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SUMMARY 

 

In the last decades, the combination of high-intensity exercise, high-

protein diets and the administration of anabolic androgenic steroids by 

some individuals or sports practitioners have increased in popularity. 

Likewise, in the last years, soy protein has become in the main source of 

protein consumed by this type of practitioners, probably due to its 

antioxidant or healthy properties, rather than other source of protein such 

as casein or whey. 

Brain is particularly vulnerable to reactive oxygen species 

production because it only accounts for a ~2% of total body weight and 

metabolizes 20% of total body oxygen, with a limited amount of 

antioxidant capacity. Brain is also considered highly sensitive to 

oxidative damage, because it possesses high amounts of phospholipids 

and polyunsaturated fatty acids both of which are highly susceptible to 

oxidants. On the other hand, kidney is one of the most imperative tissues 

in the organism due to its straight relation with other systems (e.g. 

cardiovascular system) making its impeccable functioning highly 

valuable. Oxidative stress and inflammation play a critical role in the 
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pathogenesis and progression of chronic kidney disease. Thus, an 

improper or maladaptive activation of oxidative processes may be 

chronically present in pathological situations, such as uraemia, 

contributing to chronic cell and kidney injury. 

The overall objective of this PhD Thesis was to analyse the brain 

and kidney antioxidant defence system and oxidative damage as well as 

the renal morphology effects of high-protein diet, high-intensity exercise, 

and anabolic androgenic steroids administration in Wistar rats.  

The main findings from this Thesis suggest that:  1) High-protein 

diets may cause oxidative damage to the brain by means of lipid and 

protein oxidation, which could explain the induction of the endogenous 

antioxidant defence system. 2) High-intensity exercise protocol did not 

worsen the deleterious effects caused by high-protein diet and may be an 

efficient way to protect the brain against high dietary protein aggression. 

3) High-protein diets led to a prooxidant status at kidney level. However, 

the beneficial effect of high-intensity exercise observed on brain, did not 

appear at kidney level. 4) The high-intensity exercise protocol displayed 

a worse renal morphological profile, which might be associated with a 

higher risk for incidence of kidney disease in the long-term. The stress 

induced by the type of exercise performed in the present Thesis could be 
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related to this worse morphological renal status. 5) Under our 

experimental conditions, the present results suggest that high-intensity 

exercise reduce the negative effects of anabolic androgenic steroids on 

brain redox status. High-intensity exercise also improved the harmful 

effects caused by the anabolic androgenic steroids administration on 

kidney lipid and protein oxidation.  

The results of the current Thesis underline that high-protein diets 

intake and the anabolic androgenic steroids administration instigated 

brain and kidney damage by means of the induction of lipid and protein 

oxidation. Despite the apparently beneficial effect of high-intensity 

exercise among the others two interventions studied, cautiousness should 

be taken with this protocol regarding to brain and kidney overproduction 

of their antioxidant defence systems.  
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RESUMEN 

 

En las últimas décadas, la combinación de un ejercicio de alta intensidad 

y la administración de anabolizantes androgénicos esteroideos ha 

aumentado en popularidad en algunos individuos o deportistas. Del 

mismo modo, en los últimos años, la proteína de soja se ha convertido en 

la principal fuente de proteína consumida por este tipo de practicantes, 

probablemente por sus propiedades antioxidantes y saludables,  en lugar 

de otro tipos de fuentes proteicas como la caseína o la proteína de 

lactosuero.  

 El cerebro es particularmente vulnerable a la producción de 

especies reactivas de oxígeno ya que sólo representa un ~2% del peso 

corporal total y metaboliza el 20% del oxígeno corporal total, con una 

cantidad limitada de la capacidad antioxidante. El cerebro también se 

considera altamente sensible al daño oxidativo porque posee altas 

cantidades de fosfolípidos y ácidos grasos poliinsaturados, los cuales son 

altamente susceptibles a oxidarse. Por otra parte, el riñón es uno de los 

tejidos más imperativos del organismo debido a su relación directa con 

otros sistemas (ej. sistema cardiovascular) que hacen de gran valor su 
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impecable funcionamiento. El estrés oxidativo y la inflamación 

desempeñan un papel crítico en la patogénesis y progresión de la 

enfermedad renal crónica. Por lo tanto, una activación inadecuada o una 

mala adaptación de los procesos oxidativos puede hacer crónicas ciertas 

situaciones patológicas, tales como uremia, contribuyendo al daño 

crónico celular y renal. 

El objetivo general de esta Tesis Doctoral ha sido analizar los 

efectos de las dietas hiperproteicas de soja, del ejercicio de alta 

intensidad y de la administración de anabolizantes androgénicos 

esteroideos sobre el sistema de defensa antioxidante y daño oxidativo 

cerebral y renal, así como la morfología renal en ratas Wistar. 

Los principales resultados de esta Tesis sugieren que: 1) Las 

dietas altas en proteínas pueden causar daño oxidativo en el cerebro por 

medio de la oxidación de lípidos y proteínas, lo que podría explicar la 

inducción del sistema de defensa antioxidante endógeno. 2) El protocolo 

de ejercicio de alta intensidad mejoró los efectos nocivos provocados por 

la dieta alta en proteínas, y puede ser un medio eficaz para proteger el 

cerebro contra la agresividad producida por dicha dieta. 3) Las dietas 

altas en proteínas conducen a un estado prooxidante a nivel renal. Por 

otra parte, el efecto beneficioso del ejercicio de alta intensidad observado 
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en el cerebro, no se mostró a nivel del riñón. 4) El protocolo de ejercicio 

de alta intensidad mostró un peor perfil morfológico renal, lo que podría 

estar asociado con un mayor riesgo de incidencia de enfermedades 

renales a largo plazo. El estrés inducido por el tipo de ejercicio realizado 

en la presente Tesis podría estar relacionado con este peor estado 

morfológico renal. 5) Bajo nuestras condiciones experimentales, los 

resultados sugieren que el ejercicio de alta intensidad reduce el efecto 

negativo de los anabolizantes androgénicos esteroideos sobre el estado 

redox del cerebro. El ejercicio de alta intensidad también mejoró el daño 

producido por la administración de anabolizantes androgénicos 

esteroideos en la oxidación de lípidos y proteínas del riñón. 

Los resultados de la presente Tesis doctoral subrayan que el 

consumo de dietas ricas en proteínas y la administración de anabolizantes 

androgénicos esteroideos desencadenan daño cerebral y renal a través de 

la inducción de la oxidación de lípidos y proteínas. A pesar del aparente 

efecto beneficioso del ejercicio de alta intensidad frente a las otras dos 

intervenciones ensayadas, se debe tener cautela con este protocolo 

respecto a la estimulación del sistema de defensa antioxidante tanto del 

cerebro como del riñón. 
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INTRODUCTION [INTRODUCCIÓN] 

Oxidative stress 

Free radical 

Electrons within atoms and molecules occupy regions of space known as 

orbitals. Each orbital can hold a maximum of two electrons. For example, 

the two electrons that form a covalent bond occupy the same orbital, but 

have opposite spins. If an orbital contains only one electron, that electron 

is said to be unpaired, and therefore may be seen as having one or more 

"dangling" covalent bonds. Thus, a free radical is defined as any species 

capable of independent existence (hence the term ‘free’) that contains one 

or more unpaired electrons (1). However, when 2 free radicals share their 

unpaired electrons, non-radical forms are created. With some exceptions, 

these “dangling” bonds make free radicals highly chemically reactive 

towards other substances, or even towards themselves: their molecules 

will often spontaneously dimerize or polymerize if they come in contact 

with each other. Most radicals are reasonably stable only at very low 

concentrations in inert media or in a vacuum. 
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Free radicals play an important role in a number of biological 

processes. Many of these are necessary for life, such as the intracellular 

killing of bacteria by phagocytic cells such as granulocytes and 

macrophages. Researchers have also implicated free radicals in certain 

cell signalling processes, (2) known as redox signalling. The three most 

important oxygen-centred free radicals are superoxide anion (O2•
−), 

hydroxyl radical (HO•) and hydrogen peroxide (H2O2). These free radical 

are more reactive than O2 and grouped are known as reactive oxygen 

species (ROS) (1). They derive from molecular oxygen under reducing 

conditions. A notable example of a these free radical is the hydroxyl 

radical (HO•), a molecule that is one hydrogen atom short of a water 

molecule and thus has one bond "dangling" from the oxygen. Two other 

examples are the carbene molecule (:CH2), which has two dangling 

bonds; and the superoxide anion (O2•
−), the oxygen molecule O2 with one 

extra electron, which has one dangling bond. However, because of their 

reactivity, these same free radicals may participate in undesirable side 

reactions resulting in cell damage. In contrast, the hydroxyl anion (HO−), 

the oxide anion (O2−) and the carbenium cation (CH3+) are not radicals, 

since the bonds that may appear to be dangling are in fact resolved by the 

addition or removal of electrons (3).  
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 Excessive amounts of these free radicals can lead to cell injury 

and death, which may contribute to many diseases such as cancer, stroke, 

myocardial infarction, diabetes and major disorders. Many forms of 

cancer are thought to be the result of reactions between free radicals and 

DNA, potentially resulting in mutations that can adversely affect the cell 

cycle and potentially lead to malignancy (4). Thus, the condition in 

which the delicate balance existing between free radicals production and 

their subsequent amelioration via the antioxidant defence system 

becomes skewed in favour of free radical expression is named oxidative 

stress (5). Therefore, oxidative damage repair systems are important in 

order to minimize the dangerous effects of pro-oxidant ROS (6). This 

imbalance occurs due to two reasons; either by the overproduction of 

ROS such as the superoxide radical (O2•
−) or hydroxyl radical (HO•), or 

by the diminution in the elimination of ROS by oxidant defence 

mechanisms (7). Thus, in order to struggle oxidative stress, cells possess 

their own antioxidant defence machinery that includes three major 

endogenous antioxidant enzymes, superoxide dismutase (SOD), 

glutathione peroxidases (GPx), and catalase (CAT) (8,9), and a number 

of other non-enzyme molecules, such as reduced and oxidized 

glutathione (GSH/GSSG). Among these three enzymes, SOD catalyses 
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the conversion of O2
− to H2O2, while CAT converts H2O2 into H2O and 

O2. Using GSH, GPx, catalyses the reduction of two molecules of 

peroxide to produce GSSG and water (10). Besides these enzymes, 

glutathione S-transferase (GST), glutathione reductase (GR), as well as 

non-enzymatic glutathione (GSH) and glutathione disulphide (GSSG), in 

combination play various important roles in the series of antioxidant 

defence activities. Because free radicals are necessary for life, the 

organism has a number of mechanisms to minimize free-radical-induced 

damage and to repair damage that occurs, such as the enzymes 

superoxide dismutase, catalase, and glutathione peroxidase and 

glutathione reductase. Additionally, an enhanced level of ROS molecules 

has deleterious cellular impact and results in the damage of vital cellular 

macromolecules such as lipids (11), proteins (12) and nucleic acids (13).  

Oxidative stress markers 

Protein carbonyl 

The most general indicator and by far the most commonly used marker of 

protein oxidation is protein carbonyl content (14). Redox cycling cations 

such as Fe2+ or Cu2+ can bind to cation binding locations on proteins and 

with the aid of further attack by H2O2 or O2 can transform side-chain 
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amine groups on several amino acids (i.e. lysine, arginine, proline, or 

histidine) into carbonyls. Several approaches have been taken to detect 

and quantitate the carbonyl content in protein preparations. The most 

convenient procedure is the reaction between 2,4-dinitrophenylhydrazine 

(DNPH) and protein carbonyls. DNPH reacts with protein carbonyls, 

forming a Schiff base to produce the corresponding hydrazine, which can 

be analysed spectrophotometrically (15). 

 

Lipid peroxidation 

Lipid peroxidation refers to the oxidative degradation of lipids. It is the 

process in which free radicals "steal" electrons from the lipids in cell 

membranes, resulting in cell damage. This process proceeds by a free 

radical chain reaction mechanism. It most often affects polyunsaturated 

fatty acids, because they contain multiple double bonds in between which 

lie methylene bridges (-CH2-) that possess especially reactive hydrogen’s. 

As with any radical reaction, the reaction consists of three major steps: 

initiation, propagation, and termination. 

Initiation is the step in which a fatty acid radical is produced. The most 

notable initiators in living cells are ROS, such as OH· and HO2, which 

combines with a hydrogen atom to make water and a fatty acid radical. 
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The fatty acid radical is not a very stable molecule, so it reacts readily 

with molecular oxygen, thereby creating a peroxyl-fatty acid radical. This 

radical is also an unstable species that reacts with another free fatty acid, 

producing a different fatty acid radical and lipid peroxide, or cyclic 

peroxide if it had reacted with itself. This cycle continues, as the new 

fatty acid radical reacts in the same way. 

 When a radical reacts with a non-radical, it always produces 

another radical, who is why the process is called a "chain reaction 

mechanism". The radical reaction stops when two radicals react and 

produce a non-radical species. This happens only when the concentration 

of radical species is high enough for them to be a high probability of 

collision of two radicals. Living organisms have different molecules that 

speed up termination by catching free radicals and, therefore, protecting 

the cell membrane. One important such anti-oxidants made within the 

body include the enzymes SOD, CAT, and GPx. 

 The end products of lipid peroxidation are reactive aldehydes, 

such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE), the 

second one being known also as "second messenger of free radicals" and 

major bioactive marker of lipid peroxidation, due to its numerous 

biological activities resembling activities of reactive oxygen species.  
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 Certain diagnostic tests are available for the quantification of the 

end-products of lipid peroxidation, to be specific, MDA (16). The most 

commonly used test is called a thiobarbituric acid reactive substances 

(TBARS) assay. Thiobarbituric acid reacts with MDA to yield a 

fluorescent product. However, recent studies have demonstrated that 

there are other sources of MDA, so this test is not completely specific for 

lipid peroxidation (17). In recent years development of immunochemical 

detection of HNE-histidine adducts opened more advanced 

methodological possibilities for qualitative and quantitative detection of 

lipid peroxidation in various human and animal tissues as well as in body 

fluids, including human serum and plasma samples (18). 

 

Antioxidant enzymes  

Superoxide dismutase 

The SODs are enzymes that alternately catalyse the dismutation (or 

partitioning) of the toxic superoxide (O2
−) radical into either ordinary 

molecular oxygen (O2) or hydrogen peroxide (H2O2). Superoxide is 

produced as a by-product of oxygen metabolism and causes many types 

of cell damage. Thus, SOD is an important antioxidant defence in nearly 

all-living cells exposed to oxygen.  
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Catalase 

Catalase is a tetramer of four polypeptide chains, each over 500 amino 

acids long.  It contains four porphyrin heme (iron) groups that allow the 

enzyme to react with the hydrogen peroxide. Catalase is a common 

enzyme found in nearly all-living organisms exposed to oxygen (such as 

vegetables, fruit or animals). This enzyme catalyses the decomposition of 

hydrogen peroxide to water and oxygen (19) and protects the cell from 

oxidative damage. Likewise, catalase has one of the highest turnover 

numbers of all enzymes; one catalase molecule can convert 

approximately 5 million molecules of hydrogen peroxide to water and 

oxygen each second. 

  

Glutathione peroxidase 

GPx is the general name of an enzyme family with peroxidase activity 

whose main biological role is to protect the organism from oxidative 

damage. The biochemical function of glutathione peroxidase is to reduce 

hydrogen peroxide, organic hydroperoxide and lipid hydroperoxides to 
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their corresponding alcohols and to reduce free hydrogen peroxide to 

water. 

  

Others anti-inflammatory and oxidative stress markers  

Nuclear factor erythroid 2 related factor 2  

Nuclear factor erythroid 2 related factor 2 (Nrf2) is a transcription factor 

that in humans is encoded by the NFE2L2 gene (20). Nrf2 is a basic 

leucine zipper protein that regulates the expression of antioxidant 

proteins that protect against oxidative damage triggered by injury and 

inflammation (21). 

Under normal or unstressed conditions, Nrf2 is kept in the 

cytoplasm by a cluster of proteins that degrade it quickly. Under 

oxidative stress, Nrf2 is not degraded, but instead travels to the nucleus 

where it binds to a DNA promoter and initiates transcription of 

antioxidative genes and their proteins. Nrf2 is ubiquitously expressed 

with the highest concentrations (in descending order) in the kidney, 

muscle, lung, heart, liver, and brain (20). 
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NAD(P)H dehydrogenase, Quinone 1  

NAD(P)H dehydrogenase, Quinone 1 (NQO1) plays an important role in 

neuroprotection through its anti-oxidative properties (22). NQO1 is an 

enzyme that in humans is encoded by the NQO1 gene (23). NQO1 gene 

is a member of the NAD(P)H dehydrogenase (quinone) family encoding 

a cytoplasmic 2-electron reductase and this FAD-binding protein forms 

homodimers and reduces quinones to hydroquinones. This protein 

enzymatic activity prevents the one electron reduction of quinones that 

results in the production of radical species. Altered expression of this 

protein has been seen in many tumours and is also associated with 

Alzheimer's disease (24). 

 

Glial fibrillary acidic protein  

Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the 

GFAP gene in humans (25). GFAP is an intermediate filament protein 

that is expressed by numerous cell types of the central nervous system 

including astrocytes (26), and ependymal cells (27). GFAP is also 

expressed in glomeruli and peritubular fibroblasts taken from kidneys 

(28), stellate cells of the pancreas and liver in rats (29). First described in 
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1971 (30), GFAP is thought to help to maintain astrocyte mechanical 

strength (31), as well as the shape of cells but its exact function remains 

poorly understood, despite the number of studies using it as a cell marker. 

GFAP is expressed in the central nervous system in astrocyte cells 

(26,32). It is involved in many important central nervous system 

processes, including cell communication and the functioning of the blood 

brain barrier. 

 

Nuclear factor kappa-β  

Nuclear factor kappa-β (NF-κβ) is a protein complex that controls 

transcription of DNA. NF-κβ is found in almost all animal cell types and 

is involved in cellular responses to stimuli such as stress, cytokines, free 

radicals, ultraviolet irradiation, oxidized low-density lipoprotein (LDL), 

and bacterial or viral antigens (33–37). NF-κβ plays a key role in 

regulating the immune response to infection (κ light chains are critical 

components of immunoglobulin). Incorrect regulation of NF-κβ has been 

linked to cancer, inflammatory, and autoimmune diseases, septic shock, 

viral infection, and improper immune development. NF-κβ has also been 

implicated in processes of synaptic plasticity and memory (38–42). In 
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brief, NF-κβ can be understood to be a protein responsible for cytokine 

production and cell survival. 

 

Signal transducer and activator of transcription 3  

Signal transducer and activator of transcription 3 (STAT3) is a 

transcription factor, which in humans is encoded by the STAT3 gene. 

The protein encoded by this gene is a member of the STAT protein 

family. In response to cytokines and growth factors, STAT family 

members are phosphorylated by receptor-associated kinases and then 

form homo- or heterodimers that translocate to the cell nucleus, where 

they act as transcription activators. STAT3 mediates the expression of a 

variety of genes in response to cell stimuli, and thus plays a key role in 

many cellular processes such as cell growth and apoptosis. Moreover, 

most of the available evidence comes from studies that examined the 

effect of specific interventions, e.g. focus on just exercise or just protein 

source in the diet. However, until date, the combined effect and 

interactions taking place between the dietary protein amount, protein 

source, resistance training and AAS-administration is unknown. 
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Oxidative stress on Brain and Kidney  

Brain is particularly vulnerable to ROS production because it only 

accounts for a ~2% of total body weight and metabolizes 20% of total 

body oxygen, with a limited amount of antioxidant capacity (5). 

Furthermore, lipid peroxidation leads to the production of toxic 

compounds such aldehydes or dienals (e.g., 4-hydroxynonenal), which in 

turn may cause neuronal apoptosis (43). In consequence, brain oxidative 

stress has been suggested to play a role in neurodegenerative disorders 

such as Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and 

amyotrophic lateral sclerosis (1,44,45). The brain readily suffers 

oxidative damage due to its higher metabolic rate, lipid content and lower 

levels of CAT and GPx (46–48). Additionally, most of the studies have 

showed an increase on brain lipid peroxidation markers such as TBARs, 

MDA (49,50), HNE (51)  and some isoprostanes (52) in Alzheimer’s 

disease patients.  

The kidney is one of the most imperative tissues in the organism 

due to its straight relation with other systems (e.g. cardiovascular system) 

making its impeccable functioning highly valuable (53,54). Oxidative 

stress and inflammation play a critical role in the pathogenesis and 

progression of chronic kidney disease (55–58). Thus, markers of kidney 
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disease wasting (closely related to oxidative stress) such as 

hypoalbuminemia, anorexia, body weight and fat loss, rather than 

traditional cardiovascular risk factors, appear to be the strongest 

predictors of early death in maintenance haemodialysis patients (54). 

Thus, an improper or maladaptive activation of oxidative processes may 

be chronically present in pathological situations, such as uraemia, 

contributing to chronic cell and kidney injury (59,60). Blood levels of 

several lipid and protein oxidation products such as F2-isoprostanes are 

increased in maintenance haemodialysis patients (61,62). The kidney also 

plays an essential role in the long-term regulation of arterial pressure and 

a vital role in the initiation, development and maintenance of chronic 

hypertension.  

 

High-intensity exercise and oxidative stress 

Since the 1990s, there has been evidence about the benefits of exercise on 

brain function, which could play an important preventive and therapeutic 

role on oxidative stress-associated brain disease (63,64). Exercise may 

increase the level, activation, and Messenger RNA expression of 

endogenous antioxidant systems in the brain thus down-regulating the 

levels of the oxidative damage (65,66).  
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Experimental evidence has shown that ROS play a key role in the 

pathophysiological pathways of a wide variety of clinical and 

experimental renal diseases (67–73). Chronic kidney disease (CKD) is 

characterized by progressive loss of nephrons caused by increased 

intraglomerular pressure and hyperfiltration. CKD is associated with a 

high prevalence of several other diseases, and has become a worldwide 

health issue due to the high economic costs involved in CKD diagnosis 

and treatment (74). Previous studies have associated CKD with oxidative 

stress. Physical training is an important component in the treatment of 

CKD (68). According to (75) and (76), exercise conditioning has been 

shown to have a positive influence on physical capacity, hypertension, 

left ventricular function, lipid and glucose metabolism, oxidative status, 

anaemia, and quality of life in CKD patients and patients on renal 

replacement therapy. Moreover, exercise exerted a positive influence on 

oxidative stress parameters, especially on the reduction in superoxide 

production and oxidative damage, as well as an improvement in the 

antioxidant defence system, like SOD and GPX (77).   

Recent studies have observed that chronic exercise activates the 

Nrf2 in human skeletal muscle and rat kidney (78,79), whereas acute 

exercise promotes myocardial Nrf2 function. However, the mechanisms 
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of Nrf2 activation have not been investigated in the context of brain after 

a high intensity exercise (HIE). Consequently, it is well established that 

regular exercise plays an important preventive and therapeutic role on 

oxidative stress-associated brain diseases such as Alzheimer’s and 

Parkinson’s (63). However, the benefits of HIE on brain function are 

under debate due to the overproduction in ROS that this type of exercise 

can induce (80). Likewise, the effect of exercise, and more specifically its 

type, dose and intensity, on renal status is rather unknown (81). Thus, the 

overproduction of ROS can alter the concentrations of different early 

biomarkers of oxidative stress such as plasma total antioxidant capacity 

(TAC) or erythrocyte GSH and CAT activity, suggesting modifications in 

blood redox status (82). Hence, given that hypertrophy resistance training 

is the main exercise modality practiced by high-protein users (83) and the 

effect of high-protein diets in combination with HIE on brain and renal 

redox status has been inconclusive or scarcely investigated,  one of the 

aims of this present Thesis was to investigate the effects of an 

hypertrophy resistance training protocol (i.e. HIE) on brain and renal 

redox status. 
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High soy-protein diets and oxidative stress 

Soy as main source of protein has been preferred instead of others source 

of protein such as casein or whey because of their beneficial effects such 

as reducing cardiovascular risk (84,85), promoting a more alkaline 

plasma and urinary profile, with their consequent renal benefits (86), 

encouraging a better bone health in weak populations (e.g. elderly, or 

perimenopausal women) (87) and decreasing plasma TBARs 

concentrations (88).  

 Likewise, the effects of high-protein diets have been of great 

interest in the last decade, specially among athletes and people interested 

in gaining muscle mass (89,90). However, the scientific literature on 

whether ingestion of high protein might cause adverse effects to the 

healthy population is controversial (90,91). Thus, supplementation with 

high-protein diets is often used to improve physical status causing an 

effective reduction in body weight, fat deposition and improving plasma 

lipid profile as well as to better maintain bone properties (87,90,92–95).  

 Similarly, some studies have shown the beneficial effects of high-

protein diets on rodent brain such as protecting against cerebral ischemia 

and reducing apoptosis in the ischemic cortex (96,97). Nevertheless, 

others authors reported that high protein diets may produce harmful renal 
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effects such as increased urinary N excretion, glomerular filtration rate, 

kidney hypertrophy, renal hemodynamic and eicosanoid production in 

renal tubules (98–100).  

 In regard to the effects of high-protein diets and brain and kidney 

oxidative status, the literature is mainly scarce (83). In fact, to the best of 

our knowledge, only the study performed by Camiletti-Moirón et al. (83) 

showed that high-soy protein intake produced higher levels of brain lipid 

and protein oxidation. Therefore, in order to deepen this knowledge, it is 

of importance to clarify the physiological effects of high-soy protein diets 

on brain and kidney redox status.  

 

Anabolic androgenic steroids and oxidative stress 

Anabolic androgenic steroids (AAS) have both protein synthesizing 

(anabolic) and masculinizing (androgenic) effects on the body (101). 

Although AAS may be prescribed for patients with pathological 

conditions (e.g. hypogonadism or sarcopenia) (102), they are widely used 

among professional athletes, competitive and recreational body builders 

or even non-athletic adolescents because AAS are some of the most 

powerful performance enhancing substances (103). Severe effects such as 

adverse plasma and hepatic lipid profile can emerge with prolonged use 
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or high doses of AAS (104). Regarding brain function, AAS may 

adversely affect neural activity in the hypothalamus and forebrain (105), 

by promoting neurodegenerative and apoptotic effects (106). Otherwise, 

due to the kidney is the major organ involved in the drug excretion, this 

organ is generally affected by high doses of AAS by means of mesangial 

matrix accumulation and increased heat shock proteins in this tissue 

(107). 

Concerning oxidative status, Tugyan et al. (106) observed that 

Nandrolone administration displayed excessive MDA levels as well as a 

diminution in GPx activity in prefrontal cortex and hippocampus. 

Likewise, Frankenfeld et al. (108) revealed a harmful increase on kidney 

protein carbonyl content, a decrease of kidney total reduced thiol 

residues, and a diminished renal CAT activity affected by AAS 

treatment. 

Consequently, some studies have already demonstrated the 

combined effects of HIE and AAS in other tissues. For example, 

concerning muscle mass, the combination of these effects induced 

comparable hypertrophy in the size of all major fibre types on soleus, 

tibialis anterior and gastrocnemius muscle (109,110). Additionally, the 

beneficial effects provided by HIE on hippocampal cell proliferation and 
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apoptotic signalling as well as the improved heart antioxidant capacity 

were impaired by Nandrolone (111,112). Conversely, Stanozolol 

treatment protected rat skeletal muscle mitochondria against oxidative 

damage of proteins and changes in membrane fatty acid composition 

induced by acute exercise (113). Therefore, the involvement of specific 

molecular mediators on the biological effects of HIE and/or AAS depend 

on numerous factors such as the training protocol designed, animal model 

investigated, age, sex, AAS dose, metabolism or treatment regimen 

(114,115). 

Several oxidative stress brain and kidney markers and antioxidant 

enzymes have been used to evaluate brain and renal damage. The 

astrocytes play a key role in brain physiology and diverse 

neurodegenerative diseases (116). The GFAP is a specific astrocyte 

marker, which increases as a sign of astrogliosis, associated with 

conditions of brain injury (117). Glial activation, in response to injury 

stimuli, commonly involves changes in GFAP and antioxidant defence 

(118). The Nrf2 plays a central role in the regulation of phase 2 enzymes, 

such as GPx, GST and NQO1 (119,120). Recent studies have observed 

that chronic exercise activates the Nrf2 in human skeletal muscle and rat 
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kidney whereas acute exercise promotes myocardial Nrf2 function 

(79,121).  

STAT3 is activated by cytokines, growth factors, and receptor- or 

nonreceptor-tyrosine kinases (122,123). A previous study has 

demonstrated that manganese superoxide dismutase (Mn-SOD), a 

primary cellular defence enzyme involved in protecting cells from 

oxidative stress (124), is a direct target of STAT3 in ischemia 

reperfusion-induced neuronal cell death. Hence, the loss of STAT3 

activity reduces Mn-SOD expression after cerebral ischemia (125).  

Given that hypertrophy resistance training is the main exercise 

modality practiced by AAS abusers (126) and the effect of androgens in 

combination with HIE on brain and kidney redox status has been scarcely 

investigated,  some of the issues of the present Thesis was to investigate 

the effects of an hypertrophy resistance training protocol (i.e. HIE) and 

AAS administration on brain and kidney redox status. 
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AIMS 

 

General: 

The overall objective of this PhD Thesis was to analyse the brain and 

kidney antioxidant defence system and oxidative damage as well as the 

renal morphology related to high-protein diet, high-intensity exercise, 

and anabolic androgenic steroids administration in rats. 

Specifics: 

• To systematic review recent studies analysing the influence of the 

type of exercise performed and its volume intensity on brain 

oxidative stress markers. (Paper I). 

• To examine the potentially protective action of high-intensity 

exercise against the brain oxidative damage induced by the intake 

of a high-protein diet (Paper II).  

• To study the alterations of high-intensity exercise and anabolic 

androgenic steroids administration on brain oxidative stress in rats 

(supplementary files). 

• To examine the effects of high-protein diets, high-intensity 

exercise and anabolic-androgenic steroids administration on 
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kidney oxidative stress markers, as well as, plasma, urinary and 

morphological renal parameters in rats (Paper III and 

supplementary files).  
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OBJETIVOS 

 

Generales: 

El objetivo general de esta memoria de Tesis Doctoral fue analizar el 

sistema de defensa antioxidante y el daño oxidativo a nivel cerebral y 

renal, así como la morfología renal relacionados con las dietas 

hiperproteicas, el ejercicio de alta intensidad y la administración de 

anabolizantes androgénicos esteroideos en ratas. 

Específicos: 

• Revisar sistemáticamente los últimos estudios que analizaron la 

influencia del tipo de ejercicio realizado y su intensidad sobre 

marcadores de estrés oxidativo en cerebro (Artículo I). 

• Examinar el potencial acción protector del ejercicio de alta 

intensidad contra el daño oxidativo cerebral producido por la 

ingesta de una dieta hiperproteica (Artículo II). 

• Estudiar las alteraciones del ejercicio de alta intensidad y la 

administración de anabolizantes androgénicos esteroideos sobre el 

estrés oxidativo cerebral en ratas (archivos suplementarios). 

• Examinar los efectos de una dieta hiperproteica, del ejercicio de 
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alta intensidad y de la administración de anabolizantes 

androgénicos esteroideos sobre marcadores de estrés oxidativo 

renal, así como sobre parámetros plasmáticos, urinarios y 

morfológicos renales en ratas (Artículo III y archivos 

suplementarios). 
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MATERIAL AND METHODS [MATERIAL Y MÉTODOS] 

 

Systematic Review 

1. Search strategy  

A systematic review of the literature was conducted up to November 

2012 across the following electronic databases: PUBMED, SCOPUS, 

SPORTS DISCUS, Web Of Science and The Cochrane Library. In 

addition, manual searching of the reference lists was carried out and 

results were combined in Endnote (EndNote X3 for Mac OS X, Dakota 

State University, Thomson Reuters). The date of the first published 

article related to brain oxidative stress and exercise was chosen as the 

initial date of the search.  

The search strategy used in the mentioned electronic databases was 

established as: (swim* OR exercise OR training) AND (“oxidative 

stress” AND brain) for each database. 
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2. Inclusion and exclusion criteria 

Studies proposed to be included in the review were checked for the 

following criteria: (1) the study was a full report published in a peer-

reviewed journal; (2) only studies developed in healthy humans or 

rodents were included in the review; (3) one or more exercise programs 

were carried out; (4) keywords combination referred to exercise, 

oxidative stress or brain were included as a deeper and exhaustive search 

process. 

Articles were included only if they met all of these four criteria and 

therefore articles were excluded if (1) they were published after 

November 2012; (2) full-text of the articles was not found; (3) studies 

were published as an abstract; (4) exercise was not performed; (5) articles 

were not written in English, Spanish or Portuguese, and (6) the studies 

were not performed in healthy “humans” or “rodents”. Finally, (7) studies 

that used drugs administration before or after exercise were also 

excluded.  

 

3. Identification of eligible studies 

Eligible studies were longitudinal and cross-sectional observational 

studies developed in healthy humans or rodents that analysed the 
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association between exercise and oxidative stress on brain and which did 

not administer any drug.  

The abstracts of all articles identified through the search were read by 

two independent researchers (DCM and VAA), who selected the 

potentially eligible articles. In the next step, the two independent 

researchers (DCM and VAA) carefully read and evaluated these articles. 

A consensus meeting was arranged to sort out differences between DCM 

and VAA and finally decide if the potentially eligible articles were 

included or not. The reference list of every selected article was carefully 

checked to identify other potentially eligible studies. 

 

4. Methodological Quality Assessment 

The final sample of studies for review was subsequently analysed by a 

Methodological Quality Assessment (MQA), according to a modified 

version of the Downs and Black Quality Index (127) with the Ainge et al. 

(128) modification for animal models (Table 1, see paper I). This 

modified version consists of a total of 10 questions; 7 of them assess the 

quality of reporting (including animal-specific questions), two of them 

assess the internal validity (one each on bias and confounding) and one 

question assesses the power of each study. MQA was conducted 
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separately by two researchers (DCM and VAA). For each study a “yes” 

or “no” was recorded for each question as either one or zero, 

respectively. Responses were summed to give a total out of 10, which 

was then expressed as a percentage. Finally, to identify general strengths 

and weakness across the group of studies, responses for each question 

were summed to give a total out of 5 questions. For all studies, a total 

quality score was calculated by counting up the number of positive items 

(a total score between 0 and 10), which was then expressed as a 

percentage. Studies were defined as high quality if they had a total score 

of 7 or higher. A total score of 5 and 6 were defined as low quality, and a 

score of less than 4 was defined as very low quality (129) (Table 2, see 

paper I). Two reviewers (DCM and VAA) separately evaluated the 

quality of the studies. A consensus meeting was arranged to sort out 

differences between both reviewers.  

 

5. Levels of evidence 

Three levels of evidence were constructed: (1) strong evidence: 

consistent findings in three or more high-quality studies; (2) moderate 

evidence: consistent findings in two high-quality studies; (3) limited or 

conflicting evidence: consistent findings in multiple low-quality studies, 
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inconsistent results found in multiple high-quality studies, or results 

based on one single study (129). 

 

6. Data extraction 

For all studies that met the eligibility criteria, all relevant data was 

extracted: Characteristics of the sample, random or non-randomized 

experimental designs, exercise protocols performed, chosen enzymes and 

its measurement methodology, methodology employed during the 

animals sacrifice and samples saving, brain protein concentration and 

oxidation estimation methodology, brain area selected, and statistical 

analysis carried out.  

 

In vivo experiments 

1. Animals and experimental design 

A total of 80 albino male Wistar rats were randomly distributed into 8 

experimental groups derived of 3 interventions: protein amount of the 

diet (normal-protein vs. high-protein), HIE (untrained vs. HIE) and AAS-

administration (non-AAS vs. AAS). Each specific intervention (e.g. HP 

diet, with HIE and with AAS) was developed in groups of 10 rats and the 
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experimental period lasted 12 weeks (Figure 1).  

The animals (aged 8 weeks) with an initial body weight of 

170±19 g had free access to type 2-water (>15 MΩ cm) and consumed 

the diets ad libitum. Food intake and body weight were measured daily 

and weekly, respectively, for all the animals. The rats were located in a 

well-ventilated thermostatically controlled room (21±2ºC), with a relative 

humidity ranging from 40 to 60%. A 12:12 reverse light-dark cycle 

(08.00–20.00 h) was implemented in order to allow exercise training 

during the day. At the end of the experimental period, the animals were 

anesthetized with ketamine-xylazine and sacrificed by cannulation of the 

abdominal aorta. Brains were extracted, weighed and immediately frozen 

in liquid N2 and kept at -80ºC until further analyses. Carcass weight was 

recorded. Carcass is the weight of the slaughtered animal’s cold body 

after being skinned, bled and eviscerated, and after removal of the head, 

the tail and the feet. 

 This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health. All procedures were 

approved by the Animal Experimentation Ethics Committee of the 

University of Granada (2011-343). 
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n=20 
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Non AAS 
n=10 

Untrained  
n=20 

AAS 
n=10 
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n=40 
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 n=20 
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Amount of protein 
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  Steroids 

Figure 1. Study design showing the three different interventions: dietary protein amount (Normal-protein vs. High-protein), 

exercise (untrained vs. High-Intensity Exercise) and anabolic-androgenic steroids (non AAS-administration vs. AAS-

administration). 
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2. Experimental diets 

Formulation of the experimental diets is presented in Table 1. All diets 

were formulated to meet the nutrient requirements of rats (130) following 

the recommendations of the American Institute of Nutrition (AIN-93M) 

(131), with slight modifications. We selected a 45% protein level for the 

high-protein diet at the expense of carbohydrates (wheat starch) 

following previously established and similar studies in rats (89,94,95). A 

10% protein content was chosen for the normal-protein diet groups. A 

commercial soy-protein isolate was used as the only protein source since 

it is widely available.  
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Table 1. Formulation of the experimental diets. 

Nutritional Composition 

(g/100g DM) 

Protein diet 

Normal-protein High-protein 

Soy protein supplement 13.1 57.4 

Mineral mix (AIN-93M-MX) 3.5 3.5 

Vitamin mix (AIN-93-VX) 1 1 

Fat (olive oil) 4 4 

Choline chloride 0.25 0.25 

Cellulose 5 5 

Starch 62.4 28.6 

Methionine 0.5 - 

Sucrose 10 - 

 

 

2.1. Total nitrogen content and total protein concentration 

Prior to the diet preparation, total protein concentration of the 

commercial soy hydrolyzate and its distribution among the protein or 

non-protein fractions was measured. Total nitrogen (N) content of the 

commercial soy-protein hydrolyzate was 12.4±0.7g/100g of dry matter, 

which corresponds to a 77.5% of richness. 
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Total protein concentration of the experimental diets was also 

assayed, with values of 44.1±2.2% and 9.8±0.4% for the soy high-protein 

and normal-protein diets, respectively. These values are adequate for our 

experimental design. 

 

3. High-intensity exercise 

3.1. Training protocol 

The experimental groups were trained following a resistance training 

protocol on a motorized treadmill (Panlab Treadmills for 5 rats, LE 

8710R) with bagged weights tied with a cord to the tail. This type of 

training was chosen in order to reproduce the type of exercise performed 

by people interested in gaining muscle mass and strength (89). The 

training groups exercised on alternate days (3-4 sessions/week) at a 

constant speed of 35 cm/s during the whole experimental period (12 

weeks).  Experimentation took place in the dark phase. Prior to exercise 

training, animals were adapted to the treadmill on a daily basis for 1 

week, the first three days without weight and the last four days with 20% 

of their body weight. The training protocol used in the present study has 

been previously developed and deeply described by Aparicio et al. (89). 
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During the exercise period, the training weights (loads) were 

progressively increased and individually adjusted once per week to the 

percentage of one repetition maximum (1 RM), defined as the maximum 

load that each rat could carry in the bag. The entire training process was 

designed and controlled by sport scientists in collaboration with 

experienced researchers trained to work with rats. The number of 

sessions performed each week, the number of sets per session, the time 

spent in each set, and the load carried by the animals is shown in Table 

2. 

 Animals in the control group were managed identically to 

exercising animals, with the exception of exercise training.  
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Table 2. Details of the high-intensity exercise protocol. 

Week 
Work time 

(min) 
Sets 

Time between sets 

(min) 

Weight            

(% 1 RM) 

1 2 10 1 55 

2 2 10 1 60 

3 2 10 1 65 

4 2 10 1.5 70 

5 2 10 1.5 70 

6 2.5 10 1.5 75 

7 2.5 12 1.5 75 

8 2 12 2 80 

9 2.5 12 2 80 

10 1.5 12 2 85 

11 2 12 2.5 85 

12 1 12 2.5 85 

RM, repetition maximum. 

 

3.2. Repetition maximum test 

The 1 RM test was conducted as follows: the rat was placed in a flat, 

horizontal and non-slippery surface with a specific loaded bag that was 
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tied to its tail. The rat was acoustically stimulated and immediately 

reacted by moving forward. This procedure was repeated several times, 

increasing the load every time, until the rat could not move forward, yet 

actively stimulated. The load achieved at this point was considered the 1 

RM and was weekly measured in all animals to adapt the percentage of 1 

RM load during the training period. 

 

4. Anabolic androgenic steroids administration 

Following similar studies performed in rats, the animals received 10 

mg/kg body weight of Stanozolol once a week by intramuscular injection 

in the gluteus (alternating the lateral side each week) for 12 weeks. This 

dose is comparable to the dose that has been reported as being frequently 

used by athletes (600 mg/week or approximately 8 mg/Kg/week) 

(132,133). We used a commercially available Stanozolol solution of 50 

mg/ml (Winstrol Depot, Desma Pharma group) that was diluted with 

saline solution to appropriate concentrations for the lower doses to keep 

the volume of injection constant. The non-AAS administered group was 

injected with saline solution as placebo. 
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5. Chemical analyses 

5.1. Plasmatic parameters 

The plasma urea, total protein, creatinine and albumin concentrations 

were measured using an autoanalyzer (Hitachi-Roche p800, F. 

Hoffmann-La Roche Ltd. Switzerland).  

 

5.2. Brain and kidney homogenate preparation for oxidative damage 

markers and antioxidant activity 

Brain (1 g) and kidney (0.5 g) samples were homogenized in 50 mM 

phosphate buffer (pH 7.8) containing 0.1% Triton X-100 and 1.34 mM 

diethylenetriaminepentaacetic acid (DETAPAC) (1:10w/v) using a Micra 

D-1 homogenizer (ART moderne labortechnik) at 18,000 rpm for 30 sec 

followed by treatment with Sonoplus HD 2070 ultrasonic homogenizer 

(Bandelin) at 50% power for 10 sec. Homogenates were centrifuged at 

19,921 g, 4°C for 45 min (BECKMAN, Allegra 64R), and the 

supernatants were used to determine the oxidative damage markers and 

the antioxidant enzymes activity.  
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6. Oxidative damage markers 

6.1. Thiobarbituric acid-reactive substances  

Thiobarbituric acid reactive substances (TBARs) were used as a marker 

of lipid peroxidation. Brain and kidney supernatants were used to 

determine lipid peroxidation by measuring TBARs as described by 

Ohkawa et al. (134). The results were expressed as nmol of MDA per mg 

of protein (nmolMDA/mg) from duplicate reactions.  

 

6.2. Protein carbonyl content  

Total carbonyl content in brain and kidney were used as a biomarker of 

protein oxidation. The content was determined by spectrophotometry 

using a protein carbonyl colorimetric assay kit (Cayman, USA) according 

to Levine et al. (15). Results were expressed as nmol of reactive carbonyl 

compounds/mg protein of tissue. 

 

7. Antioxidant enzyme activity 

7.1. Superoxide dismutase  

Total superoxide dismutase (t-SOD) activity was measured as described 

by Ukeda et al. (135) and adapted to a micro-plate reader. Manganese 
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superoxide dismutase (Mn-SOD) activity was determined by the same 

method after treating the samples with 4 mM KCN for 30 min (final 

concentration of KCN 1 mM was set for all the samples). Cooper/zinc 

superoxide dismutase (CuZn-SOD) activity was determined by 

subtracting the Mn-SOD activity from the t-SOD activity. One unit of 

SOD activity was defined as the enzyme needed to inhibit 50% 2,3-bis 

(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide 

(XTT) reduction. Protein concentration was determined by the method of 

Lowry (136).   

 

7.2. Catalase  

Catalase activity was measured as described by Aebi (137) by monitoring 

the disappearance of H2O2 in the presence of brain or kidney homogenate 

at λ=240 nm and was expressed as µmol of H2O2 consumption per 

minute per milligram of protein. Protein concentration was determined by 

the method of Lowry (136).   

 

7.3. Glutathione peroxidase  

This method is based in the oxidation of nicotine adenine 

dinucleotide phosphate (NADPH) induced by glutathione reductase, 
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coupled with the reduction of glutathione previously oxidized by 

glutathione peroxidase. The activities were spectrophotometrically 

determined at λ=340 nm, 37oC during 4 min, repeating the measurements 

every 15 sec according to the protocol previously described by Lawrence 

et al. (138,139) with slight modifications. Catalysed and non-catalysed 

reactions were simultaneously performed. Regarding the non-catalysed 

reactions, 240µL of 2 mM NADPH/1 mM ethylenediaminetetraacetic 

acid (EDTA) in 50 mM phosphate buffer, pH 7.4, were mixed with 15 µL 

of kidney homogenate and 10 µL of 22 mM cumene hydroperoxide in 

each well. As for the catalysed reaction, 240 µL 2mM NADPH/1 mM 

EDTA in 50 mM phosphate buffer, pH 7.4, were mixed with 15 µL 

kidney homogenate, 4,5 µL glutathione reductase (0.04 mU/mL), and 10 

µL 22 mM cumene hydroperoxide. The results were expressed as nmol 

NADPH/min/mg of protein. 

 

8. Western blotting analysis 

8.1. Brain homogenate preparation for Western blotting analysis 

Brain samples (1 g) were homogenized (1:10 w/v) in 20 mM Tris·HCl 

(pH 8.0) containing 0.1% octylphenoxypolyethoxyethanol (lgepal), 100 

mM ethylene glycol tetraacetic acid (EGTA), 100 mM 
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dichlorodiphenyltrichloroethane (DDT), 100 mM sodium orthovanadate, 

2 mM AEBSF, 1 mM EDTA, 130 µM Bestatin, 14 µM E-64, 1 µM 

Leupeptin and 0.3 µM Aproptinin. Samples were homogenized with a 

Micra D-1 homogenizer (ART moderne labortechnik) at 18,000 rpm for 

30 seconds followed by treatment with Sonoplus HD 2070 ultrasonic 

homogenizer (Bandelin) at 50% power for 10 seconds. Homogenates 

were centrifuged at 19,621 g and 4°C for 45 min (BECKMAN, Allegra 

64R), supernatants were collected and stored at -80ºC until use. The 

concentration of protein was measured by the method of Lowry et al. 

(136). Samples (40 µg protein) were subjected to 12% sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, 

proteins were electro transferred to reinforced cellulose nitrate 

membranes (Schleicher & Schuell, Dassel, Germany) using a Mini 

Trans-Blot cell system (Bio-Rad Laboratories, Hercules, CA). 

Membranes were blocked with 5% non-fat dry powdered milk dissolved 

in Tris-buffered saline Tween-20 (TBS-T) for 2 hours at room 

temperature. After blocking, the membranes were incubated with primary 

polyclonal rabbit anti-Nrf2 antibody (1:1500, Abcam Cambridge, USA) 

overnight at 4ºC. A goat anti-rabbit immunoglobulin G associated to an 

enhanced chemiluminescence reagent mixture (Western Lightning, 



Material and methods 

	   103 

PerkinElmer Inc., Waltham, MA, USA) was used to estimate the amount 

of protein expressed using a Fujifilm Luminescent Image Analyzer LAS-

4000 mini System (Fujifilm, Tokyo, Japan). Equality of protein loading 

was checked standardizing the bands to β -actin (1:2000, Abcam, 

Cambridge, USA). The optical density of the protein bands was measured 

and quantified by Image J software. Results were expressed in relative 

density units. 

 

8.2. Western blotting 

Brain aliquots (1 g) were homogenized (1:10 w/v) in 20 mM Tris·HCl 

(pH 8.0) containing 0.1% octylphenoxypolyethoxyethanol (lgepal), 100 

mM EGTA, 100 mM DDT, 100 mM sodium orthovanadate, 2 mM 

AEBSF, 1 mM EDTA, 130 µM Bestatin, 14 µM E-64, 1 µM Leupeptin 

and 0.3 µM Aproptinin. Samples were homogenized with a Micra D-1 

homogenizer (ART moderne labortechnik) at 18,000 rpm for 30 seconds 

followed by treatment with Sonoplus HD 2070 ultrasonic homogenizer 

(Bandelin) at 50% power for 10 seconds. Homogenates were centrifuged 

at 19,621 g and 4°C for 45 min (BECKMAN, Allegra 64R), supernatants 

were collected and stored at -80ºC until use. Protein concentration was 

quantified using the Bradford assay method (Bio-Rad, Hercules, CA). 
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Proteins were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis under reducing conditions and then transferred to 

nitrocellulose membranes. Western blots were performed according to 

standard methods. Membranes were blocked in 5% skimmed milk, and 

then incubated (overnight at 4ºC or room temperature for 3-4 h) with the 

antibody of interest, followed by incubation with a horseradish 

peroxidase-conjugated secondary antibody. The visualization of 

immunoreactive bands was performed using the ECL Plus Western 

blotting detection system (GE Healthcare, Pascataway, NJ). The primary 

antibodies were directed against NF-κβ p65 (Epitomics, Burlingame, CA; 

1:1000); GFAP (Cell signalling Technology, Danvers, MA; 1:1000); GPx 

(Santa Cruz Biotechnology, Santa Cruz, CA; 1:200); NQO1 (Abcam, 

Inc., Cambridge, MA; 1:2500); STAT3 (Cell Signalling Technology, 

Danvers, MA; 1:1000) and Nrf2 (Abcam, Inc., Cambridge, MA; 1:1500). 

The quantification was performed by volume densitometry using Image J 

software (NIH, Bethesda, MD) and normalization to ponceau reagent 

with the exception of Nrf2 that was normalized to β-actin.  

 

9. Histological analysis 

The left-kidney samples were fixed in 4% buffered formalin and 
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embedded in paraffin. Subsequently, 4-micrometer-thick sections were 

obtained and stained with 1% Picro-sirius red F3BA (Gurr, BDH 

Chemicals Ltd, Poole, United Kingdom) (140). This technique facilitates 

the visualization of connective fibres as deep red stains on a pale yellow 

background (140). The sections were assessed by optical microscopy. 

Forty images per sample were captured: 20 of the glomerulus to 

determine the morphometry and the intraglomerular connective tissue 

and 20 of the tubulointerstitial area to measure the interstitial connective 

tissue. 

All images were acquired using the 20 x lens and analysed with 

the Fibrosis HR® software (141). This image analysis application allowed 

us to automatically quantify morphometric parameters by using various 

image-processing algorithms (141). 

We estimated the following 8 morphological variables that we describe 

for the better understanding of the present results: a) Percentage of 

interstitial connective tissue in relation to the image area, excluding the 

glomerular area (the connective tissue that is in the gap over the 

Bowman’s capsule). b) The area of interstitial connective tissue 

(including Bowman's capsule). The Fibrosis HR® software divides 

glomerular tufts into 2 categories: “glomerular tuft I” and “glomerular 
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tuft II”. The variable “glomerular tuft I” corresponds to the renal 

corpuscle excluding the Bowman's capsule. The variable "glomerular tuft 

II" corresponds to the renal corpuscle excluding the Bowman’s capsule 

and considering the area of the capillary lumens and urinary spaces in the 

glomerulus. c) Glomerular tuft I area. d) Glomerular tuft II area. e) 

Glomerular tuft I percentage (percentage of glomerular tuft I related to 

the glomerular area). f) Glomerular tuft II percentage (percentage of 

glomerular tuft II related to the glomerular area). g) Mesangial area. h) 

Glomerular area. 

 

10. Statistical analyses 

Results are presented as mean and standard error of the mean (SEM), 

unless otherwise indicated. The effects of the HIE (untrained vs. HIE), 

the AAS administration (non-AAS vs. AAS) and the dietary protein 

amount (normal-protein vs. high-protein) on food intake, final body 

weight, carcass weight, brain and kidney weight, oxidative stress markers 

as well as plasma, urinary, and renal morphology parameters were 

analysed by three-way factorial analysis of variance (ANOVA), with 

HIE, AAS and dietary protein amount as fixed factors. Two-ways 

interactions terms were introduced into the models to test interactions 



Material and methods 

	   107 

between the following factors: dietary protein amount*HIE and 

AAS*HIE. A significant p value indicates that there are differences in at 

least two of the groups. In addition, multiple comparisons between 

groups were made considering Bonferroni’s adjustment in order to 

identify between which groups the differences were significant (e.g. 

untrained without AAS vs. HIE with dietary protein amount). 

All analyses were performed using the Statistical Package for 

Social Sciences (IBM-SPSS for Mac, version 22.0, Amonk, NY), and the 

level of significance was set at 0.05. 
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RESULTS  

The results of the present Doctoral Thesis are shown as a compilation of 

scientific papers combined with unpublished data. They are enclosed in 

the form they have been published complemented with results not 

published yet. Rigorously, each scientific paper is composed by an 

introduction, a description of the material and method, results, 

discussion, conclusion and bibliography. 

 

Los resultados obtenidos en la presente Tesis Doctoral se 

presentan a continuación en la forma en que han sido publicados 

combinados con resultados aún sin publicar. Como es de rigor, cada 

artículo cuenta con su introducción correspondiente, descripción de la 

metodología utilizada, exposición de los resultados, discusión de los 

mismos y bibliografía.  
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The aim of the present systematic review was to inves-
tigate the influence of different exercise programs on
brain oxidative stress. A search of the literature was
conducted up to 1 December 2012 across five databases:
PUBMED, SCOPUS, SPORTS DISCUS, Web of
Science, and The Cochrane Library. The search strategy
used in the electronic databases mentioned was estab-
lished as: (swim* OR exercise OR training) AND (“oxi-
dative stress” AND brain) for each database. A
methodological quality assessment valuation/estimation
was additionally carried out in the final sample of
studies. Of 1553 potentially eligible papers, 19 were
included after inclusion and exclusion criteria. The

methodological quality assessment showed a total score
in the Quality Index between 40% and 80%, with a
mean quality of 56.8%. Overall, regular moderate
aerobic exercise appears to promote antioxidant capac-
ity on brain. In contrast, anaerobic or high-intensity
exercise, aerobic-exhausted exercise, or the combination
of both types of training could deteriorate the antioxi-
dant response. Future investigations should be focused
on establishing a standardized exercise protocol,
depending on the exercise metabolism wanted to test,
which could enhance the objective knowledge in this
topic.

Exercise could increase the resistance against oxidative
stress, providing enhanced protection (Alessio, 1993;
Radak et al., 2000a, 2002, 2008a). According to the
original stress theory developed by Selye (1956), for a
chronic stressor the body replies with a decreased
(alarm reaction), and then with an increased resistance
(stage of resistance), which is followed by exhaustion
of the body (stage of exhaustion). Therefore, chronic
stressors could be very dangerous because the resting
period, which is obligatory for recovery and efficient
stress response, is missing (Radak et al., 2008b).
However, many unanswered questions remain concern-
ing the intensity and duration of the exercise to be pre-
scribed (Daniels et al., 2012). For instance, in
extremely long-duration exercise, such as 18–24 con-
secutive hours of running or swimming, even in
superbly trained individuals, the body can suffer
serious “exhaustion” that could endanger the health of
the individuals (Radak et al., 2008b). On the other
hand, under normal conditions, exercise bouts are fol-
lowed by rest periods where the body has the capability
to cope with the exercise “stressor” and as a result,
adaptation takes place. Indeed, the adaptive effects of
regular exercise are systemic and, depending on the
characteristics of exercise, the effects are specific
(Radak et al., 2001a).

Since the 90s, there is evidence about the benefits of
regular exercise on brain function, which could play an
important preventive and therapeutic role on oxidative
stress-associated brain diseases (Mattson et al., 2004;
Mattson & Magnus, 2006; Radak et al., 2008a). Brain is
considered highly sensitive to oxidative damage because
it possesses high amounts of phospholipids and polyun-
saturated fatty acids, both of which are highly suscep-
tible to oxidants, have high oxygen consumption, and
low levels of antioxidant enzymes (Jenner, 2003; Tuon
et al., 2012). Exercise may increase the level, activation,
and mRNA expression of endogenous antioxidant
systems in the brain, and it down-regulates the levels of
the oxidative damage (Um et al., 2008; Aguiar et al.,
2008a, 2010, 2011; Tuon et al., 2012) that have been
implicated in reducing the risk of brain oxidative
damage, but this response depends on the type of exer-
cise used (Tuon et al., 2012).

Until date, no review has been deeply explored the
relationship between exercise intensity and type and oxi-
dative stress on brain in order to better understand the
dose and type of exercise more beneficial for brain activ-
ity. Therefore, the aim of the present systematic review
was to further analyse the influence of the type of exer-
cise performed and its volume intensity on brain oxida-
tive stress markers.
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Methods
Search strategy

A systematic review of the literature was conducted up to Novem-
ber 2012 across the following electronic databases: PUBMED,
SCOPUS, SPORTS DISCUS, Web of Science, and The Cochrane
Library. In addition, manual searching of the reference lists was
carried out and results were combined in Endnote (EndNote X3
for Mac OS X, Dakota State University, Thomson Reuters). The
date of the first published article related to brain oxidative stress
and exercise was chosen as the initial date of the search.

The search strategy used in the mentioned electronic databases
was established as: (swim* OR exercise OR training) AND (“oxi-
dative stress” AND brain) for each database.

Inclusion and exclusion criteria

Studies proposed to be included in the review were checked for the
following criteria: (a) the study was a full report published in a
peer-reviewed journal; (b) only studies developed in healthy
humans or rodents were included in the review; (c) one or more
exercise programs were carried out; (d) key words combination
referred to exercise, oxidative stress, or brain was included as a
deeper and exhaustive search process.

Articles were included only if they met all of these four criteria
and therefore articles were excluded if (a) they were published
after November 2012; (b) full text of the articles was not found; (c)
studies were published as an abstract; (d) exercise was not per-
formed; (e) articles were not written in English, Spanish, or Por-
tuguese; and (f) the studies were not performed in healthy
“humans” or “rodents.” Finally, (g) studies that used drugs admin-
istration before or after exercise were also excluded.

Identification of eligible studies

Eligible studies were longitudinal and cross-sectional observa-
tional studies developed in healthy humans or rodents which
analysed the association between exercise and oxidative stress on
brain and which did not administer any drug.

The abstracts of all articles identified through the search were
read by two independent researchers (D. C. M. and V. A. A.) who
selected the potentially eligible articles. In the next step, the two

independent researchers (D. C. M. and V. A. A.) carefully read and
evaluated these articles. A consensus meeting was arranged to sort
out differences between D. C. M. and V. A. A. and finally decide
if the potentially eligible articles were included or not. The refer-
ence list of every selected article was carefully checked to identify
other potentially eligible studies.

Methodological quality assessment

The final sample of studies for review was subsequently analysed
by a methodological quality assessment (MQA), according to a
modified version of the Downs and Black Quality Index (Downs &
Black, 1998) with the Ainge et al. (2011) modification for animal
models (Table 1). This modified version consists of a total of 10
questions; 7 of them assess the quality of reporting (including
animal-specific questions), 2 of them assess the internal validity
(one each on bias and confounding), and 1 question assesses the
power of each study. MQA was conducted separately by two
researchers (D. C. M and V. A. A.). For each study, a “yes” or “no”
was recorded for each question as either 1 or 0, respectively.
Responses were summed to give a total out of 10, which was then
expressed as a percentage. Finally, to identify general strengths
and weaknesses across the group of studies, responses for each
question were summed to give a total out of five questions. For all
studies, a total quality score was calculated by counting up the
number of positive items (a total score between 0 and 10), which
was then expressed as a percentage. Studies were defined as high
quality if they had a total score of 7 or higher. A total score of 5 and
6 was defined as low quality, and a score of less than 4 was defined
as very low quality (Ruiz et al., 2009) (Table 2). Two reviewers (D.
C. M. and V. A. A.) separately evaluated the quality of the studies.
A consensus meeting was arranged to sort out differences between
both reviewers.

Levels of evidence

Three levels of evidence were constructed: (a) strong evidence:
consistent findings in three or more high-quality studies; (b) mod-
erate evidence: consistent findings in two high-quality studies; and
(c) limited or conflicting evidence: consistent findings in multiple

Table 1. Methodological quality assessment questions.

Modified from Ainge et al. and Downs and Black Quality Index

Reporting
General

1 Were the hypotheses/aims/objectives of the study clearly described within the introduction?
Animal characteristics

2 Was animal species/strain identified?
3 Was the animal age at commencement of the study or at conception specified?
4 Have the animal weights at commencement or at conception of study been specified?
5 Have the housing details been specified?

Design and outcomes
6 Were the interventions of interest clearly described?
7 Have all important adverse events that may be consequence of the intervention been reported?

Internal validity – bias
Bias

8 Was an attempt made to blind those measuring the main outcomes of the intervention?
Confounding

9 Were losses of animals explained?
Power

10 Was the paper of sufficient power to detect a clinical important effect where the probability value for a difference being due to
chance is less than 5%?

Methodological quality assessment questions modified from Ainge et al. (2011) and Downs and Black (1998).
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low-quality studies, inconsistent results found in multiple high-
quality studies, or results based on one single study (Ruiz et al.,
2009).

Data extraction

For all studies that met the eligibility criteria, all relevant data were
extracted: characteristics of the sample, random or nonrandomized
experimental designs, exercise protocols performed, chosen
enzymes and its measurement methodology, methodology
employed during the animals sacrifice and samples saving, brain
protein concentration and oxidation estimation methodology,
brain area selected, and statistical analysis carried out.

Results
Search results

Initial electronic searching across the above-mentioned
five Internet databases led us to 1553 articles. The
removal of 502 duplicates, 378 by Endnote program and
124 handled, resulted in 1051 individual articles to be
subjected to inclusion and exclusion criteria. After
examination of inclusion and exclusion criteria, 107
(removal of 944) articles were selected for further
reading. A total of 88 articles did not meet the inclusion
criteria after the methods examination. Finally, 19 manu-
scripts met the inclusion criteria and were included in the
present review (studies flow showed in Fig. 1).

Methodological quality assessment

The modified MQA carried out in the 19 selected manu-
scripts is provided in Table 2. The total score of the
Quality Index for each paper is shown in the last right
column and expressed as percentage. Manuscripts

ranged between 40% (Radak et al., 2001b; Cechetti
et al., 2008) and 80% (Aguiar et al., 2008b) with an
average quality index of 56.8%. Total rating for report-
ing and internal validity were considered, being the
overall quality of reporting of the manuscripts 46%
higher than the internal validity (Table 3). We defined 4
studies as high quality (score �7), 13 as low quality (5�
score �6), and 2 as very low quality (score �4).

Interventions and species/strain details (19/19), as
well as objectives (18/19) and the age at start of the
studies (17/19), were specified in the majority of the
manuscripts. Furthermore, 11 of 19 studies referred to
the weight of the animals and 1 of 19 studies reported
important adverse events. Finally, no studies described a
blinding intervention or referred some experimental
death during their intervention in their Methods section.

Levels of evidence

Table 4 shows the data extraction of the studies reporting
the influence of exercise on brain oxidative stress in
rodents. No conclusive moderate evidence was obtained
in the selected sample, being only four of them of high
quality (Aguiar Jr et al., 2008b; Aguiar et al., 2010;
Vollert et al., 2011; Falone et al., 2012). Among these
four studies, brain oxidative stress was decreased in two
of them (Vollert et al., 2011; Falone et al., 2012), and
increased in the remaining two (Aguiar Jr et al., 2008b;
Aguiar et al., 2010).

Sample of the selected studies

According to the inclusion and exclusion criteria, after
the whole process no human study was obtained.

Table 2. Methodological quality assessment

Author Questions

1 2 3 4 5 6 7 8 9 10 Total (%)

Navarro et al. 1 1 1 0 1 1 0 0 0 1 60
Ohkuwa et al. 1 1 1 1 1 0 0 0 0 0 50
Falone et al. 1 1 1 1 1 1 0 0 0 1 70
Vollert et al. 1 1 1 1 1 1 0 0 0 1 70
Itoh et al. 1 1 1 1 1 1 0 0 0 0 60
Somani et al. 1 1 0 1 0 1 0 0 0 1 50
Liu et al. 1 1 1 0 1 1 0 0 0 0 50
Radak et al. (2001b) 1 1 1 0 0 0 0 0 0 1 40
Radak et al. (2006) 1 1 1 0 1 1 0 0 0 1 60
Qiao et al. 1 1 1 0 1 1 0 0 0 1 60
Aguiar et al. (2010) 1 1 1 1 1 1 0 0 0 1 70
Aguiar et al. (2008b) 1 1 1 1 1 1 1 0 0 1 80
Tsakiris et al. 0 1 0 1 1 1 0 0 0 1 50
Aydin et al. 1 1 1 0 1 1 0 0 0 1 60
Cechetti et al. 1 1 1 0 0 1 0 0 0 0 40
Aksu et al. 1 1 1 1 0 0 0 0 0 1 50
De Araujo et al. 1 1 1 1 1 0 0 0 0 1 60
Acikgoz et al. 1 1 1 1 0 1 0 0 0 0 50
Ogonovszky et al. 1 1 1 0 0 1 0 0 0 1 50

Reporting Internal
validity (bias)

Internal validity
(confounding)

Power Average

Total/19 18 19 17 11 13 15 1 0 0 14 56.8
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Therefore, only studies developed in rodents were
analysed. Rodent characteristics for each study were
registered. Fourteen of 19 manuscripts were carried out
with two different strains of rats: Wistar (10/19) and
Sprague–Dawley (4/19). The other five remaining
studies were developed with four different strains of
mice: CD1 (2/19), CF1 (1/19), Swiss (1/19), and
Kunming albino (1/19). Any of the studies specified
why each strain was chosen. Initial age of the animals
was reported in 17 of 19 studies and ranged from 4 to

80 weeks old in rats and from 5 to 78 weeks old in
mice. Weight of the rodents was registered in 11 of 19
studies, with a range at the start of the experience from
145 to 380 g in rats, and from 30 to 50 g in mice. Eigh-
teen of 19 studies recorded the sex of the rodents. Male
was the main gender chosen for rats (11/19) as well as
for mice (4/19). The three remaining studies were
developed in female animals (rats 2/19 and mouse
1/19) and one study was carried out in both sexes in
mice.

Fig. 1. Process from initial search to final inclusion of the manuscripts.
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Oxidative stress markers

Eleven markers related to oxidative stress were analysed
among the selected studies: lipid peroxidation (LP)
(13/19 studies), glutathione (GSH) (7/19), glutathione
peroxidase (GPx or GSH-Px) (6/19), superoxide dismu-
tase (SOD) (6/19), oxidized glutathione (GSSG) (5/19),
glutathione reductase (3/19), catalase (CAT) (3/19), and
total antioxidant status (1/19). Additionally, protein
tissue (5/19), protein oxidation (3/19), and protein brain-
derived neurotrophic factor (BDNF) (5/19) content were
also measured. Finally, total brain (8/19), hippocampus
(7/19), cerebral cortex (6/19), corpus striatum (5/19),
prefrontal cortex (3/19), cerebellum (2/19), brainstem
(1/19), diencephalon (1/19), and amygdala (1/19) were
the brain areas selected to be measured in the reported
studies (Table 3).

Exercise training programs

Running in a treadmill (13/19) and swimming (6/19) at
different intensities, involving continuous or intervallic
activities and with or without loads or different slopes,
were the most common exercise programs reported in
most of the studies. According to the effects of the dif-
ferent exercise interventions performed on brain oxida-
tive stress, we have found the following results:

Exercise protocol may decrease oxidative stress

Ten of the 19 studies improved brain antioxidant capac-
ity (Somani et al., 1995; Ohkuwa et al., 1997; Itoh et al.,
1998; Liu et al., 2000; Radak et al., 2001b, 2006;

Navarro et al., 2004; Qiao et al., 2006; Vollert et al.,
2011; Falone et al., 2012). Navarro et al. (2004) carried
out a moderate exercise treadmill (6, 9, and 12 m/min for
5 min each, every day) from 28 to 78 weeks of age
extended in mice. The authors concluded that moderate
exercise started at young age increases life span,
decreases oxidative stress, and prevents the decline of
cytochrome oxidase activity and behavioral performance
at middle-aged but not at old-aged mice. This concurs
with the study by Ohkuwa et al. (1997) who performed a
protocol where rats were divided into four groups: two
sedentary with or without voluntary running (physically
active) and two exercise groups (running on a treadmill)
with or without voluntary running. Groups were trained
2 days/week, at a speed of 10 m/min for the 3 first weeks
and 3 days/week, at a speed of 15 m/min for the last 2
weeks. They observed that physically active and exercise
group enhances the endogenous ability of the body to
defend it against oxidative stress. GSH, GSSG, and ratio
GSH/total GSH (ratio) levels in brain were higher in old
than young rats. In the study performed by Falone et al.
(2012), four mice groups with or without exercise for 2
or 4 months each group, respectively, were carried out.
Exercised groups started the treadmill training program
(running at 13 m/min for 20 min, 5 days/week) and the
final running workload was reached by incrementing
1 min/day, starting from 10 min/day. The authors sug-
gested that lately initiated exercise regimen strongly
reduced molecular damage profiles and increased their
antioxidant enzymatic capacity. Vollert et al. (2011)
developed a moderate treadmill exercise protocol in rats
for 4 weeks: 30 min/day at a speed of 10 m/min for 2
weeks (2 ¥ 15 min sessions), 45 min at a speed of 15 m/

Table 3. Methodological quality assessment results

Author Reporting x/7 Total%* Internal x/3 Validity %* Total x/10 Rating %*

Navarro et al. 5 71.4 1 33.3 6 60
Ohkuwa et al. 5 71.4 0 0 5 50
Falone et al. 6 85.7 1 33.3 7 70
Vollert et al. 6 85.7 1 33.3 7 70
Itoh et al. 6 85.7 0 0 6 60
Somani et al. 4 57.1 1 33.3 5 50
Liu et al. 5 71.4 0 0 5 50
Radak et al. (2001b) 3 42.9 1 33.3 4 40
Radak et al. (2006) 5 71.4 1 33.3 6 60
Qiao et al. 5 71.4 1 33.3 6 60
Aguiar et al. (2010) 6 85.7 1 33.3 7 70
Aguiar et al. (2008b) 7 100 1 33.3 8 80
Tsakiris et al. 4 57.1 1 33.3 5 50
Aydin et al. 5 71.4 1 33.3 6 60
Cechetti et al. 4 57.1 0 0 4 40
Aksu et al. 4 57.1 1 33.3 5 50
De Araujo et al. 5 71.4 1 33.3 6 60
Acikgoz et al. 5 71.4 0 0 5 50
Ogonovszky et al. 4 57.1 1 33.3 5 50
Average 4.9 70.7 0.7 24.6 5.7 56.8

MQA modified Quality Index results for reporting, internal validity, and overall score for all articles reviewed. Results expressed as total out of 7, 3, and
10, respectively, and as a percentage.
*Percentage that meets the criteria.
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min for 1 week (3 ¥ 15 min sessions), and finally 60 min
at 15 m/min (4 ¥ 15 min sessions), and analysed the
potentially protective effect of exercise before acute
sleep deprivation. The authors reported that acute sleep
deprivation increases oxidative stress in the cortex, hip-
pocampus, and amygdala while prior treadmill exercise
prevents against this increase. Similarly, Itoh et al.
(1998) divided rats into three groups: sedentary, type I
training (constant speed of 20 m/min for 15 min and
22.5 m/min for 5 min for the first week; 20 m/min for
20 min and 22.5 m/min for 5 min for the second week;
22.5 m/min for 20 min and 22.5 m/min for 5 min for the
third week), and type II training (running at 20 m/min
for 30, 45, and 60 min for the first, second, and third
weeks, respectively). They observed that regular moder-
ate endurance exercise increased antioxidant capacity in
rats at different treadmill training protocols.

Other protocols have been with slope or increasing the
intensity abruptly. Somani et al. (1995) performed an
incremental exercise program where rats ran 5 days/
week for 7.5 weeks. In the first 2 weeks, animals ran at
a speed of 8, 15, and 19 m/min for 5 min each speed (i.e.,
15 min) and for 10 min each speed (i.e., 30 min) the
second week. In the third and fourth weeks, speed
increased to 19, 27, and 30 m/min for 10 min each speed.
Same speed and long time were carried out for the last
3.5 weeks. The angle of inclination was increased gradu-
ally up to 10°. The authors observed an increase in SOD
enzymatic activity after exercise in different brain areas.

In the study by Liu et al. (2000), the animals in the
chronic exercise groups were habituated to treadmill
exercise over a 2-week period, where the duration and
speed of exercise progressively increased to 120 min at
27 m/min. For 2 weeks thereafter, animals were exer-
cised at this level for 8 weeks, 5 days/week. Animals in
the acute exercise groups were also conditioned to the
treadmill over a 2-week period but only for 10 min at
13 m/min for 3 days/week. Immediately before death,
animals were made to run in the treadmill at 27 m/min
until exhaustion. The authors observed an increase on
brain antioxidant levels with chronic but not with acute
exercise.

Other studies employed swimming protocols, as the
one performed by Radak et al. (2001b) in which young
and middle-aged rats were trained during 60 min/day, 5
days/week for 6 weeks, and 90 min/day, 5 days/week,
the 3 remaining weeks. The authors observed that swim-
ming improves some cognitive functions, with the par-
allel attenuation of the accumulation of oxidative-
damaged proteins. The same authors (Radak et al., 2006)
distributed rats into three groups: control, exercise, and
detrained groups. Exercise and detrained rats swam for 8
weeks, 60 min/day, 5 days/week for 4 weeks. Then, for
the remaining 4 weeks, exercise was increased to
120 min/day for 5 days/week. After 8 weeks of training,
the detrained group was kept as the control group for an
additional 8 weeks. The authors concluded that exercise

training is likely to benefit the effect in the production of
reactive oxygen species (ROS) and the related oxidative
damage. Furthermore, swimming but in mice, Qiao et al.
(2006) distributed mice into three groups: control, and
anaerobic exercise with short or long rest interval (10 or
40 s, respectively) groups. These exercise groups were
each subdivided into four subgroups: 2, 4, 6 days and
behavioral observation group. Mice swam with a load
tied to the tails equal to the 10% of their body mass the
first and second days, a 13% the third and fourth days,
and a 15% of the fifth and sixth days. Daily swim lasted
8 ¥ 10 s. The authors found that intermittent anaerobic
exercise increases brain antioxidant capacity.

Exercise may increase oxidative stress

In contrast, 6 of 19 studies found increments of oxidative
stress markers after an exercise protocol (Somani et al.,
1995; Liu et al., 2000; Tsakiris et al., 2006; Aguiar Jr et
al., 2008b; Aydin et al., 2009; Aguiar et al., 2010).
Aguiar et al. (2010) divided mice in sedentary or high-
intensity exercise groups. The researchers adapted a
high-intensity exercise protocol from a high-intensity
sprint interval training descriptions (Troup et al., 1986;
Kubukeli et al., 2002). Thus, 60-min high-intensity
sprint interval training was performed with two 20-min
bouts of exercise separated by two 10-min periods of
rest. In this protocol, they removed the resting time to
avoid recovery and to reach high intensities of exercise.
When the animals reached the stipulated maximum
volume of exercise (60 min), they lowered this volume in
the following week to increase the speed running. After
this protocol, the authors described an increase in the
vulnerability of the striatum to high-intensity exercise.
The same authors also (Aguiar Jr et al., 2008b) per-
formed an incremental running program in mice during 8
weeks (first 4 weeks 13.5 m/min and last 4 weeks
16.5 m/min of speed), 5 days/week for 40 days. The
intermittent exercise group performed the exercise three
times a day for 15 min and the continuous group exer-
cised once for 45 min. The authors reported that intense
exercise promoted brain mitochondrial dysfunction as
well as an increase in the frontal cortex thiobarbituric
acid-reactive substance levels in exercised mice. In
agreement to the above-mentioned study, Somani et al.
(1995) observed that different brain areas contained dif-
ferent activities of antioxidant enzymes, as well as GPx
and GSSG levels, which were preferentially altered as a
result of exercise training to cope with oxidative stress.

In the study performed by Tsakiris et al. (2006), short
(2 h) as well as prolonged (5 h) forced swimming also
induced oxidative stress in rats. Moreover, a Na+,
K+-ATPase, and Mg2+-ATPase activation was observed
under the above-mentioned experimental conditions.
Similarly, Aydin et al. (2009) divided rats in dietary
restriction group or ad libitum food intake group, and
each group was further subdivided into three groups:
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sedentary, endurance exercise (5 days/week for 8
weeks), and maximal exercise (exhaustive swimming
exercise) groups. At the end of the eighth week, rats in
the exhausted exercise group were forced to swim until
exhaustion. The authors concluded that long-term
dietary restriction may protect against endurance and
exhaustive swimming exercise-induced oxidative stress,
which were used as an oxidant stressor. Finally, in the
above-mentioned study by Liu et al. (2000), the authors
observed a decrease in brain antioxidant levels with
acute exercise.

Exercise does not affect oxidative stress

Five of the 19 studies did not observe changes in brain
oxidative stress markers (Ogonovszky et al., 2005;
Acikgoz et al., 2006; Cechetti et al., 2008; Aksu et al.,
2009; de Araujo et al., 2009). Studies as the one per-
formed by Cechetti et al. (2008) found that a daily mod-
erate intensity exercise in rats, 2 weeks for 20 min/day of
running, did not affect any oxidative stress parameter in
hippocampus, suggesting that daily moderate exercise
does not cause significant oxidative stress nor induce
adaptations of the cellular antioxidant system. Treadmill
training also did neither change BDNF content in the
brain areas studied. Aksu et al. (2009) performed 10 trial
groups with 8 animals in each. Acute exercise groups
composed of groups that ran on a treadmill at a speed of
10 m/min (A1), 15 m/min (A2), and 20 m/min (A3) for
1 h and an exhaustive exercise group (E). Chronic exer-
cise groups composed of rats that ran on a treadmill at a
speed of 10 m/min (R1), 15 m/min (R2), and 20 m/min
(R3), 1 h/day, 5 days/week, for 8 weeks. There were also
three control groups: a group of non-exercising rats (C),
a handled group of rats that were put on the treadmill
without doing exercise for 1 h, 5 days/week, for 8 weeks
(CR), and a handled group of rats that were put on the
treadmill without doing exercise for 1 h (CA). In acute
exhaustive exercise group (E), the rats were forced to run
at a speed of 25 m/min at a slope of 5° until exhaustion.
This study also observed that acute as well as chronic
exercise protocols do not alter oxidative stress in pre-
frontal cortex, striatum, and hippocampus.

In the study by De Araujo et al. (2009), rats were
divided into three experimental groups: sedentary, trained
at the metabolic transition intensity (speed equivalent to
the aerobic/anaerobic threshold, 40 min/day, 5 days/
week, for 8 weeks), and trained (speed 25% above the
aerobic/anaerobic threshold, 40 min/day, 5 days/week,
for 8 weeks). They did not observe alterations on brain
CAT enzyme activity by this protocol. Acikgoz et al.
(2006) found that an acute exhaustive protocol in rats
running at 25 m/min with a slope of 5° until exhaustion
did not cause LP in the hippocampus, prefrontal cortex,
and striatum during the post-exercise period. Finally,
Ogonovszky et al. (2005) distributed 28 Wistar rats in
control, moderately trained (swimming 60 min/day, 5

days/week, for 8 weeks), strenuously trained (swimming
increased by 30 min/week until it reached 4.5 h for the
last week), and overtrained group (swimming 60 min/
day, 5 days/week, for 6 weeks and then the duration was
abruptly increased to 4.5 h for the remaining 2 weeks).
Under their experimental conditions, overtraining did
neither induce brain oxidative stress.

Discussion

The purpose of this systematic review was to study the
effects of exercise on brain oxidative stress. Aerobic
moderate exercise appears to promote a protective anti-
oxidant function on brain. However, studies referred to
aerobic exhausted exercise, anaerobic exercise, or the
combination of both types of training report inconclusive
or conflicting findings. The high heterogeneity observed
among the exercise protocols developed in the studies
makes it difficult to draw clear conclusions regarding
exercise volume and intensity.

As we mentioned above, running in a treadmill and
swimming were the more common activities carried out.
We aimed to analyse, independently on the type of exer-
cise, the effects of exercise on the brain antioxidant
capacity. Moderate aerobic training or simply voluntary
exercise (running on a wheel) ameliorates antioxidant
capacity (Ohkuwa et al., 1997; Itoh et al., 1998; Radak
et al., 2001b, 2006; Navarro et al., 2004; Vollert et al.,
2011; Falone et al., 2012) as well as regular moderate
exercise improves brain function (Radak et al., 2006),
memory (Radak et al., 2001a, b), proteasome activation,
and up-regulation of the antioxidant system (Radak
et al., 2000b). Furthermore, daily moderate exercise has
been shown to reduce damage of hippocampal slices
from Wistar rats exposed to in vitro ischemia (Scopel
et al., 2006; Cechetti et al., 2007). Anaerobic exercise in
a progressive exercise program can also improve differ-
ent activities of antioxidant enzymes in brain (Somani
et al., 1995). Similarly, anaerobic exercise with 10 s
(short) or 40 s (long) rest intervals increased the antioxi-
dant capacity from different tissues (Qiao et al., 2006) at
the same time that running on a treadmill until exhaus-
tion did not induce LP in the hippocampus (Acikgoz
et al., 2006). Surprisingly, some other studies in which
rats were overtrained in long term of strenuous exercise
or when the duration increased abruptly did not induce
brain oxidative stress (Fry et al., 1991; Petibois et al.,
2003; Ogonovszky et al., 2005), and similarly acute and
chronic exercise neither promoted oxidant stress in pre-
frontal cortex, striatum, and hippocampus (Aksu et al.,
2009).

In contrast, although some studies (Somani et al.,
1995; Ogonovszky et al., 2005; Qiao et al., 2006) have
found antioxidant properties after aerobic extenuation or
anaerobic programs, the body of the revised literature
suggests that anaerobic high-intensity and strenuous
exercises, independently of the capacity performed, can
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increase, in general, oxidative stress (Tsakiris et al.,
2006; Aguiar Jr et al., 2008b; Aydin et al., 2009; Aguiar
et al., 2010). Consequently, we hypothesize that regular
aerobic moderate training or physical active programs
are the most appropriated exercises to positively enhance
brain antioxidant response.

SOD, GSH, GSSG, GPx enzymes, and LP were the
oxidative stress markers more frequently analysed along
the studies. When analysing these outcomes, aerobic
exercise promoted a positive effect (increase or maintain
the same level) on SOD levels in 100% of the cases,
whereas GSH, GSSG, and GPx showed a more incon-
clusive response, with a slightly trend to a positive effect
of aerobic exercise. Finally, aerobic exercise improved
LP in 90% (Liu et al., 2000; Radak et al., 2001b; Navarro
et al., 2004; Ogonovszky et al., 2005; Cechetti et al.,
2008; Aksu et al., 2009; de Araujo et al., 2009; Vollert
et al., 2011; Falone et al., 2012) of the studies while it
was decreased in 50% (Acikgoz et al., 2006; Qiao et al.,
2006) of the studies that performed anaerobic high-
intensity exercise protocols.

Oxidative stress elicits different responses depending
on the organ tissue type and its endogenous antioxidant
levels with an acute and chronic exercise. In the study
performed by Liu et al. (2000), brain was positively
responsive to chronic exercise and its response was dif-
ferent compared with other organs analysed.

Brain was the tissue selected in the present review due
to the little information regarding whether exercise
above certain intensity or duration could be harmful in
the brain function (Ogonovszky et al., 2005). Despite
that there is not a consensus about which parts of the
brain should be analysed and their reasons, three studies
described why they selected a specific brain area to
measure; cerebral cortex, brain stem, corpus striatum,
and hippocampus are the regions involved in motor
control and cognitive functions by exercise and there-
fore, for such authors, these must be the selected areas to
study when analysing the exercise effects on brain
(Somani et al., 1995). Moreover, hippocampus is also
recommended to be selected because it contains high
concentrations of glucocorticoid receptors (Acikgoz
et al., 2006). For these authors, prefrontal cortex and
corpus striatum should additionally be measured
because they have high dopamine content (Acikgoz
et al., 2006). Theoretically, exhaustive exercise may
cause oxidative stress in the brain. First, exercise
enhances brain dopamine synthesis (Sutoo & Akiyama,
2003). Dopamine may form ROS through either dopam-
ine metabolism by monoamine oxidase or autoxidation
(Halliwell & Gutteridge, 1999). Second, exercise leads
to increased serum glucocorticoid levels. Corticosterone
increases the toxicity of oxygen radical generators
(McIntosh & Sapolsky, 1996), and may increase the
basal levels of ROS (McIntosh & Sapolsky, 1996), alter-
ing antioxidant enzyme activities in the brain (McIntosh
et al., 1998).

Regarding the MQA performed in the studies from the
present review, the total overall quality of reporting was
higher (71%) than the internal validity (25%), with an
average quality of 57%. These percentages provide a
poor internal validity of the manuscripts, and thus future
studies should report adverse events or experimental
deaths and should employ blinding interventions with
the purpose of increasing the internal validity, and there-
fore to improve the quality of the studies. However, even
taking the above-mentioned reasons in consideration, the
main quality of the studies analysed provided an accept-
able level to consolidate the results of this systematic
review.

Unfortunately, the exhaustive process carried out in
the present systematic review does not provide a consen-
sus about the best specific exercise program protocol to
protect brain against oxidative stress, and neither about
which part of the brain should be specifically analysed.

Overall, the scope of this systematic review was to
overview the literature addressing the influence of exer-
cise on brain oxidative stress. To our knowledge, no
study has been deeply investigated this relationship.
Because most of the studies in which brain oxidative
stress has been studied after a parallel intervention (e.g.,
drugs administration), it is interesting to analyse the
effects of different types of exercise on brain oxidative
stress markers by itself, studied without any alteration.

Limitations and strengths

The present study has several limitations that need to be
mentioned. First, the heterogeneity among the exercise
protocols developed among the studies is huge. The
exercise protocols make them difficult to draw clear
conclusions regarding exercise volume and intensity.
Second, in the selected manuscripts, the authors have not
described blinding interventions and losses of animals,
which would have helped improve the methodological
quality of the studies. On the other hand, this is the first
systematic review addressing the influence of exercise
on brain oxidative stress with no alteration (e.g., drugs).
Furthermore, a rigorous MQA, including levels of
evidence, was carried out through all the selected
manuscripts.

Perspectives

The wide range of exercise protocols at different inten-
sities and volumes does not allow us to provide reliable
conclusions. This lack of homogeneity in the protocols
could be due to the difficulty to establish the intensity of
the effort when using animal models.

Future investigations should be exhaustively con-
trolled and be focused on brain oxidative stress markers
regarding the different specific regions of the brain and a
wide range of conditions as intensity and type of exer-
cise, and drink or food intake, which could all of them
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modify the findings. Moreover, establishing standard-
ized exercise protocols in order to specifically study
aerobic or anaerobic metabolism will help to improve
our knowledge in this topic. In addition, it would be of
interest to test the effect of the spontaneous physical
activity (e.g., through running wheels) on brain oxidative
stress in future studies.

Despite that literature tends to globalize exercise like
a way to improve brain antioxidant capacity, studies
referred to aerobic exhausted exercise, anaerobic exer-
cise, or the combination of both types of training still
report confusing findings. Regular moderate aerobic
exercise appears to be highly contrasted to protect
against brain oxidative stress. Therefore, among all the
types of training programs analysed in the present
review, moderate aerobic exercise is the most contracted
appropriate activity to promote a protective antioxidant
capacity on brain.

At research level, this study is interesting for the sci-
entific community in order to improve the design and
standardization of exercise protocols in their experi-
ments. Moreover, this review may help sports practitio-

ners, personal trainers, or health providers to select
moderate aerobic exercise in order to reduce brain oxi-
dative stress (especially on weaker populations like
Alzheimer, dementia, or other cognitive diseases).

Key words: enzymatic activity, oxidative stress, physical
extenuation, rats, brain, anaerobic exercise, aerobic exer-
cise, exercise protocol.
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Abstract

Introduction: It is well established that soy protein 
diets as well as aerobic exercise could promote antioxi-
dant capacity and consequently reduce free radicals 
overproduction on brain. However, little is know regar-
ding to the high-protein diets and high intensity exercise 
on oxidative stress production. The aim of this study was 
to analyse the effects of high-protein diets and high-in-
tensity exercise (HIE) on brain oxidative stress markers. 

Materials and Methods: A total of 40 male Wistar rats 
were randomly distributed in 4 experimental groups 
(n=10): normal-protein or high-protein diets with or 
without HIE for an experimental period of 12 weeks. 
Main oxidative damage markers in brain such as thio-
barbituric acid-reactive substances (TBARs) and protein 
carbonyl content (PCC) were assessed. In addition, bra-
in manganese superoxide dismutase (Mn-SOD), cooper/
zinc superoxide dismutase (CuZn-SOD) and catalase 
(CAT) antioxidant enzymes activity, and protein level of 
Nuclear factor erythroid 2 related factor 2 (Nrf2) were 
measured. 

Results and discussion: Brain TBARs, PCC, tSOD, 
Mn-SOD, CuZn-SOD and CAT levels were higher in the 
high-protein compared to the normal-protein groups (all, 
p<0.05). In addition, the expression of Nrf2 protein was 
higher in the high-protein and HIE groups compared to 
the normal-protein and sedentary groups, respectively 
(both, p<0.01). A protein amount*HIE interaction was 
found on brain TBARs content, and tSOD and CuZn-
SOD activity derived from a HIE-induced decrease in 
the high-protein but not in the normal-protein group 
(p<0.05). 

UNA DIETA ALTA EN PROTEÍNA PRODUCE 
ESTRÉS OXIDATIVO EN EL CEREBRO 

DE RATAS: ACCIÓN PROTECTORA DEL 
EJERCICIO DE ALTA INTENSIDAD SOBRE LA 

PEROXIDACIÓN LIPÍDICA

Resumen

Introducción: Es conocido que la proteína de soja así 
como la práctica de ejercicio físico aeróbico pueden in-
crementar la capacidad antioxidante y con ello reducir 
la sobreproducción de radicales libres en el cerebro. Sin 
embargo, existe desconocimiento sobre el efecto del con-
sumo de dietas hiperproteicas y el entrenamiento de alta 
intensidad (EAI) sobre dicho estrés oxidativo. El objetivo 
del presente estudio fue analizar la influencia del consu-
mo de una dieta hiperproteica y de EAI sobre marcado-
res de estrés oxidativo en cerebro. 

Métodos: Cuarenta ratas Wistar macho adultas fueron 
aleatoriamente distribuidas en 4 grupos experimentales 
(n=10): dieta normoproteica o hiperproteica, con o sin 
EAI durante un periodo experimental de 12 semanas. Se 
determinaron los principales marcadores de daño oxida-
tivo en cerebro como sustancias reactivas del ácido tio-
barbitúrico (TBARs) y el contenido de grupos carbonilos 
(PCC). Además, se midieron las actividades enzimáticas 
superóxido dismutasa del manganeso (Mn-SOD), de co-
bre/zinc (CuZn-SOD) y catalasa (CAT), así como el nivel 
de proteína del factor nuclear eritroide-2 (Nrf2). 

Resultados: Los niveles de TBARs, PCC, tSOD, Mn-
SOD, CuZn-SOD y CAT fueron significativamente ma-
yores en los grupos hiperproteicos en comparación con 
los normoproteicos (todas, p<0,05). La expresión de la 
proteína Nrf2 fue mayor en los grupos hiperproteicos y 
con EAI en comparación con los grupos normorpoteicos 
y sedentarios, respectivamente (ambos, p<0,01). Se ob-
servó una interacción en la disminución de los niveles de 
TBARs, tSOD y CuZn-SOD producida por el EAI en el 
grupo hiperproteico que no fue reflejada en el grupo nor-
moproteico (p=0,05). 
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Abbreviations

ROS: Reactive oxygen species.
SOD: Superoxide dismutase.
CAT: Catalase.
TBARs: Thiobarbituric acid reactive substances.
Nrf2: Nuclear factor erythroid 2 related factor 2.
HIE: High intensity exercise.
PCC: Protein carbonyl content.
SEM: Standard error of the mean.
ANOVA: Analysis of variance.

Introduction

Reactive oxygen species (ROS) are by-products of 
aerobic cellular metabolism that can induce oxidative 
stress1,2. The major antioxidant enzymes in the rat brain 
are superoxide dismutase (SOD) and catalase (CAT)3. 
These enzymes play an important role in order to avoid 
ROS deleterious effects. Indeed, the imbalance be-
tween ROS generation and antioxidant capacity leads 
to oxidative stress1,2. In addition, the oxidative damage 
repair systems are important in order to minimize the 
dangerous effects of high production of ROS4,5. The 
most common markers to investigate the oxidative 
damage on lipids and proteins are the production of 
thiobarbituric acid reactive substances (TBARs) and 
protein carbonyls, respectively6-8.

Brain is particularly vulnerable to ROS produc-
tion because it only accounts for a ~2% of total body 
weight and metabolizes 20% of total body oxygen, 
with a limited amount of antioxidant capacity. Fur-
thermore, lipid peroxidation leads to the production 
of toxic compounds such aldehydes or dienals (e.g., 
4-hydroxynonenal), which in turn may cause neuro-
nal apoptosis9. In consequence, brain oxidative stress 
has been suggested to play a role in neurodegenerati-
ve disorders such as Parkinson’s disease, Alzheimer’s 
disease, multiple sclerosis, and amyotrophic lateral 
sclerosis10-12. 

The effects of high-protein diets have been of great 
interest in the last decade. Supplementation with hi-
gh-protein diets is often used to improve physical sta-
tus causing an effective reduction in body weight, fat 

deposition and improving plasma lipid profile13. Some 
studies have shown the beneficial effects of high-pro-
tein diets on rodent brain such as protecting against ce-
rebral ischemia and reducing apoptosis in the ischemic 
cortex14,15. Nevertheless, little is known regarding the 
effects of high-protein diet on brain oxidative stress 
markers. Therefore, it is of importance to clarify the 
physiological effects of a high-protein diet on brain 
oxidative stress. 

Since the 1990s, there has been evidence about the 
benefits of exercise on brain function, which could 
play an important preventive and therapeutic role on 
oxidative stress-associated brain disease16,17. Exercise 
may increase the level, activation, and mRNA expres-
sion of endogenous antioxidant systems in the brain 
thus down-regulating the levels of the oxidative da-
mage18,19. Recent studies have observed that chronic 
exercise activates the Nuclear factor erythroid 2 rela-
ted factor 2 (Nrf2) in human skeletal muscle and rat 
kidney,20,21 whereas acute exercise promotes myocar-
dial Nrf2 function. However, the mechanisms of Nrf2 
activation have not been investigated in the context of 
brain after a high intensity exercise (HIE). 

Despite the numerous studies that have analyzed the 
effects of different intensities and types of exercise on 
brain oxidative stress, the findings are still unclear or 
inconclusive regarding high-intensity training22,23. To 
the best of our knowledge, no previous studies have 
investigated the specific combined effects of high-pro-
tein diet and HIE on brain oxidative stress. Therefo-
re, in order to deepen this knowledge, the purpose of 
the present study was to investigate the effects of hi-
gh-protein diet and HIE, based on hypertrophy resis-
tance training, on brain oxidative stress markers and 
antioxidant enzyme defense systems.

Materials and methods

Animals and experimental design

A total of forty albino male Wistar rats were ran-
domly distributed in 4 experimental groups derived 
of 2 interventions: protein amount of the diet (nor-
mal-protein vs. high-protein) (n=20) and HIE (seden-

Conclusions: The high-protein diets consumption produ-
ce higher levels of brain lipid peroxidation, in spite of higher 
levels of antioxidant enzymatic capacity. However, HIE may 
attenuate the deleterious effect of a high-protein diet on bra-
in lipid peroxidation when both effects are combined.

(Nutr Hosp. 2015;31:866-874)

DOI:10.3305/nh.2015.31.2.8182
Keywords: Superoxide Dismutase. Catalase. Thiobarbi-

turic Acid Reactive Substances. NF-E2-Related Factor 2. 
Soybean Proteins. Hypertrophy.

Conclusión: El consumo de una dieta hiperproteica pro-
duce altos niveles de peroxidación lipídica en el cerebro, a 
pesar de los altos niveles de capacidad enzimática antioxi-
dante detectados. Sin embargo, el efecto del EAI podría 
atenuar los niveles de peroxidación lipídica producidos por 
el consumo de una dieta hiperproteica. 

(Nutr Hosp. 2015;31:866-874)

DOI:10.3305/nh.2015.31.2.8182
Palabras claves: Superóxido Dismutasa. Catalasa. Sus-

tancias Reactivas al Ácido Tiobarbitúrico. Factor 2 Relacio-
nado con NF-E2. Proteínas de Soja. Hipertrofia.
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tary vs. HIE) (n=20). Each specific intervention (i.e. 
normal-protein sedentary, normal-protein exercise, hi-
gh-protein sedentary, high-protein exercise) was deve-
loped in groups of 10 rats and the experimental period 
lasted 12 weeks. 

The animals (aged 8 weeks) had initial body wei-
ghts of 163±19 g, had free access to type 2 water (>15 
MΩ cm) and consumed the diets ad libitum. Food in-
take and body weight were measured daily and wee-
kly, respectively, for all animals. The rats were located 
in a well-ventilated thermostatically controlled room 
(21±2ºC). A 12:12 reverse light-dark cycle (08.00-
20.00 h) was implemented in order to allow exercise 
training during the day. At the end of the experimen-
tal period, the animals were anesthetized with keta-
mine-xylazine and sacrificed by cannulation of the 
abdominal aorta. Brains were extracted, weighed and 
immediately frozen in liquid N2 and kept at -80ºC 
until further analyses. Carcass weight was recorded. 
Carcass is the weight of the slaughtered animal’s cold 
body after being skinned, bled and eviscerated, and af-
ter removal of the head, the tail and the feet.

All experiments were performed according to Di-
rectional Guides Related to Animal Housing and Care 
(European Community Council, 1986)24. All proce-
dures were approved by the Animal Experimentation 
Ethics Committee of the University of Granada.

Experimental diets

Formulation of the experimental diets is presented 
in table  I. All diets were formulated to meet the nu-
trient requirements of rats25 following the recommen-
dations of the American Institute of Nutrition (AIN-
93M)26, with slight modifications. We selected a 45% 
protein level for the high-protein diet at the expense of 
carbohydrates (wheat starch) following previously es-

tablished and similar studies in rats27-29. A 10% protein 
content was chosen for the normal-protein diet groups. 
A commercial soy-protein isolate was used as the only 
protein source since it is widely available. 

High-intensity exercise

The experimental groups were trained following a 
resistance training protocol in a motorized treadmill 
(Panlab Treadmills for 5 rats, LE 8710R) with bagged 
weights tied with a cord to the tail. This type of trai-
ning was chosen in order to reproduce the type of exer-
cise performed by people interested on gaining muscle 
mass and strength who usually combine high-protein 
diets with HIE29 (see Table II). Therefore, our training 
protocol follows the established principles for human 
strength training, involving weights, repetitions, and 
sets to maximize muscle gain30.

The training groups exercised on alternate days (3-4 
sessions/week) at a constant speed of 35 cm/s during 
the whole experimental period (12 weeks) in their dark 
phase. Prior to exercise training, animals were adapted 
to the treadmill on a daily basis for 1 week, the first 
three days without weight and the last four days with 
20% of their body weight. The training protocol used 
in the present study had been previously developed 
and deeply described by Aparicio et al29. The entire 
training process was designed and controlled by sport 
scientists in collaboration with experienced researches 
trained to work with rats. 

Animals in the control group were managed identi-
cally to exercising animals, with the exception of exer-
cise training. 

Table I
Formulation of the experimental diets

Nutritional Composition
(g/100g DM)

Protein diet

Normal
protein 

High
protein

Soy protein supplement 13.1 57.4

Mineral mix (AIN-93M-MX) 3.5 3.5

Vitamin mix (AIN-93-VX) 1 1

Fat (olive oil) 4 4

Choline chloride 0.25 0.25

Cellulose 5 5

Starch 62.4 28.6

Methionine 0.5 -

Sucrose 10 -

Table II
Details of the high-intensity exercise program

Week Work time 
(min) Sets Time between sets 

(min)
Weight 

(% 1 RM)

1 2 10 1 55

2 2 10 1 60

3 2 10 1 65

4 2 10 1.5 70

5 2 10 1.5 70

6 2.5 10 1.5 75

7 2.5 12 1.5 75

8 2 12 2 80

9 2.5 12 2 80

10 1.5 12 2 85

11 2 12 2.5 85

12 1 12 2.5 85
RM, repetition maximum.
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Chemical analyses

Brain homogenate preparation for oxidative damage 
markers and antioxidant activity

Brain aliquots (1 g) were collected and processed 
under anti-oxidative conditions. Samples were homo-
genized in 50 mM phosphate buffer (pH 7.8) contai-
ning 0.1% Triton X-100 and 1.34 mM diethylenetria-
minepentaacetic acid (DETAPAC) (1:10w/v) using a 
Micra D-1 homogenizer (ART moderne labortechnik) 
at 18,000 rpm during 30 sec followed by treatment 
with Sonoplus HD 2070 ultrasonic homogenizer (Ban-
delin) at 50% power for 10 sec. Homogenates were 
centrifuged at 19,621 g, 4°C for 45 min (BECKMAN, 
Allegra 64R), and the supernatants were used to deter-
mine the oxidative damage markers and the antioxi-
dant enzymes activity. 

Oxidative damage markers

Thiobarbituric acid-reactive substances (TBARs)

Thiobarbituric acid reactive substances (TBARs) 
were used as a marker of lipid peroxidation. Brain su-
pernatants were used to determine lipid peroxidation 
by measuring TBARs as described by Ohkawa et al31. 
The results were expressed as nmol of Malonildialde-
hide per mg of protein (nmolMDA/mg) from duplicate 
reactions.

Protein carbonyl content (PCC)

Total carbonyl contents in brain were used as a bio-
marker of protein oxidation. The contents were deter-
mined spectrophotometrically using a protein carbonyl 
colorimetric assay Kit (Cayman, USA) according to 
the method of Levine et al32. Results were expressed 
as nmol of reactive carbonyl compounds/mg protein 
of tissue.

Antioxidant enzyme activity

Total SOD activity was measured as described by 
Ukeda et al.33 adapted to a micro-plate reader. Mn-SOD 
activity was determined by the same method after trea-
ting the samples with 4 mM KCN for 30 min (final con-
centration of KCN 1 mM was set for all the samples). 
CuZn-SOD activity was determined by subtracting the 
Mn-SOD activity from the tSOD activity. One unit of 
SOD activity was defined as the enzyme needed to in-
hibit 50% 2,3-bis (2-methoxy-4-nitro-5-sulphophen-
yl)-2H-tetrazolium-5-carboxanilide (XTT) re duction. 
Catalase activity (CAT) was measured by the method 
of Aebi34 monitoring the disappearance of H2O2 in the 
presence of brain homogenate at 240 nm and was ex-

pressed as µmol of H2O2 consumption per minute per 
milligram of protein. Protein concentration was deter-
mined by the method of Lowry35. 

Western blotting analysis

Brain aliquots (1 g) were collected and processed 
under anti-oxidative conditions. Samples were homo-
genized (1:10 w/v) in 20 mM Tris·HCl (pH 8.0) contai-
ning 0.1% octylphenoxypolyethoxyethanol (lgepal), 
100 mM ethylene glycol tetraacetic acid (EGTA), 100 
mM dichlorodiphenyltrichloroethane (DDT), 100 mM 
sodium orthovanadate, 2 mM AEBSF, 1 mM EDTA, 
130 µM Bestatin, 14 µM E-64, 1 µM Leupeptin and 
0.3 µM Aproptinin. Samples were homogenized with 
a Micra D-1 homogenizer (ART moderne labortech-
nik) at 18,000 rpm for 30 sec followed by treatment 
with a Sonoplus HD 2070 ultrasonic homogenizer 
(Bandelin) at 50% power for 10 sec. Homogenates 
were centrifuged at 19,621 g, 4°C for 45 min (BECK-
MAN, Allegra 64R), and the supernatants were collec-
ted and stored at -80ºC until further use. The protein 
concentration was measured by the method of Lowry 
et al.35. Samples (40 µg protein) were subjected to 
12% sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis (SDS-PAGE) and subsequently electro 
transferred to reinforced cellulose nitrate membranes 
(Schleicher & Schuell, Dassel, Germany) using a Mini 
Trans-Blot cell system (Bio-Rad Laboratories, Hercu-
les, CA). Membranes were blocked with 5% non-fat 
dry powdered milk dissolved in Tris-buffered saline 
Tween-20 (TBS-T) for 2 h at room temperature. After 
blocking, the membranes were incubated with primary 
polyclonal rabbit anti-Nrf2 antibody (1:1500, Abcam 
Cambridge, USA) overnight at 4ºC. A goat anti-rabbit 
immunoglobulin G associated to an enhanced chemi-
luminescence reagent mixture (Western Lightning, 
PerkinElmer Inc., Waltham, MA, USA) was used to 
estimate the amount of protein expressed using a Fu-
jifilm Luminescent Image Analyzer LAS-4000 mini 
System (Fujifilm, Tokyo, Japan). Equality of protein 
loading was checked standardizing the bands to β-ac-
tin (1:2000, Abcam Cambridge, USA). The optical 
density of the protein bands was measured and quan-
tified by Image J software. Results were expressed in 
relative density units.

Statistical analyses

Results are presented as mean and standard error 
of the mean (SEM), unless otherwise indicated. The 
effects of the dietary protein amount (normal-protein 
vs. high-protein) and the HIE (sedentary vs. HIE) on 
food intake, carcass weight, final body weight, brain 
weight, and oxidative stress markers including their 
two-way interactions, were analyzed by two-way fac-
torial analysis of variance (ANOVA), with the protein 
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amount and the exercise as fixed factors. Two-ways 
interactions terms were introduced into the models 
to test interactions between both interventions (i.e. 
protein amount*HIE). A significant p value indicates 
that there are differences at least between two of the 
groups. In addition, multiple comparisons between 
groups were made considering Bonferroni’s adjust-
ment in order to identify between which groups the 
differences were significant (e.g. normal-protein se-
dentary vs. high-protein and exercise).

All analyses were performed using the Statistical 
Package for Social Sciences (IBM-SPSS for Mac, ver-
sion 22.0, Amonk, NY), and the level of significance 
was set at 0.05.

Results

Final body weight, carcass weight, brain weight and 
food intake

The effects of the high-protein diet and HIE on final 
body weight, carcass weight, brain weight and food in-
take are shown in table III.

Both high-protein and HIE groups significantly 
decreased food intake when compared to the nor-
mal-protein and sedentary groups, respectively (both, 
p<0.001).

No significant differences between groups were ob-
served on final body weight, carcass weight, and brain 
wet mass weight as expressed in absolute value and 
brain wet mass weight when referred to the final car-
cass weight.

Oxidative stress markers

The effects of the high-protein diet and HIE on brain 
oxidative stress markers are shown in table IV.

High-protein groups significantly increased brain 
TBARs content and brain protein carbonyl content 
(PCC) when compared to the normal-protein groups 
(p=0.042 and p=0.006, respectively).

High-protein groups significantly augmented bra-
in tSOD, Mn-SOD, CuZn-SOD and CAT activity 
when compared to the normal-protein groups (all, 
p<0.01).

Significant protein amount*HIE interactions were 
found for brain TBARs content and CuZn-SOD de-
rived from a HIE-induced decrease in lipid peroxida-
tion and antioxidant activity in the high-protein group 
that was not observed in the normal-protein group 
(p=0.018 and p=0.007, respectively).

Figure 1 shows the effects of the protein amount and 
HIE on the expression of Nrf2 protein in rat brain. 

Both high-protein and HIE groups significantly 
increased the expression of brain Nrf2 protein when 
compared to the normal-protein and the sedentary 
groups, respectively (p<0.001 and p=0.004, respecti-
vely). 

Discussion

The purpose of the present study was to analyze 
the influence of high-protein diet and HIE on brain 
oxidative stress markers. The main findings of this 
study were: 1) high-protein diet increased TBARs 
and PCC concentrations, CuZn-SOD and CAT acti-
vity and the expression of Nrf2 protein, and 2) HIE 
increased CAT activity and the expression of Nrf2 
protein. Overall, our findings displayed controversial 
effects in terms of high-protein diets on brain oxida-
tive stress. The high-protein, low carbohydrate, un-
balanced diet, groups appear to promote antioxidant 
capacity, although this may be in response to higher 
oxidative damage when compared to the normal-pro-
tein groups.

Table III
Effects of the dietary protein amount and high-intensity exercise on final body weight, carcass weight,  

food intake and brain weight

Normal protein High protein
SEM

p values

Sedentary Exercise Sedentary Exercise Protein 
amount Exercise Protein 

amount*Exercise

Food intake (g/day) 20.317c 15.622a,b 16.948b 14.806a 0.177 <0.001 <0.001 0.001

Final body weight (g) 351.216a 313.042a 317.594a 327.174a 5.085 0.344 0.168 0.025

Carcass weight (g) 172.120a 163.210a 178.870a 169.229a 2.897 0.278 0.118 0.950

Brain (g) 1.925a 1.881a 1.894a 1.917a 0.015 0.927 0.737 0.274

Brain (g/100g body weight) 0.552a 0.605a 0.603a 0.588a 0.009 0.357 0.297 0.075

Brain (g/100g carcass weight) 1.128a 1.160a 1.064a 1.142a 0.016 0.212 0.094 0.484
SEM, standard error of the mean.Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between 
groups (p>0.05).
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Food consumption, body weight and  
body composition

Food intake is markedly affected by diet compo-
sition36,37 and physical activity38,39. Few studies in 
animals as well as in humans have illustrated that hi-
gh-protein diets36,37 provide higher satiety levels than 

others macronutrients, thus leading to a decrease of 
food intake. Likewise, the decreased food intake may 
be attributed to the HIE protocol carried out, which led 
to a high stress situation resulting in the higher levels 
of corticosterone40. These assertions are in agreement 
with our findings that the high-protein and the HIE 
groups displayed a reduced food intake when com-

Table IV
Effects of the dietary protein amount and high-intensity exercise on brain oxidative stress markers.

Normal protein High protein
SEM

p values

Sedentary Exercise Sedentary Exercise Protein 
amount Exercise Protein 

amount*Exercise

TBARs (nmol MDA/mg protein) 19.684a 23.553a,b 27.768b 22.875a,b 0.880 0.042 0.773 0.018

PCC (nmol/mg protein) 3.496a 2.440a 4.878a 4.948a 0.332 0.006 0.463 0.403

tSOD (U/mg protein) 137.474a 154.578a,b 192.837c 173.469b,c 3.551 <0.001 0.874 0.015

Mn-SOD (U/mg protein) 63.990a 71.828a,b 79.299b 80.359b 1.912 0.004 0.252 0.381

CuZn-SOD (U/mg protein) 73.484a 82.750a 113.538b 93.110a 2.578 <0.001 0.286 0.007

CAT (µmolH2O2/min/mg protein) 2.852a 4.274b 3.526a,b 5.640c 0.126 <0.001 <0.001 0.178
SEM, standard error of the mean; TBARs, thiobarbituric acid-reactive substances; PCC, protein carbonyl content; tSOD, total superoxide 
dismutase; Mn-SOD, manganese superoxide dismutase; CuZn-SOD, cooper and zinc superoxide dismutase; CAT, catalase.Values expressed as 
mean of ten rats. The same letter in the same row indicates no significant difference between groups (p>0.05).

Fig. 1.—Effects of the high-protein diet and 
high-intensity exercise on brain Nrf2 protein 
levels, n=8.
The representative western blots show the 
Nrf2 bands (left lines) and the β-actin bands 
used as a loading control (right lines). 
Annotation indicates significant effect of  
a = exercise, b = anabolic androgenic  
steroids. p < 0.05.
NS, Normal-protein and Sedentary;  
NE, Normal-protein and Exercise;  
HS, High-protein and Sedentary;  
HE, High-protein and Exercise;  
Nrf2, Nuclear factor erythroid 2  
related factor 2.
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pared to the normal-protein and the sedentary groups, 
respectively. 

High-protein and brain oxidative stress 

Despite the beneficial effects of high-protein diets 
on rodent brain14,15, little is known about its effects on 
brain oxidative stress. However, there have been some 
studies on other organs that have shown the oxidative 
effects of high-protein diet consumption. In a study 
performed in Zucker obese rats41, an increased dietary 
protein intake induced oxidative stress in the kidney 
and aorta, at least partially due to increased expres-
sion of NAD(P)H oxidase components. Others42 have 
suggested that high-protein diet intake may cause an 
imbalance between ROS generation and the capacity 
of the antioxidant defense system in digestive organs 
of mice such as duodenum, liver and pancreas, which 
leads to an induction of oxidative stress. This imbalan-
ce is reflected with a diminished antioxidant defense 
system and increased concentration of malondialdehy-
de (MDA), a superoxide anion and the precursor of 
most ROS and mediator in oxidative chain reactions. 
Additionally, in a study performed by Sophia et al.43, 
high-protein diet consumption caused a significant al-
teration in the antioxidant status of pancreas by increa-
sing lipid peroxidation and decreasing the content of 
reduced glutathione, vitamin C, the activity of SOD, 
CAT and glutathione peroxidase. In the present study, 
high-protein diets appeared to increase antioxidant ac-
tivity as well as the overexpression of Nrf2, although 
this may be attributed to the production of higher le-
vels of brain lipids and protein oxidation. The higher 
the brain lipid peroxidation levels observed in the hi-
gh-protein groups, the higher the antioxidant enzyme 
activity produced by a high-protein diet consumption.

High intensity exercise and brain oxidative stress

Controversial findings in the literature have been 
observed regarding HIE on brain oxidative stress44. On 
one hand, some authors suggest that intermittent anae-
robic exercise and acute exhausted exercise (HIE) in-
creases brain antioxidant capacity and does not induce 
lipid peroxidation22,45. On the other hand, ROS produc-
tion may be strongly and persistently increased under 
HIE, and the antioxidant response may not be effective 
to reset the system to the original level of brain redox 
homeostasis23,46. 

In the present study, CAT activity levels increased 
after 12 weeks of HIE. However, HIE did not alter 
Mn-SOD and CuZn-SOD brain activity. In a previous 
study carried out in human plasma, CAT activity did 
not change in response to resistance training until the 
participants showed symptoms of overtraining47. In 
addition, Margonis et al.47 observed that in a 12-week 
human resistance-training program involving 3-weeks 

training (4 times a week) periods and a 3-week reco-
very period, up-regulation of CAT activity coincided 
with the maximum training load and performance de-
crement. The training protocol carried out in this study 
was found to induce overtraining48 and may explain 
our findings related to the increased CAT activity. Ne-
vertheless, it should be taken into consideration that 
such activity may not represent a significant propor-
tion of brain total antioxidant activity due to its low 
values48. 

In spite of the controversial findings regarding the 
HIE, acute exercise promotes free radicals and ROS 
generation, which may lead to lipid peroxidation49. In 
the present study, the HIE protocol induced lower lipid 
peroxidation when a high-rather than a normal-pro-
tein diet was consumed by the animals. Therefore, the 
magnitude of ROS generation and lipid peroxidation 
was not only a result the exercise mode, intensity and 
duration49, but also high-protein levels in the diet.

A recent study has reported that acute exercise in-
duces ROS production and activates Nrf2 in the myo-
cardial tissue. Furthermore, Nrf2 might be a potential 
target in order to protect heart tissue from diseases 
such as ischemia/reperfusion injury and myocardial 
infarction induced by high levels of ROS in the myo-
cardium50. These results concur with the present study 
in that Nrf2 levels were higher in the HIE compared to 
the sedentary group. Thus, Nrf2 may develop a neuro-
protective effect after HIE in rat brain.

The present study has several limitations that need 
to be mentioned. First, it may be beneficial to compare 
our results with different sources of protein for the in-
terpretations of the present findings. Second, the pro-
tein carbonyl assay could suffer confounding factors. 
However, it is important to highlight that this is the 
first study to analyze the effects of a high-protein diet 
and a HIE, based on a hypertrophy resistance training 
protocol, on brain oxidative stress. 

Conclusions 

Overall, our results suggest that consumption of hi-
gh-protein diets cause oxidative damage to the brain 
by means of lipid and protein oxidation. Such increa-
sed oxidative damage may in turn induce the endoge-
nous antioxidant defense system. HIE did not worsen 
the deleterious effects caused by high-protein diet and 
may be an efficient way to protect the brain against 
high dietary protein aggression. 
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                                      High-Intensity Exercise May Compromise Renal 
Morphology in Rats

be impaired when plasma concentration of these 
proteins increases   [ 19 ]  . In addition, intense 
resistance training, such as strength training, 
could promote hypoxia, glucose depletion or oxi-
dative stress, which may lead to endoplasmic 
reticulum stress, inducing glomerular and tubu-
lar damage in patients with acute and CKD 
  [ 13   ,  22 ]  . Furthermore, in the last decade, strength 
training has become one of the most popular 
physical activities in developed countries and 
steadily increasing numbers of gyms have been 
opened   [ 12 ]  .
  To date, only 2 studies have examined kidney 
morphology after an exercise intervention in 
depth, and they were performed in rats subjected 
to weightlessness   [ 14 ]   or suff ering from hyper-
tension   [ 2 ]  . Moreover, the eff ect of exercise, more 
specifi cally high-intensity exercise (HIE) on renal 
morphology under normal conditions or in 
healthy individuals remains unclear. Therefore, 
the present study sought to examine the eff ects 
of a HIE protocol based on strength training on 
plasma, urinary and morphological renal mark-
ers in rats.

        Introduction
 ▼
   The eff ect of exercise, and more specifi cally its 
type, dose and intensity, on renal status is rather 
unknown. This is especially relevant nowadays 
due to the fact that chronic kidney disease (CKD) 
is a silent illness that is becoming an emergent 
public health burden   [ 20 ]  . On the one hand, exer-
cise might reduce kidney infl ammation, improve 
glomerular fi ltration rate and increase plasma 
albumin concentrations   [ 32   ,  36         – 39 ]  . Because it is 
well established that inactivity contributes to 
CKD   [ 42 ]  , these patients could benefi t from 
resistance training interventions   [ 23 ]  . Resistance 
training may increase nitrogen (N) retention and 
protein synthesis, ameliorate loss of muscle mass 
and its function and consequently alleviate pro-
teinuria and thereby kidney disease in this seg-
ment of the population (elderly, CKD, or subjects 
exposed to weightlessness)   [ 10   ,  14   ,  23 ]  . On the 
other hand, high-intensity or strenuous exercise 
can result in muscle damage evidenced by 
increased blood levels of muscle proteins such as 
creatine kinase (CK), lactate dehydrogenase 
(LDH) and myoglobin   [ 41   ,  45 ]  . Renal function can 
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                                      Abstract
 ▼
   We investigated the renal eff ects of a high-inten-
sity exercise (HIE) program based on strength 
training. 20 Wistar rats were randomly assigned 
to 2 experimental groups performing HIE or con-
trol over 12 weeks. Urinary volume, pH, citrate 
and calcium, and plasma urea, total proteins, cre-
atinine, albumin, lactate dehydrogenase, creatine 
kinase (CK), calcium, magnesium, corticosterone 
and testosterone were measured. We also stud-
ied renal morphology with the Fibrosis HR ®  soft-
ware. Plasma urea and CK concentrations were 
higher in the HIE compared to the control group 
(p < 0.05), whereas plasma creatinine was lower 
(p < 0.01). Plasma corticosterone was higher 

(p < 0.05) and testosterone lower (p < 0.01) in the 
HIE group. Except for the higher urinary volume 
found in the HIE group (p < 0.05), no diff erences 
between groups were observed in the rest of uri-
nary parameters analyzed. Renal interstitial con-
nective tissue was ~30 % higher in the HIE group 
(p < 0.05). Glomerular tufts and mesangial areas 
were also higher in the HIE group (all, p < 0.05). 
No diff erences between groups were observed 
in the glomerular area. Overall, HIE promoted a 
worse morphological renal profi le that might be 
associated with a higher risk for incidence of kid-
ney disease in the long-term. The stress induced 
by the type of exercise performed could be on the 
basis of this worse morphological renal status.
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    Materials and Methods
 ▼
    Animals and experimental design
  A total of 20 albino male Wistar rats were assigned to 2 groups 
(n = 10), performing HIE or sedentary. The animals, aged 8 weeks 
and having an initial body weight of 150 ± 8 g, were housed in 
individual stainless steel metabolism cages designed for the sep-
arate collection of urine. The cages were located in a well-venti-
lated thermostatically controlled room (21 ± 2 °C), with relative 
humidity ranging from 40 to 60 %. A 12:12 reverse light-dark 
(08:00–20:00 h) cycle was implemented to allow exercise train-
ing during the dark period. Throughout the experimental period 
all rats had free access to distilled water and the animals con-
sumed the diet ad libitum. Experimental diets were formulated 
to meet the nutrient requirements of rats   [ 1 ]   based on the AIN-
93M formulation described by Reeves et al., but included modi-
fi cations in the protein source and content and the oil source 
  [ 40 ]  . A protein content of 10 % was chosen according to the 
American Institute of Nutrition (AIN-93M)   [ 40 ]  . Commercial soy 
protein isolate was used as the source of protein since this pro-
tein is widely available and used by athletes.
  One week prior to the experimental period, the animals were 
allowed to adapt to the experimental conditions. The rats’ body 
weights were measured weekly and at the same time of day, and 
the amount of food consumed by each rat was registered daily 
(Ohaus ®  Adventurer ™  Pro.  Capacity to 3 100 g, readability of 
0.01 g. New Jersey, USA).
  During week 11, a 12-h urine sample from each animal was col-
lected for biochemical analysis. The urine volumes were 
recorded and samples were transferred into graduated centri-
fuge tubes for pH, calcium and citrate analysis. At the end of the 
experimental period, the animals were anaesthetized with keta-
mine-xylazine and euthanized by cannulation of the abdominal 
aorta. Blood was collected (with heparin as anticoagulant) and 
centrifuged at 3 000 rpm for 15 min to separate the plasma, 
which was subsequently removed and frozen in liquid nitrogen 
(N) and stored at  − 80 °C. The carcass weights were recorded. 
Carcass weight is the weight of the slaughtered animal’s cold 
body after being skinned, bled and eviscerated and following 
removal the head, the tail and the feet. The left kidneys were 
extracted, weighed and immediately stored in formalin for sub-
sequent histological analyses.
  All experiments were undertaken in accordance with the Ethical 
Standards in Sport and Exercise Science Research   [ 18 ]   as well as 
the Directional Guides Related to Animal Housing and Care 
(European Community Council, 1986)   [ 15 ]   and followed the 
Canadian Council on Animal Care (CCAC) guidelines. All proce-
dures were approved by the Animal Experimentation Ethics 
Committee of the University of Granada.

    Resistance training
  The experimental group was trained following a strength train-
ing protocol in a motorized treadmill (Panlab Treadmills for 5 
rats, LE 8710R) with weights in a bag tied with a cord to the tail. 
This type of training was chosen in order to reproduce the type 
of exercise performed by people interested in gaining muscle 
mass and strength through regular exercise at gyms. Therefore, 
our training protocol follows the established principles for 
human strength training, involving weights, repetitions and sets 
to maximize muscle gains   [ 12 ]  . Thus, the aim of the present 
study was not to protect renal health through exercise (i. e., aero-
bic exercise).

  The training group exercised on alternate days (3–4 sessions/
week). The animals ran at a constant speed of 35 cm/s during the 
whole experimental period (12 weeks) in their dark phase. Prior 
to exercise training, animals were adapted to the treadmill on a 
daily basis for 1 week, fi rst 3 days without weight and the last 4 
days with 20 % of their body weight. The training protocol used 
in the present study has been previously developed and deeply 
described by Aparicio et al.   [ 6 ]  . The entire training process was 
designed and controlled by sport scientists in collaboration with 
experienced researches used to working with rats. The number 
of sessions performed each week, the number of sets per session 
and the time spent in each set as well as the load carried by the 
animals is shown in      ●  ▶     Table 1  . From the fi rst week of the exper-
imental period until the completion of the study, the training 
weights (loads) were progressively increased and individually 
adjusted once per week to the percentage of one repetition max-
imum (1 RM), defi ned as the maximum load that the rat could 
carry in the bag. The 1 RM test was conducted as follows. The rat 
was fi rst placed on a fl at, horizontal and non-slippery surface 
with a specifi c loaded bag that was tied to its tail. The rat was 
then acoustically stimulated and immediately reacted by mov-
ing forward. This procedure was repeated several times, with 
the load being increased every time, until the load was so heavy 
that the rat could not move forward even when actively stimu-
lated. The load achieved at this point was considered the 1 RM 
and was measured weekly in all animals to adapt the  %1 RM 
load during the training period.
     Animals in the control group were managed identically to exer-
cising animals, with the exception of exercise training.

    Chemical analyses
  The total N content of the protein supplement and quadriceps 
was determined according to Kjeldahl’s method. Crude protein 
amounts were calculated as N × 6.25. The urine calcium content 
was determined by atomic absorption spectrophotometry using 
a PerkinElmer Analyst 300 spectrophotometer (PerkinElmer, 
Wellesley, MA, USA), and the results were validated using stand-
ard reference materials CRM-189, CRM-383, and CRM-709.
  The urinary pH was analyzed using a bench pH-meter (Crison, 
Barcelona, Spain), and urinary citrate level was analyzed using a 
commercial kit (Spinreact, S. A. Gerona, Spain). The plasma urea, 
total proteins, albumin, LDH, CK, calcium and magnesium con-
centrations were measured using an autoanalyzer (Hitachi-
Roche p800, F. Hoff mann-La Roche Ltd. Switzerland).

  Table 1    Details of the resistance-training program. 

  Week    Work time 

(min)  

  Sets    Time between 

sets (min)  

  Weight 

(% 1 RM)  

  1    2    10    1    55  
  2    2    10    1    60  
  3    2    10    1    65  
  4    2    10    1.5    70  
  5    2    10    1.5    70  
  6    2.5    10    1.5    75  
  7    2.5    12    1.5    75  
  8    2    12    2    80  
  9    2.5    12    2    80  

  10    1.5    12    2    85  
  11    2    12    2.5    85  
  12    1    12    2.5    85  
 RM: repetition maximum 
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  Plasma corticosterone concentrations were measured by radio-
immunoassay using a commercially available Corticosterone 
Rat/Mouse (DRG International Inc, USA) I-125 Kit without modi-
fi cation. All samples were assayed in duplicate and in the same 
assay. The intra assay coeffi  cient of variation was 4.4 %, and the 
sensitivity was 7.7 ng/ml. Plasma testosterone concentrations 
were measured by radioimmunoassay using a commercially 
available TESTO-CTK I-125 Kit (Dia Sorin, Italy) without modifi -
cation. All samples were assayed in duplicate and in the same 
assay. The intra assay coeffi  cient of variation was 5.1 % and the 
sensitivity was 0.02 ng/ml. Corticosterone/testosterone as well 
as testosterone/corticosterone indexes as expressed corticoster-
one and testosterone in nmol/L were also calculated.

    Histological analysis
  The left-kidney samples were fi xed in 4 % buff ered formalin and 
embedded in paraffi  n. Subsequently, 4-micrometer-thick sec-
tions were obtained and stained with 1 % Picro-sirius red F3BA 
(Gurr, BDH Chemicals Ltd, Poole, United Kingdom)   [ 43 ]  . This 
technique facilitates the visualization of connective fi bers as 
deep red stains on a pale yellow background   [ 43 ]  . The sections 
were assessed by optical microscopy. 40 images per sample were 
captured: 20 of the glomerulus to determine the morphometry 
and the intraglomerular connective tissue and 20 of the tubu-
lointerstitial area to measure the interstitial connective tissue. 
All images were acquired using the 20 × lens and analyzed with 
the Fibrosis HR ®  software   [ 31 ]  . This image analysis application 
allowed us to automatically quantify morphometric parameters 
by using various image-processing algorithms   [ 31 ]  .
  We estimated the following 8 morphological variables that we 
describe for the better understanding of the present results: a) 
Percentage of interstitial connective tissue in relation to the 
image area, excluding the glomerular area (the connective tissue 

that is in the gap over the Bowman’s capsule). b) The area of 
interstitial connective tissue (including Bowman's capsule).
  The Fibrosis HR ®  software divides glomerular tufts into 2 cate-
gories: “glomerular tuft I” and “glomerular tuft II”. The variable 
“glomerular tuft I” corresponds to the renal corpuscle excluding 
the Bowman's capsule. The variable "glomerular tuft II" corre-
sponds to the renal corpuscle excluding the Bowman’s capsule 
and considering the area of the capillary lumens and urinary 
spaces in the glomerulus. c) Glomerular tuft I area. d) Glomeru-
lar tuft II area. e) Glomerular tuft I percentage (percentage of 
glomerular tuft I related to the glomerular area). f) Glomerular 
tuft II percentage (percentage of glomerular tuft II related to the 
glomerular area). g) Mesangial area. h) Glomerular area.

    Statistical analysis
  Results are presented as mean and standard deviation, unless 
otherwise indicated. Analysis of variance (ANOVA) was used to 
compare the HIE and the sedentary group with fi nal body 
weight, food intake, muscle, urinary, plasma and renal morphol-
ogy parameters as dependent variables. All comparisons were 
conducted with the Statistical Package for Social Sciences (SPSS, 
version 19.0 for Windows; SPSS Inc., Chicago, IL), and the level of 
statistical signifi cance was set at p < 0.05. Additionally, standard-
ized eff ect size statistics were estimated in all the comparisons 
through the  Cohen’s d  test.

     Results
 ▼
   The eff ects of HIE on the fi nal body weight, food intake, muscle, 
plasma and urinary parameters are shown in      ●  ▶     Table 2  .

 

    High-intensity

 exercise  

  Sedentary    p    Eff ect size†  

  fi nal body weight (g)    313.0 (31.4)    350.4 (27.9)    0.009    1.25  
  carcass weight (g)    163.2 (17.6)    170.9 (18.2)    0.337     − 0.43  
  food intake (g/day)    16.5 (2.70)    15.7 (1.76)    0.060    0.35  
  quadriceps N content (g/100 g DM)    15.1 (1.7)    12.9 (1.3)     < 0.001    1.45  
   Plasma           
   urea (mg/dl)    30.8 (4.60)    25.0 (5.12)    0.015    1.19  
   total proteins (g/dl)    5.49 (0.19)    5.61 (0.87)    0.173     − 0.03  
   creatinine (mg/dl)    0.48 (0.06)    0.67 (0.13)    0.001     − 0.30  
   albumin (mg/dl)    3.18 (0.47)    2.73 (0.83)    0.145    0.68  
   lactate dehydrogenase (u/L)    1 147 (1 625)    677 (217)    0.430    0.41  
   creatine kinase (u/L)    1 957 (660)    1 370 (563)    0.027    0.95  
   calcium (mg/dl)    27.6 (4.6)    32.4 (8.8)    0.154     − 0.68  
   magnesium (mg/dl)    2.17 (0.50)    3.41 (1.81)    0.069     − 0.93  
   corticosterone (nmol/L)    28.1 (4.56)    23.3 (6.15)    0.004    0.88  
   testosterone (nmol/L)    2.95 (2.53)    4.72 (3.38)    0.045     − 0.59  
   corticosterone/testosterone    8.12 (6.12)    4.39 (3.86)    0.020    0.72  
   testosterone/corticosterone    0.20 (0.14)    0.43 (0.39)    0.002     − 0.78  
   urine           
   urinary calcium (g/L)    2.29 (0.86)    2.27 (0.86)    0.914    0.02  
   urinary calcium (mg/day)    0.96 (0.60)    0.51 (0.27)    0.064    0.96  
   urinary citrate (g/L)    2.81 (1.21)    2.88 (1.83)    0.917     − 0.04  
   urinary pH    6.84 (0.45)    7.25 (0.54)    0.084     − 0.82  
   urinary volume (ml/h)    0.36 (0.13)    0.23 (0.10)    0.025    1.12  
 Values expressed as mean (standard deviation). N: Nitrogen. DM: dry matter. † Eff ects size statistics are expressed as  Cohen’s d.  This 
statistical test was included to show the relative magnitude of the diff erence in scores between a treatment (exercise) and a non-
treatment (control) group 

 Table 2    Eff ects of high-intensity 
strength exercise on plasma and 
urinary parameters.
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      Final body weight, food intake and muscle N content
  Final body weight was 11 % lower in the HIE compared to the 
sedentary group, whereas food intake was 7 % higher (both, 
p < 0.01). Quadriceps N content was higher in the HIE group than 
in the sedentary group (p < 0.05).

    Plasma and urinary parameters
  Plasma urea and CK concentrations were higher in the HIE group 
than in the sedentary group (both, p < 0.05). Plasma creatinine 
concentrations were lower in the HIE group than in the seden-
tary group (p < 0.01). No diff erences between groups were 
observed on plasma albumin, total proteins, calcium, magne-
sium or LDH concentrations.
  Plasma corticosterone was 20 % higher (p < 0.01) at the same 
time that plasma testosterone was 60 % lower in the HIE com-
pared to the sedentary group (p < 0.01). Plasma corticosterone/
testosterone ratio was 46 % higher in the HIE compared to the 
sedentary group, whereas testosterone/corticosterone ratio was 
115 % lower (both, p < 0.01).
  Except for the higher urinary volume found in the HIE compared 
to the sedentary group (p < 0.05), no diff erences between groups 
were observed in the rest of the urinary parameters analysed 
(urinary pH, calcium and citrate).
  The eff ects of HIE on kidney weight and morphology are shown 
in      ●  ▶     Table 3  .

       Kidney weight and morphology
  No diff erences between groups were observed on kidney wet 
mass weight, as expressed in absolute value as well as in relation 
to the animal fi nal body weight (both, p > 0.05).
  Kidney interstitial connective tissue was 30 % higher in the HIE 
compared to the sedentary group (p < 0.05). Percentages of 
glomerular tuft areas (referred to glomerular areas) as well as 
glomerular tufts and mesangial areas were higher in the HIE 
compared to the sedentary group (all, p < 0.05). No diff erences 
between groups were observed in the glomerular area.

     Discussion
 ▼
   The fi ndings of the present study show that rats involved in a HIE 
protocol displayed a worse renal morphological profi le when 
compared to the sedentary group, which might present a higher 
risk for incidence of kidney disease in the long-term. The stress 
induced by the type of exercise performed under our experi-

mental design may be related to this inferior morphological 
renal status.
  In the general healthy population, exercise appears to improve 
global renal status   [ 32   ,  36      – 38 ]  . Exercise could improve micro-
albuminuria   [ 32   ,  38   ,  39 ]  , and we have observed higher albumin 
concentrations in our trained group, which could mean a reduc-
tion of the microalbuminuria. Exercise could also decrease renal 
infl ammation   [ 38 ]  . We have observed a lower, but not signifi -
cant, kidney weight in our trained animals, which could mean a 
lower renal infl ammation or a lower renal hypertrophy. It should 
be noted that in a similar previous study performed by our group 
with the same exercise protocol, our trained animals exhibited a 
signifi cantly lower kidney weight   [ 5 ]  , which could be explained 
by the groups size or the level of protein employed.
  Hypertension is also an important risk factor for CKD, and regu-
lar exercise can effi  ciency help to decrease blood pressure 
  [ 24   ,  44 ]  . In the study by Agarwal et al.   [ 2 ]  , spontaneously hyper-
tensive rats performed 16 weeks of moderate-intensity exercise 
on a treadmill (5 days per week; 60 min per day at 20 m/min, 
which corresponds approximately to 60 % of maximal aerobic 
velocity), and this exercise protocol preserved renal hemody-
namic and structure. Furthermore, exercise-induced eff ects, at 
least in part, were found to be pressure-independent   [ 2 ]  .
  Patients with chronic renal failure usually present the syndrome 
of “protein-energy malnutrition”, which is a relevant factor for 
morbidity and mortality in this population and requires early 
detection and vigorous treatment   [ 4 ]  . These patients could ben-
efi t from resistance training interventions   [ 23 ]  . Indeed, Ding 
et al.   [ 14 ]   explored the eff ects of long-term weightlessness on the 
renal tissue and investigated the simulated microgravity on the 
renal morphological damage and related molecular mechanisms 
in rats. Resistance training (4 sets, 12 repetitions for each set at 
65–75 % of 1RM, 5 times per week for 8 weeks) reduced kidney 
cell apoptosis and expression of HSP70 protein and attenuated 
the kidney impairment imposed by weightlessness   [ 14 ]  . Quadri-
ceps N (protein) content was higher in trained animals, which 
might confi rm the eff ectiveness of the strength training protocol 
performed in the present study on increasing muscle mass.
  The maintenance of urinary acid/base homeostasis is also 
important in order to preserve renal health   [ 4 ]  . A decrease in 
urinary pH, hypocitraturia and hypercalciuria are risk factors for 
kidney stone formation   [ 3   ,  34 ]  . In our study, no noticeable diff er-
ences in these urinary parameters were observed, and conse-
quently both groups presented similar risk of nephrolithiasis. 
However, the ~37 % higher urinary volume together with the 

 

    High-intensity exercise    Sedentary    p    Eff ect size†  

  kidney (g) (mean right and left)    0.88 (0.12)    0.92 (0.10)    0.437    0.48  
  kidney (g/100 g body weight)    0.28 (0.02)    0.26 (0.03)    0.202    0.28  
  kidney interstitial connective tissue ( %)    3.97 (0.95)    2.71 (1.24)    0.019    1.14  
  kidney interstitial connective tissue (μm²)    5 277.6 (1 304)    3 656.9 (1 634)    0.023    1.10  
  glomerular tuft I ( %)    22.13 (5.23)    16.74 (6.50)    0.065    0.91  
  glomerular tuft I area (μm²)    9 180.6 (2 386)    6 616.3 (2 652)    0.036    1.02  
  glomerular tuft II ( %)    52.46 (11.9)    37.08 (16.38)    0.028    1.07  
  glomerular tuft II area (μm²)    21 448 (5 200)    14 573 (5 870)    0.013    1.23  
  mesangium area (μm²)    5 673.1 (1 415)    4 172.2 (1 510)    0.034    1.03  
  glomerular area (μm²)    41 328 (4 108)    40 405 (3 350)    0.406    0.24  
 Values expressed as mean (standard deviation). The variable “glomerular tuft I” corresponds to the renal corpuscle excluding the Bow-
man’s capsule. The variable “glomerular tuft II” corresponds to the renal corpuscle excluding the Bowman’s capsule and factoring in 
the area of the capillary lumens and urinary spaces in the glomerulus. † Eff ects size statistics are expressed as  Cohen’s d.  This statistical 
test was included to show the relative magnitude of the diff erence in scores between a treatment (exercise) and a non-treatment 
(control) group 

 Table 3    Eff ects of high-intensity 
strength exercise on kidney mor-
phology.
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~20 % higher levels of plasma urea found in the HIE group could 
mean a higher renal fi ltration (i. e., hyperfi ltration) in the trained 
group   [ 33 ]  . Moreover, most of the morphological renal variables 
studied exhibited a worse profi le, with higher kidney interstitial 
connective tissue, glomerular tufts and mesangium areas in the 
HIE group. Diff erent hypotheses could explain these fi ndings:
  1) During heavy physical exercise (such as that performed in our 
strength training protocol), 2 phenomena occur: the decrease of 
the glomerular fi ltration rate and the release into the blood of 
some molecules from muscles such as CK, LDH and metmy-
oglobin   [ 11   ,  29   ,  41   ,  45 ]  . Renal fi ltration of metmyoglobin released 
from damaged muscle and fi ltered at the glomerulus is known to 
cause acute renal injury in exercise rhabdomyolysis   [ 29   ,  30   ,  35 ]  . 
A 10-fold increase of CK is common in athletes after exercise 
  [ 8   ,  11 ]  . In humans, serum CK 5 times higher than normal usually 
confi rms rhabdomyolysis   [ 29 ]  . We have observed higher levels 
of CK in our HIE group, but in a lower magnitude. Therefore, the 
higher levels of CK may indirectly suggest that metmyoglobin 
has been liberated. Also noteworthy, yet without statistical sig-
nifi cance, is the 3 times higher level of LDH observed in the HIE 
group. In fact, in the study by Colombini et al.   [ 11 ]   CK activity 
from 9 professional cyclists during the Giro d’Italia 3-week stage 
race increased during the second part of the race, and LDH activ-
ity progressively increased during the entire course of the race. 
There was a negative correlation between CK activity and the 
delta prerace-day 12 of glomerular fi ltration rate. The authors 
concluded that the eff ect of prolonged strenuous muscular eff ort 
on biochemical laboratory parameters in professional road 
cyclists was confi rmed. In agreement with our results, the 
authors also observed that creatinine is unaff ected by response 
to physical stress-induced muscular damage   [ 11 ]  .
  2) Cortisol is a glucocorticoid released from the adrenal cortex in 
response to stress, which is believed to play an important role in 
the remodelling of tissue   [ 28 ]   in response to intense exercise 
such as ours   [ 16   ,  25   ,  26 ]  . Indeed, resistance HIE protocols such as 
a 10-station heavy-resistance exercise protocol with 3 sets of 10 
RM and very short rest periods between sets, or a sprint intervals 
protocol   [ 25   ,  26 ]   that stimulate the greatest lactate response are 
correlated with high plasma cortisol levels. Moreover, protocols 
that result in the greatest concentrations of circulating CK 24-h 
post-exercise, also result in the greatest rises in circulating cor-
tisol   [ 27 ]  . Moreover, high plasma corticosterone levels have been 
reported in rats after a moderate aerobic treadmill exercise pro-
tocol (60 min/d, 5 d/wk at 42 cm/s and 0 % grade)   [ 17 ]  . We have 
confi rmed these fi ndings and observed higher levels of plasma 
corticosterone in our HIE groups. Sustained delivery of supra-
physiological levels of corticosterone play a role in modifying 
kidney structure and function   [ 9 ]  .
  Our trained group also presented ~60 % less testosterone than 
the sedentary group. Gonadal dysfunction is a frequent fi nding 
in men with CKD and with end-stage renal disease. Testosterone 
defi ciency is present in 26–66 % of men with diff erent degrees of 
renal failure   [ 21 ]  . Experimental and clinical evidence suggests 
that testosterone may have important clinical implications with 
regard to kidney disease progression   [ 21 ]  .
  3) Finally, disturbances promoted by intense resistance training, 
such as hypoxia, glucose depletion or oxidative stress, may lead 
to endoplasmic reticulum dysfunction, which can induce endo-
plasmic reticulum stress. Accumulating evidence indicates that 
endoplasmic reticulum stress contributes to glomerular and 
tubular damage   [ 13   ,  22 ]  .

  The diff erences found between the HIE and the sedentary group 
in corticosterone-testosterone, as well as in testosterone-corti-
costerone ratios, may indicate a possible overtraining status in 
the HIE group   [ 7 ]  . This overload may also infl uence the 3 hypoth-
eses stated above.
  The present study has some limitations that must be discussed. 
First, the physiological responses observed in rodents must be 
confi rmed in humans. In other words, the responses found after 
3 months of training using our experimental exercise protocol in 
rodents cannot be directly extrapolated to the potential eff ects 
over decades in human subjects. Moreover, although we have 
tried to mimic the training methodology performed by humans, 
this protocol does not exactly refl ect human strength training. 
Second, measuring additional markers of renal function such as 
the glomerular fi ltration rate would have been of interest in the 
interpretation of the present study results. On the other hand, 
this is the fi rst study analyzing the eff ects of high-intensity 
strength training on renal morphology in healthy animals under 
normal experimental conditions.

    Conclusions
 ▼
   Overall, under our experimental design, rats involved in a HIE 
protocol displayed a worse renal morphological profi le when 
compared to the sedentary group, which might be associated 
with a higher risk for incidence of kidney disease in the long 
term. The stress induced by the type of exercise performed in 
the present study (strength training) could be related to this 
worse morphological renal status.
  Some conclusions regarding exercise intensity and type could be 
extracted from this study. Renal benefi ts of exercise could 
depend on the duration and intensity thereof, and on individual 
physiological conditions   [ 36 ]  . It is therefore necessary to further 
examine the renal eff ects at diff erent doses, intensities and 
types of exercise. This is also important for being able to pre-
scribe the appropriate exercise program for better renal health 
for any given individual/patient. More studies are needed to 
develop evidence-based exercise training guidelines.
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Effects of high-protein diets and high-intensity exercise on kidney 

oxidative stress in rats 
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Final body weight, carcass weight, kidney weight and food intake 

The effects of high-protein diet consumption and HIE on final body 

weight, carcass weight, kidney weight and food intake are shown in 

Table 3. High-protein and HIE groups exhibited lower food intake when 

compared to the normal-protein and untrained groups (both, p<0.001). 

Kidney wet mass expressed in absolute value, or referred to the final 

body weight or the carcass weight was significantly higher in the high-

protein when compared to the normal-protein groups (all, p<0.001). 

Significant protein amount*HIE interactions were observed for daily 

food intake  and final body weight derived from a higher HIE-induced 

decrease in the normal-protein groups when compared to the high-protein 

animals (p=0.001 and p=0.025, respectively). In addition, a significant 

protein amount*HIE interaction was also found for kidney wet mass 

referred to the final body weight derived from a higher HIE-induced 

decrease in this parameter for the high-protein groups that was not 

observed in the normal-protein animals (p=0.016). 

 

Oxidative stress markers 

The effects of high-protein diet and HIE on kidney oxidative stress 

markers are shown in Table 4. The high-protein groups showed 
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significantly higher values of TBARs content when compared to the 

normal-protein groups (p<0.001). In contrast, high-protein groups 

displayed significantly lower levels of t-SOD, Mn-SOD, CuZn-SOD and 

GPx activity when compared to the normal-protein groups (p<0.001, 

p<0.001, p=0.020 and p<0.001, respectively). 

Significant protein amount*HIE interactions were found for kidney PCC, 

t-SOD, and Mn-SOD activity derived from a greater HIE-induced 

increase in the high-protein groups that was not observed in the normal-

protein groups (p<0.001, p=0.05 and p<0.001, respectively). A 

significant protein amount*HIE interaction was also observed for GPx 

derived from a higher HIE-induced increase in the normal-protein groups 

that was not observed in the high-protein animals (p=0.002). 

 

Plasma and renal morphology parameters 

The effects of high-protein diet and HIE on plasma and kidney 

morphology parameters are shown in Table 5. Plasma urea was 

significantly higher (p=0.024), and total protein and creatinine levels 

were lower (p=0.002 and p<0.001, respectively) in the high-protein 

animals when compared to the normal-protein groups, respectively. A 

significant protein amount*HIE interaction was found for plasma 
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creatinine content derived from a higher HIE-induced decrease in this 

parameter for the normal-protein groups when compared to the high-

protein groups (p=0.003). 

The high-protein groups exhibited significantly higher glomerular tuft I 

area, mesangium area and glomerular area when compared to the normal-

protein groups (p=0.018, p=0.018 and p=0.002, respectively). A 

significant protein amount*HIE interactions was found for glomerular 

tuft II area derived from a higher HIE-induced increase in the normal-

protein groups that was not observed in the high-protein groups 

(p=0.030). A significant protein amount*HIE interactions was also 

observed for mesangium percentage that resulted from a higher HIE-

induced increase in the high-protein groups that was not observed in the 

normal-protein groups (p=0.006).  
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Table 3. Effects of the dietary protein amount and high-intensity exercise on final body weight, carcass weight, food intake 

and kidney weight. 

 
Normal protein High protein p values 

 Untrained HIE Untrained HIE SEM Protein 

amount 
HIE 

Protein 

amount*HIE 
 
Food intake (g/day) 20.32c 15.62a,b 16.95b 14.81a 0.177 <0.001 <0.001 0.001 

Final body weight (g) 351.22a 313.04a 317.59a 327.17a 5.085 0.344 0.168 0.025 

Carcass weight (g)  172.12a 163.21a 178.87a 169.23a 2.897 0.278 0.118 0.950 

Kidney (g) 0.92a,b 0.87a 1.17c 1.06b,c 0.021 <0.001 0.068 0.513 

Kidney (g/100g body weight) 0.26a 0.28a,b 0.37c 0.32b 0.006 <0.001 0.168 0.016 

Kidney (g/100g carcass weight) 0.54a 0.53a 0.65b 0.63b 0.008 <0.001 0.333 0.437 

SEM, standard error of the mean; HIE, high-intensity exercise. 

Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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Table 4. Effects of the dietary protein amount and high-intensity exercise on kidney oxidative stress markers. 

 

Normal protein High protein 

 

p values 

Untrained HIE Untrained HIE SEM Protein 

amount 
HIE 

Protein 

amount*HIE 

TBARs (nmol MDA/mg protein) 12.8a 18.6a 55.3b 55.6b 2.382 <0.001 0.527 0.564 

PCC (nmol/mg protein) 5.1c 2.1a 3.4b 4.8c 0.127 0.030 0.004 <0.001 

t-SOD (U/mg protein) 247.3b 215.5a 197.3a 198.6a 4.077 <0.001 0.068 0.050 

Mn-SOD (U/mg protein) 136.9b 109.2a 100.8a 107.7a 2.255 <0.001 0.027 <0.001 

CuZn SOD (U/mg protein) 110.4a 106.3a 96.6a 90.8a 2.999 0.020 0.416 0.896 

CAT (µmolH2O2/min/mg protein)  125.3a 123.6a 105.8a 125.6a 4.385 0.323 0.307 0.229 

GPx (nmolNADPH/min/mg protein)  28.6b 44.9c 16.0a 19.4a 0.936 <0.001 <0.001 0.002 

SEM, standard error of the mean; HIE, high-intensity exercise; TBARs, thiobarbituric acid-reactive substances; PCC, protein 

carbonyl content; t-SOD, total superoxide dismutase; Mn-SOD, manganese superoxide dismutase; CuZn-SOD, cooper and 

zinc superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.  
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Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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Table 5. Effects of the dietary protein amount and high-intensity exercise on plasma and kidney morphology. 

 
Normal protein      High protein 

 
p values 

 
Untrained HIE Untrained HIE SEM Protein 

amount 
HIE 

Protein 

amount*HIE 

Plasma 
        

Urea (mg/dl) 24.52a 30.82b 29.10a,b 33.10b 0.727 0.024 0.001 0.434 

Total Protein (g/dl) 5.62b 5.49a,b 5.27a,b 5.13a 0.051 0.002 0.188 0.969 

Creatinine (mg/dl) 0.66b 0.48a 0.43a 0.42a 0.013 <0.001 0.001 0.003 

Albumin (mg/dl) 2.75a 3.18a 2.72a 2.83a 0.122 0.448 0.269 0.511 

Morphology 
        

Interstitial connective tissue (%) 2.71a 3.97a 3.33a 3.65a 0.179 0.683 0.034 0.199 

Interstitial connective tissue(µm²) 3657a 5278a 4245a 4764a 241.098 0.939 0.033 0.261 

Glomerular tuft I (%) 16.74a 22.13a 21.76a 21.89a 0.963 0.222 0.160 0.181 
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Glomerular tuft I area (µm²) 6616a 9181a,b 10155b 9627a,b 403.582 0.018 0.215 0.063 

Glomerular tuft II (%) 37.08a 52.46b 44.86a,b 47.75a,b 2.018 0.705 0.030 0.130 

Glomerular tuft II area (µm²) 14573a 21448b 20891b 20701b 783.234 0.084 0.040 0.030 

Mesangium (%) 64.74b 62.32a,b 60.74a 63.86a,b 0.475 0.204 0.714 0.006 

Mesangium area (µm²) 4172a 5673a,b 6178b 6106b 245.713 0.018 0.155 0.118 

Glomerular area (µm²) 40405a 41328a 46590b 44381a,b 682.935 0.002 0.641 0.259 

Fibrosis-T (%) 2.09a 3.02b 1.99a 2.50a,b 0.118 0.195 0.004 0.394 

Fibrosis-T area (µm²) 3660a 5279b 3472a 4377a,b 206.465 0.195 0.004 0.394 

SEM, standard error of the mean; HIE, high-intensity exercise. 

Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(P>0.05). 
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Title: High-intensity exercise modifies the effects of Stanozolol on brain 

oxidative stress in rats 

 

ABSTRACT 

We analysed the effects of high-intensity exercise (HIE) and Anabolic 

androgenic steroids (AAS) on brain redox status. Forty male Wistar rats 

were randomly distributed in 4 experimental groups (n=10) with or 

without HIE and with or without weekly Stanozolol administration. 

Thiobarbituric acid-reactive substances (TBARs) and protein carbonyl 

content (PCC) were assessed. Total superoxide dismutase (tSOD), 

manganese superoxide dismutase (Mn-SOD), cooper/zinc superoxide 

dismutase (CuZn-SOD) and catalase (CAT) activities were measured. 

Finally, protein expression level of glutathione peroxidase (GPx), 

NAD(P)H dehydrogenase, Quinone 1 (NQO1), NF-E2-Related Factor 2 

(Nrf2), glial fibrillary acidic protein (GFAP), nuclear factor kappa β p65 

(NF-κβ) and signal transducer and activator of transcription 3 were 

determined. Brain PCC concentrations were lower in the HIE groups 

compared to the untrained controls, whereas CAT activity was higher 

(both, p<0.01). Both HIE and AAS groups exhibited higher expression of 

GFAP and GPx, but lower NQO1 levels (all, p<0.05). There was 
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increased expression of NF-κβ in the AAS groups (p<0.01). In addition, 

there was increased expression of Nrf2 in the HIE groups (p<0.001). 

Several HIE*AAS interactions were found on TBARs content and GFAP 

expression, with HIE downregulating and upregulating AAS-mediated 

increase in TBARs and GFAP, respectively (p<0.05). Overall, HIE 

appeared to reduce the AAS-mediated negative effect on brain redox 

status.  

Keywords: Anabolic agents; Superoxide dismutase; catalase; glial 

fibrillary acidic protein; nuclear factor kappa B; resistance training. 

 

INTRODUCTION 

Oxidative stress is a condition in which the delicate balance existing 

between free radicals production and their subsequent amelioration via 

the antioxidant defence system becomes skewed in favour of free radical 

expression [39]. Therefore, oxidative damage repair systems are 

important in order to minimize the dangerous effects of pro-oxidant 

reactive oxygen species (ROS) [20]. The brain readily suffers oxidative 

damage due to its higher metabolic rate, lipid content and lower levels of 

catalase (CAT) [37]. Consequently, brain oxidative stress has been 

implicated in several neurodegenerative disorders such as Parkinson’s 
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disease, Alzheimer disease, multiple sclerosis, and amyotrophic lateral 

sclerosis [9,28].  

It is well established that regular exercise plays an important 

preventive and therapeutic role on oxidative stress-associated brain 

diseases [42]. However, the benefits of high-intensity exercise (HIE) on 

brain function are under debate due to the potential overproduction of 

ROS that this type of exercise can induce [12]. This overproduction of 

ROS can alter the concentrations of different early biomarkers of 

oxidative stress such as plasma total antioxidant capacity (TAC) or 

erythrocyte reduced glutathione (GSH) and CAT activity, suggesting 

modifications in blood redox status [63]. 

Anabolic androgenic steroids (AAS) have both protein 

synthesizing (anabolic) and masculinizing (androgenic) effects on the 

body [56]. Although AAS may be prescribed for patients with 

pathological conditions (e.g. hypogonadism or sarcopenia) [11], they are 

widely used among professional athletes, competitive and recreational 

body builders or even non-athletic adolescents because AAS are some of 

the most powerful performance enhancing substances [29]. Severe effects 

such as adverse plasma and hepatic lipid profile can emerge with 

prolonged use or high doses of AAS [6]. Regarding brain function, AAS 
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may adversely affect neural activity in the hypothalamus and forebrain 

[45], by promoting neurodegenerative and apoptotic effects [61].  

Some studies have already demonstrated the combined effects of 

HIE and AAS in different tissues. For example, concerning muscle mass, 

the combination of these interventions induced comparable hypertrophy 

in all major fibre types of soleus, tibialis anterior and gastrocnemius 

muscle [23,26]. In contrast, the beneficial effects provided by HIE on 

hippocampal cell proliferation and apoptotic signalling as well as the 

improved heart antioxidant capacity were impaired by Nandrolone 

[15,44]. On the other hand, Stanozolol treatment protected rat skeletal 

muscle mitochondria against oxidative damage of proteins and changes 

in membrane fatty acid composition induced by acute exercise [53]. 

Thus, the involvement of specific molecular mediators on the biological 

effects of HIE and/or AAS depend on numerous factors such as the 

training protocol designed, animal model investigated, age, sex, AAS 

dose, metabolism or treatment regimen [22,50]. 

Several oxidative stress brain markers and antioxidant enzymes 

have been used to evaluate brain damage. Astrocytes play a key role in 

brain physiology and diverse neurodegenerative diseases [55]. Glial 

fibrillary acidic protein (GFAP) is a specific astrocyte marker, which 



Results 

	   173 

increases as a sign of astrogliosis, associated with conditions of brain 

injury [24]. Glial activation, in response to injury stimuli, commonly 

involves changes in GFAP and antioxidant defence [51]. The NF-E2-

Related Factor 2 (Nrf2) plays a central role in the regulation of phase 2 

enzymes, such as glutathione peroxidase (GPx), glutathione s-transferase 

(GST) and NAD(P)H dehydrogenase, Quinone 1 (NQO1) [49,67]. 

Recent studies have observed that chronic exercise activates the Nrf2 in 

human skeletal muscle and rat kidney whereas acute exercise promotes 

myocardial Nrf2 function [27,54].  

Signal transducer and activator of transcription 3 (STAT3) is 

activated by cytokines, growth factors, and receptor- or nonreceptor-

tyrosine kinases [19,36]. A previous study has demonstrated that 

manganese superoxide dismutase (Mn-SOD), a primary cellular defence 

enzyme involved in protecting cells from oxidative stress [14], is a direct 

target of STAT3 in ischemia reperfusion-induced neuronal cell death. 

Hence, the loss of STAT3 activity reduces Mn-SOD expression after 

cerebral ischemia [33].  

Given that hypertrophy resistance training is the main exercise 

modality practiced by AAS abusers [31] and the effect of androgens in 

combination with HIE on brain redox status has been scarcely 
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investigated,  the purpose of the present study was to investigate the 

effects of an hypertrophy resistance training protocol (i.e. HIE) and AAS 

administration on brain redox status. 

 

MATERIALS AND METHODS 

Animals and experimental design 

A total of 40 albino male Wistar rats were randomly distributed into 4 

experimental groups derived of 2 interventions: HIE (untrained vs. HIE) 

(n=20) and AAS-administration (non-AAS vs. AAS) (n=20). Each 

specific intervention (i.e. untrained and non-AAS, untrained and AAS, 

HIE and non-AAS, HIE and AAS) was developed in groups of 10 rats 

and the experimental period lasted 12 weeks.  

The animals (aged 8 weeks) with an initial body weight of 

161±13 g had free access to type 2 water (>15 MΩ cm) and consumed 

the diets ad libitum. Food intake and body weight were measured daily 

and weekly, respectively, for all the animals. The rats were located in a 

well-ventilated thermostatically controlled room (21±2ºC). A 12:12 

reverse light-dark cycle (08.00–20.00 h) was implemented in order to 

allow exercise training during the day. At the end of the experimental 

period, the animals were anesthetized with ketamine-xylazine and 
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sacrificed by cannulation of the abdominal aorta. Brains were extracted, 

weighed and immediately frozen in liquid N2 and kept at -80ºC until 

further analyses.  

 All experiments were undertaken in accordance with the Ethical 

Standards in Sport and Exercise Science Research [30] as well as the 

Directional Guides Related to Animal Housing and Care (European 

Community Council, 1986) [25]. All procedures were approved by the 

Animal Experimentation Ethics Committee of the University of Granada 

(2011-343). 

 

High-intensity exercise 

The animals were trained following a resistance training protocol on a 

motorized treadmill (Panlab Treadmills for 5 rats, LE 8710R) with 

bagged weights tied with a cord to the tail. This type of training was 

chosen in order to reproduce the type of exercise performed by people 

interested in gaining muscle mass and strength [5]. The training groups 

exercised on alternate days (3-4 sessions/week) at a constant speed of 35 

cm/s during the whole experimental period (12 weeks) in their dark 

phase. Prior to exercise training, animals were adapted to the treadmill on 

a daily basis for 1 week, the first three days without weight and the last 
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four days with 20% of their body weight. The training protocol used in 

the present study has been previously developed and deeply described by 

Aparicio et al [5]. The entire training process was designed and 

controlled by sport scientists in collaboration with experienced 

researchers trained to work with rats. The number of sessions performed 

each week, the number of sets per session, the time spent in each set, and 

the load carried by the animals is shown in Table 1. 

 Animals in the untrained groups were managed identically to 

exercising animals, with the exception of exercise training.  

 

Anabolic androgenic steroids administration 

Following similar studies performed in rats, the animals received 10 

mg/kg body weight of Stanozolol once a week by intramuscular injection 

in the gluteus (alternating the lateral side each week) for 12 weeks. This 

dose is comparable to the dose that has been reported as being frequently 

used by athletes (600 mg/week or approximately 8 mg/Kg/week) [16,17]. 

We used a commercially available Stanozolol solution of 50 mg/ml 

(Winstrol Depot, Desma Pharma group). The non-AAS administered 

group was injected with saline solution as placebo. 
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Chemical analyses 

Brain homogenate preparation for oxidative damage markers and 

antioxidant activity 

Brain samples (1 g) were homogenized in 50 mM phosphate buffer (pH 

7.8) containing 0.1% Triton X-100 and 1.34 mM 

diethylenetriaminepentaacetic acid (DETAPAC) (1:10w/v) using a Micra 

D-1 homogenizer (ART moderne labortechnik) at 18,000 rpm for 30 sec 

followed by treatment with Sonoplus HD 2070 ultrasonic homogenizer 

(Bandelin) at 50% power for 10 sec. Homogenates were centrifuged at 

19,921 g, 4°C for 45 min (BECKMAN, Allegra 64R), and the 

supernatants were used to determine the oxidative damage markers and 

the antioxidant enzymes activity.  

 

Oxidative damage markers 

Thiobarbituric acid-reactive substances (TBARs) 

Thiobarbituric acid reactive substances (TBARs) were used as a marker 

of lipid peroxidation. Brain supernatants were used to determine lipid 

peroxidation by measuring TBARs as described by Ohkawa et al. [46]. 

The results were expressed as nmol of malondialdehyde per mg of 

protein (nmolMDA/mg).  
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Protein carbonyl content (PCC) 

Total carbonyl content in brain was used as a biomarker of protein 

oxidation. The content was determined by spectrophotometry using a 

protein carbonyl colorimetric assay kit (Cayman, USA) according to 

Levine et al. [35]. Results were expressed as nmol of reactive carbonyl 

compounds/mg protein of tissue. 

 

Antioxidant enzyme activity 

Total superoxide dismutase (tSOD) activity was measured as described 

by Ukeda et al. [62] and adapted to a micro-plate reader. Manganese 

superoxide dismutase (Mn-SOD) activity was determined by the same 

method after treating the samples with 4 mM KCN for 30 min (final 

concentration of KCN 1 mM was set for all the samples). Cooper/zinc 

superoxide dismutase (CuZn-SOD) activity was determined by 

subtracting the Mn-SOD activity from the tSOD activity. One unit of 

SOD activity was defined as the enzyme needed to inhibit 50% 2,3-bis 

(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide 

(XTT) reduction. Catalase activity (CAT) was measured as described by 

Aebi [2] by monitoring the disappearance of H2O2 in the presence of 

brain homogenate at 240 nm and was expressed as µmol of H2O2 
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consumption per minute per milligram of protein. Protein concentration 

was determined by the method of Lowry [40].   

 

Western blotting 

Brain aliquots (1 g) were homogenized (1:10 w/v) in 20 mM Tris·HCl 

(pH 8.0) containing 0.1% octylphenoxypolyethoxyethanol (lgepal), 100 

mM ethylene glycol tetraacetic acid (EGTA), 100 mM 

dichlorodiphenyltrichloroethane (DDT), 100 mM sodium orthovanadate, 

2 mM AEBSF, 1 mM EDTA, 130 µM Bestatin, 14 µM E-64, 1 µM 

Leupeptin and 0.3 µM Aproptinin. Samples were homogenized with a 

Micra D-1 homogenizer (ART moderne labortechnik) at 18,000 rpm for 

30 seconds followed by treatment with Sonoplus HD 2070 ultrasonic 

homogenizer (Bandelin) at 50% power for 10 seconds. Homogenates 

were centrifuged at 19,621 g and 4°C for 45 min (BECKMAN, Allegra 

64R), supernatants were collected and stored at -80ºC until use. Protein 

concentration was quantified using the Bradford assay method (Bio-Rad, 

Hercules, CA). Proteins were separated by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis under reducing conditions and then 

transferred to nitrocellulose membranes. Western blots were performed 

according to standard methods. Membranes were blocked in 5% 
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skimmed milk, and then incubated (overnight at 4ºC or room temperature 

for 3-4 h) with the antibody of interest, followed by incubation with a 

horseradish peroxidase-conjugated secondary antibody. The visualization 

of immunoreactive bands was performed using the ECL Plus Western 

blotting detection system (GE Healthcare, Pascataway, NJ). The primary 

antibodies were directed against NF-κβ p65 (Epitomics, Burlingame, CA; 

1:1000); GFAP (Cell signalling Technology, Danvers, MA; 1:1000); GPx 

(Santa Cruz Biotechnology, Santa Cruz, CA; 1:200); NQO1 (Abcam, 

Inc., Cambridge, MA; 1:2500); STAT3 (Cell Signalling Technology, 

Danvers, MA; 1:1000) and Nrf2 (Abcam, Inc., Cambridge, MA; 1:1500). 

The quantification was performed by volume densitometry using Image J 

software (NIH, Bethesda, MD) and normalization to ponceau reagent 

with the exception of Nrf2 that was normalized to β-actin.  

 

Statistical analyses 

Results are presented as mean and standard error of the mean (SEM), 

unless otherwise indicated. The effects of the HIE (untrained vs. HIE) 

and the AAS administration (non-AAS vs. AAS) on food intake, final 

body weight, brain weight, and oxidative stress markers, including their 

two-way interactions, were analysed by two-way factorial analysis of 
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variance (ANOVA), with HIE and AAS as fixed factors. Two-way 

interactions terms were introduced into the models to test interactions 

between both interventions (i.e. HIE*AAS). A significant p value 

indicates that there are differences in at least two of the groups. In 

addition, multiple comparisons between groups were made considering 

Bonferroni’s adjustment in order to identify between which groups the 

differences were significant (e.g. untrained without AAS vs. exercise 

with AAS). 

All analyses were performed using the Statistical Package for Social 

Sciences (IBM-SPSS for Mac, version 22.0, Amonk, NY), and the level 

of significance was set at 0.05. 

 

RESULTS 

Final body weight, brain weight and food intake 

The effects of HIE and AAS-administration on final body weight, brain 

weight and food intake are shown in Table 2. Food intake and final body 

weight were significantly decreased in the HIE when compared to the 

untrained groups (p<0.001 and p=0.007, respectively). A significant 

HIE*AAS interaction was found for daily food intake derived from a 

higher HIE-induced decrease in the non-AAS when compared to the 
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AAS-administered animals (p=0.007). 

Oxidative stress markers 

The effects of HIE and AAS-administration on brain oxidative stress 

markers are shown in Table 3. The HIE groups exhibited significantly 

lower brain PCC and increased brain CAT when compared to the 

untrained animals (p=0.002 and p<0.001, respectively). A significant 

HIE*AAS interaction was found for brain PCC derived from a higher 

HIE-induced decrease observed in the non-AAS when compared to the 

AAS-administered animals (p=0.009). Likewise, there was a significant 

HIE*AAS interaction on brain TBARs content, tSOD, Mn-SOD and 

CuZn-SOD activity caused by the HIE-induced decrease in the above 

mentioned parameters in the AAS-administered that was not observed in 

the non-AAS administered animals (p=0.019, p=0.002, p=0.003 and 

p=0.011, respectively).  

Figure 1 shows the effects of the HIE and AAS on the expression 

of GFAP, GPx, NF-κβ, NQO1, STAT3 and Nrf2 proteins in rat brain. 

Both HIE and AAS groups exhibited higher expression of GFAP and 

GPx, but lower NQO1 levels when compared to the untrained and 

placebo animals (all, p<0.05). There was an increased expression of NF-

κβ and NrF2 in the AAS and HIE groups when compared to the placebo 
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and untrained animals, respectively (p<0.01). In addition, there was a 

HIE*AAS interaction in GFAP expression, with HIE upregulating the 

AAS-mediated increment in protein expression (p<0.05).  

DISCUSSION 

The main findings of the present study were: 1) HIE decreased PCC 

concentrations and the expression of NQO1, increasing CAT activity and 

the expression of GFAP, GPx, and Nrf2 protein, 2) AAS administration 

increased the expression of GFAP, GPx, NF-κβ protein whereas it 

decreased NQO1 expression, and 3) Brain oxidative stress markers were 

differentially affected by the combination of HIE and AAS interventions.  

Food consumption, body weight and body composition 

In a similar way to what has been reported by other authors [10,64] and 

corroborated by our group [4], food intake as well as body weight [32,65] 

were markedly affected by HIE. Thus, the food intake and body weight 

diminution observed in the present study may be attributed to the HIE 

carried out and mediated through the increased production of cortisol 

induced by this type of protocol [7].  

High-intensity exercise, anabolic androgenic steroids and brain oxidative 

stress 
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In view of the controversial findings regarding the effects of HIE on 

brain oxidative stress [12], our first concern was to elucidate whether the 

frequent type of exercise carried out by AAS users (i.e. HIE) might affect 

positively and/or negatively brain redox status. On the one hand, some 

authors suggest that intermittent anaerobic exercise and acute exhausted 

exercise increase brain antioxidant capacity and do not induce lipid 

peroxidation [1,48]. Concerning oxidative damage, despite the high 

levels of lipid peroxidation in brain tissue due to the high content of 

polyunsaturated fatty acids and the free radical metabolism [37], some 

studies have demonstrated that HIE does not alter lipid peroxidation in 

whole brain [39], hippocampus [1,66], cerebellum [66], prefrontal cortex 

[1] and striatum [1]. On the other hand, under HIE training, ROS 

production may be strongly and persistently increased, and the 

antioxidant response may not be effective to reset the system to the 

original levels of brain redox homeostasis [3]. In fact, HIE has been 

shown to induce oxidative stress and increase lipid peroxidation in mouse 

brain [18,52]. Taking into account these contradictory results in the 

literature our findings agree with some of the aforementioned studies in 

that no significant evidence was observed in brain TBARs levels after a 

HIE protocol. Thus, it appears that the intensity and length of training 



Results 

	   185 

protocol assayed in the present study was not sufficient to generate an 

imbalance between pro- and anti-oxidant forces in the brain. 

Reactive oxygen species may also lead to the production of 

oxidative damage to proteins that is accompanied by an increase in the 

number of carbonyl residues. In this regard, Tsakiris et al. [59] reported 

that either short or prolonged forced swimming exercise increase ROS 

production, which could cause protein damage. The same trend was 

observed in the study by Aydin et al. [8], where brain PCC was 

significantly increased after swimming until exhaustion. In contrast, 

lower levels of PCC in the hippocampus of 12-months old rats were 

found after daily moderate intensity exercise for 15 weeks (18 m/min, on 

a 0% incline, for 30 min) (Marosi et al. [41]. In accordance to previous 

findings, our results suggest that HIE might be responsible for lower 

levels of brain PCC when compared to untrained groups, suggesting that 

the oxidants produced by HIE were not able of affecting brain proteins.  

Some authors have previously described that HIE did not induce 

significant oxidative stress to alter brain antioxidant enzyme activities 

[1,66]. Our results agree with these findings with regard to Mn-SOD and 

CuZn-SOD activities, but not to CAT activity that increased significantly 

in response to the HIE protocol. Catalase is an enzyme that is highly 
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modulated by exercise and especially by endurance training, in which the 

formation of ROS by leakage of superoxide radicals in the electron 

transporter chain is much higher due to the greater utilization of the 

oxidative pathway [34]. Accordingly, in the study performed by Li and 

Wang, [37] rats exhibited significant increases in brain CAT activity after 

the combination of running on a treadmill for 5 weeks (6 days per week 

with a gradual speed of 20-30 m/min for 30-60 min/day) with hypoxic 

conditions (3500 m altitude) considering that as an HIE protocol. 

Furthermore, others [57] have reported that plasma CAT activity was 

higher after a HIE protocol consisted of 4 series of 10–12 repetitions and 

90 second intervals, 4 times per week, 65 % to 75 % of the one maximum 

repetition for 8 weeks. These assertions concur with our outcomes that 

point out to an increased brain CAT activity, which might be produced as 

auto-defence by the type of HIE carried out under our experimental 

conditions that led to a higher production of ROS. 

The body of the literature indicates that Nrf2 is the primary 

transcriptional regulator of a majority of the antioxidants including 

hemoxygenase-1 (HO1), γ -glutamyl cysteine ligase-catalytic (γGCLC), 

NQO1, GPx and CAT [43]. It has been reported that moderate exercise 

enhances the promotion of an endogenous Nrf2/γGCLC antioxidant 
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system for the prevention of neurodegenerative diseases [60]. Moreover, 

a recent study has also demonstrated that acute exercise induces ROS 

production and activates Nrf2 and antioxidant responsive element 

functioning in myocardial tissue [43]. Under our experimental conditions, 

the production of ROS induced by HIE contributed to activate the 

transcriptional Nrf2 factor, and consequently the upregulation of CAT 

activity and GPx protein expression. Likewise, some authors observed 

that a moderate treadmill training (10–50 min/day of running at 40–60% 

of the maximal velocity 5 days per week for 5 weeks) increased GFAP 

content in the CA1 region of Wistar rats [51] and elevated the levels of 

GFAP in the hippocampus after a endurance training in diabetic rats [21]. 

Although, caution must be taken, the tendency in our study suggests that 

Nrf2 could up-regulate the GFAP expression after a HIE protocol  

Our second concern was to characterize the potential adverse 

effects of prolonged use of AAS on brain redox status. The study 

performed by Tugyan et al. [61] analysed the neuroprotective effect of 

erythropoietin on brain damage induced by Nandrolone administration 

for 8 weeks. After this experimental period, the AAS group displayed 

some irreversible effects such as increased malondialdehyde (MDA) 

levels and apoptosis, as well as a significant decrease in GPx activity in 
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prefrontal cortex and hippocampus compared to the placebo group. In 

contrast, Celek et al. [13] revealed that Nandrolone and Testosterone 

were able to decrease the elevated MDA produced by ethanol ingestion in 

rat cerebellum. These results do not concur with our findings, in which 

the AAS administration did not appear to induce significant changes on 

the oxidative damage markers measured. However, emerging evidence 

suggests that Nrf2 may also play an important role in the regulation of 

brain inflammation, and some studies have suggested that Nrf2 has an 

antagonistic effect with the NF-κβ pathway, which is considered as a 

hallmark of inflammation [38]. Thus, the lack of changes in the 

expression of Nrf2 and the increased expression of inflammatory protein 

NF-κβ as well as the antioxidant enzymes GPx and GFAP after the 

Stanozolol treatment could be pointing out to the development of an 

inflammatory process derived from AAS administration that activate the 

defence mechanisms in brain.  

Previous studies have analysed the effects of AAS or its 

combination with diverse exercise protocols on the oxidative status of 

other organs with controversial findings. Pey et al. [47] concluded that 

prolonged Stanozolol treatment, with or without moderate exercise 

training, induced oxidative stress that was reflected in higher TBARs 
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levels on rat liver, despite enhancements in the antioxidant activity of 

SOD, CAT and GPx enzymes. Likewise, Chaves et al. [15,16] showed 

that in spite of the beneficial effect of HIE on heart through increased 

activity of antioxidant enzymes, the Nandrolone administration induced 

lower SOD, GPx and glutathione reductase (GR) activity when compared 

to control and trained animals. Similarly, Sun et al. [58] demonstrated 

that the combination of Nandrolone and an aerobic physical training 

increased MDA and PCC, and decreased SOD and NQO-1 protein levels 

on aortic large vessels. On the other hand, a study performed by Saborido 

et al. [53] observed that Stanozolol administration might protect rat 

gastrocnemius mitochondria against oxidative damage of proteins and 

changes in membrane fatty acid composition induced by acute exercise. 

The above mentioned studies concur partially with the findings of the 

present work in which the combination of both effects (i.e. HIE and 

AAS) presented significant interactions in the brain oxidative stress 

markers except for CAT levels. In view of such findings we can conclude 

that the proliferation in antioxidant activity is linked as an auto-defence 

system against oxidative damage under both interventions. Therefore, the 

higher oxidative damage produced in the brain is associated with higher 

antioxidant activity produced as auto-defence mechanism.  
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Limitation and strengths 

The present study has some limitations that need to be mentioned. The 

AAS are often used in combination with other drugs or substances, and it 

is difficult to separate their toxic effects. This study was conducted in 

animal models and not nearly as complex as carrying out long-term and 

well-controlled interventional studies in humans. However, it is 

important to highlight that this is the first study analysing the combined 

effects of HIE and AAS-administration on brain oxidative stress markers 

and antioxidant enzyme defence system in the same report, which allow a 

global picture about the effects of the combination of these two common 

behaviours. 

 

CONCLUSIONS  

Under our experimental conditions, the present results suggest that HIE 

appeared to reduce the AAS-mediated negative effect on brain redox 

status. However, despite of this beneficial consequence, HIE also induced 

potentially harmful effects on brain oxidative stress markers depending 

on whether the protocol of HIE was carried out autonomously or it was 

combined with AAS. Thus, this is of importance due to the fact that little 

is known in the literature regarding the effect of combining these two 
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interventions, which are generally carried out in combination by some 

individuals willing to gain muscle mass, on brain redox status. Therefore, 

further studies should be performed that involve the combination of HIE 

and AAS on oxidative stress in order to advise the general population 

against the deleterious consequences of unnecessary, uncontrolled AAS 

administration. 
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Table 1. Details of the high-intensity exercise program. 

Week 
Work time 

(min) 
Sets 

Time between sets 

(min) 

Weight            

(% 1 RM) 

1 2 10 1 55 

2 2 10 1 60 

3 2 10 1 65 

4 2 10 1.5 70 

5 2 10 1.5 70 

6 2.5 10 1.5 75 

7 2.5 12 1.5 75 

8 2 12 2 80 

9 2.5 12 2 80 

10 1.5 12 2 85 

11 2 12 2.5 85 

12 1 12 2.5 85 

RM, repetition maximum. 
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Table 2. Effects of the high-intensity exercise and anabolic androgenic steroids administration on final body weight, 

food intake and brain weight. 

 
Non AAS AAS 

 
P values 

 
Untrained HIE Untrained HIE SEM HIE AAS HIE*AAS 

Food intake (g/day) 20.317b 15.622a 18.768b 16.500a 0.212 <0.001 0.434 0.007 

Final body weight (g) 351.216b 313.042a 338.825a,b 321.673a,b 4.844 0.007 0.847 0.285 

Brain (g) 1.925a 1.881a 1.903a 1.939a 0.015 0.899 0.554 0.195 

Brain (g/100g body weight) 0.552a 0.605a 0.566a 0.606a 0.010 0.020 0.685 0.719 

SEM, standard error of the mean; AAS, anabolic androgenic steroids; HIE, high-intensity exercise.  

Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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Table 3. Effects of the high-intensity exercise and anabolic androgenic steroids administration on brain oxidative stress 

markers. 

 
Non AAS AAS 

 
P values 

 
Untrained HIE Untrained HIE SEM HIE AAS HIE*AAS 

TBARs (nmol MDA/mg protein) 19.684a 23.553a 22.238a 18.941a 0.727 0.845 0.484 0.019 

PCC (nmol/mg protein) 3.496b 2.440a 2.953a,b 2.864a,b 0.087 0.002 0.735 0.009 

tSOD (U/mg protein) 137.474a 154.578a,b 160.197b 138.480a,b 2.832 0.686 0.563 0.002 

Mn-SOD (U/mg protein) 63.990a 71.828a,b 77.671b 65.123a,b 1.627 0.474 0.291 0.003 

CuZn-SOD (U/mg protein) 73.484a 82.750a 82.526a 73.356a 1.726 0.989 0.960 0.011 

CAT (µmolH2O2/min/mg protein) 2.852a 4.274b 3.407a,b 3.994b 0.118 <0.001 0.564 0.086 

SEM, standard error of the mean; AAS, anabolic androgenic steroids; HIE, high-intensity exercise; TBARs, thiobarbituric 
acid-reactive substances; PCC, protein carbonyl content; tSOD, total superoxide dismutase, Mn-SOD, manganese 
superoxide dismutase; CuZn-SOD, cooper/zinc superoxide dismutase; CAT, catalase.  
Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 
(p>0.05).	  
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FIGURE LEGEND 

Figure 1.  Effects of the anabolic androgenic steroids administration and high-intensity exercise on brain GFAP, 

GPx, NF-κβ, NQO1, STAT3 and Nrf2 protein levels, n=4.  

Results are means ± SD. Significant differences between *untrained and exercised groups and #Stanozolol-treated 

and non-treated groups: p<0.05. 

The representative western blots show the GFAP, GPx, NF-κβ, NQO1, STAT3 and Nrf2 bands (upper lines) and the 

ponceau bands used as a loading control (lower lines). 

Abbreviations: SN, Untrained and Non anabolic androgenic steroids administration; EN, Exercise and Non anabolic 

androgenic steroids administration; SA, Untrained and anabolic androgenic steroids administration; EA, Exercise and 

anabolic androgenic steroids administration; GPx, glutathione peroxidase; NQO1, NAD(P)H dehydrogenase, 

Quinone 1; Nrf2, NF-E2-Related Factor 2; GFAP, glial fibrillary acidic protein; NF-κβ, nuclear factor kappa B; 

STAT3, signal transducer and activator of transcription 3. 
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High-intensity exercise attenuates the oxidation of renal lipids and 

proteins caused by Stanozolol administration
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Final body weight, carcass weight, kidney weight and food intake 

The effects of AAS-administration and HIE on final body weight, carcass 

weight, kidney weight and food intake are shown in Table 6. The AAS 

groups exhibited higher carcass weight, kidney wet mass expressed in 

absolute value, kidney wet mass referred to the final body weight and 

kidney wet mass referred to the carcass weight when compared to the 

non-AAS groups (all, p<0.05). 

 

Oxidative stress markers 

The effects of the HIE and AAS-administration on kidney oxidative 

stress markers are shown in Table 7. The AAS groups showed 

significantly higher values of TBARs content and lower levels of PCC 

when compared to the non-AAS groups (p<0.001 and p=0.033, 

respectively). In addition, kidney Mn-SOD, CAT and GPx activities were 

significantly lower in the AAS groups when compared to the non-AAS 

groups (p=0.001, p=0.003 and p<0.001, respectively).  

A significant HIE*AAS interaction was found for kidney TBARs content 

derived from a higher HIE-induced decrease in that marker for AAS 

groups that was not observed in the non-AAS groups (both, p<0.001). A 

significant HIE*AAS interaction was also found for PCC derived from a 
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higher HIE-induced decrease in that marker for the non-AAS groups that 

was not observed in the AAS groups (both, p<0.001). In addition, 

significant HIE*AAS interactions were observed for t-SOD and CuZn-

SOD activities derived from a higher HIE-induced increase in the AAS 

groups that was not observed in the non-AAS groups (both, p<0.001). 

 

Plasma and renal morphology parameters 

The effects of AAS-administration and HIE on plasma and kidney 

morphology parameters are shown in Table 8. Plasma total protein and 

creatinine content was significantly lower in the AAS when compared to 

the non AAS-administered groups (p=0.034 and p<0.01, respectively).  

With regard to renal morphology, the AAS groups exhibited significantly 

higher glomerular area when compared to the non-AAS groups 

(p=0.025). No significant alterations caused by AAS administration were 

to be observed in any of the rest of renal morphology parameters studied.  
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Table 6. Effects of the high-intensity exercise and anabolic androgenic steroids administration on final body weight, 

carcass weight, food intake and kidney weight. 

 
       Non AAS   AAS 

 
p values 

 
Untrained HIE Untrained HIE SEM AAS HIE AAS*HIE 

Food intake (g/day) 20.32c 15.62a 18.55b 16.50a 0.210 0.296 <0.001 0.003 

Final body weight (g) 351.22b 313.04a 332.86a,b 321.67a,b 4.725 0.610 0.013 0.162 

Carcass weight (g)  172.12a 163.21a 181.27a 178.09a 2.591 0.027 0.251 0.584 

Kidney (g) 0.92a 0.87a 1.09b 1.02a,b 0.020 <0.001 0.125 0.806 

Kidney (g/100g body weight) 0.26a 0.28a,b 0.33c 0.32b,c 0.005 <0.001 0.951 0.225 

Kidney (g/100g carcass weight) 0.54a 0.53a 0.60b 0.57a,b 0.008 0.004 0.305 0.404 

SEM, standard error of the mean; HIE, high-intensity exercise; AAS, anabolic androgenic steroids 

Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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Table 7. Effects of the high-intensity exercise and anabolic androgenic steroids administration on kidney oxidative stress 

markers. 

 

       Non AAS              AAS 

 

        p values 

Untrained HIE Untrained HIE SEM AAS HIE AAS*HIE 

TBARs (nmol MDA/mg protein) 12.8a 18.6a 59.8b 23.4a 1.891 <0.001 <0.001 <0.001 

PCC (nmol/mg protein) 5.1c 2.1a 3.1b 2.9a,b 0.126 0.033 <0.001 <0.001 

t-SOD (U/mg protein) 247.3b 215.5a,b 193.0a 243.2b 4.438 0.144 0.311 <0.001 

Mn-SOD (U/mg protein) 136.9b 109.2a 109.8a 98.4a 2.717 0.001 0.001 0.143 

CuZn SOD (U/mg protein) 110.4a 106.3a 83.2a 144.8b 4.131 0.498 0.001 <0.001 

CAT (µmolH2O2/min/mg protein)  125.3b 123.6b 110.9a,b 88.3a 3.888 0.003 0.128 0.187 

GPx (nmol NADPH/min/mg protein)  28.6a,b 44.9c 21.2a 30.1b 1.094 <0.001 <0.001 0.100 

SEM, standard error of the mean; HIE, high-intensity exercise; TBARs, thiobarbituric acid-reactive substances; PCC, 

protein carbonyl content; t-SOD, total superoxide dismutase; Mn-SOD, manganese superoxide dismutase; CuZn-SOD, 

cooper and zinc superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase. 



Results 

	   219 

Values expressed as mean of ten rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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Table 8. Effects of the high-intensity exercise and anabolic androgenic steroids administration on plasma and kidney 

morphology.  

 

       Non AAS            AAS 
 

           p values 

Untrained HIE Untrained HIE SEM AAS HIE AAS*HIE 

Plasma 
        

Urea (mg/dl) 24.52a 30.82a 27.60a 27.42a 0.844 0.926 0.078 0.063 

Total Protein (g/dl) 5.62a 5.49a 5.40a 5.36a 0.039 0.034 0.286 0.544 

Creatinine (mg/dl) 0.66b 0.48a 0.49a 0.42a 0.017 0.002 0.001 0.099 

Albumin (mg/dl) 2.75a 3.18a 3.28a 2.47a 0.114 0.701 0.413 0.010 

Morphology 
        

Interstitial connective tissue (%) 2.71a 3.97b 2.65a 3.42a,b 0.16 0.347 0.003 0.457 

Interstitial connective tissue (µm²) 3657a,b 5278b 3404a 4493a,b 214.588 0.235 0.003 0.540 

Glomerular tuft I (%) 16.74a,b 22.13b 15.16a 22.35b 0.902 0.709 0.001 0.620 
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Glomerular tuft I area (µm²) 6616a 9181a 6815a 9416a 385.891 0.780 0.002 0.981 

Glomerular tuft II (%) 37.08a 52.46b 34.34a 53.45b 1.977 0.827 <0.001 0.641 

Glomerular tuft II area (µm²) 14573a 21448b 15278a 22021b 797.01 0.691 <0.001 0.967 

Mesangium (%) 64.74a 62.32a 64.63a 61.86a 0.659 0.830 0.057 0.896 

Mesangium area (µm²) 4172a 5673a 4282a 5812a 226.569 0.786 0.002 0.975 

Glomerular area (µm²) 40405a 41328a,b 45324b 42407a,b 637.789 0.025 0.440 0.141 

Fibrosis-T (%) 2.09a,b 3.02b 2.03a 2.48a,b 0.122 0.221 0.008 0.334 

Fibrosis-T area (µm²) 3660a,b 5279b 3547a 4329a,b 213.372 0.221 0.008 0.334 

SEM, standard error of the mean; HIE, high-intensity exercise. 

Values expressed as mean of 10 rats. The same letter in the same row indicates no significant difference between groups 

(p>0.05). 
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GENERAL DISCUSSION [DISCUSIÓN GENERAL]  

 

The raised interest of soy as source of protein (86) and high-

protein diets consumption in the last decades to improve physical status 

(142) is an obviousness. Additionally, it is well established that AAS are 

widely used among professional athletes, competitive and recreational 

body builders or even non-athletic adolescents (103). Therefore, owing to 

the beneficial effects of soy high-protein diets intake and exercise on 

brain (96,97) and kidney (86), and given that it is the main macronutrient 

type experienced by AAS abusers and sportsmen (86,87,104,126), it is of 

importance to clarify the physiological effects of soy high-protein diets, 

HIE and AAS administration on the oxidative stress status of two tissues, 

specially sensitive to the oxidative damage. Thus, the purpose of the 

present Thesis was to complete the scarce information about the effects 

of high-protein diets, AAS administration and hypertrophy resistance 

training protocol (i.e. HIE) on brain and renal redox status.  
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1. Oxidative effects of high-protein diets and high-intensity exercise.  

First we analysed the influence of high-protein diets and HIE on brain 

and kidney oxidative stress markers. The main findings of this study at 

brain level were: 1) high-protein diet increased TBARs and PCC 

concentrations, t-SOD, Mn-SOD, CuZn-SOD and CAT activity and the 

expression of Nrf2 protein, and 2) HIE decreased PCC concentrations 

and the expression of NQO1, increasing CAT activity and the expression 

of GFAP, GPx, and Nrf2 protein. 

The main findings at kidney level were: 1) high-protein diet 

increased TBARs content, whereas it decreased t-SOD, Mn-SOD, CuZn-

SOD, GPx activity, and 2) HIE reduced TBARs, PCC, whereas it 

augmented CuZn-SOD and GPx activity. 

 

High-protein and brain and kidney oxidative stress  

Overall, our findings displayed controversial effects in terms of high-

protein diets on brain oxidative stress. The high-protein, low 

carbohydrate, unbalanced diet, groups appear to promote antioxidant 

capacity, although this may be in response to higher oxidative damage 

when compared to the normal-protein groups. However, regarding to 

renal redox status, high-protein diets produced slightly opposite effects. 
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Thus, it could be observed that high-protein diets induced an oxidative 

status, derived from an imbalance between oxidative damage markers 

and the antioxidant defence system.  

Studies in animals as well as in humans have illustrated that high-

protein diets (143,144) provide higher satiety levels than other 

macronutrients, thus leading to a decrease of food intake. These 

assertions are in agreement with our findings in the high-protein groups 

that displayed a reduced food intake when compared to the normal-

protein groups. Despite the decrease in food intake reported for the high-

protein groups, there was a higher protein content on the above 

mentioned diets that were adjusted to 45% of dietary amount, leading to 

an elevated N intake, which may affect the antioxidant status in the 

tissues studied.  

There have been some studies on other organs that have shown 

the oxidative effects of high-protein diet consumption. In a study 

performed in Zucker obese rats (145), an increased dietary protein intake 

induced oxidative stress in the kidney and aorta, at least partially due to 

increased expression of NAD(P)H oxidase components. Others (91) have 

suggested that high-protein diet intake may cause an imbalance between 

ROS generation and the capacity of the antioxidant defence system in 
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digestive organs of mice such as duodenum, liver and pancreas, which 

lead to an induction of oxidative stress. This imbalance is reflected in a 

diminished antioxidant defence system and increased concentration of 

MDA, a superoxide anion and the precursor of most ROS and mediator 

in oxidative chain reactions. Additionally, in a study performed by 

Sophia et al. (146), high-protein diet consumption caused a significant 

alteration in the antioxidant status of pancreas by increasing lipid 

peroxidation and decreasing the content of reduced glutathione, vitamin 

C, the activity of SOD, CAT and glutathione peroxidase. In the present 

study, at brain level, high-protein diets appeared to increase antioxidant 

activity as well as the overexpression of Nrf2, although this increment 

may be in response to the production of higher levels of brain lipid and 

protein oxidation. The higher the brain lipid peroxidation levels observed 

in the high-protein groups, the higher the antioxidant enzyme activity 

produced by a high-protein diet consumption. Nonetheless, the opposite 

tendency was observed at kidney level where the deleterious effects 

produced by high-protein diets were reflected in a reduced antioxidant 

defence status. Thus, the higher the kidney lipid peroxidation detected in 

the high-protein groups, the lower the antioxidant enzyme activity 

(Figure 2 and 3). Therefore, the oxidative damage produced at kidney 
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level does not produce a compensatory antioxidant response, which lead 

us to consider that kidney is more sensitive than brain to the oxidative 

stress produced by the high-protein diets. This higher sensitivity can be 

attributed to the essential role of kidney in the excretion of N overload 

induced by high-protein diets. 

 

Figure 2. Effects of high-protein diet on 

renal lipid peroxidation. 

 

Figure 3. Effects of high-protein diet on GPx activity. 
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High intensity exercise and brain and kidney oxidative stress 

The HIE protocol carried out caused a high stress situation, as 

reflected by higher levels of plasma levels of corticosterone (81), and was 

accompanied by a decreased food intake found in exercised compared to 

untrained animals. 

Overall, the same trend related to exercise was observed for brain and 

kidney oxidative stress. HIE reduced protein oxidation and increased 

some antioxidant markers such as CAT activity and the expression of 

GFAP, GPx, and Nrf2 protein on brain. Likewise, regarding the renal 

redox status, HIE reduced lipid and protein oxidation and augmented 

CuZn-SOD and GPx activity. 

Controversial findings have been reported regarding the effects of 

HIE on brain and kidney oxidative stress (5,80). On the one hand, some 

authors suggest that intermittent anaerobic exercise and acute exhaustion 

exercise increase brain antioxidant capacity and do not induce lipid 

peroxidation (147,148). On the other hand, under HIE training, ROS 

production may be strongly and persistently increased, and the 

antioxidant response may not be effective to reset the system to the 

original level of brain and kidney redox homeostasis (77,132,149,150). 

Concerning oxidative damage, despite the high levels of lipid 
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peroxidation in brain tissue due to the high content of polyunsaturated 

fatty acids and the free radical metabolism (46), some studies have 

demonstrated that HIE does not alter lipid peroxidation in whole brain 

(5), hippocampus (147,151), cerebellum (151), prefrontal cortex and 

striatum (147,152). In contrast, HIE has been shown to induce oxidative 

stress and increase lipid peroxidation in mouse brain (153,154). Taking 

into account these contradictory results in the literature our findings agree 

with some of the aforementioned studies in that no significant evidence 

was observed in brain TBARs levels after a HIE protocol. However, the 

type of exercise carried out under our experimental conditions reduced 

kidney TBARs levels (Figure 4). Thus, this protocol could be beneficial 

in terms of reducing renal lipid peroxidation. In view of the results 

obtained in brain and kidney after the implementation of HIE, it appears 

that the intensity and length of training protocol assayed in the present 

study might lead to different effects depending the type of tissue studied. 
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Figure 4. Effects of high-intensity exercise 

on renal lipid peroxidation. 
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kidney PCC when compared to untrained groups, suggesting that the 

oxidants produced by HIE were not able of affecting brain and kidney 

proteins (Figure 5).  

 

Figure 5. Effects of high-intensity exercise on 

brain and renal protein oxidation. 
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In the present Thesis, brain CAT activity levels increased after 12 

weeks of HIE (Figure 6) whereas Mn-SOD and CuZn-SOD brain 

activity were not altered. However, slightly different results were 

observed at kidney level where the HIE protocol increased GPx and 

decreased Mn-SOD activity while CAT levels were not altered (Figure 

7).  

 

 

Figure 6. Effects of high-protein diet and high-intensity 

exercise on brain catalase activity. 
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Figure 7. Effects of high-protein diet and high-intensity 

exercise on kidney Mn-SOD and GPx activities. 
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In a previous study carried out in humans, plasma CAT activity 

did not change in response to resistance training until the participants 

showed symptoms of overtraining (158). In addition, Margonis et al. 

(158) observed that in a 12-week human resistance-training program 

involving 3-weeks training (4 times a week) periods and a 3-week 

recovery period, up-regulation of CAT activity matched with the 

maximum training load and performance decrement. The training 

protocol carried out in this study was found to induce overtraining (159) 

and may explain our findings related to the increased CAT activity in 

brain. Nevertheless, it should be taken into consideration that such 

activity may not represent a significant proportion of the tissue total 

antioxidant activity due to its low values (159).  

At brain level, we have also determined the expression of Nrf2 

protein, which is a transcription factor that regulates the expression of 

antioxidant proteins that protect against oxidative damage triggered by 

injury and inflammation (21). Thus, the body of the literature indicates 

that Nrf2 is the primary transcriptional regulator of a majority of the 

antioxidants including hemoxygenase-1 (HO1), γ -glutamyl cysteine 

ligase-catalytic (γGCLC), NQO1, GPx and CAT (160). It has been 

reported that moderate exercise enhances the promotion of an 
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endogenous Nrf2/γGCLC antioxidant system for the prevention of 

neurodegenerative diseases (161). Moreover, a recent study has also 

demonstrated that acute exercise induces ROS production and activates 

Nrf2 and antioxidant responsive element functioning in myocardial tissue 

(160). Under our experimental conditions, the production of ROS 

induced by HIE contributed to activate the transcriptional Nrf2 factor, 

and consequently the upregulation of CAT activity and GPx protein 

expression. Likewise, some authors observed that a moderate treadmill 

training (10–50 min/day of running at 40–60% of the maximal velocity 5 

days per week for 5 weeks) increased GFAP content in the CA1 region of 

Wistar rats (118) and elevated the levels of GFAP in the hippocampus 

after a endurance training in diabetic rats (162). Although, caution must 

be taken, the tendency in our study suggests that Nrf2 could up-regulate 

the GFAP expression after a HIE protocol. In this regard, HIE might 

increase GFAP expression leading to a beneficial increase of astrocytes 

after the HIE protocol conducted in this Thesis.  

An important aspect of the effects of the previously discussed 

interventions on brain and kidney redox status is the presence of 

significant interactions between them. Thus, some effects of the HIE 

protocol assayed may be affected by the intake of a high protein diet. One 
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example of such interaction is exemplified by differential effects of 

exercise on kidney PCC depending on normal-protein or high-protein 

diet intake (Figure 8). HIE reduces renal PCC when implemented in 

normal protein groups whilst it increases them in the high-protein groups. 

 

Figure 8. Interactions taking place between high-protein 

diet and high-intensity exercise on kidney protein 

carbonyl content. 
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effect caused by the high-protein diets and may be an efficient way to 

protect the brain against high dietary protein aggression. 

Figure 9. Interactions taking place between high-protein 

diet and high-intensity exercise on brain lipid 

peroxidation. 

 

High-intensity exercise and renal morphology  
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In the general healthy population, exercise appears to improve 

global renal status (76,163–165). Exercise could improve 

microalbuminuria (76,165,166), and we have observed higher albumin 

concentrations in our trained group, which could mean a reduction of the 

microalbuminuria.  

Hypertension is also an important risk factor for CKD, and 

regular exercise can efficiency help to decrease blood pressure (167,168). 

In the study by Agarwal et al. (169), spontaneously hypertensive rats 

performed 16 weeks of moderate-intensity exercise on a treadmill (5 days 

per week; 60 min per day at 20 m/min, which corresponds approximately 

to 60 % of maximal aerobic velocity), and this exercise protocol 

preserved renal hemodynamic and structure. Furthermore, exercise-

induced effects, at least in part, were found to be pressure-independent 

(169).  

Patients with chronic renal failure usually present the syndrome of 

“protein-energy malnutrition”, which is a relevant factor for morbidity 

and mortality in this population and requires early detection and vigorous 

treatment (170). These patients could benefit from resistance training 

interventions (171). Indeed, Ding et al. (172) explored the effects of long-

term weightlessness on the renal tissue and investigated the simulated 
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microgravity on the renal morphological damage and related molecular 

mechanisms in rats. Resistance training (4 sets, 12 repetitions for each set 

at 65–75 % of 1RM, 5 times per week for 8 weeks) reduced kidney cell 

apoptosis and expression of HSP70 protein and attenuated the kidney 

impairment imposed by weightlessness (172). Quadriceps N (protein) 

content was higher in trained animals, which might confirm the 

effectiveness of the strength training protocol performed in the present 

study on increasing muscle mass. 

The maintenance of urinary acid/base homeostasis is also 

important in order to preserve renal health (170). A decrease in urinary 

pH, hypocitraturia and hypercalciuria are risk factors for kidney stone 

formation (173,174). In our study, no noticeable differences in these 

urinary parameters were observed, and consequently both groups 

presented similar risk of nephrolithiasis. However, the ~37 % higher 

urinary volume together with the ~20 % higher levels of plasma urea 

found in the HIE group could mean a higher renal filtration (i. e., 

hyperfiltration) in the trained group (175). Moreover, most of the 

morphological renal variables studied exhibited a worse profile, with 

higher kidney interstitial connective tissue, glomerular tufts and 

mesangium areas in the HIE group. Different hypotheses could explain 
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these findings: 

1) During heavy physical exercise (such as that performed in our strength 

training protocol), 2 phenomena occur: the decrease of the glomerular 

filtration rate and the release into the blood of some molecules from 

muscles such as creatine kinase (CK), lactate dehydrogenase (LDH) and 

metmyoglobin (176–179). Renal filtration of metmyoglobin released 

from damaged muscle and filtered at the glomerulus is known to cause 

acute renal injury in exercise rhabdomyolysis (177,180,181). A 10-fold 

increase of CK is common in athletes after exercise (176,182). In 

humans, serum CK 5 times higher than normal usually confirms 

rhabdomyolysis (177). We have observed higher levels of CK in our HIE 

group, but in a lower magnitude. Therefore, the higher levels of CK may 

indirectly suggest that metmyoglobin has been liberated. Also 

noteworthy, yet without statistical significance, is the 3 times higher level 

of LDH observed in the HIE group. In fact, in the study by Colombini et 

al. (176) CK activity from 9 professional cyclists during the Giro d’Italia 

3-week stage race increased during the second part of the race, and LDH 

activity progressively increased during the entire course of the race. 

There was a negative correlation between CK activity and the delta 

prerace-day 12 of glomerular filtration rate. The authors concluded that 
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the effect of prolonged strenuous muscular effort on biochemical 

laboratory parameters in professional road cyclists was confirmed. In 

agreement with our results, the authors also observed that creatinine is 

unaffected by response to physical stress-induced muscular damage 

(176).  

2) Cortisol is a glucocorticoid released from the adrenal cortex in 

response to stress, which is believed to play an important role in the 

remodelling of tissue (183) in response to intense exercise such as ours 

(184–186). Indeed, resistance HIE protocols such as a 10-station heavy-

resistance exercise protocol with 3 sets of 10 RM and very short rest 

periods between sets, or a sprint intervals protocol (185,186) that 

stimulate the greatest lactate response are correlated with high plasma 

cortisol levels. Moreover, protocols that result in the greatest 

concentrations of circulating CK 24-h post-exercise, also result in the 

greatest rises in circulating cortisol (187). Moreover, high plasma 

corticosterone levels have been reported in rats after a moderate aerobic 

treadmill exercise protocol (60 min/d, 5 d/wk at 42 cm/s and 0 % grade) 

(188). We have confirmed these findings and observed higher levels of 

plasma corticosterone in our HIE groups. Sustained delivery of 

supraphysiological levels of corticosterone play a role in modifying 
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kidney structure and function (189).  

Our trained group also presented ~60 % less testosterone than the 

untrained group. Gonadal dysfunction is a frequent finding in men with 

CKD and with end-stage renal disease. Testosterone deficiency is present 

in 26–66 % of men with different degrees of renal failure (190). 

Experimental and clinical evidence suggests that testosterone may have 

important clinical implications with regard to kidney disease progression 

(190).  

3) Finally, disturbances promoted by intense resistance training, 

such as hypoxia, glucose depletion or oxidative stress, may lead to 

endoplasmic reticulum dysfunction, which can induce endoplasmic 

reticulum stress. Accumulating evidence indicates that endoplasmic 

reticulum stress contributes to glomerular and tubular damage (191,192).  

The differences found between the HIE and the untrained group in 

corticosterone-testosterone, as well as in testosterone-corticosterone 

ratios, may indicate a possible overtraining status in the HIE group (193). 

This overload may also influence the 3 hypotheses stated above. 
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2. Oxidative effects of anabolic androgenic steroids and high-

intensity exercise  

Results related to the HIE intervention have been discussed in the 

previous subsection. Therefore, the present subsection was focused in the 

AAS effect and its interaction with HIE. The main findings related to the 

administration of AAS and the combination of AAS and HIE on brain 

oxidative stress markers were: 1) AAS administration increased the 

expression of brain GFAP, GPx, NF-κβ protein whereas it decreased 

NQO1 expression, 2) brain PCC was more markedly reduced in the non-

AAS groups than in the AAS groups when HIE and AAS were 

combined, 3) the opposite effect was raised on brain TBARs content 

where HIE decreased lipid peroxidation in the AAS-administered groups 

that was not observed in the non-AAS animals. On the other hand, the 

main findings of the combination of AAS and HIE at kidney level were: 

1) AAS administration increased TBARs concentration, whereas it 

decreased Mn-SOD, CAT and GPx activity, 2) the same tendency 

observed at brain level was also shown for kidney TBARs and PCC, with 

a higher reduction of PCC caused by the HIE in the non-AAS when 

compared to AAS-administered groups. The opposite phenomena was 
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found on kidney TBARs content where HIE noticeably decreased lipid 

peroxidation in the AAS-administered groups; a finding that was not 

observed in the non-AAS animals.  

Overall, the AAS administration appeared to promote brain inflammation 

and kidney lipid peroxidation, negatively affecting the antioxidant 

defence system. The HIE protocol was significantly affected by AAS 

administration. 

 Our first concern was to characterize the potential adverse effects 

of prolonged use of AAS on brain and kidney redox status. The study 

performed by Tugyan et al. (106) analysed the neuroprotective effect of 

erythropoietin on brain damage induced by Nandrolone administration 

for 8 weeks. After this experimental period, the AAS group displayed 

some irreversible effects such as increased MDA levels and apoptosis as 

well as a significant decrease in GPx activity in prefrontal cortex and 

hippocampus compared to the placebo group. In contrast, Celek et al. 

(194) revealed that Nandrolone and Testosterone were able to decrease 

the elevated MDA produced by ethanol ingestion in rat cerebellum. 

These results do not concur with our findings at brain level, in which the 

AAS administration did not appear to induce significant changes on lipid 

and protein oxidation, although it significantly decreased the expression 
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of NQO1. On the other hand, the HIE protocol reduced brain PCC and 

NQO1 expression (Figure 10). When AAS administration and HIE 

interventions were merged, the exercise clearly reduced lipid oxidation 

only in AAS group and protein oxidation only in non-AAS group, 

leading to a better brain oxidative status. Such improvement was 

reinforced by the stronger HIE effect on NQO1 expression in AAS vs. 

non-AAS administered groups   (Figure 11).  

 

Figure 10.  Effects of high-intensity exercise and 
the anabolic androgenic steroids administration on 
brain NQO1 protein level, n=4.  
Results are means ± SD. Annotation indicates 
significant effect of a = exercise and b = anabolic 
androgenic steroids. p<0.05. Abbreviations: SN, 
Untrained and Non-AAS administration; EN, HIE 
and Non-AAS administration; SA, Untrained and 
AAS administration; EA, HIE and AAS 
administration; NQO1, NAD(P)H dehydrogenase, 
Quinone 1. 
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Figure 11. Interactions taking place between high-

intensity exercise and anabolic androgenic steroids 

administration on brain oxidative damage markers. 
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Emerging evidence suggests that Nrf2 may also play an important 

role in the regulation of brain inflammation, and some studies have 

suggested that Nrf2 has an antagonistic effect with the NF-κβ pathway, 

which is considered as a hallmark of inflammation (195). Thus, the lack 

of changes in the expression of Nrf2 and the increased expression of 

inflammatory protein NF-κβ as well as the antioxidant enzymes GPx and 

GFAP after the Stanozolol treatment could be pointing out to the 

development of an inflammatory process derived from AAS 

administration that activate the defence mechanisms in brain (Figure 12).  
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Figure 12.  Effects of high-intensity exercise 
and the anabolic androgenic steroids 
administration on brain NF-κβ, GFAP and 
GPx protein level, n=4.  
Results are means ± SD. Annotation 
indicates significant effect of a = exercise 
and b = anabolic androgenic steroids, or c = 
significant exercise*steroids interaction: 
p<0.05. Abbreviations: SN, Untrained and 
Non-AAS administration; EN, HIE and Non-
AAS administration; SA, Untrained and AAS 
administration; EA, HIE and AAS 
administration; NF-κβ, nuclear factor kappa 
β; GFAP, glial fibrillary acidic protein; GPx, 
glutathione peroxidase.  

 

Otherwise, in terms of renal oxidative status the general effects of 

AAS administration described in brain agree with our results and reflects 

an oxidative damage to the tissue, where AAS administration increased 

lipid oxidation (Figure 13) and decreased Mn-SOD, CAT and GPx 

enzymatic activity.  
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Figure 13. Effects of high-intensity exercise and 

anabolic androgenic steroids on renal lipid peroxidation. 
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GPx and GR activity when compared to control and trained animals. 

Similarly, Sun et al. (197) demonstrated that the combination of 

Nandrolone and an aerobic physical training increased MDA and PCC, 

and decreased SOD and NQO-1 protein levels on aortic large vessels. On 

the other hand, a study performed by Saborido et al. (113) reported that 

Stanozolol administration might protect rat gastrocnemius mitochondria 

against oxidative damage of proteins and changes in membrane fatty acid 

composition induced by acute exercise. The above mentioned studies 

concur partially with the findings of the present work in which the 

combination of both effects (i.e. HIE and AAS) presented significant 

interactions in the oxidative stress markers. Thus, owing to the fact that 

the antioxidant activity, oxidative damage markers and the glial 

activation of GFAP protein increased by HIE as well as AAS 

administration, we can conclude that the induction of antioxidant activity 

is linked as an auto-defence system against oxidative damage under both 

interventions. Therefore, the higher oxidative damage produced is 

associated with higher antioxidant activity produced as auto-defence 

mechanism.  

Finally, we could elucidate that the pathways responsible for HIE and 

AAS effects on brain and kidney status might have upregulated or 
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downregulated by the aforementioned proteins in a different manner. 

Further studies are needed in order to deepen on this topic. 
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LIMITATIONS AND STRENGTHS [LIMITACIONES Y 

FORTALEZAS]  

 

Limitations 

The present PhD Thesis study has several limitations and strengths that 

need to be mentioned:  

• It may be beneficial to compare our results with different sources 

of protein for the interpretations of the present findings.  

• The protein carbonyl assay could suffer confounding factors.  

• The physiological responses observed in rodents must be confirmed 

in humans. In other words, the responses found after 3 months of 

training using our experimental exercise protocol in rodents cannot 

be directly extrapolated to the potential effects over decades in 

human subjects.  

• Although we have tried to mimic the training methodology 

performed by humans, this HIE protocol does not exactly reflect 

human strength training.  
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• Measuring additional markers of renal function such as the 

glomerular filtration rate would have been of interest in the 

interpretation of the PhD Thesis results.  

Strengths 

• However, it is important to highlight that this PhD Thesis possesses 

novel data analysing the combined effects of:  

o A high-protein diet and a HIE, based on a hypertrophy 

resistance training protocol, on brain and kidney oxidative 

stress.  

o HIE and AAS-administration on brain and kidney oxidative 

stress markers and antioxidant enzyme defence system in 

the same report, which allow a global picture about the 

effects of the combination of these two common behaviours. 

o High-intensity strength training on renal morphology in 

healthy animals under normal experimental conditions. 



 

	   259 

 

 

 

 

 

 

CONCLUSIONS [CONCLUSIONES]



 

	  



Conclusions 

	   261 

 

CONCLUSIONS  

 

1. High-protein diets may cause oxidative damage to the brain by means 

of lipid and protein oxidation, which could explain the induction of 

the endogenous antioxidant defence system. 

2. High-intensity exercise protocol improved the deleterious effects 

caused by high-protein diet and may be an efficient way to protect the 

brain against high dietary protein aggression. 

3. High-protein diets led to a prooxidant status at kidney level. However, 

the beneficial effect of high-intensity exercise observed on brain, did 

not appear at kidney level. 

4. The high-intensity exercise protocol displayed a worse renal 

morphological profile, which might be associated with a higher risk 

for incidence of kidney disease in the long-term. The stress induced 

by the type of exercise performed in the present Thesis could be 

related to this worse morphological renal status.  

5. Under our experimental conditions, the present results suggest that 

high-intensity exercise reduce the negative effects of anabolic 

androgenic steroids on brain redox status. High-intensity exercise 
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also improved the harmful effects caused by the anabolic androgenic 

steroids administration on kidney lipid and protein oxidation. 

 

Overall conclusion:  

The results of the current Thesis underline that high-protein diets intake 

and the anabolic androgenic steroids administration instigated brain and 

kidney damage by means of the induction of lipid and protein oxidation. 

Despite the apparently beneficial effect of high-intensity exercise among 

the others two interventions studied, cautiousness should be taken with 

this protocol regarding to brain and kidney overproduction of their 

antioxidant defence systems.  
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CONCLUSIONES 
 

1. Las dietas altas en proteínas pueden causar daño oxidativo en el 

cerebro por medio de la oxidación de lípidos y proteínas, lo que 

podría explicar la estimulación del sistema de defensa antioxidante 

endógeno. 

2. El protocolo de ejercicio de alta intensidad mejoró los efectos 

nocivos provocados por la dieta alta en proteínas, y puede ser un 

medio eficaz para proteger el cerebro contra la agresividad 

producida por dicha dieta. 

3. Las dietas altas en proteínas conducen a un estado prooxidante a 

nivel renal. Por otra parte, el efecto beneficioso del ejercicio de alta 

intensidad observado en el cerebro, no se mostró a nivel del riñón. 

4. El protocolo de ejercicio de alta intensidad muestra un peor perfil 

morfológico renal, lo que podría estar asociado con un mayor 

riesgo de incidencia en enfermedades renales a largo plazo. El 

estrés inducido por el tipo de ejercicio realizado en la presente 

Tesis podría estar relacionado con este peor estado morfológico 

renal.  

5. Bajo nuestras condiciones experimentales, los resultados sugieren 
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que el ejercicio de alta intensidad reduce el efecto negativo de los 

anabolizantes androgénicos esteroideos sobre el estado redox del 

cerebro. El ejercicio de alta intensidad también mejoró el daño 

producido por la administración de anabolizantes androgénicos 

esteroideos en la oxidación de lípidos y proteínas del riñón.  

 

Conclusión general: 

Los resultados de la presente Tesis doctoral subrayan que el consumo de 

dietas ricas en proteínas y la administración de anabolizantes 

androgénicos esteroideos desencadenan daño cerebral y renal a través de 

la inducción de la oxidación de lípidos y proteínas. A pesar del aparente 

efecto beneficioso del ejercicio de alta intensidad frente a las otras dos 

intervenciones ensayadas, se debe tener cautela con este protocolo 

respecto a la estimulación del sistema de defensa antioxidante tanto del 

cerebro como del riñón. 
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