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Juan Jesús Salamanca Jurado

GRANADA, 2015



Editorial: Universidad de Granada. Tesis Doctorales
Autor: Juan Jesús Salamanca Jurado
ISBN: 978-84-9125-136-1
URI: http://hdl.handle.net/10481/40273 

http://hdl.handle.net/10481/40273


UNIQUENESS OF MAXIMAL HYPERSURFACES IN OPEN

SPACETIMES AND CALABI-BERNSTEIN TYPE PROBLEMS
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Resumen

Las hipersuperficies espaciales son objetos geométricos con un alto grado de interés

tanto en F́ısica como en Geometŕıa Lorentziana. Intuitivamente hablando, cada una

de ellas representa el espacio f́ısico en un instante de una función tiempo. De mane-

ra más precisa, el problema de valores iniciales para cada ecuación fundamental en

Relatividad General se formula en términos de una hipersurperficie espacial (véase,

por ejemplo, [88] y referencias alĺı). Incluso más, en Electromagnetismo, una hiper-

superficie espacial es un conjunto de datos iniciales que determina uńıvocamente el

futuro tanto para el campo electromagnético que satisface las ecuaciones de Maxwell

[102, Thm. 3.11.1], como para las ecuaciones materiales simples [102, Thm. 3.11.2].

En Teoŕıa de la Causalidad, la existencia de cierta hipersuperficie espacial implica

que el espaciotiempo tenga un buen comportamiento en relación a dicha teoŕıa. En

concreto, un espaciotiempo es globalmente hiperbólico, [83, Def. 14.20], si y sólo

si admite una hipersuperficie de Cauchy, [48]. De hecho, cualquier espaciotiempo

globalmente hiperbólico admite una hipersuperficie espacial de Cauchy diferenciable

S, y es difeomorfo a R× S, [15].

Si uno desea estudiar una hipersuperficie espacial globalmente, es natural suponer

que la métrica que hereda del espaciotiempo ambiente es geodésicamente completa.

Desde un punto de vista f́ısico, esta completitud lleva a considerar el espacio f́ısico

en toda su extensión.

La geometŕıa extŕınseca de una hipersuperficie espacial se codifica en su operador

11
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de Weingarten. De entre todas las funciones definidas a partir de él, la función cur-

vatura media tiene una gran importancia. El caso en el que la curvatura media es

constante, y especialmente cuando es idénticamente nula (esto es, para hipersuperfi-

cies maximales), es relevante tanto geométricamente como desde el punto de vista de

la Relatividad General. Por un lado, cuando una hipersuperficie espacial tiene cur-

vatura media nula, ésta puede conformar un buen conjunto inicial para el problema

de Cauchy en Relatividad General [88]. Concretamente, Lichnerowicz probó que el

problema de Cauchy con condiciones iniciales sobre una hipersuperficie maximal se

reduce a una ecuación diferencial eĺıptica no lineal de segundo orden y un sistema

de ecuaciones diferenciales lineales de primer orden, [71].

Incluso más, las hipersuperficies maximales poseen importancia en el análisis de

la dinámica de un campo gravitatorio, o en el problema clásico de los n-cuerpos en

el seno de un campo gravitatorio (véase, por ejemplo, [23] y referencias alĺı).

Por otro lado, cada hipersuperficie maximal puede describir, en algunos casos rele-

vantes, la transición desde una fase expansiva a otra contractiva de un universo rela-

tivista. Es más, la existencia de una hipersuperficie de curvatura media constante (y

en particular maximal) es necesaria para comprender la estructura de singularidades

en el espacio de soluciones de la ecuación de Einstein. Un profundo conocimiento

de estas hipersuperficies también es necesario en la prueba de la positividad de la

masa gravitatoria. Poseen interés en Relatividad Numérica, donde las hipersuper-

ficies maximales se usan para integrar en el tiempo. Todos estos aspectos f́ısicos

pueden ser consultados en [77] y referencias alĺı.

Desde un punto de vista matemático, una hipersuperficie maximal es (localmente)

un punto cŕıtico para un problema variacional natural, esto es, el dado por el fun-

cional área (véase, por ejemplo, [21]). Por otro lado, para entender la estructura de

un espaciotiempo es necesario estudiar las hipersuperficies maximales que contiene

[13]. Especialmente para algunos espaciotiempos asintóticamente llanos, donde se

prueba la existencia de una foliación por hipersuperficies maximales (ver [23] y refer-

encias alĺı). Los resultados de existencia, y, consecuentemente, de unicidad, aparecen
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como temas centrales.

En la evolución historia de la investigación sobre hipersuperficies maximales, un

hecho sorprendente fue el descubrimiento de nuevos problemas eĺıpticos no lineales.

De hecho, la función que define un grafo maximal en el espaciotiempo de Lorentz-

Minkowski (n + 1)-dimensional, Ln+1, satisface una EDP eĺıptica de segundo orden

similar a la ecuación de grafos minimales en el espacio Eucĺıdeo R
n+1. Sin embargo,

se encontró un comportamiento nuevo y sorprendente para sus soluciones enteras

(es decir, las definidas en todo R
n): las únicas soluciones enteras a la ecuación de

hipersuperficies maximales en L
n+1 son las funciones afines que definen hiperplanos

espaciales. Este hecho fue probado por Calabi [29] para n ≤ 4 y después extendido

para cualquier n por Cheng y Yau [32] y es conocido por el teorema de Calabi-

Bernstein. Recordemos que el teorema de Bernstein para grafos minimales en R
n+1

es cierto sólo para n ≤ 7, [106]. Otro hecho destacable en [32] fue el uso de una

nueva herramienta, la que hoy se denomina como principio del máximo generalizado

de Omori-Yau [82], [111].

Otros art́ıculos clásicos que tratan de unicidad de hipersuperficies maximales y

espaciales de curvatura media constante completas son [23], [34] y [77]. En [23],

Brill y Flaherty reemplazaron el espaciotiempo de Lorentz-Minkowski por un uni-

verso espacialmente cerrado, y probaron unicidad global suponiendo que su tensor

de Ricci satisface Ric(z, z) > 0 para todo vector tangente temporal z. Esta hipótesis

se interpreta como la presencia real de masa en cada punto del espaciotiempo, y es

conocida como la Condición de la Enerǵıa Ubicua (véase Sección 2 en Caṕıtulo 2).

En [77], esta suposición fue relajada por Marsden y Tipler para incluir, por ejemplo,

espaciotiempos vaćıos no-llanos. Más recientemente, Bartnik probó en [12] teoremas

muy generales de existencia y, consecuentemente, apuntó que seŕıa necesario encon-

trar nuevos resultados de unicidad satisfactorios. Después, en [9], Aĺıas, Romero y

Sánchez demostraron nuevos resultados de unicidad para la clase de espaciotiempos

generalizados de Robertson-Walker (GRW) espacialmente cerrados (que, claramente,

incluyen los espaciotiempos de Robertson-Walker espacialmente cerrados), bajo una

condición de enerǵıa más débil, la Condición de Convergencia Temporal. En [7], Aĺıas



14

y Montiel probaron que en un espaciotiempo GRW cuya función warping satisface

(log f)′′ ≤ 0, las únicas hipersuperficies espaciales de curvatura media constante son

las slices espaciales. Es más, este resultado fue generalizado en [27] por Caballero,

Romero y Rubio para una familia más amplia de espaciotiempos. Recientemente,

para el caso del espaciotiempo de Einstein-de Sitter, que es un modelo espacialmente

abierto, Rubio ha dado nuevos resultados de unicidad y no existencia para hipersu-

perficies completas maximales y espaciales de curvatura media constante [101].

De entre los objetivos propuestos en el presente trabajo, el primero consiste en

determinar qué tipo de espaciotiempos espacialmente abiertos poseen propiedades

lo suficientemente adecuadas como para poder obtener resultados de unicidad. La

parabolicidad es una buena herramienta que podŕıa ser tenida en cuenta en algún

espacio f́ısico. Es más, seŕıa satisfactorio si estos espaciotiempos pudieran ser ade-

cuados para describir algún universo, o al menos ser alguna buena aproximación.

Dicha familia consistirá en espaciotiempos GRW convenientes. Recordemos que un

espaciotiempo GRW no es sino la variedad producto I × F , de un intervalo I de

la recta real R y una variedad Riemanniana (conexa) n(≥ 2)-dimensional (F, g
F
),

dotada de la métrica Lorentziana

g = −π∗
I
(dt2) + f(π

I
)2 π∗

F
(g

F
) ,

donde π
I
y π

F
denotan las proyecciones sobre I y F , respectivamente, y f es una

función positiva diferenciable sobre I. Representaremos esta variedad Lorentziana

por M = I×f F . El espaciotiempo (n+1)-dimensional M es un producto warped, en

el sentido de [83, Chap. 7], con base (I,−dt2), fibra (F, g
F
) y función warping f . La

familia de espaciotiempos GRW es muy amplia en el sentido de que incluyen espa-

ciotiempos clásicos como el espaciotiempo de Lorentz-Minkowski, el espaciotiempo

de Einstein-de Sitter, el espaciotiempo estático de Einstein, y también los espa-

ciotiempos de Robertson-Walker (dimensión cuatro y fibra de curvatura seccional

constante).

Cualquier espaciotiempo GRW posee una función tiempo diferenciable global, y,

por tanto, es establemente causal [14, p. 64]. Además, si la fibra es completa, en-
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tonces es globalmente hiperbólico [14, Thm. 3.66]. Por otro lado, un espaciotiempo

GRW no es necesariamente espacialmente homogéneo. La homogeneidad espacial

parece una hipótesis deseable para modelar el universo a gran escala. Sin embargo,

en otras escalas, esta hipótesis dejaŕıa de ser realista [87]. También, pequeñas de-

formaciones de la métrica de la fibra de un espaciotiempo de Robertson-Walker dan

lugar a nuevos espaciotiempos GRW. Por tanto, los espaciotiempos GRW parecen

buenos candidatos para explorar propiedades de estabilidad de un espaciotiempo de

Robertson-Walker.

Recientemente, diversos datos experimentales sugieren que habŕıa una dirección

privilegiada en el espacio f́ısico. En esta dirección, el universo parece expandirse

más rápido que en direcciones ortogonales (véase [65], [66] y [81]). Por tanto, la

inhomogeneidad espacial es necesaria de acuerdo con estas evidencias experimentales.

Hay también razones teóricas para apoyar el uso de espaciotiempos GRW. Por un

lado, hay muchas soluciones exactas a las ecuaciones de Einstein que pertenecen a

esta familia. Por otro, la Teoŕıa de la Inflación [72] nos sugiere que es natural pensar

que la expansión tuvo que ocurrir en el espacio f́ısico en todo punto y de forma

simultánea. Antes de dicha inflación, dicho espacio pudo no ser simétrico. Algunos

de los espaciotiempos GRW podŕıan ser modelos relativistas apropiados para una

descripción aproximada a este proceso.

A pesar de la importancia histórica de los espaciotiempos GRW espacialmente

cerrados, un número de argumentos teóricos y experimentales sobre el balance total

de masa del universo [33] sugieren la conveniencia de considerar modelos cosmológicos

espacialmente abiertos. Es más, un espaciotiempo GRW espacialmente cerrado viola

el principio holográfico [20, p. 839], mientras que uno con fibra no compacta podŕıa

ser un modelo compatible con tal principio [11]. Más precisamente, la entroṕıa

contenida en una región acotada de una hipersuperficie espacial no debe exceder la

cuarta parte del área de la frontera de dicha región (en unidades de Planck). Esto

es, si Ω es una región compacta de una hipersuperficie espacial, y S(Ω) es la entroṕıa
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de todos los sistemas materiales en Ω, entonces se debe cumplir

S(Ω) ≤ Area(∂Ω)

4
.

Como muestra el siguiente argumento, puede ocurrir que la desigualdad anterior no

se cumpla en espaciotiempos espacialmente cerrados. Supongamos que en un espa-

ciotiempo existe una hipersuperficie espacial compacta tal que tiene un subconjunto

abierto propio donde no existe contenido material. Entonces, en dicho subconjunto

podemos tomar otro suficientemente pequeño, de tal manera que, aplicando la de-

sigualdad anterior sobre el exterior de este compacto, se obtiene que la entroṕıa se

hace arbitrariamente pequeña. Se llega a una contradicción.

De todos modos, sólo la hipótesis de fibra no compacta parece ser muy débil

como para considerar de forma completa un espaciotiempo GRW abierto, [68]. Una

manera natural de asegurar que el universo es espacialmente inextendible es asumir

que la fibra es geodésicamente completa. Por otro lado, seŕıa deseable que aspectos

esenciales en el ámbito del análisis geométrico de la fibra de un espaciotiempo GRW

espacialmente cerrado se mantuvieran ciertos. Para tales fines, introducimos el si-

guiente concepto: un espaciotiempo GRW se dice que es espacialmente parabólico si

su fibra posee un recubridor universal Riemanniano parabólico (y, por tanto, la fibra

también es parabólica). Recordemos que una variedad Riemanniana completa (no

compacta) es parabólica si no admite funciones superarmónicas no constantes y no

negativas [69]. Por otro lado, si una variedad Riemanniana completa (F, g
F
) tiene

curvatura de Ricci no negativa (en particular F podŕıa ser R3), entonces obedece la

propiedad fuerte de Liouville [69, Thm. 4.8]; esto es, (F, g
F
) no admite funciones

positivas armónicas no constantes. Por tanto, la propiedad fuerte de Liouville se

satisface en cualquier variedad Riemanniana parabólica sin ninguna hipótesis de

curvatura.

La parabolicidad de la fibra de un espaciotiempo GRW puede también ser apoyada

en varias razones de ı́ndole f́ısco. Por ejemplo, las galaxias se pueden ver como

moléculas (véase, por ejemplo, [83, Ch. 12]). Si una sonda se envia al espacio, su

movimiento podŕıa ser aproximado por un movimiento Browniano, [51]. De hecho, la
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distribución de galaxias y su velocidad no son completamente conocidas. Entonces,

la parabolicidad favorece que la sonda pueda ser vista en cualquier región, ya que el

movimiento Browniano es recurrente en cualquier variedad Riemanniana parabólica

[51].

Aunque la familia de espaciotiempos GRW espacialmente parabólicos es muy am-

plia, existen otros espaciotiempos GRW de interés geométrico que no pertenecen a

ella. Por ejemplo, aquellos cuya fibra es el espacio hiperbólico H
n. Diversos prin-

cipios del máximo pueden servir para caracterizar las hipersuperficies maximales

en este contexto. En contraste a la parabolicidad, ahora se necesita imponer algu-

nas hipótesis de curvatura. Los dos principios del máximo que usaremos son: la

propiedad fuerte de Liouville, y el principio del máximo generalizado de Omori-Yau.

El primero es un principio clásico aplicable a variedades Riemannianas completas

con curvatura de Ricci no negativa. El segundo ha mostrado su utilidad para estu-

diar hipersuperficies espaciales de curvatura media constante y maximales. Notemos

que, aunque parecen muy diferentes estas dos formas de atacar los problemas de

unicidad, la idea subyacente es común: tener un control sobre el comportamiento de

las funciones armónicas, superarmónicas o subarmónicas. De hecho, a lo largo de

este trabajo mostraremos ampliamente que algunas funciones distinguidas pueden

usarse en ambos casos para obtener resultados de unicidad.

Una vez que se ha establecido el espaciotiempo ambiente, nuestro segundo obje-

tivo en esta memoria es obtener diversos resultados globales de caracterización de

hipersuperficies maximales. Cualquier espaciotiempo GRW, I ×f F , posee una fa-

milia distinguida de hipersuperficies espaciales, los slices espaciales {t0}×F , t0 ∈ I.

Observemos que un slice espacial es una hipersuperficie de nivel de la función tiempo

asociada a la coordenada sobre el intervalo I. En general, un slice espacial {t0} × F

es totalmente umbilical con curvatura media constante, y es maximal (y, por tanto,

totalmente geodésico) cuando t0 sea un punto cŕıtico de la función warping. Nuestra

principal finalidad en esta tesis consiste en encontrar condiciones razonables bajo

las cuales podamos probar que una hipersuperfice maximal completa sea totalmente

geodésica o un slice espacial.
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Finalmente, el tercer objetivo que nos proponemos es aplicar los resultados de

unicidad paramétricos, que previamente hemos desarrollado, para solucionar nuevos

problemas de tipo Calabi-Bernstein. Estos problemas consisten en obtener todas las

soluciones de cierta EDP no lineal y eĺıptica definida sobre la fibra entera (es decir,

todas las soluciones enteras). De hecho, trataremos con la ecuación de hipersuperfi-

cies maximales sobre una variedad Riemanniana (F, g
F
),

div

(
Du

f(u)
√
f(u)2− | Du |2

)
= − f ′(u)√

f(u)2− | Du |2
(
n+

| Du |2
f(u)2

)
, (E.1)

| Du |< λf(u), 0 < λ < 1 . (E.2)

La ecuación (E.1) es la ecuación de Euler-Lagrange para el funcional área. De he-

cho, significa que la curvatura media del grafo es cero. La ligadura (E.2) no sólo

establece que el grafo Σ
u
= {(u(p), p) : p ∈ F} sea espacial, sino también que su

ángulo hiperbólico esté acotado. Desde un punto de vista anaĺıtico, (E.2) implica

que nuestra ecuación es, de hecho, uniformemente eĺıptica.

Obtendremos, en esta memoria, condiciones apropiadas bajo las cuales podamos

encontrar todas las soluciones enteras a la ecuación (E).

Esta tesis está organizada como sigue. En el Caṕıtulo 2, recordaremos las prin-

cipales propiedades de los espaciotiempos GRW. Se repasan también algunas condi-

ciones de enerǵıa que aparecen de modo natural en Relatividad General, y se mostrará

cuándo un espaciotiempo GRW obedece cada una de ellas. Después, estudiaremos

las hipersuperficies espaciales, prestando especial atención al caso maximal. Después

de analizar el caso 2-dimensional, pasaremos a presentar y examinar en detalle la

familia de EDPs relacionadas con grafos maximales en un espaciotiempo GRW de

dimensión arbitraria.
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El Caṕıtulo 3 está dedicado a repasar el concepto de parabolicidad para el caso

n(≥ 2)-dimensional. Se revisan diversos resultados bien conocidos que conducen a

la parabolicidad de una variedad Riemanniana. El caso de dimensión 2 se muestra

de un modo especial, donde brevemente se indica su relación con la curvatura de

Gauss. Por otro lado, también se recuerda la definición de cuasi-isometŕıa. Esta he-

rramienta será clave en la consecución de algunas de nuestras técnicas. En la Sección

3.2, presentaremos dos resultados técnicos que permiten asegurar la parabolicidad

de una hipersuperficie espacial completa en un espaciotiempo GRW espacialmente

parabólico. Primero, obtendremos,

Teorema 3.2.5. Sea S una hipersuperficie espacial completa en un espaciotiempo

GRW espacialmente parabólico. Si el ángulo hiperbólico de S está acotado y la

función warping sobre S satisface:

i) sup f(τ) <∞, y

ii) inf f(τ) > 0,

entonces S es parabólica.

La función ángulo hiperbólico de S se define, en cada punto de S, como el ángulo

hiperbólico entre el campo vectorial normal unitario N sobre S en el cono temporal

de −∂t, y el campo vectorial coordenado −∂t (a lo largo de esta memoria, cualquier

espaciotiempo GRW se le dotará de la orientación temporal dada por −∂t). Notemos

que la acotación del ángulo hiperbólico de S implica que la velocidad que el obser-

vador instantáneo −∂t(p), p ∈ S, mide para N(p) no se aproxima a la velocidad de la

luz en el vaćıo (para más detalles, véase la Sección 2.3). Por otro lado, las hipótesis

sobre la función warping también admiten interpretación. Sea C ⊂ {t0}×F , t0 ∈ I,

un conjunto compacto de un slice espacial. Consideremos el flujo asociado a −∂t.
Entonces, las hipótesis sobre la función warping aseguran que el volumen de C en

este flujo no aumenta ni disminuye arbitrariamente (véase también la Sección 3.2).

Observemos que −∂t es un campo de observadores geodésicos [102].
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El Teorema 3.2.5 será la base sobre la que descansarán los resultados principales

del Caṕıtulo 4. En este caṕıtulo, bajo ciertas condiciones naturales, se demuestra que

una hipersuperficie maximal completa es un slice espacial o es totalmente geodésica.

Como ejemplo, tenemos,

Teorema 4.1.1. Sea S una hipersuperficie maximal completa en un espaciotiempo

GRW espacialmente parabólico cuya función warping f es no localmente constante

y satisface (log f)′′ ≤ 0. Si el ángulo hiperbólico de S está acotado, sup f(τ) <∞ e

inf f(τ) > 0, entonces S debe ser un slice espacial t = t0, con f ′(t0) = 0.

Notemos que la condición (log f)′′ ≤ 0 se satisface cuando el espaciotiempo GRW

obedece la Condición de Convergencia Temporal. Por otro lado, si combinamos

parabolicidad con algunas hipótesis de curvatura, también podemos tratar el caso

en que la función warping es constante,

Teorema 4.1.7. Sea S una hipersuperficie maximal completa en un espaciotiempo

GRW espacialmente parabólico y estático, I × F . Si la curvatura de Ricci de la

fibra es no negativa y el ángulo hiperbólico de S está acotado, entonces S debe ser

totalmente geodésica.

Como aplicación, nuestros resultados nos conducen a la resolución de nuevos ejem-

plos de problemas de Calabi-Bernstein para la ecuación de hipersuperficies maxi-

males. Por ejemplo,

Teorema 4.2.1. Sea f : I −→ R una función diferenciable positiva y no local-

mente constante. Supongamos que f satisface (log f)′′ ≤ 0, sup f < ∞ e inf f > 0.

Las únicas soluciones enteras a la ecuación (E) sobre una variedad Riemanniana

parabólica F son las funciones constantes u = c, con f ′(c) = 0.

Para extender nuestro campo de trabajo, en el Caṕıtulo 5 eliminaremos la hipótesis

inf f > 0, y llegaremos a las mismas conclusiones mediante otra aproximación. Desde

un punto de vista f́ısico, inf f > 0 parece prohibir la presencia de singularidades ini-
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cial y/o final de tipo Big-Bang o Big-Crunch. Intuitivamente, se espera que en

la evolución de observadores en cáıda libre hacia un Big-Crunch el espacio f́ısico

disminuya arbitrariamente (una situación análoga ocurre para el Big-Bang). El ob-

servador geodésico γ(u) = (−u, p) ∈ I × F , p ∈ F , mide su espacio en reposo como

f(−u)nΩ
F
(p), donde Ω

F
es la forma de volumen de F . Si inf f > 0, entonces γ no

puede experimentar tal contracción arbitraria.

Esta otra aproximación que se hace en el Caṕıtulo 5 está basada en asegurar la

parabolicidad de una cierta métrica conforme a la inducida sobre una hipersuperficie

espacial completa.

Teorema 3.2.9. Sea S una hipersuperficie espacial completa en un espaciotiempo

GRW espacialmente parabólico. Si sup f(τ) < ∞ y el ángulo hiperbólico de S está

acotado, entonces S, dotada de la métrica conforme ĝ = 1
f(τ)2

g, es parabólica.

Para más comentarios que relacionan los Teoremas 3.2.5 y 3.2.9, se puede consultar

la Nota 3.2.10. El resultado anterior será fundamental para conseguir los teoremas

de unicidad a lo largo del Caṕıtulo 5. Entre ellos,

Teorema 5.1.1. Sea S una hipersuperficie maximal completa en un espaciotiempo

GRW espacialmente parabólico tal que si f es constante, I 6= R. Supongamos que

sup f(τ) < ∞ y que existe una constante positiva σ para la cual (log f)′′(τ) ≤ (n −
2 + σ f(τ)) (log f)′(τ)2. Si el ángulo hiperbólico de S está acotado, entonces S debe

ser un slice espacial t = t0, con f ′(t0) = 0.

Resaltemos que no sólo estamos considerando una clase mucho más amplia de

espaciotiempos GRW, comparados con los del Caṕıtulo 4, sino que también algunas

otras hipótesis son ahora más debiles. La razón de este hecho estriba en que en el

Caṕıtulo 4 garantizamos la parabolicidad directamente sobre la hipersuperficie ma-

ximal, teniendo cierto control sobre su geometŕıa, mientras que con esta otra técnica,

la parabolicidad se asegura sobre una métrica conforme.
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Se obtienen más resultados de tipo paramétrico que, como en el caṕıtulo previo,

resuelven nuevos problemas de tipo Calabi-Bernstein. Uno de ellos es el siguiente,

Teorema 5.2.5. Sea f : I → R una función diferenciable positiva, monótona y

que satisface f ∈ L1(I). Las únicas soluciones enteras a la ecuación (E) sobre una

variedad Riemanniana parabólica F son las constantes u = c, con f ′(c) = 0.

En el Caṕıtulo 6 nos centramos en el caso de espaciotiempos GRW con fibra de

dimensión 2. Estos espaciotiempos (y, en general, otros espaciotiempo de dimensión

3) tienen un mayor interés geométrico que f́ısico. No obstante, permiten investi-

gar propiedades que potencialmente pueden ser extendidas a dimensión superior

(por eso en la literatura se les conoce como espaciotiempos de juguete). Prestare-

mos especial atención a los espaciotiempos GRW cuya fibra tiene curvatura total

finita. F́ısicamente, esta familia de espaciotiempos puede verse como una versión

3-dimensional de los espaciotiempos asintóticamente llanos. Recordemos que una

superficie Riemanniana completa (no compacta) M2 tiene curvatura total finita si

la parte negativa de su curvatura de Gauss es integrable (véase, por ejemplo, [69]).

Esto es, si K es la curvatura de Gauss de M , entonces M tiene curvatura total finita

si ∫

M

max {0,−K} <∞ .

En particular, si M tiene curvatura de Gauss no negativa, entonces trivialmente

su curvatura total es finita. Extendiendo al conocido teorema de Ahlfors y Blanc-

Fiala-Huber, [57], una superficie Riemanniana con curvatura total finita debe ser

parabólica [69]. Aqúı, en lugar de considerar el caso de superficies maximales, tratare-

mos con superficies espaciales completas S cuya función curvatura media, H, viene

controlada por la siguiente desigualdad,

H2 ≤ f ′(τ)2

f(τ)2
.

Notemos que cualquier superficie maximal satisface claramente la desigualdad. Por

tanto, el estudio de esta desigualdad es una extensión natural de nuestro problema

original. Por otro lado, podemos dar la siguiente interpretación geométrica de esta
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desigualdad: el valor absoluto de la curvatura media de S en p ∈ S no excede la

cantidad análoga para el slice espacial t = t(p). En general, una superficie espacial

que satisface esta desigualdad no debe tener necesariamente curvatura media cons-

tante. No obstante, bajo condiciones razonables sobre el espaciotiempo ambiente,

una superficie espacial completa con curvatura media constante contenida entre dos

slices espaciales debe satisfacer la desigualdad (véase [24] y [90]).

Observemos que un slice espacial t = t0 obedece la desigualdad para cualquier

función warping. Nuestro problema aqúı será establecer el rećıproco cuando sea

posible, es decir, determinar cuándo una superficie espacial completa que satisface

dicha desigualdad debe ser un slice espacial.

Daremos respuesta a esta pregunta bajo supociones que generalizan ampliamente

a varios trabajos previos [67] y [90], donde la fibra era el plano Eucĺıdeo R
2, y [93],

donde la fibra era compacta. Por consiguiente, vamos a considerar un escenario más

amplio en el que la fibra tenga curvatura total finita.

La aproximación que haremos para este problema será, en primer lugar, considerar

la desigualdad diferencial sobre una superficie Riemanniana completa (no compacta)

y obtener condiciones bajo las cuales las funciones constantes son las únicas solu-

ciones. La idea de la prueba es como sigue. Se demostrará que una solución a dicha

desigualdad produce un grafo espacial completo con curvatura total finita. Entonces,

usaremos la parabolicidad para concluir que la superficie debe de ser un slice espa-

cial mediante un análisis de funciones distinguidas. Aśı, en el caso no paramétrico,

algunos resultados de unicidad se pueden dar. Como ilustración,

Teorema 6.3.3. Sea (F, g
F
) una superficie Riemanniana completa con curvatura

total finita y sea f : I −→ (0,∞), I ⊂ R, una función diferenciable no localmente

constante y que satisface inf f > 0 y (log f)′′ ≤ 0. Entonces, las únicas soluciones

enteras a

H(u)2 ≤ f ′(u)2

f(u)2

|Du| < λf(u) , 0 < λ < 1 ,
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son las constantes.

En el caso no paramétrico la topoloǵıa del grafo se controla por la topoloǵıa de

la fibra; sin embargo, en el caso paramétrico este hecho deja de ocurrir. Entonces,

necesitaremos imponer hipótesis extra para obtener el control topológico necesario.

Más precisamente, exigiremos que la superficie recubra con un número finito de hojas

a la fibra.

Teorema 6.4.1. Sea M = I×fF un espaciotiempo GRW cuya función warping es no

localmente constante, y cuya fibra 2-dimensional tiene curvatura total finita. Sea S

una superficie espacial completa en M , tal que recubra a la fibra con un número finito

de hojas, la función warping esté acotada sobre S y (log f)′′(τ) ≤ 0. Supongamos

que la desigualdad

H2 ≤ f ′(τ)2

f(τ)2

ocurre sobre S. Entonces S es un slice espacial.

El Caṕıtulo 6 se cierra con la Sección 6, donde se discuten algunas interpretaciones

f́ısicas. De hecho, se analizarán algunas estimaciones para la enerǵıa total que una

superficie espacial puede tener en nuestros espaciotiempos ambientes. Estas estima-

ciones serán posibles gracias al hecho de que la superficie espacial tiene curvatura

total finita. Observemos que la enerǵıa total de una superficie espacial está acotada

superior e inferiormente por invariantes intŕınsecos. Es más, si la superficie es un

slice espacial, entonces su enerǵıa total está acotada superiormente por un múltiplo

de la caracteŕıstica de Euler-Poincaré de F .

Finalmente, el Caṕıtulo 7 está dedicado a estudiar hipersuperficies maximales

en ciertos espaciotiempos GRW, esta vez mediante el uso de principios del máximo

apropiados. La idea común con los caṕıtulos anteriores es obtener cierto control

de las funciones superarmónicas, subarmónicas y/o armónicas. Primero, usando la

propiedad fuerte de Liouville, probamos

Teorema 7.1.2. Sea S una hipersuperficie maximal completa en un espaciotiempo
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GRW estático cuya fibra tiene curvatura seccional no negativa. Si S está acotada

superior o inferiormente, entonces S debe ser un slice espacial.

A continuación, consideraremos el principio del máximo generalizado de Omori-

Yau. Para tal fin, encontraremos condiciones satisfactorias bajo las cuales se pueda

asegurar la aplicabilidad de este principio sobre ciertas hipersuperficies. Entonces,

distintos análisis de funciones distinguidas conducirán a diversos resultados de uni-

cidad. Por ejemplo,

Teorema 7.1.9. Sea S una hipersuperficie maximal completa en un espaciotiempo

GRW cuya función warping es no localmente constante, y cuya fibra tiene curvatura

seccional acotada inferiormente. Supongamos que (log f)′′(τ) ≤ 0 y S está contenida

entre dos slices espaciales. Si S tiene ángulo hiperbólico acotado, entonces S debe

ser un slice espacial.

Notemos que la naturaleza de las hipótesis son análogas a las requeridas en los

caṕıtulos previos, mientras que la parabolicidad de la fibra se reemplaza por hipótesis

de curvatura sobre ella.

Por otro lado, el principio del máximo generalizado puede ser usado para obtener

más información geométrica para nuestros propósitos. En la Sección 7.2 se presentan

algunos resultados de no existencia. Aqúı, la hipótesis decisiva es la suposición de

ausencia de puntos cŕıticos de la función warping.

Finalmente, se presentan una breve discusión de las conclusiones de esta memoria,

aśı como diversas ĺıneas de investigación futuras de interés.





Chapter 1

Introduction

Spacelike hypersurfaces are geometrical objects which have high interest for Physics

and Lorentzian Geometry. Roughly speaking, each of them represents the physical

space in an instant of a time function. More precisely, the initial value problem

for each fundamental equation within General Relativity is formulated in terms of

a spacelike hypersurface (see, for instance, [88] and references therein). Even more,

in Electromagnetism, a spacelike hypersurface is an initial data set which univocally

determines the future of the electromagnetic field which satisfies the Maxwell equa-

tions [102, Thm. 3.11.1] and for the simple matter equations [102, Thm. 3.11.2]. In

Causality Theory, the mere existence of a certain spacelike hypersurface implies that

the spacetime obeys a certain causal property. For instance, a spacetime is globally

hyperbolic [83, Def. 14.20] if and only if it admits a Cauchy hypersurface, [48]. In

fact, any globally hyperbolic spacetime admits a smooth spacelike Cauchy hypersur-

face S and then, it is diffeomorphic to R × S, [15]. Hence, spacelike hypersurfaces

are remarkable due to their physical interest. Let us remark that the completeness

of a spacelike hypersurface is required whenever we study its global properties, and

also, from a physical viewpoint, completeness implies that the whole physical space

is take into consideration.

27
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The extrinsic geometry of a spacelike hypersurface is codified by its shape oper-

ator. Among the functions defined by it, the mean curvature function has a great

importance. The case when we have constant mean curvature is relevant both in

General Relativity and Lorentzian Geometry, specially when it vanishes (i.e., the

maximal case). On the one hand, they can constitute an initial set for the Cauchy

problem [88]. Specifically, Lichnerowicz proved that a Cauchy problem with initial

conditions on a maximal hypersurface is reduced to a second-order non-linear elliptic

differential equation and a first-order linear differential system [71].

Moreover, these hypersurfaces are important in order to analyze the dynamics of

a gravitational field or the classical n-body problem in a gravitational field (see, for

instance, [23] and references therein).

On the other hand, each maximal hypersurface can describe, in some relevant

cases, the transition between the expanding and contracting phases of a relativistic

universe. Moreover, the existence of constant mean curvature (and in particular

maximal) hypersurfaces is necessary for the study of the structure of singularities in

the space of solutions to the Einstein equations. Also, the deep understanding of this

kind of hypersurfaces is essential to proof the positivity of the gravitational mass.

They are also interesting for Numerical Relativity, where maximal hypersurfaces are

used to integrate forward in time. All these physical aspects can be found in [77]

and references therein.

From a mathematical point of view, it is necessary to study the maximal hyper-

surfaces of a spacetime in order to understand its structure [13]. Especially, for some

asymptotically flat spacetimes, the existence of a foliation by maximal hypersurfaces

is established (see, for instance, [23] and references therein). The existence results

and, consequently, uniqueness appear as kernel topics.

A maximal hypersurface is (locally) a critical point for a natural variational prob-

lem, namely of the area functional (see, for instance, [21]).
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Throughout the history of the research on maximal hypersurfaces, the discovery

of new non-linear elliptic problems was a striking fact. In fact, the function defining

a maximal graph in the (n + 1)-dimensional Lorentz-Minkowski spacetime, Ln+1,

satisfies a elliptic second order PDE similar to the equation of minimal graphs in the

Euclidean space Rn+1. However, a new and surprising behavior in its entire solutions

was found: the affine functions defining spacelike hyperplanes are the only entire

solutions to the maximal hypersurface equation in L
n+1. This result was previously

proved by Calabi [29] for n ≤ 4 and later extended for any n in the seminal paper by

Cheng and Yau [32]. That is why it is usually called the Calabi-Bernstein theorem.

Let us recall that the Bernstein theorem for entire minimal graphs in R
n+1 holds true

only for n ≤ 7, [106]. Another important achievement in [32] was the introduction

of a new procedure, the so-called Omori-Yau generalized maximum principle [82],

[111].

Other classical papers dealing with uniqueness of complete maximal and constant

mean curvature spacelike hypersurfaces are [23], [34] and [77]. In [23], Brill and

Flaherty replaced Lorentz-Minkowski spacetime by a spatially closed universe, and

proved uniqueness in the large by assuming that its Ricci tensor satisfies Ric(z, z) > 0

for all the timelike tangent vectors z. This assumption may be interpreted as the

fact that there is real present matter at every point of the spacetime. It is known as

the Ubiquitous Energy Condition (see Section 2 in Chapter 2). In [77], this energy

condition was relaxed by Marsden and Tipler to include, for instance, non-flat vac-

uum spacetimes. More recently, Bartnik proved very general existence theorems in

[12], and consequently, he claimed that it would be necessary to find new satisfactory

uniqueness results. Later, in [9] Aĺıas, Romero and Sánchez proved new uniqueness

results for the class of spatially closed generalized Robertson-Walker (GRW) space-

times (which clearly includes spatially closed Robertson-Walker spacetimes), under

a weaker energy condition, the so-called Timelike Convergence Condition. In [7],

Aĺıas and Montiel proved that in a GRW spacetime whose warping function satisfies

(log f)′′ ≤ 0, the spacelike slices are the only compact constant mean curvature space-

like hypersurfaces. Furthermore, this result was generalized in [27] by Caballero,

Romero and Rubio for a larger class of spacetimes. In the case of the Einstein-de
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Sitter spacetime, which is a spatially open model, Rubio gave new uniqueness and

non-existence results for complete maximal and constant mean hypersurfaces [101].

Firstly, this thesis is aimed at inquiring about what kind of open spacetimes have

rich properties in order to provide uniqueness results. Parabolicity is a good feature

that should be taken into account within a physical space. Moreover, it would be

satisfactory if these spacetimes could describe the universe in some environment.

This family would be GRW spacetimes suitable for our purposes. Let us recall that

by a GRW spacetime we mean a product manifold I × F , of an open interval I of

the real line R and an n(≥ 2)-dimensional (connected) Riemannian manifold (F, g
F
),

endowed with the Lorentzian metric

g = −π∗
I
(dt2) + f(π

I
)2 π∗

F
(g

F
) ,

where π
I
and π

F
denote the projections onto I and F , respectively, and f is a positive

smooth function on I. We will represent this Lorentzian manifold by M = I ×f F .

The (n+1)-dimensional spacetime M is a warped product, in the sense of [83, Chap.

7], with base (I,−dt2), fiber (F, g
F
) and warping function f . The family of GRW

spacetimes is very large since it does not only includes classical spacetimes as the

Lorentz-Minkowski spacetime, the Einstein-de Sitter spacetime, the static Einstein

spacetime, but also the Robertson-Walker spacetimes (dimension four and fiber of

constant sectional curvature).

Any GRW spacetime has a smooth global time function, and therefore it is stably

causal [14, p. 64]. In addition, if the fiber is complete, then a GRW spacetime is

globally hyperbolic [14, Thm. 3.66]. On the other hand, a GRW spacetime is not

necessarily spatially homogeneous. Roughly speaking, spatial homogeneity seems

to be a desirable assumption so as to shape the universe in the large. However, in

a more precise scale this condition might be unrealistic [87]. Furthermore, small

deformations in the metric of a Robertson-Walker spacetime’s fiber also fit into the

class of GRW spacetimes. Therefore, GRW spacetimes appear to be nice candidates

to explore stability properties of Robertson-Walker spacetimes.
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Recently, several experimental data have suggested that there is a preferable di-

rection in the physical space. In this direction the universe seems to be expanding

faster than it does in orthogonal directions, (see [65], [66] and [81]). Hence, spa-

tial inhomogeneity is required according to these experimental data. There are also

reasons of theoretical nature to support the use of GRW spacetimes. On the one

hand, there are many exact solutions to Einstein equations which lie on the family

of GRW spacetimes. On the other hand, the theory of inflation is nowadays com-

monly accepted [72]. In this environment, it is natural to think that the expansion

must have occurred anywhere in the physical space and simultaneously. Prior to the

inflation, the physical space may not be symmetric in a large scale. Therefore, GRW

spacetimes may be suitable relativistic models to approach this process.

In spite of the historical importance of spatially closed GRW spacetimes, a num-

ber of observational and theoretical arguments about the total mass balance of the

universe [33] suggest the convenience of taking into consideration open cosmologi-

cal models. Even more, a spatially closed GRW spacetime violates the holographic

principle [20, p. 839] whereas a GRW spacetime with non-compact fiber could be a

suitable model that follows that principle [11]. More precisely, the entropy contained

in any spatial region cannot exceed a quarter of the area of the region’s boundary

(in Planck units). That is, if Ω is a compact region of a spacelike hypersurface, and

S(Ω) denotes the entropy of all matter systems in Ω, then

S(Ω) ≤ Area(∂Ω)

4
.

The following argument shows that the previous inequality cannot be held in some

spatially closed GRW spacetimes. Let us consider that a spacetime has a compact

spacelike hypersurface such that it contains a matter system that does not occupy

the whole of it. That is, the hypersurface has a proper compact subset with no

matter system. In that subset we may consider another small enough, in such a way

that, applying the previous inequality on the exterior of this compact subset, we

have that the entropy becomes arbitrarily small. We found a contradiction.

Nevertheless, the assumed non-compact fiber seems to be too weak to consider
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such a GRW spacetime as a suitable model for a whole open universe, [68]. A

natural way to assert that the universe is spatially inextensible is to suppose that

this fiber is geodesically complete. On the other hand, it would be desirable that

the essential aspects of the rich geometric analysis of the fiber of a spatially closed

GRW spacetime remain true. In order to do that, we shall introduce the follow-

ing notion. A GRW spacetime is said to be spatially parabolic if its fiber has a

parabolic universal Riemannian covering (therefore, the fiber is so). Let us recall

that a (non-compact) complete Riemannian manifold is parabolic provided that it

does not admit non-constant non-negative superharmonic function, [69]. Notice that

whenever a complete Riemannian manifold (F, g
F
) has non-negative Ricci curvature

(in particular F may be R
3), the strong Liouville property remains on it [69, Thm.

4.8], i.e., (F, g
F
) admits no non-constant positive harmonic function. Note that the

strong Liouville property holds true on any parabolic Riemannian manifold without

any curvature assumption.

The parabolicity of a GRW spacetime’s fiber could also be supported by some

physical reasons. For instance, galaxies can be understood as molecules (see, for

instance, [83, Ch. 12]). If a sonde is sent to the space, its motion may be approached

by a Brownian motion, [51]. In fact, the distribution of galaxies and their velocities

are not completely known. Parabolicity may favor that the sonde could be observed

in any region, since the Brownian motion is recurrent in any parabolic Riemannian

manifold [51].

The family of spatially parabolic GRW spacetimes is very large, although some

other interesting GRW spacetimes do not belong to this family. For instance, those

GRW spacetimes whose fiber is the hyperbolic space H
n are excluded. Maximum

principles can help to deal with this environment. In contrast to parabolicity, some

curvature assumptions should be imposed here. The two maximum principles that

we will be using are: the strong Liouville property and the Omori-Yau generalized

maximum principle. The first one is a classical principle that works on complete

Riemannian manifolds with non-negative Ricci curvature. The second one has proved

its utility to study maximal and constant mean curvature spacelike hypersurfaces.
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Although parabolicity and maximum principles seem to be too very different factors

to be considered together, the underlying idea is common: they have a certain control

over the behavior of superharmonic, subharmonic or harmonic functions. In fact,

throughout this thesis we will show that some distinguished functions can be used

to deal with uniqueness results in both cases.

Once ambient spacetimes have been established, our second objective is to pro-

vide several global characterization results for maximal hypersurfaces. Any GRW

spacetime I ×f F possesses a family of distinguished spacelike hypersurfaces, the

so-called (embedded) spacelike slices {t0} × F , t0 ∈ I. Notice that a spacelike slice

is a level hypersurface of the time function associated to the coordinate on the inter-

val I. In general, a spacelike slice {t0} × F is totally umbilical and it has constant

mean curvature. Besides, it is maximal (and hence totally geodesic) whenever t0 is

a critical point in the warping function. Throughout this thesis we will say that a

spacelike hypersurface x : S → I×f F is an (immersed) spacelike slice provided that

π
I
◦ x is a constant t0 , i.e., if x(S) is contained in t = t0 . Our main aim consists on

finding reasonable conditions under which a complete maximal hypersurface has to

be a spacelike slice or totally geodesic.

Finally, our third goal is to apply our previously developed parametric uniqueness

results to solve new Calabi-Bernstein type problems. That is, to obtain all the

solutions to certain non-linear elliptic PDE defined on the whole fiber (i.e., all the

entire solutions). In fact, we will deal with the maximal hypersurface equation on a

Riemannian manifold (F, g
F
),

div

(
Du

f(u)
√
f(u)2− | Du |2

)
= − f ′(u)√

f(u)2− | Du |2
(
n+

| Du |2
f(u)2

)
, (E.1)

| Du |< λf(u), 0 < λ < 1 . (E.2)

Equation (E.1) is the Euler-Lagrange equation for the area functional. In fact, it
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means that the mean curvature of the graph vanishes. The constrain (E.2) estab-

lishes that the graph Σ
u
= {(u(p), p), p ∈ F} is spacelike and its hyperbolic angle

is bounded. From an analytical point of view, (E.2) assures that our equation is

uniformly elliptic.

In this thesis, we will actually obtain suitable conditions under which all the entire

solutions to equation (E) can be found.

This report is organized as follows. In Chapter 2, we recall the main properties

of GRW spacetimes. Some energy conditions arising in a natural way in General

Relativity are also reviewed, and it will be showed when a GRW spacetime obeys each

of them. Then, spacelike hypersurfaces will be examined, paying special attention

to the maximal case. After analyzing the 2-dimensional case, we will continue by

presenting and examining the family of PDEs equations related to a maximal graph

in a GRW spacetime.

Chapter 3 is devoted to revise the notion of parabolicity in the case n(≥ 2)-

dimensional. We review several well-known results that lead to parabolicity of a

Riemannian manifold. The 2-dimensional case arises in a special way, where it is

briefly indicated the relation between parabolicity and curvature. On the other hand,

the definition of quasi-isometry is also recalled. This feature will be a central key

in the consecution of our techniques. Next, in Section 3.2 we present two technical

results that allow us to assure parabolicity on a complete spacelike hypersurface in

a spatially parabolic GRW spacetime. Firstly, we obtain,

Theorem 3.2.5. Let S be a complete spacelike hypersurface in a spatially parabolic

GRW spacetime. If the hyperbolic angle of S is bounded and the warping function

on S satisfies:

i) sup f(τ) <∞, and

ii) inf f(τ) > 0,
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then, S is parabolic.

The hyperbolic angle function of S is defined as the hyperbolic angle between

the unit normal vector field N on S in the time cone of −∂t, and the coordinate

vector field −∂t (throughout this memory, any GRW spacetime is assumed to have

the time orientation defined by −∂t). Note that the boundedness of the hyperbolic

angle of S implies that the speed which the instantaneous observer −∂t(p), p ∈ S,

measures from N(p) does not approach to the speed of light in vacuum (for more

details, see Section 2.3). On the other hand, the assumptions on the warping function

also admit a nice interpretation. Let C ⊂ {t0} × F , t0 ∈ I, be a compact set of a

spacelike slice. Let us consider the flow associated to −∂t. Then, the hypothesis on

the warping function assures that the volume of C in this flow neither increase nor

decrease arbitrarily (see also Section 3.2). Notice that −∂t is a geodesic reference

frame [102].

Theorem 3.2.5 will be the basis on which the main results of Chapter 4 are built.

In this chapter, under certain natural assumptions, a complete maximal hypersurface

is proved to be a spacelike slice or totally geodesic. As an example, we can provide,

Theorem 4.1.1. Let S be a complete maximal hypersurface of a spatially parabo-

lic GRW spacetime whose warping function f is non-locally constant and satisfies

(log f)′′ ≤ 0. If the hyperbolic angle of S is bounded, sup f(τ) <∞ and inf f(τ) > 0,

then S must be a spacelike slice t = t0, with f ′(t0) = 0.

Note that the assumption (log f)′′ ≤ 0 is satisfied when the GRW spacetime obeys

the Timelike Convergent Condition. On the other hand, if we combine parabolicity

with some curvature hypothesis, the case in which the warping function is constant

can be handled,

Theorem 4.1.7. Let S be a complete maximal hypersurface in a static spatially

parabolic GRW spacetime I × F . If the Ricci curvature of the fiber is non-negative

and the hyperbolic angle of S is bounded, then S must be totally geodesic.
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When applied, our results lead to new examples of Calabi-Bernstein problems for

the maximal hypersurface equation. For instance,

Theorem 4.2.1. Let f : I −→ R be a non-locally constant positive smooth function.

Assume f satisfies (log f)′′ ≤ 0, sup f <∞ and inf f > 0. The only entire solutions

to the equation (E) on a parabolic Riemannian manifold F are the constant functions

u = c, with f ′(c) = 0.

In order to go deeper, in Chapter 5 we will drop the assumption inf f > 0 and

we will reach to the same conclusions using a different approach. From a physical

point of view, the assumption inf f > 0 seems to forbid the presence of initial and/or

final singularities type Big-Bang or Big-Crunch. On the other hand, it is intuitively

expected that in the evolution of free falling observers into a Big-Crunch, or from

a Big-Bang, the physical space would decrease arbitrarily. The geodesic observer

γ(u) = (−u, p) ∈ I × F , p ∈ F , measures its restspace as f(−u)nΩ
F
(p), where

Ω
F
is the volume form of F . Therefore, if inf f > 0, γ cannot experiment such

arbitrarily contraction in either its future or its past. This other one is based in

assuring parabolicity on a complete spacelike hypersurface whenever it is endowed

with a certain conformal metric.

Theorem 3.2.9. Let S be a complete spacelike hypersurface in a spatially parabolic

GRW spacetime. If sup f(τ) <∞ and the hyperbolic angle of S is bounded, then S,

endowed with the conformal metric ĝ = 1
f(τ)2

g, is parabolic.

For more comments relating Theorem 3.2.5 and 3.2.9 see Remark 3.2.10. This

result will be essential to attain the uniqueness theorems in Chapter 5. Among them,

we get,

Theorem 5.1.1. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime which is not a complete static one. Suppose that sup f(τ) <∞ and

there exists a positive constant σ such that (log f)′′(τ) ≤ (n−2+σ f(τ)) (log f)′(τ)2.

If the hyperbolic angle of S is bounded, then S must be a spacelike slice t = t0, with
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f ′(t0) = 0.

Notice that not only are we considering a wider class of GRW spacetimes in com-

parison with Chapter 4, but also some hypothesis are now lessened. The reason for

this is that in Chapter 4 we take parabolicity for granted directly on the maximal hy-

persurface, having certain control over its geometry, whilst with this other technique,

parabolicity is assured on a suitable conformal metric on the maximal hypersurface.

As in the previous chapter, new Calabi-Bernstein type problems are solved. One

of them is the following,

Theorem 5.2.5. Let f : I → R
+ be a positive monotone smooth function which sat-

isfies f ∈ L1(I). The only entire solutions to equation (E) on a parabolic Riemannian

manifold F are the constants u = c, with f ′(c) = 0.

In Chapter 6 we focus on the case of GRW spacetimes with a two-dimensional

fiber. This kind of Lorentzian manifolds are usually called toy spacetimes since they

are easier to deal with, and allow us to investigate properties which potentially could

be extendible to a higher dimension. We will pay attention to GRW spacetimes

whose fiber has finite total curvature. Physically, this family of GRW spacetimes

may be regarded as a 3-dimensional version of asymptotically flat spacetimes. Let

us recall that a complete (non-compact) Riemannian surface M2 has finite total

curvature providing that the negative part of its Gauss curvature is integrable (see,

for instance, [69]). That is, if K is the Gaussian curvature of M , then M has finite

total curvature if ∫

M

max {0,−K} <∞ .

In particular, if M has non-negative Gaussian curvature, then it must trivially have

finite total curvature. Generalizing the theorem of Ahlfors and Blanc-Fiala-Huber,

[57], a Riemannian surface with finite total curvature must be parabolic [69]. Here,

instead of considering the case of maximal surfaces, we deal with complete spacelike



Chapter 1 38

surfaces S whose mean curvature function H is controlled by the following inequality,

H2 ≤ f ′(τ)2

f(τ)2
.

Note that any maximal surface trivially satisfies the inequality. Hence, the study

of this inequality is a natural extension of our original problem. Moreover, it also

admits a geometrical interpretation: the absolute value of the mean curvature of S

at p ∈ S does not exceed the analogous quantity for the spacelike slice t = t(p).

Note that any spacelike surface which satisfies the inequality does not necessarily

to have a constant mean curvature. However, under reasonable assumptions on the

ambient spacetime, a complete spacelike surface with constant mean curvature which

lies between two spacelike slices must satisfy this inequality (see [24] and [90]).

Notice that a spacelike slice t = t0 satisfies the inequality for any warping func-

tion. Hence, our problem resides in establishing the converse, i.e., when a complete

spacelike surface which satisfies the inequality must be a spacelike slice.

We will provide some answers to this question under assumptions which widely

generalize some previous works [67] and [90], where the fiber was the Euclidean plane

R
2, and [93] where the fiber was compact. Consequently, we will consider a wider

framework where the fiber has finite total curvature.

The approach to this problem is, as first instance, to consider the differential

inequality on a complete (non-compact) Riemannian surface and provide conditions

under which the constant functions are the only solutions. The idea of the proof is

as follows. We will see that a solution to the inequality provides a complete spacelike

graph in this class of GRW spacetimes such that it has finite total curvature. Then,

parabolicity appears to hint that the surface must be a spacelike slice by analyzing

distinguished functions. Hence, for the non-parametric case, some uniqueness results

are supplied. As an illustration,

Theorem 6.3.3. Let (F, g
F
) be a complete Riemannian surface with finite total

curvature and let f : I −→ (0,∞), I ⊂ R be a smooth function such that f is
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non-locally constant, inf f > 0 and (log f)′′ ≤ 0. Then, the only entire solutions to

H(u)2 ≤ f ′(u)2

f(u)2

|Du| < λf(u) , 0 < λ < 1 ,

are the constants.

The topology of the graph is controlled by the topology of the fiber in the non-

parametric case. However, this fact does not occur in the parametric case. Therefore,

we need to impose some extra hypothesis in order to get the required topological

control. Basically, this control is achieved by requiring that the surface covers the

fiber with a finite number of sheets.

Theorem 6.4.1. Let M = I ×f F be a GRW spacetime whose warping function is

non-locally constant, and whose 2-dimensional fiber has finite total curvature. Let S

be a complete spacelike surface in M , such that it covers the fiber with a finite number

of sheets, the warping function is bounded on S and (log f)′′(τ) ≤ 0. Suppose that

the inequality

H2 ≤ f ′(τ)2

f(τ)2

holds on S. Then S is a spacelike slice.

Section 6 ends with some physical interpretations. In fact, we provide some

estimates of the total energy which a spacelike surface can have in our ambient

spacetimes. These estimates are possible due to the fact that the spacelike surface

has finite total curvature. We observe that the total energy of a spacelike surface is

bounded by intrinsic invariants from above and from below. Moreover, if the surface

is a spacelike slice, its total energy is bounded by the Euler-Poincaré characteristic

of F from above.

Finally, Chapter 7 is devoted to study maximal hypersurfaces in now different

GRW spacetimes. This time using suitable maximum principles. The common idea
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shared with previous chapters is to obtain certain control over the superharmonic,

subharmonic and/or harmonic functions. Firstly, using the strong Liouville property

we prove

Theorem 7.1.2. Let S be a complete maximal hypersurface in a static GRW space-

time whose fiber has non-negative sectional curvature. If S is bounded from below or

from above, then S must be a spacelike slice.

After that, we consider the generalized Omori-Yau maximum principle. In order

to make use of it, we shall find satisfactory conditions under which this principle

remains on such a hypersurface. Then, an analysis of distinguished functions leads

to several uniqueness results, for instance,

Theorem 7.1.9. Let S be a complete maximal hypersurface in a GRW spacetime

whose warping function is non-locally constant and whose fiber has sectional cur-

vature bounded from below. Assume that (log f)′′(τ) ≤ 0 and S lies between two

spacelike slices. If S has bounded hyperbolic angle, then S must be a spacelike slice.

Notice that the nature of the assumptions on the maximal hypersurface are analo-

gous to those required on previous chapters, while parabolicity on the fiber is replaced

by a curvature assumption on it.

In another environment, the generalized maximum principle can be used in order

to obtain more geometrical information for our purposes. In Section 7.2 some non-

existence results are presented. Here, the determining assumption is the absence of

critical points in the warping function.

Finally, we present a brief discussion about our conclusions and we provide several

interesing guidelines that may be very useful for future research.
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Preliminaries

This chapter is devoted to present the geometrical background that will come in

handy throughout this memory. Firstly, we focus on the ambient spacetimes, the

generalized Robertson-Walker spacetimes. Some of their mathematical and physi-

cal properties are analyzed. Secondly, we shall consider several energy assumptions

which will be accepted. These energy assumptions are borrowed from General Rel-

ativity. Indeed, if a spacetime satisfies the Einstein equations with a physically rea-

sonable stress-energy tensor, then it must obey some of these energy assumptions.

From a geometric point of view, they are established considering the curvature of the

spacetime. Later, we devote a section to recall the basics of spacelike hypersurfaces.

The geometry of a GRW spacetime favours to consider several natural functions,

to the extent that, when restricted to a spacelike hypersurface, their Laplacian is

computable. Finally, we consider the maximal hypersurface equation (associated to

a GRW spacetime). We prove its deduction from a variational point of view and

some of its most interesting features are explained. Among them, it is highlighted

that an entire solution does not define, in general, a complete maximal graph.

41
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2.1 GRW spacetimes

Let (F, g
F
) be an n(≥ 2)-dimensional (connected) Riemannian manifold. Let us

consider a positive smooth function f defined on an open interval I ⊆ R. The

product space I × F can be endowed with the Lorentzian metric

g = −π∗
I
(dt2) + f(π

I
)2 π∗

F
(g

F
) , (2.1)

where π
I
and π

F
denote the projections onto I and F , respectively. This Lorentzian

metric is clearly time orientable because the coordinate vector field ∂t := ∂/∂t is a

(globally defined) timelike vector field. Thus, (M, g) is a spacetime, which we will

denote by M := I×f F . In fact, M is a warped product in the sense of [83, Chap. 7],

with base (I,−dt2), fiber (F, g
F
) and warping function f . Agreeing with the terminol-

ogy introduced in [9], we will refer to M as a Generalized Robertson-Walker (GRW)

spacetime1. This family of spacetimes properly extends to the classical Robertson-

Walker spacetimes, which appear when the fiber has dimension three and constant

sectional curvature.

A GRW spacetime is not necessarily spatially homogeneous. Remember that

spatial homogeneity seems appropriate just as a rough approach to consider the

universe on a large scale (see [78, Ch. 30], for instance). However, this assumption

could not be physically realistic when the universe is considered in a more accurate

scale. Hence, the family of GRW spacetimes could be suitable to shape universes

with inhomogeneous spacelike geometry [87].

On the other hand, notice that a conformal change of (2.1), such that the confor-

mal factor depends only on t, produces a new GRW spacetime. Furthermore, small

deformations of the metric on a Robertson-Walker spacetime’s fiber also fit into the

class of GRW spacetimes. This suggests that GRW spacetimes may be useful to

analyze the stability of the properties of a Robertson-Walker spacetime.

1To be fair, it should be named Generalized Friedman-Lemâıtre-Robertson-Walker (GFLRW)
spacetime. However, when GRW spacetimes were introduced, the name RW spacetime was most
common in the literature.
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Example 2.1.1. We provide some classical spacetimes which admit a splitting like

GRW spacetimes,

• Lorentz-Minkowski spacetime, Ln+1, appears when f = 1 and the fiber is the

Euclidean space, Rn.

• De Sitter spacetime, Sn+1
1 (c), n ≥ 2 and c > 0, (see [109, Section 2.4]). This

spacetime has positive constant sectional curvature c. The only global de-

compositions of S
n+1
1 (c) as a GRW spacetime are obtained taking as fiber

any usual round n-sphere of curvature c
F
> 0 and warping function f(t) =√

c
F
/c cosh(

√
c t+ b), for any b ∈ R [105, Cor. 2.1].

• Friedmann cosmological models, exact solutions to Einstein field equations (see,

for instance, [83]). Particularly, they are Robertson-Walker spacetimes.

A GRW spacetime, M , is said to be static provided that its warping function is

constant, i.e., M is, actually, a Lorentzian product. Note that under the assumption

of completeness of F , a static GRW spacetime is complete if and only if its base is

R. On the contrary, if the warping function f is not locally constant (i.e., there is

no open subinterval J( 6= ∅) of I such that f |J is constant) then the GRW spacetime

M is said to be proper. This assumption implies that there is no open subset of the

GRW spacetime M , such that the sectional curvature in M of any plane tangent

to a slice, {t0} × F , is equal to the sectional curvature of that plane in the inner

geometry of the slice.

On any GRW spacetime, M = I ×f F , there is a distinguished vector field

ξ := f(πI) ∂t, which is timelike and, from the relationship between the Levi-Civita

connections of M and those of the base and the fiber [83, Cor. 7.35], it satisfies

∇Xξ = f ′(πI)X, (2.2)

for any X ∈ X(M), where ∇ is the Levi-Civita connection of the metric (2.1).
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Thus, ξ is conformal with Lξ g = 2 f ′(πI) g and its metrically equivalent 1-form

is closed. Then, any GRW spacetime has an infinitesimal symmetry provided by

the above timelike conformal vector field, apart from those that the fiber could

have. Let us recall that symmetries are a useful simplification so as to obtain exact

solutions to Einstein equations. In some situations, they are assumed a priori, [36]

and [37]. Besides, the use of affine and affine conformal vector fields gives raise

to spacetimes that conform new exact solutions [41]. Remember that a spacetime

which admits a timelike conformal vector field is said to be conformally stationary.

Roughly speaking, a conformally stationary spacetime happens to be stationary when

equipped with a conformal metric (see, for instance, [10]). When a GRW spacetime

admits a non-trivial Killing vector field (in the sense of [105, p. 2]), then the warping

function is determined [105, Thm. 4.1].

On the other hand, there exist several criteria to decide whether a given Lorentzian

manifold is (locally or globally) a GRW spacetime (see [27], [104] and [31]).

According to Causality Theory, any GRW spacetime is stably causal [14, p. 64].

Moreover, it is globally hyperbolic if and only if its fiber is complete [14, Thm. 3.66].

In this case, any spacelike slice constitutes a Cauchy hypersurface. Note that, in a

GRW spacetime, the integral curves of ∂t are timelike geodesics and the coordinate

t is, in point of fact, a universal time function.

In Riemannian Geometry, a complete Riemannian manifold is also geodesically

connected. However, there exist complete spacetimes which are not geodesically con-

nected, for instance, de Sitter spacetime [14]. However, the geodesic connectedness

of a GRW spacetime can be assured in some cases. In fact, a GRW spacetime whose

fiber is weakly convex (i.e., any two points can be joined by a minimizing geodesic)

and whose warping function satisfies
∫ c

a
f−1 =

∫ b

c
f−1 = ∞, where c ∈ (a, b) = I,

must be geodesically connected [104, Thm. 3.2]. Following the same reference, on

a GRW spacetime, define a static trajectory, Rp, as Rp = {(t, p) : t ∈ I}, p ∈ F .

Clearly, any static trajectory defines a timelike geodesic. Then, we can express the

geodesic connectedness for a GRW spacetime in an equivalent form as follows. A



45 Chapter 2

GRW spacetime whose fiber is weakly convex is geodesically connected provided that

any point in the spacetime can be joined with any static trajectory by means of both

future-directed and past-directed causal curves [104, Cor. 3.3]. On the other hand,

let the future arrival time function T0 : (I × F )× F → [0, 1) be

T0((t1, p), q) = inf
(
t− t1 : (t, q) ∈ J+(t1, p), t ∈ I

)
,

where J+(t1, p) denotes the causal future of (t1, p), that is, the set of points which

can be joined with (t1, p) by means of a non-spacelike future oriented curve with the

starting point (t1, p). Analogously, J−(t1, p) is the set of points liable to be joined

by a non-spacelike past oriented curve starting at (t1, p). The past arrival time

function can be similarly considered. It is proved that every GRW spacetime with

weakly convex fiber and finite future and past arrival functions must be geodesically

connected [104, Cor. 3.5]. However, some extensions of this result to standard static

spacetimes (i.e., warped products with fiber (I,−dt2) and base (F, g
F
)) do not work

(see the counterexamples in [104, p. 925]).

It is well known that in Lorentzian Geometry there is no analogous to the Hopf-

Rinow theorem. On the other hand, the completeness of a Lorentzian manifold

splits into spacelike, lightlike or timelike completeness, which are, in general, log-

ically inequivalent. Whenever the fiber of a GRW spacetime is incomplete, so is

the spacetime in the three causal senses [99]. On the contrary, let us assume now

completeness on the fiber. In this case, the GRW spacetime is timelike complete

towards the past (resp. towards the future) if and only if

∫ c

a

f√
1 + f 2

=∞ (resp.

∫ b

c

f√
1 + f 2

=∞) ,

where c ∈ (a, b) = I, [104]. It will be timelike complete if it holds in both previous

times senses. The lightlike completeness towards the past (resp. towards the future)

is equivalent to ∫ c

a

f =∞ (resp.

∫ b

c

f =∞) .

If it holds in both conditions, then the spacetime is lightlike complete. Finally, the
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GRW spacetime is spacelike complete if and only if either f satisfies the previous

assumptions or, when
∫ c

a
f < ∞ (resp.

∫ b

c
f < ∞), then f is unbounded in (a, c)

(resp. (c, b)) [99]. Obviously, when I 6= R, then the GRW spacetime is timelike

incomplete. However, if I = R, the fiber is complete and the warping function obeys

inf f > 0, and consequently, the GRW spacetime is complete in the three causal

senses. On the other hand, the Ricci tensor can also determine the completeness or

incompleteness of a GRW spacetime. Finally, if the Ricci tensor of a GRW spacetime

satisfies Ric(∂t, ∂t) ≥ 0, then, either the GRW spacetime is static, or incomplete in

all causal senses [104].

2.2 Energy curvature conditions

Coming from General Relativity, there exist some curvature assumptions with phys-

ical meaning. Let us recall that a Lorentzian manifold (M, g) obeys the Timelike

Convergence Condition (TCC) providing its Ricci tensor Ric satisfies

Ric(Z,Z) ≥ 0,

for all timelike vector Z. It is commonly accepted that the TCC is the mathematical

concept to express the physical idea that gravity, on average, attracts [102, Sec. 2.3].

A weaker energy condition is the Null Convergence Condition (NCC), which reads

Ric(Z,Z) ≥ 0 ,

for any null vector Z, i.e., Z 6= 0 satisfying g(Z,Z) = 0. Doubtless, a continuity

argument shows that TCC implies NCC. Furthermore, NCC holds in a spacetime

whenever it satisfies the Einstein equation with a realistic stress-energy tensor [102,

Ex. 4.3.7]. On the other hand, a spacetime obeys the ubiquitous energy condition if

Ric(Z,Z) > 0 ,
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for all timelike vector Z. Doubtless, this last energy condition is stronger than the

TCC and it shows the real presence of matter at any point in the spacetime.

From [83, Cor. 7.43], we obtain that the Ricci tensor of the GRW spacetime M

is

Ric(X, Y ) = RicF (XF , Y F ) +

(
f ′′

f
+

(n− 1) (f ′)2

f 2

)
g(XF , Y F )

−nf ′′

f
g(X, ∂t) g(Y, ∂t), (2.3)

for any tangent vectors X, Y to M , where XF := X + g(X, ∂t) ∂t and Y F :=

Y + g(Y, ∂t) ∂t stand for the components of X and Y , respectively, on the fiber F ,

and RicF denotes the Ricci tensor of the fiber.

From the previous formula, it is clearly seen that a GRW spacetime obeys the

NCC if the Ricci tensor of its fiber satisfies RicF ≥ (n − 1)f 2(log f)′′g
F
. Moreover,

it obeys the TCC (resp. the ubiquitous energy condition) if the NCC remains and

f ′′ ≤ 0 (resp. f ′′ < 0). Note that, in the static case, the NCC holds if and only if

the fiber has non-negative Ricci curvature. Finally, in the case of a 2-dimensional

fiber, we find that the NCC is satisfied if and only if the warping function obeys

KF (π
F
)

f 2
− (log f)′′ ≥ 0 , (2.4)

where KF denotes the Gauss curvature of the fiber. Notice that, under the assump-

tion on the Gauss curvature of the fiber KF ≤ 0, the inequality (log f)′′ ≤ 0 is

equivalent to the NCC.

2.3 Spacelike hypersurfaces

An immersion of an n-dimensional manifold x : S →M is said to be spacelike if the

induced metric g on S is Riemannian. In this case, we will refer to S as a spacelike
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hypersurface. Since every GRW spacetime M is time-orientable, for each spacelike

hypersurface S in M we can take N ∈ X
⊥(S) as the only globally defined unit

timelike vector field normal to S in the same time-orientation of the vector field −∂t
(i.e., such that g(N,−∂t) < 0). From the wrong-way Cauchy-Schwarz inequality (see

[83, Prop. 5.30], for instance), we have g (N, ∂t) ≥ 1, and the equality holds at a point

p in the hypersurface if and only if N(p) = −∂t(p). In fact, g (N(p), ∂t(p)) = cosh θ,

where θ is the hyperbolic angle between S and −∂t at p.

The hyperbolic angle admits a physical interpretation. In a GRW spacetime M ,

the integral curves of the timelike unit vector field −∂t are comoving observers and

−∂t(q), q ∈ M , is an instantaneous observer [102, p. 43]. Thus, at a point p in a

spacelike hypersurface in M , there two distinguished instantaneous observers exist,

−∂t(p) and N(p), where N(p) is the normal vector at p in the same time-orientation

than −∂t. Let us decompose orthogonally N(p) as follows N(p) = e(p) (−∂t(p)) +
NF (p). Then, the quantities e(p) = cosh θ(p) and v(p) = 1

cosh θ(p)
NF (p) represent the

energy and the velocity that −∂t(p) measures for N(p). Moreover, the relative speed

function is |v| = tanh θ. Then, the boundedness of the hyperbolic angle assures that

this relative speed function does not approach to the light speed in vacuum [102, pp.

45, 67].

For any spacelike hypersurface S in M , the restrictions to S from the natural

projections of M onto I and F will be denoted by τ := π
I
◦ x and π := π

F
◦ x,

respectively. Let ∂⊤t := ∂t + g(N, ∂t)N be the tangential component of ∂t along S.

It is not difficult to obtain,

∇τ = −∂⊤t , (2.5)

where ∇ denotes here the gradient on S. From this equation, we get

g (∇τ,∇τ) = sinh2 θ . (2.6)

The Levi-Civita connection ofM is denote by∇. From the Gauss and Weingarten
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formulas we have

∇XY = ∇XY − g (AX, Y )N , (2.7)

for all X, Y ∈ X(S), where ∇ is the Levi-Civita connection on S and A is the shape

operator associated to N ,

AX := −∇XN .

Let us recall that the mean curvature function relative to N is H := −(1/n)tr (A).2
A spacelike hypersurface is said to be maximal when H = 0. From a variational

point of view, maximal hypersurfaces appear as critical points of the volume func-

tional for normal variations with compact support [21]. This terminology is derived

from the fact that, in some cases such as the Lorentz-Minkowski spacetime, these

hypersurfaces locally maximize the volume [77].

As we mentioned before, a spacelike hypersurface x : S → I×fF is a spacelike slice

provided that τ is constant. It can be easily spotted that a spacelike hypersurface

is a spacelike slice if and only if its hyperbolic angle identically vanishes. Physically,

each spacelike slice represents the physical space at one instant of the universal time

for the family of observers associated to −∂t. Notice that the spacelike slice t = t0

is totally umbilical A = f ′(t0)/f(t0) I, where I stands for the identity operator, and

it has constant mean curvature H = −f ′(t0)/f(t0). Therefore, the spacelike slice

t = t0 is maximal provided that f ′(t0) = 0. Note that any maximal spacelike slice is

totally geodesic.

A spacelike hypersurface x : S →M is said to be bounded from below (resp. from

above) if there exists t0 ∈ I (resp. t1 ∈ I) such that inf τ ≥ t0 (resp. sup τ ≤ t1). If

both boundedness assumptions remain, we will say that S lies between two spacelike

slices.

Example 2.3.1. [28] The assumption of boundedness of the hyperbolic angle is inde-

pendent from lying between two spacelike slices. On the one hand, the non-horizontal

spacelike hyperplanes in L
n have constant hyperbolic angle and are unbounded by

2The minus sign is taken in order to write that the mean curvature vector field satisfies ~H = H N .
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spacelike slices. On the other hand, let us consider the smooth function u on R
2

given by u(x, y) = 2
π
sin y arctan x. It is easy to see that it is bounded and its gra-

dient satisfies |Du| < 1. This implies that u defines a spacelike graph in L
3 such

that it lies between two spacelike slices (see Section 1.2 below). Furthermore, on the

curve α(s) = (s, 0), it can be computed that lims→∞ |Du(α(s))|2 = 1. Therefore,

this spacelike graph has unbounded hyperbolic angle.

Given a spacelike hypersurface S, we can take tangential components from equa-

tion (2.2) to obtain

∇Y ξ
⊤ + f(τ) g (N, ∂t) AY = f ′(τ)Y , (2.8)

where

ξ⊤ := f(τ) ∂⊤t = ξ + g (ξ,N)N (2.9)

is the tangential component of ξ along S, f(τ) := f ◦ τ and f ′(τ) := f ′ ◦ τ .

From (2.8), we have

f(τ) div
(
∂⊤t
)
+ g

(
∇f(τ), ∂⊤t

)
+ f(τ) g (N, ∂t) tr (A) = nf ′(τ) ,

where div denotes the divergence operator on S. Then, taking into account (2.5),

we deduce

∆τ = −f ′(τ)

f(τ)

{
n+ |∇τ |2

}
− nH g (N, ∂t) , (2.10)

where ∆ denotes the Laplacian operator on S. Therefore, we have the following

equation for a maximal hypersurface,

∆τ = −f ′(τ)

f(τ)

{
n+ |∇τ |2

}
. (2.11)

A straightforward computation from (2.11) gives
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∆f(τ) = −nf
′(τ)2

f(τ)
+ f(τ) (log f)′′ (τ)|∇τ |2 . (2.12)

Now, consider the function g (N, ξ) on a spacelike hypersurface S. It is easy to

obtain, using (2.2),

∇g (N, ξ) = −Aξ⊤ . (2.13)

The curvature tensors of S and M are denoted by R and R , respectively. The

Gauss equation is

g(R(X, Y )U, V ) = g(R(X, Y )U, V )− g(AY, U) g(AX, V ) + g(AX,U) g(AY, V ),

(2.14)

where X, Y, U, V ∈ X(S). From the previous equation, it is deduced that

Ric(X, Y ) = Ric(X, Y ) + g(R(N,X)Y,N) + nH g(AX, Y ) + g(A2X, Y ), (2.15)

where Ric denotes the Ricci tensor of S.

Now, the Codazzi equation, noticing that the normal bundle of the spacelike

hypersurface is negative definite, is expressed as follows,

R(X, Y )N = −(∇XA)Y + (∇YA)X , (2.16)

for all X, Y ∈ X(S), where R denotes the Riemannian curvature tensor of M . From

(2.13) and (2.16), we deduce that, for a maximal hypersurface,

∆g (N, ξ) = Ric(N, ξ⊤) + tr(A2) g(N, ξ) . (2.17)
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2.4 The maximal hypersurface equation

Let (F, g
F
) be an n(≥ 2)-dimensional Riemannian manifold and let f : I → R

+ be

a smooth function. For each u ∈ C∞(F ) such that u(F ) ⊆ I, we can consider its

associated graph Σu = {(u(p), p) : p ∈ F} in the GRW spacetime M = I×f F . The

graph of u is endowed with the inherited metric, that is represented on F by

g
u
= −du2 + f(u)2 g

F
,

which is Riemannian (i.e., positive definite) if and only if u satisfies |Du| < f(u)

everywhere on F , where |Du|2 = g
F
(Du,Du) and Du denotes the gradient of u in

(F, g
F
). The functions u and τ are naturally identified considering τ(u(p), p) = u(p),

for any p ∈ F .

When Σu is spacelike, the unit normal vector field on Σu, N , that satisfies

g(N, ∂t) > 0 is

N = − 1

f(u)
√
f(u)2 − |Du|2

(
f(u)2 ∂t +Du

)
,

and its associated mean curvature function is

H(u) = −div
(

Du

n f(u)
√

f(u)2 − |Du|2

)

− f ′(u)

n
√

f(u)2 − |Du|2

(
n+

|Du|2
f(u)2

)
. (2.18)

The differential equation H(u) = 0, under the constrain |Du| < f(u) is known as

the maximal hypersurface equation in M , and its solutions provide maximal graphs

in M .

By a Calabi-Bernstein type problem, we intend to determine all the entire solu-

tions (i.e., defined on all F ) to the maximal hypersurface equation in some cases. In

fact, we will focus here on Calabi-Bernstein results for the following elliptic PDE:
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div

(
Du

f(u)
√
f(u)2− | Du |2

)
= − f ′(u)√

f(u)2− | Du |2
(
n+

| Du |2
f(u)2

)
, (E.1)

| Du |< λf(u), 0 < λ < 1. (E.2)

Note that the constrain (E.2) assures that (E.1) is, actually, uniformly elliptic.

Besides, this constrain is related to the boundedness of the hyperbolic angle of the

graph Σu, namely, cosh θ < 1/
√
1− λ2. Alternatively, we have |Du|/f(u) = tanh θ,

where θ is the hyperbolic angle of the graph.

At this point, it is worth pointing out that an entire spacelike graph in a GRW

spacetime may not be complete, as the following example shows,

Example 2.4.1. (See [68] and references therein) In the 2-dimensional Lorentz-

Minkowski spacetime L2 = (R2,−dt2+dx2), we shall consider the graph of a smooth

function u which satisfies

{
u′(x) < 1 if |x| < 1

u′(x) =
√

1− exp(−|x|) if |x| ≥ 1 .

Undoubtly, it is a closed subset of L2, and its hyperbolic angle is not bounded. Since

its length is finite, this entire spacelike graph is not complete.

Thus, completeness of spacelike graphs must be proved before applying uniqueness

results to the parametric case. The following technical lemma provides sufficient

conditions,

Lemma 2.4.2. Let M = I×fF be a GRW spacetime, whose fiber is a (non-compact)



Chapter 2 54

complete Riemannian manifold. Consider a function u ∈ C∞(M), with Im(u) ⊆ I,

such that the entire graph Σu = {(u(p), p) : p ∈ M} ⊂ M is spacelike. If the

hyperbolic angle of Σu is bounded and inf f(u) > 0, then the graph (Σu, g) is complete,

or equivalently the Riemannian surface (F, gu) is complete.

Proof. The classical Schwartz inequality states

g(∇τ, v)2 ≤ g(∇τ,∇τ) g(v, v), for all v ∈ Tq(Σu)

and therefore

g(v, v) ≥ −g(∇τ,∇τ) g(v, v) + f(τ)2g
F
(dπ

F
(v), dπ

F
(v)),

which implies

g(v, v) ≥ f(τ)2

cosh2 θ
g
F
(dπ

F
(v), dπ

F
(v)),

and sup(cosh θ) <∞. If L(α) and Lu(α) denote the lengths of a smooth curve α on

F with respect to the metrics g
F
and gu, it is easily seen that

Lu(α) ≥ B inf(f(u))Lu(α),

where B = 1
sup(cosh θ)

. Therefore, since the Riemannian manifold (F, g
F
) is complete

and inf(f(u)) > 0, then the metric gu is also complete. �

Finally, we may recall that (E.1), under (E.2), can be obtained considering critical

points of the volume functional of a graph in a GRW spacetime,

vol(Σu, K) =

∫

K

f(u)n−1
√

f(u)2 − |∇u|2 dµgu , (2.19)

where dµgu is the canonical measure associated to gu and K is a compact subdomain

of F . Some straightforward canonical computations drive us from (2.19) to (E.1)

(see, for instance, [21]).
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Parabolicity of spacelike

hypersurfaces

In order to introduce the notion of parabolicity, first we need to provide the defi-

nitions of superharmonic and subharmonic functions. A function u defined in the

subdomain Ω of a Riemannian manifold M is said to be superharmonic providing it

is continuous and if, for any relatively compact region U ⊂⊂ Ω and any harmonic

function v ∈ C2(U) ∩ C(U), u ≥ v on ∂U implies u ≥ v on U . If u ∈ C2(Ω), then

the superharmonicity of u is equivalent to

∆u ≤ 0 ,

which comes from the maximum principle, where ∆ denotes the Laplacian operator

of M . A function u is said to be subharmonic provided that −u is superharmonic.

In all this thesis we will assume enough differentiability to take the last one as the

definition of superharmonic function.

A complete (non-compact) Riemannian manifold is said to be parabolic if the only

positive superharmonic functions are the constants (see, for instance, [62]).

55
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The study of parabolicity can be approached from different points of view. From

a physical one, for instance, it is necessary to understand the Brownian motion. This

phenomenon describes the irregular motion of microscopic particles in a still liquid.

It was already observed by the botanist R. Brown in 1828 with pollen grains in water.

However, it was not completely explained until 1905, when A. Einstein described it

as physical collisions of particles and molecules. This stochastic process was proved

to satisfy a diffusion equation, and a certain diffusion coefficient was computed. This

coefficient was experimentally confirmed by J. Perrin in 1908.

In a Riemannian manifold, parabolicity is equivalent to the recurrence of the

Brownian motion (see, for instance, [51]). Roughly speaking, the Brownian motion

is recurrent if any particle passes through any open set at an arbitrary large time.

On the other hand, parabolicity is also motivated from the heat equation. Let us

recall that any function p(t, x, y) on (0,∞) ×M ×M is a fundamental solution to

the heat equation provided that

∂p

∂t
− 1

2
∆p = 0 ,

in the (t, x) variables (taking fixed y) and, additionally, it satisfies the initial data

lim
t→0+

p(t, ·, y) = δy ,

where δy is the delta function of Dirac [51]. The heat kernel is the smallest posi-

tive fundamental solution to the heat equation on a Riemannian manifold (M, g).

J. Dodziuk proved that the heat kernel always exists (providing the Riemannian

manifold is complete) (see [51] and references therein). It is linked to the Brownian

motion as follows. Let p(t, x, y) be the heat kernel of a Riemannian manifold (M, g).

The probability of finding the particle in a measurable set Ω ⊂ M at the time t,

when the motion started at the point x, is

∫

Ω

p(t, x, y)dµ(y) ,
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where dµ(y) is the Riemannian measure of the slice (0,+∞)×M × {y}.

In relation to Analysis on Riemannian manifolds, let us recall that the Green

function G(x, y), x, y ∈ M , x 6= y, is the smallest positive fundamental solution to

the Laplace equation on M . When that function exists, it satisfies

∆G(·, y) = −δy .

Moreover, it can be related to the heat kernel of the heat equation. In fact, if the

heat kernel p(t, x, y) is known, then the Green function can be introduced by

G(x, y) :=
1

2

∫ ∞

0

p(t, x, y) dt .

The sign of the Green function decides about parabolicity. In fact, a Riemannian

manifold that admits a positive Green function cannot be parabolic. But the converse

also works: a complete (non-compact) Riemannian manifold is parabolic if and only

if it does not admit a positive Green function [70].

In Potential Theory and Theory of Electricity, parabolicity plays also a central

role [51]. Let Ω be an open set on a Riemannian manifold (M, g) and C be a compact

set in Ω. The capacity cap(C,Ω) is defined by

cap(C,Ω) = inf
φ∈L(C,Ω)

∫

Ω

|∇φ|2 dµ ,

where L(C,Ω) is the set of locally Lipschitz functions on M with compact support in

Ω and which satisfies 0 ≤ φ ≤ 1 and φ|C = 1. If Ω = M , then an exhaustion sequence

can be used to define the capacity. When Ω is relatively compact, the infimum in the

previous definition is attained by the harmonic function which satisfies the following

Dirichlet problem in Ω \ C, 



∆u = 0 ,

u|∂Ω = 0 ,

u|∂C = 1 .

The function u is known as the equilibrium potential. This terminology is inhereted
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from Electricity Theory. In fact, in physical terms, considering M is made of a

conducting material, and that there exists a potential difference of 1 between ∂Ω and

∂C (as the previous problem shows), then cap(C,Ω) is the conductivity of the piece

of M between ∂C and ∂Ω. Hence, cap(C,Ω)−1 is the resistance of that piece (from

Ohm’s law), and the function u is the electrostatic potential. In this environment,

the parabolicity of a Riemannian manifold is equivalent to the feature of having

infinite resistance to the current flow (into infinity) [85].

A similar definition of capacity of annulus in a Riemannian manifold can be

provided. If Br and BR (0 < r < R) denote geodesic balls centered at the point p in

a Riemannian manifold, we shall recall that

1

µr,R

:=

∫

Ar,R

| ∇ωr,R |2 dV

is the capacity of the annulus Ar,R := BR \ Br, being ωr,R the harmonic measure of

∂BR with respect to Ar,R, i.e., ωr,R is the solution to the previous Dirichlet problem,

when Ω = BR and C = Br, (for more details, see also [69, Section 2]). A complete

(non-compact) Riemannian manifold is parabolic if and only if 1
µr,R

→ 0 as R→∞
[69].

The following technical fact will be useful for some of our purposes, [91, Lemma

2.2] (which is a reformulation of [8, Lemma 2.1]),

Lemma 3.0.3. Let S be an n(≥ 2)-dimensional Riemannian manifold and let v ∈
C2(S) which satisfies v∆v ≥ 0. Let BR be a geodesic ball of radius R in S. For any

r such that 0 < r < R we have

∫

Br

|∇v|2 dV ≤
4 Sup

BR
v2

µr,R

,

where Br denotes the geodesic ball of radius r around p in S and 1
µr,R

is the capacity

of the annulus BR \Br.
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In a different environment, we may remark that there exist some other equivalent

definitions for parabolicity which are closely related to the previous ones. In fact, in

[51, Thm. 5.1], parabolicity of a Riemannian manifold is proved to be equivalent to

several conditions, such as: the recurrence of the Brownian motion, the capacity of

a Riemannian manifold, the non-finiteness of the Green function, etc.

Parabolicity of 2-dimensional Riemannian manifolds is very close to the classical

parabolicity of Riemann surfaces. In point of fact, the Riemannian version of the

classical uniformization theorem states that the universal Riemannian covering of a

2-dimensional Riemannian manifold is conformally equivalent to either the Euclidean

plane, or the unit disk or a round sphere. The first case corresponds to the notion

of parabolicity in the 2-dimensional case.

From a mathematical perspective, the study of parabolicity has been really fruit-

ful. Its utility to clarify the behavior of the solutions to certain PDEs is well-known.

In relation to Riemannian Geometry, many authors paid attention to these kind

of problems, for instance, in the search for conditions under which parabolicity can

be stated on a Riemannian manifold, or Maximum Principles or Liouville properties

(see, for instance, [51] and [62] for n-dimensional Riemannian manifolds and [4] and

references therein for the case of surfaces). Parabolicity of n-dimensional Riemannian

manifolds allows us to extend several classical results in the realm of analisys on R
n

to a wider range of applicability. For instance, the classical Liouville theorem holds

true on any parabolic Riemannian manifold.

In the 2-dimensional case, parabolicity is close to the behavior of the Gauss cur-

vature. In this sense, an early result by Ahlfors and Blanc-Fiala-Huber, [57], stated,

A complete 2-dimensional Riemannian manifold with non-negative Gauss

curvature must be parabolic.

As clear consequence, it brings along the parabolicity of any elliptic paraboloid
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of type z = a2 x2 + b2 y2, z, b ∈ R, ab 6= 0, in the Euclidean space R
3.

There exist several results which point in the same direction. Namely, the fol-

lowing one, stated by R.E. Grenne and H. Wu [50], that generalizes the previous

one,

If the Gauss curvature, K, of a complete Riemannian surface satisfies

K ≥ −1
r2 log r

, for r, the distance to a fixed point, sufficiently large, then

the surface must be parabolic.

Furthermore, in the same reference there is also a close criterion which comple-

ments the previous one,

If the Gauss curvature of a simply-connected complete Riemannian sur-

face satisfies K ≤ −(1+ǫ)
r2 log r

, for some ǫ > 0, and for r, the distance to a

fixed point, sufficiently large, then the surface must be non-parabolic.

The integrability of the Gauss curvature of a Riemannian surface can also deter-

mine parabolicity. Let us recall that a complete Riemannian surface (Σ, g
Σ
) is said

to have finite total curvature provided that the negative part of its Gauss curvature

is integrable. More precisely, if K denotes the Gauss curvature of Σ, then Σ has

finite total curvature when

∫

Σ

max {0,−K} dµ
Σ
<∞ . (3.1)

It is well-known that, (see [69, Sec. 10]),

A complete Riemannian surface with finite total curvature must be para-

bolic.

An easy consequence is that a complete Riemannian surface whose Gauss curva-

ture is non-negative outside a compact set, must be parabolic.
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By means of computing the total curvature, it can be found that, in Euclidean

space R3, any hyperboloid a2 x2+b2 y2−c2 z2 = d, a, b, c, d ∈ R
+, and any hyperbolic

paraboloid z = a x2 + b y2, ab < 0, must be parabolic.

In the n-dimensional case, parabolicity has no clear relationship with sectional

curvature. Indeed, the Euclidean space Rn is parabolic if and only if n ≤ 2. Moreover,

there exist parabolic Riemannian manifolds whose sectional curvature is not bounded

from below, as Example 3.0.4.

Nevertheless, parabolicity can be related with other geometrical properties of a

(complete, non-compact) Riemannian manifold (M, g), for example, the behavior of

the volume growth of geodesic balls. Denote by V (p, r) the volume of a geodesic ball

of radius r centered at p ∈M . We have, [52], [53], [61] and [108],

Let (M, g) be a complete Riemannian manifold. If, for some point p ∈M ,

it holds ∫ ∞

1

rdr

V (p, r)
=∞ ,

then M is parabolic.

Notice that the integral assumption in previous result holds if V (p, r) ≤ Cr2,

C ∈ R
+. Particularly, any complete Riemannian manifold with quadratic volume

growth must be parabolic.

Closely related, the behavior of the area of the boundary of geodesic balls can

also establish parabolicity. Denote by S(p, r) the area of the boundary of a geodesic

ball with radius r and center p ∈M . Then, it can be asserted, [52], [53] and [74],

Let (M, g) be a complete Riemannian manifold. If, for some p ∈ M , it

holds ∫ ∞

1

dr

S(p, r)
=∞ ,

then M is parabolic.
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Furthermore, the previous result is a characterization of parabolicity in spher-

ically symmetric Riemannian manifolds (see [51] and references therein). In the

2-dimensional case, it was previously proved by Ahlfors [1]. It is worth mentioning

that Ahlfors was one of the first authors to obtain faithful criteria for parabolicity.

We are now in position to provide an example of a parabolic Riemannian manifold

whose curvature is not bounded from below.

Example 3.0.4. [94] Let us consider the hemisphere

S
2
− := {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1, z ≤ 0}

in R
3 and the surface of revolution R given by

x(z, θ) = (f(z) cos θ, f(z) sin θ, z) ,

where θ ∈ [0, 2π), z ∈ [0,∞), and f(z) is a positive smooth function given by

f(z) =





h(z) 0 ≤ z ≤ 1

e−z
2

z ≥ 1

where h is suitably chosen and such that h(0) = 1, dk

dzk
|
z=0 h(z) = dk

dzk
|
z=0

√
1− z2

for all k. Construct a regular surface S in R
3 by joining S

2
− and R according to

(x, y, 0) ≡ (cos θ, sin θ, 0), θ ∈ [0, 2π) unique such that x = cos θ and y = sin θ. The

surface S is complete. In order to obtain that, note that the induced metric g on

the surface satisfies g ≥ dz2, for z ≥ 1. Therefore, if γ is a divergent curve on S, a

simple computation shows that its length is not bounded. On the other hand, the

area of S is finite since the area of {(x, y, z) ∈ S : z ≥ 1} is finite. Hence, the surface
S is parabolic. A straightforward computation shows that the Gauss curvature at

(x, y, z) ∈ S, z ≥ 1, only depends on z, K(z), and K(z)→ −∞ as z approaches ∞.

New parabolic Riemannian manifolds may be built from the previous criteria. For

example, it is clearly seen that the Riemannian product of a compact Riemannian
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manifold and a parabolic one is also parabolic [62]. In particular, the product man-

ifold of the real line R and any round sphere S
n, R × S

n, is parabolic. The same

happens if R is replaced by R
2.

Something important to decide whether a Riemannian manifold is parabolic or

not is the notion of quasi-isometry. The next section is devoted to give a clear

exposition about this topic.

3.1 Quasi-isometries

Let us recall that, given (P, g) and (P ′, g′) two Riemannian manifolds, a diffeomor-

phism φ from P onto P ′ is called a quasi-isometry provided that there exists a

constant c ≥ 1 such that

c−1|v|g ≤ |dφ(v)|g′ ≤ c |v|g

for all v ∈ TpP , p ∈ P (for more details see [58] and [59]). If there exists a quasi-

isometry from (P, g) onto (P ′, g′) we will say that (P, g) is quasi-isometric to (P ′, g′).

Obviously, to be quasi-isometric is an equivalence relation and isometric manifolds

are also quasi-isometric. Two quasi-isometric Riemannian manifolds are simultane-

ously complete or incomplete. Even more, we have, [51, Cor. 5.3], [59] and [100],

Parabolicity is invariant under quasi-isometries. That is, two quasi-

isometric Riemannian manifolds are simultaneously parabolic or non-

parabolic.

Remark 3.1.1. a) The universal Riemannian covering map R
3 → S

1×R
2 is a local

isometry. Note that S1×R
2 is parabolic, whereas R3 is not. Therefore, in the notion

of quasi-isometry, the diffeomorphism cannot be relaxed to be a local diffeomorphism.

However, observe that if a Riemannian covering M̃ of a Riemannian manifold M is
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parabolic, then M is also parabolic. In order to see that, we shall consider that there

exists a non-constant positive superharmonic function on M . Then, the composition

of this function with the projection M̃ → M results in another function with the

same properties on M̃ , which leads to a contradiction in the parabolity of M̃ . b)

The previous result also holds if the exterior of some compact subset in M is quasi-

isometric to the exterior of a compact subset in another Riemannian manifoldM ′ [51,

Cor. 5.3]. c) There exists a much weaker notion than quasi-isometry: the so-called

rough isometry (roughly isometric manifolds are not homeomorphic, in general).

Under this hypothesis, it is necessary to impose extra geometric assumptions (in

terms of the Ricci curvature and the injectivity radius) to obtain that parabolicity

is preserved by rough isometries [59].

Quasi-isometries can be used to construct new parabolic Riemannian manifolds

from some others previously given. Let us consider a parabolic Riemannian manifold

(M, g) and a bounded function f ∈ C∞(M) such that inf(f) > 0. Since the identity

map is a quasi-isometry, the Riemannian manifold (M, f 2 g) is also parabolic. In the

same direction, suppose that the Riemannian product of two Riemannian manifolds

(M1, g1) and (M2, g2) is parabolic, and consider h ∈ C∞(M1) such that inf(h) > 0

and sup(h) <∞. Then, the warped product (M1×M2, g1+h2 g2) is a new parabolic

Riemannian manifold. This follows from

(g1 + h2 g2)(v, v) ≤ g1(v1, v1) + sup(h2) g2(v2, v2)

≤ (1 + sup(h2))(g1 + g2)(v, v) ,

(g1 + h2 g2)(X,X) ≥ g1(v1, v1) + inf(h2) g2(v2, v2)

≥ min{1, inf(h2)} (g1 + g2)(v, v) ,

where v = (v1, v2).

As an adaptation of the previous procedure, it can be proved other specific cases.

Let (N, g
N
) be a compact Riemannian manifold, (M, g

M
) a parabolic Riemannian

manifold and let f ∈ C∞(N) satisfy min f > 0. Then, the warped product Rieman-
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nian manifold N ×f M is a new parabolic Riemannian manifold. On the other hand,

take a function h such that suph < ∞ and inf h > 0 on a parabolic Riemannian

manifold, (M, g
M
), and consider a compact Riemannian manifold, (N, g

N
). Then the

warped product Riemannian manifold M ×h N is parabolic.

Remark 3.1.2. There exists a family of 3-dimensional quasi-spherical Riemannian

manifolds which has a high interest for General Relativity [13]. Namely, on R
+× S

2

any metric

g = u2 dr2 + (β1 dr + r dθ)2 + (β2 dr + r sin θ dφ)2 , (3.2)

where u, β1 and β2 are unspecified metric components. Let us select u = u(r) ≥ c >

0, c ∈ R, β1 = β1(r) and β2 = 0. It is easily proved that

1

2
g(v, v) ≤ g0(v, v) ≤ 2 g(v, v) , (3.3)

for any tangent vector v, where g0 = (u2+β2
1)dr

2+r2
(
dθ2 + sin2 θ dφ2

)
. Notice that

g0 is spherically symmetric [51, p. 146]. Therefore, the quasi-isometry obtained from

(3.3) provides us a criterium to decide when a metric in (3.2), under our hypothesis,

must be parabolic.

3.2 Parabolicity of a complete spacelike hypersur-

face

When dealing with spacelike surfaces in certain 3-dimensional spacetimes, the parabol-

icity is sometimes attained as an intermediate step prior to its classification. For

instance, any maximal surface S in L
3 has non-negative Gauss curvature. Therefore,

if, in addition, the completeness of S is assumed, then S must be parabolic accord-

ing to the Ahlfors Blanc-Fiala-Huber theorem. On the other hand, any maximal

surface admits a positive harmonic function, which is constant if and only if it is a

portion of a plane [89]. Therefore, we end in the parametric version of the classical
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Calabi-Bernstein’s theorem [43] and [63]. More generally, some authors have ob-

tained parabolicity on spacelike surfaces in certain GRW spacetimes. For instance,

in the study of complete maximal surfaces in a Lorentzian product R × F , where

F has non-negative Gauss curvature, the parabolicity of the maximal surface can

be attained [4]. Analogously, the same happens for GRW spacetimes under certain

energy condition [25], [90].

Our approach will be valid not only for surfaces, but also in arbitrary dimen-

sions. We will adopt a completely different approach than previous ones so as to

get parabolicity of an n(≥ 2)-dimensional complete spacelike hypersurface in certain

GRW spacetimes.

In the Riemannian case, some authors have studied the case of parabolicity in

submanifolds. For instance, in a series of papers, [42], [75] and [76] (see also the

survey [85]), parabolicity is achieved by means of comparing a given Riemannian

manifold with a spherically symmetric Riemannian manifold, and using suitable

estimates of sectional curvatures.

In our environment, neither the intrinsic nor the extrinsic curvature assumption

is needed to hold parabolicity on a complete spacelike hypersurface. The fact that

parabolicity is preserved by quasi-isometries will be a key factor in order to state

that kind of results (see the previous section).

Let x : S −→ M be a spacelike hypersurface in a GRW spacetime (M, g) and

assume the induced metric g on S is complete. Suppose also that there exists a

positive constant c such that f(τ) ≤ √
c. Note that c can be used providing it

satisfies c ≥ 1. Under these hypotheses, we obtain that the projection of S on the

fiber F , π := πI ◦ x, is a covering map [9, Lemma 3.1].
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Now, for any tangent vector v at a point p ∈ S we have

g(v, v) = −g(∇τ, v)2 + f(τ)2g
F
(dπ(v), dπ(v))

≤ f(τ)2g
F
(dπ(v), dπ(v))

≤ c g
F
(dπ(v), dπ(v)) .

On the other hand, the classical Schwartz inequality results in

g(∇τ, v)2 ≤ g(∇τ,∇τ) g(v, v) ,

and therefore,

g(v, v) ≥ −g(∇τ,∇τ) g(v, v) + f(τ)2g
F
(dπ(v), dπ(v)),

which implies

g(v, v) ≥ f(τ)2

cosh2 θ
g
F
(dπ(v), dπ(v)).

Taking into account all these considerations, we obtain the following technical

result,

Lemma 3.2.1. Let S be a spacelike hypersurface in a GRW spacetime M , whose

hyperbolic angle is bounded. If the warping function on S satisfies:

i) sup f(τ) <∞, and

ii) inf f(τ) > 0,
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then, there is a constant c ≥ 1 such that

c−1 g
F
(dπ(v), dπ(v)) ≤ g(v, v) ≤ c g

F
(dπ(v), dπ(v)), (3.4)

for all v ∈ TpS, p ∈ S.

Now, recall a standard topological fact (see [54], for instance),

Lemma 3.2.2. Suppose given a covering map ρ : (Ẽ, x̃0) −→ (E, x0) and a con-

tinuous map h : (W, y0) −→ (E, x0), where W is a path connected and locally path

connected topological space. Then, there exists a lift h̃ : (W, y0) −→ (Ẽ, x̃0) of h if

only if h∗(π1(W, y0)) ⊂ ρ∗(π1(Ẽ, x̃0)).

Denote by (F̃ , g
F̃
) the universal Riemannian covering of (F, g

F
). We have,

Proposition 3.2.3. Suppose that a GRW spacetime M admits a simply connected

parabolic spacelike hypersurface S such that sup f(τ) < ∞, inf f(τ) > 0 and whose

hyperbolic angle is bounded. Then (F̃ , g
F̃
) is also parabolic.

Proof. From Lemma 3.2.2, we get a lift π̃ : S −→ F̃ of the mapping π : S −→ F .

Note that π̃ is in fact a diffeomorphism, and, from Lemma 3.2.1, we see that π̃ is a

quasi-isometry, leading to the parabolicity of (F̃ , gF̃ ) and, particularly, that (F, gF )

is parabolic. �

The previous proposition allows us to introduce the following notion,

Definition 3.2.4. A generalized Robertson-Walker spacetime is said to be spatially

parabolic provided that the universal Riemannian covering of its fiber is parabolic.

Note that the previous definition implies that the fiber of a spatially parabolic

GRW spacetime is also parabolic.
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We are now in position to state,

Theorem 3.2.5. Let S be a complete spacelike hypersurface in a spatially parabolic

GRW spacetime. If the hyperbolic angle of S is bounded and the warping function

on S satisfies:

i) sup f(τ) <∞, and

ii) inf f(τ) > 0,

then, S is parabolic.

Proof. First of all, under these hypotheses, we have that π is a covering map.

Moreover, inequalities (3.4) remain as stated in Lemma 3.2.1.

Let (S̃, g̃) be the Riemannian universal covering of (S, g) and denote by π̃S : S̃ −→
S the corresponding Riemannian covering map. Now, let us consider the Riemannian

universal covering (F̃ , gF̃ ) of the fiber (F, g
F
). Then, Lemma 3.2.2 can be claimed

to get a lift h̃ : S̃ −→ F̃ of the map h := π ◦ π̃S : S̃ −→ F . It is easy to see that h̃ is

in fact a diffeomorphism from S̃ onto F̃ . Note that (3.4) results now in

c−1 gF̃ (dh̃(ṽ), dh̃(ṽ)) ≤ g̃(ṽ, ṽ) ≤ c gF̃ (dh̃(ṽ), dh̃(ṽ)), (3.5)

for any ṽ ∈ Tp̃S̃, p̃ ∈ S̃, which means that h̃ is a quasi-isometry form (S̃, g̃) onto

(F̃ , gF̃ ).

Finally, from the parabolicity of the universal Riemannian covering of S, we obtain

that S is also parabolic. �

Remark 3.2.6. The hypotheses on f and on the hyperbolic angle in Theorem 3.2.5

automatically hold true if the spacelike hypersurface S is assumed to be compact

(consequently, the fiber should be compact) (compare with [9, Prop. 3.2]). On the
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other hand, if S lies between two spacelike slices, then the assumptions on f are also

satisfied.

As a direct consequence,

Corollary 3.2.7. Let S be a complete spacelike hypersurface in a static spatially pa-

rabolic GRW spacetime. If S has bounded hyperbolic angle, then it must be parabolic.

Remark 3.2.8. a) The boundedness on the hyperbolic angle cannot be dropped. In

fact, the hyperbolic plane H
2 in L

3 has unbounded hyperbolic cosine, and H
2 is not

parabolic. b) On the other hand, if only parabolicity on the fiber is assumed (not

the parabolicity of its universal Riemannian covering), then the conclusion is not

attained as in Theorem 3.2.5 in general. Even the remainder of the hypotheses hold

true. For instance, consider the static GRW spacetime with fiber S1 × R
2 and base

R (see Remark 3.1.1). Clearly, R3 can be seen as a (complete maximal) spacelike

hypersurface with constant hyperbolic angle.

However, a natural, physically realistic characteristic in a spacetime is the pres-

ence of an initial singularity of type Big-Bang, or a final one of type Big-Crunch.

As previously agreed, −∂t determines the future in M . Let C be a compact subset

of a spacelike slice t = t0 . The family of observers given by the vector field −∂t
on C can bring C into the past or the future by means of geodesic transport. The

assumption inf f > 0 prevents the volume of C (as a function of the time function t)

from decreasing arbitrarily. This fact does not seem to be consistent with the notion

of an initial or final singularity. Therefore, in order to shape more physically realistic

GRW spacetimes, it may be convenient avoid this hypothesis. Moreover, in this set-

ting, the assumption sup f <∞ guarantees that the volume of C does not increases

arbitrarily. On the other hand, from Chapter 1, we shall recall that if the fiber of a

GRW spacetime is complete (this is the case whenever it is parabolic) and inf f > 0,

with I = R, then the GRW spacetime is complete (Section 2.1). This fact avoids

the existence of a singularity (singularities are normally regarded as incompleteness

of timelike or lightlike inextendible geodesics).
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In a larger class of ambient spacetimes, we will deal with parabolicity of a certain

conformally related metric to the induced one on the spacelike hypersurface, as the

following result shows,

Theorem 3.2.9. Let S be a complete spacelike hypersurface in a spatially parabolic

GRW spacetime. If sup f(τ) <∞ and the hyperbolic angle of S is bounded, then S,

endowed with the conformal metric ĝ = 1
f(τ)2

g, is parabolic.

Proof. As in the proof of Theorem 3.2.5, we have that the universal Riemannian

covering of S, S̃, is diffeomorphic to the universal Riemannian covering of the fiber,

F̃ . Now, on S, we shall consider the conformal metric ĝ = 1
f(τ)2

g. As in the proof

of Lemma 3.2.1, the same reasoning leads us to

ĝ(v, v) ≤ g
F
(dπ(v), dπ(v)) , (3.6)

and

ĝ(v, v) ≥ 1

cosh2 θ
g
F
(dπ(v), dπ(v)) . (3.7)

From previous inequalities and the boundedness of the hyperbolic angle, a real num-

ber c ≥ 1 can be used such that

1

c
g
F
(dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ c g

F
(dπ(v), dπ(v)) ,

to build a quasi-isometry from the universal Riemannian covering of (S, ĝ) onto

the universal Riemannian covering of (F, g
F
). Now, the proof ends applying the

invariance of parabolicity under quasi-isometries. �

Remark 3.2.10. a) Under the assumptions in the previous theorem, g-completeness

on S implies ĝ-completeness. The hypothesis of g-completeness may be actually

weakened to the ĝ-completeness one, and the conclusion of the above theorem re-

mains. b) On the other hand, we note that, in terms of the conformal metric, a

similar result to Prop. 3.2.3, [95, Prop. 7] can be stated.
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Remark 3.2.11. For the case n = 2, notice that superharmonic functions of (S, g)

and of (S, ĝ) are the same. Owing to this fact, as (S, g) is complete, its parabolicity

comes from the ĝ-parabolicity. Therefore, Theorem 3.2.9 properly extends Theorem

3.2.5 for spacelike surfaces.

According to the conformal factor in previous theorem, a different geometry is con-

ferred to the spacelike hypersurface. To illustrate this, note that any non-complete

Riemannian manifold admits a conformal metric which is complete [80]. On the

other hand, in relation to parabolicity,

Example 3.2.12. Let us consider, on R
3, a spherically symmetric Riemannian met-

ric that, in polar coordinates, it is expressed as dr2+σ2(r)g
S2
. Take σ2 = 1/r outside

the compact set r ≤ 1. As it was pointed out in the previous section, there exists a

characterization result for parabolicity in this kind of manifolds (see [51, Cor. 5.6]).

Using that result, it can be proved that this Riemannian manifold is parabolic. Now,

consider the conformal metric obtain from the conformal factor

φ =

{
1/r for r ≥ 1

ξ(r) for r < 1 ,

where ξ(r) > 0 is such that φ is smooth. It is easily seen that the conformal metric is

complete. Furthermore, applying again the same characterization, a straightforward

computation shows that this conformal metric is not parabolic. Hence, parabolicity

of a Riemannian manifold does not hold true under a conformal change, in general.

We end this chapter with a sharp version of Theorem 3.2.9 for the case of an

entire spacelike graph Σ
u
in a spatially parabolic GRW spacetime (in fact, this is

one of the motivations for the introduction of this new technique, specially so as to

get the results in Section 5.2).

First, note that the boundedness assumption on f(τ) is only used in Theorem

3.2.9 in order to assert that π is a diffeomorphism (which is automatically true now).

Thus, we obtain
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Theorem 3.2.13. Let Σ
u
be an entire spacelike graph in a spatially parabolic GRW

spacetime. If the hyperbolic angle of Σ
u
is bounded, then the conformal metric ĝ =

1
f(u)2

g on Σ
u
is parabolic.





Chapter 4

Uniqueness of maximal

hypersurfaces

To start with, we must say that, throughout this chapter it will be frequently assumed

that (log f)′′ ≤ 0 (i.e., the convexity of − log f) on the warping function f of a GRW

spacetime M . From a mathematical point of view, this hypothesis has been widely

used to obtain uniqueness results for certain type of spacelike hypersurfaces (see, for

instance, [7], [25] and [27] and references therein). On the other hand, this inequality

has a curvature meaning which is relative to the ambient spacetime, [26], [67] and

[90]. In fact, as it has been pointed out in Chapter 2, if the GRW spacetime obeys

the TCC, then f ′′ ≤ 0, which is stronger than this condition.

Moreover, this inequality admits a reasonable physical interpretation. Note that

the divergence of the vector field T = −∂t in M is actually obtained from (2.2),

resulting in

div(T ) = −n f ′

f
.

In consequence, if f ′ < 0, then div(T ) > 0, and so, the comoving observers (i.e.,

the integral curves of T ) in M are, on average, spreading apart. Note that the

75
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assumption (log f)′′ ≤ 0 implies that

d

ds
(div(T ) ◦ γ)(s) ≥ 0

for any observer γ = γ(s) in the reference frame T . In addition, suppose that there

exists a proper time s0 of γ such that div(T )(γ(s0)) > 0. Then div(T )(γ(s)) > 0 for

any proper time s > s0 of γ. Therefore, the assumption (log f)′′ ≤ 0 favors the fact

that M models an expanding universe.

Throughout this Chapter the main procedure to achieve uniqueness results will

become Theorem 3.2.5. We refer to [94] in this part of the thesis.

4.1 The parametric case

Theorem 4.1.1. Let S be a complete maximal hypersurface of a proper spatially

parabolic GRW spacetime whose warping function f satisfies (log f)′′(t) ≤ 0. If the

hyperbolic angle of S is bounded, sup f(τ) < ∞ and inf f(τ) > 0, then S must be a

spacelike slice t = t0, with f ′(t0) = 0.

Proof. From Theorem 3.2.5, the spacelike hypersurface S must be parabolic. On

the other hand, equation (2.12) implies that f(τ) is superharmonic. Therefore, f(τ)

must be constant, which leads, due to the properness condition, to t = t0, where

f ′(t0) = 0. �

Remark 4.1.2. In the previous result and in the following, the assumption (log f)′′ ≤
0 may be relaxed to (log f)′′(τ) ≤ 0, since it is only required on S.

The family of non-horizontal spacelike hyperplanes in L
3 (note that it is a spa-

tially parabolic GRW spacetime) shows that the properness assumption is necessary.

Hence, for more general GRW spacetimes, an extra condition may be assumed to
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get the same conclusion as in the previous theorem.

On the other hand, boundedness assumptions on f(τ) remain if we assume that

S lies between two spacelike slices (see Remark 3.2.6). Hence, we have,

Theorem 4.1.3. Let S be a complete maximal hypersurface of a spatially parabolic

GRW spacetime whose warping function satisfies (log f)′′(t) ≤ 0. If the hyperbolic

angle of S is bounded and S lies between two spacelike slices, then S must be a

spacelike slice t = t0, with f ′(t0) = 0.

Proof. As in the proof of the previous result, we arrive to f(τ) constant. Using (2.12)

we obtain f ′(τ) = 0. This implies that τ is harmonic taking into consideration (2.11),

concluding the proof. �

Remark 4.1.4. In previous results, no assumption on the curvature of M is needed.

Other techniques to obtain uniqueness results of maximal hypersurfaces make use of

some curvature assumption on the GRW spacetime, i.e., on the curvature of the fiber

and on the warping function. Among the most relevant techniques, the Omori-Yau

generalized maximum principle [82], [111] needs the Ricci curvature of the (complete)

spacelike hypersurface be bounded from below [79], [111]. In Chapter 7 we will see

that this property comes from an analogous one on the fiber of the GRW spacetime.

Then, another kind of uniqueness results will be achieved. Nevertheless, there exist

Riemannian manifolds which are parabolic and whose Ricci curvature is not bounded

from below (see Example 3.0.4, [94]).

Remark 4.1.5. In order to illustrate the range of application of theorems 4.1.1 and

4.1.3, note that F may be taken as S
n−1 × R, n ≥ 2, endowed with the product

metric g+ds2, where g is an arbitrary Riemannian metric on S
n−1. The Riemannian

manifold F is parabolic (see Chapter 3). Among the GRW spacetimes constructed

with this fiber and whose warping function satisfies (log f)′′ ≤ 0, there is a relevant

subfamily. Let us assume that the metric g on S
n−1 has non-negative Ricci curva-

ture. In this case, g + ds2 also has non-negative Ricci curvature. Taking also into
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account that (log f)′′ ≤ 0, we obtain that the Ricci tensor of the spacetime M is

positive semi-definite on lightlike vectors. Hence, M satisfies the Null Convergence

Condition. On the other hand, it should be also highlighted that class of spacetimes

has reasonable spacelike symmetries apart from the timelike conformal one which

any GRW spacetime possesses. In fact, ∂s is a Killing vector field. This makes

any member of this family of spacetimes a suitable candidate to represent an exact

solution to the Einstein equation.

Now we will focus on the special case f = constant, i.e., the GRW spacetime is

static. We will change the assumption of boundedness between two spacelike slices in

Theorem 4.1.3 to the non-negativity of the Ricci curvature of the fiber. However, in

order to succeed, first we need a lower estimate of the Laplacian of sinh2 θ. Although

we will provide a direct proof of this estimate, it can be also deduced from [68,

Formulas 16, 17].

Lemma 4.1.6. Let S be a maximal hypersurface in a static GRW spacetime I × F .

The hyperbolic angle of S satisfies the following differential inequality

1

2
∆ sinh2 θ ≥ cosh2 θ trace(A2) + cosh2 θ RicF (NF , NF ) , (4.1)

where NF := N + g(N, ∂t) ∂t is the projection of N on the fiber and RicF denotes

the Ricci tensor of F .

Proof. We begin from (2.6) which suggests applying the Bochner-Lichnerowicz for-

mula, which holds true on any Riemannian manifold [30, p. 83] or [68, Sec. 3], to the

function τ . Taking into account (2.11), the Bochner-Lichnerowicz formula results in

1

2
∆ sinh2 θ = | Hess(τ) |2 + Ric(∇τ,∇τ) , (4.2)

where the first term of the right hand is the square length of the Hessian of τ and

Ric is the Ricci tensor of S. Now, from (2.8), we obtain

| Hess(τ) |2 = cosh2 θ trace(A2) . (4.3)
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On the other hand, from (2.15) and [83, Props. 7.42, 7.43] we obtain

Ric(∇τ,∇τ) = cosh2 θ RicF (NF , NF ) + g(A2∇τ,∇τ) . (4.4)

Finally, (4.1) directly follows (4.2) using (4.3) and (4.4). �

Theorem 4.1.7. Let S be a complete maximal hypersurface in a static spatially

parabolic GRW spacetime I × F . If the Ricci curvature of the fiber is non-negative

and the hyperbolic angle of S is bounded, then S must be totally geodesic.

Proof. First, we obtain that S is parabolic according to Theorem 3.2.5. On the other

hand, previous Lemma asserts that sinh2 θ is subharmonic and we may assume it

is bounded. Therefore, this function is constant. Finally, using again (4.1) we get

A ≡ 0, which concludes the proof. �

As a concrete application of the previous result we have,

Corollary 4.1.8. The only complete maximal hypersurfaces with bounded hyperbolic

angle in the static GRW spacetime M = R×F , where F = S
2m×R is endowed with

a product Riemannian metric g + ds2, where g is a Riemannian metric on S
2m with

non-negative Ricci curvature, are the hypersurfaces

{ (t, x, s) ∈ R× S
2m × R : a1t+ a2s+ a3 = 0 },

where a1, a2, a3 ∈ R satisfy −a21 + a22 < 0.

Proof. Taking into account Theorem 4.1.7, we only have to find all the complete

totally geodesic spacelike hypersurfaces in M . Since the unit normal vector field

N is parallel on S, its projection NF onto the fiber is also parallel. On the other

hand, the projection of NF on (S2m, g) must be parallel and, therefore, with constant

g-norm, which has to be zero. Otherwise, S2m will support a nowhere zero vector

field. Consequently, NF must be collinear with ∂/∂s, which ends the proof. �



Chapter 4 80

Remark 4.1.9. An analogous result to the previous one can be stated if the fiber

there is replaced by the parabolic Riemannian manifold F = S
2m×R

2. More gener-

ally, if the fiber consists of a Riemannian product of a parabolic Riemannian manifold

and S
2m under the assumptions of previous result, then we arrive to π

S2m
◦ x = con-

stant, that is, S has no dependence on the coordinates of S2m.

Remark 4.1.10. It should be recalled that S. Nishikawa [79] proved that a complete

maximal hypersurface in a locally symmetric Lorentzian manifold M whose Ricci

tensor satisfies Ric(X,X) ≥ 0 for any timelike tangent vectorX toM must be totally

geodesic. Note that the spacetime M in Corollary 4.1.8 is not locally symmetric,

generally speaking.

4.2 Calabi-Bernstein type problems

Here, we are going to present several uniqueness results for entire solutions of certain

PDEs as an application of the previous section.

As in Section 2.3, let us consider a complete Riemannian manifold (F, g
F
) and a

positive smooth function f : I → R. Any u ∈ C∞(F ) such that Im τ ⊆ I defines a

graph Σu in the GRW spacetime I ×f F . Denote by gu the inherited metric on the

graph, which is represented on F as gu = −du2 + f(u)2g
F
. Let us assume u satisfies

(E.2). Recall that this assumption implies that Σu is spacelike and has bounded

hyperbolic angle.

Clearly enough, the map π is always a diffeomorphism in the non-parametric case

(see Section 3.2). Furthermore, now Theorem 3.2.5 reads that every entire spacelike

graph with bounded hyperbolic angle and such that inf f(u) > 0, must be parabolic

providing the fiber is so.

Note that if the graph is defined by a bounded function u, then the assumption
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inf f(u) > 0 is trivially satisfied (see also Remark 3.2.6).

From Theorem 4.1.1 we obtain,

Theorem 4.2.1. Let f : I −→ R be a non-locally constant positive smooth function.

Assume f satisfies (log f)′′ ≤ 0, sup f <∞ and inf f > 0. The only entire solutions

to the equation (E) on a parabolic Riemannian manifold F are the constant functions

u = c, with f ′(c) = 0.

Now, as a direct consequence of Theorem 4.1.3 we obtain,

Theorem 4.2.2. Let f : I −→ R be a positive smooth function. Assume (log f)′′ ≤
0. The only bounded entire solutions to the equation (E) on a parabolic Riemannian

manifold F are the constant functions u = c, with f ′(c) = 0.

And from Corollary 4.1.8,

Theorem 4.2.3. The only entire solutions to the equation

div

(
Du√

1− | Du |2

)
= 0

| Du |< λ, 0 < λ < 1,

on (S2m×R, g+ds2) where g is a Riemannian metric on S
2m with non-negative Ricci

curvature, are the functions u(x, s) = as+ b, with a, b ∈ R, a2 < 1. �

To conclude, tet us remark that any function u on S
2m may be naturally extended
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to a function ũ on S
2m × R. A natural consequence of Theorem 4.2.3 is that if such

a ũ is a solution to the previous equation, then u must be a constant.



Chapter 5

Uniqueness of maximal

hypersurfaces: another more

general approach

Our starting point now will be Theorem 3.2.9, instead of Theorem 3.2.5 (the key

procedure throughout the previous Chapter). The advantage of this new approach

is that the assumption inf f > 0 can be dropped. Hence, GRW spacetimes are

allowed to have some kind of singularities, extending the class of GRW spacetimes

that we considered before (for a more detailed discussion see Section 3.2).

However, rather than dealing with the geometry of the induced metric, we will

use a certain pointwise conformal metric related to the induced one. The methods of

proof here are inspired from the developed ones in the previous Chapter. Again, most

uniqueness results have suppositions neither on the curvature of the GRW spacetime

nor on the maximal hypersurface. We refer to [95] for the results of this part of the

thesis.

83
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5.1 The parametric case

In order to being able to use Theorem 3.2.9, we may rewrite equations (2.11), (2.12)

and (2.17) in terms of the Laplacian ∆̂ of the conformal metric, ĝ = 1
f(τ)2

g, respec-

tively as follows,

∆̂τ = −f(τ)f ′(τ)
{
n +

n− 1

f(τ)2
|∇̂τ |2

ĝ

}
, (5.1)

∆̂f(τ) = −nf ′(τ)2f(τ) +
[
(log f)′′ (τ)− (n− 2)

f ′(τ)2

f(τ)2

]
f(τ) |∇̂τ |2

ĝ
, (5.2)

∆̂g(ξ,N) = f(τ)3
[
tr(A2) cosh θ + (n− 2)

f ′(τ)

f(τ)
g(A∇τ,∇τ)

]
+

f(τ)2 Ric(ξ⊤, N) . (5.3)

We are now in a position to state,

Theorem 5.1.1. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime which is not a complete static one. Suppose that sup f(τ) <∞ and

there exists a positive constant σ such that (log f)′′(τ) ≤ (n−2+σ f(τ)) (log f)′(τ)2.

If the hyperbolic angle of S is bounded, then S must be a spacelike slice t = t0, with

f ′(t0) = 0.

Proof. Let us consider the function v = − exp(−σf(τ))/σ+C on S, where C ∈ R is

taken in order to ensure that v > 0. From (5.2), the ĝ-Laplacian of this function is

∆̂v = e−σf(τ) f(τ)

(
(log f)′′(τ)− (n− 2 + σf(τ))

f ′(τ)2

f(τ)2

)
|∇̂τ |2

ĝ
−

n e−σf(τ) f(τ) f ′(τ)2 , (5.4)
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leading to ∆̂v ≤ 0.

On the other hand, (S, ĝ) is parabolic according to Theorem 3.2.9. Therefore, v

must be constant and, consequently, f(τ) is also constant. Regarding again (5.4),

we obtain that f ′(τ) = 0, and as a consequence of (5.1), τ is ĝ-harmonic. If f is

constant, then I must be a proper interval of R. Hence, τ is bounded from below

or from above, which means that τ is constant. In case f is not constant, there

are t1, t2 ∈ I, t1 6= t2, with f(t1) 6= f(t2). It cannot hold that t1 and t2 belong

simultaneously to τ(S). On the contrary, there exist p1, p2 ∈ S such that τ(p1) = t1

and τ(p2) = t2, and therefore f(τ(p1)) = f(t1) 6= f(t2)f(τ(p2)), which actually

contradicts the fact that f(τ) is constant. Therefore, we deduce that t1 or t2 does

not lie in the interval τ(S). In particular, τ is bounded from below or from above,

reaching again the conclusion that τ is constant. �

The previous result should be compared with Theorem 4.1.1. Here, the properness

assumption on the warping function is weakened so as to fulfill the requirement that

the spacetime is not simultaneously static and complete.

Remark 5.1.2. The condition required on the warping function is weaker than

(log f)′′(τ) ≤ 0, which is satisfied whenever the GRW spacetime obeys the Timelike

Convergent Condition (see Section 2.2). Uniqueness results of maximal hypersurfaces

in GRW spacetimes obeying some energy condition will be developed in Section 5.1.2.

Remark 5.1.3. In [55, p. 58], it is discussed that no physical inconvenience appears

providing the spacetime is analytic. For a GRW spacetime, this argument supports

that the warping function f is assumed to be analytic. In this case, the inequality

involving the derivatives of f in theorem above implies that it can attain a maximum

value at the most. Indeed, it is easily proved that, under that inequality, f cannot

have any minimum value (see Theorem 5.1.14 and Remark 5.1.15). On the other

hand, suppose that f has an inflection point at t
c
. That condition is tantamount

to the existence of a positive upper bound of (log f)′′/(log f)′2 in a neighborhood

of t
c
. Therefore, it is satisfied (log f)′′(t

c
) = 0, and an iterative process gives that
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(log f)i)(t
c
) = 0, for all derivation order i. Since log f is analytical, f must be

constant. Consequently, if f is analytic (and not constant), there must exist, at

the most, a maximal spacelike slice. Furthermore, notice that if such spacelike slice

exists, then supposition sup f <∞ can be dropped.

Remark 5.1.4. If the warping function does not obey the assumptions required,

some counterexamples can be found. Namely, consider the spatially parabolic GRW

spacetime (−
√
3,
√
3)×f R

2, where R2 is the Euclidean plane and the warping func-

tion is given by

f(t) = 2

√
2 +

√
−t4 + 2t2 + 3 ,

and the entire spacelike graph S =
{(

u(x, y), x, y
)
: (x, y) ∈ R

2, u(x, y) = tanh x
}
. It

is easily seen that there is a constant λ, 0 < λ < 1, such that |Du|
R2

< λf(u), where

D denotes the gradient on R
2 and |Du|2

R2
= g

R2
(Du,Du). Consequently, the graph

is complete and its hyperbolic angle is bounded. On the other hand, u is a solution

to the maximal hypersurface equation (E). Note that inf f(u) > 0, sup f(u) < ∞
and the GRW spacetime is proper.

In order to include the complete static GRW spacetimes to achieve a uniqueness

result, an extra hypothesis must be added (compare with Theorem 4.1.3).

Theorem 5.1.5. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime, M . Suppose that sup f(τ) <∞ and there exists a positive constant

σ such that (log f)′′(τ) ≤ (n−2+σ f) (log f)′(τ)2 . Assume also that the base I of M

is a proper interval or that S is bounded from below or from above. If the hyperbolic

angle of S is bounded, then S must be a spacelike slice t = t0, with f ′(t0) = 0.

Proof. The same reasoning as the one in the proof of Theorem 5.1.1 shows that

f ′(τ) = 0. From the supposition on I or its boundedness counterpart hypothesis on

S, we can consider C ∈ R such that τ + C is signed. On the other hand, we have

that τ is ĝ-harmonic from (5.1). Making use of Theorem 3.2.9, we get to know that

ĝ is parabolic, putting an end to the proof of the theorem. �
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Remark 5.1.6. The boundedness of the hypersurface cannot be dropped as the

non-horizontal spacelike planes in L
3 show.

Remark 5.1.7. If only the parabolicity of the fiber is required, the conclusion in

Theorem 5.1.5 cannot be reached (hence, our Definition 3.2.4 is accurate for our

purposes). In order to support this assertion, consider a compact 2-dimensional

Riemannian manifold of Gauss curvature −1, T . Let φ : H2 → T be the universal

Riemannian covering map, where H2 = {(x1, x2) ∈ R
2 : x2 > 0}, endowed with g

H2 =

(dx2
1 + dx2

2)/x
2
2, is the hyperbolic plane of Gauss curvature −1. Now, we will use the

entire complete maximal graph defined in [3, Ex. 5.2]. Explicitly, this graph is given

by the function

w(x1, x2) = i
2√
5
F

(
arcsin

(
i
x1

x2

)
,
1√
5

)
+ c ,

where c is a real constant, i stands for the imaginary unit and F (ξ, k) stands for the

elliptic integral of the first kind with elliptic modulus k and Jacobi amplitude ξ. In

the same paper it is shown that this graph has bounded hyperbolic angle. To prove

that the graph lies between two spacelike slices, first we should make a change of

parameters, taking x1 := r cos θ and x2 := r sin θ, where r > 0 and θ ∈ (0, π). In

these new variables, the following derivatives can be computed,

∂w

∂r
= 0

∂w

∂θ
=

1√
1 + 4 sin2 θ

.

Hence, what follows is the boundedness of the function. From this surface we will

build a complete maximal hypersurface in a GRW spacetime with parabolic fiber such

that its hyperbolic angle is bounded and lies between two spacelike slices. Concretely,

we take the GRW spacetime M ′ = R×1 (T ×R). Note that the fiber endowed with

the product Riemannian metric is parabolic. In order to provide the cited example,

consider the maximal graph S in the GRW spacetime R×1 (H
2×R) of the function w

given by w(x1, x2, s) = w(x1, x2). The maximal hypersurface x : S → R×1 (H
2 × R),

defined by the graph of w, naturally results in the desired maximal hypersurface

x : S → R×1 (T × R), using the Riemannian covering map φ.
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The same conclusion as the one in Theorem 5.1.5 is attained without needing the

boundedness on S whenever the warping function satisfies a stronger assumption,

Theorem 5.1.8. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime. Suppose that sup f(τ) < ∞ and there exists a positive constant σ

such that (log f)′′ (τ) < (n − 2 + σ f) (log f)′ (τ)2. If the hyperbolic angle of S is

bounded, then S must be a spacelike slice t = t0, with f ′(t0) = 0.

Proof. From (5.4), it follows that ∇̂τ vanishes. �

Remark 5.1.9. Under the hypothesis of the previous result, if such a maximal slice

t = t0 exists, then the warping function f(t) must attain a local maximum value

at t0. On the other hand, note that when (log f)′′(τ) < 0, or in particular when

f ′′(τ) < 0, the inequality in the result above is automatically fulfilled. Moreover,

note that, in any case, the GRW spacetime is proper.

5.1.1 Monotonicity of the warping function

Now, we will focus on the case when the warping function is monotone. From

a physical point of view, it can be interpreted as the fact that the expansion or

contraction of the universe never ceases.

Theorem 5.1.10. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime whose warping function is monotone. Suppose that sup f(τ) < ∞
and f ∈ L1(I). If the hyperbolic angle of S is bounded, then S must be a spacelike

slice t = t0, with f ′(t0) = 0.
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Proof. Consider a primitive F of f and define on S

F(τ(p)) =
∫ τ(p)

s0

f(s) ds ,

for all p ∈ S, where s0 = inf (τ). Clearly, F is bounded and so F(τ), and its

Laplacian on (S, ĝ) is found to be

∆̂F(τ) = −f ′(τ)
{
n f(τ)2 + (n− 2)|∇̂τ |2

ĝ

}
. (5.5)

Making use of the parabolicity of (S, ĝ), obtained from Theorem 3.2.9, we conclude

that F(τ) must be constant, leading to ∇̂τ = 0, which ends the proof. �

Remark 5.1.11. Note, here and from now on, that the integral condition is only

needed on the hypersurface, then it is enough to assume f ∈ L1(Im τ).

On the other hand, as the proof shows, if the warping function is non-decreasing

(resp. non-increasing), then the hypothesis of integrability can be weaken to∫ a

inf(I)
f(s) ds < ∞ (resp.

∫ sup(I)

a
f(s) ds < ∞), for some a ∈ I. From our chosen

time-orientation, when sup(I) ∈ R (resp. inf(I) ∈ R) the GRW spacetime M could

shape an expanding (resp. contracting) universe from an initial (resp. to a final)

singularity.

As a direct consequence of the theorem above,

Corollary 5.1.12. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime such that f ′(τ) is signed. If S has bounded hyperbolic angle and lies

between two spacelike slices, then S must be a spacelike slice t = t0, with f ′(t0) = 0.

The same characterization as in Theorem 5.1.10 is proved if the integrability

assumption on f is replaced by some boundedness of S.
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Theorem 5.1.13. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime. Suppose that f is non-decreasing (resp. non-increasing) and the

hypersurface is bounded from below or inf(I) > −∞ (resp. from above or sup(I) <∞
). If sup f(τ) < ∞ and the hyperbolic angle of S is bounded, then S must be a

spacelike slice t = t0 with f ′(t0) = 0.

Proof. Consider f to be non-decreasing. Up to an additive term, we may take τ ≥ 0.

From equation (5.1), we find that τ is ĝ-superharmonic. Hence, the ĝ-parabolicity

of S makes τ constant. The other case proceeds analogously. �

In the previous results, the conclusion f ′(t0) = 0 does not mean that t0 is a local

extreme, in general, because of the monotonicity of f . From now on, f is not sup-

posed to be monotone. Instead of that, we will assume that f has no local minimum,

which leads us to the following nice geometrical interpretation. The volume element

of any spacelike slice t = t0 satisfies dV{t0}×F = f(t0)
n dV

F
. If f attains a local mini-

mum at t = t0, then the spacelike slice t = t1 with t1 close to t0 have a bigger volume

element. This behavior is far from the geometrical notion of the area’s maximization

of a maximal hypersurface, which occurs in some spacetimes though [77].

Theorem 5.1.14. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime. Suppose that sup f(τ) < ∞, f has no local minimum and f ∈
L1(Im τ). If the hyperbolic angle of S is bounded, then S must be a spacelike slice

t = t0 with f ′(t0) = 0.

Proof. Under these assumptions, there are two cases for f : f has no local maximum,

or f has just one. Using Theorem 5.1.10, the only case we have to deal with is that

when f has a local maximum. Let c ∈ I be such that point. Define the function

G(z) =
∫ z

c

f(s) ds .
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Note that G ≥ 0 when z ≥ c, and G ≤ 0 when z ≤ c. Now, using (5.5), we obtain,

G(τ) ∆̂G(τ) = −G(τ) f ′(τ) f(τ)2
{
n+ (n− 2) |∇̂τ |2

ĝ

}
≥ 0 .

Lemma 3.0.3 can be stated, and, from the boundedness of G and ĝ-parabolicity, we

conclude that G is constant, putting and end to the proof. �

Remark 5.1.15. Let us consider I = (a, b), a < b, a, b ∈ R and f ∈ C∞(I), f > 0,

such that limt→a f(t) = limt→b f(t) = 0. It is clear that f attains a global maximum

at t0 ∈ (a, b). Suppose that t0 is the only critical point of f . Note that, from the

previous result, in any spatially parabolic GRW spacetime with warping function f ,

the unique complete maximal hypersurface with bounded hyperbolic is the spacelike

slice t = t0.

Notice that the example in Remark 5.1.3 shows that if the supposition that the

existence of a local minimum point is dropped, then the same conclusion is not

attained.

5.1.2 GRW spacetimes obeying certain energy condition

We will begin the uniqueness results of this subsection coming back to Theorem 3.2.5,

and assuming some energy condition on the GRW spacetime. First, the following

extension of Theorem 4.1.7 is proved,

Theorem 5.1.16. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime, M . Suppose that M obeys NCC, sup f(τ) < ∞ and inf f(τ) > 0.

If S has bounded hyperbolic angle, then S must be totally geodesic.

Proof. At each p ∈ S, we can state

Np = − cosh θ ∂t(p) + sinh θ y
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where y ∈ Tx(p)M , y ⊥ ∂t(p) and g(y, y) = 1. Using this formula, we rewrite (2.9) as

follows

ξ⊤p = −f(τ) sinh2 θ ∂t(p) + f(τ) cosh θ sinh θ y .

Using [83, Cor. 7.43], it is satisfied

Ric
(
Np, ξ

⊤
p

)
=

cosh θ sinh2 θ

f(τ)

[
RicF (y, y)− (n− 1)f(τ)2(log f)′′(τ)

]
, (5.6)

and, therefore Ric
(
N, ξ⊤

)
≥ 0 on S.

Now, having in mind (2.17), we get that g (N, ξ) is subharmonic. On the other

hand, S is parabolic as a consequence of Theorem 3.2.5. Therefore, the bounded

function g (N, ξ) must be constant. Using again (2.17), we conclude that the shape

operator of S vanishes identically. �

Note that the curvature hypothesis in the theorem above is automatically satisfied

if M obeys the TCC. On the other hand, it is also fulfilled under the hypothesis in

the following consequence,

Corollary 5.1.17. Let S be a complete maximal hypersurface in a spatially para-

bolic GRW spacetime. Suppose that the Ricci curvature of the fiber is non-negative,

sup f(τ) <∞, inf f(τ) > 0 and (log f)′′ (τ) ≤ 0. If S has bounded hyperbolic angle,

then S must be totally geodesic.

In the particular case that f is constant, S is a spacelike slice or the universal

Riemannian covering F̃ of F isometrically splits as R× F̃ ′, in which case the lift x̃

of the immersion x : S →M satisfies

x̃(S) =
{
(t, s, p) ∈ L

2 × F̃ ′ : (cosh θ) t+ (sinh θ) s = c
}

,

where θ and c are constants.
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Proof. If f is constant and I = R, then the projection NF of N on the fiber is

parallel. If NF = 0, there is nothing to prove. Otherwise, NF is a non-zero parallel

vector field on F , which can be lifted to F̃ keeping this property. Now, the de Rham

decomposition theorem [38] can be claimed to obtain the splitting F̃ = R × F̃ ′. A

straightforward computation ends the proof. �

Remark 5.1.18. a) The case in which f is constant and I is a proper interval of

R can be treated claiming Theorem 5.1.5 to get that the maximal hypersurface S is

a spacelike slice. On the other hand, if f is constant and I = R, the existence of

a point in the fiber at which the Ricci curvature is positive implies that S must be

a spacelike slice. b) Note that the last assertion in the previous result gives a wide

generalization of Corollary 4.1.8.

Theorem 5.1.19. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime M . Suppose that M obeys the TCC, sup f(τ) < ∞, inf f(τ) > 0,

and there exists a point in F where RicF > (n − 1)f 2 (log f)′′ g
F
holds. If S has

bounded hyperbolic angle, then S is a spacelike slice t = t0, with f ′(t0) = 0.

Proof. From Theorem 5.1.16, we obtain that g(N, ξ) = f(τ) cosh θ is constant and

Ric
(
N, ξ⊤

)
= 0. According to (5.6), there exists a point where the hyperbolic angle

of S vanishes. As the GRW spacetime obeys TCC, Theorem 4.1.1 can be recalled to

get that f(τ) is constant. Therefore, the hyperbolic angle identically vanishes. �

Remark 5.1.20. It should be noted that Theorems 5.1.16 and 5.1.19 hold true when

n = 2 without the supposition inf f(τ) > 0 (see Remark 3.2.11).

We finish this section with another characterization of totally geodesic spacelike

hypersurfaces. The energy assumption on the ambient spacetime will remain, and a

new one will be taken for granted.

Given a spacelike hypersurface x : S → M in a GRW spacetime M consider,

at any p ∈ S, the greatest eigenvalue in absolute value of the shape operator A,
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||A||
∞
(p) and also |f ′(τ(p))|/f(τ(p)), i.e., the same quantity associated with the

spacelike slice which contains x(p). It is natural to wonder under what hypothesis

involving ||A||
∞
(p) and |f ′(τ(p))|/f(τ(p)) we can deduce that S is totally geodesic

in M . In this direction we prove,

Theorem 5.1.21. Let S be a complete maximal hypersurface in a spatially parabolic

GRW spacetime, M . Suppose that M obeys the NCC and sup f(τ) <∞. Assume

||A||
∞
(p) ≥ (n− 2) sinh θ(p) |f ′(τ(p))|/f(τ(p)) , (5.7)

for all p ∈ S. If S has bounded hyperbolic angle, then S is totally geodesic.

Proof. First, (S, ĝ) is parabolic from Theorem 3.2.9.

On the other hand, at any point p ∈ S, it is not difficult to see that

tr
(
A2
)
cosh θ ≥ ||A||2

∞
sinh θ .

From these suppositions, this inequality can be expressed as

tr
(
A2
)
cosh θ ≥ (n− 2) sinh2 θ ||A||

∞

|f ′(τ)|
f(τ)

,

which clearly implies,

tr
(
A2
)
cosh θ + (n− 2)

f ′(τ)

f(τ)
g(A∇τ,∇τ) ≥ 0 .

Making use again of (5.6), the NCC and the previous inequality gives that g(N, ξ)

is ĝ-subharmonic, according to (5.3). The proof ends resulting that A = 0 holds as

a consequence of equation (5.3). �

Remark 5.1.22. The assumption (5.7) on the theorem above holds true providing
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the following inequality is satisfied,

tr(A2)(p) ≥ (n− 2)2 sinh2 θ(p)

n2
tr(A2

t(p)) ,

where At(p) denotes the shape operator of the spacelike slice t = t(p). On the other

hand, note that in the case of 2-dimensional fiber, the hypothesis (5.7) is always

satisfied (compare with [25]). For the case n > 2, we may rewrite the previous

inequality as follows,

n2

(n− 2)2
|σ|2 + |σ

t(p)
|2 ≤ −n cosh2 θ(p)

f ′(τ(p))2

f(τ(p))2

at any p ∈ S, where |σ|2 := −tr(A2) and |σ
t(p)
|2 := −tr(A2

t(p)) are the squared lengths

of the second fundamental forms of S at p and of the spacelike slice t = t(p) (note

that the normal bundle of a spacelike hypersurface is negative definite). Notice that

the right member in this inequality is the squared length of the second fundamental

form of the spacelike slice t = t(p) projected onto the Np-direction of Tx(p)M , which

may be denoted by |σN
t(p)
|2. Finally, a sufficient condition for the inequality (5.7) to

be held is

|σ|2(p) + |σ
t(p)
|2 ≤ |σN

t(p)
|2 .

Corollary 5.1.23. Under the same assumptions as those in Theorem 5.1.21, for

n ≥ 3,

i) If M is a Lorentzian product R×F with the universal Riemannian covering F̃

of F satisfying F̃ = R× F ′, then

x(S) = {(t, s, x) ∈ R× R× F ′ : t = a s+ b} ,

for some a, b ∈ R such that |a| < 1.

ii) Otherwise, S is a spacelike slice.

Proof. (i) Let S be a totally geodesic complete hypersurface. Some straightforward



Chapter 5 96

computations show that NF is a parallel vector field on F . If |NF | 6= 0, then we have

a parallel vector field globally defined on F . Hence, the De Rham decomposition

theorem can be used to end this case.

(ii) From (5.7), we have sinh θ f ′(τ) = 0. We state that S ⊂ {t : f ′(t) = 0} × F .

In fact, let us assume that there exists a point p ∈ S such that f ′(π
I
(x(p))) 6= 0. We

may find a neighbourhood of p such that f ′(x(S|U)) 6= 0. Hence, sinh2 θ|U = 0. This

implies that S must be a portion of a spacelike slice. Then, we find a contradiction

with the maximality of S. Now, notice that the geodesics of S (also geodesics of M)

may be written as (a s + b, σ(s)), with a, b ∈ R, |a| < 1 and σ(s) a geodesic of F .

From the completeness of S, we have that if S is not a spacelike slice, then M is

complete and static. Contradiction. �

5.2 Calabi-Bernstein type problems

The key technical factor to be used throughout this section is Theorem 3.2.13.

The first non-parametric uniqueness result for the maximal hypersurface equation

(E) in Section 2.4 follows from Theorem 5.1.1,

Theorem 5.2.1. Let f : I → R
+ be a non-constant smooth function. Assume f

satisfies (log f)′′ ≤ (n−2+σf) (log f)′2, for some σ ∈ R
+. The only entire solutions

to equation (E) on a parabolic Riemannian manifold F are the constant functions

u = c, with f ′(c) = 0.

Remark 5.2.2. Consider the family of spatially parabolic GRW spacetimes with

fiber R2 and warping function fm : (0,∞) → R, fm(t) = tm, m ∈ R, m 6= 0. Note

that the classical 3-dimensional Einstein-de Sitter spacetime is included in this family

taking m = 2/3. The previous result may be interpreted as the fact that none of
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the GRW spacetimes of this family admits any maximal entire graph with bounded

hyperbolic angle.

As a direct consequence of Theorem 5.1.5 we obtain,

Theorem 5.2.3. Let f : I → R
+, I 6= R (resp. I = R ) be a smooth function.

Assume (log f)′′ ≤ (n−2+σ f) (log f)′2, for some σ ∈ R
+. The only entire solutions

(resp. bounded from below or from above entire solutions) to equation (E) on a

parabolic Riemannian manifold F are the constant functions u = c, with f ′(c) = 0.

Under a sharper assumption on f , from Theorem 5.1.8, we obtain,

Theorem 5.2.4. Let f : I → R
+ be a positive smooth function. Assume f satisfies

(log f)′′ < (n − 2 + σf) (log f)′2, for some σ ∈ R
+. The only entire solutions

to equation (E) on a parabolic Riemannian manifold F are the constant functions

u = c, with f ′(c) = 0.

Another result, drawn from Theorem 5.1.10,

Theorem 5.2.5. Let f : I → R
+ be a positive monotone smooth function which sat-

isfies f ∈ L1(I). The only entire solutions to equation (E) on a parabolic Riemannian

manifold F are the constants u = c, with f ′(c) = 0.

The integrability supposition on f may be replaced by the boundedness of the

solution, as in Theorem 5.1.13,

Theorem 5.2.6. Let f : R→ R
+ be a non-increasing (resp. non-decreasing) smooth

function. The only bounded from below (resp. from above) entire solutions to equation

(E) on a parabolic Riemannian manifold F are the constant functions u = c, with

f ′(c) = 0.
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Theorem 5.2.7. Let f be a a positive smooth function defined on a proper interval

I, sup I < ∞ (resp. inf I > −∞ ) non-increasing (resp. non-decreasing). The

only entire solutions to equation (E) on a parabolic Riemannian manifold F are the

constant functions u = c, with f ′(c) = 0.

Requiring some global behavior on f , from Theorem 5.1.14 we arrive to

Theorem 5.2.8. Let f : I → R
+ be a smooth function with no local minimum points

and such that f ∈ L1(I). The only entire solutions to equation (E) on a parabolic

Riemannian manifold F are the constant functions u = c, with f ′(c) = 0.

We conclude this Chapter with the non-parametric versions of Corollary 5.1.17

and Theorem 5.1.19,

Theorem 5.2.9. The only entire solutions to

div

(
Du√

1− | Du |2

)
= 0

| Du |< λ, 0 < λ < 1,

on a parabolic Riemannian manifold F with non-negative Ricci curvature are:

i) If the universal Riemannian covering F̃ of F is reducible and satisfies F̃ =

R× F̃ ′, g
F̃
= ds2 + g

F̃ ′
, then u = tanh θ s+ d, where θ and d are constants.

ii) Otherwise, u is the constant functions.

Theorem 5.2.10. Let f : I → R
+ be a bounded smooth function such that inf(f) >
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0. Let (F, g
F
) be an n(≥ 2)-dimensional parabolic Riemannian manifold obeying

RicF > (n− 1)f 2(log f)′′ g
F
. Then, the only entire solutions to equation (E), which

are bounded from below or from above, are the constant functions u = c, with f ′(c) =

0.





Chapter 6

Spacelike surfaces with controlled

mean curvature function

In this chapter we shall consider a special subclass of spatially parabolic GRW space-

times. We focus on the case in which the spacetime has 2-dimensional fiber with

finite total curvature. From a geometrical point of view, this kind of GRW space-

times leads to a wide generalization of those Robertson-Walker spacetimes with fiber

the Euclidean plane R
2, altough their fibers keep properties of R2: its area growth

is quadratic at most and they are parabolic Riemannian manifolds (see Chapter 3).

The results obtained here generalize those firstly studied in [92], where the fiber

of the GRW spacetimes is R2, and [93], where the fiber is assumed to be compact.

We will follow here a different approach than the one in the previous chapters.

First, we consider the non-parametric case and, later, the parametric one as an

application.

Let f : I −→ R be a positive smooth function on an open interval I = (a, b),

−∞ ≤ a < b ≤ ∞, in the real line R and let Ω be an open domain of a Riemannian

101
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surface (F, g
F
). For each u ∈ C∞(Ω) such that |Du| < f(u), where |Du| stands

for the length of the gradient of u, we take into account the smooth function H(u),

which was given in (2.18) with n = 2. Recall that, geometrically, H(u) is the mean

curvature function of the spacelike graph given by u in the GRW spacetime I ×f F .

We will consider here the following non-linear differential inequality

H(u)2 ≤ f ′(u)2

f(u)2
(I.1)

| Du |< λf(u), 0 < λ < 1. (I.2)

on a (non-compact) complete manifold.

The geometric meaning of (I.2) is that the graph of u is spacelike and its hyperbolic

angle is bounded. From a physical point of view, it assures that the relative speed

between the observers N(p) and −∂t(p) does not approach to the speed of light in

vacuum (see Chapter 1). On the other hand, (I.1) means that at the point of the

graph of u corresponding to p0, p0 ∈ F , the absolute value of the mean curvature

is at the same quantity for the graph of constant function u = u0 at most, where

u0 = u(p0).

Note that instead of assuming that H is constant, as in the case of the constant

mean curvature spacelike graph equation, we only assume a natural comparison

inequality between H(u) and f ′(u)/f(u). From now on, inequality (I) will mean

inequality (I.1) with the additional assumption (I.2).

Notice that a maximal surface trivially satisfies (I). Therefore, our results here can

be restricted to that case. Even more, under reasonable assumptions on the ambient

spacetime, a complete spacelike surface with constant mean curvature which lies

between two spacelike slices must satisfy the inequality, [24] and [90].

It is clear that the constant functions are entire solutions to inequality (I). Our



103 Chapter 6

main aim in this chapter is to state several converses, that is, finding conditions

under which the only entire solutions to (I) are the constant functions (the contents

in this chapter were previously published in [96]).

6.1 The Gauss curvature of a spacelike surface

Let (S, g) be a spacelike surface in a GRW spacetime (M, g). According to (2.15),

using a local orthonormal frame field {E1, E2, E3} on M which is adapted to S (that

is, {E1, E2} are tangent to S and E3 = N), we obtain

2K =
2∑

i=1

Ric(Ei, Ei) =
2∑

i=1

Ric(Ei, Ei) +
2∑

i=1

g(R(N,Ei)Ei, N)− 4H2 + trace(A2),

where K is the Gauss curvature of S. Using [83, Prob. 7.13], the previous equation

can be rewritten as follows

K =
f ′(τ)2

f(τ)2
+
{KF (π

F
)

f(τ)2
−(log f)′′(τ)

}
| ∇τ |2 +KF (π

F
)

f(τ)2
−2H2+

1

2
trace(A2). (6.1)

Note that, when the GRW spacetime obeys the NCC, then the inequality H2 ≤ f ′(τ)2

f(τ)2

implies, taking into account (6.1), that K ≥ KF (πF )
f(τ)2

, i.e., at each p ∈ S, K(p) is at

least the Gauss curvature of the slice t = τ(p) at the point π
F
(p).
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6.2 The restriction of the warping function on a

spacelike surface

Now, following the Gauss formula, taking into account ξ⊤ = f(t) ∂⊤t and (2.5), the

Laplacian of τ satisfies

∆τ = −f ′(τ)

f(τ)

{
2 + |∇t|2

}
− 2H g(N, ∂t) . (6.2)

A direct computation obtained from (2.5) and (6.2) results in

∆f(τ) = −2 f ′(τ)2

f(τ)
+ f(τ)(log f)′′(τ)|∇τ |2 − 2f ′(τ)H g(N, ∂t) , (6.3)

for any spacelike surface of the GRW spacetime M .

Let us consider the function log f(τ) defined on the surface S. The Laplacian of

this function satisfies

∆f(τ)

f(τ)
= ∆ log f(τ) +

f ′(τ)2

f(τ)2
|∇τ |2.

On the other hand, from (6.3) we have

∆f(τ)

f(τ)
= −

(f ′(τ)
f(τ)

+H g(N, ∂t)
)2

+
(
H2 − f ′(τ)2

f(τ)2

)
g(N, ∂t)

2 +
f ′′(τ)

f(τ)
|∇τ |2 (6.4)

and as consequence

∆ log f(τ) = −
(f ′(τ)
f(τ)

+H g(N, ∂t)
)2

+
(
H2 − f ′(τ)2

f(τ)2

)
g(N, ∂t)

2

+(log f)′′(τ)|∇τ |2. (6.5)
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Notice that if (log f)′′(τ) ≤ 0 and H2 ≤ f ′(τ)2
f(τ)2

, then ∆ log f(τ) ≤ 0. Particularly,

if M obeys the TCC (or the NCC with KF ≥ 0), then for any spacelike surface S in

M such that H2 ≤ f ′(τ)2
f(τ)2

, we obtain ∆ log f(τ) ≤ 0.

6.3 Uniqueness results for entire solutions to in-

equality (I)

First, let us recall that a spacelike graph in a GRW spacetime is complete because

of Lemma 2.4.2. Then, we are in a position to state the first characterization result

(compare with [92, Th. 4.8] and [90, Th. 4.1]),

Theorem 6.3.1. Let (F, g
F
) be a complete Riemannian surface with finite total

curvature and let f : I −→ (0,∞), I ⊂ R be a smooth function such that f is

not locally constant, inf f > 0 and (log f)′′ ≤ 0. Then, the only entire solutions to

inequality (I) are the constants.

Proof. Let u be an entire solution to the inequality (I). From Lemma 2.4.2 we infer

that the Riemannian surface (F, gu) is complete. Making use of equality (6.1), we

obtain

−f(u)2Ku ≤ −KF cosh θ, (6.6)

where Ku denotes the Gauss curvature of the Riemannian surface (F, gu).

We can write

∫

F

max {0,−Ku} dVgu =

∫

F

max {0,−Ku}
f(u)2

cosh2 θ
dVg

F
≤

∫

F

max
{
0,−KF

}
dVgF <∞,

thus Σu has finite total curvature.

Now, let us consider the function f ◦ τ : Σu −→ (0,∞). Since that inf f > 0,
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there is a suitable constant D such that log f(τ) +D ≥ 0 and let us define

v := arccot(log f(τ) +D) : Σu −→ (π, 2π).

A direct computation drawn from (6.5) results in v∆v ≥ 0 and Lemma 3.0.3 can

be recalled. Therefore, if BR denotes a geodesic disc of radius R around a fixed

point p in Σu, then, for any r such that 0 < r < R, there exists a positive constant

C = C(p, r) such that ∫

Br

|∇f(τ)|2 dV ≤ C

µr,R

, (6.7)

where Br is the geodesic disc of radius r around p in Σu, and
1

µr,R
is the capacity

of the annulus BR \ Br. Now, the parabolicity of Σu implies 1
µr,R

→ 0 as R → ∞.

Hence, if R approaches infinity from a fixed arbitrary point and a fixed r, we obtain

that the function f(τ) must be constant, thus τ ≡ u is constant. �

In the case of a non-necessarily proper GRW spacetime, we obtain the following

result.

Theorem 6.3.2. Let (F, g
F
) be a complete Riemannian surface with finite total

curvature and let f : I −→ (0,∞), I ⊂ R be a smooth function such that inf f > 0

and (log f)′′ ≤ 0. Then, the only entire solutions to inequality (I), which are bounded

from above or from below are the constants.

Proof. Following back on the previous result, we have f(τ) = constant. Let

us assume first that u is bounded from below and let us consider the non-negative

function

F(τ) =
∫ τ

inf u

f(s)ds.

From (6.4) we obtain that the function F(τ) is harmonic, thus F(τ) is constant.

Note that as

∇F(τ) = f(τ)∇τ,

consequently τ ≡ u must be constant.
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When u is bounded from above, it is enough for our purpose to take the non-

positive function

G(τ) =
∫ τ

supu

f(s)ds

and the result is drawn. �

Remark 6.3.3. The boundedness assumption on the solutions cannot be dropped

in the previous Theorem. Indeed, consider F = R
2 with its Euclidean metric and

f ≡ 1. It is clear that every function u(x, y) = a x + b y + c, with a, b, c ∈ R such

that
√
a2 + b2 < 1 is a solution to inequality (I).

Taking into account Remark 3.2.6, we can state,

Corollary 6.3.4. Let (F, g
F
) be a complete Riemannian surface with finite total

curvature and let f : I −→ (0,∞) be a smooth function such that (log f)′′ ≤ 0.

Then, the only entire bounded solutions to inequality (I) are the constants.

6.4 Applications to the parametric case

In order to apply the previous results to the parametric case, we need an extra

topological hypothesis.

Let us consider a GRW spacetime M = I ×f F , whose fiber is a 2-dimensional

complete Riemannian manifold. Recall that if the warping function is bounded on a

complete spacelike surface x : S −→M , then

π̃ := π
F
◦ x : S −→ F

is a covering map (Section 3.2).
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Let us consider a point p0 ∈ F be and p̃0 ∈ S such that π̃(p̃0) = p0. Denote by

A =
π1(F, p0)

π̃∗(π1(S, p̃0))

the set of all left cosets of π̃∗(π1(S, p̃0)) in π1(F, p0). It is well-known that

♯(π̃−1(p0)) = ♯(A).

Now, let us assume ♯(A) < ∞. Thus, S covers ♯(A)-times the fiber. Moreover,

taking into account the reasoning in Theorem 6.3.1, it is not difficult to see that S

also has finite total curvature.

Once we have assured that S has finite total curvature, from the results of the

previous section we can obtain new uniqueness results. The first one is,

Theorem 6.4.1. Let M = I×f F be a proper GRW spacetime, whose 2-dimensional

fiber has finite total curvature. Let S be a complete spacelike surface in M , such that

function f(τ) is bounded on S, (log f)′′(τ) ≤ 0 and ♯(A) < ∞. Suppose that the

inequality

H2 ≤ f ′(τ)2

f(τ)2

holds on S, being H the mean curvature function of S. Then S is a spacelike slice.

Proof. Since the spacelike surface S is complete with finite total curvature, the

reasoning in Theorem 6.3.1 can be applied so as to conclude that f(τ) is constant.

�

Remark 6.4.2. a) Consider F = S
1×R endowed with its canonical product metric,

and f an arbitrary positive smooth function. Set S = F . For each positive integerm,

let x : S → I ×f F be the spacelike immersion given by x(eiθ, s) = (t0 , e
imθ, s). This

example shows that there exist surfaces with arbitrary ♯(A). b) However, we cannot
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force the fact that the fundamental group of the fiber is finite unless it is trivial.

This is due to the fact that the fundamental group of any non-compact surface must

be free (see, for instance, [54]).

When I = R, F = R
2 and f(t) = et, the corresponding Robertson-Walker space-

time N is isometric to a proper open subset of the De Sitter spacetime of sectional

curvature 1, which is known as the 3-dimensional steady state spacetime. Let us

recall that a spacelike surface S in N is said to be bounded away from future infinity

if sup τ(S) <∞.

As an application of Theorem 6.4.1, we can give the following result, which extends

[24, Thm. 6.20],

Corollary 6.4.3. The only complete spacelike surfaces in the steady state spacetime

whose mean curvature function satisfies H2 ≤ 1 and are bounded away from future

infinity are the spacelike slices.

As a consequence of Theorem 6.3.2 we obtain,

Theorem 6.4.4. Let M = I ×f F be a GRW spacetime, whose 2-dimensional fiber

has finite total curvature. Let S be a complete spacelike surface in M such that

♯(A) <∞ and

a) S is bounded from above and (log f)′′(τ) ≤ 0, or

b) S is bounded from below, f(τ) is bounded on S and (log f)′′ ≤ 0.

Suppose that the inequality

H2 ≤ f ′(τ)2

f(τ)2

holds on S, being H the mean curvature function of S. Then S is a spacelike slice.
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Compare Theorem 6.4.1 and 6.4.4 with [92, Cor. 4.3]. In the particular case of

H = 0, we obtain,

Corollary 6.4.5. Let M = I ×f F be a GRW spacetime, whose 2-dimensional fiber

has finite total curvature. Let S be a complete maximal surface S in M such that

♯(A) <∞ and

a) S is bounded from above and (log f)′′(τ) ≤ 0, or

b) S is bounded from below, f(τ) is bounded on S and (log f)′′ ≤ 0.

Then S must be a spacelike slice t = c, with f ′(c) = 0.

Remark 6.4.6. a) Note that in the previous Corollary, if the base of the spacetime is

an interval bounded from below or from above, we can drop the timelike boundedness

assumption on the spacelike surface. b) If (log f)′′ ≤ 0 and there exists t0 ∈ I such

that f ′(t0) = 0, then f is bounded. Moreover, if f is not locally constant then this

zero of f ′ is unique.

We are now ready to state the following wider extension of [67, Cor. 5.1] and [92,

Cor. 4.4].

Corollary 6.4.7. Let M = I×f F be a proper GRW spacetime, whose 2-dimensional

fiber is simply connected and has finite total curvature and its warping function

satisfies (log f)′′ ≤ 0. If there exists a maximal slice in M , then it is the only

complete maximal surface in M .

If the boundedness assumptions on Theorem 6.4.4 are dropped, with extra hy-

potheses on H, we get the following result,

Theorem 6.4.8. Let M = I ×f F be a GRW spacetime, whose 2-dimensional fiber
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has finite total curvature. Let S be a complete spacelike in M , such that the warping

function f(τ) on S is bounded, (log f)′′(τ) ≤ 0 and ♯(A) < ∞. Suppose that the

inequality

H2 ≤ f ′(τ)2

f(τ)2

holds on S, being H the mean curvature function of S. If each zero of H is isolated

(particularly, if H has no zero) then S is a spacelike slice.

Proof. Since f(τ) is constant and ∆ log f(τ) = 0, according to (6.5) we have H =
−f ′(τ)

f(τ) g(N,∂t)
and |H| = f ′(τ)

f(τ)
, thus g(N, ∂t) = 1 on S. �

6.5 The total energy of a spacelike surface

Let us assume the (n+1)-dimensional GRW spacetime (M, g) is a perfect fluid with

flow vector field −∂t, energy density function ρ and pressure p [83, Chap. 12]. From

(2.3), it is not difficult to see that,

Ric(∂t, ∂t) = −n
f ′′

f
and S =

SF

f 2
+ 2n

f ′′

f
+ n(n− 1)

(f ′)2

f 2
, (6.8)

where Ric denotes the Ricci tensor, S the scalar curvature of spacetime and SF the

scalar curvature of the fiber. If M obeys the Einstein field equation, from (6.8), we

obtain

8πρ =
1

2

SF

f 2
+

n(n− 1)

2

(f ′)2

f 2
. (6.9)

When n = 2, the Ricci tensor of the fiber is RicF = KFgF and SF = 2KF , thus

S =
2KF

f 2
+ 4

f ′′

f
+ 2

(f ′)2

f 2
and 8πρ =

KF

f 2
+

(f ′)2

f 2
. (6.10)

The spacetime must satisfy the NCC. If the mean curvature function satisfies H2 ≤
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f ′(τ)2

f(τ)2
, regarding (6.1) we have

K ≥ 8πρ−H2, (6.11)

on each spacelike surface Σ in M . Suppose that the spacelike surface is maximal

with finite total curvature. Then if we denote the total energy on Σ by

EΣ =

∫

Σ

ρ dV ,

making use of the Cohn-Vossen inequality, we have

8πEΣ ≤
∫

Σ

K dV ≤ 2πX (Σ).

Notice that if Σ is a spacelike slice t = t0 in a GRW spacetime with finite total

curvature, the previous equation reads,

8πEΣ ≤ 2πX (F ).

Note that in the previous estimation, the total energy is bounded by a topolog-

ical invariant, the Euler-Poincaré characteristic. Moreover, the same reasoning as

that above works whenever the spacelike surface is assumed to be compact (without

boundary). In this case, the inequality becomes just an equality from the Gauss-

Bonnet theorem.

The reverse inequality may be obtained using extra topological notions. A control

on the topology of a (non-compact) Riemannian manifold is given by the requirement

that the manifold is, outside a compact set C, diffeomorphic to ∂C × [1,∞]. If a

Riemannian manifold satisfies this condition, then it is said to have finite topology.

It can be proved that a Riemannian manifold with finite topology is homeomorphic

to a closed surface with a finite number of points removed (these points are called

ends). By means of this closed surface, the ideal boundary can be considered. In

relation to the ideal boundary, it can be measured the length of the ideal boundary
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associated with each end, in the sense of [40].

Coming back to the estimation of the total energy of a maximal surface, if the

hyperbolic angle is bounded, denoting cosh θ0 := supS{cosh θ},

8πEΣ ≥
1

cosh θ0

∫

Σ

K dV ≥ 1

cosh θ0

(
2πX (Σ)−

k∑

i=1

li

)
, (6.12)

where li stands for the length of the ideal boundary associated to each end of Σ (see

[40] and references therein).
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Maximum principles and maximal

hypersurfaces

In this chapter, we will use some classical maximum principles (the strong Liouville

property and the Omori-Yau generalized maximum principle) in order to obtain sev-

eral uniqueness results for complete maximal hypersurfaces. In contrast to previous

chapters, now curvature assumptions will comein handy. Our research will also focus

on getting non-existence results (Section 7.2). The contents of this chapter can be

found in [97].

7.1 The parametric case

We shall begin with the special case of a static GRW spacetime. Let us recall that,

in this class of spacetimes, the Gauss equation for a maximal hypersurface S reads

(see (2.15))

Ric(v, v) = RicF (vF , vF ) + g
F

(
RF (NF

p , v
F )vF , NF

p

)
+ g

(
A2v, v

)
,

115
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being vF and NF the projections onto F of v and Np, respectively, and where RF and

Ric denote the curvature tensor of the fiber and the Ricci tensor of S, respectively.

It is obvious that whenever the sectional curvature of the fiber is non-negative,

then the Ricci curvature of S is so. This fact implies that, on a complete maximal

hypersurface, the following Liouville’s type result remains [111],

Theorem 7.1.1. If S is a complete Riemannian manifold with non-negative Ricci

curvature, then S has the strong Liouville property; i.e., S does not admit any non-

constant positive harmonic function.

According to these considerations, we can state the first uniqueness result of this

chapter (compare with [79, Thm. A], Theorem 4.1.7 and Corollary 5.1.17),

Theorem 7.1.2. Let S be a complete maximal hypersurface in a static GRW space-

time whose fiber has non-negative sectional curvature. If S is bounded from below or

from above, then S must be a spacelike slice.

Proof. Taking into account equation (2.11), τ + C or C − τ is a positive harmonic

function for some suitable constant C ∈ R. Theorem 7.1.1 can be used to conclude

that τ is constant. �

The boundedness assumption of S cannot be withdrawed in order to get the rigid-

ity result as the non-horizontal spacelike hyperplanes in Lorentz-Minkowski space-

time L
n show.

In different environment, recall the well-known Omori-Yau Maximum Principle

[82], [111],

Theorem 7.1.3. Let S be a complete Riemannian manifold whose Ricci curvature
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is bounded from below and let u : S → R be a smooth function bounded from below

(resp. bounded from above). Then, for each ǫ > 0, there exists a point pǫ ∈ S such

that

i) |∇u(pǫ)| < ǫ,

ii) ∆u(pǫ) > −ǫ (resp. ∆u(pǫ) < ǫ ),

iii) inf u ≤ u(pǫ) < inf u+ ǫ (resp. sup u− ǫ < u(pǫ) ≤ sup u ).

The following lemma imposes some geometrical conditions which allow us to apply

the previous generalized maximum principle.

Lemma 7.1.4. Let S be a maximal hypersurface in a GRW spacetime whose fiber has

sectional curvature bounded from below. Suppose that f ′′(τ)/f(τ) and f ′(τ)/f(τ) are

bounded and inf f(τ) > 0. If S has bounded hyperbolic angle, then its Ricci curvature

must be bounded from below.

Proof. Again, from the Gauss equation, the Ricci curvature of S satisfies

Ric(v, v) = Ric(v, v) + g
(
R(Np, v)v,Np)

)
+ g

(
A2v, v

)
, (7.1)

for any unit v ∈ TpS, p ∈ S, where R denotes the curvature tensor of the GRW

spacetime.

We will show that the right side of equation (7.1) is bounded from below. Let us

write

v = v
I
∂t(p) + v

F
z , (7.2)

where z ∈ TpF , z⊥ ∂t(p) and g(z, z) = 1. Making use of the Schwarz inequality, v
I

satisfies

v2
I
= g(∂t, v)

2 = g(∇τ, v)2 ≤ |∇τ |2 .

Falling back on the boundedness of the hyperbolic angle and (2.6), we get that v2
I
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is bounded. Since v is unit, the same conclusion remains for v2
F
. Now, using the

expressions [83, Cor. 7.43] together with (7.2), we reach the conclusion that

Ric(v, v) = v2
F
RicF (z, z)− (n− 1) v2

F
(log f)′′(τ) + n

f ′′(τ)

f(τ)

is bounded from below.

On the other hand, Np may be expressed in a similar way to v, that is,

Np = − cosh θ ∂t(p) + sinh θ y ,

where y ∈ TpF , y⊥ ∂t(p) and g(y, y) = 1. From [83, Prop. 7.42], we obtain,

g(R(Np, v)v,Np) = −f ′′(τ)

f(τ)

{
2 v

F
v
I
cosh θ sinh θ g(y, z) + v2

F
cosh2 θ − v2

I
sinh2 θ

}

+v2
F
sinh2 θ

{ 1

f(τ)2
g
F
(RF (z

F
, y

F
)y

F
, z

F
)

−f ′(τ)2

f(τ)2
[
g(y, z)2 − 1

] }
, (7.3)

where y
F

= f(τ) y and z
F

= f(τ) z are used in order to obtain g
F
(y

F
, y

F
) =

g
F
(z

F
, z

F
) = 1. Thus, this term is bounded from below. Therefore, we conclude

that the Ricci curvature of S is bounded from below. �

The previous lemma allows us to state,

Corollary 7.1.5. Let S be a maximal hypersurface in a GRW spacetime whose fiber

has sectional curvature bounded from below. If S has bounded hyperbolic angle and

lies between two spacelike slices, then its Ricci curvature must be bounded from below.

The boundedness assumption on the hyperbolic angle can be dropped provided

that the spacetime obeys some stronger conditions.

Lemma 7.1.6. Let S be a maximal hypersurface in a GRW spacetime whose fiber
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has non-negative sectional curvature. If the restriction of the warping function to S

satisfies (log f)′′ ≤ 0, then the Ricci curvature of S must be non-negative.

Proof. Given p ∈ S, let us place a local orthonormal frame {U1, . . . , Un} around p.

From the Gauss equation we get that the Ricci curvature of S satisfies

Ric(Y, Y ) ≥
n∑

i=1

g(R(Y, Ui)Ui, Y ) .

Now, according to [83, Prop. 7.42], we have

n∑

i=1

g(R(Y, Ui)Ui, Y ) = f(τ)2
n∑

i=1

g
F
(RF (Y F , UF

i )U
F
i , Y

F ) + (n− 1)
f ′(τ)2

f(τ)2
|Y |2

−(n− 2)(log f)′′(τ)g(Y,∇τ)2

−(log f)′′(τ)|∇τ |2|Y |2 , (7.4)

where Y F and UF
i are the projections of Y and Ui on the fiber. From this equation,

taking into account these assumptions, we obtain that the Ricci curvature of S must

be non-negative. �

On the other hand, when a maximal hypersurface has its Ricci curvature bounded

from below, the Omori-Yau Maximum Principle can be claimed to state,

Lemma 7.1.7. Let S be a complete maximal hypersurface in a GRW spacetime.

Suppose that the Ricci curvature of S is bounded from below and (log f)′′(τ) ≤ 0. If

S lies between two spacelike slices, then f ′(τ) = 0.

Proof. Let F be the following primitive function of f , F(τ) =
∫ τ

inf τ
f(s) ds, which is

bounded. We have

∇F(τ) = f(τ)∇τ ,

and using (2.11),

∆F(τ) = −nf ′(τ) .
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Notice that F(τ) grows strictly with τ . From Theorem 7.1.3, we have that, for each

real ǫ > 0, there exists a pǫ ∈ S such that

|∇F(τ(pǫ))| < ǫ ,

−ǫ ≤ ∆F(τ(pǫ)) = −nf ′(τ(pǫ)) ,

with inf F(S) ≤ F(τ(pǫ)) ≤ inf F(S) + ǫ.

Note that inf F(S) = F(inf τ(S)). Hence, as a direct consequence,

0 ≤ −nf ′(inf τ(S)) ,

and
f ′(inf τ(S))

f(inf τ(S))
≤ 0 .

With a similar reasoning, considering that F(S) is bounded from above, we conclude

f ′(sup τ(S))

f(sup τ(S))
≥ 0 .

Since (log f)′′(τ) ≤ 0, we obtain f ′(τ) = 0. �

Now, from the last result and from Corollary 7.1.5 we obtain (compare the fol-

lowing two results with Theorems 4.1.1, 4.1.3, 5.1.1 and Corollary 5.1.17),

Theorem 7.1.8. Let S be a complete maximal hypersurface in a proper GRW

spacetime whose fiber has sectional curvature bounded from below. Assume that

(log f)′′(τ) ≤ 0 and S lies between two spacelike slices. If S has bounded hyper-

bolic angle, then S must be a spacelike slice.

Proof. It is enough to observe that the warping function is not locally constant and

f ′(τ) = 0, thus τ must be constant. �

Now, going back to Lemma 7.1.6, a similar result is obtained,
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Theorem 7.1.9. Let S be a complete maximal hypersurface in a GRW spacetime

whose fiber has non-negative sectional curvature. Suppose that (log f)′′(τ) ≤ 0. If S

lies between two spacelike slices, then S must be a spacelike slice.

Proof. From Lemma 7.1.6 we have that S has non-negative Ricci curvature, which

permits arriving to f ′(τ) = 0, taking into account Lemma 7.1.7. Therefore, τ is

harmonic on S. Now, from Theorem 7.1.1 and a similar reasoning to the one in

Theorem 7.1.2, the proof comes to an end. �

To conclude this section, we provide an application to an interesting family of

Robertson-Walker spacetimes, which are well-known in Cosmology. They are the

Friedmann cosmological models (see [83, Ch. 12] for instance). Recall that this

family of spacetimes are exact solutions to the Einstein equations and they repre-

sent physically realistic universes whose matter content is dust. Since a Friedmann-

Robertson-Walker spacetime satisfies the Timelike Convergent Condition, its warp-

ing function obeys f ′′(t) ≤ 0. Thus, as a consequence of the previous theorem,

Remark 7.1.10. In the Friedmann-Robertson-Walker cosmological models, there

is only one case where there exists a complete maximal hypersurface with bounded

hyperbolic angle and which lies between two spacelike slices. This case corresponds

to the spatially closed model and this spacelike hypersurface is unique.

7.2 Non-existence results

Here, we will apply our previous technical lemmas so as to state some non-existence

results. We begin with the following,

Lemma 7.2.1. Let M be a GRW spacetime whose fiber has sectional curvature

bounded from below. Then, M admits no complete maximal hypersurface S with

bounded hyperbolic angle, such that S is bounded from below (resp. from above),
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with inf f(τ) > 0, f non-decreasing (resp. non-increasing), inf f ′(τ) > 0 (resp.

sup f ′(τ) < 0 ) and having bounded the functions f ′′(τ)/f(τ) and f ′(τ)/f(τ).

Proof. Let us assume such a hypersurface S does exist. Taking into account our

assumptions, from (2.11) we have ∆τ ≤ −σ2 < 0 or ∆τ ≥ σ2 > 0, for some σ ∈ R.

Using the Lemma 7.1.4, we know that the generalized maximum principle holds on

S. After applying this principle to the function τ we obtain a contradiction. �

As a nice consequence,

Theorem 7.2.2. Let M be a GRW spacetime whose fiber has sectional curvature

bounded from below. Then, M admits no complete maximal hypersurface S with

bounded hyperbolic angle such that S lies between two spacelike slices and inf |f ′(τ)| >
0.

Now, taking into account the Lemma 7.1.6, an identical reasoning leads us to the

same conclusion.

Theorem 7.2.3. Let M be a GRW spacetime whose fiber has non-negative sec-

tional curvature and its warping function satisfies (log f)′′(t) ≤ 0. Then, M admits

no complete maximal hypersurface bounded from below (resp. bounded from above),

with inf f(τ) > 0, f non-decreasing (resp. non-increasing) and inf f ′(τ) > 0 (rep.

sup f ′(τ) < 0 ).

Corollary 7.2.4. Let M be a GRW spacetime whose fiber has non-negative sec-

tional curvature and its warping function satisfies (log f)′′(t) ≤ 0. Then, M admits

no complete maximal hypersurface lying between two spacelike slices and satisfying

inf |f ′(τ)| > 0.

Remark 7.2.5. The assumption inf |f ′(τ)| > 0 in the previous results can be in-

terpreted geometrically as the non-existence of any maximal slice in the timelike
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bounded region of the spacetime given by Im τ .

Again, from the Omori-Yau maximum principle and equation (2.12), we can as-

sert,

Theorem 7.2.6. Let M be a GRW spacetime whose fiber has sectional curva-

ture bounded from below. It admits no complete maximal hypersurface such that

inf f(τ) > 0, sup f(τ) < ∞, (log f)′′(τ) ≤ 0, inf |f ′(τ)| > 0, and having bounded

the functions f ′′(τ)/f(τ) and f ′(τ)/f(τ).

Proof. From Lemma 7.1.4, the generalized maximum principle remains. Taking into

account equation (2.12), if such a spacelike hypersurface exists, then a contradiction

is found. �

Finally, we put an end to this section with the following theorem, which is actually

a reformulation of the previous result based on Lemma 7.1.6 instead of Lemma 7.1.4

Theorem 7.2.7. Let M be a GRW spacetime whose fiber has non-negative sec-

tional curvature and its warping function satisfies (log f)′′(t) ≤ 0. Then M ad-

mits no complete maximal hypersurface such that inf f(τ) > 0, sup f(τ) < ∞, and

inf |f ′(τ)| > 0.

7.3 Calabi-Bernstein type problems

As in previous chapters, we provide the associated Calabi-Bernstein type results

from the theorems previously developed. The completeness of a spacelike graph

is guaranteed by Lemma 2.4.2. Using Theorem 7.1.2, we arrive to (compare with

Theorem 5.2.9),
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Theorem 7.3.1. The only entire solutions to

div

(
Du√

1− | Du |2

)
= 0 ,

| Du |< λ, 0 < λ < 1,

on a complete Riemannian manifold F with non-negative sectional curvature are the

constant functions.

Now, from Theorem 7.1.8, we obtain (compare with Theorems 4.2.2, 5.2.1 and

5.2.3),

Theorem 7.3.2. Let f : I −→ R be a non-locally constant positive smooth function.

Assume f satisfies (log f)′′ ≤ 0, and inf f > 0. The only bounded entire solutions

to the equation (E) on a complete Riemannian manifold F with sectional curvature

bounded from below are the constant functions u = c, with f ′(c) = 0.

Finally, Theorem 7.1.9 leads to (see also Theorem 4.2.1)

Theorem 7.3.3. Let f : I −→ R be a positive smooth function. Assume f satisfies

(log f)′′ ≤ 0, and inf f > 0. The only bounded entire solutions to the equation (E)

on a complete Riemannian manifold F with non-negative sectional curvature are the

constant functions u = c, with f ′(c) = 0.



Conclusions and future research

In this thesis we have introduced a new family of open spacetimes: the spatially

parabolic GRW spacetimes. We have mentioned several of its properties and its

suitability to potentially model a relativistic universe.

In Chapter 3, we have developed several formulitae which allow us to assure

parabolicity on a complete spacelike hypersurface in this class of spacetimes. These

procedures are, in principle, potentially applicable to many different problems. We

have focused mainly on uniqueness results for maximal hypersurfaces. The two

dimensional case was specially paid attention to in Chapter 6, where the notion of

finite total curvature (only defined for Riemannian surfaces) was imperative. As an

application of most of the results, the associated Calabi-Bernstein type problems

have been solved.

The first technique (Theorem 3.2.5) states sufficient conditions under which a

complete spacelike hypersurface (in a spatially parabolic GRW spacetime) is para-

bolic. In Chapter 4, this procedure is used to obtain different uniqueness results.

The second technique (Theorem 3.2.9) assures parabolicity on a complete spacelike

hypersurface whenever it is endowed with certain conformal metric. Then, in Chap-

ter 5 other sort of uniqueness results are given. It should be pointed out that both

approaches do not need any assumption on the mean curvature function.

The (non-compact) complete Riemannian surfaces with finite total curvature have
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nice properties and naturally extend to the Euclidean plane. In particular, they are

parabolic. In Chapter 6, we consider a GRW spacetime whose fiber is one of the

previously mentioned surfaces. The main aim of this Chapter is to study a more gen-

eral problem than the characterization of complete maximal surfaces. In particular,

we study spacelike surfaces which obey a natural non-linear differential inequality

involving its mean curvature function (automatically satisfied in the maximal case).

Now, we consider complete spacelike graphs which obey that inequality. The main

idea of the technique (which appear in the proof of Theorem 6.3.1) is to find when a

complete spacelike graph has also finite total curvature. Then, we provide several an-

swers to our problem. Here, the parametric case is obtained from the non-parametric

case assuming an extra topological hypothesis on the fiber.

Finally, in Chapter 7 we use the strong Liouville property and the Omori-Yau

generalized maximum principle in orde to prove, under some curvature assumptions,

several uniqueness and non-existence results.

Considering a different environment, the techniques here developed might have

several applications in the future. Although the most part of this thesis was devoted

to the maximal case, the problem of controlling the mean curvature may be con-

sidered in arbitrary dimension. In [93, Remark 2.3], ∆ log f(τ) is computed for a

general spacelike hypersurface. It is likely that this formula would be helpful in order

to lead to new uniqueness results for complete hypersurfaces with controlled mean

curvature. Moreover, another kind of problems with similar geometric nature can

be susceptible to be contemplated, for instance, problems involving the k-th mean

curvature. Hence, the techniques here presented are potentially applicable to a wide

set of open questions.

On the other hand, the notion of spatially parabolicity may be conveniently stud-

ied in another family of spacetimes. The (open) globally hyperbolic spacetimes are

a class of spacetimes with nice geometrical and causality properties. It has been

recently proved that any globally hyperbolic spacetime can be expressed as the

product of an interval of the real line and a Riemannian manifold, endowed with
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certain Lorentzian metric, [16]. Moreover, the coordinate of the interval of the real

line represents a universal time function. Thus, the topological structure is tanta-

mount to that of a GRW spacetime. Another research line may consist in trying to

establish similar techniques in order to characterize maximal hypersurfaces as level

hypersurfaces of the universal time function. Analogously, new Calabi-Bernstein

type problems may be expected to appear in this environment.

The open problems we will deal with in future do not restrict to Lorentzian

Geometry. In Riemannian Geometry, the warped product manifolds are a family

of paramount importance. The problem of studying hypersurfaces with zero mean

curvature (minimal) is also natural and interesting. In this environment, when the

fiber is parabolic, it can be proved that an entire graph, when it is endowed with a

pointwise conformal metric, is also parabolic [98, Lemma 1] (compare with Theorem

3.2.9). This allows us to solve new Moser-Bernstein problems [98].

Recently, several ideas from these works have been successfully applied to study

φ-minimal hypersurfaces, in the context of Riemannian manifolds with density, [103].

This paper has in common with Chapter 6 that it can be also regarded as character-

ization results of controlled mean curvature. However, in the former, the dimension

is arbitrary.

To sum up, this work opens the door to new different research lines which can

provide new interesting problems and which can help us to understand better the

role of the geometric meaning of certain hypersurfaces in Lorentzian and Riemannian

Geometry.





References

[1] L.V. Ahlfors, Sur le type d’une surface de Riemann, C.R. Acad. Sci. Paris,

201 (1935), 30–32.

[2] R. Aiyama, On the Gauss map of complete spacelike hypersurfaces of constant

mean curvature in Minkowski space, Tsukuba J. Math., 16 (1992), 353–361.
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ometry, Valencia 2001, 59–69. World Science Publication, River Edge (2002).

129



130
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