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Estamos hechos de átomos, según dicen los científicos, pero un
pajarito me contó que también estamos hechos de historias.

Eduardo Galeano

Introduction

Every society at each moment in its his- or herstory develops a unique world view
encompassing a model for the description of their cosmos. Modern Western so-
ciety founds its cosmological notion on scientific laws bringing together observa-
tional astronomy, general relativity and particle physics; thus governing the origin,
evolution, and eventual fate of the universe. The Big Bang model has been an out-
standing achievement of the 20th century for the understanding in scientific terms
of the cosmos. It answers old questions ranging from the infant to the present uni-
verse, while unveiling new mysteries regarding its composition. There are strong
indirect evidences of a Dark Side of the Universe, comprised of dark matter, dark
energy and inflation; however a confirmed description of such phenomena is still
elusive.

The work contained in this thesis aims to further develop the understanding
of the role of inflation and dark matter in the early universe. Our framework is
the study of dissipation in such context, a natural outcome of the presence inter-
actions in the models describing the system. Therefore, a better comprehension
of dissipative processes may help in building more realistic representations of the
physics of the early universe. For a clearer presentation of the results, the contents
of the thesis are divided in three distinct parts, with part I and II devoted to the
study of dissipation during inflation, while part III is dedicated to the connection
of inflation and dark matter through dissipation in the reheating era.

Chapter 1 gives an overview of the present view of the modern cosmology,
summarizing the most relevant results. In part I we will concentrate on the effects
of dissipation at the background level of warm inflation, the inflationary scenario
where interactions of the inflaton with other degrees of freedom are described in
terms of quantum field theory. Such description consistently incorporates dissipa-
tive effects during inflation. In chapter 2 we will study the aftermath of including
interactions in a class of inflationary models characterized by the existence of an
inflection point in the inflationary potential [1]. These potentials arise in a variety
of contexts, such as supersymmetry or string theory, providing desirable connec-
tions to low-energy phenomenology. The inflection point result from the interplay
of different terms contributing to the scalar potential, but it usually requires the
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X Introduction

fine-tunning of such terms. We will show that the situation can be alleviated in
the context of warm inflation, due to the dissipation induced by the interactions
of the inflaton with other degrees of freedom. Furthermore, we will analyse the
dynamics of warm inflation in such a flat potential shape, and extract information
regarding the field multiplicities required in the low momentum limit of the two
stage (LOTS) realization of warm inflation. In chapter 3 we follow a different line
in the investigation of dissipative effects, and focus on the consequences of the
self interactions of the light fields in the thermal bath of warm inflation [2]. Such
interactions preclude the bath from being in a perfect thermal equilibrium state,
thus inducing viscous effects. In a FLRW background these effects are described
by the bulk viscosity, which enhances radiation production and may help in real-
izing warm inflation. Nevertheless, it may also lead to the overproduction of light
particles, such that the radiation bath becomes the dominant contribution to the
total energy density and inflation is spoiled. Therefore, we will study the stability
of the system with different hydrodynamic descriptions of the bulk viscosity, from
the simplest to more realistic ones. Then, we will apply the results to the canonical
λφ4 model and analyse the enlargement of the parameter space compatible with
warm inflation in the presence of bulk viscosity.

Part II will be devoted to the examination of the dissipative dynamics of the
perturbations at linear order in warm inflation. In chapter 4 we will discuss the
details of the calculation of the power spectrum in warm inflation and the region
of applicability of its analytical approximation. We will show that the coupling
between the equations for the perturbations of the inflaton and the radiation bath
induces a growing mode in the power spectrum in the strong dissipation regimen,
which renders the analytical approximation invalid. The chapters included in part
II try to address this feature of the LOTS realization of warm inflation. Chapter 5
follows the line initiated in chapter 3 of investigating the effect of self interaction
in the radiation fluid. At the perturbation level of the FLRW metric both bulk and
shear viscosities are required to describe the departures from thermal equilibrium.
We will analyse the region of the parameter space where the perturbative dynam-
ics are modified by the presence of viscosities, and whether they can control the
effect of the growing mode in the power spectrum. In chapter 6 we take a differ-
ent approach to deal with the growing mode. We will research the observational
implications of warm inflation in the weak dissipation regimen, where there is no
growing mode [3]. At the time when we carried out this work, data from the
Planck collaboration was made available, hence we could make use of it to show
the effect of dissipation even in the weak regimen. As an example, we will con-
sider the λφ4 model, which is in tension with Planck data in the renormalizable
single field models of inflation, and will show that the tension can be solved when
embedding the model in the LOTS realization of warm inflation.

In Part III we will explore dissipation in the reheating period subsequent to
inflation. Dissipation plays the key role in the energy transfer from the inflaton
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to radiation bath that defines the reheating period, therefore it has been widely
studied in the literature. Chapter 7 will be dedicated to the study of a particular
dissipation mechanism such that the inflaton field can play the role of a dark
matter candidate [4]. We will propose a configuration of interactions that will
lead to a successful reheating period producing a universe dominated by radiation,
while leaving a remnant of the inflaton field. The remnant will behave as an
additional matter component in the universe, and we will find solutions such that
the inflaton remnant is compatible the current bounds on dark matter. We will
show that the mechanism is consistent with different inflationary potentials by
analysing two canonical models of inflation.





Estamos hechos de átomos, según dicen los científicos, pero un
pajarito me contó que también estamos hechos de historias.

Eduardo Galeano

Introducción

Toda sociedad en cada momento de su historia desarrolla una cosmovisión única
que incluye una descripción de su universo. La sociedad occidental moderna ba-
sa su cosmología en leyes científicas que parten de la astronomía observacional,
la relatividad general y la física de partículas para gobernar el origen, la evolu-
ción y el posible destino del universo. El modelo del Big Bang ha sido un logro
fundamental del siglo XX para la comprensión en términos científicos del cosmos.
Es capaz de dar respuesta a preguntas fundamentales que van desde el universo
temprano hasta el actual, al mismo tiempo que revela nuevos misterios sobre sus
componentes. Hay evidencias indirectas muy significativas de la existencia de un
lado oscuro en el universo, compuesto de materia oscura, energía oscura e infla-
ción; sin embargo una explicación comprobada observacionalmente sigue siendo
elusiva.

Los trabajos que contiene esta tesis aspiran a contribuir al desarrollo de la
comprensión del papel que juegan inflación y la materia oscura en el universo
temprano. Nuestro marco de trabajo es el estudio de disipación en ese contex-
to, una consecuencia natural de la presencia de interacciones en los modelos que
describen en sistema. Por lo tanto, una mejor intelección de los procesos disipati-
vos puede ayudar a la construcción de representaciones más precisas de la física
del universo temprano. Para una mayor claridad en la presentación de los resul-
tados, hemos dividido la tesis en tres partes diferenciadas. Las partes I y II están
dedicadas al estudio de disipación durante inflación, mientras que en la parte III
analizamos la conexiones entre inflación y materia oscura a través de disipación
en la era de recalentamiento.

El capítulo 1 da una visión del conjunto del enfoque de la cosmología moder-
na, resumiendo los resultados más relevantes. En la parte I nos centraremos en los
efectos de disipación al nivel cero en teoría linear de perturbaciones de inflación
templada, el escenario de inflación en el que las interacciones del inflatón con
otros grados de libertad se describen en términos de teoría cuántica de campos.
Esta descripción incorpora de forma consistente los efectos de disipación durante
inflación. En el capítulo 2 estudiaremos las repercusiones de la inclusión de inter-
acciones en una categoría de modelos de inflación caracterizada por la existencia

XIII



XIV Introducción

de un punto de inflexión en el potencial inflacionario [1]. Este tipo de potenciales
aparece en contextos muy variados, como pueden ser supersimetría o teoría de
cuerdas, por lo que generan conexiones muy interesantes con fenomenología a
bajas energías. La aparición del punto de inflexión es debida a la combinación de
distintos términos que contribuyen al potencial escalar, de modo que usualmen-
te requiere un ajuste fino de esos términos. Mostraremos que esta problemática
puede desaparecer en el contexto de inflación templada, debido a la disipación
inducida por la interacción del inflatón con los demás grados de libertad. Además
analizaremos las dinámicas de inflación templada en este tipo de potenciales tan
planos y extraeremos información sobre las multiplicidades de los campos que son
necesarias en el límite de bajo momento de la realización en dos etapas (LOTS)
de inflación templada. En el capítulo 3 seguiremos una línea diferente en la in-
vestigación de los efectos disipativos y nos centraremos en las consecuencias de
las autointeracciones de los campos ligeros en el baño térmico de inflación tem-
plada [2]. Estas interacciones impiden que el baño térmico esté en un estado de
equilibrio térmico, por lo que induce efectos viscosos. En en el nivel cero de un
universo descrito por la métrica FLRW, estos efectos se describen en términos de
viscosidad de volumen, que aumenta la producción de radiación y puede contri-
buir a inflación templada. Sin embargo, también puede conducir a una producción
excesiva de partículas ligeras tal que el baño térmico se convierta en la contribu-
ción dominante a la densidad de energía total, lo que produciría el fin del periodo
inflacionario. Por tanto, estudiaremos la estabilidad del sistema con diferentes de-
cripciones hidrodinámicas de la viscosidad de volumen, desde las más simples
hasta descripciones más realistas. Una vez hecho esto, aplicaremos los resultados
al modelo canónico de inflación λφ4 y analizaremos el incremento del espacio de
parámetros compatible con inflación templada en presencia de la viscosidad de
volumen.

La parte II estará dedicada al examen de las dinámicas disipativas de las per-
turbaciones a orden linear en inflación templada. En el capítulo 4 discutiremos
los detalles del cálculo de espectro de potencias en inflación templada y la región
en la que se puede aplicar su aproximación analítica. Mostraremos que el acoplo
entre las ecuaciones para las perturbaciones del inflatón y el baño térmico induce
un modo creciente del espectro de potencias en el régimen de disipación fuerte,
lo que invalida la aproximación analítica en ese régimen. Los capítulos recogidos
en la parte II tratan de resolver este problema de la realización LOTS de infla-
ción templada. El capítulo 5 continúa la línea iniciada en el capítulo 3 en la que
investigamos el efecto de las autointeracciones en el fluido de radiación. A nivel
de perturbaciones en la métrica FLRW tanto la viscosidad de volumen como la
de cizaña aparecen en la descripción de las desviaciones del equilibrio térmico.
Analizaremos la región del espacio de parámetros en la que la dinámica de las
perturbaciones se modifica debido a la presencia de las perturbaciones y la posi-
bilidad de controlar el efecto del modo creciente del espectro de potencias. En el
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capítulo 6 seguiremos un enfoque distinto para tratar el problema del modo cre-
ciente. Investigaremos las implicaciones observacionales de inflación templada en
el régimen de disipación débil, donde no se manifiesta el modo creciente [3]. En
el momento en el que realizamos este trabajo, se publicaron los datos de la cola-
boración Planck, de modo que pudimos utilizarlos para mostrar el efecto que tiene
la presencia de disipación incluso en el régimen de disipación débil. Como ejem-
plo consideraremos el modelo λφ4, que está en tensión con los datos de Planck en
los modelos inflacionarios renormalizables con un solo campo y demostraremos
que la tensión puede eliminarse al introducir el modelo en la realización LOTS de
inflación templada.

En la parte III exploraremos los efectos de disipación en el periodo de reca-
lentamiento que sigue a inflación. La disipación juega un papel fundamental en
la transferencia de energía del inflatón al baño de radiación que define el perio-
do de recalentamiento, de modo que ha sido estudiada muy extensamente en la
literatura. El capítulo 7 estará dedicado al estudio de un mecanismo de disipación
concreto que permite que el inflatón sea un candidato a materia oscura [4]. Pro-
pondremos una configuración de las interacciones tal que conducirá un periodo
de recalentamiento capaz de producir un universo dominado por la radiación, al
mismo tiempo que un remanente del inflatón sobrevive al proceso. El remanente
se comportará como una componente de materia adicional en el universo, así que
buscaremos soluciones en las que este remanente es compatible con los límites
actuales de materia oscura. Mostraremos que el mecanismo es consistente con di-
ferentes modelos inflacionarios mediante el análisis de dos modelos canónicos de
inflación.





If you don’t understand, ask questions. Here’s to possi-
bilities of friendship and connection and understanding.

Chimamanda Ngozi Adichie

1Particle physics and the early universe

1.1 To the Standard Model, and beyond!

A major scientific effort during the 20th century led to the building of the Stan-
dard Model (SM) of particle physics [5, 6, 7]. The theory is classifying all the sub-
atomic particles known to date as well as describing their electromagnetic, weak
and strong nuclear interactions. The Standard Model is a renormalizable non-
abelian gauge theory based on the local symmetry group SU(3)C ⊗ SU(2)L ⊗U(1)Y

whose associated gauge bosons characterize the interactions included. The strong
interaction is represented by the gauge bosons Ga

µ; a = 1, 2, ...8 of the group SU(3)C

while the weak and electromagnetic interactions are described by a combination
of the gauge bosons W I

µ , I = 1, 2, 3 and Bµ of the groups SU(2)L and U(1)Y re-
spectively. The symmetry group is spontaneously broken to SU(3)C ⊗ U(1)Q below
the electroweak scale by the vacuum expectation value of a complex scalar field,
the (Brout-Englert-Guralnik-Hagen-Kibble) Higgs field [8, 9, 10, 11], with gauge
quantum numbers (SU(3),SU(2))U(1) = (1,2)1/2. The matter content of the theory
is organized in a threefold family structure of fermions with identical gauge quan-
tum numbers which are shown for one family in Table 1.1 together with its field
content. The lagrangian of the SM is

L = −1

4

(
Ga
µνG

µν
a +W I

µνW
µν
I +BµνB

µν
)

+ q̄Lii /DqLi + ūRii /DuRi + d̄Rii /DdRi + l̄Lii /DlLi + ēRii /DeRi

+ (DµH)†(DµH)− λ(H†H − v2/2)2

−
(
yuij q̄Liiσ2H

∗uRj + ydij q̄LiHdRj + ylij l̄LiHeRj + h.c.
)
, (1.1)

where Einstein summation convention is assumed, a and I are gauge indices while
i, j are family subscripts. The covariant derivative is defined by

Dµ = ∂µ − igs
λa
2
Ga
µ − ig

σI
2
W I
µ − ig′yBµ, (1.2)

1



2 Chapter 1. Particle physics and the early universe

qL =

(
uL
dL

)
uR dR lL =

(
νL
eL

)
eR

(3,2)1/6 (3,1)2/3 (3,1)−1/3 (1,2)−1/2 (1,1)−1

Table 1.1: Chirality and gauge quantum numbers of one family of fermions of the
SM.

with gs, g and g′ being the SU(3),SU(2) and U(1) gauge constants, λa (σI) are the
Gell-Mann (Pauli) matrices and y is the hypercharge. The field strength tensors
appearing in the lagrangian are

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν (1.3)

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν (1.4)

Bµν = ∂µBν − ∂νBµ (1.5)

In addition, there is an accidental global symmetry that leaves the SM Lagrangian
invariant even at the quantum level, the combination of the baryon and lepton
number U(1)B−L. The baryon number is B = (−)1/3 for (anti)quarks and B = 0
for leptons while the total lepton number is L = Le + Lµ + Lτ with Li = (−)1 for
(anti)leptons of the i-th family and zero otherwise.

In spite of the extreme success of the SM predictions compared to the particle
accelerators and cosmic rays experimental data results [12], the measurements
of solar [13], atmospheric [14], reactor [15] and beam [16] neutrino oscillations
along with the observations of modern cosmology showed that the SM might not
be a complete theory of nature. Neutrino oscillation experiments proved that
neutrinos are massive and non degenerate. Because of the lack of right handed
neutrinos, neutrino masses cannot be generated within the gauge structure of the
SM. Therefore, an extension of the SM is required to explain the existence of
massive neutrinos.

The paradigm of modern cosmology, the Hot Big Bang scenario (BB) was devel-
oped concurrently with the SM, posing new questions the SM cannot address. The
cornerstones giving rise to the BB scenario are the advent of general relativity [17]
together with the observations of the expansion of the universe [18, 19], the de-
velopment of the theory explaining the relative abundance of light nuclei [20, 21]
and the discovery of Cosmic Microwave Background radiation (CMB)[22]. This
scenario describes the evolution of the universe and its content from its beginning
to the present era. It relies on the observed homogeneity and isotropy which can
be described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (1.6)
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with a(t) being the scale factor, k the curvature and comoving spherical co-
ordinates have been used. As for today the version of the BB scenario pre-
ferred by the observations is the ΛCDM model which contains six free parameters
{Ωbh

2,Ωch
2, θMC , As, ns, τ}. Two of them represent the matter content of the uni-

verse: the baryonic matter density Ωbh
2 and the cold dark matter density Ωch

2.
The acoustic scale θMC contains the geometrical structure of the universe which
is related to its other component, the density of dark energy. The amplitude of
the primordial spectrum of perturbations As and the spectral index ns encompass
information about inflation, an era of accelerated expansion in the early universe
that will be discussed in detail in the following section. The optical depth τ de-
scribes the epoch of reionization when galaxies and quasars began to form. Table
1.2 shows the cosmological parameter values measured by Planck [23].

Ωbh
2 0.02226± 0.00016

Ωch
2 0.1193± 0.0014

100θMC 1.04087± 0.00032
τ 0.063± 0.014
ns 0.9653± 0.0048
ln(1010As) 3.059± 0.025

Table 1.2: 68% limits on the cosmological parameter values measured by Planck
using the CMB power spectra in combination with lensing reconstruction.

The cosmological budget poses a hint of the necessity of a grander theory de-
scribing the components of the universe. A number of observations at very dif-
ferent energy scales indicate that the matter content of the SM can only account
for the baryonic matter representing the 4− 5% of the total energy density, while
dark matter (24 − 27%) and dark energy (68 − 72%) cannot be understood in
the context of the SM with general relativity. Observations include light chemical
elements abundances [24], galactic rotation curves [25, 26], weak gravitational
lensing of distant galaxies by foreground structures [27, 28], weak modulation of
strong lensing around individual massive elliptical galaxies [29], acceleration of
the universe through observations of type Ia supernovae [30, 31], baryon acoustic
oscillations in the large scale structure [32] and anisotropies [33, 23] and late-
time integrated Sachs-Wolfe effect [34, 35] in the CMB. There are extensions
beyond the SM proposing dark matter and dark energy candidates, with super-
symmetry [36, 37], Kaluza-Klein models [38, 39, 40] and quintessence models
[41, 42, 43, 44] being among the most popular proposals. Modifications of gen-
eral relativity such as f(R) gravities [45, 46] or DPG braneworld models [47] also
try to explain the nature of dark matter and dark energy. Nevertheless, no hypoth-
esis have been experimentally confirmed up to date and the origin of dark matter
and dark energy remains an open question.
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A complementary cosmological observation evidencing the shortcomings of the
SM is the absence of antibaryons in the today universe. The lack of a strong signal
of solar winds annihilating with antimatter precludes its presence within the solar
system [48]. Material from other parts of our entire galaxy arriving at the Earth in
the form cosmic rays contains positrons and antiprotons. However its abundance
is consistent with secondary production mechanisms such as collisions of matter
with the interstellar medium [49, 50]. The presence of antimatter on larger scales
is severely disfavoured by the measurements of γ-ray flux from the intergalactic
medium [51, 52]. Therefore, there are no signs of traces of antibaryons in the
present day observable universe while baryons are ubiquitous in all tested scales.
This difference in the abundances of matter and antimatter is commonly referred
to as the baryon asymmetry. Within the ΛCDM model the baryon asymmetry can
be determined from Planck observations of the CMB to be η = (6.4 ± 0.1) × 10−10

[53] in concordance with measurements from the relative abundance of light el-
ements [54]. The discovery of violations of parity invariance (P) [55] and its
combination with charge conjugation invariance (CP) [56] suggested that the
asymmetry might have been created by a dynamical process in the early universe,
baryogenesis, from a symmetric initial state. Sakharov [57] formulated the three
necessary conditions for a successful baryogenesis: baryon number violation, C
and CP violation and deviation from thermal equilibrium. The SM fulfills all three
conditions, however the values of the CP-violating Cabibbo-Kobayashi-Maskawa
exclude a plausible baryogenesis, motivating research of physics beyond the SM.
Models of particle physics beyond the SM generally contain new sources of CP
violation, the most studied examples including for example electroweak baryoge-
nesis [58, 59, 60] and leptogenesis [61, 62, 63, 64]. There are not conclusive
experimental tests supporting these ideas and the subject is under current intense
investigation.

Other clue about the structure of new physics beyond the SM arises from the
study of the inflationary period in the early universe. Inflation is the main topic of
the works included in this thesis, hence it will be minutely described in the next
section.

1.2 The bang of the Big Bang: inflation

The original BB cosmology proposal was remarkably successful, providing a reli-
able description of the history of the universe from the synthesis of the light chem-
ical elements (t ' 1s and T ' 100MeV) until today (t ' 13.8Gyr and T ' 2.75K).
Nevertheless, the ‘old’ standard cosmology proved to suffer severe shortcomings
in the predictive power. The drawbacks of the old picture are known as the cosmo-
logical puzzles and motivated a major change of paradigm resulting in the present
understanding of cosmology. Hence our interest in briefly revisiting the cosmolog-
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ical puzzles in the following paragraphs.
The horizon problem [65] is related to the causal structure of the theory. In a

FLRW universe the region that is or was causally connected at some point in the
history of the universe with a certain position, e.g. the position of the Earth, a
time t after the Big Bang is a sphere centered at that position with radius given by
the particle horizon

dH ≡
∫ t

0

dt

a(t)
=

∫ a

0

(
1

aH

)
d ln a, (1.7)

where H is the Hubble parameter

H =
ȧ

a
, (1.8)

defining the horizon or Hubble radius (aH)−1. In the case of the Earth, the hori-
zon today defines the region we can currently observe, the observable universe. The
subtle difference between the particle horizon and the horizon lies in the moment
when the causal connection is made: the former takes into account the whole his-
tory of the observer while the latter only considers a specific time. The contrast
will prove useful if the two quantities evolve in a different manner. By definition
the horizon is always a positive quantity, hence the particle horizon in Eq. (1.7)
grows with time. The evolution of the horizon depends on the component dom-
inating the energy density of the universe. For a fluid with density ρ, pressure p
and equation of state p = ωρ, the horizon evolves as

(aH)−1 ∝ a
1
2

(1+3ω). (1.9)

In the old BB model, the universe was believed to be dominated by either rel-
ativistic (radiation) or non-relativistic (matter) species for the most part of the
evolution, the dark energy only coming to dominate at a very late epoch. The
combination (1 + 3ω) is positive for both matter and radiation causing the horizon
to monotonically increase. The consequence of this behaviour is that regions be-
ginning to stablish causal contact at the present era were never causally connected
in the past. In this context, it is very hard to understand why we observe regions
at opposite directions in the sky with the exact same measured temperature in the
CMB. As they just established causal contact with the Earth, they could not have
communicated yet with each other according to the old BB picture, hence no phys-
ical mechanism could stablish thermal equilibrium between them. Following this
line of reasoning, the old BB model could not explain the observed homogeneity
in the universe, but rather had to impose it as an initial condition in an unnatural
large amount of causally disconnected regions.

The flatness problem [66, 67] refers to the spatial geometry of the observed
universe. Geometry is described in terms of the density parameter, the ratio of the
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actual energy density of the universe, ρ to the critical energy density, ρc, defined
as the energy density for the universe to be spatially flat,

Ω ≡
(
ρ

ρc

)
=

ρ

3H2m2
P

, (1.10)

where mP is the reduced Planck mass, mP ' 2.435 × 1018GeV. Boomerang[68]
and Maxima[69] collaborations measured the present density parameter to be
very close to a flat geometry solution with the most accurate result up to date,
|Ω0 − 1| = 0.001 ± 0.006, given by the combination of the Planck, WMAP and
baryon acoustic oscillation results [53]. This fact might be problematic because
of the time dependence of the density parameter, whose evolution is given by the
differential equation

dΩ

d ln a
= (1 + 3ω)Ω(Ω− 1). (1.11)

In the old version of the BB model the flat solution is an unstable fixed point due
to the positive combination (1 + 3ω). Therefore, for the universe to be as close to
the flat solution as observed after 13.8Gyr of evolution, the initial conditions must
be unacceptably fine tuned, e.g. |Ω(t = 1s)− 1| . 10−16. The fine tunning is even
more unreasonable when the horizon problem is taken into account, as the initial
conditions for each of the enormous number of causally disconnected region must
be fine tunned separately.

The problem of the origin of the inhomogeneities is related to the formation
of the structures observed in the universe. Despite the measured large scale ho-
mogeneity, a plethora of small scale structure is observed, such as stars, galaxies,
clusters and superclusters. The standard picture for the formation of such rich
abundance of structure defends the process of gravitational collapse of small pri-
mordial overdense regions into the array of structure present today. The CMB
photons did not participate in the gravitational collapse, therefore they carry to-
day an imprint of the primeval density inhomogeneity, which was discovered to be
of one part in 105 by the COBE satellite[70]. The old BB paradigm was not able to
propose a mechanism producing such inhomogeneities in the energy density, and
also consigned it to the realm of initial conditions.

The solution of the cosmological puzzles inspired the development of the in-
flationary paradigm [71, 72, 73], modifying the picture of the early universe pro-
vided by the BB model. The idea behind inflation is an epoch during the first stages
of the history of the universe when the space expanded with positive acceleration,
ä(t) > 0. The simplest and most common way to achieve such acceleration is
through a single scalar field dominating the energy density of the universe dur-
ing inflation. Not surprisingly, the scalar field is known as the inflaton, φ. Scalar
fields can mimic different equations of state depending on their dynamics, as their
energy density and pressure are defined by

ρφ = φ̇2 + V (φ), pφ = φ̇2 − V (φ), (1.12)
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where a dot indicates time derivative and V (φ) is the potential of the inflaton.
Therefore, the equation of state is given by

ωφ =
φ̇2 − V (φ)

φ̇2 + V (φ)
. (1.13)

In a FLRW universe dominated by the inflaton, the acceleration of the expansion
is given by

ä

a
= − ρφ

6m2
P

(1 + 3ωφ). (1.14)

For the acceleration to be positive, the combination (1 + 3ωφ) must be negative.
This requirement could not be fulfilled in the BB model without inflation, as we
saw in the review of the cosmological puzzles. Nevertheless, a scalar field with a
negligible kinetic energy compared to the potential, V (φ) >> φ̇2, mimics a cos-
mological constant with equation of state ω ' −1. In that case, the combination
(1 + 3ωφ) is negative and the universe expands with a positive acceleration. The
condition V (φ) >> φ̇2 is a constraint in the possible shapes of the inflationary
potential, in this sense the potentials suitable for a prosperous inflation are said to
be flat.

Inflation provides an elegant resolution for the cosmological puzzles. The
horizon and flatness problems can be avoided due to the negative combination
(1 + 3ωφ) during the inflationary epoch. According to Eq.(1.9) the horizon shrinks
during inflation, therefore if the inflationary era was long enough, the horizon in
the early universe was larger than in the present age. Hence the particle horizon
today is much larger than the Hubble radius because the particle horizon got most
of its contribution from early times. As a consequence, regions that currently are
not in causal contact were causally connected in the past, so that physical mech-
anisms could stablish the observed homogeneity. The flatness problem is evaded
because the Ω = 1 solution is turned into an attractor of Eq. (1.11), for that reason
a different set of initial conditions will generate a flat space time today and no fine
tunning is required. The problem of the origin of the inhomogeneities is solved
due to quantum effects in the scalar field. The inflaton takes slightly different val-
ues in different regions of the space, providing a profile of over- and underdense
sectors that will evolve later on in the small scale structure of the universe through
gravitational collapse.

In order to describe dynamics during inflation, the scalar field is split in a
spatially homogeneous background component and spatially inhomogeneous per-
turbations around it,

Φ(x, t) = φ(t) + δφ(x, t) + ... (1.15)

The background evolution is governed by the Klein-Gordon equation combined
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with the Friedmann equation

φ̈+ 3Hφ̇+ Vφ = 0, (1.16)

H2 =
ρφ

3m2
P

, (1.17)

where Vφ is the derivative of the potential with respect to the field. The standard
approximation technique for studying the inflationary solutions of Eq. (1.16) is
the slow-roll approximation. It is assumed that the potential is flat enough for the
motion of the inflaton to be overdamped, so that the nearly constant potential is
the dominant source of energy density in the early universe. Under the slow-roll
approximation the system of Eqs. (1.16,1.17) simplifies to

φ̇ ' −Vφ
3H

, (1.18)

H2 ' V (φ)

3m2
P

. (1.19)

The slow-roll approach is accurate when two conditions hold

ε(φ) << 1, |η(φ)| << 1, (1.20)

where the slow roll parameters ε and η are defined by1[74, 75]

ε(φ) =
m2
P

2

(
Vφ
V

)2

, (1.23)

η(φ) = m2
P

Vφφ
V
. (1.24)

In the majority of the models inflation ends when the slow-roll conditions are
violated. The duration of the inflationary period is quantified by the logarithm of
the ratio of the scale factor at the end to its initial value, the number of e-folds,

Ne = ln
a(tend)

a(t)
=

∫ tend

t

Hdt. (1.25)

The exact number of e-folds required to solve the horizon and flatness problem
depends on the details of the evolution subsequent to the inflationary epoch. After

1There is an alternative definition in terms of the Hubble parameter

εH = 2m2
P

(
Hφ

H

)2

, (1.21)

ηH = 2m2
P

Hφφ

H
, (1.22)

in slow-roll εH → ε and ηH → η − ε.
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inflation an era of reheating is believed to take place [76, 77, 78, 79], where the
energy density stored in the inflaton field was dissipated into other degrees of
freedom and the tested features of the old BB paradigm were recovered. The
specifics of reheating are not known yet, however, we can place limits on the
minimum number of e-folds required to solve the puzzles. Assuming that the
energy density is constant during inflation, this number is given by [80]:

Nmin
e ' 62− ln

1016GeV

ρ
1/4
f

− 1

3
ln
ρ

1/4
f

ρ
1/4
reh

, (1.26)

where ρf and ρreh are the energy densities at the end of inflation and at the
end or reheating respectively. The minimum number of e-folds varies between
Nmin
e = [25, 70], with the upper limit arising from inflation at the Planck scale

and instantaneous reheating, and the lower limit coming from low scale inflation
and a long reheating period. Most popular models in the literature consider the
intermediate range Ne = [50, 60].

There are two observable magnitudes that can be extracted from the inflaton
perturbations. The power spectrum PR represents the power of the scalar fluctua-
tions at each comoving scale. The tensor-to-scalar ratio r measures the amplitude
of the gravitational waves r produced during inflation by the tensor perturbations
relative to the amplitude of the scalar fluctuations. In the slow-roll approximation,
the power spectrum of a comoving scale λ with comoving wave number k can be
computed from background quantities to be

PR(k) =

[(
H

φ̇

)(
H

2π

)]2

k=aH

, (1.27)

where this expression is understood to be evaluated when the scale crosses the
horizon during inflation, k = aH. Before horizon crossing, the scale is inside
the horizon, k > aH and the curvature perturbation induced by the quantum
fluctuation evolves according to the dynamics of the particular model of inflation.
After horizon crossing the scale is outside the horizon, k < aH, with the curvature
perturbation remaining constant in single field models. Inflation predicts the scale
dependence of the power spectrum to be

PR(k) = As

(
k

k0

)ns−1

, (1.28)

where As is the amplitude of the power spectrum, k0 is a reference scale and ns
is the spectral index. The most common models of slow-roll inflation predict the
spectral index to be

ns − 1 = −6ε+ 2η. (1.29)
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During inflation ε << 1 and |η| << 1, therefore the spectral index is predicted
to be very close to ns = 1 implying a nearly scale invariant power spectrum. The
slow-roll approach also allows to compute the spectrum of gravitational waves

Pgrav(k) =
2

m2
P

(
H

2π

)2

k=aH

, (1.30)

which is parametrized as

Pgrav(k) = At

(
k

k0

)nt
. (1.31)

The spectral index of the tensor modes in single field inflation is also predicted to
be nearly scale invariant, nt = −2ε. Experiments looking for traces of primeval
gravitational waves describe its amplitude as a ratio to the amplitude of the scalar
perturbations through the tensor-to-scalar ratio

r =
At

As

. (1.32)

The nearly scale invariant spectrum of scalar perturbations and the non-zero am-
plitude of the tensor perturbations are the two most outstanding predictions of the
inflationary paradigm. The former was confirmed by the observations of the COBE
satellite and the balloon experiments Boomerang and Maxima[70, 81]. The most
accurate current estimation of the spectral index is ns = 0.9616 ± 0.0094 made by
the Planck collaboration[53]. The BICEP2 collaboration claimed the discovery of
gravitational waves through measurements of the CMB polarization [82], however
as for today it is not yet clear whether the polarization they found is due to a real
signal of gravitational waves or a background signal of dust emission [83].

Inflation is so far the only paradigm solving the cosmological puzzles consistent
with observations. This fact in combination with the confirmation of its prediction
of a nearly scale invariant power spectrum prompted the incorporation of inflation
in the standard BB model. Inflation answered some of the old questions of cosmol-
ogy and proposed new challenges. The SM together with general relativity is not
able to nominate a successful candidate to play the role of the inflaton, therefore
motivating research beyond known physics.

1.3 Warming up inflation

The main features of inflation such as the accelerated expansion, the nearly scale
invariant power spectrum and the generation of gravitational waves are well un-
derstood. However the details of the particle physics model underlying inflation
are still a mystery, because the observational data cannot choose a preferred can-
didate in the plentiful zoo of proposals. Realistic particle physics descriptions of
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inflation should include couplings of the inflaton to other species, so that it can
decay during the reheating epoch and repopulate the universe with the matter
content of the SM. Nevertheless, the standard picture of inflation assumes that the
role of the interactions is negligible during the inflationary era. Any other compo-
nent present along with the inflaton is diluted away by the spurt of acceleration
and the universe ends in a supercooled state. This behaviour inspires us to refers
to this picture as cold inflation.

An alternative picture is warm inflation, originally proposed in [84, 85] follow-
ing on earlier work in [86, 87]. In this scenario the interactions of the inflaton field
with other degrees of freedom are taken into account during inflation, with dissi-
pation of energy from the inflaton to the other species as a natural outcome. The
concomitant particle production may balance the dilution effect of the accelerated
expansion if dissipation is strong enough, resulting in an inflationary state that is
far from the supercooled vacuum that is conventionally considered. In particular,
if the resulting particles have sufficiently strong interactions between them, they
can possibly reach a nearly-thermal state at a temperature T > H, thus potentially
changing the dynamics of inflation.

The quantum field theory origin of the dissipation needed to realize warm
inflation was first examined in [88]. This investigation proposed that solutions
relevant to warm inflation should be explored within an adiabatic approximation
of quantum field theory, which is the approximation that has been followed by
all subsequent research in this area. The works [88, 89] showed that couplings
of the inflaton to light degrees of freedom in a thermal bath will induce thermal
corrections to the inflationary potential that may spoil its flatness, thus ending
inflation. Therefore, they proved that not every interaction pattern is compatible
with inflation. Most scenarios considered in the literature so far in the context of
quantum field theory are based on the two-stage interaction pattern first proposed
in [90]. The supersymmetric version of this pattern is described in terms of the
chiral superfields Φ, X and Y with the superpotential[91, 92]

W = gΦX2 + hXY 2 + f(Φ). (1.33)

The scalar component of the superfield Φ describes the inflaton field, with an
expectation value φ = ϕ/

√
2, which we assume to be real, and the generic

holomorphic function f(Φ) describes the self-interactions in the inflaton sector.
The expectation value of the inflaton field gives large masses to the bosonic and
fermionic components of the intermediate superfields X. They catalyze the pro-
duction of the components of the superfields Y , which remain light, producing
a nearly-thermal bath of radiation. Renormalizable superpotentials of the form
in Eq. (1.33) are ubiquitous in supersymmetric models, such as for example the
NMSSM, where the additional singlet could play the role of the inflaton and
dissipate its energy into (s)quarks and (s)leptons through the Higgs portal, e.g.
W = gΦHuHd+hQHuU+ . . . Notice, however, that a much larger number of fields
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is required to achieve a sufficient number of e-folds of inflation than in the MSSM.
Such a superpotential also arises in D-brane constructions, where dissipative ef-
fects have been shown to play an important role in overcoming the associated
eta-problem [93].

In the region where the microphysical dynamics determining dissipation are
faster than the macroscopic motion of the background inflaton and the expansion,

Γχ >

∣∣∣∣∣ φ̇φ
∣∣∣∣∣ , H, (1.34)

with Γχ being the decay width of the heavy bosonic field, the non-local effects
of dissipation yield, to leading order, an additional friction term in the inflaton’s
equation of motion

φ̈+ (3H + Υ)φ̇+ Vφ = 0. (1.35)

The dissipative coefficient Υ helps overdamping the inflationary trajectory, thus
allowing for longer periods of slow-roll inflation. It can be computed microscopi-
cally in the particular particle physics realization of inflation in Eq.(1.33) and may
in general depend on the value of the inflaton field and the properties of the multi-
particle state produced by dissipation. The leading contribution to the dissipation
coefficient has the following form [94]:

Υ =
4

T

(
2g2
)2
ϕ2

∫
d4p

(2π)4
ρ2
χnB(1 + nB) , (1.36)

where nB(p0) = [ep0/T −1]−1 is the Bose-Einstein distribution and ρχ is the spectral
function for the scalar component, χ, of the X field,

ρχ(p0, p) =
4ωpΓχ

(p2
0 − ω2

p)
2 + 4ω2

pΓ
2
χ

, (1.37)

where ωp =
√
m̃2
χ + p2 for modes of 3-momentum |p| = p and energy p0, and m̃χ

is the effective mass of the χ scalars including the thermal corrections induced by
the Y fields

m̃2
χ = m2

χ +
h2NY

4
T 2 . (1.38)

The integral in Eq. (1.36) receives contributions from virtual χ modes with low
momentum and real χ modes with momentum near the pole. The solution can be
written as the sum of both contributions [95, 94, 96, 97]

Υ ' ΥLM + ΥP

' h2

16π
NXNY

T 3

φ2
+

8√
2π

g2NX

h2NY

√
Tmχe

−mχ/T , (1.39)
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In this thesis, we will focus our analysis in the region of the parameter space where
the low momentum contribution is the dominant contribution to the dissipative
coefficient, mχ/T ≥ 10 and h

√
NY ' 1 [96]. For convenience, we will write

the low momentum contribution in terms of an effective dissipation parameter Cφ
containing the information about the field couplings and multiplicities

Υ ' Cφ
T 3

φ2
, Cφ '

h2NY

16π
NX . (1.40)

Thermal corrections to the inflaton potential are under control in the region
mχ/T ≥ 10 due to the Boltzmann suppression caused by the mass of the heavy
fields being larger than the temperature [98]

∆VT
T 4
∼ −

(mX

T

)3/2

exp
[
−mX

T

]
. (1.41)

The thermalized radiation fluid has an energy density

ρr '
π2

30
g∗T

4, (1.42)

where g∗ is the effective number of light degrees of freedom, and is sourced by the
dissipative motion of the inflaton field, yielding

ρ̇r + 3H(ρr + pr) = Υφ̇2 (1.43)

where pr is the pressure associated with the radiation fluid. In warm inflation the
radiation bath is not redshifted by the expansion, due to the additional dissipative
source term [84, 85]. The radiation energy density needs, however, to be subdom-
inant to achieve a period of accelerated expansion, i.e. ρr � ρφ. Nevertheless, the
associated temperature may be larger than the expansion rate, T > H, which
makes the effects of expansion negligible in computing the dissipation coefficient
in Eq.(1.40). Otherwise, when T � H, dissipative effects can be disregarded
and the standard cold inflation scenario is recovered. In the intermediate region,
T ∼ H, both dissipative effects and the expansion of the universe need to be taken
into account in computing the dissipative coefficient, and the region has not been
explored so far.

In warm inflation the additional friction term Υ may help to achieve the over-
damped evolution characterizing the slow roll approximation. Once the field φ
is in the slow-roll regime, the evolution of the radiation fluid is also generically
overdamped, and the equations of motion reduce to

3H(1 +Q)φ̇ ' −Vφ , (1.44)

4ρr ' 3Qφ̇2 , (1.45)
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where we have introduced the dissipative ratio Q = Υ/(3H), which may increase
or decrease during inflation depending on the particular model [91]. In the limit
of strong dissipation, Q >> 1, the evolution of the inflaton will be severely affected
by its interactions with other species while in the weak dissipation regime, Q << 1,
the cold inflation solution will be recovered. The cold inflation slow-roll conditions
in Eq. (1.20) are corrected in warm inflation by the dissipative ratio

ε(φ) << 1 +Q, |η(φ)| << 1 +Q, (1.46)

and supplemented by two additional conditions[99]

βΥ = m2
P

(
ΥφVφ
ΥV

)
� 1 +Q , (1.47)

δ =
TVTφ
Vφ

< 1 , (1.48)

where βΥ measures the variation of the dissipation coefficient with respect to the
inflaton field and δ ensures that thermal corrections to the potential are under con-
trol. Dissipation modifies the inflaton perturbations in warm inflation through the
effect of the thermal bath even in the weak dissipation limit. A thermal gaussian
noise term ξk described by the fluctuation-dissipation theorem is added to the per-
turbations evolution equation turning it into a Langevin equation [100, 101, 102],
whose form at zero order in the metric perturbations is

δφ̈k + 3H(1 +Q)δφ̇k +
k2

a2
δφk '

√
2ΥTa−3/2ξk, (1.49)

for the Fourier transform δφk of a inflaton perturbation with wavenumber k. The
presence of interactions during inflation can drastically alter the inflationary ob-
servables of warm inflation compared to those of cold inflation. The computation
of such observables is very involved, and usually requires numerical techniques.
An analytical approximation was calculated in [99, 101, 102]

P1/2
R '

(
H

2π

)(
3H2

Vφ

)
(1 +Q)5/4

(
T

H

)1/2

, (1.50)

however, later works [103, 104] proved that this approximation was only valid in
the weak dissipation regime, and in the case where interactions are not sufficiently
strong for the inflaton perturbations to thermalize. We will come back to this
subject in part II of this thesis.
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We all have different understandings of what truth is, and we are in dan-
ger of each believing that our truth is the one and only absolute truth. I
think a search for understanding is much more serviceable to humankind.

Jocelyn Bell Burnell

2Warm inflation in a potential with an
inflection point

The slow-roll inflationary paradigm requires a particular shape of the scalar po-
tential, such that the motion of the inflaton is overdamped and the nearly constant
potential is the dominant source of energy density in the early universe. While a
profusion of phenomenological potentials with this concept of flatness have been
constructed in the literature, the main challenge has been to embed the infla-
tionary dynamics within a more fundamental theory that reduces to the Standard
Model at low energies. This is important not only in establishing a connection
between inflation and low-energy particle phenomenology but also due to the
sensitivity of the inflationary dynamics to ultraviolet effects close to the Planck
scale.

This has motivated a search for inflaton candidates in supersymmetric (SUSY)
theories, in particular in the context of supergravity/string theory (see e.g. [105]),
which provides the best-known candidate for a fundamental theory of quantum
gravity. These scenarios have the appealing feature of naturally including sev-
eral additional scalar fields, in particular the superpartners of the Standard Model
fermions and also the Higgs fields, as well as a variety of extra-dimensional mod-
uli. Moreover, these models generically exhibit a multitude of directions in field
space along which the scalar potential is completely flat in the supersymmetric
limit and which are uplifted by different SUSY breaking effects. For example,
even the simplest supersymmetric extension of the Standard Model, the MSSM,
includes nearly 300 flat directions corresponding to gauge invariant combinations
of the matter and Higgs superfields [106].

Flat directions can be lifted by different effects, including soft terms from SUSY
breaking in a hidden/sequestered sector, renormalizable and non-renormalizable
terms in the superpotential, as well as non-perturbative effects (e.g. gaugino con-
densation). In the context of string theory, these effects are generically related to
the geometry and topology of the compactified extra-dimensions, which typically
involves different fluxes and/or D-brane configurations. All these different effects
may a priori yield both attractive and repulsive contributions to the scalar poten-

17
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tial, which may conspire to produce an inflection point or even a saddle point in
the potential.

The resulting flatness thus provides a very attractive setup for inflationary
dynamics, and several successful models have been constructed in the litera-
ture. In the context of the MSSM flat directions, inflection points may for ex-
ample result from the interplay between repulsive soft trilinear A-terms and (non-
)renormalizable terms in the superpotential, providing not only inflationary mod-
els consistent with observational data but also interesting connections to low-
energy phenomenology, such as neutrino masses, natural dark matter candidates
and the recent Higgs mass from LHC [107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118]. Several different flat directions in the MSSM field space have been
analyzed so far, including simple extensions such as additional singlet fields lead-
ing to hybrid inflation models [119], as well as taking into account supergravity
corrections [120, 121] and possible embeddings within the string theory land-
scape [122]. In the context of string theory, several new possibilities arise, as for
example the case of warped D-brane inflation [123, 124, 125, 126, 127], where
the D-brane potential receives a broad array of contributions such as Coulomb-
like interactions in brane-antibrane pairs, couplings to the four-dimensional scalar
curvature and several different moduli stabilization effects in the bulk of the com-
pactification. A recent statistical analysis of these contributions has shown that
successful models typically occur near an inflection point in the potential [128].
Such features may also be found in closed-string moduli dynamics, for example
in the context of racetrack models [129] and the so-called accidental inflation
scenarios [130, 131].

Inflection point inflation thus appears in a broad range of different setups, be-
ing quite successful in terms of consistency with observational data [132], as well
as providing a natural embedding within ultraviolet completions of the Standard
Model and desirable links to low-energy phenomenology. However, these mod-
els are far from generic and typically require a fine-tuning of the different con-
tributions to the scalar potential, making inflation rather special within the vast
landscape of different possibilities.

We will revisit inflationary dynamics near an inflection point in the potential
taking into account the effects of dissipation in the inflaton’s motion. The fric-
tion term representing dissipation in the inflaton’s equation of motion helps over-
damping its trajectory, thus allowing for longer periods of slow-roll inflation and
alleviating the need for a very flat potential (see e.g. [91]), which is particularly
important in the context of supergravity and string theory [133, 134, 135, 93],
where one typically finds a severe ‘eta-problem’. In this sense, we expect the in-
clusion of dissipative effects to minimize the fine-tuning of different terms in the
scalar potential required for a sufficiently long period of inflation near an inflec-
tion point. We consider as a working example a renormalizable flat direction in a
U(1)B−L extension of the MSSM.
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2.1 Cold inflation near an inflection point

As discussed earlier, scalar potentials exhibiting an inflection point may arise in a
variety of models in supersymmetric theories and supergravity/string theory mod-
els. For concreteness, we will consider throughout most of our discussion a sim-
ple example introduced in [107, 111] and also considered in [119], consisting
of a low-scale extension of the MSSM with an additional U(1)B−L symmetry and
right-handed neutrino superfields. In particular, we focus on the scalar potential
induced for the NHuL flat direction, parametrized by a scalar field φ that plays
the role of the inflaton and which, without loss of generality, we take to be real.
This flat direction is lifted by a renormalizable term in the superpotential and by
soft-SUSY breaking terms, yielding:

V (φ) =
1

2
m2
φφ

2 +
h2

12
φ4 − Ah

6
√

3
φ3 . (2.1)

For A ' 4mφ, this potential exhibits an approximate saddle point for a field value
φ0 '

√
3mφ/h, such that V ′(φ0) ' V ′′(φ0) ' 0, which is thus suitable for inflation.

We may then define [119]:

A = 4mφ

√
1− β2

4
(2.2)

and expand the potential about the generic point of inflection, yielding for β � 1,
to lowest order:

V (φ) ' V0

(
1 + 3β2

(
φ− φ0

φ0

)
+ 4

(
φ− φ0

φ0

)3
)
, (2.3)

where V0 = V (φ0). This clearly shows that, for β = 0, φ0 is a saddle point in
the potential, with β determining the deviations from this case, i.e. the fine-
tuning of the parameters in the potential required for a sufficiently flat inflationary
potential. Note that for real values of β, the potential exhibits an inflection point
at φ0, whereas for imaginary values of β it develops a local minimum at φ > φ0,
as illustrated in Fig. 2.1. This latter option could be suited for inflation with the
field trapped in the false vacuum and then tunneling into the true minimum, as in
the old inflationary picture. However, this does not lead to a graceful exit into a
radiation-dominated era, so we will not consider this case in the remainder of our
discussion.

The inflationary dynamics, in the absence of dissipation, is determined by the
slow-roll parameters, which are in this case given by:

εφ =
1

2
m2
P

(
Vφ(φ)

V (φ)

)2

' 1

2

(
mP

φ0

)2 (
3β2 + 12∆2

φ

)2
,

ηφ = m2
P

Vφφ(φ)

V (φ)
' 24

(
mP

φ0

)2

∆φ , (2.4)
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Figure 2.1: Normalized scalar potential for different values of the fine-tuning pa-
rameter β.

where mP = 2.4 × 1018 GeV is the reduced Planck mass, ∆φ = (φ − φ0)/φ0 and
we have taken V (φ) ' V0, which holds for ∆φ, β � 1. From these quantities
we may determine the amplitude and tilt of the resulting spectrum of density
perturbations, given by:

PR '
(
H

φ̇

)2(
H

2π

)2

' 1

24π2

V0/m
4
P

εφ∗
,

ns ' 1 + 2ηφ∗ − 6εφ∗ ' 1 + 48

(
mP

φ0

)2

∆φ∗ , (2.5)

where φ∗ denotes the value of the field when the relevant CMB scales left the
horizon about 40-60 e-folds before the end of inflation, and we have used that
|ηφ∗| � εφ∗ for ∆φ, β � 1. These two conditions can be used to determine the con-
stant term in the potential V0 and φ∗, leaving φ0 and β as the only undetermined
parameters.

The dynamics of inflation is governed by the slow-roll equation:

3Hφ̇ ' −Vφ(φ) , (2.6)

with H2 ' V (φ)/3m2
P . Inflation ends in this case when the slow-roll condition

|ηφ| < 1 is violated, such that ∆φe ' −(φ0/mP )2/24. This allows us to compute the
total number of e-folds of inflation from horizon-crossing, which is then given by:

Ne =

∫ te

t∗

Hdt ' −
∫ φe

φ∗

3H2

Vφ(φ)
dφ ' 1

ξ
[arctan(1/2ξ) + arctan ((ns − 1)/4ξ)] , (2.7)

where ξ = 6β(mP/φ0)2. We can invert this expression to determine the value of β
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required for 40-60 e-folds of inflation with ns = 0.967 [136], yielding:

β ' (3.1− 5.2)× 10−3

(
φ0

mP

)2

, (2.8)

with smaller values of β yielding longer periods of inflation, since the resulting
potential is flatter. This illustrates the generic fine-tuning problem of inflection
point models, and in this particular case the soft inflaton mass and the trilinear
term in Eqs. (2.1) and (2.2) have to compensate each other to at least one part in
106 for a successful model with sub-planckian inflaton values, as can be seen by
inserting Eq. (2.8) in Eq. (2.2).

2.2 Warm inflation near an inflection point

Slow-roll inflation, whether cold or warm, requires an overdamped evolution of
the inflaton field. In warm inflation this can be achieved due to the friction term
Υ in addition to Hubble damping. Once the field φ is in the slow-roll regime, the
evolution of the radiation fluid is also generically damped, and the equations of
motion are given by

3H(1 +Q)φ̇ ' −Vφ(φ) , (2.9)

4ρR ' 3Qφ̇2 , (2.10)

where we make use of the dissipative ratio Q = Υ/(3H), and the radiation energy
density is related to the temperature through

ρr =
π2

30
g∗T

4, (2.11)

with g∗ being the number of relativistic degrees of freedom. We concentrate our
study in the LOTS realization of warm inflation described in chapter 1. Then the
dissipative coefficient reads

Υ ≈ Cφ
T 3

φ2
, (2.12)

where Cφ is a constant that depends on the couplings and the field multiplicities
and which, for the purposes of our discussion, we will take as a free parameter of
the model.

The additional friction term in Eq. (2.9) alleviates the flatness of the potential
required in order to achieve a sufficient amount of inflation. In the context of
inflection point inflation, we have seen that the β parameter determines the shape
of the potential in the vicinity of the inflection point, measuring the fine-tuning of
the underlying parameters. Therefore, we expect that a warm realization of these
models can naturally reduce the amount of fine-tuning required.
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We will use the Eq. (2.1) as a working example of a potential with an inflection
point to analyze the generic dynamics of warm inflation in this context, although
this does not correspond to a concrete realization of warm inflation in the MSSM.
Writting Eq. (2.1) in the form of Eq. (2.3), the dynamics is described by six in-
dependent parameters, in particular the value of the field at the inflection point
φ0, the corresponding height of the potential V0, the fine-tuning parameter β, the
value of the field at horizon-crossing φ∗, the dissipative constant Cφ and the effec-
tive number of light degrees of freedom g∗. We can use the WMAP 7-year results
1 giving a power spectrum with an amplitude PR = (2.43 ± 0.11) × 10−9 and a
spectral index ns = 0.967± 0.014 [136] to determine V0 and φ∗. In this discussion
we consider of the analytical approximation to the warm inflation power spectrum
calculated in[99, 101, 102]:

P1/2
R '

(
H

2π

)(
3H2

Vφ(φ)

)
(1 +Q)5/4

(
T

H

)1/2

, (2.13)

where all quantities are implicitly evaluated at horizon-crossing. In part II of the
thesis we will discuss that this expression might not be accurate in the strong
dissipative regime of warm inflation. However, the results of this chapter does
not depend strongly on it, as we only use Eq (2.13) to fix the value of the free
parameter V0, i.e. the scale of inflation. In order to solve Eq. (2.13), it is useful to
write it in a more convenient way. Using the slow-roll equations (2.9) and (2.10),
one obtains

Q∗(1 +Q∗)
13/2 ' PR

(
Cφ
3

)(
πCφ
2CR

)2

(2εφ∗)3

(
mP

φ∗

)6

, (2.14)

where CR = g∗π
2/30. Eq. (2.14) and the expression for the spectral index [91]

(1 +Q∗)(1 + 7Q∗)(ns − 1) + (2 + 9Q∗)εφ∗ + 3Q∗ηφ∗ + (1 + 9Q∗)βΥ∗ ' 0 (2.15)

form a coupled system of equations for Q∗ and φ∗ that needs to be solved numeri-
cally for given values of φ0, β, Cφ and g∗. Once the system is solved, we can obtain
the value of V0 using Eq. (2.13):

V0 '
(
CR
Cφ

)
144π2PRφ2

∗m
2
P

√
1 +Q∗

(
1 + 3β2

(
φ∗−φ0
φ0

)
+ 4

(
φ∗−φ0
φ0

)3
) . (2.16)

The system has in general three possible solutions satisfying the observational
constraints, and we have consistently chosen the one that maximizes the differ-
ence φ∗ − φ0, since as we discuss below this minimizes the amount of dissipation

1At the time of this work WMAP7 data were the latest available. Recent data do not mod-
ify significantly the central values of the observables under consideration, hence our results are
essentially unaltered.
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required for a sufficiently long period of inflation. To simplify the numerical pro-
cedure, one can use the approximate solutions in the strong and weak dissipative
regimes, Q∗ � 1 and Q∗ � 1, respectively, where the equations decouple, to find
the initial root required to calculate numerically the full solution to the coupled
system of equations. In the intermediate regime, Q∗ ∼ 1, it is sufficient to use an
initial root in this range.

2.3 Results

Having determined V0 and φ∗ from the observational constraints, we may now
study the evolution of the coupled inflaton-radiation system as a function of the
remaining parameters, Cφ, β, φ0 and g∗. For concreteness, we first fix the number
of relativistic degrees of freedom g∗ = 100, corresponding to the order of magni-
tude of the number of MSSM scalar fields, although we study the effect of varying
this parameter at the end of this section. Our main goal is to determine which is
the lowest value of Cφ required for a sufficiently long period of inflation as a func-
tion of the fine-tuning parameter β and for different values of φ0. The number of
e-folds of warm inflation can be computed by including the effects of dissipation
in Eq. (2.7):

Ne ' −
∫ φe

φ∗

3H2(1 +Q)

Vφ(φ)
dφ. (2.17)

However, due to the T - and φ-dependent dissipative ratio Q, this integral cannot
be solved analytically as in the cold inflation case. Besides, the value of the field at
the end of inflation cannot be calculated a priori. Hence, the equations of motion
for both the inflaton and the radiation fluid have to be integrated numerically.
In most areas of the parameter space, the inflaton field is always in the slow-roll
regime and therefore we may integrate Eq. (2.9). However, in some regions of the
parameter space the radiation fluid is not slow-rolling, in that case we integrate
the full equation

φ̈+ (3H + Υ)φ̇+ Vφ = 0. (2.18)

The consistency of our analysis is determined by three main conditions:

• εH = − Ḣ
H
< 1 is the requirement for accelerated expansion;

• mX � T is the definition of the low temperature regime, in which the dissi-
pative coefficient in Eq. (2.12) has been calculated.

• T > H describes the regime where inflation is warm, and dissipation modi-
fies the evolution and/or observables of inflation.
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Figure 2.2: Values of Cφ and β required to obtain Ne ∈ [40, 60] for g∗ = 100 and
φ0/mP = 10−4, 10−2, 1 from top to bottom.

These conditions need to hold for 40− 60 e-folds of inflation in order to solve the
horizon and flatness problems, and in Fig. 2.2 we show the regions in the plane
Cφ − β where this is obtained for different values of the inflection point φ0.

As one can easily see in this figure, lower values of φ0 require more dissipation
in order to obtain the same number of e-folds, which is related to the associated
increase in the slow-roll parameters in Eq. (2.4), due to a steeper shape of the
potential. In addition, we find two distinct regions of parameter space in Fig.
2.2, corresponding to small and large values of the fine-tuning parameter β. The
separation between these regions depends on the value of φ0, with the small-β
region moving to lower values of β for smaller φ0.

In the small-β region, the potential is extremely flat and intuitively one would
expect less friction to be required for a given period of accelerated expansion.
However, Fig. 2.2 clearly shows that the required value of Cφ becomes constant
for low values of β, which suggests taking a closer look at the physical mechanism
behind dissipation. Since it is the motion of the inflaton field that produces light
particles in a quasi-thermal bath, the amount of radiation produced depends on
how fast the inflaton is rolling, as can be explicitly seen in Eq. (2.10). If the
potential is too flat, the inflaton will roll too slowly, which suppresses the amount
of radiation produced and consequently decreases the temperature of the thermal
bath. In fact, it is the condition T > H that determines the end of warm inflation
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in this region of parameter space, as one can see in Fig. 2.3, where we plot the
evolution of the relevant quantities in this regime. This also explains why the
initial condition farther away from the inflection point yields the lowest value of
Cφ, since an initially steeper potential can more easily produce a radiation bath
with T > H.

In Fig. 2.3(a), one can see that the inflaton starts above the inflection point
and ends close to the latter, with the temperature dropping below the Hubble rate
after 40 e-folds of inflation. Notice, however, that inflation does not necessarily
end at this point, since εH < 1 and decreasing, but our analysis is no longer con-
sistent at this stage since de Sitter effects may modify the dissipation coefficient.
It may, in fact, be possible for an additional period of cold inflation to follow, thus
decreasing the amount of dissipation required to achieve the desired number of
e-folds. However, the computation of the dissipative coefficient in the interme-
diate regimen T ∼ H has not been studied up to date. Finally, in Fig. 2.3 we
see that εH follows closely the evolution of the radiation energy density, which in
this case is becoming more and more sub-leading compared to the inflaton field,
thus requiring an additional reheating stage to recover a universe dominated by
radiation.

In the large-β region the potential is steeper, therefore the production of ra-
diation is enhanced and T > H is no longer the dominant constraint. In fact, in
this regime radiation tends to be overproduced and dominate the energy density,
thus allowing for a graceful exit from inflation, as shown in Fig. 2.4 where we plot
the evolution with the number of e-folds of the relevant quantities in the large-β
region.

In Fig. 2.4(a), one can see that the inflaton field starts away from the inflec-
tion point, remains close to it for a few e-folds but that, due to the slope of the
potential, inflation ends beyond the point of inflection, in contrast with the small-
β behavior. Notice that ρr/ρφ decreases sharply when the field slows down close
to the inflection point, in agreement with the discussion above, but then increases
as the field moves to lower values and eventually ends inflation with a smooth exit
into a radiation-dominated era. In Fig. 2.4(c) it is also clear that T > H for the
whole duration of inflation.

Although we have not plotted the condition mX � T in Figs. 2.3 and 2.4, we
have checked that it is satisfied in all the parameter space shown for couplings
of the inflaton to the catalyst field gΦX2 around g ∼ 1. On the other hand, we
may consider more general potentials, associated with different SUSY breaking
effects, yielding a different value for the numerical coefficient of the slow-roll
parameter ηφ in Eq. (2.4). We then find that, for lower values of this coefficient,
the condition mX � T is more stringent than T > H. However, the amount of
dissipation required does not change significantly even for an order of magnitude
change in this coefficient, so we do not explore this possibility in more detail.
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Finally, we analyze the effect of the number of relativistic degrees of freedom
on the amount of dissipation required for successful inflation. In Fig. 2.5 we show
the Cφ − β region where 40-60 e-folds of inflation are obtained with different
values of g∗.
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Figure 2.5: Values of Cφ and β required to obtain Ne ∈ [40, 60] for φ0/mP = 1 and
g∗ = 1, 104.

In Fig. 2.5, it can be observed that the required value of Cφ decreases for
smaller g∗. In order to understand this behavior, we compute the explicit de-
pendence of the dissipation coefficient on g∗ by substituting Eq. (2.11) into Eq.
(2.12):

Υ =
303/4Cφ

π3/2g
3/4
∗

ρ
3/4
r

φ2
. (2.19)

Hence, the relevant quantity is an effective dissipation constant:

C̃φ =
Cφ

g
3/4
∗

(2.20)

that remains constant in Fig. 2.5 for the different values of g∗, which is also the
case for smaller (sub-planckian) values of the inflection point.

Our numerical simulations of the dissipative dynamics of inflation in this model
have lead us to two main conclusions. Firstly, if dissipative effects are sufficiently
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strong, a sufficiently long period of inflation may occur independently of the fine-
tuning of the parameters in the potential, which was expected since the additional
friction alleviates the need for a very flat potential. Secondly, and more surpris-
ingly, the required amount of dissipation does not decrease arbitrarily for flatter
potentials, given that if the scalar potential is too flat and the inflaton evolves too
slowly, it becomes more difficult to sustain a radiation bath with a temperature
above the Hubble rate, which is required for consistency of our analysis. This
results in a field-dependent critical value of the fine-tuning parameter β below
which the required dissipation parameter Cφ becomes constant. Above this value,
the potential is sufficiently steep to ensure that T > H throughout inflation, with
steeper potentials requiring larger values of the dissipation parameter.

The value of Cφ depends on the coupling between the intermediate fields and
the light degrees of freedom, as well as on the multiplicities of both heavy and light
fields. The minimum value of Cφ & 106 obtained for g∗ = 100 is of the same order
as that obtained for other forms of the inflaton potential, such as monomial or
hybrid models [91], which implies large couplings and field multiplicities, so one
may ask whether there is any gain from the model building perspective in trading
a large fine-tuning in the parameters of the potential for large couplings and a
large number of fields. On one hand, fine-tuning makes inflation less generic,
since it isolates a small region of the available parameter space, whereas inflation
should provide an explanation for the otherwise finely-tuned conditions in the
early universe. On the other hand, a large number of degrees of freedom during
inflation points towards more complicated beyond the Standard Model scenarios,
e.g. with fields in large representations, which may be realized in generic GUT
constructions or D-brane models [93].





Ninguém educa ninguém, ninguém educa a si mesmo, os
homens se educam entre si, mediatizados pelo mundo.

Paulo Freire

3Viscous effects in warm inflation I:
background

In warm inflation the transfer of energy of the inflaton field to the radiation bath
is mediated by the dissipation term in the inflaton’s evolution equation. Never-
theless, an additional effect can arise due to inner couplings in the radiation fluid
itself. Internal decays within the radiation fluid can make it depart slightly from
thermal equilibrium. Therefore, the radiation fluid can behave as a non-ideal fluid
and viscosity effects must be taken into account [137]. At the background level,
the relevant viscous effect is due to bulk pressure, since it is the only viscous ef-
fect appearing in the background equations for an FRW universe. There may be
other dissipative effects in the radiation fluid itself, like shear viscous stresses, that
may be relevant at the perturbation level in the determination of the spectrum of
density perturbations, as demonstrated recently [138]

The study of bulk viscous effects in cosmology, and in particular in inflation, has
some history to it, focused mainly on the effect of the bulk pressure as a negative
pressure (for a partial sample of the earlier works on bulk viscous cosmologies, see
for example Refs. [139, 140, 141, 142, 143, 144, 145, 146]). In addition, more
recently, there has been a surge of interest in exploring the effects of the bulk
pressure as the origin of the present accelerated expansion of the universe (see
e.g. Refs. [147, 148, 149, 150]). Almost all of these works only use phenomeno-
logical forms for the bulk viscosity. The investigation described in this chapter
differs from previous one since we will apply first principle quantum field the-
ory computed expressions for the bulk viscosity, based on the calculations found
e.g. in Refs. [151, 152], to warm inflation. There has been very little work done
in studying first principles bulk viscosity expressions in application to cosmology.
There is one paper we are aware of along these lines [147], where quantum field
theory derived expressions of bulk viscosity are used, and it is shown how they
can play the role similar to dark energy.

We are interested in determining the stability conditions of the background
equations of warm inflation when coupled to the bulk viscous radiation bath. Ear-
lier studies examining the stability properties of the warm inflation equations in-

31
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clude Refs. [99, 153], but these studies did not include the effects of bulk vis-
cous pressure. Preliminary studies on the inclusion of bulk viscous pressure have
been done in [154, 155], where only the non-causal theory of Eckart [156] has
been used. Here we extend the stability analysis of the dynamical warm inflation
equations to include bulk viscous effects. Moreover our analysis will be done not
just for the non-causal Eckart theory but also the causal theories of bulk pressure
[157, 158, 159], with a full analysis of the differences in the resulting dynamics
from these different theories.

In the study of viscous effects in cosmology it is common to use linear expres-
sions to describe the viscous pressure, where it is assumed that the deviations are
close to equilibrium. However, the viscous pressure can, in principle, take the
system far from its thermodynamical equilibrium, so, we must apply suitable ap-
proaches in order to see if one really needs to use a more robust description, incor-
porating nonlinear effects. We consider here three different theories to describe
the viscous pressure: the non-causal theory due to Eckart [156], the linear and
causal theory of Israel-Stewart [157, 158] and finally we will also use a recent
causal and nonlinear theory proposed by the authors in [159], named by them
Nonlinear Causal Dissipative Hydrodynamics (NLCDH). There have been other pro-
posals for a nonlinear theory for the bulk viscous pressure [160, 161] that make
use of ad-hoc parameters, such as the time where nonlinear effects become impor-
tant [160] or functions [161] that do not have an immediate interpretation from
quantum field theory. In using such approaches there is no immediate understand-
ing how to associate their parameters with first principles parameters. We have
considered the theory for bulk pressure in [159] since it utilizes parameters which
can readily be determined from microscopic physics, in particular from quantum
field theory. The theories for the bulk pressure we analyze here are more natural
to use in field theory model building, where the dissipation terms, viscosity coeffi-
cients and relaxation times are well defined and can be reliably computed once a
specific field theory model is given.

We will study the effects of the inclusion of bulk viscosity in three commonly
used supersymmetric realizations of warm inflation, the chaotic, hybrid and hilltop
models. As the bulk viscosity modifies the background dynamics of warm inflation,
it also changes the available parameter space, which will be analyzed here. The
Eckart description of the bulk viscosity will be accurate enough in that part of
the study, and we will study the limits on the couplings of the underlying particle
physics theory for the validity of this approximation.
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3.1 Warm Inflation in a bulk viscous radiation fluid

In the presence of a bulk viscous pressure, Π, the stress-energy tensor for the
radiation fluid is given by [137, 162, 163],

T (r)
µν = (ρr + pr + Π)u(r)

µ u(r)
ν + (pr + Π)gµν , (3.1)

where ρr is the radiation energy density, pr the adiabatic radiation pressure,
u

(r)
µ the four velocity of the radiation fluid and gµν the four-dimensional metric. It

happens then that the bulk pressure enters as a contribution to the radiation pres-
sure pr, such that we can define in general an effective pressure for the radiation,
p̃r, given by

p̃r = pr + Π . (3.2)

The evolution equation for the radiation fluid energy density ρr then becomes

ρ̇r + 3H(ρr + p̃r) = Υ(ρφ + pφ) , (3.3)

where pφ = φ̇2/2− V (φ, T ), and ρφ + pφ = φ̇2.
It is also useful to express this in terms of the entropy density s. From the

Helmholtz free energy f = ρT − Ts, where f = V (φ, T ), and using s = −∂f/∂T ,
the total energy density ρT becomes

ρT =
φ̇2

2
+ V (φ, T ) + Ts , (3.4)

and the Hubble rate H reads

H2 =
1

3m2
P

[
φ̇2

2
+ V (φ, T ) + Ts

]
, (3.5)

where mP is the reduced Planck mass, mP = 1/
√

8πG = 2.4×1018GeV. Using also
that pr = (γ−1)ρr and that the entropy density s is related to the radiation energy
density by Ts = γρr, Eq. (3.3) can then be written in terms of the entropy density
as

T ṡ+ 3H(Ts+ Π) = Υφ̇2 , (3.6)

where we have used γ = 4/3, which is valid for a quasi-equilibrium high tempera-
ture thermal bath typical of warm inflation.

From Eq. (3.6), the dynamical effects of the bulk viscosity can be easily read.
Given that the bulk viscous pressure Π is negative, it acts to decrease the radiation
pressure, thus enhancing the effect from the source term on the RHS in the equa-
tion for the entropy density. As a consequence, the entropy density increases, and
therefore the radiation energy density also grows. On the one hand, if this bulk
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pressure term is too large, there is too much radiation production and the radia-
tion energy density dominates too soon over the scalar field energy density, thus
spoiling inflation. This regime is called the unstable regime. On the other hand,
if the bulk pressure term is controlled to avoid the radiation domination until the
end of inflation, the system is said to be in the stable regime. In this regime the
bulk viscosity gives rise to an additional negative pressure, and hence, inflation is
enhanced.

To account for the dynamics involving the bulk viscous pressure Π, as explained
at the beginning of this chapter, we will consider three different theories: the non-
causal theory due to Eckart [156], the linear and causal theory of Israel-Stewart
(IS) [157, 158], and a recent causal and nonlinear theory, Nonlinear Causal Dis-
sipative Hydrodynamics (NLCDH), proposed in [159]. The starting point to build
these hydrodynamic theories is the conservation equations of the stress-energy
tensor and the number density vector Nµ = nuµ,

∇µT µν = 0 , ∇µN
µ = 0 , (3.7)

with the additional condition on the 4-entropy, written in terms of the entropy
density s, sµ = suµ, that must satisfy the second law of thermodynamics in its
covariant form,

∇µs
µ ≥ 0 . (3.8)

The 4-entropy, just like the stress-energy tensor, gains a contribution coming from
the dissipative fluxes,

sµ = suµ +
Qµ

T
, (3.9)

where Qµ = Qµ(Nµ, T µν) accounts for the dissipative fluxes. The irreversible ther-
modynamics comprises of the dissipative forces to the hydrodynamics variables at
equilibrium, the number density n, the energy density ρ and the pressure p. These
quantities are able to describe the energy fluxes in a nonideal fluid. There are
different ways in which this can be done, which lead to different descriptions for
the dissipative fluxes, like for example for the bulk pressure. We summarize below
the Eckart, IS and NLCDH theories for the bulk pressure.

3.1.1 Eckart theory for the bulk pressure

The Eckart theory [156] assumes that the entropy vector sµ is linear in the dissi-
pative fluxes. The nonequilibrium contribution to the entropy vector, Qµ, to first
order, should then be proportional to the dissipative fluxes. Neglecting dissipative
terms other than the bulk pressure, we then have that

Qµ ' a(n, ρ)Πuµ , (3.10)
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where the proportionality factor is obtained from the equilibrium condition and
from the covariant form of the second law of thermodynamics, Eq. (3.8). This
then gives [162, 163]

T∇µs
µ ' −3HΠ . (3.11)

To ensure that the second law of thermodynamics, Eq. (3.8), is satisfied and
interpreting the term 3H in Eq. (3.11) as a dissipative force, χE = 3H, we impose
Π to be linear in this force, expressing bulk viscosity as

Π = −3ζbH , (3.12)

where the proportionality term ζb ≡ ζb(n, ρ) ≥ 0 is the bulk viscosity coeffi-
cient [137].

The bulk pressure expressed like Eq. (3.12) is a noncausal theory, i.e., the speed
of the fluxes propagation is infinite. The Eckart theory can be considered in some
circumstances as a reasonable approximation for the irreversible thermodynamics.
This may happen, for example, when sufficiently short relaxation time scales are
involved, otherwise a causal theory would be a much better choice. We now turn
to the simplest of such a causal theory, the IS one.

3.1.2 Israel-Stewart theory for the bulk pressure

The IS theory [157, 158] goes one step further than the Eckart theory by account-
ing for second order contributions beyond equilibrium, by expanding the entropy
vector to second order in the dissipative fluxes. Generically this gives, by again
only considering the bulk pressure contribution,

sµ ' suµ − β0Π2 u
µ

2T
, (3.13)

where β0(n, ρ) ≥ 0. From the covariant derivative of the entropy vector,

T∇µs
µ = −Π

[
3H + β0Π̇ +

T

2
∇µ

(
β0

T
uµ
)

Π

]
, (3.14)

and from the second law of thermodynamics to be satisfied, Eq. (3.8), it is imposed
again, like in the Eckart case, that the dissipative fluxes be linear in the dissipative
forces. For the bulk pressure Π this implies from Eq. (3.14) that

Π = −ζb
[
3H + β0Π̇ +

T

2
∇µ

(
β0

T
uµ
)

Π

]
. (3.15)

The relation (3.15) is analogous to Eq. (3.12) in the Eckart theory. The difference
here being that, from Eq. (3.11), the Israel-Stewart force is expressed as

χIS = 3H + β0Π̇ +
T

2
∇µ

(
β0

T
uµ
)

Π . (3.16)
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By defining τ = ζbβ0, which is interpreted as a relaxation time for the bulk viscous
processes in the radiation fluid, then Eq. (3.15) can also be rewritten in the form

τ Π̇ + Π = −3ζbH −
ζbT

2
∇µ

(
τ

ζbT
uµ
)

Π , (3.17)

and by expanding the derivative in the last term in Eq. (3.17) it can finally be
expressed as

τ Π̇ + Π = −3ζbH −
τΠ

2

(
3H +

τ̇

τ
− ζ̇b
ζb
− Ṫ

T

)
, (3.18)

which is the IS equation for the bulk pressure.
As shown in Ref. [164], the propagation speed for the bulk pressure is given

by

c2
visc =

ζb
(ρ+ p)τ

, (3.19)

and, thus, for τ 6= 0 there is a finite propagation speed for the flux, while for the
Eckart theory, where τ = 0, it is infinity (noncausal). In a quantum field theory
description for the radiation bath, e.g. for example in the two-stage decay mech-
anism for warm inflation, both the bulk viscosity coefficient ζb and the relaxation
time τ can be defined unambiguously and be computed microscopically, just like
the dissipation coefficient Υ. In particular, the bulk viscosity coefficient can be ob-
tained from a Kubo formula[165, 166] for the high-temperature light particles of
the radiation bath [151, 152], and τ can be associated with the respective decay
time of these particles, τ = 1/Γ, where Γ is the decay width. For the validity of
considering a quasi-equilibrium thermal radiation bath, we are then required to
impose that

τH ≡ H/Γ < 1 . (3.20)

Likewise, the assumption of proximity with thermal equilibrium requires the dis-
sipative fluxes to be small compared to the equilibrium pressure,

|Π| � p . (3.21)

The IS equation for Π, Eq. (3.18), can then be seen to give a correction to the
Maxwell-Cattaneo equation

τ Π̇ + Π = −3ζbH , (3.22)

which, after Eckart, is the simplest equation for the bulk pressure including relax-
ation (causal) effects.
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3.1.3 Nonlinear causal dissipative hydrodynamics theory for
the bulk pressure

Next, let us consider the NLCDH theory proposed by the authors of Ref. [159].
This theory assumes the Eckart force term, χE = ∇µu

µ = 3H, plus a memory ef-
fect, so as to respect causality. Since this theory in principle makes no assumptions
about the linearity of the dissipative fluxes in the bulk pressure, as it was assumed
in the IS theory for instance, it has been regarded as a nonlinear theory for the
bulk pressure. The memory effect adds a relaxation to the system. Recall that
the Maxwell-Cattaneo theory Eq. (3.22) is obtained by adding a relaxation time
directly to Π. In the NLCDH instead, the memory effect is added to the quantity
Π̃ = ΠV (where V is the volume), which is then integrated in a cell of the fluid 1.
This is done by imposing the relation Π̃ = −ζbVχE. Through the addition of the
memory effect, we are lead to [159]

τ ˙̃Π + Π̃ = −3HζbV . (3.23)

The first term in the above equation results in τ(Π̇V + ΠV̇). After using the con-
servation law for the volume in a cell of the fluid, ∇µ(uµ/V) = 0, it can be shown
that [159]

∇µ
uµ

V =

(
1

V

)·
+

1

V∇µu
µ = −

(
1

V

)2

V̇ +
1

Vχ = 0 . (3.24)

It follows that χ = V̇/V and then V̇ = χV = 3HV. From Eq. (3.23), it then follows
the NLCDH equation for the bulk pressure [159],

τ Π̇ + Π = −3H(ζb + τΠ) . (3.25)

The NLCDH description suppressesthe effect of the bulk viscosity in the radiation
production compared to IS, being a more robust characterization of such viscosity.
This feature is caused by the non-linearity nature of the NLCDH description, which
translates into a larger effect of the same relaxation time, as can be observed by
comparing Eqs. (3.18) and (3.25).

1The hydrodynamical description is based on the local equilibrium ansatz, which assumes the
existence of cells at each space points: finite volume elements that are described by the thermody-
namic laws in equilibrium
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3.2 The dynamical system of equations for warm in-
flation in a bulk viscous radiation fluid

The relevant equations concerning warm inflation in a bulk viscous radiation fluid
are given by the inflaton evolution equation,

φ̈+ 3Hφ̇+ Vφ = Υφ̇ (3.26)

the entropy energy density evolution Eq. (3.6), with the bulk pressure Π given
by: (a) in the Eckart case Eq. (3.12); (b) in the IS case by the evolution equation
(3.18); and (c) in the NLCDH case by the evolution equation (3.25). Writing the
inflaton equation of motion as two first order differential equations, we have that
Eqs. (3.26) and (3.6) are equivalently written in the form:

φ̇ = u,

u̇ = −3Hu−Υu− Vφ,
T ṡ = −3HTs− 3HΠ + Υu2, (3.27)

where

H2 =
1

3m2
P

(
u2

2
+ V + Ts

)
, V = V (φ, T ), Υ = Υ(φ, T ), (3.28)

with expression for the bulk pressure Π, given by either Eq. (3.12), (3.18) or
(3.25), depending on which of the cases is treated. In all the cases, they depend
on the bulk viscosity coefficient, ζb ≡ ζb(T ). We consider the dependence of the
dissipation coefficient on the field and temperature to be

Υ = Cφ
T c

φc−1
, (3.29)

with proportionality factor Cφ depending on the field content of the model and the
value of the power c depending on the temperature regime for the different fields
involved. For example, in the LOTS realization of warm inflation, we discussed
that c = 3 [95, 167, 94]. Likewise, the bulk viscosity coefficient, in this same
regime is [151, 152] ζb ∝ T 3. In the following we consider a generic power
dependence l in the temperature for the bulk viscosity coefficient, ζb ∝ T l, similar
to that considered for the dissipation coefficient, Eq. (3.29). Treating the variables
of the dynamical system in the form of a column matrix X, we can express the
dynamical system in the compact matrix form,

Ẋ = F(x) X , (3.30)
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where for example, for the dynamical system given by Eq. (3.27), X = (φ, u, s). In
the IS and NLCDH cases we also have the bulk pressure entering in the system as
an additional function, X = (φ, u, s,Π).

Writing x = x0 +δx, where we assume that x0 is a stable solution of the system,
which here will be taken as the slow-roll solutions that can be derived directly from
Eq. (3.27) (see below), the equation for the variations in δx become

δẊ = M(x0) δX− Ẋ0 , (3.31)

where

M(x0) =
∂F(x0)

∂x
, (3.32)

is the Jacobian matrix for the system, evaluated at the x0 solution, and Ẋ0 is a
residual force term, which in general is small and can be neglected [99]. The
general solution of Eq. (3.31) is of the form

δX = X0e
M(x0)t , (3.33)

and M(x0) must be zero or negative for the system be stable, i.e., the eigenvalues
Λi of M(x0) must necessarily all satisfy

Λi ≤ 0 . (3.34)

The stability of the dynamical system can be studied directly in the time variable,
but it simplifies the analysis, in particular the determination of the eigenvalues of
the Jacobian matrix, if we make a change of variables and rewrite the dynami-
cal system (3.27) using φ as the independent variable instead of the time [99].
By doing this the dimension of the corresponding system is smaller and easier to
analyze. In particular, the Jacobian matrix for the dynamical system (3.27) be-
comes a 2 × 2 matrix; if one includes the bulk pressure as an additional function
to the system, as in IS and NLCDH cases, it then makes the Jacobian matrix 3× 3.
The eigenvalues obtained by using φ rather than time as the variable makes the
analysis much simpler. As such, using that

d

dt
=
dφ

dt

d

dφ
= u

d

dφ
= u ()′, (3.35)

where a prime indicates derivative with respect to φ, the dynamical system Eq.
(3.27) becomes equivalent to
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u′ = −3H −Υ− Vφu−1 ,

T s′ = −3HTsu−1 − 3HΠu−1 + Υu , (3.36)

together with the corresponding equations for the bulk viscosity, Eqs. (3.12),
(3.18) or (3.25) (these last two also transformed to the φ variable), depending
on which case we are considering. In the slow-roll regime, the system of equa-
tions can be approximated to

u = − V,φ
3H(1 +Q)

,

T s = Qu2 − Π . (3.37)

The Hubble rate H, in the slow-roll approximation is given by

H2 =
1

3m2
P

V (1 + κ) , (3.38)

where κ = ρr/V . Keeping the radiation energy density in Eq. (3.38) is justified
because in the presence of a bulk pressure, the radiation energy density does not
in general need to be much smaller than the vacuum energy density in order to
have inflation. Including a bulk pressure, the acceleration equation is

ä

a
=

1

6m2
P

(2V + 3|Π| − 2ρr) , (3.39)

which shows that we could in principle have ρr ∼ V and inflation could still be
sustained by the bulk pressure [160].

The general solution of Eq. (3.36) is now of the form

δX = X0e
M(x0)φ(t) . (3.40)

The stability condition on the eigenvalues λi, which are the eigenvalues of M(x0)
once u is factorized, depends now on whether the inflaton field φ(t) during slow-
roll decreases with time (like in chaotic inflation), so λi ≥ 0, or increases with
time (like in hilltop inflation), in which case λi ≤ 0. This is an important con-
sideration when replacing the time by the inflaton as the independent variable in
the dynamical system. In a 2× 2 system, stability is ensured once the determinant
is positive and the trace, negative, as is done in [99, 154]. However, in a 3 × 3
system, the case for the Israel-Stewart and NLCDH descriptions, further informa-
tion beyond the trace and determinant is required to guarantee the stability of the
system. Thus, we will make use directly of the eigenvalues for searching for the
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stability of the system. Nevertheless, for all the cases we have studied, only one
eigenvalue changes sign at the instability point, and therefore it would be enough
to look at the determinant of the system. The full derivation of the stability con-
ditions for the three descriptions of the bulk viscosity can be found in appendix A.
In this section we will show the results for the case γ = 4/3.

For the Eckart description of the bulk viscosity, stability is ensured as long as

(c− 2b) (1 + σ) + 4 + lσ − 3

2

σσ̃

1 + κ
> 0 , (3.41)

where we have defined the quantities σ and σ̃ as

σ =
Π

γρr
, (3.42)

σ̃ =
Π

V
, (3.43)

and b is the slow-roll parameter ensuring that thermal corrections to the inflation
potential are negligible

b =
TVTφ
Vφ

. (3.44)

The Eq. (3.41) generalizes the results in [154], which were obtained for a con-
stant bulk pressure (l = 0), by accounting for temperature dependence. Also for
σ = 0 and σ̃ = 0, the case of zero bulk pressure, we reproduce the results obtained
by Moss and Xiong in [99]. In [99] the stability condition was found to be |c| < 4.
From Eq. (3.41), in the absence of bulk viscosity, we derive instead only the con-
dition c > −4. We do also obtain the result c < 4 if we consider the eigenvalues in
the approximation of very small dissipation Q� 1, but this regime is not the most
general situation for warm inflation.

The IS description is stable under the following condition[
1 +

2σ + ΘbΛ(1 + σ)2

2 + 3Θ

]
c+ 4 +

2σ

2 + 3Θ
l − 3

2

σσ̃

1 + κ

[
2− 3Θ

2 + 3Θ
− 2ΘΛ

2 + 3Θ
(1 + σ)

]
+

−
[

4(1 + σ) + 3Θ(2 + σ)− 3ΘΛ(1 + σ)2 −Θ(1 + σ)(Λ + σΣ)

+2bΛΘ(1 + σ)2
] b

2 + 3Θ
> 0 . (3.45)

where we have defined the parameters

Θ = τH ,

Λ = 1 + l − Tτ,T
τ

,

Σ =

(
1 +

Tτ,TT
τT

− Tτ,T
τ

)
Tτ,T
τ
−
(

1 +
Tζb,TT
ζb,T

− l
)
l − Λ

TVφTT
VφT

. (3.46)
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From Eq. (3.45), when the relaxation time vanishes, τ = 0, i.e., for Θ = τH → 0,
we recover the previous condition Eq. (3.41), obtained in the Eckart theory case.

The stability condition for the NLCDH theory for the bulk pressure is(
1 +

σ

1 + 3Θ

)
c+ 4 +

σ

1 + 3Θ
l − 3

2

σσ̃

1 + κ

1− 3Θ

1 + 3Θ

−
(

2 + σ +
σ

1 + 3Θ

)
b > 0 . (3.47)

If we take the relaxation time as vanishing in Eq. (3.47), Θ = τH → 0, we once
again recover the result Eq. (3.41).

3.3 Numerical analysis

In this Section, we study numerically the system of equations for each of the three
cases derived in the previous section. We will verify the corresponding stability
conditions directly through the numerical time evolution of the corresponding dy-
namical systems. We will restrict our analysis to the to the dissipation coefficient
arising from the LOTS realization of warm inflation Υ = CφT

3/φ2, although the
study can easily be extended to other dissipative coefficients. The bulk viscosity
coefficient will have the form ζb = CbT

3, which is obtained for quantum field the-
ory in [151, 152] and also is the form generically considered in hydrodynamics.
This then corresponds to the case where c = 3 for the dissipative coefficient in
Eq. (3.29) and l = 3 for the bulk viscosity, with Cφ and Cb being (dimensionless)
proportionality constants. Also for simplicity, we will analyze here the simplest
case of a quadratic inflaton potential,

V =
m2
φ

2
φ2 , (3.48)

with a constant relaxation time. The extension to other types of potentials, such as
a quartic potential or hybrid type potentials, does not offer additional difficulties
and can be easily implemented.

In the example considered here, the stability conditions Eqs. (3.41), (3.45)
and (3.47), for the Eckart, IS and NLCDH cases respectively, reduce to

CEckart
stab = 3 (1 + σ) + 4 + 3σ − 3

2

σσ̃

1 + κ
> 0 , (3.49)

CIS
stab = 3

(
1 +

2

2 + 3Θ
σ

)
+ 4 +

6σ

2 + 3Θ
+

− 3

2

σσ̃

1 + κ

[
2− 3Θ

2 + 3Θ
− 8Θ

2 + 3Θ
(1 + σ)

]
> 0 , (3.50)

CNLCDH
stab = 3

(
1 +

σ

1 + 3Θ

)
+ 4 +

3σ

1 + 3Θ
− 3

2

σσ̃

1 + κ

1− 3Θ

1 + 3Θ
> 0 . (3.51)
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In all the numerical studies using the inflaton potential Eq. (3.48), we have kept
fixed the values mφ =

√
8π × 10−6mP, the initial value for the dissipation factor

Q = 100, the initial temperature T = 370mφ and φ(0) = 10.98mP. The values
for H(0) and φ̇(0) follow from the slow-roll conditions. These values correspond
to a proportionality constant Cφ ' 1.61 × 108 for the dissipation term, which is
a typical value found in the context of WI model building [91], and gives 60 e-
folds of inflation without viscosities. The value of the bulk viscosity coefficient
Cb is varied and also the value of the relaxation constant τH = Θ, but observing
that we are still in the region of validity of the thermal radiation bath at quasi-
equilibrium, Θ < 1.

By letting the system of equations evolve, we determine the critical value of
Cb for which the stability conditions for each of the three theories studied here,
Eqs. (3.49), (3.50) and (3.51), are violated. The corresponding results are given
in Tab. 3.1.

Θ theory Cb
Eckart 2232.94

0.01 IS 2266.48
NCLDH 2300.04
Eckart 2232.94

0.05 IS 2400.61
NCLDH 2568.42
Eckart 2232.94

0.1 IS 2568.23
NCLDH 2903.79

Table 3.1: The critical values for the bulk viscosity constant Cb. The Eckart case is
independent of Θ, therefore the value for its critical Cb does not change.

We note from the results of Tab. 3.1 that the values for the bulk viscosity
constant Cb for which the stability conditions for IS and NCLDH cases are violated
increases with respect to the Eckart case as Θ increases. In Tab. 3.2 we give the
corresponding differences in percentage.

theory Θ = 0.01 Θ = 0.05 Θ = 0.10

IS 1.5% 7.5% 15.0%

NLCDH 3.0% 15.0% 30.0%

Table 3.2: The increase of the critical value of Cb for the causal theories with
respect to the Eckart theory.

Once we have the system evolving in time and also allowing the time depen-
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dence for the stability parameters CEckart
stab , CIS

stab and CNLCDH
stab , by starting from the

initial conditions given above, we can explicitly check that the time where Eqs.
(3.49), (3.50) and (3.51), are violated, is the time where both radiation energy
density and the bulk pressure start to grow exponentially, as expected. In the Fig.
3.1 we plot the stability parameters CEckart

stab , CIS
stab and CNLCDH

stab along side those for
the radiation energy density and the bulk pressure, as a function of time, for the
case of Θ = 0.01 and for the values of critical Cb shown in Tab. 3.1.

The results shown in Fig. 3.1 indicate that the time where the stability con-
dition is violated corresponds to an inflection point in the radiation energy den-
sity and the bulk pressure evolutions. After that time, both the radiation energy
density and the bulk pressure start to grow and soon after the dynamics become
uncontrollable. The point where the stability conditions Eqs. (3.49), (3.50) and
(3.51), are violated, corresponds then to a turnover point in the evolution of the
dynamical system of equations.

We can also notice from the results for the radiation and bulk pressure shown
in Figs. 3.1(b), 3.1(d) and 3.1(f), that the causal theories always lead to a smaller
radiation production when compared to the noncausal case. Among the two causal
theories studied here, the NLCDH theory gives a much smaller radiation produc-
tion from bulk pressure effects than the IS theory. The differences between the
causal theories of IS and NLCDH are also larger than the noncausal theory of
Eckart as the relaxation time increases, which is clear from the results presented
in Tabs. 3.1 and 3.2. Even though the difference of the Eckart theory for the bulk
pressure from that of IS is around the percent level for a relatively small relax-
ation time of τH = 0.01, it is twice that (in percentage) when the NLCDH theory
is considered. This difference between the IS and NLCDH theories can easily be
understood once we compare the Eqs. (3.18) and (3.25) and realizes that the re-
laxation time in the NLCDH theory appears with an additional factor two on the
right-hand-side of the equation. Among the theories for the bulk pressure we have
studied here, thus, the NLCDH case is the most robust in terms of stability. It al-
lows for relatively larger bulk viscous pressures as compared to the Eckart and IS
cases.

3.4 Model building

We have understood how to separate, in general, between the stable and unstable
regimes. Moreover, we have studied the differences between the non-causal and
causal descriptions of the bulk viscosity. In this section, we are going to apply this
knowledge to some generic supersymmetric (SUSY) models of warm inflation,
namely, the chaotic, hybrid and hilltop (or new inflation) models.
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(a) Cb = 2232.94 (b) Cb = 2232.94

(c) Cb = 2266.48 (d) Cb = 2266.48

(e) Cb = 2300.04 (f) Cb = 2300.04

Figure 3.1: The stability condition (left) and the results (right) for the radiation
energy density, ρr (purple curves), and bulk pressure, Π (orange curves), nor-
malized by the total energy density. The solid curves are for the Eckart case, the
dashed curves are for IS and the dash-dotted curves are for NLCDH. In all cases
Θ = 0.01.
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As discussed in previous sections, the bulk viscous pressure decreases the radia-
tion pressure and so allows the source term creating radiation to be more effective.
Thus assuming thermalization, it raises the temperature. Given that the dissipa-
tive coefficient depends on the temperature, the bulk viscosity enhances it; and
therefore, the inflaton can slow-roll down its potential with lower values of the
dissipative factor Cφ. Hence, we expect an enlargement of the parameter space
in regions of low Cφ, where warm inflation is not allowed in the absence of bulk
viscosity. In addition, in the regions of the parameter space where warm inflation
is allowed without bulk viscosity, its effect is to produce more e-folds of inflation.
We will analyse the modification of the parameter space induced by the bulk vis-
cosity with the stability conditions studied in the previous sections, which place
limits upper limits on the value of the bulk viscosity coefficient, Cb . Cstab.

In addition to the standard constraints to the parameter space available for
warm inflation, we also must take into account the thermodynamical condition
|Π/pr| < 1, as the hydrodynamic descriptions of the bulk viscosity that we are
using treat the viscous pressure as a perturbation to the equilibrium one. There-
fore, we define the parameter space compatible with warm inflation as the region
where the following conditions hold:

1. εH = −Ḣ/H2 < 1, which is the standard condition for the accelerated ex-
pansion,

2. ρφ > ρr, which prevents the radiation energy density to dominate,

3. T/H > 1, which is required for the consistency of the LOTS description,

4. φ/T & 10, which is the low-T condition for g = O(1),

5. |Π/pr| < 1, which is the condition for the hydrodynamic description to hold.

These conditions need to hold for at least 40 e-folds to solve the flatness and
horizon problems. Condition 2 is controlled by the stability conditions found in
the previous section. From the system of Eqs. (3.37), we can relate the rest of the
conditions with slow-roll parameters. Condition 1 during slow-roll simply is:

εH =
ε

1 +Q
< 1 . (3.52)

The evolution of the ratio T/H, in the slow-roll regime, with respect to the number
of e-folds is given by:

d ln(T/H)

dNe

=
2(1 + σ)

1 +Q+ 6Q(1 + σ)

(
2 + 4Q

1 +Q
ε− η +

1−Q
1 +Q

mP

φ

√
2ε

)
. (3.53)

Π/pr is directly related to T/H, ∣∣∣∣Πpr
∣∣∣∣ =

270Cb
π2g∗

H

T
. (3.54)
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The evolution of φ/T by:

d ln(φ/T )

dNe

=
−1

[1 +Q+ 6Q(1 + σ)]

[
3 + 4σ + (1 + 2σ)Q

1 +Q
ε

− 2(1 + σ)η +
3 + 2σ + (5 + 4σ)Q

1 +Q

mP

φ

√
2ε

]
. (3.55)

In addition to these equations, the slow-roll evolution of the field φ is given by:

dφ/mP

dNe

= −
√

2ε

1 +Q
. (3.56)

For completeness, we also show the evolution of Q:

dQ

dNe

=
Q

1 +Q+ 6Q(1 + σ)

[
10

(
1 +

6

5
σ

)
ε− 6(1 + σ)η + 8

(
1 +

3

4
σ

)
mP

φ

√
2ε

]
.

(3.57)
These results generalize the ones obtained in [91] for the case with no bulk vis-
cosity. Note the difference in the notation between our σ and the σφ defined there,
which have replaced here by

√
2ε(φ/mP ). Nevertheless, as we have shown in

(A.10), |σ| . 1 and then the results in [91] concerning whether the conditions
increase or decrease during the evolution are still valid.

The last question before entering in the particular details of each model is
how we are treating the bulk viscosity. In this section we will use the non-causal
description of the bulk viscosity, i.e. the Eckart theory, and place limits on the
validity of this approximation. As discussed previously, the Eckart description is a
good approximation for low values of Θ = τH. The Hubble parameter is given by
(3.5) and the relaxation time τ is obtained from Eq. (3.70). Using for example
the first expression for the bulk viscosity in Eq. (3.68) (the second expression for
the bulk viscosity in Eq. (3.68) can be easily seen as obtained from the first, when
neglecting the temperature independent terms in my(T ) and in m̃y), we obtain
that

τ ≈ 9.77× 106
m3
y(T )

λ4
yT

4
, (3.58)

where for the superpotential of the two stage mechanism, we have that λy = 6h2.
Based on the previous discussions, we consider the Eckart approximation to be
valid when Θ . 10−2, which translates into (using that in the high-temperature
limit my(T ) ≈ hT/2)

h & 10

(
H

T

)1/5

. (3.59)
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One of the conditions for warm inflation is that T/H & 1, therefore, we can easily
arrange the condition (3.59) to be satisfied when deep in the warm inflationary
regime, particularly in the strong dissipative regime, which can also allow for
perturbative values for the coupling h. The effect of including a causal description
of the viscosity is to produce a lower value of the bulk viscous pressure than in the
non-causal case with the same coefficient Cb. The consequence is a shift around
the 5% level in the entire parameter spaces shown in the next subsections to higher
values of Cb. This is explicitly verified below for the specific inflaton potential
models we have studied.

3.4.1 Chaotic model

First we consider a chaotic inflation potential of the form:

V (φ) =
λ

4
φ4 (3.60)

where we have used λ = 10−14. However this parameter is only relevant for the
amplitude of the power spectrum, which we are not interested in here. Using
again that Υ = CφT

3/φ2, for the potential (3.60) the slow-roll parameters are
given by

η = 12

(
mP

φ

)2

, ε =
2

3
η , βΥ = −2

3
η . (3.61)

Therefore, the value of the field decreases during inflation, meanwhile, the dis-
sipative ratio Q and T/H both increase. Hence, once the condition on T > H
is fulfilled initially, it is always satisfied. The ratio φ/T decreases, but we have
checked that it always remains above 10 as long as the other conditions are ful-
filled. The parameter εH increases during inflation and, as a consequence, warm
inflation ends when εH = 1. Finally, the condition ρφ > ρr is controlled by the
stability condition (3.41). It is only necessary to check that the stability condi-
tion is positive at the beginning of inflation, as it does not change sign during the
evolution. This last statement is true for all the models studied.

The available parameter space is shown in Fig. 3.2. For completeness we have
included the parameter space excluded for different values of the hydrodynamic
condition |Π/pr|, namely 0.1, 0.5 and 1. We observe that the enlargement of the
parameter space in regions of low Cφ is not very efficient. In particular, the min-
imum value of Cφ is reduced from 2.1 × 106 up to 1.6 × 106. These values have
been confirmed by using the NLCDH description of the bulk viscosity, Eq. (3.25),
with a constant τ fixed by imposing initially the values Θ = 0.01, 0.9. The NL-
CDH description reduces the bulk viscous pressure associated to a Cb value when
Θ grows, which means that higher values of Cb are allowed before the condition
|Π/pr| is violated. However, at the same time, for the same value of Cφ, higher
values of Cb are required to avoid the T/H < 1 exclusion region, therefore the
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effects compensate each other and the minimum value of Cφ is independent of the
initial value Θ.

We have also found that the condition |Π/pr| is the most restrictive one in
almost the full parameter space and that the instability regime studied in the pre-
vious sections is far beyond the limit imposed by this condition. In the analysis
we have fixed the initial values such that the exclusion regions are the least strin-
gent, that is, the upper region is as high as possible and the bottom one, as low as
possible. We have fixed initial conditions in this way for the three models studied.

In addition, we separate with black lines the regions where the dissipative
ratio at horizon crossing Q∗ is always greater than one from the regions where it
is always less than one. In the region between them, Q∗ can be either greater or
less than one, depending on the initial value of φ. In the regions that were not
allowed in the absence of bulk viscosity, its main role is to produce enough e-folds
of inflation. In regions allowed with no bulk viscosity, the total number of e-folds
is increased. We quantify this effect in terms of the percentage difference ∆Ne,
defined as

∆Ne =
Nbulk
e −Nno-bulk

e

Nno-bulk
e

× 100, (3.62)

where Nbulk
e is the maximum number of e-folds obtained with bulk viscosity for

a certain Cφ and Nno-bulk
e is the equivalent without bulk viscosity. The results are

shown in Fig. 3.3.
The bulk viscosity can enhance the number of e-folds through two mechanisms.

The first one is, for a given initial value of the field, to reduce the redshift of the
radiation energy density by decreasing its total pressure. This effect produces an
increase in the value of Q, which goes as ρ3/4

r and is related to the number of
e-folds via

Ne =

∫ φ(0)

φend

3H2(1 +Q)

Vφ
dφ, (3.63)

where φ(0) is the initial value of the field and φend, the value of the field at the
end of inflation. Hence, the increase in Q leads to a larger number of e-folds.
However, we have checked that this mechanism is subdominant in the quartic
potential, providing an efficiency up to 2%.

The second mechanism allows to increase the initial value of the field. From Eq.
(3.63) it can be seen that this produces more e-folds by increasing the integration
interval. In the absence of bulk viscosity, there is an upper limit on the value of
the field because of the condition T/H > 1. As the bulk viscosity increases the
value of T , it pushes upwards this limit and, hence, it is possible to use larger
values of the field. However, there is a bound to this effect, provided by the
condition |Π/pr| < 1, which translates into a new upper limit to φ(0). Fig. 3.3
shows the increase in the number of e-folds compared to the non-viscous case.
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Figure 3.2: Parameter space for the chaotic model. The green regions are excluded
because of the violation of the condition written in the plot. The lines separate
regions where Q∗ < 1 and Q∗ > 1 respectively. In the region between them, we
can have both Q∗ < 1 and Q∗ > 1 for different values of φ(0).

From Eq.(3.54) we can obtain the value of Cb that maximizes this mechanism.
Using the values |Π/pr| = 1, T/H = 1 and g∗ = 225.78 as an example, we find that
Cb = 8.25. This argument is model independent, so that we find the same value of
Cb in the three models studied and independently of the value of Cφ.

3.4.2 Hybrid models

We consider now small field models of inflation with an inflationary potential
given by:

V = V0

[
1 +

δ

2

(
φ

mP

)2
]
, (3.64)

where V0 is the scale and δ a model parameter. Here we have used V0 = 10−8m4
P ,

and studied the dynamics for two representative values for the parameter δ. The
slow-roll parameters, in the case of the inflaton potential given by Eq. (3.64), are
now given by

η = δ , ε =
δ2

2

(
φ

mP

)2

, βΥ = −2η. (3.65)

During the evolution the value of φ decreases, while the value of Q increases.
The evolution of the value of T/H depends on the value of Q: for Q < 1, T/H
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Figure 3.3: Maximum enhancement in the number of e-folds for different values
of Cφ for the model with quartic potential. The maximum value is obtained for
Cb=8.25.

increases and for Q > 1, it decreases; φ/T always decreases, and εH is not relevant
in this model because it is suppressed by a factor (φ/mP )2, which is usually very
small due to the fact that φ � mp. Hence, εH is always below one. As a result,
inflation ends because the conditions imposed either on T/H or φ/T are violated,
or because the field reaches its critical value.

In Fig. 3.4, the parameter space of the hybrid models with δ = 0.1 (left panel)
and δ = 10 (right panel) are plotted. In the left panel, as in the previous model, the
black lines separate regions with different value of the dissipative ratio at horizon
crossing. However, in the right panel, the dissipative ratio is always above one.
For a higher value of δ we can maintain η/(1 + Q) below one only for Q∗ > 1.
In the left panel the bottom excluded region is forbidden for the same reason as
in the chaotic model. Nevertheless, in the right panel we find that the excluded
region is forbidden by the φ/T > 10 condition. This is caused again by the higher
value of η. The parameter δ in Eq. (3.64) measures the curvature of the potential.
Thus, for higher values of δ the field evolves faster. As a result, the condition on
φ/T is reached first than in the case for smaller values for the parameter δ.

The minimum value of Cφ in this case of inflation with the hybrid type of
potential, Eq. (3.64), is reduced from 3.5 × 104 up to 2.6 × 104, for δ = 0.1, while
for δ = 10 it is reduced from 5 × 104 up to 4.1 × 104. Making use of the NLCDH
description of the bulk with a constant τ fixed by imposing the initial values Θ =
0.001, 0.9, we found that the minimum value Cφ is independent of the initial choice
of Θ. The effect on the number of e-folds is shown in Fig. 3.5. As in the previous
case, the constant field mechanism is subdominant, with an efficiency of around a
3% for the δ = 10 case and a 6% efficiency for the δ = 0.1 case.
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(a) δ = 0.1

Φ
/T
<
1
0

(b) δ = 10

Figure 3.4: Parameter space for the hybrid models with δ = 0.1, 10 The green
regions are excluded because of the violation of the condition written in the plot.
In the left plot the lines separate regions where Q∗ < 1 and Q∗ > 1 respectively.
In the region between them, we can have both Q∗ < 1 and Q∗ > 1 for different
values of φ(0). In the right plot, Q∗ is always above 1.
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Figure 3.5: Maximum enhancement in the number of e-folds for different values
of Cφ in the case of the inflaton potential given by Eq. (3.64). The maximum value
is obtained for Cb = 8.25.

3.4.3 Hilltop models

We now consider new inflation hilltop type of models, which are characterized by
an inflaton potential given by

V = V0

[
1− |δ|

2

(
φ

mP

)2
]

+ · · · , (3.66)

where the dots account for higher-order terms and V0 = 10−8m4
P . This is a poten-

tial similar to the two previous ones, but with a negative squared inflaton mass.
The slow-roll parameters are still given by those in Eq. (3.65), but with the change
δ → −δ. In these models φ, φ/T , T/H and εH increase during the evolution, while
Q decreases. Inflation ends when the field reaches a large enough value, so that
higher-order terms in the potential start contributing and εH becomes greater than
one.

The parameter space for the hilltop model Eq. (3.66) is shown in Fig. 3.7, for
the cases of δ = 0.1 (left panel) and δ = 1 (right panel). Once again, in the left
panel the black curves separate regions with Q∗ greater or less than one at horizon
crossing, and in the right panel, the dissipative ratio at horizon crossing is always
greater than one due to the large value of η.

Now, the minimum value of Cφ is reduced from 3.3 × 104 up to 2.5 × 104 for
δ = 0.1 and from 5.9 × 104 up to 5.1 × 104 for δ = 1. We have checked these val-
ues with the NLCDH description of the bulk with a constant τ fixed by imposing
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the initial values Θ = 0.001, 0.9. The effect on the number of e-folds is shown in
Fig. 3.6. As in the other cases studied, the constant field mechanism is subdomi-
nant with efficiencies around a 5% and a 3% for the δ = 1 and the δ = 0.1 cases
respectively. The initial value mechanism works reversely compared with the pre-
vious potentials. Here it allows to use lower initial values of the field, however,
as the value of the field grows in this case, this reduction implies an increase of
the integration interval in Eq. (3.63). In addition, note that in this potential, the
lower the value of the field, the larger the value of H and thus, the lower is the
ratio T/H. This argument also applies to the |Π/pr| condition, therefore, there are
lower limits to φ(0) rather than upper ones.
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Figure 3.6: Maximum enhancement in the number of e-folds for different values
of Cφ, for the case of the inflaton potential Eq. (3.66). The maximum value is
obtained for Cb = 8.25.

3.4.4 Bulk viscosity coefficients from quantum field theory

The shear and bulk viscosities describe the properties of a system to return to
equilibrium when displaced from it. As explained in [151, 152], at the level of
particle physics processes, these viscosities are generally proportional to the mean
free path, or equivalently time, of the relevant scattering process. The bulk viscos-
ity is proportional to the mean free path for particle number changing processes
in theories with breakdown of scale invariance. In contrast the shear viscosity
is proportional to the two-body elastic scattering mean free path. Thus the bulk
viscosity roughly has the form

ζb ∼ m̃4τ (3.67)
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(a) δ = 0.1

Φ
/T
<
1
0

(b) δ = 1

Figure 3.7: Parameter space for the hilltop models with δ = 0.1, 1. The green
regions are excluded because of the violation of the condition written in the plot.
In the left plot the lines separate regions where Q∗ < 1 and Q∗ > 1 respectively.
In the region between them, we can have both Q∗ < 1 and Q∗ > 1 for different
values of φ(0). In the right plot, Q∗ is always above 1.
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where m̃ is a characteristic measure of the violation from scale invariance in the
theory and τ is the mean free time between number changing inelastic scattering
processes.

Explicit expressions for the bulk viscosity have been calculated for a self-
interacting λyy

4 scalar field theory model in [151, 152] for different tempera-
ture regimes. The obtained results for the bulk viscosity relevant for us here
are [151, 152],

ζb '
{

5.5× 104 m̃
4
ym

2
y(T )

λ4yT
3 ln2 [1.2465my(T )/T ] , my � T � my/λy

8.9× 10−5λyT
3ln2(0.064736λy), T � my/λy,

(3.68)

where my(T ) is the scalar y field thermal mass, m2
y(T ) = m2

y +
λyT

2/24 [1 +O(my/T )], and m̃2
y ≡ m2

y(T )− T 2(∂m2
y(T )/∂T 2) ' m2

y − β(λy)T
2/48,

where β(λy) = 3λ2
y/(16π2) is the renormalization group β-function. Note that even

for a massless scalar field at tree-level, my = 0 which is classically scale invariant,
the scale invariance is broken by the thermal corrections. The β-function gives a
measure of breaking of scale invariance.

The characteristic relaxation time relevant for the bulk viscosity, which also
enters in the IS and NLCDH formulas for the bulk pressure, can be extracted from
the result for the bulk viscosity in Eq. (3.68) and the formal expression for it in
the context of the Kubo formula for my � T and in the relaxation time approxi-
mation [168],

ζb =
1

T

∫
d3p

(2π)3

τ(ωp)

ω2
p

n(ωp)[1 + n(ωp)]

[(
1

3
− v2

s

)
p2 − v2

sm̃
2
y

]2

, (3.69)

where n(ωp) = 1/[exp(ωp/T ) − 1] is the Bose-Einstein distribution, ωp =√
p2 +m2

y(T ) and vs is the speed of sound for the radiation bath scalar y field.

Using an on-shell approximation for the relaxation time, τ(ωp) ' τ ωp/my(T ),
where τ ≡ τ(my(T )) = constant, and the result for the speed of sound for a self-
interacting scalar field in the high-temperature approximationmy � T [151, 152],
v2
s ' 1/3− 5m̃2

y/(12π2T 2), we obtain for the ratio ζb/τ the result:

ζb
τ
' m̃4

y

1

my(T )T

∫
d3p

(2π)3

1

ωp
n(ωp)[1 + n(ωp)]

(
5p2

12π2T 2
− 1

3

)2

' m̃4
y T

18π2my(T )
ln

(
2T

my(T )

)
. (3.70)

For the above results for the bulk viscosity to be applicable in warm inflation, it
is required that the effective mass for the scalar y field be larger than the Hub-
ble parameter, my(T ) � H. In this case curvature corrections to the quantum
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field expressions defining the bulk viscosity can be neglected and the Minkowski
expression (3.68) applies. Also, as already pointed out in the previous sections,
a quasi-equilibrium thermal radiation bath requires that the relevant relaxation
time, set by τ be also short compared to the Hubble time, τ < 1/H. We have
verified that these conditions can be easily meet for warm inflation.

Let us now briefly discuss the expected values for the bulk viscosity coefficient
in the LOTS realization of warm inflation, characterized by mχ > T and my � T .
The dominant contribution to the bulk viscosity comes from the radiation thermal
bath composed of the light y particles and given by Eq. (3.68). We can see from
the expression for the bulk viscosity Eq. (3.68) that the larger values for the bulk
coefficient Cb = ζb/T

3 appears in the intermediate temperature regime, my �
T � my/λy, where the y particles are already in the high-temperature regime,
but the temperature is still not too high, such that in the thermal mass my(T )
the temperature corrections are subdominant. In this case, neglecting the thermal
corrections to the mass, we get the estimate for Cb,

Cb ≈ 5.5× 104 1

λ4
y

m6
y

T 6
ln2 (1.2465my/T ) , (3.71)

recalling that for the two stage model, λy = 6h2. Taking my/T ∼ 0.1, we obtain
70 . Cb . 1.8× 104, for values of h between 0.1 and 0.2. This is in the absence of
further decay modes, which would increase even more the estimates for Cb (the
bulk viscosity coefficient is proportional to the radiation bath field degeneracy).
These values are already within the window of values of the viscosity coefficient
observed by the results in Figs. 3.2, 3.4 and 3.7, which allows warm inflation with
smaller dissipation as a consequence of including a bulk viscous pressure.
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4Dynamics of the linear perturbations in
warm inflation

In part I of this thesis we have minutely studied some models as examples of the
features of the background evolution in warm inflation. In part II we focus our
analysis on the dynamics of the linear perturbations of the inflaton field. This
subject is of capital importance as the main observables of inflation, the spectral
index and the tensor-to-scalar ratio, are calculated from linear perturbation theory.

In cosmological perturbation theory[169], every species is represented as a se-
ries of spatially inhomogeneous perturbations around a homogeneous background
component. The series is approximated by the background and first-order term in
linear perturbation theory. In warm inflation the universe is populated by a multi-
component fluid, a mixture of a scalar inflaton field Φ interacting with a radiation
fluid. Both components exchange energy and momentum through the dissipative
term Υ. Consistency of perturbation theory implies that not only the inflaton, but
the energy density and pressure of the radiation bath must be expanded accord-
ingly

Φ(x, t) = φ(t) + δφ(x, t) , (4.1)
ρ̄r(x, t) = ρr(t) + δρr(x, t) , (4.2)
p̄r(x, t) = pr(t) + δpr(x, t) . (4.3)

Perturbations in the matter content of general relativity induce perturbations in
the geometry of the space-time, described by the metric. The perturbed FLRW
metric, including only scalar perturbations, is given by1[170, 171]

ds2 = −(1 + 2α)dt2 − 2a∂iβdx
idt+ a2[δij(1 + 2ϕ) + 2∂i∂jγ]dxidxj , (4.4)

where α, β, γ and ϕ are the spacetime-dependent perturbed-order variables. The
evolution equations of the perturbations are calculated from the stress-energy ten-
sors. For the scalar field and a perfect radiation fluid the stress-energy tensors

1Latin indexes i, j, k, . . . are used for the spatial components, and Greek letters for space-time
indexes.
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read

T (φ)
µν = ∇µΦ∇νΦ−

(
1

2
∇αΦ∇αΦ + V (Φ)

)
gµν , (4.5)

T (r)
µν = (ρ̄r + p̄r)u

(r)
µ u(r)

ν + p̄rgµν , (4.6)

where u(r)
µ is the four velocity of the radiation fluid and gµν is the four dimensional

metric in Eq.(4.4). The equations of motion follow from the conservation of the
stress-energy tensors in Eqs.(4.54.6)

∇µT (α)
µν = Q(α)

ν ,
∑
α

Q(α)
ν = 0 , (4.7)

where Qν is the four-vector source term accounting for the exchange of energy
and momentum:

−Q(φ)
ν = Q(r)

ν = Υuµ(φ)∇µΦ∇νΦ . (4.8)

uµφ is the four-velocity of the fluid describing the inflaton field:

uµ(φ) = − ∇µΦ√
ρφ + pφ

. (4.9)

The four-vector source term contains a source for the energy density Q(φ) = −Q(r)

and a momentum source J (φ)
µ = −J (r)

µ ,

Q(φ)
µ = Q(φ)u(φ)

µ + J (φ)
µ (4.10)

The energy density source term is given by the projection of the four-vector source
term along the direction of the fluid, Q(r) = −uµ(φ)Q

(φ)
µ , which at linear order is

given by:

Q(r) = Qr + δQr , (4.11)

Qr = Υφ̇2 , (4.12)

δQr = δΥφ̇2 + 2Υφ̇δφ̇− 2αΥφ̇2 . (4.13)

The momentum source term Jµ is the orthogonal projection to the fluid velocity
u(φ)µJ

(φ)
µ = 0, vanishing in the background FLRW geometry. At linear order it

reads

J
(r)
i = ∂iJr , (4.14)

Jr = −Υφ̇δφ . (4.15)
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Both sources terms Q(r) and J
(r)
µ are determined from the dissipative coefficient.

We consider a general temperature T and field φ dependence,

Υ = Cφ
T c

φc−1
, (4.16)

δΥ = Υ

(
c
δT

T
− (c− 1)

δφ

φ

)
, (4.17)

The linear order expansion of Eq.(4.7) gives the evolution equations for the
Fourier transform2 of the radiation fluctuations with wavenumber k [169, 170,
171, 172]:

δρ̇r + 3H(δρr + δpr) = −3(ρr + pr)ϕ̇+
k2

a2
[Ψr + (ρr + pr)χ] + δQr +Qrα , (4.18)

Ψ̇r + 3HΨr = −(ρr + pr)α− δpr + Jr , (4.19)

where Ψr is the radiation momentum perturbation, T 0 (r)
j = −∂jΨr/a and χ is the

combination of metric variables

χ = a(β + aγ̇) . (4.20)

Thermal fluctuations in the radiation fluid are transfered to the inflaton and be-
come the main source of primordial fluctuations [100, 101, 173, 174, 175, 102,
176]. As a consequence, the evolution of the field fluctuations is governed by the
fluctuation-dissipation theorem. In addition to the linear expansion of Eq.(4.7),
the effect of the interactions with the thermal bath need to be taken into account.
The standard approach is to integrate out the backreaction effect of the thermal
bath and represent it through a stochastic source ξk. Hence, the equation of mo-
tion of the field perturbations becomes a Langevin equation[100, 101, 102, 177]

δφ̈+ (3H + Υ)δφ̇+

(
k2

a2
+ Vφφ

)
δφ = [2(Υ +H)T ]1/2 a−3/2ξk − δΥφ̇

+ φ̇(κ+ α̇) + (2φ̈+ 3Hφ̇)α−Υ(δφ̇− αφ̇) ,
(4.21)

where stochastic source ξk describing the backreaction of the thermal bath can be
approximated by a localized gaussian distribution with correlation function:

〈ξ(t, x)ξ(t′, x′)〉 = δ(t− t′)δ(3)(x− x′) . (4.22)

The relevant quantity extracted from the evolution Eqs. (4.18,4.19,4.21) is the total
comoving curvature perturbation. In warm inflation, the comoving curvature per-
turbation R is composed of contributions not only from the metric perturbations

2For simplicity, we keep the same notation for the fluctuations δf(x, t) and their Fourier trans-
form δf(k, t).
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and the inflaton momentum perturbations, but also from the radiation momentum
perturbations,

R =
∑
i=φ,r

ρi + pi
ρ+ p

Ri , (4.23)

Ri = −ϕ− H

ρi + pi
Ψi , (4.24)

with ρ = ρφ + ρr, p = pφ + pr. The total comoving curvature perturbation shall be
used to evaluate one of the main inflationary observables, the primordial spectrum

PR(k) =
k3

2π2
〈|Rk|2〉 , (4.25)

where “〈· · · 〉” means average over different realizations of the noise term in Eq.
(4.21). The spectral index ns measures the scale dependence of the primordial
spectrum in Eq. (4.25)

PR(k) = As

(
k

k0

)ns−1

, (4.26)

where As is the amplitude of the power spectrum at a reference scale k0.
The temperature dependence of the dissipative coefficient induces a coupling

of the field and radiation fluctuation equations through the term

φ̇δΥ = c
H

φ̇
δρr + ... (4.27)

in Eq. (4.21) as shown in [103]. Previous studies of the primordial spectrum
of perturbations in warm inflation [174, 175, 102, 176] did take into account
the influence of the thermal fluctuations on the field through the noise term, but
not the coupling through the dissipative term itself. In [103] it was shown that
in the strong dissipative regime, when Υ dominates over the Hubble expansion
rate, a positive power c of the temperature in the dissipative coefficient induces
a growing mode in the fluctuations before horizon crossing through the coupling
term in Eq. (4.27) that can be observed in Fig. 4.1. The outcome of the growing
mode is to enhance by several orders of magnitude the amplitude of the primordial
perturbations with respect to previous calculations. The effect is strongly scale
dependent, thus having a large impact on the spectral index as can be seen from
the numerical analysis shown in Fig. 4.2.

In part II of the thesis we are going to explore different ways to avoid the
growing mode. In chapter 5 we will follow the line of research initiated in [138],
and investigate the effects of non-equilibrium dynamics on the evolution of the
warm inflation perturbations. Non-equilibrium effects will induce viscosities in the
radiation fluid that may suppress the growth mode when they are large enough.
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In chapter 6 we will concentrate on the warm inflation observables in the weak
dissipation regime, where the growing mode is not present. We will examine
whether warm inflation in that regime modifies the cold inflation predictions for
canonical models, and we will compare the results with the observations of the
Planck mission and the BICEP2 collaboration.
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Figure 4.1: Evolution of the total curvature perturbation spectrum P1/2
R (black

lines), the radiation P1/2
R (red lines) and the field P1/2

R (green lines) curvature
perturbation spectrum for the potential V = (λ/4)φ4. The results are shown for
different power dependence on T of the dissipative coefficient: c = 3 (solid lines),
c = 1 (dashed lines), c = −1 (dash-dotted lines), and c = 0 (dotted lines)[138]
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Figure 4.2: Numerical computation of the spectral index as a function of the dis-
sipative ratio at horizon crossing, Q∗, for the for the potential V = (λ/4)φ4 with
power dependence on the temperature c = 3. The solid line shows the values
when the growing mode is taken into account while the dashed line represent
the prediction in absence of direct coupling between the radiation and inflaton
perturbed equations.



It’s the little things citizens do. That’s what will
make the difference. My little thing is planting trees.

Wangari Maathai

5Viscous effects in warm inflation II:
perturbations

As we discussed in chapter 3, in warm inflation there may be intrinsic micro-
scopic decay processes in the produced radiation bath itself, causing it to depart
from equilibrium. These intrinsic dissipative effects in the radiation fluid itself will
cause it not to behave exactly like a perfect fluid during inflation. As the radiation
fluid departures from equilibrium, pressure and momentum changes are produced
by the particles excitations in the thermal bath, and viscous effects are generated.
At the linear perturbative order of the FLRW metric viscosity is described by the
bulk and shear viscosities. The presence of these viscous processes during warm
inflation may provide a natural solution for the potential problem of generated
by the growth modes in warm inflation, as was first studied in [138] considering
the effect of the shear viscosity. The viscous effects are characterized by bulk and
shear viscosity terms that act like dissipation terms in the fluid itself. In [138]
it was found that if the shear viscosity is strong enough it can efficiently damp
the radiation perturbations in such a way that prevents the growing modes from
emerging, and keeping the power spectrum within the levels obtained in the ab-
sence of coupling between radiation and field perturbations. The authors demon-
strated this fact with the inclusion of only shear viscous effects, assuming that the
bulk viscosity is much smaller than the shear viscosity, as it is the case for common
fluids and in quantum field theory calculations in general. For example, in per-
turbative quantum chromodynamics, which corresponds to the high-temperature
quark-gluon phase in the early universe, the bulk viscosity has been estimate to be
a factor 10−3 to 10−8 smaller than the shear viscosity [178]). However, later works
[179] gave rise to doubts about the effectiveness of the viscosities in avoiding the
growing mode. It was suggested that viscosities are not consistently described
only by the shear and bulk viscous terms, on the contrary additional noise terms
for each viscosity should be included in the radiation equation. If that is the case
the new noise terms reinforce the growth mode and it cannot be eliminated by the
presence of viscosities. Nevertheless the subject is still under controversy, there-
fore we will not introduce such noise terms in our description to contribute to the

67
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discussion.
There have been previous studies on the effect of the bulk viscosity for warm

inflation done by the authors in [146, 154], but they have considered only the
case of constant dissipation (thus there was no coupling of the radiation bath per-
turbations with those of the field) and the cases of either a constant bulk viscous
pressure or one proportional to the radiation energy density. They have found
that these bulk viscous effects could induce a variation in the power spectrum
amplitude of only of the order of 4%. Here, however, by including the temper-
ature dependence on both the dissipation and bulk viscosity terms, we find that
the effect of the bulk viscous pressure on the power spectrum is significantly much
higher, being able to change it by many orders of magnitude, depending on the
magnitude of the dissipation term and for physically motivated magnitudes of the
bulk viscosity coefficient.

Even though bulk viscosities have in general smaller magnitudes than for the
shear viscosities, there are regimes of temperature and field parameters where it
can be dominant. For instance, close to phase transitions or phase changes in gen-
eral, it has been shown that the bulk viscosity can be much larger in magnitude
than the shear viscosity [180]. Furthermore, the bulk viscosity, been related to
pressure fluctuations, already contributes at the background level, while the shear
viscosity, been related to momentum fluctuations, contribute only at the pertur-
bation level. It is then important to investigate not only the possible effects of
shear viscosity term on the power spectrum, as done in Ref. [138], but also to
study the effects of the bulk viscosity term. In this chapter we will then extend
the analysis done in [138] by also including the bulk viscous effects, and by fully
accounting for its temperature dependence as motivated from microscopic quan-
tum field theory calculations relevant for the context of warm inflation. Here we
will then explore possible regimes where the presence of the bulk viscosity along
with the shear viscosity can lead to much efficient damping of the growing modes,
preventing them to emerge at all, in addition to possibly lessing the constraints
on the inflaton potential for warm inflation. Values for the viscous coefficients
are found such that the magnitude of the power spectrum remains controllable,
with any growing mode in the spectrum coming from the coupling of the inflaton
perturbations with those of the radiation is effectively removed.

5.1 Bulk and shear viscous effects in a radiation
fluid

In relativistic theory, fluctuation effects in the radiation fluid can be parametrized
in general in terms of a shear viscous tensor πab, an energy flux vector qa and a
bulk viscous pressure Π, in the stress-energy tensor for the radiation fluid [137,
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142, 162, 163],

T
(r)
ab = (ρr + pr + Π)u(r)

a u
(r)
b + (pr + Π)gab + q(r)

a u
(r)
b + q

(r)
b u(r)

a + πab , (5.1)

where u
(r)
a πab = 0 = gabπ

ab, u(r)
a qa = 0. There would be heat flow for example

in the presence of conserved charges in the system other than the stress-energy
tensor, but we do not consider such possibility in this study, and then set qa = 0.
The shear viscous tensor vanishes in an homogeneous and isotropic background
geometry, but at linear order it is given by [142, 162, 163]:

πab ' −2ζsσab , (5.2)

where ζs is the shear viscosity coefficient and σab the shear of the radiation fluid:

σab = ∇(aub) + u(au
c∇cub) −

hab
3
∇cuc , (5.3)

∇a being the covariant derivative of the metric gab. The bulk viscous pressure
can be seen as a non-adiabatic pressure contribution, already present at the back-
ground level. From the stress-energy tensor (5.1), we see that the bulk viscous
pressure enters as a modification of the radiation pressure, pr → p̄r = pr + Π. The
equation of state for the radiation pressure is still pr = ωrρr. Despite the dissipa-
tion of energy during the interaction between the inflaton and the radiation bath,
in warm inflation we still assume close-to-equilibrium conditions. In this case, we
can still approximate the radiation bath as a perfect radiative fluid with ωr ' 1/3.
Then ρr + pr + Π ' 4ρr/3 + Π.

As we showed in chapter 3, in the slow-roll regime the equations of motion for
the inflaton and for the radiation energy density, respectively, are

3H(1 +Q)φ̇ ' −Vφ , (5.4)

4ρr + 3Π ' 3Qφ̇2 , (5.5)

Typically, for small enough radiation bath relaxation times, τ � H−1, which is
certainly the case for close to equilibrium thermal baths, the bulk viscous pressure
is well approximated by the Eckart equation [156],

Π = −3Hζb, (5.6)

where ζb is the bulk viscosity coefficient. For simplicity in this work we will analyse
the regime of low values of τH, where the Eckart theory, Eq. (5.6), is a good
approximation for the bulk viscous pressure, as we discussed in chapter 3.

The shear and bulk viscosity coefficients have been computed in the literature
and defined through Kubo formulas [165, 166], which are derived in the context
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of linear response theory (see also [181]):

ζs =
1

20
lim
ω→0

1

ω

∫
d3xdteiωt〈[Πlm(x, t),Πlm(0)]〉 , (5.7)

ζb =
1

2
lim
ω→0

1

ω

∫
d3xdteiωt〈[P(x, t),P(0)]〉 , (5.8)

where

Πlm(x) = Tlm(x)− 1

3
δlmT

i
i (x) , (5.9)

is the traceless part of the stress tensor and

P(x) = −1

3
T i
i (x) + v2

sT00(x) , (5.10)

where vs is the local (equilibrium) speed of sound (introduced explicitly in the
quantum field theory calculation for consistency, see e.g. [151, 152, 178])

v2
s =

∂p

∂ρ
. (5.11)

The averages in Eqs. (5.7) and (5.8) are again with respect to thermal equilibrium.
Explicit results for both the shear and the bulk viscosity coefficients, starting

from Eqs. (5.7) and (5.8), have been obtained for a self-interacting quartic scalar
field model, λσσ4/4!, in the weak interacting regime λσ < 1. This is the relevant
interaction in the LOTS of realization of warm inflation, where σ represents the
scalar components of the Y superfields [94, 167, 91]. From the results obtained
in [151, 152], as showed in chapter3 the expressions for the bulk viscosity are

ζb '
{

5.5× 104 m̃
4
σm

2
σ(T )

λ4σT
3 ln2 [1.2465mσ(T )/T ] , mσ � T � mσ/λσ

8.9× 10−5λσT
3ln2(0.064736λσ), T � mσ/λσ,

(5.12)

while the shear viscosity is the same in the two temperature regimes given in Eq.
(5.12),

ζs ' 3.04× 103T
3

λ2
σ

, (5.13)

where, in the above expressions, mσ(T ) is the thermal mass of the σ scalar
component of the Y superfield, m2

σ(T ) = m2
σ + λσT

2/24 [1 +O(mσ/T )], m̃2
σ =

m2
σ(T ) − T 2(∂m2

σ(T )/∂T 2) ' m2
σ − β(λσ)T 2/48, where β(λσ) = 3λ2

σ/(16π2) is the
renormalization group β-function.
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5.2 Perturbations in warm inflation with viscous ef-
fects

The system of equations for the perturbations at linear order for the field, radiation
energy density and radiation pressure are obtained by expanding these quantities
around their background values in a FLRW metric:

Φ(x, t) = φ(t) + δφ(x, t) , (5.14)
ρ̄r(x, t) = ρr(t) + δρr(x, t) , (5.15)
p̄r(x, t) = pr(t) + Π(t) + δpr(x, t) + δΠ(x, t) , (5.16)

and similarly for the dissipative coefficient, Ῡ(x, t) = Υ(t) + δΥ(x, t), and likewise
for the bulk viscosity coefficient, ζ̄b(x, t) = ζb(t) + δζb(x, t).

The perturbed FRW metric, including only scalar perturbations, is given by:

ds2 = −(1 + 2α)dt2 − 2a∂iβdx
idt+ a2[δij(1 + 2ϕ) + 2∂i∂jγ]dxidxj , (5.17)

where α, β, γ and ϕ are the spacetime-dependent perturbed-order variables. These
metric perturbation functions are related by the complete set linear Einstein of
equations, which after Fourier transforming to space-momentum are [170, 171]

• Hamiltonian and momentum constraints

−k
2

a2
ϕ+Hκ = − 1

2m2
P

δρ , (5.18)

κ− k2

a2
χ = − 3

2m2
P

Ψ , (5.19)

• Evolution equations

χ̇+Hχ− α− ϕ =
1

m2
P

σ , (5.20)

κ̇+ 2Hκ+

(
3Ḣ − k2

a2

)
α =

1

2m2
P

(δρ+ 3δp) , (5.21)

where we have defined the new metric variables [170, 171]

χ = a(β + aγ̇) , (5.22)

κ = 3(Hα− ϕ̇) +
k2

a2
χ , (5.23)
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σ is the shear pressure and δρ, δp and Ψ are, respectively, the total density, pressure
and momentum perturbations. In our two-fluid system, they are given in terms of
the inflaton field and radiation perturbations, e.g.,

δρ = δρφ + δρr , (5.24)
δp = δpφ + δp̄r , (5.25)
Ψ = Ψφ + Ψr , (5.26)

with δρφ = φ̇δφ̇ − φ̇2α + V,φδφ, δpφ = φ̇δφ̇ − φ̇2α − V,φδφ, δp̄r = ωrδρr + δΠ and
Ψφ = −φ̇δφ.

The evolution equations for the field and radiation perturbation quantities fol-
low from the conservation of the energy-momentum tensor. The complete equa-
tions have been given in [138] (see also Refs.[169, 170, 171, 182]). Working in
momentum space, defining the Fourier transform with respect to the comoving
coordinates, the equation of motion for the radiation and momentum fluctuations
with comoving wavenumber k are given by

δρ̇r + 4Hδρr + 3HδΠ = [(1 + ωr)ρr + Π] (κ− 3Hα) +
k2

a2
Ψr

+δQr +Qrα , (5.27)

Ψ̇r + 3HΨr + ωrδρr + δΠ = − [(1 + ωr)ρr + Π]α +
2k2

3a2
σr + Jr , (5.28)

where

Qr = Υφ̇2 , (5.29)
δQr = δΥφ̇2 + 2Υφ̇δφ̇− 2αΥφ̇2 , (5.30)
Jr = −Υφ̇δφ , (5.31)

σr = −2ζs

[
Ψr

(1 + ωr)ρr + Π
+ χ

]
. (5.32)

Eq. (5.32) is the shear viscous pressure at linear order, with ζs being the shear
viscosity coefficient for the radiation fluid, while in Eqs. (5.27) and (5.28), the
bulk pressure at linear order, δΠ, from Eq. (5.6), is given by

δΠ = ζb

[
κ+

k2

a2

Ψr

(1 + ωr)ρr + Π
− 3H

δζb
ζb

]
. (5.33)

In addition to Eqs. (5.27) and (5.28), there is also the evolution equation for the
field fluctuations δφ, which is described by a stochastic evolution determined by
the Langevin-like equation [100, 101, 102, 177]:

δφ̈+ 3Hδφ̇+

(
k2

a2
+ Vφφ

)
δφ = [2(Υ +H)T ]1/2 a−3/2ξk − δΥφ̇

+ φ̇(κ+ α̇) + (2φ̈+ 3Hφ̇)α−Υ(δφ̇− αφ̇) , (5.34)
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where ξk ≡ ξ(k, t) is a stochastic source that can be well approximated by a local-
ized Gaussian distribution with correlation function given by

〈ξ(k, t)ξ(k′, t′)〉 = δ(t− t′)δ(3)(k− k′) . (5.35)

For a general temperature T and field φ dependent dissipative coefficient, its per-
turbation is given by

δΥ = Υ

[
c
δT

T
− (c− 1)

δφ

φ

]
. (5.36)

Likewise, the quantum field derivations for the bulk and shear viscosity coeffi-
cients, ζb and ζs, respectively, show that they can be parametrized in the form

ζb = CbT
d/md−3

r , (5.37)
ζs = CsT

s/ms−3
r , (5.38)

where mr is just a constant mass scale (typically the renormalized bare mass for
the particles in the radiation bath, for example mr ≡ mσ). The temperature ex-
ponents d and s for the bulk and the shear viscosity coefficients are given by the
specific quantum field theory model realization describing the particles in the ther-
mal bath and the specific parameter regime under consideration. For example,
from the expressions (5.12) and (5.13) for the viscosity coefficients derived from
a thermal λσσ4 scalar field model, which is the relevant case for warm inflation
model building, we have d = 3 in the high temperature regime T � mσ/λσ. In the
intermediate temperature regime, mσ � T � mσ/λσ, temperature corrections to
the thermal mass mσ(T ) are subdominant, and the bulk viscosity seems to behave
like d = −3. In both temperature regimes, from Eq. (5.13), we have s = 3 for the
power in the temperature for the shear viscosity coefficients. In this study we will
thus work with d = 3, 0,−3 and s = 3, for the bulk and shear viscosity temperature
dependences, respectively From Eq. (5.37), the perturbation of the bulk viscosity,
δζb reads

δζb = dζb
δT

T
. (5.39)

Although dissipation implies departures from thermal equilibrium in the radiation
fluid, the system has to be close-to-equilibrium for the calculation of the dissipative
coefficient to hold, therefore we assume pr ' ρr/3. δT can be expressed in terms
of the radiation energy density and its perturbation as

4
δT

T
' δρr

ρr
. (5.40)

It is convenient to define dimensionless bulk and shear viscosity coefficients, ζ̄b
and ζ̄s, respectively, given by

ζ̄b ≡
1

3

ζbH

ρr + pr + Π
, (5.41)

ζ̄s ≡
4

9

ζsH

ρr + pr + Π
. (5.42)
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Therefore, the perturbed source, the perturbed bulk viscous pressure and the shear
viscous pressure at linear order reads

δQr =
3HQc φ̇2

4ρr
δρr −

3HQ(c− 1)φ̇2

φ
δφ+ 6HQφ̇δφ̇− 6HQφ̇2α , (5.43)

δΠ =
k2

a2

3ζ̄b
H

Ψr −
3dζ̄b

1 + 9ζ̄b
δρr +

4ζ̄bρr
(1 + 9ζ̄b)H

κ , (5.44)

σr = −9ζ̄s
2H

Ψr −
6ζ̄sρr

(1 + 9ζ̄b)H
χ . (5.45)

Using this results , the system of first-order perturbation equations become

δφ̈+ 3H (1 +Q) δφ̇+

[
k2

a2
+ Vφφ −

3(c− 1)HQφ̇

φ

]
δφ =

=
[2H(1 + 3Q)T ]1/2

a3/2
ξk −

cH(
1 + 9ζ̄b

)
φ̇
δρr + φ̇(κ+ α̇) + [2φ̈+ 3H(1 +Q)φ̇]α ,

(5.46)

δρ̇r +H

(
4− 3cQφ̇2

4ρr
− 9dζ̄b

1 + 9ζ̄b

)
δρr =

=
k2

a2

(
1− 9ζ̄b

)
Ψr + 6HQφ̇δφ̇− 3(c− 1)HQφ̇2

φ
δφ+

(
1

3
− 3ζ̄b

)
4ρr

1 + 9ζ̄b
κ

−3H

[
Qφ̇2 +

4ρr
3(1 + 9ζ̄b)

]
α , (5.47)

Ψ̇r + 3H

(
1 +

k2

a2

ζ̄s + ζ̄b
H2

)
Ψr =

= −3HQφ̇δφ+

(
3dζ̄b

1 + 9ζ̄b
− 1

3

)
δρr −

4ρr
1 + 9ζ̄b

(
α

3
+
ζ̄b
H
κ+

ζ̄s
H

k2

a2
χ

)
.(5.48)

Equations (5.46), (5.47) and (5.48) for the field radiation perturbations, together
with the metric perturbations Eqs. (5.22) - (5.21), form a complete set of equa-
tions in a "gauge-ready" form. From this point on we can either choose to work
in terms of gauge-invariant quantities [169, 170, 171], or equivalently choose an
appropriate gauge directly. We have tested that a convenient gauge for better sta-
bility when numerically integrating the full set of differential equations is the zero
shear (or Newtonian slicing) gauge χ = 0. In the zero shear gauge, the relevant
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equations for this analysis, obtained from Eqs. (5.22) - (5.21), become

κ =
3

2m2
P

(φ̇δφ−Ψr) , (5.49)

α = −ϕ+
9ζ̄s

2Hm2
P

Ψr , (5.50)

ϕ̇ = −Hϕ+
9ζ̄s

2Hm2
P

Ψr −
1

3
κ . (5.51)

The comoving curvature perturbation R is modified by the bulk viscous pressure
as:

R =
∑
i=φ,r

ρi + p̄i
ρ+ p̄

Ri , (5.52)

Ri = −ϕ− H

ρi + p̄i
Ψi , (5.53)

with p̄ = pφ + pr + Π, p̄φ ≡ pφ and p̄r = pr + Π.

5.3 Numerical Results

5.3.1 Amplitude of the power spectrum

In this section we study the system numerically using a Rosenbrock integrator
method [183] of order four with variable time step-size. The set of equations con-
sists of the system of differential equations (5.46), (5.47) and (5.48) in the zero
shear gauge, together with the background evolution equations for the inflaton
and the radiation energy density and those for the metric perturbation equations
(5.49), (5.50) and (5.51). In the stochastic Langevin evolution equation for the
inflaton field perturbation, Eq. (5.46), the stochastic noise term is numerically
implemented in the time discretized code with an amplitude given by

ξk =
1√
dt
G , (5.54)

where G are random numbers obtained from a zero-mean unit-variance Gaussian
distribution [184]. The noise average of the power spectrum is taken over 1000
runs, which was found to be more than enough to get convergent numerical re-
sults. Initial conditions for the inflaton field perturbations are taken with respect
to a thermal spectrum, as we expected for warm inflation with T > H, where
modes of the inflaton field in k-space satisfies

〈|δφ(k, t = 0)|2〉 =
T

k2 + Vφφ
, (5.55)
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while the momentum modes for the inflaton field is given by

〈|δφ̇(k, t = 0)|2〉 = T . (5.56)

Even though we use these initial conditions for the field, our results are largely in-
sensitive to choice of initial conditions. This is because the noise quickly erases the
information of the initial configuration, as is natural in stochastic systems, in just a
couple of e-folds of evolution. This can be understood from Eq. (5.46), which can
be approximately be seen as a stochastic damped harmonic oscillator equation,
where the homogeneous solution, depending on the initial conditions, decays ex-
ponentially due to the dissipation term. On the contrary, the non-homogeneous
solution, which depends on the two-point noise correlation function, gives the
stationary solution.

When analysing the evolution in the presence of the bulk, we account for the
possibility of dynamical instability of the background dynamics discussed in chap-
ter 3. As shown there, the condition for stability obtained for the Eckart descrip-
tion of the bulk viscous pressure in Eq. (5.6) is:

c+ 4 &
9ζ̄b

1 + 9ζ̄b

(
c+ d+

18ζ̄b
1 + 9ζ̄b

ρr
V + ρr

)
. (5.57)

Our results for the power spectrum in terms of the bulk viscosity are presented
only for values of ζ̄b satisfying the stability condition given by Eq. (5.57). For
the parameters we used in the numerical simulations this places a limit for upper
values of ζ̄b . 1 − 4. Results for the effect of the bulk and shear viscosities are
shown in Fig. 5.1, where we can then compare the effects of both viscosities on
the power spectrum as their magnitude increases. The inflaton potential used is
a quartic scalar field potential, V (φ) = (λ/4)φ4, with quartic coupling λ = 10−14.
Other type of polynomial potentials and also the hybrid type of potential were
studied in Ref. [138], with no significant qualitative change of the behavior of
the power spectrum as far shear viscous effects were concerned. We do expect
similar behavior here too, so we concentrate on the quartic scalar potential for the
inflaton.

Fig. 5.1 displays the results for the (square root) of the amplitude of the total
power spectrum, as defined by Eq. (4.25), when it has already crossed the horizon
and got frozen at superhorizon scales, z = k/(aH) � 1. We have shown in Fig.
5.1 the most severe case for the growth mode problem, which happens for the
c = 3 power on the temperature for the dissipation coefficient. The spectrum is
normalized by the value of the c = 0 power, where the growth mode is absent [103,
138]. The growth mode is apparent from the results at vanishing viscosities, ζ̄s =
ζ̄b = 0, where we see that the ratio PR(c = 3)/PR(c = 0) grows with the dissipation
ratio. We see that the bulk viscosity is more efficient than the shear in damping
the growth fluctuations for ζ̄b & 10−2, suppressing it completely at ζ̄b ' 0.1.
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Figure 5.1: The total (square root) amplitude of the power spectrum for the case
c = 3 and normalized by its value for c = 0, as a function of the shear and the bulk
viscosities dimensionless parameters ζ̄s,b. Three different values for the dissipation
ratio Q are used to illustrate the effect of the viscosities on the growth mode. The
wavenumber used was k = 104H.

The effect of the bulk and shear viscosities can be understood from the evo-
lution equations of the radiation and momentum perturbations, Eqs. (5.47) and
(5.48). The dominant effect produced by the shear viscosity comes from the addi-
tional friction term in the LHS of the momentum perturbation evolution equation,
Eq. (5.48). This term suppresses the amplitude of the momentum fluctuation
before the radiation-field system becomes effectively coupled, thus avoiding the
appearance of the growing mode. On the contrary, the dominant bulk viscous ef-
fect comes from the first term in the RHS of the radiation perturbation evolution
equation, Eq. (5.47). The term

(
1− 9ζ̄b

)
Ψr decouples the radiation and momen-

tum equations for ζ̄b ' 0.1, hence the inflaton perturbations are also decoupled
from the momentum evolution and there is no growing mode in the power spec-
trum. For larger values of the bulk viscosity, the equations are coupled again, but
in that case the extra friction term in the momentum equation, Eq. (5.48), damps
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the growing mode as in the case of the shear viscosity. In Fig 5.1 it can be seen an
increase of the amplitude of the power spectrum for larger values of the bulk vis-
cosity, which comes from the modification in the background evolution caused by
the presence of that viscosity. Fig. 5.2 shows the results for the square root for the
amplitude of the power spectrum, as a function of the bulk viscosity parameter ζ̄b
with different temperature dependences in the bulk and dissipation coefficients,
and normalized by the c = 0 and zero viscosities result for the amplitude. We
found that for the different powers in the temperature for the dissipation coeffi-
cient and for the bulk viscosity considered, the same mechanism of decoupling the
evolution equations holds, with the value required to recover the c = 0 case being
ζ̄b ' 0.1 in the 9 cases under consideration.

Figure 5.2: The total (square root) normalized amplitude for the power spectrum
for the cases c = 3, 1,−1 and for the three cases of temperature dependence for
the bulk viscosity, d = 3, 0,−3, as a function of the dimensionless bulk viscosity
parameter ζ̄b. The dissipation ratio used is Q = 100 and wavenumber k = 104H.

The remaining part of this subsection is focused on the effect of the bulk vis-
cosity without shear viscosity in the case c = d = 3, as the contribution of these
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powers are expected to be dominant from quantum field theory calculations in the
LOTS realization of warm inflation [94, 96, 151, 152]. In this case, Eq. (5.48)
long after horizon crossing and at zero order in slow-roll reduces to

3HΨr ' −
1− 18ζ̄b

3(1 + 9ζ̄b)
δρr −Υφ̇δφ . (5.58)

We have checked that the first term in the RHS of Eq. (5.58) is negligible, therefore

Ψr ' Qφ̇δφ. (5.59)

As it is show in Ref. [138], this relation implies the simple equality after horizon
crossing

PR ' PRr ' PRφ . (5.60)

We focus now in the search of a function that fits the amplitude of the power
spectrum to have a semianalytic understanding of the effect of the bulk viscosity
on this observable, in the same way as it was done for the shear viscosity in Ref.
[138]. In order to do that, it is useful to use the dimensionless variable yk defined
as

yk =
k3/2δφGI

[2(H + Υ)T ]1/2
, (5.61)

where δφ is the gauge invariant field variable, i.e,

δφGI = δφ− φ̇

H
ϕ. (5.62)

The new variable relates with the power spectrum through the relation[138]

PR(k) '
(
H

φ̇

)2
(H + Υ)T

π2
〈y2
k〉∗. ≡ f〈y2

k〉∗ (5.63)

We parametrize the function that fits the amplitude with the following form:

〈y2
k〉3 ' 〈y2

k〉0F (Q)G(ζ̄b), (5.64)

where 〈y2
k〉3 is the value of 〈y2

k〉 in the case under consideration, 〈y2
k〉0 is the value

of the same variable in the absence of bulk and with c = 0, which is given by[101]

〈y2
k〉0 '

√
3π

4

√
1 +Q

1 + 3Q
, (5.65)

and F (Q), G(ζ̄b) are functions of only Q and ζb respectively that need to be found.
In Ref. [138] the authors identified a form of F (Q) valid for values ofQ larger than
50. However, we need to extend their fit to lower values of Q for the calculation
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of the spectral index that we will perform in the next subsection. Following their
procedure we propose the following parametrization:

F (Q) = AQα +BQβ, (5.66)

to fit numerically the amplitude of the spectrum for different values of Q with-
out any viscosity, and find the values of the different parameters. These values
can be found in table 5.1, while Fig. (5.3) shows the accuracy of the fits in its
corresponding range of validity.

Range A α B β
Q < 50 13.1 2.14 2.7× 10−2 4.92
Q > 50 1.9×10−8 7.5 3.4×10−6 7

Table 5.1: Values of the parameters of the function 5.66 for different ranges of Q.
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Figure 5.3: Fits of 〈y2
k〉3 normalized by 〈y2

k〉0 for different ranges of Q.

Once the function F (Q) is known, it is possible to use the same procedure to
obtain the function G(ζ̄b). We found that the best fit for this function is given by

G(ζ̄b) = Ab−Bb tanh(log ζ̄b−Cb)+Db(log ζ̄b+Eb)
2+Fb tanh(Gb log ζ̄b+Hb), (5.67)
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with the parameters given in table 5.2. The fit is done with different values of Q
at horizon crossing, namely Q∗ = 1, 10, 40, 60, 100. The last term in Eq. (5.67) has
a negligible effect on the amplitude, but it is included to improve the description
of the spectral index (see subsection 5.3.2). In Fig. (5.3) it can be seen that there
is a little dependence on Q∗ in the function G(ζ̄b), however for our purposes it is
safe to neglect that dependence.

Ab Bb Cb Db Eb Fb Gb Hb

0.331 0.656 3.22 0.011 4.44 0.01 25 41.2

Table 5.2: Values of the parameters of the function 5.67.
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Figure 5.4: Numerical values of G(ζ̄b) in comparison with the fit 5.67 for values
Q∗ = 1, 10, 40, 60, 100.

5.3.2 Spectral index

At this point it is interesting to study the effects of the bulk and shear viscosities in
the spectral index of the power spectrum in the case c = d = s = 3. The spectral
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index measures the dependence of the power spectrum with the scale,

PR(k) = PR

(
k

k0

)ns−1

, (5.68)

where PR is the scale-independent amplitude, k0 is a reference scale and ns is the
spectral index. From the LHS of Eq. (5.48) it can be observed that there is some
scale dependence in the effect of the viscosities in the perturbations, therefore we
expect that this effect translates into a modification of the spectral index. Fig.
(5.5) shows the effect of the bulk viscosity on the spectral index for Q∗ = 40. The
points are the values that were calculated from the numerical integration of the
evolution equations Eqs. (5.46)-(5.48) with different values of the wavenumber
k and the same initial conditions. The resulting values were fitted to Eq. (5.68)
to find the value of the spectral index for a given ζ̄b. This quantity together with
the error of the fit is represented by the dots with error bars. The line shows the
derivative of the fit for the amplitude, Eq. (5.64), given by

(ns − 1)3 = (ns − 1)0 + logF (Q)
dG(ζ̄b)

dNe
+
G(ζ̄b)

F (Q)

dF (Q)

dNe
+
d log f3/f0

dNe
, (5.69)

where (ns − 1)0 is the spectral index in the case c = 0 without any viscosity (see
Appendix B). Eq. (5.69) is a reasonable approximation to the real data in the
analyzed range, therefore Fig. (5.5) is also a cross-check for the fit in Eq. (5.67).
The last term in Eq. (5.67) was included to improve the description of the peak in
the spectral index that can be observed at low bulk viscosity values in Fig. (5.5).

It is possible to get an insight into the effect of the bulk viscosity in the spectral
index by looking at the equations Eqs. (5.46)-(5.48). We checked that the peak at
low values of ζ̄b is caused by bulk viscous effects at the background level, hence we
can regard the spectral index as a monotonically decreasing function of the bulk
viscosity at the perturbation level. This behaviour is caused by the viscosity friction
term in the LHS of Eq. (5.48) which depends also on the wavenumber k, therefore
for larger values of ζ̄b the dependence on k increases and as a consequence, the
spectral index diminishes. This same effect happens with the shear viscosity, as
can be seen in Fig. (5.6). Fig. (5.6) shows that the bulk viscosity is more efficient
than the shear viscosity, in concordance with what happens with the amplitude in
Fig. (5.1). This effect is due to the term in the RHS of Eq. (5.47) which depends
on the bulk viscosity but not on the shear.

Finally in Fig. (5.6) it can be also observed the combined effect of the viscosi-
ties. They show an oscillatory behaviour around the dominant viscosity, e.g., in
the green line the bulk viscosity is much smaller than the shear viscosity and, as a
result, the combined effect are oscillations around the solution with shear viscosity
but not bulk viscosity. Therefore, we conclude that viscosities may also suppress
the effect of the growth mode in the tilt of the spectrum of scalar perturbations.
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Figure 5.5: Spectral index for Q∗ = 40 and different values of ζ̄b. The points
represents the numerical values obtained by the direct resolution of the evolution
equations, while the line shows the derivative of Eq. (5.64).

Figure 5.6: Spectral index for Q∗ = 40 different values of the bulk and shear
viscosities. The purple solid (orange dashed) line corresponds to the variation
of the bulk (shear) viscosity with zero shear (bulk) viscosity. The green dashed-
dotted (blue dotted) line corresponds to a fixed value of the bulk viscosity ζ̄b =
0.023 (ζ̄b = 0.48) with varying shear viscosity.





The first problem for all of us, men and
women, is not to learn, but to unlearn.

Gloria Steinem

6Warm inflation in the weak dissipation
regime

In this chapter we follow a different path to deal with the growing mode of the
power spectrum. We restrict our analysis of warm inflation to the regime of weak
dissipation, Q∗ � 1. In this regime the coupling of the radiation-field evolution
equation is not effective, hence the power spectrum does not suffer from a growth
mode. Dissipation does not modify the background evolution, but may have a
significant impact at the perturbations level due to the thermal origin of the power
spectrum, hence producing important observational features for warm inflation.

A very interesting aspect of warm inflation with weak dissipation is the role of
the thermodynamical state of the inflaton particles. In [104], the authors realized
that strong enough interactions of the inflaton particles can bring the system to a
thermalized state. The statistical distribution describing such a system is charac-
terized by non-trivial inflaton occupation numbers, which may have an important
influence in the power spectrum of warm inflation. The statistical state of the infla-
ton particles is of the utmost importance in the weak dissipation regime, whereas
it is completely subdominant when dissipation is strong, that is the reason we have
not studied it thus far in this thesis.

We will show that even when dissipative effects are still small compared to
Hubble damping, the amplitude of scalar curvature fluctuations can be signif-
icantly enhanced, while tensor perturbations are generically unaffected due to
their weak coupling to matter fields. This generically reduces the tensor-to-scalar
ratio with respect to conventional models and also modifies the tilt of the scalar
power spectrum, thereby changing observational predictions considerably. These
effects are particularly significant when non-trivial inflaton occupation numbers
are sustained during inflation.

We performed this analysis after the Planck collaboration released the first
cosmological data, hence we could make use of it to compare with the observa-
tional predictions of warm inflation. As a first example of the described features
of the weak dissipation regime, we show that the simplest model of chaotic in-
flation, V (φ) = λφ4, falls well within Planck’s observational window for a nearly-

85
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thermalized state in the LOTS realization of warm inflation, whereas it seems in
tension with the data in a cold scenario. Then, we will study a model of hill-
top inflation to exemplify how the same mechanisms modifying the inflationary
observables operate in a different inflationary model.

6.1 The weak dissipation regime

The power spectrum or a generic inflaton phase-space distribution n(k) at the
time when observable CMB scales leave the horizon during inflation, t∗, can be
approximated by [100, 87, 101, 102, 104]:

∆2
R =

(
H∗

φ̇∗

)2(
H∗
2π

)2
[

1 + 2n∗ +

(
T∗
H∗

)
2
√

3πQ∗√
3 + 4πQ∗

]
, (6.1)

which yields the standard cold inflation result in the limit n∗, Q∗, T∗ → 0. This
expression neglects, however, the coupling between inflaton and radiation fluctu-
ations associated with the temperature dependence of the dissipation coefficient.
This coupling induces a significant enhancement of the perturbation growth for
strong dissipation, Q & 1 [103]. Since this coupling is negligible if the relevant
scales become super-horizon when dissipation is weak, we can obtain an accurate
description of the spectrum by taking the limit Q∗ � 1 in the expression above,
which yields in the slow roll regime:

∆2
R '

(
H∗

φ̇∗

)2(
H∗
2π

)2 [
1 + 2n∗ + 2πQ∗

T∗
H∗

]
. (6.2)

Dissipative processes may maintain a non-trivial distribution of inflaton parti-
cles. The heavy fields decay into inflaton particle states through χ → yyφ, but
this is a sub-leading process, with Γ(χ → yyφ) = (g/4π)2Γ(χ → yy), where
Γ(χ → yy) = αhmX/16 [96], with inflaton particles from this process alone typi-
cally yielding a negligible component of the radiation bath. However, dissipative
particle production destabilizes the local thermal equilibrium of the plasma, trig-
gering decays, inverse decays and thermal scatterings that redistribute the dissi-
pated energy between all the interacting fields and keep the system close to equi-
librium if occurring faster than the Hubble rate. In particular, decays and inverse
decays of the multiple heavy species in the plasma can be efficient thermalization
processes [185, 186] so that, in some parametric regimes, we expect inflaton par-
ticles to be sustained in a quasi-thermal state at the ambient temperature T , with
a phase-space distribution that should approach the Bose-Einstein,

nBE(k) = (ek/aT − 1)−1 . (6.3)

Although the details of the thermalization process require solving the system of
coupled Boltzmann equations for all the particle species involved, the underlying
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physical picture can be understood in simple terms. Starting from an equilibrium
configuration where decay and inverse decay processes are occurring at equal
rates, dissipation of the inflaton’s energy will mainly produce an excess of light
particles in the Y sector, which will enhance the rate of inverse decays and conse-
quently increase the X sector occupation numbers above their equilibrium value.
This in turn enhances the direct decay rate, producing Y particles and also an ex-
cess of inflaton modes. This goes on until the balance between decay and inverse
decay rates is restored and the system reaches a new equilibrium configuration.
One then expects the energy injected into the system to be distributed amongst
all species in the plasma that are produced and annihilated faster than Hubble
expansion. The common temperature of these species would decrease due to the
dilution effect of expansion but this is compensated by the additional energy, keep-
ing the temperature roughly constant in the slow-roll regime. Species that are not
created/destroyed sufficiently fast will decouple from the plasma and their effec-
tive temperature will be exponentially redshifted away during inflation, quickly
reaching a quasi-vacuum state. A measure of the efficiency of the thermalization
processes can then be obtained by comparing the relevant decay rates with the
Hubble parameter, as we examine in more detail below in the context of chaotic
inflation.

Note that both the second and third terms within the brackets in Eq. (6.2)
are positive-definite, the former corresponding to non-trivial inflaton occupation
numbers and the latter to the leading effect of fluctuation-dissipation dynamics.
Hence, the amplitude of the scalar power spectrum always exceeds the vacuum
result in warm inflation scenarios. On the other hand, gravity waves are weakly
coupled to the thermal bath and the spectrum of tensor modes retains its vacuum
form, ∆2

t = (2/π2)(H2
∗/M

2
P ). This therefore suppresses the tensor-to-scalar ratio,

yielding a modified consistency relation for warm inflation:

r ' 8|nt|
1 + 2n∗ + 2πQ∗T∗/H∗

, (6.4)

where nt = −2ε∗ is the tensor index. The primordial tensor spectrum can thus be
used to distinguish warm from cold inflation scenarios, the former consequently
modifying the Lyth bound [187, 135] that relates the value of the tensor-to-
scalar ratio to the variation of field, and requires transplanckian excursions for
r ∼ O(10−2) (see also [188] for other scenarios where the Lyth bound does not
apply). Most importantly, non-trivial inflaton occupation numbers may also gener-
ically lower the tensor-to-scalar ratio, which as we illustrate in the following sec-
tions may have a very significant effect on inflationary predictions.

In the limit where inflaton particle production is inefficient and n∗ gives a neg-
ligible contribution to the power spectrum, the scalar spectral index is nevertheless
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modified by the third term in Eq. (6.2), yielding:

ns − 1 ' 2η∗ − 6ε∗ +
2κ∗

1 + κ∗
(7ε∗ − 4η∗ + 5σ∗) , (6.5)

where we defined the slow-roll parameter1

σ = m2
P

Vφ
φV

< 1 +Q , (6.6)

and we have used the slow-roll equations, 3H(1 + Q)φ̇ ' −V ′(φ) and ρR '
(3/4)Qφ̇2, to determine the variation of κ ≡ 2πQT/H as different scales become
super-horizon during inflation.

Modifications are, however, more prominent in the opposite limit of nearly-
thermal inflaton fluctuations, with n∗ ' nBE∗. For T∗ & H∗ and Q∗ � 1 we then
obtain:

ns − 1 ' 2σ∗ − 2ε∗ , (6.7)

which is, in particular, independent of the curvature of the potential, which only
determines its running:

n′s ' 2σ∗(σ∗ + 2ε∗ − η∗)− 4ε∗(2ε∗ − η∗) . (6.8)

In this case, a red-tilted spectrum, ns < 1, corresponds to either potentials
with a negative slope, such as hill-top models, or large field models where
ε∗ > 2(MP/φ∗)

2.

6.2 Chaotic warm inflation

To illustrate the effects of both dissipation and occupation numbers on observa-
tional predictions, we consider the quartic model, V (φ) = λφ4, which corresponds
to a superpotential f(Φ) =

√
λΦ3/3 and is the canonical model of chaotic inflation

[189]. In this case, the slow roll parameters are

ε = 2σ =
2

3
η = 8

(
mP

φ

)2

, (6.9)

which from Eq. (6.7) yields for a thermalized inflaton distribution

ns − 1 ' −8

(
mP

φ∗

)2

. (6.10)

1The slow-roll parameter σ is equivalent to the slow-roll parameter βΥ used in other chapters.
We chose σ in this discussion to simplify the expressions.
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This gives a red-tilted spectrum with ns ' 0.96 for φ∗ ' 14MP , which is super-
planckian but smaller than the corresponding field value in the vacuum case, φ∗ '
25MP . This also gives

r ' 8(1− ns)
H∗
T∗

, (6.11)

within the upper bound obtained by Planck, r < 0.11 (95% CL), for T∗ > 2.9H∗, as
well as a small negative running and a tensor index

n′s = −(ns − 1)2 ' −0.0016, nt = 2(ns − 1) ' −0.079 , (6.12)

The number of e-folds of inflation can be computed by integrating the slow-roll
equations, which may be done analytically for the quartic model [190]. In partic-
ular, one can use the form of the dissipation coefficient Υ = CφT

3/φ2 to express
the coupled inflaton and radiation equations in the slow-roll regime as a single
equation for the dissipative ratio Q:

dQ

dNe

= C∗
Q6/5(1 +Q)6/5

1 + 7Q
, (6.13)

where C∗ ' 5ε∗Q
−1/5
∗ forQ∗ � 1. This shows thatQ grows during inflation, so that

the system may evolve from the weak to the strong dissipation regime. Inflation
ends in this case when |η| = 1 +Q, which yields

Qe '
[

2

3
(1− ns)

]5/2

Q1/2
∗ , (6.14)

for a thermal spectrum and hence Qe & 1 for Q∗ & 10−6. The relative abundance
of radiation will then also grow towards the end of inflation, with

ρR
V (φ)

∝ Q7/5 (6.15)

in this case, until it smoothly takes over after slow-roll has ended. Integrating
Eq. (6.13) from horizon-crossing to the end of the slow-roll regime, we obtain:

Ne ' ε−1
∗
(
1 + bQ1/5

∗
)
, (6.16)

where b ' 2.81. This yields the required 50 − 60 e-folds of inflation with ns '
0.96 − 0.97 for Q∗ ' 0.001 − 0.01. We have checked numerically that the range
Q∗ < 0.01 is safe from the growth mode of the power spectrum, hence Eq. (6.2)
is a good approximation to the power spectrum, as can be seen in Fig. 6.1 For
comparison, the spectral index in the standard cold inflation regime is

ns = 1− 3

Ne

, (6.17)



90 Chapter 6. Warm inflation in the weak dissipation regime

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

P
r1

/2
(n

u
m

/a
n

a
ly

.)

Q*

Figure 6.1: Full numerical computation of the power spectrum compared to the
analytical approximation in Eq.(6.2) for different values of the dissipative coeffi-
cient at horizon crossing.

giving ns = 0.94− 95 for Ne = 50− 60. This clearly shows that even for weak dis-
sipation at horizon crossing one may obtain substantially different observational
results.

For both limits of nearly-thermal and negligible inflaton occupation numbers,
one can use the observed amplitude of curvature perturbations, ∆2

R ' 2.2 × 10−9

[191] and the dissipation coefficient to relate the different quantities at horizon-
crossing. For instance, in the nearly-thermalized regime

Q∗ ' 2× 10−8g∗

(
H∗
T∗

)3

. (6.18)

This allows one to express both ns and r in terms of the dissipative ratio or temper-
ature at horizon-crossing for a given number of e-folds of inflation and relativistic
degrees of freedom, which is illustrated in Fig. 6.2.

As one can see, observational predictions for the quartic model depend on the
distribution of inflaton fluctuations, n∗. For n∗, κ∗ � 1, the spectrum has the same
form as in cold inflation, but from Eq. (6.16) one obtains Ne = 50 − 60 for larger
field values than in cold inflation, yielding a larger tensor fraction and a more red-
tilted spectrum. When κ∗ & 1, however, the spectrum becomes more blue-tilted
and r is suppressed, although for weak dissipation it remains too large.
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Figure 6.2: Trajectories in the (ns, r) plane for V (φ) = λφ4 as a function of the dis-
sipative ratio, Q∗ < 0.01, 50-60 e-folds before the end of inflation, compared with
the Planck results [191], for g∗ = 228.75 relativistic degrees of freedom. The dark
green (light blue) curves correspond to nearly-thermal (negligible) inflaton occu-
pation numbers n∗, with dashed branches for T∗ . H∗. Note that corresponding
curves converge in the cold inflation limit, T∗, Q∗ → 0.

On the other hand, for nearly-thermal inflaton occupation numbers tensor
modes are more strongly suppressed and one obtains a remarkable agreement
with the Planck results for T∗ & H∗. Note that for T∗ . H∗ the concept of ther-
mal equilibrium is ill-defined, since the average particle modes have super-horizon
wavelengths, so in Figure 6.2 we represent this regime with dashed curves to nev-
ertheless illustrate the transition from a cold to a warm spectrum. Also, we take
the MSSM value g∗ = 228.75 only as a reference, with fewer light species further
lowering the tensor-to-scalar ratio, since T∗/H∗ is larger.

The results in Fig. 6.2 motivate a closer look at thermalization processes and in
particular we can estimate the total production rate of inflaton particles from the
decay rate of theNX heavy species in the plasma given above. At horizon-crossing,
in particular, the inflaton is relativistic. Using that mφ∗ � T∗, we may write this
as:

Γφ∗
H∗
' 9 (αgαh)

3/2

(
1− ns
0.04

)3/2(
0.01

r

)3/2(
0.005

Q∗

)1/2

, (6.19)
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where αg = g2NY /4π, αh = h2NY /4π and we assumed n∗ = nBE∗. Moreover, finite
temperature Bose factors may considerably enhance this for small couplings [192],
with e.g. the two-body decay width increasing up to a factor T/mY ∼

√
12/h [96].

Also, Γφ/H increases during inflation, so that deviations from thermal equilibrium
should become less significant. We then expect inflaton particles to be produced
sufficiently fast and remain close to thermal equilibrium with the ambient plasma
if the effective couplings αg,h are not too small. Both the inflaton and other light
fields could actually be in a pre-inflationary thermal state with T & H, with dissi-
pation and the above mentioned processes maintaining a slowly-varying temper-
ature. Without dissipation, however, thermal effects would be quickly redshifted
away, yielding quite different observational features [193].

The agreement with the Planck results is particularly significant, since the quar-
tic potential is the simplest renormalizable model of chaotic inflation, involving no
other scales other than the inflaton field value. As originally argued in [189], in
large-field models inflation is naturally triggered from a chaotic field distribution
following the pre-planckian era, in domains where V (φ) ∼M4

P quickly dominates
over gradient and kinetic energy densities. On the other hand, when inflation only
occurs for a V (φ)�M4

P plateau, the post-planckian universe must be unnaturally
smooth, requiring a fine-tuning of initial conditions that the inflationary paradigm
is supposed to solve [194].

While other modifications such as a non-minimal coupling to gravity may also
bring the quartic model into agreement with observations [195], the renormal-
izable nature of the interactions leading to dissipation is an attractive feature of
warm inflation, with only a few controllable parameters. Note, in particular, that
interactions with other bosonic and/or fermionic fields are always required since
the vacuum energy of the inflaton field must be transferred into light degrees of
freedom at the end of inflation to reheat the universe. In this sense, warm inflation
scenarios do not introduce any non-standard modifications to the basic inflation-
ary models but simply correspond to parametric regimes where the universe is kept
warm throughout inflation, T & H. For the LOTS realization of warm inflation,

T∗
H∗
∼ Cφ

g∗
N−2
e & 1 , (6.20)

which may be achieved for NX � NY & 1 and g, h � 1, while keeping radiative
corrections under control. We may express the number of heavy species as:

NX '
8× 105

αh

(
0.04

1− ns

)4 ( r

0.01

)2
(
Q∗

10−3

)
, (6.21)

where we have assumed a thermal distribution of inflaton perturbations. This
large multiplicity of X species is typical of the form of the dissipation cofficient in
the LOTS realization of warm inflation [91, 1], but is expected to be significantly
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reduced in other regimes, such as for on-shell X modes [96]. Large multiplicities
may be obtained in D-brane constructions [93], where the X fields correspond to
strings stretched between brane and antibrane stacks and their number thus grows
with the square of the brane multiplicity. Due to brane-antibrane annihilation
at the end of inflation, these modes will not, however, play a role in the post-
inflationary universe. Field multiplicities are also enhanced by the Kaluza-Klein
tower in extra-dimensional scenarios [196].

An interesting possibility arises when we consider B- and CP-violating interac-
tions in the two stage superpotential

W = gΦX2 + hXY 2 + f(Φ) , (6.22)

with complex couplings and distinct decay channels. In this case, the out-of-
equilibrium nature of dissipation can generate a cosmological baryon asymme-
try during inflation [197]. The resulting baryon-to-entropy ratio depends on the
inflaton field, so that inflaton fluctuations yield both adiabatic and baryon isocur-
vature (BI) perturbations with a nearly-scale invariant spectrum. For the quartic
model with n∗ ' nBE∗, BI and adiabatic modes are anti-correlated with relative
amplitude[198]

BB ' 3(ns − 1) ' −0.12 (6.23)

and a blue-tilted spectrum [198]

niso '
3− ns

2
' 1.0 (6.24)

This then yields for the relative matter isocurvature spectrum

βiso '
(

Ωb

Ωc

)2

B2
B ' 4.8× 10−4 , (6.25)

well within the bound βiso < 0.0087 obtained by Planck for anti-correlated isocur-
vature modes with ns ' niso, which is in fact the case that best improves the fit to
the data [191].

The interactions required to produce a baryon asymmetry through dissipation
are analogous to those considered in conventional thermal GUT baryogenesis or
leptogenesis models, with the scalar X fields corresponding to e.g. heavy GUT
bosons or right-handed neutrinos [197]. However, since only virtual X modes
are involved in the dissipative processes, baryogenesis may occur below the GUT
scale, as opposed to thermal GUT baryogenesis models, avoiding the production of
dangerous relics such as monopoles. In particular, we obtain for the temperature
at the end of inflation in the quartic model:

Te ' 1014

(
1− ns
0.04

) 5
2
(

0.01

r

) 1
2
(

10−3

Q∗

) 3
10

GeV . (6.26)
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We note that the effective reheating temperature is roughly an order of magnitude
lower since radiation typically takes a few e-folds to take over after the end of
slow-roll [190]. While gravitinos may still be ubiquitously produced at these tem-
peratures, the inflaton may not decay completely right after inflation if Qe . 10
[199], as is the case of the quartic model for Q∗ < 0.01. The inflaton may then
come to dominate over the radiation bath at a later stage and the entropy pro-
duced by its eventual decay may dilute the excess of gravitinos, thus avoiding the
potentially associated cosmological problems [199].

6.3 Warm inflation in a hilltop model

In this section we parsimoniously describe the observational characteristics of
warm inflation in a different canonical class of inflationary models, in order to
demonstrate that the modifications in the spectral index and tensor-to-scalar ratio
described in the previous section are not a particularity of the chaotic models. We
consider as a working example a hilltop model [73, 72] with a potential

V (φ) = V0

[
1− γ

2

(
φ

mp

)2
]

(6.27)

where the values of the field are sub-planckian and the constant term dominates,
V ' V0. The slow roll parameters of this potential reads

ε =
γ2

2

(
φ

mp

)2

η = σ = −γ . (6.28)

The fields rolls away from the origin towards the minimum of the potential, thus
increasing with the number of e-folds. Inflation ends when the field is so large
that the approximation V ' V0 is no longer valid and slow-roll is violated.

We have solved numerically the full perturbed equations to determine the re-
gion of the parameter space where Eq. (6.2) is an accurate description of the
amplitude of the power spectrum. Fig. (6.3) shows the result of the numerical
computation of the amplitude normalized by Eq. (6.2) for different values of Q∗
and two representative values of γ, for nearly-thermal inflaton occupation num-
bers. It can be seen that the growing mode begins to have an effect for values of
Q∗ & 0.01. The evolution of the temperature to Hubble ratio can be computed in
slow-roll to be

d lnT/H

dNe

' 2(2ε− η + σ) = 2γ2 φ
2

m2
p

> 0 , (6.29)

therefore T/H always increases during inflation, therefore the T & Hcondition
only constraint the set of initial conditions. The evolution of the dissipative ratio
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Figure 6.3: Numerical amplitude of the power spectrum normalized by Eq. (6.2)
for different values ofQ∗ and γ = 0.1, 0.001, for nearly-thermal inflaton occupation
numbers.

in slow-roll is
dQ

dNe

= Q

(
5γ2 φ

2

m2
p

− 2γ

)
. (6.30)

The evolution of Q depends on the combination of φ, γ, increasing with the num-
ber of e-folds if the condition

φ2

m2
p

>
2

5γ
(6.31)

is fulfilled. In general, for small values of γ, a large value of φ is required to obtain
60 e-folds, and Q grows during inflation. In the limit of large values of γ, we
find the opposite situation and Q decreases. The difference in the behaviour of Q
modifies the observable predictions of warm inflation when the occupation num-
ber of the inflaton particles is negligible, as can be seen in Fig. 6.4. In the region
where the dissipative ratio grows (decreases), the spectral index moves towards
smaller (larger) values compared to the cold inflation result. In the opposite limit
of nearly-thermal inflaton fluctuations, the spectral index is roughly independent
of the value of the dissipative ratio, while the suppression on the tensor-to-scalar
ratio is more important. Fig. 6.4 shows that both nearly-thermal inflaton fluctu-
ations and negligible occupation number limits are consistent with Planck data,
proving that the thermalization of the inflaton particles is no a necessary condi-
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tion for the consistency of the LOTS realization of warm inflation, but a desirable
feature for a certain inflationary models.

Figure 6.4: Trajectories in the (ns, r) plane for the hilltop potential in Eq.
(6.27) and different vales of the γ parameter as a function of the dissipative
ratio, Q∗ < 0.01, 60 e-folds before the end of inflation, compared with the
Planck+WP+BAO+ΛCDM+r results [191], for g∗ = 228.75 relativistic degrees
of freedom. The solid (dashed-dotted) curves correspond to nearly-thermal (neg-
ligible) inflaton occupation numbers n∗, with dashed branches for T∗ . H∗. Note
that corresponding curves converge in the cold inflation limit, T∗, Q∗ → 0.
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In a spiral galaxy, the ratio of dark-to-light matter is about a factor of
ten. That’s probably a good number for the ratio of our ignorance-to-
knowledge. We’re out of kindergarten, but only in about third grade.

Vera Rubin

7WIMPlaton: inflation and dark matter
unification

Inflaton and dark matter candidates in particle physics models share several com-
mon features, both being typically assumed to be weakly interacting and neutral
fields. The inflaton scalar field must interact weakly with itself and other degrees
of freedom in order to ensure the required flatness of the associated scalar poten-
tial, which could be spoiled by large radiative corrections. Similarly, dark matter
particles should form a stable non-relativistic and non-luminous fluid at late times
that accounts for the observed galaxy rotation curves [25, 26], the large scale
structure in the universe as inferred from Cosmic Microwave Background [33, 23]
and weak-lensing observations [27, 28] (for a detailed review, we refer the reader
to [200]). Both inflation and dark matter are essential features in the modern cos-
mological paradigm and cannot be accounted for within the present framework of
the Standard Model of particle physics. It is therefore interesting to consider the
possibility that the same field accounts for both accelerated expansion in the early
universe and the hidden matter component at late times.

Scalar fields have the interesting property of mimicking fluids with different
equations of state depending on the kinematical regime considered. For a homo-
geneous scalar field φ with potential V (φ), we have:

ρφ =
1

2
φ̇2 + V (φ) , pφ =

1

2
φ̇2 − V (φ) . (7.1)

Hence, on the one hand a slowly-varying field, φ̇2/2 � V (φ) acts as an effec-
tive cosmological constant, which is the regime typically considered in canonical
inflationary models. On the other hand, a field oscillating about the minimum
of its potential where V (φ) ' m2

φφ
2/2 behaves as non-relativistic matter, with

〈φ̇2/2〉 = −〈V (φ)〉 such that pφ � ρφ [201]. These two regimes will generically
be present in inflationary potentials, which further suggests a common framework
for inflation and dark matter. The main difficulty in achieving such a unified de-
scription lies, however, in the fact that inflation must end with a transition to a
radiation-dominated universe, in order to recover the standard “Big Bang" evolu-
tion at least before the freeze-out of light nuclear abundances takes place [202].

99
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An efficient transfer of energy between the inflaton field and radiation generically
requires the former to decay into light degrees of freedom following the period of
inflationary slow-roll [76, 77, 78, 79], even though other non-perturbative pro-
cesses such as parametric resonance amplification could contribute significantly to
the reheating process [203].

Nevertheless, efficient reheating does not imply the complete decay of the in-
flaton field and the possibility that a stable remnant is left after inflation has been
considered in the literature. Works include models where the decay of the infla-
ton is blocked by induced thermal masses [204, 205], a second period of thermal
inflation diluting the inflaton abundance [206], scalar fields with non-canonical
kinetic terms [207, 208], generation of inflaton particles in the thermalization pro-
cess [209, 210, 211], and singlet scalar inflaton non-minimally coupled to gravity
[212, 213]. We propose a concrete realization of the generic idea in quantum
field theory, where the decay of the inflaton is truly incomplete, occurring only for
a finite period after the end of the slow-roll regime.

We will introduce a simple mechanism based on standard Yukawa coupling
between the inflaton and massive fermion fields (and potentially their superpart-
ners), endowed with an appropriate symmetry that protects the full decay of the
inflaton field, and discuss the parametric regimes where inflaton decay into such
fermions is incomplete. We will analyse the embedding of this generic mecha-
nism in concrete inflationary models, and possible scenarios for the interactions
between the fermion fields and the Standard Model degrees of freedom that al-
low for the presence of the latter in the post-inflationary thermal bath. We will
show that the inflaton remnant is not necessarily in the form of a coherent con-
densate of bosonic particles and that, in particular, for not too small couplings
the evaporation of this condensate is inevitable. In this case, the thermalized in-
flaton particles eventually decouple from the radiation bath and their abundance
freezes out, yielding a thermal inflaton relic with properties similar to other WIMP
candidates [214]. We suggestively denote this as the “WIMPlaton" scenario.

We will study two dynamically distinct scenarios. Firstly, we will consider a
minimal model with a single dynamical scalar field that simultaneously drives
inflation, reheats the universe through incomplete decay and leaves a stable non-
relativistic remnant. Secondly, we will examine a (supersymmetric) hybrid infla-
tion model with an additional dynamical waterfall sector, which is responsible for
ending inflation and reheating of the universe. In this case, we show that despite
reheating being ensured by a different field, the inflaton field must decay in order
for radiation to fully come to dominate the energy balance in the universe. As
in the minimal model, this decay may nevertheless be incomplete and we discuss
the parametric regimes in which the inflaton remnant constitutes a suitable dark
matter candidate in the hybrid framework.
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7.1 Minimal model

7.1.1 Basic properties and dynamics

The minimal model for inflaton dark matter considers a single dynamical (real)
scalar field, the inflaton φ, with a potential energy V (φ) such that a period of
slow-roll can occur for some field range. We take the inflaton field to be coupled
to massive fermion fields ψ+ and ψ− through standard Yukawa terms and impose
a discrete symmetry1 [215] C2 ⊂ Z2 × S2 on the Lagrangian such that the scalar
inflaton transforms under the Z2 group as φ → −φ and the fermions are simulta-
neously interchanged by the permutation symmetry ψ+ ↔ ψ−. This yields for the
resulting Lagrangian density:

L =
1

2
∂µφ∂µφ− V (|φ|)

+ ψ̄+(iγµ∂µ −mf )ψ+ + ψ̄−(iγµ∂µ −mf )ψ−

− hφψ̄+ψ+ + hφψ̄−ψ− , (7.2)

where, as a result of the discrete symmetry, the two fermions have the same tree-
level mass mf but opposite Yukawa coupling to the inflaton field. The action of the
discrete symmetry is restricted to the inflaton-fermion sector, such that all other
fields, including the Standard Model fields, are invariant under this symmetry.

This symmetry implies that the inflaton potential is an even function of the
field and we assume that it is unbroken at the minimum of the potential, which
must therefore lie at the origin, φ = 0. As a result, since no other terms linear in
φ except for the above Yukawa terms are allowed by the discrete symmetry, the
only possible decay channels of the inflaton at the minimum are φ → ψ̄±ψ±. The
massive fermions ψ± must excite other light degrees of freedom for the Standard
Model particles to be generated. Nevertheless, such interactions cannot induce
additional decay channels of the inflaton through radiative effects or processes
mediated by off-shell fermions, as the discrete symmetry causes the cancellation
of the contributions of ψ+ and ψ−. Different possibilities for the reheating of the
Standard Model will be discussed in section 7.1.3.

If the inflaton mass at the minimum is given by m2
φ = V ′′(0) > 0 and we require

mf > mφ/2, the decays φ → ψ̄±ψ± will be kinematically forbidden for φ = 0 and
the inflaton will be stable when it settles at the minimum of its potential. Hence,
the discrete symmetry and the mass hierarchy ensure the stability of the inflaton
at late times both at tree and loop levels, such that it will contribute to the present
dark matter abundance.

The two fermion fields are indistinguishable apart from their coupling to the

1This subgroup contains only elements that transform simultaneously under Z2 and S2.
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inflaton, which leads to a mass splitting away from the origin:

m± = |mf ± hφ| . (7.3)

This implies that, although inflaton decay into these fermions is forbidden at late
times as the field approaches the origin, that need not be the case if the amplitude
of field oscillations after inflation is sufficiently large. In particular, decay will be
allowed for field values satisfying:

|mf ± hφ| < mφ/2 . (7.4)

This implies, in particular, that decay is kinematically allowed for field amplitudes
|φ| & mf/h. The decay process of the inflaton into the massive fermions as it os-
cillates around the minimum of the potential follows complex dynamics involving
both non-perturbative and perturbative mechanisms [216, 217, 218]. The descrip-
tion of the non-perturbative process strongly depends on the inflationary model
under consideration, while the perturbative picture is only sensitive to the low
energy behaviour of the model. Therefore, in order to get a model independent
estimate of the interesting parameters, we will approximate the full decay mech-
anism by the perturbative description, and comment on the effects of preheating
later. The partial decay widths associated to the two fermionic decay channels are
then given by the Born approximation:

Γ± =
h2

8π
mφ

(
1− 4m2

±

m2
φ

)3/2

, (7.5)

with Γφ = Γ+ + Γ−. Due to the opposite sign of the Yukawa couplings, the inflaton
will alternately decay into each fermion species as it oscillates between negative
and positive values. The inflaton equation of motion as it oscillates about the
minimum of its potential is then given by:

φ̈+ 3Hφ̇+ Γφφ̇+m2
φφ = 0 , (7.6)

where we have assumed that, for the range of field amplitudes involved, the po-
tential can be approximated by V (φ) ' (m2

φ/2)φ2. We will discuss the consistency
of this hypothesis with realistic inflationary models in section 7.3. Eq. (7.6), upon
multiplying by φ̇ is equivalent to:

ρ̇φ + 3H(ρφ + pφ) = −Γφφ̇
2 . (7.7)

The term on the right hand side gives the rate at which energy density is trans-
ferred from the inflaton field into the fermions ψ±. Let us assume that the fermions
quickly thermalize, an assumption that we will check a posteriori, in the process
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exciting g∗ relativistic degrees of freedom and forming a radiation bath at temper-
ature T , with energy density ρR = (π2/30)g∗T

4. Since the fermion masses oscillate
due to the varying inflaton field, they only contribute periodically to the number
of relativistic degrees of freedom. These may also include the inflaton for T & mφ

and other species such as the Standard Model particles. Note that the latter must
be excited before the cosmological synthesis of light nuclear elements takes place,
as we discuss in more detail in section 7.1.3. For simplicity, we consider a fixed
value of g∗, which is not a bad approximation since, as we will show, our results
exhibit only a mild dependence on this parameter.

Energy conservation then implies that the energy lost by the inflaton field in
Eq. (7.7) is gained by the radiation bath, which then follows the dynamical equa-
tion:

ρ̇R + 4HρR = Γφφ̇
2 . (7.8)

Since both the inflaton and the radiation contribute to the energy density in the
universe, we may write the Friedmann equation as:

H2 =
ρφ + ρR

3M2
P

=
1
2
φ̇2 + 1

2
m2
φφ

2 + ρR

3M2
P

. (7.9)

Eqs. (7.6), (7.8) and (7.9) then form a complete set of differential equations
that can be solved for given choices of the parameters (mφ,mf , h) and initial con-
ditions. It is useful to write the fermion tree-level mass as:

mf =
mφ

2
(1 + δ) , (7.10)

such that the decay is kinematically forbidden (allowed) at late times for δ > 0
(< 0).

Figure 7.1 shows an example of the results obtained by numerically solving the
inflaton-radiation equations for mφ = 10−3MP , δ = 0.1 and h = 1. In this example
we take as initial conditions at φ(ti) = MP , φ̇(ti) = 0 and ρR(ti) = 10−16ρφ(ti),
although the results are essentially unchanged as long as the field value is suffi-
ciently large for the system to undergo some oscillations before the incomplete
decay becomes effective and the radiation energy density is initially negligible, as
should be expected after 50-60 e-folds of inflation.

The plot in Figure 7.1 (a) illustrates the main dynamical features that are
generically obtained. The inflaton field begins to oscillate about the origin with
frequency mφ for t ∼ m−1

φ and behaves initially as cold dark matter, ρφ ∝ a−3,
being the dominant energy component such that a ∝ t2/3 and H = 2/3t. While de-
cay is blocked before the onset of oscillations, since m± ∼ h|φ| � mφ, it becomes
kinematically allowed as soon as the field goes through the origin. Since in this ex-
ample the amplitude of the field oscillations largely exceeds the tree-level masses,
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Figure 7.1: Results of the numerical integration of the inflaton-radiation dynam-
ical equations for mφ = 10−3MP , δ = 0.1 and h = 1, showing the time evolution
of (a) the inflaton (solid purple curve) and radiation (solid orange curve) energy
densities; (b) the inflaton-to-entropy ratio; and (c) the inflaton decay width (solid
purple curve) compared to the Hubble parameter (solid orange curve). The blue
dashed curves in (a) and (c) give the evolution of the inflaton energy density in
the absence of decay and the maximum value of the decay width, respectively. All
quantities are given in Planck units such that MP = 1.
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with hΦ � mf , decay occurs for two narrow field ranges close to (and on both
sides of) the origin. The decay width then corresponds to the series of periodic
narrow peaks shown in Figure 7.1 (c), with maximum value Γmaxφ = (h2/8π)mφ.
While initially Γmaxφ � 3H as illustrated in Figure 7.1 (c), such that the infla-
ton’s energy density remains essentially unaffected by the decay into fermions,
the source term in the radiation equation quickly becomes significant, leading to
a jump in the value of the radiation energy density. The latter remains approxi-
mately constant until the inflaton’s energy density is sufficiently redshifted. When
they become comparable in magnitude, the inflaton effectively decays and radi-
ation takes over as the dominant component. As the field amplitude decreases,
the maximum decay width becomes progressively smaller until decay is finally
blocked. The oscillating inflaton then becomes stable and once more behaves as
cold dark matter, eventually taking over the radiation as the dominant component
at later times.

A peculiar dynamical feature of the evolution is the approximate constancy of
the radiation energy density achieved just after the first few oscillations. This is
inherent to the fact that inflaton decay occurs in short bursts in each oscillation,
which does not occur if the decay were allowed for all field values. Before the
effect of decay into fermions becomes significant, for t & m−1

φ the inflaton behaves
as a damped harmonic oscillator with

φ(t) ' Φ(t) sin(mφt+ αφ) , Φ(t) =

√
8

3

MP

mφ

1

t
, (7.11)

where αφ is a phase depending on the initial field and velocity values. For hΦ �
mf , one can easily see that decay into each fermion is allowed during a short
period τd ' (hΦ)−1 � 2π/mφ as the field goes through the origin, which occurs
twice every oscillation period. Since the average decay width in this interval can be
taken as Γmaxφ /2 and the field velocity is φ̇ ' mφΦ, every half period the radiation
energy density increases due to inflaton decay by an amount:

∆ρdecayR '
Γmaxφ

2
(mφΦ)2(2τd) '

h

8π
m3
φΦ , (7.12)

where we have taken into account the decays into both ψ+ and ψ−. When de-
cay is forbidden, radiation simply redshifts with expansion, which counteracts the
enhancement due to decay by an amount:

∆ρHubbleR ' −4HρR(π/mφ) . (7.13)

Since H = 2/3t = (mφ/
√

6MP )Φ, it is easy to see that the amount of radiation
produced by inflaton decay can be balanced exactly by Hubble expansion to yield
a constant energy density. Equating ∆ρdecayR = −∆ρHubbleR then gives:

ρR '
√

6h

32π2
m3
φMP , (7.14)
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which is in very good agreement with the numerical simulations. Noting that,
from Eq. (7.8), ρ̇R ' 0 implies 4HρR ' Γφφ̇

2 ' Γφρφ, we see that that Γφ ∼ 3H
for ρR ∼ ρφ, so that as observed numerically the inflaton energy density is only
reduced significantly when it becomes comparable to the radiation energy density.

From Eq. (7.14) we can easily determine the associated temperature, which
remains approximately constant up to inflaton-radiation equality and thus consti-
tutes the reheating temperature:

TR '
(

15
√

6

16π4

)1/4

g−1/4
∗ h1/4

(
mφ

MP

)3/4

MP

' 2.7× 106g−1/4
∗ h1/4

( mφ

1 TeV

)3/4

GeV. (7.15)

From this we conclude, in particular, that the reheating temperature is generically
larger than the inflaton mass for:

mφ < 5.6× 1016 h

g∗
GeV . (7.16)

After inflaton-radiation equality, the field decays exponentially fast until its
amplitude drops sufficiently for decay into fermions to become inefficient. Nu-
merically, we observe that this occurs before the decay becomes kinematically
forbidden, for Φ . mf/h, corresponding roughly to when the (maximum) decay
width becomes less than the Hubble rate. Since afterwards the field stabilizes
and behaves as non-relativistic matter, it is useful to compare its number density
nφ = ρφ/mφ ∝ a−3 with the radiation entropy density:

s =
2π2

45
g∗T

3 , (7.17)

which redshifts in a similar way up to changes in the number of relativistic de-
grees of freedom, with T ∝ a−1. As illustrated in Figure 7.1 (b), the ratio nφ/s
stabilizes after decay becomes inefficient, and numerically we obtain the following
expression:

nφ
s
' 0.5g−1/4

∗ h−3.6 (mφ/MP )1.02 f(δ)3 , (7.18)

where for 0 < δ . 1:

f(δ) = 1 + 4.8
√
δ + 0.5δ . (7.19)

If no other processes change the inflaton particle number density in the oscillating
field, as we investigate below in more detail, this ratio will remain constant until
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the present day. Assuming the oscillating inflaton field accounts for all the dark
matter in the universe, the present inflaton-to-entropy ratio is given by:

nφ0

s0

=
3

4

T0

mφ

Ωc0

ΩR0

g∗0
g∗s0
' 10−28MP

mφ

, (7.20)

where T0 = 2.73 K is the present CMB temperature, while Ωc0h
2 = 0.12 and

ΩR0h
2 ' 4.17 × 10−5 are the present abundances of cold dark matter and radi-

ation, respectively [191]. We have also taken into account the present difference
between the number of relativistic degrees of freedom contributing to the radia-
tion and entropy densities, g∗0 ' 3.36, g∗s0 ' 3.91. Equating (7.18) and (7.20), we
obtain for the inflaton mass:

mφ ' 72 g0.12
∗ h1.78f(δ)1.49 TeV . (7.21)

For fermion masses above the kinematical limit and of the order of the inflaton
mass, 0 < δ . 1, and taking g∗ = 10 − 100, we conclude from Eq. (7.15) that the
reheating temperature is above 100 MeV for Yukawa couplings h & 10−6 − 10−5,
corresponding to inflaton masses mφ & 10 keV. For larger (and arguably more
natural) couplings h & 10−3 − 10−2, the inflaton may account for the dark matter
in the universe for masses in the GeV−TeV range, similarly to the mass range
obtained for WIMP-like thermal relics. Qualitatively, it is easy to understand the
parametric dependence of the required inflaton mass. The (incomplete) decay
into fermions is more efficient for larger couplings, which affect both the overall
value of the decay width and the effective fermion masses, and lighter fermions,
yielding a smaller inflaton-to-entropy ratio at late times and thus allowing for
larger inflaton masses to match the present dark matter abundance. On the other
hand, smaller couplings and heavier fermions lead to a larger inflaton abundance,
which may overclose the universe unless the inflaton is sufficiently light.

We note also that there is no gain in considering finely-tuned fermion masses,
i.e. δ � 0, since even though decay is kinematically allowed for longer as δ
decreases, decay becomes inefficient when Γφ ∼ H, a condition that becomes
independent of the tree-level fermion mass in this limit. Although we have re-
stricted the numerical analysis to values of δ . 1, we expect incomplete decay to
be efficient as long as Γφ > H for inflaton field values satisfying the kinematical
condition in Eq. (7.4). In particular, since the decay width takes its maximum
value Γmaxφ = (h2/8π)mφ for h|φ| = mf , i.e. when the fermions are effectively
massless, and H ∼ mφ|φ|/MP during inflaton-domination, we conclude that decay
will be efficient for:

mf . h3MP , (7.22)

which allows for quite large fermion masses if the Yukawa coupling is not too
suppressed.
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7.1.2 Condensate evaporation: the WIMPlaton scenario

Although the imposed discrete symmetry protects the inflaton from decaying into
any other particles except for the fermions ψ±, the above analysis neglects the
effects of additional interactions induced by the Yukawa terms in Eq. (7.2) and
which may play an important role as we discuss below.

The classical inflaton field corresponds to a collective state of zero-momentum
scalar bosons, assuming that no large field inhomogeneities are formed at the end
of the slow-roll inflationary regime. Inflaton particles in this condensate can inter-
act with the fermions that result from its decay and, in particular, these fermions
can scatter some of the bosons out of the condensate and promote them to higher-
momentum states that become part of the thermal bath. These correspond to
scattering processes ψ±〈φ〉 → ψ±φ, where we denote by 〈φ〉 and φ scalar particles
in the zero-momentum condensate and in higher-momentum modes, respectively,
and which are mediated through both s- and t-channel fermion exchange. More-
over, these processes may occur as soon as the field begins oscillating and decay
into ψ± becomes kinematically allowed, potentially leading to the evaporation of
the condensate and the transfer of the inflaton particle number into the thermal
bath.

As we have seen earlier, soon after the onset of inflaton oscillations, the tem-
perature of the thermal bath rises sharply to a value that remains approximately
constant until inflaton-radiation equality and that corresponds to the reheating
temperature in Eq. (7.15). In particular, this temperature exceeds the inflaton and
fermion (tree-level) masses in the parameter space region that yields the present-
day dark matter abundance. Further assuming that local thermal equilibrium is
quickly achieved, as we check below, we may then take the phase-space distri-
butions for inflaton and fermion species in the thermal bath to be the relativistic
Bose-Einstein and Fermi-Dirac distributions, respectively. Taking into account the
above scatterings and the inverse processes, the net condensate evaporation rate
is given by [219]:

Γevap =
1

nφ

∫ 4∏
i=1

d3pi
(2π)32Ei

(2π)4δ4(p1 + p2 − p3 − p4)

×|M|2 [f1f2(1 + f3)(1− f4)− f3f4(1 + f1)(1− f2)] ,

(7.23)

whereM is the scattering amplitude for 〈φ〉(p1)ψ±(p2) ↔ φ(p3)ψ±(p4) and fi the
corresponding phase-space distribution factors. Since the condensate is inherently
characterized by large occupation numbers f1 � 1, we obtain to leading order for
T � mφ,m±:

Γevap '
h4

12π3

(
1 + log

(
T

mφ

))
T , (7.24)
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where we have taken into account the contribution of both fermion species. Note
that this is only valid when the fermions are relativistic, while for non-relativistic
fermions in local thermal equilibrium the evaporation rate is exponentially sup-
pressed. This means that during the first few oscillations before the inflaton am-
plitude is significantly reduced, condensate evaporation only occurs during the
short periods where decay is also kinematically allowed. As we have concluded
above, for the parameter values yielding the present dark matter abundance we
obtain TR & mφ,mf , and since m± ∼ mf after reheating the above expression
holds until either the inflaton or the fermions become non-relativistic. Since in the
radiation era H ' (π/

√
90)g

1/2
∗ T 2/MP , condensate evaporation becomes progres-

sively more efficient as the temperature drops. We may then determine a lower
bound on the Yukawa coupling such that condensate evaporation is inefficient for
T & mφ,mf . For comparable masses, we obtain:

Γevap
H

∣∣∣∣
T=mφ

' h4

4π3

( g∗
10

)−1/2
(
MP

mφ

)
. 1 . (7.25)

Using Eq, (7.21) for the inflaton mass, we then obtain for δ = 1:

h . 10−5g0.28
∗ . (7.26)

As we had seen above, this is in tension with the lower bound on the coupling
required for a reheating temperature above 100 MeV, such that initial conditions
for Big Bang Nucleosynthesis (BBN) are already in place after inflaton decay [24].
This conclusion is essentially common to all fermion mass values mf > mφ/2.
Although a more detailed analysis of the Boltzmann equation determining the
evolution of the inflaton condensate may be required, this estimate indicates that
in the physically interesting parameter range, where the condensate could account
for the present dark matter abundance while satisfying the BBN constraint, con-
densate evaporation is most likely inevitable.

Since evaporation simply transfers the zero-momentum condensate particles
into excited states, the conclusion above does not imply that inflaton particles
cannot account for dark matter. One can easily check that all 4-body processes in-
volving relativistic inflaton and fermion particles, including scatterings and annihi-
lations, occur at a rate comparable to the evaporation rate obtained in Eq. (7.24).
Hence, evaporation of the condensate should lead to a bath of fermions and infla-
ton particles (as well as other species) in local thermal equilibrium. In fact, this
may even occur just after the onset of inflaton oscillations, for H . mφ, when the
temperature reaches an approximately constant value T & mφ,mf as seen above,
for h . O(1) couplings. The condensate’s energy is in this case quickly transferred
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to the thermal bath, increasing its temperature to a maximum value:

TmaxR =

(
90

π2

)1/4

g−1/4
∗

√
MPmφ

' 8.5× 1010g−1/4
∗

( mφ

1 TeV

)1/2

GeV . (7.27)

This value was obtained for H = mφ, which constitutes only an upper bound since
fermion particles can be produced for H . mφ as shown by our numerical simu-
lations. The true reheating temperature will then lie between the value obtained
in Eq. (7.15) and this maximum value when the condensate evaporation is more
efficient than the incomplete decay. On the contrary, the reheating temperature is
given by Eq. (7.15) if condensate evaporation only occurs after it decays signifi-
cantly, in the radiation era, which corresponds to Yukawa couplings h . 10−4 for
δ . 1 and g∗ = 10 − 100. Note that in this parametric regime thermalization of
the fermions in the plasma can only be efficient if their interactions with other de-
grees of freedom are stronger than those induced by the Yukawa terms, while for
h & 10−4 the latter occur sufficiently fast to maintain local thermal equilibrium, as
we analyze in more detail in section 7.1.3.

After reheating, inflaton and fermion particles will be kept in local thermal
equilibrium by annihilation and elastic scattering processes. Once these become
inefficient, the abundance of inflaton particles will freeze out, as for other conven-
tional WIMP dark matter candidates. Assuming this occurs when both the inflaton
and the fermions are non-relativistic, the relevant (fermion t-channel) annihilation
cross section is given by:

σφφ '
h4

8πm2
φ

, (7.28)

which is independent of the fermion mass in this limit. Following the standard
calculation for the thermal relic abundance of a decoupled non-relativistic species,
we obtain for the inflaton mass:

mφ ' 1.4h2

(
Ωφ0h

2
0

0.1

)1/2 (g∗F
10

)1/4 (xF
25

)−3/4

TeV , (7.29)

where g∗F denotes the number of relativistic degrees of freedom at freeze-out and
xF = mφ/TF , with TF denoting the freeze-out temperature. This is somewhat
smaller than the mass values obtained assuming the oscillating inflaton conden-
sate survives until the present day, although in a comparable range and exhibiting
a similar dependence on the Yukawa coupling.

This then gives us a more realistic dynamical picture of what we suggestively
denote as the “WIMPlaton" scenario. After inflation, the scalar inflaton begins
oscillating about the minimum of its potential, decaying into fermions in short
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bursts every oscillation. These may thermalize and excite other degrees of freedom
in the plasma, and scatter off the inflaton particles in the condensate, leading to
its evaporation. Both decay and evaporation increase the relative abundance of
radiation and decrease the amplitude of oscillations, until eventually radiation
becomes dominant and inflaton decay is no longer kinematically allowed. The
stable inflaton particles remain in thermal equilibrium until the temperature drops
below their mass and they decouple from the plasma, their frozen abundance
yielding the inferred dark matter component of our present universe.

The “WIMPlaton” scenario does not depend on the description of the inflaton
decay. Non-perturbative decay of the inflaton field in massive fermions produces
non-relativistic fermions with a non-equilibrium number density nf and energy
density ρf = mfnf [216, 217, 220]. Assuming that all particles are non-relativistic
in the scattering process, we can estimate the evaporation rate from Eq. (7.23)

Γevap ∼
h4nf
m2
f

, (7.30)

where we considered that the typical momentum of the fermions produced by
preheating is mf . The Hubble parameter is H ∼ mφΦ(t)/mP , hence

Γevap
H
∼ h4

(
ρf
ρφ

)(
mf

mφ

)(
Φ(t)

mf

)(
mP

mφ

)
. (7.31)

In the worst case scenario, evaporation is only efficient at the end of preheating,
where Φ(t) ∼ mf/h and ρf . rhoφ. For the masses under consideration, mφ '
mf ∼ O(TeV), evaporation will be efficient as long as

ρf
ρφ
& h−3O(10−15), (7.32)

a limit which is well below the results for the production of massive fermions by
non-perturbative decay [217].

7.1.3 Reheating the Standard Model

We have so far assumed that the fermions (or scalars as discussed above) resulting
from inflaton decay thermalize and excite other degrees of freedom, and in partic-
ular it is crucial that Standard Model particles are generated in the thermal bath
at temperatures above ∼100 MeV so that BBN may occur following the standard
freeze-out dynamics of light nuclear abundances.

As we have briefly discussed above, the fermions themselves cannot be treated
as fully relativistic degrees of freedom before the inflaton decays sufficiently, since
their mass varies between small and large values as the inflaton oscillates about
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the origin. For the short periods when they are light and decay is allowed, thermal-
ization through Yukawa interactions can be quite efficient. For example, fermion-
fermion scatterings through inflaton s−channel exchange occurs at a rate:

Γψψ '
9ζ(3)

16π3
h4T . (7.33)

Since after the onset of oscillations H . mφ and taking the temperature value
obtained in Eq. (7.15) from inflaton decay, we have:

Γψψ
H

>
Γψψ
mφ

' 60g−1/4
∗ h17/4

( mφ

1 TeV

)−1/4

, (7.34)

such that for O(1) couplings Yukawa interactions can lead to thermalization from
the start of oscillations. Recall that, as seen above, evaporation of the condensate
occurs at a comparable rate, so that as the temperature rises due to evaporation
both processes become progressively more efficient. If the Yukawa couplings are
more suppressed, one may also envisage scenarios where for example the fermions
are charged under a gauge symmetry that is unbroken at the relevant temperatures
and thermalization occurs through gauge boson exchange for sufficiently strong
couplings.

Outside the inflaton field range for which the fermions are effectively light,
their number density will become Boltzmann-suppressed, and any interactions
will necessarily become inefficient in keeping the fermions in local thermal equi-
librium. We thus expect them to decouple for most of the oscillation period, trans-
ferring their entropy into light degrees of freedom such as the inflaton itself or
e.g. gauge bosons. If interactions occur faster than the inflaton oscillation rate mφ,
as given in Eq. (7.34) for the Yukawa scattering processes, fermions will drop in
and out of local thermal equilibrium as they oscillate between the relativistic and
non-relativistic regimes. This will lead to an oscillating g∗, but as mentioned at the
start of our discussion this is of little consequence since our results exhibit only a
mild dependence on this parameter.

Since the inflaton is typically taken as a gauge singlet, the structure of the
Yukawa interactions implies that ψ± are non-chiral fermions (either Dirac or Ma-
jorana), as opposed to the known SM fermions, being thus unlikely that they are
explicitly charged under the SM gauge group. We will discuss two possibilities for
exciting the SM degrees of freedom in the plasma either before or after radiation
comes to dominate: decay or annihilation of the fermions into the SM particles be-
fore they become non-relativistic, and their abundance is Boltzmann-suppressed.

The simplest case is perhaps that of unstable ψ± fermions decaying into a light
scalar and a light fermion, for which the decay width is:

Γψ± =
h2
f

16π
m± , (7.35)
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where hf denotes the associated coupling constant. Note that this is computed in
the fermions’ rest frame, whereas in the plasma’s frame an additional time dilation
factor m±/T suppresses the decay for relativistic fermions. Requiring Γψ± & H for
T & mf in the radiation era (where m± ' mf), we obtain the following bound on
the coupling:

hf & 8× 10−8g
1/4
∗f

( mf

1 TeV

)1/2

, (7.36)

where g∗f is the number of relativistic degrees of freedom at T = mf . In ad-
dition, for this to happen before BBN we require mf & 100 MeV. If the inflaton
and fermion masses are comparable, this corresponds to h & 0.01 according to
Eq. (7.29). These light degrees of freedom may correspond to SM particles if, for
example, the fermions coupled to the inflaton field correspond to a pair of de-
generate sterile neutrinos, which are singlets under the SM gauge group and may
decay into a Higgs-lepton pair through Yukawa terms of the form hfHl̄ψ±. Note
that this requires mf > mH = 125 GeV [221, 222] and hence mφ < 250 GeV, which
is compatible with the present dark matter abundance for couplings h . 0.7 from
Eq. (7.29).

If the fermions are stable, another possibility for reheating the SM degrees of
freedom is through efficient annihilation. A possible scenario is for the fermions to
be charged under a hidden U(1)X gauge group, which may mediate fermion scat-
terings and thus improve the thermalization efficiency. This U(1)X hidden pho-
ton may be kinetically mixed with the SM photon or hypercharge gauge boson Y µ

through a term of the form F µν
X F Y

µν , which may be generated radiatively if there are
fields charged under both gauge groups or simply via gravitational interactions, as
happens e.g. in string theory. Diagonalization of the gauge kinetic terms then in-
duces a small electric charge for the fermions ψ±, such that they may annihilate
into SM charged particles via s-channel photon exchange, ψ±ψ± → γ → qq, ll. At
high temperature the annihilation cross section is given by the Thomson scattering
formula and the corresponding interaction rate for relativistic species is then given
by:

Γth '
4ζ(3)

π
ε2α2NchT , (7.37)

where ε is the “mili-charge" of the fermions ψ±, α is the fine-structure constant and
Nch is the effective number of charged species in the final state, which for the full
SM is Nch = 20/3. In the radiation era, since H ∝ T 2 annihilation becomes more
efficient at smaller temperatures. Requiring that SM species are excited before ψ±
become non-relativistic, we obtain the following bound on the mili-charge:

ε & 5× 10−7g
1/4
∗f

(
Nch

20/3

)−1/2(
α−1

128

)( mf

1 TeV

)1/2

.

(7.38)
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This bound is not very stringent for fermion masses in the GeV-TeV range, where
the main constraints come from direct collider searches (including the LHC) yield-
ing ε . 0.1 for 1 GeV . mf . few × 100 GeV and indirect bounds from the CMB
anisotropy spectrum, which yield ε . 10−4 for few×100 GeV . mf . few×TeV
based on the effect of mili-charged particles on the baryon-photon oscillations (for
a gauge coupling gX = 0.1). Note that for masses above the TeV range, mili-
charged particles may give a too large contribution to the dark matter abundance
in the universe, and more stringent bounds on ε apply in this case (see [223] and
references therein). This thus constitutes a promising scenario with potential for
experimental probing in the near future.

The discrete C2 ⊂ Z2 × S2 symmetry protects the inflaton from decaying at
late times, thus constituting a viable dark matter candidate. One can consider,
however, scenarios where this symmetry is broken and the inflaton is only meta-
stable, with a lifetime larger than the age of the universe, t0 ∼ 14 Gyrs. Note
that interactions between the fermions ψ± and other light degrees of freedom
as in the scenarios outlined above can induce the decay of the inflaton through
radiative effects or processes mediated by off-shell fermions. A few examples of
these processes are illustrated in Figure 7.2 and in all cases the contribution of ψ+

and ψ− cancels if the discrete symmetry is exact.

(a) (b) (c)

(d)

Figure 7.2: Feynman diagrams for the 2-body decay of the inflaton into (a) gauge
bosons, (b) light scalars and (c) light fermions, induced at the 1-loop level by
gauge and Yukawa interactions of the ψ± fermions. In (d) we also show the 4-body
decay of the inflaton induced by the exchange of virtual ψ± modes with Yukawa
interactions with other light species. For clarity, all light fields are represented by
green lines.

As an example, we have considered the case where ψ± are unstable, decay-
ing into a light fermion and scalar, which induce diagrams (b)-(d) in Figure 7.2.
Since these processes have comparable magnitudes, we have computed the infla-
ton decay width for the 1-loop process (b), where it decays into two light scalars.
For concreteness we consider the case where ψ± are slightly non-degenerate with
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m− = mf and m+ = mf (1 + ∆), for ∆� 1. This gives for mφ = 2mf (δ = 0):

Γ
(b)
φ =

h2h4
f

64π5
mφ∆2 , (7.39)

which is more suppressed for larger values of mf .
For mφ yielding the correct relic abundance to account for dark matter and

using the lower bound on hf obtained in Eq. (7.36), we obtain the following upper
bound on the inflaton lifetime:

τφ < 15.7 g−1
∗f

( mφ

10 GeV

)−4
(

∆

0.01

)−2

Gyrs , (7.40)

where we have taken the reference values for the present dark matter abundance
and freeze-out parameters in Eq. (7.29). Hence, we conclude that significant vi-
olations of the discrete symmetry can still yield a sufficiently long-lived inflaton
for 100 MeV . mφ . 10 GeV, such that the fermions ψ± decay before BBN and
while they are still relativistic. For heavier inflaton particles, values of ∆ below
the percent level are required, signaling that the discrete symmetry most hold to
a high degree of accuracy in this regime.

It is thus clear from the examples above that if the inflaton field can only decay
to the ψ± fermions for a finite period following the end of the slow-roll regime,
becoming (meta-)stable at late times, it may account for the dark matter in the
universe while allowing for successful reheating of the SM particles and setting
the necessary conditions for BBN.

7.2 Hybrid model

7.2.1 Basic properties and dynamics

An alternative framework to the one considered in the previous section is the
supersymmetric hybrid model [224]. In this scenario, the inflaton decay products
need not include or interact with the Standard Model degrees of freedom, since
the additional waterfall sector can be responsible for reheating after inflation [225,
226, 227, 228].

For the same reasons exposed in the minimal model, the symmetry C2 ⊂ Z2×S2

is imposed on the superfield containing the inflaton and all the superfields that it
couples directly to. Hence, for the superpotential to be invariant under the action
of this group, the inflaton is, as before, coupled to a pair of superfields Y± which
contain the fermions ψ± with masses mf , and to a waterfall sector with a pair of
superfields X±. The group C2 simultaneously changes Φ → −Φ and interchanges
the superfields Y+ ↔ Y− and X+ ↔ X−.
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The discrete symmetry forbids the linear term in the superpotential that is typ-
ically considered in SUSY hybrid inflation to generate the constant vacuum energy
driving accelerated expansion. This may nevertheless be generated either by a
D-term contribution [229, 230], or through a non-vanishing F-term coming from
a SUSY breaking sector [231, 232]. In addition, in order to ensure the stability
of the inflaton at late times, so that it may account for dark matter, the C2 sym-
metry must be preserved in the ground state, implying equal vacuum expectation
values for the scalar components of both waterfall fields. One possibility to sat-
isfy this condition and simultaneously generate a constant vacuum energy is to
introduce an additional “driving" superfield, Z, which is not charged under the
discrete symmetry and is coupled to the waterfall sector, along the lines proposed
in [233, 234]. We thus consider a superpotential of the form:

W =
g

2
Φ(X2

+ −X2
−) +

h

2
Φ(Y 2

+ − Y 2
−) +

mf

2
(Y 2

+ + Y 2
−)

+
κ

2
Z(X2

+ +X2
− −M2)

+
hχ
2

(X+ +X−)Q2 + . . . , (7.41)

where M is a constant mass scale and we have included a coupling between the
waterfall superfields and additional chiral superfields Q which give their decay
products. The dots indicate additional terms that may be added, involving the
inflaton and the superfield Z. In particular, if the scalar component of the latter
has a sufficiently large mass, either from superpotential terms, soft masses from
SUSY breaking in other sectors or non-minimal terms in the Kähler potential, its
expectation value will be set to zero both during and after inflation. The global
minimum of the scalar potential will then lie along the real direction 〈X+〉 =
〈X+〉 ≡ χ/

√
2, which preserves the discrete symmetry, and the scalar potential

relevant for the inflationary and post-inflationary dynamics has the usual hybrid
form:

V (φ, χ) =
κ2

4
(χ2 −M2)2 +

g2

2
φ2χ2 + . . . , (7.42)

where φ =
√

2〈Φ〉 is the real inflaton scalar field. We recover the usual SUSY hy-
brid case for κ = g/

√
2 and for simplicity we will consider this parametric regime,

although our analysis can be extended to the generic case.
Inflation takes place for amplitudes of the inflaton field larger than a critical

value, φ > φc = M/
√

2, such that the waterfall field is held at the origin χ = 0.
As the inflaton rolls towards its minimum at φ = 0, its amplitude falls below
the critical value and the waterfall field can roll to its true vacuum at χ = M , thus
ending inflation. After that point, both fields start to oscillate around its respective
minima, triggering the process of reheating the universe into a radiation era.

In this scenario, the inflaton cannot decay into either the bosonic or fermionic
components in the waterfall sector due to kinematical blocking. This is easy to see



7.2. Hybrid model 117

at the global minimum, where mφ = mχ = gM , but extends to all field values. As
in the minimal model, the inflaton can decay into the Y± fields and the decay will
be incomplete for mf > mφ/2 = gM/2. For simplicity, we assume that the scalar
components of the Y± fields acquire large soft masses from SUSY breaking and
focus on the fermionic decay channels, noting that the inclusion of both channels
will not change our conclusions significantly.

The waterfall fields will decay into the Q sector fields and, for similar reasons,
we include only the fermionic decay channels in this case as well. We assume that
these fields are light, eventually leading to the complete decay of the waterfall
sector and reheating the universe. Note that neither the inflaton nor the waterfall
field can be completely stable in order to reheat the universe, since they carry a
comparable amount of the energy density after inflation. In particular, if the in-
flaton were completely stable and behaved as dark matter at all times, the decay
of the waterfall field would only convert half of the total energy density into ra-
diation. Its incomplete decay will then reduce the inflaton abundance and hence
allow for an efficient reheating once the waterfall field decays. For the inflaton
to decay incompletely before the waterfall field, we require h & hχ, which is the
parametric regime on which we will focus henceforth.

The evolution equations driving the post-inflationary dynamics of the inflaton
and waterfall fields, as well as their decay products which we assume to quickly
thermalize, are then given by:

φ̈+ 3Hφ̇+ g2χ2φ = −Γφφ̇, (7.43)

χ̈+ 3Hχ̇+
g2

2
(χ2 −M2 + 2φ2)χ = −Γχχ̇, (7.44)

ρ̇R + 4HρR = Γχχ̇
2 + Γφφ̇

2, (7.45)

where we assume the Born approximation to compute the decay widths, as dis-
cussed in section 7.1.1. Therefore, the decay width of the inflaton is Γφ = Γ+ +Γ−,
with Γ± given by Eq. (7.5), while the decay width of the waterfall field is given
by:

Γχ =
h2
χmχ

8π
, (7.46)

where we neglect the Q fermion masses, which we have checked numerically to
be a good approximation for couplings hχ . 0.1 in the parameter range of interest
to our discussion.

Eqs. (7.43),(7.44) and (7.45), together with the Friedmann equation,

H2 =
ρφ + ρχ + ρR

3M2
P

=
1
2
φ̇2 + 1

2
χ̇2 + V (φ, χ) + ρR

3M2
P

, (7.47)

form a complete set of differential equations that can be solved numerically given
a set of parameters (g,M,mf , h, hχ) and initial conditions. Fig. 7.3 shows an
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example of the numerical solution for the parameter values M = 10−2MP , g =
10−5, h = 1, hχ = 10−5 and δ = 0.02, the latter being defined in Eq. (7.10). In
this example we have considered initial conditions such that the fields are close
to their values at the end of inflation and have small velocities, φ(0) = 1.0001φc,
χ(0) = 0, φ̇(0) = χ̇(0) = −10−4gM2, with ρR(0) = 0 since any pre-inflationary
radiation should be exponentially diluted by the accelerated expansion. However,
we have checked numerically that the results do not show a strong dependence on
the choice of initial conditions.

At the beginning of the evolution, both the inflaton and the waterfall field
mimic a pair of coupled matter fluids which give a roughly equal contribution to
the total energy density. After the incomplete decay of the inflaton becomes effi-
cient, its energy density is transferred into the radiation bath, while the waterfall
field evolves as an effective non-interacting matter field in an expanding universe.

Since radiation is diluted more quickly than matter by the cosmological expan-
sion, the universe experiences an era of matter domination until the waterfall field
effectively decays and reheats the universe. The system then enters into the stan-
dard radiation-dominated era of Big Bang cosmology, with the oscillating inflaton
field remnant behaving as a cold dark matter component.

The parameter hχ determines the duration of the reheating process, which is
due to the decay of the waterfall field. During that process, there is entropy pro-
duction [235] and as a consequence the abundance nφ/s will be further reduced,
as shown in Fig. 7.3 (b). The dilution factor is given by γ = Seq/SR, with S being
the entropy and the subscript “eq” denoting the time at which the χ thermalized
decay products start dominating the radiation bath, at a temperature Teq > TR.
The dilution factor is then given by:

γ =

(
TR
Teq

)5

' 5

3

(
TR
TD

)(
g∗D
g∗R

)
, (7.48)

with TD being the temperature after the effective decay of the inflaton. The smaller
the coupling hχ, the longer the reheating process and the smaller TR, and the
more efficient the reduction of the abundance. Therefore larger inflaton masses
are allowed to match the present dark matter abundance.

The temperature after the effective decay of the inflaton, TD, can be deter-
mined analytically following the same reasoning used in minimal model to com-
pute the reheating temperature, giving:

TD =

(
15
√

3

16π4

)1/4

g
−1/4
∗D h1/4

(
mφ

MP

)3/4

MP , (7.49)

where g∗D is the effective number of light degrees of freedom when the inflaton
effectively decays. Unlike in the minimal model, the reheating temperature is not
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Figure 7.3: Results of the numerical integration of the inflaton-waterfall-radiation
dynamical equations for M = 10−2MP , g = 10−5, h = 1, hχ = 10−5 and δ = 0.02,
showing the time evolution of (a) the inflaton (solid purple curve), the waterfall
(dashed orange curve) and radiation (dotted green curve) energy densities; (b)
the inflaton-to-entropy ratio. All quantities are given in Planck units such that
MP = 1.
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controlled by the inflaton but rather by the waterfall decay, corresponding to the
temperature for which Γχ = H:

TR ' 0.23g
−1/4
∗R hχ (mφMP )1/2 , (7.50)

with g∗R being the effective number of light degrees of freedom at reheating and
where we used mφ = mχ since the fields are close to the global minimum at this
stage.

The computation of the inflaton dark matter abundance after reheating is more
involved than in the minimal scenario due to the larger set of parameters in the
hybrid scenario, and the coupling between the inflaton and waterfall fields. The
effect of the parameters of the potential in Eq. (7.42), g and M = mφ/g on the
final abundance is shown in Fig. 7.4.

Figure 7.4: Dependence of the inflaton-to-entropy ratio after reheating multiplied
by the inflaton mass in Planck units for different values of the parameters in the
potential, g, M for δ = 0.02, h = 1 and hχ = 10−5.

For large values of the coupling g, the inflaton-to-entropy ratio grows with g
since the system is strongly coupled and the waterfall field transfers a significant
part of its energy to the inflaton, therefore increasing its abundance. For very low
values of the coupling, on the other hand, the inflaton-to-entropy ratio shows a
very mild dependence on this coupling. In this case the Hubble parameter H ∼
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m2
φ/g is very large, so that the condition for the incomplete decay to be efficient,

Γφ > H, cannot be maintained for a sufficiently long period and the abundance
is not so drastically reduced. Numerically, we take the endpoint of the curves at
small g values such that V 1/4

0 =
√
gM = mφ/

√
g ∼ 1016 GeV is of the order of the

GUT scale, which roughly gives the upper bound on the scale of inflation. The
vacuum energy scale therefore diminishes when moving from left to right along
each curve of constant mφ in Fig. 7.4.

We will restrict the remainder part of our analysis to the values of g for which
the incomplete decay exhibits its maximal efficiency, therefore yielding the lowest
inflaton abundance for a given mass mφ. Numerically, we find these values to be
given by:

g ' 0.04

(
mφ

MP

)0.57

δ−0.08. (7.51)

With this relation, we obtain for the inflaton-to-entropy ratio from the numerical
results:

nφ
s
' 134g−1/4

∗ hχh
−3.42β(h)δ2γ(δ)

(
mφ

MP

)0.7

, (7.52)

β(h) = 1− 1

6
log10 h , (7.53)

γ(δ) = 1 + 0.115 log10 δ . (7.54)

This expression is equivalent to Eq. (7.18) in the minimal model, with the differ-
ent powers on the parameters reflecting the more complicated dynamics present
in this scenario. Equating (7.20) and (7.52), we then obtain the inflaton mass
yielding the observed dark matter abundance:

mφ ' 442 g0.15
∗

(
hχ

10−3

)−0.6

h−0.6β(h)δ−0.6γ(δ) GeV . (7.55)

For couplings h ∼ O(1) and hχ ∼ 10−3−10−5, the inflaton may account for the dark
matter in the universe with masses in the GeV-TeV range, similarly to the minimal
model, while predicting a reheating temperature well above the BBN constraint.
The qualitative dependence of the inflaton mass on the Yukawa coupling h can be
understood using the same arguments as in the minimal realization for inflaton
dark matter described earlier in the chapter.

7.2.2 Condensate evaporation: the WIMPlaton scenario

The effect of additional processes induced by the Yukawa coupling h in the evap-
oration of the condensate of zero-momentum inflaton particles is essentially the
same that has been described for the minimal model, with the rate of evapo-
ration given by Eq. (7.24). However, the possibility of the fermions becoming
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non-relativistic during the matter era, where the dominant contribution to the en-
ergy density comes from the waterfall field, gives a different lower bound on the
Yukawa couplings such that evaporation is inefficient for T & mφ,mf :

hχ . 5× 10−10h−
3
16

log10 h
( g∗

10

)13/32

. (7.56)

Nevertheless, as we found in the minimal scenario of inflaton dark matter, this
bound is in tension with the lower bound on the couplings consistent with a re-
heating temperature above 100 MeV, as can be seen in Fig. 7.5. Therefore, in
the region where the condensate may account for the present dark matter and the
reheating temperature is consistent with the BBN constraint, condensate evapora-
tion is most likely inevitable. The evaporation process produces a bath of fermions
and inflaton particles kept in local thermal equilibrium by annihilation and elastic
scatterings that eventually become inefficient, at which point the inflaton abun-
dance freezes out as in the standard WIMP scenario.

Figure 7.5: Regions in the parameter space hχ−hwhere the reheating temperature
is below the BBN limit (blue), the condensate can survive evaporation (green), and
there is no incomplete decay (orange)

If freeze-out occurs after the waterfall field has decayed, i.e. in the radiation-
dominated era, we obtain the same value for the inflaton mass as in the minimal
model, given in Eq. (7.29). Freeze-out takes place in the waterfall-dominated
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matter for values of hχ satisfying:

hχ . 4× 10−9h
(g∗F

10

)3/8 (xF
25

)−11/8
(

Ωφ0h
2
0

0.1

)1/4

, (7.57)

which then yields an upper bound on the WIMPlaton mass:

mφ . 756h2
(g∗F

10

)1/4 (xF
25

)−3/4
(

Ωφ0h
2
0

0.1

)1/2

GeV , (7.58)

where the annihilation cross section is given by Eq. (7.28). In Fig. 7.6 we summa-
rize on the plane (h, hχ) the different possibilities for inflaton dark matter in the
hybrid model. In both regions where the freeze-out of the inflaton abundance oc-
curs either in the radiation or waterfall era, the inflaton can account for the present
dark matter abundance for masses in the GeV-TeV range with the reheating and
freeze-out temperatures being well above the limit imposed by BBN. This shows
that the WIMPlaton scenario introduced earlier is not an exclusive feature of the
minimal model, with a single dynamical field, but also occurs in other models of
inflation with additional dynamical fields.

While the inflaton mass values corresponding to the observed dark matter
abundance are not very different in the two realizations that we have analyzed, in
the hybrid scenario there are novel phenomenological possibilities. In particular,
the inflaton decay products need not interact with the SM degrees of freedom,
since these may be excited only after the decay of the waterfall field. Either the
waterfall sector decays directly into SM particles or its decay products interact
with some of the latter. We note that the waterfall fields may be charged under
gauge symmetries, in which case the relevant terms in the superpotential are of
the form ΦX±X̄±, etc, where X± and X̄± transform in conjugate representations
of the gauge group. This will then open up new avenues for model-building in
inflaton dark matter scenarios besides those described in the minimal model.

7.3 Embedding in a consistent inflationary model

As we have concluded from the analysis above, the inflaton field can account for
dark matter in the universe at late times for masses below or around the TeV
scale in the WIMPlaton scenario, with a similar mass range obtained assuming the
inflaton condensate does not evaporate. This implies that the inflaton potential
cannot be given solely by the terms that we considered in the previous sections.
For a quadratic potential, the amplitude of CMB temperature anisotropies would
yield for a quadratic potential:

mφ '
√

6π2∆2
R

Ne

MP ' 1.4× 1013

(
60

Ne

)
GeV , (7.59)



124 Chapter 7. WIMPlaton: inflation and dark matter unification

Figure 7.6: Parameter space of the hybrid model of inflaton dark matter with
δ = 1. In the orange (blue) region the abundance of the inflaton accounts for the
present dark matter energy density and the freeze-out occurs in the radiation (wa-
terfall=matter) era. The purple (green) region is excluded because the reheating
(freeze-out) temperature is below 100 MeV. Dashed (dashed-dot) lines are curves
of constant inflaton mass (reheating temperature). The grey area represents the
transition between the regions where the freeze-out takes place in the radiation
and waterfall era.

which for 50−60 e-folds of slow-roll inflation largely exceeds the TeV scale. On the
other hand, in the standard SUSY hybrid models with minimal Kähler potential,
inflation is driven essentially by the constant vacuum energy V0 = g2M4/8 while
the waterfall fields are stabilized at the origin. We may then use the normalization
of the scalar curvature power spectrum to obtain the relation:

mφ & 2.5× 1015|η|GeV , (7.60)

for φ &M , where mφ = gM is the inflaton mass at the minimum. Since the scalar
spectral index ns ' 1 + 2η ' 0.9603 ± 0.0073 at 68%CL [23] in these scenarios,
we conclude that mφ . TeV cannot yield an observationally consistent model.
Typically we have from the normalization of the spectrum M ∼ 1013 − 1016 GeV,
and then the WIMPlaton scenario requires small couplings g ∼ 10−13−10−10, which
are responsible for the very flat potential during inflation and the scale invariant
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spectrum. A non-minimal Kähler potential can yield the observed spectral index
for lower values of the coupling, although at the expense of a slight increase in
M [236, 237], which again makes it difficult to achieve the required WIMPlaton
mass values.

However, our analysis assumed only that mφ is the inflaton mass as it oscillates
about the minimum of the potential at the origin, while the effective inflaton mass
can be much larger if slow-roll occurs for significantly larger field values where
self-interactions become important. For example, the discrete Z2 symmetry allows
for quartic self-interactions such that:

V (φ) =
λ

4!
φ4 + · · · (7.61)

In the minimal model the quartic term dominates for |φ| >
√

12/λmφ, while our
analysis is valid if the quartic term is sub-dominant for the field values |φ| ∼ mf/h
at which decay into fermions occurs, which requires:

h &

√
λ

12

(
mf

mφ

)
' 3× 10−8

(
mf

mφ

)
, (7.62)

where we have used λ ' 10−14 as imposed by the COBE normalization for infla-
tion with a quartic potential. This is easily satisfied if the fermions are not much
heavier than the inflaton given the more stringent bounds on the Yukawa coupling
discussed earlier. The discrete Z2 × S2 symmetry does not protect the scalar po-
tential from radiative corrections, however, for the sake of a clearer presentation
of the results, possible solutions to this problem will be discussed in appendix C.

A quartic self-coupling λ2φ4/4 can be easily introduced in SUSY hybrid inflation
by a superpotential coupling between the inflaton and an auxiliary field, λΦ2Z/2.
We then have:

λ2φ4

V0

∼ 6× 1016

(
λ2

10−14

)(
1 TeV

mφ

)2(
MP

M

)2(
φ

MP

)4

, (7.63)

so that the quartic term will easily dominate over the vacuum term for super-
planckian values and the typical parameters required by the normalization of the
spectrum and the WIMPlaton scenario. We note that the vacuum term will come
to dominate the energy at small field values, but for φ & φc we have

η ∼ λ2 φ
2

M2

M2
P

m2
φ

& λ2M
2
P

m2
φ

� 1 , (7.64)

such that slow-roll inflation never takes place in the small field regime, and infla-
tion may then occur entirely in a chaotic regime.

We note that, in supergravity models, such chaotic inflation scenarios can be
obtained by considering a non-minimal Kähler potential for the inflaton, while
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taking the canonical one for the other superfields in the model, in particular the
Z field. One possibility is to consider a Kähler potential with a shift symmetry
[238, 239, 240], e.g. K(Φ, Z, . . .) = (Φ + Φ†)2/2 + ZZ† + . . ., with inflation taking
place along the imaginary component of the scalar inflaton.

A quartic term is, however, not sufficient to produce a consistent model of
inflation, since it predicts a too red-tilted spectrum for curvature perturbations
and a tensor-to-scalar ratio already outside the bounds obtained by Planck [23]
and BICEP2 [82, 83]. A consistent spectrum may be achieved in warm inflation
scenarios, as we discussed in chapter 6. However, as warm inflation naturally
leads to radiation becoming the dominant component at the end of the slow-roll
regime, the post-inflationary evolution will necessarily differ from the dynamical
picture discussed here.

Another interesting possibility is the inclusion of a non-minimal coupling to the
gravitational sector, in particular a coupling between the inflaton and Ricci scalar
of the form ξφ2R, which is compatible with the discrete Z2 symmetry. The resulting
inflationary scenario yields a perturbation spectrum that smoothly interpolates
between the minimal quartic model and the Starobinsky model as the non-minimal
coupling constant increases. On the one hand, the latter is characterized by a low
tensor-to-scalar ratio and a spectral index ns = 0.96 − 0.97 in agreement with
the Planck results; on the other hand, a small non-minimal coupling constant is
preferred to obtain a non-negligible tensor-to-scalar ratio . We refer the reader
to [241, 242] and the references therein for a more detailed discussion of these
scenarios, since here we are mainly interested in the post-inflationary dynamics.
The effect of the non-minimal coupling on the effective scalar potential in the
Einstein frame becomes negligible for ξφ2/M2

P . 1, such that consistency of our
analysis implies

h &
√
ξ
mf

MP

, (7.65)

which is generically less stringent than Eq. (7.62) for masses in the TeV range and
ξ < 1016.
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Conclusions

The main topic addressed by this thesis is the analysis of the impact of dissipative
processes during inflation and reheating. The aim of this work is to deepen the
present understanding of the effects of dissipation in both the dynamics and ob-
servables of such eras in the early universe. Our study of the inflationary epoch
have been done in the context of the warm inflationary scenario, where quantum
field theory characterizes the dissipative mechanisms acting during inflation. We
have concentrated on the LOTS realization of warm inflation, the particular pic-
ture which is best understood in the literature. In our examination of the reheating
period, we proposed a mechanism for the incomplete decay of the inflaton field
into a radiation bath such that the inflaton can survive the process and remain as a
consistent dark matter candidate. Our main results can be summarized as follows:

� Background dynamics of warm inflation

We have broaden the knowledge of the background behaviour of warm inflation in
two different directions. We have studied for the first time in the context of warm
inflation a class of models characterized by an inflection point in the inflationary
potential. Furthermore, we have contributed to the insight of the viscous effects
in warm inflation by considering more realistic descriptions of the bulk viscosity
based on quantum field theory and causal hydrodynamics.

� Models with an inflection point

In chapter 2 we have focused on supersymmetric models, where the plethora of
available flat directions may be lifted by competing SUSY-breaking effects, produc-
ing inflection and even saddle points in the potential, although at the expense of
fine-tuning a priori unrelated parameters. Our analysis of the dissipative dynamics
of inflation in these models have lead us to two main conclusions. Firstly, if dis-
sipative effects are sufficiently strong, a sufficiently long period of inflation may
occur independently of the fine-tuning of the parameters in the potential, which
was expected since the additional friction alleviates the need for a very flat po-
tential. Secondly, and more surprisingly, the required amount of dissipation does
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not decrease arbitrarily for flatter potentials, given that if the scalar potential is
too flat and the inflaton evolves too slowly, it becomes more difficult to sustain a
radiation bath with a temperature above the Hubble rate, which is required for
consistency of our analysis. This results in a field-dependent critical value of the
fine-tuning parameter β below which the required dissipation parameter Cφ be-
comes constant. Above this value, the potential is sufficiently steep to ensure that
T > H throughout inflation, with steeper potentials requiring larger values of the
dissipation parameter.

� Stability with non-negligible viscous effects

In chapter 3 the noncausal theory for the bulk viscous pressure, given by the Eckart
hydrodynamics theory, was studied along with two other causal theories, the IS
linear theory and the NLCDH theory. We have seen significant differences in the
radiation production in each of these different theories as the relaxation time of
the radiation fluid increases. Among the three theories for the bulk pressure we
have studied, the NLCDH case proved to be the most robust of them as far as
stability is concerned. In regards model building, we have shown that accounting
for bulk viscous pressure effects in the radiation fluid can relax the requirements
on the magnitude of the dissipation coefficient for the inflaton field, especially for
a large bulk viscosity coefficient. This range of bulk viscosity coefficients can be
realized within the regime of stability requirements in warm inflation, and this
range is within reach of realistic model parameters.

� Growth mode in the LOTS realization of warm inflation

We have analysed two different solutions to the growth mode in the power spec-
trum, induced by the temperature dependence of the dissipative coefficient in the
LOTS realization of warm inflation. We have examined the effectiveness of the vis-
cosities in suppressing the growth mode, and we have extended previous results
with the inclusion of the bulk viscosity. Additionally, we have explored the weak
dissipation regime of warm inflation, where the growth mode does not emerge.
We have shown that the presence of even small dissipative effects at the time when
observable scales leave the horizon during inflation may have a significant effect
on the spectrum of primordial fluctuations.

� Suppressing the growth mode with viscous effects

In chapter 5 we studied the evolution of the linear fluctuations of warm inflation
including bulk and shear viscosities. We have concentrated on the LOTS realiza-
tion of warm inflation, and used expressions for the viscosities computed from
quantum field theory. For completeness we have also considered other tempera-
ture dependences in the dissipative coefficient and in the bulk viscosity that may
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appear in different momentum regimes of the two stage framework of warm infla-
tion. Our main result is the complete suppression of the growth mode in the strong
dissipation regime of warm inflation, when viscosity is consistently described by
bulk viscous terms. The effect of the bulk vicosity has been compared with pre-
vious results for the shear viscosity, and we have found that the bulk viscosity
dominates over the shear both in the amplitude and the tilt of the spectrum. We
have characterized the impact of the shear and bulk viscosities on the spectral
index, considering the modifications at the background and perturbation levels,
such that it can be included in future phenomenological studies.

� Warm inflation with weak dissipation

In chapter 6 we have proved that warm inflation in the weak dissipation regime
lowers the tensor-to-scalar ratio, and yields a modified consistency relation that
may be used to distinguish it in a model-independent way from the standard su-
percooled scenarios if a tensor component is found and accurately measured. The
main modifications to the scalar spectrum arise from the presence of dissipative
noise that sources inflaton fluctuations, and from the changes in the phase space
distribution of inflaton modes as a consequence of inflaton particle production in
the plasma. We have shown, in particular, that the latter effect may bring the sim-
plest chaotic inflation scenario with a quartic potential into agreement with the
Planck results for a nearly-thermal distribution. Inflation may thus be triggered
from chaotic initial conditions at the Planck scale in an observationally consistent
way, through simple renormalizable interactions with matter fields that must be
present in any inflationary model, as opposed to e.g. a non-minimal coupling to
the gravitational sector. The cosmic baryon asymmetry may also be produced dur-
ing warm inflation, inducing baryon isocurvature perturbations that are within
the current Planck bounds for a quartic potential and which may be probed in
the near future. Furthermore, we have demonstrated that other low-scale models
such as hill-top scenarios are consistent for both the thermal regime and when the
fluctuation-dissipation term is dominant.

� Unification of inflation and dark matter through reheating

In chapter 7 we have shown that the decay of the inflaton following the inflation-
ary slow-roll regime can be incomplete, such that successful reheating is achieved
while leaving a stable remnant that can account for the observed dark matter in
the universe. By estimating the scattering rate of zero-momentum inflaton parti-
cles off thermalized fermions, we concluded that the oscillating condensate will
most likely evaporate in parametric regimes where the reheating temperature is
above the threshold required for Big Bang Nucleosynthesis. The stable inflaton
particles then reach a thermalized state which eventually decouples from the cos-



130 Conclusions

mological radiation bath and freezes out as a standard WIMP. In this WIMPlaton
scenario, inflaton masses must lie in the GeV-TeV range to account for the observed
dark matter abundance.

In the simplest models with a single dynamical field, the inflaton decay prod-
ucts must interact with the Standard Model (SM) degrees of freedom in order to
excite them in the thermal bath. We have explored different possibilities for such
interactions, and we have also analysed the alternative possibility of hybrid infla-
tion models, where a dynamical waterfall sector, which is also charged under the
discrete symmetry, is responsible for reheating the universe. The entropy produced
by the waterfall decay dilutes the inflaton condensate’s abundance, however, con-
densate evaporation will also most likely occur in the viable parametric regimes. A
WIMPlaton scenario with masses in the GeV-TeV range is again the most probable
outcome in hybrid models.

While these mass values may a priori seem too low to yield the correct ampli-
tude for the primordial spectrum of curvature perturbations, we have shown that
the inflaton mass can be much larger during the slow-roll period than at the min-
imum of the potential, thus allowing for the embedding in consistent inflationary
models.
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Conclusiones

El tema principal que hemos abordado en esta tesis es el análisis del impacto de
los procesos disipativos durante inflación y recalentamiento. El propósito de este
trabajo es contribuir al desarrollo conocimiento actual de los efectos de la disipa-
ción tanto en la dinámica como en los observables de las eras mencionadas en el
universo temprano. Hemos realizado el estudio del periodo inflacionario en el con-
texto del escenario de inflación templada, donde los mecanismos disipativos que
actúan durante inflación se describen en términos de teoría cuántica de campos.
Nos hemos enfocado en la realización LOTS de inflación templada, la realización
más estudiada en la literatura. En nuestro examen del periodo de recalentamiento
propusimos un mecanismo de desintegración del inflatón en un baño de radiación,
tal que el inflatón puede sobrevivir al proceso y jugar el papel de un candidato a
materia oscura. Nuestros resultados pueden resumirse como sigue:

� Dinámica de inflación templada a orden cero en teoría lineal
de perturbaciones

Hemos ampliado el conocimiento del comportamiento a orden cero en teoría li-
neal de perturbaciones de inflación templada en dos direcciones diferentes. Hemos
estudiado por primera vez en el contexto de inflación templada una categoría de
modelos caracterizada por la presencia de un punto de inflexión en el potencial
inflacionario. Además, hemos contribuido a la intelección de los efectos de visco-
sidad en inflación templada considerando descripciones más realistas de la visco-
sidad de volumen basadas en teoría cuántica de campos e hidrodinámica causal.

� Modelos con puntos de inflexión

En el capítulo 2 nos hemos centrado en modelos supersimétricos, donde la plétora
de direcciones planas disponibles pueden ser elevadas por los efectos que compi-
ten para romper SUSY, produciendo puntos de inflexión o incluso de silla, aunque
a costa de un ajuste fino de parámetros no relacionados a priori. Nuestro análisis
de la dinámica disipativa de inflación es esos modelos nos ha conducido a dos
conclusiones principales. Primero, si los efectos disipativos son suficientemente
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fuertes, puede producirse un periodo de inflación de duración suficiente indepen-
dientemente del ajuste fino de los parámetros. Este comportamiento tiene sentido
puesto que la fricción adicional reduce la necesidad de un potencial muy plano
para inflación. Segundo, y más sorprendentemente, la cantidad de disipación ne-
cesaria no decrece arbitrariamente para potenciales más planos, puesto qe si el
potencial escalar es demasiado plano y el inflatón evoluciona muy lentamente,
resulta más complicado mantener un baño de radiación a una temperatura supe-
rior al parámetro de Hubble, condición necesaria para la consistencia de nuestro
análisis. Esto implica que existe un valor crítico del parámetro de ajuste fino β por
debajo del cual el parámetro de disipación Cφ requerido se hace constante. Por
encima de ese valor, el potencial es lo suficientemente inclinado como para asegu-
rar que T > H durante inflación. Potenciales más inclinados necesitan valores del
parámetros de disipación más altos.

� Estabilidad con efectos de viscosidad no despreciables

En el capítulo 3 estudiamos la descripción no-causal para la viscosidad de volu-
men, la teoría hidrodinámica de Eckart, junto con otras dos teorías causales, la
teoría linear IS y la teoría NLCDH. Hemos encontrado diferencias significativas
en la producción de radiación en cada una de esas teorías cuanto más aumenta
el tiempo de relajación del fluido de radiación. Entre las tres teorías para la pre-
sión de volumen que hemos estudiado, mostramos que el caso NLCDH es el más
robusto en cuanto a estabilidad concierne. En cuanto a construcción de modelos
hemos demostrado que los efectos de la presión viscosa de volumen en el fluido
de radiación pueden relajar los requisitos para la magnitud del coeficiente disipa-
tivo, especialmente para un coeficiente de viscosidad de volumen alto. Este rango
de coeficientes de viscosidad de volumen es compatible con el régimen de requi-
sitos de estabilidad de inflación templada y puede obtenerse con parámetros de
modelos realistas.

� Modo creciente en la realización LOTS de inflación templada

Hemos analizado dos soluciones diferentes al modo creciente en el espectro de
potencias, que está inducido por la dependencia con la temperatura del coeficien-
te disipativo en la realización LOTS de inflación templada. Hemos examinado la
eficiencia de las viscosidades en la supresión del modo creciente y hemos exten-
dido resultados previos con la inclusión de la viscosidad de volumen. Asimismo,
hemos explorado el régimen de disipación débil de inflación templada, en el que
el modo creciente no emerge. Hemos demostrado que incluso la presencia de efec-
tos de disipación pequeños en el momento en el que las escalas observables salen
del horizonte durante inflación puede tener un efecto importante en el espectro
primordial de perturbaciones.
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� Supresión del modo creciente con efectos viscosos

En el capítulo 5 hemos estudiado la evolución de las perturbaciones lineales de in-
flación templada en presencia de viscosidades de volumen y de cizalla. Nos hemos
centrado en la realización LOTS de inflación templada y hemos usado expresiones
para las viscosidades calculadas en teoría cuántica de campos. Por completitud
también hemos considerado otras dependencias con la temperatura en los coe-
ficientes disipativos y de viscosidad de volumen que pueden aparecer en otros
regímenes de momento en la realización en dos etapas de inflación templada.
El resultado principal que hemos encontrado es la completa supresión del modo
creciente en el régimen de disipación fuerte de inflación templada, cuando descri-
bimos la viscosidad en términos de la viscosidad de volumen. Hemos comparado
el efecto de la viscosidad de volumen con resultados previos para la viscosidad
de cizalla y hemos encontrado que la viscosidad de volumen domina sobre la de
cizalla tanto en la amplitud como en el índice espectral del espectro de potencias.
Hemos caracterizado el impacto de las viscosidades de volumen y de cizalla en el
índice espectral, teniendo en cuenta las modificaciones tanto a orden cero como
a orden linear en teoría de perturbaciones, de modo que pueda ser incluido en
futuros estudios fenomenológicos.

� Inflación templada con disipación débil

En el capítulo 6 hemos demostrado que inflación templada en el régimen de di-
sipación débil disminuye la proporción tensor a escalar e introduce una modifi-
cación en la relación de consistencia. Esta modificación puede ser utilizada para
diferenciar inflación templada de escenarios fríos independientemente del mo-
delo si se descubre una componente tensorial y se mide de manera precisa. Las
principales modificaciones al espectro escalar se deben a la presencia de ruido di-
sipativo que actúa como fuente de las fluctuaciones del inflaton y a los cambios
en la distribución en el espacio de las fases de los modos del inflatón, que sur-
ge como consecuencia de la producción de partículas inflacionarias en el plasma.
Hemos demostrado, en particular, que este último efecto puede aliviar la tensión
entre los datos de Planck y el escenario de inflación caótica más simple con un
potencial cuártico, cuando la distribución es cercana al equilibrio térmico. En ese
caso inflación puede comenzar a partir de condiciones iniciales caóticas a la escala
de Planck de manera consistente con las observaciones, a través de simples in-
teracciones renormalizables con campos de materia que deben estar presentes en
cualquier modelo inflacionario, en oposición, por ejemplo, a un acoplo no minimo
al sector gravitacional. La asimetría cósmica de bariones puede también ser pro-
ducida durante inflación templada, de manera que se inducen perturbaciones de
isocurvatura en los bariones consistentes con los límites actuales de Planck para
un potencial cuadrático y que podrían ser observadas en un furturo cercano. Igual-
mente, hemos demostrado que otros modelos a escalas bajas, como los escenarios
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hill-top, son consistentes con Planck tanto en el régimen térmico como cuando el
término de fluctuación-disipación es el dominante.

� Unificación de inflación y materia oscura a través de recalen-
tamiento

En el capítulo 7 hemos demostrado que la desintegración del inflación posterior
al régimen inflacionario de rodadura lenta puede ser incompleta, de modo que
se complete con éxito el proceso de recalentamiento a la vez que sobrevive un
remanente estable que explique la materia oscura en el universo. A partir de la
estimación de la tasa de dispersión de inflatones de momento cero con fermiones
en el baño térmico, hemos concluido que el condensado oscilante se evaporará
en las regiones del espacio de parámetros en las que la temperatura de recalen-
tamiento es superior al umbral necesario para la síntesis de núcleos ligeros. Los
inflatones, que son partículas estables, alcanzarán un estado de equilibrio térmi-
co que finalmente se desacoplará del baño cosmológico de radiación y seguirá un
proceso de congelación como un WIMP estándar. En este escenario de WIMPlatón,
las masas del inflatón deben estar en el rango del GeV-TeV para poder describir la
abundancia observada de materia oscura.

En los modelos más simples con un sólo campo dinámico, los productos de
la desintegración del inflatón deben interaccionar con los grados de libertad del
modelo estándar para poder excitarlos en el baño térmico. Hemos explorado dife-
rentes posibilidades para esas interacciones y también hemos analizado la posibi-
lidad alternativa de modelos de inflación híbrida, en los que un sector dinámico
de cascada, que también está cargado bajo la simetría discreta, es el responsable
del recalentamiento del universo. La entropía producida por la desintegración del
sector de cascada diluye la abundancia del condensado de inflatones, sin embar-
go, la evaporación del condensado también se producirá en las regiones viables
del espacio de parámetros. Un escenario de WIMPlatón con masas en el rango del
GeV-TeV vuelve a ser el caso más favorable en los modelos híbridos.

Aunque estos valores de las masas puedan parecer a priori demasiado bajos
para producir una amplitud correcta del espectro de perturbaciones, hemos mos-
trado que la masa del inflatón puede ser mucho mayor durante el periodo de
rodadura lenta que en el mínimo del potencial, de modo que es posible incluir el
mecanismo en modelos inflacionarios consistentes.



AStability analysis for the viscosity
descriptions

A.1 Dynamical system for the Eckart case

In the Eckart theory the bulk pressure is simply given by Eq. (3.12), Π = −3ζbH.
The dynamical system Eq. (3.36) takes the form,

u′ = −3H −Υ− V,φu−1 ≡ f(u, s) ,

s′ = −3Hsu−1 + 9ζbH
2 (Tu)−1 + ΥT−1u ≡ g(u, s) . (A.1)

The Jacobian matrix M becomes

MEckart(x) =
∂(f, g)

∂(u, s)

∣∣∣∣∣
u=u0,s=s0

≡
(
∂f/∂u ∂f/∂s
∂g/∂u ∂g/∂s

) ∣∣∣∣∣
u=u0,s=s0

=

(
A B
C D

)
,(A.2)

where the matrix elements are evaluated at the slow-roll solutions Eqs. (3.37) and
(3.38). The coefficients of the matrix MEckart become

A =
H

u

{
−3(1 +Q)− 1

(1 + κ)2

ε

(1 +Q)2

}
,

B =
H

s

{
− 3(γ − 1)cQ+ 3(γ − 1)b(1 +Q) +

− 1

(1 + κ)2

Qε

(1 +Q)2
+

σ

1 + κ

[
1

(1 + κ)

Qε

(1 +Q)2
− 3

2
σ̃

]}
,

C =
Hs

u2

[
6− 1

(1 + κ)2

ε

(1 +Q)2

]{
1 + σ

[6(1 +Q)2 − 2ε]

[6(1 +Q)2 − ε]

}
,

D =
H

u

{
3(γ − 1)(c− 1)− 3− 1

(1 + κ)2

Qε

(1 +Q)2
+

+ σ

[
3(γ − 1)(c− l)− 1

(1 + κ)2

Qε

(1 +Q)2
+

3

2

σ̃

1 + κ

]}
, (A.3)
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where we have omitted the sub-index “0” of the slow-roll solutions and defined
the quantities σ and σ̃ as

σ =
Π

γρr
, (A.4)

σ̃ =
Π

V
. (A.5)

b is the slow-roll parameter ensuring that thermal corrections to the inflation po-
tential are negligible

b =
TVTφ
Vφ

. (A.6)

The expressions simplify considerably in the strong dissipative regime of warm
inflation, Q� 1 and neglecting the terms proportional to the slow-roll parameters
in Eq. (A.3), we obtain

A = −3Q
H

u
,

B = 3(γ − 1)(b− c)QH
s
,

C =
Hs

u2
6(1 + σ) ,

D =
H

u

{
3(γ − 1)(c− 1)− 3 +

[
3(γ − 1)(c− l) +

3

2

σ̃

1 + κ

]
σ

}
. (A.7)

Using (A.7), the eigenvalues of MEckart are

λEckart
1 ' −H

u
[3Q+ 6(1 + σ)(γ − 1)(b− c)] +O (1/Q) , (A.8)

λEckart
2 ' H

u

{
3(γ − 1)(c− 1)− 3 +

[
3(γ − 1)(c− l) +

3

2

σ̃

1 + κ

]
σ

+ 6(1 + σ)(γ − 1)(b− c)
}

+O (1/Q) . (A.9)

Independent of the inflaton dynamics, we then obtain that stability is assured
when (u/H)λi < 0. In the slow-roll regime we have for σ = Π/(γρr) that

σ ' Π

Qu2 − Π
=

σ̃
2Q

(1+κ)(1+Q)
ε

1+Q
− σ̃

, (A.10)

where we have used the slow-roll equations for the radiation energy density and
u, Eq. (3.37). Note from the above equation that in particular we have that |σ| <
1. Using (A.10) in Eqs. (A.8) and (A.9), the first eigenvalue will always satisfy
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the stability condition, while for the second eigenvalue Eq. (A.9), the stability
condition implies:

(c− 2b) (1 + σ) +
γ

(γ − 1)
+ lσ − 1

2(γ − 1)

σσ̃

1 + κ
> 0 , (A.11)

or, using γ = 4/3, valid for the quasi-equilibrium thermal bath of warm inflation,

(c− 2b) (1 + σ) + 4 + lσ − 3

2

σσ̃

1 + κ
> 0 . (A.12)

Let us now consider the dynamical system when the bulk pressure Π has an
evolution according to the IS theory, Eq. (3.18). The dynamical system, including
the evolution equation for the bulk pressure, now becomes

u′ = −3H −Υ− Vφu−1 ≡ f(u, s,Π) ,

s′ = −3Hsu−1 − 3HΠ (Tu)−1 + ΥT−1u ≡ g(u, s,Π) ,

Π′ = −Π

τ
u−1 − 3ζbH

τ
u−1 − Π

2

{
3Hu−1 +

+

[
τ,φ
τ
− ζb,φ

ζb
+ (γ − 1)

(
τ,T
τ
− ζb,T

ζb
− 1

)
VφT
s

]
+

− (γ − 1)

(
τ,T
τ
− ζb,T

ζb
− 1

)[
3Hu−1

(
1 +

Π

Ts

)
− Υu

Ts

]}
≡ h(u, s,Π) , (A.13)

and the Jacobian stability matrix becomes

MIS(x) =
∂(f, g, h)

∂(u, s,Π)

∣∣∣∣∣
u=u0,s=s0,Π=Π0

=

 A B E
C D F
G H I

 . (A.14)

Using the slow-roll solutions, Eqs. (3.37) and (3.38), we obtain for the elements of
the matrix MIS in the strong dissipation regime and neglecting terms proportional
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to the slow-roll coefficients

A = −3Q
H

u
,

B = 3(γ − 1)(b− c)QH
s
,

C =
Hs

u2
6 (1 + σ) , (A.15)

D =
H

u
[3(γ − 1)(1 + σ)c− 3− 3(γ − 1)] ,

E = 0 ,

F = −3
H

Tu
,

G =
HTs

u2
σ

[
3

2
+ 3(γ − 1)Λ(1 + σ)

]
,

H =
HT

u
σ

{
(γ − 1)l

Θ
+

3(γ − 1)2

2
cΛ(1 + σ)− 3γ(γ − 1)

2
Λ+

+
3(γ − 1)

2
b(1 + σ) [Λ + (γ − 1)Σ] +

− σ̃

2(1 + κ)

[
1

Θ
− 3

2
− 3(γ − 1)Λ(1 + σ)

]}
,

I =
H

u

{
− 1

Θ
− 3

2
− 3(γ − 1)

2
Λ [σ + b(1 + σ)]

}
. (A.16)

where we have defined the parameters

Θ = τH ,

Λ = 1 + l − Tτ,T
τ

,

Σ =

(
1 +

Tτ,TT
τT

− Tτ,T
τ

)
Tτ,T
τ
−
(

1 +
Tζb,TT
ζb,T

− l
)
l − Λ

TVφTT
VφT

. (A.17)

In terms of Eq. (A.16), the eigenvalues of MIS are

λIS
1 ' −H

u
[3Q+ 6(1 + σ)(γ − 1)(b− c)] , (A.18)

λIS
2 ' −H

u

{
1

Θ
+ 3|σ|

[
(γ − 1)l +

|σ̃|
2(1 + κ)

]}
, (A.19)

λIS
3 ' 1

2

(
D − BCA + I

)
− 1

2

[
(D − I)

(
D − I − 2

BC
A

)
−4F

(BG
A −H

)
+
B2C2

A2

]1/2

. (A.20)
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The first eigenvalue above, λIS
1 , which is the same as the Eckart case, λEckart

1 , and
the second λIS

2 satisfy the stability requirement (u/H)λi < 0. Hence the stability
condition for the IS case then falls on the third eigenvalue λIS

3 , Eq. (A.20). This is
most easily expressed by demanding that the product λIS

2 λ
IS
3 > 0, which then leads

to the condition

[
1 +

2σ + 3(γ − 1)ΘbΛ(1 + σ)2

2 + 3Θ

]
c+

γ

γ − 1
+

2σ

2 + 3Θ
l

− 1

2(γ − 1)

σσ̃

1 + κ

[
2− 3Θ

2 + 3Θ
− 6(γ − 1)ΘΛ

2 + 3Θ
(1 + σ)

]
+

−
[

4(1 + σ) + 3Θ(2 + σ)− 3ΘΛ(1 + σ)2+

− 3(γ − 1)Θ(1 + σ)(Λ + σΣ) + 6b(γ − 1)ΛΘ(1 + σ)2
] b

2 + 3Θ
> 0 ,(A.21)

which for the case γ = 4/3 becomes[
1 +

2σ + ΘbΛ(1 + σ)2

2 + 3Θ

]
c+ 4 +

2σ

2 + 3Θ
l − 3

2

σσ̃

1 + κ

[
2− 3Θ

2 + 3Θ
− 2ΘΛ

2 + 3Θ
(1 + σ)

]
+

−
[

4(1 + σ) + 3Θ(2 + σ)− 3ΘΛ(1 + σ)2 −Θ(1 + σ)(Λ + σΣ)

+2bΛΘ(1 + σ)2
] b

2 + 3Θ
> 0 . (A.22)

A.2 Dynamical system for the NLCDH case

Finally, we will now obtain stability condition for the case of the NLCDH theory
for the bulk pressure. In the NLCDH case, the evolution equation for the bulk
pressure is given by Eq. (3.25). The dynamical system now becomes

u′ = −3H −Υ− Vφu−1 ≡ f(u, s,Π) ,

s′ = −3Hsu−1 − 3HΠ (Tu)−1 + ΥT−1u ≡ g(u, s,Π) ,

Π′ = −Π

τ
u−1 − 3ζbH

τ
u−1 − 3HΠu−1 ≡ h(u, s,Π) . (A.23)

The Jacobian stability matrix is similar to the one in the IS case, Eq. (A.14), but
now with the functions f(u, s,Π), g(u, s,Π), h(u, s,Π) obtained from the above
equation (A.23). Using again the slow-roll solutions, Eqs. (3.37) and (3.38), we
obtain for the elements of the matrix MNLCDH for the NLCDH case in the strong
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dissipative regime and to zero order in slow-roll

A = −3Q
H

u
,

B = 3(γ − 1)(b− c)QH
s
,

C =
Hs

u2
6 (1 + σ) ,

D =
H

u
[3(γ − 1)(1 + σ)c− 3− 3(γ − 1)] ,

E = 0 ,

F = −3
H

Tu
,

G =
HTs

u2
3σ ,

H =
HT

u
σ

[
(γ − 1)l

Θ
− 1

2

(
1

Θ
− 3

)
σ̃

1 + κ

]
,

I =
H

u

(
− 1

Θ
− 3

)
. (A.24)

One of the eigenvalues that follow from MNLCDH is still the same as the one
obtained in the Eckart case, Eq. (A.8), while the other two determine de stability
condition for the NLCDH case, similar to Eq. A.21(

1 +
σ

1 + 3Θ

)
c+

γ

γ − 1
+

σ

1 + 3Θ
l − 1

2(γ − 1)

σσ̃

1 + κ

1− 3Θ

1 + 3Θ

−
[
2 + σ +

σ

1 + 3Θ

]
b > 0 . (A.25)

For γ = 4/3 the above equation gives(
1 +

σ

1 + 3Θ

)
c+ 4 +

σ

1 + 3Θ
l − 3

2

σσ̃

1 + κ

1− 3Θ

1 + 3Θ

−
(

2 + σ +
σ

1 + 3Θ

)
b > 0 . (A.26)



BSemianalytic function for the spectral
index with bulk viscosity

In this appendix we write explicitly the form of function for the spectral index Eq.
(5.69). The spectral index in the case c = 0 without any viscosity is given by[99]

(ns − 1)0 =
1

4(1 +Q)2
[−(17 + 9Q)ε− (9Q+ 1)βΥ + (6 + 6Q)η] . (B.1)

The derivative of the function G(ζ̄b) is

dG(ζ̄b)

dNe

= − 4CrT

9CbH
ζ̄b

[
− B

cosh2(log ζ̄b − C)
+

FG
cosh2(G log ζ̄b +H)

+ 2D(log ζ̄b + E)

]
d log T/H

dNe

.

(B.2)
The derivative of the function F (Q) is given by

dF (Q)

dNe

=
(
αAα−1 + βQβ−1

) dQ
dNe

(B.3)

For a generic c power, the derivative of the function f that relates the amplitude
of the power spectrum with the y2

k variable through Eq. (5.63) is

df

dNe

=

[√
2ε

mP

(3H + (2 + c)Υ) +
H

φ̇

(H + Υ)

1 +Q
(η − ε)− (c− 1)

Υ

φ

](
H

φ̇

)2
T

π2

dφ

dNe

+
2(H + Υ)T

π2

(
H

φ̇

)2
mp

√
2ε

(1 +Q)2

dQ

dNe

+

(
H

φ̇

)2 [
(H + Υ)T

π2
+
cTΥ

π2

]
d log T/H

dNe

(B.4)

The evolution of φ with the number of e-folds has the same form independently of
the power c and the presence of bulk viscosity:

dφ/mP

dNe

= −
√

2ε

1 +Q
. (B.5)
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The evolution of log T/H and Q with the number of e-folds in the c = 0 case
without bulk viscosity is:

d log(T/H)

dNe

∣∣∣∣
0

=
1

2

(
Vφφ
Vφ
− 1

2

Vφ
V

)
dφ

dNe

+
1

4

(
1

Q
− 2

1 +Q

dQ

dNe

)
, (B.6)

dQ

dNe

∣∣∣∣
0

=

√
3Cφmp

3
√
V

(
1− Vφφ

2V

)
dφ

dNe

. (B.7)

The corresponding evolution for c = 3 with bulk is given by:

d log(T/H)

dNe

∣∣∣∣
3

=
2(1 + σ)

1 +Q+ 6Q(1 + σ)

(
2 + 4Q

1 +Q
ε− η +

1−Q
1 +Q

mP

φ

√
2ε

)
, (B.8)

dQ

dNe

∣∣∣∣
3

=
Q

1 +Q+ 6Q(1 + σ)

[
10

(
1 +

6

5
σ

)
ε− 6(1 + σ)η + 8

(
1 +

3

4
σ

)
mP

φ

√
2ε

]
,

(B.9)

where
σ =

Π

ρr + pr
. (B.10)



CRadiative corrections to the minimal
model of inflaton dark matter

An important aspect in embedding the interactions in Eq. (7.2) within a consistent
inflationary model is the fact that the discrete Z2 × S2 symmetry does not protect
the scalar potential from radiative corrections. In particular, the Yukawa inter-
actions induce loop-corrections of the Coleman-Weinberg form, which for large
inflaton field values take the leading form:

∆Vf ≈ −
h4φ4

16π2

(
log

(
h2φ2

µ2

)
− 3

2

)
(C.1)

and therefore induce an effective quartic term in the potential. The effect of this
term does not necessarily spoil the predictions of the non-minimally coupled quar-
tic model, as discussed in [243], although one must ensure that the observed
normalization of the perturbation spectrum is obtained. While for ξ � 1 the effec-
tive quartic coupling must have approximately the same value as in the minimally
coupled case, which requires h . 10−3, significantly larger values can be accom-
modated for large non-minimal couplings.

Radiative corrections can, however, be significantly reduced in supersymmetric
scenarios, and a supersymmetric version of the model in Eq. (7.2) with a C2 ⊂
Z2 × S2 symmetry can be easily obtained by considering a superpotential of the
form:

W =
h

2
Φ
(
Y 2

+ − Y 2
−
)

+
mf

2

(
Y 2

+ + Y 2
−
)

+

+
mφ

2
Φ2 +

λ

2
Φ2Z , (C.2)

where the inflaton and fermions ψ± are embedded within the chiral superfields Φ
and Y±, respectively, and the auxiliary superfield Z induces the quartic term in the
inflaton potential (noting that the discrete symmetry forbids cubic inflaton terms
in the superpotential). Supersymmetry then cancels the leading contributions of
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scalars and bosons to the 1-loop Coleman-Weinberg potential, which becomes:

∆VSUSY ≈
h2

16π2
log

(
h2φ2

µ2

)
V (φ) . (C.3)

This contribution is thus necessarily smaller than the tree-level potential V (φ) '
λ2|φ|4/4 for h . 1, therefore avoiding the generation of large effective self-
interactions during inflation.

Besides the Yukawa terms considered so far, the supersymmetric model also
yields scalar interactions between the inflaton and the scalar partners y± of the
fermions ψ±, which apart from SUSY splittings that vanish at the origin have the
same mass m± = |mf + hφ|. Trilinear terms in the scalar potential also lead to
the decay φ → y±y±, with analogous kinematics and comparable widths to the
fermionic decay channels, therefore yielding a similar incomplete decay of the in-
flaton as analyzed above. We note that the incomplete decay dynamics can be
fully described in terms of scalar fields and is therefore not exclusive of fermion
Yukawa couplings, although the required form of the scalar mass terms is more
naturally motivated within a supersymmetric context. We also note the existence
of quartic terms in the scalar potential which induce the 3-body decay φ→ zy±y±,
where z is the scalar component of the Z chiral multiplet. The associated cou-
plings have opposite signs for y± and proportional to λ, so that they are typically
sub-dominant with respect to the 2-body decays and they are also kinematically
forbidden at late times, so that they do not affect our earlier conclusions.
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