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ABSTRACT  
 
Aim. To ascertain if biomimetic phosphoproteins analogues (polyaspartic acid -PAS- and sodium 

trimetaphosphate -TMP-) improve bonding efficacy and dentine remineralization ability of a novel 

zinc-doped Portland-based resinous sealing cement.  

Methodology. Bonding procedures were performed on phosphoric acid etched dentine and several 

groups were established regarding biomimetic analogue application: 1) No application, 2) PAS-

treated dentine and 3) dentine treated with a mixture of PAS and TMP. Raman spectroscopy and 

microtensile bond strength (MTBS) with fracture analysis by scanning electron microscopy were 

carried out. MTBS values were compared by ANOVA, Student-Newman-Keuls and Student t tests 

(P<0.05 and P<0.01 respectively).  

Results. MTBS values were not affected by the different bonding procedures, at 24 h testing. After 6 

months, MTBS decreased in those groups in which analogues phosphoproteins’ were not applied 

(P<0.05). When Pas was applied, MTBS was maintained after 6 months (P>0.05). The novel material 

bonded without primers application induced bioactive crystal (calcium carbonate and Ettringite) 

precipitation onto the etched dentine and augmented the degree of crystallinity at the hybrid layer. 

Mineral to matrix ratio was increased at the hybrid layer of the PAS-treated specimens; this primer 

was also able to catalyze dentine remineralization, without an increase in crystallinity.  

Conclusions: PAS application onto demineralized dentine produced an inhibition or delay of the 

mineral phase crystallization, enhancing the remineralization potential of the Portland microfillers at 

the resin-dentine bonded interface.  
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INTRODUCTION 
 
New materials for use in endodontics, including root-end filling, root-perforation repair or 

regeneration should facilitate dentine remineralization and inhibit collagen degradation inhibition at 

the dentine interface (Gandolfi et al., 2010a, Gandolfi et al./ 2010b, Osorio et al. 2014). Components 

such as calcium/sodium phosphosilicate, tricalcium silicates, tricalcium phosphate and zinc oxide 

have been included within the composition of resin-based canal sealing materials to create bioactive 

cements. These materials can facilitate sealing, metalloproteinases inhibition and tissue 

remineralization (Gandolfi et al./ 2010a, Dorozhkin 2010, Osorio et al. 2014). Their application in 

root canal treatments is recently being investigated and encouraged (Gandolfi et al./ 2010b, Osorio 

et al. 2012,  Osorio et al./ 2014). 

Non-collagenous proteins play a critical role to orchestrate dentine mineralization. They possess 

carboxylic and phosphate functional groups that act as sites for calcium and phosphate nucleation 

(Liu et al. 2011). Portland-based cements are likely to be able to remineralize partially demineralized 

dentine by epitaxial deposition of calcium and phosphate phases over remnant apatite seed 

crystallites (Watson et al. 2014). Although these materials release silicon, calcium and phosphate, 

they lack biomimetic analogs to sequester those ions into amorphous calcium phosphate 

prenucleation clusters. As crystalline calcium phosphates and silicates have long degradation times, 

in the order of months or even years (Rezwan et al. 2006), it is difficult to envisage how the use of 

these materials can remineralize collagen fibrils within a faulty hybrid layer.  

Application of synthetic substitutes for dentine matrix proteins has been proposed to facilitate 

remineralization processes (Sauro et al. 2015). Two different dentine  analogous phosphoproteins’ 

may be needed: i) a sequestering agent that controls amorphous calcium phosphate aggregation and 

ii) a phosphoproteins substitute that will facilitate positioning of hydroxyapatite at specific sites on 

collagen, templating the nucleation of precursors at the special sites of the collagen substrate (Gu et 

al. 2011, Watson et al. 2014). Polyaspartic acid and sodium trimetaphosphate possess functional 

groups (i.e. carboxylic and phosphate), and may have the ability to sequester and to release calcium 
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and phosphate, in order to adapt to the demands of the developing mineral, probably acting as 

phosphoproteins biomimetic analogs (Gu et al. 2011, Liu et al. 2011, Sauro et al. 2015). These 

amorphous compounds may provide a local ion-rich environment that will be considered favorable 

for dentine remineralization (Gu et al. 2011, Liu et al. 2011). 

 

The aim of this study was ton test the bonding efficacy and remineralization ability of a novel ion-

releasing resin material bonded with or without biomimetic analogues phosphoproteins’ 

(polyaspartic acid -PAS- or a combination of PAS with sodium trimetaphosphate) at the dentine 

interface. The null hypothesis is that application of two biomimetic analogues phosphoproteins’ on 

etched dentine does not influence bond strength and dentine remineralization ability, when bonding 

with a resin-based experimental endodontic cement, containing bioactive particles. 

 

MATERIALS AND METHODS 

Material formulation and bonding procedures: A zinc-doped Portland-based resin cement was 

formulated using urethane dimethacrylate (30 wt%), ethoxylatedbisphenol-A dimethacrylate 

(5 wt%), triethyleneglycoldimethacrylate (25 wt%) (Esstech, Essington, PA, USA), hydroxyethyl 

methacrylate (18 wt%), absolute ethanol (15 wt%), camphorquinone (1.0 wt%) and ethyl-4-

dimethylaminobenzoate (1.0 wt%) (Sigma-Aldrich, St. Louis, MO, USA). For filler production, a type I 

Portland cement (Italcementi Group, Bergamo, Italy) (70 wt%) was mixed with 10 wt% β-TCP (Sigma-

Aldrich), 20 wt% zinc oxide particles (Sigma-Aldrich  and deioni ed water  ratio         ter setting 

    h , the cement was incubated at     C for 12 h, milled, sieved to <30 μm and incorporated as a 

filler into the unfilled resin control (filler/resin ratio: 40/60 wt%) to create the experimental ion-

releasing resin (BTCS-Zn) (Sauro et al. 2013, Osorio et al. 2014).  

Two biomimetic solutions were tested: 1) 150 µg/mL of poly-L-aspartic acid (PAS) with a molecular 

weight of 27 kDa (Sigma-Aldrich) solvated in deionized water, and 2) 150 µg/mL of PAS in deionized 

water mixed with 10 wt% sodium trimetaphosphate (molecular weight of 367.8 kDa) (TMP; Sigma-

Aldrich). The pH of both solutions was adjusted to 7.1 (Sauro et al. 2015).  
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Human third molars were obtained with informed consent from donors and used in accordance to 

the Research Ethics Committee. Dentine was polished (320-grit) and after acid-etching (37% H3PO4; 

15 s) the specimens were pre-treated by immersion in deionized water (DW) or using each 

biomimetic solution PAS or PAS-TMP, for 1 min. These specimens were bonded with two consecutive 

layers of the ion-releasing resin cement. Polymerization was performed and the light was tested for 

light output (600 mW/cm2) by means of a Demetron radiometer (Model 100, Demetron Research 

Corp., Danbury, CT, USA) (Sauro et al. 2013). 

Raman spectrometer analysis: Three bonded interfaces per group were created and submitted to a 

dispersive Raman spectrometer analysis (Horiba Scientific Xplora, Villeneuve d' scq, France , after 

24 h and 1 month of artificial saliva (AS) storage. The composition of artificial saliva was 0.7 mM/L 

CaCl2, 0.2 mM/L MgCl2, 4.0 mM/L KH2PO4, 30.0 mM/L KCl, 20.0 mM/L HEPES (Sauro et al. 2015). For 

Raman analysis, a 785-nm diode laser (100 mW sample power) equipped with a ×100/0.90 NA 

water-immersion objective was employed. Raman signals were acquired using a 600-lines/mm 

grating centered between 900 and 1700 cm−1. Three chemical mappings were captured along the 

interfaces and submitted to K-means cluster analysis as described by Toledano et al. (2014a, 2014b), 

using multivariate analysis (ISyss Horiba, Horiba Scientific Xplora, Villeneuve d' scq, France), which 

includes statistical patterning to derive independent clusters; the biochemical content of each 

cluster was analyzed using the average cluster spectra. Principal component analysis decomposed 

data were set into a bilinear model of linear independent variables, the so-called principal 

components. Four clusters were identified (adhesive, hybrid layer, dentine 1 and dentine 2) [dentine 

1 and 2 are related to dentin with different degrees of mineralization]. At this point, in order to 

quantitatively calculate the extent of mineralization along the interface, the following parameters 

were measured for the same clusters in each group: 1) the mineral matrix ratio (MMR: the relative 

mineral content, or the degree of demineralization as a function of spatial position, which was 

determined from the ratios of the relative integrated intensities of spectral features associated with 

phosphate (P–O symmetric stretch: v1-961 cm−1) and collagen (CH2 deformation: 1454cm− ); 2) the 

relative presence of mineral (RPM: the phosphate peak height (v1-961 cm−1)(Wang et al. 2009); and 
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3) the degree of crystallinity (FWMH: the full width at half maximum of the phosphate band (v1-

961 cm−1), as it expresses the crystallographic or relative atomic order; the narrower the spectral 

peak width, the higher the degree of mineral crystallinity (Karan et al. 2009, Toledano et al. 2014a). 

Microtensile Bond strength testing (MTBS): A further six resin-bonded dentine specimens were 

prepared for each group and sectioned to obtain multiple bonded-sticks of 0.9 mm2. Their 

microtensile bond strengths were tested after 24 h or 6 m of AS storage using a customized 

microtensile jig on a linear actuator (SMAC Europe Ltd., Horsham, UK). Mean bond strength values 

were analyzed by ANOVA, which was performed including the bond strength (MPa) as the 

dependent variable. Bonding groups (DW, PAS or PAS-TMP) and period of AS storage (24 h or 6 

months) were considered as independent variables. Analysis of interactions was also conducted. 

Student-Newman-Keuls and Student t tests were used for comparisons. Statistical analyses were set 

at a significance level of α = 0.05 and α = 0.01 respectively. Modes of failure were classified as 

percentage of adhesive (A) or mixed (M) or cohesive (C) failures using a stereo microscope 

(magnification ×60). Three representative fractured specimens for each group were mounted on 

aluminium stubs using carbon tape, carbon-sputter-coated and finally imaged using a field emission 

scanning electron microscopy SEM (Gemini, Carl Zeiss, Oberkochen, Germany) at 3 kV and a working 

distance of 6 to 7 mm. The microscope was attached to an energy dispersive analysis system (EDX) 

(Inca 300 and 350, Oxford Instruments, Oxford, UK). 

 
RESULTS 
 
Results from Raman analysis are presented in Table 1 and Figures 1 and 2. Mineral to matrix ratios at 

the hybrid layer, were different regarding the distinct primers application. When no biomimetic 

solution was used before bonding procedures, the MMR did not change, being 1.68 and 1.56 at base 

line and after 1 month, respectively. When PAS was applied on etched dentine, the MMR at the 

hybrid layer presented a 7.5-fold augmentation (from 0.72 to 5.40) and when PAS-TMP was applied, 

it presented a 2-fold increase (from 1.24 to 2.55). These changes may also be appreciated on the 

phosphate peak intensity graphs, where a patent augmentation of phosphate peak intensity (green 

http://www.sciencedirect.com/science/article/pii/S0109564114000499#fig0010
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changes into red) is observed at the underlying dentine; this occurred mainly inside the dentinal 

tubules (Figures 1a, 1d, 1g, 2a, 2d and 2g). The absence of the dentinal tubular appearance was also 

detected after 1 month of storage, in PAS and PAS-TMP groups (Figures 2d and 2g). On the cluster 

analysis image, the hybrid layer (blue) was clearly diminished in thickness at PAS/BTCS-Zn specimens 

after 1 month of storage (Figure 2e). 

After 1 month, the degree of crystallinity in the existing mineral at the interface was higher (2-fold 

increase) when the ion-releasing adhesive was employed without PAS application. The width of the 

phosphate peak at the hybrid layer was about 38.74 after 24 h and diminished to 20.52 (increasing in 

sharpness) after 1 month. The same trend was observed in the underlying dentine. However, when 

PAS was applied, the degree of crystallinity in the new mineral at the interface is reduced. At the 

hybrid layer, peak changes in width were from 35.33 to 45.72 and in the underlying dentine from 

28.93 to 38.52 (Table 1). 

On DW/BTCS-Zn specimen spectra, bands indicating relative presence of organic components of type 

I collagen (1,245; 1,465; and 1,667 cm−1) and hydroxyproline (921 cm-1) were decreased after 1 

month storage. After 1 month storage, a band (1,000 cm-1) corresponding to the internal PO4
3-𝜈1 

vibration mode in zinc phosphate compounds, was encountered (Figures 1c and 2c).  

On PAS-TMP/BTCS-Zn spectra after 24 h, the highest intensity of the band at 1,465cm−1 was 

observed in the adhesive layer. A distinct peak around 1,100 and 1,150 cm-1 appeared, after 1 

month, this band was associated to the presence of polyphosphates compounds (Figures 1i,2i).  

Hybrid layer spectra contained features of both polymers and dentine spectra, except for the hybrid 

layer spectrum from PAS/BTCS-Zn specimens, after 1 month of storage which resembles almost 

completely a characteristic dentine spectrum, but with less mineral content (Figure 2f). 

Bond strength was affected by bonding procedure (P<0.05), by storage time (P<0.01) and the 

interactions were also significant (P<0.01). The power of the ANOVA was 0.70. Mean bond strengths 

are depicted in Table 2. At 24 h, bond strength values attained by the experimental adhesive were 

similar for all groups, regardless of the different biomimetic analogue applications. After 6 months, a 
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significant decrease in the bond strength values was observed, except for the group in which dentine 

was pre-treated only with PAS (34.0 MPa); this value was significantly higher than those obtained 

when no biomimetic analogues were used (24.1 MPa) or after PAS-TMP application (24.4 MPa) 

(P<0.05). Debonding was most prevalent in mixed mode (95 to 90%) (Table 2).  

After 6 months, zones where resin was covering collagen and mineralized resin tags were observed 

on the SEM images performed on those specimens bonded without PAS (Figure 3a). Other zones 

exhibit demineralized and not resin infiltrated collagen with some resin remnants located mainly 

inside the dentinal tubules (Figure 3b). On these specimens, mineral precipitation was observed. 

Spherical mineral formations containing calcium, silicon and aluminum (Figure 3c) and needle shape 

crystals (Figure 3d) composed of zinc, calcium and silicon, were seen. On those specimens bonded 

after PAS application, no demineralized collagen was observed. Intertubular dentine was hardly 

distinguished. Fractured resin tags were present inside the dentine tubules and mineral precipitates 

were present (Figures 3e and 3f). Those specimens treated with PAS-TMP had both highly 

mineralized broken resin tags with remineralized peritubular dentine and areas in which 

demineralized collagen remained unprotected (Figures 3g, 3h and 3i). 

 

 

DISCUSSION 

Pre-treatment of acid-etched dentine using PAS and PAS-TMP improved the remineralization ability 

of an experimental light-curable resin-based system containing zinc-doped Portland micro-fillers.  

In the present study, resin-based materials, including reactive calcium-phospho-silicate powders as 

fillers, would be able to release mineral ions and produce bioactive crystals formation, at the bonded 

dentine interface. When no primer was applied before bonding, hexacalcium aluminate trisulfate 

(Ettringite) was found at the dentine surface, after resin debonding (Figure 3d-Ep2-). Ettringite in 

Portland or Mineral Trioxide Aggregate cements is formed when calcium alumina silicate crystals are 

in contact with water and undergo a hydration process (Camilleri 2008). On the present EDX 

spectrum Zn was also present, and the Ettringite crystal systems were elongated in a needle like 
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shape and the crystal morphology could incorporate a variety of divalent ions (i.e. Zn2+), which can 

substitute for Ca2+ by incorporating these ions into the lattice (Moon et al. 2013). When Ca2+ and OH− 

ions are released from tricalcium silicate into the surrounding environment at supersaturation levels, 

a calcium hydroxide (portlandite) precipitate, and in the presence of carbon dioxide this may also 

precipitate as calcium carbonate (Camilleri 2008, Parirokh&Torabinejad 2010). Rounded calcium 

carbonate crystals were also detected at the debonded resin-dentine interface (Figure 4c-Ep1-); 

calcium carbonate and calcium hydroxide have been previously identified as hydroxyapatite 

precursors (Watson et al. 2014). Calcium carbonate (1,071 cm-1) was also identified, after 1 month, 

in the Raman analysis of the bonded interface at DW/BTCS-Zn specimens (Figure 2c). 

These crystal formations were not encountered in any of the other experimental groups, in which 

PAS was applied. PAS is a biodegradable, water-soluble polyaminoacid with potential to inhibit 

deposition of calcium carbonate and calcium phosphate salts (Hassonet al. 2011). PAS molecules 

become adsorbed on the collagen fibres, and retarded the mineralization process. The 

mineralization of collagen is highly dependent upon the interaction of collagen with such acidic 

molecules. PAS application will guarantee that crystal precipitation will not occur, and calcium and 

phosphate may remain available to diffuse into the collagen of dentine. Ion stabilization is 

considered as a key factor, to allow remineralization of demineralized dentine (Liuet al. 2011, Li et al. 

2013). These results are in accordance with the Raman analysis. On Raman spectra, after 1 month of 

storage, the degree of crystallization was increased (2-fold) when the ion releasing adhesive was 

employed without PAS application (Figure 2c and Table 1). However, when PAS was applied onto 

etched dentine, degree of crystallinity was reduced (Figure 2f and Table 1). This is an important 

finding, as one of the main problems when applying inorganic remineralizing materials, is the poor 

solubility of the calcium phosphate phases at the normal pH range of biological oral fluids (Cochrane 

et al. 2010). Even, if unstabilised amorphous calcium phosphates and silicates are applied they will 

tend to be transformed into a stable crystalline phase (Cochrane et al. 2010). Therefore, If PAS 

application onto dentine is able to delay or inhibit phase crystallization; it will directly improve the 

remineralizing ability of calcium silicate cements.  
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Mineral to matrix ratio in the underlying dentine, increased equally after 1 month storage in all 

groups (Table 1). This confirms the remineralizing effect of these modified-Portland fillers (Parirokh 

& Torabinejad 2010, Watson et al. 2014). In the phosphate peak intensity graphs (Figure 1 and 2), a 

clear augmentation of phosphate peak intensity (green changes into red) is observed in the 

underlying dentine. This occurred mainly inside the dentinal tubules (appreciated by the graphical 

representation of the clusters distribution), the absence of the dentinal tubular appearance after 1 

month of storage is observed in the PAS and PAS/TMP groups (Figures 2e and 2h). These findings 

were also observed on the SEM images, as intratubular and peritubular remineralization was present 

in all groups (Figure 3a, 3f and 3h). After dentine bonding, the major fluid content existed inside 

dentinal tubules, which explains the presence of abundant mineral precipitation when using these 

cements (Watson et al. 2014). However, this remineralization does not guarantee collagen 

protection in the hybrid layer. When analyzing the Raman spectra on the hybrid layer the mineral to 

matrix ratio changed as a function of the distinct primer application. When PAS was applied on 

etched dentine, the MMR in the hybrid layer increased 7.5-fold and when PAS-TMP were applied it 

increased 2-fold and remained at similar values when no primers were applied (Table 1). This 

confirms the relevance of PAS application on etched dentine. The presence of amorphous calcium 

and phosphate compounds will lead to remineralization of the hybrid layer. After 1 month, only the 

Raman spectra on the hybrid layer in those specimens treated with PAS were similar to that of 

dentine (even when it revealed lower mineral content)(Figure 2f). This suggests that PAS plays a 

critical role in the hybrid layer recovering the properties of dentine.  

Acid-etched dentine surfaces pretreated with PAS and bonded with the experimental adhesive 

maintained MTBS values after 6 months. Higher bond strength values were attained when PAS was 

applied without TMP. These findings may be explained by: i) TMP may produce alterations within 

the resin polymer on the Raman spectra the band at 1,465 cm-1 (CH2 asymmetric bending from 

methacrylate) was higher when compared to the other groups (Figure 1i). This may be related with 

its retarded polymerization (Zhang &Wang 2013). ii) Zinc in the filler may form polyphosphate 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23153573
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23153573
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complexes with TMP, and may interfere with the desired effect of this compound (Rashchi & Finch 

2000, Cini & Ball 2014). A distinct peak between 1,100 and 1,150 cm-1 appeared, after 1 month, and 

this corresponds to the polyphosphates salts formed (Figure 2i) (Omelonet al. 2014). In those 

dentine specimens bonded without biomimetic primers or with PAS-TMP, areas with demineralized 

and non-resin infiltrated collagen fibrils were observed (Figures 3b and 3i), even when tubules were 

mostly occluded by mineral and/or crystals (Figures 3c, 3d and 3h). 

TMP was shown to have the potential for phosphorylating type I native collagen, but when TMP has 

been previously used in dentine, the degree of remineralization was not as expected and collagen 

degradation occurred after 4 months (Liu et al. 2011). TMP is a polyphosphate that is slightly soluble 

in water (22 g/100 mL), and protein phosphorylation with TMP usually requires a pH>11 (Shen 

1966). Moreover, polyphosphates have been shown to inhibit mineralization as they competitively 

saturate alkaline phosphatase, which is present in dentine (but not in native collagen), thus, 

potentially interfering with alkaline phosphatase ability to hydrolyze mineralization-inhibiting 

pyrophosphate (PPi)(Omelon et al. 2014, Hoac et al. 2013). So, other different phosphate 

compounds, such as dipotassium phosphate, that is soluble in water (149.25 g/100 mL) and is not a 

polyphosphate, are recommended for dentine remineralization (Burwell et al. 2012). 

The presence of other ions may also be important to explain the results. Silicon is known to facilitate 

calcium phosphate deposition (Leonor et al. 2009), and plays a critical role on the binding of calcium 

phosphate complexes to the collagen network (Besinis et al. 2014). Silicon has been shown to 

mediate the formation of calcium phosphate precursors, necessary for the subsequent steps of 

mineralization, acting also as a nucleating mineral (Watson et al. 2014). It may be that the same 

mechanism of cooperative nucleation occurs on dentine collagen with PAS and silicon ions, not 

requiring TMP application. 

Pure Portland and MTA cements containing tri-calcium and di-calcium silicate (which on hydration 

produce calcium silicate hydrate gel, calcium hydroxide, and calcium carbonate) are able to exert 

remineralizing effects (Parirokh & Torabinejad 2010, Watson et al. 2014). If PAS should also increase 

this potential when in contact with dentine, deserves further research. 
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CONCLUSIONS 

i) Portland microfillers incorporated into resin-based cements are able to set, forming 

bioactive crystals (calcium carbonate and calcium aluminate sulfate), preferentially 

located, inside dentinal tubules;  

ii) PAS application onto demineralized dentine inhibited or delayed crystallization. The 

presence of amorphous compounds increased the remineralization potential of the 

Portland microfillers at the resin-dentine bonded interface.  
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Table 1: Mineral to matrix ratio, relative presence of mineral and degree of crystallinity obtained for 

the different experimental groups, after Raman spectroscopy and cluster analysis. 

 

 

 
 
 
RPM: relative presence of mineral (phosphate peak [961 cm−1] height); MMR: mineral-to-matrix 
ratio (ratio of integrated areas of the phosphate v1-PO4

3- symmetric stretch [961 cm-1] and contour 
of the CH2 deformation of the collagen [1,465 cm-1]); and FWMH: degree of crystallinity (full width at 
half maximum of the phosphate band at 961 cm−1). 
 
 
 
 
 

 

 

  

Hybrid Layer 
24 h  1 m 

RPM 
961 cm-1

 

1,465 
cm-1 

MMR 
961 cm-1 
FWMH 

RPM 
961 cm-1

 

1,465 
cm-1 

MMR 
961 cm-1 
FWMH 

DW/BTCS-Zn 22.29 13.26 1.68 38.74 18.57 11.89 1.56 20.52 

PAS/BTCS-Zn  
 

16.16 22.34 0.72 35.33 41.06 7.61 5.40 45.72 

PAS-TMP/BTCS -Zn 13.45 10.85 1.24 35.53 16.87 6.62 2.55 36.73 

Underlying 
Dentine 

24 h  1m 

RPM 
961 cm-1 

1,465 
cm-1 

MMR 
961 cm-1 
FWMH 

RPM 
961 cm-1 

1,465 
cm-1 

MMR 
961 cm-1 

 FWMH 

DW/BTCS-Zn 37.86 8.60 4.40 35.51 45.75 4.55 10.05 15.93 

PAS/BTCS-Zn  
 

56.94 7.81 7.29 28.93 64.01 6.19 10.34 38.52 

PAS-TMP/BTCS -Zn 43.03 6.70 6.42 32.30 47.86 4.87 9.83 35.50 
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Table 2: Mean and standard deviation (SD) of microtensile bond strength values, distribution of 

failure mode (%) and pre-load failed specimens (%) in each experimental group. 

 

 
24 h  6 m  

Mean -Mpa- 
(SD) 

A/M/C 
% 

Tested/Failed 
% 

Mean -Mpa- 
(SD) 

A/M/C 
% 

Tested/Failed 
% 

DW/BTCS-Zn 
 

34.1(3.1)A1 2/93/5 95/5 24.1 (3.5) A2 10/90/0 95/5 

PAS/BTCS-Zn  
 

33.3 (7.2) A1 2/90/8 95/5 34.0 (3.8)B1 3/97/0 90/10 

PAS-TMP/BTCS -Zn 28.2 (3.1) A1 5/95/0 95/5 24.4 (5.6)A1 5/95/0 90/10 

 
For each horizontal row: values with identical numbers indicate no significant differenceusing 
Student t test (p>0.01). For each vertical column: values with identical letters indicate no significant 
difference using Student-Newman-Keuls test (p>0.05). A/M/C: percentage of adhesive (A), mixed 
(M) or cohesive (C) failures using a stereo microscope (magnification ×60). 
 
 
 
 

 

  



18 
 

 

Figures 

Figure 1: Raman analysis of bonded interfaces at 24 h evaluation. DW/BTCS-Zn specimens are 
represented in a, b and c. PAS/BTCS-Zn specimens are shown in d, e and f images, and PAS-
TMP/BTCS-Zn bonded interfaces are displayed in g, h and i graphs. a, d and g are 2D micro-Raman 
maps of phosphate peak (961 cm−1) intensity at the dentine bonded interfaces. b, e and h are K-
means clustering maps of the Raman profile and c, f and i are Raman spectra of principal 
components. At cluster images and Raman spectra adhesive is in violet, hybrid layer in blue, dentin is 
in green and red.  
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Figure 2: Raman analysis of bonded interfaces after 1m storage in artificial saliva. DW/BTCS-Zn 
specimens are represented in a, b and c.  PAS/BTCS-Zn specimens are shown in d,e and f images, and 
PAS-TMP/BTCS-Zn bonded interfaces are displayed in g, h and i graphs. a, d and g are 2D micro-
Raman maps of phosphate peak (961 cm−1) intensity at the dentine bonded interfaces. b, e and h are 
K-means clustering maps of the Raman profile and c, f and i are Raman spectra of principal 
components. At cluster images and Raman spectra adhesive is in violet, hybrid layer in blue, dentin is 
in green and red.  
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Figure 3: Scanning electron microscopy images of debonded resin-dentine specimens created using 
the different bonding approaches and tested after 6 months of artificial saliva storage.Images were 
taken at 3 kV and a working distance of 15 mm. a,b,c,d) Dentin side of a DW/BTCS-Zn specimen that 
failed in mixed mode. a) When the fracture is detected at the top of the hybrid layer, dentine is not 
visible and resin tags are fractured. b) If the fracture is located at the bottom of the hybrid layer, no 
mineral precipitation at the intertubular dentine is noticed; fractured resin tags are still present 
inside tubules. Demineralized collagen fibrils are shown. c,d) Crystal formations are detected. 
Globular formations are identified as silicon and calcium carbonate crystals (Ep1) and needles are 
Ettringite crystals that may also incorporate zinc (Ep2).  e,f) Specimen from the PAS/BTCS-Zn group. 
It failed in adhesive mode within the hybrid layer, where it is not possible to see collagen fibrils, as 
result of mineral precipitation both at the intertubular and intratubular dentine. Fractured resin tags 
are still present in the dentine tubules. g) Dentin side of a fractured specimen bonded with PAS-
TMP/BTCS-Zn.  Two different zones are observed: h) fractured resin tags are presented protruding 
the dentine surface, and appeared completely covered by mineral formations; intertubular dentine 
is also covered by minerals and no demineralized collagen fibrils are evidenced; these zones are 
alternating with other in which collagen fibres are not resin covered or remineralized, even when 
some tags are inside the tubules i). 
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