

Universidad de Granada

Departamento de Arquitectura y Tecnología de Computadores

Programa de Doctorado en Tecnologías de la Información y Comunicación

Optimization of 3D Hydrodynamic Models Applied to

the Knowledge and Prediction of Inland Waters

Optimización de Modelos Hidrodinámicos 3D del Transporte

y Mezcla Aplicados al Conocimiento y Predicción de Masas

de Agua Continental

Memoria presentada para la obtención

del Grado de Doctor por la Universidad de Granada

con mención de Doctorado Internacional

 Autor: Mario César Acosta Cobos

Directores: Dr. Mancia Anguita López y

Dr. Francisco J. Rueda Valdivia

Granada 2015

Editor: Universidad de Granada. Tesis Doctorales
Autor: Mario César Acosta Cobos
ISBN: 978-84-9125-139-2
URI: http://hdl.handle.net/10481/40298

http://hdl.handle.net/10481/40298

El doctorando Mario César Acosta Cobos, y los directores de la tesis Mancia

Anguita López y Francisco J. Rueda Valdivia. Garantizamos, al firmar esta tesis

doctoral, que el trabajo ha sido realizado por el doctorando bajo la dirección de

los directores de la tesis y hasta donde nuestro conocimiento alcanza, en la

realización del trabajo, se han respetado los derechos de otros autores a ser

citados, cuando se han utilizado sus resultados o publicaciones.

Granada, Abril 2015

 Director/es de la Tesis Doctorando

Fdo.: Mancia Anguita López Fdo.: Mario César Acosta Cobos

y Francisco J. Rueda Valdivia

Simplicity is a great virtue but

it requires hard work to achieve

and education to appreciate it.

And to make worse, complexity

sells better.

 Edsger Dijkstra

i

Acknowledgement

I feel more comfortable expressing my gratitude in Spanish, so I apologize for the

switch in the language.

El trabajo desarrollado en esta tesis no se puede considerar el trabajo de una sola

persona, por eso agradezco a todos aquellos que han contribuido de una forma o de otra

al desarrollo de la misma. Son muchas las personas que debo incluir, por ello, perdonad

aquellos que no haya podido nombrar explícitamente.

Quería empezar dando las gracias a mis directores Mancia Anguita y Francisco

Rueda. Esta tesis no sería posible sin su guía y su preparación a lo largo de estos años y

por ello mis primeros agradecimientos deben ir dedicados a ellos. A Mancia Anguita

por su esfuerzo y dedicación en el tutelaje de esta tesis. Trabajadora incansable, siempre

con tiempo no solo para dirigir sino también para ayudar con cada uno de los detalles a

realizar, enseñar con paciencia todo el conocimiento necesario y resolver los

problemas que iban surgiendo en el desarrollo de esta tesis y en cualquier otra materia

relacionada con mi propio aprendizaje. A Francisco Rueda por su paciencia en la

enseñanza de un estudio multidisciplinar y su profesionalidad en el desarrollo de cada

una de las tareas.

Quiero agradecer también a todos mis compañeros y profesores en la Universidad

de Granada que han contribuido al desarrollo de esta tesis. En particular, al profesor

Javier Fernández-Baldomero por los valiosos momentos “de café”, por su paciencia e

implicación en el desarrollo de esta tesis y por explicarme con todo el detalle necesario

cada pregunta que he podido formularle. A mis compañeras de despacho en el Instituto

del Agua Anna, Cintia, Alicia y Andrea. Gracias por ayudarme con aquellas dudas

multidisciplinares que no habría podido resolver de otro modo y por los buenos ratos

que hemos compartido fuera y dentro de ese despacho. A mis compañeros de despacho

en el CITIC Leo, Quique, Nolo, Karl y Fran por ayudarme en mi adaptación en el

CITIC, diversos procesos administrativos y los buenos momentos vividos.

A todos mis amigos, los cuales han contribuido no solo de forma indirecta al

desarrollo de esta tesis, sino también a que pudiera mantener fuera de la universidad la

cordura necesaria para seguir con su proceso. Sois muchos todos los que debo nombrar

ii

aquí, tanto Cordobeses como Granadinos, así que simplemente muchas gracias a todos.

Especial mención a mi compañero de piso y amigo Manuel, con el que he compartido

todos los años que he vivido en Granada y cuyo soporte agradeceré siempre.

Durante el desarrollo de esta tesis se realizó una estancia en la Universidad de

California, Davis. Quería agradecer también al profesor Geoff Schladow por acogerme

en la Universidad y por su tutelaje durante ese periodo. Además de sus revisiones, datos

proporcionados y resolver cualquier duda que necesitara.

Por supuesto a toda mi familia. Sin ella sería imposible haber realizado esta tesis.

En particular, a mis padres Luisa María y Mario César, cuyo amor incondicional,

soporte infinito y esfuerzo por darme siempre lo mejor nunca dejan de sorprenderme y

quienes han permitido ser la persona que soy y aprender con orgullo el tipo de persona

que siempre he querido ser. A mi hermano Miguel Ángel, ingeniero brillante con un

gran futuro y una persona excepcional en todos los sentidos, quería agradecer también

cada momento que hemos pasado juntos.

Por último, pero no menos importante, quería dar un especial agradecimiento a

Teresa. Tu forma de ser y brillantez es siempre fuente de inspiración y no tengo

palabras para expresar lo importante que has sido no solo como apoyo en mi trabajo,

sino también en cualquiera de las etapas vividas tanto en Granada como después.

Simplemente espero que puedas seguir dándome tu apoyo, porque cualquier éxito que

pueda conseguir será siempre en parte gracias a ti.

Resumen Extenso

iii

Resumen Extenso

Los procesos de circulación de agua en lagos y embalses se producen como resultado

de flujos de energía térmicos y mecánicos través de las fronteras de un lago,

disminuyendo desde procesos de larga escala (o escala cubeta) a micro escala y,

finalmente, llevando a procesos de mezcla y disipación. Los patrones de mezcla

inducidos por larga escala y ondas de alta frecuencia en lagos estratificados son

inherentemente heterogéneos, llevando a variaciones en la densidad horizontal. En

respuesta a estos gradientes de densidad horizontal, se forman patrones de flujo

horizontales espacialmente complejos provocados por el forzamiento directo de viento y

la rotación terrestre. Es a través de estos procesos de circulación horizontal que el

sistema se reajusta volviendo a su estado de equilibrio con líneas de igual densidad,

coincidiendo con el geopotencial en superficie. Los gradientes de densidad horizontal se

producen en respuesta a un amplio número de mecanismos con diferentes escalas tanto

espacial como temporal. Entre estos mecanismos se incluye la confluencia de ríos,

variaciones espaciales térmicas producidas por flujos de calor en superficie, procesos

de mezcla heterogénea debido a circulación de larga escala, procesos de mezcla

inducidos por viento en superficie espacialmente variable y afloramiento o procesos de

mezcla en la región béntica. Considerando este amplio número de mecanismos que

afectan al gradiente de presión baroclínica, así como las diferentes escalas tanto

espaciales como temporales que pueden presentar estos procesos, el problema de

describir circulación horizontal en lagos y embalses todavía es difícil de abarcar de una

forma sencilla.

Solo a partir de los últimos años, por un lado aprovechando los avances logrados

en la recolección de datos mediante sensores remotos y el análisis de imágenes, los

cuales permiten obtener información de velocidad en superficie y campos de

temperatura y, por otro lado, haciendo uso de modelos numéricos tridimensionales

(3D), capaces de resolver las ecuaciones de movimiento para simular el comportamiento

del agua de un lago con suficiente resolución espacial y temporal, han permitido a

ecólogos describir y comprender los complejos procesos de circulación que se producen

en lagos y embalses. El estudio de estos procesos es de fundamental interés al ser los

causantes de los procesos de transporte horizontales y la gran heterogeneidad presentes

Tesis Doctoral

iv

en estos entornos. La mayoría de estos modelos numéricos están basados en la solución

de las ecuaciones en tres dimensiones (3D) para aguas someras (Shallow Water

Equations, 3D-SWE), cuya solución se trata de una forma simplificada del promediado

de Reynolds de las ecuaciones de Navier-Stokes (Reynolds averaged Navier-Stokes,

RANS), sujeta por las apropiadas condiciones de frontera. El uso de las 3D-SWE,

debido a los límites físicos computacionales existentes y diversos estudios analíticos

realizados a priori, está justificado para la descripción y estudio de los procesos de

transporte de larga escala. Sin embargo, incluso haciendo uso de modelos basados en las

3D-SWE, ingenieros y científicos todavía se encuentran con un gran coste

computacional al intentar simular los procesos de transporte horizontal y circulación

presentes en la zona litoral de grandes lagos y embalses. Esta zona litoral es una parte

fundamental en los ecosistemas acuáticos, con una enorme diversidad y siendo el

hábitat de muchos de los organismos que viven en un lago. Por otro lado, esta zona se

encuentra en continuo cambio al verse altamente afectada por la mano del ser humano,

al ser el nexo de interacción entre el propio ser humano y el lago. Así, la zona litoral

sufre numerosos cambios alrededor de sus costas debido a la construcción de

residencias, zonas de ocio o pesca, tuberías para la extracción de agua o por el vertido

de aguas residuales. Además, también es la entrada de una cantidad considerable de

nutrientes a través de la desembocadura de ríos, como resultado de la agricultura y

ganadería que hacen uso de estos ríos. Debido a estos motivos, hay una necesidad cada

vez más demandante por comprender el entorno de la zona litoral tanto para el propio

uso del ser humano como por la vida salvaje que compite por recursos en dicha zona.

Sin embargo, simular correctamente estos entornos no es una tarea sencilla, el hábitat de

la zona litoral puede ser sustancialmente heterogéneo tanto en la dimensión vertical

como horizontal. Además, las condiciones físicas de esta área cambian de forma

continua y muy dinámica (en escalas de tiempo muy pequeñas), como resultado de un

forzamiento hidrodinámico intenso y la débil inercia característica de áreas poco

profundas. Por otra parte, la zona litoral no puede estudiarse sin tener en cuenta los

procesos que ocurren en la zona pelágica del lago y que influyen en la propia zona

litoral. Esto conduce a que se debe simular tanto la circulación de larga escala, propia de

la zona pelágica, como los procesos de pequeña escala que ocurren en la zona litoral.

Adicionalmente, para que estos modelos obtengan resultados de interés, se deben

simular durante largos periodos de tiempo. Como resultado, debido a estas enormes

necesidades tanto temporales como espaciales, la mayoría de los fenómenos simulados

Resumen Extenso

v

producen simulaciones muy costosas (en términos de tiempo de ejecución y cantidad de

memoria).

En los últimos años, la computación paralela está siendo cada vez más demandada

y utilizada tanto en el área de Ingeniería Civil como en otras áreas de conocimiento,

llegando a ser una práctica esencial para reducir los costes de computación requeridos

en simulaciones numéricas de sistemas reales, o incluso para considerar abordar

problemas de mayores dimensiones. Esta tesis doctoral pretende mostrar soluciones

para reducir el coste computacional de modelos hidrodinámicos 3D, de forma que se

puedan obtener resultados de simulaciones de grandes sistemas de agua continental

durante largos periodos de tiempo y usando grids de alta resolución, todo en un tiempo

aceptable y usando recursos fácilmente accesibles por cualquier científico. Diversas

propuestas son explicadas y estudiadas. En primer lugar, se presenta un procedimiento

conocido como anidamiento, utilizado para reducir el área de interés en alta resolución a

una determinada zona del modelo, la cual está sujeta a condiciones de frontera dadas

por otro modelo completo (el cual simula toda la cuenca) de baja resolución. En

segundo lugar, se hace uso de técnicas de computación paralela que permitan realizar

las simulaciones en plataformas de gama media/baja, tanto para realizar una

implementación eficiente del procedimiento de anidamiento (de forma que el modelo

completo de baja resolución y el modelo anidado de alta resolución se ejecuten en

paralelo), como para dividir el trabajo a realizar entre los recursos disponibles,

aplicando una optimización y paralelización del modelo hidrodinámico utilizado.

Además, se presenta también una propuesta para simular áreas de alta resolución

anidadas extensas en clusters de gama media/baja, dividiendo el área anidada en

múltiples subdominios que puedan ser ejecutados (junto con el modelo completo de

baja resolución) en paralelo, escalando casi de forma lineal a medida que más recursos

para distribuir la zona de alta resolución anidada sean usados. Finalmente, también se

demuestra que la adaptación y optimización de un modelo hidrodinámico a los recursos

disponibles reducen considerablemente el coste computacional y el overhead generado

por una implementación paralela, obteniendo con ello muy buenos resultados de

escalabilidad incluso en arquitecturas de altas prestaciones.

Las implementaciones propuestas se han realizado sobre un ejemplo de modelo

hidrodinámico basado en las 3D-SWE, Si3D (Figura r.1), aunque la mayoría de las

mejoras pueden ser aplicables a otros modelos similares. Si3D fue implementado

Tesis Doctoral

vi

originalmente en su versión secuencial por E. P. Smith (2006). Las ecuaciones de

gobierno en el modelo de Smith son discretizadas mediante un método de diferencias

finitas usando un algoritmo semi-implícito de 3 niveles por pasos iterativos trapezoidal-

salto de rana sobre un grid Cartesiano estructurado. En Si3D, el enfoque semi-implícito

está basado en el tratamiento de ondas de gravedad y la difusión vertical de forma

implícita para evitar limitaciones en el paso de tiempo tan estrictas como en el caso

explícito debido a las condiciones dadas por Couram-Friedrich-Levy (CFL), y para

garantizar la estabilidad del método. El resto de términos, incluyendo la advección, son

tratados explícitamente. Aunque estos enfoques semi-implícitos evitan limitaciones

estrictas en el paso de tiempo, también tienen la desventaja frente a los totalmente

explícitos de que se deben formar y resolver largos sistemas de ecuaciones,

normalmente resueltos mediante métodos iterativos, difíciles de paralelizar. En el caso

de modelos 3D semi-implícitos, se debe formar y resolver un sistema de ecuaciones

simétrico positivo definido con estructura pentadiagonal, resuelto mediante un método

iterativo ampliamente utilizado conocido como Gradiente Conjugado (Conjugate

Gradient, CG). Adicionalmente, al CG se le suele aplicar un precondicionador

(Preconditioner Conjugate Gradient, PCG) que reduce el número de iteraciones que el

método iterativo tiene que realizar para encontrar una solución óptima.

Resaltar que a este modelo original de Si3D se aplicaron diversas optimizaciones

básicas (dando lugar a Basic Si3D, Figura r.1), necesarias como base en el desarrollo

Figura r.1. Implementaciones de Si3D propuestas en este trabajo a partir del código

original.

Basic Si3D

Capítulo 5

(1 nodo) P-Si3D

Capítulo 3

(1-3 nodos)

N-Si3D

Capítulo 2

(1 o 2 nodos)

P/N-Si3D

Capítulo 3

(1-3 nodos)

SP-Si3D

Capítulo 4

(1-10 nodos)

OP-Si3D

Capítulo 5

(más de 10)

Original Si3D

Capítulo 1

(1 nodo)

Resumen Extenso

vii

del resto de implementaciones realizadas (aunque esta implementación es el primer

paso, se trata en detalle en el último capítulo, donde se explica todos los pasos a seguir

en la completa optimización de un modelo hidrodinámico).

Las implementaciones propuestas fueron primero aplicadas en escenarios

sintéticos y, posteriormente usadas en simulaciones de dos casos reales, 30 km de

extensión del río Sacramento y el lago Tahoe, ambos situados en California (EEUU).

Además, algunas de las implementaciones propuestas en esta tesis están siendo usadas

también en otros casos de estudio, como el embalse de Beznar (España), la confluencia

entro el río Ebro y el río Segre al final del embalse de Ribaroja (España), el lago

Cayuga (EEUU) o el lago Tanganika (África). El modelo del río Sacramento es usado

para comprender la influencia de la marea en la migración del salmón juvenil desde el

propio río hasta el océano y reproducir la circulación lateral y secundaría en la zona de

meandros del río. Por otra parte, el modelo del lago Tahoe es usado para caracterizar las

rutas de transporte y migración de especies invasivas desde playas o bahías donde se

encuentran establecidas a otras playas del lago, y el estudio de los procesos de

transporte alrededor de la línea de costa que controlan el destino de contaminantes

liberados por el ser humano en las playas.

La procedimiento de anidamiento propuesto e implementado en Si3D (N-Si3D,

Figura r.1) se basa en un método de una vía (one-way nesting), en el cual se transfiere

toda la información necesaria desde el modelo completo de baja resolución para

solventar las dependencias que surgen en las ecuaciones discretizadas del modelo

anidado de alta resolución. Opcionalmente, se añade también una zona de relajación 3D,

la cual permite una transición suavizada del flujo de entrada al área anidada y evita

reflexiones en la frontera en el flujo de salida, causadas por posibles diferencias en la

solución de ambos modelos a medida que avanza la simulación. La propuesta aquí

presentada se ejecuta de forma online siguiendo una estructura pipeline en la que el

modelo completo de baja y el anidado de alta resolución se ejecutan en paralelo. La

implementación paralela de una vía propuesta permite transferir toda la información

requerida desde el modelo de baja al modelo anidado de alta resolución, tanto de la

frontera como de la zona de relajación 3D, sin necesidad de almacenar ninguna

información en ficheros y permitiendo realizar las transferencias incluso a cada paso de

tiempo, eliminando así posibles errores por interpolación temporal. Además, las

Tesis Doctoral

viii

comunicaciones se encuentran solapadas con cálculo, por lo que la transferencia de

datos no supone un coste computacional añadido para la implementación.

El procedimiento de anidamiento propuesto fue evaluado usando tanto modelos

sintéticos como simulaciones de casos reales. La implementación anidada fue en todos

los casos validada comparando los resultados de un área determinada, obtenidos tanto

por el modelo anidado de alta resolución como con un modelo completo también en alta

resolución. Las diferencias (Normal Root Square Error, NRMSE) entre los resultados de

estos modelos fueron muy pequeñas (inferiores al 4%). Además, se muestra que estas

diferencias pueden ser reducidas a 0 si (1) se usa la misma resolución en el modelo

anidado y en el modelo completo que proporciona los datos de condiciones de frontera

y (2) el sistema de ecuaciones pentadiagonal que se forma para resolver superficie libre,

presente en modelos semi-implícitos, se resuelve mediante un método directo, el cual

posee un alto coste computacional pero su solución es exacta. Por otra parte, a través de

los resultados de estos casos de ejemplo se demuestra que la componente de velocidad

tangencial debe ser transferida como condición de frontera desde el modelo completo de

baja al modelo anidado de alta resolución. Los resultados demuestran que la ausencia de

esta componente afecta considerablemente a la calidad de los resultados del modelo

anidado, especialmente cuando existen corrientes intensas y paralelas a la frontera del

modelo anidado. Este fue el caso, por ejemplo, de las simulaciones realizadas en

Claksburg bend del río Sacramento, donde se producen fuertes corrientes de circulación

aguas arriba del modelo. Por otro lado, los resultados se comparan con datos

experimentales presentes en la literatura, mostrando buenas similitudes entre ambos.

Por otra parte, se demuestra la necesidad de alta resolución en ambos casos, en el río

Sacramento y en el lago Tahoe, comparando los resultados del modelo de anidado de

alta con baja resolución en una misma zona, observando patrones de circulación que no

son correctamente capturados en los modelos de baja y que, por otra parte, sí se

capturan de igual forma en modelos completos de alta resolución como anidados en alta

resolución.

A partir del procedimiento de anidamiento desarrollados en el Capítulo 2, se han

explorado diversas propuestas para poder llevar a cabo simulaciones de líneas de costa

extensas. En particular, este interés surge de la necesidad de simular toda la zona litoral

del lago Tahoe. El interés en el estudio de toda la zona litoral se debe, como se indica en

Rao and Schwab (2007), a que las corrientes en la zona litoral se producen

Resumen Extenso

ix

generalmente a lo largo de zonas de igual profundidad, por lo que se crea una fuerte

conexión física entre las playas y bahías existentes a lo largo de la zona litoral del lago.

Esto lleva a que incluso reduciendo el coste computacional conseguido con anidamiento

al simular una parte en baja resolución, la zona anidada en alta resolución siga teniendo

un coste demasiado elevado y sea necesario buscar nuevas alternativas. La solución

propuesta consiste en dividir los cálculos del modelo de alta resolución para simular la

zona litoral entre los cores y computadores disponibles. Sin embargo, modificar un

modelo semi-implícito para adaptarlo a la computación paralela no es una tarea trivial.

A la hora de plantear nuevas soluciones en paralelo que alcancen una buena

escalabilidad, hay que tener en cuenta el tipo de operaciones a realizar y su dificultad

para realizarlas en una implementación paralela. Probablemente, en modelos 3D semi-

implícitos la etapa computacional más difícil y que mayor overhead introduce en su

paralelización es la resolución del sistema de ecuaciones pentadiagonal mediante

métodos iterativos para obtener superficie libre. En Si3D este sistema se resuelve

mediante el método del Gradiente Conjugado Precondicionado (Preconditioned

Conjugate Gradient, PCG). Su implementación en paralelo requiere numerosas

comunicaciones, tanto muchos-a-uno/uno-a-muchos entre todos los subdominios como

comunicaciones entre subdominios vecinos, esto sumado a la necesidad del uso de

reordenamiento como red-black ordering u otras técnicas típicas en la paralelización de

métodos iterativos, produce un overhead importante que reduce considerablemente la

escalabilidad del modelo y aumenta la complejidad de la implementación del mismo.

Una primera y plausible solución para introducir esta etapa en un modelo

hidrodinámico 3D paralelo consiste en evitar la paralelización de la etapa que resuelve

el sistema de ecuaciones pentadiagonal. Esto puede ser logrado (1) creando el sistema

de ecuaciones en paralelo, repartiendo el trabajo mediante descomposición de dominio,

(2) enviando cada parte del sistema de ecuaciones calculado a un solo proceso/hebra el

cual lo resolverá de forma secuencial y (3) distribuyendo la solución obtenida entre

todos los procesos/hebras usados. Las comunicaciones entre procesos ocurren dos veces

mediante este método, antes de la resolución del sistema (muchos-a-uno) y después de

resolver el sistema (uno-a-muchos). Esta implementación proporciona una solución

paralela de Si3D (P-Si3D, figura r.1) adecuada para modelos de baja/media resolución,

siempre que se utilice en pequeños clusters y que el cálculo del sistema pentadiagonal

represente solo hasta un 2% del tiempo total de ejecución. Sin embargo, el overhead

Tesis Doctoral

x

introducido por las comunicaciones hace que esta solución no sea escalable en clusters

con un mayor número de recursos Una solución alternativa e inmediata que permite

simular modelos de alta resolución de la zona litoral de un lago consiste en combinar P-

Si3D con el procedimiento de anidamiento propuesto. La implementación resultante se

ha llamado aquí P/N-Si3D (Figura r.1) y permitirá obtener resultados de alta resolución

en pequeños clusters. El coste computacional haciendo uso de P/N-Si3D se reduce

significativamente comparando con la versión secuencial de Si3D. Esto se consigue (1)

simulando en alta resolución solo la zona litoral del lago mediante anidamiento y (2)

haciendo uso de P-Si3D para la ejecución en paralelo del modelo de alta resolución

anidado. Los resultados de este modelo son presentados y analizados para una bahía en

particular al sureste del lago Tahoe (Marla Bay). En los resultados se observa que la

concentración de trazador a lo largo del tiempo dentro de esta bahía son parcialmente

debidos al trazador liberado de forma local dentro de la propia bahía, pero también parte

de este trazador se concentra en la bahía como resultado de trazador exógeno que viajó

a lo largo de la costa y que fue liberado en la costa sur del lago. Los resultados también

muestran que los picos de concentración de trazador exógeno se producen durante

fuertes periodos de viento, momento en el cual el agua de la zona sur del lago es

rápidamente transportada a lo largo de la costa y atrapada en la bahía debido al

desarrollo de procesos de pequeña escala de recirculación en forma de remolinos.

Dado que P-Si3D no escala correctamente, P/N-Si3D tampoco lo hace. Sin

embargo, una implementación paralela y escalable puede ser construida si la solución de

superficie libre del modelo completo de baja resolución es usada como condición de

frontera del modelo anidado. Con este procedimiento, la zona anidada en alta resolución

se divide en múltiples subdominios donde cada subdominio resuelve un subsistema de

ecuaciones pentadiagonal de forma independiente. Con esta implementación, se evita

las comunicaciones colectivas muchos-a-uno/uno-a-muchos que limitan la

escalabilidad. Adicionalmente, esta propuesta utiliza una nueva y adaptada estructura

pipeline además de la descomposición de dominio de P-Si3D. Esta estructura pipeline

permite que el tiempo de ejecución del modelo completo de baja resolución no

repercuta en el tiempo de ejecución total. La implementación SP-Si3D se ha evaluado y

validado en un cluster de 9 nodos usando un modelo anidado en alta resolución y un

modelo completo de baja resolución del lago Tahoe. Los resultados obtenidos muestran

un escalabilidad lineal conforme el número de subdominios usados para distribuir la

Resumen Extenso

xi

zona litoral en alta resolución del modelo anidado va aumentando y un error (NRMSE,

comparando con los resultados de un modelo completo de alta resolución) muy

pequeño.

Finalmente, se proponen y evalúan diferentes mejoras que optimizan P-Si3D,

adaptando la implementación a la arquitectura disponible, ya sea a máquinas

distribuidas o de memoria compartida. La implementación resultante se ha llamado aquí

OP-Si3D (Figura r.1). El objetivo en este caso es reducir el overhead introducido por

una implementación paralela. Entre otras mejoras, se evalúa la paralelización del

sistema de ecuaciones pentadiagonal, evitando técnicas de reordenamiento o un mayor

número de comunicaciones que las necesarias en otras etapas del modelo. Para llevar a

cabo esta paralelización se hace uso de una variante del precondicionador Modified

Incomplete Cholensky (MIC) que no añade cálculo o comunicaciones adicionales en su

implementación paralela, obteniendo mejores resultados comparado a otras

implementaciones usadas en la literatura, tanto en secuencial como en paralelo. Los

resultados demuestran que una implementación secuencial o una implementación

paralela no optimizada para resolver el sistema de ecuaciones pentadiagonal evitan que

el modelo paralelo sea escalable, incluso aunque el resto de etapas estén optimizadas.

La implementación resultante presenta una buena escalabilidad en cluster con más de 10

nodos.

Tesis Doctoral

xii

Abstract

xiii

Abstract

Water motions in lakes and reservoirs are initiated as a result of thermal and mechanical

energy flowing through the lake boundaries, cascading down from the large- basin scale

to the micro-scales, and ultimately leading to mixing and dissipation. Mixing patterns

induced by basin-scale motions and high-frequency waves in stratified lakes are

inherently patchy, setting up horizontal density variations. Spatially complex horizontal

flow patterns develop in response to horizontal density gradients, when they are

modulated by direct wind forcing and the Earth’s rotation. It is through these horizontal

motions that the system readjusts, returning to its equilibrium state with lines of equal

density coinciding with geopotential surfaces. Horizontal density gradients have been

shown to develop in response to a wide range of mechanisms with different spatial and

temporal scales, including river inflows, thermal spatial variations response to surface

heat fluxes, uneven mixing due to basin scale motions, spatially varying surface wind

mixing, upwelling or mixing in the benthic boundary layer. Given the number of

mechanisms leading to the development of baroclinic pressure gradients, and the wide

range of spatio-temporal scales of these processes the problem of describing horizontal

circulation in lakes and reservoirs has been elusive.

Only in the last few years, advances in remote sensing and quantitative imaging

capable of retrieving surface velocity and temperature fields, and the use of three-

dimensional (3D) numerical models solving the equations of motion applied to simulate

lake motions with sufficient temporal and spatial resolution has allowed aquatic

scientists to describe and understand the complex horizontal circulation patterns that

develop in lakes and reservoirs, leading to horizontal transport and heterogeneity. Most

of these models are based on the solution of three-dimensional form of the shallow-

water equations 3D-SWE, a simplified form of the Reynolds averaged Navier-Stokes

(RANS) equations, subject to the appropriate boundary conditions. Practical

computational limits and a priori scaling analyses justify the use of the 3D-SWE in the

description of these large-scale flows. But, even if using 3-D SWE models, engineers

and scientists still face a serious challenge when trying to simulate horizontal transport

and circulation in the near-shore environments of large water bodies. These are hot-

spots in the aquatic ecosystems with large biodiversity and critical habitats for many

PhD Thesis

xiv

organisms in lakes. But, being the nexus of human interactions with lakes, littoral

habitats are highly modified by human uses. Humans build structures, recreate, fish,

extract water, or dispose sewage at lake edges. Significant inputs of nutrients also arrive

to the coastal zone through rivers, as a result of agricultural practices or cattle-raising in

the contributing watershed. Hence, there is an increasing need to understand near-shore

environments where human uses and natural wild-live compete for resources.

Simulating these environments, however, is not simple. Littoral habitats can be

substantially heterogeneous in both vertical and horizontal dimensions. Moreover,

physical conditions exhibit continuous and very dynamic changes, at short-time scales,

as a result of strong hydrodynamic forcing and the weak inertia of shallow layers, and

also as a result of the time varying nature of human activities. Furthermore, near-shore

regions, though, cannot be understood in isolation from the pelagic. Hence, in trying to

simulate the near-shore physical conditions both local and basin-scale circulation

features need to be resolved simultaneously during long periods of time, and the

computational cost of these simulations can be formidable.

Parallel computation platforms are being increasingly demanded and used in the

area of Civil and Environmental Engineering, and others research areas, to reduce the

computational time required to conduct numerical simulations of real systems, or deal

with even larger problems. In this dissertation a series of solutions are proposed and

tested to reduce the computational cost of 3D hydrodynamic models, so that simulations

of water motion and transport in near-shore regions of large geophysical systems,

during extended periods of time and using high resolution grids, can be conducted with

acceptable execution time and using accessible resources. Several approaches are

introduced and studied. First, we explore nesting-procedures in which only localized

regions of the littoral zone are simulated using a very high-resolution or inner-model,

with boundary conditions which are provided by an outer-model that solves the large-

scale processes in the rest of the water body. Second, we use parallel computation

techniques so that use can be made of mid-range or low-cost platforms to run the inner

and outer models simultaneously. We also optimize and parallelize the model

computations used in small commodity clusters, dividing the calculations in the near-

shore regions among a large number of processors, as they become available in parallel

platforms. The resulting optimized and parallelized model of near-shore regions scales

almost linearly, so that the computational model is run faster as more resources are

Abstract

xv

used. We have additionally taken additional steps to adapt the hydrodynamic model to

the architecture and tools available. With this work, we demonstrate that the adaptation

and optimization of the model to the available resources can also be used to reduce

significantly the computational cost, with very good scalability results even using High

performance platforms.

The implementation was carried out on a particular 3D-SWE, which was

originally implemented for serial architectures by P. E. Smith (2006) (Figure a.1). Most

improvements proposed here, though, can be applicable to other similar models. The

governing equations in Smith’s model are solved using a semi-implicit, three-level,

iterative leapfrog-trapezoidal finite difference algorithm on a staggered Cartesian grid.

The semi-implicit approach is based on treating the surface gravity wave and vertical

diffusion terms implicitly to avoid time-step limitations as strict as in an explicit case

due to gravity wave Courant–Friedrich–Levy (CFL) conditions, and to guarantee the

stability of the method. All other terms including advection are treated explicitly.

Although this semi-implicit approach avoids strict time-step limitations, it also has the

disadvantage compared to completely explicit approach that long system of equations

must be formed and solved, usually using iterative methods which are very difficult to

parallelize. Semi-implicit 3D-SWE models form a pentadiagonal system of equations

which is symmetric positive definite. The system of equations is solved by an iterative

method widely used known as Conjugate Gradient (CG). Additionally, the CG is

usually applied using a preconditioner (PCG), which reduces the number of iterations of

the CG to converge to a correct solution within a tolerance. The semi-implicit model

used in this dissertation will be referred to as Si3D (Figure a.1).

Highlight that the original Si3D model was modified with several basic

optimizations (Basic Si3D, Figure a.1). These optimizations are used in all the

implementations made (although this implementation is the first step, it is covered in

detail in the last chapter, where it is explained all the steps involved in the complete

optimization of a hydrodynamic model).

The approaches proposed were first applied to simulate synthetic scenarios, and

then used to conduct realistic simulations in two systems: a 30 km reach along the

Sacramento River, and, Lake Tahoe, both of them in California (USA). Furthermore,

some of the implementations developed in this thesis are being used in other study

cases, including Beznar Reservoir (Spain), the confluence between Ebro and Segre

PhD Thesis

xvi

Rivers in the upstream end of Ribarroja Reservoir (Spain), Lake Cayuga (USA) and

Lake Tanganyika (Africa). The Sacramento River model is used to understand the

influence of tidal river dynamics on the migration of juvenile salmon towards the ocean

and to reproduce the lateral and secondary circulations in the area of channel meanders.

The Lake Tahoe model is used to study near-shore transport processes controlling the

fate of contaminants released by humans in beaches, and the migration pathways of

planktonic larvae of invasive species from bays where they have been able to settle to

other beaches and bays which are free.

Figure a.1. Si3D implementations proposed in this work from the original version of Si3D

The nesting procedure developed and implemented in Si3D (N-Si3D, Figure a.1),

is a one-way nesting method, in which all the necessary information is transferred from

the outer- (or low resolution) basin scale model to the inner- (or high resolution) model,

to solve the dependencies in the discretized equations of the latter. It optionally adds a

3D relaxation area, which allows a smooth transition from the inflow in the nested

model and prevents reflections at the border in the outflow due to possible differences

in the solution of both models when the simulation progresses over time. Furthermore,

the inner and outer models are executed simultaneously in parallel in an online mode,

following a pipeline structure. In the parallel one-way implementation all the

information required is passed from the outer to the inner model without storing any

information in files, both the nested open boundary and the 3D relaxation area, and

allows the transfer of information even each time-step, eliminating possible errors by

Basic Si3D

Chapter 5

(1 node) P-Si3D

Chapter 3

(1-3 nodes)

N-Si3D

Chapter 2

(1 o 2 nodes)

P/N-Si3D

Chapter 3

(1-3 nodes)

SP-Si3D

Chapter 4

(1-10 nodes)

OP-Si3D

Chapter 5

(more than 10)

Original Si3D

Chapter 1

(1 node)

Abstract

xvii

temporal interpolation. In addition, communications are overlapped with calculation, so

it does not represent an overhead in the implementation.

The nested approach was tested using both synthetic and realistic simulations. The

nested implementation was in all cases validated by comparing the results of

simulations in a small region (sub-domain) of a lake or river model. These differences

in results between the nested and the complete model (error) are very small and even 0,

using the same grid resolution both in the nested- or inner-model and the complete or

outer-model and when the pentadiagonal matrix for water surface elevation built in the

semi-implicit model was solved using a direct method, which is computationally

demanding but exact. Through these case examples, we demonstrate that the tangential

velocities need to be transferred from the low resolution to the high resolution model. If

not they can affect significantly the quality of the nested solution, in particular when

currents parallel to the inner-outer boundary are strong. This was the case, for example,

of the high-resolution simulations of a river bend (Claksburg bend) along the

Sacramento River, where strong lateral circulation develops upstream the inner-domain.

The nested model results agree well with observations previously reported in the

literature. Furthermore, the nested-model results compare well with the results from the

high-resolution model of the whole reach, with differences (Normal Root Square Error,

NRMSE) that are less than 4%. In other environments, with weaker currents, though,

the need for passing tangential velocity information is not that strong. This was the case

when simulating the local-scale circulation in a small bay (Marla Bay) of Lake Tahoe.

In our realistic simulations of both the river bend in Sacramento River and in Marla

Bay, Lake Tahoe, the use of a high-resolution grid in the inner-model reveals flow

features which cannot be simulated with the low-resolution basin-scale model.

 Using the nesting procedure developed in Chapter 2 we have explored

approaches to conduct high-resolution simulations of extended near-shore regions. In

particular, we are interested in simulating the littoral perimeter of Lake Tahoe. As

reviewed by Rao and Schwab (2007), currents in the near-shore are largely aligned

along isobaths, hence, creating strong physical links among beaches and bays existing

along lake perimeters. The extension of the inner-domain (the littoral perimeter of a

large lake) in these simulations can be large, and, high-resolution simulations in this

domain can be very computationally demanding. The solution proposed consists of

dividing the high-resolution computations of the littoral fringe among several

PhD Thesis

xviii

cores/computers. Modifying a semi-implicit model to conduct parallel computations,

though, is not free of difficulties. Probably the computational stage in a semi-implicit

3D model which poses the largest difficulties to parallelize is the solution with iterative

methods of the pentadiagonal matrix problem for the free surface elevation. In Si3D the

matrix problem is solved using a Preconditioned Conjugate Gradient method. Its

implementation in parallel requires numerous communications, both one-to-

many/many-to-one where all sub-domains are involved and communications between

neighbor sub-domains. In addition, the need of using reordering (as red-black ordering)

or other techniques typically used to parallelize iterative methods produces an important

overhead which may reduce significantly the scalability of the algorithm and increases

the complexity of the implementation.

A first and plausible approach to parallelize the model computations consists of

avoiding the parallelization of the pentadiagonal matrix solution. This can be achieved

by (1) creating the pentadiagonal matrix in parallel by splitting the workload, through

domain decomposition, among several threads/processes of the operating system, (2)

then solving the matrix problem sequentially in one of the threads/processes; and, (3)

distributing the solution of the matrix problem among all the threads/processes.

Communications among processes in this stage occur twice: just before (many-to-one)

and after (one-to-many) the matrix solution. This parallel implementation of Si3D (P-

Si3D, Figure a.1) only works properly when the computational cost of the matrix

solution represents only a small fraction (up to 2%) of the total runtime. This approach,

however, by itself, scales poorly as a result of the overhead introduced by the

communications involved in constructing the matrix and distributing the solution among

processes and the sequential execution of the pentadiagonal matrix solution. Still one

can use the parallel implementation of Si3D, conjunctively with the nesting procedures,

to conduct high-resolution simulations of the littoral fringe. This implementation is here

referred to as P/N-Si3D (Figure a.1) and can be used to conduct high-resolution near-

shore simulations in small clusters. The cost of P/N-Si3D is significantly reduced,

compared to the sequential version of the model, as a result of two strategies (1) only

using a high-resolution grid in the nested near-shore model; and (2) simulating the

littoral fringe using the parallel version of the model P-Si3D. This implementation was

used to simulate the dispersion of passive tracers released at several locations along the

perimeter of Lake Tahoe. These tracer simulations were intended to represent the fate of

Abstract

xix

water constituents entering the lake through a total of 51 outfalls existing around Lake

Tahoe, discharging storm-water directly into the lake. The results of the model are

presented and analyzed for a particular bay in the southeast of Lake Tahoe (Marla Bay).

Tracer concentrations within the bay are partly explained as a result of tracer being

released locally within the bay, but also as a result of long-shore currents carrying

exogenous tracer released outside the bay, along the southern coast of Lake Tahoe. The

concentration of exogenous tracer peaks during periods of strong winds, when water

from the South is rapidly transported and trapped in the bay as a result of the

development of local bay scale eddies.

Given that P-Si3D does not scale correctly, P/N-Si3D does not either. A scalable

parallel and nested implementation, though, can be constructed if the free surface

solution of the outer- low-resolution model is used as boundary conditions so that the

high resolution nested model is divided into subdomains of the littoral fringe where

each subdomain can solve a pentadiagonal matrix sub-problem independently. With this

implementation, we can avoid collective communications many-to-one/one-to-many

which limit scalability. The resulting implementation uses an adapted pipeline structure

in addition to the domain decomposition of P-Si3D. The pipeline structure allows the

runtime of the low resolution model added has no effect on the total execution time. We

will refer to this implementation as SP-Si3D. It has been evaluated and validated in a

cluster of 9 nodes using a high-resolution nested model and a low resolution model of

Lake Tahoe. The results show a linear scalability when the number of subdomains used

to distribute the high resolution littoral zone of Lake Tahoe increases and an error

(NRMSE, comparing with the results of a complete high resolution model), very small.

Finally, several approaches are proposed and tested to optimize P-Si3D by adapting the

parallel version of the code to the available architecture, for both distributed machines

and shared memory platforms. The resulting implementation is called OP-Si3D (Figure

a.1). Our goal was to reduce the overhead introduced by a parallel implementation.

Among other approaches tested, we parallelized the pentadiagonal matrix solution using

a new Modified Incomplete Cholensky preconditioner (MIC) which we propose that

does not add any communications or reordering. Using this matrix solution method one

gets better time execution results compared to other implementations used in the

literature, both sequential and parallel methods. We proved that a parallel method scales

poorly if either a sequential implementation or a non-optimized parallel implementation

PhD Thesis

xx

of the matrix solution is used, even though other stages are fully optimized. The

resulting implementation presented here has good scalability in high performance

plataforms with more than 10 nodes.

Table of Contents

xxi

Table of Contents

Acknowledgement ... i

Resumen Extenso ... iii

Abstract ... xiii

Table of Contents .. xxi

List of Figures ... xxv

List of Tables ... xxxv

Acronyms and Abbreviations .. xxxix

Introducción General y Objetivos .. xliii

General Introduction and Objectives .. li

1 Chapter 1 .. 1

1.1 Introduction .. 2

1.2 Hydrodynamic model .. 7

1.2.1 Governing equations ... 7

1.2.2 Numerical algorithm ... 11

1.2.3 Computational implementation .. 20

1.3 Conclusions .. 21

2 Chapter 2 .. 23

2.1 Introduction .. 24

2.2 Nesting implementation: characteristics, performance.Related works 27

2.3 Nesting specifications and implementation ... 33

2.3.1 Discrete form of the equations near I/O boundary in the inner model 34

2.3.2 Boundary interface between inner and outer model 35

2.3.3 Relative position of the driving variables on the grid 36

2.3.4 Inner/Outer dynamic coupling .. 38

2.3.5 Improvement of data structures in the Si3D implementation 41

2.4 N-Si3D model evaluation .. 41

PhD Thesis

xxii

2.4.1 Tests, metrics and examples ... 41

2.4.2 Case 1: Rectangular synthetic channels.. 44

2.4.3 Case 2: Sacramento River... 50

2.4.4 Case 3: Lake Tahoe .. 55

2.4.4.3 Test C. Comparison with low-resolution outer model 58

2.4.5 Influence of tangential velocities in Lake Tahoe and Sacramento River. 61

2.4.6 N-Si3D performance evaluation ... 66

2.5 Conclusions .. 67

3 Chapter 3 .. 69

3.1 Introduction .. 70

3.2 P-Si3D implementation .. 74

3.3 Performance evaluation of P-Si3D with different platform configurations and

parallel alternatives ... 79

3.3.1 Platform .. 79

3.3.2 Test model for Lake Tahoe ... 80

3.3.3 Performance of different platform configurations 81

3.3.4 Comparison of wide-direction and narrow-direction distributions in both

MPI versions, with and without redundant operations ... 83

3.4 Simulation of Lake Tahoe small-scale processes in small commodity clusters

by using P-Si3D and N-Si3D ... 85

3.4.1 A high-resolution near-shore model for Lake Tahoe 85

3.4.2 Application of the near-shore model to case studies in Lake Tahoe 89

3.5 Evaluation of the Tahoe P/N-Si3D model .. 90

3.5.1 Simulating the fate of storm-water outfalls .. 91

3.6 Conclusion ... 96

4 Chapter 4 .. 99

4.1 Introduction .. 100

4.2 Scalable parallel implementation ... 107

Table of Contents

xxiii

4.2.1 P-Si3D implementation .. 107

4.2.2 Scalable parallel semi-implicit implementation 115

4.3 SP-Si3D performance evaluation and validation ... 119

4.3.1 Lake Tahoe simulation figures ... 120

4.3.2 Computing performance ... 122

4.3.3 Communication performance ... 122

4.3.4 SP-Si3D computing performance ... 126

4.3.5 Quality of the SP-Si3D results ... 130

4.4 Conclusions and future work ... 134

5 Chapter 5 .. 137

5.1 Introduction .. 138

5.2 OP-Si3D implementation ... 145

5.2.1 Basic optimizations .. 145

5.2.2 Data distribution and parallelization... 146

5.2.3 Implementation of the affinity map .. 148

5.2.4 Synchronization points ... 152

5.2.5 Points of communication .. 156

5.2.6 Parallel implementation of the Conjugate Gradient and preconditioner 157

5.3 Performance evaluation ... 164

5.3.1 Platform and tools ... 164

5.3.2 Test model .. 165

5.3.3 Basic optimizations .. 167

5.3.4 SI3D profiling ... 168

5.3.5 Hybrid Model optimizations ... 169

5.3.6 Conjugate Gradient Optimization and preconditioner 174

5.3.7 Scalability study ... 181

5.4 Conclusions .. 183

PhD Thesis

xxiv

Conclusiones Generales .. 187

General Conclusions .. 195

Scientific Production and Activity ... 203

References ... 207

List of Figures

xxv

List of Figures

Figure a.1. Si3D implementations proposed in this work from the original version

of Si3D. ……. ... xvi

Figure i.1. Si3D implementations proposed in this work from the original version

of Si3D. ……. ... lv

Figure 1.1. Solver stages of Si3D Numerical Algorithm. 12

Figure 1.2. Flow diagram for the Si3D model. S1, S2, S3 and S4 are the solver

stages of Si3D…. .. 21

Figure 2.1. Nesting grid example, (a) outer grid model or basin where Δxog is East-

West and North-South horizontal resolution and (b) inner grid model or sub-basin

inside the outer grid where horizontal resolution Δxig is half the outer model horizontal

resolution. The sub-basin is simulated by the inner model with resolution Δxig and

within the outer model with resolution Δxog. .. 34

Figure 2.2. For a northern I/O boundary (rg = 1), dependencies for the calculation

of (a) ζ i,j (red triangle), (b) si,j,k (red triangle), (c) Ui+1/2,j,k (red circle), and (d) Vi,j-1/2,k

(red square). The values used in the computation are in green (if they are obtained by

the inner model) and blue (if they are obtained by the boundary condition, driving

variables)…….. .. 35

Figure 2.3. OBC implementation (western boundary) in (a) N-Si3D and (b) an

alternative approach with tangential driving variables prescribed within the inner model.

Refinement parameter rg=1 in this example. Yellow cells obtain elevation by the inner

governing equation. .. 38

Figure 2.4. Data dependencies between inner/outer models. Driving variables (blue,

denoted with the subscript d), needed by the boundary cells of the inner model at time-

step n, for one-way (a) and two-way (b) implementations. Variables (red, denoted with

the subscript ra) needed from the outer relaxation area in order to implement the

relaxation scheme in the inner relaxation area. Variables (green, dashed, denoted with

the subscript i) transferred from the inner model after time-step n to the outer model

time-step n+1 in a two-way implementation (b). Data dependencies (arrows) from outer

to inner model (solid) and from inner to outer (dashed lines). 39

PhD Thesis

xxvi

Figure 2.5. (a) Inner and outer models executing in two processors. Blue arrows

represent data communications from outer to inner. Communication time is hidden by

computations. (b) Inner and outer models in a two-way nesting must be executed

sequentially. Blue and green arrows represent data communications between inner and

outer. Total time depends on the inner time plus outer time plus communication time

from inner to outer (variables of the whole 3D nesting grid) plus communication time

from outer to inner (variables in the 3D boundary). ... 40

Figure 2.6. Channel 2: High-resolution basin and inner model bathymetry (white

rectangle)…….. .. 46

Figure 2.7. Channel2: Water surface elevation and depth averaged velocity after the

steady state is reached (30 days after the simulation starts) for the HR basin model, with

the nesting inner model superimposed. .. 48

Figure 2.8. Time series of EM for the inner model (left axis, continuous line) and

differences between inner and outer EM in the white rectangle in Figure 2.6 (right axis,

dashed lines) for several configurations: type of ζ solver (PCG or Gauss), rg (1 or 5),

inner and outer time-step (50s or 450s), outer to inner transfer step (50s, 450s or 7200s),

with (RA) or without (No-RA) relaxation area. ... 50

Figure 2.9. Sacramento River hydrodynamic model domain (in blue): domain for

the low-resolution outer model and the high-resolution basin model (left) and domain

for the inner model (right). Markers show the location of USGS gaging stations used as

model boundary conditions. The location of section A inside Clarksburg Bend is also

shown………… .. 51

Figure 2.10. Sacramento River, test A: u, v, w and ζ compared between inner and

outer model solutions for surface layer at all output epochs. Each point represents the

value obtained by the inner model (y-axis) against the solution obtained by the outer

model (x-axis). If both solutions coincide, the point is located on the dashed line. 53

Figure 2.11. Sacramento River, test C: Lateral circulation at Clarksburg Bend (A in

Figure 2.9), the location of section 4 of Dinehart and Burau (2005), according to (a) the

outer 10m-resolution results, (b) the inner 5m results and (c) the inner 2m results.

Views are upstream. ... 55

Figure 2.12. Lake Tahoe hydrodynamic model domain: domain for the low-

resolution outer model and the high-resolution basin model (left) and domain for the

inner model (right). ... 56

List of Figures

xxvii

Figure 2.13. Lake Tahoe, test C: Vorticity in Marla Bay area at a snapshot in time on

Day 207. Vorticity (color scale) and u+v velocity field (black arrows) for (a) inner

model, (b) outer LR model and (d) HR basin model. (c) Zoom of the captured local-

scale vortex…… ... 60

Figure 2.14. Lake Tahoe, test C: (a) evolution of vorticity calculated by HR model

(red line) and LR model (blue line) in Marla Bay. (b) wind speed velocity (cm/s) in Elk

Point. (c) wind direction in Elk Point (º, 360º=North) (d) v velocity (cm/s) in free

surface in Elk Point. ... 60

Figure 2.15. Sacramento River, test A, I/O boundary without tangential velocities: u,

v, w and ζ, compared between inner and outer model solutions for surface layer at all

output epochs. Each point represents the value obtained by inner model (y-axis) against

the solution obtained by outer model (x-axis). If both solutions coincide, the point is

located on the dashed line. .. 62

Figure 2.16. Sacramento River, Test A, I/O boundary with tangential velocities

clamped to 0: (a) evolution of discharge (Q) and mean velocities in top-layer in eastern

I/O boundary (u E-W normal, v N-S tangential) and in southern I/O boundary (u

tangential, v normal), and (b) evolution of Q and NRMSEs for u, v, w and ξ in the top-

layer of the nested area. .. 64

Figure 2.17. Sacramento River, Test A, tangential velocities clamped to 0: snapshots

of NRMSEs for variables u, v, w, ξ for the different time marks in Figure 2.16: T1-

T8…………….. .. 65

Figure 3.1. Flow diagram for the P-Si3D model. Grey Boxes represent the parallel

implementation added to the hydrodynamic model. S1, S2, S3 and S4 are the solver

stages of Si3D and C1, C2, C3 and C4 are communications among computers. 77

Figure 3.2. Three domain decomposition alternatives with vertical cut: (a) wide cut

distribution, (b) narrow cut distribution, (c) two-direction cut distribution. Arrows show

the communication needed among sub-domains in this kind of applications 78

Figure 3.3. Lake Tahoe between California and Nevada in USA. The littoral zone is

computed in high-resolution with communications from the low resolution model (HR-

LR, solid line). Storm outfalls known around Lake Tahoe (http://tahoepipeclub.com/

uploads/tahoe_pipe_list.pdf) and the particular areas studied (Marla Bay and South

Lake Tahoe (SLT)) are shown too. ... 86

Figure 3.4. Period of time (study time) simulated in 2008. (a) Vorticity calculated

for HR model (black line) and LR model (grey line) along the time in Marla Bay. (b) v

PhD Thesis

xxviii

velocity (North-South) in free surface in Elk Point. (c) u velocity (East-West) in free

surface in Elk Point. (d) Averaged wind direction in the Southeast coast of Lake Tahoe.

(e) Averaged wind speed velocity in the Southeast coast of Lake Tahoe. 87

Figure 3.5. East-West Horizontal velocity (u) and North-South horizontal velocity

(v) in a point in the surface-most layer in the period simulation from the Day 205 to the

Day 212 in 2008, for experimental data measured by ADCP and simulation data of the

high resolution model. .. 91

Figure 3.6. Release periods for T1 tracer (Sub-period 1, left) and T2 tracer (Sub-

period 2, right). (a) v velocity (cm/s) in free surface in Elk Point in the Sub-period 1. (b)

v velocity (cm/s) in free surface in Elk Point in the Sub-period 2. (c) vorticity calculated

for HR model in Marla Bay in the Sub-period 1. (d) vorticity calculated for HR model

in Marla Bay in the Sub-period 2. For the Sub-period 1, (e) T1 averaged local tracer

concentration released in Marla Bay and (g) averaged exogenous tracer concentration

released in SLT. For the Sub-period 2, (f) T2 averaged local tracer concentration

released in Marla Bay and (h) averaged exogenous tracer concentration released in SLT.

………………………………………………………………………………………….92

Figure 3.7. Near surface concentration of tracer T1 released locally in Marla Bay

(Figure 3.3) in Sub-period 1 at different days (D) and hours (H): (a) D: 191 H: 19:00 (b)

D: 192 H: 15:00 (c) D: 193 H: 03:00 (d) D: 193 H: 12:00 (e) D: 194 H: 06:00 (f) D: 195

H: 01:00 (g) D: 196 H: 14:00 (h) D: 198 H: 00:00... 94

Figure 3.8. Near surface concentration of exogenous tracer T1 released in SLT

Figure 3.3) in Sub-period 1 at different days (D) and hours (H): (a) D: 192 H: 12:00 (b)

D: 193 H: 00:00 (c) D: 193 H: 06:00 (d) D: 194 H: 00:00 (e) D: 195 H: 23:00 (f) D: 196

H: 17:00 (g) D: 196 H: 23:00 (h) D: 198 H: 00:00... 94

Figure 3.9. Near surface concentration of exogenous tracer T2 released in SLT

(Figure 3.3) in Sub-period 2 at different days (D) and hours (H): (a) D: 208 H: 19:00 (b)

D: 208 H: 21:00 (c) D: 209 H: 11:00 (d) D: 210 H: 02:00 (e) D: 211 H: 00:00 (f) D: 211

H: 08:00 (g) D: 212 H: 00:00 (h) D: 212 H: 07:00... 96

Figure 4.1. (a) Rectangular basin with HR horizontal grid of 32x64=2048 columns

(each square is a column). Vertical cuts (green dashed lines) divide the domain into four

subdomains (of 512 columns/subdomains). (b) HR grid on a region of interest (gray

lines) of 12x64=768 columns nested in a basin LR grid (black lines) of 16x8=128

columns (cell side ratio of 4:1 in the horizontal grid). The nested grid is divided into

four subdomains (green dashed lines) of 192 columns. The size of the messages

List of Figures

xxix

interchanged between adjacent subdomains (green arrows) depends on the length of the

border and the depth of the columns. The border with the LR grid is in blue. The

amount of data to be transferred from the basin LR model to the nested HR model

depends on the length of the border and the depth of the columns. The figures do not

show the all-to-one/one-to-all communications among subdomains required by the

parallel implementation of hydrodynamic models with (semi-)implicit (with or without

splitting) schemes. .. 104

Figure 4.2. Solver stages, S1, S2, S3 and S4, for a semi-implicit hydrodynamic

model (Si3D) and simplified flow-diagram for a parallel implementation in a cluster of

multicores (P-Si3D). All computers execute the same code (they all take part in the

gather and the scatter collective communications). The diagram does not show output

epochs that store output data in disk. Gray boxes represent processing added for the

parallel implementation. C1, C2, C3 and C4 are communications among computers,

communications/synchronizations of cores are not shown. ... 108

Figure 4.3. P-Si3D. Execution time of P-Si3D for a given problem size (the lengths

of the bars are proportional to the time required in a Lake Tahoe simulation with cells of

50 m x 50 m side in the horizontal direction) in (a) one computer or process (P1), (b)

three computers (P1,P2,P3), and (c) nine computers (P1,…,P9). 𝑇𝛥𝑡(1), 𝑇𝛥𝑡(3) and

𝑇𝛥𝑡(9) are the total execution time of a time-step in 1, 3 and 9 computers respectively.

𝑇𝐼𝑛𝑡𝑐ℎ𝑆4/𝑆4 (in green) is the data interchange time at stage S4 (the first and last

processor can also interchange data). One of the computers gathers (in blue) the

coefficients of the equation system for obtaining ζ (𝑇𝐺𝑎𝑡ℎ𝑆1/𝑆2), solves the equation

system (𝑇𝑆2), and scatters (blue) the results among computers (𝑇𝑆𝑐𝑎𝑡𝑆2/𝑆3). The run-

time depends on the number of computers (as figure shows), but also on the size of the

problem simulated. ... 111

Figure 4.4. Interchange collective communication includes two shift permutations

(a) right and (b) left. Each of these permutations can be performed in parallel in a

network based on a crossbar full-duplex switch. The switch in the figure connects four

computers (P1 to P4) .. 113

Figure 4.5. SP-Si3D. Simplified flow diagrams for LR model and HR subdomains.

The diagrams do not show output epochs that store output data in disk. Gray boxes

represent processing added for the parallel implementation. C1, C2 and C3 are

communications among computers; communications of cores are not shown. S1,…S4

are Si3D stages. .. 117

PhD Thesis

xxx

Figure 4.6. SP-Si3D. (a) Parallel execution of SP-Si3D, with a particular problem

size, in time-steps n-2, n-1, n, n+1 and n+2 with several computers (processes) P0…Pp.

(b) Pipeline plus domain-decomposition structure. The figure assumes same time-step

for parent LR an nested HR models (𝛥𝑡 = 𝛥𝑡𝐿𝑅=𝛥𝑡𝐻𝑅) for simplicity and also

assumes that load balance is perfect, i.e. the HR models (HR1,…,HRp) and the LR

model complete a simulation time-step in the same time (𝑇𝛥𝑡𝐿𝑅(𝑝𝐿𝑅)= 𝑇𝛥𝑡𝐻𝑅(𝑝)).

Communications C2 (blue arrows) and C3 (green arrows in Figure 4.5 are shown (the

first and last processor can also interchange data as figure (b) shows, figure (a) does not

include it for a cleaner drawing). 𝑇𝑆𝑐𝑎𝑡𝐿𝑅𝐻𝑅(𝑝) is the communication time from LR

to all HRs models (C2) and 𝑇𝐼𝑛𝑡𝐶ℎ𝐻𝑅/𝐻𝑅 is the time spent on data interchange

between neighboring HR models (C3). .. 118

Figure 4.7. Lake Tahoe (between California and Nevada in USA). (a) Bathymetry

and location of Marla Bay. The basin HR model and the basin LR model (or parent

model) comprise the entire Lake Tahoe basin. (b) Littoral zone simulated in the nested

HR model…….. ... 121

Figure 4.8. Point-to-point performance in the test cluster: (a) Latency vs. message

size m, minimum latency (L in Eq. (4.2)) and latency approximation by Eq. (4.2) using

L and B. (b) Bandwidth vs. message size m and maximum bandwidth (B in Eq. (4.2)).

………………… .. 123

Figure 4.9. Scatter/gather performance in the test cluster for different number of

nodes (computers). The node that scatters and gathers the data is the same and it takes a

share on them (it receives data in scatter and sends in gather). This node measures the

time of scatter plus gather. (a) Latency vs. message size m (time of scatter+gather

divided by 2). (b) Bandwidth vs. message size m. ... 124

Figure 4.10. Scatter/gather performance in the test cluster for different number of

nodes (computers). The same node scatters and gathers the data, but it does not take a

share on them (neither receives in scatter nor sends in gather).This node measures the

time of scatter plus gather. (a) Latency vs. message size m (time of scatter+gather

divided by 2). (b) Bandwidth vs. message size m. ... 125

Figure 4.11. Interchange performance in the test cluster for different number of

nodes (computers). The nodes start interchange after a barrier. All the nodes measure

time (measuring starts after the barrier). (a) Latency vs. message size m and minimum

latency L. (b) Bandwidth of a node vs. message size m (each node sends two messages

List of Figures

xxxi

and receive two messages, each one of m bytes), bandwidth of the point-to-point test

multiplied by 2 and maximum bandwidth B. ... 126

Figure 4.12. Comparison of Ping-Pong, scatter+gather and interchange performance

in the test cluster. (a) Latency vs message size (b) Ping-Pong and interchange

bandwidth for a node, interchange and scatter+gather global bandwidth (scatter+gather

global bandwidth is also the local root bandwidth) .. 126

Figure 4.13. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (in %) of

the littoral HR model in Lake Tahoe. (b) Graph of time and speedup for p=1,2…8

computers comparing with time in 1 computer (using all cores in each computer). The

ideal linear speedup (speedup of p for p computers) is shown in the graph (gray

line)……………. .. 129

Figure 4.14. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (%) in Lake

Tahoe. Run-time per iteration for the LR model is also shown using 1, 2, 4 and 8 cores

of a computer. The number of cores in the LR model for SP-Si3D is chosen in order to

approach the HR parallel time. (b) Speedup. The ideal linear speedup is shown in the

graph (gray line). .. 130

Figure 4.15. Vorticity (color scale) and u+v velocity field (black arrows) in Marla

Bay area at a snapshot in time on Day 207. (a) Results from Si3D of the basin HR

model, (b) Results from Si3D of the basin LR model (parent model), (c) Zoom of the

captured local-scale vortex. (d) Results from N-Si3D, where the nested HR region

simulated is just the region shown in the figure. .. 133

Figure 4.16. Vorticity (color scale) and u+v velocity field (black arrows) in Marla

Bay area at a snapshot in time on Day 207. (a) Results from SP-Si3D. (b) Results from

MN-Si3D. Both results from SP-Si3D and MN-Si3D simulate in HR just the region

shown in the figures, divided into two subdomains. The boundary between subdomains

is highlighted by a white dashed line. .. 134

Figure 5.1. Domain decomposition by horizontal rows in Si3D, each subdomain

consists of those columns within its subdomain (Interior Columns) and those

representing the boundaries of other subdomains to the east and west (blue area). The

yellow area represents the dependencies of a subdomain with its neighbors, solved by

adding communication and/or synchronization. ... 147

Figure 5.2. Simplified flow diagram for OP-Si3D. Gray boxes represent processing

added for the parallel implementation. C1, C2 and C3 are communications among

computers. S1, S2, S3 and S4 are Si3D stages. .. 149

PhD Thesis

xxxii

Figure 5.3. Example of NUMA architecture with two nodes, each node has two

sockets, and each socket has 2 cores. The domain is decomposed according to the

number of resources available and each thread or process is assigned to a core. This is

always done consecutively by placing neighboring subdomains in the architecture. .. 150

Figure 5.4. (A) Classic ompbarrier barrier, each thread updates a shared global

variable lock. (B) Levels barrier. There is a variable lock size of 4K per level. In level 1

all the threads in the same socket are blocked, in level 2 the threads within the same

node and finally in level 3 all the threads. .. 154

Figure 5.5. Improvements made in the OP-Si3D parallel model, Iterative Loop

stage…………. .. 155

Figure 5.6. (a) The pentadiagonal matrix A resulting in forming the system of

equations to solve water surface elevation in S2 according to the geometry of the

domain given. The block size for each preconditioner is also indicated. (b)

Preconditioned matrix used for the Jacobi preconditioner using two subdomains. (c)

Preconditioned matrix used for BJ using two subdomains. (d) Preconditioned matrix for

IC, MIC and MMIC in parallel using two subdomains.It also shows those elements

(gray color) between subdomains which take a value of 0 and are added to the main

diagonal during the construction of the preconditioner in MMIC................................ 160

Figure 5.7. Iterative Loop runtime for a sequential version of SI3D adding several

basic optimizations. .. 167

Figure 5.8. Percentage of runtime of the SI3D stages in the Iterative Loop. 169

Figure 5.9. Comparison of SpeedUp results between the basic model and other

implementations of the OpenMP parallel model for Tahoe50 in CIEMAT. 170

Figure 5.10. Comparison of SpeedUp results between the basic model and other

implementations of the MPI parallel model for Tahoe50 in ACII. 173

Figure 5.11. Comparison of SpeedUp results between the model with a parallel CG

using NUMA barriers and other implementation using ompbarrier and ompreduction for

Tahoe50 in CIEMAT. ... 179

Figure 5.12. Comparison of SpeedUp results between the model with a parallel CG

using blocking communication and another implementation using non-blocking

communication and reordering of calculation for Tahoe50 in CIEMAT. Tests have been

carried out with both Gigabit Ethernet and Infiniband. .. 180

List of Figures

xxxiii

Figure 5.13. Results of scalability in ALHAMBRA (left) and CIEMAT (right)

comparing the initial parallel version (Basic, blue line) and the parallel version

including all the proposed improvements (ParallelCG (MMIC), red line). 182

PhD Thesis

xxxiv

List of Tables

xxxv

List of Tables

Table 1.1. Simple guidelines to derive the finite-difference equations for the semi-

implicit trapezoidal scheme from the discretized form of the equations using the semi-

implicit leapfrog method (Eq. (1.1)-(1.11) and (1.16)). The subscripts in the equations

for the leapfrog method, on the left column, should be replaced by those shown in the

right column to obtain the finite-difference equations for the semi-implicit trapezoidal

method……… .. 19

Table 2.1. Terms in the inner governing equations that use the driving variables

(normal velocity or volumetric transport (N), tangential velocity or volumetric transport

(T) and temperature (tp)). clp-et: clamped external tangentials, clp-it: clamped internal

tangentials…. .. 38

Table 2.2. Example characteristics: size of the complete basin and the inner domain

(length×width ×depth); resolution used in the nesting simulations (outer and inner grid),

and in the high-resolution (HR) basin simulations (square cell horizontal side × cell

depth / number of columns); temperature (cst=constant, gr: gradient from top to bottom,

-0.5ºC per layer); time period of the simulations; simulation time-step for the different

sizes of the square cells (second /square cell side); time period between output epochs

(hours, minutes); and test conducted. ... 45

Table 2.3. NRMSEs (Eq. (2.7), in %) for velocity fields u, v and w, water surface

elevation (ζ) and temperature (s, active scalar concentration), and RMSEt (Eq. (2.8) in %

of average volume) for volume (Σζ × Δx × Δy) obtained for the different examples in

the top layer. Inner model variables are compared to LR outer model (Test A) or HR

basin model (Test B) variables. Outer/inner resolutions, simulation period (days), time-

step (seconds), output epoch period (hours, minutes), and temperature (cst=constant, gr:

gradient in Table 2.1, or sensor outputs) are also given. Gauss/PCGM indicates the

solver used to obtained ζ in the synthetic examples. clp0-t=OBC for tangential velocities

is clamped to 0. clp-it= tangential velocities within inner border cells are clamped to

external outer values. .. 47

Table 2.4. Steady state TKE, EM, OBCflux (western boundary) for different

simulations. These are the RMSE errors for the 30 days simulation expressed as a

percentage of the steady state of the HR basin (left) and of the LR basin (right).

PhD Thesis

xxxvi

Columns (from left to right): iterative solver used to obtain water surface elevation ζ

(PCGM or Gauss), grid refinement parameter rg, inner and outer time-step, frequency of

transfers from outer to inner, interface with (yes) or without (no) relaxation area, and

OBC implementation (clpt-et in Figure 2.3(a), clp-it in Figure 2.3(b)). 49

Table 2.5. Test A. NRMSEs (%) in top-layer of nested area, maximum over time, for

Lake Tahoe and Sacramento River, comparing the construction of I/O boundary using

the tangential velocity components and without them (clp0-t, clamped to 0). 62

Table 3.1. Optimization options (Intel C compiler 11.1). ... 80

Table 3.2. Computational data of Lake Tahoe simulations: Horizontal resolution

(square columns), total number of water columns, total number of cells and time-step

used………… ... 81

Table 3.3. Performance of different platform configurations (seconds per iteration).

In HSTP, H means Hyper-Threading enable, S means SpeedStep enable, T means Turbo

enable, and P mean Prefeching enable. “ -“ means Disable. .. 83

Table 3.4. Wide and narrow distributions in both MPI versions: with (R) and without

(NR) redundant operations. .. 84

Table 3.5. Average, maximum and minimum NRMSE (%) between HR-nested and

HR-basin models in surface layer, layer at 10m, layer at 20m and bottom layer for U, V,

T, Kv, and ζ variables. .. 90

Table 4.1. Several software packages used to simulate 3D-SW and several parallel

implementations proposed for them ... 102

Table 4.2. Simulation figures: resolution (square cell horizontal side); total number

of columns and number of cells; period of simulation; simulation time-step used / time-

step that could be used taking into account the cell size; number of time-steps for the

whole simulation period. .. 121

Table 4.3. SP-Si3D. Mean number of iterations of SP-Si3D PCG solver for the LR

model, for the littoral HR model when executed in one computer, and for one HR

subdomain when the nested model is executed in eight computers. All

simulations use the same tolerance. .. 127

Table 4.4. NRMSE (%), for velocities u and v, temperature T, vertical diffusivity Kv

and surface elevation ζ, obtained for Marla Bay (region named “study area”) in the

surface layer with the basin LR model (Figure 4.15(b)), N-Si3D (Figure 4.15(d)), SP-

Si3D with a boundary in the vortex (Figure 4.16(a)) and MN-Si3D with a boundary in

the vortex Figure 4.16(b) all of them compared against the results of the basin HR

List of Tables

xxxvii

model in this region (Figure 4.15(a)). N-Si3D, SP-Si3D and MN-si3D simulate in HR

just the region shown in the figures. ... 134

Table 5.1. Equivalence between each preconditioner implemented with its Block

Jacobi implementation performed. ... 161

Table 5.2. Computational data of Lake Tahoe simulations: Horizontal resolution

(square columns), total number of columns and total number of cells, period of

simulation, time-step used and the total number of time-steps needed to finish the

simulation….. ... 166

Table 5.3. The results of execution time (seconds) per time-step of the parallel model

using two types of affinity are presented. One where each socket is completely occupied

first (minimum distribution) and another where the threads are distributed occupying the

highest number of sockets first (maximum distribution).. 174

Table 5.4. Conjugate Gradient Method and preconditioners used both sequentially

using the NSPCG library and in parallel with the developed code (PCG). 175

Table 5.5. Number of iterations required by the parallel PCG to converge to a

solution with a certain tolerance depending on the preconditioner, value w and value w2

used, and the number of subdomains used. For MIC and MMIC with variable w, the

best possible values of w and w2 are shown. ... 178

Table 5.6. Results of scalability for the Basic parallel model and the parallel model

using a parallel CG. On the one hand using Block Jacobi as the preconditioner and on

the other hand the modified version of MIC (MMIC), using as parameters w and w2

those optimal values specified in Table 5.4. ... 181

PhD Thesis

xxxviii

Acronyms and Abbreviations

xxxix

Acronyms and Abbreviations

ADCP, Acoustic Doppler Wave and Current Profiler

ADI, Alternating Direction Implicit

ALU, Arithmetic Logic Unit

API, Application Programming Interface

BJ, Block Jacobi

CFD, Computational Dynamic Fluid

CFL, Courant-Friedrich-Lewy

CPU, Central Processing Unit

C/S, Communication and Synchronization

EFDC, Environmental Fluid Dynamic Code

ELM, Eulen-Lagrangian Method

EM, Excess Mass

E-W, East-West

GB, Giga Byte

GHz, Giga Hertz

GPU, Graphics Processing Unit

HPC, High Performance Computing

HR, High Resolution

IC, Incomplete Cholensky

IO, In-Out

IPO, Interprocedural Optimization

JAC, Jacobi

QETE, Quasi-Equilibrium Turbulence Model

LR, Low Resolution

MIC, Modified Incomplete Cholesky

MMIC, Modified Modified Incomplete Cholesky

PhD Thesis

xl

MN-Si3D, Multiple Nested Semi-implicit Three Dimensional

MOM, Modular Ocean Model

MPI, Message Passing Interface

NRMSE, Nominal Root Square Error

N-S, North- South

N-Si3D, Nested Semi-implicit Three Dimensional

NSPCG, Non-Symmetric Preconditioned Conjugate Gradient

NUMA, Non-Uniform Memory Access

OBC, Open Boundary Condition

OP-Si3D, Optimized Parallel Semi-implicit Three Dimensional

OpenMP, Open Multi-Processing

PC, Personal Computer

PCG, Preconditioned Conjugate Gradient

PGO, Profile Guided Optimization

P/N-Si3D, Parallel Nested Semi-implicit Three Dimensional

POM, Princeton Ocean Model

POP, Parallel Ocean Program

PSi3D, Parallel Semi-implicit Three Dimensional

RAM, Random Access Memory

RANS, Reynolds Averaged Navier-Stokes

RMSE, Root Mean Square Error

RMSEt, Temporal Root Mean Square Error

ROMS, Regional Ocean Modeling System

Si3D, Semi-implicit Three Dimensional

SLT, South Lake Tahoe

SMP, Symmetric Multiprocessing

SMT, Simultaneous MultiThreading

SP-Si3D, Scalable Parallel Semi-implicit Three Dimensional

SSE, Streaming SIMD Extensions

Acronyms and Abbreviations

xli

SWE, Shallow Water Equations

TERC, Tahoe Environmental Research Center

TKE, Averaged Kinetic Energy

USA, United States of America

USGS, U. S. Geological Survey

1D, One Dimensional

2D, Two Dimensional

3D, Three Dimensional

cm/s, centimeter per second

d, day

GB, Giga Bytes

GT/s, Gigatransfer per second

h, hour

KB, Kilo Bytes

km, kilometer

kg/m
3
, kilograms per meter cubed

kg/s, kilograms per second

m, meter

MB, Mega Bytes

m/s
1
, meter per second squared

m
3
/s, meter cubed per second

µs, microsecond

s, second

W, watt

ºC, grade centigrade

PhD Thesis

xlii

Introducción General y Objetivos

xliii

Introducción General y Objetivos

De la cantidad total de agua puesta en juego en el ciclo hidrológico a escala planetaria,

una cantidad ínfima (un 0.008%) se encuentra en forma de agua dulce en ríos, lagos y

embalses. Esta fracción, no obstante, es de extraordinario valor para el ser humano, ya

que casi el 80% del agua que consumimos procede de estas masas de agua superficial. A

pesar de su importancia, el conocimiento de los ecosistemas de agua dulce, de acuerdo

con el Nacional Research Council de EEUU, es aún escaso. Este conocimiento es

particularmente pobre cuando se considera el comportamiento de estos sistemas de agua

dulce a largo plazo, en torno a decenas de años (Harris and Durran 1986; Armengol et

al. 1994), y a corto plazo, en escalas de tiempo diaria u horaria (Imberger and Parker,

1985). Esta falta de conocimiento se debe, en parte, a la multiplicidad y complejidad de

los procesos físicos de transporte y mezcla. Estos procesos son un aspecto fundamental

en el funcionamiento de ecosistemas acuáticos. Por un lado, determinan la posición y

movimiento de partículas y el grado de disolución de sustancias presentes en el agua a

lo largo del tiempo y, por otro, determinan las condiciones ambientales en las que

ocurren las reacciones biogeoquímicas. Por ello, hay que tener en cuenta que para

comprender la variabilidad espacial y temporal de las propiedades químicas y biológicas

de un ecosistema acuático, será necesario primero comprender los procesos físicos de

transporte y movimiento existentes en estos sistemas (Imberger 1998).

La utilización de modelos hidrodinámicos capaces de resolver las ecuaciones de

movimiento de los fluidos en tres dimensiones (3D) espaciales, junto con la aplicación

de tecnologías avanzadas para la observación de la velocidad del agua y la estructura

térmica, han contribuido en las últimas décadas a iniciar la exploración del movimiento

del agua en sistemas naturales (e.g. Hodges et al. 2000, Rueda and Schladow 2003).

Muchos de estos modelos están basados en la solución numérica de una forma

simplificada de las ecuaciones de Navier-Stokes para aguas someras (Shallow Water

Equations, SWE), en las que se supone que la distribución de presiones en la dirección

vertical es hidrostática. Esta forma de las ecuaciones se prefiere sobre las ecuaciones

no-hidrostáticas por su menor coste computacional. Aun así, los modelos hidrostáticos

siguen siendo ineficientes y pesados de ejecutar cuando se utilizan grids de alta

resolución espacial, necesarios para resolver procesos de pequeñas escalas espaciales

Tesis Doctoral

xliv

(giros y remolinos horizontales o corrientes de gravedad) y especialmente si se quieren

utilizar plataformas de cómputo de uso masivo, como PC o servidores de gama baja.

Afortunadamente, los importantes avances que se han realizado en las últimas

décadas en el área de la computación han permitido un impulso notable en la

investigación en diferentes áreas de conocimiento, incluyendo la simulación de aguas

con modelos hidrodinámicos. Actualmente resulta incuestionable la necesidad de

utilizar computadores para realizar todo tipo de actividades científicas y de aplicar

técnicas de computación avanzadas para reducir los enormes costes de computación así

como la ingente cantidad de memoria necesaria en la ejecución de simulaciones 3D.

Este avance ha propiciado que se plantee abordar problemas científicos cuyos requisitos

computacionales no pueden ser simulados en secuencial, reduciendo los costes

computacionales y permitiendo la simulación de problemas usando grids de alta

resolución, impensables de realizar en un tiempo razonable apenas unos años atrás.

El objetivo general de esta tesis doctoral será mejorar la eficiencia computacional

de los modelos hidrodinámicos existentes con el fin de abordar el estudio riguroso y

detallado de los procesos de transporte y mezcla en sistemas de agua continental. Se

mostrarán soluciones para reducir el coste computacional de estas simulaciones, de

forma que se puedan obtener resultados útiles en un tiempo aceptable con grids de alta

resolución, empleando tanto recursos fácilmente accesibles por cualquier científico

como Arquitecturas de Altas Prestaciones (High Performance Computing, HPC). Las

estrategias de optimización utilizadas han permitido mejorar la eficiencia de estos

modelos, entendida esta como la relación entre prestaciones y coste y como la relación

entre prestaciones y calidad de los resultados. Estas estrategias de optimización deberán

facilitar y extender la utilización de los modelos 3D de transporte y mezcla como

herramientas de trabajo en investigación aplicada al conocimiento de lagos, embalses y

ríos, o como herramientas operacionales de predicción. Para ello se pretende realizar el

procesamiento requerido en un tiempo aceptable en computadores personales, clúster de

computadores personales y servidores de gama baja, evitando usar costosos servidores

de gama alta. Para los casos más costosos, se presenta también una alternativa haciendo

uso de HPC, implementada de forma eficiente.

Este objetivo general de mejorar la eficiencia computacional de los modelos

hidrodinámicos existentes se pretende conseguir mediante dos propuestas diferentes, la

primera aprovechando al máximo la arquitectura de los procesadores de propósito

Introducción General y Objetivos

xlv

general (Anguita et al. 2009, Anguita and Martinez-Lechado 2005). El aprovechamiento

de la arquitectura se ha comprobado muy rentable en diversas aplicaciones en las que se

requiere tratar gran cantidad de datos y realizar gran cantidad de cálculos, además de

aplicaciones relacionadas con el procesamiento de audio, gráficos, imágenes y vídeo

(Anguita et al. 2009, Anguita and Martinez-Lechado 2005, Bhattacharjee et al. 2008,

Guobin et al. 2005), también se ha comprobado su utilidad para aplicaciones en otros

campos como la bioinformática, financieras o procesamiento de datos sísmicos (Ino et

al. 2009, Lee et al 2009, Panetta et al. 2009, Zhang and Oosterlee 2009) y, por

supuesto, en el campo de 3D-SWE (Fringer et al. 2006, Nesterov 2010, Amritkar et al.

2012, Tubbs and Tsai 2009)).

La segunda propuesta para reducir los costes de computación hace uso de un

procedimiento conocido como anidamiento, ya usado en la literatura para reducir los

costes de computación (Fox et al. 1995, Zavatarelli and Pinardi 2003). Usando este

procedimiento es posible reducir la zona de alta resolución a solo el área que se

pretenda estudiar, resolviendo el resto del grid con una resolución menor y, por lo tanto,

reduciendo el coste computacional y el almacenamiento. Sin embargo, este

procedimiento es insuficiente cuando las zonas de estudio en alta resolución siguen

siendo demasiado extensas. Un ejemplo de ello se da en la zona litoral de lagos de

grandes dimensiones. Los hábitats de esta zona litoral pueden ser sustancialmente

heterogéneos tanto en la dimensión vertical como horizontal (Lodge et al. 1988), donde

en cortos espacios de tiempo se producen cambios continuos y dinámicos en las

condiciones físicas de esta zona, siendo el resultado del fuerte forzamiento

hidrodinámico sumado a la débil inercia de estas zonas de poca profundidad (Lodge et

al. 1988). Dado este extraordinario y continuo dinamismo de la zona litoral, existe en

ella una gran biodiversidad (Vadeboncoeur et al. 2011) y hábitats únicos de muchos de

los organismos que viven en lagos (Kalff 2001). Además, las playas o bahías alrededor

de la costa no pueden ser estudiadas de forma individual sin tener en cuenta en el

estudio a sus bahías vecinas, dado que estas se encuentran conectadas a través de

diversos procesos físicos. Como se indica en Rao and Schwab (2007), las corrientes en

la zona litoral se producen generalmente a lo largo de zonas de igual profundidad, por lo

que se crea una fuerte conexión física entre la zona litoral a lo largo de todo el perímetro

del lago.

Tesis Doctoral

xlvi

En esta tesis se propone una implementación eficiente del procedimiento de

anidamiento, combinándolo con clusters de computadores de gama media/baja,

reduciendo aún más los costes computacionales y permitiendo resolver de forma

eficiente toda la zona litoral (imposible en un tiempo aceptable mediante un

procedimiento de anidamiento normal) de grandes lagos en alta resolución , del cual a

pesar de su enorme diversidad e importancia como se ha explicado, se tiene un

conocimiento bastante pobre (Kalff 2001). En línea a esto se muestran resultados útiles

y de interés a la comunicad científica que indiquen el camino a seguir en el estudio de la

zona litoral de grandes lagos y que demuestren la necesidad del uso de grids de alta

resolución para poder realizar estos estudios con éxito.

Las soluciones presentadas en este trabajo se han implementado sobre un de

modelo hidrodinámico basado en la solución numérica de las ecuaciones de Navier-

Stokes para aguas someras, Si3D, aunque la mayoría de las mejoras pueden ser

aplicables a otros modelos similares. En Si3D las ecuaciones son discretizadas mediante

un método de diferencias finitas, usando un algoritmo semi-implícito de 3 niveles por

pasos iterativos trapezoidal-salto de rana sobre un grid Cartesiano estructurado, donde la

mayoría de los cálculos se realizan columna por columna de agua. Los algoritmos semi-

implícitos existentes hoy día siguen la propuesta original diseñada por el Profesor

Casulli (Casulli and Cheng 1992; Casulli and Cattani 1994) y, aplicados sobre mallas

estructuradas y no estructuradas, han sido muy utilizados en la simulación de

ecosistemas acuáticos continentales (e.g. Hodges et al. 2000, Appt et al. 2004, Laval et

al. 2003) en los últimos años. El modelo semi-implícito al que se propone aplicar las

estrategias de optimización computacional ha sido utilizado recientemente en un

número importante de estudios sobre transporte y mezcla en ríos, embalses y lagos

(Rueda et al. 2009, Rueda and Schladow 2009, Rueda and MacIntyre 2009, Hoyer et al

2014, Ramón et al 2013). Si3D fue desarrollado y propuesto originalmente por el U.S.

Geological Survey (Smith 2006) y adaptado posteriormente para la simulación de lagos

por Rueda (2001).

En el capítulo 1 se incluye una completa descripción de este modelo, incluyendo

las ecuaciones de gobierno utilizadas, el modelo numérico, el flujo de ejecución del

algoritmo y otros detalles computacionales de interés que demuestran la complejidad de

algunas de las operaciones que se realizan en estos modelos y el enorme coste

computacional (en términos de tiempo de ejecución y requerimientos de memoria) que

Introducción General y Objetivos

xlvii

precisan. El resto de capítulos han sido escritos como artículos independientes con su

propio resumen, introducción, metodología, resultados, discusión y conclusiones. Parte

de este trabajo ya ha sido publicado o está en proceso de revisión en revistas

internacionales, otra parte de este trabajo está en preparación para ser enviado para su

publicación. Debido a que estos capítulos han sido escritos como artículos individuales,

algunos de los conceptos pueden repetirse de un capítulo a otro. Esto por otra parte,

tiene como ventaja que cada capítulo puede leerse de forma independiente. La Figura i.1

explica las diferentes implementaciones desarrolladas a partir del código original de

Si3D. El primer paso consistió en aplicar diversas optimizaciones básicas al código

original de Si3D (Basic Si3D, Figura i.1), usadas en el resto de implementaciones

realizadas (aunque esta implementación es el primer paso, se trata en detalle en el

último capítulo, donde se explica todos los pasos a seguir en la completa optimización

de un modelo hidrodinámico).

 Los capítulos se desarrollan siguiendo un orden lógico en relación con cada una

de las implementaciones desarrolladas, partiendo desde el modelo secuencial de Si3D

con optimizaciones básicas (Basic Si3D). El segundo capítulo contiene la descripción,

evaluación y validación del método de anidamiento propuesto (N-Si3D). En el capítulo

3 se presenta una implementación paralela adecuada para pequeños clusters (P-Si3D).

En este capítulo se presenta un ejemplo práctico de aplicación en la zona litoral de

Tahoe que requiere la combinación de la implementación paralela desarrollada con el

procedimiento de anidamiento propuesto en el anterior capítulo (P/N-Si3D). En el

capítulo 4 se describe y evalúa una de las implementaciones paralelas desarrolladas:

SP-Si3D, que añade una implementación con grid de baja resolución a la

implementación paralela con grid de alta resolución. La implementación propuesta

modifica P-Si3D para que, haciendo uso de los resultados del modelo de baja resolución

(haciendo uso del procedimiento de anidamiento N-Si3D), elimine las comunicaciones

colectivas uno-a-muchos y muchos-a-uno necesarias en modelos hidrodinámicos semi-

implícitos paralelos. Esta implementación consigue una escalabilidad prácticamente

lineal. Finalmente en el capítulo 5, se muestran diversas propuestas para optimizar P-

Si3D, que se engloban bajo una implementación denominada OP-Si3D. Las propuestas

dadas en el capítulo 5 permiten adaptar la implementación a la arquitectura de una

plataforma de propósito general actual, reduciendo al mínimo el overhead producido

por una implementación paralela y permitiendo obtener una versión escalable incluso en

Tesis Doctoral

xlviii

arquitecturas HPC. A continuación se indican los objetivos concretos y se introduce

brevemente los contenidos de cada capítulo:

En el capítulo 2 el objetivo es obtener un procedimiento de anidamiento (N-Si3D)

que permita aprovechar de forma eficiente la arquitectura de un computador, además de

evaluar y conocer cuáles son los principales inconvenientes de esta técnica y reducirlos

al mínimo. Usando este procedimiento es posible reducir la zona de alta resolución a

solo el área que se pretenda estudiar (mediante un modelo anidado), resolviendo el resto

del grid con una resolución menor (mediante un modelo completo de baja resolución) y,

por lo tanto, reduciendo el coste computacional. En este procedimiento las ecuaciones

del modelo anidado se resuelven teniendo en cuenta las condiciones de frontera dadas

por el modelo completo de baja resolución. Para poder obtener un procedimiento de

anidamiento correctamente acoplado, se hace especial énfasis en la importancia de

calcular correctamente todos los términos en las ecuaciones de masa y momentum para

aquellas columnas de agua adyacentes a la frontera en el modelo anidado. En particular,

el estudio se centra en la necesidad de transferir el componente de velocidad tangencial

desde el modelo completo de baja resolución al modelo anidado. También se presenta el

procedimiento utilizado para ejecutar ambos modelos (anidado y completo de baja

resolución) en paralelo al mismo tiempo. Este capítulo incluye una evaluación y

Figura i.1. Implementaciones propuestas para este trabajo desde la versión original de

Si3D.

Basic Si3D
Capítulo 5
(1 nodo)

P-Si3D
Capítulo 3

(1-3 nodos)

N-Si3D
Capítulo 2

(1 o 2 nodos)

P/N-Si3D
Capítulo 3

(1-3 nodos)

SP-Si3D
Capítulo 4

(1-10 nodos)

OP-Si3D
Capítulo 5

(más de 10)

Original Si3D
Capítulo 1
(1 nodo)

Introducción General y Objetivos

xlix

validación completa del procedimiento de anidamiento indicando cuales son las

principales fuentes de error. Finalmente, se justifica la necesidad de usar grids de alta

resolución, mostrando patrones de circulación de pequeña escala que solo son

correctamente capturados usando grids de alta resolución.

En el capítulo 3 el objetivo es obtener una implementación paralela de Si3D (P-

Si3D) adecuada para pequeños clusters multinúcleos. En esta implementación la carga

de trabajo se divide entre hebras/procesos disponibles, cada uno trabajando en un

subconjunto distinto de columnas de agua del dominio. Solo el sistema de ecuaciones

pentadiagonal necesario para obtener la solución de superficie libre es resuelto de forma

secuencial, reduciendo así el número de comunicaciones y la complejidad que supone

paralelizar esta etapa. La ejecución secuencial de dicha etapa supone la necesidad de

usar una comunicación colectiva muchos-a-uno antes de iniciar la etapa para formar el

sistema de ecuaciones completo y una comunicación colectiva uno-a-muchos que

difunde la solución de superficie libre obtenida. Este modelo paralelo es sencillo de

implementar y reduce el tiempo de ejecución de forma aceptable para modelos de baja

y media resolución en pequeños clusters. Sin embargo, las funciones colectivas muchos-

a-uno y uno-a-muchos impiden que la implementación escale en cluster de más de 3

nodos. Se incluye también un estudio del rendimiento de la implementación usando

diferentes configuraciones del hardware y del tipo de corte usado en la descomposición

de dominio. Finalmente, se combina el procedimiento de anidamiento creado (N-Si3D)

con la implementación paralela desarrollada para pequeños clusters (P-Si3D) para

simular la zona litoral del lago Tahoe en alta resolución. Esta implementación es usada

para desarrollar un caso real de prueba que revela diversos patrones característicos en el

transporte a lo largo de la costa que se suceden en el lago Tahoe.

En el capítulo 4 el objetivo es obtener una implementación paralela escalable en

cluster multinúcleos de bajo precio de unos 10 nodos, la cual permita simular los

procesos que ocurren en toda la zona litoral de grandes lagos. La implementación

propuesta modifica P-Si3D para que, haciendo uso de los resultados de un modelo de

baja resolución, elimine las comunicaciones colectivas uno-a-muchos y muchos-a-uno

necesarias cuando se resuelve en secuencial el sistema de ecuaciones pentadiagonal para

obtener superficie libre. Los resultados de esta implementación demuestran que se

obtiene una escalabilidad casi lineal al incrementar el número de nodos usados. Se

incluye también un estudio completo de los posibles errores que se pueden producir con

Tesis Doctoral

l

esta implementación, demostrando que las diferencias (NRMSE) al comparar con los

resultados de un modelo completo en alta resolución son pequeñas. Finalmente, se

analiza la calidad de los resultados cerca de las fronteras entre subdominios. Los

resultados demuestran que los patrones de recirculación son correctamente capturados,

incluso aunque dichos patrones se encuentre en la zona de división entre fronteras.

Finalmente, en el capítulo 5 se pretende adaptar el modelo hidrodinámico a la

arquitectura utilizada, con el objetivo de obtener una implementación paralela

optimizada y escalable (OP-Si3D) que pueda usarse también en arquitecturas de altas

prestaciones con más de 10 nodos. Se muestran los factores que influyen en la

obtención de un modelo paralelo eficiente, tanto en máquinas de memoria compartida

como distribuida. Los resultados demuestran que adaptarse a la arquitectura haciendo

uso de las ideas propuestas mejora considerablemente los resultados de escalabilidad,

que se pueden obtener buenos resultados con estas mejoras incluso en arquitecturas con

componentes de bajas prestaciones y que todas las etapas de procesamiento deben ser

optimizadas y paralelizadas para obtener los mejores resultados.

General Introduction and Objectives

li

General Introduction and Objectives

Of the total amount of water in the hydrological cycle on a planetary scale, a tiny

amount (0.008%) is in the form of fresh water in rivers, lakes and reservoirs. This

fraction, however, is of extraordinary value to humans, since almost 80% of the water

we consume comes from these surface water bodies. Despite its importance, our

knowledge of freshwater ecosystems is still poor, according to the US National

Research Council. Our knowledge gap is especially poor when considering the long-

term behavior of these systems in periods of around ten years (Harris and Durran 1986,

Armengol et al 1994), and short-time (daily or hourly) scales (Imberger and Parker,

1985). This lack of knowledge is partially due to the multiplicity and complexity of the

physical processes of transport and mixing. These processes are a fundamental aspect of

the functioning of aquatic ecosystems: not only they determine the position of

particulate and dissolved substances contained in the water at any given time, but they

also contribute to determine the environment in which biogeochemical reactions occur.

Hence, understanding the chemical and biological properties of aquatic ecosystems, its

spatial and temporal variability, requires first to build a through and sound

understanding of the physical processes leading to motion and transport (Imberger

1998).

The use of hydrodynamic models capable of solving the equations of motion of

fluids in three (3D) spatial dimensions, along with the application of advanced

technologies for observing the water velocity and the thermal structure, have

contributed in recent decades to initiate the study of the movement of water in natural

systems (eg Hodges et al. 2000, Rueda and Schladow 2003). Many of these models are

based on the numerical solution of a simplified form of the 3D Navier-Stokes equations

known as the Shallow Water Equations, SWE. In these models it is assumed that the

pressure distribution in the vertical direction is hydrostatic. This form of the equations is

preferred over non-hydrostatic equations for its lower computational cost. Even so,

hydrostatic models continue to be inefficient and heavy to run when high resolution

spatial grids are needed to resolve processes with small spatial scales (such as horizontal

vortices and eddies or gravity currents) and, especially, if PCs or low-end servers are

used.

PhD Thesis

lii

Fortunately, many important advances, which have been made in recent decades

in the area of computing, have enabled a significant boost in research in different areas

of knowledge, including the simulation of water with hydrodynamic models. Currently

it is unquestionable the need to use computers for all kinds of scientific activities and

the need to apply advanced computer techniques to reduce the enormous computational

cost and the huge amount of memory required in the implementation of 3D simulations.

As a result of these progresses large problems with large computational requirements,

which cannot be solved sequentially, can now be addressed. This is possible by

reducing the computational costs and allowing simulation problems which use high

resolution grids, something unthinkable to perform within a reasonable computational

time a few years ago.

The general objective of this thesis is to improve the computational efficiency of

existing hydrodynamic models to address the rigorous and detailed study of processes

of transport and mixing in inland water bodies. Different solutions will be shown to

reduce the computational cost of these simulations, so that they can obtain useful results

within an acceptable time with high-resolution grids, using both resources easily

accessible for any scientist and High Performance Computing (HPC). The optimization

strategies used have improved the efficiency of these models. The efficiency is

understood as the relationship between performance and cost and the relationship

between performance and quality of results. These optimization strategies should

facilitate and expand the use of 3D models of transport and mixing as working tools in

the investigation applied to the knowledge of lakes, reservoirs and rivers; or as

forecasting tools. To make this possible, the approach presented is able to perform the

processing required in an acceptable time on personal computers, low-end servers and

small commodity clusters, avoiding the use of expensive high-end servers. For the more

expensive cases, it is also presented an alternative using HPC, efficiently implemented.

The general objective of improving the computational efficiency of existing

hydrodynamic models is achieved by two different proposals. The first one is efficiently

taking advantage of the architecture of general purpose processors (Anguita et al. 2009,

Anguita and Martinez-Lechado 2005). The efficient exploitation of the architecture has

been proven very profitable in various applications where it is necessary to treat large

amounts of data and perform lots of calculations. Among these applications are audio

processing, graphics, images and video (Anguita et al applications. 2009, Anguita and

General Introduction and Objectives

liii

Martinez-Lechado 2005, Bhattacharjee et al. 2008, Guobin et al. 2005). The efficient

exploitation of the architecture has been also found useful for applications in other

fields such as bioinformatics, financial or seismic data processing (Ino et al. 2009, Lee

et al 2009, Panetta et al. 2009, Zhang and Oosterlee 2009) and, of course, in the field of

3D-SWE (Fringer et al. 2006, 2010 Nesterov, Amritkar et al. 2012, Tsai and Tubbs

2009)).

The second approach to reduce the computation cost uses a procedure known as

nesting. This method has been traditionally used in the literature to reduce computation

costs (Fox et al. 1995 and Pinardi Zavatarelli 2003). Using this procedure it is possible

to reduce the high resolution model only to the area of interest, solving the rest of the

grid with lower resolution and, therefore, reducing the computational cost and storage.

However, this procedure is insufficient when the high resolution area of study is large

such as the littoral zone of large lakes. Littoral habitats of lakes can be substantially

heterogeneous in both vertical and horizontal dimensions (Lodge et al. 1988). Physical

conditions exhibit continuous and very dynamic changes, at short-time scales, as a

result of strong hydrodynamic forcing and the weak inertia of shallow layers (Lodge et

al. 1988). Given the extraordinarily variable dynamics of near-shore or littoral habitats,

these are sites with large biodiversity (Vadeboncoeur et al. 2011) and critical habitats

for many organisms in lakes (Kalff 2001). Furthermore, beaches or bays along the near-

shore areas cannot be understood in isolation from neighbor bays, given that they are

tightly linked through physical processes. As reviewed by Rao and Schwab (2007),

currents in the nearshore are largely aligned along isobaths, hence, creating strong

physical links between the littoral zone along the whole perimeter of lakes.

In this thesis an efficient implementation of a nesting procedure is proposed.

Besides, this procedure is combined with computer clusters of medium/low range, thus

further reducing the computational costs and allowing efficiently resolve all the littoral

zone (impossible in an acceptable time even using a normal nesting procedure) of large

lakes in high resolution, which despite its enormous diversity and importance as it is

explained above, our understanding of these near-shore habitats is poor (Kalff 2001).

According to this, some useful and interesting results are shown to the scientific

community that indicate the path to follow in the study of the littoral zone of large lakes

and demonstrate the need for using high resolution grids to perform these simulations

correctly.

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.980201.x/full#b43#b43

PhD Thesis

liv

The solutions presented in this work have been implemented on a hydrodynamic

model based on a numerical solution of the 3D shallow water equations, Si3D. In this

model the equations are discretized using a semi-implicit, three-level, iterative leapfrog-

trapezoidal finite difference algorithm on a staggered Cartesian grid, and the

computations are carried mostly on water column by water column basis. The semi-

implicit algorithms existing nowadays follow the original proposal designed by

Professor Casulli (Casulli and Cheng 1992; Casulli and Cattani 1994). These algorithms

applied to structured and unstructured grids have been widely used in the simulation of

inland water bodies (eg Hodges et al 2000, Appt et al 2004, Laval et al 2003) in recent

years. The semi-implicit model, where the optimization strategies have been

inplemented, has recently been used in several studies about transport and mixing in

rivers, reservoirs and lakes (Rueda et al. 2009, Rueda and Schladow 2009, Rueda and

MacIntyre 2009, Hoyer et al 2014, Ramón et al 2013). Si3D was developed and

originally proposed by the US Geological Survey (Smith 2006) and later adapted for

simulation of lakes by Rueda (2001).

Chapter 1 contains a complete description of this model, including the governing

equations and numerical model used, the execution flow of the algorithm and other

computational details of interest that demonstrate the complexity of some of the

operations performed in these semi-implicit models and the enormous computational

cost (in terms of execution time and memory requirements) needed. The remaining

chapters have been written as stand-alone independent articles with their own abstracts,

introductions, methodology, results, discussion and conclusions. Some of these chapters

are already published. Others are currently under review in international journals or in

process of being submitted. The fact that they are written as individual articles means

that some of the concepts can be repetitive for the reader but, on the other hand, each

chapter can be read independently. Figure i.1 shows the different implementations

developed from the original code of Si3D. The first step was to apply several basic

optimizations to the original Si3D code (Basic Si3D). These optimizations are used in

all the implementations made (although this implementation is the first step, it is

covered in detail in the last chapter, where it is explained all the steps involved in the

complete optimization of a hydrodynamic model). The chapters are arranged in a logical

order related with each of the developed implementations. The second chapter contains

the description, evaluation and validation of the nesting procedure proposed (N-Si3D).

General Introduction and Objectives

lv

In chapter 3 a suitable parallel implementation for small commodity clusters (P-Si3D) is

presented. Besides, a practical application example is presented for the littoral zone of

Tahoe. This simulation requires the combination of the parallel implementation

developed and the nesting procedure proposed in the previous chapter (P/N-Si3D).

Chapter 4 describes and evaluates other of the parallel implementations developed: SP-

Si3D, which adds an implementation with a low-resolution grid to the parallel

implementation with the high resolution grid. The proposed implementation modifies P-

Si3D in order to use the results of the low resolution model to eliminate the collective

communications one-to-many and many-to-one needed in parallel semi-implicit

hydrodynamic models. This implementation scales almost linearly. Finally in chapter 5,

several approaches are explored and tested to optimize P-Si3D, which are included

under an implementation called OP-Si3D. With these approaches the parallel

implementation is adapted to the architecture of a general purpose platform used

nowadays. In this manner, the overhead caused by the parallel implementations is

minimized resulting in a scalable version of the code, even if used in high performance

platforms. Below the specific objectives of each chapter and their contents are briefly

introduced.

Figure i.1. Si3D implementations proposed in this work from the original version of Si3D

The goal in chapter 2 is to develop efficient procedures to create a seamless

implementation of a nested model with Si3D (N-Si3D). In the nested model, only the

area of interest is simulated using a high-resolution grid. This is the inner-model. The

equations in the inner model are solved subject to boundary conditions provided by a

low-resolution model of a larger domain, the outer-model. Hence, the computational

Basic Si3D
Chapter 5
(1 node)

P-Si3D
Chapter 3

(1-3 nodes)

N-Si3D
Chapter 2

(1 o 2 nodes)

P/N-Si3D
Chapter 3

(1-3 nodes)

SP-Si3D
Chapter 4

(1-10 nodes)

OP-Si3D
Chapter 5

(more than 10)

Original Si3D
Chapter 1
(1 node)

PhD Thesis

lvi

cost of the simulations can be significantly reduced. A seamless nested solution can be

obtained only if the value of all terms in the mass and momentum conservation

equations for those nodes in the inner-domain adjacent to the boundary with the outer

model can be correctly calculated. In particular, we focus on the need to transfer the

tangential velocity components from the outer- to the inner-model. An efficient method

to run the outer and the inner model simultaneously, in parallel, is also introduced. The

sources of errors arising in the nested solution are studied. We further illustrate, through

case examples, the benefits that we get, in terms of processes resolved, from using

refined grids in local-scale regions of lakes and rivers.

In Chapter 3, the objective is to develop a parallel implementation of Si3D (P-

Si3D) suitable for small multi-core clusters. In this implementation, the workload is

split among different processes/threads, each one working with different sets of vertical

columns in which the domain is decomposed. Only the matrix problem controlling the

free-surface elevation is solved sequentially, hence, avoiding the complexity involved of

parallelizing this stage in the computations. The sequential solution of the free-surface-

elevation matrix requires that a collective communication many-to-one is used to collect

the contributions of different water columns to that matrix before the solution process

starts. It also requires the use of a collective communication one-to-many after finishing

the stage to broadcast the solution obtained. As a result of the collective

communications many-to-one and one-to-many and the sequential calculation of the

free-surface-elevation equation system, this implementation does not scale correctly in

clusters of more than 3 nodes. The parallel model though is simple to implement and

reduces the execution time acceptably for models using low and medium resolution in

small commodity clusters. We further analyze the influence of different hardware

configurations and the domain decomposition process on model performance. Finally,

the parallel implementation of Si3D is used to develop a nested model of the littoral

perimeter of Lake Tahoe. This implementation is used, for illustrative purposes, to

reveal some characteristic features of the long-shore transport in Lake Tahoe.

Our goal in Chapter 4, is to develop a parallel implementation of Si3D (SP-Si3D)

to resolve near-shore processes in large lakes which scales in low range multi-core

cluster of about 10 nodes. The approach proposed modifies the implementation P-Si3D

in order to use the results of a low-resolution model. In this manner the collective

communications one-to-many and many-to-one needed to solve the matrix for the free-

General Introduction and Objectives

lvii

surface elevation in serial mode are eliminated. The errors in the implementation are

analyzed. In particular, we analyze the quality of the solution near the boundaries

between sub-domains. The results show recirculation patterns are correctly simulated

even if a subdomain boundary crosses the recirculation area.

Finally, in Chapter 5 several approaches are proposed to adapt the hydrodynamic

model to the architecture used. This is done in order to obtain an optimized and scalable

parallel implementation (OP-Si3D) that can also be used in high performance

architectures with more than 10 nodes. It is shown which factors influence in obtaining

an efficient parallel model, both in shared memory and distributed platforms. The

results demonstrate that if the implementation is adapted to the architecture using the

ideas proposed, (1) the scalability results improves significantly, (2) it is possible to

obtain good scalability results with these improvements even in architectures with low-

performance components and (3) all processing stages must be optimized and

parallelized in order to obtain the best results.

PhD Thesis

lviii

Chapter 1

A Semi-implicit, three-dimensional

hydrodynamic model

PhD Thesis

2

Abstract

In this chapter, it is presented the three-dimensional (3D) Semi-Implicit hydrodynamic

model, Si3D, where the different optimization strategies presented in this thesis will be

applied. Si3D is a semi-implicit, finite-difference method based on the numerical

solution of the 3D Navier-Stokes Shallow Water Equations (3D-SWE) proposed by

Smith (2006). The equations are first posed in layer-averaged form by integrating over

the height of a series of horizontal layers separated by level planes. With this approach,

the volumetric transports and not the velocities are the dependent variables in the model

equations. These layered-averaged equations are discretized using a semi-implicit,

three-level, iterative leapfrog-trapezoidal algorithm on a staggered Cartesian grid. The

semi-implicit approach is based on treating the surface gravity wave and vertical

diffusion terms implicitly to avoid time-step limitations due to gravity wave Courant–

Friedrich–Levy (CFL) conditions, and to guarantee stability of the method. All other

terms-including advection-are treated explicitly. Laplacian operators are used to

represent mixing. Constant mixing coefficients are used to parameterize the effect of

horizontal eddies. A two-equation turbulence model calculates the vertical eddy

coefficients of mixing. The time-step of the resulting model is only subject to CFL

restrictions associated to the explicit treatment of advection and baroclinic pressure

gradient terms. The resulting method is mass conservative, efficient, and numerically

accurate. However, the method is also computationally expensive, using a huge quantity

of variables to save information of the Cartesian grid in three different states and

solving some complex operations. At each time-step, Si3D solves a large number of

small tridiagonal equation systems using a double-sweep method (known as Thomas

algorithm) and then uses an iterative method known as Preconditioned Conjugate

Gradient to solve a single, large, pentadiagonal equation system for the water surface

elevation.

1.1 Introduction

The earliest 3D hydrodynamic models were developed in the 1960s for applications to

oceans and lakes. These models are based in an approach known as the rigid-lid

A Semi-implicit, Three Dimensional Hydrodynamic Model

3

approximation in which the free surface is held constant and the surface gravity waves

(including ocean tides and lake seiches) are filtered out of the solutions (i.e. Bryan

(1969) for ocean model and Liggett (1969) for lakes). These models were able to

employ large time-steps so that long-term simulations of large regions could be done

economically. For studying large-scale oceanic circulation on a coarse numerical grid,

rigid-lid models generally are adequate and are still being developed for modern

applications. For lakes, rigid-lid models should only be used in studies focusing on time

periods much longer than the dominant seiching period of the lake (Sheng, 1986b).

Sheng et al. (1978) compared a rigid-lid model with a model that solves directly for the

variable free surface (free-surface model) and showed the rigid-lid model gave poor

results for periods of active seiching of Lake Erie under spatially and temporally

varying winds. A study by Huang and Sloss (1981) used a rigid-lid model for Lake

Ontario and obtained reasonably good results for the mean monthly circulation.

Leendertse et al. (1973) and Leendertse and Liu (1975, 1977) were the first to

develop a 3D model for estuaries and coastal seas incorporating a fully time-varying

free-surface location and using standard finite-difference grid boxes in all three

dimensions. The details of the model formulation were thoroughly described in the

series of Rand Corporation reports, which benefitted future investigators in the field.

The significant drawback of the Rand model was its explicit finite-difference scheme

that limited the size of the time-step to the time a surface gravity wave takes to travel

between two adjacent horizontal grid points, a limitation referred to as the Courant-

Friedrich-Lewy (CFL) stability condition for the gravity waves. When using a high

resolution numerical grid in an estuary with areas of deep water, this limitation can be

very severe.

In explicit finite difference models, the unknown hydrodynamic variables at any

spatial point at next time level are calculated entirely from known values at neighboring

points from one or more previous time levels. This scheme forms equation systems

solved easily but, at the same time, requires higher computational time due to the

integration time limitation of CFL. To reduce the computation time, a mode-splitting

technique can be used. In general, mode-splitting is a separation of the 3D governing

equations into a set of equations describing the two-dimensional (2D) depth-mean flow

(the external mode) and a set describing the vertical structure of flow (the internal

mode). The time discretization for the gravity-wave terms in the external-mode

PhD Thesis

4

equations can be either explicit or implicit. In an implicit scheme, the unknown

hydrodynamic variables at a given spatial point at next time level depend on the

unknown variables at neighboring points at the same time level. The unknown variables

are then obtained by the simultaneous solution of a system of algebraic equations.

In a mode-splitting approach, the internal-mode equations are treated explicitly

except for the vertical diffusion terms, which usually are treated implicitly to avoid a

time-step limitation in shallow water (Davies, 1985). By using an explicit time

discretization for the external-mode gravity-wave terms, the time-step must be small

enough to satisfy the gravity-wave CFL condition. By applying a time-splitting

algorithm, however, the internal-mode solution can be integrated by using a much larger

time-step than the external mode. Because the internal-mode solution can be expensive

in terms of computation time, significant economies are gained by solving the internal

mode explicitly with a large time-step (usually at least an order of magnitude larger than

the time-step for the external mode). By using an implicit time discretization for the

external-mode gravity-wave terms, the CFL limitation can be avoided, although this

advantage is partially offset by the additional complexities involved in an implicit

formulation (including the need to solve a matrix system of algebraic equations each

time-step). Implicit mode-splitting, however, allows the external and internal modes to

be solved using the same long time-step. In any case, the use of mode-splitting will

usually lead to solutions that are far more computationally efficient than those that solve

the primitive 3D equations directly using a fully explicit scheme. This method has since

been adopted for use in 3D shallow-water circulation modeling (i.e. Blumberg and

Mellor 1987, Sheng 1983, Jin 1993, Chapman et al. 1996). In fact, most 3D shallow-

water models now being used are mode-splitting models. The mode-splitting technique

is also being implemented for modeling the large-scale circulation of the ocean

(Killworth et al. 1991, Dukowicz and Smith 1994, Semtner 1995).

Although mode-splitting has become widely accepted in 3D modeling, it has

several important drawbacks that are often overlooked. If an explicit time discretization

is used for both modes of a time-splitting scheme, the external mode (2D) velocities

must be the exact depth average of the internal mode (3D) velocities; otherwise, the

computations will become unstable (Dukowicz and Smith 1994). If an implicit time

discretization is used for the external-mode gravity waves in a mode-splitting model,

time-splitting errors can be eliminated if the external and internal mode time-steps are

A Semi-implicit, Three Dimensional Hydrodynamic Model

5

chosen to be equal. However, the separate calculations of the 2D and 3D variables lead

to difficulties in consistently representing the magnitude of the bottom frictional stress

between the external and internal modes.

Instead of mode-splitting, some researchers have used other forms of splitting

methods. For example, the latest versions of the 3D Rand Corporation model

(Leendertse 1989) and the 3D TRISULA model from Delft Hydraulics of the

Netherlands (Uittenbogaard et al. 1992) are based on one of the best known splitting

techniques—the alternating-direction-implicit (ADI) method. These models are

basically 3D extensions of ADI methods successfully used in two dimensions

(Leendertse 1987, Stelling 1984). These models are formulated with second-order

accuracy and treat the vertical diffusion term implicitly. Leendertse (1989) is especially

critical of the use of mode-splitting because it “degrades the accuracy of computation”

to first order. To eliminate these inaccuracies, either the time-step or horizontal grid size

of a simulation must be decreased, which can have a significant effect on model

efficiency.

Two alternatives to the splitting models are the time-splitting and semi-implicit

methods. The first one is the implicit, time-splitting finite-difference scheme presented

in de Goede (1991). This model does not employ ADI methods so that inaccuracies

caused by the ADI effect are absent, even for large time-steps. The 3D scheme has a

strong resemblance to the 2D scheme described in Wilders et al. (1988). The 3D

scheme, which neglects advection, density-forcing, and horizontal shear stress terms, is

based on a two-stage splitting procedure in which the first stage requires the solution of

a large number of independent tridiagonal systems of equations involving the implicit

treatment of vertical diffusion. In the second stage, the terms describing the propagation

of the surface gravity waves (that is, the water surface pressure gradient in the momen-

tum equations and the velocity divergence in the continuity equation) are treated

implicitly. This stage results in a pentadiagonal matrix system to be solved for the water

surface elevation. Once the water surface elevation is known, the velocities are

computed explicitly.

The other alternative to the splitting models is the semi-implicit method proposed

by Casulli and Cheng (1992) and implemented in other models (Smith 2006, Hodges et

al. 2000). This method is similar to the scheme presented by de Goede (1991), where

gravity waves and vertical diffusion terms are treated implicitly and other terms

PhD Thesis

6

(Coriolis, horizontal friction, advection and baroclinic pressure term) are treated

explicitly. However, this scheme does not use a splitting procedure to avoid the time-

step limitation due to CFL condition. The scheme proposed by Casulli and Cheng

(1992) and reformulated by Casulli and Cattani (1994) is a two-level scheme. In this

model, the advection terms in the momentum equations are discretized by using an

unconditionally stable, semi-Lagrangian or Euler-Lagrangian method (ELM) with linear

interpolation. The schemes solve the governing equations in a nonconservative form

that is consistent with the use of an ELM.

The semi-implicit scheme implemented in the model presented here (Si3D) and

developed by Smith (2006) closely follows the approach outlined by Casulli and Cheng

(1992) for the implicit inclusion of vertical diffusion in a 3-D calculation without

recourse to mode-splitting. The details of the overall scheme, however, differ from

those in Casulli and Cheng (1992) in many significant ways. The time integration used

here is a three-time-level, semi-implicit, leapfrog-trapezoidal method. Except for a

small amount of first-order error introduced by the uncentered (in time) treatment of

horizontal diffusion for stability considerations, the scheme is second-order accurate in

the truncation errors of the finite-difference approximations in both space and time. All

terms (other than horizontal diffusion), as well as nonlinear coefficients, are centered in

time during the leapfrog and trapezoidal steps of the scheme to achieve second-order

accuracy in time. The accurate evaluation of the nonlinearities in the equation of motion

is important, because nonlinearities have a significant effect on the tidally averaged

circulation in shallow estuaries. The governing equations for the three-level scheme are

prepared in a conservative form by integrating them over the height of each layer. The

layer-integrated, volumetric transports replace velocities as the dependent variables so

that the depth-integrated continuity equation that is used in the solution for the water

surface elevation is linear. The advection terms in the momentum and transport

equations are solved using explicit, leapfrog-trapezoidal integration rather than an ELM

as used by Casulli and Cheng (1992). The leapfrog-trapezoidal approach does very well

with the conservation of transport equation (salinity), which can be a problem with the

ELM approach. Instead of the improvements implemented, the computational cost of

the semi-implicit scheme, in terms of required memory and execution time, is still

expensive. At each time-step, Si3D solves a large number of small tridiagonal equation

systems using a double-sweep method known as Thomas algorithm and a single, large,

A Semi-implicit, Three Dimensional Hydrodynamic Model

7

pentadiagonal equation system for the water surface elevation using an iterative method

known as Preconditioned Conjugate Gradient.

In this chapter, it is presented the hydrodynamic model based in the 3D-SWE and

discretized using a semi-implicit, three-level, iterative leapfrog-trapezoidal finite

difference algorithm on a staggered Cartesian grid. Extensive details about the

governing equations, numerical algorithm and computational implementation of Si3D

are presented in the next section. This model was developed for estuarine circulation

and serial architectures by Smith (2006). Subsequently, Si3D was extended and adapted

to lakes by Rueda (2001). Rueda (2001) modified the model to use temperature instead

of salinity as the active scalar responsible for stratification, to use variable wind fields,

to calculate heat fluxes based on the prognostic variables, and to calculate the

momentum and scalar turbulent transfer coefficients with a high-order turbulence

closure (Mellor-Yamada Level 2.5). The transport algorithm was modified to eliminate

spurious oscillations in the temperature field that could interfere in the calculation of

turbulent transfer coefficients. Additional modules have been developed to simulate the

transport of tracers. Si3D is a public code programmed for serial architectures by the US

Geological Survey (USGS), which provided us with a free version.

1.2 Hydrodynamic model

1.2.1 Governing equations

The model is based on the numerical solution of the 3-D Shallow Water Equations

(Smith 2006), a simplified form of the Reynolds Averaged Navier-Stokes (RANS)

(Cushman-Roisin 1994). Practical computational limits and a priori scaling analyses

justify the use of the 3D-SWE in the description of these large-scale flows. In RANS

models, state variables describing the fluid motion are decomposed into a mean and a

fluctuating part, and separate governing equations are posed for the averaged variables

and for the averaged products of the fluctuating quantities. Assuming that (1) density is

negligible everywhere except in the buoyancy term (the Boussinesq approximation), (2)

the weight of the fluid balances the pressure in the equation for vertical momentum (the

hydrostatic approximation), and (3) a diffusion-like term can be used to represent

PhD Thesis

8

turbulent fluxes of scalars and momentum (the eddy diffusivity concept), the governing

equations can be written as

0














z

w

y

v

x

u
 (1.1a)

0
t

ζ
ζζ








































 HH

vdz
y

udz
x

 (1.1b)




















































































z

u
K

zy

u
K

yx

u
K

x

zd
x

g

x

ζ
fv

z

u
w

y

u
v

x

u
u

t

u

VHH

ζ

z

g
0




 (1.2)




















































































z

v
K

zy

v
K

yx

v
K

x

zd
y

g

y

ζ
gfu

z

v
w

y

v
v

x

v
u

t

v

VHH

ζ

z

0




 (1.3)

z

I

cz

T
D

zy

T
D

yx

T
D

x

z

wT

y

vT

x

uT

t

T

p

VHH





















































































1

)()()(

 (1.4)

)(T  (1.5)

These equations comprise the 3D-SWE. They express the physical principles of

conservation of mass for an incompressible fluid (Eqs. (1.1a)-(1.1b)), conservation of

momentum (Eqs. (1.2)-(1.3)) and conservation of energy (Eq. (1.4)). The velocity

components in the x, y, and z directions are denoted by u, v, and w, t is time, f is the

Coriolis parameter, g is the acceleration of gravity,  represents water density variation

A Semi-implicit, Three Dimensional Hydrodynamic Model

9

with respect to a mean reference value 0, ζ is the water surface elevation above an

undisturbed level at z = 0, and z = -H (x, y) is the depth of the bottom boundary

measured from z = 0. Equation 1a is the three-dimensional form of the continuity

equation, while Eq. (1.1b) results from 1a by integration over the water depth,

accounting for the kinematic boundary condition at the free surface, and is the equation

governing the free surface position. Equation (1.5) is an equation of state which links

temperature, T, and density, ρ. The last term in Eq. (1.4) is a source-sink term

representing the surface heat flux, and cp is the heat capacity of water: ∆𝑠 =

1
ρ𝑐𝑝⁄ 𝜕𝐼

𝜕𝑧⁄ . The coefficients KH and KV represent the horizontal and vertical turbulent

momentum transfer coefficients (or kinematic eddy viscosity), and DH and DV are the

horizontal and vertical turbulent transfer coefficients (eddy diffusivity) for temperature.

Those terms represent the effects of the fluctuating quantities in the mean equations.

Different approaches can be followed in order to estimate vertical turbulent diffusivities.

Most commonly separate differential equations are solved for the turbulent kinetic

energy and a turbulent length-scale determining variable (such as the dissipation of

turbulent kinetic energy or the product of the turbulent kinetic energy and a turbulent

macroscale l) from which turbulent transfer coefficients are calculated. Si3D was also

adapted for 3-D lake models (Rueda 2001) using a modified formulation of the 2.5 level

Mellor-Yamada turbulence closure scheme to parameterize vertical mixing (Kantha and

Clayson 1994). This formulation incorporates the quasi-equilibrium turbulence model

(QETE) of Galperin et al. (1988) with readjusted parameters, and a parameterization of

shear-instability-induced mixing in the strongly stratified region below the surface

mixed layer. It was developed to correct some of the deficiencies of the original

formulation of the Mellor-Yamada 2.5-Level closure scheme, which was shown to

misrepresent the depth of the surface mixed layer in oceanic applications (e.g. Martin

1985). Two partial differential equations are used to calculate the turbulent kinetic

energy, q
2
/2, and a turbulent macroscale, l, given by

 ε2
22






















bsq PP

z

q
lqS

zt

q
 (1.6)

 
 






















































2

3

2

2

1

3

1

22

)-κ(κ
1

)(

zH

l
E

z

l
E

B

q
PPlE

z

lq
lqS

zt

lq
bsq

 (1.7)

PhD Thesis

10

Here, κ is the von Karman constant, and Ps, Pb and ε stand for shear production,

buoyant production and the dissipation of turbulent kinetic energy, given by

22




























z

v
K

z

u
KP vvs ;

z

ρ

ρ0 


 vb D

g
P ;

lB

q

1

3

ε  (1.8)

in which B1 is an empirical constant. The boundary conditions applied at the top and the

bottom boundaries are calculated from the friction velocity u* as (Blumberg 1986)

2

*

3/2

1

2)(uBq  , 02 lq ; (1.9)

The turbulent fluxes of momentum (u, v) and temperature (T) are represented using a

diffusion model and the concepts of eddy viscosity and diffusivity. The eddy viscosity

and diffusivity are calculated from q and l as KV = Smlq and DV = Shlq in which Sm and

Sh are stability functions that account for the effects of stratification on mixing. They are

calculated as (Kantha and Clayson 1994)

))1(6(31

6
1

3212

1

1
2

CBAGA

B

A
A

S
h

h













 (1.10)

 

)91(

)1(293
6

1

21

2211

1

1

1

h

hh

m
GAA

GSCAAC
B

A

AS













 (1.11)

2











q

Nl
Gh (1.12)

The values of the constants in the model are (A1, A2, B1, B2, C1, C2, C3, Sq, E1, E2)

=(0.92, 0.74, 16.6, 10.1, 0.08, 0.7, 0.2, 0.2, 1.8, 1.33) as suggested by Kantha and

A Semi-implicit, Three Dimensional Hydrodynamic Model

11

Clayson (1994). Gh is bounded from above, so that the variance of the velocity

fluctuations are positive definite, according to

   1

32112)1(312


 CBABAGh
 (1.13)

The upper bound on Gh is set to 0.029 (Kantha and Clayson 1994). The lower bound on

Gh reflects that under strong stable stratification conditions, there is a limit to the size

beyond which eddies are incapable of overturning. This bound is dictated by the

Ozmidov scale, Lo = (ε/N
 3

)
1/2

, and is given by Gh > –0.28.

1.2.2 Numerical algorithm

The governing equations are first posed in layer-averaged form by integrating over the

height of a series of horizontal layers separated by level planes. With this approach, the

volumetric transports (the product of velocities by the layer thickness, U and V) and not

the velocities (u, v) are the dependent variables in the model equations. This layer-

averaged form of the equations is discretized using a semi-implicit, three-level, iterative

leapfrog-trapezoidal finite difference algorithm on a staggered Cartesian grid (Arakawa-

C grid, which has velocities and volumetric transports defined on cell faces and scalar

quantities such as water surface elevation and temperature defined at the cell center).

The semi-implicit approach is based on treating the gravity wave and vertical diffusion

terms implicitly to avoid time-step limitations due to gravity wave Courant–Friedrich–

Levy (CFL) conditions, and to guarantee stability of the method (Casulli and Cheng

1992). The vertical diffusion term in the transport equation is also treated implicitly.

The remaining terms in the momentum equations (advection, Coriolis, horizontal

momentum diffusion, and the baroclinic pressure gradient) and advection terms in

transport equation are solved using explicit leapfrog-trapezoidal integration. The time-

step of the resulting model Δt is only subject to CFL restrictions associated to the

explicit treatment of advection and baroclinic pressure gradient terms. The resulting

method is mass conservative, efficient, and numerically accurate (Smith 2006).

The Numerical Algorithm is divided into four stages (Figure 1.1). First, the finite-

difference form of the continuity (Eq. (1.1b)) is written as follows

PhD Thesis

12









































































km

k

n

kji

n

kji

n

kji

n

kji

km

k

n

kji

n

kji

n

kji

n

kji

VVVV
y

t

UUUU
x

t

1

1

,2/1,

1

,2/1,

1

,2/1,

1

,2/1,

1

1

,,2/1

1

,,2/1

1

,,2/1

1

,,2/1

1n

ji,

1n

ji,

)(

)(ζζ

 (1.14)

Figure 1.1. Solver stages of Si3D Numerical Algorithm.

The solution of the momentum equations is separated into two phases in which first the

explicit terms and then the implicit terms are evaluated in the stage 1 column by column

of the grid (S1, Figure 1.1). The finite-difference equation for the x-direction

momentum equation is written so it is centered within layer k at the horizontal point

(i+1/2) Δx, jΔy; the explicit phase is represented by

𝑈̂
𝑖+
1
2
,𝑗,𝑘

= 𝑈
𝑖+
1
2
𝑗,𝑘

𝑛−1 2Δ𝑡[−(𝐴𝐷𝑉𝑥)
𝑛 + (𝐶𝑂𝑅𝑥)

𝑛 − (𝐵𝐶𝐿𝐼𝑁𝐼𝐶𝑥)
𝑛

+ (𝐻𝐷𝐼𝐹𝐹𝑥)
𝑛−1]

𝑖+
1
2
,𝑗,𝑘

 (1.15)

The corresponding finite-difference equation for the explicit phase of the y-direction

momentum equation is centered within layer k at the point iΔx,(j+1/2)Δy and is

represented by

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζn+1 (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ n+1 using the PCG

S3. Solve U n+1 and V n+1 (Continuity)

S4. Solve w n+1, one or more tridiagonal

system of equation per column for T n+1 and

other tracers (transport) and assign KH
 n+1

and KV
 n+1 (turbulence) solving a tridiagonal

system of equations per column

L
ea

p
fr

o
g
 o

r
tr

ap
ez

o
id

al
 s

te
p

A Semi-implicit, Three Dimensional Hydrodynamic Model

13

𝑈̂
𝑖,𝑗+

1
2
,𝑘
= 𝑈

𝑖,𝑗+
1
2
,𝑘

𝑛−1 2Δ𝑡 [−(𝐴𝐷𝑉𝑦)
𝑛
+ (𝐶𝑂𝑅𝑦)

𝑛
− (𝐵𝐶𝐿𝐼𝑁𝐼𝐶𝑦)

𝑛

+ (𝐻𝐷𝐼𝐹𝐹𝑦)
𝑛−1

]
𝑖,𝑗+

1
2
,𝑘

 (1.16)

The bracketed terms (calculated in S1) are expanded fully in Smith 2006. The symbol

(ˆ)in equation denotes a solution for the layer volumetric transport which includes only

the contribution from the explicit terms. All terms in equations (1.15) and (1.16), except

horizontal diffusion (HDIFF), are centered in time at time level n to achieve second-

order numerical accuracy. The horizontal diffusion is written backward-in-time at time

level n - 1 because the centering of that term can result in a weak instability.

Then the finite-difference equation for the implicit phase of the x-momentum and

y-momentum equations is written as

 





























 

































 
































































































1

2/1,,2/1

1

1,,2/1

1

,,2/1

1

2/1,,2/1

1

1,,2/1

1

,,2/1

2/1,,2/1

1

2/1,,2/1

1

,,2/1

1

1,,2/1

1

2/1,,2/1

1

,,2/1

1

1,,2/1

2/1,,2/1

1

,

1

,1

1

,

1

,11

,,2/1

_

1,,2/1
,,2/1,,2/1

^
1

,,2/1

)()()/()/(

)()()/()/(

ζζζζ

ρ

ρ

n

kji

n

kji

n

kji

n

kji

n

kji

n

kjin

kjiV

n

kji

n

kji

n

kji

n

kji

n

kji

n

kjin

kjiV

n

ji

n

ji

n

ji

n

jin

kji

n

jin

kjikji
n

kji

h

uu

h

hUhU
Kt

h

uu

h

hUhU
Kt

h
x

t
gUU

 (1.17)

 





























 

































 
































































































1

2/1,2/1,

1

1,2/1,

1

,2/1,

1

2/1,2/1,

1

1,2/1,

1

,2/1,

2/1,2/1,

1

2/1,2/1,

1

,2/1,

1

1,2/1,

1

2/1,2/1,

1

,2/1,

1

1,2/1,

2/1,2/1,

1

,

1

1,

1

,

1

1,1

,2/1,

_

1,2/1,
,2/1,,2/1,

^
1

,2/1,

)()()/()/ (

)()()/()/(

ζζζζ

ρ

ρ

n

kji

n

kji

n

kji

n

kji

n

kji

n

kjin

kjiV

n

kji

n

kji

n

kji

n

kji

n

kji

n

kjin

kjiV

n

ji

n

ji

n

ji

n

jin

kji

n

jin

kjikji
n

kji

h

vv

h

hVhV
Kt

h

vv

h

hVhV
Kt

h
y

t
gVV

 (1.18)

PhD Thesis

14

The subscripts denote the spatial location in the computational grid, and the superscripts

the time level at which the variable is evaluated. The symbols k1 and km in Eq. (1.14)

denote the first (shallowest) and last (deepest) layer in a given water column. The

symbol ^ in Eqs. (1.17) and (1.18) denotes the contribution from the explicit terms to

the layer-averaged transport. The overbars in Eq. (1.17) on a layer height or density

variable is used to represent a spatial average in the x-direction between adjacent values.

For example,

2

,,1,,
,,2/1

kjikji
kji

hh
h







(1.19a)

Also,

2

,,2/11,,2/1
2/1,,2/1

kjikji
kji

hh
h





 (1.19b)

The overbars in Eq. (1.18) represent a spatial average between adjacent values, as in Eq.

(1.17), but this time in the y-direction, i.e.

2

)(,1,,,
,2/1,

kjikji
kji

hh
h





 (1.20a)

and similar to Eq. (1.20),

2

,2/1,1,2/1,
2/1,2/1,

kjikji
kji

hh
h





 (1.20b)

In the solution process, the unknown values of the variables U and V at time n+1 (Eq.

(1.17) and (1.18)) are expressed in terms of the unknown values of the free surface. The

sum of the volume transports across any of the four sides of a given water column can

be then expressed as follows (the details of these calculations can be found in Smith

(2006) in terms of the free surface

A Semi-implicit, Three Dimensional Hydrodynamic Model

15

   

ji

n

ji

n

jiji

ji

n

ji

n

jiji

k

kk

n

kji

agar

GARA
x

t
gU

m

,
2

1

1

,

1

,1,
2

1

,
2

1
11

,

1

,1,
2

1
1

0

1

,,
2

1

)(

)(
1

































 (1.21a)

   

ji

n

ji

n

jiji

j

i
n

ji

n

jiji

k

kk

n

kji

agar

GARA
x

t
gU

m

,
2

1

1

,1

1

,,
2

1

,
2

111

,1

1

,,
2

1
1

0

1

,,
2

1

)(

)(
1








































 (1.21b)

   

2
1,

1

,

1

1,
2

1,

2
1,

11

1,

1

1,
2

1,

1

0

1

,
2

1,

)(

)(
1

































ji

n

ji

n

jiji

ji

n

ji

n

jiji

k

kk

n

kji

agar

GARA
x

t
gV

m





 (1.21c)

   

2
1,

1

1,

1

,
2

1,

2
1,

11

1,

1

,
2

1,

1

0,
2

1,

)(

)(
1


































ji

n

ji

n

jiji

ji

n

ji

n

jiji

k

kk
kji

agar

GARA
x

t
gV

m





 (1.21d)

The Eq. (1.21) form two tridiagonal system of equations (one in the x-direction and

other in the y-direction) for each water column which can be uniquely solved in S1

(Figure 1.1) of SI3D with a double-sweep algorithm (here the Thomas algorithm is used

to solve efficiently the tridiagonal systems). In executing the double-sweep algorithm,

the results actually sought are only the two matrix products A
-1

G and A
-1

R, which are

column vectors equal in order to the number of model layers; the inverse of A (which is

non-symetrical but diagonally dominant) is never computed by itself. Equation (1.21) is

useful because it is an expression that can be formally substituted into the continuity

equation.

With the new values of ag and ar calculated, the coefficientes sx, sy, r and q are

calculated as follows at the end of S1 (Figure 1.1).

PhD Thesis

16

jiji
ar

x

t
sx

,
2

1,
2

1  


 (1.22a)

jiji
ar

x

t
sx

,
2

1,
2

1  


 (1.22b)

2
1,

2
1,  




jiji
ar

y

t
sy (1.22c)

2
1,

2
1,  




jiji
ar

y

t
sy (1.22d)




































 











 




































km

k

n

kji

n

kji

km

k

n

kji

n

kji

jiji

jiji

n

jiji

VV
y

t

UU
x

t

agag
x

t

agag
x

t
q

1

1

,2/1,

1

,2/1,

1

1

,,2/1

1

,,2/1

2
1,

2
1,

,
2

1,
2

1

1

,,

)(

)(



 (1.22e)

jijijijiji sxsysysxr ,2/12/1,2/1,,2/1, 1   (1.22f)

Therefore, those summations are then included in Eq. (1.14) at the beginning of the

stage 2 of SI3D (S2, Figure 1.1), resulting in the following equation for the free surface

elevation at time n+1

ji,

1

,1,2/1

1

1,2/1,

1

,,

1

1,2/1,

1

,1,2/1 q 















n

jiji

n

jiji

n

jiji

n

jiji

n

jiji sxsyrsysx  (1.23)

Equation (1.23) represents a pentadiagonal matrix which is symmetric and positive

definite. This system of equations includes as many equations as water columns have

the model and each equation includes up to five elements. These five elements relate

each water column with the 4 neighbor columns (north, south east and west). Since free

A Semi-implicit, Three Dimensional Hydrodynamic Model

17

surface elevation is a 2D variable, each equation (and the system of equations in

general) is created without paying attention to the number of layers of each water

column. The system is then solved in S2 using a preconditioned non-symmetric

conjugate gradient method (Golub and Loan 1996, Kincaid et al. 1989), which is an

iterative method (hence approximate) that converges to the correct value within a

tolerance.

After the free surface elevation at time n+1 is computed, the volumetric transport

components are solved explicitly column by column of the grid using Eq. (1.21) in the

stage 3 (S3, Figure 1.1) of SI3D. The vertical velocity is then updated column by

column at the beginning of the stage 4 (S4, Figure 1.1) using the continuity equation

(Eq. (1.1a)), which in finite difference form is

   
,...,km,k

y

VV

x

UU
ww

n

kji

n

kji

n

kji

n

kjin

kji

n

kji 32

1

,2/1,

1

,2/1,

1

,,2/1

1

,,2/11

2/1,,

1

2/1,, 
































 (1.24)

This equation is solved explicitly, starting from the bottom layer, where the vertical

velocity is known to be zero.

The temperature transport equation is solved column by column after the

hydrodynamic variables are determined in S4 of SI3D (Figure 1.1). Only the vertical

diffusion terms are treated implicitly, in the numerical solution. Advection and

horizontal diffusion terms are treated explicitly. The finite-difference form of Eq. (1.4),

for a node with grid index i, j, k can be written as follows:

Ai,j,ksi,j,k−1
n+1 + Bi,j,ksi,j,k

n+1 + Ci,j,ksi,j,k+1
n+1 = Di,j,k (1.25)

where de coefficients A, B, C and D are:

𝐴𝑖,𝑗,𝑘 = −𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛)

𝐵𝑖,𝑗,𝑘 = ℎ𝑖,𝑗,𝑘
𝑛+1/(2∆𝑡) + 𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘
𝑛 + ℎ𝑖,𝑗,𝑘+1

𝑛) + 𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛)

𝐶𝑖,𝑗,𝑘 = −𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘
𝑛 + ℎ𝑖,𝑗,𝑘+1

𝑛)

PhD Thesis

18

𝐷𝑖,𝑗,𝑘 = 𝐹𝑖,𝑗,𝑘
𝑛 +

(ℎ𝑖,𝑗,𝑘
𝑛−1 + 𝑠𝑖,𝑗,𝑘

𝑛−1)

2∆𝑡
 −𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 (𝑠𝑖,𝑗,𝑘
𝑛−1 − 𝑠𝑖,𝑗,𝑘+1

𝑛−1)/(ℎ𝑖,𝑗,𝑘
𝑛

+ ℎ𝑖,𝑗,𝑘+1
𝑛)+𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛 (𝑠𝑖,𝑗,𝑘−1
𝑛−1 − 𝑠𝑖,𝑗,𝑘

𝑛−1)/(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛)

Here, the term F represent the explicit terms. Applying equation (1.25) to each of the

layers at a computational point iΔx, jΔy results in a system of km equations involving

km unknown values of 𝑠𝑖,𝑗,𝑘
𝑛+1. This form a tridiagonal system of equations for each water

column, which can be efficiently solved with the double sweep algorithm (Thomas

algorithm). Once the new temperature fields are computed, they are used to update the

density field using Eq. (1.5). The transport equation can be also used to simulate other

passive tracers in the same way that temperature, solving an additional tridiagonal

system of equations (per water column) for each passive tracer simulated.

Finally, the new scalar turbulent transfer coefficients (eddy viscosity and

difussivity) are calculated column by column with the numerical algorithm of the

turbulence equations (1.6)-(1.7) at the end of S4 (Figure 1.1). The approach adopted for

the solution of the governing equations and the turbulent macroscale is a 3-level fully

implicit algorithm (more details can be found in Rueda (2001)). The algorithm results in

a tridiagonal system of equations for each water column that is solved using the double

sweep algorithm (Thomas algorithm). The variables q
2
 and q

2
l are defined at vertical

velocity points (interfaces between two cells aligned in the vertical direction). The

discretized equations are written as

n

k

n

k

n

k

n

k

n

kVn

k

n

k

n

k

n

k

n

k

n

kn

kV

n

k

n

k

n

k

q

n

k

n

kn

k

n

k

n

k

q

n

k

n

kn

k

n

k

n

k

n

k

n

k

lB

qq

z
D

g

z

vv

z

uu
A

z

qq
Slq

z

qq
Slq

z

t

qq

t

qq

2/11

2/1

1

2/1

2

1

1

n

k

n

1-k

2/1

0

2

1

1

1

2

1

1

1

2/1

1

1

1

2/1

21

2/1

2

1

1

1

2/1

21

2/3

2

`111

2/1

1

2/1

2

2/1

2

2/1

21

2/1

2

)(
2

ρρ

ρ
22

)()()()(1

)()(

2

1)()(

2

3

































































































































































































 (1.26)

A Semi-implicit, Three Dimensional Hydrodynamic Model

19




















































































































































































































































2

1/2k

n

2/1

3

2

1/2k

2/1

2

2/11

2/1

1

2/1

2

1

1

n

k

n

1-k

2/1

0

2/11

2

1

1

1

2

1

1

1

2/12/11

1

1

1

2/1

21

2/1

2

1

1

1

2/1

21

2/3

2

`111

2/1

1

2/1

2

2/1

2

2/1

21

2/1

2

)z-κ(Hκz
1

)(

ρρ

ρ

)()()()(1

)()(

2

1)()(

2

3

n

n

k

n

n

k

n

k

n

k

n

k

n

k

n

kV

n

kn

k

n

k

n

k

n

k

n

k

n

kn

kV

n

k

n

k

n

k

n

k

q

n

k

n

kn

k

n

k

n

k

q

n

k

n

kn

k

n

k

n

k

n

k

n

k

l
E

l
E

lB

qlq

z
D

g
lE

z

vv

z

uu
AlE

z

lqlq
Slq

z

lqlq
Slq

z

t

lqlq

t

lqlq

 (1.27)

Once q
2
 and q

2
l at n+1 have been calculated, the eddy viscosity and diffusivity are

calculated at n+1.

The finite difference equations for the semi-implicit trapezoidal scheme are

nearly identical to those of the semi-implicit leapfrog scheme, except that the time

interval over which the scheme is applied is halved to Δt from 2Δt. The integration

procedure is centered at time level (n+ ½)Δt in the trapezoidal method and no longer

involves the time level (n-1)Δt. The equations for the trapezoidal method can be easily

derived from Eqs. (1.14)-(1.21) by making the changes in the subscripts indicated in

Table 1.1 and replacing Δt by Δt/2. The variables needed in the scheme at time level (n+

½)Δt are determined by averaging the value of the variable at time level nΔt and the

estimate of the variable at time (n+1)Δt obtained in a previous leapfrog or trapezoidal

iteration.

Semi-implicit

leapfrog scheme

Semi-implicit

trapezoidal scheme

(n+1) Δt (n+1) Δt

n Δt (n+½) Δt

(n-1) Δt n Δt

Table 1.1. Simple guidelines to derive the finite-difference equations for the semi-implicit

trapezoidal scheme from the discretized form of the equations using the semi-implicit

leapfrog method (Eq. (1.1)-(1.11) and (1.16)). The subscripts in the equations for the

leapfrog method, on the left column, should be replaced by those shown in the right column

to obtain the finite-difference equations for the semi-implicit trapezoidal method.

The hydrodynamic and transport model has been extensively validated against

analytical solutions (Rueda and Schladow 2003) and field data sets collected in a wide

range of lake environments (Rueda and Cowen 2005; Rueda et al. 2009), including

PhD Thesis

20

Lake Tahoe (Rueda et al. 2003). Furthermore, it has been used to analyze and study

fundamental physical processes in lakes (Rueda and Schladow 2009).

1.2.3 Computational implementation

The computational implementation of Si3D is showed in detail in Figure 1.2. Si3D

starts the execution reading the input data, initializing the model according to these

input data and printing the model results in the initial state (in the time-step n=0). After

this initialization, the real simulation of Si3D starts. Different variables control the flux

execution, Step denotes if the next step will be a leapfrog (left side) or a trapezoidal step

(right side), Single determine if the trapezoidal scheme will be used or not, Ntrap count

the number of trapezoidal steps run in each time-step, the total number of trapezoidal

steps is determined by totaltrap. Finally, the number of total time-steps is controlled by

niter and when this variable is equal to totaliter, Si3D finishes. The main part of Si3D,

where the numerical algorithm is executed, is indicated in the Figure 1.2 as Iterative

Loop.

At the end of each step, the variables of the model must be updated with the new

calculations. The type of data update will be different after a leapfrog step, a trapezoidal

step or the last step before to start a new time-step. After a determined number of time-

steps chosen by the user, Si3D save information as output data, which is stored using

binary or text files. Finally, Si3D finishes when niter is equal to totaliter.

In computational terms, Si3D is a complex model that includes more than 20000

code lines, more than 100 subroutines and a huge quantity of variables (850). Among

these variables. 250 save information for all the grid, either to store a specific value for

each water column for 2D variables (as water free surface) or to store a specific value

for each layer in a given water column for 3D variables (as vertical velocity).

A Semi-implicit, Three Dimensional Hydrodynamic Model

21

1.3 Conclusions

The hydrodynamic model used as test example to apply the optimization strategies

proposed in this work is presented. The model, Si3D, is a finite-difference model based

in the 3D-SWE proposed by Smith (2006) and extended for lakes by Rueda (2001).

Si3D uses a semi-implicit, leapfrog-trapezoidal numerical scheme that is efficient and

essentially second-order accurate in the spatial and temporal numerical approximations.

Figure 1.2. Flow diagram for the Si3D model. S1, S2, S3 and S4 are the solver stages of

Si3D.

niter

End

niter = niter +1

If niter <= totaliter

If niter > totaliter

Single ntrap
Data Update to

LeapFrog Step

Data Update to

Trapezoidal Step

Data Update for the next time-step

and Output Data to n= niter

If Single = 1

Step = 2
If ntrap

<= totaltrap

If ntrap > totaltrap

Step = 1

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζn+1 (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ n+1 using the PCG

S3. Solve U n+1 and V n+1 (Continuity)

S4. Solve w n+1, one or more tridiagonal

system of equation per column for T n+1 and

other tracers (transport) and assign KH
 n+1

and KV
 n+1 (turbulence) solving a tridiagonal

system of equations per column

 If Single

 = 2

 ntrap = ntrap + 1

Start

Reading Input Data

Model Initialization and Output

Data to n=0

 Step If Step = 2 j If Step = 1

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζ n+1 (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ n+1 using the PCG

S3. Solve U n+1 and V n+1 (Continuity)

S4. Solve w n+1, one or more tridiagonal

system of equation per column for T n+1 and

other tracers (transport) and assign KH
 n+1

and KV
 n+1 (turbulence) solving a tridiagonal

system of equations per column

Iterative Loop

L
ea

p
fr

o
g
 s

te
p

T
ra

p
ez

o
id

al
 s

te
p

PhD Thesis

22

The numerical scheme is based on treating the gravity-wave and vertical diffusion terms

implicitly and all other terms in the governing equations (including advection)

explicitly. The model does not use any form of vertical/horizontal mode-splitting to

incorporate implicit vertical diffusion into the semi-implicit scheme. In this manner, the

method is guaranteed to be stable without the time-step limitation imposed by the

gravity wave CFL condition, stricter in explicit or mode-splitting methods. The

governing equations for the multilevel scheme are arranged in conservation form by

integrating them over the height of each horizontal layer. The layer-integrated

volumetric transports replace velocities as the dependent variables so that the depth-

integrated continuity equation used in the solution for the water surface elevation is

linear. The advantage of the semi-implicit approach is that the solution for the water

surface elevation is uncoupled in the model from the solution for volumetric transport.

A pentadiagonal system of linear equations is solved at each time-step for the water

surface elevation using an efficient preconditioned conjugate-gradient method.

Volumetric transports are computed explicitly from the momentum equations.

Instead of the improvements founded in a semi-implicit approach, the

computational cost, in terms of required memory and execution time, is still expensive.

Si3D saves information of the entire grid in a huge quantity of 2D and 3D variables, in

three different time states. Moreover, the type of operations presented in the semi-

implicit approach increases the computational complexity and execution time of the

model. Si3D must solve at each time-step a large number of small tridiagonal equation

systems (1 in S1 and 2 or more (if passive tracers are used) in S4) using a double-sweep

method known as Thomas algorithm. Besides, a single, large, pentadiagonal equation

system must be also solved in S2 for the water surface elevation, using an iterative

method known as Preconditioned Conjugate Gradient.

Chapter 2

Evaluation of a nested-grid

implementation for 3D finite-difference

semi-implicit hydrodynamic models

PhD Thesis

24

Abstract

This chapter evaluates the implementation of a nested Cartesian grid in a 3D semi-

implicit hydrodynamic model with synthetic and real examples. The outer model

provides all the values needed by the governing equations of the nesting (inner)

subdomain at the boundary (including tangential velocities). A 3D flux relaxation

scheme is applied to prevent mass and energy drift. The influence of tangential

velocities in the solution is evaluated, showing a substantial reduction on the results’

quality when they are considered negligible and lateral circulation exists. The

inner/outer coupling implemented achieves a simulation time equal to the inner

execution time and allow a transfer step equal to the inner time-step, removing time

interpolation errors. This coupling makes feasible the 3D relaxation implemented. A

dramatic improvement in memory requirements and simulation time is achieved, that

allows the use of low-cost low-power consumption platforms in the simulations.

2.1 Introduction

In the last decade, considerable progress has been made in the development of three-

dimensional (3D) transport and mixing models of shallow-water capable of resolving

with reasonable accuracy and computational cost large-scale physical processes in

rivers, lakes and reservoirs (Hinterberger et al. 2007, Huang et al. 2010, Leon et al.

2012, Schwab et al. 2009 Smith 2006). These models can also potentially be used to

simulate local-scale processes, such as near-shore processes, where detailed topography

and large changes in vorticity produce changes over small spatial scales. But the high

resolution grid needed to simulate the local-scale processes requires disproportionately

large amounts of CPU time and memory. Long simulation times are unacceptable when

these models are part of decision support systems, where multiple simulations need to

be run, or when the duration of a simulation exceeds the time period within which a

result is required.

Unstructured or structured grid models can be used to conduct simulations of

large basin-scale and local-scale processes. Unstructured models use grid cells of

varying shapes and sizes that are pieced together to better represent topographic and

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

25

bathymetric complexity. Small cell size can also be utilized where the local-scale

processes are to be represented, increasing cell size away from the zone of interest.

These models, however, are more computationally expensive than structured grid

models (Griffies et al. 2000). The algorithmic details are more complex than with

structured grids, and the accuracy of results is extremely sensitive to the quality of the

generated mesh. Important related physical processes (such as suspended sediment

transport) cannot be represented in an immediate and simple way as can be done with

structured grids (Rueda and Schladow 2003).

Many studies in shallow water modeling have used finite-difference, structured

Cartesian grid models with very satisfactory results (Huang et al. 2010, Leon et al.

2012, Rueda and Schladow 2003, Zavatarelli and Pinardi 2003). Grid generation tasks

and the implementation of the numerical solution are simpler when compared with

unstructured approaches. Local-scale processes can be simulated using a high resolution

grid covering the entire domain. However, this comes at a very high-computational cost.

Alternatively, nested-grid models can be used to reduce computational cost in oceans

(Giunta et al. 2007, Rueda and Schladow 2003, Zavatarelli and Pinardi 2003), lakes

(Leon et al. 2012) and rivers (Kolerski et al. 2010). In nested grid models, a higher

resolution model (the inner model), is used to simulate the local-scale processes in a

target zone. This inner model is embedded within a coarser resolution model (the outer

model) that simulates the basin-scale processes and provides external boundary data to

the inner model. Using this approach, the high-resolution inner model can be used to

resolve small-scale circulation and mixing processes in the region of primary interest

(target zone) while significantly reducing the overall computer time of simulations

compared to the traditional approach of using only one uniform grid size.

A standard Cartesian-grid model typically uses a single, high-resolution grid of a

fixed cell-size over the entire model domain. One important shortcoming of this

approach is that these models when applied to medium-sized domains or larger can

often require enormous amounts of computer memory. Memory requirements for these

models can be especially high if all "dry" cells (cells located on dry land outside the

boundaries of the water body being simulated) are saved in the active memory during

simulations. A rectangular Cartesian grid overlaid upon an irregular-shaped water body,

such as a meandering river, may have a high percentage of dry cells that are stored in

memory. Curvilinear-grid models (see, for example Herzfeld (2009)) have been used to

PhD Thesis

26

reduce memory requirements related to dry-cell storage, but these models can introduce

other computational problems related to the use of a curvilinear coordinate system and

also lack the desired simplicity of Cartesian grids. The model implemented here keeps

memory requirements manageable by using a nested grid and storing only "wet" cells in

active memory.

The first nested-grid one-way implementation for the Si3D model (Smith 2006),

N-Si3D, is here presented and, his quality and computational efficiency, evaluated.

Si3D is a semi-implicit second-order accurate, finite-difference Cartesian grid model for

3D shallow-water. Three kinds of tests applied to three kinds of example models verify

and validate the implementation and demonstrate the excellence of the results. The

examples are:

 Synthetic rectangular basins with constant wind. These examples allow to verify that

the hydrodynamic fields in the inner and outer models are the same and to

demonstrate that the implementation is good at conserving mass and energy.

 Sacramento River (USA). Scientists use this model to understand the influence of

tidal river dynamics on the migration of juvenile salmon towards the ocean and to

reproduce the lateral and secondary circulations in the area of channel meanders.

The results here presented show that the nesting implementation proposed can

reproduce lateral circulations not attainable by the lower resolution model of the

entire basin.

 Lake Tahoe (USA). Scientists use this model to study the transport of contaminants

and planktonic larvae in the near-shore (littoral) zone. The results show that the

nesting implementation described can reproduce recirculation not observed in the

lower resolution model of the entire basin.

The high computational cost required to apply the model using high resolution

grids on large domains can lead to model run times that are slower than real time. This

prevents the model from being used for forecasting the migration of salmon in the

Sacramento River or the impact of contaminants and invasive species in Lake Tahoe for

periods of days or more ahead of time, and/or prevents the use of low-cost and low-

power-consumption processors or computers. This happens due to the huge number of

operations and the large storage memory required by 3D high resolution grid, semi-

implicit, second-order models, even when dry cells are not stored in memory. We have

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

27

developed a hybrid shared and distributed memory parallel implementation with very

good results for middle resolutions in computer clusters with multicore low-price/low-

consumption servers, but with poor results for the high resolution needed in local-scale

process simulations (Acosta et al. 2010). In order to deal with higher resolution models

even in PCs or volume servers (of IDC Taxonomy, www.idc.com) a nesting

implementation for Si3D is here proposed. Energy efficiency is increasingly important

in computation, because the increased usage of computation, together with increasing

energy costs and the need to reduce greenhouse gas emissions call for energy-

efficiency. A basic way to contribute to energy-efficiency is using low carbon footprint

computers. Expensive and high-power consumption computers can be used for even

much larger problems.

The chapter is organized as follows. Section 2.2 presents the characteristics of the

nesting implementations here evaluated and places this work within the related

bibliography. Section 2.3 details the nesting approach implementation. Section 2.4

validates the nested implementation with three kinds of tests using both synthetic and

real examples, and compares it with other approaches. Results demonstrate that the

implementation overcomes mass and energy drift problems and it is able to reproduce

recirculation in Lake Tahoe and lateral circulation in Sacramento River not attainable by

lower resolution model of the entire basin. Section 2.4 also shows the importance of

communicating tangential velocities in nested-grid simulations. Results about the

computational efficiency are also given in this section. Finally, the last section gives

conclusions.

2.2 Nesting implementation: characteristics, performance. Related works

A nesting implementation comprises several design and implementation decisions that

affect the quality of simulation results and the computational efficiency:

Open Boundary Condition (OBC) type.

The grid border cells of a hydrodynamic model do not have adjacent cells in all its sides

(there are no cells outside the grid), i.e. the grid has open boundaries. These border cells

could resolve the governing equations if fictitious boundary cells were added to the

model. The equations used at these boundary cells depend on the open boundary

http://www.idc.com/

PhD Thesis

28

condition (OBC) used (Blayo and Debreu 2005, Chapman 1985, Marchesiello et al.

2001). The main purpose of OBCs is allowing the fluxes generated inside the model

domain to leave it without reflection, avoiding the consequent deterioration of the

model solution; although, at the same time, OBC should allow the model to receive

external inward fluxes (e.g. inner models of nesting schemes). If the model does not

receive inward fluxes the boundary is passive, otherwise it is active (Palma and Matano

2001). In pure OBCs, external values are unknown and set to 0 (the value itself, its

change over time, its change over space or its change over time and space) (Chapman

1985, Jensen 1998, Martinsen and Engedahl 1987). External data used by OBCs can be

sensor/climatology data, or data obtained from a larger-domain outer model (used by

inner models in nesting approaches).

Several classifications (Blayo and Debreu 2005, Marchesiello et al. 2001, Oddo

and Pinardi 2008) and comparisons (passive boundaries (Chapman 1985, Jensen 1998,

Lavelle and Thacker 2008, Nycander and Doos 2003, Palma and Matano 1998), active

boundaries (Cailleau et al. 2008, Herzfeld and Andrewartha 2012, Jensen 1998, Lavelle

and Thacker 2008), active nesting boundaries (Cailleau et al. 2008, Herzfeld and

Andrewartha 2012)) of OBCs can be found in the bibliography. Usual OBCs are

radiation condition, Flather condition (often classified as radiation condition), Dirichlet

or clamped condition (it can be considered a special case of radiation (Jensen 1998) or

the most sharp form of relaxation (Blayo and Debreu 2006)), advective condition, and

relaxation methods. A passive clamped condition sets to 0 the boundary variables ϕ

(ϕ=0) (Chapman 1985) or their change over time δϕ/δt=0 (Jensen 1998), active

clamped conditions set the boundary variables to external values that change over time,

ϕ=ϕ
ext

 (Blayo and Debreu 2005). Radiation conditions assume a free outgoing wave

propagation, often normal to the boundary, e.g. the passive OBC Sommerfeld condition

δϕ/δt + c δϕ/δn=0, which corresponds to the transport of ϕ through the boundary with a

velocity of c, n is normal to the boundary. The advective condition is frequently used

for tracers (temperature, salinity),for instance in (Herzfeld and Andrewartha 2012,

Herzfeld 2009, Oddo and Pinardi 2008, Zavatarelli and Pinardi 2003), δϕ/δt + Vn

δϕ/δn=0, Vn is the normal velocity in the border cell. A relaxation scheme, in order to

absorb outgoing flow generated in the model, relaxes the solution of the model toward 0

or to values calculated from interior values (passive) (Jensen 1998, Martinsen and

Engedahl 1987, Palma and Matano 1998), or relaxes it to external data ϕ
ext

 (active).

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

29

Typically, the relaxation is applied in a relaxation band, e.g. the flux relaxation scheme,

ϕ=α×ϕ
target

+(1- α)×ϕ
in

, where ϕ
in

 is the interior solution, ϕ
target

 the specified target

value, and α is the relaxation parameter which varies from 0 to 1 within the relaxation

band; in active implementations ϕ
target

=ϕ
ext

. An important drawback of the flux

relaxation scheme is its cost, in terms of communication time or storage required, which

may prevent its use, especially in 3D models (Mason et al. 2010). Relaxation schemes

can be applied to other OBCs; for instance, external values could be added in radiation

OBCs by including a relaxation term (nudging term), δϕ/δt + c δϕ/δn=-(ϕ-ϕ
ext

)/τ

(Marchesiello 2001).

Boundaries with clamped condition reflect any outgoing flow if they are passive

and any outgoing flow not described by the external data if they are active.

Comparisons show very poor performance of passive clamped conditions (Chapman

1985, Jensen 1998). Relaxation methods are recommended in comparative studies

(Jensen 1998, Lavelle and Thacker 2008, Nycander and Noos 2003, Palma and Matano

2001). Most studies compare passive 1D or 2D OBCs. Jensen (1998) compares 3D

passive clamped, radiation and relaxation schemes, recommending the relaxation

scheme for general use but pointing out that reasonably correct target values, ϕ
target

. are

required. Lawrence and Ashley (2008) compares three different relaxation alternatives

with shallow-water models recommending the simple implementation used in Martinsen

and Engedahl (1987) but with correct external inputs as target value. In nesting

approaches, the external information for the inner model, provided by the outer model,

is mostly compatible with the inner model solution, especially if both resolve the same

governing equations. Considering all these studies, N-Si3D uses a 3D active clamped

condition with a flux relaxation scheme (cost is avoided by the particular coupling

implementation, see below) to absorb outgoing flow generated in the inner model.

Relaxation can be used if it is beneficial to prevent energy build-up, e.g. in long-term

simulations and/or when it is difficult to find inner/outer boundaries with a good

compatibility. The N-Si3D implementation without relaxation, just clamped condition,

obtains good results. Comparison made here between clamped condition with or

without relaxation reveals the goodness of the active 3D relaxation implemented

(Section 2.4.2). Other alternatives of relaxation have been proposed such as the local

flux adjustment in Herzfeld (2009), which is algebraically similar to the Flather

radiation condition Herzfeld and Andrewartha (2012).

PhD Thesis

30

Numerical implementation of the inner/outer interface and coupling of the inner/outer

grids

The N-Si3D OBC implementation guarantees that all the values used by inner cells are

obtained by the same governing equations with the same discretization method and

numerical implementation, even boundary values. The outer model provides all the

values needed by the numerical implementation not computed by the inner model (the

border cells use, for some variables, values (temporal and spatially) interpolated from

outer values), so they are also obtained using the same governing equations,

discretization and numerical implementation though with parameters adjusted for a

lower resolution grid. Outer model provides all the information required by the inner

model (flows) and without duplications, so under-specification and over-specification

problems are reduced, although they are not removed. Incoming flows to and outgoing

flows from the inner model boundaries depend on these outer values transferred. The

quality of the solution will depend on distortions introduced at the boundary by the

outer information transferred and on the noise caused by the reflection at the boundary

of the outgoing flows generated in the higher resolution inner model and not present in

the outer information. Distortions in the incoming fluxes lead to mass, momentum and

temperature (tracers) conservation errors. Temporal and spatial interpolation of data

transferred and mismatches between the outer and inner bathymetries can cause flux

distortions and noise. The work (Cailleau 2008) compares results using temporal

interpolation with two different transfer rates between inner and outer models, showing

a clear improvement when transfer rate is reduced down to the outer-grid time-step. N-

Si3D transfers data at each inner-grid time-step, removing temporal interpolation. This

does not affect computational efficiency (execution time perceived by the user, resource

cost) due to the parallel outer/inner implementation (Section 2.3.4). The inner OBC uses

a bathymetry transition band in order to minimize the bathymetry mismatch effect on

the quality (Section 2.3.2). Other works also used a bathymetry transition band

(Herzfeld and Andrewartha 2012, Mason et al. 2010, Penven et al. 2006).

The work (Herzfeld 2009) is devoted to demonstrate that the relative positions of

the variables supplied by OBCs may influence model solution; in particular two

different relative positions is tested using different OBC types (passive radiation for

elevation and tangential velocity and passive no-gradient, passive Flather and active

Flather, for normal velocity). Here two different relative positions for Si3D

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

31

hydrodynamic model are compared with the active OBC based on clamped and flux

relaxation scheme, showing better results for the relative position used in N-Si3D

(Section 2.3.3).

Offline nesting versus online nesting

The outer model may be run first independently of the inner model (offline nesting

(Cailleau et al. 2008, Herzfeld and Andrewartha 2012, Mason et al. 2010)) or

synchronously with the inner model (online nesting (Cailleau et al. 2008, Debreu and

Blayo 2008, Penven et al. 2006)). In offline nesting the information to be transferred

from the outer to the inner model is stored in a file, so a compromise must be met

among storage, and number of values to exchange and transfer frequency. Here, an

online implementation is presented that allows transferring at each simulation time-step

of the inner model (so no temporal interpolation errors are added) and transferring all

values required for the inner discrete equations, even those of a 3D model (to decrease

under-specification). Results show no differences between inner and outer model

outputs (water surface elevation, velocities, temperature, volume) when both inner and

outer have the same resolution (Section 2.4.2).

One-way nesting versus two-way nesting

One-way nesting (Bonaventura and Rosatti 2002, Kolerski et al. 2010, Leon et al. 2012,

Mason et al. 2010, Zavatarelli and Pinardi 2003) or two-way nesting (Cailleau et al.

2008, Debreu and Blayo 2008, Fox and Maskell 1995, Harris and Durran 2010, Zhang

et al. 2007) have been used to exchange information between the components of an

online nested-grid model. In conventional one-way nesting, the fine-resolution inner

model is forced by the solution of the outer model (just boundary communication is

needed). Alternatively, two-way interaction may be used between the inner and outer

models. This approach adds feedback from all the inner model cells to the outer model,

with the intention that the outer model benefits from the increased accuracy of the

solution yielded by the inner model. Two-way nesting does not always improve the

results (Heggelund and Beentsen 2002) and the interaction requires more execution time

(computation and communication time). Two-way nesting approaches must have an

online implementation, the execution time is inner plus outer model execution time plus

communication time, and, as it is here discussed (Section 2.3.4), this does not change in

parallel inner/outer implementations of two-way nested semi-implicit models because

PhD Thesis

32

of the implicit variables. N-Si3D implementation execution time depends on the inner

execution time or the outer execution time (Section 2.3.4).

Parallel Inner/Outer dynamic coupling

Online nesting implementations require coupling the inner and outer models at

execution time. This is not an easy task as it is pointed out in (Blayo and Debreu 2006,

Herzfeld and Andrewartha 2012, Mason et al. 2010). Other works use external software

for coupling, which also implement the bathymetry transition band, (Cailleau et al.

2008, Debreu et al. 2012, Penven et al. 2006). Here a coupling implementation that

allows the execution of the inner and outer models in parallel is proposed (Sections

2.3.4, 2.4.6). The parallel implementation is more challenging in semi-implicit

hydrodynamic models because the inner model at the current time-step requires values

of outer variables at a later outer time-step. The parallel scheme here presented can be

used with other hydrodynamic models. The parallel execution time achieved is equal to

the inner-model execution time or the outer-model execution time. Only one outer/inner

transfer of values per time-step is needed and its communication time does not affect

execution time because this transfer is overlapped with computation. Although not used

here, both, inner and outer models, can be parallelized using a domain (data)

decomposition structure combined with a master-slave structure as in Acosta et al.

(2010) (there are several attempts to classify task/process structures in parallel

computing, one of these classification can be found in Silva-Moura and Buyya (1998)).

External data provided from the outer model

The exchange of information from outer to inner model (carried out in both one-way

and two-way nesting) usually includes velocities, active scalar concentration (e.g.

temperature, salinity or suspended sediment concentration), non-active scalar transport

(e.g. chlorophyll concentration, tracer concentration) and water surface elevation. Many

models (Bonaventura and Rossatti 2002, Fox and Maskell 1995, Harris and Durran

2010, Zhai et al. 2008) transfer normal velocity components to ensure that mass and

momentum-diffusion fluxes through the nested boundary are consistent, but they do not

transfer tangential velocity components. While some models (Barth et al. 2005,

Zavatarelli and Pinardi 2003) do transfer tangential velocities, they have not reported its

influence on the accuracy of results or the increase in computational time required by

the model. Here it is shown that the passing of tangential velocities in the boundary

conditions does not materially affect execution time and can significantly improve the

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

33

accuracy of the simulations, especially, when water currents and lateral circulations are

strong and/or features such as vortices exist (Section 2.4.5).

2.3 Nesting specifications and implementation

Figure 2.1 illustrates a schematic set up of a nested grid for the problem of simulating

circulation and transport in a square basin. The nesting implementation allows to define

the nesting boundary as any path of segments in the x and y (horizontal) directions,

selecting a connected inner domain inside the outer domain, being thus able to achieve a

better adjustment to the region of interest and ignore areas of the domain in which high

resolution is not required. The Figure 2.1 example uses a high-resolution grid to resolve

the local-scale physical processes in the sub-domain formed by the northeastern corner

of the outer model; those processes are partly driven by the large-scale basin circulation.

The large basin is discretized using a structured grid with square cells of horizontal size

Δxog. The boundary that separates the sub-basin from the boundary cells will be referred

to as the I/O (Inner/Outer) boundary. The sub-basin in the inner model is discretized

with cells of size Δxig ≤ Δxog. Therefore, the number of water columns of the inner

model, Nim, will be larger than the number of columns of the outer model, Nom, defined

within the sub-basin where Nim = (Δxog/Δxig)
2
 Nom. The ratio Δxog/Δxig is the grid

refinement parameter rg which must be an integer value. The height of each layer in the

vertical direction is equal in the outer and inner models (e.g., the i-layer height in the

outer model is equal to the i-layer height of the inner), and the maximum number of

layers remains equal in the inner model.

PhD Thesis

34

Figure 2.1. Nesting grid example, (a) outer grid model or basin where Δxog is East-West

and North-South horizontal resolution and (b) inner grid model or sub-basin inside the

outer grid where horizontal resolution Δxig is half the outer model horizontal resolution.

The sub-basin is simulated by the inner model with resolution Δxig and within the outer

model with resolution Δxog.

The nested implementation presented is applied here to the semi-implicit

hydrodynamic model proposed by Smith 2006, Si3D (more details in Chapter 1) and

modified to take advantage of several basic optimizations (more details about the basic

optimizations can be found in Chapter 5, this version is called Basic Si3D). This

optimizations also include the improvement of data structure of Si3D, explaining in

detail in Section 2.3.5.

2.3.1 Discrete form of the equations near I/O boundary in the inner model

All inner model cells in the 3D grid resolve the same governing equations with the same

numerical implementation. The outer model provides all the values needed by the

numerical implementation not computed by the inner model. The border cells use, for

some variables, values interpolated from outer values; these interpolated variables are

called here driving variables and conform the boundary variables of the inner model.

Consider, for example, the simple sub-domain with a northern I/O boundary shown in

Figure 2.2(a). The value of ζ at the next time-step in any border column (i,j) depends on

the unknown volumetric transports (U, V) at their 4 neighboring columns. The discrete

form of the continuity equation in one such border column is:

 (2.1)

k = 1 and km denote the surface and bottom layers in the water column and n+1 and n-1

represent different time intervals. The two terms underlined in the right hand side of Eq.

(2.1) (driving variables) are values of depth-integrated transport across the northern

face, at times n+1 and n-1, which are computed by the outer model and provided to the

inner model (driving variables are highlighted in blue in the figure). One can easily

derive the equations for other types of boundaries (eastern, western or southern). Note



















































































































km

k

n

kji

km

k
driving

n

kji

n

kji

km

k

n

kji

n

kji

km

k

n

kji

km

k

n

kji

n

kji

VVV
y

t
UU

x

t

V
y

t
UU

x

t

1

1

,2/1,

1
.

1

,2/1,

1

,2/1,

1

1

,,2/1

1

,,2/1

1n

ji,

1

1

,2/1,

1

1

,,2/1

1

,,2/1

1n

ji,

))()(ζ

)()(ζ

  

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

35

that in an implicit model, or a semi-implicit one as the model used here, in order to

compute water surface elevation for next time-step n+1 in the inner model, ζ
n+1

, it is

necessary to communicate the driving volumetric transport values (V
n+1

, or U
n+1

 for an

east-west boundary), computed in outer model at the end of time-step n, to the inner

model at the beginning of time-step n. Therefore, the outer model proceeds one time-

step ahead the inner model. The rest of equations are not shown here, they can be

obtained in a similar way. Figure 2.2 also shows the dependencies for si,j,k (b), Ui+1/2,j,k

(c), and Vi,j-1/2,k (d).

2.3.2 Boundary interface between inner and outer model

The additional details in the high-resolution bathymetry will be important in creating

flow features, which can be resolved by the inner model. Although, the inner and outer

bathymetries need to match at the interface to reduce the mass flow differences between

inner and outer models. Hence, the bathymetry information in the inner model will have

a coarser resolution (equal to the outer model) at the I/O boundary, and will gradually

Figure 2.2. For a northern I/O boundary (rg = 1), dependencies for the calculation of (a) ζ i,j

(red triangle), (b) si,j,k (red triangle), (c) Ui+1/2,j,k (red circle), and (d) Vi,j-1/2,k (red square).

The values used in the computation are in green (if they are obtained by the inner

model) and blue (if they are obtained by the boundary condition, driving variables)

PhD Thesis

36

transition to the high resolution bathymetry away from it. Preliminary tests showed that

a transition band of up to three outer grid cells tbom = 3, corresponding to tbim= tbom × rg

= 3×rg inner grid cells, obtained good results. The new depth in each water column of

the transition band is linearly interpolated between outer and inner grid depths.

The relaxation area implemented in the interface (Section 2.2), smoothing the flux

changes between inner and outer models in order to maintain a strong consistency

between their solutions in the area where both interact, preventing flux reflection. The

inner solution on the interface, i.e. scalar concentration, height, normal and tangential

velocities (volumetric transports are obtained from velocities and heights), is replaced at

each time-step by (according to Davies (1976)):

ϕ = (1-α) × ϕ
in

 + α × ϕ
 out

 (2.2)

α = 1 – tanh(d/2) d = 1,2,3,.... tbim (2.3)

where ϕ
in

 and ϕ
out

 are the inner and outer solution respectively, α is a relaxation

function, and tbim the size of the interface (equal by default to the transition band size).

2.3.3 Relative position of the driving variables on the grid

The relative position on the cell faces and centers of the velocity and surface elevation

supplied by OBC, or OBC implementation (Herzfeld 2009), affects the quality of the

results, as demonstrated in the cited reference. Herzfeld (2009) compares two

alternatives of OBC implementations using different OBC types (passive radiation for

elevation and tangential velocity and passive no-gradient, passive Flather and active

Flather, for normal velocity). Other factors affect the OBC quality, as it is pointed out in

Herzfeld (2009), such as the OBC type, the hydrodynamic model and the application.

Two alternatives for relative positions have been studied and tested here for Si3D

and the type of OBC here used. Figure 2.3 shows the final OBC implementation

included in N-Si3D (a) and the alternative approach studied (b). They have different

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

37

relative positions of normal and tangential driving variables in the boundary grid (these

implementations do not require external surface elevation per se). Readers can find

similarities between the implementation in Figure 2.3(b) and the implementation tested

in Herzfeld and Andrewrtha (2012). Although both use clamped OBC and compute the

border surface elevations via the governing equations, here they are computed by the

same equations used in the rest of the inner domain (it is a border cell of the inner

domain). The OBC in Herzfeld and Andrewrtha (2012) modifies the equation so that the

local flux adjustment in Herzfeld (2009) is applied. The local flux adjustment condition

can be shown to be algebraically similar to the Flather radiation condition as pointed out

in Herzfeld and Andrewrtha (2012). Moreover, the implementation in Herzfeld and

Andrewrtha (2012) requires external surface elevations from the outer model to be used

in the governing equations of these cells. They are boundary cells instead of border cells

of the inner model.

Output quality is not the same for both approaches in Figure 2.3, as shown in

Section 2.4 results for both synthetic and real examples. The implementations here

presented do not introduce any errors in the computation when inner and outer models

have the same resolution (as Section 2.4 shows). Therefore, the distortion in the

incoming and outgoing fluxes is due to the interpolation required to obtain driving

variables from outer values and to bathymetry interpolation. Thus, errors may depend

on how many values of driving variables are used by the inner model. Differences are

more noticeable when tangential velocities play an important role, such as in

Sacramento River simulations. Thus, which terms in the equations use the driving

variables is also important. The OBC implementation determines the usage of driving

variables in the inner equations: number of times they are used, which terms in the

equations use them (Herzfeld 2009). Herzfeld and Andrewrtha (2009) shows, for N-

Si3D and the alternative OBC implementation of Figure 2.3(b), which terms in the

governing equations use which driving variables (normal velocity or volumetric

transport (N), tangential velocity or volumetric transport (T) and temperature (tp)). N-

Si3D OBC implementation uses driving variables 14 times in the computation of the

inner border variables and the alternative, Figure 2.3(b), 20 times (last row in Table

2.1). Border normal velocities (principal responsible of the incoming and outgoing

fluxes) depend on 2 driving variables (1 normal and 1 tangential, column 4) for Figure

2.3(a) and on 8 (2 normal, 6 tangential, column 7) for Figure 2.3(b).

PhD Thesis

38

 (a) (b)

Figure 2.3. OBC implementation (western boundary) in (a) N-Si3D and (b) an alternative

approach with tangential driving variables prescribed within the inner model.

Refinement parameter rg=1 in this example. Yellow cells obtain elevation by the inner

governing equation.

OBC implementation N-Si3D Figure 2.3(a) clp-et Figure 2.3 (b) clp-it
Position of the interior variable in the cell Center Normal Tangential Center Normal Tangential
Position of the interior variable in the grid i i+1/2 i i i+1/2 i+1

Momentum
equation

Coriolis --- --- 2N --- 2T ---
Advection --- 1N 2N/1T --- 2T/1N 1T

Horizontal Diffusion --- 1T 1N --- 1N 1T
Wind/bottom stress --- --- 2N --- 2T ---

Continuity
equation

Water Surface Elevation 1N --- --- 1N/2T --- ---
Vertical velocity 1N --- --- 1N/2T --- ---

Transport eq. Temperature 1N/1tp --- --- 1N/2T/1tp --- ---

Total per column 3N/1tp 1N/1T 7N/1T 3N/6T/1tp 2N/6T 2T

TOTAL driving variables 11N/2T/1tp -> 14 5N/14T/1tp -> 20

Table 2.1. Terms in the inner governing equations that use the driving variables (normal

velocity or volumetric transport (N), tangential velocity or volumetric transport (T)

and temperature (tp)). clp-et: clamped external tangentials, clp-it: clamped internal

tangentials

2.3.4 Inner/Outer dynamic coupling

In order to design the inner/outer dynamic (at execution time) coupling, one needs to

identify the outer variables required by each inner time-step. Figure 2.4 (a) shows the

outer model variables used by the inner model at each inner time-step in the one-way

OBC of the implementation here presented (non-active scalar transport is not included

in the figures because it is not used in the applications of Section 2.4) and Figure 2.4

(b) also shows the inner model variables needed by the outer model each outer time-step

in a two-way OBC version of the implementation (dashed line).

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

39

(a)

(b)

Figure 2.4. Data dependencies between inner/outer models. Driving variables (blue,

denoted with the subscript d), needed by the boundary cells of the inner model at time-

step n, for one-way (a) and two-way (b) implementations. Variables (red, denoted with

the subscript ra) needed from the outer relaxation area in order to implement the

relaxation scheme in the inner relaxation area. Variables (green, dashed, denoted with

the subscript i) transferred from the inner model after time-step n to the outer model

time-step n+1 in a two-way implementation (b). Data dependencies (arrows) from outer

to inner model (solid) and from inner to outer (dashed lines).

In offline nesting the information to be transferred from the outer to the inner

model is stored in a file, so a compromise must be met among storage

(capacity/speed/price), and number of values to exchange and transfer frequency. The

implementation here presented is online, so there are no restrictions about transfer

frequency and variables to be transferred, since reading from and writing to storage is

not required. Moreover, in the implementation here proposed the number of

communications from outer to inner model occurs in parallel to computation, so they do

not affect execution time as the next equations show. The inner and outer models are

executed in different processors (cores) with an execution time of (assuming same time-

step Δt for inner and outer model, Figure 2.5 (a)):

 𝑇𝑜𝑛𝑒−𝑤𝑎𝑦 = 𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
+ 𝑁𝛥𝑡 × 𝑇𝛥𝑡

𝑖 (≈ 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑖) when 𝑇𝛥𝑡

𝑖 ≥ 𝑇𝛥𝑡
𝑜

𝑇𝑜𝑛𝑒−𝑤𝑎𝑦 = 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
+ 𝑇𝛥𝑡

𝑖 (≈ 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑜) when 𝑇𝛥𝑡

𝑖 ≤

𝑇𝛥𝑡
𝑜

 (2.4)

is the number of time-steps, 𝑇𝛥𝑡
𝑖 is the run time for an inner time-step, 𝑇𝛥𝑡

𝑜 is the run

time for an outer time-step, and 𝑇𝐶
𝑜/𝑖

is the time required for the communication

(/synchronization) of the driving variables at each time-step.

The models can be adjusted to balance 𝑇𝛥𝑡
𝑖 and 𝑇𝛥𝑡

𝑜 (by increasing inner or outer

domain or resolution, etc., to improve quality). An offline implementation of the online

…

…

…

…

n-1 n n+1

n-1 n n+1

Outer steps

Inner time-steps

…

…

…

…

n-1 n n+1

n-1 n n+1

Outer steps

Inner time-steps

PhD Thesis

40

Tahoe real example presented in Section 2.4.4 would generate a file of 54 TB, so an

expensive and high power consumption storage (and storage network) would be

required (shop price of tens of thousands of dollars, plus other costs such as installation,

administration and maintenance). The online implementation here presented can be

executed in parallel in one inexpensive and low power consumption PC (nowadays

commodity inexpensive processors have at least two cores). The code can also run in

parallel in a multithread core (also common nowadays) with a higher execution time

because inner and outer models would share the core pipeline stages (in particular, the

ALU or execution stage). This scheme can be applied to several nesting levels.

Execution time will mainly depend on the most time consuming level (as in pipeline

architectures) for a number of processing cores equal to the number of levels. The

program implemented can also be executed sequentially without any change.

In a two-way implementation, the inner model cannot be executed in parallel to

the outer model (Figure 2.5 (b)):

𝑇𝑡𝑤𝑜−𝑤𝑎𝑦 = 𝑁𝛥𝑡 × (𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
 + 𝑇𝛥𝑡

𝑖 + 𝑇𝐶
𝑖/𝑜
) (2.5)

Figure 2.5. (a) Inner and outer models executing in two processors. Blue arrows represent

data communications from outer to inner. Communication time is hidden by

computations. (b) Inner and outer models in a two-way nesting must be executed

sequentially. Blue and green arrows represent data communications between inner and

outer. Total time depends on the inner time plus outer time plus communication time

from inner to outer (variables of the whole 3D nesting grid) plus communication time

from outer to inner (variables in the 3D boundary).

…

……

…

n-1 n n+1

n-1 n n+1n-2

n+2

…

…

…

…

n-1 n n+1

n-1 n n+1

Outer steps

Inner
time-steps

Time

Outer steps

Inner
time-steps

Time

(b) Two-way

(a) Online one-way

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

41

2.3.5 Improvement of data structures in the Si3D implementation

The 3D model variables are stored in one- or two-dimensional arrays that in order to

decrease memory requirements and computational time do not reserve space for dry

columns. 1D arrays store 2D variables defined in the x and y directions, such as ζ. 2D

arrays store 3D variables defined in the x, y and z directions with the first dimension

used for x and y, and the second for z. Neighboring north, south, east and west water

columns are accessed using 4 arrays of one dimension (one for each direction). These

arrays avoid the extra operations needed to identify neighbor columns, while taking up

only minuscule memory space; for example, these arrays take up 0.05% of the total

memory required in the Lake Tahoe model and 0.02% in the Sacramento River model.

2.4 N-Si3D model evaluation

2.4.1 Tests, metrics and examples

Three kinds of tests and three kinds of examples (synthetic rectangular channels with

constant wind, Sacramento River and Lake Tahoe) are used to verify, validate and

evaluate the model. The tests are:

A. A nesting test with outer and inner models using the same grid resolution (rg=1) is

done with the three kinds of examples to verify the implementation. This test

demonstrates that the inner and outer domains are coupled seamlessly. In this test,

the velocity fields u (East-West or E-W), v (North-South or N-S) and w (vertical),

water surface elevation (ζ) and temperature (s, active scalar concentration) of both

models are compared. A normalized error is obtained for each variable at every

output epoch in several layers (see metrics below). ζ is a 2D variable, conceptually

associated to the first layer, so only one NRMSE is computed per output epoch. In

addition, the water volumes (outer and inner) in the nested area are compared in

order to demonstrate volume conservation between outer and inner models. This

volume is calculated by multiplying the sum of ζ by the product Δx × Δy, where Δx

and Δy are the horizontal dimensions of the cells (volume of the first layer).

B. A nesting simulation with an inner model using a grid resolution higher than the

outer model (rg>1) and a non-nesting simulation with grid resolution equal to the

PhD Thesis

42

nested inner model is done with the three kinds of examples. This test is designed to

demonstrate that the inner model obtains results similar to those of a complete high-

resolution model (HR basin) with much lower computational cost. In this test, all

variables (u, v, w, ζ, s) and the first-layer volume of the inner and the HR basin

models are compared as in test A.

C. A nesting test with an inner model using a grid resolution higher than the outer

model (rg>1) is done with the two real examples in order to demonstrate that local-

scale features in the flow cannot be accurately resolved using larger cell sizes (the

LR model) or if local-scale irregularities in bathymetry and topography are not

appropriately represented. An HR model, which is able to reproduce the length

scales of these irregularities, is required to resolve these features and the nesting

implementation here presented accomplishes it in much less time and using much

less resources.

Differences between the outer and inner model (in tests A) and between the HR

basin and inner model solutions (in tests B) after multiple simulation time-steps are

taken as a measure of the validity of the nested algorithm implementation. This

differences were quantified calculating a root mean squared error (RMSE) and a

normalized root-mean-squared error (NRMSE) as in other validation works (Debreu et

al. 2012, Halliwell et al. 2009, Kourafalou et al. 2009, Pairaud et al. 2011, Son et al.

2011):

𝑅𝑀𝑆𝐸 = √
∑ (𝑥1

𝑐 − 𝑥2
𝑐)2𝑁𝑖𝑚

𝑐=1

𝑁𝑖𝑚
 (2.6)

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (2.7)

Where, x1 is a variable defined in cells of one layer in the outer model or HR basin and

x2 the same variable in the inner model; xmax and xmin are the maximum and minimum

values found in that layer in the nested zone for both models being compared (as in

(Halliwell et al. 2009, Son et al. 2011)); Nim is the total number of layer cells in the

nested zone. A temporal RMSE is also used to compare scalars in a time-step, such as

cross-sectional flow or total volume, along the whole simulation:

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

43

𝑅𝑀𝑆𝐸𝑡 = √
∑ (𝑣1

𝑡 − 𝑣2
𝑡)2𝑁𝛥𝑡

𝑡=1

𝑁𝛥𝑡
 (2.8)

Area averaged kinetic energy, excess mass, and energy flux are all calculated as in

Herzfeld and Andrewrtha (2012) for the test B using a channel. These metrics are useful

for identifying problems in the boundary implementation and for studying whether rim

currents and other undesirable features may be present in the inner solution due to

inconsistencies between the external data provided by the outer model and the evolution

of the inner model. Averaged kinetic energy is computed by:

𝑇𝐾𝐸 =
1

2𝐴
 ∫𝜌(𝑈2 + 𝑉2)𝑑𝐴

𝐴

 (2.9)

which computes kinetic energy using Eq. (1.24) of Kowalik and Murty (1993) (as in

Herzfeld and Andrewrtha (2012)); 𝑈 = ∫ 𝑢𝑑𝑧/𝐷
𝜁

−𝐻
 and 𝑉 = ∫ 𝑣𝑑𝑧/𝐷

𝜁

−𝐻
 are depth

averaged velocities in the x and y direction, respectively, 𝜁 is the water surface

elevation, H is the bottom depth, and D is the total depth 𝐷 = 𝜁 + 𝐻 . Area averaged

water level is computed using the excess mass metric of Palma and Matano (1998) (as

in Herzfeld and Andrewrtha (2012)):

𝐸𝑀 =
1

𝐴
 ∫𝜁𝑑𝐴

𝐴

 (2.10)

It is used to check that the boundary implementation properly represents mass fluxes

through the open boundaries (Palma and Matano 1998). Finally, energy flux is

computed for a western I/O boundary by Eq. 6 of Palma and Matano (2001) (as in

Herzfeld and Andrewrtha (2012)):

𝑂𝐵𝐶𝑓𝑙𝑢𝑥 =
1

𝑊
∫ 𝐷𝑈𝑖/𝑜 (𝑔𝜁 +

1

2
(𝑈2 + 𝑉2)) 𝑑𝑦

𝑊

 (2.11)

PhD Thesis

44

where W is the width of the frontier beside the I/O boundary and Ui/o is the depth

averaged normal velocity at the I/O boundary.

 In the first example, the domain is a rectangular basin with a small number of

grid cells (Section 2.4.2). The sub-basin is the southern end of this basin for the Test A

and a southern central rectangle for the Test B. In the second example (Sacramento

River, Section 2.4.3), the sub-basin is a bend in the river with high values of velocities

(normal and tangential) and both lateral re-circulation and secondary circulation zones.

In the last example (Lake Tahoe, Section 2.4.4) the model is used to resolve the

circulation and transport patterns in the lake’s near-shore regions. The sub-basin is the

southeast corner of the lake. Tangential velocity can affect the quality of the results

significantly as Section 2.4.5 shows. Table 2.2 summarizes the characteristics of the

examples and the resolutions (for outer, inner and HR basin), temperature, simulation

period, time-steps, output epochs and kind of tests used in each example.

2.4.2 Case 1: Rectangular synthetic channels.

Test A was applied to a rectangular flat bottom basin aligned in the N-S direction, with

a length of 11000 km and a width of 110 km, both values greater than the barotropic

Rossby radius (channel 1, 2
nd

 row in Table 2.2). It has a constant depth of 10 m. The

channel is discretized using square cells of 5.5 Km (Δx=Δy), and a vertical dimension of

0.5m (Δz). The inner grid covers the southern 2750 km of the channel. The model is

forced with a southern-wind speed of 6 m/s. Temperature is 25ºC at free surface and

decreases 0.5ºC per layer, reaching 15.5º at bottom layer. The period of time simulated

is 60 days (steady state before 20 days) and the time-step is set to 50 seconds.

Examples Basin size Inner size
Outer

resolution
Inner

resolution
HR basin

Temp-
erature

Simulation
period

Time-
step

Output
epoch T

es
t

Channel 1
11000km×

110km×10m
2750km×

110km×10m
5.5km×
0.5m

5.5km×
0.5m

gr(25-
15.5ºC)

60 days 50s 1h A

Channel 2
1000km×
540km×

(50m-110m)

420km×
280km×

(50m-81.2m)

20km×
(2m,5m)

4km×
(2m,5m)

4km×
(2m,5m)

cst(20ºC),
gr(25-

14.5ºC)

30 days, 40 days
(with temp. gr.)

50s,
450s,
1800s

30’ B

Sacra-
mento
River

32km×170m
× (1m-16m)

1670m×1720
m ×(1m-13m)

10m/
49626c

10m/4593c
5m/17700c
2m/109067c

5m/
198918c

cst
10 days (Julian

Days 8-17, 2009)

4s/10m
1s/5m
1s/2m

1h
A
B
C

Lake
Tahoe

20km×30km
× (0.2m-
0.5km)

7420m×6320
m ×(0.2m-

430m)

100m/
49215c

100m/3932c
20m/99722c

20m/
1244896c

sensor
outputs

30 days (Julian
Days 185-215,

2008)

50s/100m
10s/20m

1h
A
B
C

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

45

Tests A and B were applied to an open zonal channel (channel 2, 3
rd

 row in Table

2.2) forced with constant alongshore wind (Chapman 1985, Herzfeld and Andrewrtha

2012, Palma and Matano 1998, Palma and Matano 2001) (Figure 2.6). (Chapman 1985,

Palma and Matano 1998, Palma and Matano 2001) used 2D models, for which the

linearized version has an analytical solution in an unbounded domain (Chapman 1985).

Data bellow for channel 2 are equal to those of the idealized test case in Herzfeld and

Andrewrtha (2012) (Sect. 3.1). The channel has a bottom slope in the N-S direction

(from 110m at the northern coast to 50m at the southern coast). The outer model

solution for the open zonal channel is achieved by mimicking an infinite coast using

cyclic open boundaries. The model is run in the southern hemisphere, using constant

Coriolis of -0,0001028s
-1

(Rossby radius is 215.44km). There are 22 vertical layers, 2 m

depth the surface and 5m depth the other layers. Both, the LR outer and the HR basin

grids are 1000 km x 540 km and the HR inner grid is 420 km x 280 km. Both, the inner

and basin grids have horizontal square cells of 4km and the outer grid of 20 km (rg=5).

Temperature is maintained at 20ºC. The bottom drag coefficient is 0.025. An alongshore

wind of 8 m/s with drag coefficient of 0.00128 is applied, which creates an upwelling

solution with an elevation increasing northwards to support an eastwards geostrophic

flow. Time-steps of 50s and 450s have been used. The period of time simulated is 30

days. This test allows comparing the accuracy of the nesting procedure implemented

with the accuracy of other methods and checking the sensitivity of some parameters in

the quality of the results. An additional channel 2 simulation with a vertical temperature

gradient has been conducted here. Temperature is 25º at free surface and decreases

0.5ºC per layer, reaching 14.5º at bottom layer.

Table 2.2. Example characteristics: size of the complete basin and the inner domain

(length×width ×depth); resolution used in the nesting simulations (outer and inner

grid), and in the high-resolution (HR) basin simulations (square cell horizontal side ×

cell depth / number of columns); temperature (cst=constant, gr: gradient from top to

bottom, -0.5ºC per layer); time period of the simulations; simulation time-step for the

different sizes of the square cells (second /square cell side); time period between

output epochs (hours, minutes); and test conducted.

PhD Thesis

46

Figure 2.6. Channel 2: High-resolution basin and inner model bathymetry (white rectangle).

2.4.2.1 Test A. Comparison of inner and outer models with the same resolution.

Every hour, all the variables (u, v, w, ζ and s on the free surface plane) were collected,

and the outer and inner solutions in the southern end of the basin were compared. The

NRMSEs (Eq.(2.7)) for all variables and the temporal RMSE (Eq.(2.6)) for water volume

(in % of average volume in the nested area of the outer solution) are all less than 4% in

all output epochs and all layers (3
rd

 column in Table 2.3). This error is low and is due to

the preconditioned conjugate-gradient method used to solve the five-diagonal system of

equations for water surface elevation. An iterative solver, such as the preconditioned

conjugate-gradient (PCG) method, converges to the solution of the equation system

with much lower computational cost than a direct solver. However, the solution using a

direct solver is exact (excluding round-off error), while the solution with an iterative

solver is approximate within a tolerance, which is set by the user. In real applications,

using direct solver is not efficient due to the large systems of equations involved.

However, for small problems, a direct solver can be used to eliminate the approximation

error in the solution of the system. In this test case we used Gaussian elimination for

both inner and outer models. The NRMSEs for u, v, w, ζ and s are then all zero (2
nd

column in Table 2.3). These results demonstrate that the nested approach here proposed

does not introduce errors when inner and outer grid resolutions are the same. No volume

drift over time is observed with or without relaxation area.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

47

Channel 1 Channel 2 Sacramento River Lake Tahoe

 Test A Test A Test B Test B Test A Test A Test B Test B Test A Test A Test B Test B

inner/
outer

(Gauss)

inner/
outer

(PCGM)

inner/ HR
basin

(Gauss)

inner/ HR
basin

(PCGM)
inner/
outer

inner/
outer,
clp0-t

inner/
HR

basin,
clp-it

inner/
HR

basin
inner/
outer

inner/
outer,
clp0-t

inner/
HR

basin,
clp-it

inner/
HR

basin Eq.

Resoluti.
5.5Km/
5.5Km

5.5Km/
5.5Km

20km/4km 20km/4km
10m/
10m

10m/
10m

5m/5m 5m/5m
100m/
100m

100m/
100m

20m/
20m

20m/
20m

Temp. gr gr cst gr cst gr cst cst cst cst sensor sensor sensor sensor

Time 60d 60d 30d 40d 30d 40d 10d 10d 10d 10d 30d 30d 30d 30d

Time-step 50s 50s 50s 50s 4s 4s 1s 1s 50s 50s 10s 10s

Epoch 1h 1h 30’ 30’ 1h 1h 1h 1h 1h 1h 1h 1h

u (E-W) 0 3.36 1.32 1.39 4.27 4.41 1.94 6.15 5.03 4.12 2.19 2.93 3.32 2.99 7

v (N-S) 0 3.39 0.86 0.90 3.53 3.66 1.63 3.30 3.51 2.26 1.8 2.42 3.09 2.66 7

w (vert.) 0 3.51 1.11 1.16 3.61 3.72 0.62 2.26 4.36 3.42 0.88 0.98 1.66 1.24 7

ζ (wse) 0 3.07 0.57 0.61 2.99 3.11 0.10 0.44 0.37 0.33 1.57 1.91 1.91 1.82 7

s (temp.) 0 0.21 0.25 0.32

 0.87 0.88 1.76 1.68 7

volume 0 0.95 0.21 0.22 0.89 0.91 0.1 0.72 0.09 0.08 0.13 0.13 0.21 0.2 8

Table 2.3. NRMSEs (Eq. (2.7), in %) for velocity fields u, v and w, water surface elevation (ζ) and

temperature (s, active scalar concentration), and RMSEt (Eq. (2.8) in % of average volume) for

volume (Σζ × Δx × Δy) obtained for the different examples in the top layer. Inner model

variables are compared to LR outer model (Test A) or HR basin model (Test B) variables.

Outer/inner resolutions, simulation period (days), time-step (seconds), output epoch period

(hours, minutes), and temperature (cst=constant, gr: gradient in Table 2.1, or sensor outputs)

are also given. Gauss/PCGM indicates the solver used to obtained ζ in the synthetic examples.

clp0-t=OBC for tangential velocities is clamped to 0. clp-it= tangential velocities within inner

border cells are clamped to external outer values.

2.4.2.2 Test B. Comparison of the inner model within a low-resolution outer model

with a high-resolution model of the complete basin.

The models were simulated for 30 days (as in Herzfeld and Andrewrtha (2012)), when

the solution had reached a steady state. The resulting water surface elevation and

velocity fields are shown in Figure 2.7. The figure shows the solution of the HR basin

and the inner model superimposed for a simulation that transferred the information from

outer to inner model every 1800s with a time-step of 50s (similar result are obtained for

time-steps of 450s). The solution of the inner model is not deviated from, and shows a

good continuity with, the solution achieved in the HR basin. TKE, EM and OBCflux

metrics (Eqs. (2.9), (2.10) and (2.11)) have also been used to compare the inner HR

solution to the outer LR and HR basin models in the nested area.

PhD Thesis

48

Figure 2.7. Channel2: Water surface elevation and depth averaged velocity after the steady

state is reached (30 days after the simulation starts) for the HR basin model, with the

nesting inner model superimposed.

Steady state TKE, EM and OBCflux are shown in Table 2.4 for different parameter

combinations. The differences between inner and HR basin solutions, when the steady

solution is reached, are those in columns 7, 8 and 9. The differences between inner and

LR basin solutions are similar, as columns 10, 11 and 12 show for some parameter

combinations. Table 2.4 shows an important error reduction if the iterative solver (PCG)

used to obtain water surface elevation ζ is substituted by a direct method (Gaussian

elimination). The differences are zero when both inner and outer models have the same

resolution, even without relaxation (row 7); the nesting implementation does not

introduce any errors (under-specification or over-specification) when there are neither

spatial interpolation nor bathymetry mismatch. The differences are slightly reduced,

both with and without relaxation area, if the inner model is forced each time-step (row 4

vs. 5, 11 vs. 12) because time interpolation errors disappear, and when the time-step

increases (from 50s to 450s) because interactions between inner and outer model

decrease. The use of the OBC implementation in Figure 2.3(b) introduces additional

errors, as can be seen comparing rows 12 and 13. The results obtained with the OBC

implementation are good compared to those obtained in Herzfeld and Andrewrtha

(2012) for different OBCs (clamped with local flux adjustment, radiation, Flather, etc.,

Table 4.1, Figure 4.2 in Herzfeld and Andrewrtha (2012)). Figure 2.8 (left axis,

continuous line) shows the time evolution of EM for several configurations, in

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

49

particular the configurations in rows 11, 14, 4, 7, 6, 8 and 9 in Table 2.4 . There is no

EM drift when the flux relaxation scheme is applied to the clamped OBC and the EM

drift without relaxation is hardly observed. The differences between inner and outer EM

in the white rectangle in Figure 2.6 are also shown in the figure (right axis, dashed

lines) so that the EM drift obtained with the clamped OBC without relaxation can be

detected in the figure; in particular, those of the configurations in rows 7 and 14 (50s

transfer step, No-RA). Simulations with 450s time-step with relaxation have similar

slope than those obtained with 50s time-step. With the clamped OBC without

relaxation, the EM drift has clearly lesser slope than the clamped OBC without

relaxation in Herzfeld and Andrewrtha (2012) (Fig. 4.2). Figure 2.8 also shows data for

transfer step of 7200s with and without relaxation. These graphs allow seeing more

clearly the goodness of the relaxation implementation in avoiding mass drift. If the

relaxation area is not used, the nesting simulation obtains low errors for transfer

frequencies up to 3600s. With relaxation area, the water surface elevation starts to

increment uncontrollably for transfer frequencies over 21600s.

ζ

solver rg

I&O

time-

step

O->I

transfer

step

Relax-

ation

area

OBC

impl.

inner

TKE

(%)

vs. HR

EM

(%)

basin

OBCflux

(%)

inner

TKE

(%)

vs. LR

EM

(%)

basin

OBCflux

(%)

PCGM 1 450s 450s No clp-et 2.46 2.11 1.96

PCGM 5 450s 450s Yes clp-et 3.42 2.73 3.76

PCGM 5 50s 50s Yes clp-et 3.53 2.82 3.8 3.55 2.84 3.79

PCGM 5 50s 1800s Yes clp-et 3.66 2.94 3.99 3.73 2.97 4.06

PCGM 5 50s 7200s Yes clp-et 3.84 4.39 6.12

PCGM 5 50s 50s No clp-et 4.14 6.21 9.39 4.26 6.33 9.52

PCGM 5 50s 7200s No clp-et 7.51 10.66 15.66

Gauss 1 450s 450s No clp-et 0 0 0 0 0 0

Gauss 5 450s 450s Yes clp-et 0.92 0.42 1.33

Gauss 5 50s 50s Yes clp-et 0.99 0.47 1.39 1.01 0.48 1.41

Gauss 5 50s 1800s Yes clp-et 1.16 0.6 1.65 1.18 0.61 1.68

Gauss 5 50s 1800s Yes clp-it 1.49 0.76 1.73

Gauss 5 50s 50s No clp-et 1.33 3.59 5.07 1.35 3.63 5.14

Table 2.4. Steady state TKE, EM, OBCflux (western boundary) for different simulations.

These are the RMSE errors for the 30 days simulation expressed as a percentage of the

steady state of the HR basin (left) and of the LR basin (right). Columns (from left to

right): iterative solver used to obtain water surface elevation ζ (PCGM or Gauss), grid

refinement parameter rg, inner and outer time-step, frequency of transfers from outer to

inner, interface with (yes) or without (no) relaxation area, and OBC implementation

(clpt-et in Figure 2.3(a), clp-it in Figure 2.3(b)).

PhD Thesis

50

Additionally, simulations with a gradient in temperature have been executed,

showing a slightly increase in errors as can be observed consulting the results

simulations in Table 2.3 (columns 4 and 5, gr data). The relaxation area avoids EM drift

in all the variables, including temperature.

2.4.3 Case 2: Sacramento River

The hydrodynamics of the lower reach of the Sacramento River (Figure 2.9) with a

length of 32 km, between the populations of Freeport (38º 27ˈ 22ˈˈ, 121º 30ˈ 01ˈˈ) and

Walnut Grove (38º 14ˈ 20ˈˈ, 121º 31ˈ18ˈˈ) in California, were modeled (4
th

 row in Table

2.2). The reach has an average depth of 6 m, with maximum depths of approx. 16 m,

and an average width of approx. 170 m. The river hydrodynamics are influenced by

both flows from the Sacramento River and tidal dynamics due to its proximity to the

sea. Juvenile Chinook salmon migrates through this reach of the Sacramento River in

their way to the sea, where the existence of different river distributaries (see for

example the diffluence of the Sacramento River into Sutter Slough, USGS 11447830,

Figure 2.9) allow juveniles to choose different migration routes to the sea (Perry et al.

2010). The percentage of salmon entering each of the routes is primarily driven by the

amount of water from the Sacramento River that enters each of them (Perry et al. 2010);

however, since many of these river distributaries are located where the Sacramento

River bends (see Figure 2.9), the lateral circulation, characteristic of these river

environments, could drive salmon towards the outer region of the bends where most

entrances to the different migration routes are located, and hence, it could increase the

Figure 2.8. Time series of EM for the inner model (left axis, continuous line) and

differences between inner and outer EM in the white rectangle in Figure 2.6 (right axis,

dashed lines) for several configurations: type of ζ solver (PCG or Gauss), rg (1 or 5),

inner and outer time-step (50s or 450s), outer to inner transfer step (50s, 450s or 7200s),

with (RA) or without (No-RA) relaxation area.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

51

entrainment of salmon towards these routes. Thus, being able to reproduce lateral

circulation at bends is of key importance for any model trying to reproduce salmon

route selection in the lower reaches of the Sacramento River. Reproducing the lateral

circulation and small-scale vortices in the area of meanders requires a high resolution

grid. Results here presented demonstrate that a bathymetry of 2m square columns

clearly reveals effects not correctly simulated with lower resolution bathymetries (5m or

10m).

Figure 2.9. Sacramento River hydrodynamic model domain (in blue): domain for the low-

resolution outer model and the high-resolution basin model (left) and domain for the

inner model (right). Markers show the location of USGS gaging stations used as model

boundary conditions. The location of section A inside Clarksburg Bend is also shown.

PhD Thesis

52

A complete 2m simulation would be computationally expensive and, for the

complete reach, 5m square columns is the maximum resolution provided by the United

States Geological Survey (USGS) we have accessed. The nested procedure here

proposed allows resolving this problem with an acceptable computational time by using

a 2m high resolution grid in the meander areas. Here, we present the results of the outer

model, inner model and high-resolution (HR) basin for the region of Clarksburg Bend

(enclosed region in Figure 2.9), where lateral circulation has been proven to occur

Dinehart and Burau (2005). The outer domain includes the whole basin (shown in

Figure 2.9 (left)) and is discretized using grid cells of size 10m x 10m in the horizontal

plane with 49626 water columns while the inner domain uses 10m x 10m (Test A) with

4593 water columns, 5m x 5m (Test B) with 17700 water columns or 2m x 2m (Test C)

with 109067 water columns, i.e. rg=1, rg=2 or rg=5, respectively (4
th

 row in Table 2.2).

The HR basin uses 5m x 5m cells (test B) with 198918 water columns, which is the

maximum resolution available for the complete reach provided by the USGS. The time-

step is 4s for the test A simulations (10m) and 1s for tests B and C (5m and 2m) for

stability purposes.

The boundaries of the outer domain were chosen to match the location of existing

USGS gaging stations (Figure 2.9). Flows were used as the boundary conditions for

locations USGS 11447650, 11447830, 11447850 and 11336600, based on observations

collected at each of these gaging stations, in a given time period. Free surface elevations

at the remaining two model boundaries were forced to vary according to observations

collected at USGS 11447905 and 11447903, respectively. Temperature comparison is

not provided for Sacramento River, because it was kept constant (with a uniform

temperature equal to 8º C typical of the winter period) through all the simulation due to

the negligible variations in Sacramento River temperatures during the study period

(January 2009). Sacramento River temperatures normally begin to decline in October,

remain uniform from December to March, and begin to increase in April. The model

was simulated during a period of time of 10 days in 2009 starting on January 8
th

 and

ending on January 17
th

, with hourly output epochs.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

53

2.4.3.1 Test A. Comparison of inner and outer models with the same resolution.

Inner and outer models have been compared in the nested area (enclosed region in

Figure 2.9). Figure 2.10 compares, for each variable evaluated, the solution obtained by

the inner model (y-axis) with that obtained by the outer model (x-axis), for all output

epochs simultaneously. When both solutions are equal, that value is placed on the

dashed line y=x. If the outer model solution is higher, the point is placed in the lower

triangle while if it is lower, it is placed in the upper triangle. The compared variables are

horizontal velocities (u and v) vertical velocity (w) and water surface elevation (ζ). The

NRMSEs (Eq. (2.7)) in the top-most layer averaged over the simulation time are 1.94%,

1.63%, 0.62% and 0.1% for u, v, w and ζ, respectively (6
th

 column in Table 2.3). Similar

or better results are obtained in the other layers. Finally, the sum of ζ is used to check

for volume conservation ((Σζ) × Δx × Δy). The temporal RMSE (Eq. (2.8)) is 0.19m
3
,

which represents 0.1% of the average volume over the simulation time measured in the

nested area of the outer model.

Figure 2.10. Sacramento River, test A: u, v, w and ζ compared between inner and

outer model solutions for surface layer at all output epochs. Each point represents the

value obtained by the inner model (y-axis) against the solution obtained by the outer

model (x-axis). If both solutions coincide, the point is located on the dashed line.

PhD Thesis

54

2.4.3.2 Test B. Comparison of the inner model within a low-resolution outer model

with a high-resolution model of the complete basin.

The inner and HR models, both with 5m horizontal resolution, have been compared in

the nested domain (Figure 2.9(right)) excluding the relaxation area. The NRMSEs (Eq.

(2.7)) in the top layer averaged over the simulation time are 4.12%, 2.26%, 3.42% and

0.33% for u, v, w and ζ respectively (9
th

 column in Table 2.3). Similar o better results

are obtained in other layers. Finally, the sum of ζ is used to check for volume

conservation ((Σζ) × Δx × Δy). The temporal RMSE (Eq. (2.8)) is 0.16m
3
, which

represents 0.08% of the average volume over the simulation time measured in the nested

area of the HR basin model. These results indicate that the inner model yields similar

solutions in the meander area to those of the HR basin model, but with a much lower

computational cost. No volume drift over time is observed in the simulation period.

The test has been repeated using the OBC implementation in Figure 2.3(b). The

NRMSEs (Eq. (2.7)) in the top-most layer averaged over the simulation time are 5.03%,

3.51%, 4.36% and 0.37% for u, v, w and ζ, respectively (Table 2.3, clpt-it). The

temporal RMSE (Eq. (2.8)) used to check for volume conservation is 0.09% of the

average volume over the simulation time in the nested area.

2.4.3.3 Test C. Comparison with low-resolution outer model

We compared the outer and inner solutions looking for local-scale hydrodynamic

features which are well resolved by the inner model and not by the outer model.

Modeled values from the outer and inner grids were evaluated at section 4 of Dinehart

and Burau (2005) in Clarksburg Bend (corresponding with section A in Figure 2.9),

where lateral circulation is known to occur. Modeled values were averaged over a peak

ebb tide (~0.5 hr) and then interpolated (nearest method) to the location of points in

section 4 of Dinehart and Burau (2005). Lateral circulation was calculated as the

velocity field parallel to the plane of the cross-section. No further reorientation of the

cross-section was done.

The outer LR model (10m horizontal resolution) was unable to correctly

reproduce the lateral circulation (Figure 2.11(a)), as well as the inner model using a

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

55

horizontal resolution of 5m (Figure 2.11(b)). However, the 2m inner model (Figure

2.11(c)) was able to reproduce it, possibly as a result of a better representation of the

outer bank, where the stair-stepping effect, characteristic of a Cartesian grid domain, is

smoothed. Model and field data are not quantitatively comparable since (1) lateral

velocities in the field were calculated in a time period when average discharges were >

650 m
3
s

-1
 (while in our model discharges during peak tides are ≤ 400 m

3
s

-1
), and (2)

Dinehart and Burau (2005) reoriented u and v to match suspension indicators

(backscatter signal). On qualitatively basis, however, the pattern of lateral circulation in

the model is similar to that observed in the field (Dinehart and Burau 2005), with

velocities directed outwards near surface and directed inwards near the bed, with the

zero velocity isoline located at middle depths. Our model computed outer velocities that

are stronger than inner velocities in section A, while inner and outer field velocities

were similar in magnitude. This is, however, the result of no further reorientation of the

cross-section in the model.

(a)

(b)

(c)

Figure 2.11. Sacramento River, test C: Lateral circulation at Clarksburg Bend (A in

Figure 2.9), the location of section 4 of Dinehart and Burau (2005), according to (a) the

outer 10m-resolution results, (b) the inner 5m results and (c) the inner 2m results.

Views are upstream.

2.4.4 Case 3: Lake Tahoe

The nested-grid approach is being used to resolve near-shore circulation in Lake Tahoe

(Figure 2.12). The extraordinary variability of the physical environment in the near-

shore makes the task of characterizing it by means of observations a challenge.

PhD Thesis

56

Near-shore circulation can be used in different studies. For example, in Lake

Tahoe, it is going to be used to develop a long-term risk assessment of Asian clam

growth, spread and impact. In this study, the near-shore circulation can be used to

develop a transport model of Lake Tahoe to characterize the pathways of transport of

young life stages of Asian clams from the existing beds to other near-shore areas. To

achieve this goal, a high resolution model must be used where fine-scale information is

needed (such as in the near-shore). The nested approach to developing a high-resolution

transport model of the near-shore is justified because the high-resolution simulation of

the whole lake (roughly 20km x 30km in the horizontal dimension and a depth of up to

500 meters in the vertical dimension) would require expensive computation hours in

expensive and high energy consumption parallel computers (5
th

 row in Table 2.2).

Figure 2.12. Lake Tahoe hydrodynamic model domain: domain for the low-

resolution outer model and the high-resolution basin model (left) and domain for the

inner model (right).

The selected study area for the observational experiments was the region adjacent

to the largest urban area, Southeast Lake Tahoe (Figure 2.12). This is where the greatest

anthropogenic effects are known to occur and declining water quality has been

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

57

measured (Taylor 2004). The outer domain is discretized using grid cells of size 100m x

100m in the horizontal plane with 49215 water columns, while the inner domain uses

100m x 100m cells (test A) with 3932 water columns or 20m x 20m (tests B and C)

with 99722 water columns, i.e. rg=1 or rg=5, respectively. The HR basin uses 20m x

20m cells (test B) for the complete bathymetry of Lake Tahoe with 1244896 water

columns (5
th

 row in Table 2.2). The Lake Tahoe bathymetry data used for the present

study was obtained from USGS (Figure 2.12). The vertical resolution is set up as layers

with variable depth increasing from 0.5 m near the top to nearly 10 m near the bottom.

The time-step is 50s for the test A simulations (100m) and 10s for tests B and C (20m)

for stability purposes.

In the simulations, the model was forced (input data) using surface heat and

momentum fluxes estimated from local atmospheric variables (short and long wave

radiation, air temperature, relative humidity, and wind speed and direction) obtained

from meteorological data. These data were taken primarily from meteorological stations

maintained by the Tahoe Environmental Research Center (TERC). There are ten

shoreline and on-lake meteorological stations. All stations provide a near-continuous

record of wind magnitude and direction and air temperature. The model was simulated

from July 3
th

 2008 (Julian Day 185) to August 2
nd

 (Julian Day 215), with hourly output

epochs.

2.4.4.1 Test A. Comparison of inner and outer models with the same resolution

The inner and outer model have been compared in the nested area (Figure 2.12 (right)),

both with 100m square columns. The variables evaluated are horizontal velocities (u

and v), vertical velocity (w), water surface elevation (ζ) and temperature (s). The

NRMSEs (Eq. (2.7)) in top-layer averaged over time are 2.21%, 1.81%, 0.88%, 1.59%

and 0.86% for u,v, w, ζ and s respectively, and similar or better in other layers (10
th

column in Table 2.3). Finally, the temporal RMSE (Eq. (2.8)) of the water volume ((Σζ)

× Δx × Δy) differences between outer-inner models is 0.22m
3
 which represents 0.13%

of the average volume over time measured in the nested area. No volume drift over time

is observed in the simulation period.

PhD Thesis

58

2.4.4.2 Test B. Comparison of the inner model within a low-resolution outer model

with a high-resolution model of the complete basin.

The inner and HR models, both with 20m square columns, have been compared in the

nested domain (Figure 2.12 (right)) excluding the relaxation area. The NRMSEs (Eq.

(2.7)) in the top layer averaged over the simulation time are 3.01%, 2.66%, 1.23%,

1.84% and 1.69% for u,v, w, ζ and s respectively, and similar or better in other layers

(12
th

 column in Table 2.3). The temporal RMSE for volume ((Σζ) × Δx × Δy) is 0.34m
3

which represents 0.2% of the average volume over time measured in the nested area.

These results indicate that the inner model yields similar results in the near-shore region

to those of the HR basin model, but with a much lower computational cost. The test has

been repeated using the OBC implementation in Figure 2.3(b), results worsen slightly

(Table 2.3, clp-it).

2.4.4.3 Test C. Comparison with low-resolution outer model

The outer and inner results have been compared looking for local-scale hydrodynamic

features well resolved by the inner model but not by the outer. Vorticity in Marla Bay is

an example (Figure 2.13), where recirculation is likely to occur as a result of flow

separation (Rueda and Vidal 2006). The vorticity field in Marla Bay at any given time t

was computed from surface velocity predictions for the rectangular region in Figure

2.13 (study area), as follows

𝜔(𝑖 + 1 2⁄ , 𝑗 + 1 2⁄)

=
𝑣(𝑖 + 1, 𝑗 + 1 2⁄) − 𝑣(𝑖, 𝑗 + 1 2⁄)

∆𝑥

−
𝑢(𝑖 + 1 2⁄ , 𝑗 + 1) − 𝑢(𝑖 +1 2⁄ , 𝑗)

∆𝑦

 (2.12)

Although basin-scale features captured in both models are similar, sometimes the

differences in the vorticity fields reveal the location of features in the inner model that

are not captured by the outer model. Figure 2.13 shows an example of the velocity field

in Marla Bay from Julian Day 207 in the simulated period. As shown in the graphs, the

inner model simulates recirculation in Marla Bay, while the outer model only captures a

weak divergence in the velocity field. Being able to simulate these eddies in bays and

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

59

other lake shore irregularities, is important in trying to understand coastal transport

processes (Rueda and Vidal 2006). As a result of re-circulating eddies, bays can trap

particles in suspension and other water constituents, hence, decreasing the longshore

dispersion rates. This trapping effect has been reported previously in the literature; for

example, Brooks et al. (1999) shows that eddies in Cobscook Bay, Maine, could trap

particulates in the side-arms of the estuary. The local residence time of water within

bays tends to increase as a result of recirculating eddies; hence becoming hot-spots for

the reproduction of species looking for quiet conditions. For example, high

concentrations of juvenile fish in the center of a large eddy in the Santa Barbara

Channel are observed in Nishimoto and Washburn (2002).

PhD Thesis

60

Figure 2.13. Lake Tahoe, test C: Vorticity in Marla Bay area at a snapshot in time on

Day 207. Vorticity (color scale) and u+v velocity field (black arrows) for (a) inner

model, (b) outer LR model and (d) HR basin model. (c) Zoom of the captured local-

scale vortex.

Figure 2.14 shows the evolution of average surface vorticity in Marla Bay during

a period of 18 days. Note that the flow field in Marla Bay tends to exhibit a negative

vorticity, corresponding to a clockwise circulation (see Figure 2.14, Figure 2.13). The

circulation strength changes with time, increasing in response to pulses of strong

northward currents at Elk Point (Figure 2.14 (d)). These pulses, in turn, tend to respond

to local wind variations (Figure 2.14 (b-c)), occurring with diurnal periodicity. Peak

northward currents in Elk Point tend to occur after diurnal wind events, blowing

predominantly from the north. The vorticity tends to be larger in magnitude in the inner

model, partly due to its higher resolution, and partly due to the lower value of KH used

(Eq. 3.3), which depends on the grid resolution. Note, also, that the largest differences

in vorticity between inner and outer model tend to occur when the current in Elk Point

(and circulation in Marla Bay) is stronger.

Figure 2.14. Lake Tahoe, test C: (a) evolution of vorticity calculated by HR model

(red line) and LR model (blue line) in Marla Bay. (b) wind speed velocity (cm/s) in Elk

Point. (c) wind direction in Elk Point (º, 360º=North) (d) v velocity (cm/s) in free

surface in Elk Point.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

61

2.4.5 Influence of tangential velocities in Lake Tahoe and Sacramento River.

The correct construction of I/O boundary is a fundamental task to get a correct coupling

between outer and inner models. It is necessary to prevent a source of error that may

impair the quality of the results of the nested model, and to avoid problems in the

conservation of mass and volume. Figure 2.2 shows that the two velocity components

(normal and tangential) are among the variables that must be communicated. Some

nested implementations (Bonaventura and Rosatti 2002, Fox and Maskell 1995, Harris

and Durran 2010, Zhai and Sheng 2008) use just the normal component in the

construction of the I/O boundary, probably because tangential values for the simulated

models are very small compared to other forces and their use as driving variables barely

affects the results of lowly energetic environments, as is the case of the nested area

simulated in Lake Tahoe. However, in highly energetic environments such as

Sacramento River, characterized by high river discharges, river bending and with high

values of lateral circulation and flow directional gradients in the nested area (a curve in

the domain, Figure 2.9(right)), tangential velocities reach large values, being

comparable to normal velocities. In this case, their absence in the I/O boundary

construction can lead to errors in the nested model and a consequent loss of quality in

the results.

To assess the importance of a complete communication of both velocity

components in the construction of the I/O boundary in different models, test A was

repeated not communicating the tangential velocity components this time (i.e. clamping

to 0 the tangential velocities using a passive pure clamped OBC). The remaining

variables are sent as in the previous case. In both real examples (Lake Tahoe and

Sacramento River) NRMSEs averaged over time for the whole inner grid are greater

when the tangential velocities are not transferred, as can be noticed comparing the 6
th

and 7
th

 columns, and the 10
th

 and 11
th

 columns in Table 2.3, reaching maximum

NRMSEs over time of an order of magnitude greater without tangential velocities for

Sacramento River, as Table 2.5 shows. The differences are small in Lake Tahoe (Table

2.5, columns 2 and 3). However, in Sacramento River, differences are very important

(Table 2.5, columns 4 and 5 and Figure 2.15).

PhD Thesis

62

Variable Tahoe Tahoe – clp0-t Sacramento Sacramento – clp0-t

Vel. u (E-W) 3.82 4.63 4.01 34.8

Vel. v (N-S) 3.17 3.74 2.21 17.5

Vel. w (vert.) 3.46 3.89 3.13 28.3

ζ (wse) 2.95 3.21 0.24 1.5

s (temp.) 1.89 2.04 Not measured Not measured

Table 2.5. Test A. NRMSEs (%) in top-layer of nested area, maximum over time, for Lake

Tahoe and Sacramento River, comparing the construction of I/O boundary using the

tangential velocity components and without them (clp0-t, clamped to 0).

The magnitude of the error is directly related to the tangential velocities missing

in Clarksburg Bend I/O boundaries, particularly the eastern one (Figure 2.9, Figure

2.15). The flow in Clarksburg Bend, and in Sacramento River in general, depends on

the flood and ebb tides from the ocean. Near to the eastern I/O boundary, a pattern

occurs with tidal periodicity. The flow is generally westward, peaking on low tides

(negative u velocity, see Figure 2.16 (a) for discharge Q and u at time marks T4 and

T8), reaching maximum Q and maximum negative normal and tangential velocities, u

Figure 2.15. Sacramento River, test A, I/O boundary without tangential velocities: u,

v, w and ζ, compared between inner and outer model solutions for surface layer at all

output epochs. Each point represents the value obtained by inner model (y-axis) against

the solution obtained by outer model (x-axis). If both solutions coincide, the point is

located on the dashed line.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

63

and v, on lower low waters (T4 in Figure 2.16 (a)). The eastern I/O boundary is aligned

in the N-S direction, the river crosses it at a slight angle (turning west, Figure 2.9), and

mean tangential v velocity in top layer in I/O boundary is a fraction (around 25%) of

normal u velocity, negative too (southward).

Since tangential velocities are not being communicated, the inner model error is

maximum just at this time (lower low waters) in the I/O boundary, and propagates from

the boundary to the inner model (Figure 2.17 for T4). Figure 2.17 for T5-T6 show that

the inner model error decreases with the magnitude of the missing tangential velocity v,

until it becomes relatively not important (at lower high waters, T6), though velocities of

around -2.5cm/s (around 20% of peak -12.5cm/s, see Figure 2.16 (a) for v at time marks

T6, T4) are not being passed to the inner model. As the next low tide approaches

(higher low waters, Figure 2.17 T7-T8), similar errors appear again in the inner

solution, perhaps smaller than those of the lower low waters (compare NRMSEs for T4

and T8 in Figure 2.16 (b)).

On high tides, velocities approach to 0 (lower high waters, T6) or even become

positive (higher high waters, T1 in Figure 2.16), which means negative discharge and,

for the eastern I/O boundary, eastward flow (u positive, v ≈ 25% u positive too). In the

southern boundary (aligned in the E-W direction) normal velocity v follows the same

pattern while the tangential velocity u exhibits opposite sign (Figure 2.16 (a)). The river

crosses the boundary at a larger angle (Figure 2.9) and u is a larger fraction of v

(approximately -2/3, compared to v ≈ 0.25 u in the northern I/O boundary). Maximum

tangential velocities at this boundary, over 25cm/s (Figure 2.16 for uS-boundary at T4 or

any other mark but T1-T2) occur, however, when the flow is exiting the inner domain,

so the error incurred by not communicating the tangential velocity u in the southern I/O

boundary is much smaller than in the eastern I/O boundary (Figure 2.17).

PhD Thesis

64

These results show that the error in the explicit source terms in the momentum

equations, and the contribution of those terms in the momentum equations largely

depend on the magnitude of the tangential components. The error in the momentum

equations are particularly large in highly energetic environments such the test case of

Sacramento River. The error, in this case, is mainly the result of the calculation of

advective accelerations along the I/O boundaries (the terms in the inner model solution

that use tangential driving variables are identified in Table 2.1).

The simulation time is imperceptibly affected by including tangential velocities

(for example, it increases just a 0.6% in Lake Tahoe), so the model can be programmed

to always use tangential velocities, freeing the researcher or end-user from deciding

about it.

Figure 2.16. Sacramento River, Test A, I/O boundary with tangential velocities

clamped to 0: (a) evolution of discharge (Q) and mean velocities in top-layer in eastern

I/O boundary (u E-W normal, v N-S tangential) and in southern I/O boundary (u

tangential, v normal), and (b) evolution of Q and NRMSEs for u, v, w and ξ in the top-

layer of the nested area.

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

65

y-
nu

m
be

r
of

 c
el

ls

cm
/s

F
ig

u
re

 2
.1

7
.

S
ac

ra
m

en
to

 R
iv

er
,

T
es

t
A

,
ta

n
g
en

ti
al

 v
el

o
ci

ti
es

 c
la

m
p
ed

 t
o
 0

:
sn

ap
sh

o
ts

 o
f

N
R

M
S

E
s

fo
r

v
ar

ia
b

le
s

u
,

v
,

w
,
ξ

 f
o

r
th

e
d

if
fe

re
n

t
ti

m
e

m
ar

k
s

in
 F

ig
u
re

 2
.1

6
:

T
1
-T

8
.

y-
nu

m
be

r
of

 c
el

ls

cm
/s

y-
nu

m
be

r
of

 c
el

ls

cm
/s

y-
nu

m
be

r
of

 c
el

ls

C
m

y-
nu

m
be

r
of

 c
el

ls

cm

/s

y-
nu

m
be

r
of

 c
el

ls

cm
/s

y-
nu

m
be

r
of

 c
el

ls

cm
/s

y-
nu

m
be

r
of

 c
el

ls

cm

 x-number of cells x-number of cells x-number of cells x-number of cells

u

T1

T1

T1

T1

T2

T2

T2

T2

T3

T3

T3

T3

T4

T4

T4

T4

T5

T5

T5

T5

T6

T6

T6

T6

T7

T7

T7

T7

T8

T8

T8

T8

u u u

u u u u

v v v v

w w w w

ζ ζ ζ ζ

v v v v

w w w w

ζ ζ ζ ζ

PhD Thesis

66

2.4.6 N-Si3D performance evaluation

Performance (memory and time) improvement have also been analyzed. Two platforms

have been used:

- A low-price and low-consumption entry-level/volume Intel® Xeon® CPU L5506

processor (4 cores, 2.13 GHz, 4MB last-level L3 cache, 4.80 GT/s Intel® QPI, low

thermal design power 60W, Intel recommended customer price $423) in an entry-

level/volume server with 16 GB of memory.

- A midrange Intel® Xeon® X7550 processor (8 cores, 2.00 GHz, Turbo Boost

deactivated, 18M last-level L3 Cache, 6.40 GT/s Intel® QPI, low thermal design

power 130 W, Intel recommended customer price $2837.00) included in a high-end

shared-memory CC-NUMA server with 1TB of memory, of which 128 GB are local

to the processor. This server has enabled the execution of some tests without nesting

that required more than 16 GB of memory.

Performance improves significantly by both storing just columns with water and

applying the nested implementation in both Sacramento River and Lake Tahoe. For the

Sacramento River simulation of the 5m square cell basin model in the midrange

processor, the memory requirements were reduced by approx. 95% and execution time

by approx. 16% with our first Si3D-code improvement based mainly on avoiding dry

cells storage. With this reduction in memory the entry-level processor can execute the

application but not in real time (time per time-step is 4.84s>1s in the entry-level

processor). By applying the online parallel nested implementation (outer-model 10m

cells and inner-model 5m cells, see Table 2.2), the memory is reduced an additional

91% approx. and the sequential time is reduced an additional 91% approx. using the 4

cores (1 core for the inner and 3 cores for the outer model in order to balance the inner

and outer time-step execution time, see Section 2.3.4, Figure 2.4) of the entry-level

processor (the speedup is ~10). This reduction allows real time execution (0.45s per

time-step).

For the Lake Tahoe simulation of the 100m square cell basin model in the entry-

level processor, the memory requirements were reduced by approx. 29% and execution

time by approx. 39% with our first Si3D-code improvement based mainly on avoiding

dry cells storage. By applying the parallel nested implementation with outer-model

100m cells and inner-model 20m cells, memory reduction of approx. 88% and time

Evaluation of a Nested Implementation for 3D Semi-implicit Hydrodynamic Models

67

reduction of approx. 98% (speedup of ~64) were measured in the high-end server using

3 cores (2 cores for the inner model and 1 core for the outer in order to balance the inner

and outer time-step execution time). Performance figures cannot be offered for the

entry-level processor because HR basin required more than 16GB; but by applying the

parallel nested implementation, the lake can be simulated in the entry-level processor

and in real time. These reductions enable the use of the low-priced and low-power

consumption test computer in the research or predictions in Lake Tahoe. The execution

time using 3 of the 4 cores of the entry-level processor (6.5s<10s, see time-step Table

2.2) is less than the execution time in 3 cores of the midrange processor (7.1s); clock

frequencies are 2.13 GHz for the former and 2 GHz for the latter. Multiple nested grids

of the lake can be simulated all at once in the in staff’s personal computers, or in a low-

cost cluster.

2.5 Conclusions

This chapter presents the verification, validation and performance evaluation of a

nesting grid approach, N-Si3D, for 3D finite-difference semi-implicit hydrodynamic

models with Cartesian grid, Si3D. The objective was to obtain an implementation with a

good relation between quality of the results and execution time with low-cost low-

power resources of computing.

The Cartesian grid memory requirements are drastically reduced by using nesting

and a linear data representation that stores just information of columns with water. This

made the implementation suitable for simulations of irregular domains, such as rivers.

The evaluation and validation of the test results show that:

 The nested approach proposed does not introduce errors when the inner and

outer models have the same resolution (Tests A in Section 2.4.2). The errors in

the nesting implementation are due to the iterative method for solving elevation,

and to spatial interpolation and bathymetry mismatch (both consequence of the

different inner and outer grid resolutions). When N-Si3D uses the clamped OBC

implemented without relaxation, mass drift was observed but with a low slope.

The 3D flux relaxation scheme implemented avoids mass and energy drift (Test

B in Section 2.4.2.2).

PhD Thesis

68

 The implementation can model 3D physical processes that cannot be accurately

simulated by a non-nested low-resolution model applied to the complete

domain: horizontal recirculation in Lake Tahoe (Test C, Section 2.4.4.3) and

vertical recirculation in Sacramento River (Test C, Section 2.4.3.3).

Comparisons of high-resolution basin results with high-resolution inner results

show similar ability to capture local-scale processes (Test C) and low NMRSE

errors (Test B, Sections 2.4.3.2 and 2.4.4.2). Grid refinement ratios of rg=5 may

be necessary in order to simulate some local features, such as vertical

recirculation in Sacramento River (Test C, Section 2.4.3.3).

 The inclusion of tangential velocities in the boundary conditions strongly affects

the quality of results when very strong currents, lateral circulation and/or

vortices exist, with negligible effect on computing time (Section 2.4.5).

Maximum error percentages even of tens in Sacramento River have been

obtained when they are not included. The simulations show the error is related to

the momentum missed at the I/O boundary when tangential velocities are

eliminated, in particular, the influence on the advective term.

 The online inner/outer dynamic coupling achieves a computing time equal to the

inner execution time or the outer execution time (communication time does not

affect) by executing the inner and outer model in parallel with a structure that

resembles a pipeline processing (Sections 2.3.4 and 2.4.6). This online coupling

(1) avoids the use of expensive storage resources to store the values transferred

from outer to inner, and (2) makes feasible a transfer step from outer to inner

equal to the inner time-step, avoiding errors from time interpolation and without

affecting computing time. Comparing the simulation times of Si3D without

storing dry cells (Section 2.3.5) and N-Si3D, speed-ups of ~10 (for rg=2) and

~64 (for rg=5) are achieved in Sacramento River and Lake Tahoe respectively

using a processor with several cores. The improvement in memory and time

allows the use of low-cost and low-power consumption processors in real time

simulations and that multiple simulations can be run all at once on personal

computers, or in a cluster of low-cost computers.

Chapter 3

Parallel implementation of a 3D semi-

implicit hydrodynamic model.

Simulation of the near-shore physical

processes of a lake in a small commodity

cluster

PhD Thesis

70

Abstract

The parallel implementation of a three-dimensional (3D) to simulate physical processes

in lakes with Cartesian grid models in a small commodity cluster of three multi-core

nodes is presented. The parallel program, P-Si3D, uses the three nodes in the cluster (by

using the message passing standard MPI) and the four cores in a node (by using the

shared memory standard OpenMP). This work analyzes the influence in performance of

using different platform configurations, several workload distributions, several parallel

implementations, and block-driven processing. The approach is implemented using the

semi-implicit model presented in Chapter 1. Additionally, P-Si3D and N-Si3D, last one

presented in Chapter 2, are here used to develop a high resolution model of the

perimeter of Lake Tahoe (USA) in order to simulate the near-shore (i.e. small-scale)

physical processes with the resolution required. The result lake model, P/N Si3D, is

applied, for illustrative purposes, to conduct tracer transport simulations revealing the

pulsating nature of along-shore transport processes in lakes, and the effect of bays and

shoreline irregularities on long-shore transport.

3.1 Introduction

High Performance Computing is being increasingly demanded in water sciences to get

detailed descriptions of the flow fields that develop in natural ecosystems within

reasonable lengths of time. It has been through these detailed descriptions of the flow

fields, obtained either by means of simulations conducted with three-dimensional (3D)

numerical algorithms solving the governing equations of fluid motion, or through field

observations collected with high-resolution experimental techniques that water

scientists have gained, in the last years, some understanding of transport processes in

natural lakes and reservoirs (Hodges et al. 2000, Rueda et al. 2003). This understanding,

however, is still far from complete.

Lakes and reservoirs are complex ecosystems composed of several subsystems

with distinct physical, chemical and biological characteristics (Schindler and Scheuerell

2002). Those contrasting characteristics are particularly evident when comparing the

littoral and pelagic environments. The pelagic habitat of lakes is relatively

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

71

homogeneous in the horizontal dimension, but can have substantial vertical

heterogeneity associated with seasonal thermal and chemical stratification. Littoral

habitats, in turn, can be substantially heterogeneous in both vertical and horizontal

dimensions (Lodge et al. 1988). Physical conditions exhibit continuous and very

dynamic changes, at short-time scales, as a result of strong hydrodynamic forcing and

the weak inertia of shallow layers (Lodge et al. 1988). Given the extraordinarily

variable dynamics of near-shore or littoral habitats, these are sites with large

biodiversity (Vadeboncoeur et al. 2011) and critical habitats for many organisms in

lakes (Kalff 2001). Littoral and pelagic habitats, however, cannot be understood in

isolation, since they are tightly coupled through a wide range of physical and biological

processes. Circulation and mixing in the near-shore regions, for example, move

nutrients, heat, organic carbon, and other tracers across isobaths, from the lake edge to

the inner-shelf, and vice-versa. Organisms with complex life cycles, such as benthic

species, can use both habitats in different life stages. Larger organisms, such as fish,

also migrate off and on-shore, hence, linking the dynamics of benthic and littoral

habitats. Hence, there is a pressing need for understanding the spatial and temporal

dynamics of near-shore areas, and their interaction with the pelagic habitats.

Furthermore, beaches or bays along the near-shore areas cannot be understood in

isolation from neighbor bays, given that they are tightly linked through physical

processes. As reviewed by Rao and Schwab (2007), currents in the nearshore are largely

aligned along isobaths, hence, creating strong physical links between the littoral zone

along the whole perimeter of lakes.

In spite of their importance for lake ecosystem function, our understanding of

near-shore habitats is poor (Kalff 2001). This is in part the result of the extraordinary

variability of the physical environment, which makes the task of characterizing it

challenging, at least through observations. In the last decades, though, considerable

progress has been made in developing numerical transport and mixing models capable

of resolving with reasonable accuracy and computational cost large-scale physical

processes in lakes and reservoirs (Schwab et al. 1994; Hodges et al. 2000; Rueda and

Schladow 2003). These models are based on the numerical solution of the shallow-

water equations (SWE), a simplified form of the Reynolds averaged Navier-Stokes

(Cushman-Roisin 1994). The choice of these governing equations is based on practical

computational limits and a priori scaling analyses that justify their use in the description

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.980201.x/full#b43#b43

PhD Thesis

72

of large-scale flows. These models can potentially be used to simulate local-scale

processes in the littoral zone such as circulation and mixing, and the exchange of water,

suspended and dissolved constituents with the pelagic environment. However, these

local near-shore simulations are not straightforward to carry out. First, they cannot be

conducted in isolation from the basin scale, given that the physical dynamics of the

littoral areas are driven by and interact with basin scale processes such as internal

waves, wind waves, and the large-scale circulation. Second, and more importantly, these

simulations need to be conducted on high-resolution grids so that the spatial scales

characterizing circulation and transport patterns in the near-shore regions are correctly

captured. Flow fields in the littoral zone are tightly linked to small-scale bathymetric

variations, shoreline irregularities (such as headlands, islands and bays), river inflows

and water withdrawals (Rueda and Vidal, 2009), which are poorly resolved by the low-

resolution grids typically used in basin-scale simulations.

A plausible approach to capture local-scale processes using high resolution grids

consists of the application of parallel computational techniques to the solution of the

governing equations of motion in clusters. Several SWE models have been implemented

in parallel that take advantage of their data parallelism. Implementations that use the

message passing paradigm with MPI for both 2D (Rao 2004, with one and also two

layers in Castro et al. 2006, Tubs and Tsai 2009, Nesteron 2010) and 3-D models

(Nesterov 2010) can be found. The implementation of Tubs and Tsai (2009) parallelizes

a 3-D lattice Boltzmann model using the shared memory paradigm with OpenMP.

These MPI and OpenMP implementations use domain decomposition to divide the

workload among processes or threads. Performance can also be increased using

Streaming SIMD Extensions (SSE) instructions either explicitly (manually) or through

libraries, or, alternatively, using GPUs. Dyk et al. (2009), for example, presents results

of a SSE optimized implementation of a 2D SWE-model. Castro et al. (2008), in turn,

solves a 2D SWE-model using the Intel Integrated Performance Primitives library. An

implementation of a 2D SWE-model in several GPUs supporting CUDA programming

toolkit is presented in Asunción et al. (2010).

In this chapter, a parallel implementations for small commodity clusters of a semi-

implicit 3D hydrodynamic model, P-SI3D, is presented and evaluated. The parallel

implementations of the 3D model combine both message passing (with MPI) and shared

memory paradigms (with OpenMP). Implementations with redundant operations

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

73

(workload overlapping) are compared to non-redundant implementations. Workload

overlapping increases the number of operations and decreases communications. This

work also analyzes the influence of different platform configurations (such as

simultaneous multithreading, Intel SpeedStep and Turbo Mode technologies, and

prefetching hardware), and different domain decompositions have on code performance.

Different compiler optimization options and a block-driven processing implementation

were also tested.

Our final goal here is to develop an efficient procedure to conduct high-resolution

simulations of the continuous littoral fringe of a lake using a Cartesian grid model; the

model of Lake Tahoe (USA) is implemented with that purpose. P-Si3D is used

successfully to conduct simulations with low and mid resolution of Lake Tahoe in a

small commodity cluster with three nodes. The mid resolution model is used to evaluate

the parallel implementation. However, high-resolution models of Lake Tahoe are very

expensive computationally and not possible to simulate in small commodity clusters.

One alternative with a much lower computational cost and traditionally used with

Cartesian grids is to use a nesting procedure. In a nesting implementation, a high-

resolution HR near-shore model that resolves physical dynamics in the littoral zone, is

embedded inside a low-resolution LR outer model that simulates the basin-scale

processes (Fox et al. 1995; Zavatarelli et al. 2003). Still, the cost of high-resolution

nested-grid simulations, evaluated in terms of computational time and memory

requirements, can be high in large lakes where the littoral zone extends over tens or

hundreds of kilometers, as Lake Tahoe. Those computational costs are unacceptable

when the simulation models need to be used for water quality management to assess, for

example, the risk of introduction and dispersion of invasive species (Hoyer et al. 2014)

or to evaluate the environmental effects of large infrastructures (e.g. Rueda et al. 2009).

The parallel implementation (P-Si3D) presented and evaluated here is combined

successfully with the nesting procedure (N-Si3D) presented in Chapter 2 in order to

simulate local scale processes of Lake Tahoe, which are present in the littoral zone.

With the pipeline structure used by the nesting procedure (see more information in

Chapter 2), HR and LR models are solved in parallel by different sets of nodes in the

cluster. Additionally, HR and LR model use P-Si3D to distribute the work using domain

decomposition. The models constructed with this approach will be referred to as

Parallel/Nested (or P/N-Si3D) models. P/N-Si3D is here applied to Lake Tahoeand

PhD Thesis

74

used, for illustration purposes, to simulate the dispersion of storm-water from existing

outfalls in the lake to neighboring beaches. The solution of the P/N-Si3D model is

evaluated using the case example.

The chapter is organized as follows: Section 3.2 explains the parallel

implementation P-Si3D for small commodity clusters. Section 3.3 evaluates P-Si3D

performance and compares several parallel implementations and platform

configurations. Section 3.4 explains the combination of P-Si3D and N-Si3D, P/N-Si3D,

to simulate the littoral area of Lake Tahoe using a high resolution nested model. Section

3.5 evaluates and validates the simulation obtained using P/N-Si3D and discusses some

experimental results. Finally, Section 3.6 summarizes conclusions.

3.2 P-Si3D implementation

The parallel implementation presented (P-Si3D, Figure 3.1) is applied here to the Semi-

Implicit hydrodynamic model proposed by Smith (2006), Si3D (Chapter 1) and

modified to take advantage of several basic optimizations and an improvement of the

data structure (more details about the basic optimizations and the new data structure can

be found in Chapter 5, this version is called Basic Si3D). Implicit or Semi-implicit

schemes are used to avoid the strict time-step limitation due to Courant-Friedrich-Levy

(CFL) condition founded in explicit schemes. On the other hand, an implicit or semi-

implicit approach requires solving long systems of nonlinear equation for free surface

elevation over the entire domain each time-step. These systems of equation are usually

solved using iterative methods, Si3D uses a method widely used in the literature, the

Preconditioned Conjugate Gradient (PCG). More details about the implementation of

Si3D can be found in Chapter 1. P-Si3D is able to simulate in an acceptable execution

time models with a computational cost that would be impossible in a sequential

execution.

Several parallel Si3D versions have been implemented. The speedup achieved in a

parallel implementation of Si3D in which OpenMP construct !$OMP PARALLEL DO-

END PARALLEL DO is used to locate parallelism was 1.22 with the four cores of a

processor. The performance has been increased when the programmer has also done

explicitly these tasks: assign jobs to threads; create and destroy threads; communicate

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

75

and synchronize threads. Moreover, several parallel versions have been implemented in

order to compare implementations with redundant operations, which avoid

communications and synchronizations (C/S), with non-redundant operation

implementations. The results show that redundant operations improve the MPI version

performance of Si3D but the OpenMP version increases performance when the

redundant operations are reduced by adding some extra synchronization.

The parallel model (Figure 3.1) uses MPI to assign work to computers and

OpenMP to assign work to cores. C1, C2, C3 and C4 are communications among

computers through message-passing. S1, S2, S3 and S4 are the solver stages of Si3D

(more details about the solver stages can be found in Chapter 1). In this implementation,

each thread/process is assigned the task of performing the calculations of one of the sub-

domains. The domain decomposition (Chan and Mathew 2008; or Passoni et al. 2001) is

done prior to the start of the computations in such a way that (1) all sub-domains have

similar numbers of wet cells; and (2) sub-domain data are stored in contiguous memory

positions.

The boundaries between sub-domains are vertical surfaces. The computations

done by different threads/processes are not entirely independent, given that they involve

the calculation of horizontal gradients. P-Si3D uses overlapping and redundant

calculation to reduce communications so the overlapping area is calculated in two

neighbor subdomains. Using redundant computation, the communications between

computers to solve the horizontal gradients dependences are needed only at the end of

each iterative loop (C4, Figure 3.1). In the non-redundant MPI version there are

additional data interchanges between processes: 9 in S1, 4 in S3 and 12 in S4. On the

other hand, P-Si3D does not overlap subdomains among cores, since threads can use

shared memory and synchronization to avoid explicit communications.

S2 is the only stage where the calculation is not done column by column of the

model. In this stage, the system of nonlinear equations is solved using an iterative

method known as Preconditioned Conjugate Gradient (PCG). A parallel implementation

of PCG is not something trivial, requiring many reduction (many-to-one)

communications to perform multiple dot-product operations and communications

between neighbor subdomains to perform a matrix-vector multiplication (see for

example Nesterov 2010). These operations occur multiple times each iteration of the

PCG and, in general, in other iterative methods. Priory test concluded that S2 consumes

PhD Thesis

76

a very little time in the total execution of Si3D (a 2% of the simulation time of Lake

Tahoe using the mid-resolution model). Taking into account these results, the

implementation of a sequential PCG into the parallel model to avoid the

communications explained before seems reasonable, as long as the parallel version is

executed in small commodity clusters. With a sequential PCG, only one collective

gather (many-to-one, to collect all the equations of the system) communication before

S2 (C2, Figure 3.1) and one collective scatter (one-to-many, to distribute the new

solution of water free surface) communication after S2 (C3, Figure 3.1) are needed.

The overhead of the parallel implementations of P-Si3D, like in other related

applications, is mainly affected by:

 Load unbalance. The irregular grid dimensions make difficult to obtain an even

distribution.

 Communication time. It depends both on the number of communications and on the

amount of data being transferred in each communication (between subdomains (C4)

and collectives (C2 and C3)). In the data interchanges between processes, both of

them depend on the domain decomposition approach used.

 Extra operations due to sub-domain overlapping. The number of communications can

be reduced by overlapping sub-domains. In these overlapping regions, computations

are redundant. The overhead that results from redundant calculations depends on the

extent of overlapping regions, and this, in turn, depends on the particular domain

decomposition approach used.

Therefore, domain decomposition affects performance, several approaches are

possible in 3D models. Either horizontal-cut or vertical-cut (depth) decomposition can

be applied in these cases. Horizontal-cut decomposition distributes layers among sub-

domains, i.e. among processors/cores. The degree of parallelism in this case equals the

number of layers and communication depends on the horizontal resolution and the

horizontal extent of the lake. Given that large differences exist between the horizontal

and vertical dimensions of large-scale geophysical systems, the degree of parallelism in

the horizontal-cut decomposition tend to be lower than in a vertical-cut decomposition.

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

77

Figure 3.1. Flow diagram for the P-Si3D model. Grey Boxes represent the parallel

implementation added to the hydrodynamic model. S1, S2, S3 and S4 are the solver

stages of Si3D and C1, C2, C3 and C4 are communications among computers.

niter

End core work

End

niter = niter +1

If niter <= totaliter

If niter > totaliter

C2.Gather eq. system data from computers

Single ntrap Data Update to

LeapFrog Step

Data Update to

Trapezoidal Step

Save Information for the next time-

step and Output Data to n= niter

If Single = 1

Step = 2
If ntrap

<=totaltrap

If ntrap > totaltrap

Step = 1

C3.Scatter S2 result data to comptuters

If Single

 = 2

 ntrap = ntrap + 1

C4. Send to/receive from 2 neighbor

computers

Start

Reading Input Data

Model Initialization and Output Data to

n=0

Begin core work

 Step

Assign work to cores

 If Step = 2 j If Step = 1

j

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζ (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ using the PCG

S3. Solve U and V (Continuity)

S4. Solve w, one or more tridiagonal system

of equation per column for T and other

tracers (transport) and assign KH and KV

(turbulence) solving a tridiagonal system of

equations per column

T
ra

p
ez

o
id

al
 s

te
p

L
ea

p
fr

o
g
 s

te
p

C1: Scatter work/initial data to computers

C2.Gather eq. system data from computers

C3.Scatter S2 result data to comptuters

C4. Send to/receive from 2 neighbor

computers

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζ (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ using the PCG

S3. Solve U and V (Continuity)

S4. Solve w, one or more tridiagonal system

of equation per column for T and other

tracers (transport) and assign KH and KV

(turbulence) solving a tridiagonal system of

equations per column

PhD Thesis

78

Three types of vertical-cut decomposition (of a river, lake, etc.) are possible

(Figure 3.2). The data interchange between the sub-domains is indicated by the arrows

in the Figure 3.2.

The length of the boundaries between any two given sub-domains reflects the

amount of data exchanged between them. It is also indicative of the amount of

redundant calculations if the number of communications is reduced by overlapping sub-

domains. The total length of the sub-domain boundaries will depend on the particular

geometry of the water body being simulated, and on how the domain is partitioned

among processes. The number of interchange communications is larger if one uses the

two-direction cut distribution, as shown in Figure 3.2(c). The total amount of data

exchanged among processes and the number of redundant calculations, though, could be

less than in the other two distributions, depending on the particular geometry and

number of sub-domains. With this distribution a process can both send to and receive

from more than two processes. Both narrow (Figure 3.2(b)) and wide (Figure 3.2(a)) cut

distributions have the same number of interchange communication operations. A

process will send to and receive from just one or two processes. Larger amounts of data

are exchanged and more redundant operations are done in the distribution shown in

Figure 3.2(a) (wide-cut distribution). Nesterov (2010) compares the alternatives in

Figure 3.2(b) and Figure 3.2(c) using MPI in a cluster of four AMD Opteron 2.2 GHz

nodes (2 cores each) connected through Gigabit Ethernet. The results for different grid

sizes show that better performances are achieved if the decomposition is done using

narrow cut distribution compared to the two-direction distribution. Rao (2004)

compares the alternatives in Figure 3.2(a) and Figure 3.2(b) using MPI in a CC-NUMA

HP/Convex Exemplar X-Class (SPP2200) with 64 processors distributed in four hyper-

nodes. The eight nodes of a hyper-node are connected through a network (switch) of

960 MB/s bandwidth in each link direction Messina et al. (1998) (the network of the

Subdomain 3

Subdomain 2

Subdomain 1

Subdomain 0

S
u
b
d
o
m

ai
n

0

S
u
b
d
o
m

ai
n

1

S
u
b
d
o
m

ai
n

2

S
u
b
d
o
m

ai
n

3

Subdomain 2

Subdomain 3

Subdomain 0

Subdomain 1

 (a) (b) (c)

Figure 3.2. Three domain decomposition alternatives with vertical cut: (a) wide cut

distribution, (b) narrow cut distribution, (c) two-direction cut distribution. Arrows show

the communication needed among sub-domains in this kind of applications

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

79

Exemplar is an implementation of the standard SCI). The results show that narrow-cut

distribution reduces execution time compared to wide-cut distribution. Here some tests

(Section 3.3.4) compare wide and narrow-cut distributions with both message passing

and shared memory paradigms in SI3D. Note that the alternative in the Figure 3.2(c) has

less data locality compared to the alternatives in (Figure 3.2(b)) and (Figure 3.2(a)). The

data of a sub-domain in the wide and narrow distribution were stored in disk and

memory in contiguous positions in order to improve locality. The lack of locality

decreases performance, especially in shared memory implementations.

A block-driven processing approach was also tested as in the shared memory

implementation in Tubs and Tsai (2009). Extra communication and block-driven

implementation are also suitable in a process-level parallel implementation when the

memory of the processing node is not enough for the application (Paglieri et al. 1997,

Castro et al. 2006).

3.3 Performance evaluation of P-Si3D with different platform configurations

and parallel alternatives

3.3.1 Platform

The results have been obtained in a small commodity cluster known as ACII of three

nodes connected through a Gigabits Ethernet switch. Each node has 6 GB of memory

and a Core i7 CPU 920 (launch date: fourth quarter of 2008). The Core i7 920 has four

cores of 2.667 GHz (two threads per core if Hyper-Threading is active), L3 cache of

8MB shared by all the cores, and QuickPath of 4.8 GT/s. The cluster price was of 3,000

€ (first quarter of 2009) approximately with all the components, including the cabinet. It

runs Linux Fedora 10 (kernel 2.6.27.41). Cluster communication system has a

bandwidth of 115 MB/s, near to the theoretic 125 MB/s.

The program is compiled using Intel Fortran 11.1 compiler. The OpenMP of this

compiler is used for the shared memory implementation and MPICH-1.3 for the MPI

message passing implementation. The source-code versions implemented were

compiled using options that drive classic optimizations and vectorizations. Table 3.1

summarizes the optimization options checked. Similar execution times are obtained

PhD Thesis

80

with O2 and O3. When the options ipo and/or SSE4.2 are added to O2 or O3

performance does not improve. PGO does not improve the execution time compared to

a version with the same optimization options but without PGO. The executables used in

this section have been obtained with O2 and openmp compiler options.

O2: inline expansion and cloning of functions, classical optimization (loop unrolling, constant and

copy propagation, strength reduction, variable renaming, dead store elimination, global instruction

scheduling and control speculation …) and vectorization (this tries to generate MMX, SSE, SSE2

instructions). O2 is the generally recommended optimization level for reducing execution time.

O3: O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement

to reduce memory references, and loop and memory access transformations.

ipo: multifile interprocedural optimization (this, for instance, allows inline expansion and cloning

for calls to functions defined in separate files).

openmp: this option enables the parallelizer to generate multi-threaded code based on the

OpenMP directives included by the programmer.

xSSE4.2 (architecture-specific optimization): this tries to generate MMX, SSE, SSE2, SSE3,

SSSE3, SSE4.1 and SSE4.2 instructions (vectorization) and can optimize for the Intel Core i7

processor family.

prof_gen and prof_use (Profile Guided Optimization or PGO): PGO allows optimization by

taking into account real benchmark data instead of heuristic data.

Table 3.1. Optimization options (Intel C compiler 11.1).

3.3.2 Test model for Lake Tahoe

The test application is a simulation of the transport model in Lake Tahoe. The ultimate

goal of these simulations is the risk of introduction and dispersion of invasive species

(Hoyer et al. 2014) or to evaluate the environmental effects of large infrastructures (e.g.

Rueda et al. 2009). Given that O(10
2
) m (hundreds) features of the velocity fields,

characteristics of nearshore regions, should be resolved in Lake Tahoe, the

computational grid cells should have horizontal dimensions of at least O(10) m (tens).

Table 3.2 shows the details of the models for Lake Tahoe developed. Simulating a lake

of the size of Lake Tahoe (roughly 20 km x 30 km) with O(10)m horizontal size cell

columns, poses a serious computational problem which can only be addressed through

the use of parallel computers. For example, the ratio of real to computational time in

simulations conducted with 50 m wide grid cells (a mid-resolution among the models

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

81

implemented) in a single core of the cluster is approximately 1:1. Moreover, the

complete high-resolution (HR) model, which is implemented using horizontal square

columns of 20x20m, was impossible to simulate in the small commodity cluster used

here because of the requirements of memory, needing at least 16 GB to fit the variable

information of the model. On the other hand, two complete models for Lake Tahoe are

conduced successfully using the parallel implementation in an acceptable execution

time. These models are the mid-resolution (MR) model and the low-resolution (LR)

model. The MR model is implemented with horizontal square columns of 50x50m and a

time-step of 25s, this model is used to evaluate the parallel implementation developed in

small commodity clusters. The LR model is implemented with horizontal square

columns of 100x100m and a time-step of 10s, this model is used to create a high-

resolution near-shore model for Lake Tahoe as it is explained in Section 3.4. The time-

step could be up to 50s without CFL limitations in the LR model. However, it is set to

the same time-step of the HR nested model to avoid additional temporal interpolation

errors using the nesting procedure (more information in Chapter 2). The vertical

resolution of the grids was the same in all the models (HR nested, MR and LR models),

changing progressively from 0.5 m near the surface to nearly 10 m near the bottom. The

bathymetry data (Gardner et al. 1998) was downloaded (http://tahoe.usgs.gov/bath.html)

and corrected in the near-shore region in the southern shore.

Models of Lake Tahoe Horizontal

cell side

Columns

of water

Total

cells

Time-

step

Basin HR model 20x20m 1,244,896 94,691,170 10s

Nested HR model 20x20m 493,317 21,181,918 10s

Basin MR model 50x50m 197,781 14,654,639 25s

Basin LR model 100x100m 50,383 3,657,268 50s/10s

Table 3.2. Computational data of Lake Tahoe simulations: Horizontal resolution (square

columns), total number of water columns, total number of cells and time-step used.

3.3.3 Performance of different platform configurations

This work analyzes the influence in performance of the multiple cores in a node, the

prefetching hardware, the Intel Hyper-Threading technology, and the Intel SpeedStep

http://tahoe.usgs.gov/bath.html

PhD Thesis

82

and Turbo Mode technology. These simulations are conducted using the MR model of

Lake Tahoe (Table 3.2).

Hardware prefetcher monitors data access patterns and prefetches data

automatically into processor caches. Core i7 cores can track 16 forward streams and 4

backward streams each. Simultaneous multithreading allows the execution of multiple

threads in a core; in particular, two threads with Intel Hyper-Threading. Intel

SpeedStepTechnology allows the operating system to control the core speed. Intel

Turbo Mode Technology allows processor cores to run faster than the assigned

frequency under specific conditions.

Table 3.3 shows the seconds per iteration obtained for different platform

configurations and different number of processes and threads. The narrow-direction

distribution and the MPI redundant operation version have been used. The

communication time due to data distribution or collection is not included because it

does not depend on the number of iterations. Up to four threads are used to each node;

a higher number of threads makes performance worst despite of Hyper-Threading being

enabled. The column HSTP shows the results for the default configuration. In the

default configuration the BIOS and the operating system have enabled Hyper-Threading

(H), SpeedSteep (S) and Turbo Mode (T), and prefeching hardware (P). In particular,

ondemand is the default CPUfreq governor of the cluster operating system, which

means the governor sets the frequency depending on the current usage, between a

minimum of 1.6 GHz and a maximum of 2.667 GHz, last one can increase due to Turbo

Mode. The time in the default configuration is less reproducible due to the thread

distribution of the operating system among the eight logical cores of a node. If Hyper-

Threading is disabled (column -STP) performance improves, but if either

SpeedStep/Turbo Mode (column ---P) or Prefetching (column -ST-) are also disabled,

time increases slightly. The results in the columns -STP and ---P show an increment in

the clock frequency due to the Turbo Mode. The results in the columns -STP and -ST-

suggest that the prefetching hardware is being weakly used.

Block-driven processing was added to try to reduce cache miss by facilitating data

locality. It reduces the execution time by 4% with horizontal cell size of 100 m x 100 m

and one process with four threads. Block processing improves only marginally this

implementation's performance, although it never makes performance worst as it was

observed in the block processing implementation of Tubs and Tsai (2009). The results

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

83

in Tubs and Tsai (2009) are obtained in a platform of IBM with Power5+ 1.9 GHz. For

a grid of 1024x1024x10 (=10,485,760 cells), from 1 to 8 processors block-driven

processing makes performance worst but from 12 to 16, the maximum number of

processors tested, the block-driven implementation improves performance Tubs and

Tsai (2009).

Tahoe MR model Platform configurations

No.

Processes

No.

Threads
HSTP -STP ---P -ST-

1 1 21.1 21.15 21.92 22.54

1 2 11.07 11.1 11.56 11.79

1 3 7.77 7.73 8.07 8.22

1 4 9.75 6.12 6.12 6.51

2 1 10.96 10.96 11.45 11.65

2 2 5.96 6.05 6.21 6.38

2 3 6.75 4.27 4.48 4.56

2 4 5.15 3.42 3.57 3.68

3 1 7.62 7.65 7.9 8.04

3 2 4.23 4.26 4.4 4.48

3 3 4.81 3.1 3.21 3.29

3 4 3.65 2.51 2.68 2.71

Table 3.3. Performance of different platform configurations (seconds per iteration). In

HSTP, H means Hyper-Threading enable, S means SpeedStep enable, T means Turbo

enable, and P mean Prefeching enable. “ -“ means Disable.

The results presented in the next subsections are obtained with the configuration –

STP and ondemand as the CPUfreq governor.

3.3.4 Comparison of wide-direction and narrow-direction distributions in both MPI

versions, with and without redundant operations

PhD Thesis

84

Both, wide-direction and narrow-direction distributions, have the same number of

communication in both MPI versions, but they are of different sizes. Also, in the MPI

version with redundant operations, the wide-direction distribution has more redundant

operations than the narrow-direction approach (because it has larger border length).

Table 3.4 shows the execution time per iteration and speedup for both wide and narrow-

direction distribution and both the MPI implementation with redundant operations (R)

and the MPI approach with non-redundant operations (NR). These simulations are

conducted using the MR model of Lake Tahoe (Table 3.2). As can be observed narrow-

cut distribution also improves sequential execution time. The best approach is to use the

MPI implementation with redundant operations and the narrow-cut distribution.

Speedup improves more with the narrow-cut approach because this approach has lesser

border length than the wide-cut approach; the border size is decreased a 25%

approximately.

Tahoe 50m Sec./iteration Speedup

No.

Pr.

No.

Th

Narrow Wide Narrow Wide

R NR R NR R NR R NR

1 1 21.1 21.1 21.32 21.32 1 1 1 1

1 2 11.1 11.1 11.34 11.34 1.9 1.9 1.88 1.88

1 3 7.73 7.73 7.97 7.97 2.73 2.73 2.68 2.68

1 4 6.12 6.12 6.29 6.29 3.45 3.45 3.39 3.39

2 1 10.96 11.18 11.21 11.51 1.93 1.89 1.9 1.85

2 2 6.05 6.21 6.19 6.43 3.49 3.41 3.44 3.32

2 3 4.27 4.41 4.51 4.76 4.94 4.8 4.73 4.48

2 4 3.42 3.58 3.61 3.79 6.17 5.91 5.91 5.63

3 1 7.65 7.85 7.88 8 2.76 2.69 2.71 2.67

3 2 4.26 4.48 4.43 4.66 4.95 4.72 4.81 4.58

3 3 3.1 3.31 3.34 3.52 6.81 6.39 6.38 6.06

3 4 2.51 2.69 2.77 3.02 8.41 7.86 7.7 7.06

Table 3.4. Wide and narrow distributions in both MPI versions: with (R) and without

(NR) redundant operations.

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

85

3.4 Simulation of Lake Tahoe small-scale processes in small commodity

clusters by using P-Si3D and N-Si3D

3.4.1 A high-resolution near-shore model for Lake Tahoe

P-Si3D and the nesting procedure explained in Chapter 2 (N-Si3D) are combined to

take advantage of small commodity clusters of computers in the simulation of small

scale processes in a lake. It couples both, the parallel implementation and a nesting

algorithm in an efficient parallel method, using processes (MPI) among the available

nodes and threads (OpenMP) among the multiples cores in each node. It solves the 3D-

SWEs on a HR grid of the littoral perimeter of the lake (Figure 3.3, (nested HR model

in Table 3.2)), subject to velocity boundary conditions (HR-LR boundary) which are

taken from the LR lake model of the basin-scale hydrodynamics (basin LR model in

Table 3.2). HR and LR models are solved in parallel by different sets of nodes in the

cluster. In the small commodity cluster used, the LR model (with a smaller

computational cost) is set in one core of the first node. At the same time, the HR nested

model is set in the three nodes, using P-Si3D to divide the workload among processes

and threads, using 3 cores in the first node and 4 cores in the other 2 nodes. The

communications from the LR model to the HR nested model use MPI too. This

configuration could be changed in other clusters with different number of nodes, using

P-Si3D to divide the workload of the LR model or the HR nested model with a different

configuration. Besides, the 3D-SWEs in the LR model or in the HR nested model are

executed in parallel at the same time using a pipeline structure explained in detail in

Chapter 2. Models constructed with this approach will be referred to as Parallel-Nested

(or P/N-Si3D) models. The use of P/N-Si3D allows the simulation in the small

commodity cluster (ACII) of the near-shore of Lake Tahoe with enough resolution to

observe small-scale processes and with a total execution time (including both the LR

and HR model execution) enough so that the simulation can be possible (7.36 seconds

per time-step).

PhD Thesis

86

Figure 3.3. Lake Tahoe between California and Nevada in USA. The littoral zone is

computed in high-resolution with communications from the low resolution model (HR-

LR, solid line). Storm outfalls known around Lake Tahoe (http://tahoepipeclub.com/

uploads/tahoe_pipe_list.pdf) and the particular areas studied (Marla Bay and South

Lake Tahoe (SLT)) are shown too.

Therefore, P/N-Si3D was used to simulate the near-shore circulation and transport

during the period in 2008 from day 191 (July 3) to day 215 (August 1
st
). Our focus is

on two sub-periods characterized by different intensities of wind forcing. From day 192

to 197 (Figure 3.4, sub-period 1) the wind was weak with an average magnitude of

approximately 2 ms
-1

. From day 207 to day 212 (Figure 3.4, sub-period 2) winds were

higher with magnitudes of up to 7 ms
-1

. Flow features in the near-shore exhibit spatial

scales on the same order of magnitude as the bays or other shoreline irregularities

existing around the lake (see Rueda and Vidal 2009). In the case of Lake Tahoe, the

length scales of these bays are of O (10
2
) m (see Figure 3.3, Marla Bay). To resolve

adequately O(10
2
) m features, in turn, the model will need to accommodate at

http://tahoepipeclub.com/%20uploads/tahoe_pipe_list.pdf
http://tahoepipeclub.com/%20uploads/tahoe_pipe_list.pdf

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

87

least 2 and preferably 4 computational cells in ca. 100 m, hence, the grid resolution

needs to be ca. 20 m. Hence, a HR nested model of the littoral perimeter of Lake Tahoe

was constructed using a 20 m grid resolution, and driven with the 100-m grid LR basin-

scale model.

Figure 3.4. Period of time (study time) simulated in 2008. (a) Vorticity calculated for HR

model (black line) and LR model (grey line) along the time in Marla Bay. (b) v velocity

(North-South) in free surface in Elk Point. (c) u velocity (East-West) in free surface in

Elk Point. (d) Averaged wind direction in the Southeast coast of Lake Tahoe. (e)

Averaged wind speed velocity in the Southeast coast of Lake Tahoe.

The model run was initiated six days before the beginning of the study period, so

that the simulation results were free from the effect of artificial initial conditions. The

lake was assumed initially quiescent with horizontal isotherms. The temperature in the

initial conditions was assumed to vary vertically following a temperature profile

collected at the lake center (see Hoyer et al. 2014). The model was forced using surface

heat and momentum fluxes estimated from local atmospheric variables (short and long

wave radiation, air temperature, relative humidity, and wind speed and direction).

Meteorological data were taken primarily from meteorological stations maintained by

PhD Thesis

88

the Tahoe Environmental Research Center (TERC). In total, there are ten onshore and

on-lake meteorological stations. All stations provide a near-continuous record of wind

magnitude and direction and air temperature. Those records were averaged in space to

the grid points using an iterative method originally proposed by Barnes (1964) (see also

Barnes 1994a, Barnes1994b, Koch et al. 1983). The bottom drag coefficient was set to

0.02, following Rueda et al (2003). The horizontal eddy diffusivity Kh was set to a

constant value, varying depending on the grid resolution. We used the empirical

equation proposed by Lawrence et al. (1995) for lakes, between dispersion coefficient

and the length scale of tracer clouds, to link the value of Kh with grid size. The value of

Kh was set to 0.0086 m
2
s

-1
 in the HR grid models while 0.05 m

2
s

-1
 in the LR grid model.

Different number of nodes nn, varying from one to eight, was used in the simulations

depending on the goal of the runs. All cores were used in each of the nodes employed in

the simulation.

Two forms of validation of the simulations conducted with the P/N-Si3D model

were used. First, we used the differences in the solution of the governing equations (U,

V, T, Kz and ζ) in the near-shore region of Lake Tahoe (Figure 3.3) calculated with the

littoral HR (20 x 20 m grid) included in the P/N-Si3D simulation and with a basin-scale

HR model (the basin HR model in Table 3.2). The solutions were output and compared

every hour, and the comparison was done layer by layer. The results, shown here, are

differences evaluated for the surface layer, two layers located at a depth of 10 and 20 m,

and one more set of cells occupying the bottom of all water columns in the near-shore.

The differences between two fields at any given time were quantified using a

normalized form of the root-mean-squared error (NRMSE), calculated as follows

N

lxlx

RMSE
n

N

l

b

2

1

))()((





 (3.1)

minmax xx

RMSE
NRMSE


 (3.2)

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

89

Here xb represents the value of a variable calculated by the HR basin-scale model; xn is

the value calculated by the HR nested model; xmax and xmin represent the maximum and

minimum of each variable; and N is the total number of water columns in the near-shore

domain. Second, we compared the HR near-shore simulations, constructed with the

P/N-Si3D procedures outlined above, with velocity observations collected at a site close

to South Lake Tahoe, ca. 1000 meters offshore, with a depth of 5-7 m (see Figure 3.3).

The observations consist of near-continuous profiles of current magnitude and direction

in 0.50 meter vertical bins collected with a NORTEK Acoustic Doppler Wave and

Current Profiler (ADCP). The differences between observations and simulations are

quantified along the period with experimental data available using a temporal root-

mean-squared error (RMSEt) defined as follow:

RMSE𝑡 = √
∑ (𝑣1

𝑡 − 𝑣2
𝑡)2𝑁𝛥𝑡

𝑡=1

𝑁𝛥𝑡
 (3.3)

3.4.2 Application of the near-shore model to case studies in Lake Tahoe

The velocity fields predicted by the P/N-Si3D model during the study period were used

to drive a series of tracer transport simulations. The simulations consist of the release of

pulses of tracers from different sites around Lake Tahoe where storm water outfalls are

known to exist – see Figure 3.3. They are intended to represent the fate of storm water

contaminants entering the lake through outfalls. Tracers are assumed conservative and

are released at a rate R0 = 1 kg s
-1

over a period of 24h. Two release periods were

simulated: one, on day 191 (T1), under weak forcing conditions, and a second on day

208 (T2), during a period of persistently strong winds. The outcome of the simulations

was a time series of tracer concentration evaluated in the areas with a depth less than 1.6

m of Marla Bay and South Lake Tahoe (SLT). Our interest in Marla Bay arises from

recent work conducted to understand the dispersion of an invasive species from these

sites (Hoyer et al. 2014). Furthermore, they represent features where the HR model

could potentially provide details of the flow field, unresolved in the LR model (see

Chapter 2, Section 2.4.4), given the spatial scales of the bays of O(10
2
) m. Through

PhD Thesis

90

tracer fields and the time series of tracer concentrations we assess the importance of

alongshore transport.

3.5 Evaluation of the Tahoe P/N-Si3D model

Time averaged and maximum normalized differences between state variables computed

during the simulation period with the HR-nested and the HR-basin models in different

layers of the lake perimeter are shown in Table 3.5.

 Surface 10m 20m Bottom

NRMSE(%) Av. Max Min Av. Max Min Av. Max Min Av. Max Min

U 3.1 4.21 0.16 2.94 4.04 0.16 2.89 4.12 0.14 3.27 4.33 0.17

V 2.94 4.01 0.14 2.82 3.92 0.13 2.97 4.14 0.15 3.01 4.18 0.15

T 1.43 3.24 0.11 1.16 2.98 0.11 1.25 3.12 0.09 1.29 3.06 0.11

Kv 0.93 2.46 0.12 0.96 2.44 0.13 0.89 2.36 0.12 0.92 2.27 0.11

ζ 2.61 4.9 0.17

Table 3.5. Average, maximum and minimum NRMSE (%) between HR-nested and HR-

basin models in surface layer, layer at 10m, layer at 20m and bottom layer for U, V, T, Kv,

and ζ variables.

The time-averaged normalized differences are 3.10% and 2.94% for U and V

respectively, 1.43% for temperature (T), 0.93% for vertical diffusivity (Kv) and 2.61%

for ζ. Note that the averaged differences (NRMSE) were in all cases < 4%. The largest

differences (of ca. 4%) were for the velocity and the free surface elevation. The lowest

error norms (< 1.5%) correspond to water temperatures and turbulent diffusivity. These

results indicate that the HR nested model yield similar solutions in the near-shore

regions to those of the HR-basin model using P-Si3D to reduce the computational cost

and N-Si3D to reduce the extension of the grid. As demonstrated in Chapter 2 (Section

2.4.2) the differences are, at least, partly due to the iterative (hence, approximate) nature

of the matrix solver used to calculate the free surface elevation. The normalized

differences between nested and basin-scale HR models (not shown) do not follow any

significant trend in time, and only exhibit random variations. When compared against

the velocity observations, we note that the P/N-Si3D model provides an accurate

representation of the horizontal velocity records collected at the deployment site

(ADCP, Figure 3.5), with temporal errors (Eq. (3.3)) of 4.12 x 10
-2

 ms
-1

 for the E-W

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

91

velocity component and 2.61 x 10
-2

 ms
-1

 for the N-S velocity component. Other works

in the literature have reported similar results. Jin et al. (2000) found errors between

velocity measurements and simulation results from 1.52 to 4.76 x 10
-2

 ms
-1

 and Rueda

and Schadow (2003) showed errors from 2 to 5 x 10
-2

 ms
-1

.

Figure 3.5. East-West Horizontal velocity (u) and North-South horizontal velocity (v) in a

point in the surface-most layer in the period simulation from the Day 205 to the Day

212 in 2008, for experimental data measured by ADCP and simulation data of the high

resolution model.

3.5.1 Simulating the fate of storm-water outfalls

Tracer T1 concentrations in the nearshore of Marla Bay are shown in Figure 3.6(e) and

Figure 3.6(g). Figure 8(e) represents the concentration of tracer that had been released

in the only outfall existing in Marla Bay (Figure 3.3), referred to as local; Figure 3.6(g)

represents the concentration of tracer that had been released in South Lake Tahoe, SLT

(Figure 3.3), referred to as exogenous. The average concentration of the local tracer

increased during the release day (Day 191) and decreased rapidly thereafter. Two days

after the start of the release, the average concentration within the shallowest 1.6 m had

PhD Thesis

92

decreased almost 87%, as a result of near-shore dispersion. The decrease in local tracer

concentration occurred mainly during the first half of day 192, coinciding with peak

northerly currents offshore in Elk Point (Figure 3.6(c)). The concentration decreased

continuously during that time and remained constant, thereafter, until the beginning of

day 193. At that time and coinciding with strong northerly currents offshore Elk Point,

the local tracer concentration decreased again. The concentration of exogenous tracer

released in SLT (Figure 3.6(g)) also increased in Marla Bay early on day 193. These

results suggest that the local tracer was displaced by exogenous material that reached

Marla Bay (Figure 3.6(g)) as a result of along-shore transport processes. Maximum

concentrations of the exogenous material released in SLT were a factor of 10 lower than

the maximum concentrations induced by the local outfall. The exogenous tracer was

also dispersed rapidly after peaking, at noon on day 193. On day 195 for example,

average concentrations of exogenous material in Marla Bay was only 10% of the

maximum concentrations.

Figure 3.6. Release periods for T1 tracer (Sub-period 1, left) and T2 tracer (Sub-

period 2, right). (a) v velocity (cm/s) in free surface in Elk Point in the Sub-period 1. (b)

v velocity (cm/s) in free surface in Elk Point in the Sub-period 2. (c) vorticity calculated

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

93

for HR model in Marla Bay in the Sub-period 1. (d) vorticity calculated for HR model

in Marla Bay in the Sub-period 2. For the Sub-period 1, (e) T1 averaged local tracer

concentration released in Marla Bay and (g) averaged exogenous tracer concentration

released in SLT. For the Sub-period 2, (f) T2 averaged local tracer concentration

released in Marla Bay and (h) averaged exogenous tracer concentration released in SLT.

A series of tracer T1 concentration fields near the lake surface are shown in

Figure 3.7 and Figure 3.8, under weak wind forcing. The tracer shown in Figure 3.7 is

of local origin. In Figure 3.8, the exogenous tracer is shown. The tracer cloud in Figure

3.7 at the time of release on day 191 was concentrated near the only outfall in Marla

Bay; on day 193, a plume of water entered Marla Bay from the south displacing the

local tracer to the north and to the interior of the lake. The tracer released in SLT

(Figure 3.8) was largely concentrated near the outfalls at the beginning of day 192. This

plume was partially dispersed to the north on day 193, leading to small increases in

tracer concentrations within Marla Bay, and rapidly dispersing on day 194. Note,

however, that the bulk of the tracer remained largely un-dispersed on SLT towards the

end of the experiment.

PhD Thesis

94

Figure 3.7. Near surface concentration of tracer T1 released locally in Marla Bay (Figure

3.3) in Sub-period 1 at different days (D) and hours (H): (a) D: 191 H: 19:00 (b) D: 192

H: 15:00 (c) D: 193 H: 03:00 (d) D: 193 H: 12:00 (e) D: 194 H: 06:00 (f) D: 195 H:

01:00 (g) D: 196 H: 14:00 (h) D: 198 H: 00:00.

Figure 3.8. Near surface concentration of exogenous tracer T1 released in SLT Figure 3.3)

in Sub-period 1 at different days (D) and hours (H): (a) D: 192 H: 12:00 (b) D: 193 H:

00:00 (c) D: 193 H: 06:00 (d) D: 194 H: 00:00 (e) D: 195 H: 23:00 (f) D: 196 H: 17:00

(g) D: 196 H: 23:00 (h) D: 198 H: 00:00.

The average tracer T2 concentrations in Marla Bay for release experiments

conducted under strong and persistent wind forcing are shown in Figure 3.6(f) and

Figure 3.6(h). Note first that the maximum local tracer concentration (Figure 3.6(f)) was

lower than the maximum reached under weak forcing (T1, Figure 3.6(e)), likely a result

of stronger dispersion rates occurring under strong wind forcing. The maximum

concentrations of tracer released in SLT (Figure 3.6(h)), though, were almost five times

larger than those observed under weak forcing (Figure 3.6(g)). The peak concentrations

of local and exogenous tracer were similar in these experiments. Note also that two

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

95

peaks occurred in the time series of exogenous tracer concentrations (see Figure 3.6(h)),

on days 209 and 210, and not one as shown in Figure 3.6(g). The timing of those pulses

also coincides with decreasing concentrations in Figure 3.6(f). These results are partly

the result of stronger along-shore currents (see Figure 3.6(b)), transporting material

rapidly from SLT. But, it is also a result of the development of stronger re-circulating

eddies of negative vorticity trapping material within Marla Bay during the study sub-

period 2 (see Figure 3.6(d)). The speed of rotation of local-scale eddies in the near-shore

irregularities are shown to exhibit variations in time, increasing in response to pulses of

strong long-shore currents. These pulses, in turn, tend to follow the local wind

variations.

As is proved in Chapter 2 (Section 2.4.4), these local-scale hydrodynamic

features, such as flow separation and recirculation eddies, occurring in the near-shore

region can only be well resolved in the HR model and not by the LR model. Marla Bay

is a prototypical example of bays in lake shores Bay-scale where vorticity tends to be

larger in magnitude in the high-resolution computations, partly due to the higher

resolution of the grid, and partly due to the lower values of Kh used. In Chapter 2

(Section 2.4.4), examples of the vorticity field in Marla Bay calculated by the HR and

LR models are shown in Figure 2.13, day 201 in the simulated period. Note that the HR

model simulates recirculation in Marla Bay, while the LR model only captures a weak

divergence in the velocity field. Being able to simulate these eddies in bays, and other

lake shore irregularities, is important in trying to understand coastal transport processes

(Rueda and Vidal 2009). As a result of re-circulating eddies, bays can trap particles in

suspension and other water constituents, hence, increasing the long-shore dispersion

rates. This trapping effect has been reported previously in the literature. For example,

Brooks et al. (1999) showed that eddies forming in Cobscook Bay, Maine, could trap

particulates in the side-arms of the estuary. The local residence time of water within

bays tends to increase as a result of recirculating eddies, hence, becoming hot-spots for

the reproduction of species looking for quiet conditions. Nishimoto and Washburn

(2002), for example, observed high concentrations of juvenile fish in the center of a

large eddy in the Santa Barbara Channel.

Near surface concentration fields of tracer released through outfalls existing in

SLT are shown in Figure 3.9. Note, first, that the tracer released in SLT had already

reached Marla Bay towards the end of the release, on day 208 (Figure 3.9). The tracer,

PhD Thesis

96

at that time, appeared concentrated in a narrow plume, along the southeastern shore, far

away from the release area. Note, also, that the tracer appeared trapped in Marla Bay on

day 210, as a result of recirculating eddies. The tracer leaves Marla Bay finally on days

211 and 212, almost 4 days after the release.

Figure 3.9. Near surface concentration of exogenous tracer T2 released in SLT (Figure 3.3)

in Sub-period 2 at different days (D) and hours (H): (a) D: 208 H: 19:00 (b) D: 208 H:

21:00 (c) D: 209 H: 11:00 (d) D: 210 H: 02:00 (e) D: 211 H: 00:00 (f) D: 211 H: 08:00

(g) D: 212 H: 00:00 (h) D: 212 H: 07:00.

3.6 Conclusion

This chapter presents a parallel implementation (P-Si3D) that is able to simulate

successfully a Semi-Implicit 3D lake hydrodynamic model in small commodity clusters.

The implementation is proved successfully and with an acceptable execution time using

mid-resolution and low-resolution of a real test example (Lake Tahoe). Additionally, the

combination of P-Si3D and the nesting procedure developed and explained in Chapter 2

Parallel Implementation of a Semi-Implicit model in Small Commodity Clusters

97

(N-Si3D) is able to conduct high-resolution simulations of the littoral fringe of Lake

Tahoe, used to conduct tracer transport simulations revealing the pulsating nature of

along-shore transport processes in lakes, and the effect of bays and shoreline

irregularities on long-shore transport.

This work discusses the performance of several thread- and process- level

implementations of the parallel implementation and the influence of different platform

configurations and domain decompositions. It has been found that:

 The program makes a weak use of the prefetching hardware (prefetching decreases

execution time by between 5% to 8%).

 Intel® Turbo Mode Technology decreases slightly the execution time (by between

3% to 7%).

 Performance is worse if the default BIOS and operating system configuration is

used (time increases by between 40% to 60%, depending on the number of

processes and threads). This is due to the thread distribution of the operating system

among the eight logical cores of a node when Hyper-Threading is enabled. Thread

affinity could be used to avoid this problem instead of disable Hyper-Threading.

 Block-driven processing reduces execution time too slightly (4% improvement

approximately).

 Process level implementation reduces execution time using overlapping sub-

domains (redundant operations).

 The comparison of wide-direction or narrow-direction distribution in a parallel

implementation, with MPI communications and with or without redundant

calculation, shows that though the number of communications is the same, the

quantity of data to calculate or communicate varies. The distribution approach more

efficient is the one with a lower border length.

 With the best parallel implementation and performance configuration, and with

narrow-cut domain decomposition the simulation of 24 hours with the MR model in

a core of the cluster requires proximately 6 hours with one processor (4 threads)

instead of 20 hours and 30 minutes (with 1 threads) and approximately 2 hours and

30 minutes with the three processors (12 threads).

Additionally, the high-resolution near-shore model for Lake Tahoe using P-Si3D

and N-Si3D is evaluated, validated and used to conduct tracer transport simulations

founded that:

PhD Thesis

98

 The quality of the results obtained with P/N-Si3D is similar to the solution of a

complete HR model. The averaged differences comparing the results of P/N-Si3D

with the results of a complete high-resolution model are in all cases less than 4%.

 The physical and chemical environment in specific bays is tightly linked to

neighboring bays through along-shore transport processes. For example, water

quality in Marla Bay, in the southeastern shore of Lake Tahoe, appears to be

strongly influenced by the quality of water in South Lake Tahoe. The influence

appears to be stronger during periods of strong winds, when water from SLT is

rapidly transported and trapped in the bay as a result of the development of local bay

scale eddies.

Chapter 4

Scalable parallel implementation for 3D

semi-implicit hydrodynamic models

PhD Thesis

100

Abstract

This chapter presents a parallel implementation for semi-implicit hydrodynamic models

that scales in low-cost clusters of computers. The scalability of semi-implicit

hydrodynamic models is limited due to the need of all-to-one/one-to-all

communications at each simulation time-step. These communications are here avoided

taking advantage of a nesting implementation, which resolves, in addition to the model

with the original grid resolution (nested), a model with a lower grid resolution (parent).

Nesting implementations are normally used to simulate both global and local processes

with less memory and execution time by using as nested domain just the area where

local processes occur while the parent model simulates the complete domain; but here,

the nesting implementation is used to improve scalability. A two-level processing

structure is proposed for the parallel implementation: pipeline plus domain-

decomposition. The resulting two-level parallel structure scales ideally. The computer

performance and the quality of the results are evaluated using Lake Tahoe.

4.1 Introduction

Several software packages used to simulate three-dimensional shallow water (3D-SW)

are summarized in Table 4.1: EFDC (Environmental Fluid Dynamic Code, Hamrick

1992), MOM (Modular Ocean Model, Griffies et al. 2008), POM (Princeton Ocean

Model, Blumberg and Mellor 1987), POP (Parallel Ocean Program, Smith et al. 2010,

Dukowicz and Smith 1994), ROMS (Regional Ocean Modeling System, Shchepetkin

and McWilliams 2005), and Si3D (Smith 2006). MOM and POP models are more

suitable for global processes simulations (global-scale problems). Several parallel

proposals for these softwares have been discussed in the bibliography (Table 4.1, 5
th

column); for example, parallel implementations for EFDC (O'Donncha et al. 2014),

MOM (Beare and Stevens 1997,Griffies et al. 2008), POM (Giunta et al. 2007, Jordi

and Wang 2012), POP (Smith et al. 2010), ROMS (Wang et al. 2005), or Si3D (Acosta

et al. 2010). The difficulty to obtain a parallel implementation and its scalability (i.e. the

time improvement when new computing resources are added) depends on the time-

discretization scheme used for solving the 3D governing equations: explicit, (semi-

Scalable Parallel Implementation for 3D Semi-Implicit models

101

)implicit, or splitting. Explicit schemes require higher computational time due to the

limitation of the integration time-step to the time a surface (external) gravity wave takes

to travel between two adjacent horizontal grid points: this limitation is referred to as

Courant or CFL (Courant-Friedrichs Lewy) stability condition for gravity waves. In

order to reduce computational time, allowing the use of higher time-steps while

retaining free-surface effects, splitting and semi-implicit methods are preferred. Semi-

implicit approaches (Casulli and Cheng 1992) avoid the time-step limitation due to CFL

condition by treating implicitly the gravity-wave terms in the model equations, while

other terms are treated explicitly, so that the time-step can be increased. Fully implicit

implementations for 3D-SW equations are avoided due to the requirements in

computational time and memory; implicit schemes require solving a coupled system of

nonlinear equations for velocity and surface elevation over the entire domain each time-

step. In shallow water modeling with a semi-implicit scheme (used for example in

Si3D), the solutions for surface elevation and velocity are uncoupled, a system of linear

equations over the entire domain is solved at each time-step for surface elevation, and

velocities are obtained explicitly using the computed surface elevations. The coefficient

matrix for this system is symmetric and positive-definite so that the equations can be

resolved efficiently using an iterative technique, such as the widely used preconditioned

conjugate gradient (PCG). For its part, splitting methods (Blumberg and Mellor 1987)

separate the 3D governing equations into the so called external or barotropic mode, a

2D model for the depth-averaged flow (associated with the fast moving waves), and the

internal or baroclinic mode, a 3D model for the vertical structure of flow (slower

moving waves). The coupling of these internal and external modes is required. This

splitting allows different time-steps for the 2D and 3D models, enabling the use of

explicit integration with a short time-step that satisfies the CFL condition for the fast-

moving surface waves and with a longer time-step for the 3D model. However, the

problem of coupling the external and internal modes with different time-steps comes up

in this case. Several variations of splitting methods are used. Usually, the internal mode

uses an explicit scheme except for the vertical diffusion terms, which are usually treated

implicitly for stability reasons. External mode can be either explicit (explicit splitting

methods), or it can be implicit or semi-implicit (implicit splitting methods). Explicit

splitting methods (used for example in ROMS, MOM4.0 and later MOM releases, and

POM) avoid the need to solve a system of equations over the entire domain at each

external mode time-step (simplifying their numerical and parallel implementation),

PhD Thesis

102

while implicit splitting methods (e.g. EFDC, POP) makes external and internal modes

coupling easier allowing the same time-step for both modes. Discussions about the

accuracy of (semi-)implicit schemes and (explicit and implicit) splitting methods can be

found for example in Smith 2006, and Dukowicz and Smith 1994.

Soft. References
Time

integration

Nesting

implementation

Parallel

implementation

Programming

paradigm
Parallel

structure

EFDC
EPA 2002;

Hamrick 1992

implicit

splitting (PCG

solver

recommended)

O'Donncha et al.

2014
MPI

domain-

decomposition

MOM
Griffies et al.

2008

explicit

splitting

Griffies et al. 2008
FMS

(1)

(MPI)
domain-

decomposition

Beare and Stevens

1997
PVM

(2)

domain-

decomposition

POM
Blumberg and

Mellor 1987

explicit

splitting

Giunta et al.,

2007 (using the

nesting of RSL
(3)

interface)

Jordi and Wang

2012
MPI

domain-

decomposition

Giunta et al. 2007
RSL

(3)

(MPI)
domain-

decomposition

POP

Smith et al.

2010;

Dukowicz and

Smith 1994

implicit

splitting (PCG

solver

recommended)

Smith et al. 2010

hybrid

OpenMP-

MPI

domain-

decomposition

ROMS

Shchepetkin

and

McWilliams

2005

explicit

splitting

Debreu et al.,

2012, Penven et

al., 2006 (using

multi-grid of

AGRIF
(4)

interface)

Wang et al. 2005 MPI
domain-

decomposition

Si3D Smith 2006

semi-implicit

(PCG solver

recommended)

Acosta et al.

2015
Acosta et al. 2010

hybrid

OpenMP-

MPI

domain-

decomposition

(1) FMS (Flexible Modelling System, Balaji 2002). It provides an interface to MPI and to SHMEM

(library of Cray)

(2) PVM (Parallel Virtual Machine). Popular tool in the 90s for message-passing programming based on a

library of functions. The experience in PVM helped to develop MPI, current de-facto standard based on a

library of functions for message-passing programming.

 (3) RSL (Runtime System Library, Michalakes 2000). It provides an interface able to define levels of

grids and to parallelize the grid levels (domains) over the same set of processors, where each one has a

piece of every domain. It uses MPI.

(4) AGRIF (Adaptive Grid Refinement in Fortran, Debreu et al. 2008): provides an interface to define

levels of grids.

Table 4.1. Several software packages used to simulate 3D-SW and several parallel

implementations proposed for them

The solution of the equation system over the entire domain each time-step makes

hydrodynamic models with (semi-)implicit (splitting and non-splitting) schemes more

difficult to parallelize and less scalable than explicit splitting and fully explicit schemes.

This is a disadvantage of (semi-)implicit (splitting and non-splitting) schemes (also

stated in Griffies et al. 2000 and Weller et al. 2013). This disadvantage is especially

important nowadays because computational capacity is increasing by adding processing

cores also in the low-cost computer market. The scalability is limited due to the all-to-

Scalable Parallel Implementation for 3D Semi-Implicit models

103

one/one-to-all collective communications required each time-step to obtain surface

elevation. To be more precise, the all-to-all reduction communications (i.e. all-to-one

reduction plus one-to-all broadcast communications) used by the parallel solver that

obtains the surface elevation (see for example Nesterov 2010, Hu et al. 2013) or the

couple all-to-one gather and one-to-all scatter communications required for using a

sequential solver within a parallel code (see for example Acosta et al. 2010,O'Donncha

et al. 2014 and Section 4.2.1). The solver preferred for its efficiency is PCG; in

particular, POP (Smith et al. 2010), EFDC (EPA 2002) and Si3D (Smith 2006)

recommend it. Note that the smaller computational load (due to the time-step increment)

also worsens the scalability of these schemes compared to explicit schemes, i.e. the task

of parallelizing explicit schemes is more rewarding for the programmer. To tackle the

scalability problem, a less efficient (low accuracy and/or slow convergence) parallel

solver for surface elevation with less or no all-to-one/one-to-all communications can be

used, such as Chebyshev iteration (used for example in Hu et al. 2013 for POP). The

implementation here proposed avoids the scalability limitation by taking advantage of

an online nesting implementation to eliminate all-to-one/one-to-all communications

(Chapter 2 clarifies the difference between online and offline implementations). The

results show that this implementation does not slow convergence, but accelerates it. The

robustness of this approach is here shown.

Nesting implementations are used in hydrodynamic models with structured grids

to allow simulating both base-scale (global) processes and regional (local) processes

reducing both the memory and run-time requirements because they avoid the simulation

of the entire basin in the high resolution required to simulate local processes (Figure

4.1). Online nesting implementations (Table 4.1, 4
th

 column) have been included for

instance in POM (Giunta et al. 2007), ROMS (Debreu et al. 2012,Penven et al. 2006), or

Si3D (Acosta et al. 2015). In nesting schemes a high-resolution (HR) model (nested

model), which resolves local physical dynamics in the region of interest, is embedded

inside a basin lower-resolution (LR) model (parent model) that simulates the basin-scale

processes (Figure 4.1(b)). The different grid cell size of parent and nested models makes

the execution time of the nested HR model much higher than the execution time of the

parent LR model (the number of columns and cells to be processed are much higher

and, additionally, the necessary time-step is smaller).

PhD Thesis

104

(a)

(b)

Figure 4.1. (a) Rectangular basin with HR horizontal grid of 32x64=2048 columns

(each square is a column). Vertical cuts (green dashed lines) divide the domain into

four subdomains (of 512 columns/subdomains). (b) HR grid on a region of interest

(gray lines) of 12x64=768 columns nested in a basin LR grid (black lines) of

16x8=128 columns (cell side ratio of 4:1 in the horizontal grid). The nested grid is

divided into four subdomains (green dashed lines) of 192 columns. The size of the

messages interchanged between adjacent subdomains (green arrows) depends on the

length of the border and the depth of the columns. The border with the LR grid is in

blue. The amount of data to be transferred from the basin LR model to the nested

HR model depends on the length of the border and the depth of the columns. The

figures do not show the all-to-one/one-to-all communications among subdomains

required by the parallel implementation of hydrodynamic models with (semi-

)implicit (with or without splitting) schemes.

The parallel approach here presented uses a nesting scheme to obtain a scalable

implementation for a semi-implicit model in a low-cost commodity cluster of low-price

computers (around ten low-price computers, each one with multiple cores sharing main

memory), connected by an inexpensive network. That is, connected by a switch, links

and interfaces of Gigabit Ethernet (nowadays motherboards include a 1GbE interface),

instead of a custom made network for a particular platform or a proprietary one (e.g.

Scalable Parallel Implementation for 3D Semi-Implicit models

105

Gemini of Cray) or a more expensive commodity network (e.g. 10GbE, Infiniband,

Myrinet, QsNet …). Scalability is more difficult to achieve in low-price clusters due to

the lower performance of the network interconnecting the computers (latency and

bandwidth) and the higher number of computers for the same number of processing

cores (which increases mean communication time among cores), being these nowadays,

the main differences between low-price platforms and other more expensive platforms

for general-purpose processing (mid-range and high-end servers in the International

Data Corporation taxonomy). The core microarchitecture, core clock-frequency, core

local cache, last-level cache size divided by the number of cores, and maximum

bandwidth divided by the number of cores is equivalent in low-price, mid-range and

high-price platforms. The proposed parallel approach is here applied to a semi-implicit

hydrodynamic model, in particular Si3D (Table 4.1, last row), although it can also be

used with implicit schemes and (semi-)implicit splitting methods. Other parallel

platforms for specific-purpose processing, such as GPUs, and for general-purpose

processing can benefit from this approach. The nested model can comprise the entire

basin (parent model) or a region of the basin; run-time is additionally improved and

total memory requirement is reduced with this last option.

The scalable-parallel approach uses a hybrid parallel programming paradigm and

a two-level parallel structure. The instruction flows assigned to computers are managed

by the message-passing programming-paradigm of MPI and those assigned to cores by

the shared-memory programming-paradigm of OpenMP. MPI is nowadays a de-facto

standard tool for message-passing-based parallel programming, while OpenMP is a de-

facto standard tool for shared-memory-based parallel programming. MPI is founded on

a function library while OpenMP is founded on compiler directives and a function

library. Implementations of MPI and OpenMP tools can be found for Fortran and

C/C++ sequential programming languages. Table 4.1 shows the programming paradigm

used in several parallel implementations (6
th

 column). The parallel implementation of

MOM in Griffies et al. 2008 and that of POM in Giunta et al. 2007 use an API

(Application Programming Interface), FMS (Balaji 2002) and RSL (Michalakes 2000)

respectively, on top of the more general (flexible) and more low-level parallel

programming tool, which is MPI in both cases. An API in general facilitates

programmer work at expense of worsening flexibility and execution time.

PhD Thesis

106

The two-level parallel structure combines a pipeline-like processing at the first

level with a structure resulting from a domain-decomposition data-distribution at the

second level. There are several attempts to classify task/process structures or task

distributions in parallel computing (both are related); some of these classifications can

be found in Silva-Moura and Buyya 1998; another term in the bibliography for pipeline

is data flow and for domain-decomposition is data-structure decomposition. The nested

HR model will be executed in parallel to the basin LR model in a pipeline-like

processing and, due to the much higher execution time of the nested HR model, this

model will be executed in parallel in several computers applying domain-

decomposition. The domain-decomposition implemented here avoids all-to-one/one-to-

all communications (and consequent communication delay and run-time increase) by

making each computer solve an independent equation system, taking advantage of the

online nesting implementation. As a result, the parallel domain-decomposition

implementation of the nested HR model decreases the execution time almost linearly

with the number of cluster computers. The complete parallel code that includes the two-

level structure (pipeline plus domain-decomposition) also scales almost ideally. We

have not been able to find any parallel implementation with this two-level structure in

the bibliography. The parallel-nested implementation of POM in Giunta et al.

2007(Table 4.1) is built upon the functionality of the RSL interface (Michalakes 2000).

In RSL the nested HR model and the basin LR model use the same set of processors. As

a result, each one has a piece of every domain (as Michalakes 2000 clarifies), so no

pipeline structure is reported.

The performance figures (computer performance and quality of the results) are

here obtained using a model of Lake Tahoe (USA), which has a size of roughly 20 km x

30 km in the horizontal dimension and a depth of up to 500 meters in the vertical

dimension. Engineers use this model, for example, to study the transport of

contaminants and planktonic larvae in the near-shore (littoral) zone (see Hoyer et al.

2014). The proposed implementation can simulate local processes for this example in

real time in a low-cost cluster. Much larger size problems would require more expensive

platforms.

This chapter is organized as follows. Section 4.2 presents the scalable-parallel

implementation and Section 4.3 evaluates it. Section 4.2 justifies the benefit of the

scalable-parallel approach proposed taking into account the influence in performance of

Scalable Parallel Implementation for 3D Semi-Implicit models

107

the different processing stages and of the different kinds of communications among

computers. Section 4.3 evaluates run-time and scalability of the parallel implementation

and evaluates the quality of the results. Last section gives conclusions.

4.2 Scalable parallel implementation

The parallel implementation presented, that takes advantage of the nesting

implementation N-Si3D to achieve scalability and is based on a parallel processing

structure of two levels (more details in Chapter 2), is applied here to the semi-implicit

hydrodynamic model proposed by Smith 2006, Si3D (Chapter 1) and modified to take

advantage of several basic optimizations and an improvement of the data structure

(more details about the basic optimizations and the new data structure can be found in

Chapter 5, this version is called Basic Si3D). The scalable parallel implementation

modifies the parallel implementation presented in Acosta et al. 2010 and explained in

detail in Chapter 3, P-Si3D. Additionally, some details of P-Si3D are showed here again

(Section 4.2.1) in order to explain the new implementation consistently. The new

scalable parallel implementation also uses the nesting implementation proposed and

validated in Acosta et al. 2015 and explained in detail in Chapter 2.

4.2.1 P-Si3D implementation

Figure 4.2 shows a simplified flow diagram of a hybrid parallel implementation for

multicore clusters, P-Si3D, introduced in Acosta et al. 2010 (Table 4.1) and explained in

detail in Chapter 3. The implementation here proposed modifies this parallel

implementation making it more scalable in low-cost clusters of computers. P-Si3D has

the following design characteristics:

PhD Thesis

108

1. It distributes the work among computers (C1 in Figure 4.2) and among the cores in

the computers (as Figure 4.2 also shows). The instruction flows assigned to

computers are managed by the message-passing programming-paradigm of MPI and

those assigned to cores by the shared-memory programming-paradigm of OpenMP.

C1, C2, C3 and C4 are communications among computers through message-passing

(communications/synchronizations of cores, through the main memory they share,

Figure 4.2. Solver stages, S1, S2, S3 and S4, for a semi-implicit hydrodynamic

model (Si3D) and simplified flow-diagram for a parallel implementation in a cluster

of multicores (P-Si3D). All computers execute the same code (they all take part in

the gather and the scatter collective communications). The diagram does not show

output epochs that store output data in disk. Gray boxes represent processing added

for the parallel implementation. C1, C2, C3 and C4 are communications among

computers, communications/synchronizations of cores are not shown.

Reading input data

C1. Scatter work/initial_data to computers

Assign work to cores

Model Initialization for n=0

Begin core work

S1. Obtain equation system data for ζ
n+1

S2. Solve system of equations for ζ
n+1

S3. Solve volumetric transports U
n+1

, V
n+1

S4. Solve vertical velocity, tracers (temperature

…), turbulent quantities and transport

coefficients

More iterations

End core work

Yes

No

L
ea

p
fr

o
g
 a

n
d
 t

ra
p
ez

o
id

al
 s

te
p

s

C2. Gather eq. system data from computers

C3. Scatter S2 result data to computers

C4.Send to/receive from 2 neighbor computers

Scalable Parallel Implementation for 3D Semi-Implicit models

109

are not shown). S1, S2, S3 and S4 are Si3D solver stages (see Chapter 1 for more

details about the numerical algorithm of Si3D).

2. P-Si3D splits the simulation domain into sub-grids or subdomains assigning

contiguous columns in main memory to a subdomain. All the subdomains, including

those assigned to the cores of a computer, process columns that are contiguous in

memory. All columns are wet (columns with water), dry columns are not considered

nor stored in memory. The distribution is made taking into account the number of

cells in the columns for improving work balance (the amount of work in S1, S3 and

S4 depends on the number of cells). In O'Donncha et al. 2014 can be seen an

example of how work balance can affect parallel scalability (a distribution that

includes dry columns versus other distribution that does not). A subdomain requires

values from the neighbor subdomain for the computation (gradients are obtained).

This kind of distribution of work among computers/cores is usually named domain-

decomposition distribution.

3. A parallel implementation of shallow water simulation with both explicit or (semi-

)implicit methods requires interchange communications (see Figure 4.1), the latter

ones also require all-to-one/one-to-all communications (see next item 4). P-Si3D, in

order to reduce interchange of data by MPI message passing, overlaps the grids

assigned to computers (each subdomain has replicated columns from its neighbors),

such that some computations in the overlapped points are performed in two

neighbor grids. Thanks to this overlapping, data interchange between computers is

needed just once, at the end of S4 stage (C4 in Figure 4.2). Other parallel

implementations also report the use of overlapping sub-grids or ghost cells or hallo

regions to decrease interchanges; for example, Giunta et al. 2007 (Table 4.1), which

executes the parallel code in a platform with single-core computers with two logical

cores per computer (2-way Simultaneous MultiThreading, SMT), and O'Donncha et

al. 2014 (Table 4.1), which uses a cluster of 5 computers (in a blade packaging) with

one 6-core (2-way SMT) processor per computer. P-Si3D does not overlap the sub-

grids assigned to cores, since they share memory and can access neighbor’s data

with memory reads instead of slower network message-passing, so replicating

overlapped computations is no longer an advantage, and a worse execution time is

obtained if done so. Due to the domain-decomposition implemented, each

subdomain has only two neighbor subdomains as in Figure 4.1.

PhD Thesis

110

4. S2 solver stage, which resolves a system of equations for obtaining surface elevation

ζ
n+1

with an equation for each of the domain columns by using an iterative method,

has a small sequential execution time compared to that of a time-step (sequential

time of S1, S2, S3 plus S4 in Figure 4.2). For example, S2 consumes a 2% of the

simulation time of Lake Tahoe (with cells of 50 m x 50 m side in the horizontal

direction) in Chapter 3 using modified incomplete Cholesky as preconditioner for

PCG. This preconditioner was selected by Smith 2006 for Si3D after comparison

with other alternatives. We have obtained, for example, improvement of 89-90% in

S2 time using modified incomplete Cholesky instead of a Jacobi preconditioner.

Due to the low percentage of execution time of S2, executing it sequentially seems

reasonable as long as the parallel implementations are executed in just a few

computers (as it is going to be clarified below). P-Si3D executes S2 sequentially; in

consequence, one collective gather (all-to-one) communication before S2 (to collect

all the equation system coefficients obtained by the subdomains) and one collective

scatter (one-to-all) communication after S2 (to distribute the calculated ζ
n+1

) are

required (C2 and C3 in Figure 4.2). A parallel execution of S2 would avoid the

gather plus scatter communications each time-step but would need, multiple all-to-

all reduction (i.e. all-to-one reduction plus one-to-all broadcast) and interchange

communications in the solver used in S2 to resolve the equation system each time-

step (see, for instance, Nesterov 2010). The number of these communications

depends on the number of iterations required by the PCG solver, which in turn

depends on the preconditioner used and the size of the equation system. Each PCG

solver iteration requires one or two all-to-all reduction plus an interchange

communications. A test of these two approaches (gather + sequential S2 + scatter vs.

parallel S2) can be seen in O'Donncha et al. 2014 for POP.

As Figure 4.3 clarifies, the run-time of a time-step (Δt) with P-Si3D in p

computers (TΔt(p)) depends on the execution time in p computers of the Si3D solver

stages S1, S3 and S4 (T
S1

(p) and T
S3,S4

(p)), the sequential execution of S2 (T
S2

) and the

overhead (𝑇𝑂 (𝑝)) introduced by the parallel implementation:

𝑇∆𝑡(𝑝) = 𝑇𝑆1(𝑝) + 𝑇𝑆2 + 𝑇𝑆3,𝑆4(𝑝) + 𝑇𝑂 (𝑝)

𝑇𝑂 (p) = (𝑇𝐺𝑎𝑡ℎ
𝑆1/𝑆2

(𝑝) + 𝑇𝑆𝑐𝑎𝑡
𝑆2/𝑆3

(𝑝) + 𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

) + 𝑇𝑤𝑜𝑟𝑘−𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒

+ 𝑇𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡−𝑤𝑜𝑟𝑘

 (4.1)

Scalable Parallel Implementation for 3D Semi-Implicit models

111

Overhead limits scalability and when it grows as more resources (p) are used, it could

cause, after some certain point, that execution time increases instead of decreasing as

yet more resources are added. The overhead, in a parallel implementation in general,

depends on (1) the communication time (gather, scatter and interchange time in P-

Si3D), (2) extra operations (as the previously mentioned redundant computations in the

overlapping areas, Section 4.2.1), and (3) the penalty for an imperfect work distribution

among computing resources, which causes that some of these resources finish their

assigned work after others do (P-Si3D reduces imbalance by distributing columns with

water and trying to balance the number of cells with water, as was pointed out before).

Figure 4.3. P-Si3D. Execution time of P-Si3D for a given problem size (the lengths

of the bars are proportional to the time required in a Lake Tahoe simulation with

cells of 50 m x 50 m side in the horizontal direction) in (a) one computer or process

(P1), (b) three computers (P1,P2,P3), and (c) nine computers (P1,…,P9). 𝑇𝛥𝑡 (1),

𝑇𝛥𝑡 (3) and 𝑇𝛥𝑡 (9) are the total execution time of a time-step in 1, 3 and 9

computers respectively. 𝑇𝐼𝑛𝑡𝑐ℎ
𝑆4/𝑆4

 (in green) is the data interchange time at stage S4

(the first and last processor can also interchange data). One of the computers

gathers (in blue) the coefficients of the equation system for obtaining ζ (𝑇𝐺𝑎𝑡ℎ
𝑆1/𝑆2

),

solves the equation system (𝑇𝑆2), and scatters (blue) the results among computers

(𝑇𝑆𝑐𝑎𝑡
𝑆2/𝑆3

). The run-time depends on the number of computers (as figure shows), but

also on the size of the problem simulated.

PhD Thesis

112

The communications in each time-step of P-Si3D include one gather (C2 in Figure

4.2), one scatter (C3) and an interchange of boundary data between subdomains (at the

end of S4, C4 in Figure 4.2, see also Figure 4.3). The performance (latency and

bandwidth) of these collective communications depends on the time of a point-to-point

communication. The communication time between two computers connected through a

network (point-to-point communication), such as a low-cost network based on a 1Gbit

Ethernet switch (which typically connect tens of computers (8, 16, 24, 48)), depends on

the network minimum latency (L, seconds) and maximum bandwidth (B, bytes per

second) and the size of the message (m, bytes). It could be roughly approximated by this

expression (as Section 4.3.3 shows):

 𝑇𝑝𝑜𝑖𝑛𝑡−𝑡𝑜−𝑝𝑜𝑖𝑛𝑡(𝑚) = 𝐿 +
𝑚

𝐵
 (4.2)

L is the time required for a message of small size; around 30 μs for the 1GbE links and

switch used here in the test cluster (using MPI), around hundreds of nanoseconds with

links of high-performance networks. B is the bandwidth for large message size m. The

ideal value for B is the capacity of the link (1 Gbit/s = 125 MB/s for 1GbE links in one

direction), B is around 117.6 MB/s per direction in the test cluster with MPI, tens of

gigabytes per seconds in one direction with links of high-performance networks. For

scatter (one-to-all) and gather (all-to-one) collective communications, the time depends

on the size m of the message scattered from or gathered to one node (name here the root

node) and the number of computers p involved. If the node that scatters also receives

data (as in C3) or the node that gathers also sends data to itself (as in C2), both the

minimum latency L and the maximum bandwidth B depend on the number of computers

involved. The total latency of these scatter and gather communications could be roughly

approximated by this expression:

𝑇𝑆𝑐𝑎𝑡
𝑜𝑛𝑒−𝑡𝑜−𝑚𝑎𝑛𝑦(𝑚, 𝑝) = 𝑇𝐺𝑎𝑡ℎ

𝑚𝑎𝑛𝑦−𝑡𝑜−𝑜𝑛𝑒(𝑚, 𝑝) = 𝐿 (𝑝) +
𝑚

𝐵 (𝑝)
 (4.3)

When the number of computers increases, the minimum latency L(p) will increase,

because there is just one link connecting the root node to the switch that every packet

Scalable Parallel Implementation for 3D Semi-Implicit models

113

sent (scatter) from or received (gather) by this node must traverse, and B(p) will

decrease, because the number of bytes truly sent or received through the network

increases (notice that the bytes from or to the root node are not really transferred

through the network). The lowest limit of this bandwidth is the point-to-point bandwidth

and, the highest, twice the point-to-point bandwidth. If the node that scatters does not

receive data or the node that gathers does not send data, also the minimum latency L(p)

would decrease with the number of computers and the total bandwidth will increase, but

the maximum bandwidth would not depends on the number of computers. It would be

the maximum point-to-point bandwidth regardless the number of computers involved.

This happens because there is just one link connecting the root node with the switch and

all the m bytes are transferred through the network. More precise communication

models than those of the Eq. (4.2) and (4.3) can be found in the bibliography (for

example in Pjesivac-Grbovic et al. 2007), which can model packets (networks split

messages into packets, which are routed individually through the interconnection

network), more complex networks (based on multiple switches), and/or network

congestions (useful, in particular, when the network is shared by several applications at

once).

The communications in each time-step of P-Si3D also include an interchange of

boundary data between subdomains (at the end of S4, C4 in Figure 4.2, see also Figure

4.3). Due to the domain-decomposition implemented, each subdomain has only two

neighbor subdomains. The interchanges of data between neighbor subdomains can

proceed in parallel, as Figure 4.3 shows, with a time that does not depend (at least,

noticeably) on the number of computers in a network based on a crossbar switch (usual

in clusters). A crossbar switch allows that all or several switch inputs transfer data to

outputs in parallel as long as each input requires a different output. The interchange of

(a) (b)

Figure 4.4. Interchange collective communication includes two shift permutations

(a) right and (b) left. Each of these permutations can be performed in parallel in a

network based on a crossbar full-duplex switch. The switch in the figure connects

four computers (P1 to P4)

PhD Thesis

114

data between neighbor subdomains comprises two shift permutations (bijective

functions) because each subdomain has two neighbor subdomains in P-Si3D. Each of

these permutations can be implemented in parallel in a network with a full-duplex

switch, full-duplex links, and interfaces with independent input and output queues, as

Figure 4.4 illustrates for a switch connecting four computers. Therefore, it is expected

that the interchange latency and local bandwidth (bandwidth of a node) will be roughly

twice the latency and bandwidth of a point-to-point communication. In practice, the

number of computers will affect the interchange performance slightly because the

switch has to cope with more packets coming from more sources. Moreover, C4 impact

could be reduced or even avoided by overlapping it with computation (the border data to

be sent can be obtained first as for example in Beare and Stevens 1997). This

overlapping is not possible with C2 and C3 (S2 can start when S1 finishes, S2 obtains

all surface elevations at once, so S2 must finish to continue as Figure 4.3 illustrates).

Therefore, for large amount of bytes transferred through the network, the latency for a

gather plus a scatter and for interchange is expected to be similar (for the same number

of bytes) and near twice the point-to-point latency (i.e. the latency of a Ping-Pong). For

small amount of bytes, gather+scatter latency for more than two nodes (plus the root

node) is expected to be higher than the interchange latency, since the latter is approx.

twice the point-to-point latency while the former is predicted to depend on both the

point-to-point latency and the number of nodes (in the worst-case, point-to-point

multiplied by the number of nodes). Section 4.3.3 shows test results (see, for example,

Figure 4.12).

For C4, the size m of the messages depends on the number of grid layers (grid

depth) and the length of the border between neighboring subdomains (see Figure 4.1).

For the gather C2 and the scatter C3, the size of the scattered or gathered message (m in

Eq. (4.3)) depends on the number of columns in the entire grid, i.e., number of

equations and unknowns in the S2 equation system. The amount of data to be

transferred in C2, C3 and C4 depends on the particular simulation. Generally, the

amount of data to be interchanged (C4) will be less than the amount of data trasferred

by the gather+scatter required (C2-C3). Moreover, C4 can be overlapped with

computation.

Redundant operations and work imbalance (with the P-Si3D work distribution

mentioned before, Eq. (4.1)) affect overhead in a lesser degree than the S2 sequential

Scalable Parallel Implementation for 3D Semi-Implicit models

115

execution and the C2-C3 communications, and their overheads do not depend on the

number of computers. Figure 4.3 ((b) and (c)) assumes a perfect balance (see length of

the bars):

𝑇𝑆1(𝑝) =
𝑇𝑆1(1)

𝑝
 𝑇𝑆3,𝑆4(𝑝) =

𝑇𝑆3,𝑆4(1)

𝑝
 (4.4)

Taking into account the above explanation and, as Figure 4.3 illustrates, P-Si3D

scalability is mainly limited by (1) the non-parallelized code, S2, and (2) the gather and

scatter communications. Figure 4.3 shows that for nine computers the time of gather

plus S2 plus scatter becomes an important percentage of the total time-step run time.

The parallel implementation here proposed eliminates these problems by executing S2

in parallel and without all-to-one/one-to-all communications; as a result, the

implementation is going to scale linearly with the number of computers.

4.2.2 Scalable parallel semi-implicit implementation

The parallel implementation proposed, SP-Si3D, uses online one-way nesting in order

to obtain a scalable speedup as more computers are added. The nested grid can be the

entire basin model (equal in extension to the parent model) or a region of the basin. In

this last case, the requirements of memory and execution time are additionally reduced

by the nesting approach. The different cell size of parent and nested models (even of

5:1, with number-of-columns ratio of 1:25, and time-step ratio of 1:5, yielding ratios of

total work load of even 1:125 for the same simulation period) makes the execution time

of the nested HR model much higher than the execution time of the parent LR model. It

is most likely in low-cost clusters that parent LR model execution in real time would not

require more than one computer while the nested HR model would require for real time

performance multiple computers, each one executing a subdomain of the nested HR

grid. Figure 4.5 shows a simplified flow diagram of the parent LR model code executed

by a computer and the flow diagram for a nested HR subdomain. Figure 4.6 (a) shows

the execution in parallel of LR and HR models during several time-steps (in particular,

n-1, n, n+1 and n+2 time-steps of parent LR model and n-2, n-1, n and n+1 of nested

PhD Thesis

116

HR model are shown). The parent LR model is executed in a computer in parallel to the

execution of the nested HR model (Figure 4.6 (a)) with a structure that resembles a

pipeline architecture processing (Figure 4.6 (b)) with three stages (LR stage,

interconnection network stage and HR stage). Due to the much higher execution time of

the nested HR model, this model is also executed in parallel in p computers, with a

domain-decomposition structure (Figure 4.6 (b)). The parallel implementation of the

nested HR model departs from the MPI parallel implementation of P-Si3D in order to

obtain a scalable speedup as more computers are added by taking advantage of the

parent LR model. The parallel HR model implementation executes S2 solver stage in

parallel without all-to-one/one-to-all collective communications. S2 equation system

used to obtain surface elevation ζ
n+1

 is divided into p independent equation systems (one

per subdomain). These equation systems need unknown elevations values from the n+1

time-step (in particular, in the HR equations formulated for border/corner columns) that

are going to be calculated at the same time by the equation system of a neighbor HR

subdomain. To overcome this problem, these values are obtained from the parent LR

model by interpolation. The LR values of the neighbor (obtained from the parent) are

multiplied by the respective coefficients and moved to the independent term in the right

hand side, making the p equation systems independent of each other. As the equation

systems are smaller than the original equation, the number of iterations required for

each one to converge to the same required tolerance will be smaller as well.

The time required by the interchange of data between neighboring HR

subdomains, 𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

 in Figure 4.6 (𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

 in Figure 4.3) depends on the size of the data

to be transferred (m in Eq. (4.2)), which depends on the length of, and number of layers

in, the frontier between neighboring subdomains, as Section 4.2.1 pointed out. In SP-

Si3D, the LR model sends data to all HR subdomains (C2 in Figure 4.5). The time of

this scatter depends on the number of computers, p, and the amount of data to be

transferred, m. Therefore, the time of this scatter from LR model to HR subdomains for

a given problem size depends on the number of computers (subdomains), p, used to

execute the nested model, but this time (𝑇𝑆𝑐𝑎𝑡
𝐿𝑅/𝐻𝑅

(𝑝)) is not perceived because these

communications occur in parallel to computations, as Figure 4.6 (a) shows, due to the

pipeline implementation. The pipeline of SP-Si3D has three stages as Figure 4.6 (b)

shows:

Scalable Parallel Implementation for 3D Semi-Implicit models

117

 (1
st
 stage, LR) parent LR model (𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)) executed in one computer using one

or several of the computer’s cores (p
LR

= #cores_used_by_LR /

#cores_per_computers). The unused computer cores can be assigned to another

user or to another task of the same user.

 (2
nd

 stage, C2) communication C2 in Figure 4.5 (𝑇𝑆𝑐𝑎𝑡
𝐿𝑅/𝐻𝑅

(𝑝)) performed by the

interconnection network.

Figure 4.5. SP-Si3D. Simplified flow diagrams for LR model and HR subdomains.

The diagrams do not show output epochs that store output data in disk. Gray boxes

represent processing added for the parallel implementation. C1, C2 and C3 are

communications among computers; communications of cores are not shown.

S1,…S4 are Si3D stages.

Reading input data

Configure nesting

C1. Send initial data to HR subdomains

Assign work to cores

Model Initialization for n=0

Begin core work

S1. Obtain system of equations for ζ
n+1

S2. Solve system of equations for ζ
n+1

S3. Solve volumetric transports U
n+1

, V
n+1

C2. Send boundary data to HR

S4. Solve vertical velocity, tracers

(temperature …), turbulent quantities and

transport coefficients

More iterations

End core work

Yes

No

L
ea

p
fr

o
g
 a

n
d
 t

ra
p
ez

o
id

al
 s

te
p

s

C1. Receive initial data from LR

Assign work to cores

Model Initialization for n=0

Begin core work

C2. Receive boundary data from LR

S1. Obtain system of equations for ζ
n+1

S2. Solve system of equations for ζ
n+1

S3. Solve volumetric transports U
n+1

, V
n+1

C3.Send to/receive from 2 neighboring

S4. Solve vertical velocity, tracers

(temperature …), turbulent quantities and

transport coefficients

More iterations

End core work

Yes

No

L
ea

p
fr

o
g
 a

n
d
 t

ra
p
ez

o
id

al
 s

te
p

s

(a) Processing of the parent LR model by a computer (b) Processing of a nested HR subdomain in a computer

PhD Thesis

118

 (3
rd

 stage, HR) nested HR model (𝑇𝛥𝑡
𝐻𝑅(p)) executed in parallel by p computers.

These three stages use different hardware resources so they are executed in parallel. In a

pipeline structure, a result is obtained in a time equal to the time of the slower stage. In

this pipeline, the slower stage will be usually the 3
rd

 (even though the LR model uses

less resources, work load ratios LR:HR of even 1:125 can be found). This is due to the

different grid resolution of the parent and nested models (number of cells, time-step

value), the extension of the nested model (which can include the entire basin), and the

size of low-cost clusters. The resources (𝑝𝐿𝑅) to be used in the execution of the LR

model can be chosen in order to approximate its run time to the run time of the HR

model ((𝑇𝛥𝑡
𝐻𝑅(𝑝) ~𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)). The execution time of a time-step, Δt, in SP-Si3D is

(taking into account that 𝑇𝛥𝑡
𝐻𝑅(𝑝) ≥ 𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅) and 𝑇𝛥𝑡
𝐻𝑅(𝑝) ≥ 𝑇𝑆𝑐𝑎𝑡

𝐿𝑅/𝐻𝑅
(𝑝)):

Figure 4.6. SP-Si3D. (a) Parallel execution of SP-Si3D, with a particular problem

size, in time-steps n-2, n-1, n, n+1 and n+2 with several computers (processes)

P0…Pp. (b) Pipeline plus domain-decomposition structure. The figure assumes same

time-step for parent LR an nested HR models (𝛥𝑡 = 𝛥𝑡𝐿𝑅=𝛥𝑡𝐻𝑅) for simplicity and

also assumes that load balance is perfect, i.e. the HR models (HR1,…,HRp) and the

LR model complete a simulation time-step in the same time (𝑇𝛥𝑡
𝐿𝑅(𝑝𝐿𝑅)= 𝑇𝛥𝑡

𝐻𝑅(𝑝)).
Communications C2 (blue arrows) and C3 (green arrows in 0 are shown (the first

and last processor can also interchange data as figure (b) shows, figure (a) does not

include it for a cleaner drawing). 𝑇𝑆𝑐𝑎𝑡
𝐿𝑅 𝐻𝑅⁄

(𝑝) is the communication time from LR to

all HRs models (C2) and 𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

 is the time spent on data interchange between

neighboring HR models (C3).

Scalable Parallel Implementation for 3D Semi-Implicit models

119

 𝑇𝛥𝑡 (𝑝+ 𝑝
𝐿𝑅) = max (𝑇𝛥𝑡

𝐻𝑅(𝑝), 𝑇𝑆𝑐𝑎𝑡
𝐿𝑅 𝐻𝑅⁄ (𝑝), 𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)) = 𝑇𝛥𝑡
𝐻𝑅(𝑝)

𝑇𝛥𝑡
𝐻𝑅(𝑝) =

𝑇𝑆1(𝑝) + 𝑇𝑆2(𝑝) + 𝑇𝑆3,𝑆4(𝑝) + 𝑇𝑂 𝑤ℎ𝑒𝑟𝑒 𝑇𝑂 ≈

𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

= 𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

 (4.5)

N simulation time-steps are executed using SP-Si3D (Figure 4.6 (a)) with an execution

time of (LR model must start first):

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑁, 𝑝) = 𝑇𝛥𝑡
𝐿𝑅 + 𝑇𝑆𝑐𝑎𝑡

𝐿𝑅/𝐻𝑅
(p) + N × 𝑇𝛥𝑡

𝐻𝑅(𝑝)

≈ N × 𝑇𝛥𝑡
𝐻𝑅(𝑝)

 (4.6)

Therefore, SP-Si3D run-time (Eq. (4.5) and Eq. (4.6)) does not depend on the

computation of a sequential code and on gather and scatter communications, as the

execution time of P-Si3D (Eq. (4.1)). Moreover, as it can be observed, the overhead of

SP-Si3D does not depend on the number of computers. The communication time

depends on the interchange communication, which can be overlapped with computation

as was pointed out before.

To the best of our knowledge, the combination of task structures applied here,

pipeline and domain-decomposition, has not been previously used in fluid dynamics

simulations. It can be used with explicit, (semi-)implicit and (semi-implicit) splitting

methods with nesting.

4.3 SP-Si3D performance evaluation and validation

The computing performance (Section 4.3.2) and the quality of the results (Section 4.3.5)

obtained by SP-Si3D are evaluated using Lake Tahoe (Section 4.3.1).

PhD Thesis

120

4.3.1 Lake Tahoe simulation figures

The objective is to simulate the local processes in the littoral zone of Lake Tahoe, which

has a size of roughly 20 km x 30 km in the horizontal dimension and a depth of up to

500 m in the vertical dimension (Table 4.2, Figure 4.7(a)). Near-shore circulation can be

used in different studies. For example, in Lake Tahoe, it can be used to develop a long-

term risk assessment of invasive species (such as Asian clam) growth, spread and

impact (Hoyer et al. 2014). In this study, the near-shore circulation can be used to

develop a transport model of Lake Tahoe to characterize the pathways of transport of

invasive species from the existing beds to other near-shore areas. To achieve this goal, a

high resolution must be used where fine-scale information is needed, such as in the

near-shore. In this case, it is not necessary to simulate the entire lake with a high

resolution, so the nested HR model can encompass just the littoral zone (Figure 4.7(b)).

In order to make this study, cells of 20 m x 20 m are required in this region (this size

has been used for example in Hoyer et al. 2014). With 20 m x 20 m square cells, the

time-step must be set to 10 s to guarantee model stability. The parent LR model has 100

m x 100 m horizontal cells, i.e. the cell side ratio LR:HR is 5:1 (number-of-columns

ratio LR:HR of 1:25). The time-steps of the parent LR and nested HR models (ΔtHR and

ΔtLR) do not need to be the same; in fact, ΔtLR could be larger than ΔtHR given the larger

size of the grid cells (50 s instead of 10 s, Table 4.2, time-step ratio LR:HR of 1:5). The

time between consecutive LR/HR communication events could also be a multiple of the

time-step in the parent LR model. The boundary condition information, in those cases

(different LR and HR time-steps and/or LR/HR communication events of multiple LR

time-steps), is interpolated in time. This interpolation increases the errors in the nesting

implementation (as shown in Chapter 2, Section 2.4)), although in a lower degree than

the iterative solver used for obtaining free surface (Table 2.4 in Chapter 2). In the

applications shown here (Section 4.3), HR and LR models are set to run with the same

time-step (i.e. Δt = ΔtLR = ΔtHR =10 s, Table 4.2) and the communications were forced

to occur after every iteration, so no temporal interpolation error is introduced at expense

of a higher run time of the parent LR model. By using a time-step of 50 s instead of 10 s

for the LR model, its run time could be divided by approx. 5 or, alternatively, the

number of resources assigned to the LR model could be divided by approx. 5.

Scalable Parallel Implementation for 3D Semi-Implicit models

121

The bathymetry data was downloaded from http://tahoe.usgs.gov/bath.html. In the

simulations, the model was forced (input data) using surface heat and momentum fluxes

estimated from local atmospheric variables (short and long wave radiation, air

temperature, relative humidity, and wind speed and direction) obtained from

meteorological data. These data were taken primarily from meteorological stations

maintained by the Tahoe Environmental Research Center (TERC). There are ten

shoreline and on-lake meteorological stations. All stations provide a near-continuous

record of wind magnitude and direction and air temperature. The model was simulated

from July 3
th

 2008 (Julian Day 185) to August 1
nd

 (Julian Day 214), with hourly output

epochs.

Models of
Lake Tahoe

Horizontal
cell side

#Wet_
columns

Column
ratio

Wet_cells

Cell
ratio

Simulation
period

Time-step # Time-steps

LR basin 100 m 50,383 0.04 3,657,268 0.04 30 days 10 s / 50 s
259,200 (10 s),

51840 (50 s)

HR littoral 20 m 493,317 0.4 21,181,918 0.22 30 days 10 s 259,200

HR basin 20 m 1,244,896 1 94,691,170 1 30 days 10 s 259,200

Table 4.2. Simulation figures: resolution (square cell horizontal side); total number of

columns and number of cells; period of simulation; simulation time-step used / time-step that

could be used taking into account the cell size; number of time-steps for the whole simulation

period.

(a)

 (b)

Figure 4.7. Lake Tahoe (between California and Nevada in USA). (a) Bathymetry

and location of Marla Bay. The basin HR model and the basin LR model (or parent

model) comprise the entire Lake Tahoe basin. (b) Littoral zone simulated in the

nested HR model.

http://tahoe.usgs.gov/bath.html

PhD Thesis

122

4.3.2 Computing performance

The parallel simulations were conducted in ARCHIMEDES, a standard rack-mount

cluster of nine rack computers (including the front-end) connected by a Gigabit Ethernet

switch, the Dell PowerConnect 2824, which is a full duplex switch with 2 Mb of packet

buffer memory. The computers have 12 GB of main memory and two Intel® Xeon®

CPU L5506 processors (4 cores, hyperthreading (Intel SMT), 2.13 GHz, 4 MB last-

level L3 cache, 4.80 GT/s Intel® QPI, low thermal design power 60 W, Intel

recommended customer price $423). Each core is two logical cores, so it can execute

two instruction flows in parallel. SP-Si3D run-time improves by using logical cores

when only one computer is available to execute both LR and HR models, for more than

one computer, one logical core per core improves run-time. The cluster works under

Rocks Linux distribution. The code was compiled using the Intel Fortran 11.1 compiler.

The OpenMP included in this compiler is used to manage the instruction flows assigned

to (logical) cores. The MPI implementation that manages the instruction flows assigned

to computers is MPICH2-1.2.

4.3.3 Communication performance

This section evaluates the performance (latency and bandwidth) for a point-to-point

communication and for the collective communications used in P-Si3D and SP-Si3D,

which depends on the point-to-point performance. The results support the deductions

made in Section 4.2.1. The cores, the network (links, switch and interfaces), the

operating system (network interface drivers) and the MPI implementation affect

performance.

Figure 4.8 shows the performance of a point-to-point communication, i.e. a

communication between two nodes, with MPI in the test cluster for different message

size m. The latency and bandwidth was obtained using a Ping-Pong test with two nodes,

i and j: first, the node i sends a message of m bytes to node j (ping), when node j

receives this message it sends the same m bytes back to the i (pong). The node i obtains

the time spent on these two point-to-point transfers. The latency in the figure is obtained

dividing this time by two. The figure also shows the approximation of the point-to-point

Scalable Parallel Implementation for 3D Semi-Implicit models

123

time by the Eq. (4.2) and shows also the L and B parameters used to model this point-

to-point time according to Eq. (2).

As pointed out in Section 4.2.1 the performance of the scatter, gather and

interchange collective communications involved in the processing depends on the

particular input to be simulated, since the size of the data to transfer depends on this

input (bathymetry, depth, geometry, …). Figure 4.9 shows the performance of a

scatter/gather collective communication for different size m and number of computers p.

Performance was obtained with a code that performs a scatter of m bytes (ping)

followed by a gather (pong) of these m bytes spread by the scatter. Scatter and gather

were implemented by MPI MPI_scatterv() and MPI_gatherv() functions. Between the

scatter and gather the nodes execute a barrier (MPI_barrier()). The node that scatters

and gathers the data is the same root node (for example, node i): it sends m bytes with

MPI_scatterv(), m/p to each computer, and receives them with MPI_gatherv(). The

scattered variable receives the gathered values. The latency was obtained dividing by

two the time of the scatter plus the gather obtained on node i. In Figure 4.9, the root

node i also receives data in scatter and sends in the gather, as in the scatter/gather

communications of P-Si3D. The local root bandwidth is higher than the point-to-point

bandwidth for the same size m because the root node receives in scatter and sends in

gather m/p bytes (at the speed of a local memory copy). As it can be noticed the

minimum latency (L(p) in Eq. (4.3)) increases and the maximum bandwidth (B(p) in Eq.

(4.3)) decreases with the number of computers. Therefore, performance decreases when

Figure 4.8. Point-to-point performance in the test cluster: (a) Latency vs. message

size m, minimum latency (L in Eq. (4.2)) and latency approximation by Eq. (4.2)

using L and B. (b) Bandwidth vs. message size m and maximum bandwidth (B in

Eq. (4.2)).

PhD Thesis

124

the number of computers increases for all message sizes, as it was pointed out (Section

4.2.1). The highest maximum bandwidth (reached with 2 nodes) is near twice the point-

to-point maximum bandwidth, the lowest maximum bandwidth will be close to the

maximum point-to-point bandwidth. In Figure 4.10, the root node does not receive or

send data as in the scatter communications of SP-Si3D. The bandwidth is limited to the

maximum point-to-point bandwidth (Figure 4.8) as expected (Section 4.2.1). Notice that

the local root bandwidth (MB/s received or sent by the root node) coincides with the

global bandwidth (MB/s through all the network).

Figure 4.11 shows the performance of the interchange collective communication

with MPI for different size and number of computers. Interchange is implemented with

two MPI_sendrecv() functions (see Figure 4.4). The computers start the interchange

after a barrier. All the nodes measure time (the measure starts after the barrier). The

times obtained by the nodes for a particular size m are similar, the figure uses the mean

value. As it can be observed, the performances are mostly equal for different number of

computers. The minimum latency (75 μs) is higher than twice the point-to-point latency

(30 μs) because the nodes cope with input and output messages in parallel and the

switch manages packets from/to multiple nodes in parallel (data packets and also

control packets), see also Figure 4.4. The maximum local bandwidth of a node (~206

MB/s) is almost independent of the number of computers. Figure 4.11(b) compares the

local bandwidth with the point-to-point bandwidth multiplied by two. The local

Figure 4.9. Scatter/gather performance in the test cluster for different number of

nodes (computers). The node that scatters and gathers the data is the same and it

takes a share on them (it receives data in scatter and sends in gather). This node

measures the time of scatter plus gather. (a) Latency vs. message size m (time of

scatter+gather divided by 2). (b) Bandwidth vs. message size m.

Scalable Parallel Implementation for 3D Semi-Implicit models

125

bandwidth is nearly twice the point-to-point bandwidth until the message size exceeds

64 KB. This reflects a change from an eager to a rendezvous flow-control protocol of

MPICH. The rendezvous protocol requires interchange of packets between the sender

and receiver before transferring data to make sure there is enough buffer space in the

receiver for storing the data (note that the switch has to cope with a higher number of

packets).

As Figure 4.12 shows the latency of both the scatter+gather and interchange are

similar to the Ping-Pong latency (point-to-point latency multiplied by two) for large m.

For small m, scatter+gather latency is greater than Ping-Pong and interchange latency

and increases with the number of nodes. Moreover, as pointed out in Section 4.2.1,

generally, the amount of data to be interchanged (C4) in P-Si3D will be less than the

amount of data trasferred by the gather+scatter (C2-C3 in Figure 4.2 and Figure 4.3), so

C4 time will be lower than C2-C3 time. Figure 4.12 also compares bandwidth, local of a

node and global (i.e. bandwidth in the whole network). The local bandwidth of the root

node in a scatter+gather communication with m bytes is also the global bandwidth

because m is the total byte that the network transfers in both scatter and gather. The

interchange local bandwidth is near twice the point-to-point (i.e. Ping-Pong) bandwidth,

especially up to m=64 KB, because all nodes both send and receive m bytes in parallel.

The global interchange bandwidth is near the point-to-point bandwidth multiplied by the

Figure 4.10. Scatter/gather performance in the test cluster for different number of

nodes (computers). The same node scatters and gathers the data, but it does not take

a share on them (neither receives in scatter nor sends in gather).This node measures

the time of scatter plus gather. (a) Latency vs. message size m (time of

scatter+gather divided by 2). (b) Bandwidth vs. message size m.

PhD Thesis

126

number on nodes (5 in the figure), especially up to m=64 KB, because all the nodes

send two messages, each one of m bytes.

4.3.4 SP-Si3D computing performance

 SP-Si3D was executed with a basin LR model (parent model) of 100 m x 100 m

horizontal cells and a littoral HR model (nested model) of 20 m x 20 m cells (Table

Figure 4.11. Interchange performance in the test cluster for different number of

nodes (computers). The nodes start interchange after a barrier. All the nodes

measure time (measuring starts after the barrier). (a) Latency vs. message size m

and minimum latency L. (b) Bandwidth of a node vs. message size m (each node

sends two messages and receive two messages, each one of m bytes), bandwidth of

the point-to-point test multiplied by 2 and maximum bandwidth B.

Figure 4.12. Comparison of Ping-Pong, scatter+gather and interchange performance

in the test cluster. (a) Latency vs message size (b) Ping-Pong and interchange

bandwidth for a node, interchange and scatter+gather global bandwidth

(scatter+gather global bandwidth is also the local root bandwidth)

Scalable Parallel Implementation for 3D Semi-Implicit models

127

4.2). SP-Si3D main memory requirements (basin LR model plus nested HR model in

Table 4.2) decrease compare to a P-Si3D simulation of the basin HR model due to the

reduction in wet columns and cells. Columns decrease a 56% and cells decrease a 74%.

Due to the memory requirements, the basin HR model needs at least three computers to

be executed with P-Si3D while the SP-Si3D can be executed in one computer of the

low-cost cluster.

 Section 4 pointed out that the number of S2 solver iterations for a particular

tolerance depends on the equation system size. SP-Si3D equation subsystems decrease

in size when the number of computers increase. Table 4.3 shows the number of

iterations required by SP-Si3D to solve the equation system of the S2 stage in the parent

LR model (2
nd

 column) and the nested HR model (3
nd

 column). It also shows the

iterations required for each of the equation subsystems (one per subdomain) resolved

when SP-Si3D is executed in eight computers (4
th

 column). As can be noticed (see also

number of columns in Table 4.2), the number of iterations decreases as the size of the

S2 equation system decreases (littoral HR model in eight computers requires less

iterations than in one computer, and LR model much less than any of them).

Step LR model
Littoral HR model

in 1 computer

Littoral HR model

in 8 computers

LeapFrog ~11 ~30 ~26

Trapezoidal ~7 ~21 ~18

Table 4.3. SP-Si3D. Mean number of iterations of SP-Si3D PCG solver for the LR model, for the

littoral HR model when executed in one computer, and for one HR subdomain when the nested

model is executed in eight computers. All simulations use the same tolerance.

The scalability of the littoral HR model was studied up to eight computers

comparing with one computer, using all cores in each computer. Speedup of the littoral

HR model, S
HR

(p), for p computers is obtained as follows:

𝑆𝐻𝑅(𝑝) =
 𝑇𝛥𝑡
𝐻𝑅(1)

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

 (4.7)

Where 𝑇𝛥𝑡
𝐻𝑅(𝑝) is the mean run-time of a time-step. Efficiency of the parallel littoral HR

model, E
HR

(p), for p computers is obtained with:

PhD Thesis

128

𝐸𝐻𝑅(𝑝) =
𝐼𝑑𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑝 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑝 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠
=
 𝑇𝛥𝑡
𝐻𝑅(1)/𝑝

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

=
𝑆𝐻𝑅(𝑝)

𝑝

 (4.8)

Speedup for SP-Si3D when the number of computers p assigned to the littoral HR

model increases from 1 to 8 comparing with an execution in one computer of both HR

and LR models, TΔt(1), is:

𝑆(𝑝 + 𝑝𝐿𝑅) =
𝑇∆𝑡(1)

𝑇∆𝑡(𝑝 + 𝑝𝐿𝑅)

=
𝑇∆𝑡(1)

max (𝑇𝛥𝑡
𝐻𝑅(𝑝), 𝑇𝐶

𝐿𝑅 𝐻𝑅⁄ (𝑝), 𝑇
𝛥𝑡

𝐿𝑅
(𝑝𝐿𝑅))

 =
𝑇∆𝑡(1)

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

𝑝𝐿𝑅 =
𝑐𝑜𝑟𝑒𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐿𝑅 𝑚𝑜𝑑𝑒𝑙

𝑐𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟

 (4.9)

where p
LR

 is the ratio between the number of cores used by the basin LR model and the

number of cores in a computer. Efficiency is:

𝐸(𝑝 + 𝑝𝐿𝑅) =
𝑆(𝑝 + 𝑝𝐿𝑅)

𝑝 + 𝑝𝐿𝑅

 (4.10)

SP-Si3D run-time in one computer TΔt(1) is obtained running parent LR and nested HR

models in parallel in the computer. The best single-computer time is used here, obtained

when the 16 logical cores of a computer is used and both LR and HR are executed in 8

logical cores belonging each to a different physical core.

 Figure 4.13 shows run-time per iteration 𝑇𝛥𝑡
𝐻𝑅(𝑝), speedup S

HR
(p), and efficiency

E
HR

(p) for the domain-decomposition execution of the littoral HR model. Figure 4.14

shows run-time per iteration 𝑇𝛥𝑡 (𝑝 + 𝑝
𝐿𝑅), speedup S (p+𝑝𝐿𝑅), and efficiency E

(p+𝑝𝐿𝑅) of SP-Si3D. Alternative speedup (S’) and efficiency (E’) figures are also

shown, comparing the SP-Si3D parallel run time 𝑇𝛥𝑡 (𝑝 + 𝑝
𝐿𝑅) to 𝑇𝛥𝑡

𝐻𝑅(1), the run time

of the littoral HR model in one dedicated computer not shared with the LR model (i.e.

Scalable Parallel Implementation for 3D Semi-Implicit models

129

not including the LR model run time in the reference time used for the comparison).

This figure also shows the run-time of the LR model depending on the number of cores

used. The run-time decreases as the computational load is split among a larger number

of computers. In all the simulations conducted, the littoral HR model was the most

costly (pipeline stage “HR” in Figure 4.6(b)), independent of the number of subdomains

used in the HR model (p=1…8). As Figure 4.13 shows, the speedup of the littoral HR

model increases linearly with a constant slope of almost one (efficiency of near 100% in

Figure 4.13), so it scales almost ideally and the run-time decreased almost inversely

proportional to the number of computers used. As Figure 4.14 shows SP-Si3D also

scales almost ideally as the number of computers increases, with efficiency (E(p´))

around 101%. Without taking into account the run time of the LR model, efficiency is

slightly lower (E´(p´) in Figure 4.14). Note that efficiency is inversely proportional to

resources used and that the resources (in particular, the number of cores of the parent

LR model) can decrease using a higher time-step for the LR model (50 s instead of 10 s)

as it was pointed out before.

Nested HR mean time per time-step,

speedup (Eq. (4.7)) and efficiency (Eq.

(4.8)):

p

Nested HR

T TΔt
HR(p)
(s)

Nested HR

S S
HR

(p)

E
HR

(p)

%

1 20.8223 1.0000 100.00

2 10.4600 1.9907 99.53

4 5.2407 3.9732 99.33

8 2.6129 7.9790 99.61

(a)

Figure 4.13. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (in %) of

the littoral HR model in Lake Tahoe. (b) Graph of time and speedup for p=1,2…8

computers comparing with time in 1 computer (using all cores in each computer).

The ideal linear speedup (speedup of p for p computers) is shown in the graph (gray

line).

0

1

2

3

4

5

6

7

8

9

0

5

10

15

20

25

1 2 3 4 5 6 7 8

N
es

te
d

 H
R

 m
o

d
el

 S
p

ee
d

u
p

 N
es

te
d

 H
R

 m
o

d
el

 T
im

e
(s

ec
o

n
d

s)

p
(b)

Nested HR T

Nested HR S

Ideal S(p)=p

PhD Thesis

130

The speedup of SP-Si3D compared to the HR model of the complete basin

executed in one computer would be super-linear (above ideal) due to the nesting. This

speedup cannot be obtained because the basin HR model does not fit in the memory of a

computer, requiring at least three computers. SP-Si3D achieves real time execution (a

run-time per iteration lesser than the time-step of 10 s) with three computers, while P-

Si3D does not achieve real time for the number of computers available in the cluster

(the minimum run-time per iteration obtained by P-Si3D is 12.25 s).

4.3.5 Quality of the SP-Si3D results

The quality of SP-Si3D results depends on (1) the quality of the nesting implementation

and on (2) the scalable parallel implementation of the nested HR domain. The nesting

implementation was evaluated in Chapter 2 (Section 2.4). Results show that the

𝒑𝑳𝑹 =
𝒄𝒐𝒓𝒆𝒔 𝒖𝒔𝒆𝒅 𝒃𝒚 𝑳𝑹

𝟖 𝒄𝒐𝒓𝒆𝒔 𝒑𝒆𝒓 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒓

SP-Si3D time, speedup (Eq. (4.9)) and efficiency

(Eq. (4.10)):

p'

SP-Si3D

T

TΔt(p’) (s)

SP-Si3D

S

S(p´)

E(p’)

%

SP-Si3D

S´

S´(p´)

E´(p’)

%

1.000 22.5120 1.0000 100.00 0.9249 92.49

1.125 20.8223 1.0811 96.10 1.0000 88.89

2.125 10.4600 2.1522 101.28 1.9907 93.68

4.250 5.2407 4.2956 101.07 3.9732 93.49

8.500 2.6129 8.6157 101.36 7.9690 93.75

p'= p +p
LR

when more than 1 computer is used.

LR time:

p
LR

 #cores TΔt
LR(pLR)

0.125 1 7.04

0.250 2 3.73

0.500 4 2.16

1.000 8 1.15

 (a)

Figure 4.14. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (%) in Lake

Tahoe. Run-time per iteration for the LR model is also shown using 1, 2, 4 and 8 cores

of a computer. The number of cores in the LR model for SP-Si3D is chosen in order to

approach the HR parallel time. (b) Speedup. The ideal linear speedup is shown in the

graph (gray line).

1

2

3

6

0

5

10

15

20

25

1 2 4 8

S
P

-S
i3

D
 S

p
ee

d
u

p

S
P

-S
i3

D
 T

im
e

(s
ec

o
n

d
s)

p´ (logarithmic scale) (b)

SP-Si3D T
SP-Si3D S
SP-Si3D S'
Ideal S(p´)=p´

Scalable Parallel Implementation for 3D Semi-Implicit models

131

differences between N-Si3D results and a HR execution of the entire basin are mainly

due to the iterative PCG solver used to obtain free surface elevation (Table 2.4 in

Chapter 2). No differences are obtained when the iterative PCG solver is replaced by a

non iterative method and both the nested and the parent models have the same

resolution.

The quality of the SP-Si3D results is evaluated qualitative and quantitatively in a

region where there exist local-scale hydrodynamic features well resolved by a basin HR

model but not by a basin LR model. Local-scale hydrodynamic features, such as flow

separation and recirculation eddies occurring in the near-shore region, can only be well

resolved in the basin HR model and not by the basin LR model. Global-scale features

captured in both basin HR and basin LR models are similar, but differences in the

vorticity fields reveal the location of features in the basin HR model that are not

captured by the basin LR model. Marla Bay (Figure 4.7(a) shows its location) is here

taken as a case example where recirculation is likely to occur as a result of flow

separation. The vorticity field in Marla Bay at any given time t was computed from

surface velocity predictions for the rectangular region in Figure 4.15, as follows

𝜔(𝑖 + 1 2⁄ , 𝑗 + 1 2⁄)

=
𝑣(𝑖 + 1, 𝑗 + 1 2⁄) − 𝑣(𝑖, 𝑗 + 1 2⁄)

∆𝑥

−
𝑢(𝑖 + 1 2⁄ , 𝑗 + 1) − 𝑢(𝑖 +1 2⁄ , 𝑗)

∆𝑦

 (4.11)

As Figure 4.15 demonstrates, with the nested HR model of the Marla Bay region shown

in the figure, recirculation in Marla Bay is captured (d) in the same way that in the basin

HR model (a), while the basin LR model (b) only captures a weak divergence in the

velocity field. Being able to simulate these eddies in bays and other lake shore

irregularities, is important in trying to understand coastal transport processes (Rueda

and Vidal 2009). As a result of re-circulating eddies, bays can trap particles in

suspension and other water constituents, hence, decreasing the longshore dispersion

rates. This trapping effect has been reported previously in the literature; for example,

Brooks et al. 1999 shows that eddies in Cobscook Bay, Maine, could trap particulates in

the side-arms of the estuary. The local residence time of water within bays tends to

increase as a result of recirculating eddies; hence becoming hot-spots for the

PhD Thesis

132

reproduction of species looking for quiet conditions. Nishimoto and Washburn 2002, for

example, observed high concentrations of juvenile fish in the center of a large eddy in

the Santa Barbara Channel.

In order to show the quality differences between the results of SP-Si3D and those

of a parallel implementation based in the execution of multiple simple nested HR grids

in parallel (called here as MN-Si3D), one for each SP-Si3D subdomain, both SP-Si3D

and MN-Si3D have been used with a subdomain boundary in the middle of the local-

scale vortex of Figure 4.15(c). Figure 4.16 shows the results obtained (vorticity and

velocity field). SP-Si3D output is very similar to the output of the basin HR model

(Figure 4.15(a)), while MN-Si3D output is clearly quite different. The differences of

variables (velocity, free surface elevation, temperature, vertical diffusivity) at the end of

the simulation period between the simulation of the basin HR model and the alternative

simulations to be evaluated (SP-Si3D, MN-Si3D, N-Si3D, basin LR sequential

simulation) were quantified using a normalized form of the root-mean-squared error

(NRMSE), usual in validation works (Debreu et al. 2012,Kourafalou et al. 2009,Pairaud

et al. 2011,Son et al. 2011), calculated as follows

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑏

𝑐 − 𝑥𝑛
𝑐)2

𝑁

𝑐=1

𝑁

 (4.12) 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (4.13)

Here xb represents the value of a variable calculated by the basin HR model executed

sequentially; xn is the value calculated by the simulation to be evaluated (SP-Si3D, MN-

Si3D, N-Si3D, basin LR sequential simulation); xmax and xmin represent the maximum

and minimum of each variable; and N is the total number of water columns in the region

of interest. The NMRSE errors in the area named “study area” in Figure 4.15 and Figure

4.16 for velocities (u, v), temperature (T), vertical diffusivity (Kv) and surface elevation

ζ can be seen in Table 4.4. They are obtained for the Si3D simulation of the basin LR

model (Figure 4.15(b)), the N-Si3D simulation of Figure 4.15(d), the SP-Si3D

simulation of Figure 4.16(a) and the MN-Si3D simulation of Figure 4.16(b). The region

simulated in HR with N-Si3D, SP-Si3D and MN-Si3D is the Marla Bay zone shown in

the figures. The comparison of N-Si3D and SP-Si3D errors allows concluding that the

SP-Si3D errors are due to the nesting implementation, the parallel implementation of

the nested HR model do not introduced important errors. However, the errors of MN-

Si3D are quite important, as Figure 4.16(b) also shows. Therefore, MN-Si3D is not that

Scalable Parallel Implementation for 3D Semi-Implicit models

133

good as parallel implementation because the distribution of work among subdomains

must care about where the boundaries between subdomains are established in order to

avoid errors, making it difficult to obtain a good work-load balance among subdomains.

(c)

(d)

Figure 4.15. Vorticity (color scale) and u+v velocity field (black arrows) in Marla Bay

area at a snapshot in time on Day 207. (a) Results from Si3D of the basin HR model, (b)

Results from Si3D of the basin LR model (parent model), (c) Zoom of the captured local-

scale vortex. (d) Results from N-Si3D, where the nested HR region simulated is just the

region shown in the figure.

 (a) (b)

PhD Thesis

134

(a)

(b)

Figure 4.16. Vorticity (color scale) and u+v velocity field (black arrows) in Marla

Bay area at a snapshot in time on Day 207. (a) Results from SP-Si3D. (b) Results

from MN-Si3D. Both results from SP-Si3D and MN-Si3D simulate in HR just the

region shown in the figures, divided into two subdomains. The boundary between

subdomains is highlighted by a white dashed line.

NRMSE Si3D basin LR N-Si3D SP-Si3D MN-Si3D

(%) Figure 4.15(b)

 Figure

4.15(d)

Figure

4.16(a)

Figure

4.16(b)

u 21.81 2.21 2.23 6.73

v 24.46 2.14 2.15 6.51

T 9.23 1.02 1.01 2.59

Kv 8.46 0.61 0.61 1.66

ζ 13.61 1.87 1.89 5.41

Table 4.4. NRMSE (%), for velocities u and v, temperature T, vertical diffusivity

Kv and surface elevation ζ, obtained for Marla Bay (region named “study area”) in the

surface layer with the basin LR model (Figure 4.15(b)), N-Si3D (Figure 4.15(d)), SP-

Si3D with a boundary in the vortex (Figure 4.16(a)) and MN-Si3D with a boundary in

the vortex Figure 4.16(b) all of them compared against the results of the basin HR

model in this region (Figure 4.15(a)). N-Si3D, SP-Si3D and MN-si3D simulate in HR

just the region shown in the figures.

4.4 Conclusions and future work

This work proposes a scalable parallel implementation with a two-level parallel

structure, SP-Si3D, for semi-implicit hydrodynamic models, that achieves a scalable

speedup in low-cost clusters taking advantage of a nesting implementation. Scalability

Scalable Parallel Implementation for 3D Semi-Implicit models

135

is more difficult to achieve in low-cost clusters due to the lower performance of the

network interconnecting the computers (latency and bandwidth) and the higher number

of computers for the same number of processing cores (which increases mean

communication time among cores). SP-Si3D has been obtained modifying P-Si3D, a

parallel implementation of Si3D code (Smith 2006). This chapter shows that:

 P-Si3D scalability limit is mainly due to the sequential execution of the surface

elevation solver and the required all-to-one/one-to-all communications.

 SP-Si3D run-time decreases almost linearly with the number of computers in a low-

cost cluster. Thus, it scales almost ideally, i.e., its speedup

(speedup_with_p_computers = time_with_a_computer / time_with_p_computers)

increases with the number of computers used with a constant efficiency

(efficiency_with_p_computers = speedup_with_p_computers / p) of approx. one.

The scalability is achieved by executing in parallel the surface elevation solver

avoiding, in addition, all-to-one/one-to-all communications; just one communication

remains in SP-Si3D, an interchange communication, as in parallel implementations

of explicit hydrodynamic models. The method proposed to improve scalability is

also applicable to other (semi-)implicit and implicit-splitting models. Other parallel

platforms, such as GPUs and high-end servers, can also benefit from the

modification proposed.

 The time of the SP-Si3D interchange communication in a low-cost cluster does not

depend on the number of nodes.

 The parallel processing structure of two-level proposed (pipeline plus domain-

decomposition) allows the execution of the parent LR model and the nested HR

model in parallel with an execution time equal to the execution time of the nested

HR model. This two-level approach is also applicable to online nested

implementations of explicit or implicit (splitting or not) hydrodynamic models.

 Lake Tahoe local-scale simulations with SP-Si3D achieve real time (a run-time per

iteration smaller than the time-step of 10 s) with three computers, while with P-Si3D

(which has all-to-one/one-to-all communications) does not achieve real time for the

number of computers available in the low-cost test cluster and requires at least three

computers for its execution due to the main memory required by the HR simulation

of the entire basin.

PhD Thesis

136

 The modification applied to achieve scalability barely affects the quality of the

results. The differences with the results obtained with a basin HR model are due to

the nesting implementation, the errors of which are mostly due to the iterative solver

used for obtaining surface elevation.

 The results show that the parallel implementation can reproduce recirculation not

observed in the lower resolution model of the entire Lake Tahoe basin even if a

subdomain boundary crosses the recirculation area.

 The implementation that divides the HR grid to be simulated into multiple nested

HR sub-grids that are processed in parallel (named here MN-Si3D) is less

recommended as parallel implementation because the boundaries between nested

HR sub-grids must be chosen with care to avoid errors, making it then difficult to

balance the work among computers.

The execution of much higher size models in high-end platforms could require the

modification of the parent LR code so that it can be executed in more than one

computer. To achieve this objective this code could use P-Si3D MPI implementation

(only the OpenMP implementation was used here). The implementation can be

extended to more than two levels of grids (parent grid + nested grid). In that case, the

number of stages of the pipeline structure will depend on the number of grid levels.

Chapter 5

A hybrid parallel implementation of a 3D

hydrodynamic model optimized and

adapted to the architecture

PhD Thesis

138

Abstract

In this chapter, a number of proposals to obtain an optimized and scalable parallel

implementation are presented. This is achieved by adapting the operations typically

found in a 3D hydrodynamic model to the architecture used in both shared and

distributed memory machines. The results show that the adaptation of the model to a

NUMA architecture, and minimizing the overhead produced at points of

communication/synchronization, significantly reduces the computational cost of the

model (in both required execution time and memory). Good results can be obtained with

these improvements even in low performance architectures, even showing that the

optimization and reduction of communications allows us to obtain similar results with

Infiniband and Gigabit Ethernet. It also shows that all stages must be optimized equally

to obtain the best results, including the resolution of the long sets of equations

characteristic of implicit models, solved by iterative methods such as the Preconditioned

Conjuguent Gradient (PCG) whose parallel implementation is very complex. This work

includes an efficient and optimized parallelization of the PCG in the same way as the

rest of the model. This allows an implementation in parallel without adding a higher

computational cost than in other stages, at the cost of reducing their convergence in

finding an acceptable solution when the number of subdomains that run in parallel is

incremented. However, this reduction is significantly enhanced by a modification to the

Modified Incomplete Cholensky preconditioner developed and implemented in this

work.

5.1 Introduction

In Computational Fluid Dynamics (CFD), the numerical simulation of water using 3D

hydrodynamic models is one of the most challenging problems in engineering

applications. In these simulations, small spatial scale patterns have a significant impact

on large-scale circulation. It is therefore necessary to use large high-resolution grids

which are able to properly simulate these patterns properly. Moreover, the time scale is

also usually large, with small time-steps to avoid problems of stability, thus making it

necessary to run these models a large number of time-steps for long periods of time to

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

139

obtain useful simulation results. Because of these enormous requirements of timescale

and spatial scale, most of the simulated phenomena produce costly simulations (in terms

of execution time and the amount of memory needed). For critical situations, for

example the study of floods in order to predict which areas might be affected and

establish preventive measures in time, high execution times would be unacceptable.

Given these requirements, the use of High Performance Computing (HPC) to reduce the

computational cost is becoming an essential practice. These high-performance platforms

not only reduce the computational time, but allow simulations with higher spatial

resolution or repeat costly simulations for calibration and validation and, consequently,

provide better results.

Different paradigms can be used in order to take advantage of these parallel

environments. In the state of the art simulations of large-scale water, it shows that the

message-passing paradigm is the option which is mostly used (Ecer et al. 1999, Fischer

and Patera 1994 Fringer et al. 2006, Manzini and Stolcis 1999, Rao 2004, Semtner and

Chervin 1988, Smith et al. 1992), where each processor has its own "local space name".

The existence of a standard for this paradigm, Message Passing Interface (MPI)

(Message Passing Interface Forum), and its ability to scale to a large number of

processors (Gropp 2001), has contributed to its main use. However, the shared memory

paradigm OpenMP (OpenMP Architecture Review Board) has also been used more

frequently in recent years to efficiently exploit shared memory machines (SMP), which

generally have NUMA Architectures (Non-Uniform Memory Access), where you can

take advantage of the faster local memory of each processor compared to the memory of

other processors to perform more efficient implementation, as well as its simplicity and

lower computational cost when accessing data from other threads using shared memory.

Both paradigms have been compared in performance in the past. In (Luecke-Hua and

Wei 2001) 7 tests were conducted (2 to measure communications and 5 kernels), MPI

performed better than OpenMP in most cases. In another study to analyze the efficiency

of a hydrodynamic model (Resch et al. 1999), it found that results with OpenMP had

poor scalability compared to MPI for 8 processors. However, in recent years various

studies have shown that OpenMP can be as competitive as MPI in SMP if explicit

optimizations are developed by the programmer. (Norden et al. 2006) makes a

comparison, without going into detail of how each implementation was done, between

MPI and OpenMP in NUMA and UMA architectures concluding that OpenMP is as

PhD Thesis

140

efficient as MPI, provided that care is taken with the initial placement of variables in

memory (first-touch). (Amritkar et al. 2012) also showed optimal performance of

OpenMP implementation in a SMP architecture of up to 256 cores when first-touch and

appropriate affinity threads were used. Thus, the current trend is moving towards hybrid

implementations that allow us to take advantage of OpenMP within a node and

scalability of MPI in an environment of multi-cores nodes. However, to obtain good

scalability in these architectures, it is necessary that the deployed application is

optimized for both parallel paradigms, OpenMP and MPI.

Whether using OpenMP or MPI, optimizations are performed to obtain an

efficient parallel implementation, which will largely depend on the type of model used

and, therefore, the type of operations executed. Usually 3D hydrodynamic models use

numerical solutions of partial differential equations based on the Navier-Stokes

equations for shallow water (Shallow Water Equations, SWE, see for example Blumber

and Mellor 1987, Chapman et al. 1996, Fringer et al. 2006, Smith 2006, Griffies et al.

2008). Typically, these equations are discretized in space using methods of finite

volumes (i.e. Daoud 2008), finite elements (i. e. Ferrarin et al. 2008) or finite

differences (i.e. Hodger et al. 2000) in grids which can be structured (i. e. Blumber and

Mellor 1987) or unstructured (i. e. Fringer et al. 2006). On the other hand, the equations

can be discretized in time explicitly, implicitly or the alternative usually used with a

combination of both of them, the splitting methods. Some of these splitting methods are

the mode-splitting scheme presented by Blumber and Mellor (1987), the semi-implicit

approach presented by Casulli and Cheng (1992) or the time-splitting method presented

by de Goede (1991). The explicit case is presented simpler than the implicit case, given

the direct computation of the dependent variables which can be made in terms of known

quantities. Conversely, in an implicit case the dependent variables are defined by sets of

coupled equations, generating large 2D equation systems which typically have the

structure of a definite positive pentadiagonal symmetric matrix. This system of

equations can be solved in each time-step by iterative methods such as the conjugate

gradient (CG) (Hestenes and Stiefel 1952), which is one of the most widely used

because of its simplicity and good convergence ratio (Zou and Hoffman 1993).

These models based on the SWE are computationally implemented so that work

can be resolved column by column of the grid. However, the computational cost can be

very significant, even in the calculation of each column, for example having tridiagonal

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

141

systems of equations to solve (Stone 1973) for each of the columns of the grid (in the

case of 3D models). In addition, the calculation of each column is dependent on other

columns (usually with their neighbors to the north, south, east and west) that must be

resolved efficiently in a parallel implementation. Similarly, the implicit case for solving

the system of pentadiagonal equations involves additional work in both sequential and

parallel implementation. These systems of equations are solved by iterative methods

like CG (Meyer et al. 1989, Hill 1990). Additionally, preconditioning techniques are

often used to improve the convergence of the iterative method (Preconditioned

Conjugate Gradient, PCG) which, while reducing the number of iterations to find the

solution, may present a computational cost at or above the CG itself. In the case of a

parallel implementation, regardless of how the load balance is done, each process or

thread normally only knows the part of the equation system that has been calculated and

additional procedures such as reordering, factorization and/or

communication/synchronization, with its associated computational cost, must be applied

by using a PCG in parallel. Moreover, in the parallel implementation of the PCG, it

must be taken into account that (1) the instructions added for a proper parallelization

(computational cost added) and (2) adding synchronization and data exchange too often

at each iterative step, degrade performance on both the execution time of each of the

iterations of the PCG (Amestoy and Duff 2000) and the number of iterations required to

converge to an acceptable solution (Benzi 2002, and Van der Vorst Magoulu 2000 Naff

and Wilson 2006, Teranishi and Raghavan 2007).

The choice of a suitable preconditioner when performing a parallel

implementation is not a trivial task. In literature Jacobi and Block Jacobi (Pellissetti and

Ghanem 2000) are among the methods most used in preconditioning hydrodynamic

models, for its simplicity and relative ease in implementing in parallel without adding a

significant additional cost compared to CG itself. Other more complex preconditioners

such as Incomplete Cholensky (IC) or Modified Incomplete Cholensky (MIC) greatly

reduce the number of iterations needed to converge to a certain tolerance, but require a

much higher computational cost per iteration and their implementations are difficult to

perform in parallel. (Benzi 2002 Eijkhout 1992) present a parallel implementation of the

preconditioner MIC using red-black ordering where scalability of the implementation is

reduced by increasing the number of processes due to increased communication.

(Jiaquan et al. 2013) describes a parallel implementation of MIC on GPUs using a

PhD Thesis

142

technique called wave front, where all the threads have full access to the pentadiagonal

system to solve step by step those equations that do not present unresolved

dependencies. This method, however, would not be efficient in distributed architectures.

Other works have PCGs (Benzi 2002 Husbands and Yelick 2007, 2003 Kim and Im,

and Van der Vorst Magoulu 2000, 2006 and Wilson Naff, Teranishi and Raghavan

2007) implemented in parallel which require preparation of the system of equations

with additional factorizations of the LU or LDLT type and/or a new reordering of the

equations (such as red-black ordering). Though a parallel implementation is reached

using these methods, it hinders implementation, adds computational load and requires

more communication between subdomains to solve the dependences. Furthermore,

many proposals found in literature solely presented the parallelization of the PCG,

regardless of what type of application will be used. This can present possible additional

imbalances because the workload is usually divided in these types of hydrodynamic

models taking into account all stages of the model, and not just the pentadiagonal

system of equations. This could mean that certain proposals, although they present an

efficient parallel PCG, are not efficient enough when they are included in a

hydrodynamic model, having to adapt the parallel PCG performed with new reordering

and/or communications.

Given the importance of a good load balance, another of the critical points in the

development of an efficient parallel 3D hydrodynamic model is how the work is

divided. Domain decomposition is generally the proposal mostly used. The type of

decomposition used, and the procedures that will be needed to add to perform the

exchange of information between subdomains, will produce an added overhead in the

parallel implementation, both in the number of communications and the amount of data

to be communicated. The implementation of distinct alternatives of domain

decomposition in various parallel architectures has been widely studied (Bjorstad et al.

1993, Chan et al. 1990, Hackbusch 1991 Keyes 1987) testing different types of cuts

(horizontal or vertical to the grid) and the complexity of each cut (from simple cuts in

one direction, reducing interaction with other subdomains, to irregular cuts in two or

more directions, increasing the interaction with other subdomains). In this work

(Chapter 3, Section 3.3.4) it is also studied how the type of cut affects to the

performance in a parallel implementation. It is also possible to use tools like

ParaMETIS, which automatically allows domain decomposition (Karypis 2000).

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

143

Making an optimal domain decomposition of grids with irregular geographies can be a

complicated task. This is because to spread the workload as evenly as possible, it could

also increase the amount of data to be communicated and the number of subdomains

that must interact with each other (by increasing the number of cuts between neighbors

for example). Delis (2009) and Yu (2010) compared different domain decompositions

with different ways of distribution work. They concluded that simple cuts in one

direction (vertical or horizontal) obtained the best results in producing a load balance.

Simple cuts were only slightly more unbalanced compared to other decompositions with

various cuts and conversely, reduced the amount and the number of communications

significantly.

Considering all the above-mentioned points, the parallel implementation of a 3D

hydrodynamic model is not a trivial task, where you must consider the type of model to

be parallelized and how to take advantage of the architecture in which the model will be

efficiently executed. This work presents OP-Si3D, the optimization of the parallel

implementation of a 3D semi-implicit model based on the SWE using domain

decomposition. The implicit or semi-implicit models are harder to parallelize than the

explicit cases (Naik 1993). This is because during the execution of each time-step a

large system of pentadiagonal equations of the entire domain to obtain water surface

elevation must be solved and its implementation in parallel is not a trivial task

(Grindbaum 1998). In this chapter it is intended to emphasize those tasks, methods and

tools necessary to take full advantage of a hybrid parallel hydrodynamic model, making

an efficient use of available resources and getting good results from both shared and

distributed memory machines. This will not only achieve greater scalability and

efficiency in high performance architectures, but also achieve results almost as efficient

with low cost machines connected with to cheaper interconnection networks.

Improvements in this chapter to adapt the parallel implementation to the

architecture and reduce the overhead caused by a parallel implementation include:

 How to implement procedures such as first-touch and an efficient affinity map,

showing that distinctive affinity options offer different results depending on the

type of architecture used.

 Synchronization points common between threads (ompbarrier) are replaced by

our own more efficient implementations, adapted to a NUMA architecture and

to the domain decomposition used.

PhD Thesis

144

 We show that algorithms typically used in linear algebra such as the Thomas

algorithm for solving tridiagonal system of equations can reduce their

executional time, with basic optimizations such as loop unrolling.

 Alternative storage variables are presented in the case of threads, showing that

the use of data locality cannot be efficient if the storage of variables in threads is

not properly implemented.

 All communications are overlapped with computation, performing the

computation of the border columns before the rest of the interior columns of

each subdomain, showing that similar results can be obtained with Infiniband

and Gigabit Ethernet despite the volume of data to be communicated.

 We show that the efficiency of implementation can be improved if the number

of synchronization/communication points is reduced and redundant computation

is added.

As domain decomposition method is used the implementation with vertical cuts in

one direction explained in Chapter 3 and presented in other works (Passoni et al. 2001).

This decomposition leads to load imbalances of lower than 0.5% even in large high

resolution grids, and greatly reduces the amount and number of communications (each

subdomain has to communicate with a maximum of two other subdomains). The same

domain decomposition is used even during the parallel calculation of CG and of the

preconditioner, maintaining the same type of communication as in the rest of the model

(with a maximum of two neighboring subdomains) and avoiding additional procedures

such as reordering. Similarly, distinct preconditioner alternatives are evaluated,

presenting methods traditionally used, such as Jacobi or Block Jacobi, and implemented

efficiently. Additionally, a modified version of MIC is presented. This modification has

not been found by the authors in the literature, and it can be easily implemented in

parallel without any additional computational cost with respect to a sequential MIC,

reducing the loss of efficiency thanks to the presented modification and performing

better than the second best method evaluated, Block Jacobi, in a machine up to 256

cores.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

145

5.2 OP-Si3D implementation

The 3D hydrodynamic model used here was originally developed by Smith (2006) and

later adapted for simulation in lakes (Rueda 2001). Si3D is a public code programmed

for serial architectures by the US Geological Survey (USGS), which provided us with a

free version.

The optimized parallel implementation proposal here is applied to Si3D (more

details about the model description can be found in Chapter 1), based on the code

provided by the USGS. This implementation is called here OP-Si3D.

5.2.1 Basic optimizations

From the original sequential algorithm, various optimizations have been applied in

order to reduce and avoid unnecessary computations, to facilitate compiler optimization

of the code and reduce the amount of memory required. The optimizations include:

 Deleting unnecessary initializations for each time-step.

 Fusion of loops.

 Replacing explicit loops with implicit loops, implemented as a standard in

Fortran and recommended to facilitate the optimization of the program by the

compiler.

 Re-using the same calculation variables at different stages.

 Padding in some loops.

 Elimination of unnecessary copies, avoiding some variables being calculated

into an array and then copied to another just for reading in later stages.

 Replacing the calls of small subroutines directly by the code.

Additionally, we have implemented an optimization to the standard algorithm

known as the Thomas algorithm, widely used to efficiently solve tridiagonal systems of

equations (Thomas 1949) and that in Si3D it consumes over 50% of the execution time

of each time-step (see Section 5.3.4) . The Thomas algorithm works with each row

(equation) of the system, similar to the Gaussian elimination method. In the first-step a

forward substitution is done, where each row is replaced by a suitable linear

combination of rows so that the lower diagonal elements are eliminated and the main

PhD Thesis

146

diagonal elements are equal to 1. Once the upper triangular matrix is obtained, the

algorithm applies a backwards substitution to solve the unknown variables. Although

the Thomas algorithm is very economical and grows linearly with the number of

unknown variables, this is still computationally expensive because of the two-step

procedure used. To facilitate optimization and the efficient use of the architecture, the

Thomas algorithm has been modified to include a loop unrolling.

5.2.2 Data distribution and parallelization

Si3D uses about 250 variables to store 3D model information. For this, arrays are used

that only store information of columns with water, this allows us to reduce memory

costs by not having to store information of dry columns and reduce the computational

cost by not having to assess whether a column is dry or not before performing a

calculation. The new variables are one or two dimensional arrays, one dimensional for

2D variables defined in the x and y directions such as water surface elevation, two

dimensional for storing 3D variables defined in the x, y and z directions such as vertical

velocity, with the first dimension used for x and y, and the second for z. Access to

neighboring columns (north, south, east or west) is achieved by 4 one-dimensional

arrays (one for each direction). These arrays avoid extra operations to find the neighbors

of a given column while supposing a miniscule memory cost, for example only 0.05%

of total memory is required in the simulations of the high-resolution model used in this

chapter.

Each one of the Si3D stages (except in the stage where the solution of the

pentadiagonal system of equations is performed, further details of the numerical model

can be found in Chapter 1) and, therefore, the calculation of the governing equations,

are done column by column as per the original Si3D model developed by Smith (2006).

This facilitates data locality in the calculation of each stage of the model, such as the

resolution of the tridiagonal systems that are formed for each water column in 3 points

(or more than 3 if passive tracers are used) for each Leapfrog or Trapezoidal step. The

tridiagonal system calculations represent more than 50% of the execution time in all

cases studied (see Section 5.3.4). As mentioned, the execution of Si3D is done column

by column, advancing along each horizontal row of the grid from the southernmost

column to northernmost column, beginning at the same time with the most westerly row

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

147

of columns and ending with the most easterly. Taking this into account for the

management of data locality, the variables are stored so that the information in each

column is contiguous in memory and neighboring north and south columns are

contiguous too. This ensures that when you access a column of the domain and the data

is brought into a block memory cache (the fastest memory), this block includes data

from the entire column and other neighbor columns that are then calculated

immediately, so avoiding penalties of higher computational cost because of having to

access the main memory too often.

Given the way Si3D works, just like other existing hydrodynamic models, the

model can be parallelized using domain decomposition, assigning a specific number of

columns to each subdomain taking into account an overlapping area to resolve

dependencies during the calculation. In this work, as well as others (see for example Yu

2010), we have chosen a domain decomposition with vertical cuts in one direction,

similar to those in Figure 5.1. This is done by assigning a group of consecutive grid

horizontal rows to each subdomain and reducing to a maximum of only two overlapping

subdomain areas to resolve dependencies with neighbors to the east and west.

Figure 5.1. Domain decomposition by horizontal rows in Si3D, each subdomain

consists of those columns within its subdomain (Interior Columns) and those

representing the boundaries of other subdomains to the east and west (blue area).

The yellow area represents the dependencies of a subdomain with its neighbors

(overlapping area), solved by adding communication and/or synchronization.

For example in Figure 5.1, the subdomain 2 consists of those columns of water

known as Interior Columns and additionally the columns which are shown in blue. On

the other hand, the data outside the subdomain, but which is necessary to solve the

dependences, will be considered as areas of overlap, represented in the figure with

yellow, the blue borders represent overlapping areas of subdomains 1 and 3

respectively. Thanks to this type of domain decomposition, the

Subdomain 1

E
as

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 3

 E
as

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 2

 E
as

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 4

 W
es

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 1

 W
es

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 2

 W
es

t
B

o
rd

er
 S

u
b
d

o
m

ai
n
 3

Subdomain 2 Subdomain 3 Subdomain 4

Interior

Columns

PhD Thesis

148

communication/synchronization between two subdomains is reduced to only one area of

overlap. This also ensures that the data to be communicated is contiguous in memory

(given the way the variables are stored). Besides, this same domain decomposition can

be used in the parallelization of the Conjugate Gradient (as explained in Section 5.2.6)

in spite of which at this stage the calculation is not column by column of the grid as in

the other stages. Although the domain decomposition is done by assigning a number of

grid rows to each subdomain, the distribution is made taking into account the depth

(number of cells) of each column. Taking into account this, a group of variable rows is

assigned to each subdomain, trying to balance the number of cells that are distributed

among subdomains as equally as possible. This type of domain decomposition has

shown minimal imbalance, less than 0.5%, for all cases tested. The final Si3D parallel

model (OP-Si3D) is presented in Figure 5.2, adding those points of communication and

synchronization required to resolve the dependencies. S1, S2, S3 and S4 represent the

solver stages of Si3D (see Chapter 1 for more details). C1, C2 and C3 represent the

necessary communications/ synchronization between computers (communications

within S2 will be explained in Section 5.2.6), including those variables that have to be

communicated. OP-Si3D is based on the parallel implementation for small clusters (P-

Si3D) presented in Chapter 3 (Figure 3.1).

5.2.3 Implementation of the affinity map

Affinity allows using software to run a particular thread or process within specified

processing resources. This allows us to take advantage of NUMA type Architectures,

which are common in most current machines, where the access to processor memory

related to the process or thread is faster than accessing memory from other processors.

Affinity has been studied and recommended for this type of architecture in the past and,

however, still not commonly used in the field of Computational Fluid Dynamics,

probably because of the need to prepare the code explicitly to get the maximum good

affinity performance. This paper explains in simple steps how to extract the maximum

affinity performance from any parallel hydrodynamic model using domain

decomposition. This approach has reported a reduction of over 54% in the runtime in

the case of threads in a shared memory machine.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

149

Figure 5.2. Simplified flow diagram for OP-Si3D. Gray boxes represent processing

added for the parallel implementation. C1, C2 and C3 are communications among

computers. S1, S2, S3 and S4 are Si3D stages.

niter

OpenMP Region Parallel End

End

niter = niter +1

If niter <= totaliter

If niter > totaliter

Single ntrap
Data Update to

LeapFrog Step

Data Update to

Trapezoidal Step

Data Update for the next time-step

and Output Data to n= niter

If Single = 1

Step = 2
If ntrap

<= totaltrap

If ntrap > totaltrap

Step = 1

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζ n+1 (matcon)

S2. Solve an implicit pentadiagonal system of

equations for ζ n+1 using the PCG

C1. Solution border transmission and/or

border barrier

S3. Solve U n+1 and V n+1 (Continuity)

S4. Solve w n+1, one or more tridiagonal

system of equation per column for T n+1 and

other tracers (transport) and assign KH
 n+1 and

KV
 n+1 (turbulence) solving a tridiagonal

system of equations per column

If Single

 = 2

 ntrap = ntrap + 1

C2. Border transmission and/or border

barrier.

Start

Reading Input Data

MPI configuration

Data Transmission

Model Initialization and Output

Data to n=0

Begin core work

 Step

Assign work to cores

 If Step = 2 j If Step = 1

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate matrix

coefficients for ζ n+1 (matcon)

S2. Solve an implicit pentadiagonal system

of equations for ζ n+1 using the PCG

C1. Solution border transmission and/or

border barrier

S3. Solve U n+1 and V n+1 (Continuity)

S4. Solve w n+1, one or more tridiagonal

system of equation per column for T n+1 and

other tracers (transport) and assign KH
 n+1

and KV
 n+1 (turbulence) solving a tridiagonal

system of equations per column

C2.Border transmission and/or border

barrier

 Iterative Loop

L
ea

p
fr

o
g
 s

te
p

T
ra

p
ez

o
id

al
 s

te
p

PhD Thesis

150

The NUMA architectures are organized by a topology of two or three levels of

hierarchy, with the number of cores per socket on the first level, a number of sockets per

node on the second level and, finally for large shared memory machines, a third level

with multiple nodes. OP-Si3D makes use of the hwloc tool to recognize this architecture

(number of cores per socket, number of sockets per node and number of nodes) and

organizes data accordingly. The procedure consists of using affinity to bind each thread

to a particular core, also in placing threads with neighboring subdomains in neighboring

cores, as shown in Figure 5.3. In the case of processes this affinity scheme is also used,

ensuring that neighboring subdomains are found in the nearest neighboring core. This

organization ensures that only a maximum of two subdomains per node will have to

perform explicit communications with other nodes in distributed memory machines or

access the overlapping areas of subdomains in other nodes in shared memory machines

in a slower way. For the example shown, the communications between different nodes

is reduced to only one between subdomains 4 and 5, the remaining subdomains rapidly

access their data and ensure that neighboring subdomains are found in the shortest

possible distance.

Figure 5.3. Example of NUMA architecture with two nodes, each node has two

sockets, and each socket has 2 cores. The domain is decomposed according to the

number of resources available and each thread or process is assigned to a core. This

is always done consecutively by placing neighboring subdomains in the

architecture.

Node 1

Socket 0

Core 0

L1(32KB)

Core 1

L1(32KB)

L2(4096KB)

NumaNode 0 (4GB)

Socket 1

Core 2

L1(32KB)

Core 3

L1(32KB)

L2(4096KB)

NumaNode 1 (4GB)

Node 2

Socket 0

Core 0

L1(32KB)

Core 1

L1(32KB)

L2(4096KB)

NumaNode 0 (4GB)

Socket 1

Core 2

L1(32KB)

Core 3

L1(32KB)

L2(4096KB)

NumaNode 1 (4GB)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

151

To make this possible efficiently, each thread must initialize the data of its

subdomain (first-touch) to ensure thses data is taken to its part of the memory.

Additionally, the data is stored in memory alignments to 4KB, and also with a minimum

size of 4KB (including control variables). This is done to ensure that when a memory

block is stored in cache memory it contains only information from a particular

subdomain and, at the same time, another thread cannot invalidate this data by writing

in another area of the same block. In the case of processes, only the use of a suitable

affinity map will have a positive effect on performance. This affinity map accompanied

by the domain decomposition facilitates communications. In the example shown and

assuming that the nodes are found in different machines, only subdomains 4 and 5 will

have to make communications across an interconnection network. Besides, it is ensured

that for any case with more nodes and subdomains, only a maximum of two subdomains

per node will have to communicate with other nodes, as may be the case in subdomains

4 and 8 in the example shown if a third node was used.

In the case of threads, the type of variables used (shared or private), and the

distribution of the data, affect the performance of the affinity procedure. One of the

advantages of using threads is the availability of shared memory, which allows

communication between threads to be more simple and efficient. It is therefore

necessary to allow, whenever possible, the use of shared memory to obtain information

on the overlapping areas of other subdomains, this is possible without loss of efficiency

when accessing variables as read-only mode, so those variables that are written in one

time-step, and the next one are only accessed in read-only mode, are created as shared

variables. So for these variables each thread accesses to read and write to its part of the

subdomain during its calculation and only in read mode to the overlapping areas of

other subdomains in successive time-steps. However, there are many other calculations

that are accessed by both modes (reading and writing) in the same stage and can cause

two neighboring threads to compete for the same memory block, causing additional

penalties and having access to slower memory to take the updated data. Several

alternatives have been tested to determine the effect of these variables on performance,

and to find which one offers the best performance.

In addition, two alternatives are evaluated to do the calculation of each stage and

to solve dependencies with other subdomains. During S1, S3 and S4 of OP-Si3D

(Figure 5.2), there are certain points where other subdomains need information from

PhD Thesis

152

neighboring columns to the east or west immediately afterwards to calculate some

variables. This has been solved in the first alternative by using communication in the

case of processes and by synchronization in the case of threads, so that the stage is not

continued until the required calculated information is available for another thread or

process. However, this implies adding numerous points of

communication/synchronization that may reduce performance due to the active

blocking. A second alternative to replace these points of

synchronization/communication with redundant calculation is evaluated, so that the

same thread or process performs the calculation of the overlapping area, which also

avoids active blocking between threads or processes.

On the other hand, three storage alternatives have been evaluated for the

calculation variables in the case of threads.

 V1: A single shared variable size of the entire domain, in this case each thread

must access the information calculated by other threads in that variable when it

needs information from the overlapping area, directly accessing data from other

subdomains.

 V2: A single shared variable where, in addition to each subdomain, it is adding

the overlapping area and filling or garbage so that the total number of bytes for

each variable is a multiple of 4KB, ensuring that the block with the subdomain

of each variable can not be accessed by another thread. For this case, it is

necessary to use redundant computation.

 V3: A private and distinct variable for each thread of subdomain size and adding

only the overlapping area, avoiding any penalties for data access between

threads and reducing the amount of memory used. For this case, it is necessary

to use redundant computation.

5.2.4 Synchronization points

Synchronization points, barriers in the most common case, specify a point in the

execution flow of a parallel program where all the threads or processes must wait until

they all reach that particular point. In the case of a parallel hydrodynamic model, they

ensure that the necessary dependencies needed to continue the execution of a particular

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

153

subdomain have been resolved and this information is accessible to another thread or

process.

In the case of processes, the most efficient is to use the same communications as

synchronization, using blocking communication or both unblocking communication and

mpi_wait to ensure that data is available for a given process before continuing with the

execution.

In the case of threads, the most common procedure is the use of barriers that

prevent further execution until all the threads pass by that point. Although each software

already offers its own barriers (ompbarrier for example), the need of a generic

implementation to work in the same way in any architecture makes these barriers non-

optimal for each particular architecture used, as in the case of a NUMA architecture,

where the memory is organized into levels. Si3D presents two points where all threads

are synchronized at the same time (before and after S2) when a sequential Conjugated

Gradient is used (more details of this implementation are explained in Chapter 4,

Section 4.2.1). To accomplish this, ompbarrier uses a unique variable lock that all the

threads must access (Figure 5.4 (a)), so that all threads compete for the said variable

regardless of where the socket or node is found (Al Khalissi 2013). However, here we

have implemented a barrier where there is a variable lock per level, which is only

accessed by the threads of the same socket on the first level, one thread per socket on

the second level and one thread per node on the third level (Figure 5.4 (b)). In addition,

these barriers have been implemented so that in compilation time the compiler itself can

evaluate how many levels are available in the architecture, so that it is possible to

eliminate the computational cost of additional variable locks if any of the levels do not

exist. Similarly, these variables locks are 4KB in size, ensuring that no other thread

invalidates the data by accessing another area of the block containing each variable

lock.

PhD Thesis

154

Figure 5.4. (a) Classic ompbarrier barrier, each thread updates a shared global

variable lock. (b) Levels barrier. There is a variable lock size of 4KB per level. In

level 1 all the threads in the same socket are blocked, in level 2 the threads within

the same node and finally in level 3 all the threads.

On the other hand, during S2 it is necessary for some kind of synchronization that

allows to solve the three existing Dot-product operations in any Conjugate Gradient

(Figure 5.5, stages 2.2 and 2.5) so that the threads do not continue their execution until

the final result of the Dot-product is available. Although OpenMP offers an efficient

solution with clause reduction, this is not found to be adapted to a NUMA architecture.

With clause reduction the partial result obtained for each thread is added to a single

global variable (Bliznak et al 2014), presenting the same problem as the general

ompbarrier discussed above.

The alternative presented here allows the use of a structure similar to the new

implemented barriers, combining it with the Dot-product operation so that each partial

sum is done by using variables per level, avoiding all threads competing to make the

global sum in a single variable.

Finally, thanks to the domain decomposition used, the dependencies of each

subdomain are reduced to the areas of overlap (Figure 5.1), so although synchronization

points in the flow of execution are required for all subdomains, the dependencies and

consequent blocking of a subdomain depends only on the two neighboring subdomains

to the east and west. This means that each blocking may be selectively made between

each pair of neighboring subdomains, so that synchronization is reduced between three

subdomains (since each subdomain has two borders (Figure 5.1), it must synchronize

itself with its two neighboring subdomains) in these points of synchronization.

Node 1

Socket 1 Socket 0

Node 2

Socket 1 Socket 0

(a) (b)

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

155

Figure 5.5. Improvements made in the OP-Si3D parallel model, Iterative Loop

stage.

This synchronization among three is the same for all subdomains, except of course at

the beginning and at the end of the domain, as in the case of subdomains 1 and 8 in

Figure 5.5, which should only be synchronized with a neighboring subdomain to the

east or west respectively. This type of synchronization between neighbors is at least

necessary after S4 (Figure 5.2, border barrier), before and after S2 if a parallel

Conjugate Gradient is being used (Figure 5.2) and within the parallel Conjugate

Gradient itself, before the operation of Matrix-Vector multiplication. Additionally, in

more points of S1, S3 and S4 if redundant calculation is not used. In this approach the

new border barriers are used, replacing the generic barriers (ompbarrier) given by

OpenMP. To perform this, it will have available an array of border barriers, separating

each barrier in sizes of 4KB and where each boundary between subdomains uses a

Iterative Loop

S1. Calculate explicit terms (exmom) and

obtain the matrices for momentum eq.

(matmom) solving a tridiagonal system of

equations per column and calculate

matrix coefficients for ζ (matcon)

S2. Solve an implicit pentadiagonal

system of equations for ζ using the PCG

S3. Solve U and V (Continuity)

S4. Solve w, one or more tridiagonal

system of equation per column for T and

other tracers (transport) and assign KH

and KV (turbulence) solving a tridiagonal

system of equations per column

MPI_WAIT and/or border barrier

2.1 Matrix-Vector Mul (z=Ad)

2.1 A Calculate Interior Columns

MPI_WAIT and/or Border Barrier

2.1 B Calculate Border Columns

2.2 Dot-product (omega=d*z)

MPI ALL_REDUCE and/or Border Sum

2.3 p=beta/omega

Calculate new solution (x=x+pd)

Calculate new residual (r=r-pz)

2.4 Calculate new preconditioner (Jacobi,

BJ or MIC) q solving r=Mq

2.5 Dot-product (beta=r*q)

Dot-product (normar=r*r)

MPI ALL_REDUCE and/or Border Sum

alpha=beta/ganma

2.6 A Calculate Border Columns

Data Transmissions A (Non-Blocking)

2.6 B Calculate Interior Columns

2.6 Calculate new vector d (d=q-alphad)

2.7 tol= 𝑛𝑜𝑟𝑚𝑎𝑟

If tol < mintol GO TO 2.1

3 A Calculate Border Columns

4 A Calculate Border Columns

Data Transmissions B (Non-Blocking)

3 B Calculate Interior Columns

4 B Calculate Interior Columns

Solution border transmission and/or

border barrier

PhD Thesis

156

different border barrier. Once a thread reaches these synchronization points, each

subdomain will only use the border barriers corresponding to its east and west borders,

so that it will block only until its two corresponding neighbors reach the same point.

5.2.5 Points of communication

Communications obtain information that is not calculated by a subdomain from other

subdomains to resolve dependencies. In the case of threads using shared memory, the

synchronization points implicitly allow the performance of such communications. In the

case of processes, the communications must be done explicitly.

Si3D, like other hydrodynamic models, requires communication to resolve the

dependencies of the overlapping areas, thanks to the domain decomposition chosen and

the distribution of data in memory, these overlapping areas are reduced to the borders of

each subdomain, which are contiguously found in memory (Figure 5.1). This implies

that each process must communicate with a maximum of two other subdomains. In OP-

Si3D these border communications are necessary after S4 (Figure 5.2, border

transmission) and during a parallel Conjugate Gradient for Matrix-Vector

multiplication. Additionally in more points of S1, S3 and S4 if redundant computation is

not used. Furthermore, additional communications are required for the solution of the

Dot-product operations performed during the Conjugate Gradient (Figure 5.5, stages 2.2

and 2.5). In this case we make use of the function given by MPICH MPI_AllReduction,

which is implemented efficiently even for NUMA architectures, performing the partial

sums in a binary tree structure between the nearest neighbors (Mamadou et al. 2006).

On the other hand, in the case of a sequential Conjugate Gradient being used, additional

communications must be added before S2 to form the complete pentadiagonal matrix

into a single process, and after S2, to distribute to each process its part of the solution of

water surface elevation (more details can be found in Chapter 4 about the sequential

implementation of CG in a parallel implementation of Si3D, Figure 4.2)

To do these communications as efficiently as possible, all the border

communications are overlapping with calculation, conducting a reordering of the

calculation of each subdomain. This reordering, found in each subdomain, first

calculates those columns that form the overlapping area of other neighboring

subdomains (Figure 5.1, subdomain 2, blue area). When these columns are calculated,

they are sent in a non-blocking form and, at the same time, its own areas of overlapping

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

157

(Figure 5.1, subdomain 2, yellow areas) are received in a non-blocked form too.

Subsequently each subdomain continues its execution by calculating the interior

columns (Figure 5.1, Interior Columns), while it is completed in parallel the process of

sending and receiving to/from the borders. This procedure is applied during S3 and S4,

calculating and sending first the overlapping areas of the these stages (Figure 5.5, Data

Transmissions B), and continuing the calculation of the rest of the subdomain and

getting blocked with MPI_Wait before the next time-step, in case communications have

not been completed yet. This reordering is also used to calculate the vector d in each

iteration of PCG (Figure 5.5, Data Transmissions A during step 2.6), in order to solve

the dependencies in the operation of Matrix-Vector multiplication (Figure 5.5, step 2.1).

In this particular case, an additional inverse reordering is applied, where the interior

columns of step 2.1 are first calculated, so adding the maximum calculation possible

before the overlapping area is necessary to complete the calculations. In case that such

communications are not received before they are needed to solve the dependences from

the previous stage 2.6, the corresponding process is blocked with an MPI_Wait before

finally calculating the borders of stage 2.1.

5.2.6 Parallel implementation of the Conjugate Gradient and preconditioner

5.2.6.1 Conjugate Gradient

During S2 of Si3D (Figure 5.2), as in other semi-implicit models, a symmetric positive

system of equations of the type Ax = b (where A is a matrix, x an array where the new

solution is stored and b the independent vector) is defined with a pentadiagonal

structure (see for example Nesterov 2010). This kind of system of equations is typically

solved using an iterative method, which converge to a solution with a certain tolerance

determined by the user. These methods have the advantage of being computationally

much faster than direct methods like Gaussian substitution, which directly resolve the

system. Among known iterative methods, those based on Krylov techniques are the

most widely used, and among them Conjugate Gradient (Conjugate Gradient, CG) is

usually given in literature as one of the best options (Barret et al. 2004). This is due to

the number and type of operations that are presented in the CG with respect to other

more expensive alternatives and that only a reduced group of vectors should be kept in

memory during its execution.

PhD Thesis

158

The formation of the system of equations generated in S2 is closely related to the

model geometry and dependencies between water columns. Firstly, the system consists

of one equation (one row of the matrix A) per water column of the model has, as well as

one element of the vector x and one element of the vector b. This makes the matrix A

have as many rows and the vectors x and b have as many elements as the model has

columns of water. Secondly, each equation has only 5 elements, determined by the

position of each water column and its 4 neighbors to the north, south, east and west,

thereby generating a pentadiagonal matrix as resulting in Figure 5.6(a) for the geometry

presented.

At the beginning of S2, each process or thread has a part of the matrix or system

of equations equivalent to the number of water columns that belong to its subdomain,

also having the corresponding part to this subdomain of the vector x and the vector b .

Given the domain decomposition and the storage of variables used, both the rows of A

and the part of the vector x and b calculated by each process or thread are consecutive.

The parallelization of CG can be described as the parallelization of the mathematical

operations that comprise it. Figure 5.5 (S2) shows the operations that compose the CG,

some of these operations (2.3-2.4-2.6-2.7) can be solved in parallel without adding

communication or synchronization. Meanwhile, the operations of Dot-product (2.2-2.5)

and Matrix-Vector (2.1) multiplication require synchronization points and/or

communications as explained in Sections 5.2.4 and 5.2.5.

In the case of Dot-product operation, each thread or process has one part of the

two vectors to multiply and can calculate the local product in parallel, the result is a

scalar to be added, along with the other scalar values calculated by other processes or

threads, to obtain the final result.

In the case of Matrix-Vector multiplication (z = Ad) its parallelization means that

each process multiplies its matrix A rows by the vector d. To make this possible, each

process or thread should have a complete copy of the vector d, adding any necessary

communications and/or synchronization. However, this operation is simplified for these

types of hydrodynamic models. Since each row contains only 5 elements, you just need

the corresponding 5 positions of vector d to multiply it with each row of the matrix. In

addition, these 5 elements correspond to each column of water and its neighbors to the

north, south, east and west. For example, following the case of Figure 5.6(a), the

operation of multiplying water column 3 of the matrix A (which contains 4 non-zero

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

159

elements) by the vector d, actually needs only four elements of that vector, those in

positions 2, 3, 4 and 7, equivalent to the number of the column (3) and its neighbors to

the north (2), south (4) and east (7). In the parallel implementation presented for Si3D,

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(a)

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(b)

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(c)

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Jacobi

Block Jacobi

Parallel IC, MIC, MMIC

Sequential IC, MIC

Block size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PhD Thesis

160

Figure 5.6. (a) The pentadiagonal matrix A resulting in forming the system of

equations to solve water surface elevation in S2 according to the geometry of the

domain given. The block size for each preconditioner is also indicated. (b)

Preconditioned matrix used for the Jacobi preconditioner using two subdomains. (c)

Preconditioned matrix used for BJ using two subdomains. (d) Preconditioned matrix

for IC, MIC and MMIC in parallel using two subdomains.It also shows those

elements (gray color) between subdomains which take a value of 0 and are added to

the main diagonal during the construction of the preconditioner in MMIC.

the domain decomposition used ensures that only those water columns of the matrix

located in the eastern and western borders of the subdomain will require data from other

subdomains to carry out its part of the Matrix-Vector multiplication, solved by border

communications or synchronization points. This ensures that the parallelization of CG

does not require the addition of any extra computational cost, such as reordering or

factorization, and that the same type of communications used in the rest of the model

(border only) can also be used for S2.

5.2.6.2 Preconditioner

Because CG is an iterative method that converges to the solution according to a given

tolerance, the number of iterations required to converge to the solution significantly

affects the total execution time of this stage. Usually an M-1 preconditioner is used

which accelerates the convergence of the PCG, obtaining the value of q = M -1 r (Figure

5.5, step 2.4), where r is the residual vector and q is the new direction of convergence.

Ideally, the preconditioner itself would be the inverse of A, thus solving the system of

equations would be immediate. However, obtaining the inverse of A, or of any matrix in

general, is usually a very costly process, so what is usually chosen as preconditioner M

is a matrix that is as similar as possible to A , thus solving the system of equations qM =

r at the lowest possible cost without actually computing the inverse of M.

Four different preconditioners have been implemented in Si3D to assess their

performance in an optimized parallel implementation and their efficiency to accelerate

convergence. According to the literature, the four implementations can be considered as

Block Jacobi, each one using a different block size and number of blocks to resolve the

PCG sequentially or in parallel. Additionally, in each case the system of equations r =

qM (to calculate the preconditioner) is solved by a different method, giving the name to

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

161

each one of four preconditioners implemented. The Table 5.1 shows the equivalence

between each of the preconditioner and the Block Jacobi implementation used.

Preconditioner Block Jacobi Size Number of blocks per

subdomain

Jacobi 1 water column of the grid Many blocks as water columns

have the subdomain

BJ 1 horizontal row of the grid Many blocks as horizontal rows

have the subdomain

Parallel IC, MIC,

MMIC

The number of horizontal rows into

the subdomain

1 block

Sequential IC, MIC The number of horizontal rows

into the complete domain

1 block

Table 5.1. Equivalence between each preconditioner implemented with its Block Jacobi

implementation performed.

 Jacobi: it uses the inverse of the main diagonal of A as the preconditioner M -1

and directly resolves q = M -1 r. This is equivalent to the use of a block Jacobi

size equal to one water column of the grid (Figure 5.6(a), red box). Each

subdomain applies Jacobi in parallel using as many blocks as water columns

have the subdomain (Figure 5.6 (b)).

 Block Jacobi (BJ): it uses the three main diagonals of the matrix A as the

preconditioner M where the system qM = r is solved by the Thomas algorithm

typically used for solving tridiagonal systems. This is equivalent to the use of a

block Jacobi size equal to one horizontal row of the grid (Figure 5.6(a), green

box). Each subdomain applied BJ in parallel using as many blocks as horizontal

rows have the subdomain (Figure 5.6(c)). Given the structure of the matrix

obtained (Figure 5.6(c)), it is possible to solve this system of equations in

parallel without following a strict sequential order or adding synchronization or

communication points. The Thomas algorithm involves two phases with a

forwards and backward substitution where, if all elements of the 3 diagonals

were not zero, the process would be strictly sequential. However, the tridiagonal

system has some zero elements generated by the absence of neighbors to the

north and south at the end and start of each horizontal row of the domain

respectively. For example, these zero elements can be seen in Figure 5.6(c),

marked with dashes, to generate the equation 8 and 9 of the matrix M, this is

PhD Thesis

162

because in the first subdomain, the water column 8 has no neighbor to the south,

being the last in that horizontal row, at the same time, the water column 9 has no

neighbor to the north, being the first of its horizontal row. This allows the

solution of the full tridiagonal system as a set of independent tridiagonal

subsystems, as long as each subset is composed of complete horizontal rows of

the grid. For example, in Figure 5.6(c) both subdomains (highlighted in a box)

can be independently solved.

 Incomplete Cholensky and Modified Incomplete Cholensky (IC and MIC): it

uses the factorization of type LDL T of matrix A as preconditioner M, L is a lower

unit triangular matrix, D is a diagonal matrix an L
T
 is the conjugate transpose of

L. This allows us to solve the system Mq = r as LDL T q = r in two steps. Solving

first LDx = r to obtain x and in a second step by solving L T q = x to finally

obtain q. Both steps are solved by a substitution algorithm, using a

forwards/backwards substitution (Dongarra 1998). Both IC and MIC should be

made so that M retains the pentadiagonal structure of the original matrix A. In

order to maintain this same structure, those elements which are different to 0 out

of the 5 main diagonals (known as filling values) take a value of 0 using IC and,

additionally using MIC besides taking 0 value in its original position they are

added to the main diagonal of M . To determine whether IC or MIC is used, a

parameter w is used which indicates if the filling values are or not added to the

main diagonal, with w = 0 for IC, w = 1 for MIC and a value between 0 and 1 a

compromise between IC and MIC. The parameter w is usually adjusted for

adding convergence by the preconditioner. For example, Dongarra (1998)

indicates that w should be set to 0.95 to obtain the best convergence ratio.

 For the sequential implementation, MIC and IC are directly applied to the

matrix A (Figure 5.6 (a)). This is equivalent to the use of a block Jacobi size

equal to the complete domain (Figure 5.6(a), yellow color) and only one block.

 The main goal to obtain a parallel implementation of this preconditioner is

that the implementation must not require any type of additional extra operation

(such as reordering), communication/synchronization points or anything that

cannot be fully parallelized. However, this is not a trivial task taking into

account that its implementation, both the forward and the backward substitution,

must be performed in a strictly sequential way. Given this requirement in the

parallelization of this preconditioner, a similar solution to the idea used in Block

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

163

Jacobi has been chosen here, so that the calculation of the preconditioner in each

subdomain is done independently. To carry out this process, the elements

corresponding to the overlapping area of each subdomain take a value of 0. This

is equivalent to the use of a block Jacobi size equal to the number of horizontal

rows of the grid into each subdomain (Figure 5.6(a), blue box). Each subdomain

applies IC or MIC in parallel using only one block (Figure 5.6 (d)). The Figure

5.6(d) shows an example where the first subdomain consists of the first 8 water

columns of the model. To compute in parallel the corresponding part of the

preconditioner to this subdomain from the matrix A, those elements of the upper

diagonal from positions 9 to 12, as well as the lower diagonal elements from

positions 5 to 8, takes 0 value (elements in gray). Making these elements take a

value of 0, it is possible to solve the preconditioner in an independent parallel

way for each subdomain, adapting the parallel implementation of the

preconditioner with the domain decomposition used in other stages. However,

moving these elements to 0 value on the borders between subdomains, the new

preconditioner M is created from a matrix that is less like A (since these values

do have a non-zero value in the matrix A) and, therefore, the convergence

acceleration of the preconditioner decreases. Furthermore, increasing the number

of subdomains, the number of borders where these elements must take a value of

0 increases, slowing convergence with each new division of the domain. To

reduce this loss of convergence, when the values between subdomains are 0, a

modification to the preconditioner MIC is implemented. This implementation is

called here MMIC. This modification is similar to the idea followed in the MIC

implementation itself to remove the filling data and maintain the structure of the

original matrix A. In this case the values converted to 0 (gray elements in Figure

5.6) are added to the main diagonal of the preconditioner, thus considerably

reducing the loss of convergence. This modification is controlled by a parameter

w2, where for w2 = 0 these values are not added to the main diagonal, for w2 =

1 these values are added to the main diagonal and a value between 0 and 1

provides a compromise between both of them. This parameter can be adjusted to

find what value of w2 provides greater convergence acceleration.

PhD Thesis

164

5.3 Performance evaluation

Results of execution time and scalability using OpenMP, MPI or both simultaneously

are presented in this section. The execution time results are presented as an average of

10 iterative loops (Figure 5.2), neglecting the first iteration which is different to the rest

(the leapfrog step is not possible until the second iteration). The time before and after

the iterative loop is considered negligible for these types of simulations, wherein the

said iterative loop must repeat the time-steps needed to cover long periods of

simulation. For example in the high resolution case of Lake Tahoe, the number of

iterations to make a simulation of 30 days with a time-step of 10s is 259,200 (Table

5.2). Conversely, the time before and after the iterative loop is less than 0.1% with

respect to the total time required to execute all the time-steps.

We also evaluated the potential load imbalance between subdomains produced by

the selected domain decomposition (Section 5.2.2), counting the number of cells that

each subdomain has to calculate. This study was done counting the number of cells in

each subdomain with divisions from 2 to 256. In all cases the difference in cells

between the subdomain with the highest number and the subdomain with the least cells

was from 0.15% to 0.5% for all cases evaluated.

5.3.1 Platform and tools

OP-Si3D has been tested in 3 architectures with different features in order to evaluate its

performance and scalability, both in small commodity clusters (including clusters of

distributed memory and shared memory machines) and high performance architectures.

This will not only evaluate the performance and scalability of the parallel

implementation in architectures with good performance, but also compared to other

clusters of low performance to determine whether the implementation can achieve good

results in a type of cluster which most scientists can access.

ACII has been used as a low-end cluster, a machine of 3 nodes. Each node has 6

GB of memory and an i7 CPU920 processor with 4 cores of 2.667 GHz. In the tests

performed both Infiniband and Gigabit Ethernet have been used as network connection

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

165

between nodes. Each node has only one socket, with a processor with four cores in each

socket.

ALHAMBRA has been used as high performance architecture with distributed

memory, a cluster with 16 Fujitsu CX250 (S1) nodes. Each node has 32 GB of memory

and two Intel Xeon E5-2680 processors with 8 cores each of 2.7 GHz. The nodes are

connected by Infiniband. Each node has two sockets, with a processor with 8 cores in

each socket.

CIEMAT has been used as a shared memory midrange machine, a machine with

two CC-NUMA shared memory nodes. Each node has 512 GB of memory and 4 Intel

Xeon X7750 processors with 8 cores each of 2 GHz. Each node has 4 sockets, with a

processor with 8 cores in each socket.

Given that Si3D, from the original model, is developed in Fortran, the execution is

generated with the Intel Fortran (version 11) compiler, also using the OpenMP version

included in the compiler. For message passing paradigm MPICH2 3.0 has been used.

The code was compiled using standard compilation optimizations given with O2. In

addition, the Intel V-Tune tool was used to detect those subroutines of code that

consume more CPU time and to apply various basic optimizations as explained in

Section 5.2.1.

5.3.2 Test model

It has been used, as an application to evaluate the parallel implementation, a realistic

simulation of Lake Tahoe (USA). Currently several groups of researchers are using this

model to characterize transport routes in the coastal area (around the littoral zone) of

pollutants (Hoyer et al. 2015) and larvae of a species known as invasive Asian clam

(Corbicula bivalve fluminea) (Hoyer et al. 2014).

Lake Tahoe has horizontal dimensions of 20 km x 30 km and up to 500 m of

depth in the vertical. Two tests with Cartesian grids have been used for simulation with

square columns of 50m x 50m and 20m x 20m in the horizontal (Table 5.2). The

vertical resolution is the same for both cases with 95 layers of depth. The case of lower

resolution obtained good results in the pelagic zone of the lake and can be run on

platforms with less computational resources. However, it is showed in chapter 2

PhD Thesis

166

(Section 2.4.4) that some of the circulation patterns in the coastal zone can only be

properly reproduced if a similar scale to those found in the littoral bays is used,

requiring a resolution of at least 20m x 20m. However, this simulation using a high-

resolution grid is not trivial and requires an unaffordable computational cost. The

computational time of this simulation using the Si3D sequential model, even including

several basic optimizations, keeps a real-time/simulation time relationship of

approximately 768:30, meaning it would take 768 days of computing to simulate 30

days. Likewise, the cost of memory is too high, requiring more than 16 GB for its

execution. This huge computational cost prevents its simulation sequentially or even in

parallel in small commodity clusters with little memory as in the case of ACII.

The lake bathymetry data was obtained from the US Geological Survey. The

vertical resolution comprises up to 95 layers with a layer depth variable from 0.5m at

the surface to about 10m near the bottom. The time-step is set to 25s in the case of

lower resolution and 10s in the case of higher resolution, thus fulfilling the condition of

CFL and ensuring the stability of the simulation. The model was forced (input data)

using Surface heat and Momentum fluxes estimated from local atmospheric variables

(long and short wave radiation, air temperature, relative humidity and wind speed and

direction) obtained from meteorological data. This data was obtained from

meteorological stations maintained by the Tahoe Environmental Research Center

(TERC), having a total of 10 stations around the coast and around the lake. All the

stations provide continuous information about wind speed and direction and air

temperature.

Models of

Lake Tahoe

Horizontal

cell side

Columns

of water

Total cells Simulation

period

Time-

step

Total Time-

steps

Tahoe50 50x50m 197,781 14,654,639 30 days 25s 103,680

Tahoe20 20x20m 1,244,896 94,691,170 30 days 10s 259,200

Table 5.2. Computational data of Lake Tahoe simulations: Horizontal resolution (square

columns), total number of columns and total number of cells, period of simulation,

time-step used and the total number of time-steps needed to finish the simulation.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

167

5.3.3 Basic optimizations

The original model of Si3D kept information from dry columns, requiring a higher

memory cost and execution time because of having to evaluate the calculation of all

columns in the grid, regardless of whether they are columns with water or not, a first

optimization was performed to store only columns with water as explained in Section

5.2.1. The Figure 5.7 shows the results of different sequential runs of Si3D from the

original model (using O0 and the standard compiler optimizations (O2)) and the

improvements achieved in execution time by applying the optimizations shown in the

figure for the case of Tahoe50 in ACII, using the sequential MIC as the preconditioner

in the CG. Each successive improvement from left to right is evaluated including each

one of the previous optimizations, using the optimization option O2.

Figure 5.7. Iterative Loop runtime for a sequential version of SI3D adding several

basic optimizations.

As it is shown, storing only columns with water reduces the runtime by 4.7%. In

addition, other basic optimizations outlined in Section 5.2.1 reduce the execution time

by up to 7.76%. Finally, the unrolling loop applied in order to help the compiler to

optimize the Thomas algorithm used in solving tridiagonal systems reduces runtime by

another 4%. Once all the basic optimizations are applied, the total reduction is 15.5%

compared to the original version optimized by the compiler (O2).

0

10

20

30

40

50

60

Original(O0) Original(O2) Lineal Approach Basic
Optimizations

Loop Unrolling
Tridiagonal

Systems

Ti
m

e
(S

ec
o

n
d

s)

PhD Thesis

168

The implementation of Si3D with all the basic optimizations (known as Basic) is

the first step taken in the modifications made to Si3D, this implementation has been

used as a base in the development of the rest of implementations presented in other

chapters.

5.3.4 SI3D profiling

SI3D is an extensive code with lots of subroutines and a huge amount of variables so

that a study of those stages of the code that consume more time is vital. This profiling is

obtained from a sequential execution of Si3D, including all basic optimizations and

using O2 in an ALHAMBRA node for Tahoe20, using MIC as the preconditioner in the

CG.

The Figure 5.8 shows the percentage of execution time compared to the total time

of each stage of Si3D (Figure 5.2), including a complete iteration of Si3D with one

leapfrog and one trapezoidal step. As it is shown, the two stages with most cost are S1

and S4, with a cost of 57% and 29% with respect to the total. This is because it is in

these stages where the formation and resolution of as many tridiagonal systems as the

model has water columns must be done, the formation and resolution of these

tridiagonal systems representing the 53% of the total time and must be performed up to

3 times in the iterative loop. The first systems of tridiagonal equations (Momentum

Trid.) is calculated for S1 and represents 31% of the total time of this stage, the

remaining time of S1 is consumed in the calculation of the explicit terms of the

equations of momentum (exmom, with 67%) and the formation of the pentadiagonal

system that will be resolved in S2 (matcon, with 2%). Additionlly, the resolution of the

tridiagonal systems in calculating (1) temperature in the transport equation and (2) the

horizontal coefficients of viscosity in the turbulence equation represent 76% (Transport

and Turbulence Trid.) of the S4 runtime, the remaining 24% being the calculation of

other variables. Furthermore, the resolution of the system of pentadiagonal equations in

S2 represents 3.54% (PCG) of the total. Solving the equation of continuity in S3 to

obtain the new volumetric transports represents 2.65% (Continuity) of the total. Finally,

the updating of variables (Data Update), both after the leapfrog and before the next

time-step represents 7.08% of the total time.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

169

Figure 5.8. Percentage of runtime of the SI3D stages in the Iterative Loop.

5.3.5 Hybrid Model Optimizations

In this section the results of the implementations performed to take full advantage of the

parallel implementation are evaluated, with explicit optimizations for both threads with

OpenMP and for processes with MPI. The results in this section are intended to

determine whether the procedures presented enhance the performance of the parallel

implementation or which alternative from those presented is the most efficient. These

results are obtained for Tahoe50, in ACII using only processes, and in CIEMAT using

only threads, starting with the already optimized model presented in Section 5.3.3 (basic

optimizations). This model includes the original implementation used by Smith (2006)

of the CG using MIC as the preconditioner, which is included in the NSPCG math

library (Non-Symmetric Preconditioned Conjugate Gradient, Kincaid et al. 1989).

5.3.5.1 OpenMP optimizations

The Figure 5.9 shows the results of SpeedUp comparing the basic model and other

implementations of the OpenMP parallel model. Basic presents results (using threads)

of the model with basic optimizations obtained in Section 5.3.3, which shows a rather

0

10

20

30

40

50

60

70

S1 S2 S3 S 4 Data
Update

P
o

rc
e

n
ta

ge
 o

f
To

ta
l T

im
e

 (
%

)

SI3D Steps

Data Update

Other Calculations

Transport and Turbulence Trid.

Continuity

PCG

Matcon

Momentum Trid.

Exmom

PhD Thesis

170

poor performance. The Affinity model is the same implementation but adding the first-

touch and an explicit affinity (first fully occupying each CIEMAT socket). The results

of this model show a significant improvement of up to 45% in the case of 64 threads.

This demonstrates the importance of making use of data locality in NUMA type

architectures, with an initialization of data in parallel by each subdomain and the

importance of binding each thread with the core where the initialization is performed,

which also ensures that neighboring subdomains are founded in neighboring cores to

achieve a faster access to their overlapping areas.

Figure 5.9. Comparison of SpeedUp results between the basic model and other

implementations of the OpenMP parallel model for Tahoe50 in CIEMAT.

The new Affinity model, like other parallel models, includes synchronization

(Ompbarrier barriers) before any calculation loop that requires information dependent

on neighboring subdomains, which in the chosen decomposition domain is reduced to

the overlapping areas between neighboring (Figure 5.1). Besides the synchronization

points shown in Figure 5.2, 9 barriers must be added in S1, 4 in S3 and 12 in S4 to

resolve all dependencies. Given the large number of synchronization points, a study of

the type of calculation between these synchronization points was performed, noting that

these dependencies in S1, S3 and S4 occur frequently between nearby loops with little

calculation between them. Therefore a new implementation which replaces the

synchronization points of S1, S3 and S4 for redundant computation (Redu. Comp. in

Figure 5.9) was evaluated.

0

5

10

15

20

25

30

1 2 4 8 16 32 64

Sp
e

e
d

U
p

Number of cores

Basic

Affinity(V1)

Redu. Comp.(V1)

Redu. Comp.(V2)

Redu. Comp.(V3)

NUMA Bar.(Sync)

NUMA Bar.(Redu. Comp.)

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

171

Moreover, the storage type of the variables has also been evaluated with the 3

types of storage explained in Section 5.2.3. In the model with redundant calculation the

variables are initially stored using V1 (redu. Comp. (V1)), showing poorer results than

using synchronization and the same storage (Affinity). However, storage types V2 and

V3 (Redu. Comp. (V2) and Redu. Comp. (V3) respectively) obtain better results than

V1, both using redundant computation and synchronization, being V3 the best option,

0.72% better with respect to V2 and 6.16% with respect to V1 with redundant

computation and 3.52% with respect to V1 with synchronization, in each case

comparing the results obtained with 64 threads. This is because both V2 and V3 do not

need, to solve dependencies, access to data for calculation of the overlapping area that

neighboring threads are continually accessing at the same stage in both reading and

writing mode. The new storage ensures that the information that each thread brings to

its cache memory will not be invalidated by neighboring threads. Meanwhile V3

slightly reduces the runtime of V2 and reduces the amount of memory required, not

needing to include garbage or filling between subdomains to ensure that each memory

block is only accessed by the local thread.

Finally, the results of a model fully adapted to the NUMA architecture were

presented, using the border barriers between subdomains and the barriers per level

outlined in Section 5.2.4. Thus, the barriers used and given by OpenMP (ompbarrier)

are replaced by the new approach in the best version available at this point (Redu.

Comp. (V3)) obtaining a new implementation (NUMA Bar. (Redu. Comp.)). As it can

be seen, the new implementation improved scalability of the parallel model with respect

to the same version using Ompbarrier, reducing runtime by up to 11.67% in the case of

64 threads. Having demonstrated the efficiency of the newly developed barriers, the

redundant computation was replaced again by synchronization points using the

improved border barriers (where redundant computation is used in S1, S3 and S4)

(NUMA Bar. (Sync)). The results show that it is still better by 3.2% to use redundant

computation using 64 threads, despite the better performance of the new barriers.

PhD Thesis

172

5.3.5.2 MPI optimizations

The Figure 5.10 shows the results of SpeedUp between the base model with basic

optimizations and other implementations of the MPI parallel model for Tahoe50 in

ACII, using Gigabit Ethernet as the connection network. Basic presents the results

(using processes) of the basic model including the basic optimizations presented in

Section 5.3.3, which has poor scalability due to the large amount of data to be

communicated and several blocking waits while those communications are performed.

The Affinity model slightly improves the results of the Basic model, by up to 3.28%

with 12 processes, since it ensures that communications between different nodes will be

minimal. However, this model still shows very poor scalability, this is because both

models (Basic and Affinity) include communication before any calculation loop that

requires information dependent on neighboring subdomains, which in the chosen

domain decomposition is reduced to the overlapping areas between neighbors (Figure

5.1). In addition to the communication points shown in Figure 5.2, 9 points of

communication must be added in S1, 4 in S3 and 12 in S4 to resolve all dependencies.

This large amount of both, the quantity of data to communicate and the number of

communications between loops with little calculation, leads to lack of scalability of the

model. To solve this problem, a new approach is done (Redu. Comp. (Block. Comm.))

where these communications of S1, S3 and S4 are replaced by redundant computation

following the same procedure outlined for threads in Section 5.3.5.1. As shown in

Figure 5.10, a significant improvement in efficiency is obtained for the parallel model

of up to 14.8% in the case of 12 processes. This is because the number of

communications has been reduced considerably.

In the process of reducing communication costs to the minimum, the results of (Redu.

Comp. (Reorder)) shows the same implementation as (Redu. Comp. (Block. Comm.))

but substituting the communications at the end of S4 (Figure 5.2) by non-blocking

communication and performing a reordering of S3 and S4, as explained in Section 5.2.5.

The results show a clear improvement when these communications are overlapped with

calculation, with an improvement of 6.55% in the case of 12 processes.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

173

Figure 5.10. Comparison of SpeedUp results between the basic model and other

implementations of the MPI parallel model for Tahoe50 in ACII.

Once implemented the new reorganization and non-blocking communications, the

redundant computation is replaced by non-blocking communication points and

reordering of those calculation loops in S1, S3 and S4 with dependencies. The results

(Reorder (Sync)) show that it is still better to use redundant calculation up to 15.5%

using 64 threads. This is because the number of communications between loops is so

frequent that the overlapping of calculation of small loops with the time needed to carry

out communications is not possible, reaching an overhead added by the communications

between neighboring subdomains.

Two different types of affinity were also evaluated using the best implementation

(Redu. Comp. (Reorder)) once the cost of communications has been minimized. ACII

and CIEMAT were used for these tests. Tests were conducted with 2, 4 and 8 processes.

With the first affinity map each socket is filled first (in ACII since each node has only

one socket, the affinity is associated with occupying each node). Thus for the case of

four processes for example, the four processes are co-located in the same node of ACII

or the first CIEMAT socket. With the second affinity map, an attempted distribution to

occupy the largest possible number of nodes (sockets) was used. For example, for the

case of 4 processes, the four processes are co-located in the first four different sockets

of the first CIEMAT node. In the case of ACII, two neighboring processes are co-

located in the first node and only one process is placed in the other two nodes

0

1

2

3

4

5

6

7

8

1 2 4 8 12

Sp
e

e
d

U
p

Number of cores

Basic

Affinity

Redu. Comp.(Block.
Comm.)

Redu. Comp.(Reorder)

Reorder(Sync)

PhD Thesis

174

respectively. As another example, for the case of eight processes, only one process is

allocated per CIEMAT socket while in ACII, three neighboring processes were co-

located in the first node and two neighboring processes were placed for each remaining

node. Table 5.3 shows that the results obtained in ACII and CIEMAT are not the same.

In CIEMAT, with an amount of memory much higher than ACII, it is preferable to fill

each socket completely before occupying another socket (minimum distribution results

against maximum distribution results), favoring the data locality to locate information

from neighbors (to access the overlapping areas) in the memory of the same socket.

However, in ACII, as seen in all cases, it is preferable to occupy the largest number of

nodes (maximum distribution) rather than totally occupy each node (minimum

distribution), thus providing more memory to run the simulation. This indicates that

despite the overhead added by the communications between nodes and the reduction of

the data locality to distribute the processes in different nodes, it is slightly more efficient

to have more memory for its execution.

Affinity

Test(Infiniband)

ACII

Time (seconds)

CIEMAT

Time (seconds)

Threads maximum

distribution

minimum

distribution

maximum

distribution

minimum

distribution

1 22.48 22.48 32.54 32.54

2 11.42 11.53 16.43 16.41

4 6.12 6.24 8.72 8.63

8 3.28 3.46 4.58 4.46

Table 5.3. The results of execution time (seconds) per time-step of the parallel model using

two types of affinity are presented. One where each socket is completely occupied first

(minimum distribution) and another where the threads are distributed occupying the

highest number of sockets first (maximum distribution).

5.3.6 Conjugate Gradient Optimization and preconditioner

Table 5.4 presents the number of collective communications, non-collective

communications and the results of different alternatives of CG and different

preconditioners, using Tahoe50 in ALHAMBRA, which is the available architecture

where a greater number of subdomains can be studied (up to 256). The parallel

implementation developed for this model (PCG) has been compared to the sequential

implementation included in the NSPCG math library (rows 2, 3 and 4) and originally

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

175

used in the Smith model (2006) (Chapter 1). Comparison with the NSPCG library can

test whether the implementation of the Conjugate Gradient used obtains similar results

when the model is executed sequentially, both the number of iterations to converge and

the runtime.

Table 5.4. Conjugate Gradient and preconditioners used both sequentially using the

NSPCG library and in parallel with the developed code (PCG).

PCG many-to-one

Interchanges

No. iterations Total Time

1

thread

256

threads

1

thread

256

threads

PCG (NO

Preconditioner)

2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

882 882 6.84 6.84

NSCPG(MIC) Not applicable Not applicable 16 16 1.89 1.89

NSPCG(JAC) Not applicable Not applicable 760 760 5.96 5.96

NSPCG(BJAC) Not applicable Not applicable 537 537 4.97 4.97

PCG(JAC) 2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

761 761 5.86 0.22

PCG

(reorder_JAC)

2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

761 761 5.86 0.1

PCG (BJAC) 2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

538 538 4.83 0.16

PCG

(reorder_BJAC)

2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

538 538 4.83 0.07

PCG (IC) 2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

57 405 5.74 0.18

PCG (MIC) 2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

17 129 1.84 0.06

PCG (MMIC) 2 ALLREDUCE

per iteration + 1

ALLREDUCE

2 ISEND + 2

IRECV per

iteration + 2

ISEND/2IRECV

17 74 1.84 0.03

PhD Thesis

176

The new implementation has also been compared with 4 different alternatives for

the preconditioner: Jacobi (Rows 5 and 6), Block Jacobi (BJ, Rows 7 and 8), Incomplete

Cholensky (IC, Row 9) and Modified Incomplete Cholensky (MIC, Row 10) as well as

a modification of MIC itself for the parallel model (MMIC, Row 11). In addition, for

the Jacobi and BJ cases, they are compared to the use of blocking communication (rows

5 and 7) and non-blocking communication with reordering of calculation (Rows 6 and

8) described in Section 5.2.6.1, showing the best results in both cases with the second

option, where most communications are efficiently overlapped with calculation in the

CG.

In the first place, the results show that the number of iterations to converge and

the total execution time between the NSPCG method and the implementation developed

(PCG) are very similar. Besides, in the case of the evaluation of the PCG developed,

comparing execution times and the number of iterations to converge using different

preconditioner alternatives, the results show that the minor computational cost per

iteration is obtained by Jacobi followed by BJ, IC and MIC. This is because the number

of operations needed in the computation of each preconditioner. Jacobi is only to

reverse the main diagonal of A. On the other hand, BJ must solve a system of

tridiagonal equations of the size of the number of water columns of the domain. In IC

and MIC, the cost is even higher, since the matrix A must be factorized in the form of

LDL T and proceeds to the resolution of the new system as explained in Section 5.2.6.2,

adding more computation. However, the number of iterations to converge varies

contrary to the order of the cost of each iteration, making the final execution time less

using MIC, followed by IC, BJ and finally Jacobi, which despite having a very small

computational cost does not offset with respect to the number of iterations needed to

converge.

As in other stages of the parallel model, the PCG developed has only

dependencies with other subdomains in the overlapping areas (Figure 5.1), solved by

border communication/synchronization, without adding any additional reordering or

factorization. Furthermore, it is not necessary to add any computational cost to the

parallel implementation or calculation of the preconditioner. To make this possible, as

explained in Section 5.2.6.2, some convergence is lost when the number of parallel

subdomains is incremented. Table 5.4 shows the evolution of the different

preconditioners based on the number of subdomains used. The group of columns 1, 2

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

177

and 3 show the number of iterations to converge using MIC, IC and an intermediate

solution respectively (variable w). As it can be seen, it is better to use the intermediate

solution (except in a sequential execution where MIC is better). To control in what

proportion a solution between IC and MIC is used, the value of w parameter is changed,

taking the value 0 for IC (column 3), 1 for MIC (column 6), and an intermediate value

which is changed when the number of subdomains increase to obtain the best

convergence results. Column 9 shows the optimal values of w for each number of

subdomains when a parallel MIC with variable w is used. As it is seen in Table 5.3,

MIC in parallel with the optimized w parameter gets the best results even although the

number of iterations to converge increase, both with respect to a sequential execution of

MIC (with a fixed number of iterations to converge) as with respect the second best

option in parallel, BJ.

Finally, the results of the modification to MIC (MMIC) explained in Section

5.2.6.2 are shown. This modification reduces the loss of convergence when the number

of subdomains increases. These results can be seen in the group of columns 4 and 5 of

0, noting that the number of iterations to converge with respect to the parallel MIC

improves. Again this change is controlled by a parameter w2, whose optimum value

takes a value between 0 and 1, depending on the number of subdomains used. The

results using this modification of MIC can be compared in 0 using a value of w2 = 1

(column 13) or using an intermediate value between 0 and 1 which is changed according

to the number of subdomains used (column 14), the results show that it is better to use a

variable value of w2. The best value of w2 according to the number of sub-domains can

be seen in column 16 of the same table. As shown in Table 5.4, MMIC improves the

results obtained by the parallel MIC up to a total of 256 subdivisions, presenting itself

as the best option and providing a parallel preconditioner that does not add any costs in

comparison to the implementation of a sequential MIC. This is achieved by reducing the

convergence, but significantly reducing the loss of convergence when (1) two

parameters w and w2 which vary according to the number of subdomains are used and

(2) a modification to MIC presented as MMIC is used.

 PhD Thesis

178

T

a
b

le
 5

.5
.

N
u

m
b

er o
f iteratio

n
s req

u
ired

 b
y

 th
e p

arallel P
C

G
 to

 co
n
v
erg

e to
 a so

lu
tio

n
 w

ith
 a certain

 to
leran

ce d
ep

en
d
in

g
 o

n
 th

e p
reco

n
d

itio
n
er,

v
alu

e w
 an

d
 v

alu
e w

2
 u

sed
, an

d
 th

e n
u
m

b
er o

f su
b
d
o
m

ain
s u

sed
. F

o
r M

IC
 an

d
 M

M
IC

 w
ith

 v
ariab

le w
, th

e b
est p

o
ssib

le v
alu

es o
f w

 an
d

 w
2

are sh
o
w

n
.

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

179

5.3.6.1 OpenMP optimizations

The Dot-product operation performed up to 3 times in the CG is calculated by the

threads, obtaining in each one a local scalar product of its subdomain, and then adding it

to a global variable. Here the operation given by OpenMP (OpenMPReduction) is

compared to the implementation developed (NUMA Barrier Dot Product) which allows

adapting the Dot-product operation to the NUMA architecture, as explained in Section

5.2.4. The results presented in Figure 5.11 show that the actual implementation reduces

runtime by up to 12% for 64 threads in CIEMAT, allowing us to exploit the data

locality when the partial sums are performed.

Figure 5.11. Comparison of SpeedUp results between the model with a parallel CG

using NUMA barriers and other implementation using ompbarrier and

ompreduction for Tahoe50 in CIEMAT.

5.3.6.2 MPI optimizations

It was noted that the same overlapping of communication with computation performed

in S3 and S4 (Reorder), whose results are presented in Section 5.3.5.2, can be carried

out with all communications made in the parallel implementation of the CG, as

explained in Section 5.2.5. The results (Figure 5.12) show a substantial reduction in the

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Sp
e

e
d

U
p

Number of cores

OpenMP Barrier

NUMA Barrier Dot
Product

PhD Thesis

180

execution time of up to 63% in the case of 12 processes in ACII with Gigabit Ethernet,

with respect to another implementation where communications are blocking without

reordering (Block. Comm), showing that all communication can be effectively

overlapped with computation.

Once all communications are overlapped with calculation, both in CG and in other

stages, results of the parallel model were compared in ACII using Gigabit Ethernet and

Infiniband as interconnection networks, both the reordering version and the version with

blocking communication. The results (Figure 5.12, Gigabit vs InfiniBand) show that

communications produce a significant overhead in slower networks such as Gigabit

Ethernet, whose results are much worse than those obtained by Infiniband. However,

the difference using non-blocking communications and reordering between the two

networks is only 2.51% in the case of 12 processes, showing that almost all

communications can be overlapping and a good parallelization implementation can

avoid using more expensive networks.

Figure 5.12. Comparison of SpeedUp results between the model with a parallel CG

using blocking communication and another implementation using non-blocking

communication and reordering of calculation for Tahoe50 in CIEMAT. Tests have

been carried out with both Gigabit Ethernet and Infiniband.

0

2

4

6

8

10

12

1 2 4 8 12

Sp
e

e
d

U
p

Number of cores

Block. Comm.(Gigabit)

Reorder(Gigabit)

Block. Comm.(Infiniband)

Reorder(Infiniband)

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

181

5.3.7 Scalability study

In this section results of the final version of the hybrid parallel model using OpenMP

and MPI are shown (Table 5.7), both using threads and processes in ALHAMBRA, in

order to check its performance with up to a total of 256 subdivisions. The final version

including all improvements, a parallel CG and MMIC as preconditioner, is also

compared with other versions to assess how each one scales. The tests were performed

by running a process by node (with a total of 16 processes in 16 nodes), each process

also uses 16 threads, completely occupying each node.

 Basic ParallelCG(BJ) ParallelCG(MMIC)

Threads Tiempo SpeedUp Tiempo SpeedUp Tiempo SpeedUp

1 103.81 1 107.73 1 103.36 1

2 60.02 1.72 55.31 1.95 52.16 1.98

4 34.51 3.01 28.11 3.83 26.62 3.88

8 19.52 5.32 14.02 7.68 13.25 7.80

16 12.35 8.41 9.04 11.92 8.42 12.27

32 11.13 9.33 4.31 24.99 4.05 25.52

64 10.52 9.87 2.43 44.33 2.08 49.69

128 10.24 10.14 1.43 75.33 1.15 89.88

256 10.11 10.27 0.72 149.62 0.67 154.27

Table 5.7. Results of scalability for the Basic parallel model and the parallel model using a

parallel CG. On the one hand using Block Jacobi as the preconditioner and on the other

hand the modified version of MIC (MMIC), using as parameters w and w2 those

optimal values specified in Table 5.4.

The results show that the version that only includes the basic optimizations using

O2 (Basic, Columns 1 and 2) scales very little above 16 threads, showing nearly

constant execution time from that point. One can also observe the importance in the

efficiency of the inclusion of a parallel PCG, both using the BJ preconditioner and

MMIC (Columns 3-4 and 5-6 respectively). The best results of scalability are achieved

for the last case with the MMIC preconditioner, adjusting the w and w2 parameters as it

is indicated in Table 5.4 according to number of subdomains used.

PhD Thesis

182

Figure 5.13 summarizes progress made from the implementation of the first

parallel version to the best version used, including all the optimizations that have been

made and the parallel PCG using MMIC as the preconditioner. The results are shown

both in ALHAMBRA and in CIEMAT. CIEMAT is also used with the objective of

representing this improved scalability (in high resolution grids such as Tahoe20) in

shared memory platforms, using in this case from 1 to 64 threads. The scalability in

ACII with Tahoe20 is not evaluated because its execution is not possible because of the

high memory requirements.

Figure 5.13. Results of scalability in ALHAMBRA (left) and CIEMAT (right)

comparing the initial parallel version (Basic, blue line) and the parallel version

including all the proposed improvements (ParallelCG (MMIC), red line).

The results show significant differences between the two versions. In the case of

ALHAMBRA, the basic version is barely able to reduce the execution time from 16

cores, the loss of posterior efficiency is highly influenced by the explicit

communications between nodes on a distributed memory platform such as

ALHAMBRA. In CIEMAT, a shared memory machine, although the basic version

scales slightly when more cores are used, the improvement is minimal. Conversely,

good results of scalability are seen for the parallel version that includes all the

improvements, in both ALHAMBRA where SpeedUp reaches 154 with 256 cores, and

CIEMAT, where it reaches a SpeedUp of 58 with 64 cores.

In comparison with the original code using O2, substantial improvements have

been achieved in successfully reducing the computational cost. The execution time of

the basic optimizations Si3D is 120.36s in ALHAMBRA and 238.13s in CIEMAT.

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64 128 256

Sp
e

e
d

U
p

Number of cores

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Sp
e

e
d

U
p

Number of cores

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

183

These times present an approximate ratio of 360: 30 and 714: 30, respectively, meaning

that it would take 360 days in ALHAMBRA and 714 days in CIEMAT to complete a

computer simulation of Tahoe20 of 30 days. On the contrary, given the results of the

best parallel version, this ratio is reduced to about 2:30 in ALHAMBRA using 256

cores and up to 10:30 in the case of CIEMAT using 64 cores, allowing us to obtain,

with enough resources, useful results in an acceptable time.

5.4 Conclusions

 In this chapter various proposals are presented that, applied to a 3D

hydrodynamic model, provide an optimized parallel implementation, both in

shared memory machines using OpenMP and in distributed memory machines

using MPI. For this, emphasis is made on adapting the parallel implementation

specifically to the characteristics and type of operations that can be found in

hydrodynamic models. Furthermore, we demonstrate that if the parallel

implementation is adapted to the type of architecture used, the efficiency and

scalability of the parallel model will improve considerably. In relation to this the

following conclusions are obtained:

o The use of affinity improves performance on platforms with shared

memory and distributed memory, with an improvement up to 45%. The

results show that the most appropriate map affinity varies in relation to

the amount of memory available in the architecture used.

o The use of synchronization points that, in the case of shared memory, are

adapted to the NUMA architecture and to the domain decomposition

used, improves the execution time obtained compared to the use of

OpenMP barriers up to 11.67%. To achieve this, barriers have been

implemented with a hierarchical structure and a specific synchronization

for exchanges between neighboring subdomains.

o Basic optimizations, like loop unrolling, improve the runtime of

algorithms typically used in linear algebra such as the Thomas Algorithm

for solving tridiagonal systems. This reduction is up 4% of the total

execution time when the loop unrolling is applied to S1 and S4 of Si3D.

PhD Thesis

184

o The type of storage used to exploit the data locality cannot be efficient if,

in the case of shared memory, two threads compete for the access to

information located in the overlapping area of shared variables. The

results show that it is more efficient the use a local variable for each

thread, allowing the access to these variables more frequently from cache

memory and avoiding penalties in the access to main memory. Using

local variables for specific calculations allows to obtain an improvement

of 6.16% with respect to the use of shared variables.

o Performing the computation of the water columns located on the border

of each subdomain before the rest of interior columns, both during the

calculation of PCG and in S3 and S4 of Si3D, it is possible to overlap all

communication with computation, obtaining an improvement of the

execution time up to 63%. With this alternative similar execution times

are obtain using Infiniband and Gigabit Ethernet with differences lower

than 2.51%.

o For loops with little calculation and whose results are needed by

neighboring subdomains, the results show that it is more efficient to

solve the dependencies reducing the points of

synchronization/communication by adding redundant computation. The

redundant computation improves execution time up to 3.2% in the case

of synchronization using threads and up to 15.5% in the case of

communications using processes.

 The development of a parallel and optimized implementation stage where the

system of pentadiagonal equations is solved improves the results considerably,

thereby obtaining a model with good scalability results in high performance

platforms with more than 10 nodes. The proposal presented here has been

achieved by adapting the PCG to the architecture used and to the domain

decomposition used in the other stages of Si3D, without adding any additional

computational cost such as reordering or extra communications. Thanks to these

optimizations, OP-Si3D is able to simulate a complete model of Lake Tahoe

using high resolution with a relation of 2:30 using 256 cores in ALHAMBRA

and a SpeedUp of 154.

 The choice of the preconditioner used by the PCG to solve the system of

pentadiagonal equations significantly affects the efficiency of a parallel

A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture

185

implementation due to the added overhead by new factorization, reordering

and/or communications. The alternative preconditioner MIC presented here

(MMIC) is implemented without adding any type of calculation or

communication/synchronization in its implementation, at the cost of reducing

their efficiency when the number of subdomains used increases. However, this

reduction is greatly enhanced by the alternative presented here, and the use of a

parameter whose value varies according to the number of subdomains used. The

results show that this alternative performs better than other alternatives

evaluated, implemented both sequentially and in parallel.

PhD Thesis

186

Conclusiones Generales

187

Conclusiones Generales

Las estrategias de optimización propuestas en este trabajo permiten mejorar la eficiencia

de modelos hidrodinámicos 3D ampliamente utilizados en la simulación de procesos de

circulación, transporte y mezcla de aguas continentales. Estas propuestas han sido

implementadas con éxito en un modelo de diferencias finitas semi-implícito (Si3D),

aunque son suficientemente genéricas para ser implementadas de igual forma en

modelos similares. Los resultados demuestran que se ha conseguido reducir el coste

computacional de simulaciones excesivamente costosas por usar grids de alta

resolución, las cuales serían imposibles de realizar sin las optimizaciones propuestas.

Estas estrategias permitirán realizar estas simulaciones en clusters de gama baja en un

tiempo de ejecución aceptable o incluso aprovechar de forma eficiente arquitecturas de

altas prestaciones para la simulación de modelos de mayor coste computacional. Las

propuestas realizadas en este trabajo han sido o están siendo usadas en varios proyectos.

Por ejemplo, se han utilizado para llevar a cabo simulaciones con modelos de alta

resolución en el estudio de procesos de media y pequeña escala en diversas zonas de

interés como la confluencia de ríos, el meandro de un río o la entrada de un río en un

lago.

También se han utilizado en el estudio de procesos de pequeña escala en la zona litoral

de lagos y embalses (http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html), o

en el estudio de procesos de circulación de gran escala en lagos de gran tamaño, como

son el lago Tahoe en California y el lago Tanganika en el este de África

(http://terc.ucdavis.edu/publications/newsletters1/winter2014-15.pdf,

http://terc.ucdavis.edu/research/world/lake-tanganyika.html). Además, haciendo uso de

la versión optimizada de Si3D propuesta aquí, ha sido posible el desarrollo de varias

publicaciones en revistas internacionales JRC de prestigio y varias tesis doctorales del

Dpto. de Ingeniería Civil de la Universidad de Granada.

Como ejemplo de las mejoras logradas, la simulación completa del lago Tahoe

utilizando una versión secuencial de Si3D y un modelo de alta resolución con columnas

de agua de 20x20m, tiene una relación de 3000:30 aproximadamente con respecto a la

versión original de Si3D y una relación de 360:30 aplicando diversas optimizaciones

básicas, esto quiere decir que se tardarían unos 3000 o 360 días de cómputo

http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/publications/newsletters1/winter2014-15.pdf
http://terc.ucdavis.edu/research/world/lake-tanganyika.html

Tesis Doctoral

188

respectivamente en simular 30 días de forma secuencial. Sin embargo, gracias a la

implementación paralela realizada siguiendo las estrategias propuestas en este trabajo,

esa relación puede reducirse a 6:30 usando 64 cores de una arquitectura de memoria

distribuida y a 2:30 usando 256 cores.

A continuación se enumeran una serie de conclusiones específicas de cada

capítulo:

 Implementación anidada N-Si3D:

o Se presenta un procedimiento de anidamiento de una vía para simular

procesos de circulación en modelos de larga escala. La implementación

anidada fue validada comparando los resultados de diversas simulaciones

de zonas concretas (subdominios) de los modelos de un lago y un río,

obteniendo resultados de cada zona concreta tanto por un modelo

completo como por el modelo anidado. En las pruebas de validación

realizadas, las diferencias comparando los resultados del modelo anidado

en alta resolución con un modelo completo también en alta resolución

son en todos los casos menores al 4%. También se demuestra que estos

errores pueden llegar a ser 0 cuando ambos modelos (el de baja completo

y el de alta anidado) tienen la misma resolución y el sistema de

ecuaciones pentadiagonal para resolver superficie libre, presente en

modelos semi-implícitos, es resuelto usando un método directo, el cual

es un método computacionalmente muy costoso pero con una solución

exacta. Los errores producidos por el uso de una implementación anidada

son debidos por un lado a la naturaleza aproximada del método iterativo

usado en Si3D para resolver el sistema de ecuaciones pentadiagonal y,

por otro lado, al uso de interpolación espacial y las diferencias entre

batimetrías (ambas consecuencia por la diferencia de resolución entre el

modelo completo de baja y el modelo anidado de alta).

o La información que debe ser transmitida desde el modelo completo de

baja resolución al modelo anidado de alta resolución, con el objetivo de

construir un procedimiento de anidamiento correcto, largamente depende

de la forma en que se implemente. El método utilizado es importante

para determinar qué dependencias espaciales existen en la correcta

Conclusiones Generales

189

construcción de las ecuaciones de conservación discretizadas del modelo

anidado. La calidad de los resultados del modelo anidado se ven

severamente afectados si no se transmiten todas las variables necesarias.

Esto se demuestra, en particular, realizando un estudio con uno de los

componentes de velocidad (velocidad tangencial) que se debe transmitir

a lo largo de la frontera desde el modelo completo de baja resolución al

modelo anidado de alta resolución, el cual sin embargo no es transmitido

en muchas aplicaciones presentes en la literatura. Este componente, aun

no siendo necesario para garantizar la conservación de masa en el

modelo anidado, puede afectar a la calidad de los resultados cuando

existen corrientes de fuerte intensidad, circulación lateral y/o vórtices

cerca de la frontera anidada. En estos casos los errores se deben al error

en el cálculo del término advectivo en las ecuaciones de momentum

cerca de la frontera en el modelo anidado.

o Se demuestra la necesidad de usar grids de alta resolución para simular

correctamente patrones de circulación de pequeña escala, imposibles de

capturar con una resolución menor en dos casos reales: el lago Tahoe y el

río Sacramento. Se observa que la recirculación horizontal en una bahía

del lago Tahoe y la recirculación vertical en un meandro del río

Sacramento no son correctamente simulados en modelos de menor

resolución. Estos patrones, sin embargo, sí son característicos del tipo de

área donde se presentan (como se indica en la literatura) y son

reproducidos de forma similar por modelos completos de alta resolución.

o La implementación del procedimiento de anidamiento presentada

permite la ejecución de los modelos de alta y baja resolución en paralelo.

Para ello se aplica una estructura pipeline para acoplar ambos modelos

de forma online, siendo el tiempo de ejecución final equivalente al del

modelo más lento, el cual dependiendo de la aplicación, será el modelo

completo baja resolución o el anidado de alta resolución. Además, las

comunicaciones se encuentran implementadas de forma eficiente al ser

solapadas con cálculo. Este acoplamiento online evita el uso de ficheros

para la transferencia de información entre el modelo de baja y el anidado

de alta y hace posible transferencias incluso a cada paso de tiempo,

evitando errores por interpolación temporal. Un fichero con la

Tesis Doctoral

190

información que se transfiere en la implementación propuesta tendría un

tamaño prohibitivo (de hasta 600GB para el lago Tahoe con alta

resolución).

 Implementación paralela para pequeños cluster de computadores, P-Si3D:

o La implementación paralela P-Si3D es probada con éxito y con un

tiempo de ejecución aceptable en modelos de media y baja resolución del

lago Tahoe, obteniendo una relación de 5:30 usando los 3 nodos de ACII

(12 hebras) para el caso de media resolución.

o Diversas configuraciones de la arquitectura utilizada combinando

distintos números de procesos y hebras fueron evaluados. Los resultados

demuestran que el rendimiento es peor cuando las opciones por defecto

de la BIOS y del sistema operativo son utilizadas (el tiempo de ejecución

aumenta entre un 40% y un 60% dependiendo del número de hebras y

procesos usados). Esto se debe a la distribución de hebras utilizada por

defecto por el sistema operativo entre los 8 cores lógicos de un nodo

cuando se activa Hyper-Threading. El programa se aprovecha solo de

forma leve del prefetching hardware (reduciendo el tiempo de ejecución

entre un 5% y 8%) y de Intel® Turbo Mode Technology, reduciendo el

tiempo de ejecución levemente, entre un 5% y 8% en el primer caso y

entre un 3% y 7% en el segundo caso.

o El procesamiento por bloques reduce el tiempo de ejecución de forma

muy moderada (un 4% de mejora aproximadamente).

o La comparación de dos tipos de corte en la descomposición de dominio

(corte-estrecho y corte-largo), tanto con cálculo redundante como sin él,

demuestra que aunque el número de comunicaciones es el mismo en

ambos casos, la cantidad de datos a calcular (de forma redundante) y a

comunicar varía. Los resultados demuestran que la mejor distribución es

aquella donde se presente fronteras entre subdominios de menor

longitud.

Conclusiones Generales

191

 Aplicación de trazadores usando P-Si3D y N-Si3D, P/N-Si3D:

o La combinación del procedimiento de anidamiento N-Si3D, usado para

reducir el área de interés en alta resolución a la zona litoral de un lago, y

P-Si3D, usado para dividir la carga de trabajo usando descomposición de

dominio, ha permitido obtener resultados de todo el perímetro del lago

Tahoe en alta resolución en pequeños clusters. Los resultados obtenidos

con este modelo son usados para ilustrar que las bahías de un lago no

pueden ser estudiadas de forma individual y están conectadas con otras

bahías vecinas a través de corrientes que se producen a lo largo de la

costa. Las bahías y otras irregularidades en la línea de costa pueden

atrapar material transportado por corrientes a lo largo de la costa como

consecuencia de remolinos producidos en estas bahías. Estos procesos

parecen ser más fuertes durante periodos de viento de mayor intensidad.

 Implementación paralela escalable para clusters de bajo coste, SP-Si3D:

o Se demuestra que a la hora de desarrollar una implementación paralela

de modelos hidrodinámicos 3D, la resolución de un sistema de

ecuaciones pentadiagonal, presente en modelos semi-implícitos, no es

una tarea trivial y requiere costosas técnicas de reordenamiento y

comunicaciones, las cuales serán de uno-a-muchos y muchos-a-uno si se

resuelve el sistema en secuencial o de muchos-a-uno y entre

subdominios vecinos si se resuelve en paralelo. Los resultados

demuestran que una implementación secuencial de la resolución del

sistema de ecuaciones pentadiagonal haciendo uso de las

comunicaciones de uno-a-muchos y muchos-a-uno, provoca una

reducción inaceptable de la escalabilidad del modelo.

o Una estructura de procesamiento en dos niveles (usando una estructura

pipeline y descomposición de dominio) es propuesta para poder llevar a

cabo la simulación de zonas anidadas en alta resolución demasiado

extensas, como puede ser toda la zona litoral de grandes lagos. Con este

método, la zona anidada se divide en múltiples subdominios anidados,

permitiendo así que las ecuaciones del modelo puedan ser resueltas de

forma independiente en cada subdominio, usando para ello las

velocidades del modelo completo de baja resolución como condiciones

Tesis Doctoral

192

de frontera. Con este procedimiento, cada subdominio anidado ensambla

y resuelve un subsistema de ecuaciones pentadiagonal independiente, sin

añadir comunicaciones o reordenamiento en su cálculo. Con este tipo de

procesamiento en dos niveles el tiempo total de ejecución se reduce al

tiempo de ejecución de un subdominio anidado de alta resolución.

o La estructura de procesamiento en dos niveles presentada permite reducir

el tiempo de ejecución del modelo anidado en alta resolución casi de

forma lineal con el número de ordenadores usados en clusters de gama

baja. SP-Si3D logra obtener un SpeeUp de 7.91 dividiendo la zona litoral

del lago Tahoe en 8 subdivisiones. Con esta escalabilidad se logra

simular toda la zona litoral del lago Tahoe en alta resolución obteniendo

una relación de 6:30 en ARCHIMEDES.

o Las diferencias (NRMSE) al comparar los resultados de SP-Si3D con los

resultados de un modelo completo de alta resolución son en todos los

casos muy pequeñas (menores al 4%). Se demuestra que SP-Si3D es

capaz de simular correctamente fenómenos de pequeña escala aunque el

límite entre subdominios atraviese uno de ellos (con un error menor al

2,23% en el caso estudiado).

 Implementación paralela optimizada para plataformas de altas prestaciones OP-

Si3D.

o En una implementación paralela de un modelo hidrodinámico 3D, el tipo

de arquitectura que se utilice, la adaptación a la arquitectura utilizada y la

mejora de todas las etapas afectarán considerablemente a la eficiencia y

escalabilidad del modelo paralelo. En relación con este apartado se

obtienen las siguientes conclusiones:

 El uso de afinidad mejora las prestaciones en las plataformas con

memoria compartida y memoria distribuida utilizadas, con una

mejora de hasta un 45%. Los resultados demuestran que el mapa

de afinidad más adecuado varía según la cantidad de memoria

disponible de la arquitectura utilizada.

 El uso de puntos de sincronización que, en el caso de memoria

compartida, se adapten a la arquitectura NUMA y a la

descomposición de dominio utilizada, mejora los tiempos

Conclusiones Generales

193

obtenidos comparando con el uso de las barreras de OpenMP

hasta un 11,67%. Esto se consigue haciendo uso de barreras con

una estructura jerarquizada y una sincronización específica para

los intercambios entre subdominios vecinos.

 Optimizaciones básicas como desenrollado de bucles mejora el

tiempo de ejecución de algoritmos típicamente utilizados en

algebra lineal como es el Algoritmo de Thomas para la resolución

de sistemas tridiagonales hasta un 4%.

 El tipo de almacenamiento usado para aprovechar la localidad de

los datos puede no ser eficiente si en el caso de memoria

compartida, dos hebras compiten por el acceso a información

situada en la zona de solapamiento de variables compartidas. Los

resultados demuestran que es más eficiente el uso variables

locales a cada hebra, permitiendo su acceso de forma más

frecuente desde memoria caché y evitando penalizaciones por

acceso a memoria principal. El uso de variables locales para

determinados cálculos permite obtener una mejora de hasta un

6,16% con respecto al uso de variables compartidas.

 Llevando a cabo el cómputo de las columnas de agua situadas al

borde de cada subdominio antes que el resto de columnas

internas, tanto durante el cálculo del PCG como en las etapas 3 y

4 de Si3D, es posible solapar todas las comunicaciones con

cálculo con una mejora del tiempo de hasta un 63%. Con esta

alternativa se obtienen tiempo similares usando Infiniband y

Gigabit Ethernet, con diferencias menores a un 2,51% entre

ambos.

 En el caso de bucles con poco cálculo y cuyos resultados son

necesarios por subdominios vecinos, los resultados demuestran

que es más eficiente solventar las dependencias reduciendo los

puntos de sincronización/comunicación y añadiendo cálculo

redundante. El cálculo redundante mejora el tiempo de ejecución

hasta un 3,2% en el caso de sincronización usando hebras y hasta

un 15,5% en el caso de comunicaciones usando procesos.

Tesis Doctoral

194

o El desarrollo de una implementación paralela y optimizada de la etapa

donde se resuelve el sistema de ecuaciones pentadiagonal permite

mejorar los tiempos y la escalabilidad en plataformas de altas

prestaciones con un número de nodos mayor que 10. Gracias a estas

optimizaciones, OP-Si3D consigue simular un modelo completo de alta

resolución del lago Tahoe con una relación de 2:30 usando 256 cores en

ALHAMBRA y un SpeedUp de 154.

 En la propuesta presentada aquí se ha conseguido adaptar el PCG

a la arquitectura utilizada y a la descomposición de dominio

usada en el resto de etapas de Si3D, sin añadir ningún tipo de

coste computacional adicional como reordenamiento o

comunicaciones extras.

 La elección del precondicionador utilizado por el PCG en la

resolución del sistema de ecuaciones pentadiagonal afecta de

forma considerable a la eficiencia de una implementación

paralela debido al overhead añadido por factorizaciones, nuevo

reordenamiento y/o comunicaciones. La alternativa del

precondicionador MIC presentada aquí (MMIC) es implementada

sin añadir ningún tipo de cómputo o comunicación/sincronización

adicional en su implementación, a costa de reducir su eficiencia a

medida que aumentan el número de subdominios. Sin embargo,

esta reducción se ve considerablemente mejorada gracias a la

alternativa presentada aquí y al uso de un parámetro cuyo valor

varía según el número de subdominios. Los resultados

demuestran que esta alternativa obtiene mejores resultados que

otras alternativas evaluadas tanto en secuencial como en paralelo.

General Conclusions

195

General Conclusions

Several optimization approaches have been proposed in this work to improve the

efficiency of three-dimensional 3D hydrodynamic models when applied to simulate

circulation, transport and mixing processes in inland waters. These approaches were

successfully implemented in a semi-implicit finite difference code (Si3D), but they are

general enough so that they can also be implemented in similar models. Using the

optimized version of Si3D, we were able to conduct simulations with very high-

resolution grids with reasonable run-times, in small commodity clusters. The optimized

model has also been applied or is currently being used, outside this dissertation, in

several projects. For example, it has been used to conduct very-high resolution

simulations of medium- or small-scale river confluences, river bends, and river inflows

in reservoirs. It has also been used in very-high resolution simulations of near-shore

processes in lakes and reservoirs (http://terc.ucdavis.edu/research/modeling/three-d-

tahoe.html), or in the simulation of the large-scale circulation of large and very large

lakes, such as Lake Tahoe and Lake Tanganyika in north of Africa

(http://terc.ucdavis.edu/publications/ newsletters1/winter2014-15.pdf,

http://terc.ucdavis.edu/research/world/lake-tanganyika.html). In addition, several

manuscripts have been published in international JRC journals and various PhD thesis

of the Civil Engineering Department at the University of Granada University have been

completed, in which use has been made of optimized versions of Si3D proposed here.

As an example of the improvements, the complete simulation of Lake Tahoe,

using a sequential model of Si3D and a high resolution grid with 20 x 20m grid cells,

has a ratio of 3000:30 compared to the original version of Si3D (including O2) and a

ratio of 360:30 adding various basic optimizations. This means that it would take about

3000 or 360 days respectively to simulate 30 days. However, with our parallel

implementation following the strategies proposed in this work, that ratio can be reduced

to 6:30, using 64 cores in a distributed memory architecture and 2:30 using 256 cores.

http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/publications/%20newsletters1/winter2014-15.pdf
http://terc.ucdavis.edu/research/world/lake-tanganyika.html

PhD Thesis

196

Specific conclusions of each chapter are enumerated next:

 Nested Implementation N-Si3D:

o A one-way nested implementation was developed to simulate localized

circulation features in large-scale models. The nested implementation

was validated by comparing the results of simulations in a small region

(sub-domain) of a lake or river model, calculated both by the nested- or

inner-model and the complete or outer-model. In the validation

experiments, the results of the high resolution nested model differs in all

cases less than 4% from the results of a complete model using high

resolution too. These errors are even reduced to 0 when both models

(inner and outer model) use the same grid resolution and the

pentadiagonal matrix for water surface elevation built in the semi-

implicit model was solved using a direct method, which is

computationally demanding but exact. The errors produced in a nesting

implementation are due to the approximate nature of the iterative matrix

solvers used in Si3D to solve the pentadiagonal matrix, and to spatial

interpolation and bathymetry mismatch (both consequence of the

different inner and outer grid resolutions).

o The information that needs to be transmitted from the outer to the inner

model to construct a seamless nesting implementation largely depends on

the computational stencil, which dictates the spatial dependencies in the

construction of the correct discretized conservations equations. If not all

the variables are transmitted the quality of the results of the nested model

may be severely affected. The velocity components along the boundary

between the inner- and the outer- model (tangential velocities), in

particular, are seldom transmitted across nested boundaries in many

applications. This approach, while unimportant to guarantee mass

conservation in the inner model, may be wrong when very strong

currents, lateral circulation and/or vortices exist near the nested

boundary. The errors in that case result from miscalculations of the

magnitude of the advection terms in the momentum equations of the

inner model near the boundary.

General Conclusions

197

o The usefulness of the nested approach is illustrated in two test cases. In

one of them we simulate the lateral circulation that develops a river bend

in Sacramento River. In the other, the nested model is used to simulate

the development of separation eddies in a small bay of a large lake (Lake

Tahoe, CA), which occurs in response to changes in wind forcing and

large-scale circulation. These features can only be represented with

sufficiently high spatial resolution.

o The outer- and the inner- models are run in parallel. A pipeline structure

for coupling both models online is used, being the final execution time

equivalent to the slowest model, which, depending on the particular

implementation, it can be either the low-resolution or the nested high-

resolution model). In addition, communications are implemented

efficiently by being overlapped with calculation. This online coupling

prevents the use of files for transferring information between low and

high resolution models and makes possible the communication even each

time-step, avoiding errors by temporal interpolation. A file with the

information necessary to be transferred in the proposed implementation

would have a prohibitive size (up to 600GB in the case of Lake Tahoe

using a high resolution nested grid).

 Parallel Implementation for small commodity clusters P-Si3D

o The parallel implementation of Si3D (P-Si3D) was used to build a mid-

resolution model of Lake Tahoe, with cartesian grid cells that were 50 m

wide. This model was run in ACII, a small commodity cluster of three

nodes (12 threads), with ratios between computational to real time of

5:30.

o Different platform configurations with varying number of threads and

processes were tested. The results show that performance is worse if the

default BIOS and operating system configuration is used (time increases

by between 40% to 60% depending on the number of processes and

threads used). This is due to the thread distribution of the operating

system among the eight logical cores of a node when Hyper-Threading is

enabled. The program makes a weak use of the pre-fetching hardware

(pre-fetching decreases execution time by between 5% to 8%) and Intel®

PhD Thesis

198

Turbo Mode Technology decreases slightly the execution time (by

between 3% to 7%).

o Block-driven processing reduces execution time too slightly (4%

improvement approximately).

o The comparison of wide-direction or narrow-direction distribution in a

parallel implementation, with MPI communications and with or without

redundant calculation, shows that though the number of communications

is the same, the quantity of data to calculate (with redundancy) or

communicate varies. The results prove that the distribution approach

more efficient is the one with a lower border length.

 Tracers application using P-Si3D and N-Si3D, P/N-Si3D

o The nesting procedure, used to reduce the high resolution area of interest

to the littoral zone of a lake, and the parallelized version of the code P-

Si3D, used to divide the workload using domain decomposition, have

been combined to conduct high-resolution (20 x 20 m Cartesian grid

cells in the horizontal) simulations of the near-shore perimeter of Lake

Tahoe using a small commodity cluster. The model results are used to

illustrate that the physical and chemical environments in neighboring

littoral embayments are tightly linked as a result of pulsating long-shore

currents that develop within the coastal boundary layers. Bays and other

shoreline irregularities may trap material transported by long-shore

currents, as a result of the development of separation eddies. Long-shore

currents and local bay-scale eddies appear to become more energetic in

response to stronger wind events.

 Scalable parallel implementation in small commodity clusters, SP-Si3D

o The solution of a pentadiagonal matrix for the free-surface elevation in

semi-implicit models in parallel implementations of the model can be

done either sequentially or in parallel. In both cases it requires expensive

reordering techniques and communications between processes/threads.

These communications are one-to-many and many-to-one if the system is

solved sequentially or many-to-one and between neighbor sub-domains

General Conclusions

199

if it is solved in parallel. The sequential implementation using one-to-

many and many-to-one communications of the matrix solution seriously

jeopardizes the scalability of the parallel implementation.

o A processing structure on two levels (using pipeline structure and

domain decomposition) is proposed to conduct scalable approaches to

simulate extensive near-shore domains with high spatial resolution. In

this approach, the near-shore region is simulated using multiple nested

sub-domains. The equations are solved independently in each sub-

domain, using the velocities from the outer-model as boundary

conditions. Hence, in each nested sub-domain a pentadiagonal matrix is

assembled and solved independently, without any reorder and

communications added. With this two-level processing, the total

execution time is reduced to the execution time of one high-resolution

sub-domain.

o The two–level processing structure scales almost linearly with the

number of computers used in small commodity clusters. A SpeedUp of

7.91 was achieved when the high-resolution (20x20 horizontal grid cells)

nested model of the littoral zone of Lake Tahoe is solved with 8 nodes.

In Archimedes, a cluster existing in the Water Research Institute, the

ratio of computational to real time in these computations where 6:30.

o The differences (NRMSE) when comparing the results of SP-Si3D with

the results of a complete high-resolution model are in all cases very

small (less than 4%). It is demonstrated that SP-Si3D can correctly

simulate small-scale patterns although the boundary between nested

subdomains crosses one of this pattern (with an error less than 2.23% in

the case studied).

 Optimized parallel implementation for high performance platforms OP-Si3D.

o In a parallel implementation of a 3D hydrodynamic model, the type of

architecture used, the adaptation to the architecture used and the

improvement of all stages, significantly affect the efficiency and

scalability of the code. In connection with this points the following

conclusions are obtained:

PhD Thesis

200

 The use of affinity improves performance on platforms with

shared memory and distributed memory, with an improvement up

to 45%. The most appropriate affinity map varies in relation to

the amount of memory available in the architecture used.

 The use of synchronization points that, in the case of shared

memory, are adapted to the NUMA architecture and to the

domain decomposition used, improves the execution time

obtained compared to the use of OpenMP barriers up to 11.67%.

To achieve this, barriers have been implemented with a

hierarchical structure and a specific synchronization for

exchanges between neighboring subdomains.

 Basic optimizations, like loop unrolling, improve the runtime of

algorithms typically used in linear algebra such as the Thomas

Algorithm for solving tridiagonal systems up to 4%.

 The type of storage used to exploit data locality cannot be

efficient if, in the case of shared memory, two threads compete

for the access to information located in the overlapping area of

shared variables. The results show that it is more efficient the use

a local variable for each thread, allowing the access to these

variables more frequently from cache memory and avoiding

penalties in the access to main memory. By using local variables

for specific calculations one can achieve an improvement of

6.16% with respect to the use of shared variables.

 Performing the computation of the water columns located on the

border of each sub-domain before the rest of internal columns,

both during the calculation of PCG and in S3 and S4 of Si3D, it is

possible to overlap all communication with computation,

obtaining an improvement of the execution time up to 63%. With

this alternative similar execution times are obtain using

Infiniband and Gigabit Ethernet with differences lower than

2.51%.

 For loops with little calculation and whose results are needed by

neighboring sub-domains, the results show that it is more

efficient to solve the dependencies reducing the points of

General Conclusions

201

synchronization/communication by adding redundant

computation. The redundant computation improves execution

time up to 3.2% in the case of synchronization using threads and

up to 15.5% in the case of communications using processes.

o The development of a parallel and optimized implementation of the

pentadiagonal matrix solution, improves the execution time and

scalability when high performance platforms with a number greater than

10 nodes are used. Using these optimizations, OP-Si3D is able to

simulate a complete model of Lake Tahoe using high resolution with a

relation of 2:30 using 256 cores in ALHAMBRA and a SpeedUp of 154.

 The PCG was adapted to the architecture and the domain

decomposition used in the other stages of Si3D, without adding

any additional computational cost such as reordering or extra

communications.

 The choice of preconditioner significantly affects the efficiency

of a parallel PCG solver due to the added overhead by new

factorization, reordering and/or communications. The alternative

preconditioner MIC presented here (MMIC) is implemented

without adding any type of calculation or

communication/synchronization in its implementation, at the cost

of reducing their efficiency when the number of sub-domains

used increase. However, this reduction is greatly enhanced by the

alternative presented here and the use of a parameter whose value

varies according to the number of subdomains used. This

alternative performs better than other sequential and parallel

alternatives.

PhD Thesis

202

Scientific Production and Activity

203

Scientific Production and Activity

Publications

Acosta MC, Anguita M, Fernández-Baldonero FJ, Ramón CL, Schladow SG, Rueda FJ.

Evaluation of a nested-grid implementation for 3D finite-difference semi-implicit

hydrodynamic models. Environmental Modelling and Software 2015; 64: 241-261.

doi:10.1016/j.envsoft.2014.10.015. Impact Factor: 4.538.

Anguita M, Acosta MC, Fernández-Baldonero FJ, Rueda FJ. Scalable Parallel

implementation for 3D semi-implicit hydrodynamic models. Environmental Modelling

and Software 2015, (under review). Impact Factor: 4.538.

International Conferences

Title: Parallel Implementation of a Semi-implicit 3D Lake Hydrodynamic Model.

Authors: Acosta MC, Anguita M, Fernández-Baldonero FJ, Rueda FJ.

Name of the Conference: International on Computational and Mathematical Methods

in Science and Engineering.

Location: Almería, Spain.

Date: 07/2010

Title: Spatial Expansion of an Invasive by Wind-Driven Currents.

Authors: Hoyer AB, Acosta MC, Anguita M, Fernandez-Baldomero J, Schladow G,

Rueda FJ.

Name of the Conference: Symposium for European Freshwater Science (SEFS).

Location: Girona, Spain.

Date: 04/2011

Title: Mixing of Density Currents Inflowing a Meditarrean Stratified Reservoir (Spain).

Authors: Cortés A, Acosta MC, Rueda FJ.

Name of the Conference: Annual Conference of the International Association for Great

Lakes Research (IAGLR).

Location: Ontario, Canada.

PhD Thesis

204

Date: 05/2012

Title: Heterogeneus Parallel Implementation of a Semi-implicit 3D Hydrodynamic

Model.

Authors: Acosta MC, Anguita M, Fernández-Baldonero FJ, Rueda FJ.

Name of the Conference: Computational Methods in Water Resources, XIX

International Conference.

Location: Urbana-Champaign, Illinois, USA.

Date: 06/2012

Title: N1SI3D: A One-way nested grid procedure for a 3D Hydrodynamic Model.

Authors: Acosta MC, Anguita M, Fernández-Baldonero FJ, Rueda FJ.

Name of the Conference: International Conference on Approximation Methods and

Numerical Modeling in Environment and Natural Resources: MAMERN’13.

Location: Granada, Spain.

Date: 03/2013

Title: Prediction of the pathways of river water entering a Mediterranean stratified

reservoir (Beznar, Spain).

Authors: Cortés A, Acosta MC, Rueda FJ.

Name of the Conference: International Conference on Approximation Methods and

Numerical Modeling in Environment and Natural Resources: MAMERN’13.

Location: Granada, Spain.

Date: 03/2013

National Conferences

Title: Evaluación de la paralelización de un modelo hidrodinámico 3D.

Authors: Acosta MC, Anguita M, Fernández-Baldonero FJ, Rueda FJ.

Name of the Conference: XXII Jornadas de Paralelismo.

Scientific Production and Activity

205

Location: Tenerife, Spain.

Date: 06/2011

Research Visit

Host University: University of California, Davis.

Tutor: S. Geoff Schladow

Departament: Civil and Environmental Engineering.

Location: Davis, California, USA.

Dates: 06/2013 to 09/2013

Co-Direction of Final Degree Projects

Student: Felipe Torres González

Principal Director: Mancia Anguita

Degree: Computer Engineering

University: University of Granada (Spain)

End of project: In progress (June 2015).

Student: Francisco

Principal Director: Francisco J. Rueda

Degree: Civil Engineering

University: University of Granada (Spain)

End of project: In progress (June 2015)

Grants

Name: Researcher Worker

Objective: Pre-doctoral

Organization: University of Granada

Dates: 15/02/2010 to 14/02/2011

PhD Thesis

206

Name: FPU Plan Propio (UGR)

Objective: Pre-doctoral

Organization: University of Granada

Dates: 01/03/2011 to 28/02/2015

Name: Plan Propio de Movilidad Internacional

Objective: Research Visit

Organization: University of Granada

Dates: 06/2013 to 09/2013

References

207

References

Acosta MC, Anguita M, Fernández-Baldonero FJ, Ramón CL, Schladow SG, Rueda FJ.

Evaluation of a nested-grid implementation for 3D finite-difference semi-

implicit hydrodynamic models. Environmental Modelling and Software 2015;

64: 241-261.

Acosta MC, Anguita M, Rueda FJ, Fernandez FJ. Parallel Implementation of a Semi-

Implicit 3-D Lake Hydrodynamic Model. Proc. of the 2010 Int. Conf. on Comp.

and Math. Methods in Science and Eng. (CMMSE) 2010; IV: 1026-1037.

Almería (Spain).

Al-Khalissi H, Berekovic M, Marongiu A. On the Relevance of Architectural

Awareness for Efficient Fork/Join Support on Cluster-Based Manycores.

Proceedings of international Workshop on Manycore Embedded Systems 2014.

DOI:10.1145/2613908.2613911.

Al-Khalissi H. Efficient Barrier Synchronization for OpenMP-like Parallelism on the

Intel SCC. Parallel and Distributed Systems (ICPADS) 2013.

DOI:10.1109/ICPADS.2013.15

Amestoy PR, Duff IS, Excellent JY. Multifrontal Parallel Distributed symmetric and

unsymmetric solvers. Comput. Methods Appl. Mech. Engrg. 2000; 184: 501-

520.

Amritkar A, Tafti D, Liu R, Kufrin R, Chapman B. OpenMP Parallelism for fluid and

fluid-particulate systems. Parallel Computing 2012; 38: 501-517.

Anderson E, Schwab D, Lang G. Real-Time Hydraulic and Hydrodynamic Model of

the St. Clair River, Lake St. Clair, Detroit River System. J. Hydraul. Eng.

2010: 136(8), 507–518.

Anderson MA, Stewart MH, Yates MV Gerva CV. Modeling the impact of Body-

contact Recreation of Pathogen Concentrations in a Source Drinking Water

Reservoir. Water Research 1998. 32; 11: 3293-3306.

Anguita M, Diaz J, Ros E, Fernandez-Baldomero FJ. Optimization strategies for high-

performance computing of optical-flow in general-purpose processors. Circuits

and Systems for Video Technology, IEEE Transactions 2009; 10: 1475-88.

Anguita M, Fernandez-Baldomero FJ. Software optimization for improving student

motivation in a computer architecture course. IEEE Transactions on Education

2007; 4: 373-378.

Anguita M, Martinez-Lechado JM. MP3 optimization exploiting processor architecture

and using better algorithms. IEEE Micro 2005; 3: 81-92.

Appt J, Imberger J, Kobus H. Basin-scale motion in stratified upper lake constance.

Limnology and Oceanography 2004; 49(4):919–933.

Armengol J, Toja J, Vidal A. Seasonal rhythm and secular changes in Spanish

reservoirs. In: Limnology Now: A Paradigm of Planetary Problems. (Ed.) R.

Margalef. Ed.Elsevier 1994; 237-253.

PhD Thesis

208

Asunci M, Mantas J and Castro M. Simulation of one-layer shallow water systems on

multicore and CUDA architectures. The Journal of Supercomputing 2010;

online 10 March 2010.

Balaji V. The FMS Manual: A developer’s guide to the GFDL Flexible Modeling

System. Geophysical Fluid Dynamics Laboratory 2002.

Barnes SL. Applications of the Barnes objective analysis scheme. Part I: effects of

undersampling, wave position, and station randomness. J. of Atmos. and

Oceanic Tech. 1994; 11: 1433-1448.

Barnes SL. Mesoscale objective analysis using weighted time-series Observations.

NOAA Technical Memorandum 1964. National Severe Storms laboratory.

Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R et al.

Templates for the solution of linear systems: Building blocks for iterative

methods (SIAM) 2004. Philadelphia, PA (EEUU).

Barth A, Alvera-Azcárate A, Rixen M, Beckers J. Two-way nested model of mesoscale

circulation features in the Ligurian Sea. Progress in Oceanography 2005; 66:

171-189. DOI: http://dx.doi.org/10.1016/j.pocean.2004.07.017.

Beare MI, Stevens DP. Optimisation of a parallel ocean general circulation model.

Annales Geophysicae 1997; 15: 1369-1377. DOI: 10.1007/s00585-997-1369-3.

Benzi M. Preconditioning Techniques for Large Linear Systems: A Survey. Journal of

Computational Physics 2002; 182: 418-477.

Bhattacharjee S, Patidar S. Narayanan PJ. Real-time rendering and manipulation of

large terrains. Computer vision, graphics & image processing, 2008. ICVGIP

'08. sixth indian conference on.

Bjorstad PE, Moe R, Skogen M. Parallel domain decomposition and iterative

refinement algorithms. Notes on Numerical Fluid Mechanics 1993; 28-46.

Blayo E, Debreu L. Nesting ocean models. In: E. Chassignet and J. Verron (Ed.). An

Integrated View of Oceanography: Ocean Weather Forecasting in the 21st

Century. Kluwer, 2006.

Blayo E, Debreu L. Revisiting open boundary conditions from the point of view of

characteristic variables. Ocean Modelling 2005; 9: 231-252. DOI:

http://dx.doi.org/10.1016/j.ocemod.2004.07.001.

Bliznak M, Dulik T Jasek R. Performance Analysis of Built-in Parallel Reduction`s

Implementation in OpenMP C/C++ Language Extension. Advances in

Intelligent Systems and Computing 2014; 285: 607-617.

Blumberg AF, Herring HJ. Circulation modeling using orthogonal curvilinear

coordinates, in Nihoul, JCJ, and Jamart, BM, eds. Three-dimensional models of

marine and estuarine dynamics: Amsterdam, Netherlands, Elsevier 1987;

55−88.

Blumberg AF, Mellor GL. A Description of a Three-Dimensional Coastal Ocean

Circulation Model. Three-Dimensional Coastal Ocean Models. American

Geophysical Union, 1987: 1-16. http://www.stevens-

tech.edu/ses/ceoe/fileadmin/ceoe/pdf/alan_publications/AFB032.pdf.

References

209

Blumberg AF. Turbulent mixing processes in lakes, reservoirs and impoundments.

Physics-based modelling of lakes, reservoir and impondments 1986: 79-104.

New York (EEUU)

Bonaventura L, Rosatti G. A cascadic conjugate gradient algorithm for mass

conservative, semi-implicit discretization of the shallow water equations on

locally refined structured grids. International Journal for Numerical Methods in

Fluids 2002; 40: 217-230. DOI: 10.1002/fld.274.

Brooks DA, Baca MW, Lo YT. Tidal Circulation and Residence Time in a Macrotidal

Estuary: Cobscook Bay, Maine. Estuarine, Coastal and Shelf Science 1999; 49:

647-665. DOI: http://dx.doi.org/10.1006/ecss.1999.0544.

Brown R, Sharapov I. High-scalability parallelization of a molecular modeling

application: performance and productivity comparison between OpenMP and

MPI implementations. International Journal of Parallel Programming 2007;

35, 441-458.

Bryan K. A numerical method for the study of the circulation of the world ocean:

Journal of Computational Physics 1969; 4: 347−376.

Cailleau S, Fedorenko V, Barnier B, Blayo E, Debreu L. Comparison of different

numerical methods used to handle the open boundary of a regional ocean

circulation model of the Bay of Biscay. Ocean Modelling 2008; 25: 1-16. DOI:

http://dx.doi.org/10.1016/j.ocemod.2008.05.009.

Carpenter SR et al. Understanding regional change: A comparison of two lake districts.

BioScience 2007; 57: 323–335.

Castro MJ, García-Rodríguez JA, González-Vida JM and Parés C. A parallel 2d finite

volume scheme for solving systems of balance laws with nonconservative

products: Application to shallow flows. Comput. Methods Appl. Mech. Eng.

2006; 195: 2788-2815.

Castro MJ, García-Rodríguez JA, González-Vida JM and Parés C. Solving shallow-

water systems in 2D domains using Finite Volume methods and multimedia

SSE instructions J. Comput. Appl. Math. 2008; 221: 16-32.

Casulli V, Cattani E. Stability, accuracy and efficiency of a semi-implicit method for

three-dimensional shallow water flow. Computers and Mathematics with

Applications 1994; 27(4):99–112.

Casulli V, Cheng RT. Semi-implicit finite difference methods for three-dimensional

shallow water flow. International Journal for Numerical Methods in Fluids

1992; 15: 629-648. DOI: 10.1002/fld.1650150602.

Casulli V, Walters RT. An unstructured grid, three-dimensional model based on the

shallow water equations. Int. J. Numer. Meth. Fluids 2000; 32: 331–348.

Chan T, Glowinski R, Periaux J, Widlund OB. eds. Third Internat. Symp. on Domain

Decomposition Methods for Partial Differential Equations (SIAM) 1990. SIAM,

Philadelphia (EEUU).

Chan TF Mathew TP. Domain Decomposition Algorithms. Cambritge University Press

2008. DOI: 10.1017/S0962492900002427.

PhD Thesis

210

Chapman DC. Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic

Coastal Ocean Model. Journal of Physical Oceanography 1985; 15: 1060-1075.

DOI: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

Chapman RS, Johnson WH, Vemulakonda SR. User’s guide for the sigma stretched

version of CH3D-WES—A three-dimensional numerical hydrodynamic,

salinity, and temperature model: U.S. Army Corps of Engineers, Waterways

Experiment Station, Technical report HL-96-21 1996; 28 p. plus appendixes.

Chen CH Liu R. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive

Equations Ocean Model: Application to Coastal Ocean and Estuaries. Journal of

Atmospheric and Oceanic Technology 2003; 20: 159-186.

Cushman-Roisin B. Introduction to Geophysical Fluid Dynamics. Prentice-Hall, Inc.

1994. Englewood Cliffs, New Jersey (EEUU).

Daoud AH, Rakha KA, Abul-azm AG. A two-dimensional finite volume hydrodynamic

model for coastal areas: Model development and validation. Ocean Engineering

2008; 35: 150-164.

Davies AM. Application of the Dufort-Frankel and Saul’ev methods with time splitting

to the formulation of a three dimensional hydrodynamic sea model:

International. Journal for Numerical Methods in Fluids 1985; 5: 405−425.

Davies HC. A lateral boundary formulation for multi-level prediction models.

Quarterly Journal of the Royal Meteorological Society 1976; 102: 405-418.

DOI: 10.1002/qj.49710243210.

De Goede ED. A time-splitting method for the three-dimensional shallow water

equations: International Journal for Numerical Methods in Fluids 1991; 13:

519−534.

De Vicente IL, Cruz-Pizarro L, Rueda FJ. Sediment resuspension in two adjacent

coastal shallow lakes: controlling factors and consequences on phosphate

dynamics. Aquatic Sciences 2010. DOI: 10.1007/s00027-009-0107-1.

Debreu L, Blayo E. Two-way embedding algorithms: a review. Ocean Dynamics 2008;

58: 415-428. DOI: 10.1007/s10236-008-0150-9.

Debreu L, Marchesiello P, Penven P, Cambon G. Two-way nesting in split-explicit

ocean models: Algorithms, implementation and validation. Ocean Modelling

2012; 49–50: 1-21. DOI: http://dx.doi.org/10.1016/j.ocemod.2012.03.003.

Debreu L, Vouland C, Blayo E. AGRIF: Adaptive grid refinement in Fortran.

Computers & Geosciences 2008; 34: 8-13. DOI:

http://dx.doi.org/10.1016/j.cageo.2007.01.009.

Delis AI, Mathioudakis EN. A finite volume method parallelization for the simulation

of free surface shallow water flows. Mathematics and Computers in Simulation

2009; 79: 3339–3359.

Dinehart RL, Burau JR. Averaged indicators of secondary flow in repeated acoustic

Doppler current profiler crossings of bends. Water Resources Research 2005;

41: - W09405. DOI: 10.1029/2005WR004050.

Dongarra JJ, Duff IS, Sorensen DC, Van der Vorst HA. Numerical linear Algebra on

High-Perdormance Computers (SIAM) 1998.

References

211

Dukowicz JK, Smith RD. Implicit free-surface method for the Bryan-Cox-Semtner

ocean model. Journal of Geophysical Research: Oceans 1994; 99: 7991-8014.

DOI: 10.1029/93JC03455.

Dukowicz JK, Smith RD. Implicit free-surface method for the Bryan-Cox-Semtner

ocean model: American Geophysical Union. Journal of Geophysical Research

(Oceans) 1994; 99: 7991−8014.

Dyk D, Geveler M, Mallach S, Ribbrock D, Göddeke D and Gutwenger C. HONEI: A

collection of libraries for numerical computations targeting multiple processor

architectures. Comput. Phys. Commun.2009; 180: 2534-2543.

Ecer A, Akay HU, Kemle WB, Wang H, Ercoskun D. Parallel computation of fluid

dynamics problems. Comput. Methods Appl. Mech. Eng. 1999; 174, 433.

Eijkhout V. Beware of unperturbed modified incomplete factorizations, in Iterative

Methods in Linear Algebra, R. Beauwens and P. de Groen, eds. 1992; 583–591.

Enhua W, Liu Y, Liu X. An improved study of real-time fluid simulation on GPU:

Research articles. Comput.Animat.Virtual Worlds 2004; 15(3-4): 139-46.

EPA. User's Manual for Environmental Fluid Dynamics Code. Hydro version (EFDC-

Hydro). Release 1.00. U.S. Environmental Protection Agency (EPA) 2002.

Ferrarin C, Umgiesser G, Cucco A, Hsu T-W, Roland A, Amos CL. Development and

validation of a finite element morphological model for shallow wáter basins.

Coastal Enineering 2008; 55: 716-731.

Fischer PV, Patera AT. Parallel simulation of viscous incompressible flows. Ann. Rev.

Fluid Mech 1994; 483-527

Fox AD, Maskell SJ. Two-Way Interactive Nesting of Primitive Equation Ocean

Models with Topography. Journal of Physical Oceanography 1995; 25: 2977-

2996. DOI: 10.1175/1520-0485(1995)025<2977:TWINOP>2.0.CO;2.

Fringer OB, Gerritsen M, Street RL. An unstructured-grid, finite-volume,

nonhydrostatic, parallel coastal ocean. simulator. Ocean Modelling 2006;

14:139–173.

Galperin B, Kantha SH, Hassid S, Rosati A. A quasi-equilibrium turbulent energy

model for geophysical flows. J. Atmos. Sci. 1988; 45: 55-62

Gardner JV, Mayer LA, Hughes-Clarke J. Cruise report RV inland Surveyer Cruise IS-

98; the bathymetry of Lake Tahoe, California-Nevada, August 2 through August

17, 1998, Lake Tahoe, California and Nevada. Open-File Report 98-509 1998.

US Geological Survey, California (EEUU).

Giunta G, Mariani P, Montella R, Riccio A. pPOM: A nested, scalable, parallel and

Fortran 90 implementation of the Princeton Ocean Model. Environmental

Modelling and Software 2007; 22: 117-122. DOI:

http://dx.doi.org/10.1016/j.envsoft.2006.05.024.

Goforth RR, Carman SM. Multiscale relationships between Great Lakes nearshore fish

communities and anthropogenic shoreline factors. Journal of Great Lakes

Research 2009. 35, 215–223.

Golub GH, Loan CF. Matrix Computations. The John Hopkins University Press 1996,

Baltimore (EEUU).

PhD Thesis

212

Griffies SM, Boning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A,

Treguier AM, Webb D. Developments in ocean climate modelling. Ocean

Modelling 2000; 2: 123-192. DOI: doi:10.1016/S1463-5003(00)00014-7".

Griffies SM, Harrison MJ, Pacanowski RC, Rosati A. A Technical guide to MOM4.

GFDL Ocean Group Technical Report 2008 ; 5.

Gropp WD et al. High-performance parallel implicit CFD. Parallel Comput.; 2001: 27,

337–362.

Guobin S, Guang-Ping G, Shipeng L, Heung-Yeung S, Zhang Y. Accelerate video

decoding with generic GPU. Circuits and Systems for Video Technology, IEEE

Transactions 2005; 15(5): 685-93.

Hackbusch W. Parallel algorithms for partial differential equations. Notes on

Numerical Fluid Mechanics 1991; 31.

Halliwell G,Jr, Barth A, Weisberg R, Hogan P, Smedstad O, Cummings J. Impact of

GODAE products on nested HYCOM simulations of the West Florida Shelf.

Ocean Dynamics 2009; 59: 139-155. DOI: 10.1007/s10236-008-0173-2.

Hamrick JM. A three-dimensional environmental fluid dynamics computer code :

theoretical and computational aspects. Virginia Institute of Marine Science,

College of William and Mary: Gloucester Point, VA, 1992.

Harris GP. Phytoplankton Ecology: structure, function and fluctuation. Chapman &

Hall 1986. London (UK).

Harris LM, Durran DR. An Idealized Comparison of One-Way and Two-Way Grid

Nesting. Monthly Weather Review 2010; 138: 2174-2187. DOI:

10.1175/2010MWR3080.1.

Heggelund Y, Berntsen J. A method for analysing nesting techniques for the linearized

shallow water equations. International Journal for Numerical Methods in Fluids

2002; 38: 163-185. DOI: 10.1002/fld.215.

Herzfeld M, Andrewartha JR. A simple, stable and accurate Dirichlet open boundary

condition for ocean model downscaling. Ocean Modelling 2012; 43–44: 1-21.

DOI: http://dx.doi.org/10.1016/j.ocemod.2011.11.010.

Herzfeld M. An alternative coordinate system for solving finite difference ocean

models. Ocean Modelling 2006; 14: 174-196. DOI:

http://dx.doi.org/10.1016/j.ocemod.2006.04.002.

Herzfeld M. Improving stability of regional numerical ocean models. Ocean Dynamics

2009; 59: 21-46. DOI: 10.1007/s10236-008-0158-1.

Herzfeld M. The role of numerical implementation on open boundary behaviour in

limited area ocean models. Ocean Modelling 2009; 27: 18-32. DOI:

http://dx.doi.org/10.1016/j.ocemod.2008.10.008.

Hestenes MR, Stiefel EL. Method of Conjugate Gradient for Solving Linear Systems.

J. Res. Nat. Bureau Stand 1952; 49:459.

Hill MC. Solving groundwater flow problems by conjugate-gradient methods and the

strongly implicit procedure: American Geophysical Union. Water Resources

Research 1990; 26: 1961−1969.

References

213

Hinterberger C, Fröhlich J, Rodi W. Three-Dimensional and Depth-Averaged Large-

Eddy Simulations of Some Shallow Water Flows. Journal of Hydraulic

Engineering-asce 2007; 133: 857-872. DOI: 10.1061/(ASCE)0733-

9429(2007)133:8(857).

Hodges BR, Imberger J, Saggio A, Winters KB. Modeling basin-scale internal waves in

a stratified lake. Limnol. Oceanogr 2000; 45(7): 1603-1620.

Hodges BR, Rueda FJ. Linear Accuracy and Stability of Semi-Implicit Two-Level

Predictor-Corrector Methods for Hydrostatic Barotropic/Baroclinic Flows.

International Journal of Computational Fluid Dynamics 2008; 22(9): 593–607.

Hodges BR. Hydrodynamical Modeling. Encyclopedia of Inland Waters 2009; 1: 613-

627, Oxford: Elsevier.

Hoffman KH, Zou J. Parallel Efficiency of domain decomposition methods. Parallel

Computing 1993; 19: 1375-1391.

Hoyer AB, Schladow SG, Rueda FJ. A hydrodynamic-based approach to evaluating

the risk of waterborne pathogens entering drinking water intakes in a large

stratified lake. In revision 2015.

Hoyer AB, Wittmann ME, Chandra S, Schladow SG, Rueda FJ. A 3D individual-based

aquatic transport model for the assessment of the potential dispersal of

planktonic larvae of an invasive bivalve. Journal of Environmental

Management 2014; 145: 330-340.

Hu Y, Huang X, Wang X, Fu H, Xu S, Ruan H, Xue W, Yang G. A Scalable

Barotropic Mode Solver for the Parallel Ocean Program. In: Wolf F, Mohr B, an

Mey D (Eds.). Springer 2013 8097: 739-750. Berlin (Germany)

http://dx.doi.org/10.1007/978-3-642-40047-6_74.

Huang A, Rao YR, Lu Y, Zhao J. Hydrodynamic modeling of Lake Ontario: An

intercomparison of three models. Journal of Geophysical Research: Oceans

2010; 115: - C12076. DOI: 10.1029/2010JC006269.

Huang JCK, Sloss PW. Simulation and verification of Lake Ontario’s mean state:

American Meteorological Society. Journal of Physical Oceanography 1981; 11:

1548−1566.

Husbands P, Yelick K. Multi-Threading and One-Sided Communication in Parallel LU

Factorization. Association for Computing Machinery 2007; 10-16. DOI: 978-1-

59593-764-3/07/001.

Imberger J, Parker G. The Diurnal Mixed Layer. Limnol. Oeanog 1985; 30: 737-770.

Imberger J. Flux paths in a stratified lake: A review, in Physical Processes in Lakes and

Oceans, Coastal Estuarine Stud. Edited by J. Imberger 1998; 54: 1–17. AGU,

Washington (EEUU).

Ino F, Kotani Y, Hagihara K. Harnessing the power of idle GPUs for acceleration of

biological sequence alignment. IEEE international symposium on Parallel &

distributed processing (IPDPS) 2009.

Jensen TG. Open boundary conditions in stratified ocean models. Journal of Marine

Systems 1998; 16: 297-322.

PhD Thesis

214

Jiaquan G, Li B, He G. Modified Incomplete Cholesky Preconditioned Conjugate

Gradient Algorithm on GPU for the 3D Parabolic Equation. C.-H. Hsu et al.

(Eds.): NPC. 2013; LNCS 8147: 298–307.

Jin X-Y. Quasi-three-dimensional numerical modeling of flow and dispersion in

shallow water: Delft University of Technology, Department of Civil

Engineering, Communication on Hydraulic and Geotechnical Engineering,

Report 93-3 1993; 174 p.

Jin, KR, Hamrick JH Tisdale T. Application of Three-Dimensional Hydrodynamic

Model for Lake Okeechobee. J. Hydraul. Eng. 2000; 126(10): 758-771.

Jordi A, Wang D. sbPOM: A parallel implementation of Princenton Ocean Model.

Environmental Modelling and Software 2012; 38: 59-61. DOI:

http://dx.doi.org/10.1016/j.envsoft.2012.05.013.

Kalff J. Limnology: Inland Water Ecosystems. Prentice-Hall 2001.

Kantha LH, Claysin CA. An improved mixed layer model gor geophysical applications.

Journal og Geophysical Research 1994; 99: 235-266

Karypis G, Schloegel K, Kumar V. PARMETIS project URL 2000. Available from:

<http:// www-users.cs.umn.edu/~karypis/metis/main.shtml>.

Keyes DE, Gropp WD. A comparison of domain decomposition techniques for elliptic

partial differential equations and their parallel implementation. J. Sci. Sta.

Comput. 1987; 8: 166-201.

Killworth PD, Stainforthd D, Webb DJ, Paterson SM. The development of a free-

surface Bryan-Cox-Semtner ocean model: American Meteorological Society.

Journal of Physical Oceanography 1991; 21: 1333−1348.

Kim SY, Im YT. Parallel Processing of 3D rigid-viscoplastic finite element analysis

using domain decomposition and modified block Jacobi preconditioning

technique. Journal of Material Processing Technology 2003; 134: 254-264.

Kincaid DR, Oppe TC Joubert WD. An introduction to the NSPCG software package.

International Journal of Numerical Methods in Engineering 1989; 27(3): 589-

608.

Koch SE, DesJardins M. Kocin P. An interactive Barnes Objective Map Analysis

Scheme for Use with Satelite and Conventional Data, Journal of Climate and

Applied Meteorology 1983.

Kolerski T, Shen HT, Knack IM. A Nested Model for River Ice Dynamics.

Proceedings, 20
th

 IAHR Ice Symposium 2010 Lahti, Finland.

Kourafalou V, Peng G, Kang H, Hogan P, Smedstad O, Weisberg R. Evaluation of

Global Ocean Data Assimilation Experiment products on South Florida nested

simulations with the Hybrid Coordinate Ocean Model. Ocean Dynamics 2009;

59: 47-66. DOI: 10.1007/s10236-008-0160-7.

Kowalik Z, Murty TS. Numerical modelling of ocean dynamics. BULK Series on

Ocean Engineering. WORLD SCIENTIFIC 1993.

http://dx.doi.org/10.1142/9789812795991_0001.

Laval B, Imberger J, Hodges BR, Stocker R. Modeling circulation in lakes: spatial and

temporal variations. Limnology and Oceanography 2003; 48(3):983–994.

References

215

Lavelle JW, Thacker WC. A pretty good sponge: Dealing with open boundaries in

limited-area ocean models. Ocean Modelling 2008; 20: 270-292. DOI:

http://dx.doi.org/10.1016/j.ocemod.2007.10.002.

Lawrence G, Ashley KI, Yonemitsu N, Ellis JR. Natural dispersion in a small lake

1995; 40: 1519-1526.

Lee M, Chun CH, Hong S. Financial derivatives modeling using GPU's. Scalable

computing and communications; eighth international conference on embedded

computing 2009.

Leendertse JJ, Liu SK. A three-dimensional model for estuaries and coastal seas—

Volume II, aspects of computation: Rand Corporation, Santa Monica Calif.,

Report R-1764-OWRT 1975; 123 p.

Leendertse JJ, Liu SK. A three-dimensional model for estuaries and coastal seas—

Volume IV, turbulent energy computation: Rand Corporation, Santa Monica,

Calif., Report R-2187-OWRT 1977; 59 p.

Leendertse JJ. Aspects of SIMSYS2D—A system for two-dimensional flow

computation: Rand Corporation, Santa Monica, Calif., Report R-3572-USGS.

Prepared for the U.S. Geological Survey 1987; 80 p.

Leendertse, JJ, Alexander RC, Liu SK. A three-dimensional model for estuaries and

coastal seas—Volume I, principles of computation: Rand Corporation, Santa

Monica, Calif., Report R-1417-OWRR 1973; 57 p.

Leendertse, JJ. A new approach to three-dimensional free-surface flow modeling: Rand

Corporation, Santa Monica, Calif., Memorandum R-3712-NETH/RC, Prepared

for The Netherlands Rijkswaterstaat 1989; 51 p.

Leon LF, Smith REH, Malkin SY, Depew D, Hipsey MR, Antenucci JP, Higgins SN,

Hecky RE, Rao RY. Nested 3D modeling of the spatial dynamics of nutrients

and phytoplankton in a Lake Ontario nearshore zone. Journal of Great Lakes

Research 2012; 38, Supplement 4: 171-183. DOI:

http://dx.doi.org/10.1016/j.jglr.2012.02.006.

Liggett JA. Unsteady circulation in shallow, homogeneous lakes: Proceedings of the

American Society of Civil Engineers, Journal of the Hydraulics Division 1969;

95: 1273−1288.

Lodge DM, Barko JW, Strayer D et al. Spatial heterogeneity and habitat interactions in

lake communities. – In: Carpenter, SR (ed.), Complex interactions in lake

communities. Springer-Verlag 1988; 181–208.

Luecke GR, Wei-Hua L. Scalability and performance of OpenMP and MPI on a 128-

processor SGI Origin 2000, Concurrency and Computation: Practice and

Experience 2001; 13: 905–928.

Magoulu M, Van der Vorst HA. ParIC: A Family of Parallel Incomplete Cholesky

Preconditioners. High Performance Computing and Networking Lecture Notes

in Computer Science 2000; 1823: 89-98.

Mamadou HN, Nanri T, Murakami K. Collective Communication Cost Analysis over

Gigabit Ethernet and Infiniband. High Performance Computing (HiPC) 2006;

547-559.

PhD Thesis

216

Manzini G, Stolcis L. Distributed parallel strategies for industrial CFD solvers: a case

study and analysis of performances. J. Parallel Distrib. Comput. 1999; 57: 334.

Marchesiello P, McWilliams JC, Shchepetkin AF. Open boundary conditions for long-

term integration of regional oceanic models. Ocean Modelling 2001; 3: 1-20.

DOI: http://dx.doi.org/10.1016/S1463-5003(00)00013-5.

Martin PJ. Simulation of the mixed layer at OWS November and Papa with several

models. J. Geophysical Research 1985; 90: 903-916

Martinsen EA, Engedahl H. Implementation and testing of a lateral boundary scheme

as an open boundary condition in a barotropic ocean model. Coastal

Engineering 1987; 11: 603-627. DOI: http://dx.doi.org/10.1016/0378-

3839(87)90028-7.

Mason E, Molemaker J, Shchepetkin AF, Colas F, McWilliams JC, Sangrà P.

Procedures for offline grid nesting in regional ocean models. Ocean Modelling

2010; 35: 1-15. DOI: http://dx.doi.org/10.1016/j.ocemod.2010.05.007.

Message Passing Interface Forum, MPI Documents.

Messina P, Culler D, Pfeiffer W, Martin W, Oden JT and Smith G. Architecture,"

Commun ACM 1998; 41: 36-44.

Meyer PD, Valocchi AJ, Ashby SF, Saylor PE. A numerical investigation of the

conjugate gradient method as applied to three-dimensional groundwater flow

problems in randomly heterogeneous porous media: American Geophysical

Union. Water Resources Research 1989; 25: 1440−1446.

Michalakes J. RSL: A Parallel Runtime System Library for Regional Atmospheric

Models with Nesting. In: Baden S, Chrisochoides N, Gannon D, Norman M

(Eds.). Springer 2000 117: 59-74. New York(EEUU)

http://dx.doi.org/10.1007/978-1-4612-1252-2_4.

Myungho L, Chun CH, Hong S. Financial derivatives modeling using GPU's. Scalable

computing and communications; eighth international conference on embedded

computing (SCALCOM-EMBEDDEDCOM) 2009.

Naff RL, Wilson JD. A comparison of preconditioning techniques for parallelized PCG

solvers for the cell-centered finite-difference problem. XVI International

Conference on Computational Methods in Water Resources 2006; 18-22.

Naik NH. Parallelization of a class of implicit finite difference schemes in

computational fluid dynamics. International Journal of High Speed Computing

1993; 5: 1-50.

Nesterov O. A simple parallelization technique with MPI for ocean circulation models.

Journal of Parallel and Distributed Computing 2010; 70: 35-44. DOI:

http://dx.doi.org/10.1016/j.jpdc.2009.09.005.

Nishimoto MM, Washburn L. Patterns of coastal eddy circulation and abundance of

pelagic juvenile fish in the Santa Barbara Channel, California, USA. Marine

Ecology Progress Series 2002; 241: 183-199.

Norden M, Holmgren S, Thune M. OpenMP versus MPI for PDE solvers based on

regular sparse numerical operators. Future Generation Computer System 2006;

22: 194-203.

References

217

Nycander J, Döös K. Open boundary conditions for barotropic waves. Journal of

Geophysical Research: Oceans 2003; 108: - 3168. DOI:

10.1029/2002JC001529.

Oddo P, Pinardi N. Lateral open boundary conditions for nested limited area models: A

scale selective approach. Ocean Modelling 2008; 20: 134-156. DOI:

http://dx.doi.org/10.1016/j.ocemod.2007.08.001.

O'Donncha F, Ragnoli E, Suits F. Parallelisation study of a three-dimensional

environmental flow model. Computers & Geosciences 2014; 64: 96-103. DOI:

http://dx.doi.org/10.1016/j.cageo.2013.12.006.

OpenMP Architecture Review Board, OpenMP Specifications.

Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing.

Proceedings of the IEEE 2008; 96(5): 879-99.

Paglieri L, Ambrosi D, Formaggia L, Quarteroni A and Scheinine AL. Parallel

computation for shallow water flow: A domain decomposition approach.

Parallel Computing 1997; 23: 1261-1277.

Pairaud IL, Gatti J, Bensoussan N, Verney R Garreau P. Hydrology and circulation in

a coastal area off Marseille: Validation of a nested 3D model with observations.

Journal of Marine System 2011; 88: 20-33.

Palma ED, Matano RP. Dynamical impacts associated with radiation boundary

conditions. Journal of Sea Research 2001; 46: 117-132. DOI:

http://dx.doi.org/10.1016/S1385-1101(01)00076-4.

Palma ED, Matano RP. On the implementation of passive open boundary conditions for

a general circulation model: The barotropic mode. Journal of Geophysical

Research: Oceans 1998; 103: 1319-1341. DOI: 10.1029/97JC02721.

Panetta J, Teixeira T, Paulo Filho RP, Finho C, Sotelo D,. Roxo da Motta FM, Pinheiro

SS. Accelerating kirchhoff migration by CPU and GPU cooperation.

International symposium on Computer architecture and high performance

computing (SBAC-PAD) 2009.

Paris CB, Helgers J, van Sebille E, Srinivasan A. Connectivity Modeling System: A

probabilistic modeling tool for the multi-scale tracking of biotic and abiotic

variability in the ocean. Environmental Modelling and Software 2013; 42: 47-

54. DOI: http://dx.doi.org/10.1016/j.envsoft.2012.12.006.

Passoni GP, Cremonesi B, Giancarlo A. Analysis and implementation of a

parallelization strategy on a Navier-Stokes solver for shear flow simulations.

Parallel Computing 2001; 27: 1665-1685.

Pellissetti MF, Ghanem RG. Iterative solution of systems of linear equations arising in

the context of stochastic finite elements. Advances in Engineering Software

2000; 31: 607–616.

Penven P, Debreu L, Marchesiello P, McWilliams JC. Evaluation and application of the

ROMS 1-way embedding procedure to the central california upwelling system.

Ocean Modelling 2006; 12: 157-187. DOI:

http://dx.doi.org/10.1016/j.ocemod.2005.05.002.

PhD Thesis

218

Perry RW, Skalski JR, Brandes PL, Sandstrom PT, Klimley AP, Ammann A,

MacFarlane B. Estimating Survival and Migration Route Probabilities of

Juvenile Chinook Salmon in the Sacramento–San Joaquin River Delta. North

American Journal of Fisheries Management 2010; 30: 142-156. DOI:

10.1577/M08-200.1.

Pjesivac-Grbovic J, Angskun T, Bosilca G, Fagg G, Gabriel E, Dongarra J.

Performance analysis of MPI collective operations. Cluster Computing 2007;

10: 127-143. DOI: 10.1007/s10586-007-0012-0.

Ramón CL, Armengol J, Dolz J, Prats J, Rueda FJ. Mixing dynamics at the confluence

of two large rivers undergoing weak density variations. Journal of Geophysical

Research – Oceans 2014; 119. DOI:10.1002/2013JC009488.

Rao P. A parallel hydrodynamic model for shallow water equations. Applied

Mathematics and Computation 2004; 150: 291-302.

Rao YR, Schwab DJ. Transport and Mixing Between the Coastal and Offshore Waters

in the Great Lakes: a Review. J. Great Lakes Res 2007; 33: 202–218.

Resch M, Bjorn S, Isabel L. A comparison of OpenMP and MPI for the parallel CFD

test case. Proceedings of the First European Workshop on OpenMP 1999.

Rueda FJ, Cowen EA. The residence time of a freshwater embayment connected to a

large lake. Limnol. Oceanogr. 2005; 50: 1638-1653.

Rueda FJ, MacIntyre S. Modelling the fate and transport of storm-river-water in small

multi-basin lakes. Environmental Modeling and Software 2009; 25: 146–157

Rueda FJ, MacIntyre S. Flow and spatial heterogeneity of stream inflows in a small

multibasin lake. Limnol. Oceanogr. 2009; 54(6): 2041–2057.

Rueda FJ, Sanmiguel-Rojas E, Hodges BR. Baroclinic stability of two-level semi-

implicit numerical methods for the 3D shallow water equations. International

Journal for Numerical Methods in Fluids 2006. DOI: 10.1002/fld.1391.

Rueda FJ, Schladow SG, Palmarson SO. Basin-scale internal wave dynamics during a

winter cooling period in a large lake. Journal Geophysical Research (Oceans)

2003; 108(C3). DOI 10.1029/2001JC000942

Rueda FJ, Schladow SG. Mixing and stratification in lakes of varying horizontal length

scales: Scaling arguments and energy partitioning. Limnology and

Oceanography Limnology and Oceanography 2009; 54(6): 2003–2017.

Rueda FJ, Schladow SG. The internal dynamics of a shallow polymictic lake. Part II:

numerical simulations. ASCE. Journal of Hydraulic Engineering 2003; 129(2):

92-101.

Rueda FJ, Vidal J, Schladow SG. Modeling the effect of size reduction on the

stratification of a large wind-driven lake using an uncertainty based approach.

Water Resour. Res. 2009; 45:W03411. DOI:10.1029/2008WR006988

Rueda FJ, Vidal J. Currents in the Upper Mixed Layer and in Unstratified Water

Bodies. In: Likens GE (Ed.). Encyclopedia of Inland Waters. Academic Press:

Oxford, 2009: 568-582.

Rueda FJ. A three-dimensional hydrodynamic and transport model for lake

environments. PhD thesis 2001, University of California, Davis (EEUU).

References

219

Schindler DE Scheuerell MD. Habitat coupling in lake ecosystems. Oikos 2002; 98:

177–189.

Schwab DJ, Bedford KW. Initial implementation of the Great Lakes Forecasting

System: A real-time system for predicting lake circulation and thermal structure,

Water Pollut. Res. J. Can 1994; 29: 203-220.

Schwab DJ, Beletsky D, DePinto J, Dolan DM. A hydrodynamic approach to modeling

phosphorus distribution in Lake Erie. Journal of Great Lakes Research 2009;

35: 50-60. DOI: http://dx.doi.org/10.1016/j.jglr.2008.09.003.

Semtner AJ, Chervin RM. A simulation of the global ocean circulation with resolved

eddies, J. Geophys. Res.1988; 15502-15222.

Semtner AJ. Modeling ocean circulation: Science 1995; 269: 1379−1385.

Shchepetkin AF, McWilliams JC. The regional oceanic modeling system (ROMS): a

split-explicit, free-surface, topography-following-coordinate oceanic model.

Ocean Modelling 2005; 9: 347-404. DOI:

http://dx.doi.org/10.1016/j.ocemod.2004.08.002.

Sheng J, Wright DG and Greatbatch RJ. CANDIE: a new version of the DieCAST

ocean circulation Model. J Atm Oceanic Tech 1998; 15: 1414–1432.

Sheng YP, Lick, Wilbert, Gedney RT, Molls FB. Numerical computation of three-

dimensional circulation in Lake Erie—A comparison of a free-surface model

and a rigid-lid model: American Meteorological Society. Journal of Physical

Oceanography 1978; 8: 713−727.

Sheng YP. Finite-difference models for hydrodynamics of lakes and shallow seas,

chap. 6 of Gray, W.G., ed., Physics-based modeling of lakes, reservoirs, and

impoundments: American Society of Civil Engineers 1986; 146−228.

Sheng YP. Mathematical modeling of three-dimensional coastal currents and sediment

dispersion—model development and applications: U.S. Army Engineer

Waterways Experiment Station, Technical report no. CERC-83-2 1983; 288 p.

Silva-Moura L, Buyya R. Parallel Programming Models and Paradigms. In: Buyya R

(Ed.). High Performance Cluster Computing 2. Prentice Hall 1998: 4-27.

http://www.buyya.com/cluster/v2chap1.pdf.

Smith PE. A semi-implicit, three-dimensional model of estuarine circulation. United

States Geological Survey. Open-File Report 2006-1004: Sacramento,

California, 2006. http://pubs.usgs.gov/of/2006/1004/pdf/ofr2006-1004.pdf.

Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C,

Fox-Kemper B, Gent P, Hecht H, Jayne S, Jochum M, Large W, Lindsay K,

Maltrud M, Norton N, Peacock S, Vertenstein M, Yeager S. The parallel Ocean

Program (POP) reference manual. Ocean Component of the Community

Climate System Model (CCSM) and Community Earth System Model (CESM)

2010.

Smith RD, Dukowicz JK, Malone RC. Parallel ocean general circulation modelling,

Physica D 1992.

Song S, Lynett PJ Kim D. Nested and multi-physics modeling of tsunami evolution

from generation to inundation. Ocean Modelling 2011; 38: 96-113.

PhD Thesis

220

Stelling GS. On the construction of computational methods for shallow water flow

problems: Rijkswaterstaat Communication, The Hague, Netherlands 1984; 35:

226 p.

Stone SH. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear

System of Equations. Journal of the ACM (JACM) 1973; 20: 27-38

Tai CH, Zhao Y, Liew KM. Parallel-multigrid computation of unsteady

incompressible viscous flows using matrix-free implicit method and high-

resolution characteristics-based scheme. Comput. Methods Appl. Mech. Engrg.

2005; 194: 3949–3983

Taylor AH. Identifying forest reference conditions on early cut-over lands, Lake Tahoe

basin, USA. Ecological Applications 2004; 14: 1903-1920. DOI: 10.1890/02-

5257.

Teranishi K, Raghavan P. A hybrid parallel preconditioner using incomplete Cholesky

factorization and sparse approximate inversion. Domain Decomposition

Methods in Science and Engineering XVI, Lecture Notes in Computational

Science and Engineering 2007; 55: 755–762.

Thomas LH. Eliptic Problems in Linear Difference Equations over a Network. Wastom

Sci. Comput. Lab. Rept, Columbia University, New York (EEUU) 1949.

Tölke J, Krafczyk M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD.

International Journal of Computational Fluid Dynamics 2008; 22(7): 443.

Tubbs KR, Tsai FT. Multilayer shallow water flow using lattice Blotzman method with

high performance computing. Adv. Water Resour 2009; 32: 1767-1776.

Uittenbogaard RE, van Kester JA, Stelling GS. Implementation of three turbulence

models in TRISULA for rectangular horizontal grids: Delft Hydraulics, Delft,

Netherlands, Prepared for the Tidal Waters Division of the Dutch Ministry of

Transport, Public Works and Water Management 1992; 169 p.

Vadeboncoeur Y, McIntyre PB, Vander MJ. Borders of Biodiversity: Life at the Edge

of the World’s Large Lakes. BioScience 2011; 61: 526–537.

Wang P, Song YT, Chao Y, Zhang H. Parallel Computation of the Regional Ocean

Modeling System. International Journal of High Performance Computing

Applications 2005; 19: 375-385. DOI:

http://dx.doi.org/10.1177/1094342005059115.

Weller H, Lock S, Wood N. Runge–Kutta IMEX schemes for the Horizontally

Explicit/Vertically Implicit (HEVI) solution of wave equations. Journal of

Computational Physics 2013; 252: 365-381. DOI:

http://dx.doi.org/10.1016/j.jcp.2013.06.025.

Westerink JJ, Luetich RA, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD

et al. A Basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge

Model Applied to Southern Loisiana. Mon. Wea. Rev. 2008; 136: 833–864.

DOI: http://dx.doi.org/10.1175/2007MWR1946.1

Wilders P, van Stijn TL, Stelling GS, Fokkema GA. A fully implicit splitting method

for accurate tidal computations. International Journal for Numerical Methods in

Engineering 1988; 26: 2707−2721.

References

221

Yakubov S, Cankurt B, Abdel-Maksoud M, Rung T. Hybrid MPI/OpenMP

parallelization of an Euler–Lagrange approach to cavitation modelling.

Computers & Fluids 2012; 45: 185-191.

Yu D. Parallelization of a two-dimensional flood inundation model based on domain

decomposition. Environmental Modelling and Software 2010; 25: 935-945

Zamani K, Bombardelli F, Wuertz S, Smith P. Toward a 3-Dimensional Numerical

Modeling of Tidal Currents in San Francisco Bay. American Society of Civil

Engineers 2010; 1385-1394. http://dx.doi.org/10.1061/41114(371)147.

Zao J, Rao YR, Wassenaar LI. Erratum to“Numerical modeling of hydrodynamics and

tracer dispersion during ice-free period in Lake Winnipeg”. Journal of Great

Lakes Research 2012; 38: 584.

Zavatarelli M, Pinardi N. The Adriatic Sea modelling system: a nested approach.

Annales Geophysicae 2003; 21: 345-364. DOI: 10.5194/angeo-21-345-2003.

Zhai L, Sheng J, Greatbatch RJ. Application of a nested-grid ocean circulation model to

Lunenburg Bay of Nova Scotia: Verification against observations. Journal of

Geophysical Research: Oceans 2008; 113: - C02024. DOI:

10.1029/2007JC004230.

Zhang B, Oosterlee CW. Option pricing with COS method on graphics processing

units. IEEE international symposium on Parallel & distributed processing

(IDPS) 2009.

Zhang W, Hong H, Shang S, Chen D, Chai F. A two-way nested coupled tide-surge

model for the Taiwan Strait. Continental Shelf Research 2007; 27: 1548-1567.

DOI: 10.1016/j.csr.2007.01.018.

PhD Thesis

222

