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ABSTRACT 

The aim of this study was to evaluate if mechanical cycling influences bioactivity and 

bond strength at the resin-dentine interface after bonding with Zn-doped self-etching 

adhesives. Sound dentine surfaces were bonded with Clearfil SE Bond (Kuraray, 

Tokyo, Japan) (SEB), and 10 wt% ZnO microparticles (Panreac Química, Barcelona, 

Spain) or 2 wt% ZnCl2 (Sigma Aldrich, St Louis, MO, USA) were added into the SEB 

primer (P) or bonding  (Bd)  for Zn-doping. Bonded interfaces were stored in simulated 

body fluid during 24 h, and then tested or submitted to mechanical loading. Microtensile 

bond strength (MTBS) was assessed for the different groups. Debonded dentine 

surfaces were studied by field emission scanning electron microscopy (FESEM). 

Remineralisation of the bonded interfaces was assessed nano-indentation, Raman 

spectroscopy/cluster analysis, and Masson's trichrome staining. Load cycling (LC) 

increased the percentage of adhesive failures in all groups. LC increased the Young’s 

modulus (Ei) at the hybrid layer (HL) when SEB, SEB·P-ZnO and SEB·P-ZnCl2 were 

applied, but decreased when both ZnO and ZnCl2 were incorporated into the bonding 

(SEB·Bd). In general, Ei was higher and more uniform when Zn compounds were 

incorporated into the primer (SEB·P). ZnO promoted an increase, and ZnCl2 a decrease, 

of both the relative presence of minerals and crystallinity, after LC. Mechanical loading 

increased collagen crosslinking at the interface with both SEB·P-ZnO and SEB·P-

ZnCl2. The ratios which reflect the nature of collagen increased, in general, at both HL 

and BHL after LC, confirming  recovery, better organization, improved structural 

differences and collagen quality. After loading, trichrome staining reflected a deeper 

demineralised dentine fringe when Zn-doped compounds were incorporated into 

SEB·Bd. Multiple Zn-rich phosphate deposits and salt formations were detected. 
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Mineral precipitates nucleated in multilayered platforms or globular formations on 

peritubular and intertubular dentine.  
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1. INTRODUCTION. 

Dentine is a mineralised connective tissue and consists of approx. 70% hydroxyapatite, 

20% organic material and 10% water (by weight) (Cao et al., 2005). Accordingly, 

demineralisation of dentine is the process of removing minerals ions from the apatite 

latticework leaving the collagen fibers without support except for the water contained 

within the dentine (Bertassoni et al., 2011). Demineralisation of dentine, or dentine 

conditioning, is used as a surface preparation step to improve adhesion for a variety of 

procedures in restorative dentistry (Toledano et al., 2001). The primer assists the 

adhesive to flow into and penetrate the conditioned tooth surface, and often it contains a 

hydrophilic portion that interacts with the moisture present in the tooth structure, as well 

as a hydrophobic end that provides bonding sites for the methacrylate monomers in the 

bonding resin (Tay and Pashley, 2001). Dentine demineralisation and further resin 

infiltration are clinically required to promote resin-dentine bonding. The concept of self-

etching adhesives is based on the use of polymerizable acidic monomers that 

simultaneously condition and prime dentine and enamel. After dentine demineralisation, 

mineral ions are removed from the apatite latticework (i.e. inorganic matrix), resulting 

in exposure of the collagen matrix (mainly type I collagen fibrils) (Xu and Wang, 

2011). To achieve a thorough wetting of this moist substrate, the use of hydrophilic 

adhesive components will be necessary. The most widely used self-etching adhesive 

systems involve two application steps: the conditioning of dentine with a self-etching 

primer, followed by the application of an adhesive resin (Moszner et al., 2005). 

Decalcification or conditioning of dentine is an ionic process. Calcium ions are chelated 

by acidic monomers, and zones of collagen fibres are solubilized or hybridized, as a part 

of the hybrid complex (Tay and Pashley, 2001). For these ionic processes water is 

required, and therefore, self-etching adhesives or primers are generally water based 
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(Moszner et al., 2005). Most of the currently available self-etching primers/adhesives 

are methacrylate-based with a pH-value in the range of 1.5-2.5. Under these strong 

acidic conditions, esters such as methacryloyloxydecyl dihydrogen phosphate (MDP) or 

2-hydroxyethyl methacrylate (HEMA), both present in the Clearfil SE Bond (SEB) 

chemical formulation, are hydrolytically degraded (Salz et al., 2005). The non-

impregnated demineralised dentine which results after an insufficient resin infiltration 

or after solubilization and hydrolytic degradation of the resin (Salz et al., 2005), at the 

hybrid layer (HL) or at the bottom of the hybrid layer (BHL) is the weakest zone within 

the adhesive interface (De Munck et al., 2005). This unprotected and weak resin-dentine 

interface remains susceptible to the proteolytic activity of the host-derived matrix-

metalloproteinases (MMPs) enzymes  (Osorio et al., 2011a), overtime. Thereby, the 

bonded interface at dentine remains the Achilles’ heel of dental restorations (Oguri et 

al., 2012). 

The use of self-etching agents eliminate the conditioning, rinsing and drying steps, 

typical of etch-and-rinse adhesives (Moszner et al., 2005). Thereby, treatment with SEB 

dissolved, not removed, the mineral content of both smear layer and superficial dentine 

after applying acidic components (Dieng-Sarr et al., 2011; Takatsuka et al., 2005). 

Therefore, mineral crystallites remaining within the collagen after partial 

demineralisation might act as seed sites for further apatite growth (Bertassoni et al., 

2010). Those minerals come from the dissolved and etched smear layer and superficial 

dentine. The existence of these crystals can induce and facilitate further dentine 

remineralisation (Saito et al.,1998). Those nucleating demineralised surface might 

promote structural and compositional changes that would enable the denser packing of 

the clusters and their subsequent fusion to form amorphous calcium phosphate and 

ultimately apatite crystals (Saito et al., 1998; Veis and Dorvee, 2013). However, 
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achieving remineralisation of dentine remains one of the most difficult tasks in dentistry 

(Bertassoni et al., 2010; Takatsuka et al., 2005). The chemical structure of MDP has 

been proven to play a key role in both the initial bonding performance as well as the 

durability of the adhesive interface (Inoue et al., 2005; Toledano et al., 2007; Van 

Meerbeek et al., 2011). The quality and the longevity of the resin-dentine interface may 

be increased by using innovative dental adhesives containing zinc within their 

composition, as Zn-doped adhesives have been shown to induce collagen-stabilization 

against MMPs degradation (Osorio et al., 2011b; Osorio et al., 2012), preserving the 

integrity at the resin-dentine interface. Zinc may not only act as a MMPs inhibitor, but it 

may also influence signaling pathways and stimulate a metabolic effect in hard tissue 

mineralisation (Hoppe et al., 2011). It may also be that effective inhibitors of MMPs 

included in resin-dentine bonding interfaces may protect the seed crystallite-sparse 

collagen fibrils of the scaffold from degradation, allowing them to become 

remineralised (Liu et al., 2011). Zinc has also been shown to inhibit dentine 

demineralisation (Takatsuka et al., 2005). These effects make zinc attractive for use as 

therapeutic agent in the fields of hard and soft tissue engineering. In vitro effects of 

mechanical stimuli have promoted remineralisation at the resin-dentine interface 

(Toledano et al, 2014a). The experimental clinical exploitation of combining Zn-doped 

self-etching dentine adhesives, as innovative bioactive ion-releasing restorative 

materials, and mechanical loading to achieve therapeutic effects on the mineral depleted 

sites, within the bonded-dentine interface, might result promising. This would provide 

better insights and therapeutic approaches for management of dental disease.   

The purpose of this study was to assess the resin-dentine bond strength and the ability of 

a two-steps self-etching dental adhesive doped with zinc at the primer or at the bonding 

components to induce remineralisation at the bonded dentine interface, and after in vitro 
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mechanical loading. This study tested the two null hypotheses that, 1) functional 

remineralisation of dentine interface obtained with zinc-doped self-etching adhesives at 

both primer vs bond components is neither produced nor influenced by load application, 

and 2) load cycling has no effect on the microtensile bond strength (BS) of samples 

bonded with zinc-doped self-etching adhesives to sound dentine.  

 

2.- MATERIAL AND METHODS  

2.1. Specimen preparation, bonding procedures and mechanical loading.   

Human molars extracted for surgical reasons were obtained with informed consent from 

donors (20–40 year of age), under a protocol approved by the Institution Review Board. 

Molars were stored at 4ºC in 0.5% chloramine T for up to 1 month before use. A flat 

mid-coronal dentine surface was exposed using a hard tissue microtome (Accutom-50; 

Struers, Copenhagem, Denmark) equipped with a slow-speed, water-cooled diamond 

wafering saw (330-CA RS-70300, Struers, Copenhagen, Denmark). A 180-grit silicon 

carbide (SiC) abrasive paper mounted on a water-cooled polishing machine (LaboPol-4, 

Struers, Copenhagem, Denmark) was used to produce a clinically relevant smear layer 

(Koibuchi et al., 2001).  

A two-step self-etching system, Clearfil SE Bond (Kuraray, Tokyo, Japan) (Clearfil SE) 

was tested. It was zinc doped by mixing the primer of SEB (SEB·P) with 10 wt% ZnO 

microparticles (1 to 2 microns) (Panreac Química, Barcelona, Spain) were added to the 

primer of SEB (SEB·P) (SEB·P-ZnO) or to the bonding resin (SEB·Bd) (SEB·Bd-

ZnO); or 2 wt% of ZnCl2 crystals (Sigma Aldrich, St. Louis,MO, USA) were actively 

dissolved into the primer (SEB·P) (SEB·P-ZnCl2) or into the bonding resin (SEB·Bd) 

(SEB·Bd-ZnCl2). To achieve complete dissolution of ZnCl2 and dispersion of ZnO 

particles, adhesive blends were vigorously shaken 1 min in a tube agitator (Vortex 
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Wizard 51075; Velp Scientifica, Milan, Italy). The complete process was performed in 

the dark. Preparation of the adhesives and zinc concentrations were based upon previous 

studies (Osorio et al., 2011b; Toledano et al., 2012a; Toledano et al., 2013). The 

chemical and descriptions of the adhesives are provided in Table 1. 

The specimens were divided into the following main groups based on the tested 

adhesive systems: (i) Group SEB: Clearfil SEB; (ii) Group SEB·P-ZnO: SEB·P-ZnO 

was applied followed by the resin bonding (SEB·Bd); (iii) Group SEB·P-ZnCl2: SEB·P-

ZnCl2 was applied followed by de resin bonding (SEB·Bd); (iv) Group SEB·Bd-ZnO: 

SEB·Bd-ZnO was applied after the primer (SEB·P) placement, and (v) Group 

CSEB·Bd-ZnCl2: CSEB·Bd-ZnCl2 was applied after the primer (SEB·P) placement. The 

bonding procedures were performed in moist dentine following the manufacturer´s 

instructions. Excess dentine moisture was removed using absorbent paper, leaving the 

dentine wet (Faria-e-Silva et al., 2013). A flowable resin composite (X-FlowTM, 

Dentsply, Caulk, UK) was placed incrementally in five 1 mm layer and light-cured with 

a Translux EC halogen unit (Kulzer GmbH, Bereich Dental, Wehrheim, Germany) for 

40 s. Half of the teeth were stored for 24 h in simulated body fluid solution (SBF) 

(Osorio and Toledano, 2014; Toledano et al., 2014a), and the other half were mounted 

in plastic rings with dental stone for load cycling, in SBF (100,000 cycles, 3 Hz, 49 N). 

This compressive load was applied to the flat resin composite buildups using a 5-mm-

diameter spherical stainless plunger, attached to a cyclic loading machine (S-MMT-

250NB; Shimadzu, Tokyo, Japan) (Toledano et al., 2014a). The rest of the time until 

complete 24 h, the loaded specimens were kept in SBF, at 37 ºC. 

2.2. Microtensile Bond Strength 

Four teeth from each group were sectioned into serial slabs, and further into beams with 

cross-sectioned areas of 1 mm2. Specimens were attached to a modified Bencor Multi-T 
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testing apparatus (Danville Engineering Co., Danville, CA) with a cyanoacrylate 

adhesive (Zapit/Dental Venture of America Inc., Corona, CA, USA). Then, they were 

stressed to failure in tension (Instron 4411 /Instron Inc., Canton, MA, USA) at a 

crosshead speed of 0.5 mm/min. The cross-sectional area at the site of failure of the 

fractured specimens was measured to the nearest 0.01mm with a pair of digital calipers 

(Sylvac Ultra-Call III, Fowler Co Inc., Newton, Mass, USA). Bond strength values were 

calculated in MPa. 

Fractured specimens were examined with a stereomicroscope (Olympus SZ-CTV, 

Olympus, Tokyo, Japan) at 40x magnification to determine the mode of failure. Failure 

modes were classified as adhesive or mixed.  

 

2.3. FESEM and EDX analysis. 

Representative specimens of each group were fixed in a solution of 2.5% glutaraldehyde 

in 0.1 mol/L sodium cacodylate buffer for 24 h, rinsed three times in 0.1 mol/L sodium 

cacodylate buffer. Samples were placed in an apparatus for critical point drying (Leica 

EM CPD 300, Wien, Austria). They were, then, sputter-coated with carbon by means of 

a sputter-coating Nanotech Polaron-SEMPREP2 (Polaron Equipment Ltd., Watford, 

UK) and observed with a field emission scanning electron microscope (FESEM Gemini, 

Carl Zeiss, Oberkochen, Germany) at an accelerating voltage of 3 kV.  Energy-

dispersive analysis was performed in selected points using an X-ray detector system 

(EDX Inca 300, Oxford Instruments, Oxford, UK) attached to the FESEM. MTBS 

values were analyzed by two-way ANOVA (independent factors are mechanical loading 

and adhesive type) and Student Newman Keuls multiple comparisons tests. For all tests, 

statistical significance was set at a = 0.05.  

2.4. AFM imaging and nano-indentation.  
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Thirty bonded interfaces were used for the test. An atomic force microscope (AFM – 

Nanoscope V, Digital Instruments, Veeco Metrology group, Santa Barbara, CA, USA) 

equipped with a Triboscope indentor system (Hysitron Inc., Minneapolis, MN, USA) 

and a Berkovich indenter (tip radius 20 nm) was employed for the indentation process 

in a fully hydrated status (Sauro et al., 2012). For each subgroup, three slabs were 

tested. On each slab, five indentation lines were executed in five different mesio-distal 

positions along the interface in a straight line starting from the adhesive layer down to 

the intertubular dentine. Indentations were performed with a load of 4000 nN and a time 

function of 10 s. The distance between each indentation was kept constant by adjusting 

the distance intervals in 1.5 (±1) µm steps (Toledano et al., 2013). Modulus of elasticity 

(Ei) data were registered in GPa. Data were analyzed by two-way ANOVA 

(independent factors were mechanical loading and adhesive type) and Student–

Newman–Keuls multiple comparisons (P < 0.05).  

2.5. Raman spectroscopy and cluster analysis. 

A dispersive Raman spectrometer/microscope (Horiba Scientific Xplora, Villeneuve 

d´Ascq, France) was also used to analyze bonded interfaces. The checking protocol for 

autocalibration procedure was undertaken before each analysis, regularly, using the 521 

cm-1 line of Si in a silicon wafer. Focus was applied on it, using a 100x magnification 

objective. Then, the diffraction grating drop down to calibrate (600T) and the reference 

laser from the laser drop down were selected. Other parameters used in the data 

acquisition (Slit=100; Hole=300; Filter 50%) were incorporated into the program for the 

analysis. A 785-nm diode laser (100 mW sample power) through a X100/0.90 NA air 

objective was employed. Raman signal was acquired using a 600-lines/mm grating 

centered between 900 and 1,800 cm–1. Chemical mapping of the interfaces was 

performed. For each specimen a 45 m x 45 m area of the interfaces was mapped 
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using 2 m spacing at X axis and 1 m at Y axis. Chemical mapping was submitted to 

K-means cluster (KMC) analysis using the multivariate analysis tool (ISys® Horiba), 

which includes statistical pattern to derive the independent clusters. Hypotheses 

concerning the number of clusters formed in resin-bonded interfaces were previously 

obtained (Toledano et al., 2015, 2014b). However, Ward’s method was employed to get 

some sense of the number of clusters and the way they merge as seen from the 

dendrogram. The aim of a factor analysis lies in the effective reduction of the dataset 

dimension while maintaining a maximum of information. This method was used to 

model the data and to determine spectral variances associated for data differentiation. It 

resulted in the calculation of a new coordinate system whereby variations of the dataset 

is described via new axes, principal components (PC). The K-means clustering is a 

method of cluster analysis based on a centroid model which aims to partition n 

observations into k clusters in which each observation belongs to the cluster with the 

nearest mean (Almahdy et al., 2012). The natural groups of components (or data) based 

on some similarity and the centroids of a group of data sets were found by the 

clustering algorithm once calculated by the software. To determine cluster membership, 

this algorithm evaluated the distance between a point and the cluster centroids. The 

output from a clustering algorithm was basically a statistical description of the cluster 

centroids with the number of components in each cluster. The biochemical content of 

each cluster was analyzed using the average cluster spectra. Four clusters were 

identified and values for each cluster such as adhesive, hybrid layer, bottom of hybrid 

layer and dentine, within the interface, were independently obtained. Principal 

component analysis (PCA) decomposed data set into a bilinear model of linear 

independent variables, the so-called principal components (PCS). Two principal 

components were selected for the present study at the interfaces: hybrid layer (HL) and 
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bottom of hybrid layer (BHL). The observed spectra were described at 900-1800 cm-1 

with 10 complete overlapping Gaussian lines, suggesting homogeneous data for further 

calculations (Nakabayashi, 1992; Ager et al., 2005). A comparison of the spectra that 

were collected from the two specimens which compose each subgroup indicated 

complete overlap, suggesting similarity between both measurements. 

The mineral component of dentine, at both HL and BHL was analyzed as follows 

(Toledano et al., 2014a):  

Relative presence of mineral: 

1. Phosphate (960 cm-1) and carbonate (1070 cm-1) peaks and areas of their bands. 

Peak heights were processed in absorbance units. 

2. Relative mineral concentration (RMC) (i.e., mineral-to-matrix ratio): It was 

inferred from the visible ratio of the intensities of the peaks at 960 cm-1 

(phosphate) (PO4
3-) and 1003 cm-1 (phenyl group), the aromatic ring of 

phenylalanine residues in collagen. These indexes concerned with the maximum 

relative degree of mineralization (Schwartz et al., 2012; Karan et al., 2009).  

Additionally, peaks at 960 cm-1 and 1450 (CH2) or 1070 cm-1 and 1450 can be 

used (Wang et al., 2009).  

Crystallinity: It was evaluated based on the full width at half maximum (FWHM) of the 

phosphate band at 960 cm-1 and carbonate band at 1070 cm-1. These indexes expressed 

the crystallographic or relative atomic order, since narrower peaks suggest less 

structural variation in bond distances and angles (Schwartz et al., 2012). In general, the 

narrower the spectral peak width is, the higher the degree of mineral crystallinity (Karan 

et al., 2009).  

Gradient in mineral content (GMC), or carbonate content of the mineral crystallites: It 

was assessed as the relationship between the ratio of heights at 1070 cm-1 (carbonate) 
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(CO3
2-) to 960 cm-1 (phosphate) (PO4

3-), indicating carbonate substitution for phosphate 

(Schwartz et al., 2012). 

Phosphate peaks ratio (PPR): it assesses the ratio between the mineral peak at 960 cm-1 

(phosphate) (PO4
3-), within the demineralised zone and the mineral peak (PO4

3-) within 

the healthy substratum (Milly et al., 2014).  

The organic component of dentine was analyzed examining the following parameters:  

Normalization: Phenyl group: The peak at 1003 cm-1, which is assigned to C-C bond in 

the phenyl group, was used for normalization (Xu and Wang, 2011).   

Crosslinking: 

1. Pyridinium ring vibration: In the spectra, the peak appeared at 1030/1032.7 cm-1, 

is assigned to the C-C in pyridinium ring vibration which has a trivalent amino 

acid crosslinking residue (Daood et al., 2013). The relative intensity of this peak 

increases after the crosslinking formation (Jastrzebska et al., 2003). 

2. Ratio Pyridinium/Phenyl (1032 cm-1/1001 cm-1): the higher the ratio, the greater 

the extent of collagen cross-linking (Jastrzebska et al., 2003; Xu and Wang, 

2012). 

3. Ratio 1003 (phenyl)/1450 (CH2): arises preceding deposition of HAP 

(hydroxyapatite) crystals within the structure (Wang et al., 2009). 

4. AGEs (advance glycation end products)-pentosidine at 1550 cm-1, interpreted as 

a marker of the aging process (Sell and Monnier, 1989). 

Nature of collagen: 

1. Amide III, CH2 and amide I: The peaks at 1246/1270, 1450 and 1655/1667 cm-1 , 

assigned to amide III, CH2 and amide I, respectively, are sensitive to the 

molecular conformation of the polypeptide chains (Xu and Wang, 2011; 
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Jastrzebska et al., 2003). The decrease of amide I peak indicates damage or 

removal of collagen fibrils (Xu and Wang, 2012). 

2. Ratio amide I/amide III concerned the organization of collagen. 

3. Ratio amide III /CH2 wagging mode indicates the structural differences (Salehi 

et al., 2013). 

4. Ratio amide I/CH2 indicates altered collagen quality (Salehi et al., 2013). 

5. Ratios amide III and I/AGEs-Pentosidine, indicatives of the glycation reaction vs 

collagen scaffolding (Salehi et al., 2013). 

6. 1340 cm-1 peak: This signal has been assigned to protein α-helices where 

intensity is sensitive to molecular orientation (Wang et al., 2009). 

Degree of adhesive presence:   

1. Degree of conversion of adhesive: Ratio 1637/1608. The peak appearing at 1637 

cm-1 is associated with C=C of methacrylate, and the peak at 1608 cm-1 is related                             

to C-C in phenyl of the adhesive monomer (Xu and Wang, 2012). 

2. Bis-GMA penetration: Ratio1113/1667. The peak appearing at 1113 cm-1 is 

associated with C-O-C of the adhesive, and the peak at 1667 cm-1 is related to 

amide I (Wang and Spencer, 2003; Xu and Wang, 2012). 

3. Adhesive (Bis-GMA and HEMA) penetration: Ratio1454/1667. The peak 

appearing at 1454 cm-1 is assigned to the CH2 group of both Bis-GMA and 

HEMA, and the peak at 1667 cm-1 is related to amide I (Wang and Spencer 

2003; Xu and Wang, 2012). 

4. Others: The peak at 1720 cm-1 is associated with carbonyl group. The peak at 

1453 cm-1 is associated at CH2 def (Wang and Spencer; 2003, Xu and Wang, 

2012). 
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2.6. Light microscopy–Masson’s trichrome staining. 

Three resin-dentine bonded slices from each group were used for the histo-

morphological evaluations. The medial aspects of each resin-dentine bonded slice was 

fixed in a glass holder with a photo curing adhesive (Technovit 7210 VLC, Heraeus 

KulzerGmbH Co., Werheim, Germany). Then, they were grounded with SiC papers of 

increasing fine grits (800, 1000, 1200 and 4000) in a polisher (Exakt, Apparatebau D-

2000, Norderstedt, Germany) until its thickness was approximately 10 mm. Slices were 

stained with Masson’s trichrome for differentiation of resin and non-resin encapsulation 

of the exposed collagen. This dye has a high affinity for cationic elements of normally 

mineralised type I collagen, resulting in staining collagen green, and when 

demineralised, resulting in different coloration, generally red; collagen coated with 

adhesive stains orange and pure adhesive appears beige. Slices with adherent stained 

sections were dehydrated through ascending ethanol and xylene. The sections were 

cover slipped and examined by light microscopy (BH-2, Olympus, Tokyo, Japan) at 

100× magnifications. Three slices were prepared from each specimen, and images were 

digitalized in a scanner (Agfa Twin 1200, Agfa-Gevaert NV Mortsel, Belgium). In each 

specimen, the presence or absence of a red band (that would correspond to 

demineralised dentine) was observed. A qualitative assessment of the collagen 

encapsulation was completed by observing color differences within the interfacial zones 

of resin-dentine interfaces (Toledano et al., 2012b). 

 

3. RESULTS AND DISCUSSION. 
 

Attained nanomechanical properties (Ei) for each group are displayed in Figure 1, and 

Raman spectroscopy -cluster analysis of the resin-dentin interface in Figures 2 and 3. Light 

micrographs (Masson’s trichrome) and FESEM-EDX images are displayed in Figures 4 and 



17 

 

5, respectively. Table 1 describes the materials and chemical used for the study. Tables 2 

and 3 represent microtensile bond strength (MTBS) results (mean and standard deviation), 

and Raman peaks intensities/ratios of mineral, organic and adhesive components at the 

resin-dentin interface, respectively. 

The null hypothesis that load cycling has no effect on the microtensile bond strength 

(BS) of samples bonded with zinc-doped self-etching adhesives to sound dentine must 

be reconsidered, as mechanical loading did not influence bond strength results, but 

increased the percentage of adhesive failures. Indeed, occlusal function or in vitro 

mechanical loading have been identified as a significant factor to the age of restorations 

at failure. Such an influence might simply be due to fatigue of the interface where cyclic 

stresses transmitted across the adhesive and hybrid layers accelerate degradation of the 

interface. It has been pointed out that fatigue stress (Nikaido et al., 2002) produces a 

failure mostly at the top or beneath the HL where demineralised collagen fibrils were 

exposed and the adhesive failed to envelop the collagen network properly (Prati et al., 

1999; Toledano et al., 2006). Thus, cycling loading lowered, in general, the resin-

dentine bond strength of the adhesives to dentine (Toledano et al., 2006) and in the air-

dried smear layer-covered dentine when self-etching adhesives were used; nevertheless, 

load cycling did not affect bond strength results when a hydrated smear layer was used 

as substrate for self-etching adhesives (Osorio et al., 2005) or when EDTA-treated 

dentine surfaces were resin-infiltrated with an etch-and-rinse adhesive zinc-doped or not 

(Toledano et al., 2015). Even more, EDTA-treated specimens bonded with experimental 

resins, showed no significant difference in bond strength after load cycling (Sauro et al., 

2011). Apart from our previous results, some other author neither obtained bond 

strength increase after load cycling (Nikaido et al., 2002; Feitosa et al., 2014). 
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All Zn-doped samples, except SEB·P-Zncl2, performed similar when load cycling was 

not applied on restored teeth.  After mechanical loading, SEB·P-ZnCl2 attained the 

lowest bond strength values and higher percentage of mixed failures; the rest of 

specimens performed similar (Table 2). Two main factors explain the attained higher 

bond strength: (i) the low-dissolution rate of MDP calcium salts that were formed 

through the creation of strong ionic bonds (Yoshida et al., 2004); and (ii) the very 

effective polymerization of this adhesive system (Nunes et al., 2005). Functional 

phosphate monomers have been known for a long time in adhesive dentistry; 

phosphoric acid monomers such as 10-methacryloyloxydecyl dihydrogen phosphate 

(MDP) may have a potential for chemical bonding to calcium ions (Yoshida et al., 

2004). The reasoning for the general reliability in bonding efficacy by using SEB and 

SEB Zn-doped adhesive resins may be explained by the chemical stability of MDP-Ca 

salts (Yoshida et al., 2004), since the long apolar decyl-group renders MDP rather 

hydrophobic. According to the adhesion–decalcification concept (Yoshida et al., 2004; 

Van Meerbeek et al., 2011), monomers that etch rather than chemically interact with 

calcium ions attain lower chemical bonding effectiveness to dentine. Monomers having 

weak interaction with hydroxyapatite are less prone to produce high initial bond 

strength and durability, compared with those with a higher chemical interaction (Van 

Landuyt et al., 2008). Additionally, load cycling gave rise to the increase in the 

percentage of adhesive over mixed failures (Table 2). Fatigue stress produces a failure 

mostly at the top or beneath the HL where demineralised collagen fibrils were exposed 

and the adhesive failed to envelop the collagen network properly (Nikaido et al., 2002; 

Prati et al., 1999).  

The lower percentage distribution of mixed failures after mechanical loading may be 

related to the increase in mineral precipitation which strengthens the interface. It also 
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may be associated to some changes in either organic and adhesive components at the 

resin-dentine interface, affecting both the hybrid layer (HL) and bottom of hybrid layer 

(BHL), as Raman analysis showed (Table 3). When SEB·P-ZnO was applied on dentine 

and then load cycled, the degree of mineralization related to both phosphate (960 cm-1) 

and carbonate (1070 cm-1) height of peaks were higher than in the unloaded specimens, 

at hybrid layer (HL) [2.03 fold in phosphate (PO3-
4) and 1.39 fold in carbonate (CO2-

3)] and bottom of the hybrid layer (BHL) (1.08 fold in phosphate and 1.03 fold in 

carbonate) (Table 3a) (Figs 2DI, 2DII). The presence of a prominent carbonate band 

around 1070 cm-1 (Table 3a) (Fig 3B) is significant because it shows the degree of 

carbonate substitution in the lattice structure of apatite (Salehi et al., 2013). This 

increment in the relative presence of mineral, after loading SEB·P-ZnO samples, 

corresponded with i) an increase of 1.34 fold in the relative mineral concentration 

(RMC) between phosphate and phenyl (1003 cm-1), the aromatic ring of phenylalanine 

residues in collagen (Schwartz et al., 2012), and ii) an increase in crystallographic 

perfection in the apatite unit cell, i.e., lower FWHM, which was evidenced in Table 3A 

and Fig 3B. Additionally, iii) the gradient of mineral content (GMC) was lower (1.45 

and 1.06 at HL and BHL, respectively), and the phosphate peaks ratio was higher (2 

and 1.07 at HL and BHL, respectively) after load cycling (Table 2a). The lower 

carbonate substitution for phosphate, plus the higher phosphate peak ratio evokes the 

presence of advanced apatite maturity (Schwartz et al., 2012; Milly et al., 2014). Field 

emission scanning electron microscopy confirmed the presence of new mineral 

formation at both intertubular and peritubular dentine (Fig 5D). The EDX analysis 

revealed the formation of phosphate deposits, promoted by the Zn-doped MPD 

monomers, principally formed by zinc phosphates (Feitosa VP et al., 2014). This 
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augmented precipitation of minerals vs absence of unprotected and demineralised 

collagen layer were noticed at the resin-dentine interface of specimens treated with 

SEB·P-ZnO after load cycling (Fig 4D). A previous narrow purple-red line representing 

mild collagen demineralisation was detectable below the thin orange-stained hybrid 

layer in the SEB·P-ZnO unloaded specimens (Fig 4C), though FESEM analysis 

confirmed the presence of mineral precipitates on dentine structures (Fig 5C), higher 

than in SEB unloaded (Fig 5A). In general, specimens treated with SEB·P-ZnCl2 

showed, at both HL and BHL, lower intensity bands at both phosphate peak and area, 

denoting less presence of this mineral (Figs 2EI, 2EII). Nevertheless, these new crystals 

were less mature than the ones promoted after SEB·P-ZnO dentine application, as 

FWHM and GMC were higher when zinc chloride was combined with SEB primer 

(SEB·P) (Table 3a). This diminution of the relative presence of minerals match with the 

lower bond strength and percentage of mixed failures that were attained (Table 2). It 

also coincides with some non-uniform purple and red areas below the adhesive 

interface, representative of the advanced demineralisation front within the resin-dentine 

interface. This Masson’s trichrome light micrographs (Fig 4E) denoted the existence of 

a partially demineralised layer at the bottom of the hybrid layer. Nevertheless, FESEM 

analysis permitted to observe multiple mineral formations emerging from the resin-

dentine infiltrated layer, trying to occlude the entrance of tubules (Fig 5 E). SEB·P-

ZnCl2 load cycled, on the contrary, produced minimal dentine demineralisation (Fig 

4F). This mineral growth made disappear the wide and intense red staining layer, 

indicating that the partially demineralised fringe at the hybrid layer became 

remineralised after mechanical loadin; this was confirmed in Fig 5F, which showed 

multi-layered platform of crystals of Zn-based crystals, as denoted the EDX analysis. 

Dentine treated with both SEB·Bd-ZnO and SEB·Bd-ZnCl2 showed lower height of 
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phosphate (Figs 2H, 2J) and carbonate peaks after load cycling (1.01 and 2.93, 

respectively), in comparison to the unloaded specimens (Fig 3C); the area of phosphate 

followed similar trend. In addition, the light microscopy evaluation confirmed this 

relative lack of mineral, as some non uniform and discontinuous zones of the interface 

exhibited redder areas below the adhesive layer. These Masson’s trichrome-stained 

sections (Figs 4H, 4J) evidenced the partial demineralisation and the exposed proteins at 

the resin-dentine interface. These findings were compatible with other mechanical 

loading outcomes, which not only originated an increase of the gradient in mineral 

content (GMC), but these crystals showed higher crystallinity (lower FWHM) and 

lower GMC ratio when SEB·Bd-ZnO was used (Table 3a) (Fig 3C). Nevertheless, 

specimens treated with SEB·Bd-ZnCl2 showed an increase in GMC ratio. The 

phosphate Raman peaks intensities have been reported as a suitable parameter to detect 

differences between intact and demineralised substratum regions (Milly et al., 2014). 

The ratio phosphate peak/healthy substratum (PPR) showed higher values after cycling 

loading when ZnO was used as doping agent, concurring with the global increase of 

relative presence of minerals which attained these doped groups (Table 3a). These new 

minerals organized in a dense network of plate-like multilayered crystals, forming 

multiple cavities and hollows throughout the whole resin-dentine interface (Fig 5H). On 

the contrary, specimens doped with ZnCl2 (either SEB·P or SEB·Bd) showed the lowest 

PPR, at resin-dentine interfaces (Table 3a), though intertubular and peritubular dentine 

appeared strongly mineralised (Fig 5J). These crystals appeared as amorphous clumps 

of buttons-like materials, whose nature probably is phosphate complexes due to the 

reaction of MPD, Zn++ and Ca++ during the application of Zn-doped MPD solution on a 

calcium-rich dentine surface (Feitosa VP et al., 2014).  
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Concerning the organic components in dentine, load cycling increased collagen 

crosslinking at the interface of dentine treated with both SEB·P-ZnO and SEB·P-ZnCl2, 

as the peaks at 1032 cm-1 (pyridinium) and 1550 (AGES-Pentosidine), and the ratios 

1031/1001 cm-1 and 1003/1450 cm-1, increased in their intensities (Table 3b) (Fig 3B). 

Pyridinium ring decreased its intensity, after loading, in the SEB·P-ZnCl2 group, 

matching with a lower Ei, in comparison to SEB·P-ZnO (Fig 1). A decrease in 

pyridinium crosslinks has been previously associated with a wide reduction of bending 

strength and modulus of cortical bone (Oxlund et al., 1995). Pyridinium was formed 

within the N- and C-terminal telopeptides. This enzymatic modification is initiated by 

the oxidation of lysine and hydroxylysine residues that are catalyzed by the enzyme 

lysyl oxidase (Garnero, 2012). Pentosidine is a crosslinking AGE (advance glycation 

end products), which is likely to be formed between helical lysine and arginine residues 

of two collagen molecules. The first step in crosslinking AGEs is the reaction of the 

aldehyde of an open-chain form of glucose with the -amino group of collagen-bound 

lysine to form a glycosyl-lysine via Schiff’s base formation (Garnero, 2012). When the 

bonding of SEB was Zn-doped (SEB·Bd-ZnO or SEB·Bd-ZnCl2), the whole indexes 

reflected a crosslinking decreased after mechanical loading, except the ratio 1031/1001 

which gave rise to an increase in intensity values (Table 3b). The ratios which evoke the 

nature of collagen i.e., A-III (1246-1270 cm-1), A-I (1655-1667 cm-1), Ratios Amide 

I/A-III, A-III and I/CH2, A-III and I/AGES-Pentosidine, and α-helices (Fig 3C) 

increased at both HL and BHL after load cycling (Table 3b). This increases indicate 

recovery (Xu and Wang, 2012), better organization (Toledano et al., 2014a), improved 

structural differences and collagen quality (Salehi et al., 2013), when SEB·P-ZnO was 

applied on dentine and then cycled (Table 3b) (Fig 3B). It also denotes a greater 

sensitivity to molecular orientation in order to enhance further crystallization (Wang et 
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al., 2009), as mineral nucleation is more advanced in comparison with the SEB·P-ZnCl2 

group (Table 3a). Some studies performed on other hard tissues (bone) have determined 

that higher AGE content may be associated with denser and more complex rod-like 

trabecular architecture. This also depends on local bone tissue maturation and it affects 

not only the bone toughness but also the stiffness, and the elastic modulus independent 

of the mineral  phase (Garnero, 2012). The increase of collagen maturation has been 

also associated with a dose-dependent increase of pentosidine that was correlated with 

bone turnover rate (Saito et al., 2008). Tang et al., (2010) have stated that an increase of 

AGE crosslink induces a marked decrease in the propagation fracture toughness, in 

bone. SEB·P-ZnCl2, on the contrary, showed in general a worst molecular conformation 

(A-III, CH2, A-I), collagen scaffolding (A-III and I/AGES-Pentosidine) and orientation 

(α-helices) (Fig 3B). These findings are in line with the lower bond strength (Table 2), 

relative presence of minerals (Table 3a) and pyridinium intensity (Table 3b) that were 

attained when samples were treated with SEB·P-Zn doped. After including Zn into the 

bonding component of SEB (SEB·Bd), a general decrease of height peaks and ratios 

concerning the nature of collagen were observed, more intense in the samples which 

were treated with SEB·Bd-ZnCl2, and then load cycled (Table 3b) (Fig 3C). 

Raman analysis only provides quantitative information on the changes in mineral and 

matrix structures, but this method does not differentiate the contributions of intra- and 

extrafibrillar mineral. Most importantly, it cannot evaluate the effectiveness of the 

remineralisation procedure on the mechanical reinforcement and recovery of the 

mechanical properties of the partially demineralised dentine (Bertassoni et al., 2009). 

The mechanical properties of dentine depend on the degree and on the quality of the 

mineralization. Indeed, the extrafibrillar minerals act as a granular material that can 

withstand load, but in the absence of intrafibrillar mineralization. Intrafibrillar 
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mineralization is the key factor to ensuring that collagen fibrils have the same high 

modulus of elasticity and hardness as occurs in natural biomineralised dentine (Balooch 

et al., 2008). Therefore, the increase of the elastic modulus (Ei) of the partially 

demineralised collagen is directly related to the precipitation of minerals at the resin-

dentine interface has (Li et al., 2012), and more specifically at the intrafibrillar 

compartment (Bertassoni et al, 2009; Balooch et al., 2008).  At the hybrid layer, 

specimens treated with both SEB·P-ZnO and SEB·P-ZnCl2 attained the lowest Ei 

among Zn-doped groups, when samples were not cyclic loaded. On the contrary, groups 

treated with SEB·Bd-ZnO and SEB·Bd-ZnCl2 showed the biggest modulus of Young in 

the unloaded specimens, where some slight and faint signs of demineralisation 

permitted to observe the scarce exposed proteins detected (Figs 4G, 4I).  This denoted 

that most of the precipitated mineral was extrafibrillar, i.e., undertaking a non-

functional dentine remineralisation (Balooch et al., 2008).  At bottom of hybrid layer, 

samples with both SEB·Bd-ZnO and SEB unload cycled produced the lowest values of 

Ei. At both the hybrid layer and the bottom of hybrid layer, SEB and SEB·P-ZnO 

groups showed the highest Ei after cyclic loading. Therefore, the null hypothesis that 

functional remineralisation of dentine interface obtained with zinc-doped self-etching 

adhesives at both primer vs bond components is not produced neither influenced by load 

cycling application, must be rejected. Specimens treated with either SEB·Bd-ZnO or 

SEB·Bd-ZnCl2 attained the lowest modulus of Young among mechanical loaded 

groups, at both the hybrid layer (HL) and bottom of hybrid layer (BHL) (Fig 1). 

The mechanism of bonding of SEB was shown to be based upon submicron micro-

mechanical interlocking (Van Meerbeek et al., 2003), supplemented by primary 

chemical interaction of the functional monomer MDP with HAp that remained around 

the partially exposed collagen (Yoshida  et al., 2004; Fu et al., 2005). Clearfil SE Bond 
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adhesive system involves a two-step application procedure; SEB·P represents the much 

more fluid and thus probably more chemically active component of SEB system, which 

is applied first. Most likely, the primer itself may have produced self-assembled nano-

layering (Yoshida et al., 2012), which consists of two MDP molecules with their 

methacrylate groups directed towards each other and their functional hydrogen 

phosphate groups directed away from each other; in between the layers calcium salts are 

deposited and basically hold the layers together. Zn++ may causes interaction with MDP 

forming Zn-MDP complexes when it is combined with the primer (SEB·P-Zn doped) 

and applied on dentine previous to the adhesive placement (SEB·Bd), reducing the Ca-

MDP salts formation (Osorio et al., 2011b). As a consequence, the penetration of free 

MDP into the partially demineralised dentine is compromised, due to simultaneous 

formation of MPD-Zn and Ca-MPD-Zn salts rather than MPD-Ca (Feitosa VP et al., 

2014). When dentine was treated with any zinc-doped mixture of SEB bonding system 

(SEB·Bd), remineralisation of the bonding interface below the resin-primed 

demineralised collagen was not affected by the presence of a previous adhesive layer 

(SEB·P). These Ca-MDP complexes, organized in nano-layering (Yoshida et al., 2012) 

did not hamper the inward diffusion of ions, helping for further interactions between the 

remaining Ca++ and Zn++ ions, the curable resin matrix containing acidic functional, Zn-

MPD and Ca-MPD-Zn complexes, and the partially demineralised collagen. We 

speculate that the Zn-MDP complexes formed after mixing Zn-compounds with 

SEB·Bd may have not promoted intrafibrillar remineralisation (lower Ei) after load 

cycling at the resin-dentine interface due to, i) a restricted formation of in situ Ca-MDP 

salts caused by Zn++ interactions (Osorio et al., 2011b), and as result lower formation of 

nano-layering, ii) an over-etching effect produced by ZnCl2,  as ZnCl2 is highly acidic, 

soluble, and hydrophilic (Brown, 2006). These findings are in accordance with the 
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bonding efficacy results, as a lower bond strength was found when SEB·P-ZnCl2 was 

employed (Table 2), showing an increase of the adhesive failures at the top or within the 

hybridized complex (Fig 5J). 

This lower salt formation, plus the higher alkalinity promoted after mechanical loading 

(McAllister and Frangos, 1999) could also account for the less effective release of zinc 

ions at the resin-dentine interface. Nevertheless, this inhibition effect of Zn++ is reverted 

with an increase of calcium concentration; as Ca++ ions increase at the demineralised 

dentine and beneath the resin-dentine interface (Bertassoni et al., 2010) (BHL), new Ca-

MDP salts are formed and greater Ei values are produced at the bottom of the hybrid 

layer (Fig 1). Collagen crosslinking effect (Table 3b) improved mechanical strength and 

stability of dentine collagen (Xu and Wang, 2012). It permitted the growing of minerals 

within the demineralised dentine, as three-dimensional structures supporting effective 

mineralization may be created between intrafibrillar collagen molecules via the 

assemblage of specific cross-link formation that guide proper mineralization (Saito et 

al., 2006). It has been shown that this local increase of Ca++ concentration may inhibit 

Zn++ binding, depending on the relative abundance of these two divalent ions 

(Rosenberg et al., 1998). The association among the in situ release of Zn++, mineral 

precipitation and in vitro load cycling on partially demineralised and infiltrated dentine 

is supported by the effect of compressive loads on the stimulation of the tissue-

nonspecific alkaline phosphatase (McAllister and Frangos 1999), a zinc-metalloenzyme 

that hydrolyzes a broad range of phosphate monoesters (Price et al., 2009; Posner et al., 

1986). At high phosphate concentration, calcium pyrophosphate, calcium phosphate and 

unstable and non-crystalline amorphous complexes are formed (Cheng and Pritzker, 

1983) (Figs 4J, 5J) around the collagen fibrils, keeping the alkaline phosphatase and 

other enzymes "fossilized" (Van Meerbeek et al., 2001), thus hindering the complete 



27 

 

remineralisation. Nevertheless, extrafibrillar mineralization, e.g., intratubular and 

intertubular mineral precipitated were also evidenced (Fig 5J). These findings correlate 

well with the decrease in both heights of phosphate peak and area, height of carbonate 

peak and an increase of RMC which have been previously stated (Table 3a) (Figs 2HI, 

2JI, 3C). 

Load cycling gave rise to an increase in the degree of conversion of the adhesive in all 

groups, at the resin-dentine interface (Table 2c). Therefore, the chemical interaction of 

MDP with Zn++ in Zn-doped adhesives improved after mechanical loading. Specimens 

treated with SEB·P-ZnO attained higher Bis-GMA penetration at the resin-dentine 

interface than the dentine samples infiltrated with SEB·P-ZnCl2 when the specimens 

were load cycled; nevertheless, though Bis-GMA penetrated deeper in SEB·P-ZnCl2 

than in SEB·P-ZnO groups. Both Bis-GMA and HEMA penetration were lower after 

load cycling in comparison with the unloaded specimens when the primer of the 

adhesive system (SEB·P) was Zn-doped (Table 3c).  Load cycling originated the 

opposite effect at the interface when the bonding of SEB was doped with zinc 

compounds, as the degree of Bis-GMA and adhesive (Bis-GMA and HEMA) 

penetration increased when SEB·Bd-ZnCl2, and decrease after using SEB·Bd-ZnO 

(Table 3c). The possible coordination of the hydroxyl group of HEMA, which 

penetrated deeper when SEB·Bd-ZnCl2 was used, with the bivalent cation (Zn++) that is 

present in both the catalytic domain of MMPs and in the tissue-nonspecific alkaline 

phosphatase (McAllister and Frangos, 1999), has also been suggested as a possible 

inhibitory effect of both enzymes (Osorio et al., 2011c; Carvalho et al., 2009), 

decreasing remineralisation ability (Table 3a, 3c). Mechanical loading showed lower 

height of peaks at both carbonyl group (1720 cm-1) and CH2 def (1453 cm-1) when 
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SEB·P and SEB·Bd were ZnO or ZnCl2 doped, except SEB·P-ZnO, which increase the 

height of peak at 1720 cm-1. 

The control of metallic ions release from dental adhesives must be considered as an 

attractive approach to enhance the biological capability of adhesives for dental tissue 

engineering. The analysis of the limited literature available indicates that further 

specific studies on the relationship between the dentine micro-nanostructure and the 

mechano-chemical properties of zinc-doped adhesives should be determined. In view of 

the clinical demand on engineered dental tissue, new adhesive/primers formulations 

including zinc in their composition should be tested. Thereby, further complementary 

studies are strongly encouraged. 
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FIGURE CAPTIONS 

 
Fig 1: Mean and SD of Young Modulus (Ei) (GPa) measured at the hybrid layers (HL) 

and bottom of hybrid layer (BHL) in sound dentine. Identical letters indicate no 

significant differences between unloaded restorations from the different experimental 



38 

 

groups, identical numbers indicate no significant differences between load cycled 

restorations from the different experimental groups, and * indicate significant 

differences between unloaded and load cycled restorations from the same experimental 

group. Abbreviations: SEB: SE-Bond, SEB·P: SE-Bond primer, SEB·Bd: SE-Bond 

bonding. ZnO, zinc oxide; ZnCl2, zinc chloride.  

 

Fig  2. I: Three-dimensional (3D) micro-Raman map of the phosphate peak (961 cm-1) 

intensities at the dentine-bonded interface of SEB-treated dentine surfaces, unloaded 

(left column), or load cycled (right column). At the 3D micro-Raman map, blue 

represents the lowest peak intensity, while the red represents the highest. II: K-means 

clustering (KMC) map of the Raman profile of the sample; (A, B) SEB; (C, D) SEB·P-

ZnO doped; (E, F) SEB·P-ZnCl2 doped; (G, H) SEB·Bd-ZnO doped; (I, J) SEB·Bd-

ZnCl2.  Abbreviations: SEB: SE-Bond, SEB·P: SE-Bond primer, SEB·Bd: SE-Bond 

bonding. ZnO, zinc oxide; ZnCl2, zinc chloride.  

 

Fig 3. Raman spectra of principal components (PCs): HL, hybrid layer; BHL, bottom of 

hybrid layer for each SEB group. A) SEB; BB SEB·P-Zn doped, and C) SEB·Bd-Zn 

doped. Abbreviations: SEB: SE-Bond, SEB·P: SE-Bond primer, SEB·Bd: SE-Bond 

bondin. ZnO, zinc oxide; ZnCl2, zinc chloride. 

 

Fig 4. Representative light micrographs of SEB adhesive systems in sound dentine 

specimens; interfaces stained with Masson’s trichrome: mineralised dentine stained 

green, adhesive stained beige, and exposed protein stained red. Original magnification: 

150X. (A): SEB control (unloaded). (B): SEB load cycled. (C): SEB·P-ZnO unloaded. 

(D): SEB· P-ZnO load cycled. (E): SEB·P-ZnCl2 unloaded. (F): SEB·P-ZnCl2 load 
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cycled. (G): SEB·Bd-ZnO unloaded. (H): SEB·Bd-ZnO load cycled. (I): SEB·Bd-ZnCl2 

unloaded. (J): SEB·Bd-ZnCl2 load cycled. Limited and clear resin uncovered decalcified 

dentine is shown (asterisk) (A). Evidence of partial demineralisation or exposed protein 

may be detectable at the resin-dentine interface and tubular area (asterisks) (E, H, J). 

Slight and faint signs of demineralisation show the scarce exposed proteins detected 

(arrow) (F,I). No signs of demineralisation or exposed protein (red stain) are detectable 

at the resin-dentine interface; clear observation of histological remineralisation of the 

partially demineralised dentine layer is detected (arrows) (B). Absence of unprotected 

collagen layer is observable in some specimens (pointers) (C, D, G). Abbreviations: 

SEB: SE-Bond; SEB·P: SE-Bond primer; SEB·Bd: SE-Bond bonding; ZnO, zinc oxide; 

ZnCl2, zinc chloride. 

 

Fig 5. Field-emission scanning electron microscopy images of failures after bonding 

and microtensile bond strength testing. (A) SEB unloaded. (B) SEB load cycled. (C) 

SEB·B-ZnO unloaded. (D) SEB·B-ZnO load cycled. (E) SEB·B-ZnCl2 unloaded.  (F) 

SEB·P-ZnCl2 load cycled. (G) SEB·Bd-ZnO unloaded. (H) SEB·Bd-ZnO load cycled. 

(I) SEB·Bd-ZnCl2 unloaded. (J) SEB·Bd-ZnCl2 load cycled. Mixed failures and fracture 

at the bottom of hybrid complex may be observed in SEB unloaded specimens (A). 

Collagen fibers are clearly observed at the peritubular (PD) and intertubular dentine 

(ID), appearing partially mineralised (asterisk) or completely demineralised (pointer). 

The adhesive layer (a) covering the hybrid complex is shown at the top left corner of the 

image. Some tubules (t) turned up mineral filled (EDX, spectrum 3). SEB load cycled 

sample (B) showed a mixed failure with the main fracture at the bottom of the 

hybridized complex. A dense network of fibrils completely mineralised may be 

observed on intertubular dentine (ID) and covering the peritubular dentine (PD). 
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Mineral occlusion (EDX, spectrum 6) was detected into the tubule lumen. The 

prototypical D-periodicity banding of collagen fibrils was observed, in multiple details 

(pointer). Especial mineral formations were also observed (arrow).  SEB·B-ZnO 

unloaded (C) showed a mixed failure at the bottom of the hybrid complex. Tubules 

appeared mineral filled (EDX, spectrum 10). Clumps of precipitation of minerals, in 

strata (asterisk), covered the whole surface of dentine matrix, allowing the visual 

observation of tubules.  

When SEB·B-ZnO load cycled (D) was analyzed, a mixed failure affecting both the top 

(asterisk) and bottom (pointer) of the hybrid complex was observable. Precipitated 

crystals appeared round transversally and slightly elongated longitudinally. They 

nucleated at both intertubular dentine infiltrated with resin, and peritubular dentine. 

Some tubules appeared empty, but with a totally mineralised wall (arrow). Zinc-based 

salts [phosphorous (P), calcium (Ca), and zinc (Zn)] were detected in the elemental 

analysis (EDX, spectrum 11). SEB·B-ZnCl2 unloaded (E) permitted to observe a mixed 

failure at the bottom of the hybrid complex. Multiple mineral formations are observed 

emerging through the resin-dentine infiltrated layer (arrow). At both intertubular and 

peritubular dentine, terminal knob-like structures are exhibited within the collagen 

fibres. Tubule entrances appeared visible but completely precipitated by minerals 

(pointer). Espectrum from energy dispersive analysis, attained at zone 21 is showing 

elemental composition of phosphorous (P) and calcium (Ca). SEB·P-ZnCl2 load cycled 

(F) showed a mixed failure with the main fracture at the bottom of the hybridized 

complex. Failure surface analysis permitted to observe multiple strata of mineral 

precipitations around the tubule wall. Minerals formed a collar around the narrowest 

ring of the tubule lumen (pointer), detected below the deepest platform of crystals 

(asterisk). Zinc-based [phosphorous (P), calcium (Ca), and zinc (Zn)] salts were 
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detected in the elemental analysis (EDX, spectrum 22). SEB·Bd-ZnO unloaded (G) 

produced a mixed failure, affecting both the adhesive surface (asterisk) and the partially 

demineralised dentine (arrow) at the bottom of the hybrid complex. Mineralised dentine 

collagen without resin infiltration was detected inside the tubule wall, where crystals 

precipitated in knob-like formations (arrow). Multiple collagen fibrils appeared 

longitudinally mineralised (pointer). Espectrum from energy dispersive analysis, 

attained at zone 26, is showing elemental composition of phosphorous (P), calcium 

(Ca), and zinc (Zn). After using SEB·Bd-ZnO load cycled (H), a mixed failure was 

present. Both infiltrated (asterisk) and remineralised dentine (arrow) are involved. 

Mineral precipitates throughout the dense network of plate-like multilayered crystals on 

the dentine surface were shown. An extensive labyrinth of reticular mineral depositions, 

cavities and hollows made of resin and mineral were perceptible (pointer). Phosphorous 

(P) and calcium (Ca) were detected in the elemental analysis (EDX, spectrum 18).  

SEB·Bd-ZnCl2 unloaded specimens (I) originated a mixed failure at the top of the 

hybrid complex. A mineral deposition is completely covering the dentine surface. This 

substratum resulted completely mineralised and the mineral formations only allowed a 

restricted display of the tubule entrances (asterisks). The typical staggered pattern of 

collagen fibrils due to the characteristic D- periodicity (67 nm) was visible at the fibers 

which cover the intertubular dentine (arrows). Espectrum from energy dispersive 

analysis, attained at zone 27, is showing elemental composition of phosphorous (P), 

calcium (Ca), and zinc (Zn). (J) SEB·Bd-ZnCl2 load cycled specimens showed a mixed 

failure with the main fracture at the top of the hybridized complex. Dentine surface 

exhibited multiple amorphous clumps of material scattered and grouped as dense 

network of buttons-like materials, rounding (asterisk) or occluding (arrow) the entrance 

of tubules. Tubules appeared occluded (totally or partially) or empty. Dentine 
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(intertubular and peritubular) was strongly mineralised. Espectrum from energy 

dispersive analysis, attained at zone 34, is showing elemental composition of 

phosphorous (P), calcium (Ca), and zinc (Zn). Abbreviations: SEB: SE-Bond, SEB·P: 

SE-Bond primer, SEB·Bd: SE-Bond bonding. ZnO, zinc oxide; ZnCl2, zinc chloride. 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

FIGURE 5 
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Table 1.  Materials and chemicals used in this study and respective manufacturers, basic 

formulation and mode of application. 

 
Abbreviations: MDP:Methacryloyldodeylphosphate; HEMA: 2-hydroxyethyl methacrylate; Bis-GMA: 
bisphenol A diglycidyl methacrylate; DGDMA: diethyleneglycol dimethacrylate phosphate; BHT: 
butylated hydroxytoluene; SBFS: simulated body fluid solution; NaCl: sodium chloride; NaHCO3: 
sodium bicarbonate; KCl: potassium chloride; K2HPO4·3H2O: potassium phosphate dibasic trihydrate; 
MgCl2·6H2O: magnesium chloride hexahydrate; HCl: hydrogen chloride; CaCl2: Calcium chloride; 
Na2SO4: sodium sulfate; Tris: tris(hydroxylmethyl) aminomethane; SBFS: simulated body fluid solution; 
NaCl: sodium chloride; NaHCO3: sodium bicarbonate; KCl: potassium chloride;  K2HPO4·3H2O: 
potassium phosphate dibasic trihydrate; MgCl2·6H2O: magnesium chloride hexahydrate; HCl: hydrogen 
chloride; CaCl2: Calcium chloride; Na2SO4: sodium sulfate; Tris: tris(hydroxylmethyl) aminomethane. 

 

Product details                 Basic formulation Mode of application 
Clearfil SE Primer and 
Bond  (SEB) 
(Kuraray, Japan) 

 Primer (SEB·P) 
MDP, HEMA, 
camphorquinone, 
N, N-Diethanol-p-toluidine, 
water 
Bond (SEB·Bd) 
Bis-GMA, MDP, 
HEMA,  
camphorquinone, 
N, N-Diethanol-p-toluidine, 
Silanated colloidal silica 

Adhesive application  
Rinse with water  
Air-dry (5 s) 
Primer application (20 s)  
Air-dry (3 s) 
Adhesive application (10s) 
Light activation (15 s) 

Zinc oxide (ZnO) 
(Panreac Química SA, 
Barcelona, Spain).  

  

Zinc chloride 2-hydrate 
powder  (ZnCl2) (Sigma 
Aldrich, St. Louis, MO, 
USA).  

  

X-FlowTM (Dentsply, 
Caulk, UK) 

Strontium alumino sodium 
fluorophosphorsilicate 
glass, di- and multifunctional  
acrylate and 
methacrylate resins, DGDMA, highly 
dispersed 
silicon dioxide UV stabilizer, 
ethyl-4-dimethylaminobenzoate 
camphorquinone, 
BHT, iron pigments, titanium dioxide 
 

 

SBFS 
(pH=7.45) 

NaCl 8.035 g 
NaHCO3 0.355 g 
KCl 0.225 g 
K2HPO4·3H2O 0.231 g, MgCl2·6H2O 
0.311 g 
1.0 M – HCl 39 ml 
CaCl2 0.292 g 
Na2SO4 0.072 g 
Tris 6.118 g 
1.0 M – HCl 0–5 ml 
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Table 2. Mean and standard deviation of microtensile bond strength values (MTBS), in 

MPa, and percentage distribution (%) of failure mode (A: Adhesive; M: Mixed), 

obtained for the different experimental groups. 

 

 

 
Identical letters indicate no significant difference in columns after Student-Newman-Keuls or Student’s t 
tests (p < 0.05). No differences were found between load and unloaded groups. 
Abbreviations: SEB: SE-Bond; SEB·P: SE-Bond primer; SEB·Bd: SE-Bond bonding; ZnO: zinc oxide; 
ZnCl2: zinc chloride. 
 
 
 
 
 

 

 

 

 UNLOADED LOAD CYCLED 

A 

% 

M 

% 

Mean (SD) 

MPa 

A 

% 

M 

% 

Mean (SD) 

MPa 

SEB 39 61 
 

38.48 (5.22) A 
 

71 29 
 

33.96 (3.69)  A 
 

 
SEB·P-ZnO  

 
36 64 33.06 (5.25)  AB 78 22 33.77 (3.97)  A 

 
SEB·P-ZnCl2  

 
55 45 26.15 (4.34)  B 67 33 25.84 (2.94)  B 

 
SEB·Bd-ZnO 

 
40 60 34.05 (3.24)  AB 80 20 33.56 (3.58)  A 

 
SEB·Bd-ZnCl2  

 
49 51 30.05 (4.44)  AB 72 28 28.27 (3.40)  AB 
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Table 3a. Mineral related peaks and ratios in SEB-treated sound dentine surfaces. 

Relative Presence of Mineral 
FWHM  GMC 

Ratio 
C/P 

PPR 
Ratio phosphate peak 
/healthy substratum 

Phosphate [961] Carbonate [1070]
Peak Area RMC Peak  Phosphate 

SEB 
Control 

HL 25.62 600.13 4.72 4.53 19.30 0.18 0.29 
BHL 45.86 1127.7 12.70 8.64 19.31 0.19 0.52 

Load cycled
HL 110.01 2640.62 17.92 15.05 19.33 0.14 1.26 
BHL 142.39 3485.3 23.69 22.61 19.33 0.16 1.63 

SEB·P-ZnO 
Control 

HL 11.98 388.97 2.78 3.87 25.73 0.32 0.14 
BHL 46.58 1146.27 13.39 8.36 19.30 0.18 0.53 

Load cycled
HL 24.36 599.69 8.49 5.37 19.30 0.22 0.28 
BHL 50.17 1235.17 13.17 8.63 19.29 0.17 0.57 

SEB·P-ZnCl2 
Control 

HL 32.47 800.88 5.56 4.41 19.27 0.14 0.37 
BHL 60.75 1499.53 10.77 5.64 19.31 0.09 0.70 

Load cycled 
HL 22.44 641.32 6.41 4.59 22.50 0.20 0.26 
BHL 47.85 1178.79 18.06 7.08 19.29 0.15 0.55 

SEB·Bd-ZnO 
Control 

HL 11.09 360.7 2.54 4.08 25.79 0.37 0.13 
BHL 48.15 1184.95 12.35 8.61 19.30 0.18 0.55 

Load cycled
HL 17.86 511.24 8.97 4.02 22.48 0.23 0.20 
BHL 40.99 1012.55 16.01 5.04 19.31 0.12 0.47 

SEB·Bd-ZnCl2 
Control 

HL 40.41 988.31 6.84 9.36 19.25 0.23 0.46 
BHL 47.05 1348.47 6.39 9.82 22.46 0.21 0.54 

Load cycled
HL 6.82 223.33 1.83 3.09 25.57 0.45 0.08 
BHL 22.99 568.61 9.38 5.9 19.19 0.26 0.26 

Abbreviations: RMC: Relative Mineral Concentration between mineral/Phenyl (1003); FWHM: Full-width 
half-maximum; GMC: Gradient in Mineral Content; PPR: Phosphate Peaks Ratio. Peaks positions are 
expressed in cm-1. 
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Table 3b. Organics related peaks and ratios in SEB-treated sound dentine surfaces. 

 Norma-
lization 

Crosslinking 
Nature of collagen 

Phenyl 
[1003] 

Pyrid. 
[1032] 

Ratio 
1031/1001 

Ratio 
phenyl/CH2 
[1003/CH] 

AGEs-
Pentosidine 

[1550] 

A-III 
[1246-
1270] 

CH2 
[1450] 

A-I 
[1655-
1667] 

Ratio 
Amide 

I/ 
Amide 

III 

Ratio 
Amide 

III/ 
CH2 

Ratio 
Amide 

I/ 
CH2 

Ratio 
Amide III/ 

AGEs-
Pentosidine 

Ratio 
Amide I/ 
AGEs-

Pentosidine 

α-
helices 
[1340] 

SEB 
Control 

HL 5.43 3.72 0.69 0.36 3.15 9.17 15.06 1.68 0.18 0.61 0.11 2.91 0.53 4.18 
BHL 3.61 4.16 1.15 0.64 3.5 7.43 5.68 2.89 0.39 1.31 0.51 2.12 0.83 6.06 

Load 
cycled 

HL 6.14 7.63 1.24 0.14 4.4 30.33 43.91 9.70 0.32 0.69 0.22 6.89 2.20 16.32 
BHL 6.01 10.78 1.79 0.34 5.42 25.17 17.65 12.29 0.49 1.43 0.70 4.64 2.27 20.39 

SEB·P-
ZnO 

Control 
HL 4.31 3.32 0.77 0.41 3.68 6.46 10.53 1.93 0.30 0.61 0.18 1.76 0.52 3.63 
BHL 3.48 4.79 1.38 0.54 3.65 8.79 6.42 3.48 0.40 1.37 0.54 2.41 0.95 4.94 

Load 
cycled 

HL 2.87 3.65 1.27 0.49 4.05 7.27 5.83 3.24 0.45 1.25 0.56 1.80 0.80 6.30 
BHL 3.81 4.83 1.27 0.60 3.69 8.73 6.40 3.68 0.42 1.36 0.58 2.37 1.00 6.18 

SEB·P-
ZnCl2 

Control 
HL 5.84 4.61 0.79 0.29 3.1 14.83 19.82 2.07 0.14 0.75 0.10 4.78 0.67 4.40 
BHL 5.64 5.00 0.89 0.31 2.63 14.61 18.14 3.27 0.22 0.81 0.18 5.56 1.24 5.59 

Load 
cycled 

HL 3.50 3.86 1.10 0.33 2.83 9.51 10.56 1.65 0.17 0.90 0.16 3.36 0.58 3.81 
BHL 2.65 3.88 1.46 0.43 3.21 8.73 6.12 3.35 0.38 1.43 0.55 2.72 1.04 4.52 

SEB·Bd-
ZnO 

Control 
HL 4.36 2.78 0.64 0.47 3.88 10.75 9.25 2.11 0.20 1.16 0.23 2.77 0.54 5.01 
BHL 3.90 4.38 1.12 0.49 3.6 11.86 8.02 3.61 0.30 1.48 0.45 3.29 1.00 6.37 

Load 
cycled 

HL 1.99 2.12 1.07 0.31 3.65 8.04 6.46 2.08 0.26 1.24 0.32 2.20 0.57 4.30 
BHL 2.56 3.07 1.20 0.43 3.6 8.64 5.99 2.79 0.32 1.44 0.47 2.40 0.78 4.86 

SEB·Bd-
ZnCl2 

Control 
HL 5.91 4.16 0.70 1.22 5.26 9.98 4.84 3.80 0.38 2.06 0.79 1.90 0.72 7.05 
BHL 7.36 3.05 0.41 1.23 6.25 9.57 5.96 5.22 0.55 1.61 0.88 1.53 0.84 7.93 

Load 
cycled

HL 3.73 3.94 1.06 0.60 3.46 6.50 6.17 2.01 0.31 1.05 0.33 1.88 0.58 3.68 
BHL 2.45 2.46 1.00 0.64 3.28 7.07 3.84 2.11 0.30 1.84 0.55 2.16 0.64 4.69 

Abbreviations: A: Amide; Pyrid: Pyridinium; AGEs: Advanced glycation end products. Peaks positions are expressed in cm-1. 
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Table 3c. Adhesive related peaks and ratios in SEB-treated sound dentine surfaces. 

 

 Degree of Adhesive Presence 

DC 
[1637/1608] 

Bis-GMA Penetration 
[1113/A-I] 

Adhesive Penetration 
[1453/1667] 

Carbonyl Group 
[1720] 

CH2 def 
[1453] 

SEB 
Control 

HL 0.29 7.27 8.96 2.76 15.06 
BHL 1.74 1.35 1.97 1.59 5.68 

Load cycled 
HL 1.06 2.17 4.53 8.8 43.91 

BHL 2.43 0.43 1.44 4.41 17.65 

SEB·P-ZnO 
Control 

HL 0.49 4.25 5.46 2.5 10.53 
BHL 2.04 1.11 1.84 1.68 6.42 

Load cycled 
HL 1.65 6.31 1.80 1.82 5.83 

BHL 2.19 1.06 1.74 1.97 6.4 

SEB·P-ZnCl2 
Control 

HL 0.27 6.28 9.57 3.64 19.82 
BHL 0.43 2.29 5.55 2.37 18.14 

Load cycled 
HL 0.56 6.31 6.40 2.29 10.56 

BHL 1.78 1.20 1.83 1.77 6.12 

SEB·Bd-ZnO 
Control 

HL 0.55 3.64 4.38 2.32 9.25 
BHL 1.56 1.45 2.22 1.82 8.02 

Load cycled 
HL 1.00 1.72 3.11 2.03 6.46 

BHL 1.88 1.34 2.15 2.06 5.99 

SEB·Bd-ZnCl2 
Control 

HL 0.89 1.42 1.27 1.81 4.84 
BHL 0.92 1.24 1.14 2.95 5.96 

Load cycled 
HL 1.05 1.84 3.07 2.13 6.17 

BHL 0.87 1.32 1.82 1.84 3.84 
Abbreviations:  DC: Degree of conversion of adhesive; Bis-GMA: bisphenol A diglycidyl methacrylate. 
 Peaks positions are expressed in cm-1. 


