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Abstract: Entropy-based tools are commonly used to describe the dynamics of complex
systems. In the last few decades, non-extensive statistics, based on Tsallis entropy, and
multifractal techniques have shown to be useful to characterize long-range interaction and
scaling behavior. In this paper, an approach based on generalized Tsallis dimensions
is used for the formulation of mutual-information-related dependence coefficients in the
multifractal domain. Different versions according to the normalizing factor, as well as
to the inclusion of the non-extensivity correction term are considered and discussed. An
application to the assessment of dimensional interaction in the structural dynamics of a
seismic real series is carried out to illustrate the usefulness and comparative performance
of the measures introduced.

Keywords: complex system; generalized dimensions; multifractality; non-extensivity;
seismicity; space-time dynamics; Tsallis entropy

1. Introduction

The term “complex system” is nowadays commonly present in the main branches of science. The
increasing interest in the study of complexity has derived in a proper identification of a new field of
knowledge, complex systems science [1–3]. There is not a uniquely accepted definition; however, it is
assumed that complex systems consist of many linking components, can be characterized by long-range
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interactions, chaotic behavior, self-similarity organization and may be far from equilibrium [4,5].
Methods based on entropy are among the most relevant and successfully applied to describe such
systems. Multifractal measures are formally used to explain systems with scaling properties [6–10].
On the other hand, non-extensive statistics are used to characterize systems with long-range interactions,
heavy-tail distributions and anomalous diffusion, among other aspects [11–14]. This paper is focused on
entropy-based approaches for studying the dimensional interaction in the structural dynamics of complex
systems in the multifractal domain.

Different formulations of Tsallis mutual information have been introduced as a generalization of
Shannon mutual information, for quantification of the degree of dependence between components.
Among other references, see the pioneering works by Yamano [15,16], based on a modified form of
Tsallis entropy in a non-additive context, and Furuichi [17], who introduced “correlation coefficients”
based on the normalization of “Tsallis mutual entropy”, an expression used for a form of Tsallis
mutual information that does not include the non-extensivity correction term. On the other hand,
the scaling behavior present in complex systems led us to formulate in [18] a dependence coefficient
in the multifractal domain based on Rényi generalized dimensions. In [19], we propose limiting
forms of Furuichi’s correlation coefficients in the multifractal domain, in terms of “generalized Tsallis
dimensions” (also introduced in [18]). In this paper, we formulate new alternative versions of dependence
coefficients considering different normalization factors, as well as the inclusion of the non-extensivity
correction term.

For illustration, we analyze the interaction between the spatial coordinates and the magnitude and
occurrence time in the structural dynamics of a real seismic series. The presence of scaling behavior and
long-range interactions in the spatio-temporal distribution of earthquakes has been emphasized in many
studies (e.g., [20–26]). The close relation between the study of earthquakes and statistics, as well as
the interest in their direct environmental impact and derived consequences (floods, field contamination,
volcanic eruptions, tsunamis, etc.) are highlighted in the works about “statistical seismology” by
Vere-Jones [27–29]. In particular, entropy-based approaches to describe seismicity are used, for instance,
in [30–35].

In the next section, we recall the preliminary concepts of Shannon, Rényi and Tsallis entropy, related
formulations of divergence and mutual information and the definitions of generalized Rényi and Tsallis
dimensions for multifractal measures. Section 3 is focused on the study of dimensional interaction.
In particular, we introduce various versions of dependence coefficients and limiting versions in the
multifractal domain. In Section 4, we study the spatio-temporal dynamics of a real seismic series using
the multifractal dependence coefficients proposed. In concluding Section 5, we summarize and discuss
the main aspects and related interpretations of the tools introduced and refer to continuing research in
this context.

2. Preliminaries

In this section, we present a short review of the main approaches and tools based on entropy used to
describe dynamical complex systems. Firstly, we summarize basic definitions of Shannon, Rényi and
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Tsallis entropies and related versions of divergence and mutual information. Secondly, we introduce
generalized Rényi and Tsallis dimensions adopting the partition function approach.

2.1. Entropy, Divergence and Mutual Information

2.1.1. Entropy

The concept of entropy was introduced by Shannon [36], with the aim to quantify the uncertainty in
a dynamical system. The discrete form of Shannon entropy, for a discrete finite probability distribution
with mass probability function p̄ = (p1, p2, . . . , pN), is defined as:

H(p̄) := −
N∑
i=1

pi ln(pi) = −E[ln(p̄)]. (1)

The maximum possible entropy value is reached for the equiprobable probability distribution (pi =
1
N
, i = 1, ..., N ):

Hmax(p̄) = −
N∑
i=1

1

N
ln

(
1

N

)
= − ln

(
1

N

)
= ln(N).

Among many other definitions appearing in the literature, the most well-known generalizations are
Rényi [37] and Tsallis [14] entropies, which depend on a deformation parameter, q, and both contain as
a particular case Shannon entropy for q = 1. The discrete form of Rényi entropy of order q, Hq(p̄), is
defined as:

Hq(p̄) :=
1

1− q
ln

(
N∑
i=1

pqi

)
=

1

1− q
ln
(
E[(p̄)q−1]

)
(q 6= 1) (2)

H1(p̄) := −
N∑
i=1

pi ln(pi) = −E[ln(p̄)] = lim
q→1

Hq(p̄). (3)

This generalized entropy has the additivity property for independent systems, and its maximum value
coincides with the maximum Shannon entropy, for all values of q. Many statistical tools in the study of
dynamical systems are based on this entropy; among them, we emphasize the multifractal formalism and
some complexity measures.

Tsallis entropy, as an alternative, is becoming more and more used to describe complex dynamical
systems. The discrete form of Tsallis entropy is defined as:

Tq(p̄) :=
1

q − 1

(
1−

N∑
i=1

pqi

)
=

1

q − 1

(
1− E[(p̄)q−1]

)
(q 6= 1) (4)

T1(p̄) := −
N∑
i=1

pi ln(pi) = −E[ln(p̄)] = lim
q→1

Tq(p̄). (5)

The maximum Tsallis entropy value is obtained for an equiprobable distribution, and in this case, it
depends on q:

Tmax
q =

1−
N∑
i=1

(
1

N

)q

q − 1
=

1−N1−q

q − 1
. (6)
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This entropy is non-additive for independent systems and has led to non-extensive statistical
mechanics. It has been proven to be useful to study dynamical systems with long-range interactions or
that can be far from equilibrium. In the last few years, more general parametric entropies have appeared,
including Shannon and Tsallis entropies [38].

2.1.2. Divergence

The concept of divergence was originally introduced to quantify dissimilarity or departure between
two distributions. Among the most used divergences are, in particular, the ones related to the
above entropy measures. Specifically, the divergence based on Shannon entropy is known as
Kullback–Leibler divergence, information divergence or relative entropy [39]. Formally, given two
discrete finite probability distributions with probability mass functions p̄1 = (p11, p12, ..., p1N) and
p̄2 = (p21, p22, ..., p2N), Kullback–Leibler divergence, denoted D(p̄1‖p̄2), is defined as:

D(p̄1‖p̄2) :=
N∑
i=1

p1i ln
p1i

p2i

= Ep̄1

[
ln
p̄1

p̄2

]
. (7)

Rényi divergence [37] is defined as:

DR
q (p̄1‖p̄2) :=

1

q − 1
ln

(
N∑
i=1

pq1i
pq−1

2i

)
=

1

q − 1
ln

(
Ep̄1

[(
p̄1

p̄2

)q−1
])

(q 6= 1) (8)

DR
1 (p̄1‖p̄2) := D(p̄1‖p̄2). (9)

Similarly, Tsallis divergence [40] is defined as:

DT
q (p̄1‖p̄2) :=

1

1− q

(
1−

N∑
i=1

pq1i
pq−1

2i

)
=

1

1− q

(
1− Ep̄1

[(
p̄1

p̄2

)q−1
])

(q 6= 1) (10)

DT
1 (p̄1‖p̄2) := D(p̄1‖p̄2). (11)

The three divergences defined above are non-symmetrical. Symmetrization can be achieved averaging
the two divergence values obtained by interchanging the distributions p̄1 and p̄2.

2.1.3. Mutual Information

Mutual information measures are intended to quantify the amount of information that two random
variables or vectors share. A natural definition of mutual information between X and Y is based on the
divergence of the product of their marginal distributions with respect to the joint distribution of (X, Y ).
Here, we introduce the usual definitions of mutual information based on Shannon, Rényi and Tsallis
entropies. For X ∼ p̄X , Y ∼ p̄Y and (X, Y ) ∼ p̄XY , Shannon mutual information is given by:

I(X, Y ) := D(p̄XY ‖p̄X p̄Y ) = H(X) +H(Y )−H(X, Y ). (12)

The last equality has a complementary interest for computation and for predictive interpretations.
However, such an equivalence does not hold for the cases of Rényi and Tsallis divergence-based mutual
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information, and then, alternative formulations can be given in each case. For Rényi mutual information
(see, for example, [41]), we denote:

IRq (X, Y ) := DR
q (p̄XY ‖p̄X p̄Y ) (13)

ĨRq (X, Y ) := Hq(X) +Hq(Y )−Hq(X, Y ). (14)

Similarly, for Tsallis mutual information (see [17,42–44]), we denote:

ITq (X, Y ) := DT
q (p̄XY ‖p̄X p̄Y ) (15)

ĨTq (X, Y ) := Tq(X) + Tq(Y )− Tq(X, Y ) (16)

ÎTq (X, Y ) := Tq(X) + Tq(Y ) + (q − 1)Tq(X)Tq(Y )− Tq(X, Y ). (17)

The latter measure includes the non-extensivity correction term.

2.2. Scaling Behavior and Multifractality

As mentioned above, complex systems may exhibit a self-similar structure or scaling properties.
Distributions related to such systems are formally described in terms of the generalized Rényi dimensions
and the singularity spectrum. Firstly, we introduce the generalized Rényi dimensions using the partition
function formalism by means of the box-counting algorithm (see [45,46]). Secondly, we formulate the
generalized dimensions based on Tsallis entropy introduced in [18].

2.2.1. Generalized Rényi Dimensions

Generalized Rényi dimensions reflect global scaling behavior based on average quantities, defined
by the rate of divergence of Rényi entropy of the partition probability distribution Pε of a multifractal
measure µ with respect to decreasing box width ε, in the following sense:

D1 := lim
ε→0

∑
k∈Kε

µ[Bε(k)] lnµ[Bε(k)]

ln ε
(18)

Dq := lim
ε→0

1

q − 1

ln
∑
k∈Kε

µq[Bε(k)]

ln ε
(q 6= 1), (19)

where Kε denotes the set of non-µ−null boxes of width ε. Thus, Dq defines the scaling power-law of
Rényi entropy of order q of Pε with respect to ε,

e−Hq(Pε) ∼ εDq (∀q). (20)

Dq is a monotonically non-increasing function of q, and varying the “deformation parameter” q, one
can extract different features of the distribution of the multifractal measure µ on its support. In particular,
based on their meaning and interpretation, there are four quantities of particular interest in practice:

• “Capacity” dimension, D0: This shows how the points of a multifractal pattern fill the domain
under study. The larger the value of this dimension, the better the space is covered.
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• “Entropy” dimension, D1: This is a measure of order-disorder of the points in the domain under
study. Larger values indicate higher disorder.

• “Correlation” dimension, D2: This quantifies the degree of clustering/inhibition. Lower values
correspond to a higher level of clustering.

• “Multifractal step”, D−∞ − D∞: This indicates the degree of multifractality. Larger values
correspond to a stronger multifractal behavior. The multifractal step is zero for monofractal
behavior.

2.2.2. Generalized Tsallis Dimensions

Generalized Tsallis dimensions [18] are formulated, following the structure of generalized Rényi
dimensions, as:

DT1 := lim
ε→0

∑
k∈Kε

µ[Bε(k)] lnµ[Bε(k)]

ln ε
(21)

DTq := lim
ε→0

1−
∑
k∈Kε

µq[Bε(k)]

1− εq−1 (q 6= 1). (22)

In this case, we directly have, for q 6= 1, the approximation:

Tq(Pε) ∼ DTq
1− εq−1

q − 1
. (23)

In particular, for q > 1, we can just write:

DTq = (q − 1) lim
ε→0

Tq(Pε). (24)

3. Dependence Analysis

3.1. Generalized Dependence Coefficients

Based on Tsallis mutual information (16) (also named “Tsallis mutual entropy”), Furuichi [17]
proposed the following expressions of dependence coefficients (“correlation coefficients”) to quantify
the degree of association between two random variables X and Y :

TDC1q(X, Y ) :=
ĨTq (X, Y )

Tq(X, Y )
=
Tq(X) + Tq(Y )− Tq(X, Y )

Tq(X, Y )
(25)

TDC2q(X, Y ) :=
ĨTq (X, Y )

max{Tq(X), Tq(Y )}
=
Tq(X) + Tq(Y )− Tq(X, Y )

max{Tq(X), Tq(Y )}
, (26)

for Tq(X) > 0, Tq(Y ) > 0 and q > 1.
Here, we propose an alternative version of a dependent coefficient, considering as the normalizing

factor the average of marginal Tsallis entropies,

TDC3q(X, Y ) :=
ĨTq (X, Y )

1/2(Tq(X) + Tq(Y ))
=
Tq(X) + Tq(Y )− Tq(X, Y )

1/2(Tq(X) + Tq(Y ))
, (27)
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for Tq(X) > 0, Tq(Y ) > 0 and q > 1. This is a particular case of a wider class based on generalized
means, as discussed below in this section.

These measures do not include the non-extensivity correction term. We also formulate a
“non-extensive dependence coefficient” based on the form (17) of Tsallis mutual information as follows:

TDC4q(X, Y ) :=
ÎTq (X, Y )

1/2(Tq(X) + Tq(Y )) + (q − 1)Tq(X)Tq(Y )

=
Tq(X) + Tq(Y ) + (q − 1)Tq(X)Tq(Y )− Tq(X, Y )

1/2(Tq(X) + Tq(Y )) + (q − 1)Tq(X)Tq(Y )
, (28)

for Tq(X) > 0, Tq(Y ) > 0 and q > 1.

3.1.1. A Formal Justification and Discussion

For ĨTq (X, Y ) = Tq(X) + Tq(Y )− Tq(X, Y ), we can write:

0 ≤ĨTq (X, Y ) ≤ min{Tq(X), Tq(Y )} ≤M [Tq(X), Tq(Y )]

≤max{Tq(X), Tq(Y )} ≤ Tq(X, Y ), (29)

where M [·] represents any mean defined on (R+)n (here, n = 2), including min and max as special
limit cases.

In principle, any of the last four terms in (29) might be considered as a candidate normalizing factor
for ĨTq (X, Y ). Following [17], assume that we are interested in dependence coefficients ρq of this
q−parametric quotient form satisfying the following properties: for q > 1, Tq(X) > 0 and Tq(Y ) > 0,

(i) ρq(X, Y ) = ρq(Y,X),

(ii) 0 ≤ ρq(X, Y ) ≤ 1,

(iii) ρq(X, Y ) = 0 if and only if X and Y are independent and q = 1,

(iv) ρq(X, Y ) = 1 if and only if X ≡ Y .

In (iv), the equivalence X ≡ Y is specifically understood in the sense that Tq(X|Y ) = Tq(Y |X) = 0,
considering Tsallis conditional entropy defined as Tq(X|Y ) = −

∑
x,y p(x, y)q lnq p(x|y), q 6= 1, with

lnq(x) ≡ (x1−q − 1)/(1− q).
From Propositions 5.2 and 5.4 in [17], the coefficients based on the normalizing factors

max{Tq(X), Tq(Y )} and Tq(X, Y ) satisfy the above properties. For min{Tq(X), Tq(Y )}, Properties
(i)–(iii) hold; however, regarding (iv), we can only ensure that if ρq(X, Y ) = 1, then either Tq(X|Y ) or
Tq(Y |X) must be equal to zero.

Further, for any mean M [·] having the properties of symmetry (i.e., invariance under the permutation
of arguments), value preservation (i.e., M [(x, . . . , x)] = x) and strict monotonicity (i.e., M [x] ≤ M [x′]

if xi ≤ x′i, for all i = 1, . . . , n, with M [x] < M [x′] if xi < x′i for at least one index i), we can prove that
the above Properties (i)–(iv) hold. Cases (i)–(iii) are trivial, and the argument for (iv) is as follows: we
first note that:

ĨTq (X, Y ) = Tq(X)− Tq(X|Y ) = Tq(Y )− Tq(Y |X).
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Hence, by value preservation, we have:

ĨTq (X, Y ) = M [ĨTq (X, Y ), ĨTq (X, Y )] = M [Tq(X)− Tq(X|Y ), Tq(Y )− Tq(Y |X)].

Now,

ĨTq (X, Y )

M [Tq(X), Tq(Y )]
= 1⇔ ĨTq (X, Y ) = M [Tq(X), Tq(Y )]

⇔M [Tq(X)− Tq(X|Y ), Tq(Y )− Tq(Y |X)] = M [Tq(X), Tq(Y )]

⇔Tq(X|Y ) = Tq(Y |X) = 0⇔ X ≡ Y,

with strict monotonicity being applied for the third equivalence.
A significant case is the family of Hölder means or finite order p ∈ R,

Mp[x] =

(
n∑

i=1

xpi

)1/p

,

ranging continuously within the limits min{x1, . . . , xn} = limp→−∞Mp[x] and max{x1, . . . , xn} =

limp→∞Mp[x]. In particular, the three classical Pythagorean means, namely “arithmetic” (for p = 1),
“geometric” (for p→ 0) and “harmonic” (for p = −1), are of special interest, with:

H[x] ≤ G[x] ≤ A[x].

In this paper, we consider the specific case of coefficient TDC3q(X, Y ), defined in terms of the
arithmetic mean of the marginal Tsallis entropies as the normalizing factor.

Since for n = 2 and for a symmetric mean M [·] we have M [x, y] = M [min{x, y},max{x, y}],
considering also that the linear scaling property cM [x] = M [cx] = M [cx1, . . . , xn] is satisfied by
Hölder means for c > 0, it is noteworthy, in particular, the relation:

TDC3q(X, Y ) :=
ĨTq (X, Y )

A[Tq(X), Tq(Y )]
= H

[
ĨTq (X, Y )

min{Tq(X), Tq(Y )}
,

ĨTq (X, Y )

max{Tq(X), Tq(Y )}

]
.

Regarding the formulation of the dependence coefficient TDC4q(X, Y ), which is based on the form
of Tsallis mutual information ÎTq (X, Y ) := Tq(X)+Tq(Y )+(q−1)Tq(X)Tq(Y )−Tq(X, Y ), it is clear,
by construction, that the simultaneous addition of the non-extensivity correction term (q−1)Tq(X)Tq(Y )

to both the numerator and the denominator of any dependence coefficient of the form:

ĨTq (X, Y )

M [Tq(X), Tq(Y )]

satisfying Properties (i)–(iv) leads to a new dependence coefficient,

ÎTq (X, Y )

M [Tq(X), Tq(Y )] + (q − 1)Tq(X)Tq(Y )
,

which also satisfies such properties. An interesting information-related rationale can be found when, in
such a construction, Tsallis entropies are replaced by the “normalized” Tsallis entropies:

T q(p̄) =
Tq(p̄)∑n
i=1 p

q
i
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considered in [15,16]. In such a case, it can be proven that the modified dependence coefficient:

TDC4q(X, Y ) :=
T q(X) + T q(Y ) + (q − 1)T q(X)T q(Y )− T q(X, Y )

1/2(T q(X) + T q(Y )) + (q − 1)T q(X)T q(Y )

satisfies the harmonic mean relation:

TDC4q(X, Y ) = H

[
Iq(X;Y )

T q(X)
,
Iq(Y ;X)

T q(Y )

]
,

where Iq(X;Y ) is the non-symmetric form of Tsallis mutual information defined in [15,16] as:

Iq(X;Y ) :=
T q(X) + T q(Y ) + (q − 1)T q(X)T q(Y )− T q(X, Y )

1 + (q − 1)T q(X)
.

3.2. Generalized Dependence Coefficients in the Multifractal Domain

As mentioned in the Introduction, this paper is focused on the assessment of dimensional interactions
in the multifractal domain. From the limiting relation between generalized Tsallis dimensions and Tsallis
entropy, we can write, for q > 1,

lim
ε→0

ĨTq (X, Y ) =
1

q − 1
(DTq(X) +DTq(Y )−DTq(X, Y )) (30)

lim
ε→0

ÎTq (X, Y ) =
1

q − 1
(DTq(X) +DTq(Y ) +DTq(X)DTq(Y )−DTq(X, Y )) . (31)

Thus, the multifractal domain limiting extensions of the dependence coefficients (25, 26, 27, 28) are
given by:

MTDC1q(X, Y ) :=
DTq(X) +DTq(Y )−DTq(X, Y )

DTq(X, Y )
(32)

MTDC2q(X, Y ) :=
DTq(X) +DTq(Y )−DTq(X, Y )

max{DTq(X), DTq(Y )}
(33)

MTDC3q(X, Y ) :=
DTq(X) +DTq(Y )−DTq(X, Y )

1/2(DTq(X) +DTq(Y ))
(34)

MTDC4q(X, Y ) :=
DTq(X) +DTq(Y ) +DTq(X)DTq(Y )−DTq(X, Y )

1/2(DTq(X) +DTq(Y )) +DTq(X)DTq(Y )
, (35)

for DTq(X) > 0, DTq(Y ) > 0 and q > 1. According to the discussion in the final part of Section 3.1,
different related formulations might be considered, for instance with alternative means of the marginal
Tsallis entropies for the normalizing factor, as well as using modified forms of Tsallis entropy.

4. Application to a Real Seismic Series

To illustrate the usefulness and comparative performance of the multifractal dependence coefficients
proposed, we analyze a real seismic series, consisting of 3.214 earthquakes registered in an area near the
village of Lorca (Murcia, Spain), delimited by longitude 2.5◦W − 0.05◦W and latitude 37◦N − 38.1◦N ,
during the period between 1 January 2000 and 31 December 2014. The dataset contains four periods
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with a high concentration of seismic activity, denoted here as Series A, B, C and D, which are clearly
visible in the daily frequencies depicted in Figure 1. The three first periods, known as the “Bullas 2002”,
“La Paca 2005” and “Lorca 2011” seismic series, have been studied and compared in [47], and they are
composed by 290, 605 and 143 events, respectively. It is important to highlight that during the Lorca
2011 series, a catastrophic event occurred, causing nine casualties and significant localized damage in
the region; the time of this event is marked in the different plots with a green star. The fourth period with
a high concentration of events corresponds to the last months of 2014. Figure 2 shows that the events of
significant magnitude are temporally located within the higher frequency episodes in Series A, B and C
and not in Series D.

Figure 1. Frequency distribution over time.

Figure 2. Magnitude distribution over time.

Considering the singularities of the dataset, we focus on the study of the distribution variations around
the catastrophic event of 2011. The main objective is to assess the degree of dependence between the
spatial locations and both the associated magnitudes and occurrence times. As mentioned above, the
series involves three critical periods (A, B and C), although we are mainly interested in the third one,
when the catastrophic event occurred. We calculate the dependence coefficients proposed based on data
subsets from sliding windows with the same number of events and a fixed overlapping. In particular, we
perform the analysis considering a window size of 120 and 240 events, for a comparison of the results
under different levels of aggregation. Diverse interpretations can be derived varying the value of the
deformation parameter q. To study the dimensional interaction without significant deformation, we start
considering a value of q close to one (q = 1.0001), and gradually increase this value (in particular, the
results are shown for q = 1.3 and q = 1.6) to assess the dependence between components, emphasizing
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the zones with a larger representation of events, until reaching q = 2, which is associated with the degree
of clustering/inhibition in the system.

Figure 3. Temporal dynamics of the values of multifractal dependence coefficients for S ↔
M based on sliding windows (size 120 events, overlapping 10 percent).
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Figure 4. Temporal dynamics of the values of multifractal dependence coefficients for S ↔
M based on sliding windows (size 240 events, overlapping 10 percent).

Firstly, we analyze the temporal variations in the degree of association between the spatial location
of the events, S = (X, Y ), and their magnitude, M (S ↔ M ); see Figure 3 (windows size 120 events)
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and Figure 4 (windows size 240 events). For the results considering a windows size of 120 events,
the values obtained for all coefficients show trend changes corresponding to the four periods of high
concentration of events. During Series A, B, C and D, drastic decreases are visible, which are interpreted
as a significant descent in the degree of association between the spatial coordinates and the magnitude of
the events during the high concentration episodes, indicating that the physical state of the system is not
in equilibrium. Regarding the comparison between the coefficients considered, MTDC4q takes higher
values and seems to enhance the system dynamics structural changes. As for MTDC2q, rapid increases
in the degree of dependence are visible in the periods subsequent to the drops, compared to the other
coefficients. This coefficient also presents clear differences in the trend with respect to the other ones in
the period previous to the Lorca catastrophic event as q is increased, indicating a lower departure between
DTq(X, Y ) and DTq(M) during these days. In contrast, for the results obtained considering a window
size of 240 events, the drop observed in the values obtained associated with the Lorca series (Period C)
is less marked. It must be noted that this series is composed by 143 events. The comparison between the
coefficients shows, as in the case of a windows size of 120 events, a change of trend inMTDC2q around
the Lorca catastrophic event. In both analyses, visible changes in the dynamics during the previous days
deserve special attention, since they might indicate a precursory behavior.

Next, we perform a similar analysis to study the structural dynamics of the dimensional interaction
between the spatial coordinates and the occurrence time (S ↔ T ); results are depicted in Figures 5 and 6
considering window sizes of 120 and 240 events, respectively. In comparison with the analysis of the
interaction S ↔M , we observe two main differences: firstly, the degree of dependence is higher in this
case; secondly, before, during and after the Lorca catastrophic event, significant changes in the dynamics
are particularly enhanced for lower values of q.

In general, regarding the variations in the results when we take different values of the deformation
parameter q, we can observe that the values obtained for the multifractal dependence coefficients
considered increase with q. However, as can be seen in the figures displayed, the increase is not
homogeneous and clearly depends on the physical state of the system, as well as on the election of
the window size (discrimination of local vs. global effects) and the particular structure and meaning
of the coefficient considered. Some example plots are included in Figure 7 for better visualization of
this aspect. Specifically, the different increase patterns in the values of the dependence coefficients
considered, applied to assess the interaction S ↔ T , are displayed for q varying from 1.0001–5, based
on data segments of sizes of 120 and 240 events, in the two periods immediately before and after the
catastrophic event and in a period of stability of the system.

To summarize, the results obtained show significant trend changes in correspondence with the periods
of concentration of seismic activity, indicating that the system is not in equilibrium. The spatial
coordinates present a higher degree of dependence with the occurrence time than with the magnitude.
Further, the different analyses reflect a trend change in the period before the Lorca catastrophic event,
which could be viewed as a precursory element. The coefficients considered provide certain differential
specificities, particularly regarding the critical episodes. The importance of the election of the windows
size is also reflected in the results obtained, in terms of the level of temporal aggregation to study global
vs. local behavior. Finally, from the variations of the deformation parameter q, we can contrast the
effects of enhancing the highly represented areas.
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Figure 5. Temporal dynamics of multifractal dependence coefficients for S ↔ T based on
sliding windows (size 120 events, overlapping 10 percent).
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Figure 6. Temporal dynamics of multifractal dependence coefficients for S ↔ T based on
sliding windows (size 240 events, overlapping 10 percent).
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Figure 7. Values of multifractal dependence coefficients for S ↔ T for q varying from
1.0001–5, based on data segments of size 120 (left plots) and 240 (right plots) events, in the
two periods immediately before and after the catastrophic event and in a period of stability
of the system (from top to bottom).

5. Conclusion

This paper is focused on the study of complex systems using entropy-based approaches. Specifically,
the objective is the assessment of the structural dynamics of dimensional interactions in the
multifractal domain.
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New formulations of dependence coefficients based on Tsallis mutual information are introduced.
First, a flexible normalization factor defined by the class of symmetric, value preserving and strictly
monotonic generalized means applied to the marginal Tsallis entropies is considered, which guarantees
the compliance of the reference properties stated in [17]. The special case of the arithmetic mean is
considered in particular. Second, a related formulation involving the non-extensivity correction term in
both the numerator and the denominator is proposed, also fulfilling the mentioned reference properties
under similar conditions. Again, in particular, a normalization factor in terms of the arithmetic mean is
specifically considered. In the case where Tsallis entropies are replaced by the modified Tsallis entropies
considered in [15,16], such a construction is equivalent to a weighted harmonic mean of the reciprocal
values of the non-symmetric Tsallis mutual information introduced in these references.

In a multifractal context, based on the partition function approach, limiting versions of dependence
coefficients are derived in terms of the generalized Tsallis dimensions introduced in [18]. An application
to seismic data is performed showing the usefulness of this approach to analyze the dimensional
interaction in the structural dynamics of complex systems. Interpretations on different features are
extracted, with a comparison of the results considering different windows sizes for aggregation, varying
values of the deformation parameter q and alternative multifractal dependence coefficients. In particular,
a non-homogeneous increase of the values of the coefficients with respect to the increasing value of the
deformation parameter q depending on the physical state of the system and sensitivity to non-equilibrium
regimes in the dynamics is emphasized.

Further study of the analytical properties of the different measures introduced, as well as an
investigation of new related and generalized versions are considered for continuing research.
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