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Abstract
Teeth in Cervidae are permanent structures that are not replaceable or repairable; conse-

quently their rate of wear, due to the grinding effect of food and dental attrition, affects their

duration and can determine an animal's lifespan. Tooth wear is also a useful indicator of

accumulative life energy investment in intake and mastication and their interactions with diet.

Little is known regarding how natural and sexual selection operate on dental structures within

a species in contrasting environments and how these relate to life history traits to explain dif-

ferences in population rates of tooth wear and longevity. We hypothesised that populations

under harsh environmental conditions should be selected for more hypsodont teeth while

sexual selection may maintain similar sex differences within different populations. We inves-

tigated the patterns of tooth wear in males and females of Iberian red deer (Cervus elaphus
hispanicus) in Southern Spain and Scottish red deer (C. e. scoticus) across Scotland, that
occur in very different environments, using 10343 samples from legal hunting activities. We

found higher rates of both incisor and molar wear in the Spanish compared to Scottish popu-

lations. However, Scottish red deer had larger incisors at emergence than Iberian red deer,

whilst molars emerged at a similar size in both populations and sexes. Iberian and Scottish

males had earlier tooth depletion than females, in support of a similar sexual selection pro-

cess in both populations. However, whilst average lifespan for Iberian males was 4 years

shorter than that for Iberian females and Scottish males, Scottish males only showed a

reduction of 1 year in average lifespan with respect to Scottish females. More worn molars

were associated with larger mandibles in both populations, suggesting that higher intake

and/or greater investment in food comminution may have favoured increased body growth,

before later loss of tooth efficiency due to severe wear. These results illustrate how indepen-

dent selection in both subspecies, that diverged 11,700 years BP, has resulted in the evolu-

tion of different longevity, although sexual selection has maintained a similar pattern of

relative sex differences in tooth depletion. This study opens interesting questions on optimal

allocation in life history trade-offs and the independent evolution of allopatric populations.
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Introduction
Teeth are permanent structures that, once erupted, suffer a process of continuous degradation
by the wearing effect of food comminution and attrition (i.e. mechanical forces from opposing
teeth) and, in ungulates and some other mammals, they cannot be replaced or repaired across
the animal’s life [1,2].

As ungulate teeth are not replaceable or repairable, their rate of wear is a useful indicator of
accumulative life energy investment in intake and mastication and their interactions with diet,
as the abrasive effect of forage, phytoliths and soil adhered to external surfaces differs between
plants, their stage of maturity and environments [3,4]. Due to this accumulative effect, tooth
wear provides a longitudinal view of the animal’s strategy to balance current intake and lifetime
maintenance [5–7].

The two main functions of ungulate teeth are the cropping-shearing of grass swards or
browse stands (intake) and the mechanical grinding of food to reduce its particle size prior to
chemical reduction in the gut, adding new surface area on which enzymes can act more quickly
(digestion) [2,8]. The first function is accomplished by the incisors and the second by premo-
lars and molars, in both cases aided by the soft structures of the oral apparatus (lips, cheeks
and tongue) [2,3].

A decrease in molar performance reduces the number of food particles produced by a masti-
cation stroke, which has a detrimental effect on digestion [9]. A decrease in incisor perfor-
mance has a detrimental effect on tooth shearing capability but also on bite size [2], as the
width of the incisor arcade decreases with incisor wear [10–12]; this reduces efficiency in sever-
ing food, possibly affecting food selection and intake per unit of time [13–15]. There is evidence
that severe tooth wear has a negative effect on fitness [6], and that senescence and lifespan are
closely related to tooth duration [16].

Teeth have evolved to be adaptable to changing conditions, to cope with seasonal changes in
plant quality and availability, and with changes in plant composition associated with animal
movement, such as migrations. However, drastic shifts in flora, associated with paleoclimatic
changes, have imposed selection pressures toward tooth morphologies (e.g. hypsodonty: high-
crowned teeth) better adapted to the new conditions, [17]. It is unclear whether deer popula-
tions have evolved teeth adapted to a wide range of conditions, or if deer populations that live in
contrasting habitats differ in tooth morphology [18,19]. Contrasting habitats differ in the type
of forage available (for example, the proportion of graze and browse), as well as its abrasiveness
and fibrousness (higher in arid environments), all of which affect tooth wear. If the teeth of dif-
ferent populations are adapted to cope with these different conditions, then one would expect to
find differences in tooth morphology between populations: with more durable teeth in environ-
ments with highly fibrous and abrasive food [17,18]. Alternatively, differences in rates of tooth
wear between populations would be expected to have repercussions for lifespan.

The effect of environmental conditions on tooth wear may not be equivalent in molars and
incisors. Veiberg et al. [20] studied incisor and molar wear in red deer and moose (Alces alces)
in several populations in Norway and found that inter-population effects differed between inci-
sors and molars. In supposedly harsher conditions (more arid environment, less available
energy density), molars experienced higher wear rates but this was not the case for incisors.
They argued that scarce, low quality food might require more chewing in order to achieve the
equivalent comminution of lower fibre diets, thus affecting molar wear, while at the same time
the lower amount of available forage would explain a lower incisor wear. However, it remains
unclear why low quality food is more demanding on comminution chewing than in cropping
and severing biting, as well as its effects in the evolution of more hypsodont teeth and in
longevity.
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Teeth in male and female deer differ in life span [5,7] and size relative to body size [16,21].
These differences are the result of sexual selection acting on males and females, either because
of sex-differences in diet selection [22] or in the optimal timing of tooth use relative to the sex-
specific timing of growth and reproduction across lifetime [7,16].

Current red deer populations in Western Europe originated from postglacial colonization
from the Iberian refugia during the Holocene [23]. Thus, Scottish and Iberian populations
share common ancestors from theWürn last glacial maximum, ca. 12000 years ago. Divergence
between both lineages took place when Scottish ancestors expanded to the north, while ances-
tors of modern Iberian red deer remained in the south and thus each experienced the differing
Holocene climate and environmental changes in their respective ranges [24,25].

Here we investigate patterns of tooth wear in males and females of these two red deer popu-
lations, Iberian red deer and Scottish red deer, which now live in very contrasting environ-
ments, separated by 20° latitude. On the basis of existing literature regarding tooth wear in red
deer and other ungulates, we may outline the following predictions:

(H1) increased molar and incisor wear rates in the Iberian population, as xerophilous Medi-
terranean flora is expected to be more abrasive than the boreal Palearctic ecozone Scottish
flora.

(H2) more hypsodont molars and incisors (i.e. more durable) in the Iberian population in
comparison with the Scottish one, as an adaptive compensation for higher wear rates as
explained in H1;

(H3) higher tooth wear rate in males than in females, as males of highly polygynous species
invest in more rapid growth and reproduction within a shorter schedule of reproductive life
compared to females;

(H4) different wear pattern between incisors and molars across age, as molars and incisors
perform different functions, and incisors may last longer as they do not suffer attrition wear
(i.e. no upper incisors in Cervidae);

(H5) because tooth wear is mainly the result of the amount of food processed for mainte-
nance, growth and reproduction, there should be a trade-off between attaining body size and
preserving teeth, which may differ between both populations if maintenance costs, due for
instance to thermoregulation, differ between locations.

Understanding differences in tooth wear between populations, sexes, and tooth type could
help to reveal insights into the interactions between tooth function, evolution and sexual selec-
tion in contrasting environments.

Materials and Methods
We used samples of 3323 (1674 females, 1649 males) Scottish red deer shot in 36 locations and
7020 (2664 females, 4356 males) Iberian red deer shot in 63 locations in Southern Spain between
1997 and 2011 (Fig 1). The deer were aged between 1 and 17 years old (1st quartile = 2, 3rd quar-
tile = 6, mean = 5.4). All the samples came from legal game activities of private estates in Scot-
land and Spain or from culling operations of the Forestry Commission for Scotland. The
animals were shot from a distance using a high power marksman rifle fitted with a riflescope. No
animals were killed specifically for this study. The mandible bones were extracted by technicians
or stalkers, at the shooting site or in the associated game larder, and were stored in a freezer or
left outdoors for the flesh to decompose, until they were collected and transported to the labora-
tory. Shooting date, sex, and location (at estate level) were also recorded for each animal.

Red deer ranges in Scotland and Spain differ strongly in ecological conditions. The Iberian
climate is much hotter and drier in summer with a strong seasonal variation in both tempera-
ture and precipitation in comparison with the Scottish red deer range (Fig 2). In Scotland, the

Red Deer Tooth Wear in Contrasting Habitats

PLOS ONE | DOI:10.1371/journal.pone.0134788 August 7, 2015 3 / 20



predominant habitats within red deer range are grasslands, heaths, peatland and forestry plan-
tations, while in the Spanish study area there are less grasslands and forest plantations and a
predominance of scrublands and oak open woodlands (dehesas) (S1 Table). The contrasting
seasonality and habitats produce remarkable differences in diet selection between populations,
favouring more grazing in Scotland and comparatively more use of browse in Spain (S2 Table).

Mandible length, age and tooth wear
In the laboratory, the length of the mandible (ML, ± 1 mm) was measured as a proxy of skeletal
size (i.e. from the mesial border of the first incisor socket to the vertical part of the ramus, after
having removed the flesh in these two points).

To estimate the age and tooth wear, mandibles were sectioned through a frontal plane
between the entoconid-hypoconid and metaconid-protoconid of the first molar (M1) using a
circular diamond saw [26]. The age (in years) was estimated by counting the milky-coloured
cement layers on the root pad of the sectioned mesial section of M1, aided by a reflected light
microscope at magnification x20 to x25 [27,28]. When M1 was missing, or the cement layers
poorly differentiated, M2 was used and the age in years was estimated as the number of cement
layers plus one.

Tooth wear was estimated by measuring, with the aid of a calliper and a magnifying glass,
the thickness of the dentine on the sectioned mesial section of M1 (molar height, MH, ± 0.1
mm) from the top of the cementum of the radicular pad to the middle point of the sectioned
crown [7,26]. It has been noted that although crown formation in M1 is fully complete at the
age of 4 months [19,29], the completion of eruption and final positioning of the molar in the
mandible does not take place until 3 years of age in red deer [19,20], and teeth also move in the
mandible at very old age. Consequently, measuring molar height perpendicular from the man-
dible bone, labial or buccal, is not a reliable measurement of molar wear, especially in young

Fig 1. Sampling sites, (a) Scotland, (b) Spain, (c) locations within Europe. The actual distribution of red
deer within each population is shaded in grey. The number of symbols to locate red deer subpopulations in
Spain has been reduced to improve readability but they are a good representation of the range of the study
area.

doi:10.1371/journal.pone.0134788.g001
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age classes; by contrast, our MHmeasurement is independent of any movement of the molar
in the mandible. We also measured crown size of the first permanent incisor (incisor height,
IH, ± 0.1 mm), from the labial gingival sulcus to the median sagittal plane top of the crown [1].

Tooth wear was assessed as the negative relationship of crown height with age [7,26].

Statistical analysis
Lifespan for each sex and population was calculated as the age at the 99th quantile of the fre-
quency distribution of the age of the samples.

We used linear mixed-effects regression models to predict the response of MH, IH and ML
against a number of predictors, controlling for some sources of variation. Normality and
homoscedasticity were verified. Inspection of plots of fitted values against residuals [30]
revealed some clear outliers, probably due to typing errors during data acquisition and inaccu-
rate age estimation of some animals, and these were removed from the data.

The full linear mixed-effects model on MH and IH attempted to fit two additive random
effects (the intercepts of location and year of shooting) and three fixed effects: age, sex and pop-
ulation (Scotland—Spain) as well as their meaningful first and second order interactions. Age

Fig 2. Monthly mean temperature (lines) and precipitation (bars) in the two study areas, Scotland 1971–2000 and Spain 1961–1990.Data source:
MetOffice (http://www.metoffice.gov.uk/) and Nuñez Corchero & Sosa Cardo [65].

doi:10.1371/journal.pone.0134788.g002
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was fitted as a quadratic term, rather than using non-linear or splines approaches, as linear
models are preferred when testing for interactions [31], and because we wanted to keep the
model terms simple so that interactions were manageable. In addition we included ML as a
covariate in the fixed effects (the best estimator of body size, condition independent, that we
had available), in order to ensure that molar height and incisor height were independent of
body size in the analysis, and therefore appropriate proxies of molar and incisor wear, respec-
tively. ML was only retained in those models where it was statistically significant.

Two additional mixed models, one to assess changes in rates of tooth wear between MH and
IH, and the other to assess the effect of MH on ML, were carried out by fitting the same ran-
dom effects described above, along with the fixed effects of quadratic age, sex and population,
together with their first and second order interactions.

Despite the recent controversy surrounding the use of p-values against measures such as
ΔAIC or BIC, their use has been clarified recently [32]. As our objective was to identify the
main drivers of our dependent variables, rather than create predictive models, we correctly
used p-values to define our final models in favour of ΔAIC or BIC approaches. We proceeded
by first fitting full models, as described above, and then using backward elimination we
removed the non-significant fixed-effects terms, one at a time, following the principle of mar-
ginality: the highest order interactions were tested first and if they were significant, then the
lower order effects were not tested for significance.

The coefficients of the final model were calculated using REML [33]. As in linear mixed-
effects models, determining the correct value of degrees of freedom in the estimate of the coeffi-
cients is meaningless [30,33], we used Satterthwaite’s degrees of freedom approximation. The
variance explained by the model was represented as R2 marginal (variance accounted for by the
fixed effects; R2

LMM(m)) and R
2 conditional (variance accounted for by random and fixed

effects; R2LMM(c)), following a method developed for linear mixed-effects models [33]. All anal-
yses and graphics were conducted in R software (R Development Core Team 2012), mainly
using lme4 [34] and lmerTest [35] packages.

Results

Lifespan
Males and females of the Scottish population were more longevous (male = 14 yrs, female = 15
yrs) than those of the Iberian population (male = 10 yrs, female = 14 yrs). Sexual differences in
lifespan in favour of females were higher in the Iberian population (4 yrs) than in the Scottish
one (1 yr).

Molar and incisor wear: sex and populations
The final model on MH included location and year as additive random effects and, as fixed
effects, ML, age2, sex, population and the interactions age2 × sex, and age2 × population
(Table 1). The fixed effects explained 68.0% of the variance of the data (R2

LMM(m), Table 1) and
the total variance explained by fixed and random effects was 73.5% (R2

LMM(c), Table 1). MH
was similar in both populations at the age of 1 year old (p = 0.517), but for age classes older
than 1 year old it was smaller in Iberian than in Scottish red deer (p< 0.0001, for each age
class), with a remarkably increased rate of tooth wear for males and females in the Iberian pop-
ulations in comparison with the Scottish ones (Table 1, Fig 3). Rates of molar wear up to 7.5
years old were similar between sexes, but as age increased further the rates of molar wear in
males were higher than in females in both populations. As an example, the predicted average
depletions of M1 (taking the predicted MH at the age of 1 year old by sex as the reference) for
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11 year old individuals, were 53.2% and 48.9% for Scottish males and females, and 80.9% and
76.9% for Iberian males and females, respectively (Table 1, Fig 3).

The terms in the final regression model for IH were the same as those in the MHmodel
above, with the exception that the covariate ML was not included, as it was not significant, and
there was one additional interaction, sex × population (Table 2). The fixed effects explained
57.3% of the variance of the data (R2

LMM(m), Table 2) and the total variance explained by fixed
and random effects was 63.4% (R2LMM(c), Table 2). Both males and females of Iberian red deer
had smaller IH than Scottish red deer, and that was true across all age classes. At yearling, Ibe-
rian red deer males had higher predicted IH than females of the same population, however in
Scottish red deer yearling males and females had similar IH (Table 2, Fig 4). Iberian popula-
tions had faster rates of incisor wear than Scottish populations in males and females, and
within population males wore their incisors at a faster rate than females did. As an example,
the predicted average depletions of I1 at an age of 11 years old, were 19.4% and 17.0% for Scot-
tish males and females, and 48.7% and 47.7% for Iberian males and females, respectively
(Table 2, Fig 4).

The model to assess the relationship of tooth wear rate between MH and IH, used MH as
the response variable, included location and year as additive random effects, and the fixed
effects age2, sex, population and IH together with the interactions age2 x sex, age2 x population
and age2 x IH (Table 3). The fixed effects explained 69.9% of the variance of the data (R2

LMM

(m), Table 3) and the total variance explained by fixed and random effects was 72.6% (R2
LMM(c),

Table 3). There was a positive correlation between MH and IH across all age classes, that did
not interact with sex or population, which suggests that the relationship in the pattern of wear
between molars and incisors was maintained across sexes and populations. However, the posi-
tive correlation between MH and IH was linearly weaker as animals of both sexes and popula-
tions got older, as indicated by the interaction between age and IH (estimate of linear effect =
-0.051, se = 0.0189; p = 0.007, Table 3, Fig 5).

Table 1. Coefficients of the linear mixed-effects model on the height of the first molar (an index of tooth wear, mm). R2
LMM(m): R

2 marginal (variance
account for the fixed effects); R2

LMM(c): R
2 conditional (variance account for random and fixed effects). Age in years; Age2: quadratic term of age; ML: mandi-

ble length (cm).

Random effects

Groups Variance std dev

location (intercept) 0.3154 0.5616

year (intercept) 0.1188 0.3447

Residual 2.0923 1.4465

Fixed effects

Estimate std error t-value p

intercept 17.806 0.4502 39.550 <0.0001

ML -0.181 0.0179 -10.070 <0.0001

age -0.919 0.0401 -22.910 <0.0001

age2 0.027 0.0029 9.310 <0.0001

sex (male) 0.143 0.1294 1.110 0.269

population (Spain) 0.156 0.1888 0.830 0.408

age x sex (male) 0.072 0.0477 1.500 0.133

age2 x sex (male) -0.011 0.0038 -3.000 0.003

age x population (Spain) -0.515 0.0493 -10.460 <0.0001

age2 x population (Spain) 0.017 0.0038 4.370 <0.0001

R2
LMM(m) 0.6802

R2
LMM(c) 0.7351

doi:10.1371/journal.pone.0134788.t001
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Mandible length and molar wear
ML responded to the fixed effects of age2, sex, population, MH, and the interactions age2 ×
MH, population × MH, and age2 × sex × population (Table 4, Fig 6). The fixed effects explained
53.1% of the variance of the data (R2

LMM(m), Table 4), and the total variance explained by fixed
and random effects was 65.7% (R2LMM(c), Table 4). Males had longer mandibles than females,
and mandibles of the Iberian deer were longer than those of Scottish deer (Table 4, Fig 6).
Although the response was not strong, shorter MH (i.e. more worn M1) in both sexes and pop-
ulations was significantly related to longer mandibles across age classes (Table 4, Fig 6).

Fig 3. Predictions of first molar height against age for animals of meanmandible length of the model in Table 1 for males and females red deer of
Scottish and Iberian (Spain) populations.

doi:10.1371/journal.pone.0134788.g003
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Discussion
Our results put forward contrasting patterns of tooth wear between the two red deer popula-
tions, as well as between the sexes and type of teeth (molars, incisors), and for the incisor size
at emergence, and pose new questions on the causes of these differences during the evolution-
ary divergence of the lineages.

In particular, the results of this study indicate that (i) the rates of molar and incisor wear
were much higher in the Iberian population than in the Scottish one (as predicted in H1); (ii) at
yearling age, Scottish red deer had larger incisor crowns than Iberian red deer, as also did
males compared to females only for the Iberian population (partially in agreement with ideas
implicit in prediction H2), but molar height was similar between populations and sexes (against
prediction H2); (iii) males depleted their teeth earlier than females in both populations (in
agreement with prediction H3); (iv) molar wear rate was higher than incisor wear rate (as pre-
dicted in H4), especially in the Iberian population; but while molar wear was curvilinear and
decelerated with age in both sexes, incisor height decreased more linearly with age, with only a
slight accelerating pattern in males; (v) longer mandibles associated with more worn molars in
both sexes evidencing a trade-off between body growth and preserving molar teeth (as pre-
dicted by the first statement in H5), which did not differ between populations (against the sec-
ond part of prediction in H5).

Interpopulational differences in tooth wear
The main finding of this study was the big difference between populations in the patterns of
tooth wear, both molar and incisor, which wore faster in Spain than in Scotland. The environ-
mental and population conditions experienced by Iberian and Scottish red deer are extremely
contrasting (see Methods). In addition, in Scotland, red deer densities varied between 0.5 and
42.6 deer/km2 across a period of 43 years (1961–2004) and 128 estates, with mean and median
values of 8.3 and 8.1 deer/km2, respectively, and 95% of the density records were between 1.7

Table 2. Coefficients of the linear mixed-effects model on the height of the first incisor (an index of tooth wear, mm). Acronyms as in Table 1.

Random effects

Groups Variance std dev

location (intercept) 0.15898 0.3987

year (intercept) 0.07165 0.2677

Residual 1.39122 1.1795

Fixed effects

Estimate std error t-value p

intercept 15.176 0.1630 93.090 <0.0001

age -0.256 0.0359 -7.150 <0.0001

age2 0.000 0.0027 0.100 0.9208

sex (male) 0.178 0.1554 1.140 0.2532

population (Spain) -1.253 0.2493 -5.030 <0.0001

age x sex (male) 0.079 0.0530 1.490 0.1357

age2 x sex (male) -0.010 0.0040 -2.470 0.0135

age x population (Spain) -0.455 0.0789 -5.760 <0.0001

age2 x population (Spain) 0.006 0.0066 0.960 0.3353

sex (male) x population (Spain) 0.338 0.1256 2.690 0.0071

R2
LMM(m) 0.5727

R2
LMM(c) 0.6335

doi:10.1371/journal.pone.0134788.t002
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and 23.2 deer/km2 [36]. By contrast, in Spain, deer densities across the study area were on aver-
age four times higher (mean = 33.9, median = 35, min = 11.0, max = 46.0, 95% of the records
between 11.0 and 43.9 deer/km2). These differences in deer density, along with the increased
climatic seasonality and use of abrasive xeric Mediterranean vegetation (See S2 Table and refer-
ences herein), might increase the constraints on food energy density and the associated dental
wear in the Spanish population. Our results also showed that the factor ‘location’made the
greatest contribution of the random effects on molar and incisor wear, indicating that condi-
tions prevailing at each particular area (e.g. hunting estates) can play an important role in
tooth wear, in agreement with previous interpopulation comparisons [18,37,38].

Fig 4. As Fig 3 but predictions are for incisor height using the model in Table 2.

doi:10.1371/journal.pone.0134788.g004
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Sex differences in tooth wear
Sexual selection may have affected molar and incisor wear in both populations. Our results
show that molar wear decelerated more in females than in males in older ages and, as a conse-
quence, teeth were depleted earlier in males than in females (Figs 3 and 4); in males some accel-
erating pattern of incisor wear also took place. Sex differences in tooth wear might appear
either because of differences in diet selection [22] or in the optimal timing of tooth use relative
to the sex-specific timing of growth and reproduction across lifetime [7,16]. However, differ-
ences in diet would be expected to produce sex differences in wear across all ages; the fact that
most differences found increasingly manifest after prime age suggests a predominant role of
the optimal timing of tooth use, which in this case produced differences between males and
females, thus pointing to sexual selection as a relevant cause of our findings. This is in agree-
ment with previous work on molar wear in this species [5,7,16]. However, note that the smaller
effect of the interaction between sex and age found here, in comparison with that same effect
found in Spanish populations [7], is not comparable as the datasets and the statistical methods
are different. But on the other hand, the effect of sex across age on tooth wear appears to be var-
iable among populations. For example, no sex difference was found in the red deer of Rum [39]
and Veiberg et al. [20] reported high interpopulational variation in molar and incisor wear for
red deer in Norway.

Kubo et al. [38] studied two sika deer (Cervus nippon) populations and only found heavier
incisor wear in males in comparison with females in the population with stronger wear. These
results suggest that although sexual selection may ultimately be responsible for male and female
differences in tooth wear, environmental conditions may act to modulate them as has been
shown for many other sexually dimorphic traits (see Bondurianski [40] and references herein).

Table 3. Coefficients of the linear mixed-effects model on the height of the first first molar (mm) against the height of the first incisor (IH, mm).
Acronyms as in Table 1.

Random effects

Groups Variance std dev

location (intercept) 0.1476 0.3842

year (intercept) 0.0486 0.2205

Residual 2.0219 1.4219

Fixed effects

Estimate std error t-value p

intercept 4.533 1.0150 4.465 <0.0001

age -0.176 0.2672 -0.658 0.511

age2 0.0001 0.0169 0.001 0.999

sex (male) -0.442 0.1833 -2.410 0.016

population (Spain) 1.509 0.3057 4.938 <0.0001

IH 0.606 0.0687 8.822 <0.0001

age x sex (male) 0.126 0.0642 1.965 0.050

age2 x sex (male) -0.012 0.0049 -2.410 0.016

age x population (Spain) -0.282 0.1012 -2.786 0.005

age2 x population (Spain) -0.003 0.0086 -0.324 0.746

age x IH -0.051 0.0189 -2.695 0.007

age2 x IH 0.002 0.0013 1.488 0.137

R2
LMM(m) 0.6992

R2
LMM(c) 0.7258

doi:10.1371/journal.pone.0134788.t003
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Wear patterns in molars and incisors
Molars and incisors have different functions, these being comminution and cropping, respec-
tively. We found that molar wear decelerated with age, especially in females, while incisor wear
was linear in females and slightly accelerating in males. We may speculate that the energy
requirements of males for sexual competition after prime age might cause a more rapid deple-
tion of teeth [7], and this would explain the accelerating wear observed in incisors. In the case
of molars, this decelerating pattern has been already observed in previous studies

Fig 5. Predictions of molar height against incisor height of the model in Table 3 for males and females red deer of Iberian and Scottish populations
at 3 and 12 years old.

doi:10.1371/journal.pone.0134788.g005
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[5,7,16,26,39]. In these studies, including the present one, molar wear was estimated only in
the first lower molar M1. Unlike incisors, comminution by M1 can be displaced to other molars
as they erupt, thus reducing workload per unit of occlusal surface area (see e.g. Ozaki et al.
[37]). Even so, however, the deceleration in wear rate was lower in males than in females
evidencing that males were less able to cope with their energy needs and maintain molar dura-
bility as were females [16,21].

The scaling between molar and incisor height was similar in males and females in both pop-
ulations (Table 3; Fig 5), which suggests that incisor and molar teeth functions are linked in the
same way in both sexes and populations and across age.

The negative relationship between molar wear and our proxy of body size (mandible
length), but not between incisor wear and mandible length suggests that molar function (com-
minution efficacy) is more closely related to body growth than incisor function (cropping)
[2,9,20]. Additionally, molar wear may not have noticeable consequences for fitness until
molar functionality is severely affected [7,39], as the occlusal surface of the molar can remain
operative across a wide range of molar wear [2,5,9]. In contrast, for incisors, crown size, incisor
breadth and protrusion influence bite size [10,41,42], with the result that wear may have direct
consequences on intake by cropping activity, although we are unaware of any study on the
effects of incisor wear in fitness.

Table 4. Coefficients of the linear mixed-effects model on the mandible length against the height of the first molar (MH, mm). Acronyms as in
Table 1.

Random effects

Groups Variance std dev

location (intercept) 0.3085 0.5555

year (intercept) 0.0074 0.0861

Residual 0.8593 0.9270

Fixed effects

Estimate std error t-value p

intercept 26.458 0.3045 86.890 <0.0001

age -0.315 0.0578 -5.440 <0.0001

age2 0.028 0.0036 7.790 <0.0001

sex (male) 0.879 0.2489 3.530 <0.0001

population (Spain) -0.602 0.2802 -2.150 0.032

MH -0.308 0.0216 -14.270 <0.0001

age x sex (male) 0.251 0.0466 5.390 <0.0001

age2 x sex (male) -0.016 0.0032 -5.090 <0.0001

age x population (Spain) 0.287 0.0465 6.180 <0.0001

age2 x population (Spain) -0.021 0.0033 -6.370 <0.0001

age x MH 0.082 0.0050 16.420 <0.0001

age2 x MH -0.006 0.0004 -14.550 <0.0001

sex (male) x population (Spain) 0.717 0.1753 4.090 <0.0001

sex (male) x MH -0.012 0.0154 -0.760 0.450

population (Spain) x MH 0.052 0.0164 3.190 0.001

age x sex (male) x population (Spain) -0.181 0.0659 -2.750 0.006

age2 x sex (male) x population (Spain) 0.013 0.0054 2.430 0.015

R2
LMM(m) 0.5308

R2
LMM(c) 0.6569

doi:10.1371/journal.pone.0134788.t004
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The evolution of hypsodonty and lifespan
In the present study, molar teeth were found to emerge at similar size regardless of population
and sex, which is not in agreement with the hypothesis (H2) that heavy wear may favour the
evolution of increased hypsodonty. Further, the observed difference in the size of incisors at
emergence between populations is contrary to H2 prediction of more hypsodont incisors in
populations subjected to higher rates of tooth wear. However, for the population with greater

Fig 6. Predictions of Iberian and Scottish red deer mandible length against first molar height of the model in Table 4 in animals of 3 and 10 years
old. IB, circle, dashed line: Iberian population; SC, triangle, solid line: Scottish population; Black line: male; grey line: female. Thick line: prediction at age = 10
yrs; Thin line: prediction at age = 3 yrs.

doi:10.1371/journal.pone.0134788.g006
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incisor wear rate (Spain), we found that male incisors were more hypsodont at emergence than
female ones.

These results raise the question of why increased hypsodonty has not evolved as a general
feature of teeth in the population and sex with greater tooth wear. The hypothesis that high lev-
els of tooth wear should lead to hypsodonty is based on the assumption that selection will act
to maintain tooth durability and lifespan [17,43]. However, it is already known that this is not
the case when comparing molar morphology between males and females in red deer [16], and
in other body size dimorphic ungulates [21], when longer lifespan in males does not translate
into longer reproductive lifespan [44] and hence does not have fitness returns. However, the
lack of difference in molar hypsodonty between populations with very different wear rate,
together with the finding that incisors are in fact less hypsodont in the population (Iberian)
with heavier wear, deserves further explanation.

We found considerable differences in longevity between populations (ca. 4 years), with lon-
gevity especially shorter in males from the population with the higher rate of tooth wear (Ibe-
rian red deer), which suggests that tooth wear could be a proximal cause of these differences.
These results for differences in longevity might be spurious, however, if caused by human
mediated management conditions or bias in our sampling methods. Previous studies using
samples from hunting activity have shown that, although culling may affect the sample size of
different age classes, it has little effect on the relationship between the variables measured and
age; therefore reliable information can be acquired on the relationships between wear patterns,
longevity, senescence and sex differences [16,45]. However, we cannot rule out that current
management conditions favouring high densities in Spain may play a role in promoting heavy
tooth wear. Indeed, the effect of location in our analyses of MH and IH indicates the relevance
of differences in local conditions for tooth wear.

Regardless, differences in wear and longevity between Scottish and Spanish red deer are
likely caused by contrasting environmental conditions, although we are unaware to what extent
current conditions have been operating across evolutionary time in both populations. The dif-
ferentiation of Iberian and Scottish red deer probably took place with the last deglaciation
period in the early Holocene (11700 yrs BP) [23,24,46]. Although extinctions of Arctotertiary
woody taxa took place during the Early and Middle Pleistocene, glacial refugia in coastal
shelves of the Mediterranean and intramountainous valleys facilitated the survival of a number
of temperate, Mediterranean and Ibero-North African woody angiosperms [47]. Palaeobotani-
cal analysis of the Pleistocene floras and vegetation in the Iberian Peninsula shows the existence
of patchy landscapes with Pinus woodlands, deciduous and mixed forests, parklands (savan-
nahlike), shrublands, steppes and grasslands [47]. This suggests that the ancestors of current
Iberian and Scottish red deer might have adapted, during the Pleistocene at the southern refu-
gia, to environments that included Mediterranean floras. Scottish deer ancestors left the Iberian
refugia and colonised land, exposed by the retreating ice, in the north, which was probably
dominated by cryptogams and herbaceous species which were not as tough as the vegetation in
the south. However, climate has changed during the Holocene in all Western Europe, resulting
not only in the deglaciation of northern areas, but also an increase in temperatures and xerifi-
cation events in southern ranges [48,49], which might have led to an increase in the traits of
resistance to physical damage present in many Mediterranean plants and responsible for higher
rates of tooth wear in deer. Thus, it is difficult to say whether Scottish deer ancestors have
shifted from an environmental scenario with a dental structure adapted to a more abrasive veg-
etation to a scenario with a softer vegetation, making their dentition comparatively more dura-
ble in the new environment, or whether Spanish deer ancestors have experienced the opposite
process during the Holocene in Iberia. Indeed, both changes may have occurred simultaneously
and jointly contribute to the differentiation in tooth wear between lineages. Veiberg et al. [20]
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found for red deer in Norway that populations with the smallest molars tended to wear teeth
more rapidly, suggesting that maximum tooth height may be limited by the same factors that
lead to rapid wear. On the other hand, Kubo & Yamada [50] compared populations of sika
deer and found measurable differentiation in molar hypsodonty only for phylogenetic lineages
that had diverged for more than 0.3 Mya, suggesting that such a minimum time might be
required for evolution of hypsodonty. In addition, populations expanding north from Iberian
refugia may have been selected for a dispersal phenotype (bigger size [46]) while the remaining,
Southernmost Iberian populations may have experienced the strongest and most persistent
increase in temperatures and xerification events [48], thus leading to a maintenance phenotype,
economically smaller and shorter living, associated with heavier rates of tooth wear, when for-
aging conditions became more extreme than in the environment in which the species originally
evolved. This scenario may not correspond with data of current body size due to changes dur-
ing the Holocene. A recent study on Norwegian red deer shows a reduction in body size related
to changes in the environment mediated by humans, such as landscape fragmentation, increase
of grazing domestic animals and hunting pressure [51]. This situation may have independently
affected both Spanish and Scottish populations making it difficult to interpret our results.

Selection is expected to produce optimal solutions for trade-offs between reproduction and
maintenance for longevity [52]. Cost and benefits along the gradient of variation in the solu-
tions for a trade-off are most relevant when compared with those adopted by individuals within
the same population [53–57];together with responses based on phenotypic plasticity and reac-
tion norms [58–60] this may lead to higher than initially expected differences between popula-
tions that followed independent evolutionary pathways in different environments. In other
words, if populations that moved from Iberia to Northern Europe experienced lower wear and
higher longevity as a result of e.g. softer vegetation, we should not necessarily expect that a new
selective force should act on Iberian deer to increase their longevity, despite the fact that we
can now see an evident difference between populations.

Differences in hypsodonty found for incisors, however, require another explanation. While
the main negative effect of molar wear on fitness may not occur until the ages of severe deple-
tion [39], incisor size is instrumental in determining arcade size and consequently the bite size
and intake [10,41,42]. This effect may be relevant in the evolution of sex differences in Iberian
red deer, if larger males compensate for increased wear in Spain, and also between populations,
if either body size or diet differed between populations during evolution. Data on current diets
suggest a higher proportion of grasses and forbs in the diet of Scottish deer, compared to Ibe-
rian red deer that appear to feed more on ligneous vegetation (see S2 Table and references
herein). Grazing would select for large incisor-arcade breadth for cropping efficiency, while
browsing is characterised by a more selective feeding style that favours narrow arcades
[13,61,62]. The possible relationship of mandible and incisor size with the type of diet and the
mode of cropping during evolution since the divergence of both populations from the last gla-
cial maximum deserves further investigation.

Further research including biometric information from common ancestors at the last glacial
maximum in the Iberian refugia, as well as in the following stages during the divergence of
both lineages, would help to clarify the processes causing the phenotypic divergence between
both lineages and the relative roles of past and present conditions in shaping the current con-
trasting patterns of tooth wear and life history.

Supporting Information
S1 Table. Main features of the land cover of the study area.Mosaics features of Scotland
have been incorporated into their predominant single feature. Sources: MLURI [63] and
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