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Quantifying the constitutive nonlinearity parameter 𝛽 in fluids is of key interest for understanding ultrasonic propagation and
its wide implications in medical and industrial applications. However, current methods for ultrasonically measuring it show large
limitations in that the signal is only valid at a reduced and unjustified spatial range away from the transducer.This is not consistent
with the fact that𝛽 should be constant everywhere in the fluid and independently of the ultrasonic experimental setup. To overcome
this, the nonlinear wave propagation equations are rigorously derived and the ensuing differential equation is numerically solved.
As a second contribution, the experimental and model information sources are treated under the information theory context to
probabilistically reconstruct 𝛽, providing not only its value, but also the degree of confidence on it given both sources of data. This
method is satisfactorily validated testing the repeatability of 𝛽 in water varying distances, energies, frequencies, and transducer
setups, yielding values compatible with 𝛽 = 3.5.

1. Introduction

The acoustic nonlinearity observed as appearance of har-
monics in ultrasound propagation is a consequence of the
deviation from perfect linear elasticity of the compressional
mechanical constitutive law.

The continuum mechanics foundation of constitutive
nonlinearity was put forth by Landau and Lifshitz [1] and
detailed for acoustics and in particular for ultrasonic har-
monic generation by Hamilton and Blackstock [2] and others
[3–6]. The second harmonic generation has indeed been
observed and predicted to depend linearly on distance and
quadratically on the amplitude of the fundamental, according
to a proportionality constant that has been called 𝛽.

Experimental quantifications of this parameter based
on ultrasonic harmonic generation have been reported in
the literature [7, 8], yielding values between 𝛽 = 3 and
𝛽 = 5 but with large degrees of variability and uncertainty.
These methods for ultrasonically quantifying the constitutive
nonlinearity parameter 𝛽 show large limitations in that the
signal is only valid at a reduced spatial range away from the
transducer, whose limits are furthermore not justified. For

instance, those authors estimate𝛽 froma set ofmeasurements
between 60 and 150mm from the transducer, neglecting
the full set of measurements from 0 to 300mm without
justification. In addition, although usually not explicitly
specified in the literature, the measured values are highly
sensitive to transducer-hydrophone alignment and focusing
conditions. This is not consistent with the fact that 𝛽 should
be constant everywhere in the fluid and independently of
the geometry of the transducer that generates the ultrasonic
field. On the other hand, few theoretical proposals of the
value of 𝛽 have been derived, such as that from the atomistic
anharmonicity [9], yielding a theoretical estimate of 𝛽 = 3.5.

To shed light on the degree of knowledge on the value of
𝛽, an information theory based probabilistic inverse problem
[10–12] is formulated and used to reconstruct not only its
value but also its range of reliability. This reconstruction
problem was historically first solved in a deterministic
way, providing unique answer to the unknown parameters
[13–15]. However, if the degree of certainty and reliability
of the parameters are relevant, a probabilistic approach
is required. This was introduced using the framework of
Bayesian statistics by Jaynes [16] based on Cox’s postulates
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Figure 1: Scheme of experimental setup for harmonic generation.

[17] and still being developed [11, 18–24]. An alternative
theoretical framework was posed by Tarantola [10] based on
the idea of conjunction of states of information (theoretical,
experimental, and prior information, generally on model
parameters). The axioms of probability theory apply to dif-
ferent situations: the Bayesian one is the traditional statistical
analysis of random phenomena, whereas the information
states one is the description of (more or less) subjective states
of information on a system.

In this paper, an information theory reconstruction
framework is built on newmetrics of information density that
drops Cox’s normalization in favor of strong simplifications.
This metric is used with the concept of combining infor-
mation density functions from two independent sources: (i)
experimental measurements of harmonic acoustic pressures
and (ii) the differential equation that governs the harmonic
generation along the propagation, over the same data (obser-
vations and model parameters) under the idea of finding
which ones are all true at the same time.

In the next section, the experimental method for obtain-
ing several sets of independent measurements is described,
along with the derivation of the mathematical model of the
harmonic generation and the formulation of the information
theory based probabilistic inverse problem that combine
both.The results compare the reconstructionwith the current
method as compared to the basic method used in the
literature, showing how it overcomes the limitations and thus
validating it.

2. Methods

2.1. Experimental Measurements. The experimental setup
consists in a transducer that emits an ultrasonic wave of
excitation frequency 𝜔 and a hydrophone that records the
propagated wave in the center of the beam at a distance 𝑥, as
shown in Figure 1. Degassedwater at stabilized temperature is
used in an immersion tank with digital controlled motion. A
monochromatic sine burst signal of >40 cycles is generated
with an Agilent 33250 generator and amplified with an
Amplifier Research 150A100B (150 watts, 10 kHz–100MHz)
amplifier at 46 dB (200x) gain programmed to generate an

Table 1: Continuum mechanics variables, time, and space index
derivative notation.

Quantity Symbol Units
Space (in a Cartesian space) 𝑥

𝑖
m

Time 𝑡 s

Particle displacement 𝑢
𝑖

m

Velocity 𝑢̇
𝑖
=
𝑑𝑢
𝑖

𝑑𝑡
m/s

Velocity rate
𝐷𝑢̇
𝑖

𝐷𝑡
=
𝜕𝑢̇
𝑖

𝜕𝑡
+ 𝑢̇
𝑗
𝑢̇
𝑖,𝑗

m/s2

Strain 𝜀
𝑖𝑗

—

Stress 𝜎
𝑖𝑗

Pa

Pressure 𝑝 Pa

Lamé constants 𝜆, 𝜇 Pa
Volumetric constitutive
nonlinearity 𝛽 —

Density 𝜌 kg/m3

Shear and volumetric
viscosity 𝜂, 𝜂V Pa s = kg/ms

amplitude of 1–128V, so that the peak acoustic pressure ranges
from 1 kPa to 100 kPa, depending on the transducer. A range
of transducers, focussed and nonfocussed, with various cen-
tral frequencies between 1MHz and 10MHzwas tested to dis-
card any dependency on the hardware and transducer design.

The signal is captured with a nearly linear hydrophone
HGL (Onda Corp.) from 200 kHz to above 20MHz and
conditioned with a Panametrics preamplifier at 37.5 dB (75x)
gain. The signal is then digitized with a 14-bit 320MHz
Aquiris digitizer using 500x averaging.The digitized signal is
gated to capture exactly 40 stable cycles to allow a numerical
error-free FFT.

The recorded measurement is processed in order to
obtain the acoustic pressures 𝑝

0
(𝑥) of the fundamental

(frequency 𝜔) and 𝑝
1
(𝑥) of the harmonic (frequency 2𝜔) at

distance 𝑥. The pressures are converted to amplitudes using
the constitutive relationship 𝑝 = −𝐾𝜀 yielding |𝑝

0
(𝑥)| =

−𝐾|𝜀(𝑥, 𝑡)| = |𝑖𝜌𝑐𝜔𝑎𝑚(𝑥)𝑒𝑖(𝑘𝑥−𝜔𝑡)| = 𝜌𝑐𝜔|𝑎𝑚(𝑥)|, |𝑝
1
(𝑥)| =

|𝑖𝜌𝑐2𝜔𝑏𝑚(𝑥)𝑒2𝑖(𝑘𝑥−𝜔𝑡)| = 2𝜌𝑐𝜔|𝑏𝑚(𝑥)|, where label 𝑚 is used
to distinguish measured values from theoretical ones.

2.2. Nonlinear Wave Propagation. The following elasticity
governing equations that relate the quantities in Table 1
are established, which are general for both solids and flu-
ids, equilibrium, compatibility, and constitutive equations,
respectively, in case of absence of body forces:

𝐷(𝜌𝑢̇
𝑖
)

𝐷𝑡
= 𝜎
𝑖𝑗,𝑗
,

𝜀
𝑖𝑗
=
1

2
(𝑢
𝑖,𝑗
+ 𝑢
𝑗,𝑖
+ 𝑢
𝑘,𝑖
𝑢
𝑘,𝑗
) ,

𝜎
𝑖𝑗
= 𝜎
𝑖𝑗
(𝜀
𝑘𝑙
) .

(1)
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For completeness, some other usual constants are related
to this table as follows: fluid compressibility is 𝐾 = 𝜆 +

(2/3)𝜇 = 𝜌𝑐2; stiffness is related to Young Modulus 𝐸 and
Poisson ratio ] by 𝜆 = 𝐸]/(1 + ])(1 − 2]), 𝜇 = 𝐸/2(1 + ]);
elastic damping 𝛾 and kinematic viscosity 𝜐 are related to the
dynamic viscosity 𝜂 by 𝜂 = 𝜌𝜐 (delete 𝛾 = 𝜂/𝜌, 𝜐 = 𝜂𝜌).

The continuity equation is usually added for the case
of fluids, ̇𝜌 + (𝜌𝑢̇

𝑖
)
,𝑖

= 0. The solid and fluid constitutive
equations can be derived as particular cases of the following
general form, at which, after being decomposed into volumet-
ric and deviatoric constituents, each of them depends on the
strain 𝜀

𝑖𝑗
(elastic component predominant in solids) and the

strain rate ̇𝜀
𝑖𝑗
(viscous component predominant in fluids):

𝜎
𝑖𝑗
= −𝑝𝛿

𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
volumetric

+ 𝜏
𝑖𝑗⏟⏟⏟⏟⏟⏟⏟

deviatoric

, 𝑝 = −
1

3
𝜎
𝑘𝑘 (2)

since any tensor is split into volumetric (scalar) and deviatoric
(tensor) parts. The strain is therefore also decomposed into
volumetric V and deviatoric 𝑑

𝑖𝑗
strain,

𝜀
𝑖𝑗
= −V𝛿

𝑖𝑗
+ 𝑑
𝑖𝑗
, V = −

1

3
𝜀
𝑘𝑘
. (3)

2.2.1. Constitutive Nonlinearity. The linear elastic depen-
dency is enriched with quadratic terms, following the series
expansion concept put forth by Landau and Lifshitz [1]. Only
the volumetric part is detailed in terms of the nonlinearity
parameter 𝛽 due to the simplicity of the volumetric strain
V being scalar, and since the experimental part only applies
compressional ultrasonic waves,

−𝑝 = −3𝐾V − 9 (𝛽 −
1

2
)𝐾V2 − 3𝜂VV̇,

𝜏
𝑖𝑗
= 2𝜇𝑑

𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
Linear

+ ⏟⏟⏟⏟⏟⏟⏟
Nonlinear

+ 2𝜂 ̇𝑑
𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟

Viscous

.
(4)

The definition of the compressional nonlinearity stems from
the Taylor expansion of pressure 𝑝with respect to volumetric
strain V, where the order zero term is zero, the first-order term
is the linear elastic one proportional to V, and the second-
order term depends on (1/2)V2. The nonlinearity parameter
𝛽 is here defined so as to yield in the next section a wave
equation compatible with Hamilton and Blackstock [2] and
Guyer and Johnson [25]. Note that a pure fluid, by definition,
can withstand no static shear stress; that is, 𝜇 = 0, which
after substitution yields the fluid constitutive equation 𝜎

𝑖𝑗
=

−𝑝𝛿
𝑖𝑗
− (2/3)𝜂 ̇𝜀

𝑘𝑘
𝛿
𝑖𝑗
+ 2𝜂 ̇𝜀

𝑖𝑗
. Conversely, the elastic solid

constitutive equation 𝜎
𝑖𝑗

= 𝜆𝛿
𝑖𝑗
𝜀
𝑘𝑘

+ 2𝜇𝜀
𝑖𝑗
is recovered by

neglecting viscosity and nonlinear terms and recalling that
the compressibility modulus is𝐾 = 𝜆 + (2/3)𝜇.

2.2.2. Wave Equation. In order to solve the wave propagated
by a transducer along the center of the path, the𝑥

1
axis is cho-

sen as aligned with the propagation path, and the transver-
sal components of the displacements are neglected. Thus,

the 3D problem of finding (𝑢
1
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡), 𝑢
2
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡),

𝑢
3
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑡)) is reduced to a 1D problem of finding the

displacement field (𝑢
1
(𝑥
1
, 𝑡), 0, 0) whose solution will be

found analytically.
The compatibility, constitutive, and equilibrium equa-

tions become, after assuming directional propagation 𝑢
2
=

0 = 𝑢
3
and the case of a fluid (𝜇 = 0), as follows:

Compatibility: 𝜀
11
= 𝑢
1,1

+
1

2
𝑢2
1,1

= 𝜀 = −3V,

𝜀
𝑖𝑗
= 0 ∀ (𝑖𝑗) ̸= (11) ,

Constitutive: 𝜎
11
= 𝐾𝜀 − (𝛽 +

1

2
)𝐾𝜀2

+ (𝜂V +
4

3
𝜂) ̇𝜀,

Equilibrium: 𝜌𝑢̈
1
= 𝜎
11,1

.

(5)

The last equations can be combined by substitution into
a 1D nonlinear wave equation compatible with Polyanin and
Zaitsev [26],

𝜌𝑢̈
1
= 𝐾𝑢
1,11

− 𝛽𝐾 (𝑢2
1,1
)
,1
+ (𝜂V +

4

3
𝜂) 𝑢̇
1,11

+ hot, (6)

where higher order terms (hot) are negligible and the relevant
terms at the right-hand side are the linear compressibility, the
nonlinear compressibility, and the viscosity. For the sake of
compactness, direction index 1will be dropped in the sequel,
and the spatial derivative with respect to 𝑥

1
will be denoted

by a tilde (i.e., 𝑢
1,1

= 𝑢󸀠).
The solution of (6) is sought as the sum of two attenuating

traveling waves at velocity 𝑐 with frequency 𝜔 and 2𝜔,
respectively, that stand for the fundamental due to linear
propagation (𝑢

0
) and the harmonic generated by the non-

linearity (𝑢
1
, which will be shown to be proportional to the

degree of nonlinearity 𝛽). The complex exponential notation
is adopted, where the phase component is omitted without
loss of generality,

𝑢 = 𝑢
0
+ 𝑢
1
,

𝑢
0 (𝑥, 𝑡) = 𝑎 (𝑥) 𝑒

𝑖(𝑘𝑥−𝜔𝑡),

𝑢
1 (𝑥, 𝑡) = 𝑏 (𝑥) 𝑒

2𝑖(𝑘𝑥−𝜔𝑡).

(7)

Substituting the decomposition above into (6) and
neglecting terms of order 𝑂(𝛽2) yield

𝜌

𝐾
(𝑢̈
0
+ 𝑢̈
1
) = 𝑢󸀠󸀠
0
+ 𝑢󸀠󸀠
1
− 𝛽 (𝑢󸀠2

0
)
󸀠

+
𝜂V + (4/3) 𝜂

𝐾
𝑢̇󸀠󸀠
0

+
𝜂V + (4/3) 𝜂

𝐾
𝑢̇󸀠󸀠
1
.

(8)
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Recall that the successive derivatives of the displacement
components are

𝑢̈
0
= −𝜔2𝑎𝑒𝑖(𝑘𝑥−𝜔𝑡),

𝑢󸀠
0
= (𝑖𝑘𝑎 +��

𝑜
𝑎 󸀠) 𝑒𝑖(𝑘𝑥−𝜔𝑡),

𝑢󸀠󸀠
0
= (−𝑘2𝑎 + 2𝑖𝑘𝑎󸀠 +��

𝑜
𝑎 󸀠󸀠) 𝑒𝑖(𝑘𝑥−𝜔𝑡),

𝑢̇󸀠󸀠
0
= (𝑖𝜔𝑘2𝑎 − 2𝜔𝑘��

𝑜
𝑎 󸀠 − 𝑖𝜔��

𝑜
𝑎 󸀠󸀠) 𝑒𝑖(𝑘𝑥−𝜔𝑡),

(𝑢󸀠2
0
)
󸀠

= 2𝑢󸀠
0
𝑢󸀠󸀠
0
= 2(−𝑖𝑘3𝑎2 − 3𝑘2𝑎��

𝑜
𝑎 󸀠 + 𝑖𝑘𝑎��

𝑜
𝑎 󸀠󸀠

+ 2𝑖𝑘��
𝑜

𝑎 󸀠2 + 𝑎󸀠��
𝑜

𝑎 󸀠󸀠) 𝑒2𝑖(𝑘𝑥−𝜔𝑡),

𝑢̈
1
= −4𝜔2𝑏𝑒2𝑖(𝑘𝑥−𝜔𝑡),

𝑢󸀠
1
= (2𝑖𝑘𝑏 + ���

𝑜

𝑏 󸀠)𝑒2𝑖(𝑘𝑥−𝜔𝑡),

𝑢󸀠󸀠
1
= (−4𝑘2𝑏 + 4𝑖𝑘𝑏󸀠 + ���

𝑜

𝑏 󸀠󸀠)𝑒2𝑖(𝑘𝑥−𝜔𝑡),

𝑢̇󸀠󸀠
1
= (8𝑖𝜔𝑘2𝑏 − 8𝜔𝑘���

𝑜

𝑏 󸀠 − 𝑖𝜔���
𝑜

𝑏 󸀠󸀠)𝑒2𝑖(𝑘𝑥−𝜔𝑡),

(9)

where some terms have been neglected since for ultrasonic
waves the wavenumber is much larger than the viscous or
geometric dispersion; consider 𝑘 ≫ 𝛼, where the meaning
of 𝛼 and its relationship with 𝑎󸀠 and 𝑎󸀠󸀠 will be understood in
short.

Equation (8) should be fulfilled independently for terms
propagating as 𝑒𝑖(𝑘𝑥−𝜔𝑡) as for terms as 𝑒2𝑖(𝑘𝑥−𝜔𝑡). This implies
that the equation can be split into two equalities, of which the
first one is

𝜌

𝐾
𝑢̈
0
= 𝑢󸀠󸀠
0
+
𝜂V + (4/3) 𝜂

𝐾
𝑢̇󸀠󸀠
0
. (10)

Given a fundamental excitation frequency 𝜔, (10) is satisfied
if 𝜌/𝐾 = 𝑘2/𝜔2 = 𝑐−2, which defines the compressional wave
velocity 𝑐 and the wavenumber 𝑘. Equation (10) transforms
into

0 = 2𝑖𝑘𝑎󸀠 +
𝜂V

𝐾
𝑖𝑘2𝜔𝑎

󳨐⇒ 𝑎󸀠 = 𝑛
𝜔2 (𝜂V + (4/3) 𝜂)

2𝜌𝑐3
𝑎

(11)

which is a differential equation of first order, whose solution
is, recalling that𝐾 = 𝜌𝑐2 and calling𝛼 = 𝜔2(𝜂V+(4/3)𝜂)/2𝜌𝑐3,

𝑎 (𝑥) = 𝑎 (0) 𝑒
−𝛼𝑥. (12)

The second equality, which groups terms propagating as
𝑒2𝑖(𝑘𝑥−𝜔𝑡), is

𝜌

𝐾
𝑢̈
1
= 𝑢󸀠󸀠
1
+
𝜂V

𝐾
𝑢̇󸀠󸀠
1
+
1

2
𝛽 (𝑢󸀠2
0
)
󸀠 (13)

which by removing common factors transforms into

𝑏󸀠 − 4𝛼𝑏 =
𝛽𝑘2𝑎 (𝑥)2

4
(14)

which is a differential equation of first order. It can be numer-
ically solved, for any distribution of fundamental pressure
𝑎(𝑥)measured at discrete points 𝑥

𝑘
separated by increments

Δ𝑥, by Euler iterative scheme, using the approximation
(solving the differential equation at each increment assuming
that 𝑎(𝑥) is approximately constant within 𝐷𝑒𝑙𝑡𝑎𝑥 and using
finite differences for 𝑏󸀠),

𝑏 (𝑥
𝑘
) = 𝑏 (𝑥

𝑘−1
) 𝑒−4𝛼Δ𝑥 +

𝛽𝑘2𝑎 (𝑥
𝑘
)
2

4
Δ𝑥. (15)

If the initial amplitude of the second harmonic is assumed
to be zero, the standard nonlinearity estimator from the
literature is recovered, which will be tested against in Results,

𝛽 =
4𝑏 (𝑥)

𝑘2𝑎 (𝑥)2 𝑥
. (16)

2.3. Logical Inference Probabilistic Inverse Problem. Estimat-
ing deterministic single values for model parameters when
reconstructing the system response has a limited meaning
if one considers that the model used to predict its behavior
is just an idealization of reality, in addition to the existence
of measurements errors. To provide a reliable answer, prob-
abilistic instead of deterministic values should be provided,
which carry information about the degree of uncertainty or
plausibility of those model parameters providing one or more
observations of the system response. This is widely known
as the Bayesian Inverse Problem, which has been covered
in the literature from different perspectives, depending on
the interpretation or the meaning assigned to the probability.
Here we to provide a formulation where probability is
interpreted as information contents within the context of
logical inference [17], which is more general in the sense of
requiring fewer axioms, at the timewhen the formulation and
computation are simplified by dropping some constants. An
extension to the problem of model class selection is derived,
which allows optimally selecting the model parametrization.

To understand the method, a flowchart of the variables
and processes is summarized in Figure 2. From top to bottom,
we start with two sources of information: the experimental
measurements and the model, detailed below.The concept of
information density 𝑓 will be formulated below and used as
the tool to infer the sought nonlinear parameters, by a logical
“AND” operation (center) in the sense that both information
pieces are true at the same time. From the resulting informa-
tion, first, the hypothesis assumed about the model parame-
terswill be ranked (bottom to the left) to optimize their choice
and, second, the model parameters will be reconstructed in a
probabilistic way, that is, providing not their values but their
information plausibility functions (bottom to the right).

The experimental measurements (in abstract O) are the
values of the acoustic pressures 𝑝

ℎ,𝑖
(𝑥) of the harmonics ℎ

(ℎ = 0 being the fundamental and ℎ = 1 being the double
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P

M

Hyp H
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densities f

H

fo(O)

Figure 2: Flowchart of the variables and processes involved in the information-based probabilistic inversion scheme.

frequency one) at each distance 𝑥 from the transmitter, at
configuration 𝑖 (transducer, driving frequency, and energies),
which are extracted from the oscilloscope signal by an FFT.
In particular, from all 𝑝

ℎ,𝑖
(𝑥) we are interested in matching

the second harmonic using the fundamental as known data,
so the experimental observations are 𝑜obs

𝑖
(𝑥) = 𝑝

1,𝑖
(𝑥, 𝑝
0,𝑖
).

Themodel is just the prediction of the second harmonic 𝑜
given by the differential equations derived and solved above
(15), which depends on the unknown model parameters, 𝛽,
𝜂, the initial conditions 𝑝

1,𝑖
(𝑥
0
), grouped in the manifold

M, and also depends on the measured fundamental acoustic
pressure 𝑝

0,𝑖
(𝑥) as input.

To treat those data O and M in a probabilistic way, we
do not define univocal values but information densities over
them. The information density over 𝑥 is defined following
Cox [17], in summary a nonnegative real that is zero, 𝑓(𝑥) =
0, when its value is impossible and the larger the more
plausible.

The logical inference operations on the information
defined above can be summarized as follows: starting from
the and and or operator definition for Boolean logic, over two
probability distributions 𝑃

𝑎
and 𝑃

𝑏
that may represent two

different sources of information 𝑎 and 𝑏 about the same events
(shown in Table 2).

The simplest solution that fulfills these axioms without
normalization is

𝑓
1
∨ 𝑓
2
= 𝑓
1
+ 𝑓
2
,

𝑓
1
∧ 𝑓
2
= 𝑓
1
𝑓
2
.

(17)

Thus, we define the information contents provided by the
observations as 𝑓𝑜(O) and that provided by the model as
𝑓𝑚(O,M,H). Note that the latter may also depend on the
hypothesis we assume about the model, which in our case is

Table 2

𝑎 𝑏 𝑃
𝑎
∧ 𝑃
𝑏

𝑃
𝑎
∨ 𝑃
𝑏

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

whether the initial harmonic acoustic pressures𝑝
1
(𝑥
0
), which

are caused by the nonlinearity of the electronics and the
transducers, are unknown or those measured experimentally
at 𝑥
0
, whether the viscosity 𝜂 is unknown or given by the

literature. Note that this choice also conditions the number
of unknowns. If we have two sources of information (prob-
abilistic propositions) to infer information about the model
parameters 𝑓(M), which are that originated by experimental
observations of the system 𝑓𝑜 and that originated from
a mathematical model of the system 𝑓𝑚, the probabilistic
logic conjunction operator allows computing the information
state that the system parameters fulfill both propositions
simultaneously, 𝑓𝑜 ∧ 𝑓𝑚, as

𝑓 (O,M,H) = 𝑓𝑜 (O,M,H) ∧ 𝑓𝑚 (O,M,H)

= 𝑓𝑜 (O,M,H) 𝑓
𝑚
(O,M,H) .

(18)

Assuming that the experimental information on obser-
vations is carried out with sensors that are independent
of techniques to infer experimental information on model
parameters and the same is true for model classes, the
joint density can be split as the product 𝑓𝑜(O,M,H) =
𝑓𝑜(O)𝑓𝑜(M)𝑓𝑜(H). This is not true for the model informa-
tion 𝑓𝑚, since it relates observations and model.
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The reconstructed probability for the model parameters
M providing the model class H

𝑗
is obtained from the joint

probability 𝑓(O,M,H) in (18) by extracting the marginal
probability for all possible observations O ∈ O and on the
condition that the model classH

𝑗
∈ H is assumed to be true

(𝑓𝑜(H = H
𝑗
) = 1) as

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑗

= ∫
H=H𝑗

∫
O

𝑓 (O,M,H) 𝑑O 𝑑H

= 𝑘
1
∫
O

𝑓𝑜 (O) 𝑓
𝑜
(M) 𝑓

𝑚 (O,M,H
𝑗
) 𝑑O,

(19)

where 𝑘
1
is a normalization constant that replaces the

dropped model class probability. The assumption of no prior
knowledge about the model parameters is usually made,
whereby it is represented by the noninformative distribution,
that is, an arbitrary constant in the assumed case of Jeffrey’s
parameters 𝑓𝑜(M) = 1,

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑗

= 𝑘
1
∫
O

𝑓𝑜 (O) 𝑓
𝑚 (O,M,H

𝑗
) 𝑑O. (20)

Jeffrey’s parameters have the characteristig of being
positive and of being as popular as their inverse [10]; all
noninformative densities 𝜇 are constant andmay therefore be
dropped from the formulation. Oftentimes and in this case,

non-Jeffrey’s parameter manifolds are turned to Jeffrey’s ones
by a logarithmic change of variable.

2.3.1. Solution for Set of Discrete Observations with Gaussian
Uncertainties. Assume that the observations are assumed
to follow a Gaussian distribution O ∼ N(𝐸[Oobs], 𝐶obs)
whosemean is that of the experimental observationsOobs and
covariance matrix 𝐶obs standing for the measurement error
noise. In our case, the measurement noise is assumed, within
each experimental setup, constantly equal to a conservative
𝜎obs = 10% of the mean pressure value, 𝐶obs = ((𝜎obs)2/𝑁)𝐼,
with 𝑁 the number of measurement data: combinations of
positions 𝑥, frequencies, and energies. Likewise, the numeri-
cal errors are also assumed to follow a Gaussian distribution
O ∼ N(Onum, 𝐶num) centered at the numerically computed
ones 𝐸[Onum] = O(H) with covariance matrix 𝐶num (in our
case assumed negligible compared to the experimental one).

Recall that the observations O are a vector of functions
of position O = 𝑜

𝑖
(𝑥) and setup 𝑖 ∈ [1 ⋅ ⋅ ⋅ 𝑁

𝑖
] and that

the assumptions made above are valid for every position 𝑥
and setup 𝑖. Considering that the compound probability of
the information from all sensors and time instants is the
running product of that of each one individually that means
information independence and that this running product is
equivalent to a summationwithin the exponentiation (and an
integration along the continuous time, seen as a summation
over every infinitesimal 𝑑𝑥), the Gaussian distribution allows
for an explicit expression of the probability densities,

𝑓𝑜 (𝑜
𝑖 (𝑥)) = 𝑘

3
exp{−

1

2

𝑁𝑖

∑
𝑖,𝑗=1

∫
𝑥

(𝑜
𝑖 (𝑥) − 𝑜obs

𝑖
(𝑥)) (𝑐

obs
𝑖𝑗

)
−1

(𝑜
𝑗 (𝑥) − 𝑜obs

𝑗
(𝑥)) 𝑑𝑥} ,

𝑓𝑚 (𝑜
𝑖 (𝑥) ,M,H) = 𝑘

4
exp{−

1

2

𝑁𝑖

∑
𝑖,𝑗=1

∫
𝑥

(𝑜
𝑖 (𝑥) − 𝑜

𝑖 (𝑡,M)) (𝑐
num
𝑖𝑗

)
−1

(𝑜
𝑗 (𝑥) − 𝑜

𝑗 (𝑡,M)) 𝑑𝑥}

⇓

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑗

= 𝑘
5
exp

𝐽(M)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
{
{
{

−
1

2

𝑁𝑖

∑
𝑖,𝑗=1

∫
𝑥

(𝑜
𝑖 (𝑡,M) − 𝑜obs

𝑖
(𝑥)) (𝑐

obs
𝑖𝑗

+ 𝑐num
𝑖𝑗

)
−1

(𝑜
𝑗 (𝑡,M) − 𝑜obs

𝑗
(𝑥)) 𝑑𝑥

}
}
}

.

(21)

The term 𝐽(M) corresponds to a misfit function between
model and observations,

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑗

= 𝑘
5
𝑒−𝐽(M). (22)

The mode criterion is assumed to find the most probable
model parameter; that is,M | 𝑃(M) = 0.5. Finally, if classical
probability densities are desired, the constant 𝑘

6
is derived

from the theorem of total probability as

𝐼 = ∫
M

𝑒−𝐽(M)𝑑M = ∫
M

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑗

𝑘
5

𝑑M =
1

𝑘
6

. (23)

2.3.2. Extension to Model Class Selection. As introduced in
the preceding subsection, the probabilistic nature of the
reconstruction is partly motivated by the fact that the model
itself may not necessarily reproduce the experimental setup
but is just an approximation. If several models (or hypothesis
within the model, which is our case) are candidates based
on different hypothesis H

𝑗
about the system, the former

probabilistic formulation of the inverse problem will be
shown to be able to provide information to rank them.
The bottom idea is the following: if the model class (based
on the candidate hypothesis) is considered as an uncertain
discrete variable, its probability can eventually be extracted
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Table 3: Plausibility of hypothesis about themodel and for various transducers. Comparison between hypotheses, normalized for each choice
of transducers.

Transducer 𝛽, 𝜂, 𝑝
1
(0) = ? 𝛽, 𝜂 = ?, 𝑝

1
(0) exp. 𝛽 = ?, 𝜂, 𝑝

1
(0) exp.

1MHz nonfocused 0.0% 87.7% 12.3%
5MHz focused 19.1% 25.7% 55.2%
10MHz focused 7.8% 33.9% 58.2%
Merging all transducers 6 ⋅ 10−32% 99.97% 0.03%

Table 4: Most probable nonlinearity reconstructed under various hypothesis about the model and transducers.

Transducer 𝛽, 𝜂, 𝑝
1
(0) = ? 𝛽, 𝜂 = ?, 𝑝

1
(0) exp. 𝛽 = ?, 𝜂, 𝑝

1
(0) exp.

1MHz nonfocused 3.9 ± 1.0 3.1 ± 1.0 1.6 ± 0.3
5MHz focused 2.9 ± 0.6 2.9 ± 0.6 2.6 ± 0.3
10MHz focused 3.9 ± 0.9 3.8 ± 0.9 3.0 ± 0.3
Merging all transducers 3.1 ± 1.0 3.6 ± 0.12 2.3 ± 0.14

as a marginal probability from (18). The probability of each
model class will therefore have the sense of degree of certainty
of being true in the sense that the probabilistic conjunction
of certainty (or information) provided by the experimental
measurements and model are coherent [11, 21].

The goal is to find the probability 𝑓(H), understood
as a measure of plausibility of a model class H [24]. It is
simply derived as the marginal probability of the posterior
probability 𝑓(O,M,H) defined in (18),

𝑓 (H) = ∫
O

∫
M

𝑓 (O,M,H) 𝑑M 𝑑O = 𝑘
1
𝑓𝑜 (H)

⋅ ∫
O

∫
M

𝑓𝑜 (O) 𝑓
𝑜
(M) 𝑓

𝑚
(O,M,H) 𝑑M 𝑑O.

(24)

If no prior information is provided by the user about the
class, 𝑓𝑜(H) = 𝜇(H) ⇒ 𝑘

1
𝑓𝑜(H) = 𝑘

6
. Furthermore,

this theorem involves exactly the same integral as that for the
constant 𝑘

5
, that is, allowing reusing the integral in (23),

𝑓 (H) = 𝑘
6
∫
M

𝑓 (M)
󵄨󵄨󵄨󵄨H=H𝑖

𝑘
5

𝑑M = 𝑘
6
∫
M

𝑒−𝐽(M)𝑑M

= 𝑘
6
𝐼,

(25)

where the normalization constant 𝑘
6
can be solved from the

theorem of total probability over all model classesH in order
to obtain classical probabilities, ∑H 𝑓(H) = 1.

The integral is approximated computationally by a stan-
dardMonte Carlo sampling, which approximates the integral
of any integrand 𝑓(𝑥) that depends on the parameters 𝑥 over
a parameter subspace Ω using

∫
Ω

𝑓 (𝑥) =
1

𝑁

𝑁

∑
𝑛=1

𝑓 (𝑥
𝑖
) , (26)

where the integrand 𝑓(𝑥) is evaluated at 𝑁 random points
𝑥
𝑖
∈ Ω called samples. The precision is controlled by the

number of samples, here chosen as 𝑁 = 216 points, which
takes a few seconds on a laptop.
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Figure 3: Example of the measurement of the first four harmonics
along the beam for a 5MHz transducer excited at 5MHz and 64V.

3. Results

Repeatability tests were performed to discard experimental
variability. An example of the measurement of the first four
harmonics 𝑝

0
(𝑥), 𝑝

1
(𝑥), and so forth along the beam is

depicted in Figure 3.

3.1. Literature-Based Determination of Nonlinearity. To val-
idate the presented derivation of the nonlinear parameter
𝛽, Figure 4 compares the four procedures for extracting 𝛽
for a range of different experimental setups, varying (1) the
transducer central frequency, (2) the excitation energy, and
(3) the excitation frequency across a wide range around the
central frequency.

To serve as a comparison, the literature-based procedure
to compute 𝛽 using (16) on the raw data in Tables 3, 4, and 5
yields highly variable values, as shown in Figure 4.
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Table 5: Summary of recovered 𝛽 using different methods.

Transducer Noncorrected Reconstruction, individual Reconstruction, merged
1MHz nonfocused 6.2 ± 4.0 3.9 ± 0.5 3.6 ± 0.12
5MHz focused 7.4 ± 4.0 3.1 ± 0.5 3.6 ± 0.12
10MHz focused 1.6 ± 2.0 4.0 ± 0.9 3.6 ± 0.12
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Figure 4: Examples of computation of nonlinearity computed by noncorrected formula (literature).

3.2. Choosing the Optimal Hypothesis about theModel. When
using the model based on solving (15), some assumptions
are required on the internal parameters, which we group in
three hypotheses: (i) nonlinearity 𝛽, viscosity 𝜂, and initial
harmonic pressures 𝑝

1
(0) are assumed unknown; (ii) 𝛽, 𝜂 are

unknownwhereas𝑝
1
(0) are taken from the experimental data

at 𝑥
0
; or (iii) only 𝛽 is unknown, whereas 𝜂 = 0.002 [Pa s] is

taken from the literature and 𝑝
1
(0) experimentally.

The model class selection is computed using (25), which
yields the following hypothesis ranking, whereby 𝛽 and 𝜂
should clearly be assumed as unknowns and will be assumed
in the sequel.

By finding the most probable values of 𝛽 from 𝑓(M),
the following values, as well as their standard deviations, are
reconstructed for each hypothesis and independentmeasure-
ment and after combining the measurements and imposing
that 𝛽 is the same for all.

3.3. Plausibility Maps. The information density 𝑓(M) can
provide more useful information, such as answering the
question “how are certainties of parameter values coupled
between parameters?”. A few examples are shown in Figure 5.

The cumulative value of the former data, marginalized for
every parameter, yields the plausibility𝑃(M) that can provide

more useful information. For instance, it can provide the full
information available for 𝛽 and other parameters, as shown
in the example (Figures 6 and 7). This answers the question
“how much can we know about 𝛽?”.

3.4. Model-Based Nonlinearity Reconstruction. To verify the
goodness of themodel fitting to reality, the second harmonics
are plotted in Figure 8 for one of the cases.

Table 5 summarizes the values of 𝛽 obtained for every
setup. The 𝛽 is obtained for each transducer and derivation
formula by averaging over all energies, frequencies, and dis-
tances within a range that excludes the very near field, where
complex interferences justify a noisy signal. These values are
coherent within the range of uncertainty of the calibration of
our hydrophone, and they are furthermore compatible with
previous values reported for water in the literature.

4. Discussion

Two contributions are put forth in this paper: (i) the nonlin-
ear wave propagation equations are rigorously derived and
the ensuing differential equation is numerically solved and
(ii) this model information is combined with the experimen-
tal data using logical inference; that is,𝛽 and other parameters
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Figure 5: Plausibility density map of parameters 𝛽 and 𝜂 given hypothesis that 𝛽, 𝜂 unknown, 𝑝
1
(0) experimental, and for 1MHz (a) and

10MHz (b) transducers.
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transducer.

are probabilistically reconstructed, providing not only their
values, but also the degree of confidence on them given both
sources of data.

This is applied to solve the open issue whereby current
methods for ultrasonically quantifying the constitutive non-
linearity parameter 𝛽 show large limitations in that the signal

is only valid at a reduced spatial range away from the
transducer, whose limits are furthermore not justified.

Thismethod is satisfactorily validated testing the repeata-
bility of 𝛽 varying distances, energies, frequencies, and
transducer setups, yielding a final value of 𝛽 = 3.6 ± 0.12,
which, given the limitations of our experimental equipment,
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is significantly precise and compatible with literature data
around 𝛽 = 3.5.
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