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Simplicity is a great virtue but 

it requires hard work to achieve 

and education to appreciate it. 

And to make worse, complexity 

sells better. 

 

  Edsger Dijkstra  
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Resumen Extenso 

 

Los procesos de circulación de agua en lagos y embalses se producen  como resultado 

de flujos de energía térmicos y mecánicos través de las fronteras de un lago, 

disminuyendo desde procesos de  larga escala (o escala cubeta) a micro escala y, 

finalmente, llevando a procesos de mezcla y disipación. Los patrones de mezcla 

inducidos por larga escala y ondas de alta frecuencia en lagos estratificados son 

inherentemente heterogéneos, llevando a variaciones en la densidad horizontal. En 

respuesta a estos gradientes de densidad horizontal, se forman patrones de flujo 

horizontales espacialmente complejos provocados por el forzamiento directo de viento y 

la rotación terrestre. Es a través de estos procesos de circulación horizontal que el 

sistema se reajusta volviendo a su estado de equilibrio con líneas de igual densidad, 

coincidiendo con el geopotencial en superficie. Los gradientes de densidad horizontal se 

producen en respuesta a un amplio número de mecanismos con diferentes escalas tanto 

espacial como temporal. Entre estos mecanismos se incluye la confluencia de ríos,  

variaciones espaciales térmicas  producidas por flujos de calor en superficie, procesos 

de mezcla heterogénea debido a circulación de larga escala, procesos de mezcla 

inducidos por viento en superficie espacialmente variable y afloramiento o procesos de 

mezcla en la región béntica. Considerando este amplio número de mecanismos que 

afectan al gradiente de presión baroclínica, así como las diferentes escalas tanto 

espaciales como temporales que pueden presentar estos procesos, el problema de 

describir circulación horizontal en lagos y embalses todavía es difícil de abarcar de una 

forma sencilla. 

Solo a partir de los últimos años, por un lado aprovechando los avances logrados 

en la recolección de datos mediante sensores remotos y el análisis de imágenes, los 

cuales permiten obtener información de velocidad en superficie y campos de 

temperatura y, por otro lado, haciendo uso de modelos numéricos tridimensionales 

(3D), capaces de resolver las ecuaciones de movimiento para simular el comportamiento 

del agua de un lago con suficiente resolución espacial y temporal, han permitido a 

ecólogos describir y comprender los complejos procesos de circulación que se producen 

en lagos y embalses. El estudio de estos procesos es de fundamental interés al ser los 

causantes de los procesos de transporte horizontales y la gran heterogeneidad presentes 
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en estos entornos. La mayoría de estos modelos numéricos están basados en la solución 

de las ecuaciones en tres dimensiones (3D) para aguas someras (Shallow Water 

Equations, 3D-SWE), cuya solución se trata de una forma simplificada del promediado 

de Reynolds de las ecuaciones de Navier-Stokes (Reynolds averaged Navier-Stokes, 

RANS), sujeta por las apropiadas condiciones de frontera. El uso de las 3D-SWE, 

debido a los límites físicos computacionales existentes y diversos estudios analíticos 

realizados a priori,  está justificado para la descripción y estudio de los procesos de 

transporte de larga escala. Sin embargo, incluso haciendo uso de modelos basados en las 

3D-SWE, ingenieros y científicos todavía se encuentran con un gran coste 

computacional al intentar simular los procesos de transporte horizontal y circulación 

presentes en la zona litoral de grandes lagos y embalses. Esta zona litoral es una parte 

fundamental en los ecosistemas acuáticos, con una enorme diversidad y siendo el 

hábitat de muchos de los organismos que viven en un lago. Por otro lado, esta zona se 

encuentra en continuo cambio al verse altamente afectada por la mano del ser humano, 

al ser el nexo de interacción entre el propio ser humano y el lago. Así, la zona litoral 

sufre numerosos cambios alrededor de sus costas debido a la construcción de 

residencias, zonas de ocio o pesca, tuberías para la extracción de agua o por el vertido 

de aguas residuales. Además, también es la entrada de una cantidad considerable de 

nutrientes a través de la desembocadura de ríos, como resultado de la agricultura y 

ganadería que hacen uso de estos ríos. Debido a estos motivos, hay una necesidad cada 

vez más demandante por comprender el entorno de la zona litoral tanto para el propio 

uso del ser humano como por la vida salvaje que compite por recursos en dicha zona. 

Sin embargo, simular correctamente estos entornos no es una tarea sencilla, el hábitat de 

la zona litoral puede ser sustancialmente heterogéneo tanto en la dimensión vertical 

como horizontal. Además, las condiciones físicas de esta área cambian de forma 

continua y muy dinámica (en escalas de tiempo muy pequeñas), como resultado de un 

forzamiento hidrodinámico intenso y la débil inercia característica de áreas poco 

profundas. Por otra parte, la zona litoral no puede estudiarse sin tener en cuenta los 

procesos que ocurren en la zona pelágica del lago y que influyen en la propia zona 

litoral. Esto conduce a que se debe simular tanto la circulación de larga escala, propia de 

la zona pelágica, como los procesos de pequeña escala que ocurren en la zona litoral. 

Adicionalmente, para que estos modelos obtengan resultados de interés, se deben 

simular durante largos periodos de tiempo. Como resultado, debido a estas enormes 

necesidades tanto temporales como espaciales, la mayoría de los fenómenos simulados 
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producen simulaciones muy costosas (en términos de tiempo de ejecución y cantidad de 

memoria).  

En los últimos años, la computación paralela está siendo cada vez más demandada 

y utilizada tanto en el área de Ingeniería Civil como en otras áreas de conocimiento, 

llegando a ser una práctica esencial para reducir los costes de computación requeridos 

en simulaciones numéricas de sistemas reales, o incluso para considerar abordar 

problemas de mayores dimensiones. Esta tesis doctoral pretende mostrar soluciones 

para reducir el coste computacional de modelos hidrodinámicos 3D, de forma que se 

puedan obtener resultados de simulaciones de grandes sistemas de agua continental 

durante largos periodos de tiempo y usando grids de alta resolución, todo en un tiempo 

aceptable y usando recursos fácilmente accesibles por cualquier científico. Diversas 

propuestas son explicadas y estudiadas. En primer lugar, se presenta un procedimiento 

conocido como anidamiento, utilizado para reducir el área de interés en alta resolución a 

una determinada zona del modelo, la cual está sujeta a condiciones de frontera dadas 

por otro modelo completo (el cual simula toda la cuenca) de baja resolución. En 

segundo lugar, se hace uso de técnicas de computación paralela que permitan realizar 

las simulaciones en plataformas de gama media/baja, tanto para realizar una 

implementación eficiente del procedimiento de anidamiento (de forma que el modelo 

completo de baja resolución y el modelo anidado de alta resolución se ejecuten en 

paralelo), como para dividir el trabajo a realizar entre los recursos disponibles, 

aplicando una optimización y paralelización del modelo hidrodinámico utilizado. 

Además, se presenta también una propuesta para simular áreas de alta resolución 

anidadas extensas en clusters de gama media/baja, dividiendo el área anidada en 

múltiples subdominios que puedan ser ejecutados (junto con el modelo completo de 

baja resolución) en paralelo, escalando casi de forma lineal a medida que más recursos 

para distribuir la zona de alta resolución anidada sean usados. Finalmente, también se 

demuestra que la adaptación y optimización de un modelo hidrodinámico a los recursos 

disponibles reducen considerablemente el coste computacional y el overhead generado 

por una implementación paralela, obteniendo con ello muy buenos resultados de 

escalabilidad incluso en arquitecturas de altas prestaciones. 

Las implementaciones propuestas se han realizado sobre un ejemplo de modelo 

hidrodinámico basado en las 3D-SWE, Si3D (Figura r.1), aunque la mayoría de las 

mejoras pueden ser aplicables a otros modelos similares. Si3D fue implementado 
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originalmente en su versión secuencial por E. P. Smith (2006). Las ecuaciones de 

gobierno en el modelo de Smith son discretizadas mediante un método de diferencias 

finitas usando un algoritmo semi-implícito de 3 niveles por pasos iterativos trapezoidal-

salto de rana sobre un grid Cartesiano estructurado. En Si3D, el enfoque  semi-implícito 

está basado en el tratamiento de ondas de gravedad y la difusión vertical de forma 

implícita para evitar limitaciones en el paso de tiempo tan estrictas como en el caso 

explícito debido a las condiciones dadas por Couram-Friedrich-Levy (CFL), y para 

garantizar la estabilidad del método. El resto de términos, incluyendo la advección, son 

tratados explícitamente. Aunque estos enfoques semi-implícitos evitan limitaciones 

estrictas en el paso de tiempo, también tienen la desventaja frente a los  totalmente 

explícitos de que se deben formar y resolver largos sistemas de ecuaciones, 

normalmente resueltos mediante métodos iterativos, difíciles de paralelizar. En el caso 

de modelos 3D semi-implícitos, se debe formar y resolver un sistema de ecuaciones 

simétrico positivo definido con estructura pentadiagonal, resuelto mediante un método 

iterativo ampliamente utilizado conocido como Gradiente Conjugado (Conjugate 

Gradient, CG). Adicionalmente, al CG se le suele aplicar un precondicionador 

(Preconditioner Conjugate Gradient, PCG) que reduce el número de iteraciones que el 

método iterativo tiene que realizar para encontrar una solución óptima.  

 

 

 

 

 

 

 

 

Resaltar que a este modelo original de Si3D se aplicaron diversas optimizaciones 

básicas (dando lugar a Basic Si3D, Figura r.1), necesarias como base en el desarrollo 

 
 

 

Figura r.1. Implementaciones de Si3D propuestas en este trabajo a partir del código 

original. 
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del resto de implementaciones realizadas (aunque esta implementación es el primer 

paso, se trata en detalle en el último capítulo, donde se explica todos los pasos a seguir 

en la completa optimización  de un modelo hidrodinámico). 

Las implementaciones propuestas fueron primero aplicadas en escenarios 

sintéticos y, posteriormente usadas en simulaciones de dos casos reales, 30 km de 

extensión del río Sacramento y el lago Tahoe, ambos situados en California (EEUU). 

Además, algunas de las implementaciones propuestas en esta tesis están siendo usadas 

también en otros casos de estudio, como el embalse de Beznar (España), la confluencia 

entro el río Ebro y el río Segre al final del embalse de Ribaroja (España),  el lago 

Cayuga (EEUU) o el lago Tanganika (África). El modelo del río Sacramento es usado 

para comprender la influencia de la marea en la migración del salmón juvenil desde el 

propio río hasta el océano y reproducir la circulación lateral y secundaría en la zona de 

meandros del río. Por otra parte, el modelo del lago Tahoe es usado para caracterizar las 

rutas de transporte y migración de especies invasivas desde playas o bahías donde se 

encuentran establecidas a otras playas del lago, y el estudio de los procesos de 

transporte alrededor de la línea de costa que controlan el destino de contaminantes 

liberados por el ser humano en las playas. 

La procedimiento de anidamiento propuesto e implementado  en Si3D (N-Si3D, 

Figura r.1) se basa en un método de una vía (one-way nesting), en el cual se transfiere 

toda la información necesaria desde el modelo completo de baja resolución para 

solventar las dependencias que surgen en las ecuaciones discretizadas del modelo 

anidado de alta resolución. Opcionalmente, se añade también una zona de relajación 3D, 

la cual permite una transición suavizada del flujo de entrada al área anidada y evita 

reflexiones en la frontera en el flujo de salida, causadas por posibles diferencias en la 

solución de ambos modelos a medida que avanza la simulación. La propuesta aquí 

presentada se ejecuta de forma online siguiendo una estructura pipeline en la que el 

modelo completo de baja y el anidado de alta resolución se ejecutan en paralelo. La 

implementación paralela de una vía propuesta permite transferir toda la información 

requerida desde el modelo de baja al modelo anidado de alta resolución, tanto de la 

frontera como de la zona de relajación 3D, sin necesidad de almacenar ninguna 

información en ficheros y permitiendo realizar las transferencias incluso a cada paso de 

tiempo, eliminando así posibles errores por interpolación temporal. Además, las 
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comunicaciones se encuentran solapadas con cálculo, por lo que la transferencia de 

datos no supone un coste computacional añadido para la implementación. 

El procedimiento de anidamiento propuesto fue evaluado usando tanto modelos 

sintéticos como simulaciones de casos reales. La implementación anidada fue en todos 

los casos validada comparando los resultados de un área determinada, obtenidos tanto 

por el modelo anidado de alta resolución como con un modelo completo también en alta 

resolución. Las diferencias (Normal Root Square Error, NRMSE) entre los resultados de 

estos modelos fueron muy pequeñas (inferiores al 4%). Además, se muestra que estas 

diferencias pueden ser reducidas a 0 si (1) se usa la misma resolución en el modelo 

anidado y en el modelo completo que proporciona los datos de condiciones de frontera 

y (2) el sistema de ecuaciones pentadiagonal que se forma para resolver superficie libre, 

presente en modelos semi-implícitos, se resuelve mediante un método directo, el cual 

posee un alto coste computacional pero su solución es exacta. Por otra parte, a través de 

los resultados de estos casos de ejemplo se demuestra que la componente de velocidad 

tangencial debe ser transferida como condición de frontera desde el modelo completo de 

baja al modelo anidado de alta resolución. Los resultados demuestran que la ausencia de 

esta componente afecta considerablemente a la calidad de los resultados del modelo 

anidado, especialmente cuando existen corrientes intensas y paralelas a la frontera del 

modelo anidado. Este fue el caso, por ejemplo, de las simulaciones realizadas en 

Claksburg bend del río Sacramento, donde se producen fuertes corrientes de circulación 

aguas arriba del modelo. Por otro lado, los resultados se comparan con datos 

experimentales presentes en la literatura, mostrando buenas similitudes entre ambos. 

Por otra parte, se demuestra la necesidad de alta resolución en ambos casos, en el río 

Sacramento y en el lago Tahoe, comparando los resultados del modelo de anidado de 

alta con baja resolución en una misma zona, observando patrones de circulación que no 

son correctamente capturados en los modelos de baja y que, por otra parte, sí se 

capturan de igual forma en modelos completos de alta resolución como anidados en alta 

resolución. 

A partir del procedimiento de anidamiento desarrollados en el Capítulo 2, se han 

explorado diversas propuestas para poder llevar a cabo simulaciones de líneas de costa 

extensas. En particular, este interés surge de la necesidad de simular toda la zona litoral 

del lago Tahoe. El interés en el estudio de toda la zona litoral se debe, como se indica en 

Rao and Schwab (2007), a que las corrientes en la zona litoral se producen 
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generalmente a lo largo de zonas de igual profundidad, por lo que se crea una fuerte 

conexión física entre las playas y bahías existentes a lo largo de la zona litoral del lago. 

Esto lleva a que incluso reduciendo el coste computacional conseguido con anidamiento 

al simular una parte en baja resolución, la zona anidada en alta resolución siga teniendo 

un coste demasiado elevado y sea necesario buscar nuevas alternativas. La solución 

propuesta consiste en dividir los cálculos del modelo de alta resolución para simular la 

zona litoral entre los cores y computadores disponibles. Sin embargo, modificar un 

modelo semi-implícito para adaptarlo a la computación paralela no es una tarea trivial. 

A la hora de plantear nuevas soluciones en paralelo que alcancen una buena 

escalabilidad, hay que tener en cuenta el tipo de operaciones a realizar y su dificultad 

para realizarlas en una implementación paralela. Probablemente, en modelos 3D semi-

implícitos la etapa computacional más difícil y que mayor overhead introduce en su 

paralelización es la resolución del sistema de ecuaciones pentadiagonal mediante 

métodos iterativos para obtener superficie libre. En Si3D este sistema se resuelve 

mediante el método del Gradiente Conjugado Precondicionado (Preconditioned 

Conjugate Gradient, PCG). Su implementación en paralelo requiere numerosas 

comunicaciones, tanto muchos-a-uno/uno-a-muchos entre todos los subdominios como 

comunicaciones entre subdominios vecinos, esto sumado a la necesidad del uso de 

reordenamiento como red-black ordering u otras técnicas típicas en la paralelización de 

métodos iterativos, produce un overhead importante que reduce considerablemente la 

escalabilidad del modelo y aumenta la complejidad de la implementación del mismo. 

Una primera y plausible solución para introducir esta etapa en un modelo 

hidrodinámico 3D paralelo consiste en evitar la paralelización de la etapa que resuelve 

el sistema de ecuaciones pentadiagonal. Esto puede ser logrado (1) creando el sistema 

de ecuaciones en paralelo, repartiendo el trabajo mediante descomposición de dominio, 

(2) enviando cada parte del sistema de ecuaciones calculado a un solo proceso/hebra el 

cual lo resolverá de forma secuencial y (3) distribuyendo la solución obtenida entre 

todos los procesos/hebras usados. Las comunicaciones entre procesos ocurren dos veces 

mediante este método,  antes de la resolución del sistema (muchos-a-uno) y después de 

resolver el sistema (uno-a-muchos). Esta implementación proporciona una solución 

paralela de Si3D (P-Si3D, figura r.1) adecuada para modelos de baja/media resolución, 

siempre que se utilice en pequeños clusters y que el cálculo del sistema pentadiagonal 

represente solo hasta un 2% del tiempo total de ejecución. Sin embargo, el overhead 
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introducido por las comunicaciones  hace que esta solución no sea escalable en clusters 

con un mayor número de recursos Una solución alternativa e inmediata que permite 

simular modelos de alta resolución de la zona litoral de un lago consiste en combinar P-

Si3D con el procedimiento de anidamiento propuesto. La implementación resultante se 

ha llamado aquí P/N-Si3D (Figura r.1) y permitirá obtener resultados de alta resolución 

en pequeños clusters. El coste computacional haciendo uso de P/N-Si3D se reduce 

significativamente comparando con la versión secuencial de Si3D. Esto se consigue (1) 

simulando en alta resolución solo la zona litoral del lago mediante anidamiento y (2) 

haciendo uso de P-Si3D para la ejecución en paralelo del modelo de alta resolución 

anidado. Los resultados de este modelo son presentados y analizados para una bahía en 

particular al sureste del lago Tahoe (Marla Bay). En los resultados se observa que la 

concentración de trazador a lo largo del tiempo dentro de esta bahía son parcialmente 

debidos al trazador liberado de forma local dentro de la propia bahía, pero también parte 

de este trazador se concentra en la bahía como resultado de trazador exógeno que viajó 

a lo largo de la costa y que fue liberado en la costa sur del lago. Los resultados también 

muestran que los picos de concentración de trazador exógeno se producen durante 

fuertes periodos de viento, momento en el cual el agua de la zona sur del lago es 

rápidamente transportada a lo largo de la costa y atrapada en la bahía debido al 

desarrollo de procesos de pequeña escala de recirculación en forma de remolinos.  

Dado que P-Si3D no escala correctamente, P/N-Si3D tampoco lo hace. Sin 

embargo, una implementación paralela y escalable puede ser construida si la solución de 

superficie libre del modelo completo de baja resolución es usada como condición de 

frontera del modelo anidado. Con este procedimiento, la zona anidada en alta resolución 

se divide en múltiples subdominios donde cada subdominio resuelve un subsistema de 

ecuaciones pentadiagonal de forma independiente. Con esta implementación, se evita 

las comunicaciones colectivas muchos-a-uno/uno-a-muchos que limitan la 

escalabilidad. Adicionalmente, esta propuesta utiliza una nueva y adaptada estructura 

pipeline además de la descomposición de dominio de P-Si3D. Esta estructura pipeline 

permite que el tiempo de ejecución del modelo completo de baja resolución no 

repercuta en el tiempo de ejecución total. La implementación SP-Si3D se ha evaluado y 

validado en un cluster de 9 nodos usando un modelo anidado en alta resolución y un 

modelo completo de baja resolución del lago Tahoe. Los resultados obtenidos  muestran 

un escalabilidad lineal conforme el número de subdominios usados para distribuir la 
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zona litoral en alta resolución del modelo anidado va aumentando y un error (NRMSE, 

comparando con los resultados de un modelo completo de alta resolución) muy 

pequeño. 

Finalmente, se proponen y evalúan diferentes mejoras que optimizan P-Si3D, 

adaptando la implementación a la arquitectura disponible, ya sea a máquinas 

distribuidas o de memoria compartida. La implementación resultante se ha llamado aquí 

OP-Si3D (Figura r.1). El objetivo en este caso es reducir el overhead introducido por 

una implementación paralela. Entre otras mejoras, se evalúa la paralelización del 

sistema de ecuaciones pentadiagonal, evitando técnicas de reordenamiento o un mayor 

número de comunicaciones que las necesarias en otras etapas del modelo. Para llevar a 

cabo esta paralelización se hace uso de una variante del precondicionador Modified 

Incomplete Cholensky (MIC) que no añade cálculo o comunicaciones adicionales en su 

implementación paralela, obteniendo mejores resultados comparado a otras 

implementaciones usadas en la literatura, tanto en secuencial como en paralelo. Los 

resultados demuestran que una implementación secuencial o una implementación 

paralela no optimizada para resolver el sistema de ecuaciones pentadiagonal evitan que 

el modelo paralelo sea escalable, incluso aunque el resto de etapas estén optimizadas. 

La implementación resultante presenta una buena escalabilidad en cluster con más de 10 

nodos. 
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Abstract 

 

Water motions in lakes and reservoirs are initiated as a result of thermal and mechanical 

energy flowing through the lake boundaries, cascading down from the large- basin scale 

to the micro-scales, and ultimately leading to mixing and dissipation. Mixing patterns 

induced by basin-scale motions and high-frequency waves in stratified lakes are 

inherently patchy, setting up horizontal density variations. Spatially complex horizontal 

flow patterns develop in response to horizontal density gradients, when they are 

modulated by direct wind forcing and the Earth’s rotation. It is through these horizontal 

motions that the system readjusts, returning to its equilibrium state with lines of equal 

density coinciding with geopotential surfaces. Horizontal density gradients have been 

shown to develop in response to a wide range of mechanisms with different spatial and 

temporal scales, including river inflows, thermal spatial variations response to surface 

heat fluxes, uneven mixing due to basin scale motions, spatially varying surface wind 

mixing, upwelling or mixing in the benthic boundary layer. Given the number of 

mechanisms leading to the development of baroclinic pressure gradients, and the wide 

range of spatio-temporal scales of these processes the problem of describing horizontal 

circulation in lakes and reservoirs has been elusive.  

Only in the last few years, advances in remote sensing and quantitative imaging 

capable of retrieving surface velocity and temperature fields, and the use of three-

dimensional (3D) numerical models solving the equations of motion applied to simulate 

lake motions with sufficient temporal and spatial resolution has allowed aquatic 

scientists to describe and understand the complex horizontal circulation patterns that 

develop in lakes and reservoirs, leading to horizontal transport and heterogeneity. Most 

of these models are based on the solution of three-dimensional form of the shallow-

water equations 3D-SWE, a simplified form of the Reynolds averaged Navier-Stokes 

(RANS) equations, subject to the appropriate boundary conditions. Practical 

computational limits and a priori scaling analyses justify the use of the 3D-SWE in the 

description of these large-scale flows. But, even if using 3-D SWE models, engineers 

and scientists still face a serious challenge when trying to simulate horizontal transport 

and circulation in the near-shore environments of large water bodies. These are hot-

spots in the aquatic ecosystems with large biodiversity and critical habitats for many 
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organisms in lakes. But, being the nexus of human interactions with lakes, littoral 

habitats are highly modified by human uses. Humans build structures, recreate, fish, 

extract water, or dispose sewage at lake edges. Significant inputs of nutrients also arrive 

to the coastal zone through rivers, as a result of agricultural practices or cattle-raising in 

the contributing watershed. Hence, there is an increasing need to understand near-shore 

environments where human uses and natural wild-live compete for resources. 

Simulating these environments, however, is not simple. Littoral habitats can be 

substantially heterogeneous in both vertical and horizontal dimensions. Moreover, 

physical conditions exhibit continuous and very dynamic changes, at short-time scales, 

as a result of strong hydrodynamic forcing and the weak inertia of shallow layers, and 

also as a result of the time varying nature of human activities. Furthermore, near-shore 

regions, though, cannot be understood in isolation from the pelagic. Hence, in trying to 

simulate the near-shore physical conditions both local and basin-scale circulation 

features need to be resolved simultaneously during long periods of time, and the 

computational cost of these simulations can be formidable.  

Parallel computation platforms are being increasingly demanded and used in the 

area of Civil and Environmental Engineering, and others research areas, to reduce the 

computational time required to conduct numerical simulations of real systems, or deal 

with even larger problems. In this dissertation a series of solutions are proposed and 

tested to reduce the computational cost of 3D hydrodynamic models, so that simulations 

of water motion and transport in near-shore regions of large geophysical systems, 

during extended periods of time and using high resolution grids, can be conducted with 

acceptable execution time and using accessible resources. Several approaches are 

introduced and studied. First, we explore nesting-procedures in which only localized 

regions of the littoral zone are simulated using a very high-resolution or inner-model, 

with boundary conditions which are provided by an outer-model that solves the large-

scale processes in the rest of the water body. Second, we use parallel computation 

techniques so that use can be made of mid-range or low-cost platforms to run the inner 

and outer models simultaneously. We also optimize and parallelize the model 

computations used in small commodity clusters, dividing the calculations in the near-

shore regions among a large number of processors, as they become available in parallel 

platforms. The resulting optimized and parallelized model of near-shore regions scales 

almost linearly, so that the computational model is run faster as more resources are 
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used. We have additionally taken additional steps to adapt the hydrodynamic model to 

the architecture and tools available. With this work, we demonstrate that the adaptation 

and optimization of the model to the available resources can also be used to reduce 

significantly the computational cost, with very good scalability results even using High 

performance platforms. 

The implementation was carried out on a particular 3D-SWE, which was 

originally implemented for serial architectures by P. E. Smith (2006) (Figure a.1). Most 

improvements proposed here, though, can be applicable to other similar models. The 

governing equations in Smith’s model are solved using a semi-implicit, three-level, 

iterative leapfrog-trapezoidal finite difference algorithm on a staggered Cartesian grid. 

The semi-implicit approach is based on treating the surface gravity wave and vertical 

diffusion terms implicitly to avoid time-step limitations as strict as in an explicit case 

due to gravity wave Courant–Friedrich–Levy (CFL) conditions, and to guarantee the 

stability of the method. All other terms including advection are treated explicitly. 

Although this semi-implicit approach avoids strict time-step limitations, it also has the 

disadvantage compared to completely explicit approach that long system of equations 

must be formed and solved, usually using iterative methods which are very difficult to 

parallelize. Semi-implicit 3D-SWE models form a pentadiagonal system of equations 

which is symmetric positive definite. The system of equations is solved by an iterative 

method widely used known as Conjugate Gradient (CG). Additionally, the CG is 

usually applied using a preconditioner (PCG), which reduces the number of iterations of 

the CG to converge to a correct solution within a tolerance. The semi-implicit model 

used in this dissertation will be referred to as Si3D (Figure a.1). 

Highlight that the original Si3D model was modified with several basic 

optimizations (Basic Si3D, Figure a.1). These optimizations are used in all the 

implementations made (although this implementation is the first step, it is covered in 

detail in the last chapter, where it is explained all the steps involved in the complete 

optimization of a hydrodynamic model). 

The approaches proposed were first applied to simulate synthetic scenarios, and 

then used to conduct realistic simulations in two systems: a 30 km reach along the 

Sacramento River, and, Lake Tahoe, both of them in California (USA). Furthermore, 

some of the implementations developed in this thesis are being used in other study 

cases, including Beznar Reservoir (Spain), the confluence between Ebro and Segre 
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Rivers in the upstream end of Ribarroja Reservoir (Spain), Lake Cayuga (USA) and 

Lake Tanganyika (Africa). The Sacramento River model is used to understand the 

influence of tidal river dynamics on the migration of juvenile salmon towards the ocean 

and to reproduce the lateral and secondary circulations in the area of channel meanders. 

The Lake Tahoe model is used to study near-shore transport processes controlling the 

fate of contaminants released by humans in beaches, and the migration pathways of 

planktonic larvae of invasive species from bays where they have been able to settle to 

other beaches and bays which are free.  

 

 

 

 

 

 

 

 

 
 

 

Figure a.1. Si3D implementations proposed in this work from the original version of Si3D 

The nesting procedure developed and implemented in Si3D (N-Si3D, Figure a.1), 

is a one-way nesting method, in which all the necessary information is transferred from 

the outer- (or low resolution) basin scale model to the inner- (or high resolution) model, 

to solve the dependencies in the discretized equations of the latter. It optionally adds a 

3D relaxation area, which allows a smooth transition from the inflow in the nested 

model and prevents reflections at the border in the outflow due to possible differences 

in the solution of both models when the simulation progresses over time. Furthermore, 

the inner and outer models are executed simultaneously in parallel in an online mode, 

following a pipeline structure. In the parallel one-way implementation all the 

information required is passed from the outer to the inner model without storing any 

information in files, both the nested open boundary and the 3D relaxation area, and 

allows the transfer of information even each time-step, eliminating possible errors by 
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temporal interpolation. In addition, communications are overlapped with calculation, so 

it does not represent an overhead in the implementation. 

The nested approach was tested using both synthetic and realistic simulations. The 

nested implementation was in all cases validated by comparing the results of 

simulations in a small region (sub-domain) of a lake or river model. These differences 

in results between the nested and the complete model (error) are very small and even 0, 

using the same grid resolution both in the nested- or inner-model and the complete or 

outer-model and when the pentadiagonal matrix for water surface elevation built in the 

semi-implicit model was solved using a direct method, which is computationally 

demanding but exact. Through these case examples, we demonstrate that the tangential 

velocities need to be transferred from the low resolution to the high resolution model. If 

not they can affect significantly the quality of the nested solution, in particular when 

currents parallel to the inner-outer boundary are strong. This was the case, for example, 

of the high-resolution simulations of a river bend (Claksburg bend) along the 

Sacramento River, where strong lateral circulation develops upstream the inner-domain. 

The nested model results agree well with observations previously reported in the 

literature. Furthermore, the nested-model results compare well with the results from the 

high-resolution model of the whole reach, with differences (Normal Root Square Error, 

NRMSE) that are less than 4%. In other environments, with weaker currents, though, 

the need for passing tangential velocity information is not that strong. This was the case 

when simulating the local-scale circulation in a small bay (Marla Bay) of Lake Tahoe. 

In our realistic simulations of both the river bend in Sacramento River and in Marla 

Bay, Lake Tahoe, the use of a high-resolution grid in the inner-model reveals flow 

features which cannot be simulated with the low-resolution basin-scale model.  

 Using the nesting procedure developed in Chapter 2 we have explored 

approaches to conduct high-resolution simulations of extended near-shore regions. In 

particular, we are interested in simulating the littoral perimeter of Lake Tahoe. As 

reviewed by Rao and Schwab (2007), currents in the near-shore are largely aligned 

along isobaths, hence, creating strong physical links among beaches and bays existing 

along lake perimeters. The extension of the inner-domain (the littoral perimeter of a 

large lake) in these simulations can be large, and, high-resolution simulations in this 

domain can be very computationally demanding. The solution proposed consists of 

dividing the high-resolution computations of the littoral fringe among several 
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cores/computers. Modifying a semi-implicit model to conduct parallel computations, 

though, is not free of difficulties. Probably the computational stage in a semi-implicit 

3D model which poses the largest difficulties to parallelize is the solution with iterative 

methods of the pentadiagonal matrix problem for the free surface elevation. In Si3D the 

matrix problem is solved using a Preconditioned Conjugate Gradient method. Its 

implementation in parallel requires numerous communications, both one-to-

many/many-to-one where all sub-domains are involved and communications between 

neighbor sub-domains. In addition, the need of using reordering (as red-black ordering) 

or other techniques typically used to parallelize iterative methods produces an important 

overhead which may reduce significantly the scalability of the algorithm and increases 

the complexity of the implementation. 

A first and plausible approach to parallelize the model computations consists of 

avoiding the parallelization of the pentadiagonal matrix solution. This can be achieved 

by (1) creating the pentadiagonal matrix in parallel by splitting the workload, through 

domain decomposition, among several threads/processes of the operating system, (2) 

then solving the matrix problem sequentially in one of the threads/processes; and, (3) 

distributing the solution of the matrix problem among all the threads/processes. 

Communications among processes in this stage occur twice: just before (many-to-one) 

and after (one-to-many) the matrix solution. This parallel implementation of Si3D (P-

Si3D, Figure a.1) only works properly when the computational cost of the matrix 

solution represents only a small fraction (up to 2%) of the total runtime. This approach, 

however, by itself, scales poorly as a result of the overhead introduced by the 

communications involved in constructing the matrix and distributing the solution among 

processes and the sequential execution of the pentadiagonal matrix solution. Still one 

can use the parallel implementation of Si3D, conjunctively with the nesting procedures, 

to conduct high-resolution simulations of the littoral fringe. This implementation is here 

referred to as P/N-Si3D (Figure a.1) and can be used to conduct high-resolution near-

shore simulations in small clusters. The cost of P/N-Si3D is significantly reduced, 

compared to the sequential version of the model, as a result of two strategies (1) only 

using a high-resolution grid in the nested near-shore model; and (2) simulating the 

littoral fringe using the parallel version of the model P-Si3D. This implementation was 

used to simulate the dispersion of passive tracers released at several locations along the 

perimeter of Lake Tahoe. These tracer simulations were intended to represent the fate of 
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water constituents entering the lake through a total of 51 outfalls existing around Lake 

Tahoe, discharging storm-water directly into the lake. The results of the model are 

presented and analyzed for a particular bay in the southeast of Lake Tahoe (Marla Bay). 

Tracer concentrations within the bay are partly explained as a result of tracer being 

released locally within the bay, but also as a result of long-shore currents carrying 

exogenous tracer released outside the bay, along the southern coast of Lake Tahoe. The 

concentration of exogenous tracer peaks during periods of strong winds, when water 

from the South is rapidly transported and trapped in the bay as a result of the 

development of local bay scale eddies.  

Given that P-Si3D does not scale correctly, P/N-Si3D does not either. A scalable 

parallel and nested implementation, though, can be constructed if the free surface 

solution of the outer- low-resolution model is used as boundary conditions so that the 

high resolution nested model is divided into subdomains of the littoral fringe where 

each subdomain can solve a pentadiagonal matrix sub-problem independently. With this 

implementation, we can avoid collective communications many-to-one/one-to-many 

which limit scalability. The resulting implementation uses an adapted pipeline structure 

in addition to the domain decomposition of P-Si3D. The pipeline structure allows the 

runtime of the low resolution model added has no effect on the total execution time. We 

will refer to this implementation as SP-Si3D. It has been evaluated and validated in a 

cluster of 9 nodes using a high-resolution nested model and a low resolution model of 

Lake Tahoe. The results show a linear scalability when the number of subdomains used 

to distribute the high resolution littoral zone of Lake Tahoe increases and an error 

(NRMSE, comparing with the results of a complete high resolution model), very small. 

Finally, several approaches are proposed and tested to optimize P-Si3D by adapting the 

parallel version of the code to the available architecture, for both distributed machines 

and shared memory platforms. The resulting implementation is called OP-Si3D (Figure 

a.1). Our goal was to reduce the overhead introduced by a parallel implementation. 

Among other approaches tested, we parallelized the pentadiagonal matrix solution using 

a new Modified Incomplete Cholensky preconditioner (MIC) which we propose that 

does not add any communications or reordering. Using this matrix solution method one 

gets better time execution results compared to other implementations used in the 

literature, both sequential and parallel methods. We proved that a parallel method scales 

poorly if either a sequential implementation or a non-optimized parallel implementation 
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of the matrix solution is used, even though other stages are fully optimized. The 

resulting implementation presented here has good scalability in high performance 

plataforms with more than 10 nodes. 
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Introducción General y Objetivos 

 

De la cantidad total de agua puesta en juego en el ciclo hidrológico a escala planetaria, 

una cantidad ínfima (un 0.008%) se encuentra en forma de agua dulce en ríos, lagos y 

embalses. Esta fracción, no obstante, es de extraordinario valor para el ser humano, ya 

que casi el 80% del agua que consumimos procede de estas masas de agua superficial. A 

pesar de su importancia, el conocimiento de los ecosistemas de agua dulce, de acuerdo 

con el Nacional Research Council de EEUU, es aún escaso. Este conocimiento es 

particularmente pobre cuando se considera el comportamiento de estos sistemas de agua 

dulce a largo plazo, en torno a decenas de años (Harris and Durran  1986; Armengol et 

al. 1994), y a corto plazo, en escalas de tiempo diaria u horaria (Imberger and Parker, 

1985). Esta falta de conocimiento se debe, en parte, a la multiplicidad y complejidad de 

los procesos físicos de transporte y mezcla. Estos procesos son un aspecto fundamental 

en el funcionamiento de ecosistemas acuáticos. Por un lado, determinan la posición y 

movimiento de partículas y el grado de disolución de sustancias presentes en el agua a 

lo largo del tiempo y, por otro, determinan las condiciones ambientales en las que 

ocurren las reacciones biogeoquímicas. Por ello, hay que tener en cuenta que para 

comprender la variabilidad espacial y temporal de las propiedades químicas y biológicas 

de un ecosistema acuático, será necesario primero comprender los procesos físicos de 

transporte y movimiento existentes en estos sistemas (Imberger 1998).  

La utilización de modelos hidrodinámicos capaces de resolver las ecuaciones de 

movimiento de los fluidos en tres dimensiones (3D) espaciales,  junto con la aplicación 

de tecnologías avanzadas para la observación de la velocidad del agua y la estructura 

térmica, han contribuido en las últimas décadas a iniciar la exploración del movimiento 

del agua en sistemas naturales (e.g. Hodges et al. 2000, Rueda and Schladow 2003). 

Muchos de estos modelos están basados en la solución numérica de una forma 

simplificada de las ecuaciones de Navier-Stokes para aguas someras (Shallow Water 

Equations, SWE), en las que se supone que la distribución de presiones en la dirección 

vertical es hidrostática. Esta forma de las ecuaciones se prefiere sobre las ecuaciones 

no-hidrostáticas por su menor coste computacional. Aun así, los modelos hidrostáticos 

siguen siendo ineficientes y pesados de ejecutar cuando se utilizan grids de alta 

resolución espacial, necesarios para resolver procesos de pequeñas escalas espaciales 
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(giros y remolinos horizontales o corrientes de gravedad) y especialmente si se quieren 

utilizar plataformas de cómputo de uso masivo, como PC o servidores de gama baja.  

Afortunadamente, los importantes avances que se han realizado en las últimas 

décadas en el área de la computación han permitido un impulso notable en la 

investigación en diferentes áreas de conocimiento, incluyendo la simulación de aguas 

con modelos hidrodinámicos. Actualmente resulta incuestionable la necesidad de 

utilizar computadores para realizar todo tipo de actividades científicas y de aplicar 

técnicas de computación avanzadas para reducir los enormes costes de computación así 

como la ingente cantidad de memoria necesaria en la ejecución de simulaciones 3D. 

Este avance ha propiciado que se plantee abordar problemas científicos cuyos requisitos 

computacionales no pueden ser simulados en secuencial, reduciendo los costes 

computacionales y permitiendo la simulación de problemas usando grids de alta 

resolución, impensables de realizar en un tiempo razonable apenas unos años atrás. 

El objetivo general de esta tesis doctoral será mejorar la eficiencia computacional 

de los modelos hidrodinámicos existentes con el fin de abordar el estudio riguroso y 

detallado de los procesos de transporte y mezcla en sistemas de agua continental. Se 

mostrarán soluciones para reducir el coste computacional de estas simulaciones, de 

forma que se puedan obtener resultados útiles en un tiempo aceptable con grids de alta 

resolución, empleando tanto recursos fácilmente accesibles por cualquier científico 

como Arquitecturas de Altas Prestaciones (High Performance Computing, HPC). Las 

estrategias de optimización utilizadas han permitido mejorar la eficiencia de estos 

modelos, entendida esta como  la relación entre prestaciones y coste y como la relación 

entre prestaciones y calidad de los resultados. Estas estrategias de optimización deberán 

facilitar y extender la utilización de los modelos 3D de transporte y mezcla como 

herramientas de trabajo en investigación aplicada al conocimiento de lagos, embalses y 

ríos, o como herramientas operacionales de predicción. Para ello se pretende realizar el 

procesamiento requerido en un tiempo aceptable en computadores personales, clúster de 

computadores personales y servidores de gama baja, evitando usar costosos servidores 

de gama alta. Para los casos más costosos, se presenta también una alternativa haciendo 

uso de HPC, implementada de forma eficiente.  

Este objetivo general de mejorar la eficiencia computacional de los modelos 

hidrodinámicos existentes se pretende conseguir mediante dos propuestas diferentes, la 

primera aprovechando al máximo la arquitectura de los procesadores de propósito 
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general (Anguita et al. 2009, Anguita and Martinez-Lechado 2005). El aprovechamiento 

de la arquitectura se ha comprobado muy rentable en diversas aplicaciones en las que se 

requiere tratar gran cantidad de datos y realizar gran cantidad de cálculos, además de 

aplicaciones relacionadas con el procesamiento de audio, gráficos, imágenes y vídeo 

(Anguita et al. 2009, Anguita and Martinez-Lechado 2005, Bhattacharjee et al. 2008, 

Guobin et al. 2005), también se ha comprobado su utilidad para aplicaciones en otros 

campos como la bioinformática, financieras o procesamiento de datos sísmicos (Ino et 

al. 2009,  Lee et al 2009, Panetta et al. 2009, Zhang and Oosterlee 2009) y, por 

supuesto, en el campo de 3D-SWE (Fringer et al. 2006, Nesterov 2010, Amritkar et al. 

2012, Tubbs and Tsai 2009)). 

La segunda propuesta para reducir los costes de computación hace uso de un 

procedimiento conocido como anidamiento, ya usado en la literatura para reducir los 

costes de computación (Fox et al. 1995, Zavatarelli and Pinardi 2003). Usando este 

procedimiento es posible reducir la zona de alta resolución a solo el área que se 

pretenda estudiar, resolviendo el resto del grid con una resolución menor y, por lo tanto, 

reduciendo el coste computacional y el almacenamiento. Sin embargo, este 

procedimiento es insuficiente cuando las zonas de estudio en alta resolución siguen  

siendo demasiado extensas. Un ejemplo de ello se da en la zona litoral de lagos de 

grandes dimensiones. Los hábitats de esta zona litoral pueden ser sustancialmente 

heterogéneos tanto en la dimensión vertical como horizontal (Lodge et al. 1988), donde 

en cortos espacios de tiempo se producen cambios continuos y dinámicos en las 

condiciones físicas de esta zona, siendo el resultado del fuerte forzamiento 

hidrodinámico sumado a la débil inercia de estas zonas de poca profundidad (Lodge et 

al. 1988). Dado este extraordinario y continuo dinamismo de la zona litoral,  existe en 

ella una gran biodiversidad (Vadeboncoeur et al. 2011) y hábitats únicos de muchos de 

los organismos que viven en lagos (Kalff 2001). Además, las playas o bahías alrededor 

de la costa no pueden ser estudiadas de forma individual sin tener en cuenta en el 

estudio a sus bahías vecinas, dado que estas se encuentran conectadas a través de 

diversos procesos físicos. Como se indica en Rao and Schwab (2007), las corrientes en 

la zona litoral se producen generalmente a lo largo de zonas de igual profundidad, por lo 

que se crea una fuerte conexión física entre la zona litoral a lo largo de todo el perímetro 

del lago. 
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En esta tesis se propone una implementación eficiente del procedimiento de 

anidamiento, combinándolo con clusters de computadores de gama media/baja, 

reduciendo aún más los costes computacionales y permitiendo resolver de forma 

eficiente toda la zona litoral (imposible en un tiempo aceptable mediante un 

procedimiento de anidamiento normal) de grandes lagos en alta resolución , del cual a 

pesar de su enorme diversidad e importancia como se ha explicado, se tiene un 

conocimiento bastante pobre (Kalff 2001). En línea a esto se muestran resultados útiles 

y de interés a la comunicad científica que indiquen el camino a seguir en el estudio de la 

zona litoral de grandes lagos y que demuestren la necesidad del uso de grids de alta 

resolución para poder realizar estos estudios con éxito. 

Las soluciones presentadas en este trabajo se han implementado sobre un de 

modelo hidrodinámico basado en la solución numérica de las ecuaciones de Navier-

Stokes para aguas someras, Si3D, aunque la mayoría de las mejoras pueden ser 

aplicables a otros modelos similares. En Si3D las ecuaciones son discretizadas mediante 

un método de diferencias finitas, usando un algoritmo semi-implícito de 3 niveles por 

pasos iterativos trapezoidal-salto de rana sobre un grid Cartesiano estructurado, donde la 

mayoría de los cálculos se realizan columna por columna de agua. Los algoritmos semi-

implícitos existentes hoy día siguen la propuesta original diseñada por el Profesor 

Casulli (Casulli and Cheng 1992; Casulli and Cattani 1994) y, aplicados sobre mallas 

estructuradas y no estructuradas, han sido muy utilizados en la simulación de 

ecosistemas acuáticos continentales (e.g. Hodges et al. 2000, Appt et al. 2004, Laval et 

al. 2003) en los últimos años. El modelo semi-implícito al que se propone aplicar las 

estrategias de optimización computacional ha sido utilizado recientemente en un 

número importante de estudios sobre transporte y mezcla en ríos, embalses y lagos 

(Rueda et al. 2009, Rueda and Schladow 2009, Rueda and MacIntyre 2009, Hoyer et al 

2014, Ramón et al 2013). Si3D fue desarrollado y propuesto originalmente por el U.S. 

Geological Survey (Smith 2006) y adaptado posteriormente para la simulación de lagos 

por  Rueda (2001).  

En el capítulo 1 se incluye una completa descripción de este modelo, incluyendo 

las ecuaciones de gobierno utilizadas, el modelo numérico, el flujo de ejecución del 

algoritmo y otros detalles computacionales de interés que demuestran la complejidad de 

algunas de las operaciones que se realizan en estos modelos y el enorme coste 

computacional (en términos de tiempo de ejecución y requerimientos de memoria) que 
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precisan. El resto de capítulos han sido escritos como artículos independientes con su 

propio resumen,  introducción, metodología, resultados, discusión y conclusiones. Parte 

de este trabajo ya ha sido publicado o está en proceso de revisión en revistas 

internacionales, otra parte de este trabajo está en preparación para ser enviado para su 

publicación. Debido a que estos capítulos han sido escritos como artículos individuales, 

algunos de los conceptos pueden repetirse de un capítulo a otro. Esto por otra parte, 

tiene como ventaja que cada capítulo puede leerse de forma independiente. La Figura i.1 

explica las diferentes implementaciones desarrolladas a partir del código original de 

Si3D. El primer paso consistió en aplicar diversas optimizaciones básicas al código 

original de Si3D (Basic Si3D, Figura i.1), usadas en el resto de implementaciones 

realizadas (aunque esta implementación es el primer paso, se trata en detalle en el 

último capítulo, donde se explica todos los pasos a seguir en la completa optimización 

de un modelo hidrodinámico). 

 Los capítulos se desarrollan siguiendo un orden lógico en relación con cada una 

de las implementaciones desarrolladas, partiendo desde el modelo secuencial de Si3D 

con optimizaciones básicas (Basic Si3D). El segundo capítulo contiene la descripción, 

evaluación y validación del método de anidamiento propuesto (N-Si3D). En el capítulo 

3 se presenta una implementación paralela adecuada para pequeños clusters (P-Si3D).  

En este capítulo se presenta un ejemplo práctico de aplicación en la zona litoral de 

Tahoe que requiere la combinación de la implementación paralela desarrollada con el 

procedimiento de anidamiento propuesto en el anterior capítulo (P/N-Si3D). En el 

capítulo 4 se  describe y evalúa una de las implementaciones paralelas desarrolladas: 

SP-Si3D, que añade una implementación con grid de baja resolución a la 

implementación paralela con grid de alta resolución. La implementación propuesta 

modifica P-Si3D para que, haciendo uso de los resultados del modelo de baja resolución 

(haciendo uso del procedimiento de anidamiento N-Si3D), elimine las comunicaciones 

colectivas uno-a-muchos y muchos-a-uno necesarias en modelos hidrodinámicos semi-

implícitos paralelos.  Esta implementación consigue  una escalabilidad prácticamente 

lineal. Finalmente en el capítulo 5, se muestran diversas propuestas para optimizar P-

Si3D, que se engloban bajo una implementación denominada OP-Si3D. Las propuestas 

dadas en el capítulo 5 permiten adaptar la implementación a la arquitectura de una 

plataforma de propósito general actual, reduciendo al mínimo el overhead producido 

por una implementación paralela y permitiendo obtener una versión escalable incluso en 
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arquitecturas HPC. A continuación se indican los objetivos concretos y se introduce 

brevemente los contenidos de cada capítulo: 

 

 

 

 

 

 

 

 

 

 

En el capítulo 2 el objetivo es obtener un procedimiento de anidamiento (N-Si3D) 

que permita aprovechar de forma eficiente la arquitectura de un computador, además de 

evaluar y conocer cuáles son los principales inconvenientes de esta técnica y reducirlos 

al mínimo. Usando este procedimiento es posible reducir la zona de alta resolución a 

solo el área que se pretenda estudiar (mediante un modelo anidado), resolviendo el resto 

del grid con una resolución menor (mediante un modelo completo de baja resolución) y, 

por lo tanto, reduciendo el coste computacional. En este procedimiento las ecuaciones 

del modelo anidado se resuelven teniendo en cuenta las condiciones de frontera dadas 

por el modelo completo de baja resolución. Para poder obtener un procedimiento de 

anidamiento correctamente acoplado, se hace especial énfasis en la importancia de 

calcular correctamente todos los términos en las ecuaciones de masa y momentum para 

aquellas columnas de agua adyacentes a la frontera en el modelo anidado. En particular, 

el estudio se centra en la necesidad de transferir el componente de velocidad tangencial 

desde el modelo completo de baja resolución al modelo anidado. También se presenta el 

procedimiento utilizado para ejecutar ambos modelos (anidado y completo de baja 

resolución) en paralelo al mismo tiempo. Este capítulo incluye una evaluación y 

 
 

 

Figura i.1. Implementaciones propuestas para este trabajo desde la versión original de 

Si3D. 
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validación completa del procedimiento de anidamiento indicando cuales son las 

principales fuentes de error. Finalmente, se justifica la necesidad de usar grids de alta 

resolución, mostrando patrones de circulación de pequeña escala que solo son 

correctamente capturados usando grids de alta resolución.  

En el capítulo 3 el objetivo es obtener una implementación paralela de Si3D (P-

Si3D) adecuada para pequeños clusters multinúcleos. En esta implementación la carga 

de trabajo se divide entre hebras/procesos disponibles, cada uno trabajando en un 

subconjunto distinto de columnas de agua del dominio. Solo el sistema de ecuaciones 

pentadiagonal necesario para obtener la solución de superficie libre es resuelto de forma 

secuencial, reduciendo así el número de comunicaciones y la complejidad que supone 

paralelizar esta etapa. La ejecución secuencial de dicha etapa supone la necesidad de 

usar una comunicación colectiva muchos-a-uno antes de iniciar la etapa para formar el 

sistema de ecuaciones completo y una comunicación colectiva uno-a-muchos que 

difunde la solución de superficie libre obtenida. Este modelo paralelo es sencillo de 

implementar y reduce el tiempo de ejecución  de forma aceptable para modelos de baja 

y media resolución en pequeños clusters. Sin embargo, las funciones colectivas muchos-

a-uno y uno-a-muchos impiden que la implementación escale en cluster de más de 3 

nodos. Se incluye también un estudio del rendimiento de la implementación usando 

diferentes configuraciones del hardware y del tipo de corte usado en la descomposición 

de dominio. Finalmente, se combina el procedimiento de anidamiento creado (N-Si3D) 

con la implementación paralela desarrollada para pequeños clusters (P-Si3D) para 

simular la zona litoral del lago Tahoe en alta resolución. Esta implementación es usada 

para desarrollar un caso real de prueba que revela diversos patrones característicos en el 

transporte a lo largo de la costa que se suceden en el lago Tahoe. 

En el capítulo 4 el objetivo es obtener una implementación paralela escalable en 

cluster multinúcleos de bajo precio de unos 10 nodos, la cual permita simular los 

procesos que ocurren en toda la zona litoral de grandes lagos. La implementación 

propuesta modifica P-Si3D para que, haciendo uso de los resultados de un modelo de 

baja resolución, elimine las comunicaciones colectivas uno-a-muchos y muchos-a-uno 

necesarias cuando se resuelve en secuencial el sistema de ecuaciones pentadiagonal para 

obtener superficie libre. Los resultados de esta implementación demuestran que se  

obtiene una escalabilidad casi lineal al incrementar el número de nodos usados. Se 

incluye también un estudio completo de los posibles errores que se pueden producir con 
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esta implementación, demostrando que las diferencias (NRMSE) al comparar con los 

resultados de un modelo completo en alta resolución son pequeñas. Finalmente, se 

analiza la calidad de los resultados cerca de las fronteras entre subdominios. Los 

resultados demuestran que los patrones de recirculación son correctamente  capturados, 

incluso aunque dichos patrones se encuentre en la zona de división entre fronteras.  

Finalmente, en el capítulo 5 se pretende adaptar el modelo hidrodinámico a la 

arquitectura utilizada, con el objetivo de obtener una implementación paralela 

optimizada y escalable (OP-Si3D) que pueda usarse también en arquitecturas de altas 

prestaciones con más de 10 nodos. Se muestran los factores que influyen en la 

obtención de un modelo paralelo eficiente, tanto en máquinas de memoria compartida 

como distribuida. Los resultados demuestran que adaptarse a la arquitectura haciendo 

uso de las ideas propuestas mejora considerablemente los resultados de escalabilidad, 

que se pueden obtener buenos resultados con estas mejoras incluso en arquitecturas con 

componentes de bajas prestaciones y que todas las etapas de procesamiento deben ser 

optimizadas y paralelizadas para obtener los mejores resultados. 
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General Introduction and Objectives 

 

Of the total amount of water in the hydrological cycle on a planetary scale, a tiny 

amount (0.008%) is in the form of fresh water in rivers, lakes and reservoirs. This 

fraction, however, is of extraordinary value to humans, since almost 80% of the water 

we consume comes from these surface water bodies. Despite its importance, our 

knowledge of freshwater ecosystems is still poor, according to the US National 

Research Council. Our knowledge gap is especially poor when considering the long-

term behavior of these systems in periods of around ten years (Harris and Durran 1986, 

Armengol et al 1994), and short-time (daily or hourly) scales (Imberger and Parker, 

1985). This lack of knowledge is partially due to the multiplicity and complexity of the 

physical processes of transport and mixing. These processes are a fundamental aspect of 

the functioning of aquatic ecosystems: not only they determine the position of 

particulate and dissolved substances contained in the water at any given time, but they 

also contribute to determine the environment in which biogeochemical reactions occur. 

Hence, understanding the chemical and biological properties of aquatic ecosystems, its 

spatial and temporal variability, requires first to build a through and sound 

understanding of the physical processes leading to motion and transport (Imberger 

1998). 

The use of hydrodynamic models capable of solving the equations of motion of 

fluids in three (3D) spatial dimensions, along with the application of advanced 

technologies for observing the water velocity and the thermal structure, have 

contributed in recent decades to initiate the study of the movement of water in natural 

systems (eg Hodges et al. 2000, Rueda and Schladow 2003). Many of these models are 

based on the numerical solution of a simplified form of the 3D Navier-Stokes equations 

known as the Shallow Water Equations, SWE. In these models it is assumed that the 

pressure distribution in the vertical direction is hydrostatic. This form of the equations is 

preferred over non-hydrostatic equations for its lower computational cost. Even so, 

hydrostatic models continue to be inefficient and heavy to run when high resolution 

spatial grids are needed to resolve processes with small spatial scales (such as horizontal 

vortices and eddies or gravity currents) and, especially, if PCs or low-end servers are 

used. 
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Fortunately, many important advances, which have been made in recent decades 

in the area of computing, have enabled a significant boost in research in different areas 

of knowledge, including the simulation of water with hydrodynamic models. Currently 

it is unquestionable the need to use computers for all kinds of scientific activities and 

the need to apply advanced computer techniques to reduce the enormous computational 

cost and the huge amount of memory required in the implementation of 3D simulations. 

As a result of these progresses large problems with large computational requirements, 

which cannot be solved sequentially, can now be addressed. This is possible by 

reducing the computational costs and allowing simulation problems which use high 

resolution grids, something unthinkable to perform within a reasonable computational 

time a few years ago. 

The general objective of this thesis is to improve the computational efficiency of 

existing hydrodynamic models to address the rigorous and detailed study of processes 

of transport and mixing in inland water bodies. Different solutions will be shown to 

reduce the computational cost of these simulations, so that they can obtain useful results 

within an acceptable time with high-resolution grids, using both resources easily 

accessible for any scientist and High Performance Computing (HPC). The optimization 

strategies used have improved the efficiency of these models. The efficiency is 

understood as the relationship between performance and cost and the relationship 

between performance and quality of results. These optimization strategies should 

facilitate and expand the use of 3D models of transport and mixing as working tools in 

the investigation applied to the knowledge of lakes, reservoirs and rivers; or as 

forecasting tools. To make this possible, the approach presented is able to perform the 

processing required in an acceptable time on personal computers, low-end servers and 

small commodity clusters, avoiding the use of expensive high-end servers. For the more 

expensive cases, it is also presented an alternative using HPC, efficiently implemented. 

The general objective of improving the computational efficiency of existing 

hydrodynamic models is achieved by two different proposals. The first one is efficiently 

taking advantage of the architecture of general purpose processors (Anguita et al. 2009, 

Anguita and Martinez-Lechado 2005). The efficient exploitation of the architecture has 

been proven very profitable in various applications where it is necessary to treat large 

amounts of data and perform lots of calculations. Among these applications are audio 

processing, graphics, images and video (Anguita et al applications. 2009, Anguita and 



General Introduction and Objectives 

liii 

 

Martinez-Lechado 2005, Bhattacharjee et al. 2008, Guobin et al. 2005). The efficient 

exploitation of the architecture has been also found useful for applications in other 

fields such as bioinformatics, financial or seismic data processing (Ino et al. 2009, Lee 

et al 2009, Panetta et al. 2009, Zhang and Oosterlee 2009) and, of course, in the field of 

3D-SWE (Fringer et al. 2006, 2010 Nesterov, Amritkar et al. 2012, Tsai and Tubbs 

2009)). 

The second approach to reduce the computation cost uses a procedure known as 

nesting. This method has been traditionally used in the literature to reduce computation 

costs (Fox et al. 1995 and Pinardi Zavatarelli 2003). Using this procedure it is possible 

to reduce the high resolution model only to the area of interest, solving the rest of the 

grid with lower resolution and, therefore, reducing the computational cost and storage. 

However, this procedure is insufficient when the high resolution area of study is large 

such as the littoral zone of large lakes. Littoral habitats of lakes can be substantially 

heterogeneous in both vertical and horizontal dimensions (Lodge et al. 1988). Physical 

conditions exhibit continuous and very dynamic changes, at short-time scales, as a 

result of strong hydrodynamic forcing and the weak inertia of shallow layers (Lodge et 

al. 1988). Given the extraordinarily variable dynamics of near-shore or littoral habitats, 

these are sites with large biodiversity (Vadeboncoeur et al. 2011) and critical habitats 

for many organisms in lakes (Kalff 2001). Furthermore, beaches or bays along the near-

shore areas cannot be understood in isolation from neighbor bays, given that they are 

tightly linked through physical processes. As reviewed by Rao and Schwab (2007), 

currents in the nearshore are largely aligned along isobaths, hence, creating strong 

physical links between the littoral zone along the whole perimeter of lakes. 

In this thesis an efficient implementation of a nesting procedure is proposed. 

Besides, this procedure is combined with computer clusters of medium/low range, thus 

further reducing the computational costs and allowing efficiently resolve all the littoral 

zone (impossible in an acceptable time even using a normal nesting procedure) of large 

lakes in high resolution, which despite its enormous diversity and importance as it is 

explained above, our understanding of these near-shore habitats is poor (Kalff 2001). 

According to this, some useful and interesting results are shown to the scientific 

community that indicate the path to follow in the study of the littoral zone of large lakes 

and demonstrate the need for using high resolution grids to perform these simulations 

correctly. 

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.980201.x/full#b43#b43
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The solutions presented in this work have been implemented on a hydrodynamic 

model based on a numerical solution of the 3D shallow water equations, Si3D. In this 

model the equations are discretized using a semi-implicit, three-level, iterative leapfrog-

trapezoidal finite difference algorithm on a staggered Cartesian grid, and the 

computations are carried mostly on water column by water column basis. The semi-

implicit algorithms existing nowadays follow the original proposal designed by 

Professor Casulli (Casulli and Cheng 1992; Casulli and Cattani 1994). These algorithms 

applied to structured and unstructured grids have been widely used in the simulation of 

inland water bodies (eg Hodges et al 2000, Appt et al 2004, Laval et al 2003) in recent 

years. The semi-implicit model, where the optimization strategies have been 

inplemented, has recently been used in several studies about transport and mixing in 

rivers, reservoirs and lakes (Rueda et al. 2009, Rueda and Schladow 2009, Rueda and 

MacIntyre 2009, Hoyer et al 2014, Ramón et al 2013). Si3D was developed and 

originally proposed by the US Geological Survey (Smith 2006) and later adapted for 

simulation of lakes by Rueda (2001).  

Chapter 1 contains a complete description of this model, including the governing 

equations and numerical model used, the execution flow of the algorithm and other 

computational details of interest that demonstrate the complexity of some of the 

operations performed in these semi-implicit models and the enormous computational 

cost (in terms of execution time and memory requirements) needed. The remaining 

chapters have been written as stand-alone independent articles with their own abstracts, 

introductions, methodology, results, discussion and conclusions. Some of these chapters 

are already published. Others are currently under review in international journals or in 

process of being submitted. The fact that they are written as individual articles means 

that some of the concepts can be repetitive for the reader but, on the other hand, each 

chapter can be read independently. Figure i.1 shows the different implementations 

developed from the original code of Si3D.  The first step was to apply several basic 

optimizations to the original Si3D code (Basic Si3D). These optimizations are used in 

all the implementations made (although this implementation is the first step, it is 

covered in detail in the last chapter, where it is explained all the steps involved in the 

complete optimization of a hydrodynamic model). The chapters are arranged in a logical 

order related with each of the developed implementations. The second chapter contains 

the description, evaluation and validation of the nesting procedure proposed (N-Si3D). 



General Introduction and Objectives 

lv 

 

In chapter 3 a suitable parallel implementation for small commodity clusters (P-Si3D) is 

presented. Besides, a practical application example is presented for the littoral zone of 

Tahoe. This simulation requires the combination of the parallel implementation 

developed and the nesting procedure proposed in the previous chapter (P/N-Si3D). 

Chapter 4 describes and evaluates other of the parallel implementations developed: SP-

Si3D, which adds an implementation with a low-resolution grid to the parallel 

implementation with the high resolution grid. The proposed implementation modifies P-

Si3D in order to use the results of the low resolution model to eliminate the collective 

communications one-to-many and many-to-one needed in parallel semi-implicit 

hydrodynamic models. This implementation scales almost linearly. Finally in chapter 5, 

several approaches are explored and tested to optimize P-Si3D, which are included 

under an implementation called OP-Si3D. With these approaches the parallel 

implementation is adapted to the architecture of a general purpose platform used 

nowadays. In this manner, the overhead caused by the parallel implementations is 

minimized resulting in a scalable version of the code, even if used in high performance 

platforms. Below the specific objectives of each chapter and their contents are briefly 

introduced. 

 

 

 

 

 

 

 

 
 

 

 

Figure i.1. Si3D implementations proposed in this work from the original version of Si3D 

The goal in chapter 2 is to develop efficient procedures to create a seamless 

implementation of a nested model with Si3D (N-Si3D). In the nested model, only the 

area of interest is simulated using a high-resolution grid. This is the inner-model. The 

equations in the inner model are solved subject to boundary conditions provided by a 

low-resolution model of a larger domain, the outer-model. Hence, the computational 
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cost of the simulations can be significantly reduced. A seamless nested solution can be 

obtained only if the value of all terms in the mass and momentum conservation 

equations for those nodes in the inner-domain adjacent to the boundary with the outer 

model can be correctly calculated. In particular, we focus on the need to transfer the 

tangential velocity components from the outer- to the inner-model. An efficient method 

to run the outer and the inner model simultaneously, in parallel, is also introduced. The 

sources of errors arising in the nested solution are studied. We further illustrate, through 

case examples, the benefits that we get, in terms of processes resolved, from using 

refined grids in local-scale regions of lakes and rivers.  

In Chapter 3, the objective is to develop a parallel implementation of Si3D (P-

Si3D) suitable for small multi-core clusters. In this implementation, the workload is 

split among different processes/threads, each one working with different sets of vertical 

columns in which the domain is decomposed. Only the matrix problem controlling the 

free-surface elevation is solved sequentially, hence, avoiding the complexity involved of 

parallelizing this stage in the computations. The sequential solution of the free-surface-

elevation matrix requires that a collective communication many-to-one is used to collect 

the contributions of different water columns to that matrix before the solution process 

starts. It also requires the use of a collective communication one-to-many after finishing 

the stage to broadcast the solution obtained. As a result of the collective 

communications many-to-one and one-to-many and the sequential calculation of the 

free-surface-elevation equation system, this implementation does not scale correctly in 

clusters of more than 3 nodes. The parallel model though is simple to implement and 

reduces the execution time acceptably for models using low and medium resolution in 

small commodity clusters. We further analyze the influence of different hardware 

configurations and the domain decomposition process on model performance. Finally, 

the parallel implementation of Si3D is used to develop a nested model of the littoral 

perimeter of Lake Tahoe. This implementation is used, for illustrative purposes, to 

reveal some characteristic features of the long-shore transport in Lake Tahoe.   

Our goal in Chapter 4, is to develop a parallel implementation of Si3D (SP-Si3D) 

to resolve near-shore processes in large lakes which scales in low range multi-core 

cluster of about 10 nodes. The approach proposed modifies the implementation P-Si3D 

in order to use the results of a low-resolution model. In this manner the collective 

communications one-to-many and many-to-one needed to solve the matrix for the free-
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surface elevation in serial mode are eliminated. The errors in the implementation are 

analyzed. In particular, we analyze the quality of the solution near the boundaries 

between sub-domains. The results show recirculation patterns are correctly simulated 

even if a subdomain boundary crosses the recirculation area.  

Finally, in Chapter 5 several approaches are proposed to adapt the hydrodynamic 

model to the architecture used. This is done in order to obtain an optimized and scalable 

parallel implementation (OP-Si3D) that can also be used in high performance 

architectures with more than 10 nodes. It is shown which factors influence in obtaining 

an efficient parallel model, both in shared memory and distributed platforms. The 

results demonstrate that if the implementation is adapted to the architecture using the 

ideas proposed, (1) the scalability results improves significantly, (2) it is possible to 

obtain good scalability results with these improvements even in architectures with low-

performance components and (3) all processing stages must be optimized and 

parallelized in order to obtain the best results. 
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A Semi-implicit, three-dimensional 

hydrodynamic model 
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Abstract 

 

In this chapter, it is presented the three-dimensional (3D) Semi-Implicit hydrodynamic 

model, Si3D, where the different optimization strategies presented in this thesis will be 

applied. Si3D is a semi-implicit, finite-difference method based on the numerical 

solution of the 3D Navier-Stokes Shallow Water Equations (3D-SWE) proposed by 

Smith (2006). The equations are first posed in layer-averaged form by integrating over 

the height of a series of horizontal layers separated by level planes. With this approach, 

the volumetric transports and not the velocities are the dependent variables in the model 

equations. These layered-averaged equations are discretized using a semi-implicit, 

three-level, iterative leapfrog-trapezoidal algorithm on a staggered Cartesian grid. The 

semi-implicit approach is based on treating the surface gravity wave and vertical 

diffusion terms implicitly to avoid time-step limitations due to gravity wave Courant–

Friedrich–Levy (CFL) conditions, and to guarantee stability of the method. All other 

terms-including advection-are treated explicitly. Laplacian operators are used to 

represent mixing. Constant mixing coefficients are used to parameterize the effect of 

horizontal eddies. A two-equation turbulence model calculates the vertical eddy 

coefficients of mixing. The time-step of the resulting model is only subject to CFL 

restrictions associated to the explicit treatment of advection and baroclinic pressure 

gradient terms. The resulting method is mass conservative, efficient, and numerically 

accurate. However, the method is also computationally expensive, using a huge quantity 

of variables to save information of the Cartesian grid in three different states and 

solving some complex operations. At each time-step, Si3D solves a large number of 

small tridiagonal equation systems using a double-sweep method (known as Thomas 

algorithm) and then uses an iterative method known as Preconditioned Conjugate 

Gradient to solve a single, large, pentadiagonal equation system for the water surface 

elevation. 

 

1.1 Introduction 

 

The earliest 3D hydrodynamic models were developed in the 1960s for applications to 

oceans and lakes. These models are based in an approach known as the rigid-lid 
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approximation in which the free surface is held constant and the surface gravity waves 

(including ocean tides and lake seiches) are filtered out of the solutions (i.e. Bryan 

(1969) for ocean model and Liggett (1969) for lakes).  These models were able to 

employ large time-steps so that long-term simulations of large regions could be done 

economically. For studying large-scale oceanic circulation on a coarse numerical grid, 

rigid-lid models generally are adequate and are still being developed for modern 

applications. For lakes, rigid-lid models should only be used in studies focusing on time 

periods much longer than the dominant seiching period of the lake (Sheng, 1986b). 

Sheng et al. (1978) compared a rigid-lid model with a model that solves directly for the 

variable free surface (free-surface model) and showed the rigid-lid model gave poor 

results for periods of active seiching of Lake Erie under spatially and temporally 

varying winds. A study by Huang and Sloss (1981) used a rigid-lid model for Lake 

Ontario and obtained reasonably good results for the mean monthly circulation. 

Leendertse et al. (1973) and Leendertse and Liu (1975, 1977) were the first to 

develop a 3D model for estuaries and coastal seas incorporating a fully time-varying 

free-surface location and using standard finite-difference grid boxes in all three 

dimensions. The details of the model formulation were thoroughly described in the 

series of Rand Corporation reports, which benefitted future investigators in the field. 

The significant drawback of the Rand model was its explicit finite-difference scheme 

that limited the size of the time-step to the time a surface gravity wave takes to travel 

between two adjacent horizontal grid points, a limitation referred to as the Courant-

Friedrich-Lewy (CFL) stability condition for the gravity waves. When using a high 

resolution numerical grid in an estuary with areas of deep water, this limitation can be 

very severe.  

In explicit finite difference models, the unknown hydrodynamic variables at any 

spatial point at next time level are calculated entirely from known values at neighboring 

points from one or more previous time levels. This scheme forms equation systems 

solved easily but, at the same time, requires higher computational time due to the 

integration time limitation of CFL. To reduce the computation time, a mode-splitting 

technique can be used. In general, mode-splitting is a separation of the 3D governing 

equations into a set of equations describing the two-dimensional (2D) depth-mean flow 

(the external mode) and a set describing the vertical structure of flow (the internal 

mode). The time discretization for the gravity-wave terms in the external-mode 
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equations can be either explicit or implicit. In an implicit scheme, the unknown 

hydrodynamic variables at a given spatial point at next time level depend on the 

unknown variables at neighboring points at the same time level. The unknown variables 

are then obtained by the simultaneous solution of a system of algebraic equations.  

In a mode-splitting approach, the internal-mode equations are treated explicitly 

except for the vertical diffusion terms, which usually are treated implicitly to avoid a 

time-step limitation in shallow water (Davies, 1985). By using an explicit time 

discretization for the external-mode gravity-wave terms, the time-step must be small 

enough to satisfy the gravity-wave CFL condition. By applying a time-splitting 

algorithm, however, the internal-mode solution can be integrated by using a much larger 

time-step than the external mode. Because the internal-mode solution can be expensive 

in terms of computation time, significant economies are gained by solving the internal 

mode explicitly with a large time-step (usually at least an order of magnitude larger than 

the time-step for the external mode). By using an implicit time discretization for the 

external-mode gravity-wave terms, the CFL limitation can be avoided, although this 

advantage is partially offset by the additional complexities involved in an implicit 

formulation (including the need to solve a matrix system of algebraic equations each 

time-step). Implicit mode-splitting, however, allows the external and internal modes to 

be solved using the same long time-step. In any case, the use of mode-splitting will 

usually lead to solutions that are far more computationally efficient than those that solve 

the primitive 3D equations directly using a fully explicit scheme. This method has since 

been adopted for use in 3D shallow-water circulation modeling (i.e.  Blumberg and 

Mellor 1987, Sheng 1983, Jin 1993, Chapman et al. 1996). In fact, most 3D shallow-

water models now being used are mode-splitting models. The mode-splitting technique 

is also being implemented for modeling the large-scale circulation of the ocean 

(Killworth et al. 1991, Dukowicz and Smith 1994, Semtner 1995). 

Although mode-splitting has become widely accepted in 3D modeling, it has 

several important drawbacks that are often overlooked. If an explicit time discretization 

is used for both modes of a time-splitting scheme, the external mode (2D) velocities 

must be the exact depth average of the internal mode (3D) velocities; otherwise, the 

computations will become unstable (Dukowicz and Smith 1994). If an implicit time 

discretization is used for the external-mode gravity waves in a mode-splitting model, 

time-splitting errors can be eliminated if the external and internal mode time-steps are 
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chosen to be equal. However, the separate calculations of the 2D and 3D variables lead 

to difficulties in consistently representing the magnitude of the bottom frictional stress 

between the external and internal modes. 

Instead of mode-splitting, some researchers have used other forms of splitting 

methods. For example, the latest versions of the 3D Rand Corporation model 

(Leendertse 1989) and the 3D TRISULA model from Delft Hydraulics of the 

Netherlands (Uittenbogaard et al. 1992) are based on one of the best known splitting 

techniques—the alternating-direction-implicit (ADI) method. These models are 

basically 3D extensions of ADI methods successfully used in two dimensions 

(Leendertse 1987, Stelling 1984). These models are formulated with second-order 

accuracy and treat the vertical diffusion term implicitly. Leendertse (1989) is especially 

critical of the use of mode-splitting because it “degrades the accuracy of computation” 

to first order. To eliminate these inaccuracies, either the time-step or horizontal grid size 

of a simulation must be decreased, which can have a significant effect on model 

efficiency.  

Two alternatives to the splitting models are the time-splitting and semi-implicit 

methods.  The first one is the implicit, time-splitting finite-difference scheme presented 

in de Goede (1991). This model does not employ ADI methods so that inaccuracies 

caused by the ADI effect are absent, even for large time-steps. The 3D scheme has a 

strong resemblance to the 2D scheme described in Wilders et al. (1988). The 3D 

scheme, which neglects advection, density-forcing, and horizontal shear stress terms, is 

based on a two-stage splitting procedure in which the first stage requires the solution of 

a large number of independent tridiagonal systems of equations involving the implicit 

treatment of vertical diffusion. In the second stage, the terms describing the propagation 

of the surface gravity waves (that is, the water surface pressure gradient in the momen-

tum equations and the velocity divergence in the continuity equation) are treated 

implicitly. This stage results in a pentadiagonal matrix system to be solved for the water 

surface elevation. Once the water surface elevation is known, the velocities are 

computed explicitly.  

The other alternative to the splitting models is the semi-implicit method proposed 

by Casulli and Cheng (1992) and implemented in other models (Smith 2006, Hodges et 

al. 2000). This method is similar to the scheme presented by de Goede (1991), where 

gravity waves and vertical diffusion terms are treated implicitly and other terms 
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(Coriolis, horizontal friction, advection and baroclinic pressure term) are treated 

explicitly. However, this scheme does not use a splitting procedure to avoid the time-

step limitation due to CFL condition. The scheme proposed by Casulli and Cheng 

(1992) and reformulated by Casulli and Cattani (1994) is a two-level scheme.  In this 

model, the advection terms in the momentum equations are discretized by using an 

unconditionally stable, semi-Lagrangian or Euler-Lagrangian method (ELM) with linear 

interpolation. The schemes solve the governing equations in a nonconservative form 

that is consistent with the use of an ELM. 

The semi-implicit scheme implemented in the model presented here (Si3D) and 

developed by Smith (2006) closely follows the approach outlined by Casulli and Cheng 

(1992) for the implicit inclusion of vertical diffusion in a 3-D calculation without 

recourse to mode-splitting. The details of the overall scheme, however, differ from 

those in Casulli and Cheng (1992) in many significant ways. The time integration used 

here is a three-time-level, semi-implicit, leapfrog-trapezoidal method. Except for a 

small amount of first-order error introduced by the uncentered (in time) treatment of 

horizontal diffusion for stability considerations, the scheme is second-order accurate in 

the truncation errors of the finite-difference approximations in both space and time. All 

terms (other than horizontal diffusion), as well as nonlinear coefficients, are centered in 

time during the leapfrog and trapezoidal steps of the scheme to achieve second-order 

accuracy in time. The accurate evaluation of the nonlinearities in the equation of motion 

is important, because nonlinearities have a significant effect on the tidally averaged 

circulation in shallow estuaries. The governing equations for the three-level scheme are 

prepared in a conservative form by integrating them over the height of each layer. The 

layer-integrated, volumetric transports replace velocities as the dependent variables so 

that the depth-integrated continuity equation that is used in the solution for the water 

surface elevation is linear. The advection terms in the momentum and transport 

equations are solved using explicit, leapfrog-trapezoidal integration rather than an ELM 

as used by Casulli and Cheng (1992). The leapfrog-trapezoidal approach does very well 

with the conservation of transport equation (salinity), which can be a problem with the 

ELM approach. Instead of the improvements implemented, the computational cost of 

the semi-implicit scheme, in terms of required memory and execution time, is still 

expensive. At each time-step, Si3D solves a large number of small tridiagonal equation 

systems using a double-sweep method known as Thomas algorithm and a single, large, 
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pentadiagonal equation system for the water surface elevation using an iterative method 

known as Preconditioned Conjugate Gradient. 

In this chapter, it is presented the hydrodynamic model based in the 3D-SWE and 

discretized using a semi-implicit, three-level, iterative leapfrog-trapezoidal finite 

difference algorithm on a staggered Cartesian grid. Extensive details about the 

governing equations, numerical algorithm and computational implementation of Si3D 

are presented in the next section. This model was developed for estuarine circulation 

and serial architectures by Smith (2006). Subsequently, Si3D was extended and adapted 

to lakes by Rueda (2001). Rueda (2001) modified the model to use temperature instead 

of salinity as the active scalar responsible for stratification, to use variable wind fields, 

to calculate heat fluxes based on the prognostic variables, and to calculate the 

momentum and scalar turbulent transfer coefficients with a high-order turbulence 

closure (Mellor-Yamada Level 2.5). The transport algorithm was modified to eliminate 

spurious oscillations in the temperature field that could interfere in the calculation of 

turbulent transfer coefficients. Additional modules have been developed to simulate the 

transport of tracers. Si3D is a public code programmed for serial architectures by the US 

Geological Survey (USGS), which provided us with a free version.  

 

1.2 Hydrodynamic model 

1.2.1 Governing equations  

 

The model is based on the numerical solution of the 3-D Shallow Water Equations 

(Smith 2006), a simplified form of the Reynolds Averaged Navier-Stokes (RANS) 

(Cushman-Roisin 1994). Practical computational limits and a priori scaling analyses 

justify the use of the 3D-SWE in the description of these large-scale flows. In RANS 

models, state variables describing the fluid motion are decomposed into a mean and a 

fluctuating part, and separate governing equations are posed for the averaged variables 

and for the averaged products of the fluctuating quantities. Assuming that (1) density is 

negligible everywhere except in the buoyancy term (the Boussinesq approximation), (2) 

the weight of the fluid balances the pressure in the equation for vertical momentum (the 

hydrostatic approximation), and (3) a diffusion-like term can be used to represent 
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turbulent fluxes of scalars and momentum (the eddy diffusivity concept), the governing 

equations can be written as    
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These equations comprise the 3D-SWE. They express the physical principles of 

conservation of mass for an incompressible fluid (Eqs. (1.1a)-(1.1b)), conservation of 

momentum (Eqs. (1.2)-(1.3)) and conservation of energy (Eq. (1.4)). The velocity 

components in the x, y, and z directions are denoted by u, v, and w, t is time, f is the 

Coriolis parameter, g is the acceleration of gravity,  represents water density variation 
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with respect to a mean reference value 0, ζ is the water surface elevation above an 

undisturbed level at z = 0, and  z = -H (x, y) is the depth of the bottom boundary 

measured from z = 0. Equation 1a is the three-dimensional form of the continuity 

equation, while Eq. (1.1b) results from 1a by integration over the water depth, 

accounting for the kinematic boundary condition at the free surface, and is the equation 

governing the free surface position. Equation (1.5) is an equation of state which links 

temperature, T, and density, ρ. The last term in Eq. (1.4) is a source-sink term 

representing the surface heat flux, and cp is the heat capacity of water:  ∆𝑠 =

1
ρ𝑐𝑝⁄ 𝜕𝐼

𝜕𝑧⁄ . The coefficients KH and KV represent the horizontal and vertical turbulent 

momentum transfer coefficients (or kinematic eddy viscosity), and DH and DV are the 

horizontal and vertical turbulent transfer coefficients (eddy diffusivity) for temperature. 

Those terms represent the effects of the fluctuating quantities in the mean equations. 

Different approaches can be followed in order to estimate vertical turbulent diffusivities.  

Most commonly separate differential equations are solved for the turbulent kinetic 

energy and a turbulent length-scale determining variable (such as the dissipation of 

turbulent kinetic energy or the product of the turbulent kinetic energy and a turbulent 

macroscale l) from which turbulent transfer coefficients are calculated.  Si3D was also 

adapted for 3-D lake models (Rueda 2001) using a modified formulation of the 2.5 level 

Mellor-Yamada turbulence closure scheme to parameterize vertical mixing (Kantha and 

Clayson 1994). This formulation incorporates the quasi-equilibrium turbulence model 

(QETE) of Galperin et al. (1988) with readjusted parameters, and a parameterization of 

shear-instability-induced mixing in the strongly stratified region below the surface 

mixed layer. It was developed to correct some of the deficiencies of the original 

formulation of the Mellor-Yamada 2.5-Level closure scheme, which was shown to 

misrepresent the depth of the surface mixed layer in oceanic applications (e.g. Martin 

1985). Two partial differential equations are used to calculate the turbulent kinetic 

energy, q
2
/2, and a turbulent macroscale, l, given by   
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Here, κ is the von Karman constant, and Ps, Pb and ε stand for shear production, 

buoyant production and the dissipation of turbulent kinetic energy, given by   
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in which B1 is an empirical constant. The boundary conditions applied at the top and the 

bottom boundaries are calculated from the friction velocity u* as (Blumberg 1986)  
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*
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2 )(uBq  , 02 lq ;     (1.9)

 

The turbulent fluxes of momentum (u, v) and temperature (T) are represented using a 

diffusion model and the concepts of eddy viscosity and diffusivity. The eddy viscosity 

and diffusivity are calculated from q and l as KV = Smlq and DV = Shlq in which Sm and 

Sh are stability functions that account for the effects of stratification on mixing. They are 

calculated as (Kantha and Clayson 1994) 
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Nl
Gh     (1.12)

 

The values of the constants in the model are (A1, A2, B1, B2, C1, C2, C3, Sq, E1, E2) 

=(0.92, 0.74, 16.6, 10.1, 0.08, 0.7, 0.2, 0.2, 1.8, 1.33) as suggested by Kantha and 
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Clayson (1994). Gh is bounded from above, so that the variance of the velocity 

fluctuations are positive definite, according to 

 

   1

32112 )1(312


 CBABAGh
    (1.13)

 

The upper bound on Gh is set to 0.029 (Kantha and Clayson 1994). The lower bound on 

Gh reflects that under strong stable stratification conditions, there is a limit to the size 

beyond which eddies are incapable of overturning. This bound is dictated by the 

Ozmidov scale, Lo = (ε/N
 3

)
1/2

, and is given by Gh > –0.28.  

 

1.2.2  Numerical algorithm  

 

The governing equations are first posed in layer-averaged form by integrating over the 

height of a series of horizontal layers separated by level planes. With this approach, the 

volumetric transports (the product of velocities by the layer thickness, U and V) and not 

the velocities (u, v) are the dependent variables in the model equations. This layer-

averaged form of the equations is discretized using a semi-implicit, three-level, iterative 

leapfrog-trapezoidal finite difference algorithm on a staggered Cartesian grid (Arakawa-

C grid, which has velocities and volumetric transports defined on cell faces and scalar 

quantities such as water surface elevation and temperature defined at the cell center). 

The semi-implicit approach is based on treating the gravity wave and vertical diffusion 

terms implicitly to avoid time-step limitations due to gravity wave Courant–Friedrich–

Levy (CFL) conditions, and to guarantee stability of the method (Casulli and Cheng 

1992). The vertical diffusion term in the transport equation is also treated implicitly. 

The remaining terms in the momentum equations (advection, Coriolis, horizontal 

momentum diffusion, and the baroclinic pressure gradient) and advection terms in 

transport equation are solved using explicit leapfrog-trapezoidal integration. The time-

step of the resulting model Δt is only subject to CFL restrictions associated to the 

explicit treatment of advection and baroclinic pressure gradient terms.  The resulting 

method is mass conservative, efficient, and numerically accurate (Smith 2006).  

The Numerical Algorithm is divided into four stages (Figure 1.1). First, the finite-

difference form of the continuity (Eq. (1.1b)) is written as follows  
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Figure 1.1. Solver stages of Si3D Numerical Algorithm. 

The solution of the momentum equations is separated into two phases in which first the 

explicit terms and then the implicit terms are evaluated in the stage 1 column by column 

of the grid (S1, Figure 1.1). The finite-difference equation for the x-direction 

momentum equation is written so it is centered within layer k at the horizontal point 

(i+1/2) Δx, jΔy; the explicit phase is represented by 
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   (1.15)

 

The corresponding finite-difference equation for the explicit phase of the y-direction 

momentum equation is centered within layer k at the point iΔx,(j+1/2)Δy and is 

represented by  

 

S1. Calculate explicit terms (exmom) and 

obtain the matrices for momentum eq. 

(matmom) solving a tridiagonal system of 

equations per column and calculate matrix 

coefficients for ζn+1 (matcon) 

 
S2. Solve an implicit pentadiagonal system 

of equations for ζ n+1 using the PCG 

S3. Solve U n+1 and V n+1 (Continuity) 

S4. Solve w n+1, one or more tridiagonal 

system of equation per column for T n+1 and 

other tracers (transport) and assign KH
 n+1 

and KV
 n+1 (turbulence) solving a tridiagonal 

system of equations per column 
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The bracketed terms (calculated in S1) are expanded fully in Smith 2006. The symbol 

(ˆ)in equation denotes a solution for the layer volumetric transport which includes only 

the contribution from the explicit terms. All terms in equations (1.15) and (1.16), except 

horizontal diffusion (HDIFF), are centered in time at time level n to achieve second-

order numerical accuracy. The horizontal diffusion is written backward-in-time at time 

level n - 1 because the centering of that term can result in a weak instability. 

Then the finite-difference equation for the implicit phase of the x-momentum and 

y-momentum equations is written as 
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The subscripts denote the spatial location in the computational grid, and the superscripts 

the time level at which the variable is evaluated. The symbols k1 and km in Eq. (1.14) 

denote the first (shallowest) and last (deepest) layer in a given water column. The 

symbol ^ in Eqs. (1.17) and (1.18) denotes the contribution from the explicit terms to 

the layer-averaged transport. The overbars in Eq. (1.17) on a layer height or density 

variable is used to represent a spatial average in the x-direction between adjacent values. 

For example,  
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The overbars in Eq. (1.18) represent a spatial average between adjacent values, as in Eq. 

(1.17), but this time in the y-direction, i.e.  
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and similar to Eq. (1.20),  
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In the solution process, the unknown values of the variables U and V at time n+1 (Eq. 

(1.17) and (1.18)) are expressed in terms of the unknown values of the free surface. The 

sum of the volume transports across any of the four sides of a given water column can 

be then expressed as follows (the details of these calculations can be found in Smith 

(2006) in terms of the free surface  
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The Eq. (1.21) form two tridiagonal system of equations (one in the x-direction and 

other in the y-direction) for each water column which can be uniquely solved in S1 

(Figure 1.1) of SI3D with a double-sweep algorithm (here the Thomas algorithm is used 

to solve efficiently the tridiagonal systems). In executing the double-sweep algorithm, 

the results actually sought are only the two matrix products A
-1

G and A
-1

R, which are 

column vectors equal in order to the number of model layers; the inverse of A (which is 

non-symetrical but diagonally dominant) is never computed by itself. Equation (1.21) is 

useful because it is an expression that can be formally substituted into the continuity 

equation. 

With the new values of ag and ar calculated, the coefficientes sx, sy, r and q are 

calculated as follows at the end of S1 (Figure 1.1). 
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Therefore, those summations are then included in Eq. (1.14) at the beginning of the 

stage 2 of SI3D (S2, Figure 1.1), resulting in the following equation for the free surface 

elevation at time n+1 
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Equation (1.23) represents a pentadiagonal matrix which is symmetric and positive 

definite. This system of equations includes as many equations as water columns have 

the model and each equation includes up to five elements. These five elements relate 

each water column with the 4 neighbor columns (north, south east and west). Since free 
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surface elevation is a 2D variable, each equation (and the system of equations in 

general) is created without paying attention to the number of layers of each water 

column.  The system is then solved in S2 using a preconditioned non-symmetric 

conjugate gradient method (Golub and Loan 1996, Kincaid et al. 1989), which is an 

iterative method (hence approximate) that converges to the correct value within a 

tolerance. 

After the free surface elevation at time n+1 is computed, the volumetric transport 

components are solved explicitly column by column of the grid using Eq. (1.21) in the 

stage 3 (S3, Figure 1.1) of SI3D. The vertical velocity is then updated column by 

column at the beginning of the stage 4 (S4, Figure 1.1) using the continuity equation 

(Eq. (1.1a)), which in finite difference form is 
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   (1.24)

This equation is solved explicitly, starting from the bottom layer, where the vertical 

velocity is known to be zero.  

The temperature transport equation is solved column by column after the 

hydrodynamic variables are determined in S4 of SI3D (Figure 1.1). Only the vertical 

diffusion terms are treated implicitly, in the numerical solution. Advection and 

horizontal diffusion terms are treated explicitly. The finite-difference form of Eq. (1.4), 

for a node with grid index i, j, k can be written as follows:  

 

Ai,j,ksi,j,k−1
n+1 + Bi,j,ksi,j,k

n+1 + Ci,j,ksi,j,k+1
n+1 = Di,j,k    (1.25)

 

where de coefficients A, B, C and D are: 

𝐴𝑖,𝑗,𝑘 = −𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛 ) 

𝐵𝑖,𝑗,𝑘 = ℎ𝑖,𝑗,𝑘
𝑛+1/(2∆𝑡) + 𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘
𝑛 + ℎ𝑖,𝑗,𝑘+1

𝑛 ) + 𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛 )  

𝐶𝑖,𝑗,𝑘 = −𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 /(ℎ𝑖,𝑗,𝑘
𝑛 + ℎ𝑖,𝑗,𝑘+1

𝑛 ) 



PhD Thesis 

18 

 

𝐷𝑖,𝑗,𝑘 = 𝐹𝑖,𝑗,𝑘
𝑛 +

(ℎ𝑖,𝑗,𝑘
𝑛−1 + 𝑠𝑖,𝑗,𝑘

𝑛−1)

2∆𝑡
 −𝐷𝑣𝑖,𝑗,𝑘+1 2⁄

𝑛 (𝑠𝑖,𝑗,𝑘
𝑛−1 − 𝑠𝑖,𝑗,𝑘+1

𝑛−1 )/(ℎ𝑖,𝑗,𝑘
𝑛

+ ℎ𝑖,𝑗,𝑘+1
𝑛 )+𝐷𝑣𝑖,𝑗,𝑘−1 2⁄

𝑛  (𝑠𝑖,𝑗,𝑘−1
𝑛−1 − 𝑠𝑖,𝑗,𝑘

𝑛−1)/(ℎ𝑖,𝑗,𝑘−1
𝑛 + ℎ𝑖,𝑗,𝑘

𝑛 ) 

 

Here, the term F represent the explicit terms. Applying equation (1.25) to each of the 

layers at a computational point iΔx, jΔy results in a system of km equations involving 

km unknown values of 𝑠𝑖,𝑗,𝑘
𝑛+1. This form a tridiagonal system of equations for each water 

column, which can be efficiently solved with the double sweep algorithm (Thomas 

algorithm).  Once the new temperature fields are computed, they are used to update the 

density field using Eq. (1.5). The transport equation can be also used to simulate other 

passive tracers in the same way that temperature, solving an additional tridiagonal 

system of equations (per water column) for each passive tracer simulated. 

Finally, the new scalar turbulent transfer coefficients (eddy viscosity and 

difussivity) are calculated column by column with the numerical algorithm of the 

turbulence equations (1.6)-(1.7) at the end of S4 (Figure 1.1). The approach adopted for 

the solution of the governing equations and the turbulent macroscale is a 3-level fully 

implicit algorithm (more details can be found in Rueda (2001)). The algorithm results in 

a tridiagonal system of equations for each water column that is solved using the double 

sweep algorithm (Thomas algorithm). The variables q
2
 and q

2
l are defined at vertical 

velocity points (interfaces between two cells aligned in the vertical direction). The 

discretized equations are written as 
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Once q
2
 and q

2
l at n+1 have been calculated, the eddy viscosity and diffusivity are 

calculated at n+1.  

The finite difference equations for the semi-implicit trapezoidal scheme  are 

nearly identical to those of the semi-implicit leapfrog scheme, except that the time 

interval over which the scheme is applied is halved to Δt from 2Δt. The integration 

procedure is centered at time level (n+ ½)Δt  in the trapezoidal method and no longer 

involves the time level  (n-1)Δt. The equations for the trapezoidal method can be easily 

derived from Eqs. (1.14)-(1.21) by making the changes in the subscripts indicated in 

Table 1.1 and replacing Δt by Δt/2. The variables needed in the scheme at time level (n+ 

½)Δt are determined by averaging the value of the variable at time level nΔt and the 

estimate of the variable at time (n+1)Δt obtained in a previous leapfrog or trapezoidal 

iteration. 

 

Semi-implicit 

leapfrog scheme 

Semi-implicit 

trapezoidal scheme 

(n+1) Δt (n+1) Δt 

n Δt (n+½) Δt 

(n-1) Δt n Δt 

 
Table 1.1. Simple guidelines to derive the finite-difference equations for the semi-implicit 

trapezoidal scheme from the discretized form of the equations using the semi-implicit 

leapfrog method (Eq. (1.1)-(1.11) and (1.16)). The subscripts in the equations for the 

leapfrog method, on the left column, should be replaced by those shown in the right column 

to obtain the finite-difference equations for the semi-implicit trapezoidal method. 

The hydrodynamic and transport model has been extensively validated against 

analytical solutions (Rueda and Schladow 2003) and field data sets collected in a wide 

range of lake environments (Rueda and Cowen 2005; Rueda et al. 2009), including 
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Lake Tahoe (Rueda et al. 2003). Furthermore, it has been used to analyze and study 

fundamental physical processes in lakes (Rueda and Schladow 2009).  

 

1.2.3 Computational implementation 

 

The computational implementation of Si3D is showed in detail in Figure 1.2. Si3D 

starts the execution reading the input data, initializing the model according to these 

input data and printing the model results in the initial state (in the time-step n=0). After 

this initialization, the real simulation of Si3D starts. Different variables control the flux 

execution, Step denotes if the next step will be a leapfrog (left side) or a trapezoidal step 

(right side), Single determine if the trapezoidal scheme will be used or not, Ntrap count 

the number of trapezoidal steps run in each time-step, the total number of trapezoidal 

steps is determined by totaltrap. Finally, the number of total time-steps is controlled by 

niter and when this variable is equal to totaliter, Si3D finishes. The main part of Si3D, 

where the numerical algorithm is executed, is indicated in the Figure 1.2 as Iterative 

Loop. 

At the end of each step, the variables of the model must be updated with the new 

calculations. The type of data update will be different after a leapfrog step, a trapezoidal 

step or the last step before to start a new time-step. After a determined number of time-

steps chosen by the user, Si3D save information as output data, which is stored using 

binary or text files. Finally, Si3D finishes when niter is equal to totaliter.  

In computational terms, Si3D is a complex model that includes more than 20000 

code lines, more than 100 subroutines and a huge quantity of variables (850). Among 

these variables. 250 save information for all the grid, either to store a specific value for 

each water column for 2D variables (as water free surface) or to store a specific value 

for each layer in a given water column for 3D variables (as vertical velocity).  
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1.3 Conclusions 

 

The hydrodynamic model used as test example to apply the optimization strategies 

proposed in this work is presented. The model, Si3D, is a finite-difference model based 

in the 3D-SWE proposed by Smith (2006) and extended for lakes by Rueda (2001). 

Si3D uses a semi-implicit, leapfrog-trapezoidal numerical scheme that is efficient and 

essentially second-order accurate in the spatial and temporal numerical approximations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Flow diagram for the Si3D model. S1, S2, S3 and S4 are the solver stages of 

Si3D. 
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The numerical scheme is based on treating the gravity-wave and vertical diffusion terms 

implicitly and all other terms in the governing equations (including advection) 

explicitly. The model does not use any form of vertical/horizontal mode-splitting to 

incorporate implicit vertical diffusion into the semi-implicit scheme. In this manner, the 

method is guaranteed to be stable without the time-step limitation imposed by the 

gravity wave CFL condition, stricter in explicit or mode-splitting methods.  The 

governing equations for the multilevel scheme are arranged in conservation form by 

integrating them over the height of each horizontal layer. The layer-integrated 

volumetric transports replace velocities as the dependent variables so that the depth-

integrated continuity equation used in the solution for the water surface elevation is 

linear. The advantage of the semi-implicit approach is that the solution for the water 

surface elevation is uncoupled in the model from the solution for volumetric transport. 

A pentadiagonal system of linear equations is solved at each time-step for the water 

surface elevation using an efficient preconditioned conjugate-gradient method. 

Volumetric transports are computed explicitly from the momentum equations.  

Instead of the improvements founded in a semi-implicit approach, the 

computational cost, in terms of required memory and execution time, is still expensive. 

Si3D saves information of the entire grid in a huge quantity of 2D and 3D variables, in 

three different time states.  Moreover, the type of operations presented in the semi-

implicit approach increases the computational complexity and execution time of the 

model. Si3D must solve at each time-step a large number of small tridiagonal equation 

systems (1 in S1 and 2 or more (if passive tracers are used) in S4) using a double-sweep 

method known as Thomas algorithm. Besides, a single, large, pentadiagonal equation 

system must be also solved in S2 for the water surface elevation, using an iterative 

method known as Preconditioned Conjugate Gradient.  
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implementation for 3D finite-difference 
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Abstract  

 

This chapter evaluates the implementation of a nested Cartesian grid in a 3D semi-

implicit hydrodynamic model with synthetic and real examples. The outer model 

provides all the values needed by the governing equations of the nesting (inner) 

subdomain at the boundary (including tangential velocities). A 3D flux relaxation 

scheme is applied to prevent mass and energy drift. The influence of tangential 

velocities in the solution is evaluated, showing a substantial reduction on the results’ 

quality when they are considered negligible and lateral circulation exists. The 

inner/outer coupling implemented achieves a simulation time equal to the inner 

execution time and allow a transfer step equal to the inner time-step, removing time 

interpolation errors. This coupling makes feasible the 3D relaxation implemented. A 

dramatic improvement in memory requirements and simulation time is achieved, that 

allows the use of low-cost low-power consumption platforms in the simulations. 

 

2.1 Introduction 

 

In the last decade, considerable progress has been made in the development of three-

dimensional (3D) transport and mixing models of shallow-water capable of resolving 

with reasonable accuracy and computational cost large-scale physical processes in 

rivers, lakes and reservoirs (Hinterberger et al. 2007, Huang et al. 2010, Leon et al. 

2012, Schwab et al. 2009 Smith 2006). These models can also potentially be used to 

simulate local-scale processes, such as near-shore processes, where detailed topography 

and large changes in vorticity produce changes over small spatial scales. But the high 

resolution grid needed to simulate the local-scale processes requires disproportionately 

large amounts of CPU time and memory. Long simulation times are unacceptable when 

these models are part of decision support systems, where multiple simulations need to 

be run, or when the duration of a simulation exceeds the time period within which a 

result is required. 

Unstructured or structured grid models can be used to conduct simulations of 

large basin-scale and local-scale processes. Unstructured models use grid cells of 

varying shapes and sizes that are pieced together to better represent topographic and 
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bathymetric complexity. Small cell size can also be utilized where the local-scale 

processes are to be represented, increasing cell size away from the zone of interest. 

These models, however, are more computationally expensive than structured grid 

models (Griffies et al. 2000). The algorithmic details are more complex than with 

structured grids, and the accuracy of results is extremely sensitive to the quality of the 

generated mesh. Important related physical processes (such as suspended sediment 

transport) cannot be represented in an immediate and simple way as can be done with 

structured grids (Rueda and Schladow 2003).  

Many studies in shallow water modeling have used finite-difference, structured 

Cartesian grid models with very satisfactory results (Huang et al. 2010, Leon et al. 

2012, Rueda and Schladow 2003, Zavatarelli and Pinardi 2003). Grid generation tasks 

and the implementation of the numerical solution are simpler when compared with 

unstructured approaches. Local-scale processes can be simulated using a high resolution 

grid covering the entire domain. However, this comes at a very high-computational cost. 

Alternatively, nested-grid models can be used to reduce computational cost in oceans 

(Giunta et al. 2007, Rueda and Schladow 2003, Zavatarelli and Pinardi 2003), lakes 

(Leon et al. 2012) and rivers (Kolerski et al. 2010). In nested grid models, a higher 

resolution model (the inner model), is used to simulate the local-scale processes in a 

target zone. This inner model is embedded within a coarser resolution model (the outer 

model) that simulates the basin-scale processes and provides external boundary data to 

the inner model. Using this approach, the high-resolution inner model can be used to 

resolve small-scale circulation and mixing processes in the region of primary interest 

(target zone) while significantly reducing the overall computer time of simulations 

compared to the traditional approach of using only one uniform grid size.   

A standard Cartesian-grid model typically uses a single, high-resolution grid of a 

fixed cell-size over the entire model domain. One important shortcoming of this 

approach is that these models when applied to medium-sized domains or larger can 

often require enormous amounts of computer memory. Memory requirements for these 

models can be especially high if all "dry" cells (cells located on dry land outside the 

boundaries of the water body being simulated) are saved in the active memory during 

simulations. A rectangular Cartesian grid overlaid upon an irregular-shaped water body, 

such as a meandering river, may have a high percentage of dry cells that are stored in 

memory. Curvilinear-grid models (see, for example Herzfeld (2009)) have been used to 
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reduce memory requirements related to dry-cell storage, but these models can introduce 

other computational problems related to the use of a curvilinear coordinate system and 

also lack the desired simplicity of Cartesian grids. The model implemented here keeps 

memory requirements manageable by using a nested grid and storing only "wet" cells in 

active memory. 

The first nested-grid one-way implementation for the Si3D model (Smith 2006), 

N-Si3D, is here presented and, his quality and computational efficiency, evaluated. 

Si3D is a semi-implicit second-order accurate, finite-difference Cartesian grid model for 

3D shallow-water. Three kinds of tests applied to three kinds of example models verify 

and validate the implementation and demonstrate the excellence of the results. The 

examples are:  

 Synthetic rectangular basins with constant wind. These examples allow to verify that 

the hydrodynamic fields in the inner and outer models are the same and to 

demonstrate that the implementation is good at conserving mass and energy. 

 Sacramento River (USA). Scientists use this model to understand the influence of 

tidal river dynamics on the migration of juvenile salmon towards the ocean and to 

reproduce the lateral and secondary circulations in the area of channel meanders. 

The results here presented show that the nesting implementation proposed can 

reproduce lateral circulations not attainable by the lower resolution model of the 

entire basin. 

 Lake Tahoe (USA). Scientists use this model to study the transport of contaminants 

and planktonic larvae in the near-shore (littoral) zone. The results show that the 

nesting implementation described can reproduce recirculation not observed in the 

lower resolution model of the entire basin. 

The high computational cost required to apply the model using high resolution 

grids on large domains can lead to model run times that are slower than real time. This 

prevents the model from being used for forecasting the migration of salmon in the 

Sacramento River or the impact of contaminants and invasive species in Lake Tahoe for 

periods of days or more ahead of time, and/or prevents the use of low-cost and low- 

power-consumption processors or computers. This happens due to the huge number of 

operations and the large storage memory required by 3D high resolution grid, semi-

implicit, second-order models, even when dry cells are not stored in memory. We have 
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developed a hybrid shared and distributed memory parallel implementation with very 

good results for middle resolutions in computer clusters with multicore low-price/low-

consumption servers, but with poor results for the high resolution needed in local-scale 

process simulations (Acosta et al. 2010). In order to deal with higher resolution models 

even in PCs or volume servers (of IDC Taxonomy, www.idc.com) a nesting 

implementation for Si3D is here proposed. Energy efficiency is increasingly important 

in computation, because the increased usage of computation, together with increasing 

energy costs and the need to reduce greenhouse gas emissions call for energy-

efficiency. A basic way to contribute to energy-efficiency is using low carbon footprint 

computers. Expensive and high-power consumption computers can be used for even 

much larger problems. 

The chapter is organized as follows. Section 2.2 presents the characteristics of the 

nesting implementations here evaluated and places this work within the related 

bibliography. Section 2.3 details the nesting approach implementation. Section 2.4 

validates the nested implementation with three kinds of tests using both synthetic and 

real examples, and compares it with other approaches. Results demonstrate that the 

implementation overcomes mass and energy drift problems and it is able to reproduce 

recirculation in Lake Tahoe and lateral circulation in Sacramento River not attainable by 

lower resolution model of the entire basin. Section 2.4 also shows the importance of 

communicating tangential velocities in nested-grid simulations. Results about the 

computational efficiency are also given in this section. Finally, the last section gives 

conclusions.  

 

2.2 Nesting implementation: characteristics, performance. Related works 

 

A nesting implementation comprises several design and implementation decisions that 

affect the quality of simulation results and the computational efficiency: 

Open Boundary Condition (OBC) type.  

The grid border cells of a hydrodynamic model do not have adjacent cells in all its sides 

(there are no cells outside the grid), i.e. the grid has open boundaries. These border cells 

could resolve the governing equations if fictitious boundary cells were added to the 

model. The equations used at these boundary cells depend on the open boundary 

http://www.idc.com/
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condition (OBC) used (Blayo and Debreu 2005, Chapman 1985, Marchesiello et al. 

2001). The main purpose of OBCs is allowing the fluxes generated inside the model 

domain to leave it without reflection, avoiding the consequent deterioration of the 

model solution; although, at the same time, OBC should allow the model to receive 

external inward fluxes (e.g. inner models of nesting schemes). If the model does not 

receive inward fluxes the boundary is passive, otherwise it is active (Palma and Matano 

2001). In pure OBCs, external values are unknown and set to 0 (the value itself, its 

change over time, its change over space or its change over time and space) (Chapman 

1985, Jensen 1998, Martinsen and Engedahl 1987). External data used by OBCs can be 

sensor/climatology data, or data obtained from a larger-domain outer model (used by 

inner models in nesting approaches).  

Several classifications (Blayo and Debreu 2005, Marchesiello et al. 2001, Oddo 

and Pinardi 2008) and comparisons (passive boundaries (Chapman 1985, Jensen 1998, 

Lavelle and Thacker 2008, Nycander and Doos 2003, Palma and Matano 1998), active 

boundaries (Cailleau et al. 2008, Herzfeld and Andrewartha 2012, Jensen 1998, Lavelle 

and Thacker 2008), active nesting boundaries (Cailleau et al. 2008, Herzfeld and 

Andrewartha 2012)) of OBCs can be found in the bibliography. Usual OBCs are 

radiation condition, Flather condition (often classified as radiation condition), Dirichlet 

or clamped condition (it can be considered a special case of radiation (Jensen 1998) or 

the most sharp form of relaxation (Blayo and Debreu 2006)), advective condition, and 

relaxation methods. A passive clamped condition sets to 0 the boundary variables ϕ 

(ϕ=0) (Chapman 1985) or their change over time δϕ/δt=0 (Jensen 1998), active 

clamped conditions set the boundary variables to external values that change over time, 

ϕ=ϕ
ext

 (Blayo and Debreu 2005). Radiation conditions assume a free outgoing wave 

propagation, often normal to the boundary, e.g. the passive OBC Sommerfeld condition 

δϕ/δt + c δϕ/δn=0, which corresponds to the transport of ϕ through the boundary with a 

velocity of c, n is normal to the boundary. The advective condition is frequently used 

for tracers (temperature, salinity),for instance in (Herzfeld and Andrewartha 2012, 

Herzfeld 2009, Oddo and Pinardi 2008, Zavatarelli and Pinardi 2003), δϕ/δt + Vn 

δϕ/δn=0, Vn is the normal velocity in the border cell. A relaxation scheme, in order to 

absorb outgoing flow generated in the model, relaxes the solution of the model toward 0 

or to values calculated from interior values (passive) (Jensen 1998, Martinsen and 

Engedahl 1987, Palma and Matano 1998), or relaxes it to external data ϕ
ext

 (active). 
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Typically, the relaxation is applied in a relaxation band, e.g. the flux relaxation scheme, 

ϕ=α×ϕ
target

+(1- α)×ϕ
in

, where ϕ
in

 is the interior solution, ϕ
target

 the specified target 

value, and α is the relaxation parameter which varies from 0 to 1 within the relaxation 

band; in active implementations ϕ
target

=ϕ
ext

. An important drawback of the flux 

relaxation scheme is its cost, in terms of communication time or storage required, which 

may prevent its use, especially in 3D models (Mason et al. 2010). Relaxation schemes 

can be applied to other OBCs; for instance, external values could be added in radiation 

OBCs by including a relaxation term (nudging term), δϕ/δt + c δϕ/δn=-(ϕ-ϕ
ext

)/τ 

(Marchesiello 2001).  

Boundaries with clamped condition reflect any outgoing flow if they are passive 

and any outgoing flow not described by the external data if they are active. 

Comparisons show very poor performance of passive clamped conditions (Chapman 

1985, Jensen 1998). Relaxation methods are recommended in comparative studies 

(Jensen 1998, Lavelle and Thacker 2008, Nycander and Noos 2003, Palma and Matano 

2001). Most studies compare passive 1D or 2D OBCs. Jensen (1998) compares 3D 

passive clamped, radiation and relaxation schemes, recommending the relaxation 

scheme for general use but pointing out that reasonably correct target values, ϕ
target

. are 

required. Lawrence and Ashley (2008) compares three different relaxation alternatives 

with shallow-water models recommending the simple implementation used in Martinsen 

and Engedahl (1987) but with correct external inputs as target value. In nesting 

approaches, the external information for the inner model, provided by the outer model, 

is mostly compatible with the inner model solution, especially if both resolve the same 

governing equations. Considering all these studies, N-Si3D uses a 3D active clamped 

condition with a flux relaxation scheme (cost is avoided by the particular coupling 

implementation, see below) to absorb outgoing flow generated in the inner model. 

Relaxation can be used if it is beneficial to prevent energy build-up, e.g. in long-term 

simulations and/or when it is difficult to find inner/outer boundaries with a good 

compatibility. The N-Si3D implementation without relaxation, just clamped condition, 

obtains good results. Comparison made here between clamped condition with or 

without relaxation reveals the goodness of the active 3D relaxation implemented 

(Section 2.4.2). Other alternatives of relaxation have been proposed such as the local 

flux adjustment in Herzfeld (2009), which is algebraically similar to the Flather 

radiation condition Herzfeld and Andrewartha (2012). 
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Numerical implementation of the inner/outer interface and coupling of the inner/outer 

grids 

The N-Si3D OBC implementation guarantees that all the values used by inner cells are 

obtained by the same governing equations with the same discretization method and 

numerical implementation, even boundary values. The outer model provides all the 

values needed by the numerical implementation not computed by the inner model (the 

border cells use, for some variables, values (temporal and spatially) interpolated from 

outer values), so they are also obtained using the same governing equations, 

discretization and numerical implementation though with parameters adjusted for a 

lower resolution grid. Outer model provides all the information required by the inner 

model (flows) and without duplications, so under-specification and over-specification 

problems are reduced, although they are not removed. Incoming flows to and outgoing 

flows from the inner model boundaries depend on these outer values transferred. The 

quality of the solution will depend on distortions introduced at the boundary by the 

outer information transferred and on the noise caused by the reflection at the boundary 

of the outgoing flows generated in the higher resolution inner model and not present in 

the outer information. Distortions in the incoming fluxes lead to mass, momentum and 

temperature (tracers) conservation errors. Temporal and spatial interpolation of data 

transferred and mismatches between the outer and inner bathymetries can cause flux 

distortions and noise. The work (Cailleau 2008) compares results using temporal 

interpolation with two different transfer rates between inner and outer models, showing 

a clear improvement when transfer rate is reduced down to the outer-grid time-step. N-

Si3D transfers data at each inner-grid time-step, removing temporal interpolation. This 

does not affect computational efficiency (execution time perceived by the user, resource 

cost) due to the parallel outer/inner implementation (Section 2.3.4). The inner OBC uses 

a bathymetry transition band in order to minimize the bathymetry mismatch effect on 

the quality (Section 2.3.2). Other works also used a bathymetry transition band 

(Herzfeld and Andrewartha 2012, Mason et al. 2010, Penven et al. 2006).  

The work (Herzfeld 2009) is devoted to demonstrate that the relative positions of 

the variables supplied by OBCs may influence model solution; in particular two 

different relative positions is tested using different OBC types (passive radiation for 

elevation and tangential velocity and passive no-gradient, passive Flather and active 

Flather, for normal velocity). Here two different relative positions for Si3D 
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hydrodynamic model are compared with the active OBC based on clamped and flux 

relaxation scheme, showing better results for the relative position used in N-Si3D 

(Section 2.3.3).   

Offline nesting versus online nesting 

The outer model may be run first independently of the inner model (offline nesting 

(Cailleau et al. 2008, Herzfeld and Andrewartha 2012, Mason et al. 2010)) or 

synchronously with the inner model (online nesting (Cailleau et al. 2008, Debreu and 

Blayo 2008, Penven et al. 2006)). In offline nesting the information to be transferred 

from the outer to the inner model is stored in a file, so a compromise must be met 

among storage, and number of values to exchange and transfer frequency. Here, an 

online implementation is presented that allows transferring at each simulation time-step 

of the inner model (so no temporal interpolation errors are added) and transferring all 

values required for the inner discrete equations, even those of a 3D model (to decrease 

under-specification). Results show no differences between inner and outer model 

outputs (water surface elevation, velocities, temperature, volume) when both inner and 

outer have the same resolution (Section 2.4.2). 

One-way nesting versus two-way nesting  

One-way nesting (Bonaventura and Rosatti 2002, Kolerski et al. 2010, Leon et al. 2012, 

Mason et al. 2010, Zavatarelli and Pinardi 2003) or two-way nesting (Cailleau et al. 

2008, Debreu and Blayo 2008, Fox and Maskell 1995, Harris and Durran 2010, Zhang 

et al. 2007) have been used to exchange information between the components of an 

online nested-grid model. In conventional one-way nesting, the fine-resolution inner 

model is forced by the solution of the outer model (just boundary communication is 

needed). Alternatively, two-way interaction may be used between the inner and outer 

models. This approach adds feedback from all the inner model cells to the outer model, 

with the intention that the outer model benefits from the increased accuracy of the 

solution yielded by the inner model. Two-way nesting does not always improve the 

results (Heggelund and Beentsen 2002) and the interaction requires more execution time 

(computation and communication time). Two-way nesting approaches must have an 

online implementation, the execution time is inner plus outer model execution time plus 

communication time, and, as it is here discussed (Section 2.3.4), this does not change in 

parallel inner/outer implementations of two-way nested semi-implicit models because 



PhD Thesis 

32 

 

of the implicit variables. N-Si3D implementation execution time depends on the inner 

execution time or the outer execution time (Section 2.3.4). 

Parallel Inner/Outer dynamic coupling 

Online nesting implementations require coupling the inner and outer models at 

execution time. This is not an easy task as it is pointed out in (Blayo and Debreu 2006, 

Herzfeld and Andrewartha 2012, Mason et al. 2010). Other works use external software 

for coupling, which also implement the bathymetry transition band, (Cailleau et al. 

2008, Debreu et al. 2012, Penven et al. 2006). Here a coupling implementation that 

allows the execution of the inner and outer models in parallel is proposed (Sections 

2.3.4, 2.4.6). The parallel implementation is more challenging in semi-implicit 

hydrodynamic models because the inner model at the current time-step requires values 

of outer variables at a later outer time-step. The parallel scheme here presented can be 

used with other hydrodynamic models. The parallel execution time achieved is equal to 

the inner-model execution time or the outer-model execution time. Only one outer/inner 

transfer of values per time-step is needed and its communication time does not affect 

execution time because this transfer is overlapped with computation. Although not used 

here, both, inner and outer models, can be parallelized using a domain (data) 

decomposition structure combined with a master-slave structure as in Acosta et al. 

(2010) (there are several attempts to classify task/process structures in parallel 

computing, one of these classification can be found in Silva-Moura and Buyya (1998)).  

External data provided from the outer model 

The exchange of information from outer to inner model (carried out in both one-way 

and two-way nesting) usually includes velocities, active scalar concentration (e.g. 

temperature, salinity or suspended sediment concentration), non-active scalar transport 

(e.g. chlorophyll concentration, tracer concentration) and water surface elevation. Many 

models (Bonaventura and Rossatti 2002, Fox and Maskell 1995, Harris and Durran 

2010, Zhai et al. 2008) transfer normal velocity components to ensure that mass and 

momentum-diffusion fluxes through the nested boundary are consistent, but they do not 

transfer tangential velocity components. While some models (Barth et al. 2005, 

Zavatarelli and Pinardi 2003) do transfer tangential velocities, they have not reported its 

influence on the accuracy of results or the increase in computational time required by 

the model. Here it is shown that the passing of tangential velocities in the boundary 

conditions does not materially affect execution time and can significantly improve the 
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accuracy of the simulations, especially, when water currents and lateral circulations are 

strong and/or features such as vortices exist (Section 2.4.5). 

 

2.3 Nesting specifications and implementation   

 

Figure 2.1 illustrates a schematic set up of a nested grid for the problem of simulating 

circulation and transport in a square basin. The nesting implementation allows to define 

the nesting boundary as any path of segments in the x and y (horizontal) directions, 

selecting a connected inner domain inside the outer domain, being thus able to achieve a 

better adjustment to the region of interest and ignore areas of the domain in which high 

resolution is not required.  The Figure 2.1 example uses a high-resolution grid to resolve 

the local-scale physical processes in the sub-domain formed by the northeastern corner 

of the outer model; those processes are partly driven by the large-scale basin circulation. 

The large basin is discretized using a structured grid with square cells of horizontal size 

Δxog. The boundary that separates the sub-basin from the boundary cells will be referred 

to as the I/O (Inner/Outer) boundary. The sub-basin in the inner model is discretized 

with cells of size Δxig ≤ Δxog. Therefore, the number of water columns of the inner 

model, Nim, will be larger than the number of columns of the outer model, Nom, defined 

within the sub-basin where Nim = (Δxog/Δxig)
2
 Nom. The ratio Δxog/Δxig is the grid 

refinement parameter rg which must be an integer value.  The height of each layer in the 

vertical direction is equal in the outer and inner models (e.g., the i-layer height in the 

outer model is equal to the i-layer height of the inner), and the maximum number of 

layers remains equal in the inner model. 
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Figure 2.1.  Nesting grid example, (a) outer grid model or basin where Δxog is East-West 

and North-South horizontal resolution and (b) inner grid model or sub-basin inside the 

outer grid where horizontal resolution Δxig is half the outer model horizontal resolution. 

The sub-basin is simulated by the inner model with resolution Δxig and within the outer 

model with resolution Δxog. 

The nested  implementation  presented is applied here to the semi-implicit 

hydrodynamic model proposed by Smith 2006, Si3D (more details in Chapter 1) and 

modified to take advantage of several basic optimizations (more details about the basic 

optimizations can be found in Chapter 5, this version is called Basic Si3D). This 

optimizations also include the improvement of data structure of Si3D, explaining in 

detail in Section 2.3.5. 

 

2.3.1  Discrete form of the equations near I/O boundary in the inner model 

 

All inner model cells in the 3D grid resolve the same governing equations with the same 

numerical implementation. The outer model provides all the values needed by the 

numerical implementation not computed by the inner model. The border cells use, for 

some variables, values interpolated from outer values; these interpolated variables are 

called here driving variables and conform the boundary variables of the inner model. 

Consider, for example, the simple sub-domain with a northern I/O boundary shown in 

Figure 2.2(a). The value of ζ at the next time-step in any border column (i,j) depends on 

the unknown volumetric transports (U, V) at their 4 neighboring columns. The discrete 

form of the continuity equation in one such border column is: 

    (2.1)

k = 1 and km denote the surface and bottom layers in the water column and n+1 and n-1 

represent different time intervals. The two terms underlined in the right hand side of Eq. 

(2.1) (driving variables) are values of depth-integrated transport across the northern 

face, at times n+1 and n-1, which are computed by the outer model and provided to the 

inner model (driving variables are highlighted in blue in the figure). One can easily 

derive the equations for other types of boundaries (eastern, western or southern). Note 
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that in an implicit model, or a semi-implicit one as the model used here, in order to 

compute water surface elevation for next time-step n+1 in the inner model, ζ
n+1

, it is 

necessary to communicate the driving volumetric transport values (V
n+1

, or U
n+1

 for an 

east-west boundary), computed in outer model at the end of time-step n, to the inner 

model at the beginning of time-step n. Therefore, the outer model proceeds one time-

step ahead the inner model. The rest of equations are not shown here, they can be 

obtained in a similar way. Figure 2.2 also shows the dependencies for si,j,k (b), Ui+1/2,j,k 

(c), and Vi,j-1/2,k (d). 

2.3.2 Boundary interface between inner and outer model  

 

The additional details in the high-resolution bathymetry will be important in creating 

flow features, which can be resolved by the inner model. Although, the inner and outer 

bathymetries need to match at the interface to reduce the mass flow differences between 

inner and outer models. Hence, the bathymetry information in the inner model will have 

a coarser resolution (equal to the outer model) at the I/O boundary, and will gradually 

 

Figure 2.2. For a northern I/O boundary (rg = 1), dependencies for the calculation of (a) ζ i,j 

(red triangle), (b) si,j,k (red triangle), (c) Ui+1/2,j,k (red circle), and (d) Vi,j-1/2,k (red square). 

The values used in the computation are in green (if they are obtained by the inner 

model) and blue (if they are obtained by the boundary condition, driving variables) 
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transition to the high resolution bathymetry away from it.  Preliminary tests showed that 

a transition band of up to three outer grid cells tbom = 3, corresponding to tbim= tbom × rg 

= 3×rg inner grid cells, obtained good results. The new depth in each water column of 

the transition band is linearly interpolated between outer and inner grid depths.  

The relaxation area implemented in the interface (Section 2.2), smoothing the flux 

changes between inner and outer models in order to maintain a strong consistency 

between their solutions in the area where both interact, preventing flux reflection. The 

inner solution on the interface, i.e. scalar concentration, height, normal and tangential 

velocities (volumetric transports are obtained from velocities and heights), is replaced at 

each time-step by (according to Davies (1976)): 

 

ϕ = (1-α) × ϕ
in

 + α × ϕ
 out

    (2.2)

 

α = 1 – tanh(d/2)      d = 1,2,3,.... tbim            (2.3)

 

where ϕ
in

 and ϕ
out

 are the inner and outer solution respectively, α is a relaxation 

function, and tbim the size of the interface (equal by default to the transition band size). 

 

2.3.3 Relative position of the driving variables on the grid 

 

The relative position on the cell faces and centers of the velocity and surface elevation 

supplied by OBC, or OBC implementation (Herzfeld 2009), affects the quality of the 

results, as demonstrated in the cited reference. Herzfeld (2009) compares two 

alternatives of OBC implementations using different OBC types (passive radiation for 

elevation and tangential velocity and passive no-gradient, passive Flather and active 

Flather, for normal velocity). Other factors affect the OBC quality, as it is pointed out in 

Herzfeld (2009), such as the OBC type, the hydrodynamic model and the application. 

Two alternatives for relative positions have been studied and tested here for Si3D 

and the type of OBC here used. Figure 2.3 shows the final OBC implementation 

included in N-Si3D (a) and the alternative approach studied (b). They have different 
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relative positions of normal and tangential driving variables in the boundary grid (these 

implementations do not require external surface elevation per se). Readers can find 

similarities between the implementation in Figure 2.3(b) and the implementation tested 

in Herzfeld and Andrewrtha (2012). Although both use clamped OBC and compute the 

border surface elevations via the governing equations, here they are computed by the 

same equations used in the rest of the inner domain (it is a border cell of the inner 

domain). The OBC in Herzfeld and Andrewrtha (2012) modifies the equation so that the 

local flux adjustment in Herzfeld (2009) is applied. The local flux adjustment condition 

can be shown to be algebraically similar to the Flather radiation condition as pointed out 

in Herzfeld and Andrewrtha (2012). Moreover, the implementation in Herzfeld and 

Andrewrtha (2012) requires external surface elevations from the outer model to be used 

in the governing equations of these cells. They are boundary cells instead of border cells 

of the inner model. 

Output quality is not the same for both approaches in Figure 2.3, as shown in 

Section 2.4 results for both synthetic and real examples. The implementations here 

presented do not introduce any errors in the computation when inner and outer models 

have the same resolution (as Section 2.4 shows). Therefore, the distortion in the 

incoming and outgoing fluxes is due to the interpolation required to obtain driving 

variables from outer values and to bathymetry interpolation. Thus, errors may depend 

on how many values of driving variables are used by the inner model. Differences are 

more noticeable when tangential velocities play an important role, such as in 

Sacramento River simulations. Thus, which terms in the equations use the driving 

variables is also important. The OBC implementation determines the usage of driving 

variables in the inner equations: number of times they are used, which terms in the 

equations use them (Herzfeld 2009). Herzfeld and Andrewrtha (2009) shows, for N-

Si3D and the alternative OBC implementation of Figure 2.3(b), which terms in the 

governing equations use which driving variables (normal velocity or volumetric 

transport (N), tangential velocity or volumetric transport (T) and temperature (tp)). N-

Si3D OBC implementation uses driving variables 14 times in the computation of the 

inner border variables and the alternative, Figure 2.3(b), 20 times (last row in Table 

2.1).  Border normal velocities (principal responsible of the incoming and outgoing 

fluxes) depend on 2 driving variables (1 normal and 1 tangential, column 4) for Figure 

2.3(a) and on 8 (2 normal, 6 tangential, column 7) for Figure 2.3(b).  
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                             (a)                                              (b) 

Figure 2.3. OBC implementation (western boundary) in (a) N-Si3D and (b) an alternative 

approach with tangential driving variables prescribed within the inner model. 

Refinement parameter rg=1 in this example. Yellow cells obtain elevation by the inner 

governing equation.  

 

OBC implementation N-Si3D Figure 2.3(a) clp-et Figure 2.3 (b) clp-it 
Position of the interior variable in the cell Center Normal Tangential Center Normal Tangential 
Position of the interior variable in the grid  i i+1/2 i i i+1/2 i+1 

Momentum 
equation 

Coriolis --- --- 2N --- 2T --- 
Advection --- 1N 2N/1T --- 2T/1N 1T 

Horizontal Diffusion --- 1T 1N --- 1N 1T 
Wind/bottom stress --- --- 2N --- 2T --- 

Continuity 
equation 

Water Surface Elevation 1N --- --- 1N/2T --- --- 
Vertical velocity 1N --- --- 1N/2T --- --- 

Transport eq.  Temperature 1N/1tp --- --- 1N/2T/1tp --- --- 

Total per column 3N/1tp 1N/1T 7N/1T 3N/6T/1tp 2N/6T 2T 

TOTAL driving variables 11N/2T/1tp -> 14 5N/14T/1tp  -> 20 

Table 2.1. Terms in the inner governing equations that use the driving variables (normal 

velocity or volumetric transport (N), tangential velocity or volumetric transport (T) 

and temperature (tp)). clp-et: clamped external tangentials, clp-it: clamped internal 

tangentials 

 

2.3.4 Inner/Outer dynamic coupling 

 

In order to design the inner/outer dynamic (at execution time) coupling, one needs to 

identify the outer variables required by each inner time-step. Figure 2.4 (a) shows the 

outer model variables used by the inner model at each inner time-step in the one-way 

OBC of the implementation here presented (non-active scalar transport is not included 

in the figures because it is not used in the applications of Section  2.4) and Figure 2.4 

(b) also shows the inner model variables needed by the outer model each outer time-step 

in a two-way OBC version of the implementation (dashed line).  
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(a) 

 
(b) 

Figure 2.4. Data dependencies between inner/outer models. Driving variables (blue, 

denoted with the subscript d), needed by the boundary cells of the inner model at time-

step n, for one-way (a) and two-way (b) implementations. Variables (red, denoted with 

the subscript ra) needed from the outer relaxation area in order to implement the 

relaxation scheme in the inner relaxation area. Variables (green, dashed, denoted with 

the subscript i) transferred from the inner model after time-step n to the outer model 

time-step n+1 in a two-way implementation (b). Data dependencies (arrows) from outer 

to inner model (solid) and from inner to outer (dashed lines). 

In offline nesting the information to be transferred from the outer to the inner 

model is stored in a file, so a compromise must be met among storage 

(capacity/speed/price), and number of values to exchange and transfer frequency. The 

implementation here presented is online, so there are no restrictions about transfer 

frequency and variables to be transferred, since reading from and writing to storage is 

not required. Moreover, in the implementation here proposed the number of 

communications from outer to inner model occurs in parallel to computation, so they do 

not affect execution time as the next equations show. The inner and outer models are 

executed in different processors (cores) with an execution time of (assuming same time-

step Δt for inner and outer model, Figure 2.5 (a)): 

 

           𝑇𝑜𝑛𝑒−𝑤𝑎𝑦 = 𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
+ 𝑁𝛥𝑡 × 𝑇𝛥𝑡

𝑖  (≈ 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑖 )     when 𝑇𝛥𝑡

𝑖  ≥ 𝑇𝛥𝑡
𝑜     

𝑇𝑜𝑛𝑒−𝑤𝑎𝑦 = 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
+ 𝑇𝛥𝑡

𝑖  (≈ 𝑁𝛥𝑡 × 𝑇𝛥𝑡
𝑜 )     when 𝑇𝛥𝑡

𝑖  ≤

𝑇𝛥𝑡
𝑜    

     

   (2.4)

is the number of time-steps, 𝑇𝛥𝑡
𝑖   is the run time for an inner time-step, 𝑇𝛥𝑡

𝑜  is the run 

time for an outer time-step, and 𝑇𝐶
𝑜/𝑖

is the time required for the communication 

(/synchronization) of the driving variables at each time-step.  

The models can be adjusted to balance 𝑇𝛥𝑡
𝑖  and 𝑇𝛥𝑡

𝑜  (by increasing inner or outer 

domain or resolution, etc., to improve quality). An offline implementation of the online 

…

…
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…

n-1 n n+1

n-1 n n+1

Outer steps

Inner time-steps

…

…

…

…

n-1 n n+1

n-1 n n+1

Outer steps

Inner time-steps
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Tahoe real example presented in Section 2.4.4 would generate a file of 54 TB, so an 

expensive and high power consumption storage (and storage network) would be 

required (shop price of tens of thousands of dollars, plus other costs such as installation, 

administration and maintenance). The online implementation here presented can be 

executed in parallel in one inexpensive and low power consumption PC (nowadays 

commodity inexpensive processors have at least two cores). The code can also run in 

parallel in a multithread core (also common nowadays) with a higher execution time 

because inner and outer models would share the core pipeline stages (in particular, the 

ALU or execution stage). This scheme can be applied to several nesting levels. 

Execution time will mainly depend on the most time consuming level (as in pipeline 

architectures) for a number of processing cores equal to the number of levels. The 

program implemented can also be executed sequentially without any change. 

In a two-way implementation, the inner model cannot be executed in parallel to 

the outer model (Figure 2.5 (b)): 

 

𝑇𝑡𝑤𝑜−𝑤𝑎𝑦 = 𝑁𝛥𝑡 × (𝑇𝛥𝑡
𝑜 + 𝑇𝐶

𝑜/𝑖
 +  𝑇𝛥𝑡

𝑖  + 𝑇𝐶
𝑖/𝑜
)    (2.5)

 
Figure 2.5. (a) Inner and outer models executing in two processors. Blue arrows represent 

data communications from outer to inner. Communication time is hidden by 

computations. (b) Inner and outer models in a two-way nesting must be executed 

sequentially. Blue and green arrows represent data communications between inner and 

outer. Total time depends on the inner time plus outer time plus communication time 

from inner to outer (variables of the whole 3D nesting grid) plus communication time 

from outer to inner (variables in the 3D boundary). 
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2.3.5 Improvement of data structures in the Si3D implementation 

 

The 3D model variables are stored in one- or two-dimensional arrays that in order to 

decrease memory requirements and computational time do not reserve space for dry 

columns. 1D arrays store 2D variables defined in the x and y directions, such as ζ. 2D 

arrays store 3D variables defined in the x, y and z directions with the first dimension 

used for x and y, and the second for z. Neighboring north, south, east and west water 

columns are accessed using 4 arrays of one dimension (one for each direction). These 

arrays avoid the extra operations needed to identify neighbor columns, while taking up 

only minuscule memory space; for example, these arrays take up 0.05% of the total 

memory required in the Lake Tahoe model and 0.02% in the Sacramento River model. 

 

2.4 N-Si3D model evaluation 

2.4.1 Tests, metrics and examples 

 

Three kinds of tests and three kinds of examples (synthetic rectangular channels with 

constant wind, Sacramento River and Lake Tahoe) are used to verify, validate and 

evaluate the model. The tests are: 

A. A nesting test with outer and inner models using the same grid resolution (rg=1) is 

done with the three kinds of examples to verify the implementation. This test 

demonstrates that the inner and outer domains are coupled seamlessly. In this test, 

the velocity fields u (East-West or E-W), v (North-South or N-S) and w (vertical), 

water surface elevation (ζ) and temperature (s, active scalar concentration) of both 

models are compared. A normalized error is obtained for each variable at every 

output epoch in several layers (see metrics below). ζ is a 2D variable, conceptually 

associated to the first layer, so only one NRMSE is computed per output epoch. In 

addition, the water volumes (outer and inner) in the nested area are compared in 

order to demonstrate volume conservation between outer and inner models. This 

volume is calculated by multiplying the sum of ζ by the product Δx × Δy, where Δx 

and Δy are the horizontal dimensions of the cells (volume of the first layer).   

B. A nesting simulation with an inner model using a grid resolution higher than the 

outer model (rg>1) and a non-nesting simulation with grid resolution equal to the 
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nested inner model is done with the three kinds of examples. This test is designed to 

demonstrate that the inner model obtains results similar to those of a complete high-

resolution model (HR basin) with much lower computational cost. In this test, all 

variables (u, v, w, ζ, s) and the first-layer volume of the inner and the HR basin 

models are compared as in test A. 

C. A nesting test with an inner model using a grid resolution higher than the outer 

model (rg>1) is done with the two real examples in order to demonstrate that  local-

scale features in the flow cannot be accurately resolved using larger cell sizes (the 

LR model) or if local-scale irregularities in bathymetry and topography are not 

appropriately represented. An HR model, which is able to reproduce the length 

scales of these irregularities, is required to resolve these features and the nesting 

implementation here presented accomplishes it in much less time and using much 

less resources.  

Differences between the outer and inner model (in tests A) and between the HR 

basin and inner model solutions (in tests B) after multiple simulation time-steps are 

taken as a measure of the validity of the nested algorithm implementation. This 

differences were quantified calculating a root mean squared error (RMSE) and a 

normalized root-mean-squared error (NRMSE) as in other validation works (Debreu et 

al. 2012, Halliwell et al. 2009, Kourafalou et al. 2009, Pairaud et al. 2011, Son et al. 

2011):  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥1

𝑐 − 𝑥2
𝑐)2𝑁𝑖𝑚

𝑐=1

𝑁𝑖𝑚
    (2.6)

 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
    (2.7)

 

Where, x1 is a variable defined in cells of one layer in the outer model or HR basin and 

x2 the same variable in the inner model; xmax and xmin are the maximum and minimum 

values found in that layer in the nested zone for both models being compared (as in 

(Halliwell et al. 2009, Son et al. 2011)); Nim is the total number of layer cells in the 

nested zone. A temporal RMSE is also used to compare scalars in a time-step, such as 

cross-sectional flow or total volume, along the whole simulation: 
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𝑅𝑀𝑆𝐸𝑡 = √
∑ (𝑣1

𝑡 − 𝑣2
𝑡)2𝑁𝛥𝑡

𝑡=1

𝑁𝛥𝑡
    (2.8)

 

Area averaged kinetic energy, excess mass, and energy flux are all calculated as in 

Herzfeld and Andrewrtha (2012) for the test B using a channel. These metrics are useful 

for identifying problems in the boundary implementation and for studying whether rim 

currents and other undesirable features may be present in the inner solution due to 

inconsistencies between the external data provided by the outer model and the evolution 

of the inner model. Averaged kinetic energy is computed by:  

 

𝑇𝐾𝐸 = 
1

2𝐴
 ∫𝜌(𝑈2 + 𝑉2)𝑑𝐴

 

𝐴

    (2.9)

 

which computes kinetic energy using Eq. (1.24) of Kowalik and Murty (1993) (as in 

Herzfeld and Andrewrtha (2012)); 𝑈 =  ∫ 𝑢𝑑𝑧/𝐷
𝜁

−𝐻
 and 𝑉 = ∫ 𝑣𝑑𝑧/𝐷

𝜁

−𝐻
 are depth 

averaged velocities in the x and y direction, respectively, 𝜁 is the water surface 

elevation, H is the bottom depth, and D is the total depth 𝐷 = 𝜁 + 𝐻 . Area averaged 

water level is computed using the excess mass metric of Palma and Matano (1998) (as 

in Herzfeld and Andrewrtha (2012)):   

𝐸𝑀 = 
1

𝐴
 ∫𝜁𝑑𝐴

 

𝐴

    (2.10)

 

It is used to check that the boundary implementation properly represents mass fluxes 

through the open boundaries (Palma and Matano 1998). Finally, energy flux is 

computed for a western I/O boundary by Eq. 6 of Palma and Matano (2001) (as in 

Herzfeld and Andrewrtha (2012)): 

 

𝑂𝐵𝐶𝑓𝑙𝑢𝑥 = 
1

𝑊
∫ 𝐷𝑈𝑖/𝑜 (𝑔𝜁 +

1

2
(𝑈2 + 𝑉2)) 𝑑𝑦

 

𝑊

    (2.11)
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where W is the width of the frontier beside the I/O boundary and Ui/o is the depth 

averaged normal velocity at the I/O boundary. 

 In the first example, the domain is a rectangular basin with a small number of 

grid cells (Section 2.4.2). The sub-basin is the southern end of this basin for the Test A 

and a southern central rectangle for the Test B. In the second example (Sacramento 

River, Section 2.4.3), the sub-basin is a bend in the river with high values of velocities 

(normal and tangential) and both lateral re-circulation and secondary circulation zones. 

In the last example (Lake Tahoe, Section 2.4.4) the model is used to resolve the 

circulation and transport patterns in the lake’s near-shore regions. The sub-basin is the 

southeast corner of the lake. Tangential velocity can affect the quality of the results 

significantly as Section 2.4.5 shows. Table 2.2 summarizes the characteristics of the 

examples and the resolutions (for outer, inner and HR basin), temperature, simulation 

period, time-steps, output epochs and kind of tests used in each example. 

 

2.4.2 Case 1: Rectangular synthetic channels. 

 

Test A was applied to a rectangular flat bottom basin aligned in the N-S direction, with 

a length of 11000 km and a width of 110 km, both values greater than the barotropic 

Rossby radius (channel 1, 2
nd

 row in Table 2.2). It has a constant depth of 10 m. The 

channel is discretized using square cells of 5.5 Km (Δx=Δy), and a vertical dimension of 

0.5m (Δz). The inner grid covers the southern 2750 km of the channel. The model is 

forced with a southern-wind speed of 6 m/s. Temperature is 25ºC at free surface and 

decreases 0.5ºC per layer, reaching 15.5º at bottom layer. The period of time simulated 

is 60 days (steady state before 20 days) and the time-step is set to 50 seconds.  

Examples Basin size Inner size 
Outer 

resolution 
Inner 

resolution 
HR  basin 

Temp-
erature 

Simulation 
period 

Time-
step 

Output 
epoch T

es
t 

Channel 1 
11000km× 

110km×10m 
2750km× 

110km×10m 
5.5km× 
0.5m 

5.5km× 
0.5m  

gr(25-
15.5ºC) 

60 days 50s 1h A 

Channel 2 
1000km× 
540km× 

(50m-110m) 

420km× 
280km× 

(50m-81.2m) 

20km× 
(2m,5m) 

4km× 
(2m,5m) 

4km× 
(2m,5m) 

cst(20ºC),  
gr(25-

14.5ºC) 

30 days, 40 days 
(with temp. gr.) 

50s, 
450s, 
1800s 

30’ B 

Sacra-
mento 
River 

32km×170m 
× (1m-16m) 

1670m×1720
m ×(1m-13m) 

10m/ 
49626c 

10m/4593c 
5m/17700c 
2m/109067c 

5m/ 
198918c 

cst 
10 days (Julian 

Days 8-17, 2009) 

4s/10m 
1s/5m 
1s/2m 

1h 
A 
B 
C 

Lake 
Tahoe 

20km×30km 
× (0.2m-
0.5km) 

7420m×6320
m ×(0.2m-

430m) 

100m/ 
49215c 

100m/3932c 
20m/99722c 

20m/ 
1244896c 

sensor 
outputs 

30 days (Julian 
Days 185-215, 

2008) 

50s/100m 
10s/20m 

1h 
A 
B 
C 
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Tests A and B were applied to an open zonal channel (channel 2, 3
rd

 row in Table 

2.2) forced with constant alongshore wind (Chapman 1985, Herzfeld and Andrewrtha 

2012, Palma and Matano 1998, Palma and Matano 2001) (Figure 2.6). (Chapman 1985, 

Palma and Matano 1998, Palma and Matano 2001) used 2D models, for which the 

linearized version has an analytical solution in an unbounded domain (Chapman 1985). 

Data bellow for channel 2 are equal to those of the idealized test case in Herzfeld and 

Andrewrtha (2012) (Sect. 3.1). The channel has a bottom slope in the N-S direction 

(from 110m at the northern coast to 50m at the southern coast). The outer model 

solution for the open zonal channel is achieved by mimicking an infinite coast using 

cyclic open boundaries. The model is run in the southern hemisphere, using constant 

Coriolis of -0,0001028s
-1 

(Rossby radius is 215.44km). There are 22 vertical layers, 2 m 

depth the surface and 5m depth the other layers. Both, the LR outer and the HR basin 

grids are 1000 km x 540 km and the HR inner grid is 420 km x 280 km. Both, the inner 

and basin grids have horizontal square cells of 4km and the outer grid of 20 km (rg=5). 

Temperature is maintained at 20ºC. The bottom drag coefficient is 0.025. An alongshore 

wind of 8 m/s with drag coefficient of 0.00128 is applied, which creates an upwelling 

solution with an elevation increasing northwards to support an eastwards geostrophic 

flow. Time-steps of 50s and 450s have been used. The period of time simulated is 30 

days. This test allows comparing the accuracy of the nesting procedure implemented 

with the accuracy of other methods and checking the sensitivity of some parameters in 

the quality of the results. An additional channel 2 simulation with a vertical temperature 

gradient has been conducted here. Temperature is 25º at free surface and decreases 

0.5ºC per layer, reaching 14.5º at bottom layer. 

Table 2.2. Example characteristics: size of the complete basin and the inner domain 

(length×width ×depth); resolution used in the nesting simulations (outer and inner 

grid), and in the high-resolution (HR) basin simulations (square cell horizontal side × 

cell depth / number of columns); temperature (cst=constant, gr: gradient from top to 

bottom, -0.5ºC per layer); time period of the simulations; simulation time-step for the 

different sizes of the square cells (second /square cell side); time period between 

output epochs (hours, minutes); and test conducted. 
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Figure 2.6. Channel 2: High-resolution basin and inner model bathymetry (white rectangle). 

 

2.4.2.1 Test A. Comparison of inner and outer models with the same resolution.  

 

Every hour, all the variables (u, v, w, ζ and s on the free surface plane) were collected, 

and the outer and inner solutions in the southern end of the basin were compared. The 

NRMSEs (Eq.(2.7)) for all variables and the temporal RMSE (Eq.(2.6)) for water volume 

(in % of average volume in the nested area of the outer solution) are all less than 4% in 

all output epochs and all layers (3
rd

 column in Table 2.3). This error is low and is due to 

the preconditioned conjugate-gradient method used to solve the five-diagonal system of 

equations for water surface elevation. An iterative solver, such as the preconditioned 

conjugate-gradient (PCG) method, converges to the solution of the equation system 

with much lower computational cost than a direct solver. However, the solution using a 

direct solver is exact (excluding round-off error), while the solution with an iterative 

solver is approximate within a tolerance, which is set by the user. In real applications, 

using direct solver is not efficient due to the large systems of equations involved. 

However, for small problems, a direct solver can be used to eliminate the approximation 

error in the solution of the system. In this test case we used Gaussian elimination for 

both inner and outer models. The NRMSEs for u, v, w, ζ and s are then all zero (2
nd

 

column in Table 2.3). These results demonstrate that the nested approach here proposed 

does not introduce errors when inner and outer grid resolutions are the same. No volume 

drift over time is observed with or without relaxation area. 
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Channel 1 Channel 2 Sacramento River Lake Tahoe 

  Test A Test A Test B Test B Test A Test A Test B Test B Test A Test A Test B Test B  

 

inner/ 
outer 

(Gauss) 

inner/ 
outer 

(PCGM) 

inner/ HR 
basin  

(Gauss) 

inner/ HR 
basin 

(PCGM) 
inner/ 
outer 

inner/ 
outer, 
clp0-t 

inner/ 
HR 

basin, 
clp-it 

inner/ 
HR 

basin 
inner/ 
outer 

inner/ 
outer, 
clp0-t  

inner/ 
HR 

basin, 
clp-it 

inner/ 
HR 

basin Eq.  

Resoluti. 
5.5Km/ 
5.5Km 

5.5Km/ 
5.5Km 

20km/4km 20km/4km 
10m/ 
10m 

10m/ 
10m 

5m/5m 5m/5m 
100m/ 
100m 

100m/ 
100m 

20m/ 
20m 

20m/ 
20m 

  

Temp. gr gr cst gr cst gr cst cst cst cst sensor sensor sensor sensor  

Time 60d 60d 30d 40d 30d 40d 10d 10d 10d 10d 30d 30d 30d 30d   

Time-step 50s 50s 50s 50s 4s 4s 1s 1s 50s 50s 10s 10s   

Epoch 1h 1h 30’ 30’ 1h 1h 1h 1h 1h 1h 1h 1h  

u (E-W) 0 3.36 1.32  1.39 4.27 4.41 1.94 6.15 5.03 4.12 2.19 2.93 3.32 2.99 7 

v (N-S) 0 3.39 0.86 0.90 3.53 3.66 1.63 3.30 3.51 2.26 1.8 2.42 3.09 2.66 7 

w (vert.) 0 3.51 1.11 1.16 3.61 3.72 0.62 2.26 4.36 3.42 0.88 0.98 1.66 1.24 7 

ζ (wse) 0 3.07 0.57 0.61 2.99 3.11 0.10 0.44 0.37 0.33 1.57 1.91 1.91 1.82 7 

s (temp.) 0 0.21     0.25       0.32 
   

  0.87 0.88 1.76 1.68 7 

volume 0 0.95 0.21 0.22 0.89 0.91 0.1 0.72 0.09 0.08 0.13 0.13 0.21 0.2 8 

Table 2.3. NRMSEs (Eq. (2.7), in %) for velocity fields u, v and w, water surface elevation (ζ) and 

temperature (s, active scalar concentration), and RMSEt (Eq. (2.8) in % of average volume) for 

volume (Σζ × Δx × Δy) obtained for the different examples in the top layer. Inner model 

variables are compared to LR outer model (Test A) or HR basin model (Test B) variables. 

Outer/inner resolutions, simulation period (days), time-step (seconds), output epoch period 

(hours, minutes), and temperature (cst=constant, gr: gradient in Table 2.1, or sensor outputs) 

are also given. Gauss/PCGM indicates the solver used to obtained ζ in the synthetic examples. 

clp0-t=OBC for tangential velocities is clamped to 0. clp-it= tangential velocities within inner 

border cells are clamped to external outer values. 

2.4.2.2 Test B. Comparison of the inner model within a low-resolution outer model 

with a high-resolution model of the complete basin.  

 

The models were simulated for 30 days (as in Herzfeld and Andrewrtha (2012)), when 

the solution had reached a steady state.  The resulting water surface elevation and 

velocity fields are shown in Figure 2.7. The figure shows the solution of the HR basin 

and the inner model superimposed for a simulation that transferred the information from 

outer to inner model every 1800s with a time-step of 50s (similar result are obtained for 

time-steps of 450s). The solution of the inner model is not deviated from, and shows a 

good continuity with, the solution achieved in the HR basin. TKE, EM and OBCflux 

metrics (Eqs. (2.9), (2.10) and (2.11)) have also been used to compare the inner HR 

solution to the outer LR and HR basin models in the nested area. 
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Figure 2.7. Channel2: Water surface elevation and depth averaged velocity after the steady 

state is reached (30 days after the simulation starts) for the HR basin model, with the 

nesting inner model superimposed. 

Steady state TKE, EM and OBCflux are shown in Table 2.4 for different parameter 

combinations. The differences between inner and HR basin solutions, when the steady 

solution is reached, are those in columns 7, 8 and 9. The differences between inner and 

LR basin solutions are similar, as columns 10, 11 and 12 show for some parameter 

combinations. Table 2.4 shows an important error reduction if the iterative solver (PCG) 

used to obtain water surface elevation ζ is substituted by a direct method (Gaussian 

elimination). The differences are zero when both inner and outer models have the same 

resolution, even without relaxation (row 7); the nesting implementation does not 

introduce any errors (under-specification or over-specification) when there are neither 

spatial interpolation nor bathymetry mismatch. The differences are slightly reduced, 

both with and without relaxation area, if the inner model is forced each time-step (row 4 

vs. 5, 11 vs. 12) because time interpolation errors disappear, and when the time-step 

increases (from 50s to 450s) because interactions between inner and outer model 

decrease. The use of the OBC implementation in Figure 2.3(b) introduces additional 

errors, as can be seen comparing rows 12 and 13. The results obtained with the OBC 

implementation are good compared to those obtained in Herzfeld and Andrewrtha 

(2012) for different OBCs (clamped with local flux adjustment, radiation, Flather, etc., 

Table 4.1, Figure 4.2  in Herzfeld and Andrewrtha (2012)). Figure 2.8 (left axis, 

continuous line) shows the time evolution of EM for several configurations, in 
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particular the configurations in rows 11, 14, 4, 7, 6, 8 and 9 in Table 2.4 . There is no 

EM drift when the flux relaxation scheme is applied to the clamped OBC and the EM 

drift without relaxation is hardly observed. The differences between inner and outer EM 

in the white rectangle in Figure 2.6 are also shown in the figure (right axis, dashed 

lines) so that the EM drift obtained with the clamped OBC without relaxation can be 

detected in the figure; in particular, those of the configurations in rows 7 and 14 (50s 

transfer step, No-RA). Simulations with 450s time-step with relaxation have similar 

slope than those obtained with 50s time-step. With the clamped OBC without 

relaxation, the EM drift has clearly lesser slope than the clamped OBC without 

relaxation in Herzfeld and Andrewrtha (2012) (Fig. 4.2). Figure 2.8 also shows data for 

transfer step of 7200s with and without relaxation. These graphs allow seeing more 

clearly the goodness of the relaxation implementation in avoiding mass drift. If the 

relaxation area is not used, the nesting simulation obtains low errors for transfer 

frequencies up to 3600s. With relaxation area, the water surface elevation starts to 

increment uncontrollably for transfer frequencies over 21600s. 
 

ζ 

solver rg 

I&O 

time-

step 

O->I 

transfer 

step 

Relax-

ation 

area 

OBC 

impl. 

inner 

TKE 

(%) 

vs. HR 

EM 

(%) 

basin 

OBCflux 

(%) 

inner 

TKE 

(%) 

vs. LR 

EM 

(%) 

basin 

OBCflux 

(%) 

PCGM 1 450s 450s No clp-et 2.46 2.11 1.96    

PCGM 5 450s 450s Yes clp-et 3.42 2.73 3.76    

PCGM 5 50s 50s Yes clp-et 3.53 2.82 3.8 3.55 2.84 3.79 

PCGM 5 50s 1800s Yes clp-et 3.66 2.94 3.99 3.73 2.97 4.06 

PCGM 5 50s 7200s Yes clp-et 3.84 4.39 6.12    

PCGM 5 50s 50s No clp-et 4.14 6.21 9.39 4.26 6.33 9.52 

PCGM 5 50s 7200s No clp-et 7.51 10.66 15.66    

Gauss 1 450s 450s No clp-et 0 0 0 0 0 0 

Gauss 5 450s 450s Yes clp-et 0.92 0.42 1.33    

Gauss 5 50s 50s Yes clp-et 0.99 0.47 1.39 1.01 0.48 1.41 

Gauss 5 50s 1800s Yes clp-et 1.16 0.6 1.65 1.18 0.61 1.68 

Gauss 5 50s 1800s Yes clp-it 1.49 0.76 1.73    

Gauss 5 50s 50s No clp-et 1.33 3.59 5.07 1.35 3.63 5.14 

Table 2.4. Steady state TKE, EM, OBCflux (western boundary) for different simulations. 

These are the RMSE errors for the 30 days simulation expressed as a percentage of the 

steady state of the HR basin (left) and of the LR basin (right). Columns (from left to 

right):  iterative solver used to obtain water surface elevation ζ (PCGM or Gauss), grid 

refinement parameter rg, inner and outer time-step, frequency of transfers from outer to 

inner, interface with (yes) or without (no) relaxation area, and OBC implementation 

(clpt-et in Figure 2.3(a), clp-it in Figure 2.3(b)). 
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Additionally, simulations with a gradient in temperature have been executed, 

showing a slightly increase in errors as can be observed consulting the results 

simulations in Table 2.3 (columns 4 and 5, gr data). The relaxation area avoids EM drift 

in all the variables, including temperature. 

2.4.3 Case 2: Sacramento River  

 

The hydrodynamics of the lower reach of the Sacramento River (Figure 2.9) with a 

length of  32 km, between the populations of Freeport (38º 27ˈ 22ˈˈ, 121º  30ˈ 01ˈˈ) and 

Walnut Grove (38º 14ˈ 20ˈˈ, 121º 31ˈ18ˈˈ) in California, were modeled (4
th

 row in Table 

2.2). The reach has an average depth of 6 m, with maximum depths of approx. 16 m, 

and an average width of approx. 170 m. The river hydrodynamics are influenced by 

both flows from the Sacramento River and tidal dynamics due to its proximity to the 

sea. Juvenile Chinook salmon migrates through this reach of the Sacramento River in 

their way to the sea, where the existence of different river distributaries (see for 

example the diffluence of the Sacramento River into Sutter Slough, USGS 11447830, 

Figure 2.9) allow juveniles to choose different migration routes to the sea (Perry et al. 

2010). The percentage of salmon entering each of the routes is primarily driven by the 

amount of water from the Sacramento River that enters each of them (Perry et al. 2010); 

however, since many of these river distributaries are located where the Sacramento 

River bends (see Figure 2.9), the lateral circulation, characteristic of these river 

environments, could drive salmon towards the outer region of the bends where most 

entrances to the different migration routes are located, and hence, it could increase the 

 

 

Figure 2.8. Time series of EM for the inner model (left axis, continuous line) and 

differences between inner and outer EM in the white rectangle in Figure 2.6 (right axis, 

dashed lines) for several configurations: type of ζ solver (PCG or Gauss), rg (1 or 5), 

inner and outer time-step (50s or 450s), outer to inner transfer step (50s, 450s or 7200s), 

with (RA) or without (No-RA) relaxation area.  
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entrainment of salmon towards these routes. Thus, being able to reproduce lateral 

circulation at bends is of key importance for any model trying to reproduce salmon 

route selection in the lower reaches of the Sacramento River. Reproducing the lateral 

circulation and small-scale vortices in the area of meanders requires a high resolution 

grid. Results here presented demonstrate that a bathymetry of 2m square columns 

clearly reveals effects not correctly simulated with lower resolution bathymetries (5m or  

10m). 

 
Figure 2.9.  Sacramento River hydrodynamic model domain (in blue): domain for the low-

resolution outer model and the high-resolution basin model (left) and domain for the 

inner model (right). Markers show the location of USGS gaging stations used as model 

boundary conditions. The location of section A inside Clarksburg Bend is also shown.  



PhD Thesis 

52 

 

A complete 2m simulation would be computationally expensive and, for the 

complete reach, 5m square columns is the maximum resolution provided by the United 

States Geological Survey (USGS) we have accessed. The nested procedure here 

proposed allows resolving this problem with an acceptable computational time by using 

a 2m high resolution grid in the meander areas. Here, we present the results of the outer 

model, inner model and high-resolution (HR) basin for the region of Clarksburg Bend 

(enclosed region in Figure 2.9), where lateral circulation has been proven to occur 

Dinehart and Burau (2005). The outer domain includes the whole basin (shown in 

Figure 2.9 (left)) and is discretized using grid cells of size 10m x 10m in the horizontal 

plane with 49626 water columns while the inner domain uses 10m x 10m (Test A) with 

4593 water columns, 5m x 5m (Test B) with 17700 water columns or 2m x 2m (Test C) 

with 109067 water columns, i.e. rg=1, rg=2 or rg=5, respectively (4
th

 row in Table 2.2). 

The HR basin uses 5m x 5m cells (test B) with 198918 water columns, which is the 

maximum resolution available for the complete reach provided by the USGS. The time-

step is 4s for the test A simulations (10m) and 1s for tests B and C (5m and 2m) for 

stability purposes.  

The boundaries of the outer domain were chosen to match the location of existing 

USGS gaging stations (Figure 2.9). Flows were used as the boundary conditions for 

locations USGS 11447650, 11447830, 11447850 and 11336600, based on observations 

collected at each of these gaging stations, in a given time period. Free surface elevations 

at the remaining two model boundaries were forced to vary according to observations 

collected at USGS 11447905 and 11447903, respectively. Temperature comparison is 

not provided for Sacramento River, because it was kept constant (with a uniform 

temperature equal to 8º C typical of the winter period) through all the simulation due to 

the negligible variations in Sacramento River temperatures during the study period 

(January 2009). Sacramento River temperatures normally begin to decline in October, 

remain uniform from December to March, and begin to increase in April. The model 

was simulated during a period of time of 10 days in 2009 starting on January 8
th

 and 

ending on January 17
th

, with hourly output epochs. 
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2.4.3.1 Test A. Comparison of inner and outer models with the same resolution.  

 

Inner and outer models have been compared in the nested area (enclosed region in 

Figure 2.9). Figure 2.10 compares, for each variable evaluated, the solution obtained by 

the inner model (y-axis) with that obtained by the outer model (x-axis), for all output 

epochs simultaneously. When both solutions are equal, that value is placed on the 

dashed line y=x. If the outer model solution is higher, the point is placed in the lower 

triangle while if it is lower, it is placed in the upper triangle. The compared variables are 

horizontal velocities (u and v) vertical velocity (w) and water surface elevation (ζ).  The 

NRMSEs (Eq. (2.7)) in the top-most layer averaged over the simulation time are 1.94%, 

1.63%, 0.62% and 0.1% for u, v, w and ζ, respectively (6
th

 column in Table 2.3). Similar 

or better results are obtained in the other layers. Finally, the sum of ζ is used to check 

for volume conservation ((Σζ) × Δx × Δy). The temporal RMSE (Eq. (2.8)) is 0.19m
3
, 

which represents 0.1% of the average volume over the simulation time measured in the 

nested area of the outer model.  

 
Figure 2.10.  Sacramento River, test A: u, v, w and ζ compared between inner and 

outer model solutions for surface layer at all output epochs. Each point represents the 

value obtained by the inner model (y-axis) against the solution obtained by the outer 

model (x-axis). If both solutions coincide, the point is located on the dashed line. 
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2.4.3.2 Test B. Comparison of the inner model within a low-resolution outer model 

with a high-resolution model of the complete basin. 

 

The inner and HR models, both with 5m horizontal resolution, have been compared in 

the nested domain (Figure 2.9(right)) excluding the relaxation area. The NRMSEs (Eq. 

(2.7)) in the top layer averaged over the simulation time are 4.12%, 2.26%, 3.42% and 

0.33% for u, v, w and ζ respectively (9
th

 column in Table 2.3). Similar o better results 

are obtained in other layers. Finally, the sum of ζ is used to check for volume 

conservation ((Σζ) × Δx × Δy). The temporal RMSE (Eq. (2.8)) is 0.16m
3
, which 

represents 0.08% of the average volume over the simulation time measured in the nested 

area of the HR basin model.  These results indicate that the inner model yields similar 

solutions in the meander area to those of the HR basin model, but with a much lower 

computational cost. No volume drift over time is observed in the simulation period.  

The test has been repeated using the OBC implementation in Figure 2.3(b). The 

NRMSEs (Eq. (2.7)) in the top-most layer averaged over the simulation time are 5.03%, 

3.51%, 4.36% and 0.37% for u, v, w and ζ, respectively (Table 2.3, clpt-it). The 

temporal RMSE (Eq. (2.8)) used to check for volume conservation is 0.09% of the 

average volume over the simulation time in the nested area. 

 

2.4.3.3 Test C. Comparison with low-resolution outer model 

 

We compared the outer and inner solutions looking for local-scale hydrodynamic 

features which are well resolved by the inner model and not by the outer model. 

Modeled values from the outer and inner grids were evaluated at section 4 of Dinehart 

and Burau (2005) in Clarksburg Bend (corresponding with section A in Figure 2.9), 

where lateral circulation is known to occur. Modeled values were averaged over a peak 

ebb tide (~0.5 hr) and then interpolated (nearest method) to the location of points in 

section 4 of Dinehart and Burau (2005). Lateral circulation was calculated as the 

velocity field parallel to the plane of the cross-section. No further reorientation of the 

cross-section was done.  

The outer LR model (10m horizontal resolution) was unable to correctly 

reproduce the lateral circulation (Figure 2.11(a)), as well as the inner model using a 
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horizontal resolution of 5m (Figure 2.11(b)). However, the 2m inner model (Figure 

2.11(c)) was able to reproduce it, possibly as a result of a better representation of the 

outer bank, where the stair-stepping effect, characteristic of a Cartesian grid domain, is 

smoothed. Model and field data are not quantitatively comparable since (1) lateral 

velocities in the field were calculated in a time period when average discharges were > 

650 m
3
s

-1
 (while in our model discharges during peak tides are ≤ 400 m

3
s

-1
), and (2) 

Dinehart and Burau (2005) reoriented u and v to match suspension indicators 

(backscatter signal). On qualitatively basis, however, the pattern of lateral circulation in 

the model is similar to that observed in the field (Dinehart and Burau 2005), with 

velocities directed outwards near surface and directed inwards near the bed, with the 

zero velocity isoline located at middle depths. Our model computed outer velocities that 

are stronger than inner velocities in section A, while inner and outer field velocities 

were similar in magnitude. This is, however, the result of no further reorientation of the 

cross-section in the model. 

 

 

(a) 

 

 

(b) 

 

 

 

 

(c) 

 
Figure 2.11. Sacramento River, test C: Lateral circulation at Clarksburg Bend (A in 

Figure 2.9), the location of section 4 of Dinehart and Burau (2005), according to (a) the 

outer 10m-resolution results, (b) the inner 5m results and (c) the inner 2m results.  

Views are upstream. 

2.4.4 Case 3: Lake Tahoe   

 

The nested-grid approach is being used to resolve near-shore circulation in Lake Tahoe 

(Figure 2.12). The extraordinary variability of the physical environment in the near-

shore makes the task of characterizing it by means of observations a challenge.  
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Near-shore circulation can be used in different studies. For example, in Lake 

Tahoe, it is going to be used to develop a long-term risk assessment of Asian clam 

growth, spread and impact. In this study, the near-shore circulation can be used to 

develop a transport model of Lake Tahoe to characterize the pathways of transport of 

young life stages of Asian clams from the existing beds to other near-shore areas. To 

achieve this goal, a high resolution model must be used where fine-scale information is 

needed (such as in the near-shore). The nested approach to developing a high-resolution 

transport model of the near-shore is justified because the high-resolution simulation of 

the whole lake (roughly 20km x 30km in the horizontal dimension and a depth of up to 

500 meters in the vertical dimension) would require expensive computation hours in 

expensive and high energy consumption parallel computers (5
th

 row in Table 2.2).  

 

Figure 2.12. Lake Tahoe hydrodynamic model domain: domain for the low-

resolution outer model and the high-resolution basin model (left) and domain for the 

inner model (right).  

The selected study area for the observational experiments was the region adjacent 

to the largest urban area, Southeast Lake Tahoe (Figure 2.12). This is where the greatest 

anthropogenic effects are known to occur and declining water quality has been 
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measured (Taylor 2004). The outer domain is discretized using grid cells of size 100m x 

100m in the horizontal plane with 49215 water columns, while the inner domain uses 

100m x 100m cells (test A) with 3932 water columns or 20m x 20m (tests  B and C) 

with 99722 water columns, i.e. rg=1 or rg=5, respectively. The HR basin uses 20m x 

20m cells (test B) for the complete bathymetry of Lake Tahoe with 1244896 water 

columns (5
th

 row in Table 2.2). The Lake Tahoe bathymetry data used for the present 

study was obtained from USGS (Figure 2.12). The vertical resolution is set up as layers 

with variable depth increasing from 0.5 m near the top to nearly 10 m near the bottom. 

The time-step is 50s for the test A simulations (100m) and 10s for tests B and C (20m) 

for stability purposes.  

In the simulations, the model was forced (input data) using surface heat and 

momentum fluxes estimated from local atmospheric variables (short and long wave 

radiation, air temperature, relative humidity, and wind speed and direction) obtained 

from meteorological data. These data were taken primarily from meteorological stations 

maintained by the Tahoe Environmental Research Center (TERC). There are ten 

shoreline and on-lake meteorological stations. All stations provide a near-continuous 

record of wind magnitude and direction and air temperature. The model was simulated 

from July 3
th

 2008 (Julian Day 185) to August 2
nd

 (Julian Day 215), with hourly output 

epochs. 

 

2.4.4.1 Test A. Comparison of inner and outer models with the same resolution 

 

The inner and outer model have been compared in the nested area (Figure 2.12 (right)), 

both with 100m square columns. The variables evaluated are horizontal velocities (u 

and v), vertical velocity (w), water surface elevation (ζ) and temperature (s). The 

NRMSEs (Eq. (2.7)) in top-layer averaged over time are 2.21%, 1.81%, 0.88%, 1.59% 

and 0.86% for u,v, w, ζ and s respectively, and similar or better in other layers (10
th

 

column in Table 2.3). Finally, the temporal RMSE (Eq. (2.8)) of the water volume ((Σζ) 

× Δx × Δy) differences between outer-inner models is 0.22m
3
 which represents 0.13% 

of the average volume over time measured in the nested area. No volume drift over time 

is observed in the simulation period.  
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2.4.4.2 Test B. Comparison of the inner model within a low-resolution outer model 

with a high-resolution model of the complete basin. 

 

The inner and HR models, both with 20m square columns, have been compared in the 

nested domain (Figure 2.12 (right)) excluding the relaxation area. The NRMSEs (Eq. 

(2.7)) in the top layer averaged over the simulation time are 3.01%, 2.66%, 1.23%, 

1.84% and 1.69% for u,v, w, ζ and s respectively, and similar or better in other layers 

(12
th

 column in Table 2.3). The temporal RMSE for volume ((Σζ) × Δx × Δy) is 0.34m
3
 

which represents 0.2% of the average volume over time measured in the nested area. 

These results indicate that the inner model yields similar results in the near-shore region 

to those of the HR basin model, but with a much lower computational cost. The test has 

been repeated using the OBC implementation in Figure 2.3(b), results worsen slightly 

(Table 2.3, clp-it). 

 

2.4.4.3 Test C. Comparison with low-resolution outer model 

 

The outer and inner results have been compared looking for local-scale hydrodynamic 

features well resolved by the inner model but not by the outer. Vorticity in Marla Bay is 

an example (Figure 2.13), where recirculation is likely to occur as a result of flow 

separation (Rueda and Vidal 2006). The vorticity field in Marla Bay at any given time t 

was computed from surface velocity predictions for the rectangular region in Figure 

2.13 (study area), as follows 

𝜔(𝑖 + 1 2⁄ , 𝑗 + 1 2⁄ )

=
𝑣(𝑖 + 1, 𝑗 + 1 2⁄ ) − 𝑣(𝑖, 𝑗 + 1 2⁄ )

∆𝑥

−
𝑢(𝑖 + 1 2⁄ , 𝑗 + 1) − 𝑢(𝑖 +1 2⁄ , 𝑗)

∆𝑦
 

   (2.12)

Although basin-scale features captured in both models are similar, sometimes the 

differences in the vorticity fields reveal the location of features in the inner model that 

are not captured by the outer model. Figure 2.13 shows an example of the velocity field 

in Marla Bay from Julian Day 207 in the simulated period. As shown in the graphs, the 

inner model simulates recirculation in Marla Bay, while the outer model only captures a 

weak divergence in the velocity field. Being able to simulate these eddies in bays and 
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other lake shore irregularities, is important in trying to understand coastal transport 

processes (Rueda and Vidal 2006). As a result of re-circulating eddies, bays can trap 

particles in suspension and other water constituents, hence, decreasing the longshore 

dispersion rates. This trapping effect has been reported previously in the literature; for 

example, Brooks et al. (1999) shows that eddies in Cobscook Bay, Maine, could trap 

particulates in the side-arms of the estuary. The local residence time of water within 

bays tends to increase as a result of recirculating eddies; hence becoming hot-spots for 

the reproduction of species looking for quiet conditions. For example, high 

concentrations of juvenile fish in the center of a large eddy in the Santa Barbara 

Channel are observed in Nishimoto and Washburn (2002).  
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Figure 2.13. Lake Tahoe, test C: Vorticity in Marla Bay area at a snapshot in time on 

Day 207. Vorticity (color scale) and u+v velocity field (black arrows) for (a) inner 

model, (b) outer LR model and (d) HR basin model. (c) Zoom of the captured local-

scale vortex. 

Figure 2.14 shows the evolution of average surface vorticity in Marla Bay during 

a period of 18 days. Note that the flow field in Marla Bay tends to exhibit a negative 

vorticity, corresponding to a clockwise circulation (see Figure 2.14, Figure 2.13). The 

circulation strength changes with time, increasing in response to pulses of strong 

northward currents at Elk Point (Figure 2.14 (d)). These pulses, in turn, tend to respond 

to local wind variations (Figure 2.14 (b-c)), occurring with diurnal periodicity. Peak 

northward currents in Elk Point tend to occur after diurnal wind events, blowing 

predominantly from the north. The vorticity tends to be larger in magnitude in the inner 

model, partly due to its higher resolution, and partly due to the lower value of KH used 

(Eq. 3.3), which depends on the grid resolution. Note, also, that the largest differences 

in vorticity between inner and outer model tend to occur when the current in Elk Point 

(and circulation in Marla Bay) is stronger.  

 

Figure 2.14. Lake Tahoe, test C: (a) evolution of vorticity calculated by HR model 

(red line) and LR model (blue line) in Marla Bay. (b) wind speed velocity (cm/s) in Elk 

Point. (c) wind direction in Elk Point (º, 360º=North)  (d) v velocity (cm/s) in free 

surface in Elk Point.  
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2.4.5 Influence of tangential velocities in Lake Tahoe and Sacramento River. 

 

The correct construction of I/O boundary is a fundamental task to get a correct coupling 

between outer and inner models. It is necessary to prevent a source of error that may 

impair the quality of the results of the nested model, and to avoid problems in the 

conservation of mass and volume. Figure 2.2 shows that the two velocity components 

(normal and tangential) are among the variables that must be communicated. Some 

nested implementations (Bonaventura and Rosatti 2002, Fox and Maskell 1995, Harris 

and Durran 2010, Zhai and Sheng 2008) use just the normal component in the 

construction of the I/O boundary, probably because tangential values for the simulated 

models are very small compared to other forces and their use as driving variables barely 

affects the results of lowly energetic environments, as is the case of the nested area 

simulated in Lake Tahoe. However, in highly energetic environments such as 

Sacramento River, characterized by high river discharges, river bending and with high 

values of lateral circulation and flow directional gradients in the nested area (a curve in 

the domain, Figure 2.9(right)), tangential velocities reach large values, being 

comparable to normal velocities. In this case, their absence in the I/O boundary 

construction can lead to errors in the nested model and a consequent loss of quality in 

the results. 

To assess the importance of a complete communication of both velocity 

components in the construction of the I/O boundary in different models, test A was 

repeated not communicating the tangential velocity components this time (i.e. clamping 

to 0 the tangential velocities using a passive pure clamped OBC). The remaining 

variables are sent as in the previous case.  In both real examples (Lake Tahoe and 

Sacramento River) NRMSEs averaged over time for the whole inner grid are greater 

when the tangential velocities are not transferred, as can be noticed comparing the 6
th

 

and 7
th

 columns, and the 10
th

 and 11
th

 columns in Table 2.3, reaching maximum 

NRMSEs over time of an order of magnitude greater without tangential velocities for 

Sacramento River, as Table 2.5 shows.  The differences are small in Lake Tahoe (Table 

2.5, columns 2 and 3). However, in Sacramento River, differences are very important 

(Table 2.5, columns 4 and 5 and Figure 2.15).  
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Variable Tahoe  Tahoe – clp0-t Sacramento  Sacramento – clp0-t 

Vel. u (E-W) 3.82 4.63 4.01 34.8 

Vel. v (N-S) 3.17 3.74 2.21 17.5 

Vel. w (vert.) 3.46 3.89 3.13 28.3 

ζ (wse) 2.95 3.21 0.24 1.5 

s (temp.) 1.89 2.04 Not measured Not measured 

Table 2.5.  Test A. NRMSEs (%) in top-layer of nested area, maximum over time, for Lake 

Tahoe and Sacramento River, comparing the construction of I/O boundary using the 

tangential velocity components and without them (clp0-t, clamped to 0). 

The magnitude of the error is directly related to the tangential velocities missing 

in Clarksburg Bend I/O boundaries, particularly the eastern one (Figure 2.9, Figure 

2.15). The flow in Clarksburg Bend, and in Sacramento River in general, depends on 

the flood and ebb tides from the ocean. Near to the eastern I/O boundary, a pattern 

occurs with tidal periodicity. The flow is generally westward, peaking on low tides 

(negative u velocity, see Figure 2.16 (a) for discharge Q and u at time marks T4 and 

T8), reaching maximum Q and maximum negative normal and tangential velocities, u 

 
Figure 2.15. Sacramento River, test A, I/O boundary without tangential velocities: u, 

v, w and ζ, compared between inner and outer model solutions for surface layer at all 

output epochs. Each point represents the value obtained by inner model (y-axis) against 

the solution obtained by outer model (x-axis). If both solutions coincide, the point is 

located on the dashed line. 
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and v, on lower low waters (T4 in Figure 2.16 (a)). The eastern I/O boundary is aligned 

in the N-S direction, the river crosses it at a slight angle (turning west, Figure 2.9), and 

mean tangential v velocity in top layer in I/O boundary is a fraction (around 25%) of 

normal u velocity, negative too (southward).  

Since tangential velocities are not being communicated, the inner model error is 

maximum just at this time (lower low waters) in the I/O boundary, and propagates from 

the boundary to the inner model (Figure 2.17 for T4). Figure 2.17 for T5-T6 show that 

the inner model error decreases with the magnitude of the missing tangential velocity v, 

until it becomes relatively not important (at lower high waters, T6), though velocities of 

around -2.5cm/s (around 20% of peak -12.5cm/s, see Figure 2.16 (a) for v at time marks 

T6, T4) are not being passed to the inner model. As the next low tide approaches 

(higher low waters, Figure 2.17 T7-T8), similar errors appear again in the inner 

solution, perhaps smaller than those of the lower low waters (compare NRMSEs for T4 

and T8 in Figure 2.16 (b)). 

On high tides, velocities approach to 0 (lower high waters, T6) or even become 

positive (higher high waters, T1 in Figure 2.16), which means negative discharge and, 

for the eastern I/O boundary, eastward flow (u positive, v ≈ 25% u positive too). In the 

southern boundary (aligned in the E-W direction) normal velocity v follows the same 

pattern while the tangential velocity u exhibits opposite sign (Figure 2.16 (a)). The river 

crosses the boundary at a larger angle (Figure 2.9) and u is a larger fraction of v 

(approximately -2/3, compared to v ≈ 0.25 u in the northern I/O boundary). Maximum 

tangential velocities at this boundary, over 25cm/s (Figure 2.16 for uS-boundary at T4 or 

any other mark but T1-T2) occur, however, when the flow is exiting the inner domain, 

so the error incurred by not communicating the tangential velocity u in the southern I/O 

boundary is much smaller than in the eastern I/O boundary (Figure 2.17).  
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These results show that the error in the explicit source terms in the momentum 

equations, and the contribution of those terms in the momentum equations largely 

depend on the magnitude of the tangential components. The error in the momentum 

equations are particularly large in highly energetic environments such the test case of  

Sacramento River. The error, in this case, is mainly the result of the calculation of 

advective accelerations along the I/O boundaries (the terms in the inner model solution 

that use tangential driving variables are identified in Table 2.1).  

The simulation time is imperceptibly affected by including tangential velocities 

(for example, it increases just a 0.6% in Lake Tahoe), so the model can be programmed 

to always use tangential velocities, freeing the researcher or end-user from deciding 

about it. 

  

  
Figure 2.16. Sacramento River, Test A, I/O boundary with tangential velocities 

clamped to 0: (a) evolution of discharge (Q) and mean velocities in top-layer in eastern 

I/O boundary (u E-W normal, v N-S tangential) and in southern I/O boundary (u 

tangential, v normal), and (b) evolution of Q and NRMSEs for u, v, w and ξ in the top-

layer of the nested area. 
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2.4.6 N-Si3D performance evaluation 

 

Performance (memory and time) improvement have also been analyzed. Two platforms 

have been used: 

- A low-price and low-consumption entry-level/volume Intel® Xeon® CPU L5506 

processor (4 cores, 2.13 GHz, 4MB last-level L3 cache, 4.80 GT/s Intel® QPI, low 

thermal design power 60W, Intel recommended customer price $423) in an entry-

level/volume server with 16 GB of memory. 

- A midrange Intel® Xeon® X7550 processor (8 cores, 2.00 GHz, Turbo Boost 

deactivated, 18M last-level L3 Cache, 6.40 GT/s Intel® QPI, low thermal design 

power 130 W, Intel recommended customer price $2837.00) included in a high-end 

shared-memory CC-NUMA server with 1TB of memory, of which 128 GB are local 

to the processor. This server has enabled the execution of some tests without nesting 

that required more than 16 GB of memory. 

Performance improves significantly by both storing just columns with water and 

applying the nested implementation in both Sacramento River and Lake Tahoe. For the 

Sacramento River simulation of the 5m square cell basin model in the midrange 

processor, the memory requirements were reduced by approx. 95% and execution time 

by approx. 16% with our first Si3D-code improvement based mainly on avoiding dry 

cells storage. With this reduction in memory the entry-level processor can execute the 

application but not in real time (time per time-step is 4.84s>1s in the entry-level 

processor). By applying the online parallel nested implementation (outer-model 10m 

cells and inner-model 5m cells, see Table 2.2), the memory is reduced an additional 

91% approx. and the sequential time is reduced an additional 91% approx. using the 4 

cores (1 core for the inner and 3 cores for the outer model in order to balance the inner 

and outer time-step execution time, see Section 2.3.4, Figure 2.4) of the entry-level 

processor (the speedup is ~10). This reduction allows real time execution (0.45s per 

time-step).  

For the Lake Tahoe simulation of the 100m square cell basin model in the entry-

level processor, the memory requirements were reduced by approx. 29% and execution 

time by approx. 39% with our first Si3D-code improvement based mainly on avoiding 

dry cells storage. By applying the parallel nested implementation with outer-model 

100m cells and inner-model 20m cells, memory reduction of approx. 88% and time 
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reduction of approx. 98% (speedup of ~64) were measured in the high-end server using 

3 cores (2 cores for the inner model and 1 core for the outer in order to balance the inner 

and outer time-step execution time). Performance figures cannot be offered for the 

entry-level processor because HR basin required more than 16GB; but by applying the 

parallel nested implementation, the lake can be simulated in the entry-level processor 

and in real time. These reductions enable the use of the low-priced and low-power 

consumption test computer in the research or predictions in Lake Tahoe. The execution 

time using 3 of the 4 cores of the entry-level processor (6.5s<10s, see time-step Table 

2.2) is less than the execution time in 3 cores of the midrange processor (7.1s); clock 

frequencies are 2.13 GHz for the former and 2 GHz for the latter. Multiple nested grids 

of the lake can be simulated all at once in the in staff’s personal computers, or in a low-

cost cluster.    

 

2.5 Conclusions 

 

This chapter presents the verification, validation and performance evaluation of a 

nesting grid approach, N-Si3D, for 3D finite-difference semi-implicit hydrodynamic 

models with Cartesian grid, Si3D. The objective was to obtain an implementation with a 

good relation between quality of the results and execution time with low-cost low-

power resources of computing.   

The Cartesian grid memory requirements are drastically reduced by using nesting 

and a linear data representation that stores just information of columns with water. This 

made the implementation suitable for simulations of irregular domains, such as rivers.  

The evaluation and validation of the test results show that: 

 The nested approach proposed does not introduce errors when the inner and 

outer models have the same resolution (Tests A in Section 2.4.2). The errors in 

the nesting implementation are due to the iterative method for solving elevation, 

and to spatial interpolation and bathymetry mismatch (both consequence of the 

different inner and outer grid resolutions). When N-Si3D uses the clamped OBC 

implemented without relaxation, mass drift was observed but with a low slope. 

The 3D flux relaxation scheme implemented avoids mass and energy drift (Test 

B in Section 2.4.2.2). 



PhD Thesis 

68 

 

 The implementation can model 3D physical processes that cannot be accurately 

simulated by a non-nested low-resolution model applied to the complete 

domain: horizontal recirculation in Lake Tahoe (Test C, Section 2.4.4.3) and 

vertical recirculation in Sacramento River (Test C, Section 2.4.3.3). 

Comparisons of high-resolution basin results with high-resolution inner results 

show similar ability to capture local-scale processes (Test C) and low NMRSE 

errors (Test B, Sections 2.4.3.2 and 2.4.4.2). Grid refinement ratios of rg=5 may 

be necessary in order to simulate some local features, such as vertical 

recirculation in Sacramento River (Test C, Section 2.4.3.3). 

 The inclusion of tangential velocities in the boundary conditions strongly affects 

the quality of results when very strong currents, lateral circulation and/or 

vortices exist, with negligible effect on computing time (Section 2.4.5). 

Maximum error percentages even of tens in Sacramento River have been 

obtained when they are not included. The simulations show the error is related to 

the momentum missed at the I/O boundary when tangential velocities are 

eliminated, in particular, the influence on the advective term.  

 The online inner/outer dynamic coupling achieves a computing time equal to the 

inner execution time or the outer execution time (communication time does not 

affect) by executing the inner and outer model in parallel with a structure that 

resembles a pipeline processing (Sections 2.3.4 and 2.4.6). This online coupling 

(1) avoids the use of expensive storage resources to store the values transferred 

from outer to inner, and (2) makes feasible a transfer step from outer to inner 

equal to the inner time-step, avoiding errors from time interpolation and without 

affecting computing time. Comparing the simulation times of Si3D without 

storing dry cells (Section 2.3.5) and N-Si3D, speed-ups of ~10 (for rg=2) and 

~64 (for rg=5)  are achieved in Sacramento River and Lake Tahoe respectively 

using a processor with several cores. The improvement in memory and time 

allows the use of low-cost and low-power consumption processors in real time 

simulations and that multiple simulations can be run all at once on personal 

computers, or in a cluster of low-cost computers. 
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Abstract 

 

The parallel implementation of a three-dimensional (3D) to simulate physical processes 

in lakes with Cartesian grid models in a small commodity cluster of three multi-core 

nodes is presented. The parallel program, P-Si3D, uses the three nodes in the cluster (by 

using the message passing standard MPI) and the four cores in a node (by using the 

shared memory standard OpenMP). This work analyzes the influence in performance of 

using different platform configurations, several workload distributions, several parallel 

implementations, and block-driven processing. The approach is implemented using the 

semi-implicit model presented in Chapter 1. Additionally, P-Si3D and N-Si3D, last one 

presented in Chapter 2, are here used to  develop a high resolution model of the 

perimeter of Lake Tahoe (USA) in order to simulate the near-shore (i.e. small-scale) 

physical processes with the resolution required. The result lake model, P/N Si3D, is 

applied, for illustrative purposes, to conduct tracer transport simulations revealing the 

pulsating nature of along-shore transport processes in lakes, and the effect of bays and 

shoreline irregularities on long-shore transport.  

 

3.1 Introduction 

 

High Performance Computing is being increasingly demanded in water sciences to get 

detailed descriptions of the flow fields that develop in natural ecosystems within 

reasonable lengths of time. It has been through these detailed descriptions of the flow 

fields, obtained either by means of simulations conducted with three-dimensional (3D) 

numerical algorithms solving the governing equations of fluid motion, or through field 

observations collected with high-resolution experimental techniques that water 

scientists have gained, in the last years, some understanding of transport processes in 

natural lakes and reservoirs (Hodges et al. 2000, Rueda et al. 2003). This understanding, 

however, is still far from complete. 

Lakes and reservoirs are complex ecosystems composed of several subsystems 

with distinct physical, chemical and biological characteristics (Schindler and Scheuerell 

2002). Those contrasting characteristics are particularly evident when comparing the 

littoral and pelagic environments. The pelagic habitat of lakes is relatively 
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homogeneous in the horizontal dimension, but can have substantial vertical 

heterogeneity associated with seasonal thermal and chemical stratification. Littoral 

habitats, in turn, can be substantially heterogeneous in both vertical and horizontal 

dimensions (Lodge et al. 1988). Physical conditions exhibit continuous and very 

dynamic changes, at short-time scales, as a result of strong hydrodynamic forcing and 

the weak inertia of shallow layers (Lodge et al. 1988). Given the extraordinarily 

variable dynamics of near-shore or littoral habitats, these are sites with large 

biodiversity (Vadeboncoeur et al. 2011) and critical habitats for many organisms in 

lakes (Kalff 2001). Littoral and pelagic habitats, however, cannot be understood in 

isolation, since they are tightly coupled through a wide range of physical and biological 

processes. Circulation and mixing in the near-shore regions, for example, move 

nutrients, heat, organic carbon, and other tracers across isobaths, from the lake edge to 

the inner-shelf, and vice-versa. Organisms with complex life cycles, such as benthic 

species, can use both habitats in different life stages. Larger organisms, such as fish, 

also migrate off and on-shore, hence, linking the dynamics of benthic and littoral 

habitats. Hence, there is a pressing need for understanding the spatial and temporal 

dynamics of near-shore areas, and their interaction with the pelagic habitats. 

Furthermore, beaches or bays along the near-shore areas cannot be understood in 

isolation from neighbor bays, given that they are tightly linked through physical 

processes. As reviewed by Rao and Schwab (2007), currents in the nearshore are largely 

aligned along isobaths, hence, creating strong physical links between the littoral zone 

along the whole perimeter of lakes.  

In spite of their importance for lake ecosystem function, our understanding of 

near-shore habitats is poor (Kalff 2001). This is in part the result of the extraordinary 

variability of the physical environment, which makes the task of characterizing it 

challenging, at least through observations. In the last decades, though, considerable 

progress has been made in developing numerical transport and mixing models capable 

of resolving with reasonable accuracy and computational cost large-scale physical 

processes in lakes and reservoirs (Schwab et al. 1994; Hodges et al. 2000; Rueda and 

Schladow 2003). These models are based on the numerical solution of the shallow-

water equations (SWE), a simplified form of the Reynolds averaged Navier-Stokes 

(Cushman-Roisin 1994). The choice of these governing equations is based on practical 

computational limits and a priori scaling analyses that justify their use in the description 

http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2002.980201.x/full#b43#b43
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of large-scale flows. These models can potentially be used to simulate local-scale 

processes in the littoral zone such as circulation and mixing, and the exchange of water, 

suspended and dissolved constituents with the pelagic environment. However, these 

local near-shore simulations are not straightforward to carry out. First, they cannot be 

conducted in isolation from the basin scale, given that the physical dynamics of the 

littoral areas are driven by and interact with basin scale processes such as internal 

waves, wind waves, and the large-scale circulation. Second, and more importantly, these 

simulations need to be conducted on high-resolution grids so that the spatial scales 

characterizing circulation and transport patterns in the near-shore regions are correctly 

captured. Flow fields in the littoral zone are tightly linked to small-scale bathymetric 

variations, shoreline irregularities (such as headlands, islands and bays), river inflows 

and water withdrawals (Rueda and Vidal, 2009), which are poorly resolved by the low-

resolution grids typically used in basin-scale simulations.  

A plausible approach to capture local-scale processes using high resolution grids 

consists of the application of parallel computational techniques to the solution of the 

governing equations of motion in clusters. Several SWE models have been implemented 

in parallel that take advantage of their data parallelism. Implementations that use the 

message passing paradigm with MPI for both 2D (Rao 2004, with one and also two 

layers in Castro et al. 2006, Tubs and Tsai 2009, Nesteron 2010) and 3-D models 

(Nesterov 2010) can be found. The implementation of Tubs and Tsai (2009) parallelizes 

a 3-D lattice Boltzmann model using the shared memory paradigm with OpenMP. 

These MPI and OpenMP implementations use domain decomposition to divide the 

workload among processes or threads. Performance can also be increased using 

Streaming SIMD Extensions (SSE) instructions either explicitly (manually) or through 

libraries, or, alternatively, using GPUs. Dyk et al. (2009), for example, presents results 

of a SSE optimized implementation of a 2D SWE-model. Castro et al. (2008), in turn, 

solves a 2D SWE-model using the Intel Integrated Performance Primitives library. An 

implementation of a 2D SWE-model in several GPUs supporting CUDA programming 

toolkit is presented in Asunción et al. (2010). 

In this chapter, a parallel implementations for small commodity clusters of a semi-

implicit 3D hydrodynamic model, P-SI3D, is presented and evaluated. The parallel 

implementations of the 3D model combine both message passing (with MPI) and shared 

memory paradigms (with OpenMP). Implementations with redundant operations 
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(workload overlapping) are compared to non-redundant implementations. Workload 

overlapping increases the number of operations and decreases communications. This 

work also analyzes the influence of different platform configurations (such as 

simultaneous multithreading, Intel SpeedStep and Turbo Mode technologies, and 

prefetching hardware), and different domain decompositions have on code performance. 

Different compiler optimization options and a block-driven processing implementation 

were also tested. 

Our final goal here is to develop an efficient procedure to conduct high-resolution 

simulations of the continuous littoral fringe of a lake using a Cartesian grid model; the 

model of Lake Tahoe (USA) is implemented with that purpose. P-Si3D is used 

successfully to conduct simulations with low and mid resolution of Lake Tahoe in a 

small commodity cluster with three nodes. The mid resolution model is used to evaluate 

the parallel implementation. However, high-resolution models of Lake Tahoe are very 

expensive computationally and not possible to simulate in small commodity clusters. 

One alternative with a much lower computational cost and traditionally used with 

Cartesian grids is to use a nesting procedure. In a nesting implementation, a high-

resolution HR near-shore model that resolves physical dynamics in the littoral zone, is 

embedded inside a low-resolution LR outer model that simulates the basin-scale 

processes (Fox et al. 1995; Zavatarelli et al. 2003). Still, the cost of high-resolution 

nested-grid simulations, evaluated in terms of computational time and memory 

requirements, can be high in large lakes where the littoral zone extends over tens or 

hundreds of kilometers, as Lake Tahoe. Those computational costs are unacceptable 

when the simulation models need to be used for water quality management to assess, for 

example, the risk of introduction and dispersion of invasive species (Hoyer et al. 2014) 

or to evaluate the environmental effects of large infrastructures (e.g. Rueda et al. 2009).  

The parallel implementation (P-Si3D) presented and evaluated here is combined 

successfully with the nesting procedure (N-Si3D) presented in Chapter 2 in order to 

simulate local scale processes of Lake Tahoe, which are present in the littoral zone. 

With the pipeline structure used by the nesting procedure (see more information in 

Chapter 2), HR and LR models are solved in parallel by different sets of nodes in the 

cluster. Additionally, HR and LR model use P-Si3D to distribute the work using domain 

decomposition. The models constructed with this approach will be referred to as 

Parallel/Nested (or P/N-Si3D) models. P/N-Si3D is here applied to Lake Tahoeand 
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used, for illustration purposes, to simulate the dispersion of storm-water from existing 

outfalls in the lake to neighboring beaches. The solution of the P/N-Si3D model is 

evaluated using the case example.  

The chapter is organized as follows: Section 3.2 explains the parallel 

implementation P-Si3D for small commodity clusters. Section 3.3 evaluates P-Si3D 

performance and compares several parallel implementations and platform 

configurations. Section 3.4 explains the combination of P-Si3D and N-Si3D, P/N-Si3D, 

to simulate the littoral area of Lake Tahoe using a high resolution nested model. Section 

3.5 evaluates and validates the simulation obtained using P/N-Si3D and discusses some 

experimental results. Finally, Section 3.6 summarizes conclusions.  

 

3.2 P-Si3D implementation 

 

The parallel implementation presented (P-Si3D, Figure 3.1 ) is applied here to the Semi-

Implicit hydrodynamic model proposed by Smith (2006), Si3D (Chapter 1) and 

modified to take advantage of several basic optimizations and an improvement of the 

data structure (more details about the basic optimizations and the new data structure can 

be found in Chapter 5, this version is called Basic Si3D). Implicit or Semi-implicit 

schemes are used to avoid the strict time-step limitation due to Courant-Friedrich-Levy 

(CFL) condition founded in explicit schemes. On the other hand, an implicit or semi-

implicit approach requires solving long systems of nonlinear equation for free surface 

elevation over the entire domain each time-step. These systems of equation are usually 

solved using iterative methods, Si3D uses a method widely used in the literature, the 

Preconditioned Conjugate Gradient (PCG). More details about the implementation of 

Si3D can be found in Chapter 1. P-Si3D is able to simulate in an acceptable execution 

time models with a computational cost that would be impossible in a sequential 

execution. 

Several parallel Si3D versions have been implemented. The speedup achieved in a 

parallel implementation of Si3D in which OpenMP construct !$OMP PARALLEL DO- 

END PARALLEL DO is used to locate parallelism was 1.22 with the four cores of a 

processor. The performance has been increased when the programmer has also done 

explicitly these tasks: assign jobs to threads; create and destroy threads; communicate 
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and synchronize threads. Moreover, several parallel versions have been implemented in 

order to compare implementations with redundant operations, which avoid 

communications and synchronizations (C/S), with non-redundant operation 

implementations. The results show that redundant operations improve the MPI version 

performance of Si3D but the OpenMP version increases performance when the 

redundant operations are reduced by adding some extra synchronization.  

The parallel model (Figure 3.1) uses MPI to assign work to computers and 

OpenMP to assign work to cores. C1, C2, C3 and C4 are communications among 

computers through message-passing. S1, S2, S3 and S4 are the solver stages of Si3D 

(more details about the solver stages can be found in Chapter 1). In this implementation, 

each thread/process is assigned the task of performing the calculations of one of the sub-

domains. The domain decomposition (Chan and Mathew 2008; or Passoni et al. 2001) is 

done prior to the start of the computations in such a way that (1) all sub-domains have 

similar numbers of wet cells; and (2) sub-domain data are stored in contiguous memory 

positions.  

The boundaries between sub-domains are vertical surfaces. The computations 

done by different threads/processes are not entirely independent, given that they involve 

the calculation of horizontal gradients. P-Si3D uses overlapping and redundant 

calculation to reduce communications so the overlapping area is calculated in two 

neighbor subdomains. Using redundant computation, the communications between 

computers to solve the horizontal gradients dependences are needed only at the end of 

each iterative loop (C4, Figure 3.1). In the non-redundant MPI version there are 

additional data interchanges between processes: 9 in S1, 4 in S3 and 12 in S4. On the 

other hand, P-Si3D does not overlap subdomains among cores, since threads can use 

shared memory and synchronization to avoid explicit communications. 

S2 is the only stage where the calculation is not done column by column of the 

model. In this stage, the system of nonlinear equations is solved using an iterative 

method known as Preconditioned Conjugate Gradient (PCG). A parallel implementation 

of PCG is not something trivial, requiring many reduction (many-to-one) 

communications to perform multiple dot-product operations and communications 

between neighbor subdomains to perform a matrix-vector multiplication (see for 

example Nesterov 2010). These operations occur multiple times each iteration of the 

PCG and, in general, in other iterative methods. Priory test concluded that S2 consumes 
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a very little time in the total execution of Si3D (a 2% of the simulation time of Lake 

Tahoe using the mid-resolution model). Taking into account these results, the 

implementation of a sequential PCG into the parallel model to avoid the 

communications explained before seems reasonable, as long as the parallel version is 

executed in small commodity clusters. With a sequential PCG, only one collective 

gather (many-to-one, to collect all the equations of the system) communication before 

S2 (C2, Figure 3.1) and one collective scatter (one-to-many, to distribute the new 

solution of water free surface) communication after S2 (C3, Figure 3.1) are needed. 

The overhead of the parallel implementations of P-Si3D, like in other related 

applications, is mainly affected by: 

 Load unbalance. The irregular grid dimensions make difficult to obtain an even 

distribution. 

 Communication time. It depends both on the number of communications and on the 

amount of data being transferred in each communication (between subdomains (C4) 

and collectives (C2 and C3)). In the data interchanges between processes, both of 

them depend on the domain decomposition approach used.  

 Extra operations due to sub-domain overlapping. The number of communications can 

be reduced by overlapping sub-domains. In these overlapping regions, computations 

are redundant. The overhead that results from redundant calculations depends on the 

extent of overlapping regions, and this, in turn, depends on the particular domain 

decomposition approach used. 

Therefore, domain decomposition affects performance, several approaches are 

possible in 3D models. Either horizontal-cut or vertical-cut (depth) decomposition can 

be applied in these cases. Horizontal-cut decomposition distributes layers among sub-

domains, i.e. among processors/cores. The degree of parallelism in this case equals the 

number of layers and communication depends on the horizontal resolution and the 

horizontal extent of the lake. Given that large differences exist between the horizontal 

and vertical dimensions of large-scale geophysical systems, the degree of parallelism in 

the horizontal-cut decomposition tend to be lower than in a vertical-cut decomposition.  
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Figure 3.1. Flow diagram for the P-Si3D model. Grey Boxes represent the parallel 

implementation added to the hydrodynamic model. S1, S2, S3 and S4 are the solver 

stages of Si3D and C1, C2, C3 and C4 are communications among computers.  
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Three types of vertical-cut decomposition (of a river, lake, etc.) are possible 

(Figure 3.2). The data interchange between the sub-domains is indicated by the arrows 

in the Figure 3.2.  

The length of the boundaries between any two given sub-domains reflects the 

amount of data exchanged between them. It is also indicative of the amount of 

redundant calculations if the number of communications is reduced by overlapping sub-

domains. The total length of the sub-domain boundaries will depend on the particular 

geometry of the water body being simulated, and on how the domain is partitioned 

among processes. The number of interchange communications is larger if one uses the 

two-direction cut distribution, as shown in Figure 3.2(c). The total amount of data 

exchanged among processes and the number of redundant calculations, though, could be 

less than in the other two distributions, depending on the particular geometry and 

number of sub-domains. With this distribution a process can both send to and receive 

from more than two processes. Both narrow (Figure 3.2(b)) and wide (Figure 3.2(a)) cut 

distributions have the same number of interchange communication operations. A 

process will send to and receive from just one or two processes. Larger amounts of data 

are exchanged and more redundant operations are done in the distribution shown in 

Figure 3.2(a) (wide-cut distribution). Nesterov (2010) compares the alternatives in 

Figure 3.2(b) and Figure 3.2(c) using MPI in a cluster of four AMD Opteron 2.2 GHz 

nodes (2 cores each) connected  through Gigabit Ethernet. The results for different grid 

sizes show that better performances are achieved if the decomposition is done using 

narrow cut distribution compared to the two-direction distribution. Rao (2004) 

compares the alternatives in Figure 3.2(a) and Figure 3.2(b) using MPI in a CC-NUMA 

HP/Convex Exemplar X-Class (SPP2200) with 64 processors distributed in four hyper-

nodes. The eight nodes of a hyper-node are connected through a network (switch) of 

960 MB/s bandwidth in each link direction Messina et al. (1998) (the network of the 
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Figure 3.2. Three domain decomposition alternatives with vertical cut: (a) wide cut 

distribution, (b) narrow cut distribution, (c) two-direction cut distribution. Arrows show 

the communication needed among sub-domains in this kind of applications 
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Exemplar is an implementation of the standard SCI). The results show that narrow-cut 

distribution reduces execution time compared to wide-cut distribution. Here some tests 

(Section 3.3.4) compare wide and narrow-cut distributions with both message passing 

and shared memory paradigms in SI3D. Note that the alternative in the Figure 3.2(c) has 

less data locality compared to the alternatives in (Figure 3.2(b)) and (Figure 3.2(a)). The 

data of a sub-domain in the wide and narrow distribution were stored in disk and 

memory in contiguous positions in order to improve locality. The lack of locality 

decreases performance, especially in shared memory implementations. 

A block-driven processing approach was also tested as in the shared memory 

implementation in Tubs and Tsai (2009). Extra communication and block-driven 

implementation are also suitable in a process-level parallel implementation when the 

memory of the processing node is not enough for the application (Paglieri et al. 1997, 

Castro et al. 2006). 

 

3.3 Performance evaluation of P-Si3D with different platform configurations 

and parallel alternatives 

3.3.1 Platform 

 

The results have been obtained in a small commodity cluster known as ACII of three 

nodes connected through a Gigabits Ethernet switch. Each node has 6 GB of memory 

and a Core i7 CPU 920 (launch date: fourth quarter of 2008). The Core i7 920 has four 

cores of 2.667 GHz (two threads per core if Hyper-Threading is active), L3 cache of 

8MB shared by all the cores, and QuickPath of 4.8 GT/s. The cluster price was of 3,000 

€ (first quarter of 2009) approximately with all the components, including the cabinet. It 

runs Linux Fedora 10 (kernel 2.6.27.41). Cluster communication system has a 

bandwidth of 115 MB/s, near to the theoretic 125 MB/s. 

The program is compiled using Intel Fortran 11.1 compiler. The OpenMP of this 

compiler is used for the shared memory implementation and MPICH-1.3 for the MPI 

message passing implementation. The source-code versions implemented were 

compiled using options that drive classic optimizations and vectorizations. Table 3.1 

summarizes the optimization options checked. Similar execution times are obtained 
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with O2 and O3. When the options ipo and/or SSE4.2 are added to O2 or O3 

performance does not improve. PGO does not improve the execution time compared to 

a version with the same optimization options but without PGO. The executables used in 

this section have been obtained with O2 and openmp compiler options.  

O2: inline expansion and cloning of functions, classical optimization (loop unrolling, constant and 

copy propagation, strength reduction, variable renaming, dead store elimination, global instruction 

scheduling and control speculation …) and vectorization (this tries to generate MMX, SSE, SSE2 

instructions).  O2 is the generally recommended optimization level for reducing execution time. 

O3: O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement 

to reduce memory references, and loop and memory access transformations.  

ipo: multifile interprocedural optimization (this, for instance, allows inline expansion and cloning 

for calls to functions defined in separate files). 

openmp: this option enables the parallelizer to generate multi-threaded code based on the 

OpenMP directives included by the programmer.  

xSSE4.2 (architecture-specific optimization):  this tries to generate MMX, SSE, SSE2, SSE3, 

SSSE3, SSE4.1 and SSE4.2 instructions (vectorization) and can optimize for the Intel Core i7 

processor family. 

prof_gen and prof_use (Profile Guided Optimization or PGO): PGO allows optimization by 

taking into account real benchmark data instead of heuristic data. 

Table 3.1. Optimization options (Intel C compiler 11.1). 

 

3.3.2 Test model for Lake Tahoe 

 

The test application is a simulation of the transport model in Lake Tahoe. The ultimate 

goal of these simulations is the risk of introduction and dispersion of invasive species 

(Hoyer et al. 2014) or to evaluate the environmental effects of large infrastructures (e.g. 

Rueda et al. 2009). Given that O(10
2
) m  (hundreds) features of the velocity fields, 

characteristics of nearshore regions, should be resolved in Lake Tahoe, the 

computational grid cells should have horizontal dimensions of at least O(10) m (tens). 

Table 3.2 shows the details of the models for Lake Tahoe developed. Simulating a lake 

of the size of Lake Tahoe (roughly 20 km x 30 km) with O(10)m horizontal size cell 

columns, poses a serious computational problem which can only be addressed through 

the use of parallel computers. For example, the ratio of real to computational time in 

simulations conducted with 50 m wide grid cells (a mid-resolution among the models 
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implemented) in a single core of the cluster is approximately 1:1.  Moreover, the 

complete high-resolution (HR) model, which is implemented using horizontal square 

columns of 20x20m, was impossible to simulate in the small commodity cluster used 

here because of the requirements of memory, needing at least 16 GB to fit the variable 

information of the model. On the other hand, two complete models for Lake Tahoe are 

conduced successfully using the parallel implementation in an acceptable execution 

time. These models are the mid-resolution (MR) model and the low-resolution (LR) 

model. The MR model is implemented with horizontal square columns of 50x50m and a 

time-step of 25s, this model is used to evaluate the parallel implementation developed in 

small commodity clusters. The LR model is implemented with horizontal square 

columns of 100x100m and a time-step of 10s, this model is used to create a high-

resolution near-shore model for Lake Tahoe as it is explained in Section 3.4. The time-

step could be up to 50s without CFL limitations in the LR model. However, it is set to 

the same time-step of the HR nested model to avoid additional temporal interpolation 

errors using the nesting procedure (more information in Chapter 2). The vertical 

resolution of the grids was the same in all the models (HR nested, MR and LR models), 

changing progressively from 0.5 m near the surface to nearly 10 m near the bottom. The 

bathymetry data (Gardner et al. 1998) was downloaded (http://tahoe.usgs.gov/bath.html) 

and corrected in the near-shore region in the southern shore.  

Models of Lake Tahoe Horizontal 

cell side 

Columns 

of water 

Total 

cells 

Time-

step 

Basin HR model 20x20m 1,244,896 94,691,170 10s 

Nested HR model 20x20m 493,317 21,181,918 10s 

Basin MR model 50x50m 197,781 14,654,639 25s 

Basin LR model 100x100m 50,383 3,657,268 50s/10s 

Table 3.2. Computational data of Lake Tahoe simulations: Horizontal resolution (square 

columns), total number of water columns, total number of cells and time-step used. 

 

3.3.3 Performance of different platform configurations 

 

This work analyzes the influence in performance of the multiple cores in a node, the 

prefetching hardware, the Intel Hyper-Threading technology, and the Intel SpeedStep 

http://tahoe.usgs.gov/bath.html
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and Turbo Mode technology. These simulations are conducted using the MR model of 

Lake Tahoe (Table 3.2). 

Hardware prefetcher monitors data access patterns and prefetches data 

automatically into processor caches.  Core i7 cores can track 16 forward streams and 4 

backward streams each. Simultaneous multithreading allows the execution of multiple 

threads in a core; in particular, two threads with Intel Hyper-Threading. Intel 

SpeedStepTechnology allows the operating system to control the core speed. Intel 

Turbo Mode Technology allows processor cores to run faster than the assigned 

frequency under specific conditions.  

Table 3.3 shows the seconds per iteration obtained for different platform 

configurations and different number of processes and threads. The narrow-direction 

distribution and the MPI redundant operation version have been used. The 

communication time due to data distribution or collection is not included because it 

does not depend on the number of iterations.  Up to four threads are used to each node; 

a higher number of threads makes performance worst despite of Hyper-Threading being 

enabled. The column HSTP shows the results for the default configuration. In the 

default configuration the BIOS and the operating system have enabled Hyper-Threading 

(H), SpeedSteep (S) and Turbo Mode (T), and prefeching hardware (P). In particular, 

ondemand is the default CPUfreq governor of the cluster operating system, which 

means the governor sets the frequency depending on the current usage, between a 

minimum of 1.6 GHz and a maximum of 2.667 GHz, last one can increase due to Turbo 

Mode. The time in the default configuration is less reproducible due to the thread 

distribution of the operating system among the eight logical cores of a node. If Hyper-

Threading is disabled (column -STP) performance improves, but if either 

SpeedStep/Turbo Mode (column ---P) or Prefetching (column -ST-) are also disabled, 

time increases slightly. The results in the columns -STP and ---P show an increment in 

the clock frequency due to the Turbo Mode. The results in the columns -STP and -ST- 

suggest that the prefetching hardware is being weakly used.  

Block-driven processing was added to try to reduce cache miss by facilitating data 

locality. It reduces the execution time by 4% with horizontal cell size of 100 m x 100 m 

and one process with four threads. Block processing improves only marginally this 

implementation's performance, although it never makes performance worst as it was 

observed in the block processing implementation of Tubs and Tsai (2009). The results 
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in Tubs and Tsai (2009) are obtained in a platform of IBM with Power5+ 1.9 GHz. For 

a grid of 1024x1024x10 (=10,485,760 cells), from 1 to 8 processors block-driven 

processing makes performance worst but from 12 to 16, the maximum number of 

processors tested, the block-driven implementation improves performance Tubs and 

Tsai (2009). 

 

Tahoe MR model Platform configurations 

No. 

Processes 

No. 

Threads 
HSTP -STP ---P -ST- 

1 1 21.1 21.15 21.92 22.54 

1 2 11.07 11.1 11.56 11.79 

1 3 7.77 7.73 8.07 8.22 

1 4 9.75 6.12 6.12 6.51 

2 1 10.96 10.96 11.45 11.65 

2 2 5.96 6.05 6.21 6.38 

2 3 6.75 4.27 4.48 4.56 

2 4 5.15 3.42 3.57 3.68 

3 1 7.62 7.65 7.9 8.04 

3 2 4.23 4.26 4.4 4.48 

3 3 4.81 3.1 3.21 3.29 

3 4 3.65 2.51 2.68 2.71 
 

Table 3.3. Performance of different platform configurations (seconds per iteration). In 

HSTP, H means Hyper-Threading enable, S means SpeedStep enable, T means Turbo 

enable, and P mean Prefeching enable. “ -“ means Disable. 

The results presented in the next subsections are obtained with the configuration –

STP and ondemand as the CPUfreq governor. 

 

3.3.4 Comparison of wide-direction and narrow-direction distributions in both MPI 

versions, with and without redundant operations  
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Both, wide-direction and narrow-direction distributions, have the same number of 

communication in both MPI versions, but they are of different sizes. Also, in the MPI 

version with redundant operations, the wide-direction distribution has more redundant 

operations than the narrow-direction approach (because it has larger border length).  

Table 3.4 shows the execution time per iteration and speedup for both wide and narrow-

direction distribution and both the MPI implementation with redundant operations (R) 

and the MPI approach with non-redundant operations (NR). These simulations are 

conducted using the MR model of Lake Tahoe (Table 3.2). As can be observed narrow-

cut distribution also improves sequential execution time. The best approach is to use the 

MPI implementation with redundant operations and the narrow-cut distribution. 

Speedup improves more with the narrow-cut approach because this approach has lesser 

border length than the wide-cut approach; the border size is decreased a 25% 

approximately.  

 

Tahoe 50m Sec./iteration Speedup 

No. 

Pr. 

No. 

Th 

Narrow Wide Narrow Wide 

R NR R NR R NR R NR 

1 1 21.1 21.1 21.32 21.32 1 1 1 1 

1 2 11.1 11.1 11.34 11.34 1.9 1.9 1.88 1.88 

1 3 7.73 7.73 7.97 7.97 2.73 2.73 2.68 2.68 

1 4 6.12 6.12 6.29 6.29 3.45 3.45 3.39 3.39 

2 1 10.96 11.18 11.21 11.51 1.93 1.89 1.9 1.85 

2 2 6.05 6.21 6.19 6.43 3.49 3.41 3.44 3.32 

2 3 4.27 4.41 4.51 4.76 4.94 4.8 4.73 4.48 

2 4 3.42 3.58 3.61 3.79 6.17 5.91 5.91 5.63 

3 1 7.65 7.85 7.88 8 2.76 2.69 2.71 2.67 

3 2 4.26 4.48 4.43 4.66 4.95 4.72 4.81 4.58 

3 3 3.1 3.31 3.34 3.52 6.81 6.39 6.38 6.06 

3 4 2.51 2.69 2.77 3.02 8.41 7.86 7.7 7.06 
 

Table 3.4. Wide and narrow distributions in both MPI versions: with (R) and without 

(NR) redundant operations. 
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3.4 Simulation of Lake Tahoe small-scale processes in small commodity 

clusters by using P-Si3D and N-Si3D 

3.4.1 A high-resolution near-shore model for Lake Tahoe  

 

P-Si3D and the nesting procedure explained in Chapter 2 (N-Si3D) are combined to 

take advantage of small commodity clusters of computers in the simulation of small 

scale processes in a lake. It couples both, the parallel implementation and a nesting 

algorithm in an efficient parallel method, using processes (MPI) among the available 

nodes and threads (OpenMP) among the multiples cores in each node. It solves the 3D-

SWEs on a HR grid of the littoral perimeter of the lake (Figure 3.3, (nested HR model 

in Table 3.2)), subject to velocity boundary conditions (HR-LR boundary) which are 

taken from the LR lake model of the basin-scale hydrodynamics (basin LR model in 

Table 3.2). HR and LR models are solved in parallel by different sets of nodes in the 

cluster. In the small commodity cluster used, the LR model (with a smaller 

computational cost) is set in one core of the first node. At the same time, the HR nested 

model is set in the three nodes, using P-Si3D to divide the workload among processes 

and threads, using 3 cores in the first node and 4 cores in the other 2 nodes. The 

communications from the LR model to the HR nested model use MPI too. This 

configuration could be changed in other clusters with different number of nodes, using 

P-Si3D to divide the workload of the LR model or the HR nested model with a different 

configuration. Besides, the 3D-SWEs in the LR model or in the HR nested model are 

executed in parallel at the same time using a pipeline structure explained in detail in 

Chapter 2. Models constructed with this approach will be referred to as Parallel-Nested 

(or P/N-Si3D) models. The use of P/N-Si3D allows the simulation in the small 

commodity cluster (ACII) of the near-shore of Lake Tahoe with enough resolution to 

observe small-scale processes and with a total execution time (including both the LR 

and HR model execution) enough so that the simulation can be possible (7.36 seconds 

per time-step). 
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Figure 3.3. Lake Tahoe between California and Nevada in USA. The littoral zone is 

computed in high-resolution with communications from the low resolution model (HR-

LR, solid line). Storm outfalls known around Lake Tahoe (http://tahoepipeclub.com/ 

uploads/tahoe_pipe_list.pdf) and the particular areas studied (Marla Bay and South 

Lake Tahoe (SLT)) are shown too. 

 

Therefore, P/N-Si3D was used to simulate the near-shore circulation and transport 

during the period in 2008 from day 191 (July 3) to day 215 (August 1
st
).  Our focus is 

on two sub-periods characterized by different intensities of wind forcing. From day 192 

to 197 (Figure 3.4, sub-period 1) the wind was weak with an average magnitude of 

approximately 2 ms
-1

. From day 207 to day 212 (Figure 3.4, sub-period 2) winds were 

higher with magnitudes of up to 7 ms
-1

.  Flow features in the near-shore exhibit spatial 

scales on the same order of magnitude as the bays or other shoreline irregularities 

existing around the lake (see Rueda and Vidal 2009). In the case of Lake Tahoe, the 

length scales of these bays are of O (10
2
) m (see Figure 3.3, Marla Bay). To resolve 

adequately   O(10
2
) m  features,   in  turn,   the  model   will   need  to  accommodate   at  

 

http://tahoepipeclub.com/%20uploads/tahoe_pipe_list.pdf
http://tahoepipeclub.com/%20uploads/tahoe_pipe_list.pdf
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least 2 and preferably 4 computational cells in ca. 100 m, hence, the grid resolution 

needs to be ca. 20 m. Hence, a HR nested model of the littoral perimeter of Lake Tahoe 

was constructed using a 20 m grid resolution, and driven with the 100-m grid LR basin-

scale model.  

 

Figure 3.4. Period of time (study time) simulated in 2008. (a) Vorticity calculated for HR 

model (black line) and LR model (grey line) along the time in Marla Bay. (b) v velocity 

(North-South)  in free surface in Elk Point. (c) u velocity (East-West) in free surface in 

Elk Point. (d) Averaged wind direction in the Southeast coast of Lake Tahoe. (e) 

Averaged wind speed velocity in the Southeast coast of Lake Tahoe. 

The model run was initiated six days before the beginning of the study period, so 

that the simulation results were free from the effect of artificial initial conditions. The 

lake was assumed initially quiescent with horizontal isotherms. The temperature in the 

initial conditions was assumed to vary vertically following a temperature profile 

collected at the lake center (see Hoyer et al. 2014). The model was forced using surface 

heat and momentum fluxes estimated from local atmospheric variables (short and long 

wave radiation, air temperature, relative humidity, and wind speed and direction). 

Meteorological data were taken primarily from meteorological stations maintained by 
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the Tahoe Environmental Research Center (TERC). In total, there are ten onshore and 

on-lake meteorological stations. All stations provide a near-continuous record of wind 

magnitude and direction and air temperature. Those records were averaged in space to 

the grid points using an iterative method originally proposed by Barnes (1964) (see also 

Barnes 1994a, Barnes1994b, Koch et al. 1983). The bottom drag coefficient was set to 

0.02, following Rueda et al (2003). The horizontal eddy diffusivity Kh was set to a 

constant value, varying depending on the grid resolution. We used the empirical 

equation proposed by Lawrence et al. (1995) for lakes, between dispersion coefficient 

and the length scale of tracer clouds, to link the value of Kh with grid size. The value of 

Kh was set to 0.0086 m
2
s

-1
 in the HR grid models while 0.05 m

2
s

-1
 in the LR grid model. 

Different number of nodes nn, varying from one to eight, was used in the simulations 

depending on the goal of the runs. All cores were used in each of the nodes employed in 

the simulation.  

Two forms of validation of the simulations conducted with the P/N-Si3D model 

were used. First, we used the differences in the solution of the governing equations (U, 

V, T, Kz and ζ) in the near-shore region of Lake Tahoe (Figure 3.3) calculated with the 

littoral HR (20 x 20 m grid) included in the P/N-Si3D simulation and with a basin-scale 

HR model (the basin HR model in Table 3.2). The solutions were output and compared 

every hour, and the comparison was done layer by layer. The results, shown here, are 

differences evaluated for the surface layer, two layers located at a depth of 10 and 20 m, 

and one more set of cells occupying the bottom of all water columns in the near-shore. 

The differences between two fields at any given time were quantified using a 

normalized form of the root-mean-squared error (NRMSE), calculated as follows  
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Here xb represents the value of a variable calculated by the HR basin-scale model; xn is 

the value calculated by the HR nested model; xmax and xmin represent the maximum and 

minimum of each variable; and N is the total number of water columns in the near-shore 

domain. Second, we compared the HR near-shore simulations, constructed with the 

P/N-Si3D procedures outlined above, with velocity observations collected at a site close 

to South Lake Tahoe, ca. 1000 meters offshore, with a depth of 5-7 m (see Figure 3.3). 

The observations consist of near-continuous profiles of current magnitude and direction 

in 0.50 meter vertical bins collected with a NORTEK Acoustic Doppler Wave and 

Current Profiler (ADCP). The differences between observations and simulations are 

quantified along the period with experimental data available using a temporal root-

mean-squared error (RMSEt) defined as follow: 

  

RMSE𝑡 = √
∑ (𝑣1

𝑡 − 𝑣2
𝑡)2𝑁𝛥𝑡

𝑡=1

𝑁𝛥𝑡
    (3.3)

   

3.4.2 Application of the near-shore model to case studies in Lake Tahoe  

 

The velocity fields predicted by the P/N-Si3D model during the study period were used 

to drive a series of tracer transport simulations. The simulations consist of the release of 

pulses of tracers from different sites around Lake Tahoe where storm water outfalls are 

known to exist – see Figure 3.3. They are intended to represent the fate of storm water 

contaminants entering the lake through outfalls. Tracers are assumed conservative and 

are released at a rate R0 = 1 kg s
-1 

over a period of 24h. Two release periods were 

simulated: one, on day 191 (T1), under weak forcing conditions, and a second on day 

208 (T2), during a period of persistently strong winds. The outcome of the simulations 

was a time series of tracer concentration evaluated in the areas with a depth less than 1.6 

m of Marla Bay and South Lake Tahoe (SLT). Our interest in Marla Bay arises from 

recent work conducted to understand the dispersion of an invasive species from these 

sites (Hoyer et al. 2014). Furthermore, they represent features where the HR model 

could potentially provide details of the flow field, unresolved in the LR model (see 

Chapter 2, Section 2.4.4), given the spatial scales of the bays of O(10
2
) m. Through 
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tracer fields and the time series of tracer concentrations we assess the importance of 

alongshore transport.  

 

3.5 Evaluation of the Tahoe P/N-Si3D model  

 

Time averaged and maximum normalized differences between state variables computed 

during the simulation period with the HR-nested and the HR-basin models in different 

layers of the lake perimeter are shown in Table 3.5.  

 

  Surface  10m    20m     Bottom   

NRMSE(%) Av. Max  Min Av. Max  Min Av. Max  Min Av. Max Min 

U 3.1 4.21 0.16 2.94 4.04 0.16 2.89 4.12 0.14 3.27 4.33 0.17 

V 2.94 4.01 0.14 2.82 3.92 0.13 2.97 4.14 0.15 3.01 4.18 0.15 

T 1.43 3.24 0.11 1.16 2.98 0.11 1.25 3.12 0.09 1.29 3.06 0.11 

Kv 0.93 2.46 0.12 0.96 2.44 0.13 0.89 2.36 0.12 0.92 2.27 0.11 

ζ 2.61 4.9 0.17                

Table 3.5. Average, maximum and minimum NRMSE (%) between HR-nested and HR-

basin models in surface layer, layer at 10m, layer at 20m and bottom layer for U, V, T, Kv, 

and ζ variables. 

The time-averaged normalized differences are 3.10% and 2.94% for U and V 

respectively, 1.43% for temperature (T), 0.93% for vertical diffusivity (Kv) and 2.61% 

for ζ. Note that the averaged differences (NRMSE) were in all cases < 4%. The largest 

differences (of ca. 4%) were for the velocity and the free surface elevation. The lowest 

error norms (< 1.5%) correspond to water temperatures and turbulent diffusivity. These 

results indicate that the HR nested model yield similar solutions in the near-shore 

regions to those of the HR-basin model using P-Si3D to reduce the computational cost 

and N-Si3D to reduce the extension of the grid. As demonstrated in Chapter 2 (Section 

2.4.2) the differences are, at least, partly due to the iterative (hence, approximate) nature 

of the matrix solver used to calculate the free surface elevation. The normalized 

differences between nested and basin-scale HR models (not shown) do not follow any 

significant trend in time, and only exhibit random variations. When compared against 

the velocity observations, we note that the P/N-Si3D model provides an accurate 

representation of the horizontal velocity records collected at the deployment site 

(ADCP, Figure 3.5), with temporal errors (Eq. (3.3)) of 4.12 x 10
-2

 ms
-1

 for the E-W 
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velocity component and 2.61 x 10
-2

 ms
-1

 for the N-S velocity component. Other works 

in the literature have reported similar results. Jin et al. (2000) found errors between 

velocity measurements and simulation results from 1.52 to 4.76 x 10
-2

 ms
-1

 and Rueda 

and Schadow (2003) showed errors from 2 to 5 x 10
-2

 ms
-1

. 

 

Figure 3.5. East-West Horizontal velocity (u) and North-South horizontal velocity (v) in a 

point in the surface-most layer in the period simulation from the Day 205 to the Day 

212 in 2008, for experimental data measured by ADCP and simulation data of the high 

resolution model. 

 

3.5.1 Simulating the fate of storm-water outfalls  

 

Tracer T1 concentrations in the nearshore of Marla Bay are shown in Figure 3.6(e) and 

Figure 3.6(g). Figure 8(e) represents the concentration of tracer that had been released 

in the only outfall existing in Marla Bay (Figure 3.3), referred to as local; Figure 3.6(g) 

represents the concentration of tracer that had been released in South Lake Tahoe, SLT 

(Figure 3.3), referred to as exogenous. The average concentration of the local tracer 

increased during the release day (Day 191) and decreased rapidly thereafter. Two days 

after the start of the release, the average concentration within the shallowest 1.6 m had 
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decreased almost 87%, as a result of near-shore dispersion. The decrease in local tracer 

concentration occurred mainly during the first half of day 192, coinciding with peak 

northerly currents offshore in Elk Point (Figure 3.6(c)). The concentration decreased 

continuously during that time and remained constant, thereafter, until the beginning of 

day 193. At that time and coinciding with strong northerly currents offshore Elk Point, 

the local tracer concentration decreased again. The concentration of exogenous tracer 

released in SLT (Figure 3.6(g)) also increased in Marla Bay early on day 193. These 

results suggest that the local tracer was displaced by exogenous material that reached 

Marla Bay (Figure 3.6(g)) as a result of along-shore transport processes. Maximum 

concentrations of the exogenous material released in SLT were a factor of 10 lower than 

the maximum concentrations induced by the local outfall. The exogenous tracer was 

also dispersed rapidly after peaking, at noon on day 193. On day 195 for example, 

average concentrations of exogenous material in Marla Bay was only 10% of the 

maximum concentrations.  

 

Figure 3.6. Release periods for T1 tracer (Sub-period 1, left) and T2 tracer (Sub-

period 2, right). (a) v velocity (cm/s) in free surface in Elk Point in the Sub-period 1. (b) 

v velocity (cm/s) in free surface in Elk Point in the Sub-period 2. (c) vorticity calculated 
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for HR model in Marla Bay in the Sub-period 1. (d) vorticity calculated for HR model 

in Marla Bay in the Sub-period 2. For the Sub-period 1, (e) T1 averaged local tracer 

concentration released in Marla Bay and (g) averaged exogenous tracer concentration 

released in SLT. For the Sub-period 2, (f) T2 averaged local tracer concentration 

released in Marla Bay and (h) averaged exogenous tracer concentration released in SLT. 

A series of tracer T1 concentration fields near the lake surface are shown in 

Figure 3.7 and Figure 3.8, under weak wind forcing. The tracer shown in Figure 3.7 is 

of local origin. In Figure 3.8, the exogenous tracer is shown. The tracer cloud in Figure 

3.7 at the time of release on day 191 was concentrated near the only outfall in Marla 

Bay; on day 193, a plume of water entered Marla Bay from the south displacing the 

local tracer to the north and to the interior of the lake. The tracer released in SLT 

(Figure 3.8) was largely concentrated near the outfalls at the beginning of day 192. This 

plume was partially dispersed to the north on day 193, leading to small increases in 

tracer concentrations within Marla Bay, and rapidly dispersing on day 194. Note, 

however, that the bulk of the tracer remained largely un-dispersed on SLT towards the 

end of the experiment. 
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Figure 3.7. Near surface concentration of tracer T1 released locally in Marla Bay (Figure 

3.3) in Sub-period 1 at different days (D) and hours (H): (a) D: 191 H: 19:00 (b) D: 192 

H: 15:00 (c) D: 193 H: 03:00 (d) D: 193 H: 12:00 (e) D: 194 H: 06:00 (f) D: 195 H: 

01:00 (g) D: 196 H: 14:00 (h) D: 198 H: 00:00. 

 

 

Figure 3.8. Near surface concentration of exogenous tracer T1 released in SLT Figure 3.3) 

in Sub-period 1 at different days (D) and hours (H): (a) D: 192 H: 12:00 (b) D: 193 H: 

00:00 (c) D: 193 H: 06:00 (d) D: 194 H: 00:00 (e) D: 195 H: 23:00 (f) D: 196 H: 17:00 

(g) D: 196 H: 23:00 (h) D: 198 H: 00:00. 

The average tracer T2 concentrations in Marla Bay for release experiments 

conducted under strong and persistent wind forcing are shown in Figure 3.6(f) and 

Figure 3.6(h). Note first that the maximum local tracer concentration (Figure 3.6(f)) was 

lower than the maximum reached under weak forcing (T1, Figure 3.6(e)), likely a result 

of stronger dispersion rates occurring under strong wind forcing. The maximum 

concentrations of tracer released in SLT (Figure 3.6(h)), though, were almost five times 

larger than those observed under weak forcing (Figure 3.6(g)). The peak concentrations 

of local and exogenous tracer were similar in these experiments. Note also that two 
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peaks occurred in the time series of exogenous tracer concentrations (see Figure 3.6(h)), 

on days 209 and 210, and not one as shown in Figure 3.6(g). The timing of those pulses 

also coincides with decreasing concentrations in Figure 3.6(f). These results are partly 

the result of stronger along-shore currents (see Figure 3.6(b)), transporting material 

rapidly from SLT. But, it is also a result of the development of stronger re-circulating 

eddies of negative vorticity trapping material within Marla Bay during the study sub-

period 2 (see Figure 3.6(d)). The speed of rotation of local-scale eddies in the near-shore 

irregularities are shown to exhibit variations in time, increasing in response to pulses of 

strong long-shore currents. These pulses, in turn, tend to follow the local wind 

variations.  

As is proved in Chapter 2 (Section 2.4.4), these local-scale hydrodynamic 

features, such as flow separation and recirculation eddies, occurring in the near-shore 

region can only be well resolved in the HR model and not by the LR model. Marla Bay 

is a prototypical example of bays in lake shores Bay-scale where vorticity tends to be 

larger in magnitude in the high-resolution computations, partly due to the higher 

resolution of the grid, and partly due to the lower values of Kh used. In Chapter 2 

(Section 2.4.4), examples of the vorticity field in Marla Bay calculated by the HR and 

LR models are shown in Figure 2.13, day 201 in the simulated period. Note that the HR 

model simulates recirculation in Marla Bay, while the LR model only captures a weak 

divergence in the velocity field. Being able to simulate these eddies in bays, and other 

lake shore irregularities, is important in trying to understand coastal transport processes 

(Rueda and Vidal 2009). As a result of re-circulating eddies, bays can trap particles in 

suspension and other water constituents, hence, increasing the long-shore dispersion 

rates. This trapping effect has been reported previously in the literature. For example, 

Brooks et al. (1999) showed that eddies forming in Cobscook Bay, Maine, could trap 

particulates in the side-arms of the estuary. The local residence time of water within 

bays tends to increase as a result of recirculating eddies, hence, becoming hot-spots for 

the reproduction of species looking for quiet conditions. Nishimoto and Washburn 

(2002), for example, observed high concentrations of juvenile fish in the center of a 

large eddy in the Santa Barbara Channel.  

Near surface concentration fields of tracer released through outfalls existing in 

SLT are shown in Figure 3.9. Note, first, that the tracer released in SLT had already 

reached Marla Bay towards the end of the release, on day 208 (Figure 3.9). The tracer, 
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at that time, appeared concentrated in a narrow plume, along the southeastern shore, far 

away from the release area. Note, also, that the tracer appeared trapped in Marla Bay on 

day 210, as a result of recirculating eddies. The tracer leaves Marla Bay finally on days 

211 and 212, almost 4 days after the release.  

 

Figure 3.9. Near surface concentration of exogenous tracer T2 released in SLT (Figure 3.3) 

in Sub-period 2 at different days (D) and hours (H): (a) D: 208 H: 19:00 (b) D: 208 H: 

21:00 (c) D: 209 H: 11:00 (d) D: 210 H: 02:00 (e) D: 211 H: 00:00 (f) D: 211 H: 08:00 

(g) D: 212 H: 00:00 (h) D: 212 H: 07:00. 

 

3.6 Conclusion 

 

This chapter presents a parallel implementation (P-Si3D) that is able to simulate 

successfully a Semi-Implicit 3D lake hydrodynamic model in small commodity clusters. 

The implementation is proved successfully and with an acceptable execution time using 

mid-resolution and low-resolution of a real test example (Lake Tahoe). Additionally, the 

combination of P-Si3D and the nesting procedure developed and explained in Chapter 2 
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(N-Si3D) is able to conduct high-resolution simulations of the littoral fringe of Lake 

Tahoe, used to conduct tracer transport simulations revealing the pulsating nature of 

along-shore transport processes in lakes, and the effect of bays and shoreline 

irregularities on long-shore transport. 

This work discusses the performance of several thread- and process- level 

implementations of the parallel implementation and the influence of different platform 

configurations and domain decompositions. It has been found that: 

 The program makes a weak use of the prefetching hardware (prefetching decreases 

execution time by between 5% to 8%).  

 Intel® Turbo Mode Technology decreases slightly the execution time (by between 

3% to 7%). 

 Performance is worse if the default BIOS and operating system configuration is 

used (time increases by between 40% to 60%, depending on the number of 

processes and threads). This is due to the thread distribution of the operating system 

among the eight logical cores of a node when Hyper-Threading is enabled. Thread 

affinity could be used to avoid this problem instead of disable Hyper-Threading. 

 Block-driven processing reduces execution time too slightly (4% improvement 

approximately). 

 Process level implementation reduces execution time using overlapping sub-

domains (redundant operations).  

 The comparison of wide-direction or narrow-direction distribution in a parallel 

implementation, with MPI communications and with or without redundant 

calculation, shows that though the number of communications is the same, the 

quantity of data to calculate or communicate varies. The distribution approach more 

efficient is the one with a lower border length. 

 With the best parallel implementation and performance configuration, and with 

narrow-cut domain decomposition the simulation of 24 hours with the MR model in 

a core of the cluster requires proximately 6 hours with one processor (4 threads) 

instead of 20 hours and 30 minutes (with 1 threads) and approximately 2 hours and 

30 minutes with the three processors (12 threads). 

Additionally, the high-resolution near-shore model for Lake Tahoe using P-Si3D 

and N-Si3D is evaluated, validated and used to conduct tracer transport simulations 

founded that: 
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 The quality of the results obtained with P/N-Si3D is similar to the solution of a 

complete HR model. The averaged differences comparing the results of P/N-Si3D 

with the results of a complete high-resolution model are in all cases less than 4%. 

 The physical and chemical environment in specific bays is tightly linked to 

neighboring bays through along-shore transport processes. For example, water 

quality in Marla Bay, in the southeastern shore of Lake Tahoe, appears to be 

strongly influenced by the quality of water in South Lake Tahoe. The influence 

appears to be stronger during periods of strong winds, when water from SLT is 

rapidly transported and trapped in the bay as a result of the development of local bay 

scale eddies. 

  



 

  

 

 

 

 

 

Chapter 4 

 

Scalable parallel implementation for 3D 

semi-implicit hydrodynamic models 
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Abstract  

 

This chapter presents a parallel implementation for semi-implicit hydrodynamic models 

that scales in low-cost clusters of computers. The scalability of semi-implicit 

hydrodynamic models is limited due to the need of all-to-one/one-to-all 

communications at each simulation time-step. These communications are here avoided 

taking advantage of a nesting implementation, which resolves, in addition to the model 

with the original grid resolution (nested), a model with a lower grid resolution (parent). 

Nesting implementations are normally used to simulate both global and local processes 

with less memory and execution time by using as nested domain just the area where 

local processes occur while the parent model simulates the complete domain; but here, 

the nesting implementation is used to improve scalability. A two-level processing 

structure is proposed for the parallel implementation: pipeline plus domain-

decomposition. The resulting two-level parallel structure scales ideally. The computer 

performance and the quality of the results are evaluated using Lake Tahoe. 

 

4.1 Introduction 

 

Several software packages used to simulate three-dimensional shallow water (3D-SW) 

are summarized in Table 4.1: EFDC (Environmental Fluid Dynamic Code, Hamrick 

1992), MOM (Modular Ocean Model, Griffies et al. 2008), POM (Princeton Ocean 

Model, Blumberg and Mellor 1987), POP (Parallel Ocean Program, Smith et al. 2010, 

Dukowicz and Smith 1994), ROMS (Regional Ocean Modeling System, Shchepetkin 

and McWilliams 2005), and Si3D (Smith 2006). MOM and POP models are more 

suitable for global processes simulations (global-scale problems). Several parallel 

proposals for these softwares have been discussed in the bibliography (Table 4.1, 5
th

 

column); for example, parallel implementations for EFDC (O'Donncha et al. 2014), 

MOM (Beare and Stevens 1997,Griffies et al. 2008), POM (Giunta et al. 2007, Jordi 

and Wang 2012), POP (Smith et al. 2010), ROMS (Wang et al. 2005), or Si3D (Acosta 

et al. 2010). The difficulty to obtain a parallel implementation and its scalability (i.e. the 

time improvement when new computing resources are added) depends on the time-

discretization scheme used for solving the 3D governing equations: explicit, (semi-
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)implicit, or splitting. Explicit schemes require higher computational time due to the 

limitation of the integration time-step to the time a surface (external) gravity wave takes 

to travel between two adjacent horizontal grid points: this limitation is referred to as 

Courant or CFL (Courant-Friedrichs Lewy) stability condition for gravity waves. In 

order to reduce computational time, allowing the use of higher time-steps while 

retaining free-surface effects, splitting and semi-implicit methods are preferred. Semi-

implicit approaches (Casulli and Cheng 1992) avoid the time-step limitation due to CFL 

condition by treating implicitly the gravity-wave terms in the model equations, while 

other terms are treated explicitly, so that the time-step can be increased. Fully implicit 

implementations for 3D-SW equations are avoided due to the requirements in 

computational time and memory; implicit schemes require solving a coupled system of 

nonlinear equations for velocity and surface elevation over the entire domain each time-

step. In shallow water modeling with a semi-implicit scheme (used for example in 

Si3D), the solutions for surface elevation and velocity are uncoupled, a system of linear 

equations over the entire domain is solved at each time-step for surface elevation, and 

velocities are obtained explicitly using the computed surface elevations. The coefficient 

matrix for this system is symmetric and positive-definite so that the equations can be 

resolved efficiently using an iterative technique, such as the widely used preconditioned 

conjugate gradient (PCG). For its part, splitting methods (Blumberg and Mellor 1987) 

separate the 3D governing equations into the so called external or barotropic mode, a 

2D model for the depth-averaged flow (associated with the fast moving waves), and the 

internal or baroclinic mode, a 3D model for the vertical structure of flow (slower 

moving waves). The coupling of these internal and external modes is required. This 

splitting allows different time-steps for the 2D and 3D models, enabling the use of 

explicit integration with a short time-step that satisfies the CFL condition for the fast-

moving surface waves and with a longer time-step for the 3D model. However, the 

problem of coupling the external and internal modes with different time-steps comes up 

in this case. Several variations of splitting methods are used. Usually, the internal mode 

uses an explicit scheme except for the vertical diffusion terms, which are usually treated 

implicitly for stability reasons. External mode can be either explicit (explicit splitting 

methods), or it can be implicit or semi-implicit (implicit splitting methods). Explicit 

splitting methods (used for example in ROMS, MOM4.0 and later MOM releases, and 

POM) avoid the need to solve a system of equations over the entire domain at each 

external mode time-step (simplifying their numerical and parallel implementation), 
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while implicit splitting methods (e.g. EFDC, POP) makes external and internal modes 

coupling easier allowing the same time-step for both modes. Discussions about the 

accuracy of (semi-)implicit schemes and (explicit and implicit) splitting methods can be 

found for example in Smith 2006, and Dukowicz and Smith 1994.  

Soft. References 
Time 

integration 

Nesting 

implementation 

Parallel 

implementation 

Programming 

paradigm 
Parallel 

structure 

EFDC 
EPA 2002; 

Hamrick 1992 

implicit 

splitting (PCG 

solver 

recommended) 

 

O'Donncha et al. 

2014 
MPI 

domain-

decomposition 

MOM 
Griffies et al. 

2008 

explicit 

splitting 
 

Griffies et al. 2008 
FMS

(1)
 

(MPI) 
domain-

decomposition 

Beare and Stevens 

1997 
PVM

(2)
 

domain-

decomposition 

POM 
Blumberg and 

Mellor 1987 

explicit 

splitting 

Giunta et al., 

2007 (using the 

nesting of RSL
(3)

  

interface) 

Jordi and Wang 

2012 
MPI 

domain-

decomposition 

Giunta et al. 2007 
RSL

(3)
  

(MPI) 
domain-

decomposition 

POP 

Smith et al. 

2010; 

Dukowicz and 

Smith 1994 

implicit 

splitting (PCG 

solver 

recommended) 

 
Smith et al. 2010 

hybrid 

OpenMP-

MPI 

domain-

decomposition 

ROMS 

Shchepetkin 

and 

McWilliams 

2005 

explicit 

splitting 

Debreu et al., 

2012, Penven et 

al., 2006 (using 

multi-grid of 

AGRIF
(4) 

interface) 

Wang et al. 2005 MPI 
domain-

decomposition 

Si3D Smith 2006 

semi-implicit 

(PCG solver 

recommended) 

Acosta et al. 

2015 
Acosta et al. 2010 

hybrid 

OpenMP-

MPI 

domain-

decomposition 
 

(1) FMS (Flexible Modelling System, Balaji 2002). It provides an interface to MPI and to SHMEM 

(library of Cray) 

(2) PVM (Parallel Virtual Machine). Popular tool in the 90s for message-passing programming based on a 

library of functions. The experience in PVM helped to develop MPI, current de-facto standard based on a 

library of functions for message-passing programming. 

 (3) RSL (Runtime System Library, Michalakes 2000). It provides an interface able to define levels of 

grids and to parallelize the grid levels (domains) over the same set of processors, where each one has a 

piece of every domain. It uses MPI. 

(4) AGRIF (Adaptive Grid Refinement in Fortran, Debreu et al. 2008): provides an interface to define 

levels of grids. 

Table 4.1.  Several software packages used to simulate 3D-SW and several parallel 

implementations proposed for them 

The solution of the equation system over the entire domain each time-step makes 

hydrodynamic models with (semi-)implicit (splitting and non-splitting) schemes more 

difficult to parallelize and less scalable than explicit splitting and fully explicit schemes. 

This is a disadvantage of (semi-)implicit (splitting and non-splitting) schemes (also 

stated in Griffies et al. 2000 and Weller et al. 2013). This disadvantage is especially 

important nowadays because computational capacity is increasing by adding processing 

cores also in the low-cost computer market. The scalability is limited due to the all-to-
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one/one-to-all collective communications required each time-step to obtain surface 

elevation. To be more precise, the all-to-all reduction communications (i.e. all-to-one 

reduction plus one-to-all broadcast communications) used by the parallel solver that 

obtains the surface elevation (see for example Nesterov 2010, Hu et al. 2013) or the 

couple all-to-one gather and one-to-all scatter communications required for using a 

sequential solver within a parallel code (see for example Acosta et al. 2010,O'Donncha 

et al. 2014 and Section 4.2.1). The solver preferred for its efficiency is PCG; in 

particular, POP (Smith et al. 2010), EFDC (EPA 2002) and Si3D (Smith 2006) 

recommend it. Note that the smaller computational load (due to the time-step increment) 

also worsens the scalability of these schemes compared to explicit schemes, i.e. the task 

of parallelizing explicit schemes is more rewarding for the programmer. To tackle the 

scalability problem, a less efficient (low accuracy and/or slow convergence) parallel 

solver for surface elevation with less or no all-to-one/one-to-all communications can be 

used, such as Chebyshev iteration (used for example in Hu et al. 2013 for POP). The 

implementation here proposed avoids the scalability limitation by taking advantage of 

an online nesting implementation to eliminate all-to-one/one-to-all communications 

(Chapter 2 clarifies the difference between online and offline implementations). The 

results show that this implementation does not slow convergence, but accelerates it. The 

robustness of this approach is here shown.  

Nesting implementations are used in hydrodynamic models with structured grids 

to allow simulating both base-scale (global) processes and regional (local) processes 

reducing both the memory and run-time requirements because they avoid the simulation 

of the entire basin in the high resolution required to simulate local processes (Figure 

4.1). Online nesting implementations (Table 4.1, 4
th

 column) have been included for 

instance in POM (Giunta et al. 2007), ROMS (Debreu et al. 2012,Penven et al. 2006), or 

Si3D (Acosta et al. 2015). In nesting schemes a high-resolution (HR) model (nested 

model), which resolves local physical dynamics in the region of interest, is embedded 

inside a basin lower-resolution (LR) model (parent model) that simulates the basin-scale 

processes (Figure 4.1(b)). The different grid cell size of parent and nested models makes 

the execution time of the nested HR model much higher than the execution time of the 

parent LR model (the number of columns and cells to be processed are much higher 

and, additionally, the necessary time-step is smaller).  
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(a) 

 

(b) 

Figure 4.1. (a) Rectangular basin with HR horizontal grid of 32x64=2048 columns 

(each square is a column). Vertical cuts (green dashed lines) divide the domain into 

four subdomains (of 512 columns/subdomains). (b) HR grid on a region of interest 

(gray lines) of 12x64=768 columns nested in a basin LR grid (black lines) of 

16x8=128 columns (cell side ratio of 4:1 in the horizontal grid). The nested grid is 

divided into four subdomains (green dashed lines) of 192 columns. The size of the 

messages interchanged between adjacent subdomains (green arrows) depends on the 

length of the border and the depth of the columns. The border with the LR grid is in 

blue. The amount of data to be transferred from the basin LR model to the nested 

HR model depends on the length of the border and the depth of the columns. The 

figures do not show the all-to-one/one-to-all communications among subdomains 

required by the parallel implementation of hydrodynamic models with (semi-

)implicit (with or without splitting) schemes. 

The parallel approach here presented uses a nesting scheme to obtain a scalable 

implementation for a semi-implicit model in a low-cost commodity cluster of low-price 

computers (around ten low-price computers, each one with multiple cores sharing main 

memory), connected by an inexpensive network. That is, connected by a switch, links 

and interfaces of Gigabit Ethernet (nowadays motherboards include a 1GbE interface), 

instead of a custom made network for a particular platform or a proprietary one (e.g. 
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Gemini of Cray) or a more expensive commodity network (e.g. 10GbE, Infiniband, 

Myrinet, QsNet …). Scalability is more difficult to achieve in low-price clusters due to 

the lower performance of the network interconnecting the computers (latency and 

bandwidth) and the higher number of computers for the same number of processing 

cores (which increases mean communication time among cores), being these nowadays, 

the main differences between low-price platforms and other more expensive platforms 

for general-purpose processing (mid-range and high-end servers in the International 

Data Corporation taxonomy). The core microarchitecture, core clock-frequency, core 

local cache, last-level cache size divided by the number of cores, and maximum 

bandwidth divided by the number of cores is equivalent in low-price, mid-range and 

high-price platforms. The proposed parallel approach is here applied to a semi-implicit 

hydrodynamic model, in particular Si3D (Table 4.1, last row), although it can also be 

used with implicit schemes and (semi-)implicit splitting methods. Other parallel 

platforms for specific-purpose processing, such as GPUs, and for general-purpose 

processing can benefit from this approach. The nested model can comprise the entire 

basin (parent model) or a region of the basin; run-time is additionally improved and 

total memory requirement is reduced with this last option. 

The scalable-parallel approach uses a hybrid parallel programming paradigm and 

a two-level parallel structure. The instruction flows assigned to computers are managed 

by the message-passing programming-paradigm of MPI and those assigned to cores by 

the shared-memory programming-paradigm of OpenMP. MPI is nowadays a de-facto 

standard tool for message-passing-based parallel programming, while OpenMP is a de-

facto standard tool for shared-memory-based parallel programming. MPI is founded on 

a function library while OpenMP is founded on compiler directives and a function 

library. Implementations of MPI and OpenMP tools can be found for Fortran and 

C/C++ sequential programming languages. Table 4.1 shows the programming paradigm 

used in several parallel implementations (6
th

 column). The parallel implementation of 

MOM in Griffies et al. 2008 and that of POM in Giunta et al. 2007 use an API 

(Application Programming Interface), FMS (Balaji 2002) and RSL (Michalakes 2000) 

respectively, on top of the more general (flexible) and more low-level parallel 

programming tool, which is MPI in both cases. An API in general facilitates 

programmer work at expense of worsening flexibility and execution time. 
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The two-level parallel structure combines a pipeline-like processing at the first 

level with a structure resulting from a domain-decomposition data-distribution at the 

second level. There are several attempts to classify task/process structures or task 

distributions in parallel computing (both are related); some of these classifications can 

be found in Silva-Moura and Buyya 1998; another term in the bibliography for pipeline 

is data flow and for domain-decomposition is data-structure decomposition. The nested 

HR model will be executed in parallel to the basin LR model in a pipeline-like 

processing and, due to the much higher execution time of the nested HR model, this 

model will be executed in parallel in several computers applying domain-

decomposition. The domain-decomposition implemented here avoids all-to-one/one-to-

all communications (and consequent communication delay and run-time increase) by 

making each computer solve an independent equation system, taking advantage of the 

online nesting implementation. As a result, the parallel domain-decomposition 

implementation of the nested HR model decreases the execution time almost linearly 

with the number of cluster computers. The complete parallel code that includes the two-

level structure (pipeline plus domain-decomposition) also scales almost ideally. We 

have not been able to find any parallel implementation with this two-level structure in 

the bibliography. The parallel-nested implementation of POM in Giunta et al. 

2007(Table 4.1) is built upon the functionality of the RSL interface (Michalakes 2000). 

In RSL the nested HR model and the basin LR model use the same set of processors. As 

a result, each one has a piece of every domain (as Michalakes 2000 clarifies), so no 

pipeline structure is reported. 

The performance figures (computer performance and quality of the results) are 

here obtained using a model of Lake Tahoe (USA), which has a size of roughly 20 km x 

30 km in the horizontal dimension and a depth of up to 500 meters in the vertical 

dimension. Engineers use this model, for example, to study the transport of 

contaminants and planktonic larvae in the near-shore (littoral) zone (see Hoyer et al. 

2014). The proposed implementation can simulate local processes for this example in 

real time in a low-cost cluster. Much larger size problems would require more expensive 

platforms. 

This chapter is organized as follows. Section 4.2 presents the scalable-parallel 

implementation and Section 4.3 evaluates it. Section 4.2 justifies the benefit of the 

scalable-parallel approach proposed taking into account the influence in performance of 
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the different processing stages and of the different kinds of communications among 

computers. Section 4.3 evaluates run-time and scalability of the parallel implementation 

and evaluates the quality of the results. Last section gives conclusions.  

 

4.2 Scalable parallel implementation 

 

The parallel implementation presented, that takes advantage of the nesting 

implementation N-Si3D to achieve scalability and is based on a parallel processing 

structure of two levels (more details in Chapter 2), is applied here to the semi-implicit 

hydrodynamic model proposed by Smith 2006, Si3D (Chapter 1) and modified to take 

advantage of several basic optimizations and an improvement of the data structure 

(more details about the basic optimizations and the new data structure can be found in 

Chapter 5, this version is called Basic Si3D). The scalable parallel implementation 

modifies the parallel implementation presented in Acosta et al. 2010 and explained in 

detail in Chapter 3, P-Si3D. Additionally, some details of P-Si3D are showed here again 

(Section 4.2.1) in order to explain the new implementation consistently.  The new 

scalable parallel implementation also uses the nesting implementation proposed and 

validated in Acosta et al. 2015 and explained in detail in Chapter 2. 

 

4.2.1 P-Si3D implementation 

 

Figure 4.2 shows a simplified flow diagram of a hybrid parallel implementation for 

multicore clusters, P-Si3D, introduced in Acosta et al. 2010 (Table 4.1) and explained in 

detail in Chapter 3. The implementation here proposed modifies this parallel 

implementation making it more scalable in low-cost clusters of computers. P-Si3D has 

the following design characteristics: 
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1. It distributes the work among computers (C1 in Figure 4.2) and among the cores in 

the computers (as Figure 4.2 also shows). The instruction flows assigned to 

computers are managed by the message-passing programming-paradigm of MPI and 

those assigned to cores by the shared-memory programming-paradigm of OpenMP. 

C1, C2, C3 and C4 are communications among computers through message-passing 

(communications/synchronizations of cores, through the main memory they share, 

 
Figure 4.2. Solver stages, S1, S2, S3 and S4, for a semi-implicit hydrodynamic 

model (Si3D) and simplified flow-diagram for a parallel implementation in a cluster 

of multicores (P-Si3D).  All computers execute the same code (they all take part in 

the gather and the scatter collective communications). The diagram does not show 

output epochs that store output data in disk. Gray boxes represent processing added 

for the parallel implementation. C1, C2, C3 and C4 are communications among 

computers, communications/synchronizations of cores are not shown.  
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are not shown). S1, S2, S3 and S4 are Si3D solver stages (see Chapter 1 for more 

details about the numerical algorithm of Si3D).   

2. P-Si3D splits the simulation domain into sub-grids or subdomains assigning 

contiguous columns in main memory to a subdomain. All the subdomains, including 

those assigned to the cores of a computer, process columns that are contiguous in 

memory. All columns are wet (columns with water), dry columns are not considered 

nor stored in memory. The distribution is made taking into account the number of 

cells in the columns for improving work balance (the amount of work in S1, S3 and 

S4 depends on the number of cells). In O'Donncha et al. 2014 can be seen an 

example of how work balance can affect parallel scalability (a distribution that 

includes dry columns versus other distribution that does not). A subdomain requires 

values from the neighbor subdomain for the computation (gradients are obtained). 

This kind of distribution of work among computers/cores is usually named domain-

decomposition distribution.  

3. A parallel implementation of shallow water simulation with both explicit or (semi-

)implicit methods requires interchange communications (see Figure 4.1), the latter 

ones also require all-to-one/one-to-all communications (see next item 4). P-Si3D, in 

order to reduce interchange of data by MPI message passing, overlaps the grids 

assigned to computers (each subdomain has replicated columns from its neighbors), 

such that some computations in the overlapped points are performed in two 

neighbor grids. Thanks to this overlapping, data interchange between computers is 

needed just once, at the end of S4 stage (C4 in Figure 4.2). Other parallel 

implementations also report the use of overlapping sub-grids or ghost cells or hallo 

regions to decrease interchanges; for example, Giunta et al. 2007 (Table 4.1), which 

executes the parallel code in a platform with single-core computers with two logical 

cores per computer (2-way Simultaneous MultiThreading, SMT), and O'Donncha et 

al. 2014 (Table 4.1), which uses a cluster of 5 computers (in a blade packaging) with 

one 6-core (2-way SMT) processor per computer. P-Si3D does not overlap the sub-

grids assigned to cores, since they share memory and can access neighbor’s data 

with memory reads instead of slower network message-passing, so replicating 

overlapped computations is no longer an advantage, and a worse execution time is 

obtained if done so. Due to the domain-decomposition implemented, each 

subdomain has only two neighbor subdomains as in Figure 4.1.  



PhD Thesis 

110 

 

4. S2 solver stage, which resolves a system of equations for obtaining surface elevation 

ζ
n+1 

with an equation for each of the domain columns by using an iterative method, 

has a small sequential execution time compared to that of a time-step (sequential 

time of S1, S2, S3 plus S4 in Figure 4.2). For example, S2 consumes a 2% of the 

simulation time of Lake Tahoe (with cells of 50 m x 50 m side in the horizontal 

direction) in Chapter 3 using modified incomplete Cholesky as preconditioner for 

PCG. This preconditioner was selected by Smith 2006 for Si3D after comparison 

with other alternatives. We have obtained, for example, improvement of 89-90% in 

S2 time using modified incomplete Cholesky instead of a Jacobi preconditioner. 

Due to the low percentage of execution time of S2, executing it sequentially seems 

reasonable as long as the parallel implementations are executed in just a few 

computers (as it is going to be clarified below). P-Si3D executes S2 sequentially; in 

consequence, one collective gather (all-to-one) communication before S2 (to collect 

all the equation system coefficients obtained by the subdomains) and one collective 

scatter (one-to-all) communication after S2 (to distribute the calculated ζ
n+1

) are 

required (C2 and C3 in Figure 4.2). A parallel execution of S2 would avoid the 

gather plus scatter communications each time-step but would need,  multiple all-to-

all reduction (i.e. all-to-one reduction plus one-to-all broadcast) and interchange 

communications in the solver used in S2 to resolve the equation system each time-

step (see, for instance, Nesterov 2010). The number of these communications 

depends on the number of iterations required by the PCG solver, which in turn 

depends on the preconditioner used and the size of the equation system. Each PCG 

solver iteration requires one or two all-to-all reduction plus an interchange 

communications. A test of these two approaches (gather + sequential S2 + scatter vs. 

parallel S2) can be seen in O'Donncha et al. 2014 for POP. 

As Figure 4.3 clarifies, the run-time of a time-step (Δt) with P-Si3D in p 

computers (TΔt(p)) depends on the execution time in p computers of the Si3D solver 

stages S1, S3 and S4 (T
S1

(p) and T
S3,S4

(p)), the sequential execution of S2 (T
S2

) and the 

overhead (𝑇𝑂 (𝑝)) introduced by the parallel implementation: 

𝑇∆𝑡(𝑝) = 𝑇𝑆1(𝑝) + 𝑇𝑆2 + 𝑇𝑆3,𝑆4(𝑝) + 𝑇𝑂 (𝑝) 

𝑇𝑂 (p) = (𝑇𝐺𝑎𝑡ℎ
𝑆1/𝑆2

(𝑝)  +  𝑇𝑆𝑐𝑎𝑡
𝑆2/𝑆3

(𝑝) + 𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

)  + 𝑇𝑤𝑜𝑟𝑘−𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒

+ 𝑇𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡−𝑤𝑜𝑟𝑘  

   (4.1)
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Overhead limits scalability and when it grows as more resources (p) are used, it could 

cause, after some certain point, that execution time increases instead of decreasing as 

yet more resources are added. The overhead, in a parallel implementation in general, 

depends on (1) the communication time (gather, scatter and interchange time in P-

Si3D), (2) extra operations (as the previously mentioned redundant computations in the 

overlapping areas, Section 4.2.1), and (3) the penalty for an imperfect work distribution 

among computing resources, which causes that some of these resources finish their 

assigned work after others do (P-Si3D reduces imbalance by distributing columns with 

water and trying to balance the number of cells with water, as was pointed out before).  

 
Figure 4.3. P-Si3D. Execution time of P-Si3D for a given problem size (the lengths 

of the bars are proportional to the time required in a Lake Tahoe simulation with 

cells of 50 m x 50 m side in the horizontal direction) in (a) one computer or process 

(P1), (b) three computers (P1,P2,P3), and (c) nine computers (P1,…,P9). 𝑇𝛥𝑡 (1), 

𝑇𝛥𝑡 (3) and  𝑇𝛥𝑡 (9) are the total execution time of a time-step in 1, 3 and 9 

computers respectively. 𝑇𝐼𝑛𝑡𝑐ℎ
𝑆4/𝑆4

 (in green) is the data interchange time at stage S4 

(the first and last processor can also interchange data). One of the computers 

gathers (in blue) the coefficients of the equation system for obtaining ζ (𝑇𝐺𝑎𝑡ℎ
𝑆1/𝑆2

), 

solves the equation system (𝑇𝑆2), and scatters (blue) the results among computers 

(𝑇𝑆𝑐𝑎𝑡
𝑆2/𝑆3

). The run-time depends on the number of computers (as figure shows), but 

also on the size of the problem simulated.  
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The communications in each time-step of P-Si3D include one gather (C2 in Figure 

4.2), one scatter (C3) and an interchange of boundary data between subdomains (at the 

end of S4, C4 in Figure 4.2, see also Figure 4.3). The performance (latency and 

bandwidth) of these collective communications depends on the time of a point-to-point 

communication. The communication time between two computers connected through a 

network (point-to-point communication), such as a low-cost network based on a 1Gbit 

Ethernet switch (which typically connect tens of computers (8, 16, 24, 48)), depends on 

the network minimum latency (L, seconds) and maximum bandwidth (B, bytes per 

second) and the size of the message (m, bytes). It could be roughly approximated by this 

expression (as Section 4.3.3 shows): 

 

 𝑇𝑝𝑜𝑖𝑛𝑡−𝑡𝑜−𝑝𝑜𝑖𝑛𝑡(𝑚) = 𝐿 +
𝑚

𝐵
       (4.2)

 

L is the time required for a message of small size; around 30 μs for the 1GbE links and 

switch used here in the test cluster (using MPI), around hundreds of nanoseconds with 

links of high-performance networks. B is the bandwidth for large message size m. The 

ideal value for B is the capacity of the link (1 Gbit/s = 125 MB/s for 1GbE links in one 

direction), B is around 117.6 MB/s per direction in the test cluster with MPI, tens of 

gigabytes per seconds in one direction with links of high-performance networks. For 

scatter (one-to-all) and gather (all-to-one) collective communications, the time depends 

on the size m of the message scattered from or gathered to one node (name here the root 

node) and the number of computers p involved.  If the node that scatters also receives 

data (as in C3) or the node that gathers also sends data to itself (as in C2), both the 

minimum latency L and the maximum bandwidth B depend on the number of computers 

involved. The total latency of these scatter and gather communications could be roughly 

approximated by this expression:  

 

𝑇𝑆𝑐𝑎𝑡
𝑜𝑛𝑒−𝑡𝑜−𝑚𝑎𝑛𝑦(𝑚, 𝑝) = 𝑇𝐺𝑎𝑡ℎ

𝑚𝑎𝑛𝑦−𝑡𝑜−𝑜𝑛𝑒(𝑚, 𝑝) = 𝐿 (𝑝) +
𝑚

𝐵 (𝑝)
       (4.3)

 

When the number of computers increases, the minimum latency L(p) will increase, 

because there is just one link connecting the root node to the switch that every packet 
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sent (scatter) from or received (gather) by this node must traverse, and B(p) will 

decrease, because the number of bytes truly sent or received through the network 

increases (notice that the bytes from or to the root node are not really transferred 

through the network). The lowest limit of this bandwidth is the point-to-point bandwidth 

and, the highest, twice the point-to-point bandwidth. If the node that scatters does not 

receive data or the node that gathers does not send data, also the minimum latency L(p) 

would decrease with the number of computers and the total bandwidth will increase, but 

the maximum bandwidth would not depends on the number of computers. It would be 

the maximum point-to-point bandwidth regardless the number of computers involved. 

This happens because there is just one link connecting the root node with the switch and 

all the m bytes are transferred through the network.  More precise communication 

models than those of the Eq. (4.2) and (4.3) can be found in the bibliography (for 

example in Pjesivac-Grbovic et al. 2007), which can model packets (networks split 

messages into packets, which are routed individually through the interconnection 

network), more complex networks (based on multiple switches), and/or network 

congestions (useful, in particular, when the network is shared by several applications at 

once).  

The communications in each time-step of P-Si3D also include an interchange of 

boundary data between subdomains (at the end of S4, C4 in Figure 4.2, see also Figure 

4.3). Due to the domain-decomposition implemented, each subdomain has only two 

neighbor subdomains. The interchanges of data between neighbor subdomains can 

proceed in parallel, as Figure 4.3 shows, with a time that does not depend (at least, 

noticeably) on the number of computers in a network based on a crossbar switch (usual 

in clusters). A crossbar switch allows that all or several switch inputs transfer data to 

outputs in parallel as long as each input requires a different output. The interchange of 

 
(a)                                        (b) 

Figure 4.4. Interchange collective communication includes two shift permutations 

(a) right and (b) left. Each of these permutations can be performed in parallel in a 

network based on a crossbar full-duplex switch. The switch in the figure connects 

four computers (P1 to P4) 
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data between neighbor subdomains comprises two shift permutations (bijective 

functions) because each subdomain has two neighbor subdomains in P-Si3D. Each of 

these permutations can be implemented in parallel in a network with a full-duplex 

switch, full-duplex links, and interfaces with independent input and output queues, as 

Figure 4.4 illustrates for a switch connecting four computers. Therefore, it is expected 

that the interchange latency and local bandwidth (bandwidth of a node) will be roughly 

twice the latency and bandwidth of a point-to-point communication. In practice, the 

number of computers will affect the interchange performance slightly because the 

switch has to cope with more packets coming from more sources. Moreover, C4 impact 

could be reduced or even avoided by overlapping it with computation (the border data to 

be sent can be obtained first as for example in Beare and Stevens 1997). This 

overlapping is not possible with C2 and C3 (S2 can start when S1 finishes, S2 obtains 

all surface elevations at once, so S2 must finish to continue as Figure 4.3 illustrates). 

Therefore, for large amount of bytes transferred through the network, the latency for a 

gather plus a scatter and for interchange is expected to be similar (for the same number 

of bytes) and near twice the point-to-point latency (i.e. the latency of a Ping-Pong). For 

small amount of bytes, gather+scatter latency for more than two nodes (plus the root 

node) is expected to be higher than the interchange latency, since the latter is approx. 

twice the point-to-point latency while the former is predicted to depend on both the 

point-to-point latency and the number of nodes (in the worst-case, point-to-point 

multiplied by the number of nodes). Section 4.3.3 shows test results (see, for example, 

Figure 4.12). 

For C4, the size m of the messages depends on the number of grid layers (grid 

depth) and the length of the border between neighboring subdomains (see Figure 4.1). 

For the gather C2 and the scatter C3, the size of the scattered or gathered message (m in 

Eq. (4.3)) depends on the number of columns in the entire grid, i.e., number of 

equations and unknowns in the S2 equation system. The amount of data to be 

transferred in C2, C3 and C4 depends on the particular simulation. Generally, the 

amount of data to be interchanged (C4) will be less than the amount of data trasferred 

by the gather+scatter required (C2-C3). Moreover, C4 can be overlapped with 

computation. 

Redundant operations and work imbalance (with the P-Si3D work distribution 

mentioned before, Eq. (4.1)) affect overhead in a lesser degree than the S2 sequential 
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execution and the C2-C3 communications, and their overheads do not depend on the 

number of computers. Figure 4.3 ((b) and (c)) assumes a perfect balance (see length of 

the bars): 

 

𝑇𝑆1(𝑝) =
𝑇𝑆1(1)

𝑝
          𝑇𝑆3,𝑆4(𝑝) =

𝑇𝑆3,𝑆4(1)

𝑝
    (4.4)

 

Taking into account the above explanation and, as Figure 4.3 illustrates, P-Si3D 

scalability is mainly limited by (1) the non-parallelized code, S2, and (2) the gather and 

scatter communications. Figure 4.3 shows that for nine computers the time of gather 

plus S2 plus scatter becomes an important percentage of the total time-step run time. 

The parallel implementation here proposed eliminates these problems by executing S2 

in parallel and without all-to-one/one-to-all communications; as a result, the 

implementation is going to scale linearly with the number of computers.  

 

4.2.2 Scalable parallel semi-implicit implementation 

 

The parallel implementation proposed, SP-Si3D, uses online one-way nesting in order 

to obtain a scalable speedup as more computers are added. The nested grid can be the 

entire basin model (equal in extension to the parent model) or a region of the basin. In 

this last case, the requirements of memory and execution time are additionally reduced 

by the nesting approach. The different cell size of parent and nested models (even of 

5:1, with number-of-columns ratio of 1:25, and time-step ratio of 1:5, yielding ratios of 

total work load of even 1:125 for the same simulation period) makes the execution time 

of the nested HR model much higher than the execution time of the parent LR model. It 

is most likely in low-cost clusters that parent LR model execution in real time would not 

require more than one computer while the nested HR model would require for real time 

performance multiple computers, each one executing a subdomain of the nested HR 

grid. Figure 4.5 shows a simplified flow diagram of the parent LR model code executed 

by a computer and the flow diagram for a nested HR subdomain. Figure 4.6 (a) shows 

the execution in parallel of LR and HR models during several time-steps (in particular, 

n-1, n, n+1 and n+2 time-steps of parent LR model and n-2, n-1, n and n+1 of nested 
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HR model are shown). The parent LR model is executed in a computer in parallel to the 

execution of the nested HR model (Figure 4.6 (a)) with a structure that resembles a 

pipeline architecture processing (Figure 4.6 (b)) with three stages (LR stage, 

interconnection network stage and HR stage). Due to the much higher execution time of 

the nested HR model, this model is also executed in parallel in p computers, with a 

domain-decomposition structure (Figure 4.6 (b)). The parallel implementation of the 

nested HR model departs from the MPI parallel implementation of P-Si3D in order to 

obtain a scalable speedup as more computers are added by taking advantage of the 

parent LR model. The parallel HR model implementation executes S2 solver stage in 

parallel without all-to-one/one-to-all collective communications. S2 equation system 

used to obtain surface elevation ζ
n+1

 is divided into p independent equation systems (one 

per subdomain). These equation systems need unknown elevations values from the n+1 

time-step (in particular, in the HR equations formulated for border/corner columns) that 

are going to be calculated at the same time by the equation system of a neighbor HR 

subdomain. To overcome this problem, these values are obtained from the parent LR 

model by interpolation. The LR values of the neighbor (obtained from the parent) are 

multiplied by the respective coefficients and moved to the independent term in the right 

hand side, making the p equation systems independent of each other. As the equation 

systems are smaller than the original equation, the number of iterations required for 

each one to converge to the same required tolerance will be smaller as well.  

The time required by the interchange of data between neighboring HR 

subdomains, 𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

 in Figure 4.6 (𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

 in Figure 4.3) depends on the size of the data 

to be transferred (m in Eq. (4.2)), which depends on the length of, and number of layers 

in, the frontier between neighboring subdomains, as Section 4.2.1 pointed out. In SP-

Si3D, the LR model sends data to all HR subdomains (C2 in Figure 4.5). The time of 

this scatter depends on the number of computers, p, and the amount of data to be 

transferred, m. Therefore, the time of this scatter from LR model to HR subdomains for 

a given problem size depends on the number of computers (subdomains), p, used to 

execute the nested model, but this time (𝑇𝑆𝑐𝑎𝑡
𝐿𝑅/𝐻𝑅

(𝑝)) is not perceived because these 

communications occur in parallel to computations, as Figure 4.6 (a) shows, due to the 

pipeline implementation. The pipeline of SP-Si3D has three stages as Figure 4.6 (b) 

shows: 
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 (1
st
 stage, LR) parent LR model (𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)) executed in one computer using one 

or several of the computer’s cores (p
LR 

= #cores_used_by_LR / 

#cores_per_computers). The unused computer cores can be assigned to another 

user or to another task of the same user. 

 (2
nd

 stage, C2) communication C2 in Figure 4.5 (𝑇𝑆𝑐𝑎𝑡
𝐿𝑅/𝐻𝑅

(𝑝)) performed by the 

interconnection network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. SP-Si3D. Simplified flow diagrams for LR model and HR subdomains. 

The diagrams do not show output epochs that store output data in disk. Gray boxes 

represent processing added for the parallel implementation. C1, C2 and C3 are 

communications among computers; communications of cores are not shown. 

S1,…S4 are Si3D stages. 
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(a) Processing of the parent LR model by a computer               (b) Processing of a nested HR subdomain in a computer 
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  (3
rd

 stage, HR) nested HR model (𝑇𝛥𝑡
𝐻𝑅(p)) executed in parallel by p computers.  

These three stages use different hardware resources so they are executed in parallel. In a 

pipeline structure, a result is obtained in a time equal to the time of the slower stage. In 

this pipeline, the slower stage will be usually the 3
rd

 (even though the LR model uses 

less resources, work load ratios LR:HR of even 1:125 can be found). This is due to the 

different grid resolution of the parent and nested models (number of cells, time-step 

value), the extension of the nested model (which can include the entire basin), and the 

size of low-cost clusters. The resources (𝑝𝐿𝑅) to be used in the execution of the LR 

model can be chosen in order to approximate its run time to the run time of the HR 

model ((𝑇𝛥𝑡
𝐻𝑅(𝑝) ~𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)). The execution time of a time-step, Δt, in SP-Si3D is 

(taking into account that 𝑇𝛥𝑡
𝐻𝑅(𝑝)  ≥ 𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅) and 𝑇𝛥𝑡
𝐻𝑅(𝑝)  ≥ 𝑇𝑆𝑐𝑎𝑡

𝐿𝑅/𝐻𝑅
(𝑝)): 

 
Figure 4.6. SP-Si3D. (a) Parallel execution of SP-Si3D, with a particular problem 

size, in time-steps n-2, n-1, n, n+1 and n+2 with several computers (processes) 

P0…Pp. (b) Pipeline plus domain-decomposition structure. The figure assumes same 

time-step for parent LR an nested HR models (𝛥𝑡 = 𝛥𝑡𝐿𝑅=𝛥𝑡𝐻𝑅) for simplicity and 

also assumes that load balance is perfect, i.e. the HR models (HR1,…,HRp)  and the 

LR model complete a simulation time-step in the same time (𝑇𝛥𝑡
𝐿𝑅(𝑝𝐿𝑅)= 𝑇𝛥𝑡

𝐻𝑅(𝑝)). 
Communications C2 (blue arrows) and C3 (green arrows in 0 are shown (the first 

and last processor can also interchange data as figure (b) shows, figure (a) does not 

include it for a cleaner drawing). 𝑇𝑆𝑐𝑎𝑡
𝐿𝑅 𝐻𝑅⁄

(𝑝) is the communication time from LR to 

all HRs models (C2) and 𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

 is the time spent on data interchange between 

neighboring HR models (C3).  
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 𝑇𝛥𝑡 (𝑝+ 𝑝
𝐿𝑅) = max ( 𝑇𝛥𝑡

𝐻𝑅(𝑝),  𝑇𝑆𝑐𝑎𝑡
𝐿𝑅 𝐻𝑅⁄ (𝑝), 𝑇𝛥𝑡

𝐿𝑅(𝑝𝐿𝑅)) =  𝑇𝛥𝑡
𝐻𝑅(𝑝) 

𝑇𝛥𝑡
𝐻𝑅(𝑝) = 

𝑇𝑆1(𝑝) + 𝑇𝑆2(𝑝) + 𝑇𝑆3,𝑆4(𝑝) + 𝑇𝑂              𝑤ℎ𝑒𝑟𝑒              𝑇𝑂 ≈

𝑇𝐼𝑛𝑡𝐶ℎ
𝐻𝑅/𝐻𝑅

= 𝑇𝐼𝑛𝑡𝐶ℎ
𝑆4/𝑆4

 

   (4.5)

 

N simulation time-steps are executed using SP-Si3D (Figure 4.6 (a)) with an execution 

time of (LR model must start first): 

 

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑁, 𝑝) = 𝑇𝛥𝑡
𝐿𝑅 + 𝑇𝑆𝑐𝑎𝑡

𝐿𝑅/𝐻𝑅
(p) +  N × 𝑇𝛥𝑡

𝐻𝑅(𝑝)

≈ N × 𝑇𝛥𝑡
𝐻𝑅(𝑝) 

   (4.6)

 

Therefore, SP-Si3D run-time (Eq. (4.5) and Eq. (4.6)) does not depend on the 

computation of a sequential code and on gather and scatter communications, as the 

execution time of P-Si3D (Eq. (4.1)). Moreover, as it can be observed, the overhead of 

SP-Si3D does not depend on the number of computers. The communication time 

depends on the interchange communication, which can be overlapped with computation 

as was pointed out before. 

To the best of our knowledge, the combination of task structures applied here, 

pipeline and domain-decomposition, has not been previously used in fluid dynamics 

simulations. It can be used with explicit, (semi-)implicit and (semi-implicit) splitting 

methods with nesting.  

 

4.3  SP-Si3D performance evaluation and validation 

 

The computing performance (Section 4.3.2) and the quality of the results (Section 4.3.5) 

obtained by SP-Si3D are evaluated using Lake Tahoe (Section 4.3.1). 
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4.3.1 Lake Tahoe simulation figures 

 

The objective is to simulate the local processes in the littoral zone of Lake Tahoe, which 

has a size of roughly 20 km x 30 km in the horizontal dimension and a depth of up to 

500 m in the vertical dimension (Table 4.2, Figure 4.7(a)). Near-shore circulation can be 

used in different studies. For example, in Lake Tahoe, it can be used to develop a long-

term risk assessment of invasive species (such as Asian clam) growth, spread and 

impact (Hoyer et al. 2014). In this study, the near-shore circulation can be used to 

develop a transport model of Lake Tahoe to characterize the pathways of transport of 

invasive species from the existing beds to other near-shore areas. To achieve this goal, a 

high resolution must be used where fine-scale information is needed, such as in the 

near-shore. In this case, it is not necessary to simulate the entire lake with a high 

resolution, so the nested HR model can encompass just the littoral zone (Figure 4.7(b)). 

In order to make this study, cells of 20 m x 20 m are required in this region (this size 

has been used for example in Hoyer et al. 2014).  With 20 m x 20 m square cells, the 

time-step must be set to 10 s to guarantee model stability. The parent LR model has 100 

m x 100 m horizontal cells, i.e. the cell side ratio LR:HR is 5:1 (number-of-columns 

ratio LR:HR of 1:25). The time-steps of the parent LR and nested HR models (ΔtHR and 

ΔtLR) do not need to be the same; in fact, ΔtLR could be larger than ΔtHR given the larger 

size of the grid cells (50 s instead of 10 s, Table 4.2, time-step ratio LR:HR of 1:5). The 

time between consecutive LR/HR communication events could also be a multiple of the 

time-step in the parent LR model. The boundary condition information, in those cases 

(different LR and HR time-steps and/or LR/HR communication events of multiple LR 

time-steps), is interpolated in time. This interpolation increases the errors in the nesting 

implementation (as shown in Chapter 2, Section 2.4)), although in a lower degree than 

the iterative solver used for obtaining free surface (Table 2.4 in Chapter 2). In the 

applications shown here (Section 4.3), HR and LR models are set to run with the same 

time-step (i.e. Δt = ΔtLR = ΔtHR =10 s, Table 4.2) and the communications were forced 

to occur after every iteration, so no temporal interpolation error is introduced at expense 

of a higher run time of the parent LR model. By using a time-step of 50 s instead of 10 s 

for the LR model, its run time could be divided by approx. 5 or, alternatively, the 

number of resources assigned to the LR model could be divided by approx. 5. 
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The bathymetry data was downloaded from http://tahoe.usgs.gov/bath.html. In the 

simulations, the model was forced (input data) using surface heat and momentum fluxes 

estimated from local atmospheric variables (short and long wave radiation, air 

temperature, relative humidity, and wind speed and direction) obtained from 

meteorological data. These data were taken primarily from meteorological stations 

maintained by the Tahoe Environmental Research Center (TERC). There are ten 

shoreline and on-lake meteorological stations. All stations provide a near-continuous 

record of wind magnitude and direction and air temperature. The model was simulated 

from July 3
th

 2008 (Julian Day 185) to August 1
nd

 (Julian Day 214), with hourly output 

epochs.  

Models of 
Lake Tahoe 

Horizontal 
cell side 

#Wet_ 
columns 

Column 
ratio 

# 
Wet_cells 

Cell 
ratio 

Simulation 
period 

Time-step # Time-steps 

LR basin 100 m 50,383 0.04 3,657,268 0.04 30 days 10 s / 50 s 
259,200 (10 s),  

51840 (50 s) 

HR littoral 20 m 493,317  0.4 21,181,918 0.22 30 days 10 s 259,200 

HR basin 20 m 1,244,896  1 94,691,170 1 30 days 10 s 259,200 

 

Table 4.2. Simulation figures: resolution (square cell horizontal side); total number of 

columns and number of cells; period of simulation; simulation time-step used / time-step that 

could be used taking into account the cell size; number of time-steps for the whole simulation 

period. 

 

 
(a)  

 
 (b)  

Figure 4.7. Lake Tahoe (between California and Nevada in USA). (a) Bathymetry 

and location of Marla Bay. The basin HR model and the basin LR model (or parent 

model) comprise the entire Lake Tahoe basin. (b) Littoral zone simulated in the 

nested HR model. 

http://tahoe.usgs.gov/bath.html
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4.3.2 Computing performance 

 

The parallel simulations were conducted in ARCHIMEDES, a standard rack-mount 

cluster of nine rack computers (including the front-end) connected by a Gigabit Ethernet 

switch, the Dell PowerConnect 2824, which is a full duplex switch with 2 Mb of packet 

buffer memory. The computers have 12 GB of main memory and two Intel® Xeon® 

CPU L5506 processors (4 cores, hyperthreading (Intel SMT), 2.13 GHz, 4 MB last-

level L3 cache, 4.80 GT/s Intel® QPI, low thermal design power 60 W, Intel 

recommended customer price $423). Each core is two logical cores, so it can execute 

two instruction flows in parallel. SP-Si3D run-time improves by using logical cores 

when only one computer is available to execute both LR and HR models, for more than 

one computer, one logical core per core improves run-time. The cluster works under 

Rocks Linux distribution. The code was compiled using the Intel Fortran 11.1 compiler. 

The OpenMP included in this compiler is used to manage the instruction flows assigned 

to (logical) cores. The MPI implementation that manages the instruction flows assigned 

to computers is MPICH2-1.2.  

 

4.3.3 Communication performance 

 

This section evaluates the performance (latency and bandwidth) for a point-to-point 

communication and for the collective communications used in P-Si3D and SP-Si3D, 

which depends on the point-to-point performance. The results support the deductions 

made in Section 4.2.1. The cores, the network (links, switch and interfaces), the 

operating system (network interface drivers) and the MPI implementation affect 

performance.  

Figure 4.8 shows the performance of a point-to-point communication, i.e. a 

communication between two nodes, with MPI in the test cluster for different message 

size m. The latency and bandwidth was obtained using a Ping-Pong test with two nodes, 

i and j: first, the node i sends a message of m bytes to node j (ping), when node j 

receives this message it sends the same m bytes back to the i (pong). The node i obtains 

the time spent on these two point-to-point transfers. The latency in the figure is obtained 

dividing this time by two. The figure also shows the approximation of the point-to-point 
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time by the Eq. (4.2) and shows also the L and B parameters used to model this point-

to-point time according to  Eq. (2).   

As pointed out in Section 4.2.1 the performance of the scatter, gather and 

interchange collective communications involved in the processing depends on the 

particular input to be simulated, since the size of the data to transfer depends on this 

input (bathymetry, depth, geometry, …). Figure 4.9 shows the performance of a 

scatter/gather collective communication for different size m and number of computers p. 

Performance was obtained with a code that performs a scatter of m bytes (ping) 

followed by a gather (pong) of these m bytes spread by the scatter. Scatter and gather 

were implemented by MPI MPI_scatterv() and MPI_gatherv() functions. Between the 

scatter and gather the nodes execute a barrier (MPI_barrier()). The node that scatters 

and gathers the data is the same root node (for example, node i): it sends m bytes with 

MPI_scatterv(), m/p to each computer, and receives them with MPI_gatherv(). The 

scattered variable receives the gathered values. The latency was obtained dividing by 

two the time of the scatter plus the gather obtained on node i. In Figure 4.9, the root 

node i also receives data in scatter and sends in the gather, as in the scatter/gather 

communications of P-Si3D. The local root bandwidth is higher than the point-to-point 

bandwidth for the same size m because the root node receives in scatter and sends in 

gather m/p bytes (at the speed of a local memory copy). As it can be noticed the 

minimum latency (L(p) in Eq. (4.3)) increases and the maximum bandwidth (B(p) in Eq. 

(4.3)) decreases with the number of computers. Therefore, performance decreases when 

  

Figure 4.8. Point-to-point performance in the test cluster: (a) Latency vs. message 

size m, minimum latency (L in Eq. (4.2)) and latency approximation by Eq. (4.2) 

using L and B. (b) Bandwidth vs. message size m and maximum bandwidth (B in 

Eq. (4.2)). 
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the number of computers increases for all message sizes, as it was pointed out (Section 

4.2.1). The highest maximum bandwidth (reached with 2 nodes) is near twice the point-

to-point maximum bandwidth, the lowest maximum bandwidth will be close to the 

maximum point-to-point bandwidth. In Figure 4.10, the root node does not receive or 

send data as in the scatter communications of SP-Si3D. The bandwidth is limited to the 

maximum point-to-point bandwidth (Figure 4.8) as expected (Section 4.2.1). Notice that 

the local root bandwidth (MB/s received or sent by the root node) coincides with the 

global bandwidth (MB/s through all the network). 

Figure 4.11 shows the performance of the interchange collective communication 

with MPI for different size and number of computers. Interchange is implemented with 

two MPI_sendrecv() functions (see Figure 4.4). The computers start the interchange 

after a barrier. All the nodes measure time (the measure starts after the barrier). The 

times obtained by the nodes for a particular size m are similar, the figure uses the mean 

value. As it can be observed, the performances are mostly equal for different number of 

computers. The minimum latency (75 μs) is higher than twice the point-to-point latency 

(30 μs) because the nodes cope with input and output messages in parallel and the 

switch manages packets from/to multiple nodes in parallel (data packets and also 

control packets), see also Figure 4.4. The maximum local bandwidth of a node (~206 

MB/s) is almost independent of the number of computers.  Figure 4.11(b) compares the 

local bandwidth with the point-to-point bandwidth multiplied by two. The local 

  

Figure 4.9. Scatter/gather performance in the test cluster for different number of 

nodes (computers). The node that scatters and gathers the data is the same and it 

takes a share on them (it receives data in scatter and sends in gather). This node 

measures the time of scatter plus gather. (a) Latency vs. message size m (time of 

scatter+gather divided by 2). (b) Bandwidth vs. message size m. 
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bandwidth is nearly twice the point-to-point bandwidth until the message size exceeds 

64 KB. This reflects a change from an eager to a rendezvous flow-control protocol of 

MPICH. The rendezvous protocol requires interchange of packets between the sender 

and receiver before transferring data to make sure there is enough buffer space in the 

receiver for storing the data (note that the switch has to cope with a higher number of 

packets).  

As Figure 4.12 shows the latency of both the scatter+gather and interchange are 

similar to the Ping-Pong latency (point-to-point latency multiplied by two) for large m. 

For small m, scatter+gather latency is greater than Ping-Pong and interchange latency 

and increases with the number of nodes. Moreover, as pointed out in Section 4.2.1, 

generally, the amount of data to be interchanged (C4) in P-Si3D will be less than the 

amount of data trasferred by the gather+scatter (C2-C3 in Figure 4.2 and Figure 4.3), so 

C4 time will be lower than C2-C3 time. Figure 4.12 also compares bandwidth, local of a 

node and global (i.e. bandwidth in the whole network). The local bandwidth of the root 

node in a scatter+gather communication with m bytes is also the global bandwidth 

because m is the total byte that the network transfers in both scatter and gather. The 

interchange local bandwidth is near twice the point-to-point (i.e. Ping-Pong) bandwidth, 

especially up to m=64 KB, because all nodes both send and receive m bytes in parallel. 

The global interchange bandwidth is near the point-to-point bandwidth multiplied by the 

  

Figure 4.10. Scatter/gather performance in the test cluster for different number of 

nodes (computers). The same node scatters and gathers the data, but it does not take 

a share on them (neither receives in scatter nor sends in gather).This node measures 

the time of scatter plus gather. (a) Latency vs. message size m (time of 

scatter+gather divided by 2). (b) Bandwidth vs. message size m. 
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number on nodes (5 in the figure), especially up to m=64 KB, because all the nodes 

send two messages, each one of m bytes.  

4.3.4   SP-Si3D computing performance 

 

 SP-Si3D was executed with a basin LR model (parent model) of 100 m x 100 m 

horizontal cells and a littoral HR model (nested model) of 20 m x 20 m cells (Table 

  

Figure 4.11. Interchange performance in the test cluster for different number of 

nodes (computers). The nodes start interchange after a barrier. All the nodes 

measure time (measuring starts after the barrier). (a) Latency vs. message size m 

and minimum latency L. (b) Bandwidth of a node vs. message size m (each node 

sends two messages and receive two messages, each one of m bytes), bandwidth of 

the point-to-point test multiplied by 2 and maximum bandwidth B. 

  

Figure 4.12. Comparison of Ping-Pong, scatter+gather and interchange performance 

in the test cluster. (a) Latency vs message size (b) Ping-Pong and interchange 

bandwidth for a node, interchange and  scatter+gather  global bandwidth 

(scatter+gather global bandwidth is also the local root bandwidth) 
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4.2). SP-Si3D main memory requirements (basin LR model plus nested HR model in 

Table 4.2) decrease compare to a P-Si3D simulation of the basin HR model due to the 

reduction in wet columns and cells. Columns decrease a 56% and cells decrease a 74%. 

Due to the memory requirements, the basin HR model needs at least three computers to 

be executed with P-Si3D while the SP-Si3D can be executed in one computer of the 

low-cost cluster. 

 Section 4 pointed out that the number of S2 solver iterations for a particular 

tolerance depends on the equation system size. SP-Si3D equation subsystems decrease 

in size when the number of computers increase. Table 4.3 shows the number of 

iterations required by SP-Si3D to solve the equation system of the S2 stage in the parent 

LR model (2
nd

 column) and the nested HR model (3
nd

 column). It also shows the 

iterations required for each of the equation subsystems (one per subdomain) resolved 

when SP-Si3D is executed in eight computers (4
th

 column). As can be noticed (see also 

number of columns in Table 4.2), the number of iterations decreases as the size of the 

S2 equation system decreases (littoral HR model in eight computers requires less 

iterations than in one computer, and LR model much less than any of them).   
 

Step LR model 
Littoral HR model 

in 1 computer 

Littoral HR model 

in 8 computers 

LeapFrog ~11 ~30 ~26 

Trapezoidal ~7 ~21 ~18 

Table 4.3. SP-Si3D. Mean number of iterations of SP-Si3D PCG solver for the LR model, for the            

littoral HR model when executed in one computer, and for one HR subdomain when the nested              

model is executed in eight computers. All simulations use the same tolerance. 

The scalability of the littoral HR model was studied up to eight computers 

comparing with one computer, using all cores in each computer. Speedup of the littoral 

HR model, S
HR

(p), for p computers is obtained as follows: 

 

𝑆𝐻𝑅(𝑝) =
 𝑇𝛥𝑡
𝐻𝑅(1)

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

      (4.7)

 

Where 𝑇𝛥𝑡
𝐻𝑅(𝑝) is the mean run-time of a time-step. Efficiency of the parallel littoral HR 

model, E
HR

(p),  for p computers is obtained with: 
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𝐸𝐻𝑅(𝑝) =
𝐼𝑑𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑝 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑝 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑠
=
 𝑇𝛥𝑡
𝐻𝑅(1)/𝑝

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

=
𝑆𝐻𝑅(𝑝)

𝑝
 

   (4.8)

 

Speedup for SP-Si3D when the number of computers p assigned to the littoral HR 

model increases from 1 to 8 comparing with an execution in one computer of both HR 

and LR models, TΔt(1), is:  

 

𝑆(𝑝 + 𝑝𝐿𝑅) =
𝑇∆𝑡(1)

𝑇∆𝑡(𝑝 + 𝑝𝐿𝑅)

=
𝑇∆𝑡(1)

max ( 𝑇𝛥𝑡
𝐻𝑅(𝑝),  𝑇𝐶

𝐿𝑅 𝐻𝑅⁄ (𝑝), 𝑇
𝛥𝑡

𝐿𝑅
(𝑝𝐿𝑅))

 =
𝑇∆𝑡(1)

 𝑇𝛥𝑡
𝐻𝑅(𝑝)

  

𝑝𝐿𝑅 =
# 𝑐𝑜𝑟𝑒𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐿𝑅 𝑚𝑜𝑑𝑒𝑙

# 𝑐𝑜𝑟𝑒𝑠 𝑝𝑒𝑟 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟
 

   (4.9)

 

where p
LR

 is the ratio between the number of cores used by the basin LR model and the 

number of cores in a computer. Efficiency is: 

 

𝐸(𝑝 + 𝑝𝐿𝑅) =
𝑆(𝑝 + 𝑝𝐿𝑅)

𝑝 + 𝑝𝐿𝑅
  

   (4.10)

 

SP-Si3D run-time in one computer TΔt(1) is obtained running parent LR and nested HR 

models in parallel in the computer. The best single-computer time is used here, obtained 

when the 16 logical cores of a computer is used and both LR and HR are executed in 8 

logical cores belonging each to a different physical core.  

 Figure 4.13 shows run-time per iteration 𝑇𝛥𝑡
𝐻𝑅(𝑝), speedup S

HR
(p), and efficiency 

E
HR

(p) for the domain-decomposition execution of the littoral HR model. Figure 4.14 

shows run-time per iteration 𝑇𝛥𝑡 (𝑝 + 𝑝
𝐿𝑅), speedup S (p+𝑝𝐿𝑅), and efficiency E 

(p+𝑝𝐿𝑅) of SP-Si3D. Alternative speedup (S’) and efficiency (E’) figures are also 

shown, comparing the SP-Si3D parallel run time  𝑇𝛥𝑡 (𝑝 + 𝑝
𝐿𝑅) to 𝑇𝛥𝑡

𝐻𝑅(1), the run time 

of the littoral HR model in one dedicated computer not shared with the LR model (i.e. 
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not including the LR model run time in the reference time used for the comparison). 

This figure also shows the run-time of the LR model depending on the number of cores 

used. The run-time decreases as the computational load is split among a larger number 

of computers. In all the simulations conducted, the littoral HR model was the most 

costly (pipeline stage “HR” in Figure 4.6(b)), independent of the number of subdomains 

used in the HR model (p=1…8). As Figure 4.13 shows, the speedup of the littoral HR 

model increases linearly with a constant slope of almost one (efficiency of near 100% in 

Figure 4.13), so it scales almost ideally and the run-time decreased almost inversely 

proportional to the number of computers used. As Figure 4.14 shows SP-Si3D also 

scales almost ideally as the number of computers increases, with efficiency (E(p´)) 

around 101%. Without taking into account the run time of the LR model, efficiency is 

slightly lower (E´(p´) in Figure 4.14). Note that efficiency is inversely proportional to 

resources used and that the resources (in particular, the number of cores of the parent 

LR model) can decrease using a higher time-step for the LR model (50 s instead of 10 s) 

as it was pointed out before.  

 

Nested HR mean time per time-step, 

speedup (Eq. (4.7)) and efficiency (Eq. 

(4.8)): 

p 

Nested HR 

T TΔt
HR(p) 
(s) 

Nested HR 

S S
HR

(p) 

E
HR

(p) 

% 

1 20.8223 1.0000 100.00 

2 10.4600 1.9907 99.53 

4 5.2407 3.9732 99.33 

8 2.6129 7.9790 99.61 

 

 

(a) 

 

Figure 4.13. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (in %) of 

the littoral HR model in Lake Tahoe. (b) Graph of time and speedup for p=1,2…8 

computers comparing with time in 1 computer (using all cores in each computer). 

The ideal linear speedup (speedup of p for p computers) is shown in the graph (gray 

line). 
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The speedup of SP-Si3D compared to the HR model of the complete basin 

executed in one computer would be super-linear (above ideal) due to the nesting.  This 

speedup cannot be obtained because the basin HR model does not fit in the memory of a 

computer, requiring at least three computers.  SP-Si3D achieves real time execution (a 

run-time per iteration lesser than the time-step of 10 s) with three computers, while P-

Si3D does not achieve real time for the number of computers available in the cluster 

(the minimum run-time per iteration obtained by P-Si3D is 12.25 s). 

 

4.3.5  Quality of the SP-Si3D results 

 

The quality of SP-Si3D results depends on (1) the quality of the nesting implementation 

and on (2) the scalable parallel implementation of the nested HR domain. The nesting 

implementation was evaluated in Chapter 2 (Section 2.4). Results show that the 

𝒑𝑳𝑹 =
# 𝒄𝒐𝒓𝒆𝒔 𝒖𝒔𝒆𝒅 𝒃𝒚 𝑳𝑹

𝟖 𝒄𝒐𝒓𝒆𝒔 𝒑𝒆𝒓 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒓
 

SP-Si3D time, speedup (Eq. (4.9)) and efficiency 

(Eq. (4.10)): 

p' 

SP-Si3D  

T 

TΔt(p’) (s) 

SP-Si3D 

S   

S(p´) 

E(p’) 

% 

SP-Si3D  

S´  

S´(p´) 

E´(p’) 

% 

1.000 22.5120 1.0000 100.00 0.9249 92.49 

1.125 20.8223 1.0811 96.10 1.0000 88.89 

2.125 10.4600 2.1522 101.28 1.9907 93.68 

4.250 5.2407 4.2956 101.07 3.9732 93.49 

8.500 2.6129 8.6157 101.36 7.9690 93.75 

p'= p +p
LR 

when more than 1 computer is used. 

LR time: 

p
LR

 #cores  TΔt
LR(pLR) 

0.125 1 7.04 

0.250 2 3.73 

0.500 4 2.16 

1.000 8 1.15 

 

 

                    (a) 

 

Figure 4.14. SP-Si3D. (a) Run-time per iteration, speedup and efficiency (%) in Lake 

Tahoe. Run-time per iteration for the LR model is also shown using 1, 2, 4 and 8 cores 

of a computer. The number of cores in the LR model for SP-Si3D is chosen in order to 

approach the HR parallel time. (b) Speedup. The ideal linear speedup is shown in the 

graph (gray line). 
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differences between N-Si3D results and a HR execution of the entire basin are mainly 

due to the iterative PCG solver used to obtain free surface elevation (Table 2.4 in 

Chapter 2). No differences are obtained when the iterative PCG solver is replaced by a 

non iterative method and both the nested and the parent models have the same 

resolution.  

The quality of the SP-Si3D results is evaluated qualitative and quantitatively in a 

region where there exist local-scale hydrodynamic features well resolved by a basin HR 

model but not by a basin LR model. Local-scale hydrodynamic features, such as flow 

separation and recirculation eddies occurring in the near-shore region, can only be well 

resolved in the basin HR model and not by the basin LR model. Global-scale features 

captured in both basin HR and basin LR models are similar, but differences in the 

vorticity fields reveal the location of features in the basin HR model that are not 

captured by the basin LR model. Marla Bay (Figure 4.7(a) shows its location) is here 

taken as a case example where recirculation is likely to occur as a result of flow 

separation. The vorticity field in Marla Bay at any given time t was computed from 

surface velocity predictions for the rectangular region in Figure 4.15, as follows 

𝜔(𝑖 + 1 2⁄ , 𝑗 + 1 2⁄ )

=
𝑣(𝑖 + 1, 𝑗 + 1 2⁄ ) − 𝑣(𝑖, 𝑗 + 1 2⁄ )

∆𝑥

−
𝑢(𝑖 + 1 2⁄ , 𝑗 + 1) − 𝑢(𝑖 +1 2⁄ , 𝑗)

∆𝑦
 

  (4.11)

 

As Figure 4.15 demonstrates, with the nested HR model of the Marla Bay region shown 

in the figure, recirculation in Marla Bay is captured (d) in the same way that in the basin 

HR model (a), while the basin LR model (b) only captures a weak divergence in the 

velocity field. Being able to simulate these eddies in bays and other lake shore 

irregularities, is important in trying to understand coastal transport processes (Rueda 

and Vidal 2009). As a result of re-circulating eddies, bays can trap particles in 

suspension and other water constituents, hence, decreasing the longshore dispersion 

rates. This trapping effect has been reported previously in the literature; for example, 

Brooks et al. 1999 shows that eddies in Cobscook Bay, Maine, could trap particulates in 

the side-arms of the estuary. The local residence time of water within bays tends to 

increase as a result of recirculating eddies; hence becoming hot-spots for the 
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reproduction of species looking for quiet conditions. Nishimoto and Washburn 2002, for 

example, observed high concentrations of juvenile fish in the center of a large eddy in 

the Santa Barbara Channel.  

In order to show the quality differences between the results of SP-Si3D and those 

of a parallel implementation based in the execution of multiple simple nested HR grids 

in parallel (called here as MN-Si3D), one for each SP-Si3D subdomain, both SP-Si3D 

and MN-Si3D have been used with a subdomain boundary in the middle of the local-

scale vortex of Figure 4.15(c). Figure 4.16 shows the results obtained (vorticity and 

velocity field). SP-Si3D output is very similar to the output of the basin HR model 

(Figure 4.15(a)), while MN-Si3D output is clearly quite different. The differences of 

variables (velocity, free surface elevation, temperature, vertical diffusivity) at the end of 

the simulation period between the simulation of the basin HR model and the alternative 

simulations to be evaluated (SP-Si3D, MN-Si3D, N-Si3D, basin LR sequential 

simulation) were quantified using a normalized form of the root-mean-squared error 

(NRMSE), usual in validation works (Debreu et al. 2012,Kourafalou et al. 2009,Pairaud 

et al. 2011,Son et al. 2011), calculated as follows  

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑏

𝑐 − 𝑥𝑛
𝑐)2

𝑁

𝑐=1

𝑁
 

   (4.12) 𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
    (4.13)

 

Here xb represents the value of a variable calculated by the basin HR model executed 

sequentially; xn is the value calculated by the simulation to be evaluated (SP-Si3D, MN-

Si3D, N-Si3D, basin LR sequential simulation); xmax and xmin represent the maximum 

and minimum of each variable; and N is the total number of water columns in the region 

of interest. The NMRSE errors in the area named “study area” in Figure 4.15 and Figure 

4.16 for velocities (u, v), temperature (T), vertical diffusivity (Kv) and surface elevation 

ζ can be seen in Table 4.4. They are obtained for the Si3D simulation of the basin LR 

model (Figure 4.15(b)), the N-Si3D simulation of Figure 4.15(d), the SP-Si3D 

simulation of Figure 4.16(a) and the MN-Si3D simulation of Figure 4.16(b). The region 

simulated in HR with N-Si3D, SP-Si3D and MN-Si3D is the Marla Bay zone shown in 

the figures. The comparison of N-Si3D and SP-Si3D errors allows concluding that the 

SP-Si3D errors are due to the nesting implementation, the parallel implementation of 

the nested HR model do not introduced important errors. However, the errors of MN-

Si3D are quite important, as Figure 4.16(b) also shows. Therefore, MN-Si3D is not that 
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good as parallel implementation because the distribution of work among subdomains 

must care about where the boundaries between subdomains are established in order to 

avoid errors, making it difficult to obtain a good work-load balance among subdomains. 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c) 

 
(d) 

Figure 4.15. Vorticity (color scale) and u+v velocity field (black arrows) in Marla Bay 

area at a snapshot in time on Day 207. (a) Results from Si3D of the basin HR model, (b) 

Results from Si3D of the basin LR model (parent model), (c) Zoom of the captured local-

scale vortex. (d) Results from N-Si3D, where the nested HR region simulated is just the 

region shown in the figure. 

 

        (a)                                                                    (b) 
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(a) 

 
(b) 

Figure 4.16. Vorticity (color scale) and u+v velocity field (black arrows) in Marla 

Bay area at a snapshot in time on Day 207. (a) Results from SP-Si3D. (b) Results 

from MN-Si3D. Both results from SP-Si3D and MN-Si3D simulate in HR just the 

region shown in the figures, divided into two subdomains. The boundary between 

subdomains is highlighted by a white dashed line. 

 

NRMSE Si3D basin LR N-Si3D SP-Si3D MN-Si3D 

(%) Figure 4.15(b) 

 Figure 

4.15(d) 

Figure 

4.16(a) 

Figure 

4.16(b) 

u 21.81 2.21 2.23 6.73 

v 24.46 2.14 2.15 6.51 

T 9.23 1.02 1.01 2.59 

Kv 8.46 0.61 0.61 1.66 

ζ 13.61 1.87 1.89 5.41 
 

Table 4.4. NRMSE (%), for velocities u and v, temperature T, vertical diffusivity 

Kv and surface elevation ζ, obtained for Marla Bay (region named “study area”) in the 

surface layer with the basin LR model (Figure 4.15(b)),  N-Si3D (Figure 4.15(d)), SP-

Si3D with a boundary in the vortex (Figure 4.16(a)) and MN-Si3D with a boundary in 

the vortex Figure 4.16(b) all of them compared against the results of the basin HR 

model in this region (Figure 4.15(a)). N-Si3D, SP-Si3D and MN-si3D simulate in HR 

just the region shown in the figures. 

 

4.4 Conclusions and future work 

 

This work proposes a scalable parallel implementation with a two-level parallel 

structure, SP-Si3D, for semi-implicit hydrodynamic models, that achieves a scalable 

speedup in low-cost clusters taking advantage of a nesting implementation. Scalability 
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is more difficult to achieve in low-cost clusters due to the lower performance of the 

network interconnecting the computers (latency and bandwidth) and the higher number 

of computers for the same number of processing cores (which increases mean 

communication time among cores). SP-Si3D has been obtained modifying P-Si3D, a 

parallel implementation of Si3D code (Smith 2006). This chapter shows that: 

 P-Si3D scalability limit is mainly due to the sequential execution of the surface 

elevation solver and the required all-to-one/one-to-all communications. 

 SP-Si3D run-time decreases almost linearly with the number of computers in a low-

cost cluster. Thus, it scales almost ideally, i.e., its speedup 

(speedup_with_p_computers = time_with_a_computer / time_with_p_computers) 

increases with the number of computers used with a constant efficiency 

(efficiency_with_p_computers = speedup_with_p_computers / p) of approx. one. 

The scalability is achieved by executing in parallel the surface elevation solver 

avoiding, in addition, all-to-one/one-to-all communications; just one communication 

remains in SP-Si3D, an interchange communication, as in parallel implementations 

of explicit hydrodynamic models. The method proposed to improve scalability is 

also applicable to other (semi-)implicit and implicit-splitting models. Other parallel 

platforms, such as GPUs and high-end servers, can also benefit from the 

modification proposed.  

 The time of the SP-Si3D interchange communication in a low-cost cluster does not 

depend on the number of nodes.  

 The parallel processing structure of two-level proposed (pipeline plus domain-

decomposition) allows the execution of the parent LR model and the nested HR 

model in parallel with an execution time equal to the execution time of the nested 

HR model. This two-level approach is also applicable to online nested 

implementations of explicit or implicit (splitting or not) hydrodynamic models. 

 Lake Tahoe local-scale simulations with SP-Si3D achieve real time (a run-time per 

iteration smaller than the time-step of 10 s) with three computers, while with P-Si3D 

(which has all-to-one/one-to-all communications) does not achieve real time for the 

number of computers available in the low-cost test cluster and requires at least three 

computers for its execution due to the main memory required by the HR simulation 

of the entire basin. 
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 The modification applied to achieve scalability barely affects the quality of the 

results. The differences with the results obtained with a basin HR model are due to 

the nesting implementation, the errors of which are mostly due to the iterative solver 

used for obtaining surface elevation. 

 The results show that the parallel implementation can reproduce recirculation not 

observed in the lower resolution model of the entire Lake Tahoe basin even if a 

subdomain boundary crosses the recirculation area. 

 The implementation that divides the HR grid to be simulated into multiple nested 

HR sub-grids that are processed in parallel (named here MN-Si3D) is less 

recommended as parallel implementation because the boundaries between nested 

HR sub-grids must be chosen with care to avoid errors, making it then difficult to 

balance the work among computers.  

The execution of much higher size models in high-end platforms could require the 

modification of the parent LR code so that it can be executed in more than one 

computer. To achieve this objective this code could use P-Si3D MPI implementation 

(only the OpenMP implementation was used here). The implementation can be 

extended to more than two levels of grids (parent grid + nested grid). In that case, the 

number of stages of the pipeline structure will depend on the number of grid levels. 

 

 

 

 

 

 

 

  



 

  

 

 

 

 

 

Chapter 5 

 

A hybrid parallel implementation of a 3D 

hydrodynamic model optimized and 

adapted to the architecture 
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Abstract  

 

In this chapter, a number of proposals to obtain an optimized and scalable parallel 

implementation are presented. This is achieved by adapting the operations typically 

found in a 3D hydrodynamic model to the architecture used in both shared and 

distributed memory machines. The results show that the adaptation of the model to a 

NUMA architecture, and minimizing the overhead produced at points of 

communication/synchronization, significantly reduces the computational cost of the 

model (in both required execution time and memory). Good results can be obtained with 

these improvements even in low performance architectures, even showing that the 

optimization and reduction of communications allows us to obtain similar results with 

Infiniband and Gigabit Ethernet. It also shows that all stages must be optimized equally 

to obtain the best results, including the resolution of the long sets of equations 

characteristic of implicit models, solved by iterative methods such as the Preconditioned 

Conjuguent Gradient (PCG) whose parallel implementation is very complex. This work 

includes an efficient and optimized parallelization of the PCG in the same way as the 

rest of the model. This allows an implementation in parallel without adding a higher 

computational cost than in other stages, at the cost of reducing their convergence in 

finding an acceptable solution when the number of subdomains that run in parallel is 

incremented. However, this reduction is significantly enhanced by a modification to the 

Modified Incomplete Cholensky preconditioner developed and implemented in this 

work.  

 

5.1 Introduction  

 

In Computational Fluid Dynamics (CFD), the numerical simulation of water using 3D 

hydrodynamic models is one of the most challenging problems in engineering 

applications. In these simulations, small spatial scale patterns have a significant impact 

on large-scale circulation. It is therefore necessary to use large high-resolution grids 

which are able to properly simulate these patterns properly. Moreover, the time scale is 

also usually large, with small time-steps to avoid problems of stability, thus making it 

necessary to run these models a large number of time-steps for long periods of time to 
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obtain useful simulation results. Because of these enormous requirements of timescale 

and spatial scale, most of the simulated phenomena produce costly simulations (in terms 

of execution time and the amount of memory needed). For critical situations, for 

example the study of floods in order to predict which areas might be affected and 

establish preventive measures in time, high execution times would be unacceptable. 

Given these requirements, the use of High Performance Computing (HPC) to reduce the 

computational cost is becoming an essential practice. These high-performance platforms 

not only reduce the computational time, but allow simulations with higher spatial 

resolution or repeat costly simulations for calibration and validation and, consequently, 

provide better results.  

Different paradigms can be used in order to take advantage of these parallel 

environments. In the state of the art simulations of large-scale water, it shows that the 

message-passing paradigm is the option which is mostly used (Ecer et al. 1999, Fischer 

and Patera 1994 Fringer et al. 2006, Manzini and Stolcis 1999, Rao 2004, Semtner and 

Chervin 1988, Smith et al. 1992), where each processor has its own "local space name". 

The existence of a standard for this paradigm, Message Passing Interface (MPI) 

(Message Passing Interface Forum), and its ability to scale to a large number of 

processors (Gropp 2001), has contributed to its main use. However, the shared memory 

paradigm OpenMP (OpenMP Architecture Review Board) has also been used more 

frequently in recent years to efficiently exploit shared memory machines (SMP), which 

generally have NUMA Architectures (Non-Uniform Memory Access), where you can 

take advantage of the faster local memory of each processor compared to the memory of 

other processors to perform more efficient implementation, as well as its simplicity and 

lower computational cost when accessing data from other threads using shared memory.  

Both paradigms have been compared in performance in the past. In (Luecke-Hua and 

Wei 2001) 7 tests were conducted (2 to measure communications and 5 kernels), MPI 

performed better than OpenMP in most cases. In another study to analyze the efficiency 

of a hydrodynamic model (Resch et al. 1999), it found that results with OpenMP had 

poor scalability compared to MPI for 8 processors. However, in recent years various 

studies have shown that OpenMP can be as competitive as MPI in SMP if explicit 

optimizations are developed by the programmer. (Norden et al. 2006) makes a 

comparison, without going into detail of how each implementation was done, between 

MPI and OpenMP in NUMA and UMA architectures concluding that OpenMP is as 
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efficient as MPI, provided that care is taken with the initial placement of variables in 

memory (first-touch). (Amritkar et al. 2012) also showed optimal performance of 

OpenMP implementation in a SMP architecture of up to 256 cores when first-touch and 

appropriate affinity threads were used. Thus, the current trend is moving towards hybrid 

implementations that allow us to take advantage of OpenMP within a node and 

scalability of MPI in an environment of multi-cores nodes. However, to obtain good 

scalability in these architectures, it is necessary that the deployed application is 

optimized for both parallel paradigms, OpenMP and MPI.  

Whether using OpenMP or MPI, optimizations are performed to obtain an 

efficient parallel implementation, which will largely depend on the type of model used 

and, therefore, the type of operations executed. Usually 3D hydrodynamic models use 

numerical solutions of partial differential equations based on the Navier-Stokes 

equations for shallow water (Shallow Water Equations, SWE, see for example Blumber 

and Mellor 1987, Chapman et al. 1996, Fringer et al. 2006, Smith 2006, Griffies et al. 

2008). Typically, these equations are discretized in space using methods of finite 

volumes (i.e. Daoud 2008), finite elements (i. e. Ferrarin et al. 2008) or finite 

differences (i.e. Hodger et al. 2000) in grids which can be structured (i. e. Blumber and 

Mellor 1987) or unstructured (i. e. Fringer et al. 2006). On the other hand, the equations 

can be discretized in time explicitly, implicitly or the alternative usually used with a 

combination of both of them, the splitting methods. Some of these splitting methods are 

the mode-splitting scheme presented by Blumber and Mellor (1987), the semi-implicit 

approach presented by Casulli and Cheng (1992) or the time-splitting method presented 

by de Goede (1991). The explicit case is presented simpler than the implicit case, given 

the direct computation of the dependent variables which can be made in terms of known 

quantities. Conversely, in an implicit case the dependent variables are defined by sets of 

coupled equations, generating large 2D equation systems which typically have the 

structure of a definite positive pentadiagonal symmetric matrix. This system of 

equations can be solved in each time-step by iterative methods such as the conjugate 

gradient (CG) (Hestenes and Stiefel 1952), which is one of the most widely used 

because of its simplicity and good convergence ratio (Zou and Hoffman 1993).  

These models based on the SWE are computationally implemented so that work 

can be resolved column by column of the grid. However, the computational cost can be 

very significant, even in the calculation of each column, for example having tridiagonal 
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systems of equations to solve (Stone 1973) for each of the columns of the grid (in the 

case of 3D models). In addition, the calculation of each column is dependent on other 

columns (usually with their neighbors to the north, south, east and west) that must be 

resolved efficiently in a parallel implementation. Similarly, the implicit case for solving 

the system of pentadiagonal equations involves additional work in both sequential and 

parallel implementation. These systems of equations are solved by iterative methods 

like CG (Meyer et al. 1989, Hill 1990). Additionally, preconditioning techniques are 

often used to improve the convergence of the iterative method (Preconditioned 

Conjugate Gradient, PCG) which, while reducing the number of iterations to find the 

solution, may present a computational cost at or above the CG itself. In the case of a 

parallel implementation, regardless of how the load balance is done, each process or 

thread normally only knows the part of the equation system that has been calculated and 

additional procedures such as reordering, factorization and/or 

communication/synchronization, with its associated computational cost, must be applied 

by using a PCG in parallel. Moreover, in the parallel implementation of the PCG, it 

must be taken into account that (1) the instructions added for a proper parallelization 

(computational cost added) and (2) adding synchronization and data exchange too often 

at each iterative step, degrade performance on both the execution time of each of the 

iterations of the PCG (Amestoy and Duff 2000) and the number of iterations required to 

converge to an acceptable solution (Benzi 2002, and Van der Vorst Magoulu 2000 Naff 

and Wilson 2006, Teranishi and Raghavan 2007). 

The choice of a suitable preconditioner when performing a parallel 

implementation is not a trivial task. In literature Jacobi and Block Jacobi (Pellissetti and 

Ghanem 2000) are among the methods most used in preconditioning hydrodynamic 

models, for its simplicity and relative ease in implementing in parallel without adding a 

significant additional cost compared to CG itself. Other more complex preconditioners 

such as Incomplete Cholensky (IC) or Modified Incomplete Cholensky (MIC) greatly 

reduce the number of iterations needed to converge to a certain tolerance, but require a 

much higher computational cost per iteration and their implementations are difficult to 

perform in parallel. (Benzi 2002 Eijkhout 1992) present a parallel implementation of the 

preconditioner MIC using red-black ordering where scalability of the implementation is 

reduced by increasing the number of processes due to increased communication. 

(Jiaquan et al. 2013) describes a parallel implementation of MIC on GPUs using a 
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technique called wave front, where all the threads have full access to the pentadiagonal 

system to solve step by step those equations that do not present unresolved 

dependencies. This method, however, would not be efficient in distributed architectures. 

Other works have PCGs (Benzi 2002 Husbands and Yelick 2007, 2003 Kim and Im, 

and Van der Vorst Magoulu 2000, 2006 and Wilson Naff, Teranishi and Raghavan 

2007) implemented in parallel which require preparation of the system of equations 

with additional factorizations of the LU or LDLT type and/or a new reordering of the 

equations (such as red-black ordering). Though a parallel implementation is reached 

using these methods, it hinders implementation, adds computational load and requires 

more communication between subdomains to solve the dependences. Furthermore, 

many proposals found in literature solely presented the parallelization of the PCG, 

regardless of what type of application will be used. This can present possible additional 

imbalances because the workload is usually divided in these types of hydrodynamic 

models taking into account all stages of the model, and not just the pentadiagonal 

system of equations. This could mean that certain proposals, although they present an 

efficient parallel PCG, are not efficient enough when they are included in a 

hydrodynamic model, having to adapt the parallel PCG performed with new reordering 

and/or communications.  

Given the importance of a good load balance, another of the critical points in the 

development of an efficient parallel 3D hydrodynamic model is how the work is 

divided. Domain decomposition is generally the proposal mostly used. The type of 

decomposition used, and the procedures that will be needed to add to perform the 

exchange of information between subdomains, will produce an added overhead in the 

parallel implementation, both in the number of communications and the amount of data 

to be communicated. The implementation of distinct alternatives of domain 

decomposition in various parallel architectures has been widely studied (Bjorstad et al. 

1993, Chan et al. 1990, Hackbusch 1991 Keyes 1987) testing different types of cuts 

(horizontal or vertical to the grid) and the complexity of each cut (from simple cuts in 

one direction, reducing interaction with other subdomains, to irregular cuts in two or 

more directions, increasing the interaction with other subdomains). In this work 

(Chapter 3, Section 3.3.4) it is also studied how the type of cut affects to the 

performance in a parallel implementation. It is also possible to use tools like 

ParaMETIS, which automatically allows domain decomposition (Karypis 2000). 
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Making an optimal domain decomposition of grids with irregular geographies can be a 

complicated task. This is because to spread the workload as evenly as possible, it could 

also increase the amount of data to be communicated and the number of subdomains 

that must interact with each other (by increasing the number of cuts between neighbors 

for example). Delis (2009) and Yu (2010) compared different domain decompositions 

with different ways of distribution work. They concluded that simple cuts in one 

direction (vertical or horizontal) obtained the best results in producing a load balance. 

Simple cuts were only slightly more unbalanced compared to other decompositions with 

various cuts and conversely, reduced the amount and the number of communications 

significantly.  

Considering all the above-mentioned points, the parallel implementation of a 3D 

hydrodynamic model is not a trivial task, where you must consider the type of model to 

be parallelized and how to take advantage of the architecture in which the model will be 

efficiently executed. This work presents OP-Si3D, the optimization of the parallel 

implementation of a 3D semi-implicit model based on the SWE using domain 

decomposition. The implicit or semi-implicit models are harder to parallelize than the 

explicit cases (Naik 1993). This is because during the execution of each time-step a 

large system of pentadiagonal equations of the entire domain to obtain water surface 

elevation must be solved and its implementation in parallel is not a trivial task 

(Grindbaum 1998). In this chapter it is intended to emphasize those tasks, methods and 

tools necessary to take full advantage of a hybrid parallel hydrodynamic model, making 

an efficient use of available resources and getting good results from both shared and 

distributed memory machines. This will not only achieve greater scalability and 

efficiency in high performance architectures, but also achieve results almost as efficient 

with low cost machines connected with to cheaper interconnection networks.  

Improvements in this chapter to adapt the parallel implementation to the 

architecture and reduce the overhead caused by a parallel implementation include:  

 How to implement procedures such as first-touch and an efficient affinity map, 

showing that distinctive affinity options offer different results depending on the 

type of architecture used.  

 Synchronization points common between threads (ompbarrier) are replaced by 

our own more efficient implementations, adapted to a NUMA architecture and 

to the domain decomposition used.  
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 We show that algorithms typically used in linear algebra such as the Thomas 

algorithm for solving tridiagonal system of equations can reduce their 

executional time, with basic optimizations such as loop unrolling.  

 Alternative storage variables are presented in the case of threads, showing that 

the use of data locality cannot be efficient if the storage of variables in threads is 

not properly implemented.  

 All communications are overlapped with computation, performing the 

computation of the border columns before the rest of the interior columns of 

each subdomain, showing that similar results can be obtained with Infiniband 

and Gigabit Ethernet despite the volume of data to be communicated.  

 We show that the efficiency of implementation can be improved if the number 

of synchronization/communication points is reduced and redundant computation 

is added.  

As domain decomposition method is used the implementation with vertical cuts in 

one direction explained in Chapter 3 and presented in other works (Passoni et al. 2001). 

This decomposition leads to load imbalances of lower than 0.5% even in large high 

resolution grids, and greatly reduces the amount and number of communications (each 

subdomain has to communicate with a maximum of two other subdomains). The same 

domain decomposition is used even during the parallel calculation of CG and of the 

preconditioner, maintaining the same type of communication as in the rest of the model 

(with a maximum of two neighboring subdomains) and avoiding additional procedures 

such as reordering. Similarly, distinct preconditioner alternatives are evaluated, 

presenting methods traditionally used, such as Jacobi or Block Jacobi, and implemented 

efficiently. Additionally, a modified version of MIC is presented. This modification has 

not been found by the authors in the literature, and it can be easily implemented in 

parallel without any additional computational cost with respect to a sequential MIC, 

reducing the loss of efficiency thanks to the presented modification and performing 

better than the second best method evaluated, Block Jacobi, in a machine up to 256 

cores.  
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5.2   OP-Si3D implementation  

 

The 3D hydrodynamic model used here was originally developed by Smith (2006) and 

later adapted for simulation in lakes (Rueda 2001). Si3D is a public code programmed 

for serial architectures by the US Geological Survey (USGS), which provided us with a 

free version.  

The optimized parallel implementation proposal here is applied to Si3D (more 

details about the model description can be found in Chapter 1), based on the code 

provided by the USGS. This implementation is called here OP-Si3D. 

 

5.2.1 Basic optimizations  

 

From the original sequential algorithm, various optimizations have been applied in 

order to reduce and avoid unnecessary computations, to facilitate compiler optimization 

of the code and reduce the amount of memory required. The optimizations include:  

 Deleting unnecessary initializations for each time-step.  

 Fusion of loops.  

 Replacing explicit loops with implicit loops, implemented as a standard in 

Fortran and recommended to facilitate the optimization of the program by the 

compiler.  

 Re-using the same calculation variables at different stages.  

 Padding in some loops.  

 Elimination of unnecessary copies, avoiding some variables being calculated 

into an array and then copied to another just for reading in later stages.  

 Replacing the calls of small subroutines directly by the code.  

Additionally, we have implemented an optimization to the standard algorithm 

known as the Thomas algorithm, widely used to efficiently solve tridiagonal systems of 

equations (Thomas 1949) and that in Si3D it consumes over 50% of the execution time 

of each time-step (see Section 5.3.4) . The Thomas algorithm works with each row 

(equation) of the system, similar to the Gaussian elimination method. In the first-step a 

forward substitution is done, where each row is replaced by a suitable linear 

combination of rows so that the lower diagonal elements are eliminated and the main 
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diagonal elements are equal to 1. Once the upper triangular matrix is obtained, the 

algorithm applies a backwards substitution to solve the unknown variables. Although 

the Thomas algorithm is very economical and grows linearly with the number of 

unknown variables, this is still computationally expensive because of the two-step 

procedure used. To facilitate optimization and the efficient use of the architecture, the 

Thomas algorithm has been modified to include a loop unrolling.  

 

5.2.2 Data distribution and parallelization  

 

Si3D uses about 250 variables to store 3D model information. For this, arrays are used 

that only store information of columns with water, this allows us to reduce memory 

costs by not having to store information of dry columns and reduce the computational 

cost by not having to assess whether a column is dry or not before performing a 

calculation. The new variables are one or two dimensional arrays, one dimensional for 

2D variables defined in the x and y directions such as water surface elevation, two 

dimensional for storing 3D variables defined in the x, y and z directions such as vertical 

velocity, with the first dimension used for x and y, and the second for z. Access to 

neighboring columns (north, south, east or west) is achieved by 4 one-dimensional 

arrays (one for each direction). These arrays avoid extra operations to find the neighbors 

of a given column while supposing a miniscule memory cost, for example only 0.05% 

of total memory is required in the simulations of the high-resolution model used in this 

chapter.  

Each one of the Si3D stages (except in the stage where the solution of the 

pentadiagonal system of equations is performed, further details of the numerical model 

can be found in Chapter 1) and, therefore, the calculation of the governing equations, 

are done column by column as per the original Si3D model developed by Smith (2006). 

This facilitates data locality in the calculation of each stage of the model, such as the 

resolution of the tridiagonal systems that are formed for each water column in 3 points 

(or more than 3 if passive tracers are used) for each Leapfrog or Trapezoidal step.  The 

tridiagonal system calculations represent more than 50% of the execution time in all 

cases studied (see Section 5.3.4). As mentioned, the execution of Si3D is done column 

by column, advancing along each horizontal row of the grid from the southernmost 

column to northernmost column, beginning at the same time with the most westerly row 
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of columns and ending with the most easterly. Taking this into account for the 

management of data locality, the variables are stored so that the information in each 

column is contiguous in memory and neighboring north and south columns are 

contiguous too. This ensures that when you access a column of the domain and the data 

is brought into a block memory cache (the fastest memory), this block includes data 

from the entire column and other neighbor columns that are then calculated 

immediately, so avoiding penalties of higher computational cost because of having to 

access the main memory too often.  

Given the way Si3D works, just like other existing hydrodynamic models, the 

model can be parallelized using domain decomposition, assigning a specific number of 

columns to each subdomain taking into account an overlapping area to resolve 

dependencies during the calculation. In this work, as well as others (see for example Yu 

2010), we have chosen a domain decomposition with vertical cuts in one direction, 

similar to those in Figure 5.1. This is done by assigning a group of consecutive grid 

horizontal rows to each subdomain and reducing to a maximum of only two overlapping 

subdomain areas to resolve dependencies with neighbors to the east and west.  

 

 

 

 

 

 

 

Figure 5.1. Domain decomposition by horizontal rows in Si3D, each subdomain 

consists of those columns within its subdomain (Interior Columns) and those 

representing the boundaries of other subdomains to the east and west (blue area). 

The yellow area represents the dependencies of a subdomain with its neighbors 

(overlapping area), solved by adding communication and/or synchronization. 

For example in Figure 5.1, the subdomain 2 consists of those columns of water 

known as Interior Columns and additionally the columns which are shown in blue. On 

the other hand, the data outside the subdomain, but which is necessary to solve the 

dependences, will be considered as areas of overlap, represented in the figure with 

yellow, the blue borders represent overlapping areas of subdomains 1 and 3 

respectively. Thanks to this type of domain decomposition, the 
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communication/synchronization between two subdomains is reduced to only one area of 

overlap. This also ensures that the data to be communicated is contiguous in memory 

(given the way the variables are stored). Besides, this same domain decomposition can 

be used in the parallelization of the Conjugate Gradient (as explained in Section 5.2.6) 

in spite of which at this stage the calculation is not column by column of the grid as in 

the other stages. Although the domain decomposition is done by assigning a number of 

grid rows to each subdomain, the distribution is made taking into account the depth 

(number of cells) of each column. Taking into account this, a group of variable rows is 

assigned to each subdomain, trying to balance the number of cells that are distributed 

among subdomains as equally as possible. This type of domain decomposition has 

shown minimal imbalance, less than 0.5%, for all cases tested. The final Si3D parallel 

model (OP-Si3D) is presented in Figure 5.2, adding those points of communication and 

synchronization required to resolve the dependencies. S1, S2, S3 and S4 represent the 

solver stages of Si3D (see Chapter 1 for more details). C1, C2 and C3 represent the 

necessary communications/ synchronization between computers (communications 

within S2 will be explained in Section 5.2.6 ), including those variables that have to be 

communicated. OP-Si3D is based on the parallel implementation for small clusters (P-

Si3D) presented in Chapter 3 (Figure 3.1). 

5.2.3 Implementation of the affinity map  

 

Affinity allows using software to run a particular thread or process within specified 

processing resources. This allows us to take advantage of NUMA type Architectures, 

which are common in most current machines, where the access to processor memory 

related to the process or thread is faster than accessing memory from other processors. 

Affinity has been studied and recommended for this type of architecture in the past and, 

however, still not commonly used in the field of Computational Fluid Dynamics, 

probably because of the need to prepare the code explicitly to get the maximum good 

affinity performance. This paper explains in simple steps how to extract the maximum 

affinity performance from any parallel hydrodynamic model using domain 

decomposition. This approach has reported a reduction of over 54% in the runtime in 

the case of threads in a shared memory machine.  
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Figure 5.2. Simplified flow diagram for OP-Si3D. Gray boxes represent processing 

added for the parallel implementation. C1, C2 and C3 are communications among 

computers. S1, S2, S3 and S4 are Si3D stages. 
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The NUMA architectures are organized by a topology of two or three levels of 

hierarchy, with the number of cores per socket on the first level, a number of sockets per 

node on the second level and, finally for large shared memory machines, a third level 

with multiple nodes. OP-Si3D makes use of the hwloc tool to recognize this architecture 

(number of cores per socket, number of sockets per node and number of nodes) and 

organizes data accordingly. The procedure consists of using affinity to bind each thread 

to a particular core, also in placing threads with neighboring subdomains in neighboring 

cores, as shown in Figure 5.3. In the case of processes this affinity scheme is also used, 

ensuring that neighboring subdomains are found in the nearest neighboring core. This 

organization ensures that only a maximum of two subdomains per node will have to 

perform explicit communications with other nodes in distributed memory machines or 

access the overlapping areas of subdomains in other nodes in shared memory machines 

in a slower way. For the example shown, the communications between different nodes 

is reduced to only one between subdomains 4 and 5, the remaining subdomains rapidly 

access their data and ensure that neighboring subdomains are found in the shortest 

possible distance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Example of NUMA architecture with two nodes, each node has two 

sockets, and each socket has 2 cores. The domain is decomposed according to the 

number of resources available and each thread or process is assigned to a core. This 

is always done consecutively by placing neighboring subdomains in the 

architecture. 
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To make this possible efficiently, each thread must initialize the data of its 

subdomain (first-touch) to ensure thses data is taken to its part of the memory. 

Additionally, the data is stored in memory alignments to 4KB, and also with a minimum 

size of 4KB (including control variables). This is done to ensure that when a memory 

block is stored in cache memory it contains only information from a particular 

subdomain and, at the same time, another thread cannot invalidate this data by writing 

in another area of the same block. In the case of processes, only the use of a suitable 

affinity map will have a positive effect on performance. This affinity map accompanied 

by the domain decomposition facilitates communications. In the example shown and 

assuming that the nodes are found in different machines, only subdomains 4 and 5 will 

have to make communications across an interconnection network. Besides, it is ensured 

that for any case with more nodes and subdomains, only a maximum of two subdomains 

per node will have to communicate with other nodes, as may be the case in subdomains 

4 and 8 in the example shown if a third node was used. 

In the case of threads, the type of variables used (shared or private), and the 

distribution of the data, affect the performance of the affinity procedure. One of the 

advantages of using threads is the availability of shared memory, which allows 

communication between threads to be more simple and efficient. It is therefore 

necessary to allow, whenever possible, the use of shared memory to obtain information 

on the overlapping areas of other subdomains, this is possible without loss of efficiency 

when accessing variables as read-only mode, so those variables that are written in one 

time-step, and the next one are only accessed in read-only mode, are created as shared 

variables. So for these variables each thread accesses to read and write to its part of the 

subdomain during its calculation and only in read mode to the overlapping areas of 

other subdomains in successive time-steps. However, there are many other calculations 

that are accessed by both modes (reading and writing) in the same stage and can cause 

two neighboring threads to compete for the same memory block, causing additional 

penalties and having access to slower memory to take the updated data. Several 

alternatives have been tested to determine the effect of these variables on performance, 

and to find which one offers the best performance. 

In addition, two alternatives are evaluated to do the calculation of each stage and 

to solve dependencies with other subdomains. During S1, S3 and S4 of OP-Si3D 

(Figure 5.2), there are certain points where other subdomains need information from 
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neighboring columns to the east or west immediately afterwards to calculate some 

variables. This has been solved in the first alternative by using communication in the 

case of processes and by synchronization in the case of threads, so that the stage is not 

continued until the required calculated information is available for another thread or 

process. However, this implies adding numerous points of 

communication/synchronization that may reduce performance due to the active 

blocking. A second alternative to replace these points of 

synchronization/communication with redundant calculation is evaluated, so that the 

same thread or process performs the calculation of the overlapping area, which also 

avoids active blocking between threads or processes. 

On the other hand, three storage alternatives have been evaluated for the 

calculation variables in the case of threads.  

 V1: A single shared variable size of the entire domain, in this case each thread 

must access the information calculated by other threads in that variable when it 

needs information from the overlapping area, directly accessing data from other 

subdomains.  

 V2: A single shared variable where, in addition to each subdomain, it is adding 

the overlapping area and filling or garbage so that the total number of bytes for 

each variable is a multiple of 4KB, ensuring that the block with the subdomain 

of each variable can not be accessed by another thread. For this case, it is 

necessary to use redundant computation. 

 V3: A private and distinct variable for each thread of subdomain size and adding 

only the overlapping area, avoiding any penalties for data access between 

threads and reducing the amount of memory used. For this case, it is necessary 

to use redundant computation. 

 

5.2.4 Synchronization points  

 

Synchronization points, barriers in the most common case, specify a point in the 

execution flow of a parallel program where all the threads or processes must wait until 

they all reach that particular point. In the case of a parallel hydrodynamic model, they 

ensure that the necessary dependencies needed to continue the execution of a particular 
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subdomain have been resolved and this information is accessible to another thread or 

process. 

In the case of processes, the most efficient is to use the same communications as 

synchronization, using blocking communication or both unblocking communication and 

mpi_wait to ensure that data is available for a given process before continuing with the 

execution.  

In the case of threads, the most common procedure is the use of barriers that 

prevent further execution until all the threads pass by that point. Although each software 

already offers its own barriers (ompbarrier for example), the need of a generic 

implementation to work in the same way in any architecture makes these barriers non-

optimal for each particular architecture used, as in the case of a NUMA architecture, 

where the memory is organized into levels. Si3D presents two points where all threads 

are synchronized at the same time (before and after S2) when a sequential Conjugated 

Gradient is used (more details of this implementation are explained in Chapter 4, 

Section 4.2.1). To accomplish this, ompbarrier uses a unique variable lock that all the 

threads must access (Figure 5.4 (a)), so that all threads compete for the said variable 

regardless of where the socket or node is found (Al Khalissi 2013). However, here we 

have implemented a barrier where there is a variable lock per level, which is only 

accessed by the threads of the same socket on the first level, one thread per socket on 

the second level and one thread per node on the third level (Figure 5.4 (b)). In addition, 

these barriers have been implemented so that in compilation time the compiler itself can 

evaluate how many levels are available in the architecture, so that it is possible to 

eliminate the computational cost of additional variable locks if any of the levels do not 

exist. Similarly, these variables locks are 4KB in size, ensuring that no other thread 

invalidates the data by accessing another area of the block containing each variable 

lock. 
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Figure 5.4. (a) Classic ompbarrier barrier, each thread updates a shared global 

variable lock. (b) Levels barrier. There is a variable lock size of 4KB per level. In 

level 1 all the threads in the same socket are blocked, in level 2 the threads within 

the same node and finally in level 3 all the threads. 

On the other hand, during S2 it is necessary for some kind of synchronization that 

allows to solve the three existing Dot-product operations in any Conjugate Gradient 

(Figure 5.5, stages 2.2 and 2.5) so that the threads do not continue their execution until 

the final result of the Dot-product is available. Although OpenMP offers an efficient 

solution with clause reduction, this is not found to be adapted to a NUMA architecture. 

With clause reduction the partial result obtained for each thread is added to a single 

global variable (Bliznak et al 2014), presenting the same problem as the general 

ompbarrier discussed above. 

The alternative presented here allows the use of a structure similar to the new 

implemented barriers, combining it with the Dot-product operation so that each partial 

sum is done by using variables per level, avoiding all threads competing to make the 

global sum in a single variable.  

Finally, thanks to the domain decomposition used, the dependencies of each 

subdomain are reduced to the areas of overlap (Figure 5.1), so although synchronization 

points in the flow of execution are required for all subdomains, the dependencies and 

consequent blocking of a subdomain depends only on the two neighboring subdomains 

to the east and west. This means that each blocking may be selectively made between 

each pair of neighboring subdomains, so that synchronization is reduced between three 

subdomains (since each subdomain has two borders (Figure 5.1), it must synchronize 

itself with its two neighboring subdomains) in these points of synchronization. 
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Figure 5.5. Improvements made in the OP-Si3D parallel model, Iterative Loop 

stage.  

This synchronization among three is the same for all subdomains, except of course at 
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different border barrier. Once a thread reaches these synchronization points, each 

subdomain will only use the border barriers corresponding to its east and west borders, 

so that it will block only until its two corresponding neighbors reach the same point. 

5.2.5 Points of communication  

 

Communications obtain information that is not calculated by a subdomain from other 

subdomains to resolve dependencies. In the case of threads using shared memory, the 

synchronization points implicitly allow the performance of such communications. In the 

case of processes, the communications must be done explicitly. 

Si3D, like other hydrodynamic models, requires communication to resolve the 

dependencies of the overlapping areas, thanks to the domain decomposition chosen and 

the distribution of data in memory, these overlapping areas are reduced to the borders of 

each subdomain, which are contiguously found in memory (Figure 5.1). This implies 

that each process must communicate with a maximum of two other subdomains. In OP-

Si3D these border communications are necessary after S4 (Figure 5.2, border 

transmission) and during a parallel Conjugate Gradient for Matrix-Vector 

multiplication. Additionally in more points of S1, S3 and S4 if redundant computation is 

not used. Furthermore, additional communications are required for the solution of the 

Dot-product operations performed during the Conjugate Gradient (Figure 5.5, stages 2.2 

and 2.5). In this case we make use of the function given by MPICH MPI_AllReduction, 

which is implemented efficiently even for NUMA architectures, performing the partial 

sums in a binary tree structure between the nearest neighbors (Mamadou et al. 2006). 

On the other hand, in the case of a sequential Conjugate Gradient being used, additional 

communications must be added before S2 to form the complete pentadiagonal matrix 

into a single process, and after S2, to distribute to each process its part of the solution of 

water surface elevation (more details can be found in Chapter 4 about the sequential 

implementation of CG in a parallel implementation of Si3D, Figure 4.2) 

To do these communications as efficiently as possible, all the border 

communications are overlapping with calculation, conducting a reordering of the 

calculation of each subdomain. This reordering, found in each subdomain, first 

calculates those columns that form the overlapping area of other neighboring 

subdomains (Figure 5.1, subdomain 2, blue area). When these columns are calculated, 

they are sent in a non-blocking form and, at the same time, its own areas of overlapping 
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(Figure 5.1, subdomain 2, yellow areas) are received in a non-blocked form too. 

Subsequently each subdomain continues its execution by calculating the interior 

columns (Figure 5.1, Interior Columns), while it is completed in parallel the process of 

sending and receiving to/from the borders. This procedure is applied during S3 and S4, 

calculating and sending first the overlapping areas of the these stages (Figure 5.5, Data 

Transmissions B), and continuing the calculation of the rest of the subdomain and 

getting blocked with MPI_Wait before the next time-step, in case communications have 

not been completed yet. This reordering is also used to calculate the vector d in each 

iteration of PCG (Figure 5.5, Data Transmissions A during step 2.6), in order to solve 

the dependencies in the operation of Matrix-Vector multiplication (Figure 5.5, step 2.1). 

In this particular case, an additional inverse reordering is applied, where the interior 

columns of step 2.1 are first calculated, so adding the maximum calculation possible 

before the overlapping area is necessary to complete the calculations. In case that such 

communications are not received before they are needed to solve the dependences from 

the previous stage 2.6, the corresponding process is blocked with an MPI_Wait before 

finally calculating the borders of stage 2.1. 

5.2.6 Parallel implementation of the Conjugate Gradient and preconditioner  

5.2.6.1 Conjugate Gradient  

 

During S2 of Si3D (Figure 5.2), as in other semi-implicit models, a symmetric positive 

system of equations of the type Ax = b (where A is a matrix, x an array where the new 

solution is stored and b the independent vector) is defined with a pentadiagonal 

structure (see for example Nesterov 2010). This kind of system of equations is typically 

solved using an iterative method, which converge to a solution with a certain tolerance 

determined by the user. These methods have the advantage of being computationally 

much faster than direct methods like Gaussian substitution, which directly resolve the 

system. Among known iterative methods, those based on Krylov techniques are the 

most widely used, and among them Conjugate Gradient (Conjugate Gradient, CG) is 

usually given in literature as one of the best options (Barret et al. 2004). This is due to 

the number and type of operations that are presented in the CG with respect to other 

more expensive alternatives and that only a reduced group of vectors should be kept in 

memory during its execution. 
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The formation of the system of equations generated in S2 is closely related to the 

model geometry and dependencies between water columns. Firstly, the system consists 

of one equation (one row of the matrix A) per water column of the model has, as well as 

one element of the vector x and one element of the vector b. This makes the matrix A 

have as many rows and the vectors x and b have as many elements as the model has 

columns of water. Secondly, each equation has only 5 elements, determined by the 

position of each water column and its 4 neighbors to the north, south, east and west, 

thereby generating a pentadiagonal matrix as resulting in Figure 5.6(a) for the geometry 

presented. 

At the beginning of S2, each process or thread has a part of the matrix or system 

of equations equivalent to the number of water columns that belong to its subdomain, 

also having the corresponding part to this subdomain of the vector x and the vector b . 

Given the domain decomposition and the storage of variables used, both the rows of A 

and the part of the vector x and b calculated by each process or thread are consecutive. 

The parallelization of CG can be described as the parallelization of the mathematical 

operations that comprise it. Figure 5.5 (S2) shows the operations that compose the CG, 

some of these operations (2.3-2.4-2.6-2.7) can be solved in parallel without adding 

communication or synchronization. Meanwhile, the operations of Dot-product (2.2-2.5) 

and Matrix-Vector (2.1) multiplication require synchronization points and/or 

communications as explained in Sections 5.2.4 and 5.2.5. 

In the case of Dot-product operation, each thread or process has one part of the 

two vectors to multiply and can calculate the local product in parallel, the result is a 

scalar to be added, along with the other scalar values calculated by other processes or 

threads, to obtain the final result.  

In the case of Matrix-Vector multiplication (z = Ad) its parallelization means that 

each process multiplies its matrix A rows by the vector d. To make this possible, each 

process or thread should have a complete copy of the vector d, adding any necessary 

communications and/or synchronization. However, this operation is simplified for these 

types of hydrodynamic models. Since each row contains only 5 elements, you just need 

the corresponding 5 positions of vector d to multiply it with each row of the matrix. In 

addition, these 5 elements correspond to each column of water and its neighbors to the 

north, south, east and west. For example, following the case of Figure 5.6(a), the 

operation of multiplying water column 3 of the matrix A (which contains 4 non-zero 
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elements) by the vector d, actually needs only four elements of that vector, those in 

positions 2, 3, 4 and 7, equivalent to the number of the column (3) and its neighbors to 

the north (2), south (4) and east (7). In the parallel implementation presented for Si3D, 
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Figure 5.6. (a) The pentadiagonal matrix A resulting in forming the system of 

equations to solve water surface elevation in S2 according to the geometry of the 

domain given. The block size for each preconditioner is also indicated. (b) 

Preconditioned matrix used for the Jacobi preconditioner using two subdomains. (c) 

Preconditioned matrix used for BJ using two subdomains. (d) Preconditioned matrix 

for IC, MIC and MMIC in parallel using two subdomains.It also shows those 

elements (gray color) between subdomains which take a value of 0 and are added to 

the main diagonal during the construction of the preconditioner in MMIC. 

the domain decomposition used ensures that only those water columns of the matrix 

located in the eastern and western borders of the subdomain will require data from other 

subdomains to carry out its part of the Matrix-Vector multiplication, solved by border 

communications or synchronization points. This ensures that the parallelization of CG 

does not require the addition of any extra computational cost, such as reordering or 

factorization, and that the same type of communications used in the rest of the model 

(border only) can also be used for S2. 

 

5.2.6.2 Preconditioner  

 

Because CG is an iterative method that converges to the solution according to a given 

tolerance, the number of iterations required to converge to the solution significantly 

affects the total execution time of this stage. Usually an M-1 preconditioner is used 

which accelerates the convergence of the PCG, obtaining the value of q = M -1 r (Figure 

5.5, step 2.4), where r is the residual vector and q is the new direction of convergence. 

Ideally, the preconditioner itself would be the inverse of A, thus solving the system of 

equations would be immediate. However, obtaining the inverse of A, or of any matrix in 

general, is usually a very costly process, so what is usually chosen as preconditioner M 

is a matrix that is as similar as possible to A , thus solving the system of equations qM = 

r at the lowest possible cost without actually computing the inverse of M. 

Four different preconditioners have been implemented in Si3D to assess their 

performance in an optimized parallel implementation and their efficiency to accelerate 

convergence. According to the literature, the four implementations can be considered as 

Block Jacobi, each one using a different block size and number of blocks to resolve   the 

PCG sequentially or in parallel. Additionally, in each case the system of equations r = 

qM (to calculate the preconditioner) is solved by a different method, giving the name to 
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each one of four preconditioners implemented. The Table 5.1 shows the equivalence 

between each of the preconditioner and the Block Jacobi implementation used. 

 

Preconditioner Block Jacobi Size Number of blocks per 

subdomain 

Jacobi 1 water column of the grid Many blocks as water columns 

have the subdomain 

BJ 1 horizontal row of the grid Many blocks as horizontal rows 

have the subdomain 

Parallel IC, MIC, 

MMIC 

The number of horizontal rows into 

the subdomain 

1 block 

Sequential IC, MIC The number  of horizontal rows 

into the complete domain 

1 block 

Table 5.1. Equivalence between each preconditioner implemented with its Block Jacobi 

implementation performed. 

 Jacobi: it uses the inverse of the main diagonal of A as the preconditioner M -1 

and directly resolves q = M -1 r. This is equivalent to the use of a block Jacobi 

size equal to one water column of the grid (Figure 5.6(a), red box). Each 

subdomain applies Jacobi in parallel using as many blocks as water columns 

have the subdomain (Figure 5.6 (b)). 

 Block Jacobi (BJ): it uses the three main diagonals of the matrix A as the 

preconditioner M where the system qM = r is solved by the Thomas algorithm 

typically used for solving tridiagonal systems. This is equivalent to the use of a 

block Jacobi size equal to one horizontal row of the grid (Figure 5.6(a), green 

box). Each subdomain applied BJ in parallel using as many blocks as horizontal 

rows have the subdomain (Figure 5.6(c)). Given the structure of the matrix 

obtained (Figure 5.6(c)), it is possible to solve this system of equations in 

parallel without following a strict sequential order or adding synchronization or 

communication points. The Thomas algorithm involves two phases with a 

forwards and backward substitution where, if all elements of the 3 diagonals 

were not zero, the process would be strictly sequential. However, the tridiagonal 

system has some zero elements generated by the absence of neighbors to the 

north and south at the end and start of each horizontal row of the domain 

respectively. For example, these zero elements can be seen in Figure 5.6(c), 

marked with dashes, to generate the equation 8 and 9 of the matrix M, this is 
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because in the first subdomain, the water column 8 has no neighbor to the south, 

being the last in that horizontal row, at the same time, the water column 9 has no 

neighbor to the north, being the first of its horizontal row. This allows the 

solution of the full tridiagonal system as a set of independent tridiagonal 

subsystems, as long as each subset is composed of complete horizontal rows of 

the grid. For example, in Figure 5.6(c) both subdomains (highlighted in a box) 

can be independently solved.  

 Incomplete Cholensky and Modified Incomplete Cholensky (IC and MIC): it 

uses the factorization of type LDL T of matrix A as preconditioner M, L is a lower 

unit triangular matrix, D is a diagonal matrix an L
T
 is the conjugate transpose of 

L. This allows us to solve the system Mq = r as LDL T q = r in two steps. Solving 

first LDx = r to obtain x and in a second step by solving L T q = x to finally 

obtain q. Both steps are solved by a substitution algorithm, using a 

forwards/backwards substitution (Dongarra 1998). Both IC and MIC should be 

made so that M retains the pentadiagonal structure of the original matrix A. In 

order to maintain this same structure, those elements which are different to 0 out 

of the 5 main diagonals (known as filling values) take a value of 0 using IC and, 

additionally using MIC besides taking 0 value in its original position they are 

added to the main diagonal of M . To determine whether IC or MIC is used, a 

parameter w is used which indicates if the filling values are or not added to the 

main diagonal, with w = 0 for IC, w = 1 for MIC and a value between 0 and 1 a 

compromise between IC and MIC. The parameter w is usually adjusted for 

adding convergence by the preconditioner. For example, Dongarra (1998) 

indicates that w should be set to 0.95 to obtain the best convergence ratio.  

           For the sequential implementation, MIC and IC are directly applied to the 

matrix A (Figure 5.6 (a)). This is equivalent to the use of a block Jacobi size 

equal to the complete domain (Figure 5.6(a), yellow color) and only one block. 

          The main goal to obtain a parallel implementation of this preconditioner is 

that the implementation must not require any type of additional extra operation 

(such as reordering), communication/synchronization points or anything that 

cannot be fully parallelized. However, this is not a trivial task taking into 

account that its implementation, both the forward and the backward substitution, 

must be performed in a strictly sequential way. Given this requirement in the 

parallelization of this preconditioner, a similar solution to the idea used in Block 
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Jacobi has been chosen here, so that the calculation of the preconditioner in each 

subdomain is done independently. To carry out this process, the elements 

corresponding to the overlapping area of each subdomain take a value of 0. This 

is equivalent to the use of a block Jacobi size equal to the number of horizontal 

rows of the grid into each subdomain (Figure 5.6(a), blue box). Each subdomain 

applies IC or MIC in parallel using only one block (Figure 5.6 (d)). The Figure 

5.6(d) shows an example where the first subdomain consists of the first 8 water 

columns of the model. To compute in parallel the corresponding part of the 

preconditioner to this subdomain from the matrix A, those elements of the upper 

diagonal from positions 9 to 12, as well as the lower diagonal elements from 

positions 5 to 8, takes 0 value (elements in gray). Making these elements take a 

value of 0, it is possible to solve the preconditioner in an independent parallel 

way for each subdomain, adapting the parallel implementation of the 

preconditioner with the domain decomposition used in other stages. However, 

moving these elements to 0 value on the borders between subdomains, the new 

preconditioner M is created from a matrix that is less like A (since these values 

do have a non-zero value in the matrix A) and, therefore, the convergence 

acceleration of the preconditioner decreases. Furthermore, increasing the number 

of subdomains, the number of borders where these elements must take a value of 

0 increases, slowing convergence with each new division of the domain. To 

reduce this loss of convergence, when the values between subdomains are 0, a 

modification to the preconditioner MIC is implemented. This implementation is 

called here MMIC.  This modification is similar to the idea followed in the MIC 

implementation itself to remove the filling data and maintain the structure of the 

original matrix A. In this case the values converted to 0 (gray elements in Figure 

5.6) are added to the main diagonal of the preconditioner, thus considerably 

reducing the loss of convergence. This modification is controlled by a parameter 

w2, where for w2 = 0 these values are not added to the main diagonal, for w2 = 

1 these values are added to the main diagonal and a value between 0 and 1 

provides a compromise between both of them. This parameter can be adjusted to 

find what value of w2 provides greater convergence acceleration. 
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5.3 Performance evaluation 

 

Results of execution time and scalability using OpenMP, MPI or both simultaneously 

are presented in this section. The execution time results are presented as an average of 

10 iterative loops (Figure 5.2), neglecting the first iteration which is different to the rest 

(the leapfrog step is not possible until the second iteration). The time before and after 

the iterative loop is considered negligible for these types of simulations, wherein the 

said iterative loop must repeat the time-steps needed to cover long periods of 

simulation. For example in the high resolution case of Lake Tahoe, the number of 

iterations to make a simulation of 30 days with a time-step of 10s is 259,200 (Table 

5.2). Conversely, the time before and after the iterative loop is less than 0.1% with 

respect to the total time required to execute all the time-steps. 

We also evaluated the potential load imbalance between subdomains produced by 

the selected domain decomposition (Section 5.2.2), counting the number of cells that 

each subdomain has to calculate. This study was done counting the number of cells in 

each subdomain with divisions from 2 to 256. In all cases the difference in cells 

between the subdomain with the highest number and the subdomain with the least cells 

was from 0.15% to 0.5% for all cases evaluated. 

 

5.3.1 Platform and tools  

 

OP-Si3D has been tested in 3 architectures with different features in order to evaluate its 

performance and scalability, both in small commodity clusters (including clusters of 

distributed memory and shared memory machines) and high performance architectures. 

This will not only evaluate the performance and scalability of the parallel 

implementation in architectures with good performance, but also compared to other 

clusters of low performance to determine whether the implementation can achieve good 

results in a type of cluster which most scientists can access. 

ACII has been used as a low-end cluster, a machine of 3 nodes. Each node has 6 

GB of memory and an i7 CPU920 processor with 4 cores of 2.667 GHz. In the tests 

performed both Infiniband and Gigabit Ethernet have been used as network connection 
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between nodes. Each node has only one socket, with a processor with four cores in each 

socket. 

ALHAMBRA has been used as high performance architecture with distributed 

memory, a cluster with 16 Fujitsu CX250 (S1) nodes. Each node has 32 GB of memory 

and two Intel Xeon E5-2680 processors with 8 cores each of 2.7 GHz. The nodes are 

connected by Infiniband. Each node has two sockets, with a processor with 8 cores in 

each socket. 

CIEMAT has been used as a shared memory midrange machine, a machine with 

two CC-NUMA shared memory nodes. Each node has 512 GB of memory and 4 Intel 

Xeon X7750 processors with 8 cores each of 2 GHz. Each node has 4 sockets, with a 

processor with 8 cores in each socket. 

Given that Si3D, from the original model, is developed in Fortran, the execution is 

generated with the Intel Fortran (version 11) compiler, also using the OpenMP version 

included in the compiler. For message passing paradigm MPICH2 3.0 has been used. 

The code was compiled using standard compilation optimizations given with O2. In 

addition, the Intel V-Tune tool was used to detect those subroutines of code that 

consume more CPU time and to apply various basic optimizations as explained in 

Section 5.2.1. 

 

5.3.2 Test model  

 

It has been used, as an application to evaluate the parallel implementation, a realistic 

simulation of Lake Tahoe (USA). Currently several groups of researchers are using this 

model to characterize transport routes in the coastal area (around the littoral zone) of 

pollutants (Hoyer et al. 2015) and larvae of a species known as invasive Asian clam 

(Corbicula bivalve fluminea) (Hoyer et al. 2014). 

Lake Tahoe has horizontal dimensions of 20 km x 30 km and up to 500 m of 

depth in the vertical. Two tests with Cartesian grids have been used for simulation with 

square columns of 50m x 50m and 20m x 20m in the horizontal (Table 5.2). The 

vertical resolution is the same for both cases with 95 layers of depth. The case of lower 

resolution obtained good results in the pelagic zone of the lake and can be run on 

platforms with less computational resources. However, it is showed in chapter 2 
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(Section 2.4.4) that some of the circulation patterns in the coastal zone can only be 

properly reproduced if a similar scale to those found in the littoral bays is used, 

requiring a resolution of at least 20m x 20m. However, this simulation using a high-

resolution grid is not trivial and requires an unaffordable computational cost. The 

computational time of this simulation using the Si3D sequential model, even including 

several basic optimizations, keeps a real-time/simulation time relationship of 

approximately 768:30, meaning it would take 768 days of computing to simulate 30 

days. Likewise, the cost of memory is too high, requiring more than 16 GB for its 

execution. This huge computational cost prevents its simulation sequentially or even in 

parallel in small commodity clusters with little memory as in the case of ACII. 

The lake bathymetry data was obtained from the US Geological Survey. The 

vertical resolution comprises up to 95 layers with a layer depth variable from 0.5m at 

the surface to about 10m near the bottom. The time-step is set to 25s in the case of 

lower resolution and 10s in the case of higher resolution, thus fulfilling the condition of 

CFL and ensuring the stability of the simulation. The model was forced (input data) 

using Surface heat and Momentum fluxes estimated from local atmospheric variables 

(long and short wave radiation, air temperature, relative humidity and wind speed and 

direction) obtained from meteorological data. This data was obtained from 

meteorological stations maintained by the Tahoe Environmental Research Center 

(TERC), having a total of 10 stations around the coast and around the lake. All the 

stations provide continuous information about wind speed and direction and air 

temperature. 

 

Models of 

Lake Tahoe 

Horizontal 

cell side 

Columns 

of water 

Total cells Simulation 

period 

Time-

step 

Total Time-

steps 

Tahoe50 50x50m 197,781 14,654,639 30 days 25s 103,680 

Tahoe20 20x20m 1,244,896 94,691,170 30 days 10s 259,200 

Table 5.2. Computational data of Lake Tahoe simulations: Horizontal resolution (square 

columns), total number of columns and total number of cells, period of simulation, 

time-step used and the total number of time-steps needed to finish the simulation.  
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5.3.3 Basic optimizations  

 

The original model of Si3D kept information from dry columns, requiring a higher 

memory cost and execution time because of having to evaluate the calculation of all 

columns in the grid, regardless of whether they are columns with water or not, a first 

optimization was performed to store only columns with water as explained in Section 

5.2.1. The Figure 5.7 shows the results of different sequential runs of Si3D from the 

original model (using O0 and the standard compiler optimizations (O2)) and the 

improvements achieved in execution time by applying the optimizations shown in the 

figure for the case of Tahoe50 in ACII, using the sequential MIC as the preconditioner 

in the CG. Each successive improvement from left to right is evaluated including each 

one of the previous optimizations, using the optimization option O2. 

 

Figure 5.7. Iterative Loop runtime for a sequential version of SI3D adding several 

basic optimizations.  

As it is shown, storing only columns with water reduces the runtime by 4.7%. In 

addition, other basic optimizations outlined in Section 5.2.1 reduce the execution time 

by up to 7.76%. Finally, the unrolling loop applied in order to help the compiler to 

optimize the Thomas algorithm used in solving tridiagonal systems reduces runtime by 

another 4%. Once all the basic optimizations are applied, the total reduction is 15.5% 

compared to the original version optimized by the compiler (O2).  
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The implementation of Si3D with all the basic optimizations (known as Basic) is 

the first step taken in the modifications made to Si3D, this implementation has been 

used as a base in the development of the rest of implementations presented in other 

chapters. 

 

5.3.4 SI3D profiling  

 

SI3D is an extensive code with lots of subroutines and a huge amount of variables so 

that a study of those stages of the code that consume more time is vital. This profiling is 

obtained from a sequential execution of Si3D, including all basic optimizations and 

using O2 in an ALHAMBRA node for Tahoe20, using MIC as the preconditioner in the 

CG. 

The Figure 5.8 shows the percentage of execution time compared to the total time 

of each stage of Si3D (Figure 5.2), including a complete iteration of Si3D with one 

leapfrog and one trapezoidal step. As it is shown, the two stages with most cost are S1 

and S4, with a cost of 57% and 29% with respect to the total. This is because it is in 

these stages where the formation and resolution of as many tridiagonal systems as the 

model has water columns must be done, the formation and resolution of these 

tridiagonal systems representing the 53% of the total time and must be performed up to 

3 times in the iterative loop. The first systems of tridiagonal equations (Momentum 

Trid.) is calculated for S1 and represents 31% of the total time of this stage, the 

remaining time of S1 is consumed in the calculation of the explicit terms of the 

equations of momentum (exmom, with 67%) and the formation of the pentadiagonal 

system that will be resolved in S2 (matcon, with 2%). Additionlly, the resolution of the 

tridiagonal systems in calculating (1) temperature in the transport equation and (2) the 

horizontal coefficients of viscosity in the turbulence equation represent 76% (Transport 

and Turbulence Trid.) of the S4 runtime, the remaining 24% being the calculation of 

other variables. Furthermore, the resolution of the system of pentadiagonal equations in 

S2 represents 3.54% (PCG) of the total. Solving the equation of continuity in S3 to 

obtain the new volumetric transports represents 2.65% (Continuity) of the total. Finally, 

the updating of variables (Data Update), both after the leapfrog and before the next 

time-step represents 7.08% of the total time. 
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Figure 5.8. Percentage of runtime of the SI3D stages in the Iterative Loop.  

 

5.3.5 Hybrid Model Optimizations  

 

In this section the results of the implementations performed to take full advantage of the 

parallel implementation are evaluated, with explicit optimizations for both threads with 

OpenMP and for processes with MPI. The results in this section are intended to 

determine whether the procedures presented enhance the performance of the parallel 

implementation or which alternative from those presented is the most efficient. These 

results are obtained for Tahoe50, in ACII using only processes, and in CIEMAT using 

only threads, starting with the already optimized model presented in Section 5.3.3 (basic 

optimizations). This model includes the original implementation used by Smith (2006) 

of the CG using MIC as the preconditioner, which is included in the NSPCG math 

library (Non-Symmetric Preconditioned Conjugate Gradient, Kincaid et al. 1989).  

 

5.3.5.1 OpenMP optimizations 

 

The Figure 5.9 shows the results of SpeedUp comparing the basic model and other 

implementations of the OpenMP parallel model. Basic presents results (using threads) 

of the model with basic optimizations obtained in Section 5.3.3, which shows a rather 
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poor performance. The Affinity model is the same implementation but adding the first-

touch and an explicit affinity (first fully occupying each CIEMAT socket). The results 

of this model show a significant improvement of up to 45% in the case of 64 threads. 

This demonstrates the importance of making use of data locality in NUMA type 

architectures, with an initialization of data in parallel by each subdomain and the 

importance of binding each thread with the core where the initialization is performed, 

which also ensures that neighboring subdomains are founded in neighboring cores to 

achieve a faster access to their overlapping areas. 

 

Figure 5.9. Comparison of SpeedUp results between the basic model and other 

implementations of the OpenMP parallel model for Tahoe50 in CIEMAT.  

The new Affinity model, like other parallel models, includes synchronization 

(Ompbarrier barriers) before any calculation loop that requires information dependent 

on neighboring subdomains, which in the chosen decomposition domain is reduced to 

the overlapping areas between neighboring (Figure 5.1). Besides the synchronization 

points shown in Figure 5.2, 9 barriers must be added in S1, 4 in S3 and 12 in S4 to 

resolve all dependencies. Given the large number of synchronization points, a study of 

the type of calculation between these synchronization points was performed, noting that 

these dependencies in S1, S3 and S4 occur frequently between nearby loops with little 

calculation between them. Therefore a new implementation which replaces the 

synchronization points of S1, S3 and S4 for redundant computation (Redu. Comp. in 

Figure 5.9) was evaluated. 
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Moreover, the storage type of the variables has also been evaluated with the 3 

types of storage explained in Section 5.2.3. In the model with redundant calculation the 

variables are initially stored using V1 (redu. Comp. (V1)), showing poorer results than 

using synchronization and the same storage (Affinity). However, storage types V2 and 

V3 (Redu. Comp. (V2) and Redu. Comp. (V3) respectively) obtain better results than 

V1, both using redundant computation and synchronization, being V3 the best option, 

0.72% better with respect to V2 and 6.16% with respect to V1 with redundant 

computation and 3.52% with respect to V1 with synchronization, in each case 

comparing the results obtained with 64 threads. This is because both V2 and V3 do not 

need, to solve dependencies, access to data for calculation of the overlapping area that 

neighboring threads are continually accessing at the same stage in both reading and 

writing mode. The new storage ensures that the information that each thread brings to 

its cache memory will not be invalidated by neighboring threads. Meanwhile V3 

slightly reduces the runtime of V2 and reduces the amount of memory required, not 

needing to include garbage or filling between subdomains to ensure that each memory 

block is only accessed by the local thread. 

Finally, the results of a model fully adapted to the NUMA architecture were 

presented, using the border barriers between subdomains and the barriers per level 

outlined in Section 5.2.4. Thus, the barriers used and given by OpenMP (ompbarrier) 

are replaced by the new approach in the best version available at this point (Redu. 

Comp. (V3)) obtaining a new implementation (NUMA Bar. (Redu. Comp.)). As it can 

be seen, the new implementation improved scalability of the parallel model with respect 

to the same version using Ompbarrier, reducing runtime by up to 11.67% in the case of 

64 threads. Having demonstrated the efficiency of the newly developed barriers, the 

redundant computation was replaced again by synchronization points using the 

improved border barriers (where redundant computation is used in S1, S3 and S4) 

(NUMA Bar. (Sync)). The results show that it is still better by 3.2% to use redundant 

computation using 64 threads, despite the better performance of the new barriers. 
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5.3.5.2 MPI optimizations 

 

The Figure 5.10 shows the results of SpeedUp between the base model with basic 

optimizations and other implementations of the MPI parallel model for Tahoe50 in 

ACII, using Gigabit Ethernet as the connection network. Basic presents the results 

(using processes) of the basic model including the basic optimizations presented in 

Section 5.3.3, which has poor scalability due to the large amount of data to be 

communicated and several blocking waits while those communications are performed. 

The Affinity model slightly improves the results of the Basic model, by up to 3.28% 

with 12 processes, since it ensures that communications between different nodes will be 

minimal. However, this model still shows very poor scalability, this is because both 

models (Basic and Affinity) include communication before any calculation loop that 

requires information dependent on neighboring subdomains, which in the chosen 

domain decomposition is reduced to the overlapping areas between neighbors (Figure 

5.1). In addition to the communication points shown in Figure 5.2, 9 points of 

communication must be added in S1, 4 in S3 and 12 in S4 to resolve all dependencies. 

This large amount of both, the quantity of data to communicate and the number of 

communications between loops with little calculation, leads to lack of scalability of the 

model. To solve this problem, a new approach is done (Redu. Comp. (Block. Comm.)) 

where these communications of S1, S3 and S4 are replaced by redundant computation 

following the same procedure outlined for threads in Section 5.3.5.1. As shown in 

Figure 5.10, a significant improvement in efficiency is obtained for the parallel model 

of up to 14.8% in the case of 12 processes. This is because the number of 

communications has been reduced considerably. 

In the process of reducing communication costs to the minimum, the results of (Redu. 

Comp. (Reorder)) shows the same implementation as (Redu. Comp. (Block. Comm.)) 

but substituting the communications at the end of S4 (Figure 5.2) by non-blocking 

communication and performing a reordering of S3 and S4, as explained in Section 5.2.5. 

The results show a clear improvement when these communications are overlapped with 

calculation, with an improvement of 6.55% in the case of 12 processes. 

 



A Parallel Implementation for 3D Semi-Implicit models adapted to the architecture  

 

173 

 

 

Figure 5.10. Comparison of SpeedUp results between the basic model and other 

implementations of the MPI parallel model for Tahoe50 in ACII.  

Once implemented the new reorganization and non-blocking communications, the 

redundant computation is replaced by non-blocking communication points and 

reordering of those calculation loops in S1, S3 and S4 with dependencies. The results 

(Reorder (Sync)) show that it is still better to use redundant calculation up to 15.5% 

using 64 threads. This is because the number of communications between loops is so 

frequent that the overlapping of calculation of small loops with the time needed to carry 

out communications is not possible, reaching an overhead added by the communications 

between neighboring subdomains. 

Two different types of affinity were also evaluated using the best implementation 

(Redu. Comp. (Reorder)) once the cost of communications has been minimized. ACII 

and CIEMAT were used for these tests. Tests were conducted with 2, 4 and 8 processes. 

With the first affinity map each socket is filled first (in ACII since each node has only 

one socket, the affinity is associated with occupying each node). Thus for the case of 

four processes for example, the four processes are co-located in the same node of ACII 

or the first CIEMAT socket. With the second affinity map, an attempted distribution to 

occupy the largest possible number of nodes (sockets) was used. For example, for the 

case of 4 processes, the four processes are co-located in the first four different sockets 

of the first CIEMAT node. In the case of ACII, two neighboring processes are co-

located in the first node and only one process is placed in the other two nodes 
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respectively. As another example, for the case of eight processes, only one process is 

allocated per CIEMAT socket while in ACII, three neighboring processes were co-

located in the first node and two neighboring processes were placed for each remaining 

node. Table 5.3 shows that the results obtained in ACII and CIEMAT are not the same. 

In CIEMAT, with an amount of memory much higher than ACII, it is preferable to fill 

each socket completely before occupying another socket (minimum distribution results 

against maximum distribution results), favoring the data locality to locate information 

from neighbors (to access the overlapping areas) in the memory of the same socket. 

However, in ACII, as seen in all cases, it is preferable to occupy the largest number of 

nodes (maximum distribution) rather than totally occupy each node (minimum 

distribution), thus providing more memory to run the simulation. This indicates that 

despite the overhead added by the communications between nodes and the reduction of 

the data locality to distribute the processes in different nodes, it is slightly more efficient 

to have more memory for its execution. 

Affinity 

Test(Infiniband) 

ACII  

Time (seconds) 

CIEMAT  

Time (seconds) 

Threads maximum 

distribution 

minimum 

distribution 

maximum 

distribution 

minimum 

distribution 

1 22.48 22.48 32.54 32.54 

2 11.42 11.53 16.43 16.41 

4 6.12 6.24 8.72 8.63 

8 3.28 3.46 4.58 4.46 

Table 5.3. The results of execution time (seconds) per time-step of the parallel model using 

two types of affinity are presented. One where each socket is completely occupied first 

(minimum distribution) and another where the threads are distributed occupying the 

highest number of sockets first (maximum distribution). 

 

5.3.6 Conjugate Gradient Optimization and preconditioner  

 

Table 5.4 presents the number of collective communications, non-collective 

communications and the results of different alternatives of CG and different 

preconditioners, using Tahoe50 in ALHAMBRA, which is the available architecture 

where a greater number of subdomains can be studied (up to 256). The parallel 

implementation developed for this model (PCG) has been compared to the sequential 

implementation included in the NSPCG math library (rows 2, 3 and 4) and originally 
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used in the Smith model (2006) (Chapter 1). Comparison with the NSPCG library can 

test whether the implementation of the Conjugate Gradient used obtains similar results 

when the model is executed sequentially, both the number of iterations to converge and 

the runtime.  

Table 5.4. Conjugate Gradient and preconditioners used both sequentially using the 

NSPCG library and in parallel with the developed code (PCG).  

PCG many-to-one 

 

Interchanges 

No. iterations Total Time 

1  

thread 

256 

threads 

1  

thread 

256 

threads 

PCG (NO 

Preconditioner) 

2 ALLREDUCE 

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

882 882 6.84 6.84 

NSCPG(MIC) Not applicable Not applicable 16 16 1.89 1.89 

NSPCG(JAC) Not applicable Not applicable 760 760 5.96 5.96 

NSPCG(BJAC) Not applicable Not applicable 537 537 4.97 4.97 

PCG(JAC) 2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

761 761 5.86 0.22 

PCG 

(reorder_JAC) 

2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

761 761 5.86 0.1 

PCG (BJAC) 2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

538 538 4.83 0.16 

PCG 

(reorder_BJAC) 

2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

538 538 4.83 0.07 

PCG (IC) 2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

57 405 5.74 0.18 

PCG (MIC) 2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

17 129 1.84 0.06 

PCG (MMIC) 2 ALLREDUCE  

per iteration + 1 

ALLREDUCE 

2 ISEND + 2 

IRECV  per 

iteration  + 2 

ISEND/2IRECV 

17 74 1.84 0.03 



PhD Thesis 

176 

 

The new implementation has also been compared with 4 different alternatives for 

the preconditioner: Jacobi (Rows 5 and 6), Block Jacobi (BJ, Rows 7 and 8), Incomplete 

Cholensky (IC, Row 9) and Modified Incomplete Cholensky (MIC, Row 10) as well as 

a modification of MIC itself for the parallel model (MMIC, Row 11). In addition, for 

the Jacobi and BJ cases, they are compared to the use of blocking communication (rows 

5 and 7) and non-blocking communication with reordering of calculation (Rows 6 and 

8) described in Section 5.2.6.1, showing the best results in both cases with the second 

option, where most communications are efficiently overlapped with calculation in the 

CG.  

In the first place, the results show that the number of iterations to converge and 

the total execution time between the NSPCG method and the implementation developed 

(PCG) are very similar. Besides, in the case of the evaluation of the PCG developed, 

comparing execution times and the number of iterations to converge using different 

preconditioner alternatives, the results show that the minor computational cost per 

iteration is obtained by Jacobi followed by BJ, IC and MIC. This is because the number 

of operations needed in the computation of each preconditioner. Jacobi is only to 

reverse the main diagonal of A. On the other hand, BJ must solve a system of 

tridiagonal equations of the size of the number of water columns of the domain. In IC 

and MIC, the cost is even higher, since the matrix A must be factorized in the form of 

LDL T and proceeds to the resolution of the new system as explained in Section 5.2.6.2, 

adding more computation. However, the number of iterations to converge varies 

contrary to the order of the cost of each iteration, making the final execution time less 

using MIC, followed by IC, BJ and finally Jacobi, which despite having a very small 

computational cost does not offset with respect to the number of iterations needed to 

converge. 

As in other stages of the parallel model, the PCG developed has only 

dependencies with other subdomains in the overlapping areas (Figure 5.1), solved by 

border communication/synchronization, without adding any additional reordering or 

factorization. Furthermore, it is not necessary to add any computational cost to the 

parallel implementation or calculation of the preconditioner. To make this possible, as 

explained in Section 5.2.6.2, some convergence is lost when the number of parallel 

subdomains is incremented. Table 5.4 shows the evolution of the different 

preconditioners based on the number of subdomains used. The group of columns 1, 2 
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and 3 show the number of iterations to converge using MIC, IC and an intermediate 

solution respectively (variable w). As it can be seen, it is better to use the intermediate 

solution (except in a sequential execution where MIC is better). To control in what 

proportion a solution between IC and MIC is used, the value of w parameter is changed, 

taking the value 0 for IC (column 3), 1 for MIC (column 6), and an intermediate value 

which is changed when the number of subdomains increase to obtain the best 

convergence results. Column 9 shows the optimal values of w for each number of 

subdomains when a parallel MIC with variable w is used. As it is seen in Table 5.3, 

MIC in parallel with the optimized w parameter gets the best results even although the 

number of iterations to converge increase, both with respect to a sequential execution of 

MIC (with a fixed number of iterations to converge) as with respect the second best 

option in parallel, BJ. 

Finally, the results of the modification to MIC (MMIC) explained in Section 

5.2.6.2 are shown. This modification reduces the loss of convergence when the number 

of subdomains increases. These results can be seen in the group of columns 4 and 5 of 

0, noting that the number of iterations to converge with respect to the parallel MIC 

improves. Again this change is controlled by a parameter w2, whose optimum value 

takes a value between 0 and 1, depending on the number of subdomains used. The 

results using this modification of MIC can be compared in 0 using a value of  w2 = 1 

(column 13) or using an intermediate value between 0 and 1 which is changed according 

to the number of subdomains used (column 14), the results show that it is better to use a 

variable value of w2. The best value of w2 according to the number of sub-domains can 

be seen in column 16 of the same table. As shown in Table 5.4, MMIC improves the 

results obtained by the parallel MIC up to a total of 256 subdivisions, presenting itself 

as the best option and providing a parallel preconditioner that does not add any costs in 

comparison to the implementation of a sequential MIC. This is achieved by reducing the 

convergence, but significantly reducing the loss of convergence when (1) two 

parameters w and w2 which vary according to the number of subdomains are used and 

(2) a modification to MIC presented as MMIC is used. 
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5.3.6.1 OpenMP optimizations 

 

The Dot-product operation performed up to 3 times in the CG is calculated by the 

threads, obtaining in each one a local scalar product of its subdomain, and then adding it 

to a global variable. Here the operation given by OpenMP (OpenMPReduction) is 

compared to the implementation developed (NUMA Barrier Dot Product) which allows 

adapting the Dot-product operation to the NUMA architecture, as explained in Section 

5.2.4. The results presented in Figure 5.11 show that the actual implementation reduces 

runtime by up to 12% for 64 threads in CIEMAT, allowing us to exploit the data 

locality when the partial sums are performed. 

 

 

Figure 5.11. Comparison of SpeedUp results between the model with a parallel CG 

using NUMA barriers and other implementation using ompbarrier and 

ompreduction for Tahoe50 in CIEMAT.  

 

5.3.6.2 MPI optimizations  

 

It was noted that the same overlapping of communication with computation performed 

in S3 and S4 (Reorder), whose results are presented in Section 5.3.5.2, can be carried 

out with all communications made in the parallel implementation of the CG, as 

explained in Section 5.2.5. The results (Figure 5.12) show a substantial reduction in the 
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execution time of up to 63% in the case of 12 processes in ACII with Gigabit Ethernet, 

with respect to another implementation where communications are blocking without 

reordering (Block. Comm), showing that all communication can be effectively 

overlapped with computation. 

Once all communications are overlapped with calculation, both in CG and in other 

stages, results of the parallel model were compared in ACII using Gigabit Ethernet and 

Infiniband as interconnection networks, both the reordering version and the version with 

blocking communication. The results (Figure 5.12, Gigabit vs InfiniBand) show that 

communications produce a significant overhead in slower networks such as Gigabit 

Ethernet, whose results are much worse than those obtained by Infiniband. However, 

the difference using non-blocking communications and reordering between the two 

networks is only 2.51% in the case of 12 processes, showing that almost all 

communications can be overlapping and a good parallelization implementation can 

avoid using more expensive networks. 

 

Figure 5.12. Comparison of SpeedUp results between the model with a parallel CG 

using blocking communication and another implementation using non-blocking 

communication and reordering of calculation for Tahoe50 in CIEMAT. Tests have 

been carried out with both Gigabit Ethernet and Infiniband. 
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5.3.7 Scalability study  

 

In this section results of the final version of the hybrid parallel model using OpenMP 

and MPI are shown (Table 5.7), both using threads and processes in ALHAMBRA, in 

order to check its performance with up to a total of 256 subdivisions. The final version 

including all improvements, a parallel CG and MMIC as preconditioner, is also 

compared with other versions to assess how each one scales. The tests were performed 

by running a process by node (with a total of 16 processes in 16 nodes), each process 

also uses 16 threads, completely occupying each node. 

 

 Basic ParallelCG(BJ) ParallelCG(MMIC) 

Threads Tiempo SpeedUp Tiempo SpeedUp Tiempo SpeedUp 

1 103.81 1 107.73 1 103.36 1 

2 60.02 1.72 55.31 1.95 52.16 1.98 

4 34.51 3.01 28.11 3.83 26.62 3.88 

8 19.52 5.32 14.02 7.68 13.25 7.80 

16 12.35 8.41 9.04 11.92 8.42 12.27 

32 11.13 9.33 4.31 24.99 4.05 25.52 

64 10.52 9.87 2.43 44.33 2.08 49.69 

128 10.24 10.14 1.43 75.33 1.15 89.88 

256 10.11 10.27 0.72 149.62 0.67 154.27 

Table 5.7. Results of scalability for the Basic parallel model and the parallel model using a 

parallel CG. On the one hand using Block Jacobi as the preconditioner and on the other 

hand the modified version of MIC (MMIC), using as parameters w and w2 those 

optimal values specified in Table 5.4. 

The results show that the version that only includes the basic optimizations using 

O2 (Basic, Columns 1 and 2) scales very little above 16 threads, showing nearly 

constant execution time from that point. One can also observe the importance in the 

efficiency of the inclusion of a parallel PCG, both using the BJ preconditioner and 

MMIC (Columns 3-4 and 5-6 respectively). The best results of scalability are achieved 

for the last case with the MMIC preconditioner, adjusting the w and w2 parameters as it 

is indicated in Table 5.4 according to number of subdomains used. 
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Figure 5.13 summarizes progress made from the implementation of the first 

parallel version to the best version used, including all the optimizations that have been 

made and the parallel PCG using MMIC as the preconditioner. The results are shown 

both in ALHAMBRA and in CIEMAT. CIEMAT is also used with the objective of 

representing this improved scalability (in high resolution grids such as Tahoe20) in 

shared memory platforms, using in this case from 1 to 64 threads. The scalability in 

ACII with Tahoe20 is not evaluated because its execution is not possible because of the 

high memory requirements.  

 
Figure 5.13. Results of scalability in ALHAMBRA (left) and CIEMAT (right) 

comparing the initial parallel version (Basic, blue line) and the parallel version 

including all the proposed improvements (ParallelCG (MMIC), red line).  

The results show significant differences between the two versions. In the case of 

ALHAMBRA, the basic version is barely able to reduce the execution time from 16 

cores, the loss of posterior efficiency is highly influenced by the explicit 

communications between nodes on a distributed memory platform such as 

ALHAMBRA. In CIEMAT, a shared memory machine, although the basic version 

scales slightly when more cores are used, the improvement is minimal. Conversely, 

good results of scalability are seen for the parallel version that includes all the 

improvements, in both ALHAMBRA where SpeedUp reaches 154 with 256 cores, and 

CIEMAT, where it reaches a SpeedUp of 58 with 64 cores. 

In comparison with the original code using O2, substantial improvements have 

been achieved in successfully reducing the computational cost. The execution time of 

the basic optimizations Si3D is 120.36s in ALHAMBRA and 238.13s in CIEMAT. 
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These times present an approximate ratio of 360: 30 and 714: 30, respectively, meaning 

that it would take 360 days in ALHAMBRA and 714 days in CIEMAT to complete a 

computer simulation of Tahoe20 of 30 days. On the contrary, given the results of the 

best parallel version, this ratio is reduced to about 2:30 in ALHAMBRA using 256 

cores and up to 10:30 in the case of CIEMAT using 64 cores, allowing us to obtain, 

with enough resources, useful results in an acceptable time. 

 

5.4 Conclusions  

 

 In this chapter various proposals are presented that, applied to a 3D 

hydrodynamic model, provide an optimized parallel implementation, both in 

shared memory machines using OpenMP and in distributed memory machines 

using MPI. For this, emphasis is made on adapting the parallel implementation 

specifically to the characteristics and type of operations that can be found in 

hydrodynamic models. Furthermore, we demonstrate that if the parallel 

implementation is adapted to the type of architecture used, the efficiency and 

scalability of the parallel model will improve considerably. In relation to this the 

following conclusions are obtained: 

o The use of affinity improves performance on platforms with shared 

memory and distributed memory, with an improvement up to 45%. The 

results show that the most appropriate map affinity varies in relation to 

the amount of memory available in the architecture used. 

o The use of synchronization points that, in the case of shared memory, are 

adapted to the NUMA architecture and to the domain decomposition 

used, improves the execution time obtained compared to the use of 

OpenMP barriers up to 11.67%. To achieve this, barriers have been 

implemented with a hierarchical structure and a specific synchronization 

for exchanges between neighboring subdomains. 

o Basic optimizations, like loop unrolling, improve the runtime of 

algorithms typically used in linear algebra such as the Thomas Algorithm 

for solving tridiagonal systems. This reduction is up 4% of the total 

execution time when the loop unrolling is applied to S1 and S4 of Si3D.  
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o The type of storage used to exploit the data locality cannot be efficient if, 

in the case of shared memory, two threads compete for the access to 

information located in the overlapping area of shared variables. The 

results show that it is more efficient the use a local variable for each 

thread, allowing the access to these variables more frequently from cache 

memory and avoiding penalties in the access to main memory. Using 

local variables for specific calculations allows to obtain an improvement 

of 6.16% with respect to the use of shared variables. 

o Performing the computation of the water columns located on the border 

of each subdomain before the rest of interior columns, both during the 

calculation of PCG and in S3 and S4 of Si3D, it is possible to overlap all 

communication with computation, obtaining an improvement of the 

execution time up to 63%. With this alternative similar execution times 

are obtain using Infiniband and Gigabit Ethernet with differences lower 

than 2.51%. 

o For loops with little calculation and whose results are needed by 

neighboring subdomains, the results show that it is more efficient to 

solve the dependencies reducing the points of 

synchronization/communication by adding redundant computation. The 

redundant computation improves execution time up to 3.2% in the case 

of synchronization using threads and up to 15.5% in the case of 

communications using processes. 

 The development of a parallel and optimized implementation stage where the 

system of pentadiagonal equations is solved improves the results considerably, 

thereby obtaining a model with good scalability results in high performance 

platforms with more than 10 nodes. The proposal presented here has been 

achieved by adapting the PCG to the architecture used and to the domain 

decomposition used in the other stages of Si3D, without adding any additional 

computational cost such as reordering or extra communications. Thanks to these 

optimizations, OP-Si3D is able to simulate a complete model of Lake Tahoe 

using high resolution with a relation of 2:30 using 256 cores in ALHAMBRA 

and a SpeedUp of 154. 

 The choice of the preconditioner used by the PCG to solve the system of 

pentadiagonal equations significantly affects the efficiency of a parallel 
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implementation due to the added overhead by new factorization, reordering 

and/or communications. The alternative preconditioner MIC presented here 

(MMIC) is implemented without adding any type of calculation or 

communication/synchronization in its implementation, at the cost of reducing 

their efficiency when the number of subdomains used increases. However, this 

reduction is greatly enhanced by the alternative presented here, and the use of a 

parameter whose value varies according to the number of subdomains used. The 

results show that this alternative performs better than other alternatives 

evaluated, implemented both sequentially and in parallel. 
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Conclusiones Generales 

 

Las estrategias de optimización propuestas en este trabajo permiten mejorar la eficiencia 

de modelos hidrodinámicos 3D ampliamente utilizados en la simulación de procesos de 

circulación, transporte y mezcla de aguas continentales. Estas propuestas han sido 

implementadas con éxito en un modelo de diferencias finitas semi-implícito (Si3D), 

aunque son suficientemente genéricas para ser implementadas de igual forma en 

modelos similares. Los resultados demuestran que se ha conseguido reducir el coste 

computacional de simulaciones excesivamente costosas por usar grids de alta 

resolución, las cuales serían imposibles de realizar sin las optimizaciones propuestas. 

Estas estrategias permitirán realizar estas simulaciones en clusters de gama baja en un 

tiempo de ejecución aceptable o incluso aprovechar de forma eficiente arquitecturas de 

altas prestaciones para la simulación de modelos de mayor coste computacional. Las 

propuestas realizadas en este trabajo han sido o están siendo usadas en varios proyectos. 

Por ejemplo, se han utilizado para llevar a cabo simulaciones con modelos de alta 

resolución en el estudio de procesos de media y pequeña escala en diversas zonas de 

interés como la confluencia de ríos, el meandro de un río o la entrada de un río en un 

lago.   

También se han utilizado en el estudio de procesos de pequeña escala en la zona litoral 

de lagos y embalses (http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html),  o 

en el estudio de procesos de circulación de gran escala en lagos de gran tamaño, como 

son el lago Tahoe en California y el lago Tanganika en el este de África 

(http://terc.ucdavis.edu/publications/newsletters1/winter2014-15.pdf, 

http://terc.ucdavis.edu/research/world/lake-tanganyika.html). Además, haciendo uso de 

la versión optimizada de Si3D propuesta aquí,  ha sido posible el desarrollo de varias 

publicaciones en revistas internacionales JRC de prestigio y varias tesis doctorales del 

Dpto. de Ingeniería Civil de la Universidad de Granada.   

Como ejemplo de las mejoras logradas, la simulación completa del lago Tahoe 

utilizando una versión secuencial de Si3D y un modelo de alta resolución con columnas 

de agua de 20x20m, tiene una relación de 3000:30 aproximadamente con respecto a la 

versión original de Si3D y una relación de 360:30 aplicando diversas optimizaciones 

básicas, esto quiere decir que se tardarían unos 3000 o 360 días de cómputo 

http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/publications/newsletters1/winter2014-15.pdf
http://terc.ucdavis.edu/research/world/lake-tanganyika.html
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respectivamente en simular 30 días de forma secuencial. Sin embargo, gracias a la 

implementación paralela realizada siguiendo las estrategias propuestas en este trabajo, 

esa relación puede reducirse a 6:30 usando 64 cores de una arquitectura de memoria 

distribuida y a 2:30 usando 256 cores.   

 

A continuación se enumeran una serie de conclusiones específicas de cada 

capítulo: 

 Implementación anidada N-Si3D: 

o Se presenta un procedimiento de anidamiento de una vía para simular 

procesos de circulación en modelos de larga escala. La implementación 

anidada fue validada comparando los resultados de diversas simulaciones 

de zonas concretas (subdominios) de los modelos de un lago y un río, 

obteniendo resultados de cada zona concreta tanto por un modelo 

completo como por el modelo anidado. En las pruebas de validación 

realizadas, las diferencias comparando los resultados del modelo anidado 

en alta resolución con un modelo completo también en alta resolución 

son en todos los casos menores al 4%. También se demuestra que estos 

errores pueden llegar a ser 0 cuando ambos modelos (el de baja completo 

y el de alta anidado) tienen la misma resolución y el sistema de 

ecuaciones pentadiagonal para resolver superficie libre, presente en 

modelos semi-implícitos, es resuelto usando  un método directo, el cual 

es un método computacionalmente muy costoso pero con una solución 

exacta. Los errores producidos por el uso de una implementación anidada 

son debidos por un lado a la naturaleza aproximada del método iterativo 

usado en Si3D para resolver el sistema de ecuaciones pentadiagonal y, 

por otro lado, al uso de interpolación espacial y las diferencias entre 

batimetrías (ambas consecuencia por la diferencia de resolución entre el 

modelo completo de baja y el modelo anidado de alta). 

o La información que debe ser transmitida desde el modelo completo de 

baja resolución al modelo anidado de alta resolución, con el objetivo de 

construir un procedimiento de anidamiento correcto, largamente depende 

de la forma en que se implemente. El método utilizado es importante 

para determinar qué dependencias espaciales existen en la correcta 



Conclusiones Generales 

 

189 

 

construcción de las ecuaciones de conservación discretizadas del modelo 

anidado. La calidad de los resultados del modelo anidado se ven 

severamente afectados si no se transmiten todas las variables necesarias. 

Esto se demuestra, en particular, realizando un estudio con uno de los 

componentes de velocidad (velocidad tangencial) que se debe transmitir 

a lo largo de la frontera desde el modelo completo de baja resolución al 

modelo anidado de alta resolución, el cual sin embargo no es transmitido 

en muchas aplicaciones presentes en la literatura. Este componente, aun 

no siendo necesario para garantizar la conservación de masa en el 

modelo anidado, puede afectar a la calidad de los resultados cuando 

existen corrientes de fuerte intensidad, circulación lateral y/o vórtices 

cerca de la frontera anidada. En estos casos los errores se deben al error 

en el cálculo del término advectivo en las ecuaciones de momentum 

cerca de la frontera en el modelo anidado. 

o Se demuestra la necesidad de usar grids de alta resolución para simular 

correctamente patrones de circulación de pequeña escala,  imposibles de 

capturar con una resolución menor en dos casos reales: el lago Tahoe y el 

río Sacramento. Se observa que la recirculación horizontal en una bahía 

del lago Tahoe y la recirculación vertical en un meandro del río 

Sacramento no son correctamente simulados en modelos de menor 

resolución. Estos patrones, sin embargo, sí son característicos del tipo de 

área donde se presentan (como se indica en la literatura) y son 

reproducidos de forma similar por modelos completos de alta resolución. 

o La implementación del procedimiento de anidamiento presentada 

permite la ejecución de los modelos de alta y baja resolución en paralelo. 

Para ello se aplica una estructura pipeline para acoplar ambos modelos 

de forma online, siendo el tiempo de ejecución final equivalente al del 

modelo más lento, el cual dependiendo de la aplicación, será el modelo 

completo baja resolución o el anidado de alta resolución. Además, las 

comunicaciones se encuentran implementadas de forma eficiente al ser 

solapadas con cálculo. Este acoplamiento online evita el uso de ficheros 

para la transferencia de información entre el modelo de baja y el anidado 

de alta y hace posible transferencias incluso a cada paso de tiempo, 

evitando errores por interpolación temporal. Un fichero con la 
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información que se transfiere en la implementación propuesta tendría un 

tamaño prohibitivo (de hasta 600GB para el lago Tahoe con alta 

resolución). 

 

 Implementación paralela para pequeños cluster de computadores, P-Si3D: 

o La implementación paralela P-Si3D es probada con éxito y con un 

tiempo de ejecución aceptable en modelos de media y baja resolución del 

lago Tahoe, obteniendo una relación de 5:30 usando los 3 nodos de ACII 

(12 hebras) para el caso de media resolución. 

o Diversas configuraciones de la arquitectura utilizada combinando 

distintos números de procesos y hebras fueron evaluados. Los resultados 

demuestran que el rendimiento es peor cuando las opciones por defecto 

de la BIOS y del sistema operativo son utilizadas (el tiempo de ejecución 

aumenta entre un 40% y un 60% dependiendo del número de hebras y 

procesos usados). Esto se debe a la distribución de hebras utilizada por 

defecto por el sistema operativo entre los 8 cores lógicos de un nodo 

cuando se activa Hyper-Threading. El programa se aprovecha solo de 

forma leve del prefetching hardware (reduciendo el tiempo de ejecución 

entre un 5% y 8%) y de Intel® Turbo Mode Technology, reduciendo el 

tiempo de ejecución levemente, entre un 5% y 8% en el primer caso y 

entre un 3% y 7% en el segundo caso. 

o El procesamiento por bloques reduce el tiempo de ejecución de forma 

muy moderada (un 4% de mejora aproximadamente). 

o La comparación de dos tipos de corte en la descomposición de dominio 

(corte-estrecho y corte-largo), tanto con cálculo redundante como sin él, 

demuestra que aunque el número de comunicaciones es el mismo en 

ambos casos, la cantidad de datos a calcular (de forma redundante) y a 

comunicar varía. Los resultados demuestran que la mejor distribución es 

aquella donde se presente fronteras entre subdominios de menor 

longitud. 
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 Aplicación de trazadores usando P-Si3D y N-Si3D, P/N-Si3D: 

o La combinación del procedimiento de anidamiento N-Si3D, usado para 

reducir el área de interés en alta resolución a la zona litoral de un lago, y 

P-Si3D, usado para dividir la carga de trabajo usando descomposición de 

dominio, ha permitido obtener resultados de todo el perímetro del lago 

Tahoe en alta resolución en pequeños clusters. Los resultados obtenidos 

con este modelo son usados para ilustrar  que las bahías de un lago no 

pueden ser estudiadas de forma individual y están conectadas con otras 

bahías vecinas a través de corrientes que se producen a lo largo de la 

costa. Las bahías y otras irregularidades en la línea de costa pueden 

atrapar material transportado por corrientes a lo largo de la costa como 

consecuencia de remolinos producidos en estas bahías. Estos procesos 

parecen ser más fuertes durante periodos de viento de mayor intensidad. 

 

 Implementación paralela escalable para clusters de bajo coste, SP-Si3D: 

o Se demuestra que a la hora de desarrollar una implementación paralela 

de modelos hidrodinámicos 3D, la resolución de un sistema de 

ecuaciones pentadiagonal, presente en modelos semi-implícitos, no es 

una tarea trivial y requiere costosas técnicas de reordenamiento y 

comunicaciones, las cuales serán de uno-a-muchos y muchos-a-uno si se 

resuelve el sistema en secuencial o de muchos-a-uno y entre 

subdominios vecinos si se resuelve en paralelo. Los resultados 

demuestran que una implementación secuencial de la resolución del 

sistema de ecuaciones pentadiagonal haciendo uso de las 

comunicaciones de uno-a-muchos y muchos-a-uno, provoca una 

reducción inaceptable de la escalabilidad del modelo. 

o Una estructura de procesamiento en dos niveles (usando una estructura 

pipeline y descomposición de dominio) es propuesta para poder llevar a 

cabo la simulación de zonas anidadas en alta resolución demasiado 

extensas, como puede ser toda la zona litoral de grandes lagos. Con este 

método, la zona anidada se divide en múltiples subdominios anidados, 

permitiendo así que las ecuaciones del modelo puedan ser resueltas de 

forma independiente en cada subdominio, usando para ello las 

velocidades del modelo completo de baja resolución como condiciones 
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de frontera. Con este procedimiento, cada subdominio anidado ensambla 

y resuelve un subsistema de ecuaciones pentadiagonal independiente, sin 

añadir comunicaciones o reordenamiento en su cálculo. Con este tipo de 

procesamiento en dos niveles el tiempo total de ejecución se reduce al 

tiempo de ejecución de un subdominio anidado de alta resolución.  

o La estructura de procesamiento en dos niveles presentada permite reducir 

el tiempo de ejecución del modelo anidado en alta resolución casi de 

forma lineal con el número de ordenadores usados en clusters de gama 

baja. SP-Si3D logra obtener un SpeeUp de 7.91 dividiendo la zona litoral 

del lago Tahoe en 8 subdivisiones. Con esta escalabilidad se logra 

simular toda la zona litoral del lago Tahoe en alta resolución obteniendo 

una relación de 6:30 en ARCHIMEDES. 

o Las diferencias (NRMSE) al comparar los resultados de SP-Si3D con los 

resultados de un modelo completo de alta resolución son en todos los 

casos muy pequeñas (menores al 4%). Se demuestra que SP-Si3D es 

capaz de simular correctamente fenómenos de pequeña escala aunque el 

límite entre subdominios atraviese uno de ellos (con un error menor al 

2,23% en el caso estudiado).  

 

 Implementación paralela optimizada para plataformas de altas prestaciones OP-

Si3D.  

o En una implementación paralela de un modelo hidrodinámico 3D, el tipo 

de arquitectura que se utilice, la adaptación a la arquitectura utilizada y la 

mejora de todas las etapas afectarán considerablemente a la eficiencia y 

escalabilidad del modelo paralelo. En relación con este apartado se 

obtienen las siguientes conclusiones: 

 El uso de afinidad mejora las prestaciones en las plataformas con 

memoria compartida y memoria distribuida utilizadas, con una 

mejora de hasta un 45%. Los resultados demuestran que el mapa 

de afinidad más adecuado varía según la cantidad de memoria 

disponible de la arquitectura utilizada. 

 El uso de puntos de sincronización que, en el caso de memoria 

compartida, se adapten a la arquitectura NUMA y a la 

descomposición de dominio utilizada, mejora los tiempos 



Conclusiones Generales 

 

193 

 

obtenidos comparando con el uso de las barreras de OpenMP 

hasta un 11,67%. Esto se consigue haciendo uso de barreras con 

una estructura jerarquizada y una sincronización específica para 

los intercambios entre subdominios vecinos.  

 Optimizaciones básicas como desenrollado de bucles mejora el 

tiempo de ejecución de algoritmos típicamente utilizados en 

algebra lineal como es el Algoritmo de Thomas para la resolución 

de sistemas tridiagonales hasta un 4%. 

 El tipo de almacenamiento usado para aprovechar la localidad de 

los datos puede no ser eficiente si en el caso de memoria 

compartida, dos hebras compiten por el acceso a información 

situada en la zona de solapamiento de variables compartidas. Los 

resultados demuestran que es más eficiente el uso variables 

locales a cada hebra, permitiendo su acceso de forma más 

frecuente desde memoria caché y evitando penalizaciones por 

acceso a memoria principal. El uso de variables locales para 

determinados cálculos permite obtener una mejora de hasta un 

6,16% con respecto al uso de variables compartidas. 

 Llevando a cabo el cómputo de las columnas de agua situadas al 

borde de cada subdominio antes que el resto de columnas 

internas, tanto durante el cálculo del PCG como en las etapas 3 y 

4 de Si3D, es posible solapar todas las comunicaciones con 

cálculo con una mejora del tiempo de hasta un 63%. Con esta 

alternativa se obtienen tiempo similares  usando Infiniband y 

Gigabit Ethernet, con diferencias menores a un 2,51% entre 

ambos.  

 En el caso de bucles con poco cálculo y cuyos resultados son 

necesarios por subdominios vecinos, los resultados demuestran 

que es más eficiente solventar las dependencias reduciendo los 

puntos de sincronización/comunicación y añadiendo cálculo 

redundante. El cálculo redundante mejora el tiempo de ejecución 

hasta un 3,2% en el caso de sincronización usando hebras y hasta 

un 15,5% en el caso de comunicaciones usando procesos. 
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o El desarrollo de una implementación paralela y optimizada de la etapa 

donde se resuelve el sistema de ecuaciones pentadiagonal permite 

mejorar los tiempos y la escalabilidad en plataformas de altas 

prestaciones con un número de nodos mayor que 10. Gracias a estas 

optimizaciones, OP-Si3D consigue simular un modelo completo de alta 

resolución del lago Tahoe con una relación de 2:30 usando 256 cores en 

ALHAMBRA y un SpeedUp de 154. 

 En la propuesta presentada aquí se ha conseguido adaptar el PCG  

a la arquitectura utilizada y a la descomposición de dominio 

usada en el resto de etapas de Si3D, sin añadir ningún tipo de 

coste computacional adicional como reordenamiento o 

comunicaciones extras.  

 La elección del precondicionador utilizado por el PCG en la 

resolución del sistema de ecuaciones pentadiagonal afecta de 

forma considerable a la eficiencia de una implementación 

paralela debido al overhead añadido por factorizaciones, nuevo 

reordenamiento y/o comunicaciones. La alternativa del 

precondicionador MIC presentada aquí (MMIC) es implementada 

sin añadir ningún tipo de cómputo o comunicación/sincronización 

adicional en su implementación, a costa de reducir su eficiencia a 

medida que aumentan el número de subdominios. Sin embargo, 

esta reducción se ve considerablemente mejorada gracias a la 

alternativa presentada aquí y al uso de un parámetro cuyo valor 

varía según el número de subdominios. Los resultados 

demuestran que esta alternativa obtiene mejores resultados que 

otras alternativas evaluadas tanto en secuencial como en paralelo. 
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General Conclusions 

 

Several optimization approaches have been proposed in this work to improve the 

efficiency of three-dimensional 3D hydrodynamic models when applied to simulate 

circulation, transport and mixing processes in inland waters. These approaches were 

successfully implemented in a semi-implicit finite difference code (Si3D), but they are 

general enough so that they can also be implemented in similar models. Using the 

optimized version of Si3D, we were able to conduct simulations with very high-

resolution grids with reasonable run-times, in small commodity clusters. The optimized 

model has also been applied or is currently being used, outside this dissertation, in 

several projects. For example, it has been used to conduct very-high resolution 

simulations of medium- or small-scale river confluences, river bends, and river inflows 

in reservoirs. It has also been used in very-high resolution simulations of near-shore 

processes in lakes and reservoirs (http://terc.ucdavis.edu/research/modeling/three-d-

tahoe.html), or in the simulation of the large-scale circulation of large and very large 

lakes, such as Lake Tahoe and Lake Tanganyika in north of Africa 

(http://terc.ucdavis.edu/publications/ newsletters1/winter2014-15.pdf, 

http://terc.ucdavis.edu/research/world/lake-tanganyika.html). In addition, several 

manuscripts have been published in international JRC journals and various PhD thesis 

of the Civil Engineering Department at the University of Granada University have been 

completed, in which use has been made of optimized versions of Si3D proposed here. 

As an example of the improvements, the complete simulation of Lake Tahoe, 

using a sequential model of Si3D and a high resolution grid with 20 x 20m grid cells, 

has a ratio of 3000:30 compared to the original version of Si3D (including O2) and a 

ratio of 360:30 adding various basic optimizations. This means that it would take about 

3000 or 360 days respectively to simulate 30 days. However, with our parallel 

implementation following the strategies proposed in this work, that ratio can be reduced 

to 6:30, using 64 cores in a distributed memory architecture and 2:30 using 256 cores. 

 

 

 

 

http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/research/modeling/three-d-tahoe.html
http://terc.ucdavis.edu/publications/%20newsletters1/winter2014-15.pdf
http://terc.ucdavis.edu/research/world/lake-tanganyika.html
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Specific conclusions of each chapter are enumerated next: 

 Nested Implementation N-Si3D: 

o A one-way nested implementation was developed to simulate localized 

circulation features in large-scale models. The nested implementation 

was validated by comparing the results of simulations in a small region 

(sub-domain) of a lake or river model, calculated both by the nested- or 

inner-model and the complete or outer-model. In the validation 

experiments, the results of the high resolution nested model differs in all 

cases less than 4% from the results of a complete model using high 

resolution too. These errors are even reduced to 0 when both models 

(inner and outer model) use the same grid resolution and the 

pentadiagonal matrix for water surface elevation built in the semi-

implicit model was solved using a direct method, which is 

computationally demanding but exact. The errors produced in a nesting 

implementation are due to the approximate nature of the iterative matrix 

solvers used in Si3D to solve the pentadiagonal matrix, and to spatial 

interpolation and bathymetry mismatch (both consequence of the 

different inner and outer grid resolutions). 

o The information that needs to be transmitted from the outer to the inner 

model to construct a seamless nesting implementation largely depends on 

the computational stencil, which dictates the spatial dependencies in the 

construction of the correct discretized conservations equations. If not all 

the variables are transmitted the quality of the results of the nested model 

may be severely affected. The velocity components along the boundary 

between the inner- and the outer- model (tangential velocities), in 

particular, are seldom transmitted across nested boundaries in many 

applications. This approach, while unimportant to guarantee mass 

conservation in the inner model, may be wrong when very strong 

currents, lateral circulation and/or vortices exist near the nested 

boundary. The errors in that case result from miscalculations of the 

magnitude of the advection terms in the momentum equations of the 

inner model near the boundary.  
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o The usefulness of the nested approach is illustrated in two test cases. In 

one of them we simulate the lateral circulation that develops a river bend 

in Sacramento River. In the other, the nested model is used to simulate 

the development of separation eddies in a small bay of a large lake (Lake 

Tahoe, CA), which occurs in response to changes in wind forcing and 

large-scale circulation. These features can only be represented with 

sufficiently high spatial resolution.  

o The outer- and the inner- models are run in parallel. A pipeline structure 

for coupling both models online is used, being the final execution time 

equivalent to the slowest model, which, depending on the particular 

implementation, it can be either the low-resolution or the nested high-

resolution model). In addition, communications are implemented 

efficiently by being overlapped with calculation. This online coupling 

prevents the use of files for transferring information between low and 

high resolution models and makes possible the communication even each 

time-step, avoiding errors by temporal interpolation. A file with the 

information necessary to be transferred in the proposed implementation 

would have a prohibitive size (up to 600GB in the case of Lake Tahoe 

using a high resolution nested grid). 

 

 Parallel Implementation for small commodity clusters P-Si3D 

o The parallel implementation of Si3D (P-Si3D) was used to build a mid-

resolution model of Lake Tahoe, with cartesian grid cells that were 50 m 

wide. This model was run in ACII, a small commodity cluster of three 

nodes (12 threads), with ratios between computational to real time of 

5:30. 

o Different platform configurations with varying number of threads and 

processes were tested. The results show that performance is worse if the 

default BIOS and operating system configuration is used (time increases 

by between 40% to 60% depending on the number of processes and 

threads used). This is due to the thread distribution of the operating 

system among the eight logical cores of a node when Hyper-Threading is 

enabled. The program makes a weak use of the pre-fetching hardware 

(pre-fetching decreases execution time by between 5% to 8%) and Intel® 
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Turbo Mode Technology decreases slightly the execution time (by 

between 3% to 7%). 

o Block-driven processing reduces execution time too slightly (4% 

improvement approximately). 

o The comparison of wide-direction or narrow-direction distribution in a 

parallel implementation, with MPI communications and with or without 

redundant calculation, shows that though the number of communications 

is the same, the quantity of data to calculate (with redundancy) or 

communicate varies. The results prove that the distribution approach 

more efficient is the one with a lower border length. 

 

 Tracers application using P-Si3D and N-Si3D, P/N-Si3D 

o The nesting procedure, used to reduce the high resolution area of interest 

to the littoral zone of a lake, and the parallelized version of the code P-

Si3D, used to divide the workload using domain decomposition, have 

been combined to conduct high-resolution (20 x 20 m Cartesian grid 

cells in the horizontal) simulations of the near-shore perimeter of Lake 

Tahoe using a small commodity cluster. The model results are used to 

illustrate that the physical and chemical environments in neighboring 

littoral embayments are tightly linked as a result of pulsating long-shore 

currents that develop within the coastal boundary layers. Bays and other 

shoreline irregularities may trap material transported by long-shore 

currents, as a result of the development of separation eddies. Long-shore 

currents and local bay-scale eddies appear to become more energetic in 

response to stronger wind events.  

 

 Scalable parallel implementation in small commodity clusters, SP-Si3D 

o The solution of a pentadiagonal matrix for the free-surface elevation in 

semi-implicit models in parallel implementations of the model can be 

done either sequentially or in parallel. In both cases it requires expensive 

reordering techniques and communications between processes/threads. 

These communications are one-to-many and many-to-one if the system is 

solved sequentially or many-to-one and between neighbor sub-domains 
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if it is solved in parallel. The sequential implementation using one-to-

many and many-to-one communications of the matrix solution seriously 

jeopardizes the scalability of the parallel implementation.  

o A processing structure on two levels (using pipeline structure and 

domain decomposition) is proposed to conduct scalable approaches to 

simulate extensive near-shore domains with high spatial resolution. In 

this approach, the near-shore region is simulated using multiple nested 

sub-domains. The equations are solved independently in each sub-

domain, using the velocities from the outer-model as boundary 

conditions. Hence, in each nested sub-domain a pentadiagonal matrix is 

assembled and solved independently, without any reorder and 

communications added. With this two-level processing, the total 

execution time is reduced to the execution time of one high-resolution 

sub-domain.  

o The two–level processing structure scales almost linearly with the 

number of computers used in small commodity clusters. A SpeedUp of 

7.91 was achieved when the high-resolution (20x20 horizontal grid cells) 

nested model of the littoral zone of Lake Tahoe is solved with 8 nodes. 

In Archimedes, a cluster existing in the Water Research Institute, the 

ratio of computational to real time in these computations where 6:30. 

o The differences (NRMSE) when comparing the results of SP-Si3D with 

the results of a complete high-resolution model are in all cases very 

small (less than 4%). It is demonstrated that SP-Si3D can correctly 

simulate small-scale patterns although the boundary between nested 

subdomains crosses one of this pattern (with an error less than 2.23% in 

the case studied).  

 

 Optimized parallel implementation for high performance platforms OP-Si3D. 

o In a parallel implementation of a 3D hydrodynamic model, the type of 

architecture used, the adaptation to the architecture used and the 

improvement of all stages, significantly affect the efficiency and 

scalability of the code. In connection with this points the following 

conclusions are obtained: 
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 The use of affinity improves performance on platforms with 

shared memory and distributed memory, with an improvement up 

to 45%. The most appropriate affinity map varies in relation to 

the amount of memory available in the architecture used. 

 The use of synchronization points that, in the case of shared 

memory, are adapted to the NUMA architecture and to the 

domain decomposition used, improves the execution time 

obtained compared to the use of OpenMP barriers up to 11.67%. 

To achieve this, barriers have been implemented with a 

hierarchical structure and a specific synchronization for 

exchanges between neighboring subdomains. 

 Basic optimizations, like loop unrolling, improve the runtime of 

algorithms typically used in linear algebra such as the Thomas 

Algorithm for solving tridiagonal systems up to 4%.  

 The type of storage used to exploit data locality cannot be 

efficient if, in the case of shared memory, two threads compete 

for the access to information located in the overlapping area of 

shared variables. The results show that it is more efficient the use 

a local variable for each thread, allowing the access to these 

variables more frequently from cache memory and avoiding 

penalties in the access to main memory. By using local variables 

for specific calculations one can achieve an improvement of 

6.16% with respect to the use of shared variables. 

 Performing the computation of the water columns located on the 

border of each sub-domain before the rest of internal columns, 

both during the calculation of PCG and in S3 and S4 of Si3D, it is 

possible to overlap all communication with computation, 

obtaining an improvement of the execution time up to 63%. With 

this alternative similar execution times are obtain using 

Infiniband and Gigabit Ethernet with differences lower than 

2.51%. 

 For loops with little calculation and whose results are needed by 

neighboring sub-domains, the results show that it is more 

efficient to solve the dependencies reducing the points of 
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synchronization/communication by adding redundant 

computation. The redundant computation improves execution 

time up to 3.2% in the case of synchronization using threads and 

up to 15.5% in the case of communications using processes. 

o The development of a parallel and optimized implementation of the 

pentadiagonal matrix solution, improves the execution time and 

scalability when high performance platforms with a number greater than 

10 nodes are used. Using these optimizations, OP-Si3D is able to 

simulate a complete model of Lake Tahoe using high resolution with a 

relation of 2:30 using 256 cores in ALHAMBRA and a SpeedUp of 154. 

 The PCG was adapted to the architecture and the domain 

decomposition used in the other stages of Si3D, without adding 

any additional computational cost such as reordering or extra 

communications. 

 The choice of preconditioner significantly affects the efficiency 

of a parallel PCG solver due to the added overhead by new 

factorization, reordering and/or communications. The alternative 

preconditioner MIC presented here (MMIC) is implemented 

without adding any type of calculation or 

communication/synchronization in its implementation, at the cost 

of reducing their efficiency when the number of sub-domains 

used increase. However, this reduction is greatly enhanced by the 

alternative presented here and the use of a parameter whose value 

varies according to the number of subdomains used. This 

alternative performs better than other sequential and parallel 

alternatives.  
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