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Resumen

Esta tesis se centra en el estudio y el diseño de algoritmos meméticos
(AMs) para optimización continua. Esta investigación se inicia con el estudio
de la cooperación entre los componentes de búsqueda global (BG) y la búsqueda
local (BL) del AM, y conduce a la propuesta de una nueva estrategia de nichos
denominada estrategia de nichos basada en regiones (region-based niching). A
partir de dicha propuesta de nichos, se han desarrollado una nueva familia de
AMs, denominados AMs basados en regiones. La originalidad de esta estrategia
se basa en dividir el espacio de búsqueda en hipercubos de igual tamaño de-
nominados regiones que definen los ĺımites de cada nicho. Cuando es inclúıdo
dentro de un AM, se mantiene de tal modo la diversidad que se garantiza una
más adecuada exploración del espacio de búsqueda. El objetivo es ofrecer una
más controlada separación entre el componente de BL y el de BG para mantener
las tareas de exploración y explotación lo más separadas posibles, y mejorar aśı
la eficiencia de la búsqueda. Cuando se incluye dentro del AM, esta estrategia al
ofrecer una separación más clara entre exploración y explotación:

• Se fuerza al algoritmo de búsqueda global a realizar una búsqueda entre
regiones para garantizar que el espacio de búsqueda global se explora sufi-
cientemente.

• Al forzar al algoritmo de exploración local a realizar la búsqueda intra-
region (dentro de cada región) se asegura que las regiones más prometedoras
identificadas por la BG sean explotadas de forma adecuada.

AM basado en regiones ha sido aplicado a dos tipos de problemas:

• Problemas de optimización global, en los que se busca identificar un único
óptimo global de la función objetivo. Los resultados ofrecidos para este tipo
de problemas muestran ser muy competitivos con las técnicas del estado-
del-arte.

• Problemas de optimización multimodal, en los que se busca identificar y
preserver múltiples óptimos globales de la función objetivo, es decir, obtener
un conjunto amplio de soluciones satisfactorias. La definición de nichos
mediante regiones permiten incluir en nuestro modelo un archivo compuesto
por un ı́ndice de regiones exclúıdas de seguir explorándose, reduciendo el
espacio de búsqueda y por tanto mejorando la eficiencia de la misma. El
algoritmo resultante ofrece una mejor exploración y resultados con mayor
precisión que algoritmos existentes.
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Resumen y Conclusiones en
Español

En este apartado se incluye el resumen en castellano de la tesis, para cumplir con
los requisitos necesarios para poder acceder al t́ıtulo de doctor en Tecnoloǵıas de
la Información y la Comunicación de la Universidad de Granada.

Introducción

El objetivo primario de esta memoria es analizar y estudiar una nueva estrategia
de nichos que consiste en dividir el espacio de búsqueda en hipercubos de igual
tamaño llamados regiones. Estas regiones delimitan los nichos dentro del espacio
de búsqueda. Al implementarse este criterio dentro de un Algoritmo Evolutivo,
AE, únicamente una solución puede encontrase dentro de una misma región, por
lo que en cada región compiten las soluciones de la población, manteniéndose en
dicha región únicamente la mejor solución.

Esta estrategia de regiones es muy sencilla y rápida, y se utiliza para dos
objetivos distintos:

• Mantener la diversidad de la población del AE, para evitar una excesi-
vamente rápida convergencia y aśı asegurar una adecuada exploración del
espacio de búsqueda, y poder aśı obtener mejores resultados.

• Permitir identificar múltiples óptimos en problemas multimodales, ya que
puede ser de utilidad obtener distintas óptimos distintas.

Para abordar ambos objetivos, aplicamos la estrategia de nichos basada en
regiones en dos Algoritmos Meméticos, AMs, distintos, cada uno de ellos orientado
espećıficamente a cada uno de los objetivos anteriores.

El contenido de este apartado está organizado en varias secciones:

i
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• En la sección primera resumimos la problemática que intentamos abordar.

• En la sección segunda se introduce la propuesta de la tesis.

• En la sección tercera se plantean los objetivos propuestos.

• En la sección cuarta se plantea el desarrollo de la tesis, resumiendo cada
uno de sus caṕıtulos, y presentando para cada propuesta presentada una
breve discusión de los resultados objetivos.

• Finalmente, se resumen las principales conclusiones obtenidas, y posibles
ĺıneas de trabajo futuro.

Planteamiento del problema

La optimización es un área de gran interés ya que se presenta en múltiples pro-
blemas de ciencia e ingenieŕıa que no pueden ser abordados mediante un proceso
de búsqueda exhaustiva. Por tanto, es necesario recurrir a técnicas como las me-
taheuŕısticas que permiten abordarlo de forma aproximativa. Estos algoritmos
permiten obtener resultados de gran calidad dentro de un número limitado de
generación de soluciones.

En los problemas de optimización continua el problema es doble: Por un
lado, es necesario realizar una búsqueda por todo el espacio de búsqueda, y por
el otro, es necesario obtener precisión en las soluciones para obtener buenos re-
sultados.

Las metaheuŕısticas pueden clasificarse en dos categoŕıas:

• Algoritmos de Búsqueda Global (BG), normalmente algoritmos basados en
población que generan soluciones por todo el espacio de búsqueda. Esta am-
plia cobertura ofrece una amplia exploración del espacio de búsqueda, y son
conocidos por su habilidad de exploración. Son especialmente importantes
en problemas multimodales ya que su estructura está diseñada para evitar
atascarse en óptimos locales.

• Métodos de Búsqueda Locales, BL, diseñados para alcanzar rápidamente
soluciones precisas en el vecindario de una solución dada. Suelen consistir
en modificaciones locales a una solución hasta que es encontrada la mejor
solución en un entorno cercano. Como consecuencia, su rendimiento es muy
bueno en problemas unimodales, pero con el grave inconveniente de que al
trabajar en un área restringida se corre el riesgo de atascarse en un óptimo
únicamente local.
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Los Algoritmos Meméticos son algoritmos evolutivos que combinan un
algoritmo de Búsqueda Global, BG, y un algoritmo de Búsqueda Local, BL, para
realizar cada una de estas tareas.

El objetivo de los AMs es que cada uno de sus componentes pueda cen-
trarse en la labor encomendada (BG ó BL) ya que es el algoritmo más eficiente
para ello, para que el AM puede conseguir un resultado óptimo. Sin embargo,
en optimización continua no existe una separación tajante entre un algoritmo
de exploración y de explotación. Aunque es fácil limitar el grado de explotación
de la BL no lo es en el caso del algoritmo de BG, por lo que dicho algoritmo
dedicará parte de su esfuerzo en explotar las solución, redundando en una peor
exploración global ya que dicha tarea seŕıa mejor realizada por el método de BL.

El algoritmo BG debeŕıa ser forzado a explorar en el espacio de búsqueda
y dejar que el método de BL se centre en mejorar las solución encontradas. Las
estrategias de nichos son propuestas que se encargan de mantener una adecua-
da diversidad entre las soluciones del algoritmo poblacional, para mantener la
exploración.

Propuesta de Tesis

En esta tesis proponemos, desarrollamos y estudiamos el uso de una nueva es-
trategia de nichos a la que llamamos estrategia de nichos basada en regiones. Al
incorporar este criterio de nichos se fomenta la exploración del algoritmo de BG
ya que se evita que explore en las cercańıas de las soluciones de la población. Aśı,
la tarea de explorar dentro de cada región le corresponde a la BL.

Aplicamos esta estrategia a un AM, al que denominamos AM basado en
regiones, RMA en inglés, y hemos estudiado cómo la estrategia de nichos propues-
ta mejora su rendimiento para problemas de optimización continua, incluyendo
problemas multimodales.

Objetivos de la tesis

Los problemas de optimización continua puede clasificarse en dos categoŕıas:

• Problemas de optimización global: El objetivo es identificar un único óptimo
global de la función objetivo. Es decir, se alcanza el éxito con un único
óptimo.
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• Problemas de optimización multimodal: En muchos problemas del mun-
do real, es deseable obtener múltiples soluciones distintas, en vez de una
única solución. La particularidad de la optimización multimodal reside en
la necesidad de identificar y mantener tantas soluciones óptimas como sea
posible.

En ambos casos, la exploración adecuada del espacio de búsqueda es la
pieza clave, por lo que requiere una especial atención. En optimización global,
es muy alto el riesgo de que la búsqueda converja en óptimos locales cuando se
trabajan problemas con múltiples óptimos, con lo que empeoraŕıa significativa-
mente el rendimiento del algoritmo de búsqueda. En optimización multimodal,
la necesidad de asegurar una fuerte exploración influye de forma muy directa
en la habilidad del algoritmo en identicar un número mayor de óptimos globa-
les repartidos por todo el espacio de búsqueda. Además, en la tesis, abordamos
otros aspectos cruciales para optimización multimodal, como la preservación de
los óptimos encontrados y su uso en la población para guiar la búsqueda.

En esta tesis presentamos que utilizar RMAs es la forma más eficiente de
abordar los problemas de optimización tanto globales como multimodales.

Como primer objetivo, mostraremos cómo el uso de la estrategia de nichos
puede ayudar a diseñar un algoritmo memético que separe de forma clara los
objetivos de exploración y explotación entre el AE y el método de BL para una
adecuada optimización global. De esta manera, se mantiene una mayor diversidad
dentro de la población que posibilita una mejor exploración del espacio de búsque-
da para dejar menos regiones sin explorar. El uso de una estrategia de nichos como
la propuesta lo lo posibilita ya que el AE realiza búsqueda entre-nichos enfocando
sus esfuerzos en identificar los nichos más prometedores mientras el método de
BL realiza una búsqueda intra-nicho explotando los nichos identificados por el
AE.

El segundo objetivo de la tesis es utilizar las propiedades de nuestro con-
cepto de región para definir nichos en optimización multimodal y mejorar aśı sus
resultados. No sólo, como del objetivo anterior, nos beneficiamos de la estrategia
de nichos propuesta para obtener mayor diversidad (y, por tanto, mejor explora-
ción), si no que vamos a utilizar la novedosa definición de nicho como regiones
para crear muy fácilmente un ı́ndice de las regiones ya exploradas y optimiza-
das. De esta manera, podemos descartarlas en siguientes exploraciones, mejorar
mucho la búsqueda tanto en resultados como en eficiencia.
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Desarrollo de la tesis

A continuación, detallo un resumen de cada uno de los caṕıtulos de la tesis,
resumiendo las propuestas incluidas en la memoria y presentando para cada una
de ellas una breve discusión de los resultados obtenidos.

El primer caṕıtulo presenta la problemática de la optimización real, in-
troduciendo las metaheuŕısticas para optimización continua, prestando especial
atención los algoritmos meméticos, y las técnicas de optimización multimodal,
mediante un repaso de la literatura. El resto de caṕıtulos presentan las propues-
tas de la tesis, por lo que ofrecemos un resumen de cada uno de dichos caṕıtulos.

Conclusiones del Caṕıtulo 2: Algoritmo Memético Basado en Re-
giones con Encadenamiento de Búsqueda Local para Optimization Glo-
bal

Con el objetivo de obtener una fuerte separación entre el esfuerzo de ex-
ploración del AE y el esfuerzo de explotación que ofrece la Búsqueda Local, BL,
de un AM, aplicamos la estrategia de nichos basados en regiones dentro de un
AM. Al incorporar este criterio de nichos se fomenta la exploración del AE ya
que se evita que explore en las cercańıas de las soluciones de la población. En
cambio, esa tarea de explorar las zonas cercanas, explotando las soluciones ya al-
canzados le corresponde a la BL, que explorará en el vecindario de las soluciones
para centrar la exploración dentro de su región.

Aplicamos esta estrategia a un algoritmo previo, el AM con encadenamien-
to de BL, MA-LS-CMA [MLGMH10], que aplica de forma alterna un algoritmo
genético estacionario, Steady-State Genenetic Algorithm, como AE, y el algorit-
mo CMA-ES como método de BL en el proceso de encadenamiento. El encade-
namiento de BL es un mecanismo que permite adaptar la intensidad de la BL en
función de la calidad de la solución sobre la que se aplica. Almacena para cada
solución los parámetros de la BL, permitiendo que cuando se aplica la BL sobre
una solución de nuevo, la BL continúa donde se quedó.

Para limitar la influencia del tamaño del niño/región (definido por el núme-
ro de divisiones por dimensión del espacio de búsqueda), proponemos también un
proceso para modificar dinámicamente el tamaño del nicho durante la búsqueda.
La idea es simple, se incrementa varias veces durante la búsqueda el número de
divisiones por dimensión (reduciendo aśı el tamaño del nicho).

El algoritmo resultante lo hemos llamado AM basado en regiones con en-
cadenamiento de BL y CMA-ES, en inglés region-based MA with LS chaining and
CMA-ES, RMA-LSCh-CMA.
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Hemos comparado el RMA-LSCh-CMA, usando el benchmark de optimi-
zación continua propuesto en la Sesión Especial de Optimización de Parámetros
Reales, del Congreso de IEEE de Computación Evolutiva del 2005, IEEE Confe-
rence on Evolutionary Competition, CEC’2005 para dimensiones 10, 30, 50; y el
benchmark propuesto en Número especial de Soft Computing para optimización
de altas dimensiones (Special Issue on Large Scale Optimiation, SOCO’2011), con
problemas de dimensión 100. A partir de los experimentos realizados con dichos
benchmarks, hemos estudiado la influencia del mecanismo de nichos propuesto,
obteniendo las siguientes conclusiones:

• La modificación dinámica del tamaño de nicho otorga más robustez al al-
goritmo, al hacerle menos dependiente de dicho parámetro, especialmente
cuando se considera la distinta dimensionalidad de los problemas aborda-
dos.

• El uso del mecanismo de nichos basados en regiones, al mantener mayor
diversidad en la población, mejora significativamente el rendimiento del
AM.

Posteriormente, hemos comparamos los resultados obtenidos por nuestra
propuesta con los resultados obtenidos por un conjunto representativo de algorit-
mos, IPOP-CMA-ES, MDE-pBX, y 3SOME, con conclusiones interesantes:

• En ambos benchmarks, hemos mejorado de forma estad́ısticamente signifi-
cativa los resultados obtenidos por MDE-pBX.

• No detectamos mejoras significativas respecto a IPOP-CMA-ES en el bench-
mark CEC’2005, pero detectamos que IPOP-CMA-ES se comporta mejor
con menor dimensionalidad, obteniendo nuestro algoritmo mejores resulta-
dos con mayor dimensionalidad. Esta tendencia se confirma por el hecho
de que RMA-LSCH-CMA obtiene mejoras significativas en el SOCO’2011
para dimensión 100.

• Mientras que RMA-LSCh-CMA obtiene resultados estad́ısticamente mejo-
res que 3SOME en el benchmark CEC’2005, 3SOME domina ligeramente
al nuestro en el benchmark del SOCO’2011. La razón puede deberse a que
el CMA-ES se comporta de forma menos eficiente al aumentar la dimen-
sionalidad, lo cual motiva el uso de otro método de BL para problemas de
optimización de mayor dimensión.
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Resumen del Caṕıtulo 3: Algoritmo memético basado en regiones
con archivo para optimización multimodal

Motivados por la idea de probar la propuesta de definir nichos mediante
regiones al propósito original de las estrategias de nichos, presentamos un modelo
basado en el caṕıtulo 2 pero modificado para abordar problemas de optimización
multimodal.

En el Caṕıtulo 3 presentamos las distintas modificaciones del modelo an-
terior para adaptarlo a la nueva categoŕıa de problemas, y tomar ventaja de la
definición de nicho introducida en esta tesis:

• Aplicación de la BL: El modelo propuesto no hace más uso de encadena-
mientos de la BL. Ahora, se mantiene la aplicación de la BL sobre una
misma solución hasta que deja de ofrecer una mejora suficiente.

• Uso de un archivo de áreas excluyentes: El uso de un archivo permite la
conversación de los óptimos identificados, y evita su pérdida potencial den-
tro del proceso evolutivo del AE, limitando al mismo tiempo la dependencia
del algoritmo respecto al tamaño de la población. La novedad de nuestro
modelo es considerar las regiones representadas por las soluciones del ar-
chivo como zonas de exclusión, en las que el AE no podrá generar nuevas
soluciones. Este proceso se puede hacer de forma muy eficiente en tiempo
gracias al uso de ı́ndices que permiten recuperar rápidamente las regiones.

Llamamos al algoritmo resultante, Algoritmo Memético basado en Regio-
nes, con memoria, en inglés region-based memetic algorithm with archive, RMA-
Archive. RMA-Archive fue comparado usando el benchmark propuesto durante
la competición y sesión especial de Métodos de Nichos para Optimización de
Funciones Multimodales, del IEEE Conference on Evolutionary Computation,
CEC’2013.

Al igual que en el caṕıtulo anterior, hemos analizado las mejoras obtenidas
por las novedades del modelo. Desde un primer momento, hemos observado que
la estrategia basada en regiones implica menor carga en tiempo que el concepto
tradicional de nichos basados en distancia. También hemos demostrado que al
considerar a las regiones representadas en el archivo como espacios que el AE no
puede seguir explorando, se mejora significativamente el grado de exploración del
algoritmo. De esta manera, se consigue aumentar sustancialmente la capacidad
de identificar óptimos por parte del AM con un costo muy reducido en términos
de tiempo computacional.

Por último, hemos comparado el algoritmo con una serie de técnicas exis-
tentes, obteniendo un comportamiento general significativamente mejor que todos
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ellos. Sin embargo, dado que el benchmark CEC’2013 implica evaluar el algoritmo
para distintos valores de precisión, es interesante resaltar algunas conclusiones de
las comparaciones:

• Con respecto a los algoritmos comparados, RMA-Archive es el que presenta
el mejor comportamiento para un alto valor de precisión. De hecho, el grado
de mejora que ofrece nuestro algoritmo sobre los otros aumenta conforme
se incrementa el nivel de precisión exigido. La razón de ese rendimiento
puede ser debido al uso intensivo del CMA-ES para refinar las soluciones
más prometedoras.

• Al exigir un menor grado de precisión, que es cuando nuestro algoritmo pre-
senta sus peores valores relativos al resto de algoritmos, no hemos detectado
diferencias significativas entre RMA-Achive y el resto de propuestas.

Conclusiones y Trabajos futuros

En esta tesis se ha propuesto un nueva estrategia de nichos basada en regiones,
dividiendo el espacio de búsqueda en hipercubos, cuyo tamaño se va reduciendo
durante la ejecución del algoritmo. Mediante la incorporación de dicha estrategia
hemos definido dos algoritmos meméticos, orientados a optimización global y a
optimización multimodal. Tras comparar cn otros algoritmos de referencia hemos
llegado a las siguientes conclusiones:

• El uso del mecanismo de nichos basados en regiones, al mantener mayor
diversidad en la población, mejora significativamente el rendimiento del
AM, tanto en optimización global, como en optimización multimodal.

• La modificación dinámica del tamaño de nicho otorga más robustez al al-
goritmo, al hacerle menos dependiente de dicho parámetro.

• Al comparar en optimización continua, nuestro resultado es altamente com-
petitivo frente al resto, y escalable (aunque el método de BL puede limitar
la escalabilidad del algoritmo).

• Para optimización multimodal es el que alcazaba mayor número de óptimos
cuando se ped́ıa una precisión, para menor precisión los resultados eran
ligeramente peores, pero sin diferencias significativas detectadas.

Los prometedores resultados de ambos modelos animan la idea de seguir
investigando en esta ĺınea con vistas a reducir las debilidades identificadas, si-
guiente las siguientes ĺıneas de investigación abiertas:
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• Aplicar el modelo RMA-LSCh-CMA a problemas de alta dimensionalidad.
Para ello debeŕıas de modificar el método de BL empleado debido a las
limitaciones detectadas de CMA-ES para los problemas de mayor dimen-
sionalidad.

• El rendimiento de RMA-Archive puede ser mejorado, mediante una mejor
exploración e identificación de las soluciones prometedoras que van a ser
explotadas por la BL. Puede ser interesante evaluar el uso de otro AE en
este espećıfico framework. Por ejemplo, en las comparaciones del Caṕıtulo
3, el algoritmo dADE obteńıa mejor rendimiento que RMA-Archive para
valores bajos de precisión. Por tanto, el uso de DE/nrand/1/bin como AE
en vez del algoritmo genético podŕıa ser una interesante alternativa.

• El uso de la estrategia de nichos basados en regiones se puede extender,
mediante estudios adicionales.

– Uno de los elementos que creemos más interesantes, aunque de mayor
dificultad seŕıa un mecanismo más avanzado de adaptación del tamaño
del nicho. Esta ĺınea podŕıa incluir estudios sobre el modelo de división,
e incluso criterios para determinar de forma auto-adaptativa cuándo
aplicarse.

– Hasta ahora se ha planteado un modelo de hipercubos de igual tamaño,
una linea de trabajo futuro, de gran interés, seŕıa la posibilidad de que
las no todas las regiones se dividiesen de igual manera en regiones
de menor tamaño, permitiendo la existencia de regiones de tamaño
distinto. De esta manera, se podŕıan tratar de forma distinta las zonas
más prometedoras.





Introduction

1 Framework: real-parameter optimisation

Continuous optimisation, also referred to as real-parameter optimisation, is a
topic of major interest nowadays in the research community. The wide number
of real-world applications and the variety in the difficulties and challenges they
imply make the search for solutions and to solve them more and more fascinating.

The impossibility of performing an exhaustive search of all the possible
solution implies the development and use of approximation algorithms. Meta-
heurstic algorithms [GK03] have been for the past few decades the most efficient
and popular methods for this type of problems.

Metaheuristics can be classified into two categories:

• Global search algorithm (GS) [ES03] are usually population-based algo-
rithms using collaborating agents representing different solutions spread
across the search space. Their strength lies in their ability to explore the
search space preventing the search to fall into local minima. For that reason,
they are known to be very efficient in multimodal problems.

• Local Search methods (LS) [Sch81] are designed to rapidly reach precise
solutions in the vicinity of a given solution. They usually consist in applying
local modification to a solution until the nearby optimum is reached. As
a consequence, their performance are notably good in unimodal problems.
Their main drawback is they focus the search on a restricted area creating
the risk of being trapped in local optima.

The challenging aspect of continuous optimisation problems lies in the
multimodal characteristic posed in real-world problems. A problem is often re-
ferred to as multimodal when the landscape of its objective function contains
multiple optima. This characteristic implies the necessity of designing optimi-
sation algorithms offering both strong exploration and exploitation ability. The

xi
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former aims at preventing the fall of the search into local optima while the latter
aims at ensuring the most precise approximation of optima.

In order to combine those two aspects of an efficient search, arose memetic
algorithms (MA) [Mos89]. They are the hybridisation of a GS algorithm providing
its exploration ability and a LS method providing an efficient refinement of the
promising solutions identified in the GS process. Such proposal however implies
the establishment of an appropriate strategy to combine in the most efficient way
those components. Thanks to the promising results they brought, MA quickly
became an important topic of investigation.

The design of MA algorithm can be partitioned in the design of three
components, the GS algorithm, the LS method and the hybridisation method.
This last component is the essence of a MA. Its objective is to combine in the
best possible way the strength of the first two components in order to achieve the
most efficient search.

We believe in the importance of designing all three components in a way
that limits the competition between the two search methods. In other words, the
GS algorithm should be forced to explore the search space and offer to the LS
method promising solutions for refinement. Niching strategies have been proposed
to prevent the genetic drift of an EA’s population by maintaining a high diversity
between its solutions.

In this thesis, we propose, develop, and study the use of a novel niching
strategy called region based niching strategy to enhance the performances of MA
for continuous optimisation problems. MA using this strategy are referred to as
region-based MA (RMA).

2 Objectives

In continuous optimisation, problems can be classified into two categories :

• Global optimisation problems : They consist in identifying the single global
optimum of an objective function meaning that a single solution is consid-
ered as satisfactory for a given problem.

• Multimodal optimisation problems : In many real-world problems, multiple
solutions can be considered as satisfactory. The particularity of multimodal
optimisation lies in the need of identifying and preserving multiple global
optima.

In both cases, a proper exploration of the search space is a key issue which
requires special attention. In global optimisation, the risk of seeing the search
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converging towards local optima when dealing with multimodal problems is high
and may considerably harm the performances of a search algorithm. In multi-
modal optimisation, the need of ensuring a strong exploration directly influences
the ability of an algorithm to identify more or less global optima spread across
the search space. In the latter case, other issues such as the preservation of the
found optima are also at stake and are addressed in this thesis.

This thesis aims at using RMAs in the most efficient way in order to tackle
both global and multimodal optimisation problems.

First, we wish to demonstrate how the use of a niching strategy can help
the design of a memetic framework to clearly separate the exploration and ex-
ploitation efforts between the EA and the LS method for global optimisation. By
doing so, we maintain a higher diversity in the population to ensure the proper
exploration of the search space with the objective of leaving the least possible
areas unexplored. The use of a niching strategy such as the one proposed offers
such a possibility. Indeed, The EA performs an inter-niche search by focusing its
effort in identifying the most promising niches while the LS method performs an
intra-niche search by exploiting niches identified by the EA.

The second objective is to use the properties of the region definition of
a niche in MAs for multimodal optimisation. The first objective in that matter
is to assess the ability of the region-based niching strategy to ensure a proper
exploration of the search space by the EA against classical euclidean of a niche.
The second objective is to take advantage of this niche definition to create an
index of explored and optimised regions in order to discard them from further
exploration and to demonstrate how it can assist the exploration of the search
space by the EA.

3 Summary

This thesis is divided into three chapters briefly described here.

In Chapter I, a review on real-parameter optimisation is presented. First
by defining the main principles of this research area and then by listing and
introducing the models that brought the most interest in the research community
along the years. We particularly bring special attention to MAs and various
niching strategies proposed to handle multimodal optimisation problems.

In Chapter II, we propose a method to efficiently include the region-based
niching strategy in an existing MA for global optimisation. We study in this
chapter the influence of the region-based niching strategy on the diversity of the
EA’s population and on the overall performances of the MA.



xiv Chapter . Introduction

Chapter III presents how we took advantage of the definitions of a niche
introduced here in a MA environment for multimodal optimisation problems. We
present novel mechanisms allowing a more efficient exploration of the search space
for the identification of multiple optima.

Finally, we conclude by summarizing the developed models, the experi-
ments performed, and the results obtained in this study. Finalizing this thesis by
stating a few lines of research opened after this work.



Chapter I

Real-Parameter Optimisation

1 Introduction

Many real world problems can be seen as optimisation problems over an objective
function (also called fitness function) defined in a domain of solutions. The
objective in optimisation is to find the solution that minimizes this function.
This solution is called global optima and is traditionally noted x∗. Given a search
domain D and an objective function f : D → R, an optimisation problem can
then be formulated by:

x∗ = argminx∈Df(x) (I.1)

In real-parameter optimisation a solution x in a set of D real values noted
x = {x1, x2, ..., xD} where D is the dimensionality of the problem.

The nature of such problems making the evaluation of every solutions
impossible, approximative algorithms have been developed to intelligently explore
the search space of solution in the sake of the global optimum.

A wide variety of models have been proposed to tackle these problems.
This chapter introduces the notion of meta-heuristics and more specifically Evo-
lutionary and swarm algorithms. These algorithms have brought a major interest
of the research community in the past years for their simplicity and efficiency in
solving optimisation problems.

In the case of our study, we are particularly interested in MA. These
models are the hybridisation of various algorithms aiming with the objective of
combining their strength in a single framework. Usually, they combine a GS
algorithm meant to explore the search space and a local search algorithm which
intensively refines the search around a limited number of promising areas.

1
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The need of combining those two aspects of the search is due to the need
of identifying with the most precision the optimum solution of a problem by still
avoiding the risk of being trapped in local optima.

The purpose of this chapter is to give the reader an overview of the research
in the field of continuous optimisation in order to situate the different components
used in this thesis in the research landscape in this area.

In Section 2, we provide an introduction to metaheuristics models that
have been the most applied over the years with a special attention to GAs. In
Section 3 we then focus our interest on MAs by explaining their strength, the
issues paused by their design and the most remarkable proposals. Finally, in
Section 4, we give an overview of the existing techniques for multimodal optimi-
sation.

2 Metaheuristics for continuous optimisation

In this section, we review the most relevant metaheurstics proposed to tackle
continuous optimisation problems. Their ability to efficiently tackle optimisation
problems as black-box, i.e. no mathematical information is required, provide the
EAs with an adaptability to a wide range of problems. In a first section, we
provide an overview of some popular population-based algorithms. As we make
use of GAs in the model presented in this thesis, we then focus on this family of
algorithms.

2.1 Evolutionary and swarm algorithms

In this section we provide a quick introduction to the most relevant population-
based algorithm:

• Genetic Algorithms (GA) [Hol75, Gol89]: use principles inspired by nat-
ural genetic populations to evolve solutions to problems. A population of
chromosomes representing candidate solutions to the given problem evolves
towards better solutions. From a population randomly initialised in the
search domain, solutions compete to survive and participate in the creation
of new solutions. New solutions are generated by means of crossover and
mutation operators. More details on GAs are given in the following section.

• Evolution Strategy (ES) [Rec65]: The same way as GAs, ES apply evo-
lutionary operators where the fittest solutions participate in the generation
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of new solutions. They sample new candidate solutions stochastically, most
commonly from a multivariate normal probability distribution

From the early stages, evolution strategies were characterised by the use
of real encoding as described above, mutation as the primary operator for
generating new solutions, and self-adaptation of endogenous strategy pa-
rameters (mutation strengths) by embedding them into the encoding of
solutions. Nowadays, the similarity between evolution strategies and real-
coded genetic algorithms has allowed several researchers to combine their
particular features into one unique evolutionary framework [MSV93b].

Hansen and Ostermeier [HO01] applied the idea of cumulation for the adap-
tation of covariance matrices needed to produce correlated mutations. The
result was an evolutionary strategy model with a completely deterministic
adaptation of its operators, which is called Covariance Matrix Adaptation-
ES (CMA-ES).

Auger and Hansen proposed in [AH05] a CMA-ES variant (IPOP-CMA-
ES) that reinitialised the search process, with an increased population size,
when the progress had been detected to be minimal. IPOP-CMA-ES was
the winner of the real-parameter optimisation competition, organised in
the 2005 IEEE congress on evolutionary computation (CEC’2005). CMA-
ES and its variants are now considered as state-of-the-art in real-parameter
optimisation. A comprehensive overview of ES at that time can be seen in
[BS02, HAA13].

• Particle Swarm Optimisation (PSO) [KE95, KE01] emulates the swarm
behaviour of insects, animals herding, bird flocking, and fish schooling when
these swarms search for food in a collaborative manner. Each member in
the swarm adapts its search patterns by learning from its own experience
and the ones of its neighbours. In particle swarm optimization, a member in
the swarm, called a particle, represents a potential solution which is a point
in the search space. At each iteration, particles adjust their flying direction
according to the best experiences of the swarm and their own ones, and
then, moves to the corresponding new position. [BVA07] provides a review
of the knowledge of this field.

• Differential Evolution (DE) [SP97]: Differential evolution (DE) is a more
recent evolutionary algorithm mainly focused on solving real-parameter op-
timisation problems [SP97]. Similarly to genetic and evolution strategies
algorithms, it applies two operators for generation new solutions, mutation
and crossover. However, its main characteristic is that mutation considers
difference vectors of randomly chosen elements from the population, in con-
trast to classic mutation operators that took just one element as input. At
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each generation, mutation is applied for every element in the population
producing a mutant vector; subsquently, crossover generates a trial vector
by combining parameter values from the mutant vector and the element
in the population; then, the best solution between the trial vector and the
element in the population is selected for the next generation.

DE are are known to be very sensitive to two parameters, the crossover rate
(CR), which defines the probability for a decision variable to me transmit-
ted from the trial vector to the solution in the population, and the scale
factor (F ) which defines the amplitude of the mutation. To tackle many
adaptive methods have been proposed to automatically tune the values of
these parameters along the search and proposing new mutation operators
[QS05, ZS09, BZB+09]. Das and Suganthan [DS11] provides a recent survey
of the state-of-the-art.

Differential is probably the model receiving the greatest interest in the
research community nowadays. In the last competition on real parameter
optimisation during the IEEE Conference on Evolutionary Computation in
2013, 13 entrants out of 23 were variants of this model.

• Other models: Scatter Search [LM03], Artificial Bee Colony [KB07], Bac-
terial Foraging Optimization [LP02]

2.2 Genetic Algorithms

As this thesis makes use of GA we will introduce more in details this model.
Introduced by Holland [Hol75], GA set the foundation of EA. They are inspired by
the evolution theory of Darwin [Dar59]. Here, individuals represent solutions to
a given problem. These solutions are represented by a string of variable encoding
their genome. Within a given environment (objective function), they compete to
survive.

A genetic algorithms starts off with a population of randomly generated so-
lutions that evolves towards better solutions. During successive iterations, called
generations, solutions are evaluated and maintained in the population through
selection mechanisms to participate in the creation of new solutions by means of
crossover and mutation operators.

Many adaptations, new operators and strategies have been proposed over
the long life of GAs leading in a multitude of different aspects to take into account
when designing a GA for continuous optimisation.

• Encoding : Original genetic algorithms for real parameter optimisation
encoded the decision variables of the problems into strings of binary varia-
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bles, by means of a binary or a gray transformation. The problem with this
representation is the lack of precision as only a finite number of solutions
can be encoded which can be a problem for problems with large search do-
mains. Wright [Wri91] presented one of the first genetic algorithms using
a real encoding as described above, which, introduced two new genetic op-
erators: a mutation operator that uniformly sampled a new value for the
parameter being mutated from an interval centered on its current value,
and a linear crossover that produces the offspring according to particular
linear combinations. Experimental results showed that the real-coded ge-
netic algorithm gave superior results to binary-coded genetic algorithms on
most of the test problems [HLV98]. Since then, most of the research uses
this representation.

• General strategy : GAs can be classified into two categories, generational
[Gol89] and steady state [Sch89]. Their difference occurs in the selection
process. In the first one, new solutions are generated from a set of solutions
selected from the population of the previous generation. In steady state GA
(SSGA), new solutions are generated and inserted in the population one at
a time. Different study shows that SSGA perform better [GD91, VF96]

• Crossover operator: To generate new solutions, the main operator is
called crossover or recombination. It consists in ”mixing” solutions called
parents from the current population to obtain one or various new solutions.
In [HLV98], the authors propose a comparative study of the different op-
erators. Later in [HLS03], they categorized those operator identifying four
families

– Discrete Crossover Operators: the operators used in binary coding
applicable to real-coded GAs (e.g. simple [Gol89], two-point [ECS89]
and uniform crossover [Sys89])

– Aggregation-based crossover operators: they use an aggregation func-
tion that numerically combines the values of the genes of the parents
(e.g. Arthmetical [Mic94], geometrical [MNM96] and linear [Wri91]
crossover)

– Neighbourhood-based crossover operators: the genes of the offspring
are determined by extracting values from intervals defined by neigh-
bourhoods associated with the genes of the parents (e.g. BLX-
α [ES93], simulated binary crossover [DA95])

– Hybrid crossover operators: they combine operators from the previous
categories. (e.g. Max-Min-arithmetical crossover [HLV97])
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To those categories, we can also group crossover operators using mul-
tiple parents such as unimodal distribution crossover [OKK03], sim-
plex crossover [TYH99], parent centric crossover [DAJ02], triangular
crossover [ESE08] or, more recently, GA-MPC [ESE11] the winner of the
CEC 2011 Competition on Testing Evolutionary Algorithms on Real World
Optimization Problems.

• Mutation operator: Occurring only a limited amount of time consists,
mutation randomly altering a solution in order to preserve a certain diver-
sity in the population. In binary coding, the mutation consists in ”flip-
ping” a bit, meaning swapping it from ”1” to ”0” and vice-versa [Hol75].
Strategies proposed for real-coded GAs offer more variety. The same as for
crossover operators, [HLV98] lists and compare some of them (boundary,
uniform and non-uniform mutation [Mic94], Real Number Creep [Dav91],
breeder genetic algorithm mutation (BGA) [MSV93a]).

• Selection method: A key aspect of genetic algorithm lies in the selection
of the individuals used for recombination. Various strategies have been
proposed, we list here the most popular:

– Roulette wheel selection [DJ75]: The probability of an individual to
be selected is calculated according to its fitness evaluation.

– Linear [GB89] and exponential [BT97] ranking selection: Similarly to
the previous the probability for an individual to be selected is cal-
culated from its rank in the population using a linear or exponential
function.

– Tournament selection [Bri81]: Choose randomly t individuals (usually
t = 2) from the population and keep the best individual of that group.

– Truncation selection [MSV93a]: Only the T best individuals of the
population can be selected with the same probability.

– Non-random Mating [AFR01]: This family groups the methods that
take into account similarity and/or parenthood in the selection process
of parents. Usually a first parent is selected through classical strate-
gies as the ones cited previously and the second parent is selected with
respect to its relation with the first parent. For instance, in Negative
Assortative Mating (NAM), the second parent is least similar individ-
ual taken from a subset of the population.



3. Memetic Algorithms 7

3 Memetic Algorithms

Memetic Algorithms are a specification of Memetic Computing (MC) [OLC10,
COLT11, INM+12]. MC is the paradigm that uses the notion of memes. In
general terms, memes are problem solvers. In MC, memes are included in a
global framework allowing them to cooperate and/or compete in the problem
solving.

MA can be considered as a sub class of MC. They are the union of
population-based global search and local improvements which are inspired by Dar-
winian principles of natural evolution and Dawkins’ notion of a meme [Daw90],
defined as a unit of cultural evolution that is capable of local refinements.

In general terms, MAs are composed by a group of search algorithms
cooperating and/or competing for the optimisation purpose. While this is usually
accomplished by applying LS strategies to members of an EA’s population, the
MA paradigm also includes other kind of strategies such as the combinations
of EAs with problem dependent heuristics, approximation algorithms, truncated
exact methods, and specialised recombination operators [KS05, NC12].

The key issue when designing a MA and more generally speaking a
MC is the interaction mechanism between the different search components. In
[OLZW06], Ong et al. proposed a classification of adaptive MA:

1. Adaptive hyper-Heuristics : The coordination of the memes is performed
by predetermined heursitic rules. For instance, in [KIP08] the evaluation
budget is simply divided between each meme. [KSC02] proposes a reward-
based approach where the the application of a given meme is reiterated
until it stops being successful.

2. Meta-Larmarckian learning : these methods are probabilistic coordinator
where the probability of each meme to be applied is based on its successes
and failures history. [LOJS09][OK04] [NOL09]

3. Self-Adaptive and Co-Evolutionary : [Smi07] In self-apdaptive MA, solu-
tions are encoded with their own genetic and memetic material. The memes
are directly encoded in into the solution. For instance LS methods are as-
sociated with each solution and try to improve it.

4. Diversity Adaptation [CCN+07, NTM07b] : a diversity measure is used to
to identify the diversity level of a population and to decide which meme to
apply. A low diversity in the population will favour the use of an exploratory
algorithm while a high diversity will prefer the application of a LS methods.
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MA have been a hot topic in the field of optimisation. Many different
instantiations of MAs have been reported across a wide variety of application
domains that range from scheduling [CF07] and floor-planning problems [TY07],
to extending wireless sensor network lifetime [TL10], aerodynamic design [RD00],
vehicle routing [FPC08, MCG+10], engineering control problems [NM10] and drug
design [NTM07a], to name but a few. This large body of evidence has revealed
that MAs not only converge to high-quality solutions, but also search vast, and
sometimes noisy, solution spaces more efficiently than their conventional coun-
terparts. Thus, MAs are the preferred methodology for many real-world applica-
tions, and nowadays receives more attention [OKI07, NC12].

MA presents many advantages which made this approach popular:

• The first main advantage of using MAs is based on the ”divide to conquer”
idea. MA separates the exploration effort from the exploitation effort in
two components, the former being performed by ea EA, the latter by a LS
algorithm. Not only this eases the development of each component, while
classical EAs try to combine both aspects of an optimisation search in the
same framework it also offers a better control on their functioning.

• By allowing an easy inclusion of problem knowledge, MAs are also consid-
ered as a guideline for addressing specific problems [NC12, BSEK06, Mos03]

• MAs have arisen as a promising approach for improving the convergence
speed to the Pareto front of EAs for multiobjective optimisation problems,
which actually concentrate increasing research efforts [IYM03],[LTGH07].

4 Multimodal optimisation

Multimodal optimisation is the discipline which consists in identifying multiple
global (or satisfactory) optima in a fitness landscape. Research in this area has
been focused in adapting global optimisation algorithms such as the ones intro-
duced above in order to force them in exploring, exploiting and preserving distinct
area of the search space.

In this section, we give an overview of the different ways and methods that
have been used to alter of model search algorithm for this purpose. The main
trend lies in the idea of maintaining a high diversity in the population in order to
prevent its convergence toward a single optima. Such techniques are commonly
called niching strategies referring to the technique used for the discovery and
preservation of distinct niches. This term is a reference to the ecological concept
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of niches referring to the formation of distinct species exploiting different niches
(resources) in an ecosystem.

We classified those techniques into two categories. The first one lists the
classical niching strategies which mainly intervened at the replacement level of the
EA they are applied to. The second one works with the idea of creating subgroups
within the population which optimise in parallel different area of the search space
by limiting the cooperation of each individual to its closest neighbours. We refer
to them as neighbourhood based techniques.

In this section, we first describe the different elements composing those two
categories by giving a general overview of proposal making use of such techniques.
In a third section, we briefly introduce proposals combining those techniques
with MA which demonstrate that the use of refinement method improved the
performances of the original EA for multimodal optimisation.

4.1 Classical niching techniques

The first niching techniques consist in limiting the presence of multiple solutions
within the same niche in order to maintain the high diversity in the popula-
tion. When included in a classical EA, those mechanisms are mainly replacement
strategies design with the objective eliminating solutions present in the same
vicinity. We describe here the four major trends, With several examples of each
one, to achieve this objective: crowding, clearing, fitness sharing and speciation.

Crowding

Crowding is one of the first techniques proposed to tackle multimodal optimisation
problems [DJ75]. After the generation of a new solution, a random sample of CF
solutions is selected in the population. The new solution competes with the
closest solution of the sample to stay in the population. This methods main
drawbacks is the definition of the parameter the crowding factor (CF ). Small
value can lead to the replacement of a distant solution to the offspring and thus
a loss of information. CF should thus be choosen very large which however leads
to an increased computational cost. The efficiency of this technique has however
proven to be limited [Mah95] and advanced versions have been proposed:

• Deterministic crowding proposed by [Mah95] tries to limit the problem of
replacement errors induced by the crowding technique by eliminating the
need of defining the CF parameter. To do so, an offspring competes with
its own parents to stay in the population.
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• Probabilistic crowding [MG99] on the other hand modifies the replacement
strategy of the original technique. In this scheme, the offspring and its most
similar individual in the crowding sample compete in a probabilistic tour-
nament where the probabilities of winning for each individual is calculated
according to their fitness:

p(X) =
f(X)

f(X) + f(Y )
(I.2)

The idea is not to always prefer solutions with higher fitnesses which may
lead to the loss of niches.

In [Tho04], Thomsen proposed the popular crowding differential evolution
(CDE) applying a classical crowding strategy on a differential evolution (DE)
where a new solution created by means of classical DE mutation and crossover
scheme compared with its closest solution in the whole population for replace-
ment.

CDE was then extended to multipopulation crowding DE (MCDE) in
[Zah04] where multiple subpopulation evolve in parallel using CDE. When all
the subpopulations have converged, the optima identified by each of them are
stored in an archive and the subpopulations are reinitialised.

More recently, Qu et al. proposed the dynamic grouping of CDE (DGCDE)
[QGS10] with ensemble of parameters. The population is divided into three
subpopulation to which a set of control parameters is assigned.

In [QGZQ08] , Qing et al. proposed a Crowding Clustering Genetic Algo-
rithm (CCGA) usind a clustering technique to eliminate the genetic drift intro-
duced by the crowding strategy.

Clearing

Clearing techniques [Pet96] lie in the principle of dedicating the limited resources
of a niche to its best individuals. The population is sorted according to the
individual fitness value. The solutions are then selected one after the other and
the solutions with worse fitness falling within their niche radius σclear are removed.
Clearing has a low complexity and shows the best performances amongst the
classical technique but is highly sensitive to the niche radius [SK98].

Variations have then been proposed to limit influence of the σclear param-
eter. For instance, in [QLSC12], similarly to the previously cited DGCDE, the
authors propose an ensemble of clearing DE (ECLDE) in which the population
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was equaly divided into 3 subpopulations each evolving in parallel using a clearing
DE with different values of σclear.

Some techniques use a redefinition of the niche in order to simply remove
the use of the parameter σclear. In [EO09], the niches are defined through hill-
valley detection mechanism instead of using a niche radius. In [SMPS04], the
niches are defined by fuzzy clustering of the solutions of the populations.

Fitness sharing

Contrarily to clearing technique which consist in dedicating niche resources to
a single solution, fitness sharing [GR87] consists in sharing them to multiple
solution. This concept is modelled by reducing the fitness of a individuals present
in densely populated regions. As a consequence, the shared fitness of the ith
individual is:

fshared(i) =
foriginal(i)∑NP
j=1 sh(dij)

(I.3)

where the sharing function is calculated by:

sh(dij) =

{
1−

(
dij

σshare

)α
, if dij < σshare

0, otherwise
(I.4)

where dij is the distance between individual i and j, σshare is the sharing
radius and α is a constant called sharing level.

In [Tho04], Thomasen also proposed a DE using sharing where, after each
generation, the new shared fitnesses are calculated over the population individuals
and the trial vectors, the best half being kept in the population.

Speciation

Proposed in [LBPC02], speciation or species conservation introduces the notion
of species by separating into several groups (species) according to their similarity.
Those species are identified by a dominating individual called the species seed and
a species distance σspecies defining the maximum distance between two individual
of the same species. The set of species seed is build at each generation by itera-
tively adding individuals from the population that are further from any species
seed than σspecies/2. The individuals are kept from generation to another until a
better solution is identified within their species while the classical recombination
operators are applied.
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In [Li04], this concept is applied in a spciation-based PSO (SPSO). In
SPSO, the particles are gathered into species to form subpopulations. This pro-
posal was later extended to reduce its dependency to the species distance parame-
ter by using population statistics [BL06b] and a time-based convergence measure
[BL06a].

4.2 Neighborhood based technique

Another class of niching strategies can be referred to as neighbourhood-based.
Contrarily to the previous section where the niching strategy could be seen as
replacement strategy, these methods use the geographical information of the so-
lutions in a population to modify the recombination scheme of a given EA. The
main idea is to make solutions solely cooperate with their neighbours in order to
emphasize the speciation.

Originally named spatially-structured EAs (SSEA) [Tom05], these algo-
rithms form subpopulations of individuals (called here deme) based on their sim-
ilarity and perform genetic operation within each deme.

This idea has then been extended and two kinds of neighbourhoods can
be identified in the literature:

• Index-based neighborhood [Li10] uses the the indices in the population of a
PSO to identify the neighborhood of a solution. The velocity of a particle
is thus influenced by the local best solution instead of the global best.

• Distance-based neighborhood uses the euclidean distance between individu-
als. In [Li07], the author proposed the FER-PSO algorithm where particles
are attracted towards the ”fittest-and-closest” neighbours. Similarly, the
notion of neighbourhood is applied for DE in [EPV11]. A new mutation
strategy, DE/nrand/x is proposed. It uses as base vector the nearest neigh-
bor of each individual. This mutation strategy has then be used for more
advanced models like in [ELB13].

Neighbourhood-based strategies have often been coupled with classical
niching strategies. For instance in [DW11], Dick proposed to include in a SSEA
a fitness sharing and a clearing strategy.

In [QSL12], the authors use of the DE/nrand/x operator with crowding,
sharing and species-based niching strategies and obtain better results than the
original algorithms.
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4.3 Memetic algorithms for multimodal optimisation

As stated in the introduction, MA are the hybridization of an EA and an LS
method. This model is particularly adapted to multimodal optimisation problems
as, when applied to different solutions, an LS method can offer a strong refinement
of the promising solutions discovered by the EA. This offer great accuracy for the
identification multiple optima. The use of such model has raised interest in the
research community.

For instance, the Sequential Niching Memetic Algorithm (SNMA) pro-
posed by Vitela et al. in [VC08] and then extended in [VC12] is an MA which
combines a genetic algorithm (GA) with a gradient-based LS method. Before
each generation, the LS is applied to each solution of the population.

In [QLS12], Qu et al. included an LS method to various previoulsy cited
PSO for multimodal optimisation (FER-PSO, SPSO, rPSO). The LS method used
consisted in generating at each iteration a new solutions in the neighbourhood
of the personal best of each particle to explore its surrounding. They demon-
strated that the resulting memetic PSO obtained better results than the original
algorithms. Similarly, Wang et al. proposed a memetic SPSO [WMYW12] which
adaptively uses two different LS methods and came to the same conclusions.





Chapter II

Region based memetic algorithm
with local search chaining for
real-parameter optimisation

1 Introduction

One of the main issues when designing an evolutionary algorithm (EA) [BFM97]
for real-coded parameter optimisation problems is to offer a good exploration of
the search space and, at the same time, to exploit the most promising regions to
obtain high quality solutions. Memetic algorithms (MA) were proposed [Mos89]
to manage these competing objectives. They are a hybridisation between EA and
local search (LS) algorithms, mixing in one model the exploration power of EA
and the exploitative power of the LS. MAs are characterised by the combination
of an exploration algorithm and a local improvement algorithm.

MAs with an appropriate trade-off between the exploration and exploita-
tion can obtain accurate solutions, improving the search [Dav91, GV99]. There-
fore, the key issue when designing a MA is to organise both efforts in the most
cooperative way.

Niching strategies have been used in EA to either identify various optima
in a fitness landscape or to maintain a strong diversity in the EA’s population
[DMQS11]. In our study, we consider that using niching strategy to maintain
a higher diversity in the population leads to a better separation of the effort
between the EA and the LS.

In this chapter, we design a niching strategy to limit the competition
between the EA and the LS in a MA. The purpose of this method is to let the

15
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EA focus on the exploration task by limiting its exploitation power, this task
being more efficiently performed by the LS method. Contrarily to most niching
strategies where the niches are defined around the solutions of the population,
the niches are predefined as divisions of the search space. The search space is
divided into equal hypercubes each of which represent one exclusion region, not
allowing more than one solution in each one. Also, the LS method is initialised to
explore inside these regions. This way, there is no competition between the EA
and the LS method. In order to obtain a more robust strategy, we also propose
a version with a dynamic niche size. It consists in decreasing the niche size along
the search to have a great diversity in the early stage of the search and reduce it
along the process.

To assess the efficiency of this strategy, we implement it in the MA-LSCh-
CMA [MLGMH10]. MA-LSCh-CMA is a successful MA which originality lies in
its ability to apply various times the LS on the same solution. Although this
algorithm obtains good results, it lacks a diversity control mechanism and does
not limits the competition between the EA and the LS efforts. The association
of the MA-LSCh-CMA algorithm with the niching strategy proposed gives the
algorithm called Region-based MA-LSCh-CMA (RMA-LSCh-CMA).

Various studies are performed to demonstrate the influence of the niching
strategy on the diversity of the EA’s population and the improvements brought
to the original model.

The proposed algorithm is then automatically configured using IRACE
[LIDLSB11] for comparisons with various state-of-the-art algorithms.

This chapter is structured as follows. Section 2 is dedicated to explain
the MA-LSCh-CMA we used as case study here. In Section 3, we describe in
detail the new proposal, remarking the differences with the previous model. In
Section 4, the experimental framework is designed. In Section 5, we show the
results and analysis of the different studies and comparisons carried out. Finally,
in Section 6, we present the conclusions and future works.

2 The MA-LSCh-CMA

This section describes the general scheme of the memetic algoritm with local
search chaingin and CMA-ES (MA-LSCh-CMA) and its main components. More
details can be seen in [MLGMH10].
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2.1 General scheme

MA-LSCh-CMA was designed with the idea that the LS should be applied with
higher intensity on the most promising regions. By promising regions, we con-
sider the areas/regions where the solutions are maintained the most time in the
population for their good fitness.

The MA-LSCh-CMA is a steady state MA which alternatively applies a
Steady-State Genetic Algorithm(SSGA) as EA [Sch89], and a CMA-ES [HMK03]
as LS method with an Istr. This hybridisation model allows the same solution
improve several times, creating LS chain. Also, it uses a mechanism to store with
the solution the final state of the LS parameters after each LS application. This
way, the final state of a LS application over a solution will be used as the initial
point of a subsequent LS application over the same solution, continuing the LS.
The general scheme can be seen in Algorithm 1.

Algorithm 1 Pseudocode of MA-LSCh-CMA

1: Generate the initial population
2: while not termination-condition do
3: Perform the SSGA with nfrec evaluations
4: Build the set SLS of individuals which can be refined by LS
5: Pick the best individual cLS in SLS
6: if cLS belongs to an existing LS chain then
7: Initialise the LS operator with the LS state stored with cLS
8: else
9: Initialise the LS operator with the default LS parameters
10: end if
11: Apply the LS algorithm to cLS with Istr evaluations, giving crLS
12: Replace cLS by crLS
13: Store the final LS state with crLS
14: end while

To select the individual cLS to which the LS will be applied, the following
process is used (steps 4 and 5 in Algorithm 1):

1. The set SLS is build with the individuals of the population that:

(a) have never been improved by the LS.

(b) have been improved by the LS but with an improvement (in fitness)
superior to δminLS .
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2. If |SLS| 6= 0, the LS is applied on the best individual in SLS. If SLS is
empty, the whole population is reinitialised except for the best individual
which is maintained in the population.

With this mechanism, if SSGA obtains a next best solution, it should be
improved by the LS in the following application of the LS method.

2.2 The EA

The SSGA applied was specifically designed to promote high population diversity
levels by means of the combination of the BLX−α crossover operator [ES93] with
a high value for its associated parameter (α = 0.5) and the negative assortative
mating strategy (NAM) [AFR01]. Diversity is favoured as well by means of the
BGA mutation operator [MSV93a]. The replacement strategy used is Replace-
ment Worst, RW. The combination NAM-RW produces a high selective pressure.
The SSGA is described in Algorithm 2.

Algorithm 2 Pseudo-code for the SSGA

1: Randomly generate the population
2: while not termination-condition do
3: Select two parents in the population using the NAM strategy
4: Create an offspring cn using BLX − α crossover and BGA mutation
5: Replace the worst individual cworst in the population if f(cworst) > f(cn)
6: end while

2.3 The LS

The continuous LS algorithm is CMA-ES [HMK03]. This algorithm is the state-
of-the-art in continuous optimisation. Thanks to the adaptability of its param-
eters, its convergence is very fast and obtains very good results. CMA-ES is an
algorithm that uses a distribution function to obtain new solutions, and adapt
the distribution around the best created solutions.

The only required parameters are the initial average of the distribution
~m and the initial standard deviation σ. MA-LSCh-CMA sets the individual to
optimise cLS as ~m, and as the initial σ value the half of the distance of cLS to
its nearest neighbour in the EA’s population. In our proposal, this initialisation
strategy is modified to focus the LS in the regions.
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3 Region based memetic algorithms

This section presents the basic concepts of the novel rigid niching strategy and
explains how we included it in the MA-LSCh-CMA.

Niching strategies consist in creating an area around the solutions of an
EA’s population where no other solution can be present. The main purpose of
this tool is to maintain the diversity of the population at a higher level. Main-
taining the diversity in a population prevents a fast convergence of the population
and allows a better exploration of the search space. This notion is particularly
interesting in MA as an EA’s first task is to explore, the exploitation of the so-
lutions being done by the LS method. In other words, throw this strategy, we
offer a clearer separation between the exploration effort done by the EA and the
exploitation task of the LS method.

In Section 3.1, we describe the proposed niching strategy. Including such
niching strategy implied two major modifications in the MA-LSCh-CMA, the
redefinition of the EA, explained in Section 3.2 and the initial parameters of the
LS explained in Section 3.3. Finally, we explain the scheme of the dynamic model
in Section 3.4. We named the resulting algorithm RMA-LSCh-CMA.

3.1 Basic concepts

Contrarily to most niching strategies where the niches are defined by the area
surrounding solutions of the population, we propose here a strategy in which the
niches are predefined as divisions of the search space, divided into hypercubes of
equal size called here regions. This definition of a niche is illustrated in Figure 1.
Each dimension is divided into ND divisions creating a grid of equal hypercubes,
that represent exclusive regions (niches) which can contain only one solution.
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3.2 The SSGA in a region-based MA

One of the key issues in niching strategies is to decide what to do with a solution
generated in the exclusion area of an other solution. The modifications to the
SSGA are described in Algorithm 3. It consists in not allowing the generation of
a solution by the SSGA in a region that is already occupied by an optimised so-
lution of the population. By optimised, we refer to the fact that it was previously
applied the LS over this solution, and the last LS applied has not brought enough
improvements (upper than δminLS ). Then, if a solution is optimised, we consider
its neighbourhood (and by consequence the region it lies in) has sufficiently been
explored. On the other hand, if the solution is not optimised, the EA can re-
place it with a solution with a better fitness in that region. That way, we avoid
unnecessary LS evaluations within the region to get a higher quality solutions.
This way, we ensure that the population does not hold two solutions in the same
region.

Algorithm 3 Pseudo-code for the region-based SSGA

1: Randomly generate the population
2: while not termination-condition do
3: Select two parents in the population
4: Create an offspring cn using crossover and mutation
5: if cn falls in a region containing an individual co then
6: if co is considered optimised then
7: Mutate cn using the BGA mutation and go back to 5
8: end if
9: end if
10: if cn falls in a region containing an individual co then
11: Replace co by cn if f(co) > f(cn)
12: else
13: Replace the worst individual cworst in the population if f(cworst) > f(cn)
14: end if
15: end while

3.3 The LS in a region-based MA

In order to put the emphasis on dedicating the exploration task to the EA and
the exploitation one to the LS, we have also modified the strategy for initialising
the parameters of the LS. In the MA-LSCh-CMA, the initial step of the CMA-ES
is set between the area limited by its neighbouring solutions. Here the CMA-ES
initial step is set according to the size of the region. We want to ensure that the
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close surrounding of a solution are properly explored by the LS as this task will
not be done by the EA. The initial standard deviation is set to half the size of the
region. Apart from this modification, in order to allow a proper refinement of the
solution, the LS is not influenced by the divisions of the search space. However, if
at the end of the LS application, the new solution is in a region occupied, the best
solution is kept and the other one is replaced by a randomly generated solution.

3.4 A dynamic number of divisions

One of the main issues when implementing a niching strategy is to define the size
of the niche. It is also the case in this model and it represents the most critical
parameter. Here, the size of the region is directly dependent on the number of
divisions per dimensions ND.

A high number of divisions leads to smaller niches and thus, a poor influ-
ence on the search. On the other hand a small number of divisions creates big
niches. The diversity will be high but the chances that the local search fails to
reach the best solution in its surroundings are higher.

These reasons shows that the niche size can limit the effectiveness of the
search. This motivates the use of a dynamic niche size in order to achieve a better
robustness of the algorithm. To do so, the number of divisions is increased along
the search. With bigger regions at the beginning of the search, a greater diversity
is maintained to ensure a strong exploration of the search space. The number of
division is then increased in order to allow a better convergence in later stages of
the process.

We have decided to use a linear increase of the number of division. At
each update, NDi = 2 · NDi−1. If the total number of updates is u, an update
occurs every max eval/(u+1) where max eval is the maximum number of fitness
evaluation allowed. With this strategy, two parameters appear, ND0, the initial
number of divisions and u, the number of updates.

4 Experimental framework

We have carried out different experiments to assess the performances of the
region-based niching strategy. In this section, we describe the test suites used.
For its low and median dimensions, the benchmark proposed in the Special Ses-
sion on Real Parameter Optimisation organised in the 2005 IEEE Congress on
Evolutionary Computation (CEC’2005)[SHL+05] is the basis of the study of the
model and is used for all the experiments. On the other hand, another bench-
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mark, the Soft Computing Special Issue on Large Scale Continuous Optimisation
benchmark (SOCO’2011) [LMH11] is used for offering results in a higher dimen-
sion.

Section 4.1 and 4.2 respectively describe the CEC’2005 and SOCO’2011
benchmark. Section 4.3 lists the statistical tests used for the comparisons.

4.1 The 2005 IEEE Congress on Evolutionary Computa-
tion benchmark

For the experimental sections, we have used the benchmark proposed in the
CEC’2005. The complete description of the functions can be seen in [SHL+05].
Table II.1 lists those functions. The first five are unimodal functions (F1-F5),
followed by seven basic multimodal (F6-F12), two expanded (F13-F14) and 11
hybrid composition functions (F15-F25). Those last ones are compositions of the
twelve first. Note that every functions have been shifted to ensure that the global
optimum is not in the center of search space. In F7 and F25, the optima are
out of the ranges of initialisation. These functions have been implemented in
dimension D = 10, 30, 50.

Table II.1: Test functions of the CEC’2005 benchmark

F1 Sphere function
F2 Schwefel’s problem 1.2
F3 Rotated High Conditioned Elliptic Function
F4 Schwefel’s Problem 1.2 with Noise in Fitness
F5 Unimodal function
F6 Rosenbrock’s function
F7 Griewank’s function
F8 Ackley’s function
F9 Rastrigin’s function
F10 Rotated Rastrigin’s function
F11 Rotated Weiestrass’ function
F12 Schwefel’s Problem 2.13
F13-F14 Expanded functions
F15-F25 Hybrid composition function

In order to be able to compare our results with other algorithms involved
in the competition, we followed the requirements described in [SHL+05] :
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• Each algorithm is run 25 times for each test function, and the average of
error of the best individual of the population is computed. The function
error value for a solution x is defined as (f(x) − f(x∗)), where x∗ is the
global optimum of the function.

• The study has been made with dimensions D = 10, D = 30, and D = 50.

• The maximum number of fitness evaluations for each run is 10, 000 · D,
where D is the dimension of the problem.

• Each run stops either when the error obtained is less than 10−8, or when
the maximal number of evaluations is achieved.

4.2 The Soft Computing Special Issue on Large Scale
Continuous Optimisation Problems

To assess the scalability of our model against the state-of-the-art, we used the
SOCO’2011 benchmark [LMH11]. Table II.2 lists those function. It is composed
of 19 shifted functions, 11 basic functions (F1-F11) and 8 hybrid composition
functions (F12-F19) which are non-separable functions built by combining two of
the 11 first functions.

This benchmark has been implemented in 4 different dimensions 50, 100,
500 and 1000. In our experiment we will only work with dimension 100, as dimen-
sion 50 is already assessed in the CEC’2005 benchmark, and higher dimensions
are outside the scope of this paper.

As for the CEC’2005 benchmark, each algorithm is run 25 and the mean
error is kept. The maximum number of fitness evaluations for each run is 5, 000·D

4.3 Statistical Tests

Non-parametric tests must be used for comparing the results of different search
algorithms for this benchmark [DGMH11]. Given that the non-parametric tests
do not require explicit conditions for being conducted, it is recommendable
that the sample of results would be obtained following the same criterion to
compute the same aggregation (average, mode, etc.) over the same number
of runs for each algorithm and problem. We use the program available in
http://sci2s.ugr.es/sicidm/

In particular, we have considered two alternative methods based on non
parametric tests to analyse the experimental results:
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Table II.2: Test functions of the SOCO’2011 benchmark

F1 sphere function
F2 Schwefel’s problem 2.21
F3 Rosenbrock’s function
F4 Rastrigin’s function
F5 Griewank’s function
F6 Ackley’s function
F7 Schwefel’s problem 2.22
F8 Schwefel’s problem 1.2
F9 Extended F10
F10 Bohachevsky
F11 Schaffer’s function
F12-F19 Hybrid composition function

• Application of the Iman and Davenport’s test and the Holm’s method as
post-hoc procedure. The first test may be used to see whether there are
significant statistical differences among the algorithms on a certain group
of test algorithms. If differences are detected, then Holm’s test is employed
to compare the best algorithm (control algorithm) against the remaining
ones.

• Application of the Wilcoxon matched-pairs signed-ranks test. With this
test, the results of two algorithms may be directly compared.

5 Experimental Results

We have carried out the experiments of RMA-LSCh-CMA using the parameters’
values proposed by the authors of MA-LSCh-CMA [MLGMH10], except for the
population size which was set to 60 in the previous model:

• the population size is 80

• the pool size for the NAM selection NNAM = 3

• the mutation probability Pmutation = 0.125

• the number of evaluation allocated to each LS Istr = 500

• the LS/EA ratio RLS = 0.5.
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In Section 5.1, we first experiment the influence of the number of divi-
sions. From the observation made, we then justify the use of a using a dynamic
number of divisions in Section 5.2. In Section 5.3, we compare the results of our
model against the original one, MA-LSCh-CMA and illustrate the influence of
the niching strategy on the diversity of the population. Finally, in Section 5.4,
we tune the parameters using IRACE [LIDLSB11] over the CEC’2005 benchmark
functions to compare the performances of the RMA-LSCh-CMA against a sample
of representative algorithms in Section 5.5.

5.1 Study of the number of divisions

When implementing a niching strategy, the most critical parameter is the size of
the niches. In this section, we assess the influence of the number of divisions on
the results and the diversity of the population. We tested three fixed values of
ND: 10, 50 and 100.

Results on the CEC’2005 benchmark

We present here the results obtained by the RMA-LSCh-CMA with different
values of ND. Detailed results can be seen in Appendix A.1.

Figure 2: Mean rankings obtained by RMA-LSCh-CMA with different number of
divisions over every functions of the CEC’2005 benchmark. The lower columns
corresponds to the best algorithms.

Figure 2 shows the average rankings obtained by the RMA-LSCh-CMA
instances with different ND values on the 25 test functions with dimensions
D = 10, 30, and 50. The mean rankings correspond to the average of the ranking
of each algorithm on each function. We can note that the influence on the number
of divisions depends on the dimension. Indeed, for smaller dimensions, a smaller
number of divisions obtains better results while a higher number of divisions
performs better on higher dimensions.
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Table II.3: Iman-Davenport test for significant difference between the instances
of R-MA-LSCh-CMA with ND = 10, ND = 50 and ND = 100

Significant
Dimension p-value differences?

10 0.763 No
30 0.014 Yes
50 0.333 No

We first applied the Iman-Davenport’s test to the results of the three
instances of the model to assess any significant differences. Table II.3 shows that
there are no significant differences in dimension 10 and 50. In dimension 30,
we can observe significant differences, thus we apply the Holm’s test using the
algorithm with best fitness, ND=50, as the control algorithm. Table II.4 show
the results. It can be observed that ND=50 gives significantly better results than
with ND=10 and they are fairly equivalent with ND=100.

Table II.4: Comparison using Holm’s test with α = 0.05 of the instance where
ND = 50 against the other instances

Significant
i ND z = (R0 −Ri)/SE p α/i difference?
2 10 2.687 0.007 0.025 Yes
1 100 0.495 0.621 0.05 No

Diversity study

This section aims to demonstrate the influence of the number of divisions on
the diversity of the population. We analyse the evolution of the diversity along
the search of RMA-LSCh-CMA with fixed values of ND using the distance-to-
average-point measure as described in [Urs02]. It consists in calculating the mean
distance of each individual in the population to the average point of the popula-
tion:

diversity(P ) =
1

|L| · |P |
·
|P |∑
i=1

√√√√ N∑
j=1

(sij − sj)2 (II.1)

where |L| is the length of the diagonal in the search space S ⊆ <N , P the
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population , |P | the population size, N the dimensionality of the problem, cij
the jth value of the individual i and sj the jth value of the average point of the
population s.

To perform this study, we ran an experiment over 25 runs in each func-
tion in dimension 10 measuring after the each pair of SSGA and LS is launched
(each of which running through 500 evaluations, the diversity is calculated every
approximately 1000 function evaluations).

Figure 3 represents the evolution of the population’s diversity for each
instance of the RMA-LSCh-CMA.
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Figure 3: Evolution of the diversity in the population for different number of
divisions for different functions

As it was expected, the number of divisions influences the diversity. In-
deed, the smaller the number of divisions, the higher is the diversity in the pop-
ulation remains along the search.
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5.2 Dynamic vs static number of divisions

The previous section showed that the choice of the number of divisions depended
on the dimension. In this section we thus assess the use of a dynamic number of
divisions. In this experiment, we chose to perform 3 updates during the search,
u = 3, with an initial number of divisions ND0 = 10, giving a sequence of
divisions number of 10, 20, 40 and 80. In table II.5 we compare the dynamic
model with the static one with different values of ND.

We saw in the previous section that setting a static number of divisions
influenced the results according to the dimensionality of the problem. This in-
fluence is reduced by using a dynamic number of divisions. Indeed, we can note
that while, when comparing the dynamic with a static high number of divi-
sions, both strategies are statistically equivalent in higher dimensions (D = 30
and D = 50), the dynamic model obtains better results in smaller dimensions
(D = 10). On the other hand, when comparing it with a static small number
of divisions (ND = 10), we obtain better performances in higher dimensions
(statistically better for D = 30).

Table II.5: Dynamic region based MA-LSCh-CMA versus various static numbers
of divisions using Wilcoxon’s test

R+ R-
Dimension ND Dynamic Static p− value

10 10 222.5 102.5 0.110
10 50 264.5 60.5 0.005
10 100 250 53.5 0.005
30 10 216.5 86 0.069
30 50 177 148 0.696
30 100 135.5 167 0.679
50 10 181.5 121 0.407
50 50 169.5 155.5 0.851
50 100 152.5 150 1.000

For the following experiments, we will use the dynamic version of the
algorithm.
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5.3 Comparison with the MA-LSCh-CMA

The original purpose of this work was to improve the promising results of the
MA-LSCh-CMA. We analyse in this section the improvements brought by the
proposed niching strategy to this algorithm and its influence on the diversity of
the population using the same parameters in both algorithms.

Results on the CEC’2005 benchmark

Table II.6: Wilcoxon signed rank test results of RMA-LSCh-CMA vs MA-LSCh-
CMA

R+ R−
Dim RMA-LSCh-CMA MA-LSCh-CMA p− value
10 247 78 0.022
30 202.5 99 0.152
50 211.5 90 0.089

All Dim 1927.5 854 0.004

The detailed results can be seen in Appendix A.2. Table II.6 shows the
Wilcoxon signed rank obtained when comparing both algorithms. We can see
that the niching strategy, and the modifications it implies, improves the results
in every dimensions. The results are statistically better in dimension 10, with
α = 0.05, and in dimension 50 with α = 0.1

Diversity study

We demonstrate in this section that the implementation of this niching strategy
actually influences the diversity of the population. The evolution of the diversity
on various functions is plotted in Figure 4 following the conditions described
Section 5.1.

We can see that the diversity remains higher in the population of the
RMA-LSCh-CMA.

5.4 Automatic configuration

In the previous section, we demonstrated that the use of the region-based niching
strategy in the LS chaining framework significantly improved the performances
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Figure 4: Evolution of the diversity in the population of the EA of the RMA-
LSCh-CMA and MA-LSCh-CMA for different functions
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of this MA. However, in order to fully adapt the design of this new model to the
problems at hand, we applied the automatic tuning of its parameters using the
automatic configuration tool IRACE [LIDLSB11].

IRACE package

The automatic configuration tool that we use is the IRACE package. Based on
previous works [BBS07, Bir04, Bir09, BSPV02, BYBS10], it implements an auto-
matic configuration approach based on racing [MM97]. Statistical tests are used
to test for significantly inferior candidate configurations. The IRACE package,
implemented as an R [R Development Core Team08] package, implements a ge-
neral iterated racing procedure. For more details on this tool, the reader can refer
to [LIDLSB11].

The IRACE package has already been extensively tested in several re-
search projects, leading to successful improvement over the state-of-the-art, see
for instance [DLLIS11b, DLLIS11a].

The advantage of this tool is that it handles several parameter types:
continuous, integer, categorical, and ordered. Continuous and integer parameters
take values within a range specified by the user. Categorical parameters can take
any value among a set of possible ones explicitly given by the user. An ordered
parameter is a categorical parameter with a pre-defined strict order of its possible
values. We also relied on its capability to parallelize the configuration phase in
order to reduce considerably the amount of time required for it.

Application to the RMA-LSCh-CMA

We selected a set of parameters that we considered the most critical to be tuned.
Those parameters are listed in Table II.7 along with the ranges of search, their
default values and their obtained values after tuning. The tuning budget allocated
to IRACE is set to 5000. The budget corresponds to number of runs in the
conditions defined by the benchmark that irace uses to perform the tuning.

In Table II.8, we compare the results of the RMA-LSCh-CMA with default
parameters and the ones obtained by tuning. The automatic configuration brings
significant overall improvements to the model and more specifically in dimension
10 and 50.

For the following experiment, we use the parameters obtained by tuning
and listed in Table II.7
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Table II.7: Parameters tuned and obtained values

Parameters Descriptions Ranges Default Tuned

Istr
LS intensity, number of evaluations al-
located to each LS application

[100, 1000] 500 950

ND0
Initial number of divisions, defines the
size of the niches/regions

[2, 10] 10 6

u Number of update to be performed [2, 5] 3 2
mu Update multiplier [1, 5] 2 4

rEA/LS

The repartition of the overall effort be-
tween the EA and the LS the higher the
value the more evaluations allocated to
the LS

[0.1, 0.9] 0.5 0.6

NP Population size of the EA [40, 120] 80 40

λ
Parameter to define the CMA-ES pop-
ulation size p = 4 + λln(D)

[1, 10] 3 8

µ
Defines the parent size for the CMA-ES
p/µ

[1, 5] 2 4

α Parameter for the BLX − α crossover [0.1, 0.9] 0.5 0.6

Table II.8: Wilcoxon signed rank test between the default version of RMA-LSCh-
CMA (R−) and its tuned version (R+)

Tuned Default
Dim R+ R− p− value
10 241.5 62 0.011
30 160 142.5 0.830
50 234 68.5 0.019

All Dimensions 1951 832.5 0.003
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5.5 Comparison with other algorithms

In this section, we compare the efficiency of our algorithm with IPOP-CMA-ES
[AH05], MDE pBX [IDG+12] and 3SOME [INM+12] :

• IPOP-CMA-ES is the winner of the CEC2005 Real-Parameter Optimisa-
tion competition. It is a restart algorithm that uses CMA-ES and detects
premature convergence and launches a restart strategy that doubles the
population size on each restart. This process allows a more global approach
of the search which empowers the operation of the CMA-ES on multimodal
functions.

• MDE pBX is a state-of-the-art differential evolution(DE). It uses a new mu-
tation operator called DE/current-to-gr best/1,a variant of the DE/current-
to-best/1, which uses the best of a random group of individuals in the pop-
ulation instead of the global best and performs a the recombination with a
random individual of the p best individuals of the population. It also adapts
its parameters according to the successes and failures of each of them.

• 3SOME is an example from the MC family. It is a simple, in its concept
and implementation, memetic optimiser based on the philosophical concept
of Ockham’s Razor. The search is divided in three stages each of which
corresponds to a variations between explorations and exploitation named
long middle and short distance exploration.

The experiments on these algorithms have been performed using the orig-
inal source code provided by the authors or, when available, their published
results.

Results on the CEC’2005 benchmark

Table II.9 shows the results of the comparison with those three algorithms ap-
plying the Wilcoxon’s test. With regards to the detailed results in Appendix
Tables A.4, A.5 and A.6, our algorithm obtains signitificantly better results than
3SOME, thus the inconvenience of the greater complexity of our algorithms is
justified by its results.

Concerning MDE pBX, the overall performances of our algorithm is sig-
nificantly better (with α = 0.05). When analysing the results on each dimension
individually, we can see that the superiority of our algorithm appears in higher
dimensions (30 and 50 with α = 0.05).
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Table II.9: Wilcoxon signed rank test results between RMA-LSCh-CMA (R+)
and reference algorithms (R−)

Dim RMA-LSCh-CMA vs R+ R− p− value
10 3SOME 291.5 10 5.13E-6
10 MDE pBX 195.5 108 0.230
10 IPOP-CMA-ES 94.5 209 0.117
30 3SOME 299.5 25.5 5.88E-5
30 MDE pBX 257.5 67.5 0.01
30 IPOP-CMA-ES 162.5 162.5 1
50 3SOME 282.5 42.5 6.73E-4
50 MDE pBX 299.5 25.5 5.88E-5
50 IPOP-CMA-ES 212 113 0.191

All Dimensions 3SOME 2560.5 218 2.97E-10
All Dimensions MDE pBX 2239.5 541 5.11E-6
All Dimensions IPOP-CMA-ES 1396 1387.5 1

Finally, IPOP-CMA-ES obtains equivalent results over the whole bench-
mark. The differences. We note a small tendency of our algorithm to perform
better on higher dimensions and worse on smaller ones although no significant
difference can be detected.

Results on the SOCO’2011 benchmark

We saw in the previous section that the performance of the RMA-LSCh-CMA
algorithm against the IPOP-CMA-ES was improving when increasing the di-
mensionality of the problems. It is thus interesting to assess the performances
of this model on higher dimensions. The CEC’2005 benchmark does not pro-
pose problems in dimensions higher than 50. We thus used the Soft Computing
Special Issue on Large Scale Continuous Optimisation Problems (SOCO’2011)
benchmark to assess the performances of our proposal against IPOP-CMA-ES
in a higher dimension. We performed the experiments in dimension 100. The
detailed results can be seen in Appendix A.3.

We can see from Table II.10 that we obtain better results with a significant
level of α = 0.05 in higher dimensions than the IPOP-CMA-ES and MDE pBX.
Against the MA-LSCh-CMA and the 3SOME, the results obtained are statisti-
cally equivalent. However, we note that 3SOME obtains slightly better results.
This reflects the declining efficiency of CMA-ES in higher dimensions.

In [MLSH10], the original MA with LS chaining is applied to the
SOCO’2011 benchmark using a Solis Wets algorithm [SW81] as LS instead of
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Table II.10: Wilcoxon signed ranks test results between RMA-LSCh-CMA (R+)
reference algorithms (R−) on the SOCO’2011 benchmark in dimension 100

RMA-LSCh-CMA vs R+ R− p− value
MA-LSCh-CMA 119.5 70.5 0.324

3SOME 79 92 0.777
MDE pBX 180 10 1.64E-4

IPOP-CMAES 153.5 36.5 0.017

CMA-ES. The same way, further experiments can thus be performed in higher
dimensions (up to 1000) but would imply modifying the LS.

6 Conclusion

The aim of this chapter is to present a novel niching mechanism for MAs which
can improve the solutions by maintaining the diversity of the population. It
demonstrates the importance of separating the effort of the global search from
the refinement of the solution. To avoid the competition between the EA and
the LS, we have decided to divide the search space into rigid niches ensuring
each one only contains one solution. The search space is thus divided into equal
hypercubes we called regions. In order to assess the efficiency of this strategy,
we implemented it in the MA-LSCh-CMA algorithm, creating an algorithm we
called RMA-LSCh-CMA. It led to two major modifications. The first one is to
ensure that only one solution of the EA’s population can be present in a region.
This ensures that a certain diversity in the population is maintained and that
the close neighbourhood of a solution will not be explored by the EA as this
task is meant to be more efficiently performed by the LS method. The second
modification is the initialisation of the LS. It is now initialised according to the
size the regions to ensure that the region the solution to which the LS is applied is
properly explored. Both modifications go in the sense of limiting the competition
between the LS and EA by limiting the EA in the performance of the exploitation
effort and forcing the LS to focus its search on the close surroundings of solution.

In order to limit the dependence of the model to the niche size, we also
proposed a method to automatically update the the number divisions per dimen-
sions. This number is increased along the search to decrease the niche size. As
a result, we proved that RMA-LSCh-CMA obtained significantly better results
than the original algorithms.





Appendix A

Detailed Results

In this section of the appendices, we list the detailed results of the experiments
performed in Chapter II. Tables A.1, A.2 and A.3 in Section 1 contain the results
obtained by the static version of RMA-LSCh-CMA. In Section 2, Tables A.4, A.6
and A.6 show the results of the final version of the RMA-LSCh-CMA alog with
the the comparison algorithms results. Those two first section contains the results
obtained on the CEC’2005 benchmark in dimensions 10, 30 and 50. Finally in
Section 3, Table A.7 presents the results obtained for the RMA-LSCh-CMA ant
the comparison algorithms on the SOCO’2011 in dimension 100.

1 Results of the static model on the CEC’2005

benchmark

37
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Table A.1: Results in Dimension 10 of the RMA-LSCh-CMA with various values
of ND

F/ND 10 50 100
F1 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 1.00E-008 1.00E-008
F3 1.00E-008 1.00E-008 1.00E-008
F4 1.00E-008 1.00E-008 1.00E-008
F5 1.00E-008 1.00E-008 1.00E-008
F6 1.00E-008 5.68E-003 1.68E-003
F7 1.00E-008 1.00E-008 1.00E-008
F8 2.04E+001 2.04E+001 2.04E+001
F9 8.15E-001 7.96E-002 1.00E-008
F10 4.18E+000 2.35E+000 1.83E+000
F11 3.32E-001 1.29E+000 1.64E+000
F12 1.47E+002 1.22E+002 2.19E+002
F13 6.29E-001 5.69E-001 4.78E-001
F14 2.84E+000 2.52E+000 2.15E+000
F15 2.13E+002 2.67E+002 2.72E+002
F16 8.43E+001 9.09E+001 9.02E+001
F17 9.72E+001 9.34E+001 9.28E+001
F18 7.79E+002 8.47E+002 8.57E+002
F19 7.63E+002 8.03E+002 8.60E+002
F20 7.51E+002 8.21E+002 8.36E+002
F21 7.47E+002 7.70E+002 7.70E+002
F22 7.42E+002 7.35E+002 7.30E+002
F23 9.31E+002 9.47E+002 9.35E+002
F24 2.36E+002 2.12E+002 2.76E+002
F25 4.10E+002 4.06E+002 4.40E+002



1. Results of the static model on the CEC’2005 benchmark 39

Table A.2: Results in Dimension 30 of the RMA-LSCh-CMA with various values
of ND

F/ND 10 50 100
F1 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 1.00E-008 1.00E-008
F3 1.00E-008 1.06E-008 1.00E-008
F4 2.43E+001 4.02E-001 2.98E-001
F5 9.27E+001 3.77E+001 5.70E+000
F6 2.83E+001 1.49E+001 1.57E+001
F7 6.90E-004 1.00E-008 1.00E-008
F8 2.10E+001 2.09E+001 2.09E+001
F9 6.70E+000 2.73E-002 5.69E-004
F10 2.46E+001 1.79E+001 1.71E+001
F11 4.04E+000 1.24E+001 1.60E+001
F12 1.88E+003 1.64E+003 2.26E+003
F13 3.46E+000 2.50E+000 2.17E+000
F14 1.28E+001 1.26E+001 1.27E+001
F15 3.32E+002 3.15E+002 3.14E+002
F16 9.69E+001 8.57E+001 7.55E+001
F17 9.05E+001 7.18E+001 7.36E+001
F18 9.07E+002 9.02E+002 9.02E+002
F19 9.03E+002 9.02E+002 9.02E+002
F20 9.03E+002 9.06E+002 9.06E+002
F21 5.00E+002 5.00E+002 5.00E+002
F22 8.95E+002 8.67E+002 8.76E+002
F23 5.50E+002 5.34E+002 5.57E+002
F24 2.00E+002 2.00E+002 2.00E+002
F25 2.10E+002 2.11E+002 2.13E+002
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Table A.3: Results in Dimension 50 of the RMA-LSCh-CMA with various values
of ND

F/ND 10 50 100
F1 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 1.01E-008 1.03E-008
F3 1.00E-008 1.05E-008 1.00E-008
F4 3.82E+003 1.06E+003 1.83E+003
F5 2.22E+003 1.82E+003 1.70E+003
F6 1.87E+001 9.48E+000 3.79E+001
F7 1.00E-008 1.08E-003 1.00E-008
F8 2.11E+001 2.11E+001 2.11E+001
F9 5.69E-001 2.19E-002 1.00E-003
F10 6.60E+001 3.63E+001 3.81E+001
F11 1.11E+001 2.61E+001 3.27E+001
F12 1.47E+004 1.03E+004 1.18E+004
F13 6.00E+000 4.52E+000 4.06E+000
F14 2.26E+001 2.23E+001 2.21E+001
F15 3.13E+002 3.57E+002 3.01E+002
F16 5.89E+001 7.12E+001 5.33E+001
F17 9.59E+001 8.47E+001 5.92E+001
F18 8.72E+002 8.97E+002 9.21E+002
F19 8.21E+002 9.21E+002 9.20E+002
F20 8.97E+002 8.93E+002 9.21E+002
F21 5.24E+002 5.12E+002 5.00E+002
F22 9.41E+002 9.35E+002 9.12E+002
F23 5.67E+002 5.39E+002 5.53E+002
F24 2.00E+002 2.00E+002 2.00E+002
F25 2.14E+002 2.15E+002 2.19E+002
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2 Results of the dynamic RMA-LSCh-CMA,

the MA-LSCh-CMA, IPOP-CMA-ES,

MDE pBX and 3SOME on the CEC’2005

benchmark

Table A.4: Results on the CEC’2005 benchmark in dimension 10

F RMA-LSCh-CMA MA-LSCh-CMA IPOP-CMAES MDE pBX 3SOME
F1 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
F3 1.00E-008 1.00E-008 1.00E-008 1.00E-008 4.57E+004
F4 1.00E-008 5.54E-003 1.00E-008 1.00E-008 2.00E+002
F5 1.00E-008 6.75E-007 1.00E-008 1.00E-008 1.76E+003
F6 1.00E-008 3.19E-001 1.00E-008 1.59E-001 6.64E+001
F7 1.00E-008 1.43E-001 1.00E-008 1.27E+003 1.27E+003
F8 2.03E+001 2.00E+001 2.00E+001 2.01E+001 2.00E+001
F9 1.00E-008 1.00E-008 2.39E-001 1.00E-008 1.00E-008
F10 2.79E+000 2.67E+000 7.96E-002 4.61E+000 4.27E+001
F11 5.04E-001 2.43E+000 9.34E-001 2.20E+000 7.38E+000
F12 6.31E+001 1.14E+002 2.93E+001 9.23E+002 2.25E+002
F13 4.83E-001 5.45E-001 6.96E-001 5.08E-001 4.72E-001
F14 2.55E+000 2.25E+000 3.01E+000 2.50E+000 4.18E+000
F15 1.95E+002 2.24E+002 2.28E+002 2.67E+002 2.28E+002
F16 9.48E+001 9.18E+001 9.13E+001 9.80E+001 1.99E+002
F17 9.52E+001 1.01E+002 1.23E+002 1.08E+002 2.28E+002
F18 7.42E+002 8.84E+002 3.32E+002 6.30E+002 8.90E+002
F19 7.17E+002 8.78E+002 3.26E+002 6.24E+002 9.28E+002
F20 7.93E+002 8.63E+002 3.00E+002 6.71E+002 9.14E+002
F21 7.03E+002 7.94E+002 5.00E+002 6.54E+002 9.26E+002
F22 6.76E+002 7.53E+002 7.29E+002 7.55E+002 8.60E+002
F23 8.91E+002 8.88E+002 5.59E+002 9.03E+002 9.23E+002
F24 2.36E+002 2.28E+002 2.00E+002 2.36E+002 2.88E+002
F25 4.08E+002 4.55E+002 3.74E+002 8.60E+002 1.80E+003
F26 2.42E+000 2.94E+000 2.12E+000 3.16E+000 4.36E+000
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Table A.5: Results on the CEC’2005 benchmark in dimension 30

F RMA-LSCh-CMA MA-LSCh-CMA IPOP-CMAES MDE pBX 3SOME
F1 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
F3 1.00E-008 2.75E+004 1.00E-008 4.53E+004 1.82E+005
F4 5.94E-001 3.02E+002 1.11E+004 1.84E-007 7.88E+003
F5 1.00E-008 1.26E+003 1.00E-008 4.65E+000 1.25E+004
F6 1.00E-008 1.12E+000 1.00E-008 1.28E+000 8.40E+001
F7 4.93E-004 1.75E-002 1.00E-008 4.70E+003 4.70E+003
F8 2.10E+001 2.00E+001 2.01E+001 2.03E+001 2.00E+001
F9 1.89E-004 1.00E-008 9.38E-001 1.67E+001 1.00E-008
F10 1.95E+001 2.25E+001 1.65E+000 2.67E+001 3.39E+002
F11 5.65E+000 2.15E+001 5.48E+000 1.46E+001 3.25E+001
F12 1.59E+003 1.67E+003 4.43E+004 1.75E+005 2.84E+003
F13 2.07E+000 2.03E+000 2.49E+000 3.65E+000 1.73E+000
F14 1.26E+001 1.25E+001 1.29E+001 1.25E+001 1.37E+001
F15 3.19E+002 3.00E+002 2.08E+002 2.87E+002 2.09E+002
F16 1.41E+002 1.26E+002 3.50E+001 1.54E+002 4.20E+002
F17 2.06E+002 1.83E+002 2.91E+002 1.70E+002 4.09E+002
F18 9.05E+002 8.98E+002 9.04E+002 9.05E+002 9.68E+002
F19 9.05E+002 9.01E+002 9.04E+002 8.96E+002 9.79E+002
F20 9.01E+002 8.96E+002 9.04E+002 9.06E+002 9.56E+002
F21 5.00E+002 5.12E+002 5.00E+002 5.24E+002 1.02E+003
F22 8.41E+002 8.80E+002 8.03E+002 8.52E+002 1.13E+003
F23 5.49E+002 5.34E+002 5.34E+002 5.84E+002 8.95E+002
F24 2.00E+002 2.00E+002 9.10E+002 2.30E+002 4.13E+002
F25 2.10E+002 2.14E+002 2.11E+002 9.68E+002 1.72E+003
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Table A.6: Results on the CEC’2005 benchmark in dimension 50

F RMA-LSCh-CMA MA-LSCh-CMA IPOP-CMAES MDE pBX 3SOME
F1 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
F2 1.00E-008 3.06E-002 1.00E-008 1.00E-008 1.00E-008
F3 1.00E-008 3.21E+004 1.00E-008 8.37E+004 1.51E+005
F4 4.73E+002 3.23E+003 4.68E+005 2.97E+001 3.37E+004
F5 4.92E+002 2.69E+003 2.85E+000 2.31E+003 1.90E+004
F6 5.01E+000 4.10E+000 1.00E-008 9.55E+000 1.01E+002
F7 1.00E-008 5.40E-003 1.00E-008 6.20E+003 6.20E+003
F8 2.11E+001 2.00E+001 2.01E+001 2.02E+001 2.00E+001
F9 1.07E-003 1.00E-008 1.39E+000 5.24E+001 1.00E-008
F10 4.58E+001 5.01E+001 1.72E+000 6.07E+001 8.61E+002
F11 1.22E+001 4.13E+001 1.17E+001 3.75E+001 6.23E+001
F12 1.51E+004 1.39E+004 2.27E+005 9.47E+005 6.01E+003
F13 3.66E+000 3.15E+000 4.59E+000 9.11E+000 3.01E+000
F14 2.23E+001 2.22E+001 2.29E+001 2.24E+001 2.35E+001
F15 2.90E+002 3.72E+002 2.04E+002 3.45E+002 2.72E+002
F16 6.96E+001 6.90E+001 3.09E+001 9.78E+001 5.13E+002
F17 1.22E+002 1.47E+002 2.34E+002 1.38E+002 5.18E+002
F18 8.45E+002 9.41E+002 9.13E+002 9.33E+002 1.12E+003
F19 8.72E+002 9.38E+002 9.12E+002 9.32E+002 1.10E+003
F20 8.70E+002 9.28E+002 9.12E+002 9.35E+002 1.13E+003
F21 5.24E+002 5.00E+002 1.00E+003 5.67E+002 8.50E+002
F22 8.63E+002 9.14E+002 8.05E+002 9.00E+002 1.17E+003
F23 5.39E+002 5.39E+002 1.01E+003 5.87E+002 8.58E+002
F24 2.00E+002 2.00E+002 9.55E+002 3.61E+002 1.16E+003
F25 2.14E+002 2.21E+002 2.15E+002 1.23E+003 1.78E+003



44 Chapter A. Detailed Results

3 Results on the SOCO’2011 benchmark in di-

mension 100

Table A.7: Results on the SOCO’2011 benchmark in dimension 100

F RMA-LSCh-CMA MA-LSCh-CMA IPOP-CMAES MDE pBX 3SOME
F1 0.00E+000 0.00E+000 0.00E+000 1.41E-013 0.00E+000
F2 8.27E-011 1.26E-001 1.51E-010 6.66E+001 1.39E-008
F3 2.03E+002 1.15E+001 3.88E+000 1.70E+002 5.00E+001
F4 0.00E+000 1.47E+000 2.50E+002 2.11E+002 8.30E-001
F5 3.65E-003 0.00E+000 1.58E-003 3.65E-002 0.00E+000
F6 1.09E-012 8.07E-014 2.12E+001 3.09E+000 0.00E+000
F7 4.64E-014 0.00E+000 4.22E-004 0.00E+000 4.79E-003
F8 1.21E-004 2.26E+003 0.00E+000 2.40E-001 0.00E+000
F9 5.60E+002 5.64E+002 1.02E+002 5.57E+002 5.81E+002
F10 0.00E+000 0.00E+000 1.66E+001 3.40E+001 1.09E-002
F11 6.55E+000 6.82E-001 1.64E+002 9.92E+001 9.66E+000
F12 4.53E+000 1.25E+000 4.17E+002 1.61E+002 5.55E-002
F13 7.10E+001 1.04E+002 4.21E+002 3.47E+002 9.17E+001
F14 1.66E-001 1.00E+000 2.55E+002 1.69E+002 6.72E-001
F15 3.57E-014 4.12E-007 6.30E-001 5.11E+000 3.17E-002
F16 3.75E+000 1.29E-001 8.59E+002 2.62E+002 8.42E-002
F17 4.14E+001 2.32E+002 1.51E+003 4.65E+002 3.78E+001
F18 1.26E+000 1.68E-001 3.07E+002 1.05E+002 3.15E-002
F19 1.42E-014 0.00E+000 2.02E+001 2.22E+001 7.97E-003



Chapter III

Region-based memetic algorithm
with archive for multimodal
optimisation

1 Introduction

Many real world problems offer various solutions considered as global optima.
The identification of multiple solution has thus gained popularity in the research
community. It is referred to multimodal optimisation as the objective is to re-
trieve more than one optima. While classical evolutionary algorithms (EA) were
designed to identify a single optimum, modification have to be proposed to pre-
vent their convergence and maintain the diversity in their population in order to
ensure the exploration and exploitation of distinct areas of the fitness landscape.
Such techniques, known as niching strategies [DMQS11], are meant to maintain
subgroups of individuals in a single population in order to locate multiple optima.

Most existing techniques’ efficiency rely on two problem dependent param-
eters, the niche radius and the population size [DJ75, GR87, Pet96]. The first
one should be defined according to the distance between optima in the fitness
landscape and the second one according to the number of optima to locate. Both
information are however usually unknown in real world problems. Nowadays,
research interest focuses in designing EA less dependent on those parameters.

In addition, the challenges when designing an EA for multimodal optimi-
sation are to create models offering great exploration power to identify with the
highest accuracy several global optima and being the least dependent to those
parameters.

45
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In the previous chapter, we demonstrated how the use of a region-based
niching strategy could be used to maintain a high level of diversity in the pop-
ulation of a MA. By maintaining the diversity in the population, the resulting
algorithm, RMA-LSCh-CMA was provided with a higher exploration power lead-
ing to an significant improvement in the results achieved compared to the original
MA.

In this chapter, we enhance the exploration ability of this model for the
identification of multiple optima by providing it with an external archive serving
two purposes:

• As it is usually done in the literature [ELB13, Zah04, ZL11], the archive
stores solutions considered as optima in order to limit the dependence of
the algorithm to the population size parameter.

• The archive is used to eliminate from the search space already explored
regions. To do so, the archive maintains an index of the regions represented
by the solutions it contains and prevents the EA to generate new solutions
in those regions. This mechanism is made possible by the representation
of a niche by regions as it makes an indexation and retrieval of the regions
in the archive very straightforward and efficient. We demonstrate in this
paper that the use of the archive for such purpose increases the efficiency
of the exploration of the search space by the EA.

As it is done for RMA-LSCh-CMA, the dependency to the niche size (here
defined by the number of divisions of the search space) is reduced by increasing
along the search the number of divisions. The resulting algorithm is there referred
to as Region-based Memetic Algorithm with Archive (RMAwA).

Different studies are performed to demonstrate that the use of the region
based niching strategy coupled with an archive provide interesting improvements
to the memetic framework and that the RMAwA is a very competitive algorithm
against existing ones.

This chapter is organised as follows. In Section 2, we present the RMAwA
and detail each components. In Section 3, we explain the experimental frame-
work, the benchmark used, the evaluation and the parameter setting of the al-
gorithm. Section 4 presents the studies performed on the proposals made in this
paper a comparison with the results obtained by other algorithms. Finally, some
concluding remarks are pointed out in Section 6.
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2 Region-based memetic algorithm with archive

Following the general scheme of the RMA-LSCh-CMA presented in the previous
chapter, we present here a region-based MA with archive (RMAwA) which takes
full advantage the region definition of a niche to enhance the exploration ability
of the algorithm.

Usually, the use of an archive in an algorithm designed for multimodal
optimisation is ensure to the preservation of found optima and as a consequence
limit the dependency of the algorithm to the population size when using the solely
the solutions of the population as memory of the found optima [ZL11]. Indeed,
as the number of optima present in a the fitness landscape of a problem is usually
unknown, having a fixed population size can lead to the loss of optima. Here, we
introduce the use of an archive as a storing facility for the preservation of optima
but also as an index to restricted regions in order to subtract from the search
space the regions already explored.

In this section, we detail the use of the archive, explaining its structure
and the solutions it is meant to store followed by a description of the modification
brought to the previous model in order to include the archive component in the
search.

2.1 The archive

As described previously, this algorithm implements an archive aiming at storing
optimised solutions and creating an index of regions of the search space considered
undesirable for further exploration.

We describe in this section here the structure of the archive allowing such
mechanisms and solutions that are inserted in the archive to serve later for the
definition of such undesirable solutions.

Structure

The archive is composed by two collections and its size is not limited. The first
one is a simple list of solutions. It contains every real-valued solutions stored
in the archive. The second one is a sorted index of the regions represented in
the archive. This index allows the efficient retrieval of the regions represented
by solutions in the archive. Thanks to this structure, the regions listed in the
index are considered as forbidden areas for the generation of future solutions by
the EA. This prevents the EA to explore undesirable regions. The index is a
self-balancing binary search tree which offers an insertion and search complexity
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of O(log n). This low complexity allows a large amount of solutions to be stored
in the archive with a limited computational cost. Moreover, it only allows unique
elements. In Figure 1, we show an example of the archive structures. We can
see how a new solution, composed by the actual real-value solution sn and the
region it belongs to rn, are used. The former is stored in the archive while the
latter is added to the index. Thanks to this property, if a region is represented
by multiple solutions in the archive, there will be only one entry in the index
for that region. The following section describes what regions are considered as
restricted to further exploration.
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Figure 1: Example of the representation of the archive and its index for a two-
dimensional problems

Solutions added in the archive

First of all, the archive’s purpose is to store optima identified during the search.
Knowing when an optima is found can however be complicated if the fitness value
of the optima is unknown. Thanks to the use of an LS method, we consider a
solution as an optima (local or global) when the last LS application does not bring
sufficient improvements. An insufficient improvement occurs when the difference
between the fitness of the the starting point of the LS and the fitness of the
obtained solution is below δminLS .

This method of selection also allows local optima to be included in the
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archive restricting their region, as well as global optima, from further exploration.

Apart from storing the optima found by means of LS, the archive also
saves the solution that serves as starting point of each LS application. The idea
behind that is to also eliminate from the search space regions that lead to already
identified optima.

To summarize, the archive stores forbidden regions in order to diminish
the search space with areas already explored and for which we do not want to
dedicate more effort. These regions are the ones containing a local optima, global
optima and solutions leading to an optima. The structure of the archive depicted
in the previous section allows the presence of multiple solutions belong to the same
region in the archive without increasing the retrieval cost as they are represented
by only one entry in the index.

2.2 General Scheme

The RMAwA uses a similar scheme as RMA-LSCh-CMA. It alternatively applies
an EA and an LS method. At the end of each EA application, the best solution
of the population sbest is selected for local improvements by the LS.

The same region size update mechanism is used as described in Section 3.4.
However, considering that the EA is forbidden to generate solutions in the regions
represented in the archive, an update of the number of divisions ND also occurs
when every regions are already represented in the archive. That way, we prevent
the search to stall. For each update, the corresponding regions of each solution in
the population are recalculated and the index of the archive is updated according
to the solutions present in the archive. The general scheme of the algorithm can
be seen in Algorithm 4.

The following two section describe the EA and the LS method used with
the way they are incorporated in the RMAwA.

2.3 The EA

The EA used here, as in the RMA-LSCh-CMA, is a steady-state genetic algorithm
(SSGA). It uses the same genetic operators (crossover and mutation). The major
difference lies in the mechanisms following the creation of a new solution. When
a new solution sn is generated via the operators described above, it goes through
different processes before validation. First the region rn it belongs to is calculated.
Then, rn is looked for in the archive index. If this region is already represented by
another solution in the archive, sn is discarded and thus not evaluated. Otherwise,
if rn is not in the archive, then sn is evaluated and compared to the set of solutions
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Algorithm 4 Pseudo-code for general scheme of the RMAwA

1: Initialize population
2: while MaxFEs is not reached do
3: Apply SSGA with iEA evaluations following Algorithm 5
4: Select the best individual in the population sbest
5: Apply LS method following Algorithm 6 on sbest
6: if conditions for number of divisions update then
7: Update number of divisions: NDi = mu ·NDi−1
8: Update index of the archive
9: end if
10: end while

from the population present in the same region rn. The worst solution is then
removed and replaced by sn. If rn is not yet represented in the population, then
sn competes with the worst solution of the whole population to replace it. The
SSGA in the RMAwA is described in Algorithm 5.

Algorithm 5 Pseudo-code for the SSGA in RMAwA

1: i = 0
2: while i < iEA do
3: Select two parents in the population
4: repeat
5: Create an offspring sn using crossover and mutation
6: Calculate the region rn to which sn belongs
7: until rn is not represented in the archive
8: Evaluate sn, i = i+ 1
9: Retrieve from the population the set of solutions Srn of solutions belonging

in the region rn
10: if Srn 6= ∅ then
11: set Srn = Srn ∪ sn
12: Remove worst individual from Srn
13: else
14: Replace the worst individual sworst in the population if f(sworst) > f(sn)
15: end if
16: end while

2.4 The LS method

Here again, the LS algorithm used remains the same (CMA-ES). Contrarily to
RMA-LSCh-CMA, RMAwA does not implement a LS chaining mechanism be-
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cause the local search here is applied to same solution until it can not be improved
anymore. This modification is due to the fact that this algorithm considers as
optima solutions which cannot be improved by LS application.

As stated before, the best solution sbest of the population is selected for
local refinement. To ensure that this solution will not take part to further explo-
ration, it is removed from the population, placed in the archive and replaced by
a random solution. The LS is applied multiple times with iLS evaluations until
the last application does not bring any sufficient improvements. The obtained
solution is then stored in the archive. The application of the LS is described in
Algorithm 6.

Algorithm 6 Pseudo-code for the application of the LS in RMAwA

1: Add sbest to the archive
2: Replace sbest by a random solution in the population
3: repeat
4: Apply the LS method to sbest with iLS evaluations, giving sLS
5: until |f(sbest)− f(sLS)| < δminLS

6: Add sLS to archive

3 Experimental framework

The experiments in this chapter were carried out using the benchmark proposed
for the special session and competition on niching methods for multimodal func-
tion optimization of the IEEE Congress on Evolutionary Computation in 2013
(CEC’2013) [LEE13]. In this section, we describe the framework used to perform
these experiments, first by describing the benchmark used and the evaluation
method. Finally, we explain the parameter tuning used for the final version of
the algorithm.

3.1 The CEC’2013 benchamark

The CEC’2013 benchmark is composed of 12 bounded functions :

• f1 : Five-Uneven-Peak Trap , f1(x) where x ∈ [0, 30], D = 1

• f2 : Equal Maxima , f2(x) where x ∈ [0, 1], D = 1

• f3 : Uneven Decreasing Maxima , f3(x) where x ∈ [0, 1], D = 1
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• f4 : Himmelblau , f4(~x) where ~x ∈ [−6, 6]D, D = 2

• f5 : Six-Hump Camel Back , f5(x1, x2) where x1 ∈ [−1.9, 1.9] and x2 ∈
[−1.1, 1.1], D = 2

• f6 : Shubert , f6(~x) where ~x ∈ [−10, 10]D, D = {2, 3}

• f7 : Vincent , f7(~x) where ~x ∈ [0.25, 10]D, D = {2, 3}

• f8 : Modified Rastrigin - All Global Optima , f8(~x) where ~x ∈ [0, 1]D, D = 2

• f9 : Composition Function 1 , f9(~x) where ~x ∈ [−5, 5]D, D = 2

• f10 : Composition Function 2 , f10(~x) where ~x ∈ [−5, 5]D, D = 2

• f11 : Composition Function 3 , f11(~x) where ~x ∈ [−5, 5]D, D = {2, 3, 5, 10}

• f12 : Composition Function 4 , f12(~x) where ~x ∈ [−5, 5]D, D = {3, 5, 10, 20}

Each function is declined in various dimensionality creating a total of 20
problems.

Table III.1 details the 20 problems characteristics. We are only interested
here in identifying the global optima. The number of global optima is known and
finite. This information however cannot be used in the optimisation process. In
this paper, we refer by fi to i-th function and Fj to the j-th problem, a problem
consisting in the pair {fi, D} where D is the dimensionality of the problem.

This benchmark is very heterogeneous. It proposes problems with a high
number of optima (F8, F9), dimensionality ranging from 1 to 20. More details on
the properties of each functions can be seen in [LEE13].

3.2 Evaluation

For the evaluation of an algorithm’s performance over multiple run (50 runs to
be executed following the competition requirements), we use the now commonly
used peak ratio (PR). The PR measures the average percentage of all known
global optima found within the MaxFEs evalautions given for each problem:

PR =

∑NR
i=1NPFi

NKP ∗NR
(III.1)

where NPFi is the number of global optima found in the i-th run, NKP
is the number of known global optima and NR is the number of runs.
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Table III.1: CEC’2013 benchmark problems

Problem Function D Number of optima MaxFEs
F1 f1 1 2 5 · 104
F2 f2 1 5 5 · 104
F3 f3 1 1 5 · 104
F4 f4 2 4 5 · 104
F5 f5 2 2 5 · 104
F6 f6 2 18 2 · 105
F7 f7 2 36 2 · 105
F8 f6 3 81 4 · 105
F9 f7 3 216 4 · 105
F10 f8 2 12 2 · 105
F11 f9 2 6 2 · 105
F12 f10 2 8 2 · 105
F13 f11 2 6 2 · 105
F14 f11 3 6 4 · 105
F15 f12 3 8 4 · 105
F16 f11 5 6 4 · 105
F17 f12 5 8 4 · 105
F18 f11 10 6 4 · 105
F19 f12 10 6 4 · 105
F20 f12 20 8 4 · 105
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The PR are calculated according to five different accuracy level ε =
{1E−1, 1E−2, 1E−3, 1E−4, 1E−5}. The accuracy level corresponds to the
threshold that determines if the fitness of a given solution is close enough to
that of the global optima.

Comparison between algorithms have been performed for each accuracy
level independently. For the comparison of two algorithms we considered non-
parametric statistical tests [DGMH11]. More specifically, we used the Wilcoxon
matched-pairs signed ranks tests for the direct comparison of two algorithms.

3.3 Automatic configuration

In the same fashion as for RMA-LSCh-CMA in the previous chapter, we use
IRACE to assist us in the design of the algorithm by automatically tuning the
parameters to an optimal setting for this benchmark.

We selected a set of parameters that we considered the most critical and
tuned them over the 20 problems of the CEC’2013 benchmark. The list can be
seen in Table III.2.

Table III.2: Parameters tuned and obtained values

Parameters Descriptions Ranges Tuned

iEA
EA intensity, number of evaluations al-
located to each EA application

[100, 1000] 550

iLS
LS intensity, number of evaluations al-
located to each LS application

[100, 1000] 150

ND0
Initial number of divisions, defines the
size of the niches/regions

[2, 10] 2

u Number of update to be performed [2, 5] 4
mu Update multiplier [1, 5] 1.7
NP Population size of the EA [40, 120] 70
α Parameter for the BLX − α crossover [0.1, 0.9] 0.9

We can note that the EA intensity is almost four times the LS intensity.
This is due to the fact that the LS is applied multiple times (until the improve-
ments brought not significant enough) in each cycle. Concerning the number of
division, we can see that the smallest number of divisions have been preferred
(ND0 = 2) along with a slow increase along the search by multiplying five times
by 1.7. The number of divisions sequence is then [2, 4, 7, 13, 23, 40]. Finally an
important thing to note is the value of the α parameter for the BLX-α. Set to a
high value (α = 0.9), it gives the EA a great exploration range.
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The other parameters listed in Table III.3 were left to their default values
taken from the corresponding papers. δminLS defines the accuracy required for the
search and is set to 1E−6 as the highest accuracy level required can is 1E−5.

Table III.3: Other parameters

Parameters Descriptions Value

λ
Parameter to define the CMA-ES population
size p = 4 + λln(D)

3 [HMK03]

µ Defines the parent size for the CMA-ES p/µ 2 [HMK03]
α Parameter for the BLX − α crossover 0.5

NAMsize Size of the NAM selection method 3
δminLS Threshold for the LS stopping criterion 1E−6

The parameters presented in Table III.2 and III.3 are the ones used in the
every experiments performed on every function and dimension of the benchmark.
When modifying certain parts of the model to assess their performances in the
following section, these parameters remain the same.

4 Experimental results

Based on the experimental framework (benchmark, evaluation and parameters)
explained in the previous section, we assess here the performances of the different
proposals made in this chapter as well as the performances of the algorithm
against existing models. First we start by proving that using the region definition
of a niche compared to the euclidean is more efficient in terms of computational
time and exploration. We then demonstrate that using the solutions in the archive
as excluding regions enhance the performances of the model. We also analyse the
memory and computational cost of the archive and the different components of the
algorithm. Finally, we compare the proposed algorithm RMAwA with existing
algorithms.

4.1 Region niches versus classical niches

Here, we assess the efficiency in terms of computation time and performances
of the region definition of niches against the classical definition which implies
calculating the euclidean distance between solutions. To do so, we consider the
model presented without the use of the archive.
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The resulting algorithm here simply referred to as region based memetic
algorithm (Region-MA) is opposed to an equivalent algorithm which uses the
euclidean distance based definition of a niche as it is used in the classical clear-
ing algorithm. This version is referred to as euclidean-distance based memetic
algorithm (Euclidean-MA). On the generation of a new solution by the EA, the
offspring created competes with the solutions falling within its niche radius σ,
which is set half the size of a region.

In order to simplify the display of the results, we will only focus on the
highest level of accuracy (ε = 1e−5). Indeed, the definition of a niche only affects
the ability of the algorithm to explore the search space and not the precision of
the solutions obtained.

Table III.4: PRs (for ε = 1e−5) obtained by Region-MA and Euclidean-MA and
execution time difference (in percentage)

Problem F1 F2 F3 F4 F5

Region-MA 0.81 0.42 1 0.97 0.99
Euclidean-MA 0.77 0.56 1 0.36 0.87
Time difference (%) -35.88 -26.10 -28.36 -45.20 -43.57
Problem F6 F7 F8 F9 F10

Region-MA 0 0.7 0.06 0.22 0.94
Euclidean-MA 0 0.05 0.06 0.01 0.13
Time difference (%) -30.26 -39.05 -42.13 -38.96 -24.89
Problem F11 F12 F13 F14 F15

Region-MA 0.68 0.86 0.63 0.64 0.15
Euclidean-MA 0.27 0.14 0.2 0.18 0.14
Time difference (%) -19.42 -20.90 -28.38 -19.20 -21.11
Problem F16 F17 F18 F19 F20

Region-MA 0.36 0.16 0.17 0.13 0.13
Euclidean-MA 0.19 0.13 0.17 0.13 0.13
Time difference (%) -15.93 -1.56 -25.74 -21.19 -7.42

In Table III.4, we show the PRs obtained by both version along with the
execution time difference in percentage. We can see that not only the results
obtained are significantly better (see Table III.5 for Wilcoxon comparison) but
the execution time is much smaller. Over the whole benchmark, using the region-
based niches saves up to 17.4% of time.



4. Experimental results 57

Table III.5: Wilcoxon comparison of the PR obtained by Region-MA and Classic-
MA (for ε = 1e−5)

R+ R-
Region-MA Classic-MA p-value

189 21 0.0008

4.2 Using the archive to reduce the search space

Usually, the archive is used to store solutions considered as optima to prevent their
loss in the evolutionary process and to remove the dependence of the algorithm’s
performance to the population size. We are not interested here in evaluating the
ability of using an archive as a storage facility as it would would imply running
experiments with different parameters (especially the population size) making
comparisons by definition unfair and thus not reliable. In this section, we are
rather interested in assessing how using the regions represented in the archive as
excluding areas for the exploration process of the EA improves the exploration
of the search space and thus the discovery of more optima.

In order to perform this comparison, we ran two versions of the algorithm.
The first one is as presented in Section 2. The second one is the same algorithm
without verifying that each solution created by the EA is present or not in the
archive (i.e. step 6 in Algorithm 2 is ignored). We thus compare here the proposed
algorithm which uses an excluding archive (RMAwA) against one with a simple
archive called RMA with Simple Archive (RMAwSA).

The same way as the previous experiment, we will only focus on the highest
level of accuracy (ε = 1e−5). Indeed, the specific use of the archive only affects
the algorithm’s ability to explore the search space and not the precision of the
solutions obtained.

In Table III.6, we show the PRs obtained by both versions of the algo-
rithm. Thanks to the excluding property of the archive, the performances of the
algorithm are significantly improved (see Table III.7 for Wilcoxon comparison).
We also display in this table the CPU time increase caused by the use of the
archive in the search. As we could expect, this property implies more compu-
tational effort. However, the percentage increase in the computational time is
reduced with the complexity and the dimensionality of the problem. This can be
easily explained by the fact that in higher dimensions, the computational time of
the evaluation is increased while the time cost of the archive remains steady re-
gardless the dimensionality. Over the whole benchmark, the time cost of RMAwA
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Table III.6: PRs of the RMA using an excluding archive (RMAwA) and a simple
archive (RMAwSA) for ε = 1e−5 and computational time difference between the
two versions.

Problem F1 F2 F3 F4 F5

RMAwA 1.000 1.000 1.000 1.000 1.000
RMAwSA 1.000 0.312 1.000 1.000 1.000

Time difference (%) 22.6 23.3 7.7 15.5 3.1
Problem F6 F7 F8 F9 F10

RMAwA 0.000 0.917 0.824 0.513 1.000
RMAwSA 0.000 0.658 0.908 0.343 0.983

Time difference (%) 46.3 34.8 50.8 43.4 4.1
Problem F11 F12 F13 F14 F15

RMAwA 1.000 1.000 0.997 0.813 0.703
RMAwSA 0.667 0.930 0.667 0.667 0.648

Time difference (%) 5.8 1.5 2.2 21.8 15.3
Problem F16 F17 F18 F19 F20

RMAwA 0.670 0.660 0.233 0.128 0.125
RMAwSA 0.667 0.323 0.183 0.125 0.125

Time difference (%) 5.0 14.1 2.4 0.7 1.2
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is 8.2% higher than RMAwSA.

Table III.7: Wilcoxon comparison of the PR of the RMA with and without
archive (for ε = 1e−5)

R+ R-
RMAwA RMAwSA p-value

186.5 23.5 0.00132

4.3 Time and memory cost of RMAwA

In this section, we study the time and memory cost of RMAwA and more precisely
of the proposals made in this paper. First, we assess the memory used by the
archive. Then we study the computational cost implied by the exclusive property
of the archive and the different components of the algorithm.

Memory cost

We present in this section the memory cost implied by the archive. As explained
in Section 2.1, the archive list stores two kind of solutions, the starting and final
points of LS applications. In order to evaluate the memory cost of the archive in
both cases, we retrieved the number of solutions stored in the archive’s list and
the number of their corresponding regions represented in the index at the end of
each run. From these data, we estimate the total memory size of the archive. The
archive’s list is a collection of real-value vectors and the index is a collection of
integer vectors. In our implementation, real values are represented by ”double”,
coded on eight bytes and integers are represented by ”int” coded on four bytes,
the space used by the archive is thus calculated by:

ArchiveSize = |S| ·D · 8 + |R| ·D · 4 (III.2)

where |S| is the number of solutions in the archive’s list, |R| is the number
of regions in the index and D is the dimensionality of the problem. The final size
is thus proportionate to the dimensionality. It is also dependant on the maximum
number of evaluations allowed by the problem. Indeed, an increase in the number
of evaluations is increases the number of LS applications and thus the number
of solutions stored in the archive. In Table III.8, we present the average of 50
runs of these data along with the dimensionality and the maximum number of
evaluation for each function of the CEC’2013 benchmark.
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As expected, we can observe a strong increase of the physical size used by
the archive for the most complex problems. However, the memory used remains
reasonable for nowadays machines. In the most extreme problem, F20 where
D = 20, the archive only uses 64.88 kB of memory.

Table III.8: Average number of elements in the archive’s list (|S|), the index (|R|)
and total memory used by the archive (in kB) at the end of each run

Problem D MaxFEs |S| |R| ArchiveSize
F1 1 5.00 · 104 135.92 4.58 1.08
F2 1 5.00 · 104 130.24 9.96 1.06
F3 1 5.00 · 104 129.32 10.52 1.05
F4 2 5.00 · 104 106 22.76 1.83
F5 2 5.00 · 104 112.76 14.5 1.88
F6 2 2.00 · 105 425.52 112.64 7.53
F7 2 2.00 · 105 448.28 100.18 7.79
F8 3 4.00 · 105 681.84 398.62 20.65
F9 3 4.00 · 105 811.64 389.08 23.58
F10 2 2.00 · 105 431.28 100.68 7.53
F11 2 2.00 · 105 372.72 106.42 6.66
F12 2 2.00 · 105 326.04 104.42 5.91
F13 2 2.00 · 105 349.52 121.84 6.41
F14 3 4.00 · 105 583 283.48 16.99
F15 3 4.00 · 105 581.6 278.68 16.90
F16 5 4.00 · 105 524 259.42 25.54
F17 5 4.00 · 105 516.64 270.26 25.46
F18 10 4.00 · 105 446.84 187.36 42.23
F19 10 4.00 · 105 338.52 168.28 33.02
F20 20 4.00 · 105 343.8 142.92 64.88

Computational time of the different components of RMAwA

Now, we wish to analyse the amount of time taken by the different components
of RMAwA over a whole run namely:

• LS operations: the operations performed by CMA-ES during its search
process.

• EA operations: the operations performed by the SSGA to evolve the pop-
ulation.
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• Niching: the time it takes to a new solution to go through the niching
process (retrieval and comparison of the solutions present in the same region
in the population).

• Archive: the time implied by the excluding property of the archive (assess-
ing the presence of the solution’s region in the archive’s index.

First, we selected in the CEC’13 benchmark function f12 which is im-
plemented in this benchmarck in 4 dimensions, D = {3, 5, 10, 20}, giving four
problems (F{15,17,19,20}). For those four problems, we calculated the CPU time
used by each components to assess their scalability. The search effort is unequally
divided between the LS and the EA (the number of evaluation at each EA ap-
plication is fixed while the number of evaluation for each LS application is not
limited). Thus, to perform a fair comparison, we only select the average time per
evaluation. We plot the results in Figure 2.
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Figure 2: CPU time (in ms) of each component per evaluations for problem f12
for different dimensions

As we can see, the complexity of the niching strategy and the use of the
archive are barely affected by an increase on the dimensionality. The same way,
the simplistic operations of the SSGA algorithms shows interesting scalable prop-
erties. The main weakness lies in the use of CMA-ES as LS method. Although it
offers a low complexity in the lowest dimensions, passed ten variables, CMA-ES
shows poor scalability in terms of complexity.

In order to counter balance the importance of this drawback, we show in
table III.9 the CPU time of each components along with the evaluation time.
Here, we remind the reader the notation used in this paper, we grouped the
problems Fj by function fi in order to ease the reading and see the relations
between the different dimensions of each function.
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From this table, when increasing the dimensionality, even if the proportion
of the LS (i.e. CMA-ES) operations increases, the total CPU time is particularly
affected by the computational time of the evaluation which is independant of the
algorithm. However, as the complexity of CMA-ES increases explonetially with
the dimension, larger scale problems may require the use of another LS method.

4.4 Comparison with existing algorithms

In this section we compare the results obtained by our algorithm, RMAwA. We
selected a number of algorithm from the literature along with algorithms pre-
sented for the CEC’2013 competition:

• PNA-NSGAII [BD13] proposed for the competition, this algorithm is an im-
provement of A-NSGAII [DS12]. Those algorithms tackles the multimodal
optimisation problem by turning them into bi-objective problems. The first
objective is the minimisation of the original function and the second one is
the maximisation of the diversity brought by the evaluated individual.

• dADE/nrand/1/bin [ELB13] : a DE using a neighbourhood based mutation
strategy and a dynamically updated archive.

• CrowdingDE [Tho04] : a DE using a crowding method to prevent premature
convergence.

• DE/nrand/1/bin [EPV11] : a DE using the neighbourhood based mutation
strategy.

• NCDE [QSL12] : a differential evolution using a neighbourhood based mu-
tation and a crowding mechanism.

• r3pso [Li10] : a PSO using a ring neighbourhood topology.

The two first algorithms (PNA-NSGAII and dADE/nrand/1) took part
of the CEC’2013 competition. The two following ones (CrowdingDE and
DE/nrand/1/bin) were given as base algorithms by the organisers and the two
last ones (NCDE and r3pso) are additional niching algorithms. The detailed re-
sults of each algorithms can be seen in the Appendix. We first analyse the overall
performance of each algorithm on the benchmark and how their performances are
affected by the increase of accuracy. Then we study in details their behaviour
according to the problem characteristics.
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Accuracy level analysis

We analyse here the general performances of these algorithms on the CEC’2013
benchmark for each accuracy level. To support this analysis, we show in Ta-
ble III.10 the mean rankings of each algorithm according to the different accuracy
levels and in Table III.11 the Wilcoxon comparison of RMAwA against the other
algorithms.

Table III.10: Mean rankings obtained by different algorithms over every functions
CEC’2013 benchmark for each accuracy level

Accuracy level 1E−1 1E−2 1E−3 1E−4 1E−5
CrowdingDE 4.25 4.28 4.45 4.68 4.7
DE/nrand/1/bin 5.08 4.18 4.05 3.63 3.43
r3pso 5.00 5.78 5.95 6.03 6.15
NCDE 3.95 4.38 4.33 4.38 4.48
PNA-NSGAII 3.4 3.73 3.83 4.13 3.9
dADE/nrand/1 3.05 3.00 3.08 3.00 3.13
RMAwA 3.28 2.68 2.33 2.18 2.23

We can see that RMAwA is second best for the smallest accuracy level
(ε = 1E−1) behind dADE/nrand/1/bin although no statistical difference can
be observed from Table III.11. The superiority of RMAwA gets notable when
increasing the accuracy level. This is confirmed by reaching significantly better
results than every other algorithm, for ε = {1E−4, 1E−5}.

As we can see in the detailed result tables in the Appendix, our algorithm
is less affected by the accuracy requirements of a problem compared to other
algorithms. The PRs obtained remain constant when increasing the accuracy
level while it tends to considerably decrease for other algorithms. This is mainly
due to the specific care implied by the LS mechanism in the MA framework to
strongly refine every promising solutions. It is also well known that CMA-ES is a
powerful method to achieve this objective ensuring that each solutions it refines
will be very accurately close to the targeted optima.

Problem specific performance analysis

Let us now consider every problem individually. As it is the most challenging for
this benchmark, we will consider here only the highest accuracy level (ε = 1E−5).
Table III.12 lists the PRs obtained by each algorithm for this accuracy level.
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Table III.11: Wilcoxon comparison of the PRs of the RMAwA (R+) with other
algorithms (R−) (for ε = {1E−1, 1E−2, 1E−3, 1E−4, 1E−5})

ε = 1E−1
RMAwA vs R+ R− p-value
CrowdingDE 150.5 59.5 0.0935

DE/nrand/1/bin 179.5 30.5 0.0039
r3pso 192.5 17.5 0.0004
NCDE 128.5 65 0.2273

PNA-NSGAII 97 95.5 0.9839
dADE/nrand/1 68.5 125 0.2862

ε = 1E−2
RMAwA vs R+ R− p-value
CrowdingDE 172 20.5 0.0016

DE/nrand/1/bin 173.5 36.5 0.0089
r3pso 205 5 1.91E−5
NCDE 199.5 10.5 0.0001

PNA-NSGAII 135.5 74.5 0.2549
dADE/nrand/1 125.5 84.5 0.4441

ε = 1E−3
RMAwA vs R+ R− p-value
CrowdingDE 185 7.5 0.0001

DE/nrand/1/bin 162 30.5 0.0077
r3pso 188.5 3 0.0000
NCDE 185 7.5 0.0001

PNA-NSGAII 141 51.5 0.0837
dADE/nrand/1 146.5 63.5 0.1279

ε = 1E−4
RMAwA vs R+ R− p-value
CrowdingDE 205 5 1.91E−5

DE/nrand/1/bin 162.5 31 0.0082
r3pso 188.5 3 1.91E−5
NCDE 185 7.5 0.0001

PNA-NSGAII 158 52 0.0484
dADE/nrand/1 165.5 44.5 0.0227

ε = 1E−5
RMAwA vs R+ R− p-value
CrowdingDE 185 7.5 0.0001

DE/nrand/1/bin 160.5 33 0.0108
r3pso 188.5 3 1.91E−5
NCDE 199.5 10.5 0.0001

PNA-NSGAII 152 40.5 0.0274
dADE/nrand/1 151.5 42 0.0323

ε = ∗
RMAwA vs R+ R− p-value
CrowdingDE 4531 431.5 0

DE/nrand/1/bin 4197.5 768 2.55E−9
r3pso 4844.5 115 0
NCDE 4502 462.5 0

PNA-NSGAII 3427 1535.5 0.0010
dADE/nrand/1 3288 1762 0.0087
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In this analysis we will focus on the problems offering the major differences
between the results obtained by the compared algorithms. Concerning problems
with highly multimodal fitness landscape, F7 to F9 where the number of optima
ranges from 36 to 216, RMAwA obtains the second best performances after PNA-
NSGAII. For problems with combination functions F11 to F20, RMAwA obtains
the best results for lower dimensions (D = {2, 3, 5}, F11 to F17). When increasing
the dimensionality (D = 10), RMAwA still performs reasonably ranking fourth
for function F18, second for F19. Finally, we can note that for F20, where D = 20,
while most of the algorithms including the ones with the best rankings over
the whole benchmark (dADE, PNA-NSGAII) fail in identifying any optimum,
RMAwA still locates at least a few optima, obtaining the best performances on
this problem.

As we can see in Table III.12 and according the the No Free Lunch Theo-
rem, designing an algorithm with fixed parameters for the an heterogeneous test
bed of problems is very challenging. We note that algorithms could perform well
on problems with certain characteristics and poorly on others. The proposed
algorithm of this paper, RMAwA, offers an overall performance significantly su-
perior to the other algorithms by obtaining competitive if not better results in
most problems proposed in the CEC’2013 benchmark.

5 Conclusion

In this chapter, we presented an application of a RMA to multimodal optimisation
problems. The aim was to assess the efficiency and the possibilities offered by
this original representation of a niche to identify multiple optima in a fitness
landscape.

We demonstrated that the use of the region based niching strategy is more
efficient than using a classical euclidean definition of a niche in this model. Such
definition also allows an efficient indexation and retrieval from the archive of
the regions already explored. Subtracting those regions from the search space
significantly improves the ability of the model to identify multiple optima in a
fitness landscape.

Finally, we compared the proposed algorithm with existing techniques us-
ing the benchmark issued for the special session and competition on niching meth-
ods for multimodal function optimization of the IEEE Congress on Evolutionary
Computation in 2013. We noted that our algorithm was fairly independent to
the different accuracy levels tested in this benchmark compared to the other
algorithms obtaining significantly better results.
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Appendix B

Detailed results

This section shows the PR obtained on the CEC’2013 benchmark in the 5 accu-
racy levels by:

• RMA-Archive (Table B.1)

• CrowdingDE (Table B.3)

• DE/nrand/1/bin (Table B.2)

• r3PSO (Table B.7)

• NCDE (Table B.6)

• PNA-NSGAII (Table B.5)

• dADE/nrand/1/bin (Table B.4).
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Table B.1: RMA-Archive

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 1 1 1 1
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 1 1 1
F5 f5 2 1 1 1 1 1
F6 f6 2 0.99 0.99 0.99 0.99 0
F7 f7 2 1 0.92 0.92 0.92 0.92
F8 f6 3 0.82 0.82 0.82 0.82 0.82
F9 f7 3 1 0.52 0.52 0.51 0.51
F10 f8 2 1 1 1 1 1
F11 f9 2 1 1 1 1 1
F12 f10 2 1 1 1 1 1
F13 f11 2 1 1 1 1 1
F14 f11 3 0.82 0.81 0.81 0.81 0.81
F15 f12 3 0.71 0.7 0.7 0.7 0.7
F16 f11 5 0.68 0.67 0.67 0.67 0.67
F17 f12 5 0.67 0.66 0.66 0.66 0.66
F18 f11 10 0.38 0.24 0.24 0.23 0.23
F19 f12 10 0.13 0.13 0.13 0.13 0.13
F20 f12 20 0.25 0.13 0.13 0.13 0.13
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Table B.2: DE/nrand/1/bin

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 1 1 1 1
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 1 1 1
F5 f5 2 1 1 1 1 1
F6 f6 2 0.45 0.44 0.44 0.43 0
F7 f7 2 0.35 0.35 0.35 0.34 0.33
F8 f6 3 0.11 0.11 0.11 0.11 0.11
F9 f7 3 0.1 0.1 0.1 0.1 0.09
F10 f8 2 1 1 1 1 1
F11 f9 2 0.68 0.67 0.68 0.67 0.67
F12 f10 2 0.86 0.84 0.82 0.82 0.78
F13 f11 2 0.67 0.67 0.67 0.67 0.67
F14 f11 3 0.67 0.67 0.67 0.67 0.67
F15 f12 3 0.52 0.54 0.51 0.5 0.51
F16 f11 5 0.68 0.66 0.66 0.66 0.66
F17 f12 5 0.35 0.33 0.3 0.29 0.29
F18 f11 10 0.4 0.34 0.32 0.27 0.25
F19 f12 10 0.3 0.22 0.2 0.17 0.17
F20 f12 20 0.13 0.13 0.13 0.13 0.12
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Table B.3: Crowding DE/RAND/bin

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 0.71 0.09 0.02 0
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 1 1 0.42
F5 f5 2 1 1 1 1 1
F6 f6 2 1 1 0.97 0.11 0
F7 f7 2 0.7 0.72 0.72 0.71 0.72
F8 f6 3 0.85 0.84 0.72 0.29 0.04
F9 f7 3 0.27 0.27 0.27 0.27 0.27
F10 f8 2 1 1 1 1 1
F11 f9 2 0.94 0.69 0.67 0.67 0.67
F12 f10 2 0.38 0.06 0.01 0.01 0
F13 f11 2 0.84 0.68 0.67 0.67 0.67
F14 f11 3 0.68 0.67 0.67 0.67 0.67
F15 f12 3 0.73 0.69 0.63 0.49 0.38
F16 f11 5 0.7 0.67 0.67 0.67 0.67
F17 f12 5 0.08 0 0 0 0
F18 f11 10 0.08 0 0 0 0
F19 f12 10 0 0 0 0 0
F20 f12 20 0.5 0.01 0 0 0
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Table B.4: dADE/nrand/1/bin

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 1 1 1 1
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 1 1 1
F5 f5 2 1 1 1 1 1
F6 f6 2 1 1 1 0.98 0
F7 f7 2 1 0.96 0.89 0.82 0.73
F8 f6 3 0.99 0.98 0.98 0.97 0.95
F9 f7 3 0.84 0.6 0.55 0.43 0.36
F10 f8 2 1 1 1 1 1
F11 f9 2 0.89 0.67 0.67 0.67 0.67
F12 f10 2 1 0.89 0.75 0.74 0.73
F13 f11 2 0.74 0.67 0.67 0.67 0.67
F14 f11 3 0.92 0.67 0.67 0.67 0.67
F15 f12 3 1 0.62 0.62 0.63 0.62
F16 f11 5 0.87 0.67 0.67 0.67 0.67
F17 f12 5 0.94 0.47 0.42 0.4 0.41
F18 f11 10 0.68 0.66 0.63 0.63 0.63
F19 f12 10 0.42 0.14 0.06 0.02 0
F20 f12 20 0 0 0 0 0
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Table B.5: PNA-NSGA

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 1 1 1 1
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 1 0.99 0.81
F5 f5 2 1 1 1 1 1
F6 f6 2 0.56 0.54 0.52 0.47 0
F7 f7 2 1 0.74 0.73 0.71 0.68
F8 f6 3 0.35 0.33 0.31 0.28 0.25
F9 f7 3 0.48 0.33 0.32 0.3 0.28
F10 f8 2 1 1 1 1 1
F11 f9 2 0.88 0.68 0.67 0.68 0.66
F12 f10 2 0.75 0.72 0.67 0.64 0.57
F13 f11 2 0.7 0.67 0.67 0.66 0.62
F14 f11 3 0.93 0.67 0.67 0.66 0.61
F15 f12 3 0.67 0.5 0.49 0.47 0.44
F16 f11 5 1 0.52 0.52 0.42 0.32
F17 f12 5 0.92 0.35 0.34 0.3 0.25
F18 f11 10 0.64 0.12 0.11 0.11 0.09
F19 f12 10 0.02 0.02 0.04 0.02 0.01
F20 f12 20 0 0 0 0 0
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Table B.6: NCDE

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 1 1 1 1 1
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 1 1 1 1 0.61 0.61
F5 f5 0 0 0 0 0 0
F6 f6 1 0.99 0.8 0.06 0 0
F7 f7 1 0.94 0.94 0.94 0.93 0.93
F8 f6 1 1 1 1 0.99 0.99
F9 f7 0.55 0.55 0.55 0.55 0.55 0.55
F10 f8 1 1 1 1 1 1
F11 f9 0.97 0.72 0.68 0.67 0.67 0.67
F12 f10 0.72 0.43 0.23 0.09 0.03 0.03
F13 f11 0.74 0.67 0.67 0.67 0.66 0.66
F14 f11 0.83 0.67 0.67 0.67 0.67 0.67
F15 f12 0.64 0.38 0.38 0.37 0.37 0.37
F16 f11 1 0.67 0.67 0.67 0.67 0.67
F17 f12 0.66 0.25 0.25 0.25 0.25 0.25
F18 f11 1 0.45 0.39 0.35 0.33 0.33
F19 f12 0.58 0.24 0.2 0.17 0.03 0.03
F20 f12 0.35 0.13 0 0 0 0
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Table B.7: r3PSO

Problem Function Dimension
Accuracy level

1e−1 1e−2 1e−3 1e−4 1e−5

F1 f1 1 0.95 0.27 0 0 0
F2 f2 1 1 1 1 1 1
F3 f3 1 1 1 1 1 1
F4 f4 2 1 1 0.97 0.43 0.08
F5 f5 2 0 0 0 0 0
F6 f6 2 1 0.98 0.88 0.4 0
F7 f7 2 1 0.74 0.65 0.56 0.5
F8 f6 3 0.02 0 0 0 0
F9 f7 3 0.94 0.3 0.19 0.1 0.04
F10 f8 2 1 1 1 1 1
F11 f9 2 1 0.67 0.67 0.67 0.66
F12 f10 2 0.67 0.59 0.5 0.4 0.33
F13 f11 2 0.96 0.67 0.67 0.65 0.6
F14 f11 3 0.81 0.26 0.11 0.04 0.01
F15 f12 3 0.29 0.07 0.02 0.01 0.01
F16 f11 5 0 0 0 0 0
F17 f12 5 0 0 0 0 0
F18 f11 10 0 0 0 0 0
F19 f12 10 0 0 0 0 0
F20 f12 20 0 0 0 0 0



Chapter IV

Final remarks

This chapter is dedicated to a summary of the works presented in this thesis. We
will remind the different proposals developed along with the conclusions on the
different analysis. We state the publications associated with this thesis and the
research lines opened by the research conducted here.

1 Summary and conclusion

This thesis is based on the development and study of a novel niching strategy
which consists in dividing the search space into equal hypercubes called regions.
These regions predefines the niches across the search space. When implemented
in an EA, the solutions of the population compete to remain in the region they
belong to in order to favour diversity in the population.

Niching strategies are commonly used to serve two purposes:

• Maintaining the diversity in an EA’s population in order to prevent fast
convergence and ensure the proper exploration of the search space.

• Identifying multiple optima in a fitness landscape in multimodal optimisa-
tion problems.

We thus applied the region-based niching strategy in two MA to take
advantage of both properties.
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1.1 Region-based memetic algorithm with local search
chaining for global optimisation

With the objective of creating a strong separation between the exploration effort
of the EA and the exploitation effort performed by the LS method of a MA, we
applied the region-based niching strategy to a MA. By doing so, we force the EA
to explore by preventing it from exploring the close surroundings of the solutions
present in the population. Consequently, the LS method is forced to exploit the
neighbourhood of the solution it is applied to by forcing it to primarily explore
its region.

We applied this strategy to a successful MA with LS chaining (MA-LSCh-
CMA) which alternatively applies a SSGA as EA and CMA-ES as LS method in a
LS chaining framework. LS chaining is a mechanism that adapt the LS intensity
according to the quality of the solution it is applied to by storing alongside with
the solution the LS parameters, allowing it to be carried on in future applications.

In order to limit the dependency of the niche size (here defined by the num-
ber of divisions per dimensions of the search space) we also proposed a mechanism
which dynamically updates the niche size along the search. The idea is simply
increase the number of divisions per dimension (and thus reduce the niche size)
various times during the search.

We tested the created model called region-based MA with LS chaining
and CMA-ES (RMA-LSCh-CMA) on the Special Session on Real Parameter op-
timisation of the IEE Conference on Evolutionary Competition 2005 (CEC’2005)
benchmark for small dimensions (10, 30 and 50) and on the Soft Computing
Special Issue on Large Scale optimisation Optimisation (SOCO’2011) benchmark
for dimension 100. Using those benchmarks, we performed various experiments
to study the influence of the concept introduced here and drew the following
conclusions:

• The dynamic update of the niche size offers more robustness to the al-
gorithm by making it less dependent to this parameter, especially when
considering the various dimensionality of a problem.

• The use of region-based niching framework, by maintaining a higher di-
versity in the population, significantly improves the performances of the
MA.

Finally, we compared the results obtained with a set of representative
algorithm, IPOP-CMA-ES, MDE pBX and 3SOME.

• We obtain significantly better results than MDE pBX on both benchmarks.
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• IPOP-CMA-ES obtains statistically equivalent results on the CEC’2005
benchmark. However, we can note that IPOP-CMA-ES appears to per-
form better on lower dimensions and our algorithm better in higher dimen-
sions. This tendency is confirmed by the fact RMA-LSCh-CMA obtains
significantly better on the SOCO’2011 benchmark for dimension 100.

• While RMA-LSCh-CMA obtains significantly better results than 3SOME
on the CEC’2005 benchmark, we note a slight domination of 3SOME on
the SOCO’2011 benchmark over our algorithm. This can be interpreted
by the fact that CMA-ES performs with less efficiency when increasing the
dimension which should motivate the use of other LS method for larger
scale problems.

1.2 Region-based memetic algorithm with archive for
multimodal optimisation

Heaven Is for Real Motivated by the idea of assessing the proposed region defini-
tion of niches to the original purpose of niching strategies, we developed a model
based on the one presented in Chapter II to handle multimodal optimisation
problems.

In Chapter III, we present the various modifications brought to that model
in order to adapt it to the problems at hand and take advantage of the definition
of a niche introduced in this thesis:

• Application of the LS: the LS is applied to a given solution multiple times
until it does not bring sufficient improvements.

• Use of an archive as excluding area: The use of an archive allows the con-
servation of identified optima and prevents their potential loss in the evolu-
tionary process of the EA this also limits the dependency of the algorithm’s
performance to the population size parameter. The novelty of our model
is to consider the regions represented by solutions of the archive as exclud-
ing areas, forbidding the EA to generate solutions in them. This process
is made possible and little time consuming by the possibility of efficiently
index and thus retrieve those regions when a new solution is created.

The resulting algorithm we called region-based memetic algorithm with
archive (RMAwA) was tested on the benchmark proposed during the Special
Session and Competition on Niching Methods for Multimodal Function Optimi-
sation of the IEEE Conference on Evolutionary Computation (CEC’2013).



80 Chapter IV. Final remarks

Here again, we analysed the improvements brought by the novelties intro-
duced in this model. We first remarked that the region-based niching strategy was
less time consuming than using the traditional distance-based notion of niche. We
also demonstrated that considering the regions represented in the archive as for-
bidden areas for the EA to explore significantly improved the exploration power,
and thus the optima identification, of the MA at little cost in term of computa-
tional time.

Finally, we compared the algorithm with a set of existing techniques and
obtained an overall performance significantly better than any of them. However,
providing that the CEC’2013 benchmark requires the evaluation of an algorithm
for different level of accuracy, it is interesting to add a few remark on the com-
parison performed here:

• With respect to the compared algorithms, the RMAwA is less sensitive to
high level of accuracy. We indeed note that the dominance of our algorithm
over the other ones is significantly emphasised when increasing the level of
accuracy required. The credit for such performance can be given to the use
intensive use of CMA-ES for the refinement of the promising solutions.

• When considering the lowest level of accuracy, RMAwA remains statisti-
cally equivalent to other existing algorithms. This shows that our algorithm
performances remain equivalent in terms of exploration capabilities to other
algorithms.

2 Publications associated with this thesis

In the following, we present a list including the publications associated to this
thesis:

• International journals:

– B. Lacroix, D. Molina, F. Herrera, Region based memetic algorithm for
real-parameter optimisation. Information Sciences, 262 (2014) 15-31.

– B. Lacroix, D. Molina, F. Herrera, Region-based Memetic Algorithm
with Archive for multimodal optimisation. Submited, 2014.

• International conferences:

– B. Lacroix, D. Molina, F. Herrera, Region Based Memetic Algorithm
with LS chaining, IEEE World Congress on Computational Intelligence
(WCCI), 2012, pp. 1474-1479.
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– B. Lacroix, D. Molina, F. Herrera, Dynamically updated region based
memetic algorithm for the 2013 CEC Special Session and Competition
on Real Parameter Single Objective Optimization. IEEE Congress on
Evolutionary Computation (CEC), 2013, pp 1945-1951. Note: The
proposed algorithm raked third of 23 algorithms in this competition.

3 Future Works

On both models presented in this thesis, we identified strengths and weaknesses.
The promising results of both methods encourage the idea of carrying this research
line in order to improve the weaknesses identified. The following research line
remain opened:

• The models presented in this thesis can be extended to large scale opti-
misation problems. This would however imply the modification of the LS
method. CMA-ES is indeed not adapted to high dimensional problems in
terms of computation costs and perform.

• In multimodal optimisation an appropriate trade-off between accuracy and
exploration is essential. A specific application may require more global
optima to be identified but with less accuracy while on the other hand
the user may need fewer optima but with great accuracy. We saw that
other models offered better performances (dADE) when less accuracy was
required. Identifying and adjusting the parameters of RMAwA (accuracy
threshold for the LS, region size adaptation, number of evaluations allocated
to EA’s application...) to study its ability to adapt to such requirements
could be an interesting line of research. This could also be achieved by
using different search operators within this framework.

• Choosing to linearly increase the number of divisions of the search space to
update the region size has shown to increase the robustness of the model. It
mainly makes sense for global optimisation when one might find interesting
to let the population to converge in the latter stages of the search. However
niching models for multimodal optimisation work more efficiently if the
niche size is adapted to the basin of attraction size and the distance between
optima. A more advanced niche size (in our case number of divisions)
adaptation mechanism could be offer RMAwA significant improvements.

• Models of GAs (e.g. Hierchical Genetic Search [SK02]) using binary cod-
ing propose a population hierarchy where different levels work with differ-
ent levels of accuracy (different number of bits in the solutions encoding).
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The same way, region-based models could recreate a similar hierarchy with
different number of divisions. This would allow different levels of explo-
ration/exploitation to be active using the same optimisers.

• Parallel computation is currently an important research line to increase
the computational performances of existing algorithm. By nature, MA
algorithms offer the possibility of parallelism by their separation of the
effort between different search components. To link it to the previous point,
different hierarchical population can be executed in parallel as it is done
with Island models [WRH97].
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T. (2011) Automatic configuration of state-
of-the-art multi-objective optimizers using the
TP+PLS framework. In Krasnogor N. and Lanzi
P. L. (Eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO
2011, pp. 2019–2026. ACM Press, New York, NY.

[DLLIS11b] Dubois-Lacoste J., López-Ibáñez M., and Stützle
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