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Introduction

It is one of the main topics in submanifold geometry to investigate an immersed real hypersurface in Hermitian
symmetric spaces of rank 2 (HSS2) with certain geometric condition. Understanding and classifying real hyper-
surfaces in HSS2 is one of the important subjects in differential geometry. One of these spaces is complex two-
plane Grassmannian G2.CmC2/ defined by the set of all complex two-dimensional linear subspaces in CmC2.
For indefinite complex Euclidean spaces, we give a definition of a complex hyperbolic two-plane Grassmannian,
the set of all complex two-dimensional linear subspaces in indefinite complex Euclidean space CmC2

2
denoted

by SU2;m=S.U2�Um/. This Riemannian symmetric space has a remarkable geometrical structure. It is the unique
noncompact, Kähler, irreducible, quaternionic Kähler manifold with negative scalar curvature.

These are typical examples of HSS2. Characterizing typical model spaces of real hypersurfaces under certain
geometric conditions has been one of our main interests in the classification theory in G2.CmC2/ (see [1]).

Now, thanks to Berndt and Suh [2], comparing to G2.CmC2/ with compact type, we have investigated
geometry of submanifolds in SU2;m=S.U2�Um/. In the noncompact ambient space, we may find various types
of hypersurfaces due to horospheres and an exceptional case.

Let M be a real hypersurface in SU2;m=S.U2�Um/, and let us denote by N a local unit normal vector field
on M . Since SU2;m=S.U2�Um/ has the Kähler structure J , we may define a Reeb vector field � D �JN and a
1-dimensional distribution Œ�� D Spanf �g.

Let C be a distribution which stands for the orthogonal complement of Œ�� in TxM for any x 2M . It becomes the
complex maximal subbundle of TxM . Thus the tangent space of M consists of the direct sum of C and C?.WD Œ��/
as follows: TxM D C ˚ C? for any x 2M . The real hypersurface M is said to be Hopf if AC � C, or equivalently,
the Reeb vector field � is principal with principal curvature ˛ D g.A�; �/, where A denotes the shape operator ofM
with respect to N . In this case, the principal curvature ˛ D g.A�; �/ is said to be a Reeb curvature of M .
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From the quaternionic Kähler structure J D SpanfJ1; J2; J3g of SU2;m=S.U2�Um/, there naturally exist
almost contact 3-structure vector fields �i D �JiN , i D 1; 2; 3. Put Q? D Spanf �1; �2; �3g, which is a 3-
dimensional distribution in the tangent vector space TxM of M at x 2 M . In addition, Q stands for the orthogonal
complement of Q? in TxM . It becomes the quaternionic maximal subbundle of TxM . Thus the tangent space of
M consists of the direct sum of Q and Q? as follows: TxM D Q˚Q?.

Thus we introduce the main two natural geometric conditions for real hypersurfaces in SU2;m=S.U2�Um/, that
the subbundles C and Q of TM are both invariant under the shape operator. By using these geometric conditions and
the results in Eberlein [3], Berndt and Suh [2] proved the following:

Theorem A. Let M be a connected hypersurface in SU2;m=S.U2Um/, m � 2. Then the maximal complex
subbundle C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape operator
of M if and only if M is locally congruent to an open part of one of the following hypersurfaces:
(A) a tube around a totally geodesic SU2;m�1=S.U2Um�1/ in SU2;m=S.U2Um/;
(B) a tube around a totally geodesic HHn in SU2;2n=S.U2U2n/, m D 2n;
(C) a horosphere in SU2;m=S.U2Um/ whose center at infinity is singular;
or the following exceptional case holds:
(D) The normal bundle �M of M consists of singular tangent vectors of type JX ? JX . Moreover, M has at least

four distinct principal curvatures, three of which are given by

˛ D
p
2 ; 
 D 0 ; � D

1
p
2
;

with corresponding principal curvature spaces

T˛ D TM 	 .C \Q/ ; T
 D J.TM 	Q/ ; T� � C \Q \ JQ:

If � is another (possibly nonconstant) principal curvature function, then we have T� � C\Q\JQ, JT� � T�
and JT� � T�.

Suh [7] has given a characterization of real hypersurfaces of type .A/ when the shape operator A of M in
SU2;m=S.U2�Um/ commutes with the structure tensor �. The condition is said to be an isometric Reeb flow on
M . Now in this paper we consider another commuting condition, that is, commuting shape operator which is defined
by

A�iX D �iAX; i D 1; 2; 3; (*)

where �iX denotes the tangential part of JiX , i D 1; 2; 3 for the quaternionic Kähler structure J D

SpanfJ1; J2; J3g for SU2;m=S.U2�Um/.
Then we can assert the following without the assumption of Hopf.

Theorem 1. There does not exist any real hypersurface in complex hyperbolic two-plane Grassmannian
SU2;m=S.U2�Um/, m�3, with commuting shape operator i.e., A�i D �iA, i D 1; 2; 3.

On the other hand, let us consider a weaker condition than the above assumption, that is, A�i D �iA on the
distribution C D Œ��?. Then with the assumption of Hopf, we can assert another theorem as follows:

Theorem 2. There does not exist any Hopf hypersurface in complex hyperbolic two-plane Grassmannian
SU2;m=S.U2�Um/, m�3, with commuting shape operator i.e., A�i D �iA, i D 1; 2; 3 on the distribution C.

Throughout this paper, we use some references [2], [7], [8], and [9] to recall the Riemannian geometry of
SU2;m=S.U2�Um/ and some fundamental formulas including the Codazzi and Gauss equations for a real hyper-
surface in SU2;m=S.U2�Um/.
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Commuting shape operator 495

1 The complex hyperbolic two-plane Grassmannian
SU2;m=S.U2�Um/

In this section we summarize basic material about complex hyperbolic two-plane Grassmann manifolds
SU2;m=S.U2�Um/, for details we refer to [1], [2], [4], [5], [7] and [8].

The Riemannian symmetric space SU2;m=S.U2�Um/, which consists of all complex two-dimensional linear
subspaces in indefinite complex Euclidean space CmC2

2
, becomes a connected, simply connected, irreducible

Riemannian symmetric space of noncompact type and with rank two. Let G D SU2;m and K D S.U2�Um/, and
denote by g and k the corresponding Lie algebra of the Lie group G and K respectively. Let B be the Killing form
of g and denote by p the orthogonal complement of k in g with respect to B . The resulting decomposition g D k˚ p

is a Cartan decomposition of g. The Cartan involution � 2 Aut.g/ on su2;m is given by �.A/ D I2;mAI2;m, where

I2;m D

 
�I2 02;m

0m;2 Im

!
I2 and Im denotes the identity 2 � 2-matrix and m � m-matrix respectively. Then < X; Y >D �B.X; �Y /

becomes a positive definite Ad.K/-invariant inner product on g. Its restriction to p induces a metric g on
SU2;m=S.U2�Um/, which is also known as the Killing metric on SU2;m=S.U2�Um/. Throughout this paper we
consider SU2;m=S.U2�Um/ together with this particular Riemannian metric g.

The Lie algebra k decomposes orthogonally into k D su2 ˚ sum ˚ u1, where u1 is the one-dimensional center
of k. The adjoint action of su2 on p induces the quaternionic Kähler structure J on SU2;m=S.U2�Um/, and the
adjoint action of

Z D

 
mi
mC2

I2 02;m

0m;2
�2i
mC2

Im

!
2 u1

induces the Kähler structure J on SU2;m=S.U2�Um/. By construction, J commutes with each almost Hermitian
structure Ji in J for i D 1; 2; 3. Recall that a canonical local basis fJ1; J2; J3g of a quaternionic Kähler structure
J consists of three almost Hermitian structures J1; J2; J3 in J such that JiJiC1 D JiC2 D �JiC1Ji , where the
index i is to be taken modulo 3. The tensor field JJi , which is locally defined on SU2;m=S.U2�Um/, is self-adjoint
and satisfies .JJi /2 D I and tr.JJi / D 0, where I is the identity transformation. For a nonzero tangent vector X
we define RX D f�X j� 2 Rg, CX D RX ˚ RJX , and HX D RX ˚ JX .

We identify the tangent space ToSU2;m=S.U2�Um/ of SU2;m=S.U2�Um/ at o with p in the usual way. Let a
be a maximal abelian subspace of p. Since SU2;m=S.U2�Um/ has rank two, the dimension of any such subspace is
two. Every nonzero tangent vector X 2 ToSU2;m=S.U2�Um/ Š p is contained in some maximal abelian subspace
of p. Generically this subspace is uniquely determined by X , in which case X is called regular. If there exists more
than one maximal abelian subspaces of p containing X , then X is called singular. There is a simple and useful
characterization of the singular tangent vectors: A nonzero tangent vector X 2 p is singular if and only if JX 2 JX

or JX ? JX .
Up to scaling there exists a unique SU2;m-invariant Riemannian metric g on SU2;m=S.U2�Um/. Equipped

with this metric SU2;m=S.U2�Um/ is a Riemannian symmetric space of rank two which is both Kähler and
quaternionic Kähler. For computational reasons we normalize g such that the minimal sectional curvature of
.SU2;m=S.U2�Um/; g/ is �4. The sectional curvature K of the noncompact symmetric space SU2;m=S.U2�Um/
equipped with the Killing metric g is bounded by �4�K�0. The sectional curvature �4 is obtained for all 2-planes
CX when X is a non-zero vector with JX 2 JX .

When m D 1, G�
2
.C3/ D SU1;2=S.U1�U2/ is isometric to the two-dimensional complex hyperbolic space

CH2 with constant holomorphic sectional curvature �4.
When m D 2, we note that the isomorphism SO.4; 2/ ' SU2;2 yields an isometry between G�

2
.C4/ D

SU2;2=S.U2�U2/ and the indefinite real Grassmann manifoldG�
2
.R6
2
/ of oriented two-dimensional linear subspaces

of an indefinite Euclidean space R6
2

. For this reason we assumem � 3 from now on, although many of the subsequent
results also hold for m D 1; 2.

Brought to you by | Universidad de Granada
Authenticated

Download Date | 10/9/15 1:08 PM



496 J.D. Pérez et al.

The Riemannian curvature tensor NR of SU2;m=S.U2�Um/ is locally given by

NR.X; Y /Z D�
1

2

h
g.Y;Z/X � g.X;Z/Y C g.J Y;Z/JX � g.JX;Z/J Y � 2g.JX; Y /JZ

C

3X
iD1

fg.JiY;Z/JiX � g.JiX;Z/JiY � 2g.JiX; Y /JiZg

C

3X
iD1

fg.JiJ Y;Z/JiJX � g.JiJX;Z/JiJ Y g
i
;

(1)

where fJ1; J2; J3g is any canonical local basis of J (see [2]).

2 Fundamental formulas in SU2;m=S.U2�Um/

In this section we derive some basic formulas and the Codazzi equation for a real hypersurface in SU2;m=S.U2�Um/
(see [1], [2], [8], and [9]).

Let M be a real hypersurface in complex hyperbolic two-plane Grassmannian SU2;m=S.U2�Um/, that is, a
hypersurface in SU2;m=S.U2�Um/ with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and r denotes the Levi Civita covariant derivative of .M; g/. We denote by C and Q the maximal
complex and quaternionic subbundle of the tangent bundle TM of M , respectively. Now let us put

JX D �X C �.X/N; JiX D �iX C �i .X/N (2)

for any tangent vector field X of a real hypersurface M in SU2;m=S.U2�Um/, where �X denotes the tangential
component of JX and N a unit normal vector field of M in SU2;m=S.U2�Um/.

From the Kähler structure J of SU2;m=S.U2�Um/ there exists an almost contact metric structure .�; �; �; g/
induced on M in such a way that

�2X D �X C �.X/�; �.�/ D 1; �� D 0; �.X/ D g.X; �/ (3)

for any vector field X on M . Furthermore, let fJ1; J2; J3g be a canonical local basis of J. Then the quaternionic
Kähler structure Ji of G2.CmC2/, together with the condition JiJiC1 D JiC2 D �JiC1Ji in section 1, induces
an almost contact metric 3-structure .�i ; �i ; �i ; g/ on M as follows:

�2i X D �X C �i .X/�i ; �i .�i / D 1; �i�i D 0;

�iC1�i D ��iC2; �i�iC1 D �iC2;

�i�iC1X D �iC2X C �iC1.X/�i ;

�iC1�iX D ��iC2X C �i .X/�iC1

(4)

for any vector field X tangent toM . Moreover, from the commuting property of JiJ D JJi , i D 1; 2; 3 in section 1
and (2), the relation between these two contact metric structures .�; �; �; g/ and .�i ; �i ; �i ; g/, i D 1; 2; 3, can be
given by

��iX D �i�X C �i .X/� � �.X/�i ;

�i .�X/ D �.�iX/; ��i D �i�:
(5)

On the other hand, from the parallelism of Kähler structure J , that is, erJ D 0 and the quaternionic Kähler structure
J (see (1)), together with Gauss and Weingarten formulas it follows that

.rX�/Y D �.Y /AX � g.AX; Y /�; rX� D �AX; (6)

rX�i D qiC2.X/�iC1 � qiC1.X/�iC2 C �iAX; (7)

.rX�i /Y D �qiC1.X/�iC2Y C qiC2.X/�iC1Y C �i .Y /AX � g.AX; Y /�i : (8)
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Combining these formulas, we find the following:

rX .�i�/ D rX .��i / D .rX�/�i C �.rX�i /

D qiC2.X/�iC1� � qiC1.X/�iC2� C �i�AX � g.AX; �/�i C �.�i /AX:
(9)

Finally, using the explicit expression for the Riemannian curvature tensor NR of SU2;m=S.U2�Um/ in [2] the Codazzi
equation takes the form

.rXA/Y � .rYA/X D �
1

2

h
�.X/�Y � �.Y /�X � 2g.�X; Y /�

C

3X
iD1

˚
�i .X/�iY � �i .Y /�iX � 2g.�iX; Y /�i

	
C

3X
iD1

˚
�i .�X/�i�Y � �i .�Y /�i�X

	
C

3X
iD1

˚
�.X/�i .�Y / � �.Y /�i .�X/

	
�i

i
;

(10)

for any vector fields X and Y on M .

3 Proof of Theorem 1

In this section, we want to give a complete proof of our Theorem 1.
Let M be a real hypersurface in SU2;m=S.U2�Um/ satisfying

A�iX D �iAX; (11)

where i D 1; 2; 3 for any tangent vector field X on M . By putting X D �i into (11), and applying �i to (11), we
have

A�i D �i .A�i /�i D �i�i : (12)

Also by substituting X D �iC1 into (11) and using (4), we have �1 D �2 D �3. Thus from now on we will denote
� D �1 D �2 D �3.

Remark 3.1. By (12), the commuting condition A�i D �iA, i D 1; 2; 3 naturally gives AQ � Q.

Lemma 3.2. Let M be a real hypersurface in SU2;m=S.U2�Um/, m � 3. If M has commuting shape operator,
that is, A�i D �iA, i D 1; 2; 3, then the Reeb vector field � belongs to either the 3-dimensional distribution
Q? D f�1; �2; �3g or the orthogonal complement, that is, the quaternionic maximal subbundle Q such that TxM D
Q˚Q?, x2M .

Proof. By taking the inner product of the equation of Codazzi (10) with �1, we obtain

g
�
.rXA/Y; �1

�
� g

�
.rYA/�1; X

�
D ��.X/�1.�Y /C �.Y /�1.�X/C g.�X; Y /�.�1/ � �2.X/�3.Y /

C �3.X/�2.Y /C g.�1X; Y / � �2.�X/�3.�Y /C �2.�Y /�3.�X/:
(13)

On the other hand, by differentiation of A�1 D ��1 and using (8), we have

.rXA/�1 D .X�/�1 C ��1AX � A�1AX: (14)

Interchange X and Y in (14) and combining them, we get

g
�
.rXA/Y; �1

�
� g

�
.rYA/�1; X

�
D.X�/�1.Y / � .Y�/�1.X/

C �g
�
.�1AC A�1/X; Y

�
� 2g.A�1AX; Y /

(15)
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498 J.D. Pérez et al.

Combining (13) and (15), we have

� �.X/�1.�Y /C �.Y /�1.�X/C g.�X; Y /�.�1/ � �2.X/�3.Y /

C �3.X/�2.Y /C g.�1X; Y / � �2.�X/�3.�Y /C �2.�Y /�3.�X/

D .X�/�1.Y / � .Y�/�1.X/C �g
�
.�1AC A�1/X; Y

�
� 2g.A�1AX; Y /:

(16)

Let us show the fact that � 2 Q or � 2 Q? from the assumption in our lemma. In order to do this, let us put
� D �.X/X C �.Z/Z for some unit X 2 Q and Z 2 Q?. Then we may put Z D �3 2 Q? without loss of
generality and then

� D �.X/X C �.�3/�3 (**)

gives �.�1/ D 0 D �.�2/. Thus � ? �1; �2, i.e., �1; �2 2 C, where C denotes an orthogonal complement of � in
TxM .

On the other hand, by the assumption of commuting property, that is, A�i D �iA, we know that AQ D Q. By
virtue of this fact, for any X 2 Q such that AX D �X from (16), we have

.� � 2�/A�1X C .��/�1X C .X�/�1 � �.X/��1 � �.�1X/� � �2.�X/��3 C �3.�X/��2 D 0: (17)

From this, taking the inner product with �2 and usingX 2 Q and (**), then by the commuting conditionA�1 D �1A,
we have

�.X/�3.�/ D 0: (18)

Thus, we get a complete proof of our Lemma 3.2.

Now let us show another lemma as follows

Lemma 3.3. Let M be a real hypersurface in SU2;m=S.U2�Um/, m � 3 satisfying A�i D �iA, i D 1; 2; 3. Then
the Reeb vector field � becomes a principal vector field.

Proof. First, we suppose � D �i 2 Q?. This means A� D A�i D ��i D �� and � is a principal vector field.
Next, in the case of � 2 Q, by differentiating g.�; �i / D 0, we obtain

g.rY �; �i /C g.�;rY �i / D 0: (19)

From this, using (6) and (7), we get 2g.�AY; �i / D 0 for any tangent vector field Y on M , which is equivalent to
0 D A��i D A�i� D �iA�. Applying �i and using �i .A�/ D 0, we have

A� D 0: (20)

So in both cases, the Reeb vector field � becomes principal, that is, AC � C.

By virtue of Lemmas 3.2 and 3.3, we conclude that M has a principal Reeb vector field � and g.AQ;Q?/ D 0.
Then by a theorem due to Benrdt and Suh [2], M is congruent to an open part of hypersurfaces either of Type (A),
(B), (C), or (D) in Theorem A mentioned in the introduction. So by using Propositions in [2], we want to give a
complete proof of our Theorem 1.

In the case of � 2 Q? (i.e., JN 2 JN ), type .A/ (resp., type .C1/) stands for a tube around totally
geodesic SU2;m�1=S.U2�Um�1/ in SU2;m=S.U2�Um/ (resp., a horosphere whose center at infinity with JX 2
JX is singular). In [2] Berndt and Suh gave some information related to the shape operator A of type .A/ and
type .C1/ as follows

Proposition A. Let M be a connected real hypersurface in complex hyperbolic two-plane Grassamnnian
SU2;m=S.U2Um/, m � 3. Assume that the maximal complex subbundle C of TM and the maximal quaternionic
subbundle Q of TM are both invariant under the shape operator of M . If JN 2 JN , then M is either of type .A/
or type .C1/ and
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.A/ M has exactly four distinct constant principal curvatures

˛ D 2 coth.2r/; ˇ D coth.r/; �1 D tanh.r/; �2 D 0;

(r denote the radius of M centered at SU2;m�1=S.U2Um�1/) and the corresponding eigenspaces are

T˛ D TM 	 C; Tˇ D C 	Q; T�1 D E�1; T�2 D EC1:

The principal curvature spaces T�1 and T�2 are complex (with respect to J ) and totally complex (with respect
to J).

.C1/ M has exactly three distinct constant principal curvatures

˛ D 2; ˇ D 1; � D 0

with corresponding principal curvature spaces

T˛ D TM 	 C; Tˇ D .C 	Q/˚E�1; T� D EC1:

Here, EC1 and E�1 are the eigenbundles of ��1jQ with respect to the eigenvaluesC1 and �1, respectively.

By using Proposition A, let us check whether the shape operator A on type .A/ (resp., type .C1/) satisfies the
condition A�i D �iA, i D 1; 2; 3.

For i D 1 and X D �2 into the given condition, we have �˛�3 D �ˇ�3. For type .A/ (resp., type .C1/), this
means that r D 0 (resp., �2 D �˛ D �ˇ D �1) which makes a contradiction.

Remark 3.4. The shape operator A of real hypersurfaces type .A/ (resp., type .C1/) in SU2;m=S.U2�Um/ does
not satisfy the condition A�i D �iA, i D 1; 2; 3.

Let us suppose that � 2 Q (i.e., JN ? JN ). Related to this condition, Suh [8] proved:

Theorem B. Let M be a Hopf hypersurface in complex hyperbolic two-plane Grassmannian SU2;m=S.U2�Um/,
m � 3, with the Reeb vector field belonging to the maximal quaternionic subbundle Q. Then one of the following
statements holds
.B/ M is an open part of a tube around a totally geodesic HHn in SU2;2n=S.U2U2n/, m D 2n,
.C2/ M is an open part of a horosphere in SU2;m=S.U2Um/ whose center at infinity is singular and of Type JN ?

JN , or
.D/ The normal bundle �M of M consists of singular tangent vectors of Type JX ? JX .

By virtue of this result, we assert that a real hypersurface M in SU2;m=S.U2�Um/ satisfying the hypotheses in our
Theorem 1 is locally congruent to an open part of one of the model spaces mentioned in Theorem B. Hereafter, let
us check whether the shape operator A of a model space of type .B/, type .C2/ or type .D/ satisfies our conditions.
In order to do this, let us introduce the following proposition given by Berndt and Suh [2].

Proposition B. LetM be a connected hypersurface in SU2;m=S.U2Um/,m � 3. Assume that the maximal complex
subbundle C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape operator
of M . If JN ? JN , then one of the following statements holds:
.B/ M has five (four for r D

p
2tanh�1.1=

p
3/ in which case ˛ D �2) distinct constant principal curvatures

˛ D
p
2 tanh.

p
2r/; ˇ D

p
2 coth.

p
2r/; 
 D 0;

�1 D
1
p
2

tanh.
1
p
2
r/; �2 D

1
p
2

coth.
1
p
2
r/;

(r denote the radius of M centered at HHn) and the corresponding principal curvature spaces are

T˛ D TM 	 C; Tˇ D TM 	Q; T
 D J.TM 	Q/ D JTˇ:

The principal curvature spaces T�1 and T�2 are invariant under J and are mapped onto each other by J . In
particular, the quaternionic dimension of SU2;m=S.U2Um/ must be even.
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.C2/ M has exactly three distinct constant principal curvatures

˛ D ˇ D
p
2; 
 D 0; � D

1
p
2

with corresponding principal curvature spaces

T˛ D TM 	 .C \Q/; T
 D J.TM 	Q/; T� D C \Q \ JQ:

.D/ M has at least four distinct principal curvatures, three of which are given by

˛ D ˇ D
p
2; 
 D 0; � D

1
p
2

with corresponding principal curvature spaces

T˛ D TM 	 .C \Q/; T
 D J.TM 	Q/; T� � C \Q \ JQ:

If � is another (possibly nonconstant) principal curvature function, then JT� � T� and JT� � T�. Thus, the
corresponding multiplicities are

m.˛/ D 4; m.
/ D 3; m.�/; m.�/:

By using Proposition B, let us check whether the shape operatorA on type .B/ (resp., type .C2/ or type .D/) satisfies
the condition A�i D �iA, i D 1; 2; 3.

For i D 1 and X D �1� into the given condition, we have ˛ D 0. For type .B/ (resp., type .C2/ or type .D/),
this means that r D 0 (resp.,

p
2 D ˛ D 0 in type .C2/ or type .D/) which makes a contradiction.

Remark 3.5. The shape operator A of real hypersurfaces type .B/ (resp., type .C2/ or type .D/) in
SU2;m=S.U2�Um/ does not satisfy the condition A�i D �iA, i D 1; 2; 3.

Summing up all documents mentioned above, we give a complete proof of our Theorem 1 in the introduction.
Finally, let us mention a brief proof of our Theorem 2 in the introduction. We put

� D �.X/X C �.Z/Z (21)

for any X 2 Q and Z 2 Q?. Then without loss of generality we are able to choose a vector Z in such a way that

Z D �3 2 Q? D Spanf�1; �2; �3g:

From the expression of the Reeb vector field � D �.X/XC�.�3/�3, it follows that �.�1/ D 0 D �.�2/. This implies
�1; �2 2 C. From the condition that A�� D ��A, � D 2; 3 on C, we have

A�3 D A�1�2 D �1A�2 D �2�1�2 D �2�3:

This means that all structure vector fields �i , i D 1; 2; 3 are principal vectors with the same principal curvatures, that
is, �1 D �2 D �3. This implies AQ � Q. Then by a theorem due to Benrdt and Suh [2], M is congruent to one of
an open part of hypersurfaces of Type (A), (B), (C), or (D). By using the same method as in the proof of Theorem 1,
we can give a contradiction in each case mentioned above.

Remark 3.6. In the case of compact two-plane Grassmannians G2.CmC2/, the shape operator A of real
hypersurfaces of type .B/ satisfies the conditionA�i D �iA, i D 1; 2; 3. But when we consider a real hypersurfaces
in non-compact two-plane Grassmannians SU2;m=S.U2�Um/, the situation is different from the compact case. In
non-compact case, we give a non-existence theorem for hypersurfaces satisfying the commuting condition.
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