2)}.
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4.1.1. Monotone catenary degree. An N-chain is called monotone if |z0| ≤ · · · ≤ |zt |
or |z0| ≥ · · · ≥ |zt |. With this condition the definition of the monotone catenary degree of
m, cmon(m), is similar to the catenary degree considering a monotone N-chain. For M,
cmon(M) = sup{cmon(m) | m ∈M}.

The computation of the monotone catenary degree for a set of factorizations is in
Listing D.6. It proceeds computing two adjacency matrices. One of them represents
a directed graph of factorizations, with edges sourcing from factorizations with smaller
length to longer length factorizations. The second matrix represents a graph with its edges
weighted with the corresponding distance between the factorizations vertices. As for the
catenary degree computation, in every step an edge with the greater weight is eliminated.
The second matrix tells the number of paths with length n for every pair of vertices, we
can check the connectivity using the graph of factorizations after every edge elimination.

An alternative way to compute the monotone catenary degree makes use of the next
two invariants, being the monotone catenary degree the supremum of them (see Lemma
3.6 below). This is a more convenient method to use when the number of factorizations
is high.

4.1.2. Equal catenary degree. The equal catenary degree of m, ceq(m), is the min-
imum N ∈ N0 ∪{∞} such that for all a,b ∈ Z(m), |a| = |b| and there exist a monotone
N-chain between them (consequently all lengths in the chain coincide). In the same way,
ceq(M) = sup{ceq(m) | m ∈M}.

To compute the equal catenary degree of an element m we first split the set Z(m)

in layers of factorizations with the same length. Then we compute the catenary degree
of each layer, and take the maximum of them. See Listing D.7 for the definition of the
function using GAP ([16]).

In order to compute the equal catenary degree of M, we must obtain the minimal pairs
(a,b) ∈ I(∼M), with the additional condition that |a| = |b|, and then for each (a,b) of
this form we compute the equal catenary degree of φ(a) and take the maximum of them
(see [37]). This means that we must add one equation to (12) to get:

(13)

(
A −A
1 −1

)(
x
y

)
=

(
0
0

)
.

There are different ways to compute the minimal N-solutions of this linear Diophantine
system as the method exposed in Section 3 of the first chapter. As well, using the concept
of Graver basis, the set of solutions of interest can be computed considering half the
number of columns of the matrix in (13) :

(
A
1

)
x = 0.
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We recall briefly what a Graver basis is, and why it can be used in our setting. A Graver
basis of the matrix Am×k = (ai j), with ai j ∈ Z is the finite set

Gv(A) = min
v
{x ∈ Zk \{0} | Ax = 0},

under the partial order v on Zk defined as x v y when xiyi ≥ 0 and |xi| ≤ |yi| for i ∈
{1, . . . ,k}.

Let x = (x1, . . . ,xk), we denote the tuples

x+ = (max{0,x1},max{0,x2}, . . . ,max{0,xk})

and

x− = (−min{0,x1},−min{0,x2}, . . . ,−min{0,xk}).

Then x= x+−x− and xv y if and only if (x+,x−)≤ (y+,y−). Let x denote now a minimal
solution of the Graver basis for A. It is easy to check that this solution corresponds to the
pair (x+,x−) which is the minimal nonzero solution with nonnegative integer coefficients
of the system of equations:

(A | −A)

(
x+

x−

)
= 0.

Observe that (A | − A)(x+,x−)T = Ax+− Ax− = A(x+− x−) = Ax. This equivalence
enables an improvement on the computation of the equal catenary degree based on the
corresponding tool of 4ti2 software package to calculate the Graver basis of (A | 1)T .
Listing D.8 has 2 functions that are used to perform this computation. The first, named
EqualPrimitiveElementsOfAffineSemigroup does the Graver basis computation us-
ing 4ti2 ([30]) by using our GAP ([16]) package 4ti2gap (see Appendix C). The second
function gets the result by finding the maximum catenary degree among the set of the
factorizations of the equal primitive elements (primitive elements corresponding to Meq,
a monoid that we define in Section 7.2).

4.1.3. Adjacent catenary degree. Let C be a set of nonnegative integers, two elements
p,q ∈C are adjacent if C∩ [min{p,q},max{p,q}] = {p,q}. The set of factorizations of
an element m ∈M with length p is denoted

Zp(m) = {a ∈ Z(m) | |a|= p}.

Now we define the adjacent catenary degree as

cadj(m) = sup{d(Zp(m),Zq(m)) | p,q ∈ L(m) are adjacent}.

Likewise, cadj(M) = sup{cadj(m) |m ∈M}. The idea to compute the cadj(m) is in Listing
D.9.

As we noted previously, for an element m ∈ M the monotone catenary degree is the
supremum of the adjacent and equal catenary degree values.

LEMMA 3.6. Let m ∈M, cmon(m) = max{ceq(m),cadj(m)}.
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PROOF. First we prove that cmon(m) ≤ max{ceq(m),cadj(m)}. Consider the set of
lengths of the factorizations of m ordered as l1 < · · · < lk. For i ∈ {1, . . . ,k− 1}, choose
zi and zi+1 such that d(zi,zi+1) = d(Zli(m),Zli+1(m)) ≤ cadj(m). From any pair of factor-
izations a,a′ ∈ Z(m), to go from the a to a′, first we move between factorizations with the
same length as a. We repeat this process until we arrive to the Z|a′|(m). Then we have a
sequence with cmon(m)≤max{ceq(m),cadj(m)}.

To probe max{ceq(m),cadj(m)} ≤ cmon(m). First consider two factorizations a,a′ ∈
Z(m) with the same length. By the definition of monotone catenary degree, there is a
monotone cmon(m)-chain joining a and a′. This forces all the factorizations in this se-
quence to have the same length. Consequently ceq(m) ≤ cmon(m). Now take li < li+1

two consecutive lengths of factorizations of m, such that cadj(m) = d(Zli(m),Zli+1(m)).
Take zi and zi+1 as above. Again, from the definition of monotone catenary degree,
there exists a monotone cmon(m)-chain u1, . . . ,ut joining zi and zi+1. Hence there ex-
ists s ∈ {1, . . . , t−1} such that us ∈ Zli(m) and us+1 ∈ Zli+1(m). By definition cadj(m) =

d(Zli(m),Zli+1(m))≤ d(us,us+1)≤ cmon(m). �

EXAMPLE 3.7. From Example 3.1 we know that

Z(77) = {(0,7,0,0),(1,4,1,0),(2,1,2,0),(2,2,0,1)}

in M = 〈10,11,23,35〉. We have that Z(77) = Z7(77)∪Z6(77)∪Z5(77), with

Z7(77) = {(0,7,0,0)},Z6(77) = {(1,4,1,0)} and Z5(77) = {(2,1,2,0),(2,2,0,1)}.

Hence ceq(77) = 2 = d((2,1,2,0),(2,2,0,1)).
Also d(Z6(77),Z7(77)) = 3 and d(Z5(77),Z6(77)) = 2, and consequently cadj(77) =

3. We conclude that cmon(77) = 3.

4.2. Tame degree. Let M be an affine semigroup minimally generated by the set
{m1, . . . ,mk}. For m ∈M and x ∈ Nk with m−φ(x) ∈M, the tame degree t(m,x) is the
smallest N ∈ N∪{∞} such that for all a ∈ Z(m), there exists b ∈ Z(m) with b ≥ x and
d(a,b) ≤ N. If we take one of the generators ei in place of x, then t(m,ei) is a bound of
the distance of the factorizations z of m with i /∈ supp(z) to other factorizations where i
appears in the support.

For a subset M′ ⊂M and X ⊂ Nk, t(M′,X) is defined as

t(M′,X) = sup(t(m,x) | m ∈M′,x ∈ X} ∈ N∪{∞}.

The monoid M is called locally tame when t(M,{mi}) is finite for all i∈ {1, . . . ,k}. M
is tame if t(M) = t(M,{m1, . . . ,mk}) < ∞ (in our setting both definitions coincide since
M is finitely generated). For M′ = {m}, t(m,{m1, . . . ,mk}) is denoted by t(m), the tame
degree of m. Notice that with this notation t(M) = sup{t(m) | m ∈M}.

EXAMPLE 3.8. In order to illustrate the computation of the tame degree of an element,
let us go back to Example 3.1. Recall that

Z(77) = {(0,7,0,0),(1,4,1,0),(2,1,2,0),(2,2,0,1)}.
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The worst situation is, taking the factorization (0,7,0,0), find another one with non zero
last coordinate. The only possibility is (2,2,0,1), and the distance between this two
factorizations is 5. So t(77) = 5.

For the computation of t(M) we need some results.

LEMMA 3.9. Let a ∈ Z(mi +M) \ {ei} be minimal (with respect to ≤) for some i ∈
{1, . . . ,k}, and let m = φ(a). Then a · b = 0 for all b = (b1, . . . ,bk) ∈ Z(m) such that
bi 6= 0.

PROOF. Observe that given these preconditions if a = (a1, . . . ,ak), then ai = 0. Also,
since a ∈ Z(mi +M), there exists b = (b1, . . . ,bk) ∈ Z(m) such that bi 6= 0.

Assume that a ·b 6= 0. As ai = 0 there exists j ∈ {1, . . . ,k}\{i} with a j 6= 0 6= b j. But
then φ(b) = mi +m j +m′ for some m′ ∈ M, and consequently φ(a− e j) = φ(b− e j) ∈
mi +M, contradicting the minimality of a. �

For m,m′ ∈M, as usual, we write m≤M m′ whenever m′−m ∈M.

PROPOSITION 3.10. Let m ∈ M be minimal (with respect to ≤M) such that t(m) =

t(M). Then there exists {i, j}⊆{1, . . . ,k} such that m−mi, m−m j ∈M and m−mi−m j 6∈
M.

PROOF. Let i ∈ {1, . . . ,k} be such that t(m) = d(a,b) with a = (a1, . . . ,ak) and b =

(b1, . . . ,bk) in Z(m), ai = 0 and bi 6= 0. Then according to [2, Lemma 5.4], a is minimal
(with respect to ≤) in Z(mi +M) and a 6= ei, because ai = 0. Take j such that a j 6= 0.
In particular, this means that, because of bi 6= 0, m−mi ∈ M, and because of a j 6= 0,
m−m j ∈ M. If m−mi−m j ∈ M, there exists c ∈ Z(m) with ci 6= 0 6= c j. But then
a · c 6= 0, in contradiction with Lemma 3.9. �

The above result has a nice combinatorial interpretation. Here we recall the descrip-
tion of the associated graph to an element in Section 1.

COROLLARY 3.11. Let m∈M be minimal (with respect to≤M) such that t(m)= t(M).
Then Gm is not complete.

We have already seen that the catenary degree of M is reached in an element with
nonconnected associated graph (that is, a Betti element). Thus in some sense, Corollary
3.11 finds a similar characterization for the tame degree.

We denote Prim(M) = {φ(a) | (a,b) ∈I(∼M),a 6= b}. From [8, Proposition 4.1] we
obtain the following result.

COROLLARY 3.12. t(M) = max{t(m) | m ∈ Prim(M)}.

Let NComp(M) be the set of elements m ∈ M such that Gm is not complete. As a
consequence of Corollaries 3.11 and 3.12, we get the following.
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THEOREM 3.13. Let M be a affine semigroup.

t(M) = max
m∈Prim(M)∩NComp(M)

t(m).

This theorem allows us to reduce drastically the search space. If we know NComp(M),
we can remove from this set those elements m such that⋂

z∈Z(m)

supp(z) 6= /0.

This is because if (x,y) ∈I(∼M), then supp(x)∩ supp(y) = /0 (otherwise if i ∈ supp(x)∩
supp(y), then (x− ei,y− ei) ∈∼M, contradicting the minimality of (x,y)).

For the particular case of numerical semigroups, this idea together with the use of
RestrictedPartitions (instead of NSGPfactorizationsNC in previous implemen-
tations) produced a significant speed up of the computation of the tame degree in GAP
([16]). In Listing D.11 this idea is implemented, note that if Gm is not complete then
m ∈ {m1, . . . ,mk}+

⋃
i=1,...,k Ap(M,mi).

For affine semigroups, Listing D.13 shows its computation, based on the function
PrimitiveElementsOfAffineSemigroup. This last function uses the package 4ti2gap
to compute Gv(A), where A is the matrix of the generators of a given affine semigroup as
an input parameter (see Listing D.12).

EXAMPLE 3.14. Let M = 〈10,11,23,35〉 as above.

gap> TameDegreeOfNumericalSemigroup(NumericalSemigroup(10,11,23,35));
9

5. Binomials, lengths and distances

From the first chapter, in Section 1.4, recall that k[X ] = k[x1, . . . ,xk] is the polynomial
ring on k variables over a field k, and Xα = xα1

1 . . .xαk
k is a monomial of k[X ]. We define

the degree of a monomial Xα as deg(Xα) = ∑
k
i=1 αi.

Recall that the factorization homomorphism for M = Nm1 + · · ·+Nmk is

φ : Nk −→ M
α = (α1, . . . ,αk) 7−→ ∑

k
i=1 αimi

that defines a homomorphism of semigroup algebras

π : k[X ]−→ k[M] :=
⊕
m∈M

kχ
m

Xα 7−→ χφ(α),

and that the kernel of π , ker(π), is denoted as IM.

LEMMA 3.15 (Herzog’s correspondence, [32]). Let σ ⊆ Nk×Nk. Then σ generates
ker(π) if and only if IM =

〈
Xα −Xβ | (α,β ) ∈ σ

〉
.

EXAMPLE 3.16. Let M = 〈3,5,7〉.
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gap> s:=NumericalSemigroup(3,5,7);;
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],
[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]

This computation has been performed by using the Betti elements of M. An alternative
approach is to use π and elimination.

gap> x:=X(Rationals,"x");;y:=X(Rationals,"y");;z:=X(Rationals,"z");;
t:=X(Rationals,"t");;
gap> gen:=[x-t^3, y-t^5, z-t^7];
[ -t^3+x, -t^5+y, -t^7+z ]
gap> ReducedGroebnerBasis(gen,EliminationOrdering([t]));
[ x*z-y^2, x^3*y-z^2, x^4-y*z, x^2*y^3-z^3, x*y^5-z^4,
y^7-z^5, -x*y+z*t, -x^2+y*t, x^2*t-z, x*t^2-y, t^3-x ]

According to Herzog’s correspondence,

{((1,0,1),(0,2,0)),((3,1,0),(0,0,2)),((4,0,0),(0,1,1)),

((2,3,0),(0,0,3)),((1,5,0),(0,0,4)),((0,7,0),(0,0,5))}

is a presentation of M, though clearly not minimal. We can then eliminate those pairs not
corresponding to Betti elements (and this can be done by R-classes computations).

Another possibility is using 4ti2 through our package 4ti2gap.

gap> GroebnerBasis4ti2([[3,5,7]]);
[ [ -4, 1, 1 ], [ -3, -1, 2 ], [ -1, 2, -1 ] ]

Though in this setting the output corresponds to the differences of the pairs of a minimal
presentation, it may happen that we have to filter those that do not correspond to Betti
elements.

With this notation, for a factorization α = (α1, . . . ,αk) of an element m ∈M its length
can be obtained |α|= ∑

k
i=1 αi = deg(Xα).

We define the M−degree of a monomial Xα ∈ k[X ],

degM(Xα) =
k

∑
i=1

αimi(= φ(α)).

Now the distance between two factorizations α and β ∈ Nk can be defined as follows

d(α,β ) = max(deg(Xα),deg(Xβ ))−deg(gcd(Xα ,Xβ )).

6. Omega primality

There is still another non-unique factorization invariant that apparently has nothing to
do with distances, and measures how far an element is from being a prime.

The ω-primality of m, ω(m), is the least positive integer such that whenever c1+ · · ·+
cr−m∈M for some c1, . . . ,cr ∈M, then ci1 +· · ·+ciω(m)

−m∈M for some {i1, . . . , iω(m)}⊆



6. OMEGA PRIMALITY 67

{1, . . . ,r}. We can restrict the search to sums of the form c1 + · · ·+ cr, with c1, . . . ,cr ∈
{m1, . . . ,mk} (see [2, Lemma 3.2]). In particular, ω(m) = 1 means that m is prime1.

Given m ∈M, ω(m) can be computed in the following form [2, Proposition 3.3]:

(14) ω(m) = sup{|α| : α minimal in Z(m+M)}.

In our setting, thanks to Dickson’s lemma, this supremum turns out to be a maximum.
The ω-primality of M is defined as ω(M) = maxi∈{1,...,k}{ω(mi)}.

EXAMPLE 3.17. Let M = 〈3,5,7〉. Then a minimal presentation for M is

{((0,2,0),(1,0,1)),((3,1,0),(0,0,2)),((4,0,0),(0,1,1))}.

Let us compute N the set of minimal elements of Z(3+M). Trivially (1,0,0) ∈ N. As
2×5 = 3+7 we get that (0,2,0) ∈ N (which is minimal since 5 /∈ 3+M). Analogously
(0,0,2),(0,1,1) ∈ N. Hence N = {(1,0,0),(0,2,0),(0,0,2),(0,1,1)}.

In the above example the ω-primality of 3 can be computed easily due to the shape
of the minimal presentation of M. For an arbitrary numerical semigroup, the ω-primality
can be calculated with the help of the Apéry sets. This fact together with [2, Remarks 5.9]
and the following result by Barron, O’Neil and Pelayo (personal communication), allows
a big improvement in computing times.

LEMMA 3.18. For a numerical semigroup M ⊂N minimally generated by G⊂M, we
have

ω(n) = max

L(〈G′〉,x+n)
∣∣∣ G′ ⊂ G,x ∈

⋂
g∈G′

Ap(M,g)


where L(K,x) denotes the maximum factorization length of x in K.

For affine semigroups we can compute the set of minimal elements of Z(m+M) by
using [47], which is the idea exploited in [18]. In Listing D.14 is implemented this compu-
tation based in 4ti2 ([30]) zsolve program with the 4ti2gap (see Appendix C) package
for GAP ([16]). It results a more simple approach that finds Z(m+M) minimals by solving
Ax = m+Ay (this step is explicitly performed by FactorizationsVectorWRTList from
Listing D.3), or equivalently

(A | −A)

(
x
y

)
= m,

and projecting on the x part of the solutions, to finally get the minimal elements from this
set.

1Recall that p is prime if p | ab then p | a or p | b.
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7. Invariants in half-factorial affine semigroups

In this section we summarize the adaptation of the invariants presented so far for the
half-factorial setting. The results present in this section correspond to our work in [23].

Let M be the affine semigroup minimally generated by m1, . . . ,mk and A the matrix as
in Section 2, with columns m1,m2, . . . ,mk.

LEMMA 3.19. The monoid M is half-factorial if and only if there exists h ∈ Qn such
that hA = (1, . . . ,1). If this is the case, L(m) = {h ·m}, for every m ∈M.

PROOF. For a half-factorial monoid M, every m ∈M has ]L(m) = 1. This means that
the ideal IM is homogeneous. In view of [54, Lema 4.14], there exists h ∈Qn such that

hA = (1, . . . ,1).

The converse is also true because if there exists such an h, then for any two factorizations
α,β of an element m ∈ M, m = φ(α) = φ(β ), and thus m = Aα = Aβ . Hence h ·m =

hAα = hAβ , which leads to h ·m = (1, . . . ,1) ·α = (1, . . . ,1) · β , that is h ·m = |α| =
|β |. �

7.1. Catenary degree in a half factorial monoid. We will make extensive use of the
preceding lemma to rewrite the concept of distance and give alternative characterizations
of Betti elements. As we will see, this will have some nice consequences.

LEMMA 3.20. Let h be as in Lemma 3.19. For α,β ∈ Z(m),

d(α,β ) = h ·m−|α ∧β |.

In particular, d(α,β )≤ h ·m, and the equality holds if and only if α ·β = 0.

PROOF. It is straightforward from Lemma 3.19. �

Hence, we have that

(15) h ·m− max
α,β∈Z(m)

|α ∧β | ≤ c(m)≤ h ·m,

for each m ∈M.
We see now that the second inequality becomes an equality precisely when m ∈

Betti(M).

PROPOSITION 3.21. Let m ∈M. Then m ∈ Betti(M) if and only if c(m) = h ·m.

PROOF. By definition m∈Betti(M) if and only if there exists α,β ∈ Z(m) in different
R-classes. Equivalently, for every chain, γ0, . . . ,γr ∈ Z(m) from α to β , there exist j such
that γ j ·γ j+1 = 0; that is, d(γ j,γ j+1) = h ·m by Lemma 3.20. Since c(m)≤ h ·m, we obtain
that the equality must hold. Conversely, if c(m) = h ·m, then there exists α and β ∈ Z(m)

such that d(α,β ) = c(m), and for every chain γ0, . . . ,γr ∈ Z(m) from α to β , there exist j
such that d(γ j,γ j+1)≥ c(m) = h ·m. By Lemma 3.20, γ j · γ j+1 = 0. So α and β belong to
different connected components of Gm. �
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Next result shows that all possible catenary degrees in a half-factorial monoid are
attained in its Betti elements.

THEOREM 3.22. Let M be half-factorial, and let m ∈M with ]Z(m)≥ 2. There exists
t ∈ Betti(M) such that c(m) = c(t).

PROOF. Let h ∈Qn as in Lemma 3.19 be such that hA = (1, . . . ,1).
There exist α,β ∈ Z(m) such that d(α,β ) = c(m) and for every chain, γ0, . . . ,γr ∈

Z(m) from α to β , there exist j with d(γ j,γ j+1) ≥ c(m). Thus by Lemma 3.20, for j we
have

h ·m−|γ j∧ γ j+1| ≥ c(m) = h ·m−|α ∧β |,

this is to say |α ∧β | ≥ |γ j∧ γ j+1|.
Let t = m−φ(α ∧β ). We take the factorizations α ′ = α− (α ∧β ) and β ′ = β − (α ∧

β ) of t. As α ′ ·β ′ = 0 by Lemma 3.20: d(α ′,β ′) = h · t−0.
By Lemma 3.19, h ·φ(α ∧β ) = |α ∧β |, and from this we can write

d(α ′,β ′) = h · t = h ·m−|α ∧β |= c(m).

Now, we prove that t ∈ Betti(M). Every chain γ ′0, . . . ,γ
′
r ∈ Z(t) from α ′ to β ′ lifts to a

chain γ0, . . . ,γr ∈ Z(m) from α to β (indeed, it suffices to take γi = (α ∧β )+ γ ′i , for all i),
and d(γ j,γ j+1) = d(γ ′j,γ

′
j+1). By the above argument, there exists j such that |α ∧β | ≥

|γ j∧γ j+1|. Notice that by construction α∧β ≤ γ j∧γ j+1, and this forces α∧β = γ j∧γ j+1.
We conclude that γ ′j∧ γ ′j+1 = 0 for some j.

Therefore, it follows that t is a Betti degree (because α ′ and β ′ are in different
R−classes), and by Proposition 3.21, c(t) = h · t = c(m). �

This result does not hold for non half-factorial monoids.

EXAMPLE 3.23. Let M = 〈31,47,57〉 ⊆ N. Then Betti(M) = {171,517,527}, and
c(171) = 5, c(517) = 15 and c(527) = 17. However, c(564) = 14 /∈ {5,15,17}.

(13,1,2) (0,12,0)

(9,0,5)

5 14

15

From Lemma 3.15, the above theorem can be restated as saying that the catenary
degrees of M are the total degrees of the minimal binomial generators of IM.

COROLLARY 3.24. The catenary degree of M is the maximum of the total degrees of
a minimal system of binomial generators of IM.
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As we mentioned above the catenary degree of M is attained in the catenary degree of
one of its Betti elements. This last corollary gives an alternative proof of this fact in the
half-factorial setting.

7.2. The equal catenary degree revisited. Given {m1, . . . ,mk}⊂Nn, and the matrix
A = (m1| · · · |mk), we construct a half-factorial monoid whose catenary degree agrees with
the equal catenary degree of the original monoid M. We alse define the matrix Aeq =

((1,m1)
T | · · · |(1,mk)

T ) ∈ Nn+1×Nk whose columns are generators of a monoid that we
denote by Meq. Notice that (i,m) ∈Meq if and only if m ∈M and i ∈ L(m). Also, taking
h = (1,0, . . . ,0) by Lemma 3.19, Meq is a half-factorial monoid.

PROPOSITION 3.25. Let M be an affine semigroup. Then ceq(M) = c(Meq).

PROOF. Just notice that as observed above, the factorizations of (i,m) in Meq corre-
spond to factorizations of M with length i. �

EXAMPLE 3.26. Let M = 〈3,5,7〉. Then Meq = 〈(1,3),(1,5),(1,7)〉. A presentation
for Meq can be computed for instance as in Example 3.16, from π and elimination, or just
using the appropriate command in numericalsgps.

gap> a:=AffineSemigroup([[1,3],[1,5],[1,7]]);
<Affine semigroup in 2 dimensional space, with 3 generators>
gap> MinimalPresentationOfAffineSemigroup(a);
[ [ [ 1, 0, 1 ], [ 0, 2, 0 ] ] ]

Hence a presentation for Meq is {((1,0,1),(0,2,0))}. It follows that c(Meq) = 2, and we
deduce that ceq(M) = 2. Also, from the minimal presentation we obtained in Example
3.16, c(M) = 4.

As a consequence of Corollary 3.24 and Section 5, we obtain the following.

COROLLARY 3.27. The equal catenary degree of M is the maximum of the total de-
grees of a minimal system of binomial generators of IMeq .

7.3. The homogeneous catenary degree. The homogeneous catenary degree of an
element m ∈ M, denoted by chom(m), is the least N ∈ N such that for any α,β ∈ Z(m)

there exists a N-chain from α to β in Z(m)∩{υ | |υ | ≤max{|α|, |β |}}. If no such N ∈N
does exist, we define chom(m) = ∞.

The computation of chom(m) is performed as c(m), but previously from the complete
graph we eliminate the edges with weight greater than max{|α|, |β |}.

Now we construct a half-factorial monoid Mhom given by the set of generators

{e0,(1,m1), . . . ,(1,mk)} ⊆ N×Nn

with e0 = (1,0, . . . ,0). This is also a half-factorial monoid for h = (1,0, . . . ,0). First, we
see the relationship between the factorization on M and Mhom.
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LEMMA 3.28. Under the standing hypothesis, Z((i,m)) = {( j,α) ∈ N×Z(m) | j =
i−|α|}.

PROOF. Let (α0, . . . ,αk)∈ Z((i,m)), then α0e0+α1(1,m1)+ · · ·+αk(1,mk) = (i,m).
This implies that m = α1m1 + · · ·+αkmk and i = α0 +α1 + · · ·+αk. Take j = α0 and
α = (α1, . . . ,αk).

The other inclusion is also straightforward. Let α ∈ Z(m) for m ∈ M, taking j ∈ N
with |α| ≤ j then i = j−|α| and (i,m) = i · e0 +∑

k
l=1 αlml . �

Now we see that the distances of factorizations of an element in Mhom are ruled by
the factorizations of the corresponding one in M.

LEMMA 3.29. Let (i,m) ∈Mhom, and let ( jα ,α),( jβ ,β ) ∈ Z((i,m)). Then

d(( jα ,α),( jβ ,β )) = d(α,β ).

PROOF. From Lemma 3.28, i = |α|+ jα = |β |+ jβ . Assume without loss of gener-
ality that |β | ≥ |α| and in consequence jβ ≤ jα . Set γ = α ∧β . Then ( jα ,α)∧ ( jβ ,β ) =
( jβ ,γ), and using Lemma 3.20:

d(( jα ,α),( jβ ,β )) = h · (i,m)−|( jβ ,γ)|

= i− ( jβ + |γ|) = |β |− |γ|

=
k

∑
i=1

βi−
k

∑
i=1

γi

=
k

∑
i=1

βi− γi = |β − γ|.

We supposed that |β | ≥ |α|, then d(α,β ) = max{|α− γ|, |β − γ|}= |β − γ|. �

PROPOSITION 3.30. Let M be an affine semigroup. Then chom(M) = c(Mhom).

PROOF. Let α,β ∈ Z(m), for some m ∈ M. Assume without loss of generality that
jα = |α| ≤ |β | = jβ . Then by Lemma 3.28, ( jβ − jα ,α),(0,β ) are factorizations of
( jβ ,m) and there exists a c(Mhom)-chain ( j1,γ1), . . . ,( jr,γr) joining them. For every
factorization of this chain it is true that for q ∈ {1, . . . ,r}, jq = jβ − |γq|, as a conse-
quence |γq| ≤ |β |, and thus γ1, . . . ,γr is a c(Mhom)-chain joining α and β with |γq| ≤
max{|α|, |β |}. This proves chom(M)≤ c(Mhom).

Conversely, let ( jα ,α),( jβ ,β ) be factorizations of (i,m) ∈Mhom. In view of Lemma
3.28, jα + |α| = jβ + |β | = i. Assume without loss of generality that |α| ≤ |β |. Let
γ1, . . . ,γr be a chom(M)-chain from α to β . By definition, for q∈ {1, . . . ,r}, |γq| ≤ |β | ≤ i.
Set jq = i−|γq|, then ( j1,γ1), . . . ,( jr,γr) is a chom(M)-chain joining ( jα ,α),( jβ ,β ). Thus
c(Mhom)≤ chom(M), and this completes the proof. �

As a consequence of Corollary 3.24 we obtain the following.
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COROLLARY 3.31. The homogeneous catenary degree of M is the maximum of the
total degrees of a minimal system of binomial generators of IMhom .

This corollary allows us to compute the homogeneous catenary degree of M once we
know any of its presentations (see Listing D.15).

We prove that this new catenary degree is an upper bound for the usual catenary de-
gree.

PROPOSITION 3.32. Let M be an affine semigroup. Then c(M)≤ chom(M).

PROOF. Let m ∈ M and α,β ∈ Z(m) with |α| ≤ |β |. We show that there exists a
chom(M)-chain joining α and β . Set jα = |α| ≤ |β |= jβ , then ( jβ − jα ,α) and (0,β ) ∈
Z(( jβ ,m)). From the definition of homogeneous catenary degree, there exists a c(Mhom)-
chain ( j1,γ1), . . . ,( jr,γr) of factorizations of ( jβ ,m) from ( jβ − jα ,α) and (0,β ) and
d(( jq,γq),( jq+1,γq+1)) ≤ c(Mhom). Besides d(( jq,γq),( jq+1,γq+1)) = d(γq,γq+1) from
Lemma 3.29, where γ1, . . . ,γr is a c(Mhom)-chain joining α and β . �

The catenary degree might be strictly smaller than the homogeneous catenary degree.

EXAMPLE 3.33. Let M = 〈10,11,14,19〉 ⊆ N. One can check that c(m) = 4. Since
a minimal system of binomial generators of IMhom ⊆ k[x0, . . . ,x4] is {x2x2

3− x2
1x4, x1x2

3−
x0x2

4, x3
2− x0x3x4, x3

1− x0x2x4, x2
1x2

2− x0x3
3, x5

3− x1x2
2x2

4}, we may conclude by Corollary
3.31 that chom(M) = 5.

gap> s:=NumericalSemigroup(10,11,14,19);
<Numerical semigroup with 4 generators>
gap> HomogeneousCatenaryDegreeOfNumericalSemigroup(s);
5
gap> CatenaryDegreeOfNumericalSemigroup(s);
4

We now compare the homogeneous catenary degree with the widely studied monotone
catenary degree.

PROPOSITION 3.34. Let M be an affine semigroup. Then chom(M)≤ cmon(M).

PROOF. Let (i,m) ∈Mhom and ( jα ,α),( jβ ,β ) ∈ Z((i,m)). Assume for instance that
i− jα = |α| ≤ |β |= i− jβ . From the definition of cmon(M), there exist γ1, . . . ,γr ∈ Z(m)

with γ1 = α , γr = β , and for q ∈ {1, . . . ,r}, d(γq,γq+1)≤ cmon(M) and |γq| ≤ |γq+1|. Set
jq = i−|γq|, then ( j1,γ1), . . . ,( jr,γr) is a cmon(M)-chain joining ( jα ,α) and ( jβ ,β ). Thus
c(Mhom)≤ cmon(M). �

In some cases the homogeneous catenary degree is sharper than the monotone cate-
nary degree.

EXAMPLE 3.35. Let M = 〈11,19,32〉. Then

ceq(M) = 3 < c(M) = chom(M) = cmon(M) = 9.
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For embedding dimension 3 numerical semigroups, the homogeneous catenary degree
(together with the homogeneous Betti elements) have been deeply studied in [1].

7.3.1. Computing the monotone catenary degree by homogenization. To compute the
monotone catenary degree of M we recall the procedure exposed for the equal catenary
degree, but with the condition: |a| ≤ |b|, where a and b ∈ Z(m). We add a new variable
to express conveniently the inequality as an equality: |a|− |b|+ c = 0 with c ∈ N0. This
leads us to the following system of equations, by assigning a corresponding unknown to
each factorization and the scalar:

(16)

(
A −A 0
1 −1 1

) x
y
z

= 0.

In order to exploit the speed of Graver basis computing with 4ti2, we homogenize:

(17)

(
A 0 −A 0
1 1 −1 −1

)
x
z
y
t

= 0.

The solutions of (17) are equivalent to those of (16), in other words, the set of irreducibles
of ∼M (11) for the homogeneous generating set of Mhom is equivalent to the set of irre-
ducibles of ∼M with the monotony condition |a| ≤ |b|. Let X be the set of minimal
solutions of (16), and Y the set of minimal solutions of (17), with (x,z,y, t) ∈ Y :

• If z · t = 0, then we have 2 cases:
(1) If (x,z,y,0)∈Y , then (A | −A)(x | y)T = 0 and |x|+z−|y|= 0, thus (x,y,z)∈

X .
(2) If (x,0,y, t) ∈ Y , then |y| = |x|+ t and we can write (A | −A)(y | x)T = 0,

thus (y,x, t) ∈ X .
• If z · t 6= 0, assume without loss of generality that z > t. Then for some l ∈ N,

z = t+ l. As (x,z,y, t) ∈Y , |x|+ t+ l = |y|+ t, we deduce(x, l,y,0) is a nontrivial
solution of (17), and (x, l,y,0) < (x,z,y, t), contradicting that (x,z,y, t) ∈ Y . So
this setting never occurs.

As for the equal catenary degree, now the Graver basis elements of

(18)

(
A 0
1 1

)
are the irreducibles of ∼M for Mhom, (x,z) ∈ Zk×Z (but now with the homogenization
term written as the last component). With the notation of x = x+−x− and using the same
arguments for the equal catenary degree, for every (x,z) in the Graver basis of (18):

• if z≥ 0 then (x+,z,x−,0) is a solution of (17) and (x+,x−,z) is solution of (16),
and
• for z < 0 (x+,0,x−,z) is a solution of (17) and (x−,x+,−z) is solution of (16).
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Listing D.16 uses this procedure by computing the Graver basis with the 4ti2gap
([25]) package for the GAP system ([16]), in the affine semigroups setting.

7.4. The tame degree in half-factorial monoids. We assume that {m1, . . . ,mk}⊆Zn

is a minimal system of generators of M, and we introduce this notation: given m,m′ in
Zn, recall that we write m ≤M m′ if m′−m ∈M, and given c,c′ in Zk, we write c ≤ c′ if
c′− c ∈ Nk.

PROPOSITION 3.36. Let M be an affine semigroup. Then t(M)≤ t(Mhom).

PROOF. Let m ∈M and select i ∈ {1, . . . ,k} such that mi ≤M m, and let m′ = m−mi.
Assume that there exists α = (α1, . . . ,αk) ∈ Z(m) with αi = 0 (for αi 6= 0 it suffices to
take α = α ′ in the definition of tame degree; d(α,α ′) = 0 in this case). Let j = maxL(m),
j′ = maxL(m′), and lα = j−|α|. Let β ∈ Z(m′) be such that |β |= j′. As β + ei ∈ Z(m),
we deduce that j′+1≤ j. Then ( j,m) and ( j−1,m−mi) = ( j,m)− (1,mi) are elements
of Mhom, and (lα ,α) ∈ Z(( j,m)). So by definition of t(Mhom), there exists (lγ ,γ) ∈
Z(( j,m)) with γ · ei 6= 0 and d((lα ,α),(lγ ,γ))≤ t(Mhom). From Lemma 3.29 we deduce
that d(α,γ)≤ t(Mhom). This proves that t(M)≤ t(Mhom). �

7.5. Omega primality for half-factorial monoids. In the half-factorial case, both
tame degree and ω-primality coincide.

PROPOSITION 3.37. Let M be an affine semigroup. Assume that M is half-factorial.
Then

ω(M) = t(M).

PROOF. It is well known that ω(m)≤ t(M) (see [27, Theorem 3.6]). So we only have
to prove the other inequality. Let m ∈ M be minimal with respect to ≤M fulfilling that
t(m) = t(M). Then according to [2, Lemma 5.4] and Lemma 3.9, there exists α,β ∈ Z(m)

such that t(m) = d(α,β ) with α minimal (with respect to ≤) in Z(mi+M), α ·ei = 0 and
β · ei 6= 0. In light of the last result, α ·β = 0, whence d(α,β ) = max{|α|, |β |}. As M
is half-factorial we obtain max{|α|, |β |} = |α| = |β |. Hence t(m) = |α|. From (14) we
conclude that |α| ≤ ω(mi)≤ ω(M). �

EXAMPLE 3.38. It is well know that c(m) ≤ ω(M) (see [27, Sec. 3]). In the half-
factorial case, this inequality might be strict. For instance, let the affine semigroup M =

〈(1,0),(1,3),(1,5),(1,7)〉, then c(M) = 4 < 7 = ω(M).



Results, conclusions and future work

Throughout the manuscript we have been listing the results obtained, which are more
than we expected initially.

Our software DPSolve has in general worst performance than Normaliz and 4ti2.
We have not been able to characterize families of systems of equations in which DPSolve
runs faster, nor any heuristics suitable to discriminate which software to use for a given
system of equations. We are now testing parallel implementations of our algorithm, which
seem to fit with the structure of the algorithm.

The lack of satisfactory results encouraged us to develop the package 4ti2gap, to
deal with factorizations and presentations of affine semigroups in GAP.

The results on affine convex body semigroups, apart from generalizing the concept of
proportionally modular numerical semigroups, had an unexpected and gratifying conse-
quence: the possibility of building in an easy way, families of Buchsbaum affine semi-
groups. We are now trying to generalize this ideas to higher dimensions.

Our study of nonunique factorization invariants started due to the interconnection with
linear integer programming. We wanted to determine the range of possible catenary de-
grees, and we were able to achieve this for half-factorial monoids. Also we introduced
a new promising invariant, and were able to relate equal catenary degree and this new
catenary degre with catenary degree in auxiliary half-factorial monoids, that are inspired
in classical constructions.

After implementing algorithms for the calculation of these invariants in GAP, we dis-
covered that some could be improved. New results have appeared then for the compu-
tation of the tame degree, and in the future we should focus in better options to calcu-
late monotone catenary degree. We are also doing experiments with alpha release of the
parallel version on GAP, named hpc-gap. We expect to take advantage of its program-
ing interface to gain in performance when the hardware architecture is available. At the
present time, in the context of the numericalsgps ([13]) package there is an effort test-
ing hpc-gap in this sense, to parallelize the calculations of catenary degrees, tame degree
and ω-primality. Many work is still to be done in hpc-gap.
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APPENDIX A

CircleSG

CircleSG ([19]) is a set of routines included in a Mathematica1 package. Those
routines are very specific to support the main routine called also CircleSG, for this reason
we do not explain them in detail. In this appendix we show a block diagram describing
the main routine steps.

1. Notes about the implementation

Figures 1 and 2 show the computation path of the main function in CircleSG pack-
age. It takes the center and radius of a circle, all positive values, as the necessary input
parameters.

The elements in the figures of the block diagram have these meanings.

• Text , denotes a processing step. The initial block is drawn with a thick edge.

• Text , denotes an input at the starting block or, if it has a thick edge, it denotes
an output at the end of processing.

• Text , denotes a decision.

• , data transfer and process flow.
• , data transfer and process flow between different pages.

The implementation takes into account the fact that the sequence of circles can inter-
sect with the x and y axes. In this case, they turn into the rays of the cone that encloses
the affine semigroup. With this in mind, in Figure 1 the blocks labelled as [1a] and [1b]
give the generators of the affine semigroup elements on the rays. These will be used to
replace those of the cone in block [2], one at a time. Although it is not made explicit, the
resulting set, B, is checked to discard non-minimal elements inserted by applying Lemma
2.5. This requires the resolution of a system of linear Diophantine equations, in order
to find one particular solution to know that a given element can be expressed as a linear
combination of other elements. Initially we used an implementation in Mathematica of
the algorithm of Contejean and Devie[10] modified for our purposes by doing an external
call from Mathematica framework. The actual version of CircleSG uses FindInstance
included in Mathematica, resulting more convenient by speed and portability.

1Every reference to the term Mathematica in this document, is referred to the set of programs of Wol-
fram Research, except where it is otherwise stated. Mathematica is a registered trademark of Wolfram
Research Inc.
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Using d in Block [4] of Figure 2 we find the index, i, of the circle such that, every
element in any of the circles after the ith in the sequence, is in the affine semigroup S.
Next we collect those elements outside of the circles up to the ith and inside the cone,
and apply the loop steps defined by Blocks [5] and [6]. This loop appends the minimal
generators needed to replace those outside of the circles, inside of the cone. As in Block
[2], every new element is discarded in case it is not minimal. Clearly, the loop on Blocks
[5] and [6] can be very time consuming due to the distance d, which determines the
number of elements in E.

CircleSG(a, b, r)
(a,b) is the
center of the

circle

r is the
radius

Compute the intersections of tangent
lines for (0,0) and the circle.

¿The intersections are segments
on x and/or y axis?

[1a] Compute the propor-
tional modular semigroup
on x and/or y axis.

[1b] Compute the in-
teger generators on the
rays of the cone.

[1] Compute cone genera-
tors.
Proposition 2.10.

[2] Replace the cone rays generators with the genera-
tors on the rays of the affine semigroup.
Denote them as the set B.
Lemma 2.5.

[3] Find the distance, d, such that any point in the
interior of the cone, whose distance from the origin
is bigger, belongs to the affine semigroup S.
Lemma 2.15.

yes
no

FIGURE 1. CircleSG processing diagram.
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[4] Collect in E the elements in the interior of the
cone whose distance from (0,0) is less than d, and
not belonging to a circle.

E = /0?
[5] Take u ∈ E
E = E \{u}.

[6] If u ∈ B then:
(a) B = B\{u}
(b) B = {B+u}∪{2u}∪{3u}.
Lemma 2.6

B as the set
of minimal
generators.

yes

no

FIGURE 2. CircleSG processing diagram cotinuation.





APPENDIX B

PSGIsBuchsbaumQ

This is the name of the routine that implements in Mathematica1 the test to the Buchs-
baum property of an affine convex polygonal semigroup. It is part of a package named
PolySGTools ([20]). This package also offers routines to test the membership of an el-
ement to this kind of affine semigroups, and to compute the minimal generating set of a
segment in Q2, and for an affine polygonal semigroup in N2.

1. Notes about the implementation

PSGIsBuchsbaumQ is heavily supported by other routines in the package PolySG-
Tools. In special for testing when an element belongs to the closure of the affine polyg-
onal semigroup, P. Besides, it is a quite self-contained by design. In this sense it is
not complex because of its dependencies, but it is because of the large number of test,
although some are symmetric with a similar structure. The path of computation has been
designed to take advantage of the computations needed in various points of decision.

The blocks diagram elements have the same meaning as in Appendix A.

1Every reference to the term Mathematica in this document, is referred to the set of programs of Wol-
fram Research, except where it is otherwise stated. Mathematica is a registered trademark of Wolfram
Research Inc.
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82 B. PSGISBUCHSBAUMQ

PSGIsBuchsbaumQ(P)
P = {P1, . . . ,Pn} is
a polygon rational

2D vertex set

Compute the minimal generating set of the affine polygo-
nal semigroup, denoted by P.

Find:
(a) the rays of the cone C, τ1,τ2,
(b) the generators, n1,n2, of C on the respective rays,
(c) the minimal generators, m′1,m

′
2, of P on the respective rays,

(d) the intersection of each ray with the polygon, Y1,Y2 respectively.

#Y1 > 1 and #Y2 > 1?

For j ∈ N be the least integer such that jP1Pt ∩ ( j+1)P1Pt 6=
/0 and jPd−1Pd∩( j+1)Pd−1Pd 6= /0, compute the set of points
in the triangle limited by τ1 and τ2 rays and the segment
from jP1 and jPd .
These points belong to ϒ (see Section 3.2).

Is every element of
the previous set in P

and either n1 and n2

belong to P?

True

False

yes

yes

no

no

FIGURE 1. PSGIsBuchsbaumQ processing diagram (I).
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#Y1 = 1?

Compute the sets of points in the
strip close to τ1 ray.
These points belong to ϒ1 or L1 (see
Section 3.2).

#Y2 = 1?

Compute the sets of points in the
strip close to τ2 ray.
These points belong to ϒ2 or L2 (see
Section 3.2).

#Y2 > 1?

Compute the set of points under the
strip close to τ1 ray and the τ2 ray.
These points belong to ϒ (see Section
3.2).

A

#Y1 > 1?

Compute the set of points over the
strip close to τ2 ray and the τ1 ray.
These points belong to ϒ (see Section
3.2).

B

Compute the set of points under the
strip close to τ1 ray and over the
strip close to τ2 ray.
These points belong to ϒ (see Section
3.2).

((L1∪L2)\P)∩N2 = /0 and every
element of ϒ∪ϒ1∪ϒ2 is in P ?

True

no

yes

no

no
yes

yes yes

no
no

yes

no

FIGURE 2. PSGIsBuchsbaumQ processing diagram (II).
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Compute the set
ϒ′ = {a ∈ (ϒ1∪ϒ2)\P | a+m′1,a+m′2 ∈P}.

Is ϒ′ = /0 and every
element of ϒ is in P ?

True

False

A

Every element of
ϒ∪ϒ1 is in P ?

Test n2 is in
P

Every element of ϒ is
in P?

False

Compute the set
ϒ′ = {a ∈ ϒ1 \P | a+m′1,a+m′2 ∈P}.

ϒ′ 6= /0?

B: proceeds
symmetric

to path from
Ano

yes

no

yes

no

no

yes

yes

no

FIGURE 3. PSGIsBuchsbaumQ processing diagram (III).



APPENDIX C

4ti2gap

1. Introduction

The package 4ti2gap ([25]) is a GAP ([16]) wrapper for the algebraic software 4ti2
(see [30]). It was produced mainly due to the fact that presentations for affine and nu-
merical semigroups are in correspondence with binomial ideals, and 4ti2 makes fast
computations with these. Also factorizations of elements in affine semigroups are solu-
tions of systems of Diophantine linear equations, which can be computed with its zsolve
component.

4ti2gap uses direct linking with the shared libraries of 4ti2. For this reason, some
overhead in the routines calling is avoided, saving the necessary transformation of the
data structures between both programs.

2. Design

The set of tools included in 4ti2 are arranged into two separated programs. They
group the different functions we are interested in.

• 4ti2, which gives the name to the package, embeds the computations of the
programs groebner, minimize, markov, among others. It has versions for 32
and 64 bits processor architectures, and multiple precision as an option, in the
case that the GNU MP library is installed in the system. So there exist 4ti2int32,
4ti2int64 and if it is the case, 4ti2gmp. Also, the respective library files are
provided.
• zsolve offers hilbert, graver, and also itself, which can be used to compute

the solutions over Z of a linear system of equations. In this case all the options
of arithmetic precision are included in zsolve.

Indeed, one of the tasks to accomplish is the adaptation of data representation between
GAP and 4ti2. To this end, at the lowest fine-grain level, the conversion of data is based
on the corresponding code of NormalizInterface package (see [28]).

The first approach that we developed, was designed to provide separated functions
according to the arithmetic precision needed, as in 4ti2. From this we placed the offered
functions in two files 4ti2gap.so and 4ti2gapgmp.so, respectively for the processor
architecture word size setting and GNU MP library, if available for 4ti2.

Unfortunately, this caused a bad behavior (segmentation fault errors) in GNU/Linux
systems, specifically when computing Gröbner bases. It also caused memory access errors
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after finishing a GAP session. This was not detected in the OSX installation, which was our
main platform of development.

In consequence, we redesigned the structure of the code, and adapted it to the char-
acteristics of the interface to groebner (4ti2[int32 | int64 | gmp]) and zsolve
components. Now, there is only one dynamic library that supports all of them, called
4ti2gap.so.

The source code has 3 main component files: 4ti2gap.cc, 4ti2groebner.cc and
4ti2zsolve.cc. The code in 4ti2gap.cc does initialization task for GAP. We briefly
describe the other files in the next sections.

2.1. 4ti2zsolve.cc. In this file the we implement the components that use the inter-
face of zsolve defined in ZSolveAPI.hpp. This is performed by linking its object code
to the corresponding dynamic library of the 4ti2 package. The class _4ti2_zsolve_::
ZSolveAPI<T> has different methods. We use the next:

• create_matrix(std::istream& in, const char* name), to provide input
data. The parameter name is used to distinguish between the types of inputs. This
creates a _4ti2_zsolve_::VectorArray<T> component.
• set_options(int argc, char** argv), to select precision and verbosity.
• compute() performs the computations given the setting selected using the two

previous methods.
• get_matrix(const char* name) gives access to the results stored in _4ti2
\-_\-zsol\-ve_::VectorArray<T> specific matrices.

In this source file we have the following library callable functions from a GAP session.
Those whose name ends in GMP, are the corresponding versions with multiple precision
support.

Obj _4ti2zsolve_Hilbert( Obj self, Obj list );
Obj _4ti2zsolve_HilbertGMP( Obj self, Obj list );
Obj _4ti2zsolve_Graver( Obj self, Obj list );
Obj _4ti2zsolve_GraverGMP( Obj self, Obj list );
Obj _4ti2zsolve_ZSolve( Obj self, Obj list );
Obj _4ti2zsolve_ZSolveGMP( Obj self, Obj list );

All of them take a list as an argument, which must be a sequence of “string” and matrix,
as in the example below.

EXAMPLE C.1. Consider the following system of linear Diophantine inequalities:

x − y ≤ 2,
−3x + y ≤ 1,

x + y ≥ 1,
y ≥ 0,

gap> problem:=["mat",[[1, -1], [-3, 1], [1, 1]],
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"rel", ["<", "<", ">"],
"rhs", [[2, 1, 1]], "sign", [0, 1]];;
gap> _4ti2zsolve_ZSolve( problem );
[ [ [ 2, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ],

[ [ 1, 3 ], [ 1, 1 ], [ 1, 2 ] ] ]

The string designates the type of input matrix that follows, which depends on the input
supported by 4ti2. For more details, see the package documentation ([30]).

There are defined also GAP functions to access these library functions. They do some
checks and adaptations if necessary, before calling the corresponding library module.

• HilbertBasis4ti2(arg)
• HilbertBasis4ti2gmp(arg)
• GraverBasis4ti2(arg)
• GraverBasis4ti2gmp(arg)
• ZSolve4ti2(arg)
• ZSolve4ti2gmp(arg)

EXAMPLE C.2. This is the same example as before. The main difference is that the
output is accesible as a rec.

gap> ZSolve4ti2( problem );
rec( zhom := [ [ 1, 3 ], [ 1, 1 ], [ 1, 2 ] ],

zinhom := [ [ 2, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ] )

This output means that the set of solutions of the above system is

{(2,0),(0,1),(1,0),(1,1)}+ 〈(1,3),(1,1),(1,2)〉.

2.2. 4ti2groebner.cc. This file has the adaptations to use 4ti2’s Gröbner compu-
tations. Its object code links to the GNU MP library if available, and if not, it is compiled
using the corresponding processor word size. The 4ti2 component library does not of-
fer an API as zsolve, neither a C++ template interface. For this fact, we had coded a
sequence of instructions following those in groebner_main.cpp.

In 4ti2groebner.cc we have the following library callable functions from a GAP
session.

Obj _4ti2groebner_GroebnerBasisOrder( Obj self, Obj listA,
Obj listO );

Obj _4ti2groebner_GroebnerBasis( Obj self, Obj listA );

The parameter listA is a matrix, usually its columns are the generating elements of a
monoid. The list listO is also a matrix used to set the order to compute the Gröbner
basis. As for the previous functions in zsolve, the package provides a GAP function to
access these library functions. It does some checks and allow us to specify as an option



88 C. 4TI2GAP

the order identified by the proper string: “lex”, “grlex” and “grevlex”. The order can also
be directly specified by a matrix.

• GroebnerBasis4ti2(matrix[,order])

EXAMPLE C.3. Compute a Gröbner basis of the ideal IM ⊂ k[x,y,z, t,u], associated to
the monoid

M =

〈(
2
3

)
,

(
5
8

)
,

(
1
2

)
,

(
3
7

)
,

(
17
85

)〉
gap> GroebnerBasis4ti2([[2, 5, 1, 3, 17], [3, 8, 2, 7, 85]],
"grevlex");

[ [ -21, -3, 2, 24, -1 ], [ -14, -6, 0, 25, -1 ],
[ -3, 1, 4, -1, 0 ], [ -1, 0, 5, -1, 0 ],
[ 2, -1, 1, 0, 0 ], [ 5, -2, -3, 1, 0 ],
[ 23, 2, -1, -24, 1 ], [ 25, 1, 0, -24, 1 ],
[ 28, 0, -4, -23, 1 ] ]

This output says that

IM = 〈z2t24− x21y3u, t25− x14y6u,z4t− x3y,z5t− x,x2z− y,x5t− y2z3,

x23y2u− zt24,x25yu− t24,x28u− z4t23〉.

Recall that thanks to Herzog’s correspondence, we can obtain a (minimal) presentation of
M from the exponents of the binomials generating IM (or directly by taking (x+,x−) from
the output of GroebnerBasis4ti2).

2.3. Applications to affine semigroups. See in Appendix D some examples of the
application of 4ti2gap to methods implemented in the numericalsgps ([13]) package.
In particular, the functions:

• FactorizationsVectorWRTList in Listing D.3
• MinimalPresentationOfAffineSemigroup in Listing D.4
• EqualPrimitiveElementsOfAffineSemigroup a function that gives supports

to the computation of EqualCatenaryDegreeOfAffineSemigroup in Listing
D.8.
• PrimitiveElementsOfAffineSemigroup in Listing D.12.
• MonotonePrimitiveElementsOfAffineSemigroup a function that gives sup-

ports to the computation of MonotoneCatenaryDegreeOfAffineSemigroup in
Listing D.16.
• OmegaPrimalityOfElementInFullAffineSemigroup in Listing D.17.



APPENDIX D

GAP functions

The next functions are written without input error checking code for shortness. They
form an almost self-contained set by using some local functions, and in a global sense,
referencing to others in this appendix. Even so, the next functions included in the nume-
ricalsgps ([13]) are used:

• GeneratorsOfAffineSemigroup, to get the generators of an affine semigroup.
• MinimalGeneratingSystemOfNumericalSemigroup, returns the minimal set

of generators of a numerical semigroup.
• AperyListOfNumericalSemigroupWRTElement, computes the Apéry list of a

numerical semigroup with respect to an element.
• RClassesOfSetOfFactorizations, return the set of R−classes of a set of

factorizations.

LISTING D.1. Code for the distance between two factorization. This is an
auxiliary function used by the other functions that we expose after this.

distance:=function(x,y)
local p,n,i,z;

p:=0; n:=0; z:=x-y;
for i in [1..Length(z)] do
if z[i]>0 then p:=p+z[i]; else n:=n+z[i]; fi;

od;
return Maximum(p,-n);

end;
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LISTING D.2. Code for the catenary degree of a set of factorizations.

CatenaryDegreeOfSetOfFactorizations:=function(fact)
local len, V, underlyinggraph, i, weights, weightedgraph, j, dd, d,

w;

V := Length(fact);
if V = 1 then return 0;
elif V = 2 then return distance(fact[1],fact[2]); fi;
# compute the directed weighted graph
underlyinggraph := [];
for i in [2 .. V] do Add(underlyinggraph, [i..V]); od;
Add(underlyinggraph, []);
weights := [];
weightedgraph := StructuralCopy(underlyinggraph);
for i in [1..Length(weightedgraph)] do
for j in [1..Length(weightedgraph[i])] do
dd := distance(fact[i],fact[weightedgraph[i][j]]);
Add(weights,dd);
weightedgraph[i][j] := [weightedgraph[i][j],dd];

od;
od;
weights:=Set(weights);
d := 0;
while IsConnectedGraphNCForNumericalSemigroups(underlyinggraph) do
w := weights[Length(weights)-d];
d := d+1;
for i in weightedgraph do
for j in i do
if IsBound(j[2]) and j[2]= w then Unbind(i[Position(i,j)]);

fi;
od;

od;
for i in [1..Length(weightedgraph)] do
weightedgraph[i] := Compacted(weightedgraph[i]);

od;
underlyinggraph := [];
for i in weightedgraph do
if i <> [] then Add(underlyinggraph, TransposedMatMutable(i)

[1]);
else Add(underlyinggraph, []); fi;
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od;
od;
return(weights[Length(weights)-d+1]);

end;

LISTING D.3. Code to compute the factorizations of v in terms of the
elements in list l.

FactorizationsVectorWRTList:=function(v,l)
local matrix,mat,rhs,sign,problem, n;

sign:=[List(l,_->1)];
rhs:=[v];
problem:=["mat",TransposedMat(l),"sign",sign,"rhs",rhs];
matrix := ZSolve4ti2(problem);
return matrix.zinhom;

end;

LISTING D.4. Code to compute the minimal presentation of an affine
semigroup.

MinimalPresentationOfAffineSemigroup:=function(a)
local gens, positive, gr, candidates, pres, rclass,exps, c;

positive:=function(x)
local p,i;

p:=[];
for i in [1..Length(x)] do p[i]:=Maximum(x[i],0); od;
return p;

end;

gens:=GeneratorsOfAffineSemigroup(a);
gr:=GroebnerBasis4ti2(TransposedMat(gens));

candidates:=Set(gr,q->positive(q));
candidates:=Set(candidates,c->c*gens);
pres:=[];
for c in candidates do
exps:=FactorizationsVectorWRTList(c,gens);
rclass:=RClassesOfSetOfFactorizations(exps);
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if Length(rclass)>1 then
pres:=Concatenation(pres,List([2..Length(rclass)],

i->[rclass[1][1],rclass[i][1]]));
fi;

od;
return pres;

end;

LISTING D.5. Code for the catenary degree of an affine semigroup.

CatenaryDegreeOfAffineSemigroup := function(a)
local betti, minpre, b, max, c, gens;

gens:=GeneratorsOfAffineSemigroup(a);
minpre:=MinimalPresentationOfAffineSemigroup(a);
betti:=Set(minpre, p->p[1]*gens);
max:=0;
for b in betti do

c:=CatenaryDegreeOfSetOfFactorizations(
FactorizationsVectorWRTList(b,gens));

if c>max then max:=c; fi;
od;
return max;

end;

LISTING D.6. Code for the monotone catenary degree of a set of factorizations.

MonotoneCatenaryDegreeOfSetOfFactorizations:=function(fact)
local boolTo01, isConnected, adjmat, adjmatdis, pivfact, dis,

maxdis, maxdisrow, i, j;

boolTo01:=function(bv)
if bv then return 1; else return 0; fi;

end;

isConnected:=function(adjmat)
local i, j, k, aa, c;

k := Length(adjmat); c := IdentityMat(k); aa := IdentityMat(k);
for i in [1..k-1] do
aa := aa*adjmat; c := c+aa;
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od;
for i in [2..k] do
for j in [1..i-1] do
if c[i][j]=0 then return false; fi;

od;
od;
return true;

end;

pivfact := fact{[1..Length(fact)]};
Sort(pivfact, function(a, b) return Sum(a)>=Sum(b); end);

adjmat := NullMat(Length(fact),Length(fact));
adjmatdis := NullMat(Length(fact),Length(fact));
for i in [1..Length(fact)] do
adjmat[i] := List( [1..Length(pivfact)], y->boolTo01( pivfact[i

]<>pivfact[y] and
Sum(pivfact[i])<=Sum(pivfact[y]) ) );

adjmatdis[i] := List( [1..Length(pivfact)],
y->adjmat[i][y]*distance(pivfact[i], pivfact

[y]) );
od;

dis := Set(Flat(Flat(adjmatdis)));
Sort(dis,function(a,b) return a>=b; end);
maxdis := dis[1];
while maxdis > 0 do
maxdisrow := First(adjmatdis, x->maxdis in x);
if maxdisrow<>fail then
i := Position(adjmatdis, maxdisrow);
j := Position(adjmatdis[i], First(adjmatdis[i], x->x=maxdis));
adjmat[i][j] := 0; adjmatdis[i][j] := 0;
if not isConnected( adjmat ) then return maxdis; fi;

else
Remove(dis, 1);
if Length(dis)>0 then maxdis := dis[1]; else return 0; fi;

fi;
od;
return 0;

end;
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LISTING D.7. Code for the equal catenary degree of a set of factorizations
using GAP.

EqualCatenaryDegreeOfSetOfFactorizations:=function(fact)
local distance, lFni;

lFni:=Set( fact, t->Sum( t ) );
return Maximum( List( lFni, y->

CatenaryDegreeOfSetOfFactorizations( Filtered( fact, x->Sum( x
)=y ) ) ) );

end;

LISTING D.8. Code for the equal catenary degree of a affine semigroup
using GAP.

EqualPrimitiveElementsOfAffineSemigroup:=function(s)
local l, n, facs, mat, ones, trunc;

l:=GeneratorsOfAffineSemigroup(s);
n:=Length(l);
ones:=List([1..n],_->1);
mat:=List(TransposedMat(l));
Add(mat, ones);
facs:=GraverBasis4ti2(["mat", mat]);

trunc:=function(ls)
return List(ls, y->Maximum(y,0));

end;

facs:=Set(facs,trunc);
return Set(List(facs, f->f*l));
end;

EqualCatenaryDegreeOfAffineSemigroup:=function(a)
local gens, primeq;

primeq:=EqualPrimitiveElementsOfAffineSemigroup(a);
gens:=GeneratorsOfAffineSemigroup(a);

return Maximum(Set(primeq, x->
EqualCatenaryDegreeOfSetOfFactorizations(
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FactorizationsVectorWRTList(x,gens))));
end;

LISTING D.9. Code for the adjacent catenary degree of a set of factorizations.

AdjacentCatenaryDegreeOfSetOfFactorizations:=function(fact)
local Fn, lenset, Zi, facti, i;

Fn:=Set(ShallowCopy(fact));
lenset:=Set( fact, Sum );
if Length(lenset)=1 then
return 0;

fi;
Zi:=[];
for i in lenset do
facti:=Filtered( Fn, x->Sum(x)=i );
SubtractSet( Fn, facti );
Add( Zi, facti );

od;
return Maximum( List( [2..Length( Zi )], t->Minimum( List( Zi[t-1],

x->Minimum( List( Zi[t], y->distance( x, y ) ) ) ) ) ) );
Iend;

LISTING D.10. Code for the tame degree of a set of factorizations.

TameDegreeOfSetOfFactorizations:=function(fact)
local i, max, mtemp, candidates, rest, len;

max:=0;
len := Length(fact[1]);
for i in [1..len] do
candidates:=Filtered(fact, x->x[i]=0);
rest:=Filtered(fact,x->x[i]<>0);
if (rest=[] or candidates=[]) then
mtemp:=0;

else
mtemp:=Maximum(List(candidates,x->Minimum(List(rest, z->

distance(x,z)))));
fi;
if mtemp>max then
max:=mtemp;
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fi;
od;
return max;

end;

LISTING D.11. Code for the tame degree of a numerical semigroup.

TameDegreeOfNumericalSemigroup:=function(s)
local msg, ap, candidates, rp, facts, translate;

translate:=function(l) #translates partitions to factorizations
return List(msg, x-> Length(Positions(l,x)));

end;

msg:=MinimalGeneratingSystemOfNumericalSemigroup(s);
if(msg[1]=1) then

return 0;
fi;

ap:=Difference(Union(Set(msg,n->
AperyListOfNumericalSemigroupWRTElement(s,n))),[0]);

candidates:=Set(Cartesian(ap,msg),Sum);

rp:=List(candidates, x->RestrictedPartitions(x, msg));
# remove elements having in all its factorizations a common atom
rp:=Filtered(rp, x->Intersection(x)=[]);
facts:=List(rp, x->List(x, translate));
if facts=[] then

return 0;
fi;
return Maximum(Set(facts,n->TameDegreeOfSetOfFactorizations(n)));

end;
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LISTING D.12. Code to compute the set of primitive elements of an affine
semigroup.

PrimitiveElementsOfAffineSemigroup:=function(a)
local matrix, facs, mat, trunc, ls;

trunc:=function(ls)
return List(ls, y->Maximum(y,0));

end;

gens:=GeneratorsOfAffineSemigroup(a);
mat:=TransposedMat(gens);
matrix := GraverBasis4ti2(["mat",mat]);

matrix:=Set(matrix,trunc);
return Set(matrix, x->x*gens);

end;

LISTING D.13. Code to compute the tame degree of an affine semigroup.

TameDegreeOfAffineSemigroup:=function(a)
local prim, tams, p, max, gens;

gens:=GeneratorsOfAffineSemigroup(a);
prim:=PrimitiveElementsOfAffineSemigroup(a);
max:=0;
for p in prim do
tams:=TameDegreeOfSetOfFactorizations(

FactorizationsVectorWRTList(p,gens));
if tams>max then max:=tams; fi;

od;
return max;

end;
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LISTING D.14. Code to compute the omega-primality of an element in a
affine semigroup.

OmegaPrimalityOfElementInAffineSemigroup:=function(m,a)
local ls, n, mat,extfact,par,tot,le;

le:=function(a,b) #ordinary partial order
return ForAll(b-a,x-> x>=0);

end;

gens:=GeneratorsOfAffineSemigroup(a);
n:=Length(gens);
mat:=TransposedMat(Concatenation(gens,-gens,[-m]));

extfact:=FactorizationsVectorWRTList(m,Concatenation(gens,-gens));

par:=Set(extfact, f->f{[1..n]});
tot:=Filtered(par, f-> Filtered(par, g-> le(g,f))=[f]);
if tot=[] then return 0; fi;
return Maximum(Set(tot, Sum));

end;

LISTING D.15. Code to compute the homogeneous catenary degree of an
affine semigroup.

HomogeneousCatenaryDegreeOfAffineSemigroup:=function(a)
local gens, gensh, ah, minpre, primeq, one;

gens:=GeneratorsOfAffineSemigroup(a);
if gens=[] then return 0; fi;

gensh:=List(ls, x-> Concatenation(x,[1]));
one:=List(gens[1],_->0);
Add(one,1);
Add(gensh,one);

ah:=AffineSemigroup(gensh);

# Get the Betti elements
minpre:=MinimalPresentationOfAffineSemigroup(ah);
primeq:=Set(minpre, p->p[1]*gens);
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return Maximum(Set(primeq, x->CatenaryDegreeOfSetOfFactorizations(
FactorizationsVectorWRTList(x,gensh))));

end;

LISTING D.16. Code for the monotone catenary degree of a set of factor-
izations.

MonotonePrimitiveElementsOfAffineSemigroup:=function(s)
local l, n, facs, mat, ones, trunc;

l:=GeneratorsOfAffineSemigroup(s);
n:=Length(l);
ones:=List([1..n+1],_->1);
mat:=List(TransposedMat(l),x->Concatenation(x, [0]));
Add(mat, ones);
facs:=GraverBasis4ti2(["mat", mat]);

trunc:=function(ls)
return List(ls, y->Maximum(y,0));

end;
facs:=Set(facs,trunc);
return Set(List(facs, f->f*l));

end;

MonotoneCatenaryDegreeOfAffineSemigroup:=function(a)
local prim, gens;

prim:=MonotonePrimitiveElementsOfAffineSemigroup(a);
gens:=GeneratorsOfAffineSemigroup(a);

return Maximum(Set(prim, n->
MonotoneCatenaryDegreeOfSetOfFactorizations(

FactorizationsVectorWRTList(n,gens))));
end
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LISTING D.17. Code to compute the omega-primality of m in the full
affine semigroup a.

OmegaPrimalityOfElementInFullAffineSemigroup:=function(m,a)
local gens, n, extfact, par, tot, le;

le:=function(a,b) #ordinary partial order
return ForAll(b-a,x-> x>=0);

end;

gens:=GeneratorsOfAffineSemigroup(a);
n:=Length(gens);
extfact:=ZSolve4ti2(["mat",TransposedMat(gens),"rel",List(v,_->1),

"sign",List([1..n],_->1),"rhs",m]);
tot:=extfact.zinhom;
if tot=[] then return 0; fi;
return Maximum(Set(tot, Sum));

end;
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List of Symbols

⊔
a disjoint union

F the convex body monoid generated by a convex body F
d(a,b) measure of the distance between the factorizations a,b ∈ Z(m)

d(P,Q) the Euclidean distance between two elements P,Q ∈ R2

C the positive integer cone LQ≥(F)∩N2

P the affine convex poligonal semigroup
S the affine circle semigroup
〈m1, . . . ,mk〉 the monoid generated by {m1, . . . ,mk}
≤M the order induced by M, that is, m≤M m′ whenever m′−m ∈M
G(S) the group generated by S, whose elements are linear combinations of ele-

ments from S with integer coefficients
LQ≥(F) the cone generated by a convex body F
Ap(M,m) the Apéry set of m in a numerical monoid M
int(F) the interior of F
Gv(A) the Graver basis of the matrix A
max{. . .} the maximum of a set
N the set of natural numbers
ω(m) the omega primality of m
PQ the segment joining P and Q
φ the factorization homomorphism
Q the set of rational numbers
R the set of real numbers
c(·) the catenary degree (can be referred to an element or a monoid)
t(. . .) the tame degree (can be expressed with respect to different arguments)
Z(m) the set of factorizations of m in a monoid
Zp(m) the set of factorizations of m with length p
]S the cardinality of a set S
supp (a) the set {i ∈ {1, . . . ,k} | ai 6= 0} for vector a
τ1,τ2 the extremal rays of a cone in N2

1 the vector whose entries are all 1
M the closure of M, {a ∈ N2 | a+M ⊆M}
Z the set of integer numbers
ei the vector with every component equal 0, and 1 at the i-th
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adjacency, 62
adjacent catenary degree, 62
affine semigroup, 5

full, 26
Apéry set, 57
atom, 55

Bézout sequence, 31
Betti element, 55
binomial, 5
Buchsbaum semigroup, 44

catenary degree, 60
circuit, 59
Cohen-Macaulay semigroup, 44
cone, 25
convex body, 25
convex body monoid, 26
convex body semigroup, 26

Delta set, 58
distance between factorizations, see factorization

elasticity, 59
equal catenary degree, 61

factorization, 55
distance, 59
length, 58
set of lengths, 58

full affine semigroup, see affine semigroup

Gröbner basis, 9
Graver basis, 62

half-factorial monoid, 59
Hilbert basis, 12
homogeneous catenary degree, 70

irreducible, see atom

kernel congruence, 55

M−degree, see monomial
monoid, 5

intervals (defined by), 26
reduced, 5
torsion free, 55

monomial, 5
M−degree, 66
degree, 65

monotone catenary degree, 61

numerical monoid, 57
numerical semigroup, 43

ω-primality, 66

presentation, 55

ray, 25

semigroup, 5
closure of, 44

simplicial semigroup, 44
support, 59

tame degree, 63
torsion free monoid, see monoid

unit, 55
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