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http://www.ugr.es
http://www.ugr.es
http://es.linkedin.com/pub/luis-manuel-diaz-angulo/44/680/867
http://fciencias.ugr.es
http://ergodic.ugr.es/efm
http://www.ugr.es/~fisymat/


Editor: Editorial de la Universidad de Granada
Autor: Luis Manuel Díaz Angulo 
D.L.: GR 259-2015
ISBN: 978-84-9083-284-4





Declaración de Autoŕıa
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– Suppose the abdominal illness is caused precisely in the way you have described,

–said a physician with a thick Danish accent–. Do you then suggest a cure?

– I know of no cure.

There were groans.

– Then why does it matter a whitebait whether or not we understand the origin of

the disease? –Others voiced agreement, forgetting how much they loathed Danes in

their unified eagerness to oppose the newcomer.

– Medicine is like the slow raising of masonry, –Rob said–, We are fortunate, in a

lifetime, to be able to lay a single brick. If we can explain the disease, someone yet

unborn may devise a cure.

Noah Gordon, The physician

– Supongamos que la enfermedad abdominal se desarrolle precisamente de la forma

que habéıs descrito –dijo un médico con fuerte acento danés–. ¿Sugeŕıs alguna cura?

– No conozco ninguna cura.

Se oyeron protestas.

– Entonces, ¿que importancia puede tener un gusanito si no conocemos el origen de

la enfermedad? –vocearon otros, olvidando cuanto odiaban a los daneses, con tal de

unirse en su oposición al recién llegado.

– La medicina es como una lenta obra de albañileŕıa –razonó Rob–. Somos afortuna-

dos si en el plazo de una vida podemos poner un solo ladrillo. Y si podemos explicar

la enfermedad, alguien que aun no ha nacido estará en condiciones de conseguir su

curación.

Noah Gordon, El médico
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Abstract

This dissertation presents a collection of academic works published or submitted for

publication in scientific journals. It is composed of 14 chapters, each corresponding

to an article, grouped in six different parts.

The first part (Chapter 1) is a review of the state of the art of the Discontinuous

Galerkin Time Domain (DGTD) method which is the main topic of this work. It

serves as an introduction for the rest of the text as it explains the mathematical

foundations and the techniques used to model different electromagnetic phenomena.

The second part (Chapters 2, 3, and 4) is focused on the DG semi-discretization.

Chapter 2 investigates the presence of spurious modes and provides ways to eliminate

their presence. Chapter 3 presents an hybridization of the Continuous Galerkin

(CG) and DG techniques as a way to reduce memory consumption and improve

computational efficiency. Finally, in Chapter 4, an study on the accuracy of the DG

method is presented.

The third part (Chapters 5 and 6) discusses two techniques that can be used for the

time integration of the method. In Chapter 5, a novel Local Time-Stepping (LTS)

technique is presented. Chapter 6 presents a method in which a DG formalism is

used also for the discretization of time resulting in the Space-Time DG (STDG)

method.

The fourth part (Chapters 7 and 8). Covers the topic of modeling. Chapter 7 is

dedicated to the modeling of electromagnetic sources and Chapter 8 is dedicated to

the accurate modeling of anisotropic materials.

The fifth part (Chapters 9, 10, and 11) presents a comparison of some results using

DGTD or other methods in different scenarios.

The sixth part (Chapters 12, 13, and 14) presents other works that have been carried

out during this period of research.
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A.1.2 Futuras Ĺıneas de Trabajo . . . . . . . . . . . . . . . . . . . . 261

Bibliography 263



List of Figures

1.1 Notation used for the definition of the numerical fluxes. . . . . . . . 13

1.2 Normalized spectrum of the DG operator for a cubic domain (meshed
with 24 tetrahedra) with periodic boundary conditions. We cannote
how the centered flux does not provide an isolated kernel, contrary to
the upwind and penalized fluxes. . . . . . . . . . . . . . . . . . . . . 19

1.3 Power spectrum of the electric field at an arbitrary point inside a
1 m PEC cavity. The effect of the non-attenuation of the centered
flux spectrum can be appreciated compared with the upwind and
penalized fluxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Mapping from the reference element for linear (first geometrical order)
and quadratic (second geometrical order) tetrahedrons. . . . . . . . . 23

1.5 RCS at 450 MHz of a 1m radius PEC sphere meshed with the same
number of linear and quadratic tetrahedrons and a spatial basis of
order p = 3. Results obtained with GEG-UGR SEMBA software
(www.ugrfdtd.es). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Dissipation factors (left) and normalized phase velocities (right) for
the LSERK4 (up) and LF2 (down) schemes. All the semi-discrete
eigenvalues calculated depicted in figure 1.2 must lie within the re-
gions delimited by the thick red line to ensure the stability of the fully
discrete scheme. LF2 supports two modes arising from two solutions
for the growing factor only the positive one is represented, please no-
tice that the final form of the dissipation and phase velocities will
depend on the combination of the two modes [1].) . . . . . . . . . . . 26

1.7 Scattered field (orange) and total field regions (blue). The elements
that need to have altered fluxes are marked in darker colors. . . . . . 33

1.8 Darboux frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.9 Bistatic RCS of an isotropic/anisotropic sphere (D = 1.2λ and λ =
1.0m). LFDG results are compared to those appearing in [2], and
computed with Ansoft HFSS. . . . . . . . . . . . . . . . . . . . . . . 45

1.10 Two-port representation of the air-embedded panel illuminated by a
TEM plane wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.11 Magnetic field controlled circuit representation of a thin layer. . . . . 46

1.12 Assortment of tiers for the use of a LTS technique. . . . . . . . . . . 50

1.13 Distribution of the mesh among the different MPI processes. . . . . 51

2.1 Numerical dispersion of a one dimensional, centered flux DGTD Scheme 65

2.2 Numerical dispersion of a one dimensional, upwind flux DGTD Scheme 66

2.3 Spectrum of the DG operator for a cubic domain (meshed with 24
tetrahedra) with PBC . . . . . . . . . . . . . . . . . . . . . . . . . . 68

XXI

www.ugrfdtd.es


List of Figures XXII

2.4 Power spectrum PEC cavity. . . . . . . . . . . . . . . . . . . . . . . 69

2.5 Dual-mode circular waveguide filter dimensions and problem setup . 71

2.6 Dual-mode circular waveguide filter near fields computation. . . . . . 72

2.7 Dual-mode circular waveguide filter response. Measured and com-
puted data comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.8 Evolution of the energy inside the dual-mode circular waveguide filter. 73

2.9 Single resonator composed of a rectangular cavity loaded by a dielec-
tric cylindrical puck. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.10 Evolution of the energy inside the single resonator filter. . . . . . . . 74

2.11 S21 response of the single resonator filter. Measured and computed
data comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 Convergence rates for DGTD and CDGTD schemes with upwind
fluxes. Non-aligned values correspond to other modes also supported
by the solutions but that do not correspond to the free-space mode. 86

3.2 Convergence rates for DGTD and CDGTD schemes with centered
fluxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis up to order 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis of order P = 2, for different number of elements clustered. . . . 89

3.5 Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis of different order for DGTD (black) and CDGTD with Kc = 2
(blue) schemes. As it can be seen, modes that do not belong to the
physical eigenspectrum (dashed red) have large imaginary parts and
are therefore quickly attenuated. . . . . . . . . . . . . . . . . . . . . 90

3.6 Different clusters assemblies considered for 2D and 3D CDG. . . . . 92

3.7 Resonances in a unit square PEC cavity for different methods. The
simulations run up to a final time T = 200. The basis order is P = 2
and the mesh is a cross-hatch grid with h = 1/8. The CDGTD results
have been obtained by clustering all cross-hatch cells. With centered
fluxes, the CGTD and CDGTD method have some visible spurious
modes polluting the spectrum at ω ' 1.7, 2.2, 2.8 . . . . . . . . . . . . 94

3.8 h = 1/4 and h = 1/16 meshes used to compute the resonant cav-
ity results. Each of the cross-hatch elements is assembled to form a
cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.9 A suitable partially structured mesh in which the CDGTD formal-
ism would preferably be used only in cross-hatch regular tetrahedron
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.10 Interfacing between the simple-hatch cluster and a hex cell for P = 2. 98

3.11 A region with high stiffness (grayed) can be assembled into a CDG
cluster to improve the maximum time step allowed. The rest of the
mesh can be evolved using a classical DGTD scheme. . . . . . . . . . 99

4.1 Geometry under analysis for the eigenvalue problem . . . . . . . . . 106

4.2 Convergence and influence of the τ parameter in the error of the DG
operator for different p orders . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Convergence of the physical mode for the LFDG algorithm with τ =
0.1 and ∆t = 0.7∆tmax. . . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Figures XXIII

4.4 Influence of ∆t in the error of the LFDG algorithm. . . . . . . . . . 112

4.5 Convergence of the dispersion and dissipation errors of the LFDG
algorithm computed with the numerical test . . . . . . . . . . . . . . 113

4.6 Anisotropy of the error for τ = 0.1, p = 2 and h = 0.2. . . . . . . . . 114

4.7 3D representations of the anisotropy of the error for τ = 0.1, h = 0.25 115

4.8 Cuts of the dispersion error comparing the DG operator and the
LFDG algorithm for order p = 2 and h = 0.2. . . . . . . . . . . . . . 115

4.9 Computational cost of the LFDG algorithm. . . . . . . . . . . . . . . 117

5.1 n-depth neighbourhood concept . . . . . . . . . . . . . . . . . . . . . 130

5.2 Schematic view of the LF2-CPLTS algorithm for the case h1 = h2 = 1/2131

5.3 LSERK4-CPLTS sketch . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Meshes used for the study numerical reflections by an inhomogeneous
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Numerical reflection from a single interface with ratio of 15:1 . . . . 137

5.6 Numerical reflection from a single interface with ratio of 75:1 . . . . 137

5.7 Numerical reflection from a slab with ratio of 7.5:1. . . . . . . . . . . 137

5.8 Resonances in a 1 m PEC cavity with slab meshing . . . . . . . . . . 138

5.9 Energy evolution in a 1 m PEC cavity with slab meshing. . . . . . . 139

5.10 Evolution of the (Eanalytical −Enumerical)
2 error at the center of the 1

m PEC cavity with slab meshing for a three harmonics initial condition.139

5.11 Boundary conditions for the RCS case. . . . . . . . . . . . . . . . . . 141

5.12 Bi-static RCS for a 1 m PEC sphere at different frequencies . . . . . 142

5.13 Tier assortment for LSERK4. Tier 1 is not represented. . . . . . . . 144

5.14 Elements in LSERK4 where some operations are required by the
smaller tiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.15 Tier assortment for LF2-CPLTS. . . . . . . . . . . . . . . . . . . . . 145

5.16 Tier assortment for LF2-LTS. . . . . . . . . . . . . . . . . . . . . . . 146

5.17 Tier assortment for LSERK4-CPLTS . . . . . . . . . . . . . . . . . . 147

5.18 Tier assortment for LF2-CPLTS . . . . . . . . . . . . . . . . . . . . 147

5.19 Tier assortment for LF2-LTS . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Notation: a space-time element (in gray) with P t = P x = 3. . . . . . . . 152

6.2 Dissipative (up)/dispersive (down) convergence rates of the eigenval-
ues of the evolution operator H for different orders & ht. . . . . . . 155

6.3 Response to a white noise in the E-STDG and STDG schemes with P t = 4,

ht = 0.1, P x = 4 ,Kx = 8, hx = 0.125 after a time of 100. Vertical dashed

lines represent the analytical modes. . . . . . . . . . . . . . . . . . . . . 156

7.1 Total Field/Scattered Field decomposition. . . . . . . . . . . . . . . 168

7.2 Scattered field error as a function of the minimum space resolution . 169

7.3 Energy decay in the simulation region after dipole illumination . . . 171

7.4 Bistatic RCS of a 1 m radius PEC sphere at 300 MHz (DGTD) . . . 171

7.5 Bistatic RCS of a 1 m radius PEC sphere at 300 MHz (FDTD) . . . 172

8.1 Surface interface ∂Tm between two elements containing different ma-
terials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2 1D space–time (n-t plane) structure of the solution to the Riemann
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



List of Figures XXIV

8.3 Space–time structure of the anisotropic Riemann problem. . . . . . . 180

8.4 Bistatic RCS of an anisotropic/isotropic sphere (D = 1.2λ) . . . . . 182

9.1 Conformal UPML setup. . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.2 Setup of the medium size 3D object. . . . . . . . . . . . . . . . . . . 197

9.3 Reception aperture results of the medium size 3D object. . . . . . . 198

9.4 External and internal geometry of the aircraft-simulation case. . . . 199

9.5 Simulation setup for the aircraft-simulation case. . . . . . . . . . . . 199

9.6 Screen shots of the aircraft-simulation case. . . . . . . . . . . . . . . 200

9.7 Computed transfer functions for the aircraft-simulation case. . . . . 200

10.1 Geometry of the NASA almond. . . . . . . . . . . . . . . . . . . . . 211

10.2 Snapshot of the NASA almond mesh . . . . . . . . . . . . . . . . . . 211

10.3 Bistatic RCS at 1 GHz of coated NASA almond (MoM,LFDG) . . . 212

10.4 Monostatic RCS of the NASA almond for MoM and LFDG . . . . . 213

10.5 Bistatic RCS of the NASA almond for (MoM,FDTD,LFDG) . . . . . 213

11.1 Bistatic RCS of a 1 m radius PEC sphere at 300 MHz (DGTD) . . . 222

11.2 Bistatic RCS of a 1 m radius PEC sphere at 300 MHz (FDTD) . . . 223

11.3 Computational lay–out of the GPR detection system. PML boundary
conditions are placed at the curved/straight boundaries. . . . . . . . 223

11.4 Geometry of the TEM horn antenna. . . . . . . . . . . . . . . . . . . 224

11.5 Electric field observed with and without a buried sphere . . . . . . . 225

11.6 Snapshot of the Ez field for the land-mine detection problem . . . . 227

11.7 Synthetic radargram for the landmine case . . . . . . . . . . . . . . . 228

12.1 Surface conductivity of graphene for different µc . . . . . . . . . . . 234

12.2 Comparison of the complex permittivity found by vector fitting to
that found from the Kubo model. . . . . . . . . . . . . . . . . . . . . 235

12.3 Electric field of two parallel graphene sheets system (three modes) . 237

12.4 Electric field of two parallel graphene sheets (anti-symmetric mode) 238

13.1 Arrangement of the fields at an edge of the guide . . . . . . . . . . . 242

13.2 TE mode for a ridged rectangular waveguide . . . . . . . . . . . . . 245

13.3 Propagation along the Z axis of the Ez component of a TM11 mode 246

14.1 Petri dish geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

14.2 3D view of half Petri dish including the liquid and the meniscus . . . 250

14.3 Average SAR calculated over the SI region for different heights of the
liquid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

14.4 Coefficient of variation in the SI region for different heights of the
liquid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

14.5 SAR distribution in the SI region with a liquid height h = 5mm . . 252

14.6 Average SAR for different values of Sx and Sy. . . . . . . . . . . . . 254

14.7 Inhomogeneity factor for different values of Sx and Sy . . . . . . . . 254

14.8 Geometry of the different metallic additions . . . . . . . . . . . . . . 255

14.9 Inhomogeneity factors for different metallic shapes calculated from 2
to 3 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



List of Figures XXV

14.10Average SAR compared for the different metallic shapes from 2 to 3
GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256





List of Tables

1.1 Comparative summary of numerical methods with typical formulations 5

1.2 Parameters to yield centered, upwind, and partially penalized numer-
ical fluxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Comparison of vector and nodal basis . . . . . . . . . . . . . . . . . 19

1.4 Comparison of different time integration methods . . . . . . . . . . . 25

1.5 Coefficients for the LSERK4 method . . . . . . . . . . . . . . . . . . 28

2.1 Number of elements (M) for each set of basis functions for the DM-
CWF case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.2 Local time stepping level distribution for DMCWF problem. . . . . . 71

2.3 Computational requirements of the different cases . . . . . . . . . . . 73

2.4 Number of elements used for the single resonator case . . . . . . . . 75

3.1 Convergence rates using upwind and centered fluxes. Highlighted cells
indicate the dominant term. . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Maximum real parts and spectral radius. The increase on clustered
elements allow the use of larger time steps. Note that for centered
fluxes the real part is always zero up to machine precision and there-
fore the spectral radius is equal to the maximum real value. . . . . . 89

3.3 DOF and a estimation of the computational costs of the DGTD and
CDGTD schemes for a 2D cross-hatch cluster. . . . . . . . . . . . . . 92

3.4 DOF and a estimation of the computational costs of the DGTD and
CDGTD schemes for a 3D cross-hatch cluster. . . . . . . . . . . . . . 93

3.5 L2 error norm for different resolutions of the first mode of a unit
square cavity after a simulated time of 4/

√
2 (2 cycles). For all

CDGTD cases, the time steps can be larger than those for DGTD,
with smaller improvements for centered than for upwind flux. The
number of DOFs with the CDGTD cross-hatch configuration are
40 ∼ 60% less depending on the spatial order. Convergence ratios
remain similar for all cases, except for the case P = 1, where a clear
improvement is observed. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Results of the computational cost analysis for an accuracy of 10−2

per wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 LSERK4 Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Element Tier assorting for LTS in the plane wave reflection. . . . . 135

5.3 Element Tier assorting for LTS in the resonant cavity and RCS prob-
lems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

XXVII



List of Tables XXVIII

9.1 Parameters of the different numerical flux functions . . . . . . . . . . 189

9.2 Number of elements used for the Aircraft Simulation Case . . . . . . 201

9.3 LTS level distribution for the Aircraft Simulation . . . . . . . . . . . 201

9.4 FDTD vs LFDG Comparison. . . . . . . . . . . . . . . . . . . . . . . 202

12.1 Fitted pole-residue pairs for the graphene model used . . . . . . . . 235

13.1 Closed form of the discrete TE and TM modes for a rectangular
waveguide of size a× b . . . . . . . . . . . . . . . . . . . . . . . . . . 243



Abbreviations

ABC Absorbing Boundary Condition

ADE Auxiliary Differential Equation

ADER Arbitrary High Order DERivatives

BEM Boundary Element Method

CAD Computer-Aided Design

CCIE Current and Charge Integral Equation

CCPR Complex-Conjugate Pole-Residue

CEM Computational ElectroMagnetics

CFD Computational Fluid Dynamics

CFL Courant Friederichs Lewy

CDG Continuous-Discontinuous Galerkin

CG Continuous Galerkin

CP-LTS Causal-Path Local Time Stepping

CPML Conformal PML

CN Crank-Nicolson

DG Discontinuous Galerkin

DGTD Discontinuous Galerkin Time Domain

DMCWF Dual-Mode Circular Waveguide Filter

DOF Degree Of Freedom

EMC ElectroMagnetic Compatibility

EMI ElectroMagnetic Interference

E-STDG Explicit STDG

FD Frequency Domain

FDTD Finite Differences Time Domain

FE or FEM Finite Elements Method

FEMTD Finite Elements Time Domain

FIT Finite Integration Technique

FVTD Finite Volumes Time Domain

GPR Ground Penetrating Radar

HDG Hybridizable Discontinuous Galerkin

XXIX



Abbreviations XXX

HIRF High Intensity Radiated Fields

IC Integrated Circuit

IR Infra-Red

IMEX IMplicit EXplicit

LDG Local Discontinuous Galerkin

LF2 2nd order Leap-Frog

LGL Legendre Gauss Lobatto

LHS Left Hand Side

LO Low Observable

LSRK4 4th Order Low-Storage Runge-Kutta

LTS Local Time Stepping

MFC Magnetic Field Controlled

MIM Metal Insulator Metal

MLFMM MultiLevel Fast Multipole Method

MoM Method of Moments

MPI Message Passing Interface

ODE Ordinary Differential Equation

OMP Open Multi-Processing

PBC Periodic Boundary Condition

PDE Partial Differential Equation

PEC Perfect Electric Conductor

PMC Perfect Magnetic Conductor

PML Perfectly Matched Layer

RAM Radar Absorber Material

RCS Radar Cross Section

RF Radio Frequency

RHS Right Hand Side

SAR Specific Absorption Rate

SEMBA Simulador ElectroMagnético de Banda Ancha
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Chapter 1

Discontinuous Galerkin Time

Domain Methods in

Computational

Electrodynamics: State of the

Art

L. D. Angulo, J. Alvarez, M. F. Pantoja, S. G. Garcia, and A. R. Bretones. Discon-

tinuous galerkin time domain methods in computational electrodynamics: State of

the art. Forum for Electromagnetic Research Methods and Application Technologies

(FERMAT), Submitted

Abstract

This text reviews the state of the art of the Discontinuous Galerkin (DG) method

applied to the solution of the Maxwell’s equations in Time Domain (TD). The work is

divided into two parts. In the first part, the mathematical formulation of the DGTD

method, together with a review and discussion on the different ways to implement it is

presented. The second part presents models and techniques to address usual needs in

electromagnetic simulations such as plane wave illumination, local electromagnetic

sources, wave port modeling, dispersive and/or anisotropic materials and sub-cell

models, including lumped elements, thin layers, surface impedances, and thin wires.
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1.1 Introduction

In the last years Discontinuous Galerkin time-domain (DGTD) techniques have

reached a significant level of maturity demonstrating their capability of obtaining

highly accurate results at an affordable computational cost. They have successfully

been used to solve many kinds of differential equations in fields including: Compu-

tational Fluid Dynamics [4], Magnetohydrodynamics [5], Quantum mechanics [6],

and Elastodynamics [7, 8]. In this paper, we will review some of the existing DGTD

techniques with special emphasis on applications to Computational Electromagnet-

ics (CEM).

The DG spatial discretization permits us to take advantage of using unstructured

high-order finite elements. This allows an accurate discretization of the geometry

using different sizes and types of cells (h-adaptivity), and also to obtain high-order

convergence of the electromagnetic (EM) solution depending on the order of basis

functions within each cell (p-adaptivity). The TD nature of the method, compared

to its frequency-domain (FD) counterpart, offers benefits in several kinds of EM

problems such as those where we need to study a transient field effect of an arbi-

trary time-signal excitation (e.g. lightning strikes, EMC coupling, ultra-wideband

antennas), or the non-linear behavior of materials, components or networks, where

TD offers a direct and efficient approach. To solve these problems, we have devel-

oped a solver: SEMBA (Simulador Electromagnetico de Banda Ancha) [9]. SEMBA

implements many of the techniques that are reviewed in this text such as vector/n-

odal basis, centred/penalized/upwind fluxes, special materials, Local Time Stepping

(LTS) techniques, hp-adaptivity, and OpenMP/MPI parallelization. These tech-

niques have been thoroughly tested in a wide range of problems, demonstrating to

provide robust and efficient solutions [10–26].

However, the aim of this paper is not restricted to describing only those directly

tested by ourselves, but also to make a full review of the state-of-the-art including

contributions found in the most recent literature. This text is divided into two

parts: The first part (Sections 1.4 and 1.5) describes the mathematical foundation

of the method, alternative introductory texts on this topic are [27–29]. Much of

what is done in this part can be generalized to other partial differential equations

(PDEs). The second part of this work (Sections 1.6, 1.7 and 1.8, and 1.9) is more

specifically focused on the application of the method to real engineering problems.

Several techniques to simulate electromagnetic sources, special materials (such as

dispersive and anisotropic), and several sub-cell models will be introduced. Other

text for some of the topics discussed in this part is [30].
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1.2 Overview of time-domain numerical methods

Let us start by reviewing how DGTD relates to other TD numerical methods focusing

on the most common full-wave methods used in CEM. The main features of the

typical configurations of the techniques described below are summarized in table

1.1.

Table 1.1: Comparative summary of numerical methods with typical formulations

FDTD FVTD DGTD FEMTD (others)

Order of accuracya b h2,c h h2p+1 h2p

Geometry adaptivity Nod Yes Yes Yes
Spurious modes No No Yese/Nof Yesg/Noh

Energy conservativeb Yes Yes Yese/Nof Yes
Explicit form Yes Yes Yes Noi

LTS, IMEX or similar No Yes Yes No
Parallel. simplicity High High High Low
Memory usagej High Very High Low Very Low
Memory locality Very High Low Highk Highk

Uses dual mesh Yes No Nol No
Allows non-conformal mesh No Yes Yes No
h adaptivity Yes Yes Yes Yes
p adaptivity No No Yes Yes

aFor global L2 norm.
bConsidering Spatial semi-discretization only.
cHigher order spatial semi-discretizations are also available [31].
dCan be alleviated with conformal [32] and subgridding [33] techniques.
eWith centered fluxes.
fWith penalized fluxes.
gFor nodal basis
hFor vector basis.
iBut can be approximated [34].
jFor a structured mesh. Not considering semi-discretized operators.
kFor high orders.
lImprovements using a dual mesh have been reported by [35].

1.2.1 Finite Differences in Time Domain (FDTD)

FDTD is a mature technique that has been extensively developed for more than

50 years. The classical FDTD method [36] employs a second order finite centered

approximations for space and time derivatives in Maxwell’s curl equations. This

technique places the samples of the electric field in a rectilinear Cartesian grid while

the magnetic field is sampled in the dual of this grid, resulting in what is known as

the Yee’s cell [37]. The fields are then advanced in a marching-on-in-time fashion

using a second order leap-frog (LF2) algorithm. The final scheme is second order

convergent with respect to spatial and temporal refinement.
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The main advantages of the FDTD method are its computational efficiency, its

naturally spurious free solutions and the fact that it is energy conservative. On the

other hand, the need of a rectilinear grid and the staggering of the fields sampling

imply a high degeneration of the geometrical information due to stair-casing effects.

However, the FDTD method can be used together with geometrically conformal [32]

or subgridding [33] techniques that alleviate this limitation. Higher order FDTD

techniques can be formulated, but they require a larger stencil [31, 38, 39] that

reduces significantly its computational efficiency. The Finite Integration Technique

(FIT) and the Transmission Line Method (TLM) are closely related to FDTD. FIT

starts from the Maxwell’s curl equations in integral form and TLM from equivalent

transmission line equations. The resulting algorithms share most of the features

that we find in the FDTD method.

1.2.2 Finite Volume Methods (FVTD)

The FVTD technique emerged as an alternative to FDTD aiming to overcome its

geometrical discretization constraints, avoiding the staggered spatial discretization

of the fields. The most common formulation of FVTD is carried on tetrahedral

elements for the Maxwell’s curl equations [40–42]. The scheme is formulated by

defining a system of equations in which the time derivative of the ~E fields integrated

in volume equals to the sum of all surface integrals of the spatial derivative of ~H

terms and vice-versa. The spatial semi-discretization is then evolved, similarly to

the FDTD method, using an LF2 algorithm. The main drawback of FVTD is that

its order of convergence is 1 [43] which is quite low. Moreover, the timestep is limited

by a condition that depends on the shape of the elements and that is more restrictive

than for the FDTD method. A way to mitigate this time-stepping constraint is to

use local time stepping (LTS) techniques [40]. LTS can also be used for DGTD as

we will describe in Section 1.5. FVTD can be formally seen as a zero-order DGTD

method.

1.2.3 Finite Element Methods (FEMTD)

A variety of time-domain FEM schemes has been proposed [44] based on Maxwell’s

curl-curl equation or the hyperbolic system of curl equations (Ampere’s and Fara-

day’s laws). The second-order vector-wave curl-curl equation, typically solved by

FEM in FD, can also be solved by FEM in TD [45–54] requiring only the computa-

tion of a single field (electric or magnetic). Its major drawback is that a global linear

system of equations needs to be solved at each timestep. To reduce the number of
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timesteps, unconditionally implicit time-integration schemes, e.g. Newmark-beta,

can be used, at the expense of yielding quite ill-conditioned matrices [55].

Alternatives to the single-field scheme are found by employing the two first-order

coupled Maxwell’s curl equations, either formulated by considering the electric field

intensity ~E and the magnetic flux density ~B (E-B), or the electric field intensity

~E and magnetic field intensity ~H (E-H). These formulations offer certain advan-

tages with respect to the single-field formulation, such as the possibility of using

different expansion functions, avoiding spurious solutions. Moreover, the first-order

time derivatives allow the use of a conventional LF2 time-integration method elim-

inating the need of saving previous states in memory. However, because of the

tangential-continuity condition, they still require to solve a sparse linear system at

each timestep, resulting in a computational cost comparable to that of the single-

field scheme [56–61].

1.2.4 Discontinuous Galerkin Methods

A different family of FEM is found by relaxing the tangential-continuity condition,

yielding the so-called discontinuous Galerkin methods (DGM). The continuity is

imposed on numerical fluxes rather than on the tangential field components in order

to connect the solution between adjacent elements. The main advantage of DGM

over other FEM methods in TD is the fact that the linear system to be solved

becomes block-diagonal by only requiring a single inversion of K square matrices of

N×N elements (with K the number of elements and N the number of basis functions

per element) which can be done at the pre-processing stage. One of the drawbacks

is that the degrees of freedom (DOF) at the element interfaces are duplicated, a

minor price considering the improvement in computational efficiency of the resulting

explicit semi-discrete scheme [13, 22, 27, 62].

1.3 Applications of DGTD

The spectrum of engineering applications of CEM is extremely wide giving rise to a

need of different numerical methods as there is not an ever-suitable method capable

of solving all types of real-world EM problems [63]. The following is a non-exhaustive

list of some areas where DGTD methods can be of particular interest:
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1.3.1 Multi-scale problems

Any problem exhibiting disparate sizes, such as IC packaging or in-place antenna

simulations, can greatly benefit from a DGTD approach [23, 25, 29, 64, 65] combined

with LTS and hp adaptivity techniques.

1.3.2 Electromagnetic Compatibility (EMC)

EMC problems are an increasingly big concern for industry. Aircraft and car man-

ufacturers perform CEM analysis to detect and solve possible EMC issues in eager

stages of design. Simulations are usually performed to back measured data. How-

ever, sometimes measurements are difficult to perform, as in the case of lightning

strikes or High-Intensity Radiated Fields (HIRF), and manufacturers have no other

option than to rely exclusively on simulations. The degree of confidence put into

this simulations is such that they have been allowed as valid tests for certification

purposes [18, 66]. To perform EMC simulations a DGTD code often must include

models for sub-cell thin wires and composites layers (Section 1.8) [17, 67, 68]. More-

over, these simulations are usually performed over electrically large problems and a

high performance and accuracy simulation is a requirement.

1.3.3 Antennas

An essential characteristic for the accurate simulation of wideband antenna systems

is the modeling of their intricate geometrical details [15, 25]. In these kinds of struc-

tures, an accurate modeling is critical in zones with small geometrical details, such

as feeding ports. Frequency domain (FD) methods, such as the Method of Moments

(MoM) or the Finite Element Method (FEM), are the usual choices for their capa-

bility of accurately modeling fine geometrical details. However, FD methods may

become computationally inefficient for ultra-wideband analysis, since each frequency

needs a complete simulation, typically involving a linear system resolution. Time-

domain methods are a natural alternative for these purposes. Among them, DGTD

methods are ideally suited for this purpose. LTS techniques, which are reviewed in

Section 1.5 allow us to handle antenna geometries efficiently. Some techniques to

model ports are described in section 1.6.3.
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1.3.4 Waveguides

Like antennas, the simulation of waveguides usually needs the modeling of intricate

geometries where DGTD offers an efficient solution. TD simulations allow us to

estimate the resonant frequencies of these structures in a single run. Waveguides

are usually very resonant structures where the absence of spurious modes is a must

[13], a discussion on how to keep spurious modes under control is carried out in

Section 1.4.5. Moreover, the electromagnetic waves, often imping at grazing angles

of incidence at the terminations of the waveguide. This makes necessary the use of

an special treatment at the terminations such as the use of Perfectly Matched Layers

(PMLs) described in Section 1.7.1 or the multi-modal pseudo-analytical termination

presented in [69].

1.3.5 Radar Cross Section

The analysis of the Radar Cross Section (RCS) of aircrafts can also be carried

out with DGTD methods in an efficient manner [21, 23]. In this case, the TD

nature allows us to efficiently perform mono-static RCS in a single run. The LTS

technique, PMLs, Huygens sources (Section 1.6.1), and the ability to model complex

geometries enables the method for this task. A comparison with other numerical

techniques is presented in [21] where, for a broadband solution, the DGTD method

is demonstrated to be competitive with other methods classically used for this task

such as the MoM.

1.3.6 Ground Penetrating Radar (GPR)

GPR techniques can benefit from simulations when new antennas are being de-

signed or complex geometries are under study. Simulations can help to understand

in-the-field obtained data. Moreover, ground materials are usually dispersive and

non-homogeneous, FEM and DGTD can model materials with gradually changing

electrical properties in cells. Dispersive and lossy ground media can also be included

[12, 70].

1.4 The Discontinuous Galerkin Method

Maxwell’s curl equations for lossless isotropic linear media without sources are
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µ
∂ ~H

∂t
= −∇× ~E (1.1)

ε
∂ ~E

∂t
= ∇× ~H (1.2)

with ε and µ being respectively the electric permittivity and the magnetic permeabil-

ity that, for simplicity, we will assume to be homogeneous and isotropic. Dispersive

media are treated in Section 1.7.2.

1.4.1 The Galerkin method

Let us call Ω the region where we want to solve equations (1.1) and (1.2) applying

a DG formalism. This region Ω is tessellated with K non-overlapping elements Vk

fully covering the computational domain ΩK

Ω ' ΩK =
K⋃
k

Vk (1.3)

For simplicity, we will suppress the subscripts k everywhere except in Vk, uniquely

identifying the element where we are working. We assume that they can be inferred

from the element where the Galerkin integrals are carried on. Within each element,

the fields ~E(t, ~r) and ~H(t, ~r) are approximated by a projection over a set of N

vector-basis functions

B =
{
~ψ1(~r), ~ψ2(~r), . . . ~ψN (~r)

}
(1.4)

The Galerkin problem consists on minimizing the inner product of the fields, pro-

jected over B with respect to each of the functions basis (1.4) within each element

Vk, leading to formulate eqs. (1.1) and (1.2) in weak form as

∫
Vk

~ψi ·
[
µ
∂ ~H

∂t
+∇× ~E

]
dV = 0 (1.5)

∫
Vk

~ψi ·
[
ε
∂ ~E

∂t
−∇× ~H

]
dV = 0 (1.6)

with: i = 1, . . . N
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Let us now to explicitly write the approximation ~E and ~H as the projection over

the same basis, B. Thus

~E ' ~Eh =
N∑
j

Ehj (t)~ψj(~r)
.
= ~ψTE (1.7)

~H ' ~Hh =

N∑
j

Hh
j (t)~ψj(~r)

.
= ~ψTH (1.8)

with

~ψ =
[
~ψ1, . . . , ~ψN

]T
(1.9)

E =
[
Eh1 , . . . , E

h
N

]T
(1.10)

H =
[
Hh

1 , . . . ,H
h
N

]T
(1.11)

Inserting (1.7) and (1.8) into (1.5) and (1.6) we obtain the Galerkin semi-discretization

∫
Vk

~ψi ·
[
µ~ψT

∂H

∂t
+ (∇× ~ψT )E

]
dV = 0 (1.12)∫

Vk

~ψi ·
[
ε~ψT

∂E

∂t
− (∇× ~ψT )H

]
dV = 0 (1.13)

with: i = 1, . . . N

The first terms of eq. (1.12) and (1.13) serve us to introduce the mass matrix, M,

[M]ij =

∫
Vk

~ψi(~r) · ~ψj(~r) dV (1.14)

The curl terms of eq. (1.12) and (1.13) result in the stiffness matrix, S,

[S]ij =

∫
Vk

~ψi(~r) · ∇ × ~ψj(~r) dV (1.15)

In the form stated in (1.12) and (1.13) we are not specifying how the tangential

components of the fields within each element relate to each other. If we enforce the

fields, ~Eh and ~Hh to be globally continuous, this technique is called the Continuous

Galerkin Time Domain (CGTD) or FEMTD method. The approximated fields,
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then, fulfill in a strong way

n̂f × ~Ehf = n̂f × ~Eh+
f

n̂f × ~Hh
f = n̂f × ~Hh+

f (1.16)

where the superscript + indicates the field neighboring the element across face f .

The main drawback of the resulting algorithm is that it requires the solution of a

large system of linear equations.

1.4.2 Numerical flux

The DG method [71] relies on enforcing continuity of the numerical flux across face

f rather than field components as in (1.16). Using basic vector identities, the curl

terms in (1.12) and (1.13) can also be expressed as∫
Vk

~ψi(~r) · (∇× ~Ehf ) dV =

=

∫
Vk

∇ · ( ~Ehf × ~ψi) dV +

∫
Vk

(∇× ~ψi) · ~Ehf dV

=

∮
∂Vk

~ψi · (n̂× ~Ehf ) d(∂V ) +

∫
Vk

(∇× ~ψi) · ~Ehf dV

(1.17)

where n̂ is a unit vector pointing outwards the element. The first term of the RHS

of Eq.1.17
(
n̂× ~Ehf

)
is substituted by the flux function across face f

(
n̂× ~Eh,∗f

)
.

Therefore, instead of plugging (1.16) into (1.17) and then into (1.12) and (1.13), we

define numerical values of the tangential fields on ∂V(f,k), henceforth called numerical

fluxes, ~Eh,∗f and ~Hh,∗
f , which do not need to match any of the values of the tangential

fields on any side of ∂Vk but will depend on them.

n̂f × ~Eh,∗f = n̂f × ~Eh,∗f

(
~Ehf ,

~Eh,+f , ~Hh
f ,
~Hh,+
f

)
n̂f × ~Hh,∗

f = n̂f × ~Hh,∗
f

(
~Hh
f ,
~Hh,+
f , ~Ehf ,

~Eh,+f

)
(1.18)

An interesting feature of DG methods is that we have several possibilities for choos-

ing the numerical flux as long as they satisfy the following conditions [72]:

• Consistency: ~Eh,∗f ( ~Ehf ,
~Ehf ,

~Hh
f ,
~Hh
f ) = ~Ehf

• Continuity: ~Eh,∗f is at least Lipschitz continuous.
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Figure 1.1: Notation used for the definition of the numerical fluxes.

Table 1.2: Parameters in Equation (1.19) to yield centered, upwind, and partially
penalized numerical fluxes.

Numerical flux Centered Upwind Penalized

κE 1/2 Y +

Y+Y +
Y +

Y+Y +

κH 1/2 Z+

Z+Z+
Z+

Z+Z+

νH 0 1
Y+Y +

τ
Y+Y +

νE 0 1
Z+Z+

τ
Z+Z+

Dispersion conv. (1-D) h2p+1 (p odd) h2p+3 h2p+3

Dissipation conv. (1-D) - h2p+2 h2p+3

Dispersion conv. (3-D) h2p+2 h2p+2 h2p+2

Dissipation conv. (3-D) - h2p+1 h2p+1

Spurious modes Present Attenuated Attenuated

• Monotonicity: Eh,∗f is a non-decreasing function of Ehf and Hh
f and a non-

increasing function of Eh,+f and Hh,+
f .

The properties of the scheme will greatly depend on the choice of the flux [62]. We

will focus on the three most common choices: the centered flux, the upwind flux and

the partially penalized flux. A general form for all of them is

n̂f × ~Eh,∗f =

= n̂f ×
(
~Ehf + κE [[ ~Eh]]f + νH n̂f × [[ ~Hh]]f

)
n̂f × ~Hh,∗

f =

= n̂f ×
(
~Hh
f + κH [[ ~Hh]]f − νE n̂f × [[ ~Eh]]f

)
(1.19)
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with

[[ ~Eh]]f = ~Eh,+f − ~Ehf (1.20)

[[ ~Hh]]f = ~Hh,+
f − ~Hh

f (1.21)

Table 1.2 shows the expressions for the κ and ν factors for centered, upwind, and

partially penalized numerical fluxes. The terms which are multiplied by ν factors are

known as penalization or upwind terms and come from the solution of the Riemman

problem [73]. In the case of partially penalized fluxes, those are multiplied by the

τ parameter. These terms introduce some dissipation to the scheme [74–76] but

are essential to avoid the propagation of non-physical or spurious modes in the

computational domain [13, 62] as will be shown in Section 1.4.5 where dissipation

rates are numerically evaluated in the eigenvalue problem. When ν = 0 (centered

flux), there is no dissipation for either physical or spurious modes, at the cost of

introducing spectral pollution to the method. In between the upwind and centered

fluxes, a family of partially penalized fluxes can be defined [77], through the addition

to the centered flux of dissipation terms that can be tuned to attenuate the spurious

modes, and improve the accuracy. Other fluxes are described in detail in [62], such as

the Stabilized Upwind flux. Although these fluxes have interesting properties, they

require the introduction of new DOF that would need to be evolved in time and

therefore increase the computational cost; mainly for this reason it is not common

to find them in the DGTD application-oriented literature.

1.4.3 Semi-discretized form

The introduction of (1.19) in eq. (1.17), together with (1.14) and (1.15) let us write

(1.12) and (1.13) in the final DG semi-discretized form
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µM∂H

∂t
= −SE

−
Nf∑
f=1

κE

∫
∂V(f,k)

~ψ ·
(
n̂f × [[ ~Eh]]f

)
d(∂V )

−
Nf∑
f=1

νH

∫
∂V(f,k)

~ψ ·
(
n̂f × n̂f × [[ ~Hh]]f

)
d(∂V )

εM∂E

∂t
= SH

+

Nf∑
f=1

κH

∫
∂V(f,k)

~ψ ·
(
n̂f × [[ ~Hh]]f

)
d(∂V )

−
Nf∑
f=1

νE

∫
∂V(f,k)

~ψ ·
(
n̂f × n̂f × [[ ~Eh]]f

)
d(∂V ) (1.22)

On section 1.4.6.2 we will present some particular cases of these expressions depend-

ing on the choice of the basis.

1.4.4 Boundary conditions

The flux conditions which serve to connect adjacent elements, also serve to directly

implement basic boundary conditions in a weak form, by simply modifying the jumps

in (1.20).

1.4.4.1 Perfectly Electric Conducting (PEC)

The PEC condition requires the tangential component of the electric field to be null

and the tangential magnetic field component to be continuous, thus

n̂f × [[ ~Eh]]PEC = −2 n̂f × ~Eh

n̂f × [[ ~Hh]]PEC = 0 (1.23)

1.4.4.2 Perfectly Magnetic Conducting (PMC)

The PMC condition is the reciprocal of the PEC one,

n̂f × [[ ~Eh]]PMC = 0

n̂f × [[ ~Hh]]PMC = −2 n̂f × ~Hh (1.24)
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1.4.4.3 Silver-Mueller Absorbing (SMA)

The first-order SMA boundary condition [41, 78] is straightly based on considering

that the fields outside the computational domain propagate as plane waves normal

to the interface, n̂ × ~E = Z ~H or n̂ × ~H = −Y ~E. To apply this condition to (1.19)

is equivalent to modify the jump terms to

n̂f × [[ ~Eh]]SMA = −n̂f × ~Eh

n̂f × [[ ~Hh]]SMA = −n̂f × ~Hh (1.25)

and use the following constants in (1.19)

κE,SMA =
1

2

κH,SMA =
1

2

νH,SMA =
1

2Y

νE,SMA =
1

2Z
(1.26)

The SMA boundary condition provides an ideally null reflection coefficient for nor-

mal incidence. In practice, its performance is reduced by the numerical accuracy

of the method with its absorbing characteristics rapidly degrading with the angle

of incidence with respect to surface normal [79]. For this reason it is is usually

preferred to use Perfectly Matched Layers (PML) to truncate the computational

domain, these will be described in section 1.7.1.

1.4.5 Convergence and spurious modes

Defining a state vector q = [E H]T containing all DOF within element k we can

rewrite eqs. (1.22) as a single equation that governs the time evolution of the system

∂tq(t) =

− (Mq)−1

Sqq(t)−
Nf∑
f

Fqf
(
Ēfq(t)− Ē+

f q+
f (t)

) (1.27)

Where Sq group the stiffness operators and Fqf group the flux operators acting over

face f . To further simplify this analysis we will change the basis of the vector space

in equation (1.27) using an invertible operator P on equation (1.27) that diagonalizes

the locally applied operators
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W = −P−1(Mq)−1

Sq −∑
f

Fqf

Pk (1.28)

We can also define the eigenmodes as

p = P−1q (1.29)

and the external operators as

Vf = −P−1(Mq)−1Fqf Ē+
f P (1.30)

This change of basis let us write equation (1.27) in the following compact form

∂tp(t) =Wp(t) +
∑
f

Vfp+
f (t) (1.31)

Eq. (1.31) shows that the system can be stated as a system of 2N independent

first order ODEs with eigenfrequencies given by the eigenvalues of W. This system

contains contributions coming from the fluxes through the Vfp+
f terms. This result

is particularly useful to study the convergence, stability and other spectral properties

of the scheme. Moreover, as will be discussed in section 1.5 the spectral properties

of the scheme will have an important role on the maximum time-step required for

stability.

1.4.5.1 Convergence

The dispersion and dissipation of the method can be studied by comparing the

computed and analytical plane-wave solutions within a computational domain with

periodic boundary conditions [15, 22, 27, 75, 80]. Therefore, for an initial solution

q with wavenumber k we obtain eigenmodes, pj as the projection of the initial

solution on the diagonalized space. Each of these modes will have a numerical fre-

quency ωj(k) ∈ C corresponding to the eigenvalues of W. The imaginary part =[ωj ]

corresponds to the oscillating frequency and the real part <[ωj ] corresponds to the

numerical dissipation or amplification of eigenmode pj , if any. A necessary condition

for convergency is <[ωj ] ≤ 0, which is always fulfilled by Galerkin methods. The

numerical phase-velocities supported by the scheme are cj(k) = ωj/k. Therefore,

we have,

lim
k→0

c(fs)(k) =
1√
εµ

(1.32)
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or equivalently, that the numerical solution tends to the analytical one for higher

resolutions. As mentioned earlier, the numerical flux will impact the dispersion and

dissipation of the numerical scheme. Table 1.2 summarizes the expected dispersive

and dissipative convergences for the different numerical fluxes [17, 75].

1.4.5.2 Spurious modes

The solution provided by a discrete approximation must also be spectrally correct.

That is, we may obtain a low-error when the exactness of the solution is measured

with global parameters in TD but observe a polluted spectrum exhibiting non-

physical resonances or spurious modes in FD. Therefore, we will require certain

features from the numerical spectrum [27, 81] such as:

• Non-pollution and completeness of the spectrum of eigenvalues and eigenvec-

tors for a suitable resolution.

• Isolation of the discrete kernel modes.

A well-known drawback of nodal FEM is the presence of spurious modes [82]. E.g. in

[27] it is shown that a grid sufficiently far from being quasi-structured together with

a centered flux will make spurious modes arise at relatively low frequencies. These

are commonly attributed to a variety of reasons, including an inexact representation

of the underlying de Rham complex1.

However, an added advantage of DGTD over FEMTD resides in its discontinuous

nature that permits them to be removed if we use upwind or penalized fluxes [74,

75, 89, 90]. These fluxes are characterized by the addition of dissipative terms to

Maxwell’s equations, and are proven to attenuate spurious modes more strongly

than physical modes. The effect in the spectrum of the eigenvalues of the use of

different fluxes can be appreciated in Fig. 1.2. The use of centered fluxes makes all

the eigenvalues to lie on the imaginary axis despite if they are physical or not. Fig.

1.3 shows how this issue translates into the spectrum of resonances of a PEC cavity,

difficulting the identification of physical resonances.

1One way of removing this source of spurious modes, is to resort to vector-based formulations
[83–85]. Comparing vector and nodal FEM is out of the scope of this work; advantages and disad-
vantages of both of them have been reported in literature [86, 87] and would deserve a full work to
be further analyzed. Another approach to mitigate spurious modes is by introducing penalty terms
associated with the divergence of E [62, 88], at the cost of adding extra terms, and DOFs, that are
to be evolved at each timestep [62].
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Figure 1.2: Normalized spectrum of the DG operator for a cubic domain (meshed
with 24 tetrahedra) with periodic boundary conditions. We cannote how the centered
flux does not provide an isolated kernel, contrary to the upwind and penalized fluxes.
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Figure 1.3: Power spectrum of the electric field at an arbitrary point inside a 1 m
PEC cavity. The effect of the non-attenuation of the centered flux spectrum can be

appreciated compared with the upwind and penalized fluxes.

1.4.6 Vector/Nodal basis functions

Let us discuss here two families of basis functions, the vector and the nodal basis.

Table 1.3: Comparison of vector and nodal basis

Vector Scalara

Linear Curved Linear Curved

M size N ×N Np ×Np

S size N ×N 3(Np ×Np)
F size 4 sparse matrices Np × (NfNfp) Np × (NfNfp)

b

Shared operatorsc S, Fκ, F+
κ M, F None

aThe number of nodes for scalar basis is Np = N/3. The number of face nodes Nfp is (p +
1)(p+ 2)/2! for tetrahedrons and (p+ 1)2 for hexahedrons.

bFor curved cells, the storage and number of operations needed are significantly higher, varying
depending on the implementatio.n

cWithout considering identical cells in which all operators can be shared. Neglecting scaling
factors.
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1.4.6.1 Vector basis functions

Many authors use vector basis for the implementation of DG schemes [15, 67, 91–93].

Vector-curl conforming basis [94–97] were first proposed to solve spurious modes

problems appearing in solutions using scalar basis in FEM [84]. However, these

conclusions cannot be straightforwardly extrapolated to the DG case and, as has

been discussed in section 1.4.3, the spurious-modes issue is solved using penalized

fluxes.

We can define flux matrices based on vector basis functions that let us write (1.22)

as

µM∂H

∂t
=−SE− κE

(
F+
κ E+−FκE

)
− νH

(
F+
ν H+−FνH

)
εM∂E

∂t
= SH + κH

(
F+
κ H+−FκH

)
− νE

(
F+
ν E+−FνE

)
(1.33)

where

[Fκ]ij =

∫
∂V(f,k)

~ψi(~r) ·
(
n̂f × ~ψj(~r)

)
d(∂V ) (1.34)

[F+
κ ]ij =

∫
∂V(f,k)

~ψi(~r) ·
(
n̂f × ~ψ+

j (~r)
)
d(∂V ) (1.35)

[Fν ]ij =

∫
∂V(f,k)

~ψi(~r) ·
(
n̂f × n̂f × ~ψj(~r)

)
d(∂V ) (1.36)

[F+
ν ]ij =

∫
∂V(f,k)

~ψi(~r) ·
(
n̂f × n̂f × ~ψ+

j (~r)
)
d(∂V ) (1.37)

From an implementation point of view, the main advantage of the curl-conforming

vector basis functions is that S, Fκ and F+
κ can be shared by all the elements in a

problem, since they do not depend on the geometry of the cells (size, aspect ratio

and curvature) [15]. However the mass matrices are full, with a size of N ×N .

1.4.6.2 Nodal basis functions

With nodal basis functions some simplifications are possible. The set of nodal basis

functions, Bn, can be seen as a particular case of (1.4) in which

Bn =
{
l1x̂, . . . , lNp x̂, l1ŷ, . . . , lNp ŷ, l1ẑ, . . . , lNp ẑ

}
(1.38)
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with N = 3Np, and Np the number of different scalar functions, li. These scalar

functions can be expressed, in terms of Lagrange polynomials, as

li(~r) =

Np∏
j=1,j 6=i

~r − ~rn,j
~rn,i − ~rn,j

(1.39)

where ~rn are the positions of the nodes within the element. We may be tempted to

put the nodes ~rn equidistantly for the sake of simplicity. However, as discussed in

[27] and [98], the Lagrange basis with nodes located at the Legendre-Gauss-Lobatto

(LGL) quadrature points is a better choice, obtaining low condition numbers for the

local matrices even at high p orders.

Using the nodal basis (1.38) we have that

~Eh =
N∑
j=1

Ehj
~ψj

=

Np∑
j=1

Ehj lj x̂+

2Np∑
j=Np+1

Ehj lj ŷ +

3Np∑
j=2Np+1

Ehj lj ẑ

=

Np∑
j=1

~Ehj lj
.
= ~ET l

(1.40)

and similarly for ~Hh .
= ~HT l. When expressed using the nodal basis (1.38), the op-

eratorsM and S are composed of blocks that decouple some Cartesian components

of the vectors [86],

M =


Mn

Mn

Mn

 (1.41)

S =


−Szn Syn

Szn −Szn
−Syn Sxn

 (1.42)

WhereMn and Sx,y,zn have size Np×Np. The flux terms are also simplified as they

will now only need to account for fields in nodes at face f . When a nodal basis is

used, the equation (1.22) can be expressed, for non-curved elements, as
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µM∂ ~H

∂t
=

= −S~E−
Nf∑
f=1

Ff
[
n̂f × (κE [[~E]]f + νH n̂f × [[~H]]f )

]
εM∂~E

∂t
=

= S ~H +

Nf∑
f=1

Ff
[
n̂f ×

(
κH [[~H]]f − νE n̂f × [[~E]]f

)]
(1.43)

with

Ff =


Ffn

Ffn
Ffn

 (1.44)

where

[Ffn ]ij =


∫
∂V(f,k)

li(~r)lj(~r)d(∂V ) if ~rn,i ∈ ∂V(f,k)

0 if ~rn,i /∈ ∂V(f,k)

(1.45)

has a size of Np ×Nfp with Nfp being the number of nodes at face f . This implies

that nodal basis scale computationally better than vector basis when we increase

the order of basis functions p being this the main reason why nodal basis are usually

preferred for high order schemes [27]. Fn and Mn will be the same for all elements

except for an scaling factor, therefore we will not need to store them more than

once for the entire simulation. Note however that, to obtain the equations (1.43) we

assumed that n̂f was constant along for the flux integral terms in (1.22); therefore

this simplification in the flux integral is not be valid if we work with curved elements

(see Section 1.4.7).

1.4.7 Curved cells

One of the most appealing features of DG methods is that they can be formulated

for higher order geometric elements which offer a better geometrical adaptivity [27,

99–102]. Most available open-source [103] and commercial meshers [104] offer the

possibility of meshing with quadratic elements and techniques exist allowing higher

orders [105]. Using quadratic elements allows us to use less of them to accurately

discretize a curved surface, thus implying that their size can be larger.

The implementation of this technique requires the usage of quadrature integrals [106]

because the complexity of the involved Jacobians needed to transform the reference
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Figure 1.4: Mapping from the reference element for linear (first geometrical order)
and quadratic (second geometrical order) tetrahedrons.

element into the actual mesh element results in integrals that cannot be solved ana-

lytically. For nodal basis, this technique needs to store information of the operators

needed by the curved element thus requiring to store one flux matrix (1.45) per

cubature point [27] or alternatively one operator per each term in (1.19) contain-

ing a normal unit vector. These requirements introduce a significant computational

overhead both in memory a number of operations that can be a factor depending

on the application.

To illustrate the possibilities of this approach, Fig. 1.5 shows a comparison of

the results obtained with meshes using the same number of quadratic and linear

elements. It can be appreciated that the improved geometry adaptivity provides a

better result for the same number of elements.

1.4.8 Non-conformal meshes

Another advantage of using numerical fluxes to exchange information between el-

ements is the possibility of using non-conformal interfaces between elements [107–

110]. This is, to connect elements that do not share a whole face but a portion of

it. This feature is interesting because there are applications with very intricated
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Figure 1.5: RCS at 450 MHz of a 1m radius PEC sphere meshed with the same
number of linear and quadratic tetrahedrons and a spatial basis of order p = 3. Results

obtained with GEG-UGR SEMBA software (www.ugrfdtd.es).

geometries where a conformal mesh may be very difficult to obtain, or domains re-

quiring different element sizes. In DG, thanks to the flux functions, the interface

between non-conformal meshes can be posed in a natural way. In [107, 109, 110] the

authors find that the convergence of the method remains the same as with conformal

meshes.

1.4.9 Hybrid meshes

The use of non-conformal meshes allows us to interface tetrahedrons with hexahe-

drons in the transition regions, as demonstrated in [109, 110], and therefore use

hybrid meshes that combine several kinds of elements. Other possibility for the

transition region is to use pyramidal elements, this approach has been studied in

[111, 112]. As the case of non-conformal meshes, this can be done in a natural way

by making use of the flux terms. The advantage of using hybrid meshes is that we

can have the best of two worlds[7, 67, 91], e.g. tetrahedra can adapt better to sur-

faces in complicated geometries, or hexahedra for the discretization for zones where

structured mesh could be used, enabling larger timesteps and a reduced number of

degrees of freedom.

1.5 Time integration

In this section, we will present two time integration methods that are also the

most popular choices in conjunction with the DG semidiscretizations presented in

the previous section. Table 1.4 presents a summary of features of different time

integration methods.

www.ugrfdtd.es
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Figure 1.6: Dissipation factors (left) and normalized phase velocities (right) for the
LSERK4 (up) and LF2 (down) schemes. All the semi-discrete eigenvalues calculated
depicted in figure 1.2 must lie within the regions delimited by the thick red line to
ensure the stability of the fully discrete scheme. LF2 supports two modes arising from
two solutions for the growing factor only the positive one is represented, please notice
that the final form of the dissipation and phase velocities will depend on the combination

of the two modes [1].)

1.5.1 Leapfrog time integration

1.5.1.1 Second order leapfrog (LF2)

The second-order leap-frog method [122] is applied by alternately evolving the En

and Hn+1/2 fields, arbitrarily defined at times tn and tn + ∆t/2 respectively. This

implies that we do not have a fully defined state vector in the sense of eq. (1.27)

for a given time t. To obtain the future values from a present state the following

algorithm is applied

En+1 = En + ∆t LhE
(
Hn+1/2,En

)
Hn+3/2 = Hn+1/2 + ∆t LhH

(
En+1,Hn+1/2

)
(1.46)

With LhE and LhH being the equations (1.22) respectively. When centered fluxes are

used, the LhE and LhH operators use only Hn+1/2 and En+1 as arguments, respectively.

This implies that the scheme is reversible in time and will preserve energy as long
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as the timestep used is below a maximum value ht set by a CFL-like condition

[93, 120, 122]. The use of upwind or penalized fluxes would imply the need of

averaging between the next and previous semi-timesteps in the dissipation terms,

thus resulting on a globally implicit scheme. To avoid this we need to use a backwards

approximation [15, 64] and use the last previous known value instead of averaging.

1.5.1.2 Convergence and spectral properties

The study of the full spectrum ofW obtained in (1.28) is also useful as its properties

impose limitations in regards to the time-integration. The LF2 method has the

following stability requirement on its timestep ht [15, 77, 123]

ht ≤ 1/=[ωk,j ] (1.47)

and therefore will be constrained by the largest imaginary part among all eigenvalues

of (1.28). Equation (1.47) needs to solve a complex eigenvalue problem for each

specific problem. To avoid this, we can use heuristic or analytical closed conditions

[77, 90, 124]. For instance, for p = 1 with centered flux we have that

ht .
12

8 +
√

40

Vk
ck∂Vk

(1.48)

LF algorithms have therefore a semi-infinite stability region which may be not

bounded with respect to a value of the real axis depending on how the method

is initialized [1]. This reliefs this method from some bounds in material proper-

ties and additional algebraic constraints that are present for methods with closed

stability regions [125].

1.5.1.3 Higher order LF

A N-th order leapfrog (LFN) time integrator applied to DG is discussed in [107].

These techniques can obtain high-order convergence in time avoiding the use of

larger stencils. Thus, these methods allow us to retain the high-order convergence

in the fully discretized numerical scheme. They also allow larger timesteps than for

LF2 while retaining its symplectic non-dissipative nature. However, they will require

N/2 times more memory storage and N − 1 times more arithmetic operations per

timestep than LF2. This is the main reason why their usage is not widespread when

higher-order convergences are demanded, where the LSERK is the most typical

approach.
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1.5.2 Low-Storage Explicit Runge Kutta time integration

The low-storage five-stage fourth-order Explicit Runge-Kutta method (LSERK4)

[27, 113, 126] allows us to achieve a fourth-order convergence in the time integration,

storing only one additional unknown per degree of freedom. For a given vector

representing the state of an element k, i.e. pk(t) = pnk we can find an approximate

solution state pk(t+∆t) = pn+1
k applying the following algorithm, using the notation

introduced in (1.31)

p(0) = pn,

r(i) = air
(i−1) + ∆t

Wp(i−1) +
∑
f

Vfp(i−1),+
f

 ,

p(i) = p(i−1) + bir
(i),

p(n+1) = p(5) (1.49)

with i ∈ [1, ..., 5] and the coefficients ai, bi and ci taking the values indicated in

Table 1.5 and r being the residue. The LSERK4 scheme is one of the most used

methods in high–order Discontinuous Galerkin semi–discretizations because its low

dispersion and dissipation errors. Contrary to other RK implementations, the low–

storage version requires the storage of only twice the number of degrees of freedom

in the scheme at the expense of one additional stage. Despite its many advantages,

LSERK4 has a higher computational cost than LF2 and the numerical dissipation it

introduces can be a factor depending on the application. For this reason, a number

of authors have proposed alternatives for the classical LSERK4 scheme [74, 113, 114].

Table 1.5: Coefficients for the low-storage five-stage fourth-order Explicit Runge–
Kutta method (LSERK4)

s as bs cs

1 0 1432997174477
9575080441755 0

2 - 567301805773
1357537059087

5161836677717
13612068292357

13612068292357
9575080441755

3 - 2404267990393
2016746695238

1720146321549
2090206949498

22526269341429
6820363962896

4 - −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 - 1275806237668
842570457699

2277821191437
14882151754819

28032321613138
2924317926251
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1.5.2.1 Convergence and spectral properties

RK methods are constrained by the spectra of the operator Wk, i.e. all the eigen-

values of Wk must lie inside of the stability region of the RK scheme (Fig. 1.6).

The LSERK4 method allows for slightly larger time-steps than LF2 but imposes

constraints when dealing with dispersive materials [125]. LSERK methods comprise

irregular closed loci in the complex plane [113, 127] in which the eigenvalues of (1.28)

must lie to ensure stability. Consequently, the timestep must be chosen sufficiently

small, e.g. for a nodal basis the following inequality must hold [27]

∆ht,k ≤
C

ck
min
i

∆hki
2

(1.50)

where mini ∆hki indicates the minimum distance between nodes in element k, ck is

the maximum speed of light in the element k, and C is a constant.

1.5.3 Achieving larger global timesteps

The presence of small-sized elements imposes constraints to the maximum size of the

timestep severely affecting the computational efficiency. As we can appreciate from

(1.47) and (1.50) the maximum time-step allowed to ensure stability is proportional

to an inverse power of the size of the elements. This has been a topic of intense

research aiming to overcome the global limitations imposed by a local condition.

Some existing solutions are discussed below.

1.5.3.1 Local Time Stepping (LTS)

The most straightforward approach to deal with the global timestep restrictions

imposed by the presence of local small-sized elements is to devise a LTS technique

by which these elements are evolved using a smaller timestep. To do so, the elements

are clustered in different groups, or tiers, according to the maximum timestep allowed

by the smallest element in the tier. The interfaces between elements within the same

tier are treated in the usual way; however, the interfaces between tiers will require a

special treatment because the smaller tiers require field values that the larger steps

do not compute.

For the LF2 method, we can find at least three alternatives:

• In [77], [122] and [93], the authors use a method, firstly devised by Montseny, in

which the last available field coefficient is used when the smaller tiers require
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intermediate timestep values from larger tiers. The main advantage of this

technique is that it preserves the reversibility of the scheme and in consequence

the scheme remains non-dissipative. On the other hand, it introduces some

additional numerical dispersion, and a penalization of the stability condition.

• In [15] the LTS is accomplished interpolating the field unknowns in an interface

region between the different tiers, this interpolation improves the accuracy and

stability of the technique compared with Montseny’s method.

• In [23] a technique called causal-path LTS (CPLTS) is applied. This technique

consists on computing auxiliary fields in a shrinking buffer zone whenever they

are needed by the smaller time-step tier. Once they have been used by the

smaller tier, they are casted away and the higher tier is evolved using the orig-

inal values. As shown in [23], the scheme has better dispersive properties than

Montseny’s and allows for a better assortment of tiers. However, it introduces

some dissipation, it cannot be used with centered fluxes and requires more

arithmetic operations.

For RK methods we can also find several alternatives:

• The CP-LTS technique previously discussed for LF2 can also be applied to RK

schemes, as discussed in [23]. Although the dispersive properties do not seem

to be significantly affected when low spatial orders are used, this technique

introduces a significant amount of numerical dissipation.

• A similar concept is shown in [128]. First the whole domain is evolved using

the higher tier timestep. Then, the values of the solution that have been

polluted by the usage of a timestep larger than allowed are casted away. To

compute the values in the lower tier region an interpolation in the boundary

is performed.

• In [27, 129] a scheme allowing each element to be advanced with its own

individual and optimal timestep is shown. This technique, called Arbitrary

High-Order Derivatives (ADER) consists on expanding the solution in Taylor

series in time. This time derivatives are then replaced by space derivatives

using a Cauchy-Kovalevskaya procedure. The resulting scheme is high-order

accurate in space and time.
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1.5.3.2 Implicit-Explicit (IMEX) schemes

Another technique to improve the global efficiency of the scheme is to use an implicit

time integrator in the regions presenting a higher stiffness while using a usual explicit

time integrator in the remaining domain. This approach aims to benefit from the

unconditional stability that is usually a characteristic of implicit schemes. However,

as opposite to LTS, these techniques cannot be used recursively and a large number

of unknowns of the implicit part can reduce the computational benefits for meshes

with highly disparate sizes. In [121], implicit and explicit RK schemes are applied

to several types of PDEs. In [65, 120], the authors show an IMEX technique applied

to the Maxwell’s equations using a second order Crank-Nicolson (CN2) scheme for

the implicit part and a LF2 scheme for the explicit one.

1.5.3.3 Predictor-Corrector time integration

A predictor-corrector scheme is an algorithm that proceeds in two steps. First, the

prediction step calculates a rough approximation. Second, the corrector step refines

the initial approximation using another means. In [130] an application of a predictor-

corrector scheme proposed and in [131] it is applied to a DGTD method to solve

Maxwell’s equations. This let the authors to significantly increase the timesteps

compared with other methods at the expense of a moderate increase in memory.

1.5.3.4 Tailored LSERK schemes

In [113, 114] the authors explore the usage of higher number of stages and different

orders for new LSERK schemes. The approach they take is to make assumptions

over the form of the spectrum based on several typical cases and then find coefficients

for the RK schemes by fitting its stability region to that spectrum. They conclude

that the increase in the size of timesteps offsets the inclusion of new stages and

therefore they are able to obtain improvements of up to a 40− 50%.

1.5.3.5 Strong Stability Preserving RK (SSP-RK) schemes

In [74, 115] a Strong Stability Preserving Runge-Kutta (SSP-RK) technique is used.

This scheme has a larger stability region, thus allowing us to use a larger ht. Each

timestep the method needs to evaluate m stages achieving an m order of convergence.

In [74], the authors demonstrate an improvement in the number of operations needed
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by the scheme. The main drawback of this methods is that it needs to store m stages,

thus significantly increasing the memory consumption.

1.5.3.6 Space-time Discontinuous Galerkin (STDG)

As we have seen in previous sections, the typical approaches consist on obtaining a

DG spatial semi-discretization that is then evolved with an explicit time integrator

algorithm. On the contrary, the STDG approach consists on applying the DG also

in the time dimension [24, 116, 117, 119, 132, 133]. The resulting scheme therefore

extends to the time dimension most of the properties of spatial DG, such as the high

order convergence. There are many ways of implementing this concept: some ap-

proaches arise to non-dissipative [116, 117] schemes, others result in pseudo-explicit

methods [24, 119, 132], or allow a significant freedom in the election of the time-step

[24].

1.6 Electromagnetic Sources

Electromagnetic sources in DGTD are almost a direct extension of the techniques

already developed for FDTD [134]. For instance, those based on Huygens’s principle

[10, 135] employ a division of the computational domain into two zones, the Total

Field Zone (TFZ) and the Scattered Field Zone (SFZ), to define the illuminated

and the non-illuminated zones, respectively, being the main differences between the

FDTD and DGTD implementations due to the staggered nature of FDTD.

1.6.1 Plane wave

Incident-wave conditions can be generated in a straightforward way as detailed in

[10, 30]. Let us assume that, inside a TFZ, a known wave is propagating while

outside it, in the SFZ, the field of this wave is null. If ~Einc(t) and ~H inc(t) denote

the wave fields at each point of the TFZ/SFZ regions interface (Fig. 1.7), the jumps

in (1.20) used to calculate the flux across the face of an element k in the TF region

need to be modified according to

n̂f × ~Eh,+TF (t) = n̂f ×
(
~Eh,+(t) + ~Eh,inc(t)

)
n̂f × ~Hh,+

TF (t) = n̂f ×
(
~Hh,+(t) + ~Hh,inc(t)

)
(1.51)
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Figure 1.7: Scattered field (orange) and total field regions (blue). The elements that
need to have altered fluxes are marked in darker colors.

If k is in the SF region the fields calculated at the face interfacing with the TFZ are

modified to

n̂f × ~Eh,+SF (t) = n̂f ×
(
~Eh,+(t)− ~Eh,inc(t)

)
n̂f × ~Hh,+

SF (t) = n̂f ×
(
~Hh,+(t)− ~Hh,inc(t)

)
(1.52)

Note that the fields ~Einc and ~H inc, can describe any kind of waves such as plane

waves, linearly or elliptically polarized, or even spherical waves with minor modifi-

cations. In FDTD, the TFZ and SFZ are separated by one cell introducing some

numerical errors. On contrary, for DGTD, the discontinuous nature of the method

allows us to use the same geometrical surface as the TFZ/SFZ interface. Moreover,

the SFZ can be pushed directly onto the computational domain and be backed with

an SMA-BC. On this surface we can also apply a near-to-far-field technique [136]

can also be applied to compute RCS or radiation patterns of antennas.

1.6.2 Local sources and radiation patterns

The most obvious way to model a point current source ~Js(t, ~r0) is by directly mod-

ifying the magnetic field corresponding to the node in the position ~r0 shared by it

[30, 137]. Therefore using.

~H inc(t) = n̂× ~Js(t, ~r0) (1.53)
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in (1.51) and (1.52). However, as pointed in [30, 137] the Lagrange polynomials

are not able to resolve well the field values in the vicinity of ~r0, where the fields are

theoretically infinite, forcing to refine the mesh around that point and thus increasing

drastically the computational cost. This justifies the introduction of an alternative

solution, through the use of localized sources, described below. If we use a formalism

similar to the defined for the TFZ/SFZ illumination we can avoid defining the fields

in the region closest to the point source [10, 137]. Therefore, for a dipole we could

use the analytical expressions describing the fields ~Einc(t) and ~H inc(t) at the position

of the interface- These expressions are evaluated using theoretical equations such as

the ones that can be found in [138] for an electric dipole. The advantage of this

technique is that the field at the interface can be defined freely so it is possible to

use it to define antenna radiation patterns including near fields.

1.6.3 Waveports

1.6.3.1 TEM port

A TEM mode (e.g. for a coaxial port) can be directly injected into the port in a

weak manner through the flux terms by adding ~Eh,inc and ~Hh,inc to the jump terms

in (1.20). For the first coaxial TEM mode these terms are

~Eh,inc = V inc(t)
1

log(b/a)

1

ρ
ρ̂

~Hh,inc = V inc(t)
1

Z log(b/a)

1

ρ
φ̂ (1.54)

in (1.51) and (1.52), with a and b being the inner and outer radii of the conductors

forming the coaxial and V inc the time variation of the excitation signal. The TEM

ports are accurately truncated with a SMA boundary condition (described in section

1.4.4.3) that can be located in the same surface of the port.

1.6.3.2 Waveguide modes

Arbitrary shape wave guides In [53, 69], Lou et al. describe a method to excite

arbitrarily shaped waveguides in a FEMTD scheme that can be simply extrapolated

to DGTD. To do this, Lou starts by solving the 2D Helmholtz problem at the plane

forming the waveport to get the eigenvectors and eigenfrecuencies of it. Then these

FD solutions are solved in TD by applying the inverse Laplace transform. This

approach is also useful to truncate the waveguide in a very efficient and accurate

manner. The absorption in waveguides is particularly problematic when absorbing
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boundary conditions (ABC) are used, because the waves always imping over the

absorbing conditions with a high angle when their frequency is close to the cut

frequencies of the supported modes.

Rectangular waveguide A simplified version of [53, 69] can be implemented

directly using the analytical TE and TM modes. For a rectangular waveguide we

have the following analytical expressions for the supported modes [138],

~HTEmn(ω) =


γmn
k2
mn

πm
a sin πmx

a cos πnyb
γmn
k2
mn

πn
b cos πmxa sin πny

b

cos πmxa cos πnyb

Bmn(ω) (1.55)

~ETEmn(ω) =


πn
b cos πmxa sin πny

b

−πm
a sin πmx

a cos πnyb

0

Bmn(ω)
ηγ0

k2
mn

(1.56)

~HTMmn(ω) =


πn
b sin πmx

a cos πnyb

−πm
a cos πmxa sin πny

b

0

Amn(ω)
η−1γ0

k2
mn

(1.57)

~ETMmn(ω) =


γmn
k2
mn

πm
a cos πmxa sin πny

b
γmn
k2
mn

πn
b sin πmx

a cos πnyb

sin πmx
a sin πny

b

Amn(ω) (1.58)

where γmn(ω) =
√

(jω)2

c2
+ k2

mn, k2
mn =

(
mπ
a

)2
+
(
nπ
b

)2
, and η =

√
µ/ε. Bmn(ω)

and Amn(ω) are the spectral components of the mode mn. In the Laplace domain,

γ0 = s/c and γmn =
√
s2/c2 + k2

mn, which in the time domain can be represented

with the following operators [69]:

γ0 = L =
1

c

∂

∂t
(1.59)

γmn = Hmn =
1

c

∂

∂t
+ hmn(t)∗ (1.60)

where ∗ stands for convolution in time and the impulse response of the system hmn(t)

is given by [139]

hmn(t) =
kmn
t
J1(kmnct)ū(t) (1.61)

ū(t) denoting the unit step function and Jn(·) the Bessel function of the first kind.

If we are using a gaussian excitation for the mode Amn = f(t) of the form

f(t) = ū(t) exp

[
−
(
t− µ
σ
√

2

)2
]

(1.62)
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we can write eq. (1.59) and (1.60), using a numerical convolution technique, as

γ0f(tn) =
1

c

[
∂f(t)

∂t

]
t=tn

(1.63)

γmnf(tn) ' f(tn)

c

−2

σ
√

2

(
tn − µ
σ
√

2

)
+ ∆t

n∑
j

hm(tj)f(tn−j) (1.64)

that enables the computation of (1.55), (1.56), (1.57) and (1.58), in the time domain.

1.7 Advanced material modeling

1.7.1 Conformal Perfectly Matched Layer

Perfectly Matched Layers (PMLs) were introduced for first time in [140] as a way

to truncate the computational domain in open-region scattering problems. They

can actually be seen as a special kind of non-Maxwellian dispersive anisotropic ma-

terial [36]. The main advantage of PMLs over other ABC is that they are largely

independent of frequency, wave polarization, and angle of incidence. They also have

extremely small reflection errors. PMLs are material-independent and can trun-

cate domains with inhomogeneous, dispersive, and non-linear materials. There are

several variants of PMLs [141–146], mainly developed in the FDTD context, with

features particularly well suited for different applications: e.g. In [141] the author

present an Auxiliary Differential Equation (ADE) form of a multipole Complex-

Frequency Shifted PML that presents advantages when is extended to high order

methods. Equivalent convolutional formulation can also be used [147].

The Conformal PML (CPMLs) allow us in DGTD to add PMLs extruding the outer

surface of the computational domain [15, 146]. The only geometrical restriction to

this formulation is that the PMLs must form a convex closed region, when viewed

from the outside, or they will be dynamically unstable [148].

Let us consider the setup of Fig. 1.8 representing a right-handed reference frame

called Darboux frame at a point P of an internal surface S. This frame is defined

by an orthonormal local vector-basis u1, u2 and u3. u1 and u2 are tangent to S at

a point P along the principal lines of curvature. The third component is obtained

from the other two as u3 = u1 × u2. We can write ui in terms of local coordinates

ξi as ui = (∂~r/∂ξi)/|∂~r/∂ξi|, i = 1, 2, 3 where ~r is the position vector. With these

definitions ξ3 = 0 represents the surface S. The unit vectors are functions of ξ1 and

ξ2 only. With the defined local reference frame, the radii of curvature r01(ξ1, ξ2) and
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Figure 1.8: Darboux frame.

r02(ξ1, ξ2) are positive (for convex S) and we also have that at a point P ′ the radius

rj can be expressed as rj(ξ) = r0j(ξ1, ξ2) + ξ3.

We will also use the the Lamé coefficients, hi which in the Darboux frame are

h1 = r1/r01 (1.65)

h2 = r2/r02 (1.66)

h3 = 1 (1.67)

The conformal PML2 can be obtained through a complex stretching on the normal

coordinate ξ3:

ξ3 → ξ̃3 =

∫ ξ3

0
s(ξ)dξ

=

∫ ξ3

0

(
a(ξ) +

σ(ξ)

jω

)
dξ

= b(ξ3) +
∆(ξ3)

jω

(1.68)

where a ≥ 1 and σ ≥ 0. The effect of this stretching on a propagating wave can

be seen by locally expanding the wave in terms of a generalized Wilcox expansion

2A Complex Frequency Shifted (CFS) formulation can be straightforwardly found [141, 149].
This presents some benefits for attenuation of low frequency waves.
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[148, 150, 151] showing that there is an induced exponential decay along the normal

coordinate for σ ≥ 0. Also, if a ≥ 1, additional attenuation can be achieved for

evanescent waves if any.

The derivation of the CPML consists on substituting (1.68) in the system of Maxwell’s

equations expressed in curvilinear coordinates [152]. This leads to a system that is

substantially different to the classic Maxwell’s equations. For this reason, rather

than solve the system of Maxwell’s equations in curvilinear coordinates, we recover

the original system introducing an anisotropic medium. This leads to the formula-

tion of the anisotropic and conformal PMLs.

1.7.1.1 Anisotropic Conformal PML

Let us start by introducing a new set of fields Ẽi and H̃i defined as

Ẽ1 =
h̃1

h1
E1, Ẽ2 =

h̃2

h2
E2, Ẽ3 = sE3 (1.69)

H̃1 =
h̃1

h1
H1, H̃2 =

h̃2

h2
H2, H̃3 = sH3 (1.70)

with

h̃1 =
r̃1

r01
(1.71)

h̃2 =
r̃2

r02
(1.72)

h̃3 = 1 (1.73)

and r̃i = r0i + ξ̃3.

By introducing these new fields into the system of equations described previously

we recover a Maxwellian system of equations in curvilinear coordinates, but now

for an anisotropic medium whose constitutive parameters are given by ¯̄µ = µ ¯̄Λ and

¯̄ε = ε ¯̄Λ, with

¯̄Λ = u1u1

(
sh1h̃2

h̃1h2

)
+ u2u2

(
sh̃1h2

h1h̃2

)
+ u3u3

(
h̃1h̃2

sh1h2

)
(1.74)

So we can write the Maxwell’s equations in PML media as,

∇× ~E = − ¯̄µjω ~H (1.75)

∇× ~H = ¯̄εjω ~E (1.76)
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This means that we can achieve a reflection-less absorption of electromagnetic waves

incident on a smooth, concave surface with an anisotropic constitutive tensor over

the volume spanning S between S′.

1.7.1.2 Cartesian PML

The Cartesian PML is a particular case of the system described in 1.7.1.1. In this

case we have that r01 = r02 =∞, so that h̃1 = h̃2 = 1. Let us assume that the normal

to our surface S is oriented towards the +z axis and therefore u1 = ux, u2 = uy

and u3 = uz. Let us consider that s = sz(z) = 1 +σz(z)/(jω) for attenuation in the

z direction. The σz(z) profile is taken to minimize the reflections [15, 140] that for

the parabolic case takes the form

σz(z) = σmax

( z

∆z

)2
(1.77)

being ∆z the thickness of the PML. Uniaxial and biaxial PMLs can be considered

an special case of the triaxial PML. By writing them explicitly we see that we only

need certain DOFs depending on the direction, a fact that can be used with nodal

basis to reduce the storage needs as mentioned in Section 1.4.6.2.

Uniaxial Cartesian PML For uniaxial PMLs, (1.74) reduces to

¯̄Λz = uxuxsz + uyuysz + uzuz
1

sz
(1.78)

The x component of Faraday’s law in PML media (1.75) is

− [∇× ~E]x = µszjω ~Hx = jωµ ~Hx + σzµ ~Hx (1.79)

or, in the time domain

µ∂t ~Hx = −[∇× ~E]x − σzµ ~Hx (1.80)
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and similarly for the y component. The z component is,

−[∇× ~E]z = µ
jω ~Hz

sz

= µ
jω ~Hz + σz ~Hz − σz ~Hz

1 + σz
jω

= µjω ~Hz − µ
σzjω ~Hz

jω + σz

= µjω ~Hz + µ ~Mz − µσz ~Hz

(1.81)

with

jω ~Mz = −σz ~Mz + σ2
z
~Hz (1.82)

which, in the time domain

µ∂t ~Hz = −[∇× ~E]z − µ ~Mz + µσz ~Hz

∂t ~Mz = −σz ~Mz + σ2
z
~Hz (1.83)

Similar equations can be obtained for Ampere’s law (1.76) for PML media. Eq.

(1.83) shows the need of introducing a new equation, called Auxiliary Differential

Equation (ADE) that governs the behaviour of a polarization current, ~M . This is a

common feature between PMLs and Dispersive materials, described in Section 1.7.2.

Biaxial Cartesian PML When stretching in x and y directions, the tensor in

(1.74) can be expressed as,

¯̄Λx,y = ¯̄Λx(x) ¯̄Λy(y)

=
sy
sx

uxux +
sx
sy

uyuy + sxsyuzuz
(1.84)

The x component of the Faraday’s law, after following a similar procedure as in

previous section, is

µ∂t ~Hx = −[∇× ~E]x − µ(σy − σx) ~Hx − µ ~Mx (1.85)

∂t ~Mx = −σx(σy − σx) ~Hx − σx ~Mx (1.86)

the y component can be obtained by switching x and y components in the previous

expression. The z component is

∂t ~Hz = −[∇× ~E]z − µ(σx + σy) ~Hz − µ ~Mz

∂t ~Mz = σxσy ~Mz (1.87)
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And similarly expressions can be obtained for Ampere’s law (1.76).

Triaxial Cartesian PML The tensor (1.74) stretched on all directions arise the

most general form
¯̄Λx,y,z = ¯̄Λx(x) ¯̄Λy(y) ¯̄Λz(z) (1.88)

The x component of the Faraday’s law can be expressed as,

−[∇× ~E]x = jωµ
szsy
sx

~Hx

= jωµ ~Hx + µ(σz + σy − σx) ~Hx

+ µ
(σz − σx)(σy − σx)

jω + σx
~Hx

= jωµ ~Hx + µ(σz + σy − σx) ~Hx + µ ~Mx

(1.89)

with

jω ~Mx = −σx ~Mx + (σz − σx)(σy − σx) ~Hx (1.90)

which in the time domain

µ∂t ~Hx = −[∇× ~E]x − µ(σz + σy − σx) ~Hx − µ ~Mx

∂t ~Mx = −σx ~Mx + (σz − σx)(σy − σx) ~Hx (1.91)

And similarly for the y and z components and the Ampere’s law (1.76).

1.7.1.3 Constant/Varying conductivities

The equations (1.83), (1.87), and (1.91) together with the conductivity profile (1.77)

require us to define and store additional mass matrices that are modified by the

conductivities involved. This is a substantial amount of additional memory that

will also impact the performance of the simulation. For certain cases the benefits of

using the conductivity profile (1.77) are clear as was found in [15, 140]. If, rather than

use a varying conductivity we choose a constant profile, there is no need to compute

additional mass matrices and equations (1.83), (1.87), and (1.91) are significantly

simplified. This however, will cause an increase in the energy reflected that may be

a factor depending on the application.

Note also that the PMLs may have some stability problems if we are not careful

when choosing large values for conductivity [125], particularly with time integration

schemes with closed stability regions (shown in Table 1.4). A discussion on this issue

will be carried on in section 1.7.2.2.
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1.7.2 Dispersive materials

The simulation of dispersive media requires the introduction of new DOFs. This

makes DGTD particularly well suited for the simulation of these media because,

as discussed in Section 1.4, its higher convergence properties let us attain a better

accuracy per DOF than other techniques. There are many models available to model

dispersive media being the three most common the Debye’s [70, 153, 154], Drude’s

[110, 155–157] and Lorentz’s [158–160] models. These can present multiple poles

that arise from theoretical arguments on material electromagnetic properties. In

this Section we show how to adapt the complex-conjugate pole-residue pairs model

(CCPR) proposed and demonstrated in [161, 162] for the FDTD technique. An

interesting feature of the CCPR model is that it encompasses the other three models

as they can be expressed as particular cases of it. Another important feature of the

CCPR model is that we can use already known and freely available tools to obtain

optimal poles and residue pairs for a given set of permittivities or permeabilities

[163–165].

1.7.2.1 General Formulation

Let us consider the source-free Maxwell’s equations (1.1) and (1.2) under the as-

sumption that only homogeneous and isotropic media are present and therefore elec-

tromagnetic parameters can be assumed to be local and spatially constant. When

equations (1.1) and (1.2) are stated for dispersive media in the FD, the permittivity

is a frequency dependent magnitude. Following the approach of [161] we can model

ε(ω) as

ε(ω) = ε0ε∞ + ε0

R∑
r=1

[
χr(ω) + χ′r(ω)

]
(1.92)

with

χr(ω) =
cr

jω − ar
and χ′r(ω) =

c∗r
jω − a∗r

(1.93)

where ε∞ ∈ R is the permittivity at an infinite frequency and cr, ar ∈ C are

parameters chosen such that (1.92) fits the actual permittivity data of the material

to be modelled. This fit can be done using the vector-fitting routines proposed

in [163–165]. The number of residues and poles pairs, R, necessary to obtain a

good approximation will depend on the complexity of the actual ε(ω). A necessary

condition to ensure that ε is stable and causal is that the real part of ar is negative.
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Introducing model (1.92) into equation (1.2),

ε0ε∞∂t ~E = ~∇× ~H − σ ~E −
R∑
r=1

(
∂t ~Pr + ∂t ~P

′
r

)
(1.94)

with

~Pr = ε0χr ~E and ~P ′r = ε0χ
′
r
~E (1.95)

Considering also that if ~E ∈ R then ~P ′r = ~P ∗r we can finally rewrite (1.1) and (1.94)

as a system of R+ 2 coupled PDEs.

∂t ~E =
1

ε0ε∞

[
~∇× ~H − σ ~E − 2

R∑
r=1

<[ar ~Pr + ε0cr ~E]

]

∂t ~H = − 1

µ
~∇× ~E

∂t ~Pr = ar ~Pr + ε0cr ~E ∀r = 1, . . . , R (1.96)

With this formulation, the most commonly used dispersive media models can be

obtained as particular cases:

1. A purely conductive media can be modeled using a single residue-pole pair

with a = 0 and c = σ/(2ε0). This is equivalent to adding a conductivity term

σ ~E into equation (1.2).

2. Poles of a Debye’s model can be obtained with cr = ∆εr/(2τr) and ar = −1/τr.

3. Similarly for Lorentz’s media we have that cr = j∆εrω
2
r/(2

√
ω2
r − δ2

r ) and

ar = −δr − j
√
ω2
r − δ2

r .

4. Drude’s media

ε(ω) = ε∞ −
ω2
r

ω + jωγr
(1.97)

drive us to a two poles decomposition a1 = γ0, c1 = ω2
0/(2γ0) and a2 = 0,

c2 = −c1. Leading to an unstable scheme (a1 > 0). Drude’s media can be

modeled fitting the time derivative of the susceptibilities jωχ and jωχ′ driving

to,

χ(ω)s =
bs

jω(jω − ds)
(1.98)

1.7.2.2 Stability of dispersive models

The stability conditions for dispersive media have been studied by several authors

[125, 159, 166] finding that the DG semi-discretized scheme is stable for any physi-

cally stable model. When we introduce dispersion models, we find that the original
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eigenvalues that we obtained (1.28) are affected by the new equations in (1.96). The

new eigenvalues or the modification of the existing ones may make them to move

out of the stability regions (Fig. 1.6) forcing us to reduce ht to ensure the stability

of the scheme. For dispersive media [154], [167] and [159] show that the DGTD and

CGTD schemes with LF2 time integration schemes are stable and their solutions

converge. This happens because the leap-frog schemes are only unstable depending

on the imaginary part of the eigenvalues present in Maxwell’s equations (1.96) as

discussed in Section 1.5.1. However, when we apply the LSERK4 scheme introduced

in section 1.5.2 the new eigenvalues may lead to unstable schemes if the modified

eigenfrequencies fall out of the closed stability region.

1.7.3 Anisotropic materials

The DGTD method can be straightforwardly extended to anisotropic materials [14,

15, 99, 168]. Substituting ε and µ in (1.1) and (1.2) with electric permittivity and

magnetic permeability symmetric positive-definite tensors ¯̄ε and ¯̄µ.

We can express ¯̄ε and ¯̄µ, and their inverses, in a local base of vectors. Following an

operation splitting method similar as was done in section 1.4.2 we can derive again a

one dimensional Riemann problem to deduce new conditions for the numerical fluxes

(1.19). However, the fact that we are using tensors leads us to expressions for two

matrices, impedance ( ¯̄Z2) and admittance ( ¯̄Y2), which play a role equivalent to the

scalar impedance (Z) and admittance (Y ) magnitudes defined for the isotropic case.

Finally ¯̄Z2 and ¯̄Y2 are introduced in (1.19) to account for the anisotropic nature of

the media. The rest of the scheme is also affected by the tensorial nature of ¯̄ε and ¯̄µ

but their effect is simply to scale the mass matrices (1.14) depending on the tensor

values.

An example problem is shown in Fig. 1.9 (from [14]). In this problem a sphere is

illuminated with a linearly polarized plane wave. The bistatic RCS is computed at

a frequency for which the diameter is D = 1.2λ, with λ being the wavelength. The

results are compared with a reference case [2] and with the solution provided by

the Ansoft HFSS commercial software. The maximum difference found is 0.35 dB,

therefore resulting in a good agreement.

1.8 Subcell models

Through a modification of the numerical flux conditions we can model a wide variety

of phenomenons such as lumped elements, multi-port networks, or thin layers.
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Figure 1.9: Bistatic RCS of an isotropic/anisotropic sphere (D = 1.2λ and λ = 1.0m).
LFDG results are compared to those appearing in [2], and computed with Ansoft HFSS.

1.8.1 Lumped elements

The modeling of passive lumped elements such as resistors, capacitors, and inductors

and general combinations of them has been studied in [169–171], a generalization

of the previous works for multi-port networks is carried on in [68, 172]. Lumped

elements can also be seen as special cases of thin layers which are introduced in the

next section.

1.8.2 Thin layers

Thin layers of any material, including anisotropic and dispersive media, is described

in [173–175] for the FDTD method. Specifically for DGTD, a simple resistive layer

was introduced in [67] and a rigorous formulation and validation, suitable also for

curved geometries, is shown in [99] and [176]. To model thin layers, we will use a

Surface Impedance Boundary Condition (SIBC) that reproduces its behavior. Note

also that an SIBC defined over a free surface can also be regarded as a two-port

network model (see Fig. 1.10).

Let us suppose an indefinite panel embedded in air is illuminated by a normally

incident TEM plane wave. An equivalent circuit of this setup is shown in Fig. 1.11

in which ~E0, ~Ed, ~H0 and ~Hd are the components of the electric and magnetic fields

which are tangential to the external faces (0 and d) of the slab, respectively. Using
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~H0
η0

~E0

~Ei

[Φ(ω)]
~Ed

~Hd

η0

Figure 1.10: Two-port representation of the air-embedded panel illuminated by a
TEM plane wave.

~H0

~E0 ~Ed

~Hd

Z0 Zd

Zt ~H0

Zt ~Hd

Figure 1.11: Magnetic field controlled circuit representation of a thin layer.

a two-port transmission line formalism we can deduce the following relationship

between the field components(
~E0(ω)

~H0(ω)

)
= [Φ(ω)]

(
~Ed(ω)

~Hd(ω)

)
(1.99)

with

Φ11(ω) = Φ22(ω) = cosh(γd) (1.100)

Φ12(ω) = η sinh(γd) (1.101)

Φ21(ω) = η−1 sinh(γd) (1.102)

with η and γ being the intrinsic impedance and the propagation constant respec-

tively. Note that this expressions are derived from ε and µ which can depend on ω,

as the ones presented in Section 1.7.2.
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Matrix equation (1.99) can be transformed, using widely known two-port network

relationships [177], into the following equivalent magnetic-field-controlled (MFC)

formulation:

[
~E0

~Ed

]
︸ ︷︷ ︸
~̃E

=

[
Z0 −Zt
−Zd Zt

]
︸ ︷︷ ︸

Z̃(ω)

[
~H0

~Hd

]
︸ ︷︷ ︸
~̃H

(1.103)

Fig. 1.11 shows the sketch of the circuit model of (1.103) in which the dependence of

the electric field at the one side of the slab from the magnetic field at the other one

is represented by MFC electric-field sources. Notice that for non-symmetrical multi-

layered slabs the coefficients Φ11 and Φ22 are not coincident, even if matrix [Φ(ω)]

always satisfies the reciprocity condition; therefore, the impedances Z0 and Zd can

assume different values, in general. The Z̃ can be decomposed using a VF technique

as the one we used in Section 1.7.2, using for instance the routines provided by

[163–165]

Z̃(ω) = Z̃∞ +
P∑
p=1

Z̃p
jω − ap

(1.104)

being Z̃∞ and Z̃p an approximation of the impedance matrix of the medium. With

this decomposition Ẽ can be expressed as

~̃E(ω) = Q̃∞(ω) +

P∑
p=1

Q̃p(ω) (1.105)

with

Q̃∞ =

[
~Q0,∞
~Qd,∞

]
= Z̃∞ ~̃H (1.106)

and

Q̃p =

[
~Q0,p

~Qd,p

]
= Z̃p ~̃H (1.107)

Making use of the ADE formalism, the infinity frequency term is

Q̃∞(t) = Z̃∞H̃(t) (1.108)

The frequency dependent terms arise to P new differential equations

∂tQ̃p = apQ̃p + Z̃ ~̃H(t) (1.109)
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That are solved similarly as we did in Section 1.7.2 for dispersive materials. The

calculated electric fields are used, similarly as was done in (1.23), (1.24), and (1.25),

to modify the jump terms (1.20) in the following way,

[[E]]SIBC,0 = 2(E−E0)

[[H]]SIBC,0 = 0 (1.110)

and similarly for the d side of the SIBC.

1.8.3 Thin wire geometries

Particularly in EMC, it is often needed to evaluate currents on cables. To do this,

the typical approach is to model cables as thin wires that are split into segments

located along the edges of the cells in the mesh [67]. On each segment, the currents

and charges are evaluated following an implementation of the Holland formalism

[178, 179]. These equations are discretized on each of the segments following a

similar formalism as we have used in section 1.4 but this time for a one dimensional

problem weakly coupled with our original semi-discretization.

A different approach is followed by [180] in which the region containing the thin

wires is solved using the Time Domain Integral Equation that is then coupled to the

DGTD algorithm by a modification of the numerical fluxes, similarly as was done

in section 1.6.1 for plane waves.

1.9 Computational implementation

In this section we present some final remarks regarding the computational imple-

mentation of a few of the techniques previously described.

1.9.1 Geometrical discretization

An important aspect for an efficient simulation is the capability of generating com-

plex meshes. This requirement is fulfilled by most of the commercial CAD tools.

The tool SEMBA, that we have developed, uses GiD for pre- and post-processing.

GiD [104] is a commercial tool that allows pre-processing of geometries with CAD

importing capabilities. These geometries can be meshed in a variety of ways, in-

cluding structured and semistructured meshes, linear or quadratic elements, and
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several types of elements (tetrahedrons, hexahedrons, prisms, ...). The program

permits a high degree of customization that allows users to develop their own prob-

lem types. Additionally, the results obtained can be easily visualized and several

post-processing tools are also offered.

There are many other applications that can offer solutions for obtaining meshes.

Among the open-source tools, we highlight Gmsh [103] and OpenFoam [181].

1.9.2 Preprocessing

To increase the efficiency of the computations and implement certain capabilities it

is necessary to perform some pre-processing tasks. These tasks are usually optional

as they depend on the capabilities implemented in the solver.

1.9.2.1 Selection of basis functions

An a priori hp-refinement heuristic strategy consists on choosing the size of the

mesh, and the order of the basis function in each tetrahedron [15]. The target is

to ensure a given accuracy level, minimizing the computational cost. The selection

of the mesh size has to be made in the mesh-generation process, since there is an

optimum element size that minimizes the computational cost for a required accuracy.

In real meshes, the element sizes vary throughout the computational domain, and

the accuracy is finally adjusted with the selection of the order p. This allow us

to employ higher-order basis for larger tetrahedrons, and lower orders for smaller

ones. This approach can also combine gradient spaces of reduced order p− 1, with

rotational spaces of complete order p [85].

It bears noting that smaller elements need shorter timesteps, but if lower orders are

used in these elements, the stability condition is also relaxed. The combination and

mixing different orders of the basis functions depending on element size, makes the

timestep among all the elements more homogeneous, reducing the number of levels

required for the LTS algorithm.

1.9.2.2 LTS Level classification

The local time-stepping strategy described in Section 1.5.3.1 requires a classification

of all the elements according to their maximum timestep. Fig. 1.12 illustrate the

distribution of the timesteps for the elements in a real problem. As there are usually
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(a) Example of distribution of timesteps in a real problem (described in
[13]). The choice of timestep and the timesteps of different levels have
been included in the plot. The estimated average timestep was 88.5 ps,

compared to the minimum 10.5 ps [15].

(b) Elements evolved with the double of the minimum timestep (Tier 1)
using an LTS technique for LF2 [23].

Figure 1.12: Assortment of tiers for the use of a LTS technique.

some costs associated with the buffering zones between time tiers [15, 23, 25, 128], the

minimum timestep can be actually tuned to provide a maximum average timestep.

1.9.3 Parallelization

One key advantage of discontinuous Galerkin methods is their simplicity for the

parallelization in memory-distributed hardware architecture. A feature that arises

from its explicitness. This allows us to make use of the Message Passing Interface
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Figure 1.13: Distribution of the mesh among the different MPI processes.

(MPI) standard [108, 110, 182] or the GPU (CUDA/OpenCL) [122, 183, 184]. The

DGTD method exhibits great boosts in performance thanks to its memory locality,

the regularity of access patterns and the high arithmetic intensity [184]. There are

several ways to perform the partitioning of the mesh carried out during the pre-

processing stage. The simplest way is to manually define regions that are handled

to the different processes (Fig. 1.13). However, as pointed out in [122], this may

result in a load unbalance that reduces drastically the efficiency. To solve this issue

the ParMetis library [185] can be used to partition the mesh assigning different

weights to the cells depending on the number of arithmetic operations that they

need. ParMetis can also be configured to provide the partition with the minimum

interface, to optimize the interprocess communication. Other techniques developed

for FDTD can also be used to reduce the number of interprocess communications

[186].
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Chapter 2

A spurious-free Discontinuous

Galerkin Time Domain method

for the accurate modeling of

microwave filters
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discontinuous galerkin time-domain method for the accurate modeling of microwave

filters. Microwave Theory and Techniques, IEEE Transactions on, 60(8):2359–2369,

2012

Abstract

The simulation of highly resonant structures requires techniques that are accurate

and free of spurious-mode contamination. Spurious modes can severely corrupt the

solution of a physical problem, and their suppression is a must for any numerical

scheme in frequency or in time domain. In this paper, we present the application of

a highly accurate spurious-free vector Discontinuous Galerkin Time Domain method

to waveguide applications. We show that spurious solutions (which increase with

the number of degrees of freedom of the problem) can be efficiently attenuated by

using penalized fluxes. For validation, we apply our approach to the simulation of

microwave filters, since their highly resonant behavior is challenging for time-domain

techniques.

55
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2.1 Introduction

The Discontinuous Galerkin Time Domain method (DGTD) is a numerical tech-

nique that is attracting attention in time-domain (TD) computational electromag-

netics [27]. DGTD starts from a variational formulation to integrate the spatial

part of Maxwell’s time-domain (TD) curl equations, with an appropriate differential

integration scheme for the time part. As in Finite Elements Methods (FEM), the

space is divided into M non-overlapping elements, in each of which the solution

is expanded in a set of local basis functions of arbitrary order. A weak form of

Maxwell’s curl equations is found element by element by employing a Galerkin test

procedure. Unlike in FEM, the solution is allowed to be fully discontinuous across

the boundaries between adjacent elements. Thus, local mass and stiffness matrices

do not require the assembly of adjacent element terms, with the subsequent com-

putational advantage over classical FEM. DGTD needs only the inversion square

matrices of Q × Q elements (with Q the number of degrees of freedom (dofs) per

element), while the system of equations of (' MQ ×MQ) needs to be solved at

each time step for FEM in TD[60, 187].

For the solution between elements sharing a common surface to be connected, contin-

uous numerical fluxes of the tangential field components are defined at the interface

in the manner used in Finite-Volume Time-Domain (FVTD) methods [188]. The

simplest flux condition found in the literature is the centered one, which employs a

simple average of the tangential field on each side to build the flux [189]. Another

one is the upwind flux [188] used in the classical FVTD, which is found from the

solution of the Riemann discontinuous initial value problem, and depends both on

the electric and on the magnetic fields on each side. In between the centered and

the upwind fluxes, there is a family of them, called partially penalized, which can be

defined by using a parameter which penalizes the discontinuities in the tangential

components in a lossy manner [27].

Classical continuous FEM methods, both in curl-curl and in the mixed formula-

tion, are well known for supporting spurious modes, which are nonphysical solu-

tions arising in the numerical approximation not present in the analytical problem.

Especially harmful are nondivergent spurious modes (for divergence-free analyti-

cal problems) excited at non-null frequencies, since they severely corrupt near-field

solutions. Many strategies to reduce them are found in the literature. For nodal

(scalar basis) FEM, regularization techniques including conditions on the divergence

of the solution, have been successfully employed [87]. For vector FEM, it is possible

to use curl-conforming elements for which the basis vectors abide by the natural
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(dis)continuity of the electromagnetic fields1, supporting spurious modes only at

null frequency [60]. Higher-order hierarchal basis functions were introduced in [85]

with this purpose.

DGTD also exhibits the appearance of spurious modes [62, 74–76, 89, 90, 190].

However, an added advantage of DGTD over FEMTD resides in its discontinu-

ous nature, which allows them to be removed due to the use of upwind/penalized

fluxes [74–76, 89, 90]. As stated above, these fluxes are characterized by the addition

to Maxwell’s equations of dissipative terms, and are proven to attenuate spurious

modes in space more strongly than physical modes. The suppression of spurious

modes becomes a critical issue for DGTD formulations of the Perfectly Matched

Layer (PML) truncation condition, since instabilities appear otherwise [113]. Both

DGTD for vector and scalar basis are spurious-free for penalized fluxes, and have

been successfully developed by several authors [10, 27, 67, 124, 189, 191–195], finding

comparable levels of accuracy. Of course, there are advantages and disadvantages of

vector and nodal formulations, basically in terms of computational implementations,

also depending on the time integration scheme, but these issues lie beyond the scope

of the present study, and will be addressed elsewhere.

In this paper, we present an analysis of the accuracy of DGTD methods for the

simulation of highly resonant structures, and we demonstrate that the impact of

using different fluxes depend on the observable used for comparison. The paper

is organized as follows: we first summarize the vector and nodal formulations of

DTGD. We next revisit and provide a deep discussion on the topic of spurious

modes for simple 1D and 3D problems, both for centered and partially penalized

fluxes. Finally, we assess the accuracy of the DGTD method depending on the flux

choice using microwave filters as a workbench.

2.2 DGTD fundamentals

2.2.1 Vector formulation

Let us assume Maxwell’s symmetric curl equations for linear isotropic homogeneous

media in Cartesian coordinates. Now, let us divide the space in M non-overlapping

elements V m, each bounded by ∂V m and define, element by element, locally contin-

uous basis/test functions, and two inner products (volume and surface):

Bm = {~Φm
1 , ~Φ

m
2 , ..., ~Φ

m
Q} (2.1)

1Continuity on the tangential components, and discontinuity in the normal ones.
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〈~u, ~w〉Vm =

∫
Vm

(~u · ~w)dV , 〈~u, ~w〉∂Vm =

∮
∂Vm

(~u · ~w)dS (2.2)

Requiring the residue of Maxwell’s curl TD equations to be orthogonal to each basis

function element by element, we find that〈
~Φm
q′ , ε∂t

~Em + σe ~E
m −∇× ~Hm

〉
Vm

= 0 (2.3)〈
~Φm
q′ , µ∂t

~Hm + σm ~H
m +∇× ~Em

〉
Vm

= 0 (2.4)

∀q = (1, . . . , Q) , m = (1, . . . ,M) (2.5)

With ~E, ~H,σe,σm,ε,µ being, respectively: electric field, magnetic field, electric con-

ductivity, magnetic conductivity, permittivity, and permeability. After some algebra,

we can write Eqs. (2.3)and (2.4) respectively as∫
Vm

(~Φm
q ′ · (ε∂t ~Em + σe ~E

m) +∇× ~Φm
q ′ · ~Hm)dV =

∮
∂Vm

~Φm
q ′ · (n̂m × ~Hm)dS (2.6)

∫
Vm

(~Φm
q ′ · (µ∂t ~Hm + σm ~H

m)−∇× ~Φm
q ′ · ~Em)dV =

−
∮

∂Vm

~Φm
q ′ · (n̂m × ~Em)dS (2.7)

These relate the volume integral of the LHS to a flux integral in the RHS. Classical

mixed FEMTD computes the RHS of (2.6)(2.7) by forcing the tangential component

to be continuous at the interface across adjacent elements n̂m × ~um = n̂m × ~um+

(the superscript + denotes magnitudes from adjacent elements, and ~u = { ~E, ~H}).
However, DGTD defines continuous numerical fluxes of the tangential-field compo-

nents n̂m × ~um∗ to be used instead of n̂m × ~um at the RHS of (2.6)(2.7), on each

side of ∂V m. These tangential fields do not coincide with any of the values on any

side of ∂V m, but depend linearly on them, with a general form

n̂m × ~Em∗= n̂m × ~Em+ κme

[
n̂m × ( ~Em+− ~Em)+ ~Ms

]
+

νmh

[
n̂m × (n̂m × ( ~Hm+ − ~Hm)− ~Js)

]
n̂m × ~Hm∗= n̂m × ~Hm+ κmh

[
n̂m × ( ~Hm+− ~Hm)− ~Js

]
−

νme

[
n̂m × (n̂m × ( ~Em+ − ~Em) + ~Ms)

]
(2.8)
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with κ, ν appropriate coefficients (see subsection 2.2.3). In Eq. (2.8), we have in-

cluded possible surface currents, required, for instance, in the implementation of

Huygen’s sources [10].

Assuming that the space and time dependencies of the fields can be separated, and

that the spatial part is expanded within each element in a set of basis functions

equal to the set of test functions (Faedo-Galerkin method), we get

~Em =

Q∑
q=1

emq (t)~Φm
q (~r) , ~Hm =

Q∑
q=1

hmq (t)~Φm
q (~r) (2.9)

a final semi-discrete algorithm is found

µMdtH
m+ (σmM− Fνh)Hm+ F+

νhH
m+=

− (S− Fκe)Em− F+
κeE

m+−Msκ+Jsν (2.10a)

εMdtE
m+ (σeM− Fνe)Em+ F+

νeE
m+=

(S− Fκh)Hm+ F+
κhH

m+−Jsκ−Msν (2.10b)

For this, we have defined the following.

• Hm and Em are column vector varying in time with the field coefficients (dofs)

in the element m, and Hm+ and Em+ with the field coefficients (dofs) of the

adjacent elements,

Hm =
(
hm1 (t) , . . . , hmQ (t)

)T
(2.11a)

Em =
(
em1 (t) , . . . , emQ (t)

)T
(2.11b)

• Msκ, Msν , Jsκ and Jsν are column vector varying in time with the weak form

of the surface source terms in the element m,

Msκ =
(〈
~Φm

1 , κ
m
e
~Ms (r, t)

〉
∂Vm

, . . . ,
)T

(2.12a)

Msν =
(〈
~Φm

1 , ν
m
e n̂m × ~Ms (r, t)

〉
∂Vm

, . . . ,
)T

(2.12b)

Jsκ =
(〈
~Φm

1 , κ
m
h
~Js (r, t)

〉
∂Vm

, . . . ,
)T

(2.12c)

Jsν =
(〈
~Φm

1 , ν
m
h n̂m × ~Js (r, t)

〉
∂Vm

, . . . ,
)T

(2.12d)

• M is the mass matrix,

[M]q′q =
〈
~Φm
q′ ,
~Φm
q

〉
Vm

(2.13)
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• S is the stiffness matrix

[S]q′q =
〈
~Φm
q′ ,∇× ~Φqm

〉
Vm

(2.14)

• F are the flux matrices

[Fκh]q′q=
〈
~Φm
q′ , κ

m
h n̂m × ~Φm

q

〉
∂Vm

[Fκe]q′q=
〈
~Φm
q′ , κ

m
e n̂m × ~Φm

q

〉
∂Vm

(2.15a)

[Fνh]q′q=
〈
~Φm
q′ , ν

m
h n̂m × n̂m × ~Φm

q

〉
∂Vm

[Fνe]q′q=
〈
~Φm
q′ , ν

m
e n̂m × n̂m × ~Φm

q

〉
∂Vm

(2.15b)[
F+
κh

]
q′q

=
〈
~Φm
q′ , κ

m
h n̂m × ~Φm+

q

〉
∂Vm[

F+
κe

]
q′q

=
〈
~Φm
q′ , κ

m
e n̂m × ~Φm+

q

〉
∂Vm

(2.15c)[
F+
νh

]
q′q

=
〈
~Φm
q′ , ν

m
h n̂m × n̂m × ~Φm+

q

〉
∂Vm[

F+
νe

]
q′q

=
〈
~Φm
q′ , ν

m
e n̂m × n̂m × ~Φm+

q

〉
∂Vm

(2.15d)

For the time-domain integration, several approaches can be chosen. The most widely

employed ones are the 2nd-order leapfrog (LF) scheme based on centered differenti-

ation2, and 4th-order Runge-Kutta (RK4) [27].

2.2.2 Scalar-basis (nodal) formulation

The fundamentals of the scalar formulation are similar to those of the vector one.

Now the basis and test functions are chosen to be scalar: Bm = {Φm
1 ,Φ

m
2 , ...,Φ

m
Q}.

The weak form of Maxwell’s equations is found by nullifying the next inner product

of each scalar basis function with Maxwell’s curl equations

〈λ, ~w〉Vm =

∫
Vm

(λ~w)dV , 〈λ, ~w〉∂Vm =

∮
∂Vm

(λ~w)dS (2.16)

A set of equations formally similar to (2.10) is found, now with Em (and Hm )

column matrix with the vector coefficients varying in time

Em =
(
~em1 (t) , . . . , ~emQ (t)

)T
(2.17a)

2Dissipative terms related to F̃+
νh and F̃+

νe require a backward approximation when solved by LF
(Hm

n ' Hm
n−1/2 and Emn+1/2 ' Emn ), to formulate an explicit scheme, since adjacent terms involve

synchronous magnitudes.



61

with the sole difference in the stiffness matrix, which is instead

[S]q′q =
〈
Φm
q′ ,∇Φqm

〉
Vm

(2.18)

Common choices for the scalar basis functions [189], are set 3D Lagrange interpo-

lating nth-order polynomials [82] and Legendre polynomials.

2.2.3 Numerical fluxes

Numerical fluxes reported in the literature can be seen as particular cases of the

partial penalized flux [27, 62, 77, 113] with the form of Eq. (2.8), here rewritten

for convenience as a function of a penalization parameter τ (the parameters κ, ν

in (2.8), can be expressed in terms of the τ parameter by simple identification)

n̂m ×E∗ =
n̂m × (Y mEm + Y m+Em+) + Y m+Ms

Y m + Y m+
−

τ
n̂m × [n̂m × (Hm −Hm+) + Js]

Y m + Y m+
(2.19a)

n̂m ×H∗ =
n̂m × (ZmHm + Zm+Hm+)− Zm+Js

Zm + Zm+
+

τ
n̂m × [n̂m × (Em −Em+)−Ms]

Zm + Zm+
(2.19b)

with Zm = 1/Y m = (µm/εm)1/2, and Zm+ = 1/Y m+ = (µm+/εm+)1/2 the intrinsic

impedances of the media at the element m and its adjacent m+, respectively.

The most common choices are: centered (τ = 0), upwind (τ = 1) and partial

penalized numerical fluxes ( 0 < τ < 1). The centered flux [194] is equivalent

to averaging the solutions at both sides of the interface, while the upwind flux is

the usual one employed in FVTD [188] arising from the solution of the Maxwell’s

equations with discontinuous initial values (Riemann problem) [189].

The terms for τ 6= 0 produce non-null ν factors that introduce artificial dissipation

in Eqs. (2.10), and this effect can be shown to be stronger for spurious modes

than for physical ones [62, 74, 77]. The attenuation of the nonphysical modes is

maximum for the upwind flux, and null for centered flux, which dissipates neither

physical nor spurious modes. The τ parameter actually penalizes the discontinuities

on the physically continuous tangential components (n̂ × n̂ ×
(
~Em − ~Em+

)
and

n̂× n̂×
(
~Hm − ~Hm+

)
) by introducing a stabilization-like effect, introducing losses,

if the average jump over the face is positive, and amplification in the case of negative
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discontinuity. In the adjacent element the stabilization effect will take the opposite

sign.

The value of the penalization parameter also has an impact on the stability con-

straints in the time increment, which becomes the most restrictive for the upwind

flux and less restrictive for the centered flux. A tradeoff solution can be found by

tuning τ to retain spurious-mode dissipation while relaxing the stability constraints.

This fact is analyzed in case of Leap-Frog integration scheme in [77], and, in [113],

for Runge-Kutta schemes.

2.3 Numerical dispersion and dissipation

The dispersion and dissipation of the numerical method will be studied by searching

for plane-wave solutions of frequency ω and wavevector ~k, in general complex. These

functions, replaced in the original equations, lead to an eigenproblem, with eigenval-

ues providing the numerical dispersion and dissipation relationships ω = f(~k) = 0,

and with eigenvectors providing the numerical-structure relationships between the

dofs (field components). For instance, the analytical Maxwell’s equations support

planewaves in free-space with the well-known dispersion relationship ω2 = k2/c2,

and eigenvectors related by η0
~H = k̂× ~E, with c and η0 being the free-space speed

of light and impedance, respectively.

A practical way to study the dispersion of a numerical scheme approaching Maxwell’s

equations consists of restricting the space of solution to a bounded region with

periodic boundary conditions (PBC), since they can be numerically enforced in an

easy way. Let us assume for simplicity a 1D-domain x ∈ [0,∆] and let us search for

modes fulfilling PBCs in space

~Ψ(x = ∆, t) = e−jα~Ψ(x = 0, t) , ∀t , ~Ψ = { ~E, ~H} (2.20)

for arbitrary α ∈ [0, 2π). Plane-wave solutions of the form ej(ωt−kx) (leftwards k > 0

and rightwards k < 0) comply with the PBC condition (2.20) for a infinite numerable

spectrum of real wavenumbers kn (each oscillating at a complex frequency ωn)

kn = ±
( α

∆
+
π

∆
2n
)
, n = 0,−1,+1,−2,+2, . . .

ωn = f(kn) (2.21)

where we will refer to k0 = α
∆ as a fundamental mode, and to all other kn as harmonic

modes.
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Let us apply this technique to the DGTD method in a semi-discrete form in space [27].

For this, we define a column vector ~U with all the dofs of a given problem and express

the homogeneous semi-discrete DG equations (2.10)

jω~U = ADG~U (2.22)

with ADG the semi-discrete DG operator. PBCs are easily enforced in DG through

the flux conditions by setting

n̂m × ~Em+|x=∆ = e−jα(n̂m × ~Em|x=0)

n̂m × ~Em+|x=0 = ejα(n̂m × ~Em|x=∆) (2.23)

Plugging (2.23) into (2.22), we find a homogeneous algebraic system of equations,

with a number of unknowns equal to the number of dofs. Nontrivial solutions corre-

spond to the eigenvectors of the semi-discrete space operator. Under the assumption

that the space operator is diagonalizable, there will exist a basis of eigenvectors ~Um

, m = (0, 1, . . . , dofs− 1), each propagating with a complex frequency ω = f(k̃m),

with k̃m its corresponding eigenvalue.

It should be noted that the Shannon sampling theorem [196] establishes an upper

limit to the maximum wavenumber which can be sampled in a spatial domain dis-

cretized with dofs samples. For instance, let us assume a one-element domain in

1D-DGTD, solved with pth-order polynomials ((p+1) electric dofs plus (p+1) mag-

netic dofs). The analytical bandwidth (2.21) which can be represented numerically

is restricted to

|kn| =
∣∣∣k0 +

π

∆
2n
∣∣∣ ≤ π

∆
(p+ 1) , n = (0,−1,+1, . . .) (2.24)

That is, for each k0 6= π/∆ there3 exist (p+ 1) leftward analytical modes +|kn| plus

(p + 1) rightward ones −|kn|, which can be numerically approximated. Of course,

numerical eigenvalues k̃ fulfilling the Shannon sampling theorem are not necessarily

proper approximation of the analytical ones k. In a broad sense, we will refer to

these numerical modes which do not properly approximate any analytical one, as

spurious or nonphysical modes.

Let us illustrate this for our simple 1D 1-element case solved by nodal-DGTD and

Lagrange polynomial pth-order basis. Figs.2.1,2.2 show the dispersion and dissipa-

tion relation for 1st- and 2nd-order basis (with centered and upwind fluxes). We note

3See Figs.2.1,2.2 to see the case k0 = π/∆
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that, for p = 1, there appear one rightward and one leftward solution which approx-

imate the fundamental mode for well-resolved problems (L ≡ k0∆/(p + 1) → 0).

Another two modes (one leftward plus rightward) solutions are found, which should

correspond to the first harmonics (|k−1| = 2π
∆ −k0). Due to the coarse discretization

of these modes, close to their own Shannon limit for L → 0, the numerical phase

speed is far from the analytical one. These poorly sampled modes (for a well-resolved

fundamental one) with an undesired behavior are the spurious or nonphysical modes.

It bears noticing that, in case of (L→ π), when |k−1| ≈ 0 and |k0| ≈ 2π
∆ , the situa-

tion is the opposite: the fundamental modes numerically propagate in a wrong way,

providing a good approximation of what has been defined as harmonics.

For p = 2, a similar analysis can be made. Apart from the two fundamental modes,

another four modes (two leftward plus two rightward) appear. In case of L→ 0, the

first harmonics (±k−1) can be distinguished in the numerical dispersion functions,

but the second harmonics ±k+1 present wrong behavior on the phase speed. For

different intervals of L, the different solutions, fundamental or harmonics modes,

(±k̃0,±k̃−1,±k̃+1) offer a better or worse approximation to the analytical solutions

(±k0,±k−1,±k+1). In case of upwind flux, much better approximation over more

bandwidth is achieved than for centered flux.

A noteworthy point here is to analyze the dissipation relationship of the upwind

flux. All modes propagate with an attenuation that is larger for poorly resolved

modes than for well-resolved ones. Clearly, for the fundamental mode, dissipation

is minimum for L → 0. In case of the harmonics, this situation takes place for

different intervals of L, where they are properly resolved. Furthermore, in all cases,

good phase dispersion corresponds to low dissipation, and poor phase dispersion

corresponds to a high dissipation relationship. However, for the centered flux, the

numerical modes do not attenuate in any case, and poorly sampled analytical modes

with wrong behavior (spurious) may appear together with the well-resolved ones in

a simulation.

The definition we use here of spurious solutions is broad in the sense that it pro-

vides information for the whole spectrum of the semi-discrete space operator (which

constitute a basis for all possible solutions or diagonalizable operators): it provides

criteria to distinguish physical from nonphysical behavior, just in terms of the cor-

rect approximation between the analytical and numerical solutions. However, the

qualification of spurious mode actually depends on the analytical problem under

study. For instance, if we excite the PBC-analytical problem with the fundamental

mode as initial values, we might not expect the appearance of any of the higher har-

monics in its numerical counterpart. In this narrow sense, any solution apart from
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Figure 2.1: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p + 1), for scalar 1D-DGTD. Analytical dispersion in red ω = kn = ((p + 1)L +
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in
the centered case). Up: Centered p=1, Down: Centered p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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Figure 2.2: Numerical dispersion and dissipation ω = f(k̃n) as a function of L =
k0∆/(p + 1), for scalar 1D-DGTD. Analytical dispersion in red ω = kn = ((p + 1)L +
2nπ)/∆. Sub-index in k̃m has been added a posteriori according to the analytical mode
matched for some L region (no identification for k̃m has been guessed for p = 2 in the
centered case) . Up: Upwind p=1, Bottom: Upwind p=2. The bandwidth allowed
by Shannon theorem is delimited with green lines, while dashed lines indicate modes
outside this band. Blue is used for numerical modes and red (magenta & brown) for

the analytical ones. (∆ = 1,µ0 = 1,ε0 = 1)
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that corresponding to the fundamental mode might also be considered spurious (see

[62]), even if it is well resolved in space. To illustrate this, we have projected the

fundamental (rightward) analytical mode k0, expanded in a p = 10 polynomial basis,

into the basis of numerical eigenvectors. Since these are not orthogonal, we cannot

assume a modal separation of the energy, but we still find that for a good resolution

L = 0.005, the numerical mode propagates with k̃0 ≈ k0 with an amplitude ∼ 572

times higher that of the next mode, whereas this ratio lowers to ∼ 28 for a resolution

of L = 0.11.

Let us move to a 3D case solved with hierarchal vector basis that is complete up

to order p = 2, both for the gradient and the rotational spaces. We have meshed

a cubic domain in a symmetrical way composed of 24 tetrahedrons, and enforced

PBC in the x-direction (2.23) with α = k0∆, k0 = 2π, ∆ = 0.2, and PBC conditions

at the Y Z and ZX-planes with α = 0 (no delay).

The numerical eigenvalue k̃ is plotted in Fig. 2.3. There are 2MQ = 1440 modes

corresponding to the number of dofs of the problem (M = 24 tetrahedrons and

Q = 30 dofs per element). Again, we find that the spectrum of the DG operator

depends heavily on the flux-evaluation scheme. It can be seen that, for the centered

scheme, none of the modes supported by the numerical method has dissipation

k̃imag = 0. Therefore, all numerical modes, both well-resolved physical and poorly

resolved spurious solutions, could be present in a numerical simulation and propagate

on the computational domain. On the contrary, for the upwind case, we can clearly

distinguish between well-resolved physical modes 4 and poorly resolved spurious

modes by looking at their attenuation k̃imag ≈ 0. Hence, poorly resolved spurious

modes decrease exponentially with spatial position and do not propagate along the

computational domain. It is important to note that some undesirable dissipation

also affects the well-resolved physical modes, depending on their spatial resolution.

For the penalized flux with τ = 0.1, similar conclusions are drawn. As mentioned

earlier, the choice of the τ parameter also has an impact on the stability conditions of

the final numerical scheme. For instance, when using a LF time-integration scheme,

the upper limit for stability in ∆t becomes more restrictive as τ increases. The use

of partial penalized flux with small values of the τ parameter has negligible effects

on the stability of the scheme while keeping enough practical attenuation in the

poorly resolved spurious modes. A deeper analysis of the stability is beyond of the

scope of this paper and is left for treatment elsewhere.

4Four fundamental rightward/leftward planewaves (two polarizations) and their corresponding
harmonics.
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Though the above results are only for the semi-discrete problem, the time-integration

scheme has an impact on the eigenvalue problem. For the simplest case of the

LF time scheme for lossless media and centered flux, the dispersion relationship

would become 2
∆t sin

(
ω∆t

2

)
= k̃, which introduces an upper stability limit for the

maximum allowable ∆t, over which some mode becomes unstable, and thus so does

the whole numerical scheme. For stable well-resolved schemes, the distribution of

the spurious/physical modes is slightly distorted, but the conclusions are similar to

those drawn for the semi-discrete scheme. Finally, let us consider a more realistic
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Figure 2.3: Spectrum of the DG operator for a cubic domain (meshed with 24 tetra-
hedra) with PBC (k0 = 2π and p = 2). Upwind flux (upper left), Centered flux (upper

right), Partially penalized flux τ = 0.1 (lower).

case: a 1m-side cubic 3D PEC cavity meshed with 5025 tetrahedrons. The fields

in the cavity are then excited via an electric-current source with a Gaussian pulse

time signal, with 10dB bandwidth of approximately 400 MHz. The problem has
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Figure 2.4: Power spectrum of the vertical component of electric field sampled at a
point inside the cavity, computed using centered, upwind, and partial penalized (τ =

0.025) fluxes, 4th-order 2N-storage Runge-Kutta and p = 2.

been simulated up to a physical simulated time of 0.5 µs by means of a RK4 time-

integration scheme. This problem was computed with centered, upwind, and partial

penalized flux, with very low τ = 0.025 with hierarchal vector-basis functions of

complete order p = 2. The electric field is sampled at one point and the Fourier

transform performed for the vertical component (Fig. 2.4). The power spectrum

computed with centered flux is noisy and shows spectral pollution due to the presence

of nonphysical spurious modes. In the case of upwind or partial penalized flux

(even for such a low value of τ), we can clearly distinguish the different resonant

frequencies.

2.4 Application to waveguide filters

Waveguide filters, an especially challenging type of problem for time-domain tech-

niques, are traditionally solved by methods in FD, such as FEM, integral-equation

methods, or analytical methods such as the mode matching. Due to the strong res-

onances that these structures present, two main features are required to deal with

them in TD. One is the stability of the method, since very long simulations are nec-

essary. The other is its accuracy, to maintain the coherence of the electromagnetic

field throughout the structure. In this work, we use waveguide filters to provide

proof of the robustness and accuracy of the DGTD method.

A set of enhancements have been included in our algorithm in order to optimize its

computational behavior:
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• Second-order curvilinear tetrahedra have been used for the accurate modeling

of geometries involving curvatures.

• A hp-refinement heuristic strategy to choose the order of the basis function

in each tetrahedron, depending on its size. To maintain uniform accuracy

throughout the spatial domain, with reasonable computational effort, we used

a higher-order basis for larger tetrahedra, and lower orders for smaller ones,

combining gradient spaces of reduced-order p − 1, with rotational spaces of

complete order p. It is important to note that smaller elements need shorter

time steps, but if a lower order is used in these elements, the condition is

relaxed. In the same way, longer time-steps can be used for larger elements

combined with higher orders. The combination and mixing of different orders

of the basis functions depending on element size, makes the time step between

all the elements more homogeneous.

• Despite the adaptive hp-refinement described above, large differences in the

maximum time steps for stability are found across the geometry. Thus, we have

classified the elements according to this limit for the LF-scheme at several

levels, and we employed different time-steps for each level. This technique,

which is known as local time stepping (LTS) [77, 93], can provide dramatic

savings in the CPU time.

Two types of filters have been considered: a dual-mode circular waveguide filter

(DMCWF) and a single resonator based on a rectangular cavity loaded by a dielectric

cylindrical puck.

The DMCWF structure has been analyzed in detail in [197] and measurements

are available. The filter is composed of a circular cavity resonator that includes

the input and output slots of a DMCWF. Due to the symmetries of the structure,

vertical perfect magnetic conductor-wall and horizontal perfect electric conductor

wall symmetry were considered in the numerical simulations, as is depicted in the

simulation setup of the Figure 2.5.

It is important to note that a dense discretization of the slots is critical for accurate

results. Table 2.1 gives the number of elements for each set of basis functions, while

Table 2.2 gives the number of elements and time step for each level of the LTS

algorithm.

Two observables have been considered:

1. A field probe inside the rectangular waveguide to record field evolution in TD.

Fig. 2.6 shows different results for partially penalized (τ = 0.025) and centered
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Figure 2.5: Dual-mode circular waveguide filter dimensions and problem setup (Ez
results overimpose for both fluxes).

Table 2.1: Number of elements (M) for each set of basis functions for the DMCWF.
GXRX stand for x order for the gradient space, y order for the rotational space

G1R1 G1R2 G2R2 G2R3 G3R3 Total

M 38988 2258 804 2734 15102 59886

dofs 935712 90320 48240 246600 1927320 3248192

Table 2.2: Local time stepping level distribution for DMCWF problem.

L1 L2 L3 L4

M 7 13101 22556 24222

∆t (ps) 6.96 10−3 20.88 10−3 62.64 10−3 187.92 10−3

flux cases. In the case of centered flux, and due to the spurious modes, Ey (and

similarly for Ex, though not shown) is not null and more energy is found across

the simulation (see Fig. 2.8). No noticeable difference between centered and

penalized is appreciated for Ez. Note also that the energy needs considerable

time to leave the filter, since the structure is very resonant. This leads to long

physical simulation times to achieve accurate results.

2. The filter response in terms of the S21 parameter. No remarkable differences

were found between centered/upwind or LF/RK4 schemes. For instance, Fig.

2.7 shows the comparison between measurement, centered, and partial penal-

ized (τ = 0.025) computed with LF and local time stepping, with excellent

agreement. No influence on the S21 parameter appears to exist due to spurious

modes, reaching excellent agreement in all cases.

Table 2.3 summarizes the computational requirements of the different simulations
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Figure 2.6: Dual-mode circular waveguide filter near fields computation.
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Figure 2.7: Dual-mode circular waveguide filter response. Measured and computed
data comparison.

performed. It should be noted that the 2nd-order LF scheme, combined with a 5-

level LTS provide the algorithm about 8 times faster than do non-LTS schemes for

this numerical case.

The second example we will show is a microwave filter with a dielectric material,

a single resonator based on a rectangular cavity loaded by a dielectric cylindrical
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Figure 2.8: Evolution of the energy inside the dual-mode circular waveguide filter.

Table 2.3: Computational requirements of the different cases (for a 8 processors AMD
OPTERON dual core 1.8GHz.). The computed physical time has been 35 ns. Fluxes:

C=centered, U=upwind, P=penalized with τ = 0.025.

Flux Scheme ∆t (3) steps(1) memory CPU(2)

C RK4 24.5 - 24.5 1428572 2.0 GB 121.2 h

U RK4 24.1 - 24.1 1452282 4.1 GB 213.3 h

C LF 19.6 - 19.6 1785715 2.0 GB 63.5 h

P LF 19.2 - 19.2 1822917 4.1 GB 118.5 h

C LF,5L-LTS 6.96 - 187.9 186250 2.1 GB 8.9 h

P LF,5L-LTS 6.81 - 183.9 190320 4.3 GB 15.5 h

(1) Number of steps for the maximum ∆t in the problem.
(3) Minimum-Maximun values in units of 10−15 s.

puck. This filter has been reported in [198] and measurements are available. Again,

the rectangular cavity is excited by two rectangular slots centered on opposite lat-

eral faces. The resonator is chosen with a high permittivity (εr = 29) (see setup

in Fig. 2.9). The TE10 mode is excited in the input port, by impressing surface

magnetic currents with its profile. The backwards propagated mode is absorbed by

the PML, and the forward–propagated one is the incident wave used to excite the

structure. The reflected wave required to evaluate the S21 parameter is computed

by projecting the computed electric fields with the TE10 profile at the output port.

The energy (Fig. 2.10) takes a long time to leave the cavity due to the presence of the

dielectric puck, which makes the structure very resonant. Excellent agreement in the

S21 parameter between simulation and the measurements is found in Fig. 2.11. Only

the results for a partially penalized (τ = 0.025) flux are shown (similar results can

be found with the centered flux, since, as with the previous filter, spurious modes

has no noticeable effect on the transmission coefficient).

The computed physical time, as appears in Table 2.4, was 180 ns, which corresponds

to 1980 cycles of the lowest frequency and 2880 of the highest frequency under

analysis. 2nd-order leapfrog with local timestepping has been used with no instability
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Figure 2.9: Single resonator composed of a rectangular cavity loaded by a dielectric
cylindrical puck.
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Figure 2.10: Evolution of the energy inside the single resonator filter.

problems. Due to the marked differences in the size of the elements, up to 6 levels

in the LTS have been used, and the ratio between the shortest and largest timestep

was 729. Again, depending on the size of the elements, a different order p of the

basis functions has been chosen.

2.5 Conclusions

In this paper, we have presented a highly accurate vector-based DGTD. We have

revisited the topic of spurious mode reduction and have shown how this can be
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Table 2.4: Single resonator: partial penalized flux τ = 0.025, 2nd-order Leap Frog
(6-LTS), M = 362706 elements, dofs=18505352, computed physical time 180.0 ns.

LTS1 LTS2 LTS3 LTS4 LTS5 LTS6
2 26 390 177768 94036 90484

0.0006 0.0018 0.0054 0.016 0.048 0.15
298 99.3 33.1 11.0 3.68 1.23

(G0,R1) (G1,R1) (G1,R2) (G2,R2) (G2,R3) (G3,R3)
0 298113 9302 3535 27577 24177

1st row = Local time stepping level
2nd row = Number of elements for each LTS level
3rd row = ∆t (in ps)
4th row = Time steps (in millions)
5th row = Basis functions (gradient,rotational) orders
6th row = Number of elements for each basis functions)
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Figure 2.11: S21 response of the single resonator filter. Measured and computed data
comparison.

minimized by means of penalized fluxes. The attenuation on the spurious modes

appearing in DGTD is a remarkable difference with respect to the continuous for-

mulation of FEMTD, and does not depend on the kind of basis-functions used by

the scheme, making both nodal and scalar DGTD spurious-free for penalized fluxes.

The application to microwave filters has demonstrated the accuracy and stability of

the proposed approach.





Chapter 3

A Nodal Hybrid

Continuous-Discontinuous

Galerkin Time Domain Method

for Maxwell’s Equations

L. D. Angulo, J. Alvarez, F. L. Teixeira, M. F. Pantoja, and S. G. Garcia. A

nodal hybrid continuous-discontinuous galerkin time domain method for maxwell’s

equations. IEEE Transactions On Microwave Theory And Techniques, Submitted

Abstract

A new nodal hybrid Continuous-Discontinuous Galerkin Time Domain (CDGTD)

method for the solution of Maxwell’s curl equations is proposed and analyzed. This

hybridization is made by clustering small collections of elements with a Continuous

Galerkin (CG) formalism. These clusters exchange information with their exte-

rior through a Discontinuous Galerkin (DG) numerical flux. This scheme shows

reduced numerical dispersion error with respect to classical DG formulations for cer-

tain orders and numbers of clustered elements. The spectral radius of the clustered

semi-discretized operator is smaller than its DG counterpart allowing for larger time

steps in explicit time integrators. Additionally, the continuity across the element

boundaries allows us a reduction of the number of Degrees Of Freedom (DOF) of up

to about 80% for a low-order three-dimensional implementation.
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3.1 Introduction

Galerkin finite element (FEM) techniques are a very flexible class of numerical meth-

ods to solve partial differential equations (PDEs). For electromagnetic problems in

linear media, they can be implemented either in the frequency domain (FD) and in

the time domain (TD). Continuous Galerkin (CG) [82, 83] formulations are more

prevalent in FD, either in nodal [87, 88] or in vector formulations [84, 95, 96], though

they can also be found in TD [44]. However, Discontinuous Galerkin (DG) formu-

lations are most often found in TD, also either in nodal [27] or in vector forms

[92]. Space-time Galerkin methods treat the time variable in a similar setting to

the spatial variables [8, 24, 117, 119, 132]. However, the most popular approach is

to evolve the semi-discrete spatial equations by means of explicit time-integration

schemes such as the second-order leap-frog (LF2) [34, 77, 93, 122] or the fourth-order

low-storage explicit Runge-Kutta (LSERK4) [23, 27, 30, 113, 199]. The maximum

time step allowed for stability by these schemes is constrained by the spectral radius

of the spatial operator, which in turns depend on the inverse square of the polyno-

mial order P , and on the minimum edge length h used for the spatial discretization.

This makes the use of p-refinement in DGTD, not common beyond intermediate-

orders of 3 ∼ 5 [122, 200, 201], though higher order implementations are reported

to be more parallelizable in GPU-based machines [184]. The use of h-refinement

in DGTD, also becomes problematic in multiscale problems, since (local) smaller

elements enforce reduced (global) time-steps to ensure stability. Strategies to miti-

gate this exist, like local time-stepping techniques [23, 77, 122], and implicit-explicit

(IMEX) time-integration schemes [120, 121].

Generally speaking, DGTD requires larger number of DOFs and smaller time-steps

for stability, however it provides a number of advantages over CGTD [44, 80]. Among

them: simpler treatment of discontinuities at interfaces [68, 171], spurious modes

control through modification of the numerical flux [13, 62], and block-diagonal mass

matrices [27], trivially invertible by frontal methods. DG algorithms thus become

explicit, unlike CG for which the solution of linear systems of equations at each

time-step is required. Consequently DGTD allows us a straightforward MPI/GPU

parallelization [122, 184]. Motivated by these advantages, considerable efforts have

been made at improving several aspects of DGTD. Some of them follow.

In [35] different continuity constraints are imposed to the electric and magnetic fields

alternately, leading to energy conservation, optimal convergence, and reduced num-

ber of DOFs. Hybridizable discontinuous Galerkin (HDG) techniques [167, 202, 203],

with a reduced number of DOF, successfully applied in FD, and more recently in



79

TD [117] by using a space-time Galerkin formalism. Reduction on the spectral ra-

dius has been achieved using co-volume filtering [203] and mapping techniques [204],

though effective only for higher orders. Reduction of algebraic complexity and DOFs

has also been addressed by multi-element approaches exploiting the advantages of,

mainly, tetrahedral and hexahedral mesh elements. In three-dimensional problems

this forces the use of non-conforming interfaces [109, 110], or the use of pyramidal

elements [111], for the transitions between elements of different types.

CGTD schemes present also interesting features. CG methods use significantly less

DOF than DG methods. They do not introduce dissipation if a symplectic time

integrator is used. Moreover, the spectral radius of the assembled system is smaller

than when a DG formalism is used[80], thus allowing the use larger time-steps.

In this work, we explore the topic of the hybridization of CG and DG schemes. The

motivation is to exploit the advantages of both formulations in a computationally

affordable manner. This topic is present in the context of elliptic problems arising

to a family of methods known as Mortar methods [205–210], hybridizing Mixed

Finite Element (MFE) or HDG methods in different regions of the mesh that have

certain homogeneity, while the DG method is used to handle discontinuities on the

material properties or at non-conforming interfaces. Among some other benefits,

the resulting methods achieve a reduction, of DOF and offer the possibility of using

a model reduction in different regions. For non-electromagnetic problems, another

approach was explored in [4, 211] to approximate the shallow water equations using

DG for the primitive continuity equation and CG for the momentum equation.

In this paper we present a new nodal hybrid Continuous-Discontinuous Galerkin

(CDG) method for the solution of the time-domain first-order coupled Maxwell’s curl

equations. The proposed method is aimed at taking advantage of a reduced number

of DOF and smaller spectral radius in CG while benefiting from the spurious-free

and block-diagonal properties of DG. Previous attempts exist [212], employing a 2D

multi-element hybrid Continuous-Discontinuous scheme: CG in a structured grid

of square elements, and DG in a unstructured triangular grid. In our approach,

rather than applying a CG formalism over large regions, we apply it only on small

clusters of elements, thus maintaining the easily invertible block-diagonal nature of

the global system of linear equations. Thus resulting in an important difference in

terms of computational cost.

Although we will focus on a nodal CG method, a similar approach could be followed

with HDG techniques and for other hyperbolic problems. Thus, an added value of

the methodology described in this paper, is to show a possible way of taking profit

of other implicit techniques that, due to their computational efficiency, cannot be
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effectively used in TD. Consequently, this work can potentially be an initial step to

connect two branches of numerical methods: spatially implicit and explicit methods.

The rest of this paper is organized as follows. In the next section, we will briefly

revisit the classical nodal CG and DG methods. Next, we will introduce the proposed

CDG method and present a numerical study of its numerical-dispersion properties

and spectral characteristics in 1D. Next a numerical test-case consisting in a 2D

PEC cavity serves to further analyze its spectral properties and to provide a L2-

norm analysis of its h-convergence, for different numerical fluxes and spatial basis

orders. The following section will show an analysis of the computational costs of

this technique. In a final section, we will present some conclusions from this study

and provide an assessment of its benefits in different scenarios.

3.2 Nodal Galerkin TD Formulations for Maxwell Equa-

tions

Maxwell’s curl equations in sourceless and homogeneous lossless media are1

~∇× ~E = −µ∂t ~H
~∇× ~H = ε∂t ~E (3.1)

with ~E, ~H, ε, µ being, respectively: the electric field, magnetic field, permittivity

and permeability. For simplicity, we will assume that ε and µ do not vary in the

computational domain Ω and use a system of units where ε = µ = 1.

Let us begin our discussion by briefly recalling the fundamentals of the continuous

(CG) and discontinuous (DG) Galerkin techniques that can be used to solve (3.1).

Both approaches start by tessellating the computational domain with k = 1, . . . ,K

non–overlapping elements. On each of these elements, the solution is approximated

by a projection of the analytical solution onto a finite expansion basis of functions. In

this work we will use classical Lagrange interpolation polynomials, i.e. a nodal basis

such as the one described in [82]. The Galerkin problem consists on nullifying the

inner product of the approximated fields with respect to the same basis of functions,

leading to a system of linear equations [80]. However, CG and DG approaches differ

since the first one imposes continuity directly on the fields while the second imposes it

on a different quantity so-called numerical flux. Once the spatial semi-discretization

has been obtained, either scheme can be evolved using a time integration technique.

1The lossy media formulation can be straightforwardly derived [213].
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As mentioned before, the two most popular are the LF2 and LSERK4 schemes [23].

In brief, LSERK4 has a higher accuracy at the expense of a higher computational

cost than LF2. LSERK4 also introduces some numerical dissipation while the LF2

scheme is symplectic.

3.2.1 Continuous Galerkin

The CG formulation imposes the continuity of the fields across element interfaces

[80, 82]. This can be expressed succinctly in matrix form as

ZMZT∂tEg(t) + ZSZTHg(t) = 0

ZMZT∂tHg(t)−ZSZTEg(t) = 0 (3.2)

whereM is the mass matrix and S is the stiffness matrix, both built independently

for each element and assembled-together using an operator that we will denote by Z
that collapses each pair of associated nodes on the element boundaries into a single

one. Eg and Hg are column vectors containing all the degrees of freedom in the

computational domain for the electric and magnetic fields respectively.

3.2.2 Discontinuous Galerkin

DG formalism introduces the concept of numerical fluxes as the quantity for which

continuity is enforced across element interfaces [72], rather than the fields themselves

[27]. Applying this concept, we obtain the following system of equations for each

element k,

Mk∂tEk(t) + SkHk(t)−
Nf∑
f

FkfH∗kf (t) = 0

Mk∂tHk(t)− SkEk(t) +

Nf∑
f

FkfE∗kf (t) = 0 (3.3)

with Fkf being the lift operator [27] for face f and vectors E∗kf and H∗kf are the

numerical fluxes in that face [72]. The DG method can be formulated with different

types of numerical fluxes, the centered and upwind fluxes, which are the most com-

monly used ones [62, 75]. The dispersive and dissipative properties of the solution

will greatly depend on the flux choice, allowing for some tuning capability according

to the application.
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3.3 CGTD vs DGTD: the CDGTD method

From the computational point of view, the main disadvantage of CGTD is that it

requires a global linear solver, containing all the degrees of freedom, to be solved

on each time-step. DGTD, in turn, when used in conjunction with an explicit time

integration technique, allows for each element to be solved independently, thus dras-

tically reducing the computational burden with respect to CG, making it comparable

even to that of classical FDTD [10, 21].

However, there are pros and cons of both methods that make sense trying to build

hybrid approaches by taking the best of each one. Namely:

• A well-known drawback of nodal FEM is the presence of spurious modes [82].

These are commonly attributed to a variety of reasons, including an inexact

representation of the underlying de Rham complex2 [214–218]. Spurious nodes

are present both in nodal DGTD and CGTD. However, for DGTD they can be

easily mitigated, with a slight increase in computational cost, by using upwind

or penalized fluxes instead of centered fluxes, at the cost of introducing some

dissipation. This dissipation especially affects spurious modes which are much

further attenuated than physical ones [13], thus resulting in a cleaner spectrum

and better convergence properties3 [74, 77, 113].

• Regarding dissipation, if a symplectic time integrator is used for (3.2), CG

methods are not dissipative, while DG becomes dissipative when combined to

upwind/penalized fluxes to remove spurious solutions, as mentioned above.

• CG presents more relaxed stability constraints in the time-step than DG,

thanks to the fact that the spectral radius of the assembled system (CG)

is smaller than that of the unassembled one (DG) [80]. This is a consequence

of the better representation of long-range interactions [219].

• Regarding the number of DOFs, CG presents advantages due to the fact that

the nodes on the interface between two elements do not need to be duplicated,

as in DG, since CG collapses them to enforce continuity. Furthermore DG also

2One way of removing this source of spurious modes, is to resort to vector-based formulations
[83–85]. Comparing vector and nodal FEM is out of the scope of this work; advantages and disad-
vantages of both of them have been reported in literature [86, 87] and would deserve a full work to
be further analyzed. Another approach to mitigate spurious modes is by introducing penalty terms
associated with the divergence of E [62, 88], at the cost of adding extra terms, and DOFs, that are
to be evolved at each time step [62].

3Centered flux can also be proven to be spurious-free in highly regular meshes [62], though this
is not a realistic situation found in a general problem.
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needs to compute one matrix-vector product for each face of the element at

each iteration.

• Finally, the continuous nature of CGTD also makes necessary a special treat-

ment in regions where the electromagnetic properties of the media exhibit

abrupt changes [44], while DGTD naturally implements these conditions thanks

to the use of fluxes [68, 169].

The discussion above begs the question as to whether one could formulate a hybrid

CDG technique that exploits the advantages of both formulations. In [212] a hybrid

method is formulated in 2D. For it, the CG formalism is applied in a large struc-

tured region formed of squares, coupled to a DG scheme applied to another region

consisting on an unstructured mesh of triangles. The use of a continuous formalism

in the large region, thus requires the solution of a large global system of equations

that reduces the performance of such approach, specially for large problems.

In contrast, we propose here a new method based on a CG formulation only on

multiple, small clusters of elements. As usual in CG, the elements within the cluster

remove duplicate DOFs on their boundaries, and they exchange information with

adjacent clusters, or single elements, through classical numerical fluxes in a DG

manner. As a result, CG clusters are decoupled among them, and the whole domain

can be solved by an explicit marching-on-in-time algorithm. In this work, we will

analyze the trade-offs of using these CG clusters, which have to be small enough,

both to keep the system of equations frontally invertible, and to avoid spurious

modes; and as large as possible to reduce the DOFs, enhance the dissipation, and

increase the time-step for stability. If upwind numerical fluxes are employed for the

DG connection, the CDG method is expected to be spurious-free, partially inheriting

from CG the aforementioned advantages.

In the rest of the paper, we will assume a translational symmetry, by meshing regions

with clusters that are identical to each other. Though this is not strictly necessary,

in general, it is actually a desirable property, since it allows us to compute the

semi-discretized operators for a single cluster and reuse it for the rest thus saving

memory. Hence, the kind of meshes that would benefit most of this clustering would

be structured or semi-structured, as further discussed in the Conclusions. This is

also true of multi-element approaches [109–111] in which a reduction of DOFs and

increased time-step can be likewise achieved [91]. In the rest of the mesh we apply

the usual unstructured DG formalism. We can write the final scheme in matrix
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notation as

Mc∂tEc(t) + ScHc(t)−
Nfc∑
f

FcfH∗cf (t) = 0

Mc∂tHc(t)− ScEc(t) +

Nfc∑
f

FcfE∗cf (t) = 0 (3.4)

where Mc = ZcMkcZTc and Sc = ZcSkcZTc are the mass and stiffness operators

assembled as in the CG method but using only the elements kc belonging to the

cluster c. The operators Fcf are constructed in the same way as for the DG method

but considering only the Nfc external faces of the cluster.

3.4 Numerical properties

In order to perform a semi-analytical study of CDGTD we will follow a similar

approach to [27, 75, 80] for analyzing the dispersive properties of our method in 1D.

To do so, we seek spatially periodic solutions of the form

E(t, x) = E0e
(i(lx−ωt)

H(t, x) = H0e
(i(lx−ωt) (3.5)

that are supported by the spatial semi-discretization. The computational domain Ω

is split into Kc elements of equal length h. These Kc elements are assembled in the

same way as indicated by equation (3.4). We also define a state vector qc = [Ec,Hc]
T

containing all the Nc degrees of freedom in a cluster c. The elements at the end

positions of the computational domain are connected assuming periodic solutions of

the form

eT0 qc+1 = eilhKceTNcqc

eTNcqc−1 = e−ilhKceT0 qc (3.6)

and using the DG numerical flux formalism to treat the boundaries of the cluster

as if they were neighboring other clusters. We will use the factor L = lh as the

normalized numerical wavenumber. With these assumptions, we can reformulate

(3.4) as

∂tqc(t) = (Mq
c)
−1(Sqc −

∑
f

Fqcf Ēcf (L))qc(t) (3.7)
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A diagonal operator W containing the spectrum of eigenfrequencies is obtained by

a similarity transformation via an invertible operator P to get

W = i P−1(Mq
c)
−1(Sqc −

∑
f

Fqf Ēcf (L))P (3.8)

We can also define the eigenstates of the system as

pc = P−1qc (3.9)

This change of basis let us write equation (3.7) in the following compact form

∂tpc(t) = −i W(L)pc(t) (3.10)

with semi-discrete solutions of the form

pc(t) = e−iW(L)tpc(0) (3.11)

The j = 0, . . . , Nc eigenvalues ωj of W correspond to the eigenfrequencies of the

discrete periodic problem.

The real part <[ωj ] corresponds to the oscillating frequency and the imaginary part

=[ωj ] corresponds to the numerical dissipation or amplification of eigenstate j, if

any. For all Galerkin methods studied here, we have =[ωj ] ≤ 0, which is a necessary

condition for stability. The phase-velocities supported by the scheme are cj(L) =

ωjh/L. As in our system of units the speed of light is 1 we will consider that the

mode with phase velocity closest to one is one is the free-space mode. Therefore we

expect that

lim
L→0

c(fs)(L) = 1 (3.12)

The study of the full spectrum ofW is also useful as its properties impose limitations

in regards to the time-integration. The LF2 method [123] has the following stability

requirement on its time step ht

ht ≤ 1/<[ωj ] ∀j (3.13)

and therefore will be constrained by the largest real part among all eigenvalues.

LSERK methods comprise irregular closed loci in the complex plane [113, 127] in

which the eigenvalues must lie to ensure stability. So, to warranty stability, the

following condition must be enforced for each cluster

max |ωj | ≤ ρ(ht) ∀j (3.14)



86

ρ being the spectral radius of the LSERK method.
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Figure 3.1: Convergence rates for DGTD and CDGTD schemes with upwind fluxes.
Non-aligned values correspond to other modes also supported by the solutions but that

do not correspond to the free-space mode.
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Figure 3.2: Convergence rates for DGTD and CDGTD schemes with centered fluxes.

3.4.1 Convergence

Figs. 3.1 and 3.2 show a comparison of the convergence rates on the dispersion curves

for the DG and CDG schemes with clusters of 2 and 3 elements, and for upwind and

centered fluxes, found with the procedure described above. These convergence rates

have been calculated for orders ranging from P = 1 to 3. Table 3.1 summarizes

the convergence rates where the component dominating in the global error has been

highlighted. In agreement with what is found for P refinements of centered DG

schemes [75], the convergence rate of CDG depends on the number of elements

assembled with an even-odd pattern. With an odd number of elements, CDG with

upwind and centered fluxes have the same convergence rates as classical DG methods.

For upwind CDG schemes with an even number of elements we see an alternating

dominance of the error showing that CDG has a better global convergence for odd

orders4 of P .
4Convergence rates depending on even/odd parameters has been previously in DG analysis [75].
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The case of centered CDG with an even number of elements shows that it has the

same 2P+3 convergence as the upwind DG scheme, therefore improving significantly

versus its centered DG counterpart. Note that for upwind fluxes (Fig 3.5), spurious

modes are also rapidly attenuated in CDG and therefore should not impact the

time-domain solution, similarly as observed in [13, 27] for the DG case. Fig. 3.5

also shows that the free-space mode observed is much less attenuated than any other

supported mode.

Table 3.1: Convergence rates using upwind and centered fluxes. Highlighted cells
indicate the dominant term.

DGTD CDGTD Kc even CDGTD Kc odd
P <[ω̃] =[ω̃] <[ω̃] =[ω̃] <[ω̃] =[ω̃]

U
p
w

in
d 1 5 4 5 6 5 4

2 7 6 7 6 7 6
3 9 8 9 10 9 8
4 11 10 11 10 11 10

C
en

te
re

d 1 3 − 5 − 3 −
2 7 − 7 − 7 −
3 7 − 9 − 7 −
4 11 − 11 − 11 −

3.4.2 Spectral properties

Fig. 3.3 shows the full spectrum of DG and CDG operators with 2 and 3 elements and

upwind fluxes. Fig. 3.4 shows the effect in the spectrum of increasing the number

of elements. The maximum real part, and the spectral radii of the different schemes

are presented in Table 3.2. We note that the CDG assembling, even for a moderate

number of elements, reduces significantly the spectral radius, to approximately one

half of that of the DG. As mentioned above, this allows for a larger time step to be

used.

3.5 Computational cost

This section presents some estimates about the number of DOF and computational

operations needed for several configurations (Fig. 3.6) in which we can apply the

aforementioned translational symmetry.

The number of clustered elements and their order have a critical impact on the

number of operations required to evaluate the semi-discretized operators in CDG.

For this reason, only relatively small clusters with low orders are studied. Moreover,



88

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−3

−2

−1

0

1

2

3

Eigenvalues spectrum loci, P=1

Im[ω]

R
e
[ω

]

 

 

DGTD

CDGTD−K2

CDGTD−K3

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−3

−2

−1

0

1

2

3

Eigenvalues spectrum loci, P=2

Im[ω]

R
e
[ω

]

 

 

DGTD

CDGTD−K2

CDGTD−K3

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−3

−2

−1

0

1

2

3

Eigenvalues spectrum loci, P=3

Im[ω]

R
e
[ω

]

 

 

DGTD

CDGTD−K2

CDGTD−K3

Figure 3.3: Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis up to order 3.
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Figure 3.4: Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis of order P = 2, for different number of elements clustered.

Table 3.2: Maximum real parts and spectral radius. The increase on clustered ele-
ments allow the use of larger time steps. Note that for centered fluxes the real part is
always zero up to machine precision and therefore the spectral radius is equal to the

maximum real value.

DGTD CDGTD Kc = 2 CDGTD Kc = 3 CDGTD Kc = 4
P max |<[ω̃]| ρ[ω̃] max |<[ω̃]| ρ[ω̃] max |<[ω̃]| ρ[ω̃] max |<[ω̃]| ρ[ω̃]

U
p
w

in
d 1 1.95 3.00 1.30 1.92 1.06 1.50 0.94 1.25

2 2.50 3.95 1.72 2.52 1.47 1.95 1.39 1.62
3 2.96 4.79 2.03 3.06 1.76 2.36 1.74 1.96
4 3.37 5.57 2.29 3.54 2.03 2.73 2.05 2.27

C
en

te
re

d 1 2.00 1.50 1.35 1.29
2 2.69 2.18 1.06 2.02
3 3.32 2.79 2.68 2.66
4 3.94 3.38 3.30 3.28



90

0

0.5

1

1.5

−2

−1

0

1

2
−4

−3

−2

−1

0

1

Im
[ω

]

Eigenvalues Spectrum P=1

Re[ω] lh/π

(a) P = 1

0

0.5

1

1.5

−3
−2

−1
0

1
2

3
−4

−3

−2

−1

0

1

Im
[ω

]

Eigenvalues Spectrum P=2

Re[ω]
lh/π

(b) P = 2

Figure 3.5: Eigenvalues spectrum loci for upwind fluxes schemes with polynomial
basis of different order for DGTD (black) and CDGTD with Kc = 2 (blue) schemes. As
it can be seen, modes that do not belong to the physical eigenspectrum (dashed red)

have large imaginary parts and are therefore quickly attenuated.
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the greater the number of inner faces the cluster has, the greater the number of DOFs

and numerical fluxes eliminated. Fig. 3.6 shows the two- and three-dimensional

clusters studied in this work that exemplify such properties.

Tables 3.3 and 3.4 show a comparison of the CDG and DG methods for different

kinds of elements and cluster configurations. We observe that the clustering always

causes a reduction in the DOF by eliminating the need of having duplicated nodes

at the interfaces within the cluster. In 3D, the reduction is more significant, e.g. for

the cross-hatch cluster with P = 1 we have a reduction of about 80%. The number

of operations for the lift operations scale as KNfNpNfp and for the curl operations

as 2KN2
p . The cost of computing the numerical fluxes E∗ and H∗ has not been

included as it encompasses only vector-vector operations. For P ≤ 2 the estimates

show that the number of operations needed per time step is similar for both methods.

For higher orders, the term Np starts to dominate and the CDGTD method becomes

less attractive compared with the classical DGTD approach. However, it should be

noted that CDG operators have a reduced spectral radius that allows for a larger

time step, as will be shown in Section 3.6. Moreover, in many cases the bottleneck

in speed is related to the memory bandwidth and data locality. Therefore, having a

reduced number of DOF that are also contiguous in memory may result in additional

speed-up, as discussed in [184]. The use of the same spatial operators also alleviates

the memory bandwidth, additionally ideally they can remain in the CPU cache

during the evaluation of the whole clusters. Finally, the fact that the operator

spectrum has a smaller imaginary part when upwind fluxes are used suggests that

the scheme can further benefit from the use of different LSERK schemes [113] that

allow for a larger time step.

Another question that may arise regarding computational efficiency is how the con-

figurations under study compare with the use of a single element covering the same

space, i.e. quadrilaterals (quads) in 2D or hexahedrons (hex) in 3D. Tables 3.3 and

3.4 show a comparison of the estimated numbers of operations for different orders

and dimensions. As it may be appreciated, for the 3D case, the simple-hatch con-

figuration has the same number of DOFs and needs the same amount of operations

to calculate the curl than a hex cell of the same order. There is an increase in the

number of operations needed to calculate the LIFT because the increased number

of faces, but this is partially compensated with a reduced Nfp. The cross-hatch

clusters have a similar number of DOFs and need a similar number of operations

than a hex cell of one order higher.



92

Table 3.3: DOF and a estimation of the computational costs of the DGTD and
CDGTD schemes for a 2D cross-hatch cluster.

Quad cell Cross-hatch Simple-hatch
DGTD2D DGTD2D CDGTD2D DGTD2D CDGTD2D

P 1 2 3 1 2 3 1 2 3 1 2 1 2
DOF 4 9 16 12 24 40 5 13 25 6 12 4 9
LIFT 32 108 256 72 216 480 24 156 400 36 108 32 108
Curl 32 162 512 72 288 800 50 338 1250 36 144 32 162
Total 64 270 768 144 504 1280 64 494 1650 72 262 64 270

(a) Simple-hatch. (b) Cross-hatch.

(c) Simple-hatch in 3D, 6 tetra-
hedrons.

(d) Cross-hatch in 3D, 24 tetra-
hedrons.

(e) Anisotropic Cross-hatch in
3D, 24 tetrahedrons.

Figure 3.6: Different clusters assemblies considered for 2D and 3D CDG.
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Figure 3.7: Resonances in a unit square PEC cavity for different methods. The
simulations run up to a final time T = 200. The basis order is P = 2 and the mesh is a
cross-hatch grid with h = 1/8. The CDGTD results have been obtained by clustering
all cross-hatch cells. With centered fluxes, the CGTD and CDGTD method have some

visible spurious modes polluting the spectrum at ω ' 1.7, 2.2, 2.8 . . .
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3.6 Numerical test: 2D cavity

3.6.1 Resonances

Fig. 3.7 shows the results of simulating a unit square cavity using CGTD, DGTD,

and CDGTD using a cross-hatch clustering. The simulation runs up to a final time

T = 200, with a basis order of P = 2 and a cross-hatch grid mesh with h = 1/8.

The time integration was performed with the same LSERK4 scheme used in the

previous section. The cavity was excited with a white noise similarly as in [23, 34].

As discussed in the Introduction, CGTD presents spurious modes that pollute the

spectrum, the most important being visible at ω ' 2 and 2.2. When centered fluxes

are used, CDGTD also exhibits some pollution of the spectrum. A small spurious

mode appears at ω ' 1.7 and a larger one appears in ω ' 3.3. The use of upwind

fluxes eliminates this problem at all frequencies considered, as expected from our

previous discussion.

3.6.2 Convergence with respect to h-refinement

Table 3.5 shows the results of calculating the L2 error norm in a square cavity using

||E − Eh||Ωh =

(∑
k

∫
Ωk

||Ee − Eh||2dΩk

)1/2

(3.15)

where Ee is the exact (analytical) solution, and Eh is the numerical solution. The

L2 error norm is calculated after exciting the first mode of the cavity as initial

condition in square meshes of sizes [0, 1]× [0, 1] with different cell sizes and evolving

the scheme up to a final time T = 4/
√

2 (2 cycles). Two of the meshes used for these

computations are shown in Fig. 3.8, where the pattern followed for the refinement

can be inferred from. The computations have been carried out with upwind and

centered fluxes using spatial basis with P from 1 to 3. For CDGTD the clustering

has been done using the cross-hatch configuration. For upwind and centered fluxes,

we see a clear improvement for P = 1 in the convergence rate of the L2 error

norm as it improves from ∼ 2.4 to ∼ 3.2. For higher orders the results present

a similar convergence rate with the exception of P = 2 for centered flux in which

CDG produce a considerably higher error. The time integration was done using an

LSERK4 scheme where ht has been set heuristically and we find that for upwind

fluxes the ht for CDGTD can be set ∼ 50% larger than for DGTD. With centered

fluxes the gain is more moderate (∼ 20%). As expected, CDGTD used much less

DOF, varying from ∼ 40 to ∼ 60% less depending on P .
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Note that although some improvements are achieved with CDGTD, if we compare

results between different orders the DGTD method shows that better results can be

achieved with DGTD for a similar number of DOFs by increasing the basis order.

For example if we compare the upwind cases of DGTD with P = 3 and h = 1/8 and,

CDGTD with P = 2 and h = 1/16 we observe that DGTD achieves a smaller error

than CDGTD using less DOFs. However, CDGTD allows a larger ht for stability,

and needs less number of operations, according to table 3.3.

Table 3.5: L2 error norm for different resolutions of the first mode of a unit square
cavity after a simulated time of 4/

√
2 (2 cycles). For all CDGTD cases, the time steps

can be larger than those for DGTD, with smaller improvements for centered than for
upwind flux. The number of DOFs with the CDGTD cross-hatch configuration are
40 ∼ 60% less depending on the spatial order. Convergence ratios remain similar for

all cases, except for the case P = 1, where a clear improvement is observed.

P h DGTD CDGTD Cross-hatch
L2 Error Order ht DOF L2 Error Order ht DOF

U
p
w

in
d

1

1/2 4.6E-2 - 120E-3 48 3.7E-2 - 197E-3 20
1/4 1.2E-3 2.5 60E-3 192 1.5E-4 3.8 98E-3 80
1/8 3.0E-5 2.6 30E-3 768 1.2E-6 3.3 49E-3 320
1/16 1.1E-6 2.3 15E-3 3072 1.7E-8 3.0 25E-3 3072
1/32 5.9E-8 2.0 7E-3 12288 2.6E-10 2.9 12E-3 5120

2

1/2 1.2E-4 - 595E-4 96 1.7E-4 - 984E-4 52
1/4 1.5E-6 3.0 298E-4 384 1.9E-6 3.1 492E-4 208
1/8 2.3E-8 2.9 149E-4 1536 2.3E-8 3.1 246E-4 832
1/16 3.6E-10 2.9 74E-4 6144 3.4E-10 2.9 123E-4 3328
1/32 5.6E-12 2.9 37E-4 24576 5.2E-12 2.9 61E-4 13312

3

1/2 1.2E-6 - 397E-4 160 2.8E-6 - 656E-4 100
1/4 5.2E-9 3.8 198E-4 640 7.5E-9 4.1 328E-4 400
1/8 2.1E-11 3.8 99E-4 2560 2.0E-11 4.1 164E-4 1600
1/16 8.2E-14 3.8 50E-4 6400 8.6E-14 3.8 82E-4 6400
1/32 3.2E-16 3.8 25E-4 40960 2.8E-16 4.0 41E-4 25600

C
en

te
re

d

1

1/2 2.4E-2 - 166E-3 48 4.3E-3 - 197E-3 20
1/4 9.6E-4 2.2 83E-3 192 9.4E-4 1.1 98E-3 80
1/8 5.6E-5 2.0 41E-3 768 1.5E-6 4.5 49E-3 320
1/16 3.5E-6 1.9 21E-3 3072 1.7E-8 3.1 25E-3 3072
1/32 2.2E-7 1.9 10E-3 12288 2.6E-10 2.9 12E-3 5120

2

1/2 1.7E-4 - 776E-4 96 1.2E-4 - 984E-4 52
1/4 2.8E-6 2.8 388E-4 384 4.6E-5 0.7 492E-4 208
1/8 4.2E-8 2.9 194E-4 1536 2.3E-6 2.1 246E-4 832
1/16 6.6E-10 2.9 97E-4 6144 9.4E-8 2.2 123E-4 3328
1/32 1.0E-11 2.9 49E-4 24576 5.2E-9 2.0 61E-4 13312

3

1/2 1.8E-6 - 518E-4 160 7.9E-6 - 656E-4 100
1/4 7.1E-9 3.8 259E-4 640 5.3E-9 5.1 328E-4 400
1/8 2.1E-11 4.0 129E-4 2560 1.3E-10 2.6 164E-4 1600
1/16 1.2E-13 3.6 65E-4 6400 4.0E-13 4.0 82E-4 6400
1/32 3.4E-16 4.1 32E-4 40960 1.4E-15 3.9 41E-4 25600
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(a) h = 1/4 (b) h = 1/16

Figure 3.8: h = 1/4 and h = 1/16 meshes used to compute the resonant cavity results.
Each of the cross-hatch elements is assembled to form a cluster.

3.7 Conclusions

In this work we have introduced a new hybrid CDG method for Maxwell’s curl equa-

tions and studied some of its numerical properties. The CDG method facilitates the

use of implicit techniques in TD, requires less DOF than conventional DG and allows

for larger time-steps. The overall number of operations needed is also reduced for

certain configurations and for low orders. Combined with improvements in memory

locality leaves open the possibility that the method is computationally more afford-

able than pure DG, at least up to order P = 2. From the analysis performed in

this paper, some applicability scenarios can be devised where the use of CDGTD in

certain parts of the mesh may be of interest:

1. DOF reduction in structured regions: The discussion carried out in Sec-

tion 3.5 shows that using semi-structured arrangements of CDG clusters can

drastically reduce the number of DOFs for any P . Fig. 3.9 shows a situation

in which the use of the CDGTD method could improve performance. When

used in this way, an added advantage of the CDGTD formulation with respect

to multi-element meshes is that the clusters can exist in many different con-

figurations, it suffices for them to have translational symmetry to fully cover

a region of the space. If we compare with the costs associated to hex cells

we see that we can have benefits similar to the use of hybrid meshes using

exclusively tetrahedral meshes while we retain their geometric flexibility. Note

also that obtain and operate with a mesh formed exclusively of tetrahedrons

is significantly simpler than with hybrid meshes.
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Figure 3.9: A suitable partially structured mesh in which the CDGTD formalism
would preferably be used only in cross-hatch regular tetrahedron clusters.

2. Buffering between element types: Multi-element approaches exploit the

advantages of, mainly, tetrahedral and hexahedral mesh elements. In three-

dimensional problems this forces the use of non-conforming interfaces [109, 110]

or the use of pyramidal elements [111] for the transitions between elements of

different types. CDGTD can offer a solution to do these transitions by using

a simple-hatch cluster (Fig. 3.6c) between tetrahedral and hexahedral regions

(Fig. 3.10). When using nodal functions, the interfacing is simplified because

rather than having multivalued nodes at the diagonal of the tetrahedral region,

we have a single one. This avoids the need of performing an interpolation or

use a non-conformal boundary. We can directly use the DOFs belonging to

the nodes in contact in order to compute the fluxes.

Figure 3.10: Interfacing between the simple-hatch cluster and a hex cell for P = 2.
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3. Reduction of high stiffness time constraints: CDGTD formalism can

also be used to assemble stiff elements to alleviate their time step constraints.

As shown in Section 3.6 the assembling produces a significant reduction of the

size of the spectrum letting us to increase the time step used. This can drive

to a significant gain in certain situations (Fig. 3.11) because the maximum

time step is constrained by the maximum allowed time step of the smallest

element.

Figure 3.11: A region with high stiffness (grayed) can be assembled into a CDG cluster
to improve the maximum time step allowed. The rest of the mesh can be evolved using

a classical DGTD scheme.
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Abstract

In this paper, we explore the accuracy limits of a Finite-Element Time-Domain

method applied to the Maxwell equations, based on a Discontinuous Galerkin scheme

in space, and a Leap-Frog temporal integration. The dispersion and dissipation prop-

erties of the method are investigated, as well as the anisotropy of the errors. The re-

sults of this novel analysis are represented in a practical and comprehensible manner,

useful for the application of the method, and for the understanding of the behavior

of the errors in Discontinuous Gelerkin Time-Domain methods. A comparison with

the Finite-Difference Time-Domain method, in terms of computational cost, is also

included.
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4.1 Introduction

Since the FDTD method was firstly proposed by Yee in 1966 [37] for solving Maxwell

equations, it has become undoubtedly the most widespread method among physicists

and engineers, due to its simplicity and flexibility to deal with real problems. How-

ever, its inability to effectively handle complex geometries, due to stair-casing error,

and the limitations in the accuracy (second order in space and time O
(
h2,∆t2

)
),

prompted some scientists to search for alternatives long ago, with Finite Element

(FE) the obvious alternative. Considering all the schemes based on FE in the lit-

erature, Discontinuous Galerkin Time Domain (DGTD) approaches have most of

the advantages of FDTD; spatial explicit algorithm, simplicity, easy parallelization,

and memory and computational cost growing linearly with the number of elements.

Besides, DGTD schemes retain most of the benefits of FE, adaptability of the un-

structured meshes and spatial super-convergence, allowing to deal with problems

where the required precision varies over the entire domain, or when the solution

lacks smoothness.

The performances of the Yee algorithm is very well described in a broad literature

[36]. Analytical expressions can be easily derived to analyze the numerical disper-

sion, stability and anisotropy of the error, due to the use of structured meshes,

which enables to find close and general relations. In FETD methods, where un-

structured meshes are used, the relations between order of the basis functions (p),

element size (h), and time step (∆t) with dispersion, dissipation, and anisotropy,

are problem-dependent. The typical approach to analyze the performance of these

methods are based on eigenvalue problems [75, 76, 91, 190] or in solving specific

numerical problems [193]. An anisotropic analysis in 2D of the DG TD method for

wave propagation problems appears in [166]. Some analyses also include the effect

of the time-integration scheme [74].

In this paper, we present an analysis of the accuracy and computational cost of the

Leap-Frog Discontinuous Galerkin (LFDG) algorithm, finding practical criteria for

its application to general problems. We begin by summarizing the LFDG algorithm.

We next analyze the convergence and anisotropy of the algorithm, comparing to the

semi-discrete DG space operator. For this, we find the solutions of the eigenvalue

problem for a canonical geometry, which can be easily used to also compare to the

well-known FDTD method. Finally, a computational cost versus accuracy analysis

of the LFDG method is performed and compared to the FDTD method.
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4.2 LFDG algorithm

4.2.1 Semi-discrete DG formulation

Let us divide the space into M non-overlapping elements V m, each bounded by

∂V m, and define element-by-element a set of Q local continuous basis of vector

test functions (Bm = {~Φm
1 ,
~Φm

2 , ...,
~Φm
Q}). In this work, vector basis has been used

and more specifically, hierarchical high-order vector-basis functions, [85, 220], which

present some implementation advantages in order to reduce computation and mem-

ory requirements [92]. Now, assume Maxwell’s symmetric curl equations for linear

isotropic homogeneous media in Cartesian coordinates. Enforcing the residual of

Maxwell’s curl time-domain (TD) equations to be orthogonal to each basis function

element-by-element, we find〈
~Φm
q′ , ε∂t

~Em −∇× ~Hm
〉
Vm

= 0 (4.1)〈
~Φm
q′ , µ∂t

~Hm +∇× ~Em
〉
Vm

= 0 (4.2)

∀q′ = (1, . . . , Q) , m = (1, . . . ,M)

with ~E, ~H, ε, µ being, respectively: electric field, magnetic field, permittivity, and

permeability. After some algebra, we can write Eqs. (4.1)(and similarly for Eq. (4.2))

as ∫
Vm

(~Φm
q ′ · (ε∂t ~Em +∇× ~Φm

q ′ · ~Hm)dV=

∮
∂Vm

~Φm
q ′ · (n̂m × ~Hm)dS (4.3)

which relate the volume integral of the LHS to a flux integral in the RHS. DGTD

defines continuous numerical fluxes of the tangential field components n̂m× ~Hm∗ to

be used instead of n̂m× ~Hm at the RHS, at each side of ∂V m. A robust and efficient

choice of the numerical flux is the so-called partially penalized flux [14, 27, 62, 77,

113] which has been proved to provide accurate and free of spurious mode solutions

[13],

n̂m × ~Hm∗= n̂m × ~Hm+ κmh

[
n̂m × ( ~Hm+− ~Hm)

]
−

νme

[
n̂m × (n̂m × ( ~Em+ − ~Em))

]
(4.4)

with,

κmh =
Zm+

Zm + Zm+
, νme =

τ

Zm + Zm+
(4.5)

τ being a stabilization parameter which penalizes the discontinuities in the tangential

components, Zm =
√

µm

εm the intrinsic impedance of the element m, and Zm+ the
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intrinsic impedance of the adjacent one. An upwind-flux scheme is obtained with

τ = 1, and centered with τ = 0.

Using a Faedo-Galerkin method

~Em =

Q∑
q=1

emq (t)~Φm
q (~r) , ~Hm =

Q∑
q=1

hmq (t)~Φm
q (~r) (4.6)

a final spatial semi-discrete operator is found

µMdtH
m− FνhHm+ F+

νhH
m+=− (S− Fκe)Em− F+

κeE
m+ (4.7a)

εMdtE
m− FνeEm+ F+

νeE
m+= (S− Fκh)Hm+ F+

κhH
m+ (4.7b)

where Hm and Em are column vectors with the degrees of freedom (dofs), and Hm+

and Em+ the dofs of the adjacent elements, and M is the mass, S the stiffness, and

F the flux matrices given in [13].

4.2.2 Leap-Frog time integration formulation

For the time integration, we employ the 2nd-order leap-frog (LF) scheme , which is

described in the FDTD literature [36]. It samples the unknown fields in a staggered

way: the electric field at tn = n∆t, and the magnetic field at tn+ 1
2

=
(
n+ 1

2

)
∆t.

The staggered sampling yields an explicit marching-on-in-time algorithm, assuming

that

• The time derivatives in (4.7) are replaced by 2nd-order accurate central differ-

ences1

(dtH
m)n =

Hm
n+ 1

2

−Hm
n− 1

2

∆t
+O

(
∆t2

)
(dtE

m)n+ 1
2

=
Emn+1 − Emn

∆t
+O

(
∆t2

)
(4.8)

• The two extra dissipative terms arising from the upwind/penalized flux for-

mulation, are approximated by a backwards formula

Hm
n ' Hm

n− 1
2

, Em
n+ 1

2

' Emn (4.9)

Note that if we also employed an average for these terms, a globally implicit

scheme would arise (due to the coupling between E and H DoF coming from

adjacent elements). As discussed in [13, 77] this backward approximation for

1If there were conductivity terms, these would require a 2nd-order accurate average
approximation[18].
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the flux terms is enough to attenuate spurious modes in space more strongly

than physical modes, which is the only aim of these terms.

Inserting the above approximations in (4.7), we find a fully explicit scheme

Hm
n+ 1

2

=Hm
n− 1

2

+
∆t

µ
M−1

[
− (S− Fκe)Emn − F+

κeE
m+
n +

FνhHm
n− 1

2

− F+
νhH

m+
n− 1

2

]
(4.10a)

Emn+1 =Emn +
∆t

ε
M−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+

FνeEmn − F+
νeE

m+
n

]
(4.10b)

4.3 Description of the eigenvalue problems

In this work, we first formulate the eigenvalue problem for the DG semi-discrete

scheme and for the fully discrete LFDG algorithm. Then, we solve this problem for

a simple cubic spatial domain in different conditions, in order to study the dispersion

and dissipation properties of the schemes, and the anisotropic behavior of the error,

as well as being able to directly compare to FDTD.

4.3.1 DG semi-discrete scheme

Let us define a column-vector with all the DoF of a given problem

U =
[(
h1

1, ..., h
1
Q

)
, ..., ...,

(
eM1 , ..., eMQ

)]T
The semi-discrete DG equations (4.7) (in free-space) can be expressed for plane-wave

solutions as the following eigen-problem

jω~U = ADG~U (4.11)

with ADG the semi-discrete DG operator under analysis.

We now consider a cubic spatial domain meshed in a non-symmetrical way into 24

tetrahedrons (Fig. 4.1), and we assume that Periodic Boundary Conditions (PBC)

conditions are enforced at the box faces by setting

n̂m ×Hm+
∣∣
i+∆i

= n̂m ×Hm|i e−jαi ,
n̂m ×Em+

∣∣
i+∆i

= n̂m ×Em|i e−jαi i = {x, y, z}
(4.12)
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Figure 4.1: Geometry under analysis for the eigenvalue problem (top). Application
of the PBC between contour faces from elements located at opposite sides.

where αi is the phase shift in each direction of the space here taken as αi = k0i∆i,

with ~k0 = k0xx̂ + k0yŷ + k0zẑ the analytical wave-vector. We have defined h (a

measure for the size of the elements) equal to the dimension of the cube ∆ ≡ h.

The eigen-problem (4.11) is numerically solved for different ~k0 to study anisotropy

or h for convergence, finding the numerical eigenvalue k̃m. For the error analysis,

we retain only the k̃m closest to the analytical one ~k0 = ω
√
µ0ε0 (the rest can

be considered spurious in the sense discussed in [13]), referred to here as k̃0 =

k̃real + jk̃imag.

Three different Root Mean Square (RMS) error functions per wavelength (λ =

2π/k0)) can be defined:

RMS error per λ (dispersion):
∣∣∣e−jk0λ − e−jk̃realλ

∣∣∣ (4.13a)

RMS error per λ (dissipation):
∣∣∣1− ek̃imagλ∣∣∣ (4.13b)

RMS error per λ (global):
∣∣∣e−jk0λ − e−jk̃0λ

∣∣∣ (4.13c)
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The first one measures the dispersion error (phase delay), depending on the real part

of the numerical eigen-value (k̃real); the second one measures the dissipation error

(decrease in amplitude), depending on its imaginary part (k̃imag); and the third one

measures the global combination of both errors.

4.3.2 Fully discrete LFDG algorithm

In this sub-section, we formulate the fully discrete LFDG scheme (temporal inte-

gration plus spatial discretization) eigenvalue problem. For this, let us define three

column vectors staggered in time

Hn− 1
2

=

[(
H1
n− 1

2

)T
, ...,

(
HM
n− 1

2

)T]T
En =

[(
E1
n

)T
, ...,

(
EMn

)T ]T
Un =

[(
Hn− 1

2

)T
, (En)T

]T

Eqs. (4.10) (in free-space) can be expressed in a compact manner for the whole

spatial domain as

Hn+ 1
2

=

(
IMQ +

∆t

µ
Mνh

)
Hn− 1

2
+

∆t

µ
MSκeEn (4.15a)

En+1 =

(
IMQ +

∆t

ε
Mνe

)
En +

∆t

ε
MSκhHn+ 1

2
(4.15b)

where IMQ is the MQ ×MQ identity matrix, and Mνh, MSκe, Mνe and MSκh are

MQ × MQ matrices, which are the result of assembling the element-matrices of

(4.10). Inserting (4.15a) into (4.15b), the following fully explicit system is obtained

Un+1 = ALFDGUn (4.16)

where the matrix ALFDG is the Discontinuous Galerkin operator with the Leap-Frog

algorithm. It is the result of assembling all the element-matrices of (4.10) into a

2MQ× 2MQ matrix. The matrix ALFDG depends on the DG spatial discretization

features (mesh size (h), penalization factor (τ), order of the basis functions (p)), and

on the time-step (∆t).

Seeking, again, for plane-wave solutions, the relationship between Un+1 and Un is

Un+1 = ejω∆tUn (4.17)
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with ejω∆t so-called the amplification factor, which is found after solving the follow-

ing eigen-problem,

ejω∆tUn = ALFDGUn (4.18)

Finding the 2MQ eigenvalues (λmALFDG ,m = 1, ..., 2MQ), we obtain the complex-

valued numerical wave-vectors (k̃m = k̃mreal + jk̃mimag,m = 1, ..., 2MQ), related to the

eigenvalues by

k̃m = j
ln
(
λmALFDG

)
c∆t

, m = 1, ..., 2MQ (4.19)

Using the same PBC cubic problem (Fig. 4.1), and focusing again [13] on the mode

closest to the analytical one k̃m = k̃0, we can reproduce the error estimation of

Eqs. (4.13). Notice thatALFDG is a function of ∆t . In the following analyses (except

for a specific analysis where we have made ∆t variable) , we have fixed this parameter

to ∆t = 0.7∆tmax, with ∆tmax the upper limit for stability of the LFDG scheme.

This is our typical choice to address complex simulations. [10, 13, 14, 18, 221].

Concerning the evaluation of ∆tmax, heuristic sufficient stability closed conditions

can be found in the literature [77, 90, 92, 124]. However, for the small problem of this

paper, we can afford to use a numerical strategy in order to find the least restrictive

necessary stability condition case-by-case. For this, we solve the eigenvalue problem

(4.18) for different ∆t until we find a maximum value of ∆tmax, which keeps all the

complex-valued k̃m with a negative imaginary part (k̃mimag < 0,m = 1, ..., 2MQ).

4.4 Convergence analysis

In this section, we estimate the convergence rates of the semi-discrete DG operator

and the fully discrete LFDG algorithm, also studying the influence of the τ penaliza-

tion parameter, and ∆t. The convergence of DG methods has been dealt with in a

number of works [75, 76, 190]. In this paper, we follow the strategy used previously

by the authors in [13] for the study of the spurious modes, and the numerical spec-

trum. We analyze the convergence by searching for numeric plane-wave solutions

ej(ωt−
~k~r) of real frequency ω and complex wave-vector ~k, for the simple problem of

Fig. 4.1 with PBC, described in the previous section. The numerical wavevector

compared to the analytical one will provide a measure for the error of the numerical

scheme.

For this analysis, we have taken αz = 2π∆, and no phase-shift for the other direc-

tions αx = αy = 0 (~k0 = k0ẑ), since the convergence rates do not depend on the
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(a.1) Dispersion error. (a.2) Dissipation error. (a.3) Global error.
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(b.1) Dispersion error. (b.2) Dissipation error. (b.3) Global error.

(c.1) Dispersion error. (c.2) Dissipation error. (c.3) Global error.

Figure 4.2: Convergence and influence of the τ parameter in the error of the DG
operator for different p orders. (a) p = 1, (b) p = 2 and (c) p = 3. The dissipation
error with a very small value of τ has been computed for p = 2 and included in (b.2).

In case of τ = 0 (centered flux) the dissipation error would be zero.

illumination direction. The eigen-problem (4.11) is numerically solved for different

h to find the numerical eigenvalue k̃m.

For the DG semi-discrete scheme, the RMS for basis orders p = 1, 2, 3 and for five

values of τ penalization parameter (from upwind τ = 1, to τ = 0.025) are shown in

Fig. 4.2 as a function of the spatial resolution (h/λ = k0h/(2π)).

From Fig. 4.2, we can derive the following conclusions:

• Super-convergence of the error is found in all cases. The phase error increases

as O
(
h2p+2

)
and the amplitude error follows O

(
h2p+1

)
, p being the order of

the polynomial space for the vector-basis functions [75, 76, 190].

• Since the convergence rate for the dissipation error is worse than for the dis-

persion error (2p + 2 > 2p + 1), dissipation places higher constraints on the

scheme resolution (h/λ) than does the dispersion error. This fact should be
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considered when choosing the time integration scheme, to avoid the intro-

duction of more dissipation, keeping dispersion under control. For instance,

Runge-Kutta schemes optimize the stability region, while holding dispersion

and dissipation fixed. It is found [222] that maximizing dispersion minimizes

dissipation, and vice versa. LF, as shown below, does not add dissipation

error, but only dispersion.

• The parameter τ has little influence in the dispersion and dissipation error

of the physical mode, considered here. Only for very low values of τ the

dissipation error decreases, as it should be since τ = 0 (centered) has zero

dissipation. Fig. 4.2(b.2) shows results for a very small value of τ showing

this fact. However, it bears noting that the dissipation of the spurious modes

is strongly affected by the τ parameter, as demonstrated in [13], and also in

the stability condition [77, 113].

Let us now analyze the fully discrete LFDG scheme to compare it with the previous

results of the spatial DG operator alone and with the well-known FDTD method.

Since the influence of the τ parameter on the accuracy of the physical mode has been

seen to be negligible for the semi-discrete case, we have fixed a value of τ = 0.1. This

value has been chosen as a trade-off between stability and spurious-mode reduction

[13].

Results for RMS errors are shown in Fig. 4.3 for different orders p, taking ∆t =

0.7∆tmax. Fig. 4.4 also shows results for different ∆t < ∆tmax (for p = 2).

We can conclude from Figs. 4.3 and 4.4:

• The super-convergence property of the DG spatial operator is maintained up

to an error limit where the convergence of the error becomes O
(
h2
)

dominated

by the LF time integration scheme (only 2nd-order). This fact depends neither

on the order of functions p, nor on ∆t, and coincides with that found for the

FDTD method. Higher order Leap-Frog (LFN ) schemes have been proposed

to improve this [224].

• Since LF is non-dissipative, only the dispersion error is affected. The dissipa-

tion error coincides with that of the semi-discrete case.

• The limit between the zones where the error is dominated by the spatial dis-

cretization and by the temporal integration methods depends on ∆t, as shown

in Fig. 4.4. This limit can be improved by reducing ∆t, at the cost of increas-

ing the computational cost.
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Figure 4.3: Convergence of the physical mode for the LFDG algorithm with τ = 0.1
and ∆t = 0.7∆tmax. Analogous curves for the DG operator and FDTD[223] have been
included for comparison (k̃0 = 2

h arcsin
(

h
c∆t sin(k0 c∆t

2 )
)

, ∆tmax = h
c
√

3
). In the case of

the dissipation error, FDTD curve has been omitted, since the error is zero, and notice
that the LFDG and DG curves are superposed. A limit (grey line) has been included in
the graphs to separate two zones, one (upper) dominated by the spatial discretization

and other (lower) by the temporal integration.

• The typical 10−2 accuracy value is in the zone dominated by the spatial dis-

cretization error for the LFDG method, for p = 1, p = 2 and p = 3 and

∆t= 0.7∆tmax with resolutions ranging from ∼ λ
4.5 , ∼ λ

1.9 and ∼ λ
1.1 , respec-

tively. This characteristic is not expected to be fulfilled by higher orders

than p = 3. In FDTD a resolution of ∼ λ
28.5 can be found from its disper-

sion relationship[223] to be required to reach a 10−2 accuracy2 for propagation

along the cube edge3 .

2Notice that the resolution for FDTD, is that of the cubic spatial domain of Fig. 4.1, meshed
with one cell, while for LFDG, the same domain is meshed into 24 tetrahedrons. The influence of
the resolution is taken into account in Section 4.6 to compare in terms of computational cost.

3Propagation along the Cartesian axes is the worst-case of dispersion in FDTD (no phase error
occurs along the diagonals at the stability limit). However in a real problem, no control over the
propagation direction exists, and a resolution of 28.5 cells/wavelength is reasonable in many FDTD
situations.
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Figure 4.4: Influence of ∆t in the dispersion (upper), dissipation (middle) and global
(lower) errors of the LFDG algorithm with τ = 0.1 and p = 2. Analogous curves for

the DG operator have been included.

A simple numerical experiment has been performed in order to reproduce some

results from the previous analysis. A region of (0.6× 0.6× 12) m. has been meshed

into (3×3×60) cubes, each one equal to that used for the previous eigenvalue analysis

(Fig. 4.1, with ∆ = 0.2 m.). A y-polarized plane wave, propagating along the z-axis,

has been excited at the lower z-plane by using perfect electric conductor (PEC)

at the y-boundaries and perfect magnetic conductor (PMC) at the x-boundaries

(which support the plane wave propagation). Silver-Müller absorbing (impedance)

boundary conditions [10] have been taken at the z-boundaries.

Two probes separated by L = 10 m. along z have been taken to estimate the

error in the propagation of the y-component of the electric field (e0 (t) , eL (t)). The

RMS dissipation error per wavelength has been computed in the frequency domain

(E0 (f) , EL (f)) by ∣∣∣∣∣1−
[ |EL(f)|
|E0(f)|

] λ
L

∣∣∣∣∣ (4.20)
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where we have taken into account the multiplicative effect along the propagation

path in order to express it in terms of a per-wavelength error and compare to

Eq. (4.13b). For the RMS dispersion error per wavelength, we have computed the

numerical phase error with respect to the analytical phase
(
−2πL

λ

)
and normalized

by the wavelengths traveled by the wave
(
L
λ

)
to compare with Eq. (4.13a). Fig. 4.5

shows this comparison for two different ∆t. A good agreement is found for errors

above 10−7. Errors below this level happen at very low frequency and are due to

truncation of the signals and the presence of spurious modes (a further study of

these has been performed in [13]),
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Figure 4.5: Convergence of the dispersion (up) and dissipation (down) errors of the
LFDG algorithm computed with the numerical test (NT) and with the eigenvalue anal-
ysis (E). We have used in both cases τ = 0.1, and p = 2. Analogous curves for the DG

operator have been included for comparison.

4.5 Anisotropy analysis

In this section, we analyze the 3D anisotropic behavior of the errors for the semi-

discrete DG operator and for the fully discrete LFDG algorithm in 3D (a 2D analysis

for the wave propagation problem appears in [166]). In this case, we follow the same

strategy used for the convergence analysis. Again, we take τ = 0.1 and ∆t =

0.7∆tmax for LFDG. The anisotropic behavior of the error is analyzed by solving

the eigenvalue problems for different ~k0.

Figs. 4.6 and 4.7 show 2D plots of the anisotropic errors for different illumination

angles (due to the symmetry of problems θ = [0◦, 90◦] and φ = [0◦, 90◦] include all the

possible illuminations), and basis orders p = 1, 2, 3, respectively. 3D representations

of the normalized real part of the numerical eigen-value
(
e−j(k̃real−k0)λ

)
referred to

as dispersion rate, and dissipation rates
(
ek̃imagλ

)
have been included to show the
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shape of the anisotropy4. Fig. 4.8 also shows cuts along the θ angle of the dispersion

error for φ = 45◦, comparing the DG operator and the LFDG algorithm for different

orders p.

   

(a.1) Dispersion error (a.2) Dissipation error (a.3) Global error

   

(b.1) Dispersion error (b.2) Dissipation error (b.3) Global error

(c.1) DG dispersion rate (c.2) LFDG dispersion rate (c.3) Dissipation rate

Figure 4.6: Anisotropy of the error for τ = 0.1, p = 2 and h = 0.2. (a) DG semi-
discrete scheme, (b) LFDG scheme with ∆t = 0.7∆tmax (c) 3D representation. The
error has been amplified in order to represent the shape of the anisotropy. The analytical

solution has been represented in grey (sphere of radio 1).

From this analysis, we can derive the following conclusions:

• The anisotropy of the error, both dispersive and dissipative, is given by the

spatial discretization. The LF temporal integration only introduces an offset

in the dispersion error in all directions, and no dissipation error (as expected).

• For conciseness, plots for different values of h and p have been omitted, but we

have observed, in general, that the shape of the anisotropy of the error (both

4Notice that the rate magnitudes, represented in the 3D figures, gives different information
than the 2D plots. The rates are accumulative factors per wavelength, having the dispersion rate
information of the phase error sign, which changes if the numerical phase speed is larger or smaller
than the analytical one.
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(a.1) DG dispersion rate (a.2) LFDG dispersion rate (a.3) Dissipation rate

(b.1) DG dispersion rate (b.2) LFDG dispersion rate (b.3) Dissipation rate

Figure 4.7: 3D representations of the anisotropy of the error for τ = 0.1, h = 0.25,
(a) p = 1 and (b) p = 3. The error has been amplified in order to represent the shape
of the anisotropy. The analytical solution has been represented in grey (sphere of radio

1).
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Figure 4.8: Cuts of the dispersion error comparing the DG operator and the LFDG
algorithm for order p = 2 and h = 0.2. The Y axes have been broken in all cases,

maintaining the same spacing, in order to show the offset in the dispersion error.
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dispersive and dissipative) only depends on the order of the basis functions

(p), while the h-parameter mainly affects to the error amplitude.

• For the semi-discrete DG operator the numerical phase speed is higher than

1.0 for some directions, and lower for some others. That implies that the

semi-discrete DG operator has dispersion-free propagation directions.

4.6 Computational cost vs. accuracy

The differences in accuracy between LFDG and FDTD (apparently high from Fig.

4.3) should be analyzed with both methods under fair comparison conditions. In this

section, we study the computational cost vs. accuracy in order to draw an effective

application of the proposed scheme in real problems and explore the limitations and

the efficiency of the method. The main trade-off involves the order of the basis

functions p, the mesh resolution h, and accuracy, with the aim of minimizing the

computational cost. We must take into account that:

• Increasing p improves accuracy but requires shorter ∆t for stability, and the

computational cost per element is higher.

• Decreasing h improves accuracy but requires shorter ∆t for stability for smaller

elements, and the number of elements increases.

To compare the different configurations of the method, a computational cost per λ3

and picosecond (psec) has been defined. The computational cost for one element of

a DG scheme is proportional to the square of the number of basis functions Q in

that element

Celement ∝ Q2 (4.21)

The cost for one time step per λ3, will be approximately the number of elements M

per λ3 multiplied by the cost per element,

Ctime step

λ3
≈ M

λ3
Celement (4.22)

Finally, we can define the following figure of merit (CC) to measure the global cost

of the method, also including the effect of the ∆t taken for stability

CC = K
M

λ3
Q2 1

∆t(in psec.)
(4.23)

with K being a factor that has been considered equal to 1 for the FDTD case, and

equal to 2 for the LFDG method (heuristically taken into account for the additional
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LFDG terms). This simple estimation is based on the fact that FDTD can be seen

as a kind of FVTD method, which in turn is equivalent to a p = 0 LFDG, where the

elements are cubes instead of tetrahedrons [195] (we will not consider here specific

architecture-based computer-optimized FDTD codes that might render K < 1).

The CC magnitude has been computed for the results of the convergence analysis

of Fig. 4.3, and shown in Fig. 4.9, where CC is on the X-axis and accuracy is on

the Y-axis on the upper side of the plot and the resolution of the mesh, h, on the

lower side.
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Figure 4.9: Computational cost of the LFDG algorithm for τ = 0.1, ∆t = 0.7∆tmax
and different order of the basis functions p. CC is on the X-axis and, accuracy is on the
Y-axis, on the upper side of the plot, and the resolution of the mesh, h, on the lower

side. A similar curve of the FDTD method has been included for comparison.

The numerical values of CC for the 10−2 accuracy case appear in Table 4.1. As ex-

pected, for higher orders p, the number of elements per wavelength
(
λ
h

)
to reach this

accuracy can be decreased and larger ∆t are allowable. Thus, the overall computa-

tional cost decreases with higher order p. However, if we require higher accuracies

(> 10−3), this is no longer true, as seen in Fig. 4.9, because the global error is dom-

inated by the 2nd-order temporal integration method, and the super-convergence

behavior is lost. The same reasoning explains that the gain for using p = 3 instead
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of p = 2 is not as high as the gain from p = 1 to p = 2. The convergence of the dis-

persion error for order p = 4 of the spatial discretization is 10, since the convergence

of the simple LF is just 2, going to higher orders in the spatial discretization is not

efficient. For all these reasons, we conclude that orders p > 3 are not efficient in

practical problems in the LFDG algorithm. This is a major limitation of the method,

which prevents us from taking full advantage of p refinement techniques. On the

other hand, the method has a comparable computational cost to FDTD for practical

applications (from the plane-wave analysis standpoint), but preserving most of the

advantages of finite-element methods (e.g. the conformal meshing or h-refinement

in regions with strong spatial variations of the fields, where time integration errors

are negligible).

Table 4.1: Results of the computational cost analysis for an accuracy of 10−2 per
wavelength.

Q λ
h

M
λ3

MQ(1)

λ3 c∆t 103 CC Gain (2)

FDTD 3 28.5 23149 69447 14.1 4430 –

p = 1 12 4.5 2187 26244 17.6 9660 –

p = 2 30 1.9 165 4950 85.3 3270 2.95

p = 3 60 1.1 32 1920 97.1 2260 1.45
(1) MQ is the number of basis functions. The number of DoF will be 2MQ

(2) The gain has been defined as
(
CC(p−1)
CC(p)

)

We can summarize the results given in Fig. 4.9 and Table 4.1 as:

• The computational cost of the LFDG method is of the same order of magnitude

as the traditional FDTD method. Therefore, it is expected that LFDG has

all the advantages of finite-element methods as a similar computational cost

of the FDTD method.

• Due to the limitations of using a 2nd-order accurate time integration scheme,

it will not be worthwhile to use basis functions of order p higher that 3.

• LFDG method is an efficient algorithm for an accuracy of 10−2 to 10−3 global

error per wavelength5. For higher accuracies, higher-order time integration

methods are required to take greater advantage of the super-convergence prop-

erty of the DG operator.

5In case of FDTD, for an accuracy of 10−2 we need a 30 samples per wavelegnth and 100 for
10−3.
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4.7 Conclusions

In this paper, we have used a semi-analytical eigenvalue analysis to study the con-

vergence of the DG semi-discrete scheme and compared it with the fully discrete

LFDG method.

We have shown that the semi-discrete DG method with penalized flux exhibits a

super-convergence behavior, with a dissipative error increasing with the basis order

pmore rapidly than the dispersive one. When it is combined with a 2nd order LF time

integration scheme (LFDG), dispersion is added (not dissipation) and corruption of

the super-convergence behavior occurs. The anisotropy of the semi-discrete DG and

the LFDG scheme has also been analyzed. A numerical plane-wave propagation

experiment has been employed to corroborate the results found with the eigenvalue

approach and illustrate the appearance of other numerical artifacts.

The accuracy limits and computational cost of the LFDG method have been ex-

plored, providing efficient criteria to tune the simulation parameters. We have

shown that, for the typical accuracies required in practical problems, the LFDG

method is efficient for orders p ≤ 3. Higher accuracies could be achieved for p > 3 if

combined with higher-order time-integration methods. We have also seen that, even

for simple plane-wave propagation, the computational costs of the LFDG method

are in the same order of magnitude of the traditional FDTD method, with a similar

accuracy. This makes of LFDG an especially attractive alternative to FDTD for

realistic problems because of its superior accuracy when dealing with curved objects

and the adaptability of the unstructured meshes.
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Chapter 5

Causal-Path Local

Time-Stepping in the

Discontinuous Galerkin Method

for Maxwell’s equations

L. D. Angulo, J. Alvarez, F.L. Teixeira, M.F. Pantoja, and S.G. Garcia. Causal-path

local time-stepping in the discontinuous galerkin method for maxwell’s equations.

Journal of Computational Physics, 256:678 – 695, 2014

Abstract

We introduce a novel local time-stepping technique for marching-in-time algorithms.

The technique is denoted as Causal-Path Local Time-Stepping (CPLTS) and it is

applied for two time integration techniques: fourth order low–storage explicit Runge–

Kutta (LSERK4) and second order Leapfrog (LF2). The CPLTS method is applied

to evolve Maxwell’s curl equations using a Discontinuous Galerkin (DG) scheme for

the spatial discretization. Numerical results for LF2 and LSERK4 are compared

with analytical solutions and the Montseny’s LF2 technique.The results show that

the CPLTS technique improves the dispersive and dissipative properties of LF2-LTS

scheme.
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5.1 Introduction

Many time–stepping algorithms have been proposed in order to improve the perfor-

mance of Discontinuous Galerkin (DG) based schemes by increasing the maximum

time step while preserving stability. There are usually two kinds of strategies used

for this purpose: to use implicit schemes [93, 120] or, to use a explicit local time–

stepping (LTS) technique [13, 64, 67, 77, 93, 225–227]. An advantage of LTS schemes

versus implicit strategies is that the former can be used recursively and easily par-

alellized. Moreover, highly disparate mesh element sizes can lead to ill-conditioning

problems in implicit schemes which are obviated by explicit schemes. Additionally,

time integration algorithms may have other constraints on the time–step arising

from accuracy considerations and other inherent time scales such as in dispersive

media [125] or when hybridized with network/lumped elements models [171], LTS

techniques can also contribute to mitigate these problems in a simple and straight-

forward way.

When a second order convergent spatial discretization is used, the most commonly

used time integration method is the second–order leapfrog (LF2) algorithm. Several

authors [64, 67] use a LF2-LTS scheme proposed by Montseny [77] consisting of

using the last known values of the fields on the larger time stepped region each time

that the smaller one needs a field value. Piperno [93] adopts a similar approach

based on a Verlet scheme. Alvarez [13, 17, 221] contributed with a novel approach

to perform LTS in LF2 schemes whereby an interpolation between the fields is used

in an interface between the larger and smaller time–stepped regions. A rigorous

demonstration of the stability and dispersive properties of these schemes is still an

open problem.

Diaz and Grote [225, 226] implemented a rigorous study on the stability and dis-

persion of LF-LTS high–order schemes applied to the second–order wave equation

by means of an eigenvalue analysis. They found that the LTS introduces numerical

dispersion and can produce instabilities if the global time step is not slightly reduced

with respect to a classic implementation. The authors also found that the global

stability could be improved by enlarging the smaller time–stepped region.

For higher order methods, explicit Runge-Kutta (RK) algorithms [10, 12, 27, 74,

113, 200] seem to be preferred with respect to LF schemes [107]. Despite of their

popularity, there are less works in the literature related to RK-LTS than to LF-LTS.

In [128] we find an RK-LTS scheme in which all elements are integrated with the

least restrictive time step and then the interface with the region where the polluted

solution has not been able to affect is used as a boundary condition for the regions
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which require substepping. Specifically for Maxwell’s equations, RK-LTS algorithms

usually rely on interpolations at the interfaces using previously computed solutions

[27] or arbitrary high-order derivatives (ADER) schemes [129, 227, 228].

In this paper we present a novel LTS technique that can be applied to a large variety

of time integration algorithms. It does not need interpolation between computed

solutions and nor directly uses any previously known values. Numerical results

showing comparisons with analytical solutions for applications on a second–order

Leap-Frog (LF2) and on a fourth–order Low Storage Explicit Runge–Kutta scheme

(LSERK4) are shown to demonstrate the advantages of the proposed LTS technique.

5.2 Discontinuous Galerkin Semidiscretization

Maxwell’s curl equations for source–less homogeneous media can be written as

~∇× ~E = −µ∂t ~H
~∇× ~H = ε∂t ~E (5.1)

For simplicity, in our discussion we will assume that ε and µ do not vary in the

computational domain, and use a system of units where ε = µ = 1.

We tessellate the computational domain with k = 1, . . . ,K non–overlapping tetrahe-

drons. In each of those, we apply the Discontinuous Galerkin’s formalism [10, 12, 27]

to obtain

Mk∂tEk(t) + SkHk(t)−
∑
f

FkfH∗kf (t) = 0

Mk∂tHk(t) + SkEk(t)−
∑
f

FkfE∗kf (t) = 0 (5.2)

WithM being the mass matrix, S the spatial semidiscretization of the curl operator

and Ff the lift operator for face f . E and H are column vectors containing all the

degrees of freedom for the electric and magnetic field respectively. E∗ and H∗ are

the numerical fluxes.

We define a state vector qk = [Ek Hk]
T containing all the Nk degrees of freedom

of element k. With this definition, we can rewrite system (5.2) as a single equation

that governs the time evolution of the system,

∂tqk(t) = −(Mq
k)
−1

Sqkqk(t)−∑
f

Fqkf
(
Ēkfqk(t)− Ēkf+qkf+(t)

) (5.3)
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The DG method gives us some freedom in the selection of the operators Ēkf and

Ēkf+ as long as it respects the properties of consistency, continuity, and monotonicity

needed for the numerical flux [72]. If this operator is block diagonal with all its

components being 1/2, we will say that the semi-discrete scheme is using a centered

flux and therefore is numerically non-dissipative [13, 80]. On the other hand, if these

operators are non-block diagonal we will say that the flux is being penalized and

therefore the semi-discrete scheme is numerically dissipative. We will mostly focus

on a particular case of penalized flux: the upwind flux [10, 14], coming from the

solution of the Riemann problem.

When using penalized fluxes some dissipation is introduced and more operations

are needed to compute the flux terms. However, introducing such penalization

is known to improve numerical dispersion and suppress spurious modes [10, 13,

27, 62, 77]. Altough the contribution to dissipation coming from penalized fluxes

may be negligible at well-resolved frequencies, it may become important at higher

frequencies for sufficiently long integration times; therefore, care should be exercised

by the user depending on the application.

To simplify the discussion further we will change the basis of the vector space using

an invertible operator Pk on equation (5.3) that diagonalizes only the locally applied

operators,

Wk = −P−1
k (Mq

k)
−1(Sqk −

∑
f

Fqkf Ēkf )Pk (5.4)

We can also define the eigenmodes as

pk = P−1
k qk (5.5)

and the external operators as

Vkf = −P−1
k (Mq)−1

k F
q
kf Ēkf+Pk (5.6)

This change of basis let us write equation (5.3) in the following compact form

∂tpk(t) =Wkpk(t) +
∑
f

Vkfpkf+(t) (5.7)

5.3 Time integration

In the following discussion, we will focus on two time integration methods that are

also the most popular choices in conjunction with DG semidiscretizations.
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5.3.1 Second-order Leap-Frog (LF2)

The second-order leap-frog method [122] is applied by alternately evolving the En

and Hn+1/2 fields, arbitrarily defined at times tn and tn + ∆t/2 respectively. This

implies that we do not have a fully defined state vector in the sense of eq. (5.3)

for a given time t. To obtain the future values from a present state the following

algorithm is applied

En+1 = En + ∆t Lh
(
Hn+1/2,En

)
Hn+3/2 = Hn+1/2 + ∆t Lh

(
En,Hn+1/2

)
(5.8)

With Lh being a function representing the result of applying the spatial semi–

discretization. When centered fluxes are used, the operator Lh only uses Hn+1/2

or En as arguments. This implies that the scheme is reversible in time and will

preserve energy as long as the time step used is below a maximum value ∆tk set by

a CFL-like condition [93, 120, 122].

5.3.2 Low-Storage Explicit Runge–Kutta (LSERK4)

The second method that we will use in our discussion is the five-stage fourth-order

Explicit Runge-Kutta method (LSERK4) [27, 113, 126]. This method states that

for a given vector representing the state of the system, i.e. pk(t) = pnk we can find

an approximate solution state pk(t+ ∆t) = pn+1
k applying the following algorithm

p
(0)
k = pnk ,

r(i) = air
(i−1) + ∆t

Wkp
(i−1)
k +

∑
f

Vkfp(i−1)
kf+

 ,

p
(i)
k = p

(i−1)
k + bir

(i),

p
(n+1)
k = p

(5)
k (5.9)

with i ∈ [1, ..., 5] and the coefficients ai, bi and ci taking the values indicated in

Table 5.1. The LSERK4 scheme is one of the most used methods in high–order

Discontinuous Galerkin semi–discretizations, because it introduces low dispersion

and dissipation. Contrary to other RK implementations, the low–storage version

requires the storage of only two times the number of degrees of freedom in the

scheme at the expense of one additional stage. RK methods are constrained by

the spectra of the operator Wk, i.e. all the eigenvalues of Wk must lie inside of

the stability region of the RK scheme. Consequently, the time step must be chosen
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sufficiently small, e.g. for a nodal basis the following inequality must hold [27]

∆tk ≤
C

ck
min
i

∆rki
2

(5.10)

where mini ∆rki indicates the minimum distance between nodes in element k and ck

is the maximum speed of light in the element k.

Despite its many advantages, LSERK4 has a high computational cost and the nu-

merical dissipation it introduces can be a factor depending on the application.

Table 5.1: Coefficients for the low-storage five-stages fourth-order Explicit Runge–
Kutta method (LSERK4)

s as bs cs

1 0 1432997174477
9575080441755 0

2 - 567301805773
1357537059087

5161836677717
13612068292357

13612068292357
9575080441755

3 - 2404267990393
2016746695238

1720146321549
2090206949498

22526269341429
6820363962896

4 - −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 - 1275806237668
842570457699

2277821191437
14882151754819

28032321613138
2924317926251

5.4 The Causal–Path LTS technique

In this section we introduce the Causal–Path technique as a novel way of performing

LTS in different time integration techniques. We require two basic properties for

the time integration technique:

1. It has to provide a fully defined state qk(t) for each element.

2. The next state qk(t + ∆t) can be explicitly computed from a neighbourhood

of elements.

As a first step we will organize the elements in different groups, called tiers, ac-

cording to their time steps denoted as ∆tm. An element k will belong to a tier

m = [0, . . . , Nm − 1] if its maximum time step ∆tk is such that

∆tm ≤ ∆tk < ∆tm+1 (5.11)
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In order to compute the next time step, we need to use the field values at local

and neighbor elements, p
(m,i−1)
k and p

(m,i−1)
kf+

. If there is no connection with other

elements belonging to a lower tier, we can evolve all the elements in m using their

∆tm. However, in the border between a tier m and m + 1 we can not apply the

direct algorithm because the value p
(m,i−1)
kmf+

= p
(m,i−1)
km+1 has not been computed.

The strategy that we propose is to compute the values p
(m,i−1)
km+1 using ∆tm−1 =

hi−1∆tm as time step wherever they are necessary. If to do that, we need additional

neighbour values that have not been computed, we recursively apply this idea until

a known value is found. Thus, starting from m = 0 we can compute all the stages

needed to evolve it before starting with the tier m = 1 and so on. Finally, the values

p
(m,i−1)
km+1 are casted aside and the upper tier uses the original values from the lower

tier.

To compute the next time step values in each of the Nm tiers we may need to

compute Ns stages in all the elements of tier m. We will also need to compute

intermediate stages between the stages in the m + 1 tier. So, in order to avoid a

possible interleaving with other higher tiers, we impose that the (Ns − 1)–depth

neighbourhood of a tier m is only composed of elements belonging to tier m+ 1 or

m− 1. This additional condition for the tier assortment is illustrated in Figure 5.1.

The implementation of this algorithm may seem difficult at a first glance; however,

the recursive nature of the algorithm allows us to make use of recursive calls to the

function used to evolve the system. Every time the function is called, we pass the

information about the tier in which this is being computed and the time step that has

to be applied. So starting from a call to evolve the Nm tier for a given time step ∆t,

the function will recursively call itself on each of the stages of the algorithm passing

Nm − 1 and hi∆t as arguments and evolving its corresponding tier elements. This

technique also requires that the degrees of freedom in the region being interfaced

are saved in the higher tier. Note that no interpolation of field values is necessary

and only past field values generated by the discretization itself are utilized. This is a

desirable property because schemes that perform interpolation are not reversible in

time and thus dissipative. However, the fact that we are casting away values used in

the intermediate states of lower tiers makes our scheme also non–reversible. Altough

the idea of creating a discrete domain-of-dependence is not new, our technique differs

from the one presented in [128] because we are not interpolating at the interface with

a non polluted solution to obtain the values that would be needed by the lower tier.

Rather than that, the lower tier evolves using the values obtained from applying the

same integration technique with its maximum time step. In the next sections we
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describe two examples of the CPLTS technique, applied to the LF2 and LSERK4

algorithms, together with illustrations to clarify the concepts.

1
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Figure 5.1: This figure illustrates the concept of 4–depth neigbourhood of two different
regions. The darker colors indicate elements belonging to a lower temporal tier and thus

having a smaller time step.

5.4.1 LF2-CPLTS

Since the LF2 performs iterations using a single stage we can create any distribution

of Ns intermediate stages in the higher tiers to fit the evaluations needed by the

smaller tiers. The time–steps of the intermediate stages would then be hi∆t
m+1,i =

∆tm, with hi > 0 and the restriction
∑Ns

i hi = 1. The choice of hi = 1/Ns would

be the most favourable in terms of computational cost. Figure 5.2 and Algorithm

1 show an schematic view of this scheme applied to the case h1 = h2 = 1/2. Note

that this freedom in choosing hi is an improvement compared with the Montseny’s

scheme [77], which is constrained due to the field interleaving of the LF2 scheme by

the condition ∆tm = ∆tm−1(1 + 2k), where k is a positive integer number. This

is also an improvement with respect to the Verlet–Piperno’s scheme [93] in which

∆tm+1 = 2∆tm, and it allows our scheme to adapt to the different transitions as

necessary; however, for the sake of simplicity we will not consider these cases here.

On the other hand, we need both values of E and H at same time instants in order to

find a fully–defined state of the system at any given stage p(m,i). In other words, we

can not apply this LTS technique computing only E(tn) and H(tn + ∆t/2) because

to compute the intermediate value of a lower tier, let us say Em−1(tn + ∆tm/2)

we would need the values of the magnetic field Hm(tn). To overcome this issue

we need to apply LF2 twice, doubling the computational costs with respect to the

conventional approach.
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When we apply this scheme to a non–dissipative semi–discretization (e.g. DG with

centered flux) we find that the scheme is unstable showing growing high–frequency

numerical modes. The introduction of a penalized flux solves this problem through

higher frequency damping [74, 80].

Figure 5.2: Schematic view of the LF2-CPLTS algorithm for the case h1 = h2 =
1/2. Vertical lines indicate boundaries between elements. At tn all the field values are
known. With a maximum time step ∆tm−1, the darker region needs to apply twice the
time integration algorithm to reach tn+1. The LF2-CPLTS approach applies the first
integration also in the elements of the neighbourhood of the darker region (marked with
a dashed line). With those values at tn + ∆tm−1 we can apply the algorithm again to
reach tn+1. The lighter region tn+1 values are obtained using the original values in tn

with a ∆tm time integration.

Algorithm 1: LF2-CPLTS algorithm with two stages and h1 = h2 = 1/2. To
evolve from q(tn) to q(tn+1) this algorithm is called twice using (tn), (∆tNm−1/2)
and (Nm − 1) as input arguments. The superscript RHS refers to Right Hand Side.

Data: Inputs: t, ∆t, m
Result: qk(t) is evolved to qk(t+ ∆t)
if m = Nm − 1 then

k are all the elements in tier m.
else

k are all the elements in tier m and its 1–neighbourhood.
end
qRHS
k ← Lh(qk)

if m > 0 then
k∗ are the elements in the 1-neighbourhood of m− 1.
qSaved
k∗ ← qk∗

Calls this algorithm with (t+ cs∆t), (hs∆t) and (m− 1) as inputs.
qk∗ ← qSaved

k∗

end
qk ← qk + qRHS

k ∆t

5.4.2 LSERK4-CPLTS

When the CPLTS technique is applied to an LSERK4 (Algorithm 2) we note that

the stages are not evenly distributed in time. As a result, we apply a variable time
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step in the lower tiers (Figure 5.3). The values for ∆tm and ∆tm−1 are chosen such

that equation (5.10) is always enforced and therefore

max
i

(hi)∆t
m = ∆tm−1 (5.12)

with maxi(hi) being the maximum stage size (for LSERK4 maxi(hi) = h4 = c5 −
c4 = 0.336026 ' 1/3). Whenever we compute intermediate stages in higher tiers

we satisfy this condition because in higher tiers this condition is less restrictive.

However, every time we apply this division, Ns times more computational operations

are needed to get a speed-up of about three times in the higher tier region. So, if

the largest tier region is not at least 5/3 times larger than the smallest we would

not see any appreciable global speed-up.

For this reason it seems preferable to organize the time tiers with ∆tm−1 = ∆tm/Ns

rather than with the maximum stage size criteria. By doing this, we are computing

an stage in the lower tier region with a time-step bigger than is strictly allowed based

on a conventional CFL-like criterion for the associated direct algorithm, which could

be a source of potential instability. On the other hand, the smaller stages in the

lower tier compute the solution using a time-step smaller than the maximum allowed

and thus introducing an additional numerical dissipation. We may then wonder if

the additional dissipation introduced by the smaller stages offsets the potential for

instability introduced by the larger. Note that as long as these effects are mostly

kept limited to high frequency components (which are under-resolved anyway) the

solution accuracy should not be impacted. In the next sections we perform some

tests to assess the practical validity of this approach.

5.5 Numerical Results

In this section we present comparisons between results using the proposed CPLTS

technique, the LF2-LTS technique introduced by Montseny [77], classical implemen-

tations of the algorithms, and analytical solutions.

For all cases we use nodal basis of order P = 2 and numerical upwind fluxes as

described in [10, 12, 27, 87]. This implies that we are using 60 degrees of freedom

per element. The implementation has been performed with an in–house C++ code1

with OpenMP parallelization2. GiD was used to obtain meshes and for pre and

1Compiled with GNU C++ v4.6.3 using -O3 -ffast-math flags
2For more information visit: http://www.ugrfdtd.es

http://www.ugrfdtd.es
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Figure 5.3: LSERK4-CPLTS sketch. Additional operations are made only in the
4-depth neighbourhood of the smaller tier region (darker). In this sketch the darker
region has a maximum time step ∆tm−1 = h4∆tm corresponding to the largest stage of
the LSERK4 scheme. As with the LF2-CPLTS case, the darker region is evolved first to
reach tn + h1∆tm. To do so, the field values marked with a dashed line will be needed
for the different stages of the LSERK4 algorithm applied for a time step h1∆tm. Once
the darker region has evolved to tn + ∆tm, the lighter one computes its first stage from
the original values in tn. The process continues in a similar fashion until all the stages
of the ligher region are computed and both regions are in the state tn+1. Note that the

darker region never uses a time step bigger than its maximum, ∆tm−1

.

post-processing3. Simulations for the reflection and resonance problems were per-

formed using a single processor laptop with Intel(R) Core(TM)2 Duo CPU T9400 @

2.53GHz processor and running Ubuntu 12.04 LTS. The RCS problem were run in a

desktop computer with an Intel(R) Core(TM) i7-3960X CPU @ 3.30GHz processor

with 12 cores and Ubuntu 10.04 LTS.

5.5.1 Reflection caused by a non-homogeneous mesh

The first example we present is an study of the numerical reflection caused by

differences in the mesh size, a similar type of analysis can be found in [59, 229]. This

type of analysis is important for LTS because it quantifies a source of additive noise

on the results. Figure 5.4 shows the meshes used, together with an isometric view

of the boundary conditions employed. A plane wave excitation with z-polarization

is introduced in one of the ends of the computational domain and the other end

is backed by an Silver-Mueller absorbing (SMA) boundary condition. The side–

walls of the domain are Perfect Electric Conducting (PEC) and Perfect Magnetic

3For more information visit: http://www.gidhome.com

http://www.gidhome.com
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Algorithm 2: LSERK4-CPLTS algorithm. To evolve from q(tn) to q(tn+1) this
algorithm is called using (tn), (∆tNm−1) and (Nm − 1) as input arguments. The
superscripts RHS and Res refer to Right Hand Side and Residue respectively. For
the LSERK4, we have that Ns = 5, and the constants as, bs and cs are those shown
in table 5.1.
Data: Inputs: t, ∆t, m
Result: qk(t) is evolved to qk(t+ ∆t)
s← 2
while s ≤ Ns do

if m = Nm − 1 then
k are all the elements in tier m.

else
k are all the elements in tier m and its Ns − s neighbourhood.

end
qRHS
k ← Lh(qk)

if m > 0 then
k∗ are the elements in the 4-neighbourhood of m− 1.
qSaved
k∗ ← qk∗

Calls this algorithm with (t+ cs∆t), (hs∆t) and (m− 1) as inputs.
qk∗ ← qSaved

k∗

end
qRes
k ← asq

Res
k + qRHS

k ∆t
qk ← qk + bsq

Res
k

s← s+ 1
end

Conducting (PMC) boundary conditions at the xy and xz planes respectively. The

mesh is 1 m long from one end to the other. The coarse cell size is 7.5 cm and the

cell sizes in the finer region vary from 0.1 to 0.5 cm.

Figures 5.5, 5.6 and 5.7 show the reflection coefficient in a range of frequencies. The

closer the values are to zero the better are the properties of the scheme. When

LF2 integration techniques are used, we observe two asymptotic regions, the steeper

region corresponds to the range of frequency where the spatial error is dominating

over the error coming from the order of the time integration. That is why no dif-

ferences are observed between the different techniques used. At lower frequencies

the time integration error dominates and different behaviours arise depending on

the technique. We observe that for this case the LF2 with a fully defined state

(LF2full) exhibits slightly better properties than the classic LF2 scheme. A possible

explanation for this is that the incident wave is resolved using more time steps. In

LF2-LTS and LF2-CPLTS, we observe some additional degradation when compared

to the classic LF2 schemes. The CPLTS exhibits less reflection than the Montseny’s

LTS, the difference growing with the ratio between the coarser and finer mesh. With

LSERK4 we observe that the spatial error dominates for the range of frequencies
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studied and the differences observed at lower frequencies can be attributed to er-

rors coming from illumination or poor absorption properties of the SMA boundary.

The three LSERK4 figures exhibit a better behaviour than the LF2, as expected

due to the higher order of the time integration technique, and for the cases stud-

ied, the different LSERK4 CPLTS implementations do not show a time integration

error dominating over the spatial. When the maximum stage is used for the tier

assortment, we observe a higher degradation in the low-frequency regime, proba-

bly because more time–stepping operations are being performed. The results for

the LSERK4-CPLTS are very encouraging as we see little differences between the

use the LSERK4-CPLTS technique and the classic LSERK4. Table 5.2 shows data

corresponding to the tier assortment and computational times. As expected, the

LF2-CPLTS is able of create more tiers than LF2-LTS because it only needs a ratio

of two between maximum time step sizes. The CPU times for this simulation are

listed for reference only and are not quite representative because the time employed

to compute the excitation at the boundaries and the initialization is significant when

compared with the operations performed to evolve the elements.

Table 5.2: Element Tier assorting for LTS in the plane wave reflection.

Integrator Number of Elements ∆tm [ps] CPU [s]
Tier 0 1 2 3 4 5 6 0

P
W

-R
efl

-r15-S
In

t

LSERK4-CPLTS 120 312 - - - - - 0.624 226
LSERK4-CPLTS-mS 120 24 288 - - - - 0.624 485
LSERK4 432 - - - - - - 0.624 468
LF2-LTS 120 8 304 - - - - 0.281 78
LF2 432 - - - - - - 0.281 211
LF2full-CPLTS 80 48 12 292 - - - 0.281 173
LF2full 432 - - - - - - 0.281 1799

P
W

-R
efl

-r75
-S

In
t

LSERK4-LTS 600 24 288 - - - - 0.12 3148
LSERK4-CPLTS-mS 600 24 24 264 - - - 0.12 15097
LSERK4 912 - - - - - - 0.12 4700
LF2-LTS 600 8 12 292 - - - 0.06 1444
LF2 912 - - - - - - 0.06 2296
LF2full-CPLTS 400 208 12 8 12 184 88 0.06 3524
LF2full 912 - - - - - - 0.06 7211

P
W

-R
efl

-r7.5-S
lab

LSERK4-CPLTS 240 288 - - - - - 1.24 190
LSERK4-CPLTS-mS 240 288 - - - - - 1.24 342
LSERK4 528 - - - - - - 1.24 325
LF2-LTS 240 288 - - - - - 0.55 158
LF2 528 - - - - - - 0.55 151
LF2full-CPLTS 160 96 272 - - - - 0.55 157
LF2full 528 - - - - - - 0.55 254

5.5.2 PEC cavity resonances

As a second example we show comparisons of evolving a spatially uncorrelated ran-

dom field (white noise) to study the resonances of a 1 m PEC cavity, in a similar
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(a) Single Interface 15:1 ratio.

(b) Single Interface 75:1 ratio.

(c) Slab 7.5:1 ratio.

(d) Boundary conditions.

Figure 5.4: Meshes used for the study numerical reflections by an inhomogeneous
mesh.

way as done in [34]. The mesh used is depicted in Figure 5.4c with PEC boundaries

at the ends rather than SMA. The resonance frequencies are obtained by performing

the Fourier transform of the electric field evolution after 250 ns at a point separated

0.3m from one of the boundaries. Figure 5.8 show the eigenfrequencies obtained

by the simulations together with the exact ones (black dashed vertical lines). The

LF2 schemes do not show any particular difference with respect to their dispersive

properties. The differences in amplitude between LF2 and LF2full can be attributed

to the different initial treatment of fields. The LSERK4 schemes exhibit a similar

behaviour in frequency but we observe additional attenuation when the CPLTS is

used. When the tiers are assorted using the maximum stage criteria the attenuation

is reduced. No late time stabilities were observed in any of the simulations. Figure

5.9 shows the discrete energy computed for both schemes. As we see, all the schemes

present some dissipation coming from the upwinding. When the LSERK4-CPLTS

technique is used we observe more dissipation if we do not use the max stage criteria

for tier assortment. Figure 5.10 shows the error evolution at for an initial condition
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Figure 5.5: Numerical reflection from a single interface with ratio of 15:1
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Figure 5.6: Numerical reflection from a single interface with ratio of 75:1
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Figure 5.7: Numerical reflection from a slab with ratio of 7.5:1.
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Figure 5.8: Resonances in a 1 m PEC cavity with slab meshing. Vertical dashed lines
represent exact eigenfrequencies.

of three harmonics. In all cases we observe that the CPLTS introduces additional

error when compared with the non LTS approaches. Table 5.3 shows data corre-

sponding to the tier assortment and computational times. The CPU times show

a clear improvement with the LSERK4-CPLTS algorithm while the gains for the

LF2-LTS are more moderate. LF2-CPLTS does not perform better than the LF2.
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Figure 5.9: Energy evolution in a 1 m PEC cavity with slab meshing.
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Figure 5.10: Evolution of the (Eanalytical −Enumerical)
2 error at the center of the 1 m

PEC cavity with slab meshing for a three harmonics initial condition.

5.5.3 RCS Analysis of a PEC Sphere

As a last test case we present a bi–static Radar Cross Section (RCS) analysis [10].

Figure 5.11 show the boundary conditions used. Symmetry conditions were used

to reduce the computational domain and the 1 m radius sphere was modelled using

a PEC boundary condition. SMA boundary conditions were used to terminate the

domain 3 m away from the surface of the sphere. The illumination was done using

a Total Field/Scattered Field boundary condition in a spherical surface located 1 m

away from the sphere using a Gaussian wave with 1 ns spread, y-polarization and

propagating along the x axis. The typical element size of the mesh was 25 cm

everywhere except in the PEC spherical surface modelling the sphere in which was

set to 5 cm.

Figure 5.12 shows the results of the analysis for the various LF2 and LSERK4
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Table 5.3: Element Tier assorting for LTS in the resonant cavity and RCS problems.

Integrator Number of Elements ∆tm [ps] CPU [s]
Tier 0 1 2 3 4 0

reson
-r7.5-S

lab

LSERK4-CPLTS 240 288 - - - 1.24 2403
LSERK4-CPLTS-mS 240 288 - - - 1.24 4051
LSERK4 528 - - - - 1.24 4013
LF2-LTS 240 288 - - - 0.55 1207
LF2 528 - - - - 0.55 1917
LF2full-CPLTS 160 96 272 - - 0.55 2381
LF2full 528 - - - - 0.55 3615

rcs-1m

LSERK4-CPLTS 4535 57279 157 - - 2.1 3733
LSERK4 61971 - - - - 2.1 8613
LF2-LTS 522 8614 52798 37 - 0.95 963
LF2 61971 - - - - 0.95 4348
LF2full-CPLTS 114 2155 7411 34521 17770 0.95 1851
LF2full 61971 - - - - 0.95 8642

schemes under study. At 450 MHz we see that the LF2 methods fit the Mie’s an-

alytical solution but the LF2 using Montseny’s approach exhibits an angular offset

caused by an appreciable difference in the dispersion relation. At 600MHz all meth-

ods present a higher deviation, caused by a poorer resolution of the spatial grid.

The LSERK4 results exhibit a better behaviour than the LF2, capturing the main

features of the analytical solution. The application of CPLTS seems to better pre-

serve the dispersion relation an thus the position of the peaks. However, at 600 MHz

we can observe an appreciable numerical dissipation being introduced.

Table 5.3 shows data corresponding to the tier assortment and computational times.

In this case, the LSERK4-CPLTS is able to provide a considerable speed up, reducing

the CPU time from 8613 to 3733 s (∼ 2). The LF2 LTS techniques yield a speed–up

of about four times the non-LTS counterparts. The CPLTS speeds up the classic

LF2 by a factor about two.

5.6 Tier assortment

In practice, an automated meshing process may produce a quite random tier as-

sortment having an important impact in performance and accuracy. This occurs

because we let the LTS algorithm and the tier–assortment to span the entire mesh.

Notice that in practice this may not be necessary an optimal approach. Figures

5.13, 5.15, 5.16, 5.17, 5.18 and 5.19 illustrate this phenomenon. For the 1 m PEC

sphere (Fig. 5.13, 5.15, 5.16), after imposing a constraint in the element size of 5 cm

and leaving the rest with 25 cm we observe that there is an appreciable amount of
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(a) PEC (red) and PMC (green). SMA is not
depicted.

(b) Total Field region

Figure 5.11: Boundary conditions for the RCS case.

scattered elements in the mesh belonging to a lower tier. The meshing algorithm is

able to respect the sizes imposed to the elements in the regions closer to the surfaces

but not in the inner part. Figures 5.17, 5.18 and 5.19 represent a variation of the

1m PEC sphere case in which an small cylinder representing a small scale feature

has been appended to the sphere. In this example we observe that the presence of

scattered lower tiers happens also in problems exhibiting disparate scales, unless the

user pre-sets a given maximum number of tiers.

For the LSERK4 algorithm, scattered lower tiers degrade performance because, as

depicted in Figure 5.14, many elements in the neighbourhood of lower tiers have

to perform additional operations. Additionally, the CPLTS technique requires the

storage of the elements in the neighbourhood of smaller tiers, increasing the memory

consumption. Often the meshing and tier assorting processes result in the highest

tier having a very small amount of elements (see Table 5.3), so it is up to the user

whether to preserve those tiers or not. In the LF2-CPLTS case, we observe in Figures

5.15 and 5.18 that the assorting is able to create more tiers than in the LF2-LTS
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Figure 5.12: Bi-static RCS at 300 MHz (top row), 450 MHz (middle row) and 600 MHz
(bottom row). Continuous red line represents the analytical solution obtained through

Mie’s series.
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case. This has a positive impact in performance, which is specially relevant in cases

with disparate spatial scales such as the presented in Figure 5.18.

5.7 Conclusions

In this work, we have introduced the Causal–Path concept as a way to perform LTS

on explicit marching–in–time algorithms. We have applied this concept to the DG

discretization under two different time integration techniques: LSERK4 and LF2.

When applied to LSERK4, the CPLTS implementation in which the tier assortment

is done using the number of stages criterium has improved the performance by a

factor of about two. For the case in which the assortment is done using the maximum

stage size, no computational perfomance improvement has been observed but the

numerical dissipation is reduced. For both cases the dispersive properties of the

scheme do not seem to be significatively affected.

For LF2 the performance is also improved by a factor of about two for a bi–static

RCS analysis case. In contrast, the commonly used Montseny’s technique provides

an speed up of about four. The CPLTS technique however seems to present better

dispersive properties than the Montesny’s approach and has better adaptivity to

multiscale problems.
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(a) Tier 0 (b) Tier 2

Figure 5.13: Tier assortment for LSERK4. Tier 1 is not represented.

(a) Stages distribution. Isometric. (b) Stages distribution. XY plane.

Figure 5.14: Elements in LSERK4 where some operations are required by the smaller
tiers. Darker colour means more operations (closer to a smaller tier). The degrees
of freedom belonging to the elements represented need to be stored when the smaller
tier is solved. Elements that do not require additional operations and storage are not

represented.
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(a) Tier 0 (b) Tier 1

(c) Tier 2 (d) Tier 3

(e) Tier 4

Figure 5.15: Tier assortment for LF2-CPLTS.
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(a) Tier 0 (b) Tier 1

(c) Tier 2 (d) Tier 3

Figure 5.16: Tier assortment for LF2-LTS.
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(a) LSERK4-CPLTS Detail view (b) LSERK4-CPLTS General view

Figure 5.17: Tier assortment for LSERK4-CPLTS

(a) LF2-CPLTS Detail view (b) LF2-CPLTS General view

Figure 5.18: Tier assortment for LF2-CPLTS

(a) LF2-LTS Detail view (b) LF2-LTS General view

Figure 5.19: Tier assortment for LF2-LTS





Chapter 6

Space-Time Discontinuous

Galerkin

L. D. Angulo, J. Alvarez, M. F. Pantoja, and S. G. Garcia. An explicit nodal space-

time discontinuous galerkin method for maxwell’s equations. IEEE Microwave and

Wireless Components Letters, Accepted

Abstract

A novel implicit nodal Space-Time Discontinuous Galerkin (STDG) method is pro-

posed in this paper. An eigenvalue analysis is performed and compared with that

for a DG scheme solved with a 4th-Order Runge-Kutta time integrator. We show

that STDG offers a significant improvement of dissipative and dispersive properties

and allows larger time steps, regardless of the spatial hp-refinement. A domain-

decomposition technique is used to introduce an explicit formulation of the method

in order to render it computationally efficient.
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6.1 Introduction

A common approach for Discontinuous Galerkin (DG) time-domain (TD) meth-

ods, is to treat the time and space variables separately [27], often using an explicit

time-integrating schemes such as the 4th-Order Low-Storage Runge-Kutta LSERK4,

which prevents the full exploitation of the higher-order spatial convergence. Al-

though works to cope with this limitation [130] exist, a noteworthy alternative is

to use Space-Time DG (STDG) methods, already used in other fields of Physics

[8, 230], and in Electromagnetics [119, 132]. A major drawback of STDG resides

in its implicit nature, though semi-explicit approaches also exist [119, 132] (tent-

pitching technique).

In this work, we present a novel STDG formulation combined with a causal domain-

decomposition technique [231] to render it explicit (E-STDG). This letter is orga-

nized as follows: we first formulate a nodal[27] STDG scheme, with a new spurious-

free upwind-in-space flux, combined with a centered-in-time flux. Next, we study

the properties of the resulting implicit STDG scheme with an eigenvalue analysis,

comparing with a DG-LSERK4 one. Next, we describe the explicit causal formula-

tion E-STDG, and validate it with a simple resonant problem. We finally conclude

that the use a nodal approach, together with the domain-decomposition technique

provides an affordable solution to the problem.

6.2 Implicit Formulation

Let us start by defining a 2D space-time region tessellated with k = 1, . . . ,Kx

elements. With ζ ∈ V defined as a space-time coordinate within each element, and

with n̂ = (nt, nx) normal vectors pointing outwards from its boundary. The weak

form of 1D Maxwell’s curl equations is found by multiplying by weighting functions

αij(ζ), integrating over V , and enforcing the residual to vanish. For instance, the

free-space Ampère’s law (taking for simplicity the permittivity and permeability

both equal to 1) becomes∫
V

(∂tE(ζ) + ∂xH(ζ))αij(ζ)dζ = 0 (6.1)

with E and H being the electric and magnetic fields. Integrating by parts in (6.1)

and replacing the boundary flux-integral by a numerical flux, as usual in DGTD, we

find ∫
V
∂xHαijdζ =

∫
T
dt

[∫
∂X
n̂ ·H∗αijdx−

∫
X
H∂xαijdx

]
(6.2)
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with H∗ (and similarly E∗) being the usual numerical fluxes [27]. Next, following the

Galerkin procedure, we expand the fields in series using the weighting functions also

as basis functions, and assuming that their space-time dependence can be separated

in polynomials of orders P t and P x for the temporal and spatial parts, respectively

Hh(ζ) =

P t∑
i=0

Px∑
j=0

αij(ζ)Hij =

P t∑
i=0

Px∑
j=0

αti(t)α
x
j (x)Hij (6.3)

and similarly for E. Substituting (6.3) into (6.2), the spatial-stiffness term becomes,

∫
V
Hh∂xαmndζ =

P t∑
i=0

Px∑
j=0

Hij

∫
T
αtiα

t
mdt

∫
X
αxj ∂xα

x
ndx (6.4)

And the spatial-flux term,∫
T

(H∗(t, xR)αmn(t, xR)−H∗(t, xL)αmn(t, xL)) dt =

P t∑
i=0

Px∑
j=0

H∗ij (αxn(xR)− αxn(xL))

∫
T
αtiα

t
mdt (6.5)

Flux evaluations are highly simplified by using a nodal approach based on Lagrange

interpolating polynomials[27], since the flux in a space-time node requires only the

degrees of freedom (DOFs) at the nodes occupying the same position in the neigh-

boring elements. To determine the space-time flux, let us define

[[Hij ]]
t =

Hij −Ht,+
ij

2
[[Hij ]]

x =
Hij −Hx,+

ij

2
(6.6)

and similarly for the E-field. There, the upper subscript x,+ refers to the neigh-

boring node along the spatial boundary (see Fig. 6.1). First, we find the centered

version of the numerical fluxes, as the average with the contiguous-space/earlier-time

border values

H�ij = δi0[[H0j ]]
t − δ0j [[Hi0]]x + δjPx [[HiPx ]]x (6.7)

and, secondly, we complete them with the lacking terms to obtain upwind fluxes in

space, keeping centered fluxes in time

H•ij = H�ij − δ0j [[Ei0]]xZ−1 + δjPx [[EiPx ]]xZ−1 (6.8)

where δij refers to the usual Kronecker-delta, and Z, Y the medium impedance and

admittance, respectively (both unity in our case).
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Figure 6.1: Notation: a space-time element (in gray) with P t = P x = 3.

A compact matrix formulation can be written by arranging the E and H field coef-

ficients (DOFs) in an ordered column-vector, e.g.

E
.
=
[
E0,0, . . . , E0,Px . . . EP t,0, . . . , EP t,Px

]T
. Eq. (6.4), with the usual tensor product ⊗, becomes∫

V
Hh(ζ)∂xα(ζ)dζ

.
=Mt ⊗ CxH (6.9)

with M and C being the mass and stiffness matrices, respectively. The spatial-flux

term (6.5) can be expressed as∫
T

(
Hh,∗(t, xR)α(t, xR)−Hh,∗(t, xL)α(t, xL)

)
dt

.
=Mt ⊗ (RxL −RxR)H∗

(6.10)

with RtL = eP
t

0 eP
t,T

0 and RtR = eP
t

P te
P t,T
P t where eNi is a N + 1 long zero vector with

1 in entry i. Operating similarly for the rest of terms and the Ampere’s equation,

we can express the scheme locally as

εCt ⊗MxE +Mt ⊗ CxH
=Mt ⊗ (RxL −RxR)H∗ + (RtL −RtR)⊗MxE∗

(6.11)

Let us now assume that our computational domain is divided by Kx space-time

elements and let us define

F tR,L = IKx ⊗ I2 ⊗RtR,L ⊗Mx , FxR,L = IKx ⊗ V ⊗Mt ⊗RxR,L
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St = IKx ⊗ I2 ⊗ Ct ⊗Mx , Sx = IKx ⊗ V ⊗Mt ⊗ Cx (6.12)

with IN =
∑N−1

n=0 eN−1
n eN−1,T

n and V = e1
0e

1,T
1 + e1

1e
1,T
0 . We can write the following

compact expression

(St + Sx)q = (F tL −F tR + FxL −FxR)q∗ (6.13)

where q represents all the field coefficients in a given space-time element. The

upwind-in-space centered-in-time numerical flux (6.8) can be expressed as

q∗upwind = −E tRq′ + (E tL + ExL − ExR)q︸ ︷︷ ︸
q∗centered

+(ExL − ExR)Ṽq (6.14)

with q′ being the state vector of the previous space-time element. The operators E
perform the operations needed to assemble the unknowns associated with the fluxes

in the global system of equations. The superscripts t and x and subscripts L and R

indicate the boundary at which they are operating. The operator Ṽ = IKx ⊗ V ⊗
IP t ⊗IPx indicates the operation on the dual field. Note that FxE tq′ = F tExq = 0

because E is defined to extract only the unknowns needed by the flux acting on the

boundary indicated by its superscript. Replacing the centered part of (6.14) into

(6.13)

(St+ Sx−FxLExL + FxRExR + F tLE tL)−1(−F tLE tR)︸ ︷︷ ︸
H

q′= q (6.15)

and a similar expression can be formulated for upwind flux. Eq. (6.15) enables us to

find the current state, q, from the previous state, q′, in a marching-in-time way. A

major limitation of this scheme is its spatial implicitness, requiring matrix inversion

(or solving a linear system at each time step) of operators scaling as O(K2
x) (only

tentatively efficient for problems where the space and time scales are very dissimilar).

6.3 An explicit scheme

Semi-explicit formulations of STDG exist [119, 132], and in this section we present

a new explicit alternative simpler than those, in terms of the needed mesh, and

using a reduced number of DOFs. A domain-decomposition technique [231] will be

used to formulate an explicit variant of the scheme in (6.15), at the cost of adding

a CFL-like causality condition. Rather than solving the whole domain Ω, we divide

the problem into smaller regions Ωd such that
⋃Nd
d Ωd = Ω. Then, we enlarge each

region Ωd to include the elements that are causally connected with it for a given ht,

we will denote this enlarged region with Ω′d. An element is considered to be causally
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connected with another one if any of its fields at t can propagate to Ωd at t + ht.

i. e. if it contains a point within a distance d ≤ cht to any point in Ωd, with c

being the numerical speed of light. The border of Ω′d ends in a zero-flux boundary

condition that decouples it from the rest of the computational domain. Finally,

the problem is solved in each Ω′d using the implicit method described above but

passing only the values in Ωd to the next step. The values in Ω′d\Ωd are discarded

as they are corrupted by the artificial boundary condition. This approach reduces

the computational cost from O(K2
x) to

∑Nd
d O(K2

x,d) with Kx.d < Kx. The region

sizes Ωd can be chosen as a trade-off taking into account the computational cost in

determining the initial Hd, the cost to evolve the scheme, and the size of the time

step.

6.4 Numerical Analysis

A PEC-terminated spatial domain has been discretized with Kx = 4 elements of

size hx = 0.25 and order P x = 4 using the spatial upwind flux (6.8), as a simple

proof-of-concept test-case. The eigenvalues of H have been numerically found to

investigate dispersion and dissipation independently (rather than using error norms

such as in [8, 119, 132, 230]). We have conducted studies for different ht, which have

not exhibited eigenvalues with positive real parts, thus implying that the scheme is

unconditionally stable for any ht.

Fig. 6.2 shows the dispersion and dissipation properties of the scheme for the first

resonant modes to the closest analytical mode ka = π with ωa = π for different

STDG schemes and a classical DG evolved using LSERK4 and the same upwind

spatial fluxes. The accuracy of the scheme presents high-order convergence with ht,

following the relationship (h2Pt+1
t ) for the dissipation, and (h2Pt+2

t ) for the disper-

sion, in agreement with [22] for the spatial DG semi-discrete scheme. Therefore we

can conclude that the spatial and temporal convergences of the scheme coincide.

Note that, although the LSERK4 physical eigenvalue can be computed and repre-

sented, it is unstable for approx. ht ≥ 0.05 because of the presence of other eigen-

values lying outside its stability region, thus limiting with ht,max ∝ (P x)−2 minhkx.

We also find that we have higher convergence for P t ≥ 2, which is a significant

improvement over LSERK4, especially when combined with a higher P x.
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Figure 6.2: Dissipative (up)/dispersive (down) convergence rates of the eigenvalues
of the evolution operator H for different orders & ht.

6.5 Numerical Results

For validation, we have simulated the above problem using a discretization ofKx = 8,

hx = 0.125, ht = 0.1, and P t = P x = 4 and upwind fluxes up to a time T = 10000

(note that all quantities are dimensionless in our system of units). Also, we have

computed the same problem with the explicit implementation of the scheme. The

STDG scheme has a single evolution operator with 6400 non-zero entries. The E-

STDG works with a split domain having 8 different evolution operators totaling 4800

non-zero entries, indicating a significant reduction in the computational complexity.

Fig. 6.3 shows the resonances and the error for the first modes.
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Figure 6.3: Response to a white noise in the E-STDG and STDG schemes with
P t = 4, ht = 0.1, P x = 4 ,Kx = 8, hx = 0.125 after a time of 100. Vertical dashed lines

represent the analytical modes.

6.6 Conclusions

In this work, we have introduced and analyzed a novel implicit and stable nodal

STDG technique, and compared it with the classic DG-LSERK4 scheme. This

nodal formulation needs to store twice the DOFs of the LSERK4 formulations, but

it is suitable to be used in high-order-in-space schemes, taking full advantage of

the convergence of the spatial DG semi-discretization. To overcome its implicitness,

we have proposed a new explicit implementation, showing that the scheme can be

computationally affordable, allowing certain freedom in choosing the size of the time

step and evolution operators.
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Chapter 7

Source and boundary

implementation in vector and

scalar DGTD

J. Alvarez, L.D. Angulo, M. Fernandez Pantoja, A. Rubio Bretones, and S.G. Garcia.

Source and boundary implementation in vector and scalar dgtd. Antennas and

Propagation, IEEE Transactions on, 58(6):1997 –2003, 2010. ISSN 0018-926X. doi:

10.1109/TAP.2010.2046857

Abstract

In this paper we summarize the boundary and source implementation for the several

formulations of the Discontinuous Galerkin Time Domain method (DGTD). Since

DGTD with 0th–order scalar basis functions using the upwind flux, coincides with the

Finite Volume Time Domain (FVTD), many of the concepts developed for FVTD

can be ported to DGTD in any of its different formulations (scalar/vector basis,

upwind/centered flux). Numerical examples illustrate the different alternatives.
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7.1 Introduction

The Discontinuous Galerkin Time Domain (DGTD) method is a rapidly emerg-

ing technique in computational electromagnetics in the time domain [67, 92, 189,

192, 193, 195, 213], which provides an alternative to Finite Elements Time domain

(FETD), Finite Volume Time Domain (FVTD) and Finite Difference Time Domain

(FDTD) methods.

Like FETD, DGTD employs a variational formulation (discontinuous Galerkin) to

integrate the spatial part of time–domain Maxwell’s curl equations, with a differ-

ential integration scheme for the time part. The space is divided into M non–

overlapping elements, in each of which the solution is expanded in a set of local

scalar [194] or vector [92] basis functions of arbitrary order. The weak form of

Maxwell’s curl equations are found element by element by employing a Galerkin

test procedure.

Unlike FETD, the solution is not enforced to be continuous at the boundaries be-

tween adjacent elements. Instead, continuous numerical fluxes are defined at the

interface in order to connect the solution between them in the manner used in

FVTD methods. Two common flux conditions are found in the literature: the cen-

tered flux [189], and the upwind flux [188]. The latter is the one actually employed

in FVTD, and in fact, FVTD can be regarded as a special case of DGTD with this

flux, and 0th order (constant) scalar basis functions [232].

The main advantage of DGTD over FVTD is its higher order in space, while over

FETD, the advantage resides in the fact that DGTD needs only the inversion of M

square matrices of Q × Q elements (with Q the number of basis functions), while

larger matrices ('MQ×MQ) are involved in FETD.

In this paper, we take advantage of the resemblances of FVTD and DGTD to de-

rive simple boundary conditions and to implement sources into DGTD for the dif-

ferent formulations: vector/scalar, centered/upwind flux approximation (this idea

was successfully employed in [195] to derive a hybrid FDTD/DGTD algorithm).

Here, we use the numerical flux to: a) incorporate wave sources directly by using

the total field/scattered field formulation [223], b) implement Perfect Electric/Mag-

netic Conducting (PEC/PMC) surfaces, and c) incorporate Silver–Müller Absorbing

Boundary conditions (SM–ABCs) [78] into DGTD. Though some of those ideas are

well–known in FVTD, we think it may be useful to extend everything under a com-

mon framework for the different formulations of the DGTD method.
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This paper is organized as follows. In Section II we summarize the DGTD funda-

mentals in 3D with vector/scalar basis and the centered/upwind flux. Section III

shows the implementation of boundary conditions, wave sources and SM–ABC into

DGTD, and Section IV presents some results.

7.2 DGTD fundamentals

7.2.1 Scalar basis formulation

Let us assume Maxwell’s symmetric curl equations for linear isotropic homogeneous

media in Cartesian coordinates. Now, let us divide the space in M non–overlapping

elements Vm, each bounded by ∂Vm and enforce the inner product of each equation

with a set of local continuous scalar test functions, to nullify element by element∫
Vm

Φem

q ′ (ε∂t
~Em + σ ~Em + ~J −∇× ~Hm)dV = 0

∫
Vm

Φhm

q ′ (µ∂t ~H
m + σ∗ ~Hm + ~M +∇× ~Em)dV = 0 (7.1)

Φe,h
q ′ ∈ Be,h

m
= {Φe,hm

1 ,Φe,hm

2 , ...,Φe,hm

Q } (7.2)

With ~E, ~H, ~J , ~M ,σ,σ∗,ε,µ being, respectively: electric field, magnetic field, electric

current density, magnetic current density, electric conductivity, magnetic conductiv-

ity, permittivity and permeability.

After some algebra we can write Eqs. (7.1) as∫
Vm

(Φem

q ′ (ε∂t
~Ee

m
+ σ ~Em + ~J) +∇Φem

q ′ × ~Hm)dV =

∮
∂Vm

Φem

q ′ (n̂
m × ~Hm)dS

(7.3)∫
Vm

(Φhm

q ′ (µ∂t ~H
m + σ∗ ~Hm + ~M)−∇Φhm

q ′ × ~Em)dV = −
∮

∂Vm

Φhm

q ′ (n̂m × ~Em)dS

(7.4)

Eqs. (7.3)(7.4) together with a tangential field continuity1 condition between adja-

cent elements leads to a FETD method [44]. Namely, adding the superscript + to

the fields at ∂Vm calculated in the element adjacent to m, the continuity on the tan-

gential field components on the common face ∂V m of two adjacent elements requires

1Let us assume at the moment that no PEC/PMC are present. We will show later how to
handle these.
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for FETD that

n̂m × ~Em+ = n̂m × ~Em , n̂m × ~Hm+ = n̂m × ~Hm (7.5)

The main drawback of the resulting algorithm resides in its implicit nature, which

requires the solution of large matrix equations[82]. The core idea of DGTD is to

relax the continuity conditions to yield a quasi–explicit algorithm. Namely, instead

of plugging (7.5) into (7.3)(7.4), DGTD defines numerical values of the tangential

fields on ∂Vm, henceforth called numerical fluxes (n̂m× ~Em∗ and n̂m× ~Hm∗), which

do not coincide with any of the values of the tangential fields at any side of ∂Vm but

depend on them

n̂m × ~Em∗ = n̂m ×
(
~f−E ( ~Em, ~Hm) + ~f+

E ( ~Em+, ~Hm+)
)

n̂m × ~Hm∗ = n̂m ×
(
~f−H ( ~Em, ~Hm) + ~f+

H ( ~Em+, ~Hm+)
)

(7.6)

This numerical flux is the one actually employed by any pair of adjacent elements

to calculate the surface (flux) integrals in the RHS of (7.3)(7.4), instead of n̂m× ~Em

and n̂m × ~Hm.

Two common choices of the numerical flux are reported in the literature:

1. A centered flux [194] found by averaging the solutions at both sides of the

interface

n̂m × ~Em∗ = n̂m × ~Em+ ~Em+

2

n̂m × ~Hm∗ = n̂m × ~Hm+ ~Hm+

2 (7.7)

2. The upwind flux usually employed in FVTD [188] arising from the solution

of the advection equations with discontinuous initial values (Riemann prob-

lem) [189]

n̂m × ~Em∗ = n̂m × (Ym ~Em−n̂m× ~Hm)+(Ym+ ~Em++n̂m× ~Hm+)
Ym+Ym+

n̂m × ~Hm∗ = n̂m × (Zm ~Hm+n̂m× ~Em)+(Zm+ ~Hm+−n̂m× ~Em+)
Zm+Zm+ (7.8)

with Zm =
√

µm

εm = 1
Ym being the intrinsic impedance of the element m, and

Zm+ = 1
Ym+ being that of the adjacent one.

The semi–discrete algorithm is found by assuming that the space and time depen-

dencies of the fields can be separated, and that the spatial part is expanded within
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each element in a set of basis functions equal to the set of test functions (Galerkin

method)

~Em =

Q∑
q=1

~Emq (t)Φem

q (~r) , ~Hm =

Q∑
q=1

~Hm
q (t)Φhm

q (~r) (7.9)

The final form of the semi–discrete algorithm at the element m is

εM̃ ee∂tE +
(
σM̃ ee−F̃ ee

)
E = −J − S̃ehH + F̃ ehH + F̃ eh

+

H
+
− F̃ ee+E

+

(7.10)

µM̃hh∂tH +
(
σ∗M̃hh−F̃ hh

)
H = −M + S̃heE − F̃ heE − F̃ he+E

+
− F̃ hh+

H
+

(7.11)

where

• E and H are the field coefficients

E =
(
~Em1 (t), . . . , ~EmQ (t)

)T
(7.12)

H =
(
~Hm

1 (t), . . . , ~Hm
Q (t)

)T
(7.13)

• J and M are the weak form of the source terms

J =

∫
Vm

(
~J(~r, t)Φhm

1 , . . . , ~J(~r, t)
)T

Φhm

Q dV (7.14)

M =

∫
Vm

(
~M(~r, t)Φhm

1 , . . . , ~M(~r, t)
)T

Φhm

Q dV (7.15)

• M̃ is the mass matrix

[M̃αα]q′q =
∫
Vm

Φαm

q ′ Φαm
q dV (7.16)

• S̃ is the stiffness matrix

[S̃αβ]q′q = (
∫
Vm
∇Φαm

q ′ Φβm
q dV )× (7.17)
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• F̃ are the flux matrices

[F̃αα]q′q = καα(

∫
∂Vm

Φαm

q ′ Φαm

q dS) n̂m × n̂m×

[F̃αβ]q′q = ναβ(

∫
∂Vm

Φαm

q ′ Φβm

q dS) n̂m× , α 6= β (7.18)

where, for the centered flux

κhh = κhh+ = κee = κee+ = 0

νeh = νeh+ = νhe = νhe+ = 1/2 (7.19)

and for the upwind flux

κhh = κhh+ =
1

Y m + Y m+
, κee = κee+ =

1

Zm + Zm+

νhe = κhhY m , νhe+ = κhh+Y m+

νeh = κeeZm , νeh+ = κee+Zm+ (7.20)

Notice that the flux terms F̃αα on the LHS of Eqs. (7.10)(7.11) are factors

appearing only when the upwind flux is employed.

A common choice for the basis functions [189], is the set 3D Lagrange interpolating

nth order polynomials (Legendre polynomial basis can be found in[213]) with equal

set of electric and magnetic basis functions Φem
q = Φhm

q ≡ Φm
q . They are first defined

in a standard reference element [82] as a function of the simplex coordinates (ξ, η, ζ)

by

Φq(ξ, η, ζ) ∈ P 3
n = span{ξiηjζk; i,j,k≥0

i+j+k≤n} (7.21)

requiring (n + 1)(n + 2)(n + 3)/6 nodal points in the element to form a complete

basis. The local basis for each element is found by computing the mapping of the

transformation from the reference element to the actual one. The case n = 0 leads

to the classical FVTD algorithm[188].

The resulting system of ordinary differential equations in time can be solved in

a number of ways: second–order leapfrog (LF)[195], 4th order Runge–Kutta[92],

implicit Crank–Nicolson[232], symplectic[233], etc.
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7.2.2 Vector–basis formulation

The fundamentals of the vector formulation are similar to those of the scalar one.

Now the basis and test functions are chosen to be vectorial:

Be,hm = {~φe,hm1 , ~Φe,hm

2 , ..., ~Φe,hm

Q } , m = 1, ...,M

The weak form of Maxwell’s equations is found by using the scalar product of the

vector test–functions and the fields

∫
Vm

(~Φem

q ′ · (ε∂t ~Em + σ ~Em + ~J)−∇× ~Φem

q ′ · ~Hm))dV =
∮

∂Vm

~Φem

q ′ · (n̂m × ~Hm∗)dS

(7.22)∫
Vm

(~Φhm

q ′ · (µ∂t ~Hm + σ∗ ~Hm + ~M) +∇× ~Φhm

q ′ · ~Em))dV = −
∮

∂Vm

~Φhm

q ′ · (n̂m × ~Em∗)dS

(7.23)

where we already assumed the fluxes in the RHS to be the numerical ones.

Comparing Eqs. (7.3)(7.4) and Eqs. (7.22)(7.23) we find similar flux–density integrals

in their RHSs. Thus the same upwind and centered fluxes of the scalar case can be

used here.

For vector–basis functions the expansion (7.9) now becomes

~Em =
Q∑
q=1

Emq (t)~Φem
q (~r) , ~Hm =

Q∑
q=1

Hm
q (t)~Φhm

q (~r) (7.24)

The semi–discrete algorithm is formulated by plugging (7.24) into (7.22)(7.23). The

resulting equations are formally equal to (7.10)(7.11), now with

E =
(
Em1 (t), . . . , EmQ (t)

)T
(7.25)

H =
(
Hm

1 (t), . . . ,Hm
Q (t)

)T
(7.26)

J =

( ∫
Vm

~J(~r, t) · ~Φhm
1 , . . . , ~J(~r, t) · ~Φhm

Q dV

)T
(7.27)

M =

( ∫
Vm

~M(~r, t) · ~Φhm
1 , . . . , ~M(~r, t) · ~Φhm

Q dV

)T
(7.28)

[M̃αα]q′q =
∫
Vm

~Φαm

q ′ · ~Φαm
q dV (7.29)

[S̃αβ]q′q = −
∫
Vm

(∇× ~Φβm

q ′ ) · ~Φαm
q dV (7.30)
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[F̃αα]q′q = καα
∫

∂Vm

~Φαm

q ′ · (n̂m × n̂m × ~Φαm
q )dS (7.31)

[F̃αβ]q′q = ναβ
∫

∂Vm

~Φαm

q ′ · (n̂m × ~Φ
βm
q )dS , α 6= β (7.32)

A common election of the basis functions is the hierarchical high-order vector–basis

functions, widely used in finite elements methods [85, 92], which present some im-

plementation advantages in order to reduce computation and memory requirements.

Namely, since only the edge– and face–basis functions associated with the face ∂V m

have non-zero tangential components, the flux matrices F̃ are sparse. Furthermore,

the Be,hm function space is separated in the gradient space (Ge,hm) and the rota-

tional space (Re,hm) [85], and only the functions belonging to the rotational space

have non-zero ∇× ~Φe,hm
q 6= 0, leading S̃ to be also sparse. Finally, the F̃αβ and S̃

matrices do not depend on geometrical information (this does not apply to F̃αα) and

can be shared by all V m, only needing one storage when an explicit time integration

scheme is used.

7.3 Boundary conditions

The flux conditions which serve to connect adjacent fields, also serve to implement

boundary conditions.

1. The interface of two elements with different ε and µ is handled in an indirect

manner in the DGTD formulation, thanks to taking the same tangential com-

ponents of the fields n̂m × ~Em∗ and n̂m × ~Hm∗ in the flux integrals for two

adjacent elements.

2. PEC boundary conditions on a face of an element m require the setting of

the tangential electric field employed in the flux integrals to be null, and the

tangential magnetic field to be continuous

n̂m × ~Em+ = −n̂m × ~Em

n̂m × ~Hm+ = n̂m × ~Hm (7.33)

3. PMC conditions are reciprocal of PEC

n̂m × ~Hm+ = −n̂m × ~Hm

n̂m × ~Em+ = n̂m × ~Em (7.34)
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Let us note that for the upwind flux, both for PEC and PMC, we must also

assume Y m+ = Y m and Zm+ = Zm.

4. Regarding the ABCs, the straightest ones are the so–called first–order Silver–

Müller (SM–ABC) [78] which are based on considering that outside the com-

putation domain, the fields propagate as plane waves normally to the interface

n̂m × ~Em+ = Zm ~Hm+, n̂m × ~Hm+ = −Y m ~Em+. For the upwind flux, this is

directly implemented since it is equivalent to assuming that there is no contri-

bution to the flux from outside the region of solution, only remaining ~f−E,H in

Eq. (7.6).

n̂m × ~f+
E = 0 = n̂m × Ym ~Em++n̂m× ~Hm+

Ym+Ym+

n̂m × ~f+
H = 0 = n̂m × Zm ~Hm+−n̂m× ~Em+

Zm+Zm+ (7.35)

SM–ABC for the upwind flux provide a reflection coefficient of up to -50

dB for normal incidence, this rapidly degrading when the angle of incidence

increases[79]. For the centered flux, SM–ABC conditions can also be em-

ployed [124], but, in this paper, we have implemented instead PML (Perfectly

Matched Layer) ABCs [213][191].

5. Incident–wave conditions can also be generated in a straightforward way. Let

us consider that, inside a total–field zone (TFZ), a known wave is propagating,

while outside it (scattered–field zone (SFZ)) the field is null. If ~Einc, ~H inc

denote the wave fields at each point of the TFZ/SFZ interface (Fig. 7.1), the

flux across the face of an element m in the TFZ (with this face lying on the

TFZ/SFZ interface) needs to be modified according to

n̂m × ~Em+ = n̂m × ( ~Em+ + ~Einc)

n̂m × ~Hm+ = n̂m × ( ~Hm+ + ~H inc) (7.36)

and if m is in the scattered field zone

n̂m × ~Em+ = n̂m × ( ~Em+ − ~Einc)

n̂m × ~Hm+ = n̂m × ( ~Hm+ − ~H inc) (7.37)

This technique can also be applied in a reverse way to incorporate the fields

created by other sources (Hertzian dipoles, wire antennas, etc.). Let us as-

sume that the sources are inside the SFZ, while the TFZ is outside. If we

know the fields on the SFZ/TFZ interface, we can use them as incident fields

in (7.36)(7.37), to get null fields inside SFZ and the original ones in the TFZ.
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Figure 7.1: Total Field/Scattered Field decomposition.

This form of the Huygen’s principle was successfully employed in [234] in a

hybrid method implementation.

7.4 Results

We have implemented 3D codes, both with the scalar and vector–basis functions,

and with the upwind and centered numerical fluxes, incorporating sources and ABCs

(SM-ABC and PML). Second–order accurate centered differences (LF2) as well as

fourth–order Runge–Kutta (RK4) schemes, have been used for the time integration.

The study of the stability (and dispersion) of the resulting schemes will not be

addressed here, and we have limited ourselves to derive heuristic estimations[124,

189] for the maximum time steps, yielding stable schemes in each case.

To validate the ideas presented in this paper, three simple examples are shown.

Exhaustive side–by–side comparisons of the accuracy of scalar– and vector–DGTD

are beyond the scope of this work, and they are left to a forthcoming publication.

7.4.1 Plane–wave generation

In order to test the TFZ/SFZ formulation, we have generated a known field inside

the total field zone, and we have measured the field that escapes to the scattered

field zone due to numerical errors. The TF zone consists of a 1m–side cube where

a plane–wave is traveling with θ = 45◦, Φ = 0◦, and ~E polarized along ŷ. The time
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Figure 7.2: Scattered field error as a function of the minimum space resolution: λ
h .

Vector centered–flux approximation. LF2.

variation is chosen to be a sine modulated by a Gaussian pulse

f(t) = e−
t2

2σ2 sin(2πft) with σ = 2ns., f = 300MHz (7.38)

Fig.7.2 shows the normalized field in a scattered–field point near the TFZ/SFZ inter-

face (Fig.7.1) as a function of the minimum space resolution (minimum wavelength

normalized to the maximum edge length), for different orders of the basis functions

(1,2,3), using a hierarchal vector–basis DGTD, with the centered flux, and with a

LF2–scheme in time. As in FDTD [235], the field that escapes from the TF zone,

due to dispersion errors, decreases with the space resolution.

7.4.2 ABCs

To test the ABC performance, we have measured the energy decay with time in a

cubic region (side=1m), with a Hertzian dipole at its center with the time varia-

tion given by (7.38). Fig. 7.3 shows results for the SM–ABCs, placed in a sphere

(radius=0.5m) that is concentric with the dipole, found with scalar basis (Lagrange

polynomials) of orders p = 1, 2, 3, upwind flux approximation, and with RK4–scheme

in time. In this case the absorption of SM-ABCs is especially efficient because of the

spherical nature of the waves impinging on the truncation boundary, which satisfies
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the SM–ABCs principle. The Hertzian dipole illumination has been incorporated

into DGTD using the reverse TFZ/SFZ formulation described above.

Finally, let us show in Fig. 7.4 results of the RCS in the E–plane of a 1m radius PEC

sphere in a UPML–truncated region. We compare results found by FDTD (under

conditions similar to those of DGTD) and Mie series solution, with DGTD results

found with the centered flux approximation together with hierarchal vector–basis of

orders (G0,R1) and (G1,R2) (with Gn and Rn being the nth order gradient and rota-

tional spaces), and with a LF2–scheme in time. We have used quadratic curvilinear

tetrahedra (not detailed in the inset of Fig. 7.4) to further remove discretization

errors. The sphere is illuminated with the TFZ/SFZ formulation described in this

paper, by a plane wave with time variation (7.38). The UPML for the DGTD

method is chosen to be a spherical crown (see inset of Fig. 7.4), with parabolic con-

ductivity, and a theoretical reflection coefficient of -80 dB. For the FDTD method

a parallelepiped crown with similar characteristics is chosen.

It bears noting from Figs. 7.4,7.5 that to achieve the accuracy of DGTD with (G1,R2)

(less than 1 dBsm almost everywhere), we needed to employ FDTD resolutions over

90 cells/λ, requiring the solution of over 160 ·106 unknowns, while DGTD only needs

7.5 · 106 unknowns2.

7.5 Conclusions

In this paper, we have described the implementation of boundary conditions and

total field/scattered field zone separation into the DGTD method. We have made use

of the concept of numerical flux to generate them, taking advantage of the similarities

between FVTD and DGTD. A common framework to incorporate them into the

different formulations of DGTD (vector/scalar basis, centered/upwind flux) has been

described. These concepts have been numerically tested in canonical examples, and

validated in RCS prediction, with extremely accurate results.

2Computational requirements in a 1.66Ghz Core 2 Duo T5500: FDTD→ Calculation speed=14·
10−12, Memory=1104 Mb. DGTD (G1,R2) → Calculation speed=126 · 10−12 , Memory= 300Mb.
DGTD (G0,R1) → Calculation speed=728 · 10−12 , Memory=60Mb. Calculation speed is given in
terms of physical time normalized to the CPU time (e.g. a calculation speed of 10−12 implies that
1s is needed by the CPU to simulate a physical time of 1ps).
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Figure 7.3: Energy decay with time in the simulation region. A centered dipole fed
with a 300 MHz continuous wave modulated by a Gaussian pulse (σ = 2ns.) is placed

at its center. Scalar upwind–flux formulation. SM–ABCs. RK4.

Figure 7.4: Bi–static RCS in the E–plane of a 1m radius PEC sphere at 300 MHz
illuminated with a 300 MHz continuous wave modulated by a Gaussian pulse (σ = 2ns.).
DGTD results. Vector centered–flux approximation. UPML, LF2. White sphere: PEC
(1 m. radius). Blue crown: TF zone (1.17 m. ext. radius). Red crown: Maxwellian

zone (1.34 m ext. radius). Green crown: UPML (1.75m ext. radius).
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Figure 7.5: Bistatic RCS in the E–plane of a 1m radius PEC sphere at 300 MHz
illuminated with a 300 MHz continuous wave modulated by a Gaussian pulse (σ = 2ns).

FDTD results. UPML.
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Chapter 8

3-D Discontinuous Galerkin

Time-Domain Method for

Anisotropic Materials
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ous galerkin time–domain method for anisotropic materials. Antennas and Wireless

Propagation Letters, IEEE, 11:1182–1185, 2012

Abstract

Discontinuous Galerkin, applied to time–dependent Maxwell equations (DGTD), of-

fers attractive properties when compared to other numerical methods. This method is

flexible and accurate, like the finite-elements method, and efficient as well as scalable

like finite–difference time-domain algorithms. In this paper, a new rigorous treat-

ment of anisotropic materials in three dimensions is described and validated for the

upwind–flux DGTD method.
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8.1 Introduction

The Discontinuous Galerkin Time Domain method (DGTD) is a variational numer-

ical technique which is attracting attention in time–domain (TD) computational

electromagnetics [10, 13, 27, 99, 157, 168, 191, 192, 195, 213]. Like the Finite El-

ements Methods (FEM), it employs a Galerkin test procedure to enforce a weak

form of Maxwell’s curl equations element by element, combined with a explicit dif-

ferential integration scheme (e. g. leap–frog, Runge–Kutta,...) for the time part.

Unlike in FEM, the solution is allowed to be fully discontinuous across the bound-

aries between adjacent elements, not requiring costly matrix inversions, but keeping

FEM convergence properties. The result is an affordable marching–on–in–time algo-

rithm, competitive with FDTD [10] (in terms of the ratio accuracy-to-computational

burden), and easily parallelizable and highly scalable.

To connect the solution between elements sharing a common surface, continuous

numerical fluxes of the tangential field components are defined at each interface,

like in finite volume time domain (FVTD) methods [188, 236]. The most widely

used flux condition is the upwind flux [27] found from the solution of the Riemann

discontinuous initial value problem, which has been proven[13, 62] to yield spurious–

free solutions.

In this paper, we describe and validate a new 3D upwind–flux DGTD method for

lossy anisotropic media. Up to now, most formulations of the DGTD method have

been restricted to isotropic and in some cases dispersive materials [157, 158, 213].

The treatment of anisotropic materials within a DGTD approach has been discussed

in [99], where the authors employed the simple central flux, for which the limitations

are well known[13, 62]. Recently, upwind flux conditions were found in [168] for 2D

problems. In the present paper, new generalized upwind flux expressions in 3D are

formulated, from which the [168] scheme can be regarded as a particular case.

8.2 DGTD fundamentals

As in FEM, we start by dividing the space into M non–overlapping elements V m,

bounded by a surface ∂V m, in which a set of local continuous basis of vector test

functions and two inner products (volume and surface) can be defined

〈~u, ~w〉Vm =

∫
Vm

(~u · ~w)dV , 〈~u, ~w〉∂Vm =

∮
∂Vm

(~u · ~w)dS

Bm = {~Φm
1 ,
~Φm

2 , ...,
~Φm
Q} , m = 1 . . .M (8.1)
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Let us assume source–free TD Maxwell’s curl equations for linear lossy anisotropic

media in Cartesian coordinates1, and let us enforce their residue to be orthogonal

to each basis function element–by–element ∀q = (1, . . . , Q)〈
~Φm
q′ , ¯̄ε∂t ~E

m + ¯̄σe ~E
m −∇× ~Hm

〉
Vm

= 0 (8.2a)〈
~Φm
q′ , ¯̄µ∂t ~H

m + ¯̄σm ~H
m +∇× ~Em

〉
Vm

= 0 (8.2b)

With ~E, ~H, electric and magnetic fields, and ¯̄σe, ¯̄σm, ¯̄ε and ¯̄µ being, respectively:

electric conductivity, magnetic conductivity, permittivity and permeability tensors,

varying in space. After some well–known algebra[13, 27] we can write, for instance,

Eq. (8.2a) (and similarly Eq. (8.2b)) as∫
Vm

(~Φm
q ′ · (¯̄ε∂t ~E

m + ¯̄σe ~E
m) +∇× ~Φm

q ′ · ~Hm)dV =

∮
∂Vm

~Φm
q ′ · (n̂m × ~Hm∗)dS

(8.3)

This equation relates the volume integral of the LHS to a (surface) flux integral in

the RHS of the tangential field of some intermediate value ~Hm∗ (instead of ~Hm as in

continuous FEM), which permits the interchange of information between elements.

~Hm∗, as seen in the next section, depends on the electromagnetic field solutions

at both sides of the interface. A common choice for this flux is the upwind one,

taken from FVTD [188, 236], which is the solution of the one-dimensional Riemann

problem in the normal direction to the discontinuity surface.

8.3 Riemann problem (isotropic case)

Let us first define a local set of coordinates on the interface (Fig. 8.1) between two

adjacent elements (t1, t2, n), and its associated orthonormal vector basis
(
t̂1, t̂2, n̂

)
at each position of the interface characterized by a vector r

t̂1 =
∂r

∂t1

∣∣∣∣ ∂r

∂t1

∣∣∣∣−1

, t̂2 =
∂r

∂t2

∣∣∣∣ ∂r

∂t2

∣∣∣∣−1

, n̂ = t̂1 × t̂2 (8.4)

The first two vectors are tangential to ∂Tm, and the last one normal to it. The

Maxwell-Ampere law, for instance, for isotropic lossy media can be written in this

1Surface currents (for instance to generate plane–waves[10]) will be later taken into account by
appropriate discontinuity conditions.
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Figure 8.1: Surface interface ∂Tm between two elements containing different materials.
Both tetrahedrons (physically in contact), have been represented as separate just for

clarification.

basis as

∂E

∂t
− 1

ε

∂

∂n
n̂×H− 1

ε
∇S ×H +

σe
ε

E = 0

∇S ×H = ∂t2Hnt̂1 − ∂t1Hnt̂2 + (∂t1Ht2 − ∂t2Ht1) n̂

(8.5)

A common approach to find numerical schemes for multidimensional and/or hyper-

bolic problems with source terms2, is to use an operation-splitting method [73, 237].

The idea is to split the problem into subproblems, so that different methods can be

used to solve each of them. Let us split Eq. (8.5) into

Problem A:
∂E

∂t
− 1

ε

∂

∂n
n̂×H = 0 (8.6a)

Problem B:
∂E

∂t
− 1

ε
∇S ×H +

σe
ε

E = 0 (8.6b)

Observe that only Eq. (8.6a) involves (normal) derivatives, which are discontinuous

at the surface, and Eq. (8.6b) involves element–wise continuous derivatives. Upwind

flux is found by solving only the discontinuous (Riemann) problem [73] given by Eq.

(8.6a), which can be rewritten at element m (and similarly at the adjacent one

2In the sense of[73], source terms are those not strictly belonging to the hyperbolic conservative
problem: dissipative, terms to deal with dispersive or PML media, etc.
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henceforth noted with the superindex +)

∂tq̄
m + Āmn ∂nq̄m = 0 , q̄m =

(
Hm
t1 , H

m
t2 , E

m
t1 , E

m
t2

)T
(8.7)

Āmn =


0 0 0 − 1

µm

0 0 1
µm 0

0 1
εm 0 0

− 1
εm 0 0 0

 (8.8)

The system (8.7) is hyperbolic: Ān is diagonalizable with four real eigenvalues (λp),

and four linearly independent right eigenvectors (rp) forming a basis. Eigenvalues

have multiplicity two, and are opposite in sign (minus sign accounts for waves coming

into the element, and plus sign for outgoing ones)

λ1 = λ2 = −1√
µε ;

λ3 = λ4 = 1√
µε ;

r1 = (0,−Y, 1, 0)T , r2 = (Y, 0, 0, 1)T

r3 = (0, Y, 1, 0)T , r4 = (−Y, 0, 0, 1)T
(8.9)

where Z =
√

µ
ε = 1

Y .

The Rankine-Hugoniot condition [73] states that the jump in the solution when

crossing a characteristic (Fig. 8.1) is a linear combination of the eigenvectors asso-

ciated with that characteristic; that is,

q̄∗ − q̄m = αm1 r
m
1 + αm2 r

m
2 (8.10a)

q̄m+ − q̄∗+ = αm+
3 rm+

3 + αm+
4 rm+

4 (8.10b)

which can be solved for the α unknowns, assuming some relationship between q̄∗,

q̄∗+. If no surface currents exist, we can assume q̄∗ = q̄∗+; otherwise q̄∗ 6= q̄∗+ and

(8.10) must be solved jointly with

n̂×
(
E∗+ −E∗

)
= −Ms , n̂×

(
H∗+ −H∗

)
= Js (8.11)

After some algebra we finally find

n̂×E∗ =
n̂× (Y mEm + Y m+Em+) + Y m+Ms

Y m + Y m+
− τ n̂× [n̂× (Hm −Hm+) + Js]

Y m + Y m+

(8.12a)

n̂×H∗ =
n̂× (ZmHm + Zm+Hm+)− Zm+Js

Zm + Zm+
+ τ

n̂× [n̂× (Em −Em+)−Ms]

Zm + Zm+

(8.13a)
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Figure 8.2: 1D space–time (n-t plane) structure of the solution to the Riemann prob-
lem. At each wedge, limited by the characteristics, the solution is the same. As we

cross the characteristics, there is jump in the solution.

n̂×E∗+ =
n̂× (Y mEm + Y m+Em+)− Y m+Ms

Y m + Y m+
− τ n̂× [n̂× (Hm −Hm+) + Js]

Y m + Y m+

(8.14a)

n̂×H∗+ =
n̂× (ZmHm + Zm+Hm+) + Zm+Js

Y m + Y m+
+ τ

n̂× [n̂× (Em −Em+)−Ms]

Zm + Zm+

(8.15a)

here given, for convenience, in terms of a parameter τ (in our case τ = 1). This

parameter can be used to build a family of fluxes, ranging from the upwind flux

described here (τ = 1), to the centered flux (τ = 0), going through the so–called

partially penalized flux[27, 62, 77, 113] (0 < τ < 1). Further discussion on this

parameter, and its use to get rid of spurious modes can be found in [13].

8.4 Upwind flux for anisotropic materials

The previous method can be literally extended to general lossy electric and anisotropic

materials now with

Ān =

(
0 ¯̄µ−1

2 D2

¯̄ε−1
2 D−1

2 0

)
(8.16)

¯̄ε−1
2 =

(
ε′11 ε′12

ε′21 ε′22

)
, ¯̄µ−1

2 =

(
µ′11 µ′12

µ′21 µ′22

)

D2 =

(
0 −1

1 0

)
, D−1

2 = DT2 = −D2

(8.17)
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where ¯̄ε and ¯̄µ and their inverse (¯̄ε′ = ¯̄ε−1 and ¯̄µ′ = ¯̄µ−1, respectively) are expressed

in the local vectorial basis (8.4).

To express the right eigenvectors of Ān and compute the four eigenvalues

det
(
Ān − λI4

)
= 0

, we need to define a new diagonalizable matrix M2, whose eigenvalues (c2
1 and c2

2)

are the square of the eigenvalues of the Ān matrix (−c1, −c2, c1 and c2), according

to

C2 =

(
c1 0

0 c2

)
,M2 = ¯̄ε−1

2 D−1
2

¯̄µ−1
2 D2 = RM2C2C2R−1

M2
(8.18)

where matrix RM2 contains its right eigenvectors as columns.

Now, we can diagonalize Ān with its right eigenvectors and eigenvalues with the

following expression,

Ān =
1√
2

(
−Y2D2RM2 Y2D2RM2

RM2 RM2

)(
−C2 O2

O2 C2

)
1√
2

(
−R−1

M2
Z2D−1

2 R−1
M2

R−1
M2

Z2D−1
2 R−1

M2

)
(8.19)

where we make use of two matrices, referred-to as ”impedance” (Z2) and ”admit-

tance” (Y2), which are the anisotropic counterparts of the Z, Y isotropic magnitudes

Y2 = ¯̄µ−1
2 D2RM2C

−1
2 R−1

M2
D−1

2 , Z2 = RM2C
−1
2 R−1

M2
¯̄ε−1
2

The Rankine–Hugoniot condition now requires the solution of four equations to

account for the jumps across the four characteristics depicted in Fig. 8.3, each

jump being a linear combination of the eigenvectors associated with that character-

istic. After some algebra we find (for the source–free case, for writing simplicity) an

expression formally similar to the isotropic case

n̂×E∗ =
(

¯̄Y m + ¯̄Y m+
)−1 [ ¯̄Y mn̂×Em + ¯̄Y m+n̂×Em+ + n̂× n̂×

(
Hm+ −Hm

)]
n̂×H∗ =

(
¯̄Zm + ¯̄Zm+

)−1 [ ¯̄Zmn̂×Hm + ¯̄Zm+n̂×Hm+ − n̂× n̂×
(
Em+ −Em

)]
(8.20a)

where the ¯̄Z, ¯̄Y are tensors of dimension 3, completed from those of dimension 2.

For instance for ¯̄Z

¯̄Z =

 Z2
0

0

0 0 1

 (8.21)
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Figure 8.3: Space–time structure of the anisotropic Riemann problem.

8.5 Semi-Discrete Scheme

The final semi-discrete algorithm with the upwind flux at the elementm for anisotropic

materials (source–free and lossless for concise writing) becomes

M ¯̄µdtH
m − FνhHm + F+

νhH
m+ = (Fκe − S)Em − F+

κeE
m+

M¯̄εdtE
m − FνeEm + F+

νeE
m+ = (S− Fκh)Hm + F+

κhH
m+

• Hm, Hm+, Em, and Em+ are column vectors holding all the time–dependent

degrees of freedom.

• M ¯̄µ and M¯̄ε are the mass matrices,

[
M ¯̄µ

]
q′q

=
〈
φmq′ , ¯̄µφmq

〉
Tm
, [M¯̄ε]q′q =

〈
φmq′ , ¯̄εφmq

〉
Tm

• S is the stiffness matrix (equal to the isotropic one)

[S]q′q =
〈
φmq′ ,∇× φqm

〉
Tm
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• F are the flux matrices

[Fκh]q′q =
〈
φmq′ ,

¯̄R ¯̄Z−1
s

¯̄Zm+ ¯̄R−1
(
n̂m × φmq

)〉
∂Tm

[Fκe]q′q =
〈
φmq′ ,

¯̄R ¯̄Y −1
s

¯̄Y m+ ¯̄R−1
(
n̂m × φmq

)〉
∂Tm

[Fνh]q′q =
〈
φmq′ ,

¯̄R ¯̄Y −1
s

¯̄R−1
(
n̂m × n̂m × φmq

)〉
∂Tm

[Fνe]q′q =
〈
φmq′ ,

¯̄R ¯̄Z−1
s

¯̄R−1
(
n̂m × n̂m × φmq

)〉
∂Tm[

F+
κh

]
q′q

=
〈
φmq′ ,

¯̄R ¯̄Z−1
s

¯̄Zm+ ¯̄R−1
(
n̂m × φm+

q

)〉
∂Tm[

F+
κe

]
q′q

=
〈
φmq′ ,

¯̄R ¯̄Y −1
s

¯̄Y m+ ¯̄R−1
(
n̂m × φm+

q

)〉
∂Tm[

F+
νh

]
q′q

=
〈
φmq′ ,

¯̄R ¯̄Y −1
s

¯̄R−1
(
n̂m × n̂m × φm+

q

)〉
∂Tm[

F+
νe

]
q′q

=
〈
φmq′ ,

¯̄R ¯̄Z−1
s

¯̄R−1
(
n̂m × n̂m × φm+

q

)〉
∂Tm

with ¯̄Zs =
(

¯̄Zm + ¯̄Zm+
)

, ¯̄Ys =
(

¯̄Y m + ¯̄Y m+
)

and ¯̄R the basis–change matrix

between the local basis (8.4) and the Cartesian basis.

A simple leap–frog marching–on–time algorithm is finally derived by replacing the

time derivatives by second–order centered approximations.

8.6 Validation

For comparison, we have used two simple problems of scattering from a non–magnetic

dielectric sphere (µr = 1): the first one isotropic with εr = 3.0, and the second one

anisotropic with

¯̄εXY Zr =


3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 4.0

 (8.22)

The sphere is illuminated with a x-polarized plane wave, and the bi–static Radar

Cross Section (RCS) is computed at a frequency for which the sphere diameter is

D = 1.2λ, with λ being the wavelength. For reference, results from [2], computed

with a Finite Element-Boundary Integral-Multilevel Fast Multipole Algorithm, are

used. Figure 8.4 shows a good agreement between results found by both methods.
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Figure 8.4: Bistatic RCS of an anisotropic/isotropic sphere (D = 1.2λ). Leap–frog
DGTD results are compared to those appearing in [2].

8.7 Conclusions

In this paper, we have presented a systematic operation–splitting method for Maxwell

curl equations. It has enabled us to split them into a hyperbolic (Riemann) discon-

tinuous problem, and a continuous one. Upwind–flux conditions in DGTD for 3D

anisotropic lossy materials, have been found by solving the Riemann problem and

imposing the Rankine–Hugoniot jump conditions. Though applied to anisotropic

media, the method found so far is general, and can be eventually extended to more

complex situations.
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Chapter 9

A leap-frog discontinuous

Galerkin time-domain method

for HIRF assessment

J. Alvarez, L. D. Angulo, A.R. Bretones, M.R. Cabello, and S.G. Garcia. A leap-

frog discontinuous galerkin time-domain method for hirf assessment. Electromagnetic

Compatibility, IEEE Transactions on, 55(6):1250–1259, 2013. ISSN 0018-9375. doi:

10.1109/TEMC.2013.2265045

Abstract

In this paper, we demonstrate the computational affordability and accuracy of a

leap-frog discontinuous Galerkin (LFDG) time–domain method for HIRF assessment

in EMC for aerospace. The conformal truncation of the computational domain is

discussed and formulated in the LFDG context. Numerical validations are performed

on challenging test cases, in comparison to measurements and to other numerical

methods, demonstrating the accuracy, efficiency, and scalability of the algorithm.
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9.1 Introduction

The adverse effects caused by High Intensity Radiated Fields (HIRF) in any elec-

tronic device or in a very complex system, such as an aircraft, is a challenging

topic from the standpoint of computational electromagnetics (CEM). The typical ap-

proach to tackle this Electromagnetic Compatibility (EMC) problem is based mainly

on testing. The development of efficient algorithms, able to deal with electrically

large structures, and accurate methods, capable of estimating transfer functions be-

tween incident EM fields and internal fields, or induced currents in bundles, has

recently been attracting a great deal of interest in the aerospace industry [16, 238]

Typical frequency-domain methods, such as the method of moments (MoM) or the

finite element method (FEM), are able to cope with electrically large structures

having electrically small details. However, the analysis of HIRF requires the com-

putation of wideband frequency responses. In this context, frequency domain (FD)

methods may become computationally inefficient, since each frequency needs one

complete simulation requiring the resolution of a linear system of equations. Time

domain (TD) methods are an attractive alternative for these purposes. Some well-

known TD methods have been used traditionally in EMC: finite difference in time

domain (FDTD) [37], transmission-line-matrix (TLM) method [239] and finite in-

tegral technique (FIT) [240]. All of these are based on a cubic space partitioning,

which impose a significant constraint on the geometrical discretization of complex

objects, having arbitrary curvatures and intricate details. To overcome this lim-

itation, advances in finite elements in the time domain (FEMTD) methods have

been made [44], to solve Maxwell’s equations in complex geometries by using an

unstructured mesh based, for instance, on tetrahedral tessellation. However, clas-

sical FEMTD methods are still computationally unaffordable for electrically large

problems.

Among all FEMTD-based methods in the literature, discontinuous Galerkin time

domain (DGTD) approaches are experiencing a fast development. On one hand,

DGTD have most of the advantages of FDTD; spatial explicit algorithm, memory

and computational cost only growing linearly with the number of elements, simplic-

ity, and easy parallelization [27]. Furthermore Perfectly Matched Layer (PML) trun-

cation techniques[140] can also be straightforwardly integrated into DGTD. Several

formulations of PML exist; in this paper, we employ an auxiliary differential equation

(ADE) implementation of the uniaxial PML (UPML) technique[142, 146, 150, 241],

in a conformal formulation to achieve an optimum reduction of the computational do-

main. This conformal capability, with no counterpart in the FDTD context, has been

successfully employed in finite-volume time-domain (FVTD) methods [41, 242, 243]
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(which is equivalent to a low-order DGTD), and is highly appropriate for DGTD

[64, 200, 213, 244].

On the other hand, DGTD schemes retain most of the benefits of FEM: adaptability

of the unstructured meshes and spatial super-convergence, thus enabling problems

to be met where the required precision varies over the entire domain, or when the

solution lacks smoothness.

Regarding the time-integration scheme, two ones are commonly found in the DGTD

literature: Runge-Kutta[27, 244] and Leap-Frog (LF)[124]. In this paper, we have

chosen a second-order LF for providing a computationally efficient algorithm for

which PML can be efficiently formulated.

In this paper, a LF algorithm (hereafter LFDG), including the conformal UPML,

is described in some detail. We prove that this method is able to simulate very

complex electromagnetic problems in an accurate manner, and validate it with a

medium-sized 3D object, compared to measurement, and with an electrically large

problem, compared to the well-known FDTD method. We have chosen those two

benchmark problems for being available under the HIRF-SE [245] 7PM EU project

for the validation of the numerical codes involved in that project [16].

9.2 Formulations

9.2.1 DG formulation

Let us assume Maxwell’s symmetric curl equations for linear isotropic homogeneous

media. Now, let us divide the space in M non-overlapping elements V m, each

bounded by ∂V m and element-by-element define a set of local continuous basis of

vector test functions and two inner products (volume and surface)

Bm = {~Φm
1 , ~Φ

m
2 , ..., ~Φ

m
Q} (9.1)

〈~u, ~w〉Vm =

∫
Vm

(~u · ~w)dV , 〈~u, ~w〉∂Vm =

∮
∂Vm

(~u · ~w)dS (9.2)
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Enforcing the residue of Maxwell curl TD equations to be orthogonal to each basis

function, we find〈
~Φm
q′ , ε∂t

~Em + σe ~E
m −∇× ~Hm

〉
Vm

= 0 (9.3)〈
~Φm
q′ , µ∂t

~Hm + σm ~H
m +∇× ~Em

〉
Vm

= 0 (9.4)

∀q = (1, . . . , Q) , m = (1, . . . ,M)

With ~E, ~H, σe, σm, ε, µ being, respectively: electric and magnetic field in Carte-

sian coordinates, electric and magnetic conductivity, permittivity and permeability.

After some algebra, we can write Eqs. (9.3) (and similarly Eqs. (9.4)) as∫
Vm

(~Φm
q ′ · (ε∂t ~Em + σe ~E

m) +∇× ~Φm
q ′ · ~Hm)dV =

∮
∂Vm

~Φm
q ′ · (n̂m × ~Hm)dS (9.5)

which relate the volume integral of the LHS to a flux integral in the RHS. Classical

mixed FEMTD computes the RHS of (9.5) by enforcing the tangential component

to be continuous at the interface across adjacent elements n̂m × ~um = n̂m × ~um+

(the superscript + denotes magnitudes from adjacent elements, and ~u = { ~E, ~H}).
However, DG defines continuous numerical fluxes of the tangential field components

n̂m × ~um∗ to be used instead of n̂m × ~um at the RHS of (9.5), at each side of ∂V m.

These tangential fields do not coincide with any of the values at any side of ∂V m,

but depend linearly on them, with a general form

n̂m × ~Em∗= n̂m × ~Em+ κme

[
n̂m × ( ~Em+− ~Em)+ ~Ms

]
+

νmh

[
n̂m × (n̂m × ( ~Hm+ − ~Hm)− ~Js)

]
n̂m × ~Hm∗= n̂m × ~Hm+ κmh

[
n̂m × ( ~Hm+− ~Hm)− ~Js

]
−

νme

[
n̂m × (n̂m × ( ~Em+ − ~Em) + ~Ms)

]
(9.6)

with κ, ν appropriate coefficients (Table 9.1). In Eq. (9.6), we have included possi-

ble surface currents required for the implementation of Huygen’s sources [10]. For

further details on the general derivation of this numerical flux and the tuning of its

parameters to yield spurious-free methods, see[13, 14].

Assuming that the space and time dependencies of the fields can be separated, and

that the spatial part is expanded within each element in a set of basis functions
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κme κmh νmh νme
Ym+

Ym+Ym+
Zm+

Zm+Zm+
τ

Ym+Ym+
τ

Zm+Zm+

Table 9.1: Parameters in Eq. (9.6) functions of τ parameter, used to build a family
of fluxes, ranging from the upwind flux (τ = 1), to the centered flux (τ = 0), going
through the so-called partially penalized flux (0 < τ < 10) [13, 14, 27, 62, 77, 113].

Zm =
√

µm

εm = 1
Ym is the intrinsic impedance of the element m, and Zm+ = 1

Ym+ is

that of the adjacent one, and

equal to the set of test functions (Faedo-Galerkin method)

~Em =

Q∑
q=1

emq (t)~Φm
q (~r) , ~Hm =

Q∑
q=1

hmq (t)~Φm
q (~r) (9.7)

a final semi-discrete algorithm is found

µMdtH
m+ (σmM− Fνh)Hm+ F+

νhH
m+=

− (S− Fκe)Em− F+
κeE

m+−M sκ+Jsν (9.8a)

εMdtE
m+ (σeM− Fνe)Em+ F+

νeE
m+=

(S− Fκh)Hm+ F+
κhH

m+−Jsκ−M sν (9.8b)

where

• Hm and Em are column vectors varying in time with the field coefficients

(degrees of freedom –dofs–) in the element m, and Hm+ and Em+ with the

field coefficients (dofs) of the adjacent elements,

Hm =
(
hm1 (t) , . . . , hmQ (t)

)T
(9.9a)

Em =
(
em1 (t) , . . . , emQ (t)

)T
(9.9b)

• M sκ, M sν , Jsκ and Jsν are column vectors varying in time with the weak form

of the surface source terms in the element m,

Msκ =
(〈
~Φm

1 , κ
m
e
~Ms (r, t)

〉
∂Vm

, . . . ,
)T

(9.10a)

Msν =
(〈
~Φm

1 , ν
m
e n̂m × ~Ms (r, t)

〉
∂Vm

, . . . ,
)T

(9.10b)

Jsκ =
(〈
~Φm

1 , κ
m
h
~Js (r, t)

〉
∂Vm

, . . . ,
)T

(9.10c)

Jsν =
(〈
~Φm

1 , ν
m
h n̂m × ~Js (r, t)

〉
∂Vm

, . . . ,
)T

(9.10d)

• M is the mass matrix,

[M]q′q =
〈
~Φm
q′ ,
~Φm
q

〉
Vm

(9.11)
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• S is the stiffness matrix

[S]q′q =
〈
~Φm
q′ ,∇× ~Φqm

〉
Vm

(9.12)

• F are the flux matrices

[Fκh]q′q=
〈
~Φm
q′ , κ

m
h n̂m × ~Φm

q

〉
∂Vm

[Fκe]q′q=
〈
~Φm
q′ , κ

m
e n̂m × ~Φm

q

〉
∂Vm

(9.13a)

[Fνh]q′q=
〈
~Φm
q′ , ν

m
h n̂m × n̂m × ~Φm

q

〉
∂Vm

[Fνe]q′q=
〈
~Φm
q′ , ν

m
e n̂m × n̂m × ~Φm

q

〉
∂Vm

(9.13b)[
F+
κh

]
q′q

=
〈
~Φm
q′ , κ

m
h n̂m × ~Φm+

q

〉
∂Vm[

F+
κe

]
q′q

=
〈
~Φm
q′ , κ

m
e n̂m × ~Φm+

q

〉
∂Vm

(9.13c)[
F+
νh

]
q′q

=
〈
~Φm
q′ , ν

m
h n̂m × n̂m × ~Φm+

q

〉
∂Vm[

F+
νe

]
q′q

=
〈
~Φm
q′ , ν

m
e n̂m × n̂m × ~Φm+

q

〉
∂Vm

(9.13d)

9.2.2 LFDG algorithm

For the time-domain integration, several approaches can be chosen. The most com-

monly employed ones are the 4th-order Runge-Kutta (RK4) [27] and the 2nd-order

Leap-Frog (LF) [124] scheme selected in this work. The basis of the LF scheme is

to sample the unknown fields in a staggered way: the electric field is evaluated at

tn = n∆t, while the magnetic field, at tn+ 1
2

=
(
n+ 1

2

)
∆t. That is, Eq. (9.8a)

is evaluated at tn and Eq. (9.8b) at tn+ 1
2
. The first-order time derivatives are

approximated by central differences, which are 2nd-order accurate.

(dtH
m)n =

Hm
n+ 1

2

−Hm
n− 1

2

∆t
+O

(
∆t2

)
(dtE

m)n+ 1
2

=
Emn+1 − Emn

∆t
+O

(
∆t2

) (9.14)

For the terms with the electric and magnetic conductivity, we use an average ap-

proximation which is also a 2nd-order approximation of the identity operation.

Hm
n =

Hm
n+ 1

2

+Hm
n− 1

2

2
+O

(
∆t2

)
Em
n+ 1

2

=
Emn+1 + Emn

2
+O

(
∆t2

) (9.15)
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For the two extra dissipative terms arising from the upwind flux formulation, we

use the backward approximation (Hm
n ' Hm

n− 1
2

and Em
n+ 1

2

' Emn ), since an average

would yield a globally implicit scheme, due to the coupling terms from the adjacent

elements [64]. This fact introduces a slight penalization in stability condition, and

considering that purely upwind flux evaluation requires an also smaller time step,

the alternative is the use of partially penalized flux evaluation [77]. When we choose

an appropriate value of the τ parameter, the effect in the stability of the scheme

is very low. In case of centered flux evaluation, these terms are null, but problems

arise in relation to spurious modes [13].

When the temporal approximation for the dofs is inserted in (9.16), the resulting

fully explicit LFDG algorithm becomes

Hm
n+ 1

2

= αmH
m
n− 1

2

+ βmM−1

[
− (S− Fκe)Emn − F+

κeE
m+
n + FνhHm

n− 1
2

− F+
νhH

m+
n− 1

2

−M sκ
n + Jsνn

]
(9.16a)

Emn+1 = αeE
m
n

+ βeM−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+ FνeEmn − F+
νeE

m+
n − Jsκ

n+ 1
2

−M sν
n+ 1

2

]
(9.16b)

where the expressions for the constants are

αm =
1− ∆tσm

2µ

1 + ∆tσm
2µ

, βm =
∆t

µ
(

1 + ∆tσm
2µ

) (9.17a)

αe =
1− ∆tσe

2ε

1 + ∆tσe
2ε

, βe =
∆t

ε
(
1 + ∆tσe

2ε

) (9.17b)

9.2.3 Conformal UPML formulation

Let us consider the setup of Fig.9.1 used for the conformal UPML problem. There,

the interface of the PML region with the homogeneous medium is the S surface. S′

is a surface conformal to S containing the PML internal point P ′, where we intend

to formulate the UPML. Considering the projection of point P ′ into point P on S,

we can define local coordinates as ξ1,ξ2 and ξ3, and both surfaces S and S′ can be

expressed as a functions of these local coordinates,

S ≡ f (ξ1, ξ2, ξ3 = 0) , S′ ≡ f (ξ1, ξ2) + ξ3 (9.18)
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Figure 9.1: Conformal UPML setup.

Points of constant ξ3 lie on parallel surfaces at a distance ξ3 from S. An orthonormal

local vector base can be defined as,

û1 = u1 (ξ1, ξ2) =
∂r

∂ξ1

∣∣∣∣ ∂r

∂ξ1

∣∣∣∣−1

(9.19a)

û2 = u2 (ξ1, ξ2) =
∂r

∂ξ2

∣∣∣∣ ∂r

∂ξ2

∣∣∣∣−1

(9.19b)

û3 = û1 × û2 (9.19c)

related to the Cartesian base through the basis-change matrix ¯̄R, and the principal

radii of curvature of the doubly curved surfaces S and S′ are

r01 = r01 (ξ1, ξ2) , r02 = r02 (ξ1, ξ2) (9.20a)

r1 = r01 + ξ3, r2 = r02 + ξ3 (9.20b)

The UPML consists of a change on the metric of the space to the complex space

in the vectorial base (û1, û2, û3) of the local coordinate ξ3. The spatial coordinates

inside the PML are mapped to the complex variables domain as:

ξ3 −→ ξ̃3 =

∫ ξ3

0
s (τ) dτ (9.21)
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where s(τ) is the complex stretching variable, which can take different expressions

[242, 246]. In this work, the following expression has been used,

s (τ) = 1 +
1

jω
σmax

(
τ

∆ξ3

)2

(9.22)

where ∆ξ3 is the PML thickness and σmax the maximum conductivity in the PML.

These two parameters characterize the PML layer and determine the rate of decay of

the energy of the transmitted wave into the PML. The analytical reflection coefficient

depends on the incident angle (θ) according to

R0 (θ) = e−
2
3
σmax∆ξ3

c
cos(θ) (9.23)

where c = 1√
µε is the speed of propagation along û3.

The change of the space metric of (9.21) and (9.22) can be easily implemented

as an artificial anisotropic material [146, 150, 241], whose general metric tensor,

in local coordinates, can be expressed in terms of three different conductivities,

corresponding to each space direction, depending on the curvature radius and the

distance to the S surface.

¯̄Λ =



(
1+

σ3
jω

)(
1+

σ2
jω

)
(

1+
σ1
jω

) 0 0

0

(
1+

σ3
jω

)(
1+

σ1
jω

)
(

1+
σ2
jω

) 0

0 0

(
1+

σ1
jω

)(
1+

σ2
jω

)
(

1+
σ3
jω

)


(9.24)

with

σ3 (ξ3) = σmax

(
ξ3

∆ξ3

)2

(9.25a)

σ1 (ξ3) = σ3
ξ3

3r1
(9.25b)

σ2 (ξ3) = σ3
ξ3

3r2
(9.25c)

The UPML can be expressed in the frequency domain in a Maxwellian form as

∇×E = −jωµ ¯̄R ¯̄Λ ¯̄R−1 H (9.26a)

∇×H = jωε ¯̄R ¯̄Λ ¯̄R−1 E (9.26b)
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For simplicity, only one component of (9.26a) is written, and similar results can be

found for the other components and (9.26b),

(∇×E) |û1 =− jωµ

(
1 + σ3

jω

)(
1 + σ2

jω

)
(

1 + σ1
jω

) H|û1

=− jωµH|û1 − µ (σ3 + σ2 − σ1) H|û1−

µ
(σ3 − σ1) (σ2 − σ1)

jω + σ1
H|û1

(9.27)

Eq. (9.27) can be solved introducing an auxiliary field and an auxiliary partial

differential equation. Fourier transform, using identity jωf (ω) → (∂/∂t) f (t), is

applied to formulate the equivalent differential equations in time-domain,

∂M

∂t

∣∣∣∣
û1

= −σ1M|û1 + µ (σ3 − σ1) (σ2 − σ1) H|û1 (9.28a)

µ
∂H

∂t

∣∣∣∣
û1

=−(∇×E) |û1−µ (σ3+σ2−σ1) H|û1−M|û1 (9.28b)

Finally, the set of equation for the PML layer for the fields magnitudes E, H and

the auxiliary fields (polarization currents) M and J, can be written as,

∂M

∂t
= − ¯̄A2M + µ ¯̄A3H (9.29a)

µ
∂H

∂t
= −∇×E−M− µ ¯̄A1H (9.29b)

∂J

∂t
= − ¯̄A2J + ε ¯̄A3E (9.29c)

ε
∂E

∂t
= ∇×H− J− ε ¯̄A1E (9.29d)

where the tensors ¯̄A1, ¯̄A2 and ¯̄A3 have the form,

¯̄A1 = ¯̄R


σ3+σ2−σ1 0 0

0 σ1+σ3−σ2 0

0 0 σ2+σ1−σ3

 ¯̄R−1 (9.30a)

¯̄A2 = ¯̄R


σ1 0 0

0 σ2 0

0 0 σ3

 ¯̄R−1 (9.30b)

¯̄A3 = ¯̄R


(σ2−σ1)(σ3−σ1) 0 0

0 (σ3−σ2)(σ1−σ2) 0

0 0 (σ1−σ3)(σ2−σ3)

¯̄R−1 (9.30c)
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9.2.4 The LFDG algorithm in PML regions

The Galerkin procedure jointly with the DG spatial technique can be straightfor-

wardly applied to (9.29), since curl terms in Eq. (9.29b) and (9.29d) do not change

from regular Maxwell’s equations. Hence, considering that the auxiliary fields are

expanded with the same set of basis functions, and auxiliary differential equations

are tested following Galerkin procedure, we find the following spatial semi-discrete

scheme for the element m located in a PML region,

MdtM
m + MA2M

m= µMA3H
m (9.31a)

µMdtH
m+(µMA1 − Fνh)Hm+ F+

νhH
m+ =

− (S− Fκe)Em− F+
κeE

m+−MMm (9.31b)

MdtJ
m + MA2J

m= εMA3E
m (9.31c)

εMdtE
m+ (εMA1 − Fνe)Em+ F+

νeE
m+ =

(S− Fκh)Hm+ F+
κhH

m+−MJm (9.31d)

where

• Hm, Hm+, Em, Em+, Mm and Jm are column vectors with the dofs varying

in time as (9.9).

• M is the mass matrix defined in (9.11) and MA1 , MA2 and MA3 are mass

matrices but affected by the tensors defined previously in (9.30),

[MAi ]q′q =
〈
φmq′ ,

¯̄Aiφ
m
q

〉
Tm

with i = {1, 2, 3} (9.32)

• S is the stiffness matrix defined in (9.12).

• F are the flux matrices defined in (9.13)

The extension of the leap-frog temporal integration scheme to the semi-discrete

system of (9.31) is straightforward. The auxiliary unknown field M must be eval-

uated at tn = n∆t, as the electric field, and the auxiliary unknown field J, at

tn+ 1
2

=
(
n+ 1

2

)
∆t, as the magnetic field. In the same way, Eq. (9.31c) is tested at

tn, as Eq. (9.31b), and Eq. (9.31a) at tn+ 1
2
, as (9.31d).

Making the usual approximations described above (first-order time derivatives re-

placed by central differences, identity operators by averages for lossy terms, and

backward formulas for the dissipative terms of the flux), we find the following fully
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explicit algorithm for the PML medium,

Mm
n =A2M

m
n−1 + µ∆tA3H

m
n− 1

2

(9.33a)

Hm
n+ 1

2

=A11H
m
n− 1

2

+ βmA12

[
− (S− Fκe)Emn − F+

κeE
m+
n +

FνhHm
n− 1

2

− F+
νhH

m+
n− 1

2

−MMm
n

]
(9.33b)

Jm
n+ 1

2

=A2J
m
n− 1

2

+ ε∆tA3E
m
n (9.33c)

Emn+1 =A11E
m
n + βeA12

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+

FνeEmn−1 − F+
νeE

m+
n−1 −MJm

n+ 1
2

]
(9.33d)

where

A2 =

(
M +

∆t

2
MA2

)−1(
M− ∆t

2
MA2

)
(9.34a)

A3 =

(
M +

∆t

2
MA2

)−1

MA3 (9.34b)

A11 =

(
M +

∆t

2
MA1

)−1(
M− ∆t

2
MA1

)
(9.34c)

A12 =

(
M +

∆t

2
MA1

)−1

(9.34d)

It is important to note that in DG methods, the simplest absorbing boundary condi-

tion, equivalent to a first-order Silver-Müller (SM-ABC), can be applied with no cost,

just setting the incoming flux to zero [10]. Hence, both (SM-ABC and C-UPML)

can be used together, improving the overall performance [242].

9.3 Numerical Validation in HIRF

9.3.1 Medium size 3D Object

The first validation geometry has been taken from a test-case proposed under the

HIRF-SE project [245] for cross-validation with measurements of several numerical

solvers. It consists on a 600 × 500 × 300 mm brass box, with the front face open

(Fig. 9.2a), with a 30 mm wide flange around the edge. The box has two holes for

N-type connectors on the top, labeled A and B in Fig. 9.2a. Between these holes, a

curved-wire is connected (Fig. 9.2b), made up of three semi-circles and two vertical

straight sections. Its endings are soldered into the N-Type bulkhead connectors A

and B.
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Figure 9.2: Setup of the medium size 3D object.

The box is illuminated perpendicularly to the open face using a linearly polarized

plane wave, with electric vertical polarization, in the frequency band 1 to 6 GHz.

The power received in the load of 50Ω at port A is taken for comparison (port B is

grounded through a 50Ω load).

The results found with the LFDG algorithm described in this paper are shown in

Fig.9.3. They are compared to measurements and FDTD simulations computed

with the parallel UGRFDTD package [247]. Excellent agreement is found for LFDG

and measurements.

9.3.2 Aircraft Simulation Case

The second problem consists of a 3D numerical test case based on a modified version

of EVEKTOR’s EV55 metallic aircraft (Fig.9.4), also taken as a workbench for cross-

validation of several simulators under the HIRF-SE project[16]. The aircraft model

consists on a PEC skin together with a generic part of the cabling1. The electrical

dimensions at 1 GHz are 53.7 × 47.4 × 17.1λ. The PEC shell is considered with

zero thickness, and the cable is modeled as a PEC cylinder of radius 3cm. Some

1The geometry files (both .igs and .gid format), disclosed by EVEKTOR, are publicly available
upon request in the frame of the CEMEMC’13 HIRF-SE dissemination workshop (full info under
www.cememc.org).
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Figure 9.3: Reception aperture of the medium size 3D object, the reception aperture
being the relation between the power received at port A, and the power density of the
plane wave illuminating the box. Measurements are compared with results computed

with LFDG and FDTD methods.

apertures exist in the aircraft shell, cockpit, and fuselage windows, which permit

the electromagnetic energy to couple into the airframe, where there are simplified

models for some of the systems and cavities. The aircraft is illuminated with a plane

wave coming at 45o below its nose, with the magnetic field in the horizontal plane

(Fig. 9.4a).

Three probes have been chosen for comparison, for being representative of different

coupling scenarios (Fig. 9.4b):

1. O1. The electric field at a surface test-point on top of the cockpit hidden from

the illumination coming from underneath.

2. O2. The magnetic field in a point inside the airframe more weakly coupled to

the illumination, and more susceptible to internal resonances.

3. O3. The current at the termination of one of the grounded cables.

All these quantities have been found in TD and computed in FD as transfer functions

(normalized to the incident field).

The simulation setup is shown in Fig. 9.5. A total-field region is defined directly

backed by the conformal PML interface. Thus, the scattered-field region is just the

PML, with the subsequent computational saving. The surface at the total-field/PML

interface layer is used to introduced the excitation as a Huygen’s source, through

the flux terms, using the approach in[10].
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(a) External view and overall dimensions.
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(b) Internal view and observation points.

Figure 9.4: External and internal geometry of the aircraft-simulation case. There is
a cable modeled as a cylinder. There are some apertures in the aircraft shell, cockpit,

and fuselage windows, and also different structures and cavities inside the airframe.
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Figure 9.5: Simulation setup for the aircraft-simulation case. Starting with the un-
bounded domain (upper left), a total-field region (with a conformal Huygen’s surface) is
defined (upper right). Then, from this surface, the conformal PML layer can be created
(lower). It should be noted that the scattered-field region is collapsed to the conformal

Huygen’s surface and is not needed, saving computational space.
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t = 32.4 ns 

t = 6.2 ns t = 18.7 ns 

t = 44.5 ns 

Figure 9.6: Screen shots of the aircraft-simulation case.
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Figure 9.7: Computed transfer functions for the aircraft-simulation case. Comparison
of results between LFDG and FDTD. Upper left: O1, upper right: O2 and lower: O3

The plane-wave source uses a Gaussian pulse time signal, with 14 dB bandwidth

at 1 GHz. The problem has been simulated up to a physical time of 1.0 µs. Some

screen shots of the simulation appear in Fig. 9.6, and results are shown in Fig. 9.7,

in comparison with those found with FDTD, reflecting very good agreement.

Apart from the features described in this paper, the LFDG implementation makes

use of two important techniques briefly described bellow:

• A hp-refinement heuristic strategy to choose the order of the basis function

in each tetrahedron, depending on its size. To maintain uniform accuracy

throughout the spatial domain, with reasonable computational effort, we used

a higher-order basis for larger tetrahedra, and lower orders for smaller ones,
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combining gradient spaces of reduced-order p − 1, with rotational spaces of

complete order p. It is important to note that smaller elements need shorter

time steps, but if a lower order is used in these elements, the condition is

relaxed. In the same way, longer time-steps can be used for larger elements

combined with higher orders. The combination and mixing of different orders

of the basis functions depending on element size, makes the time step between

all the elements more homogeneous. The numbers of elements and dofs per

basis function set are shown in Table 9.2.

• Despite the adaptive hp-refinement described above, large differences in the

maximum time steps for stability are found across the geometry. Thus, we have

classified the elements according to this limit for the LF-scheme at several

levels, and we employed different time-steps for each level. This technique,

which is known as local time stepping (LTS) [77, 93, 248], can provide dramatic

savings in the CPU time. Details about the LTS for this particular simulation

appear in Table 9.3.

In case of the FDTD simulation, the cell size has been constant of 12 mm ( λ25 at

1 GHz). In both cases, the expected accuracy2 is about 10−2 per wavelength at 1

GHz. A comparison between LFDG and FDTD computational details is made in

Table 9.4.

Table 9.2: Number of elements (M) for each set of basis functions for the Aircraft
Simulation Case. GxRy stand for x order for the gradient space, y order for the curl

space

G1R1 G1R2 G2R2 G2R3 Total
M 96572 6018789 2729857 59 8845279

M (%) 1.09 68.05 30.86 6.710−4 100.00
dofs(103) 3764.1 300665.0 204819.6 6.6 509255.2
dofs (%) 0.74 59.04 40.22 1.310−3 100.00

Table 9.3: Local time stepping level distribution for the Aircraft Simulation Case.

L1 (L1/L2) L2 (L2/L3) L3
M 880 980 125602 217506 8500311

M (%) 0.01 0.01 1.42 2.46 96.10

∆t (ps) 1.59 4.77 4.77 14.32 14.32

For this case, the memory and CPU time is about one order of magnitude larger for

LFDG than for the UGRFDTD solver used here. In FDTD we use single precision

2Defining the accuracy as the L2-norm error per wavelength for a plane wave traveling in

free space:
∣∣∣e−jk0λ − e−jk̃0λ∣∣∣, λ being the wavelength, k0 the analytical wavenumber, and k̃0 the

numerical one.
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Table 9.4: FDTD vs LFDG Comparison.

Method M(106)1 dofs(106)2 min. ∆t max. ∆t steps3 memory CPU4 M(106)/sg5

LFDG 8.845 509.3 1.59 ps 14.32 ps 69837 256.6 GB 114 h 52.2

FDTD 703.704 4394.8 18.00 ps 18.00 ps 55556 36.1 GB 14 h 784
1 Number of elements (M) are 2nd order tetrahedra for LFDG and Yee-cells for FDTD.
2 Double precision (8 bytes per dof) for LFDG. Single precision (4 bytes per dof) for FDTD.
3 Number of steps for the max. ∆t. The computed physical time has been 1.0 µs.
4 CPU time corresponds to 10 processors Intel Xeon X5680 6 cores, 3.33Ghz.
Hybrid Open MP/MPI implementations are used in both cases.
5 Updated mega-elements per second for the highest LTS level.
Different orders p have been used for each cell (Table 9.2) for LFDG.

variables (the use of double precision does not usually improve FDTD performance).

However, double precision is needed for LFDG, where we are using high-order func-

tions, LTS and PML, in order to maintain accuracy and avoid instabilities due to

round-off errors. Concerning computational costs, three remarks are due:

• The simplicity of the FDTD algorithm makes it easier for the compilers to

obtain faster codes. Techniques such as vectorization and the better use of the

cache memory are key for speeding up FDTD algorithms. Furthermore the

workload balance for MPI–parallelization can be made in an almost perfect

way.

• For LFDG, the LTS, PMLs and hp–adaptivity makes the workload prediction

more difficult, and the optimization of the MPI–parallelization. For instance,

during a complete iteration of the highest LTS level, the workload is not con-

stant across the mesh in the different steps of the LTS algorithm.

• The mesh used in the FDTD is a simple uniform structured mesh. Thus,

quite high discretization errors are expected because of the staircasing effect.

Moreover, the FDTD mesh parses out details smaller than the cell size, which

can be an advantage for electrically irrelevant details, or a source of errors

otherwise. In this case, for instance, if a non-uniform mesh had been used,

with a smallest cell of 2.0 mm, the CPU time for UGRFDTD would have

been very similar to that of the LFDG scheme. In the case of LFDG, where

curvilinear 2nd-order tetrahedra have been used, the discretization error is

very small. Furthermore, the FEM mesh resolved every detail present in the

geometrical model. This fact, concerning accuracy, is clearly appreciated in

the first test–case presented above, where we compare with measurements.
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9.4 Conclusions

In this paper, we have presented a highly accurate LFDG algorithm. To deal with

open problems under HIRF conditions, we formulated the conformal UPML in the

DG context. The proposed LTS strategy for the LF time-integration scheme, al-

lows the applicability of the algorithm to electrically large problems. The LFDG

scheme, as a FEMTD method, retains most of the goods of FEM, adaptability of

the unstructured meshes and spatial super-convergence, considering the use of dif-

ferent order p of the basis functions, which allows us to deal with problems where

the required precision varies over the entire domain, or where the solution lacks

smoothness. This feature overcomes most of the limitations of FDTD, its inability

to effectively handle complex geometries, due to staircasing errors, and the limita-

tions in the accuracy (second order in space and time O
(
h2,∆t2

)
). In addition,

the LFDG algorithm offers most of the advantages of FDTD: spatial explicit algo-

rithm, simplicity, easy parallelization, and memory and computational cost growing

linearly with the number of elements.
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Abstract

The simulation of low-observable targets requires high accuracy, both in the geometri-

cal discretization as well as in the numerical solution of the electromagnetic problem.

In this letter, we employ the well-known NASA almond, to illustrate the accuracy of

the Leap-Frog Discontinuous Galerkin method, combined with a local time stepping

algorithm, comparing it with the MoM and the (2,2) FDTD methods.
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10.1 Introduction

The analysis of the electromagnetic scattering by low observable (LO) targets is a

challenging problem for numerical solvers. Frequency Domain (FD) methods, like

the Method of Moments (MoM) [249], are a common choice to accurately deal with

these problems. However, MoM-FD methods become computationally inefficient for

wideband computations, since each frequency needs a complete simulation. Time-

domain (TD) methods are an attractive alternative, since they employ a marching-

on-in-time algorithm that permits to find the whole FD behavior with a single sim-

ulation. Among TD methods, the Finite-Difference Time-Domain (FDTD) method

[37] has become very popular for its versatility and power, though its staircased na-

ture imposes a significant constraint on the discretization of arbitrary curvatures and

intricate details. Finite Element Methods in TD (FEMTD)[44] permit to overcome

these limitations, thanks to the use of unstructured meshes to handle geometrical

details. Nevertheless, they are computationally intensive because of their implicit

nature, which requires the solution of a sparse linear system of equations at each step

of the time marching procedure. Explicit FEMTD algorithms have been proposed

based on sparse approximate inverses, efficiently implemented on parallel machines

[34].

The Discontinuous Galerkin Time Domain (DGTD) methods are currently attract-

ing an increasing attention [27], for combining some of the advantages of FDTD

and FEMTD methods. The main difference between DGTD and other FEMTD

methods, is that the solution is allowed to be discontinuous across the boundaries

between adjacent elements, which communicate by means of numerical fluxes. The

result are computationally affordable and accurate TD algorithms.

In this letter, we apply a DGTD method [13, 18] based on the Leap-Frog (LF)

time integration scheme (LFDG) and combined with a Local Time Stepping (LTS)

strategy, to calculate the RCS of PEC and coated NASA almonds. This geometry

has been chosen for being a challenging example of LO target used in the valida-

tion of numerical solvers[250]. Results show that the LTS-LFDG method can be

competitive with MoM-FD, and the (2,2) FDTD, methods, in terms of accuracy vs.

computational time.

10.2 LFDG fundamentals

Let us begin by describing briefly the fundamentals of the DGTD method (further

details of the implementation used by the authors can be found in [13, 15, 18,
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221]). The DGTD method is based on a finite-element geometrical discretization

of the space into M non-overlapping elements V m, where we define element-by-

element a basis of local continuous vector test functions (Bm = {~Φm
1 ,
~Φm

2 , ...,
~Φm
Q}),

used both to expand the electromagnetic field, and as test functions to find a weak

form of Maxwell curl equations (Galerkin procedure). For lossless linear isotropic

homogeneous media, we have〈
~Φm
q′ , µ∂t

~Hm +∇× ~Em + σmH
〉
Vm

= 0 (10.1)〈
~Φm
q′ , ε∂t

~Em −∇× ~Hm + σeE
〉
Vm

= 0 (10.2)

∀q = (1, . . . , Q) , m = (1, . . . ,M)

with ~E, ~H, σe, σm, ε, µ being, respectively: the electric and magnetic field, the

electric and magnetic conductivity, permittivity, and permeability. Applying the

discontinuous Galerkin method [27] to Eqs. (10.1) and (10.2), we can formulate the

following semi-discrete spatial algorithm:

µMdtH
m+ (σmM−Fνh)Hm+ F+

νhH
m+=(Fκe− S)Em− F+

κeE
m+

εMdtE
m+ (σeM−Fνe)Em+ F+

νeE
m+=(S− Fκh)Hm+ F+

κhH
m+ (10.3)

where Hm and Em are column vectors with the degrees of freedom (dofs) at the

element m, and Hm+ and Em+ the dofs at the adjacent elements. M is the mass

matrix, S is the stiffness matrix, and F are the flux matrices [10]. The resulting

method has a spatial error behaving as O
(
h2p+1

)
, with h a measure of the size of

the elements, and p the order of the basis functions [13].

The time integration, can be performed in different manners [27]. In this paper, we

use a 2nd-order Leap-Frog (LF) scheme, which employs a centered approximation

for the time derivatives
(
dtU

m
n ≈ ∆t−1

(
Um
n+ 1

2

− Um
n− 1

2

))
in (10.3), to yield1

Hm
n+ 1

2

=αmH
m
n− 1

2

+ βmM−1
[
− (S− Fκe)Emn − F+

κeE
m+
n +

FνhHm
n− 1

2

− F+
νhH

m+
n− 1

2

−M sκ
n + Jsνn

]
(10.4)

Emn+1 =αeE
m
n + βeM−1

[
(S− Fκh)Hm

n+ 1
2

+ F+
κhH

m+
n+ 1

2

+

FνeEmn − F+
νeE

m+
n −Jsκ

n+ 1
2

−M sν
n+ 1

2

]
(10.5)

1A backward approximation for the terms Hm
n ≈ Hm

n− 1
2

and Em
n+ 1

2
≈ Emn , and an average

approximation for the conductive terms Hm
n ≈ 1

2

(
Hm
n+ 1

2
+Hm

n− 1
2

)
and Em

n+ 1
2
≈ 1

2
(Emn+1 + Emn )

are also used.
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where the expressions for the constants are

αm =
1− ∆tσm

2µ

1 + ∆tσm
2µ

, βm =
∆t

µ
(

1 + ∆tσm
2µ

) (10.6)

αe =
1− ∆tσe

2ε

1 + ∆tσe
2ε

, βe =
∆t

ε
(
1 + ∆tσe

2ε

) (10.7)

Local time-stepping strategies have been efficiently incorporated into the LF step-

ping procedure [77, 248] to alleviate the computational overload driven by the condi-

tional stability of LF in real problems. Here, we use the LTS algorithm described in

[15, 221], to arrange the mesh elements in different tiers, according to the maximum

time step allowed for stability, so that different time steps can be used for each tier.

An interpolation procedure is used at the interface between tiers.

10.3 MoM CCIE fundamentals

The MoM used in this comparison is applied to the Current and Change Inte-

gral Equation (CCIE) [251], combined with a Multilevel Fast Multipole Method

(MLFMM) [252] to efficiently perform the matrix-vector products. CCIE introduces

electric and magnetic surface charges densities, apart from the surface current den-

sities of the Poggio-Miller-Chan-Harrington-Wu-Tsai (PM-CHWT) method [253],

and solves a system of four integral equations for all four unknowns. The resulting

scheme is well conditioned and leads to fast convergences with iterative solvers on a

wide frequency range. Let us briefly summarize its fundamentals.

The time-harmonic
(
ejωt

)
total electric and magnetic fields can be expressed on the

surface of a homogeneous body as a function of the electric and magnetic surface

charges densities
(
~J, ~M

)
, and the electric and magnetic surface charges densities

(ρe, ρm) as,

~E = ~Ein − jωµS
(
~J
)

+
µ

jωε
N (ρe)−K

(
~M
)

(10.8a)

~H = ~H in − jωεS
(
~M
)

+
ε

jωµ
N (ρm) +K

(
~J
)

(10.8b)



209

with ~Ein and ~H in being the incident fields, n̂ the inner unit normal of the surface,

and S, N and K the surface integral operators,

S
(
~f
)

(~r) =

∫
G
(
~r, ~r′

)
~f
(
~r′
)
ds
(
~r′
)

(10.9a)

N (f) (~r) =

∫
∇G

(
~r, ~r′

)
f
(
~r′
)
ds
(
~r′
)

(10.9b)

K
(
~f
)

(~r) =∇× S
(
~f
)

(~r) (10.9c)

G (~r, ~r′) = e−jkR

4πR , R =
∣∣∣~r − ~r′∣∣∣, is the usual free-space Green function, with k =

ω
√
εµ.

Considering the usual boundary conditions at the interface between two media (1

and 2),

n̂2 ·
(
ε2
~E2 − ε1

~E1

)
= ρe , n̂2 ·

(
µ2

~H2 − µ1
~H1

)
= ρm

n̂2 ×
(
~H2 − ~H1

)
= ~J , n̂2 ×

(
~E2 − ~E1

)
= − ~M (10.10a)

four surface Fredholm integral equations of the second kind can be formulated for

the tangential and normal components of the fields,
ε ~Einn

µ ~H in
n

~H in
t

− ~Eint

=


I − µ

jωεNn 0 jωµSn Kn
0 I − ε

jωµNn −Kn jωεSn
0 − ε

jωµNt I − Kt jωεSt
µ
jωεNt 0 −jωµSt I − Kt




ρe

ρm
~J

~M

 (10.11)

where ~Fn = n̂ · ~F and ~Ft = n̂× ~F . This set of equations together with the continuity

conditions

∇ · ~J + jwρe = 0 , ∇ · ~M + jwρm = 0 (10.12)

form the CCIE system, which can be numerically solved by making use of the MoM

method. Similarly to the CFIE, which combines EFIE and MFIE, a combined form

of the CCIE is formulated, resulting into the CCCIE described in [251]. The conti-

nuity equations are taken into account by directly adding a combination of the null

(10.12) to ρe and ρm of (10.8). This combination is crucial for the accurate behavior

of the scheme along the whole frequency range [251]. The final algorithm is found

by expanding the scalar unknowns (ρe, ρm) with pulse functions, and the vector un-

knowns
(
~J, ~M

)
with the classical Rao-Wilton-Glisson (RWG) basis functions. In

the same manner, the equations of rows 1 and 2 are tested with pulse functions, and

rows 3 and 4 with RWG ones.
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10.4 NASA Almond Benchmark

In this section, we find the Radar Cross-Section (RCS) of a typical LO target: the

NASA almond. This geometry is a benchmark of the Electromagnetic Code Con-

sortium, used for validation purposes[250]. The LTS-LFDG method[13], the MoM-

MLFMM for CCCIE (HPTESP-MAT Cassidian tool, certified for RCS calculation

by the Spanish Military Airworthiness Authority INTA [254]), and the well-known

(2,2) FDTD method (UGRFDTD MPI/OpenMP parallel code [247], validated under

the 7PM EU HIRF-SE project [245]), have been employed for this purpose.

The NASA almond (Fig.10.1) is composed by

Half ellipsoid: − 0.416667 < t < 0.0 and − π < ψ < π
x = d t,

y = 0.193333 d

(√
1−

(
t

0.416667

)2)
cosψ,

z = 0.06444 d

(√
1−

(
t

0.416667

)2)
sinψ,

(10.13a)

Half elliptic ogive: − 0.0 < t < 0.583333 and − π < ψ < π
x = d t,

y = 4.833450 d

(√
1−

(
t

2.083350

)2 − 0.96

)
cosψ,

z = 1.611148 d

(√
1−

(
t

2.083350

)2 − 0.96

)
sinψ,

(10.14a)

where d = 2.5 m, is the length of the structure. Note that this is a complete double

curvature geometry, where we can find, both smoothly and sharply curved zones,

as well as a singular point, the ogive vertex. Apart from a PEC case, two different

coated material cases have been studied: with a perfect dielectric, and with a Radar

Absorber Material (RAM), proposed under JINA 2006[255] (see Fig. 1 for details).

For the LTS-LFDG method, we have discretized the surface with curvilinear 2nd-

order tetrahedrons. Care has been taken for the discretization close to the vertex by

defining small elements (low value of h), as an a priori level of h-refinement (see Fig.

10.2). Apart from the vertex, we have defined a maximum element size h during

the mesh-generation process, corresponding to the value of h
λ = 0.4 of the maximum

frequency, which is efficient in terms of computational and required accuracy. Once

we have generated the mesh, the order p in each element is chosen depending on

the element size, assigning the minimum p that meets the required accuracy [15].

For instance, in the simplest case (PEC, bistatic RCS at 1 GHz), the mesh was
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Material parameters:
 

C1: Pecfect Dielectric: 
    εr = 4.0 σe = 0.0 
    µ r = 1.0 σm = 0.0 
 

C2: RAM: 
    εr = 4.0 σe = 5.56 10-3 
    µ r = 1.0 σm = 1.42 104 
 

coating thickness: 30 mm

Figure 10.1: Geometry of the NASA almond.

 

Figure 10.2: Snapshot of the mesh used for the PEC case computation. Only the
surface mesh is shown.

composed of 2018928 elements: 785678 had p=1, 523786 had p=2, and 709464 had

p= 3, being the total number of unknowns 187 106. We do not use orders p higher

than 3 since have been found not to be optimum in terms of computational cost and

accuracy [15].

The simulation region is divided into a total-field zone, holding the almond, and a

scattered-field zone. The surface between both regions serve to excite the plane-wave

by Huygens sources, through the flux terms in a weak way[10]. The same surface

is used to compute the near-to-far-field transformation and to calculate the RCS.

Conformal PMLs [18, 150] are used to truncate the whole domain.

The structures are illuminated with a horizontally-polarized plane wave, impinging

on the almond at the vertex. The resulting copolar bistatic RCS at 1 GHz, computed
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Figure 10.3: Bistatic Radar Cross Sections of the NASA almond at 1 GHz. Compar-
ison results between LTS-LFDG and MoM for the coated almond.

with LTS-LFDG and compared the results with MoM, are shown in Fig. 10.3 for the

three cases analyzed, with excellent agreement. The monostatic RCS from 500 MHz

to 2 GHz is shown in Fig. 10.4. Excellent agreement is again found both for PEC

and C2 (RAM material) cases. Minor differences are detected for the C1 (perfect

dielectric) case. It is important to note that this is a challenging case for MoM,

where the required number of iterations to solve iteratively the MoM linear system

is quite high, and the number of unknowns cannot be too high in order to have

a solution with affordable computational costs. Notice that the whole frequency

band computation requires 301 runs. The minor differences found so far are, in our

opinion, due to the use of a coarse mesh in the MoM computations.

In Fig. 10.5, we have also compared the PEC case with uniform-mesh FDTD simula-

tions with a 1.5 mm cell length. A brute-force solution has been obtained with (2,2)

FDTD just for comparison purposes (higher-order stencils, uneven meshing, sub-

gridding or conformal techniques, combined with FDTD are not used here, though

they are well-known to improve the results and reduce the computational costs).

Both for FDTD and LTS-LFDG, we use a padding of half a wavelength at 1GHz

between the almond and the PML region, and we simulate 50 nsec of the transient

response. The FDTD problem employs 750 MCells (6 109 unknowns) and requires

a CPU time of 24 hours in a 12 core Intel Xeon X5520 2.26Ghz architecture, while

the LTS-LFDG code only requires 18 hours. No computer resources are shown for

the HPTESP-MAT, for industrial property rights protection. The reader is referred

to [256] for typical figures of MoM methods. Results for the bistatic RCS at 1 GHz
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confirm, as also stated by the authors in [10], the superior accuracy of LTS-LFDG

especially near the LO (monostatic) zone.
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Figure 10.4: Monostatic Radar Cross Sections of the NASA almond. Comparison
results between LTS-LFDG (1 computation per case) and MoM (301 frequencies/com-

putations per case).
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Figure 10.5: Bistatic Radar Cross Sections of the NASA almond at 1 GHz. Compar-
ison results between LTS-LFDG, MoM and FDTD for the PEC case.

10.5 Conclusions

In this letter, we have shown the application of three numerical solvers, based on

the LTS-LFDG, MoM CCCIE and FDTD methods, to the prediction of the RCS of
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a typical LO target: the NASA almond. The accuracy of the LTS-LFDG has been

demonstrated to be in the range of that of the MoM CCIE method, outperforming

the classical (uniform-mesh, second-order) FDTD method in terms of computational

time vs. accuracy.



Chapter 11

Discontinuous Galerkin Time

Domain Method for GPR

simulation

L. D. Angulo, J. Alvarez, S.G. Garcia, A. Rubio Bretones, and R. Gomez Mar-

tin. Discontinuous galerkin time-domain method for gpr simulation of conducting

objects. Near Surface Geophysics, 9:257–263, 2011

11.1 Introduction

Numerical techniques are an indispensable tool in the analysis and design of all kind

of electromagnetic systems. In particular, they have been successfully applied to

the simulation and optimization of Ground Penetrating Radar (GPR) systems [257–

259]. Among them, time domain methods are especially suitable for GPR simulation,

since they are able to provide the full transient response of the system on a single

run, allowing the user to analyze the system response in a causal way. The finite

difference time domain (FDTD) method has been the most employed one, mainly

because of its simplicity, ease of implementation, and simulation speed[260].

However, FDTD has severe drawbacks related to the staircased approximation it em-

ploys for curved boundaries. A recent alternative of FDTD is given by he Discontin-

uous Galerkin Time Domain (DGTD) method which is experimenting an increasing

development in computational electromagnetics [10, 67, 92, 189, 195].

DGTD employs a discontinuous Galerkin weighting procedure to handle the spatial

part of time–domain Maxwell’s curl equations. Like in the finite elements (FETD)

215



216

method, the space is divided into M non–overlapping elements (e.g. curvilinear

tetrahedra), in each of which the solution is expanded in a set of nodal [194] or

vector [92] basis functions of arbitrary order. The temporal part of Maxwell curl

equations can be handled by finite differences or by any other finite differentiation

technique.

In DGTD the solution is allowed to be discontinuous at the boundaries between

adjacent elements (unlike in FETD), and continuous numerical fluxes are employed

at the interface to connect the solution between them. The resulting algorithm is

quasi–explicit in space, only requiring the inversion of M square matrices of Q×Q
elements (with Q the number of basis functions).

A two-dimensional DGTD approach has been successfully applied to GPR simula-

tions involving buried objects in a lossy half-space [70]. In this paper, we present a

general description of a three-dimensional DGTD method including both of nodal

and vector formulations and show an application to the simulation of a full GPR

scenario. Validations of the method with benchmark problems serve to prove the

superior accuracy of this technique compared to the classical FDTD, outperforming

the later in the computer requirements.

This paper is organized as follows. In Section II we summarize the DGTD funda-

mentals in 3D with vector/scalar basis and the centered/upwind flux. Section III

shows a validation of this method, and Section IV presents an application to GPR

problems.

11.2 DGTD theory

11.2.1 Vector elements formulation

Let us assume Maxwell’s curl equations for linear isotropic homogeneous media in

Cartesian coordinates. Now, let us divide the space in M non–overlapping elements

Vm, each bounded by Sm and enforce a weak form of them by performing the inner

product of each equation with a basis of local continuous vector test functions. The

term ”weak” here means that we no longer require the equation to hold absolutely

and we search for ”weak” solutions with respect to certain test functions to be

defined later [27].
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∫
Vm

~Φem

q ′ · (ε∂t ~Em + σ ~Em + ~J −∇× ~Hm)dV = 0

∫
Vm

~Φhm

q ′ · (µ∂t ~Hm +∇× ~Em)dV = 0 (11.1)

~Φe,h
q ′ ∈ Be,h

m
= {~Φe,hm

1 , ~Φe,hm

2 , ..., ~Φe,hm

Q } (11.2)

With ~E, ~H, ~J ,σ,ε,µ being, respectively: electric field, magnetic field, electric current

density, electric conductivity, permittivity and permeability.

Integrating by parts the curl terms in both equations we can write Eqs. (11.1) as

∫
Vm

(~Φem

q ′ · (ε∂t ~Em + σ ~Em + ~J)−∇× ~Φem

q ′ · ~Hm))dV =
∮

∂Vm

~Φem

q ′ · (n̂m × ~Hm)dS

(11.3)∫
Vm

(~Φhm

q ′ · (µ∂t ~Hm) +∇× ~Φhm

q ′ · ~Em))dV = −
∮

∂Vm

~Φhm

q ′ · (n̂m × ~Em)dS (11.4)

The core idea of DGTD is to only require the weak form of the tangential fields on

the faces of adjacent elements Sm (right hand side of (11.3)(11.4)) to be continuous,

instead of requiring full continuity of the solution as in the classical finite elements

method. Since the fields are allowed to be different at each side of the interface, a

trade–off value must be taken to evaluate the right hand side of Eqs.(11.3)(11.4).

This trade–off value (denoted with an added superscript ∗) can be written, in

general, as a function of the fields at each sides interface

n̂m × ~Em∗ = n̂m ×
(
~f−E ( ~Em, ~Hm) + ~f+

E ( ~Em+, ~Hm+)
)

n̂m × ~Hm∗ = n̂m ×
(
~f−H ( ~Em, ~Hm) + ~f+

H ( ~Em+, ~Hm+)
)

(11.5)

where we have added the superscript + to the fields at Sm in the element adjacent

to m and − to the fields calculated in m. These terms n̂m × ~Em∗ and n̂m × ~Hm∗,

so–called numerical fluxes, are used in the right hand side of Eqs.(11.21)(11.22))

instead of n̂m × ~Em and n̂m × ~Hm. The f functions depend on the numerical flux

choice. Two common choices of the numerical flux are reported in the literature:
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1. A centered flux [194] found by averaging the solutions at both sides of the

interface.

n̂m × ~Em∗ = n̂m × ~Em+ ~Em+

2

n̂m × ~Hm∗ = n̂m × ~Hm+ ~Hm+

2 (11.6)

2. The upwind flux usually employed in FVTD (Finite Volume Time Domain) [188]

arising from the solution of the advection equations with discontinuous initial

values (Riemann problem) [189]

n̂m × ~Em∗ = n̂m×
(Ym ~Em−n̂m× ~Hm)+(Ym+ ~Em++n̂m× ~Hm+)

Ym+Ym+

n̂m × ~Hm∗ = n̂m×
(Zm ~Hm+n̂m× ~Em)+(Zm+ ~Hm+−n̂m× ~Em+)

Zm+Zm+ (11.7)

with Zm =
√

µm

εm = 1
Ym being the intrinsic impedance of the element m, and

Zm+ = 1
Ym+ being that of the adjacent one.

Notice, that boundary conditions between different dielectric/magnetic media are

naturally handled in weak manner in the DGTD formulation, thanks to taking the

same tangential components of the fields n̂m× ~Em∗ and n̂m× ~Hm∗ in the flux integrals

for two adjacent elements. PEC boundary conditions are also enforced in a weak

manner by requiring the tangential electric field employed in the flux integrals to be

null, and the tangential magnetic field to be continuous[10]

n̂m × ~Em+ = −n̂m × ~Em , n̂m × ~Hm+ = n̂m × ~Hm (11.8)

Regarding the truncation conditions, PML (Perfectly Matched Layer) are success-

fully implemented in DGTD following the formulation given in [213].

The semi-discrete algorithm1 is found by assuming that the space and time depen-

dencies of the fields can be separated, and that the spatial part is expanded within

each element in a set of basis functions equal to the set of test functions (Galerkin

method)

~Em =
Q∑
q=1

Emq (t)~Φem
q (~r) , ~Hm =

Q∑
q=1

Hm
q (t)~Φhm

q (~r) (11.9)

1Semi-discrete means that, up to this point, the spatial part is discretized and the temporal
part don’t.
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The final form of the semi–discrete algorithm at the element m is

εM̃ ee∂tE +
(
σM̃ ee−F̃ ee

)
E = −J − S̃ehH + F̃ ehH + F̃ eh

+

H
+
− F̃ ee+E

+

(11.10)

µM̃hh∂tH +
(
−F̃ hh

)
H = +S̃heE − F̃ heE − F̃ he+E

+
− F̃ hh+

H
+

(11.11)

where

• E and H are the field coefficients

E =
(
Em1 (t), . . . , EmQ (t)

)T
(11.12)

H =
(
Hm

1 (t), . . . ,Hm
Q (t)

)T
(11.13)

• J are the weak form of the source terms

J =

( ∫
Vm

~J(~r, t) · ~Φhm
1 , . . . , ~J(~r, t) · ~Φhm

Q dV

)T
(11.14)

• M̃ is the mass matrix

[M̃αα]q′q =
∫
Vm

~Φαm

q ′ · ~Φαm
q dV (11.15)

• S̃ is the stiffness matrix

[S̃αβ]q′q = −
∫
Vm

(∇× ~Φβm

q ′ ) · ~Φαm
q dV (11.16)

• F̃ are the flux matrices

[F̃αα]q′q = καα
∫

∂Vm

~Φαm

q ′ · (n̂m × n̂m × ~Φαm
q )dS (11.17)

[F̃αβ]q′q = ναβ
∫

∂Vm

~Φαm

q ′ · (n̂m × ~Φ
βm
q )dS , α 6= β (11.18)

where, for the centered flux

κhh = κhh+ = κee = κee+ = 0

νeh = νeh+ = νhe = νhe+ = 1/2 (11.19)
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and for the upwind flux

κhh = κhh+ =
1

Y m + Y m+
, κee = κee+ =

1

Zm + Zm+

νhe = κhhY m , νhe+ = κhh+Y m+

νeh = κeeZm , νeh+ = κee+Zm+ (11.20)

A common election of the basis functions is the hierarchical high-order vector–basis

functions, widely used in finite elements methods [85, 92] The resulting system of

ordinary differential equations in time can be solved in a number of ways: second–

order leapfrog (LF)[195], 4th order Runge–Kutta [92], implicit Crank–Nicholson[232],

etc.

11.2.2 Nodal elements formulation

The fundamentals of the scalar formulation are similar to those of the vector one.

Now the basis and test functions are chosen to be scalar

Be,hm = {Φe,hm

1 ,Φe,hm

2 , ...,Φe,hm

Q } , m = 1, ...,M

Where B denotes the space basis and the superscripts em and hm are used to distin-

guish between the basis employed for the electric and magnetic fields respectively.

The weak form of Maxwell curl equations become∫
Vm

(Φem

q ′ (ε∂t
~Em + σ ~Em + ~J) +∇Φem

q ′ × ~Hm)dV =

∮
∂Vm

Φem

q ′ (n̂
m × ~Hm∗)dS

(11.21)∫
Vm

(Φhm

q ′ (µ∂t ~H
m)−∇Φhm

q ′ × ~Em)dV = −
∮

∂Vm

Φhm

q ′ (n̂m × ~Em∗)dS (11.22)

where we already assumed the fluxes in the right hand side to be the numerical ones.

Comparing Eqs. (11.21)(11.22) and Eqs. (11.3)(11.4) we find similar flux–density

integrals in their right hand sides. Thus the same upwind and centered fluxes of the

scalar case can be used here.

For scalar–basis functions the expansion (11.23) now becomes
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~Em =

Q∑
q=1

~Emq (t)Φem

q (~r) , ~Hm =

Q∑
q=1

~Hm
q (t)Φhm

q (~r) (11.23)

The semi–discrete algorithm is formulated by plugging (11.9) into (11.3)(11.4). The

resulting equations are formally equal to (11.10)(11.11), now with

E =
(
~Em1 (t), . . . , ~EmQ (t)

)T
(11.24)

H =
(
~Hm

1 (t), . . . , ~Hm
Q (t)

)T
(11.25)

J =

∫
Vm

(
~J(~r, t)Φhm

1 , . . . , ~J(~r, t)
)T

Φhm

Q dV (11.26)

[M̃αα]q′q =
∫
Vm

Φαm

q ′ Φαm
q dV (11.27)

[S̃αβ]q′q = (
∫
Vm
∇Φαm

q ′ Φβm
q dV )× (11.28)

[F̃αα]q′q = καα(
∫

∂Vm
Φαm

q ′ Φαm
q dS) n̂m × n̂m×

[F̃αβ]q′q = ναβ(
∫

∂Vm
Φαm

q ′ Φβm
q dS) n̂m× , α 6= β (11.29)

A common choice for the basis functions [189], is the set 3D Lagrange interpolating

nth order polynomials with equal set of electric and magnetic basis functions Φem
q =

Φhm
q ≡ Φm

q . They are first defined in a standard reference element [82] as a function

of the simplex coordinates (ξ, η, ζ) by

Φq(ξ, η, ζ) ∈ P 3
n = span{ξiηjζk; i, j, k ≥ 0 , i+ j + k ≤ n} (11.30)

requiring Q = (n+1)(n+2)(n+3)/6 nodal points in the element to form a complete

basis. The local basis for each element is found by computing the mapping of the

transformation from the reference element to the actual one. The case n = 0 leads

to the classical FVTD algorithm[188].

11.3 Validation

We have implemented 3D codes, both with the nodal and vector elements, and with

the upwind and centered numerical fluxes, incorporating PML boundary conditions.
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Second–order accurate centered differences have been used for the time integration

(leap–frog). Heuristic estimations[189, 261] for the maximum time steps have been

taken. Although the behavior of vector/nodal centered/upwind is comparable for

many situations, we will only show here results found with the vector centered–flux

algorithm. An exhaustive comparison is beyond the scope of this publication.

Figure 11.1: Bistatic RCS in the E–plane of a 1m radius PEC sphere at 300 MHz
illuminated with a 300 MHz continuous wave modulated by a Gaussian pulse (σ = 2ns.).
DGTD results. Vector centered–flux approximation. PML, LF2. White sphere: PEC
(1 m. radius). Blue crown: TF zone (1.17 m. ext. radius). Red crown: Maxwellian

zone (1.34 m ext. radius). Green crown: PML (1.75m ext. radius).

In Figs. 11.1,11.2 we validate the DGTD code by calculating the RCS (Radar Cross

Section) in the E–plane of a 1m radius PEC sphere and compare with the results

found by FDTD (under conditions similar to those of DGTD) and Mie series so-

lution. Results for two set of basis functions are shown: hierarchal vector–basis

of orders (G0,R1) and (G1,R2) (with Gn and Rn being the nth order gradient and

rotational spaces). We have used quadratic curvilinear tetrahedra to further remove

discretization errors. The sphere is illuminated by a plane wave with a harmonic

time variation of 300 MHz. The PML is implemented using a parabolic conductivity

profile, and a theoretical reflection coefficient of -80 dB.
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Figure 11.2: Bi–static RCS in the E–plane of a 1m radius PEC sphere at 300 MHz
illuminated with a 300 MHz continuous wave modulated by a Gaussian pulse (σ = 2ns).
FDTD results. PML are being used. FDTD resol means number of cells per wavelength.

Figure 11.3: Computational lay–out of the GPR detection system. PML boundary
conditions are placed at the curved/straight boundaries.
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Figure 11.4: Geometry of the TEM horn antenna.

Note from Figs. 11.1,11.2 that to achieve the accuracy of DGTD with (G1,R2) (less

than 1 dBsm almost everywhere2), we needed to employ FDTD resolutions over 90

cells/λ, requiring the solution of over 160 · 106 unknowns, while DGTD only needs

7.5 · 106 unknowns3.

11.4 Application to GPR problems

As demonstrated, DGTD is a numerical technique that achieves a superior accuracy

with less computational requirements than FDTD. In this section, as a proof of

concept, we show results for the simulation of simple GPR systems.

11.4.1 Object presence discrimination

A TEM horn antenna has been excited with a z–directed gaussian current source near

its shortcut wall with a half–width half–amplitude (Fig.11.4) with a -3dB bandwidth

of 97.6 MHz and central frequency of 375MHz. The antenna is placed in free–space

0.3m away from a dielectric4 soil with electric relative permittivity 2, inside which,

a 0.15m–radius PEC sphere is buried at a depth of 0.5m (Fig. 11.3).

Fig. 11.6 shows a snapshot of the Ez field at time step 16.7nsec, computed with a

vector DGTD with basis (G1,R2) and central numerical flux. Fig. 11.5 shows the

2A dBsm is defined as 10 · log10(s/1m2) where s is the effective RCS in squared meters.
3Computational requirements in a 1.66Ghz Core 2 Duo T5500: FDTD→ Calculation speed=14·

10−12, Memory=1104 Mb. DGTD (G1,R2) → Calculation speed=126 · 10−12 , Memory= 300Mb.
DGTD (G0,R1) → Calculation speed=728 · 10−12 , Memory=60Mb. Calculation speed is given in
terms of physical time normalized to the CPU time (e.g. a calculation speed of 10−12 implies that
1s is needed by the CPU to simulate a physical time of 1ps).

4No dispersion/losses have been considered in this simplified problem.
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time evolution of Ez observed at a point close to the source point inside the antenna

(with coordinates x = 0,y = 0,z = 0), compared to that in the absence of the buried

sphere. The substraction of both values (magnified by a factor 10) is also shown

there to identify the effect of the presence of the sphere. These calibrated Ez field

values still show the presence of the air-soil interface through multiple reflections

between the soil, the antenna and the buried object.
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Figure 11.5: Ez observed at a point with coordinates (0,0.5,0) meters, both with-
/without buried sphere. The substraction of both signals is shown magnified by 10.

11.4.2 Radargram simulation

Next we model the transient response of a metallic landmine buried 5cm in a non-

dispersive, non-dissipative medium with relative dielectric permittivity εr = 5, when

a GPR survey is carried out using the TEM-horm antenna shown in fig.11.4. The

landmine considered is the TM-62M model and its characteristics are given in [262].

To obtain the synthetic radargram, the TEM-horn antenna is moved along a survey

line located 0.3m above the air-soil interface and the z-component of the reflected

field is computed approximately at the same antenna location (50cm from the center

of the antenna in the x̂ direction). Every 5cm the antenna is excited by the same

transient pulse used in the previous example and the response at the observation

point is recorded. The data obtained are calibrated by subtracting the response of

the same configuration but removing the buried landmine. The resulting radargram

is plotted in fig.11.7 showing the hyperbola typical of electrically-small objects. Note

that, in this example, as the simulation of the radargram required of several runs,
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the use of DGTD instead of FDTD resulted in a big reduction in computational

time.

11.5 Conclusions

In this paper, we have described and validated a DGTD method, suitable to become

an efficient and accurate alternative to FDTD. As a proof of concept, we have

simulated a simple GPR scenario with a TEM–horn antenna illuminating soil with

an object buried in it. Although formulated for non–dispersive media, DGTD can

easily be extended to handle these media using the auxiliary differential equation

technique [263], for instance. Actually, DGTD can be extended to handle any type

of material for which FDTD is already formulated, in a similar manner since DGTD

and FDTD only differ in the treatment of the space variations.
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Figure 11.6: Snapshot of the Ez field pattern at time step 16.7 ns for the problem
presented in figure 11.3. At this time step the wave have traveled through the whole
computational domain. White regions inside the TEM–horn are out–of–scale values.
Inside the PEC sphere (black) the field is null. The spatial dimensions are the same as

in figure 11.3



228

Ez [V/m]

Position [cm]

T
im

e 
[n

s]

 

 

−60 −40 −20 0 20 40 60

10

15

20

25

30

35

40

45

50

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 11.7: Synthetic radargram for the landmine case
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Chapter 12
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Devices Using Complex

Conjugate Dispersion Material
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H. Lin, M. F. Pantoja, L. D. Angulo, J. Alvarez, R. G. Martin, and S. G. Garcia.

Fdtd modeling of graphene devices using complex conjugate dispersion material

model. Microwave and Wireless Components Letters, IEEE, 22(12):612 –614, dec.

2012. ISSN 1531-1309. doi: 10.1109/LMWC.2012.2227466

Abstract

Graphene–based devices are becoming an exciting field of research for their extraor-

dinary electromagnetic properties. The incorporation of appropriate models into

numerical simulators is a must to take profit of these properties. In this work, we

propose a method to incorporate graphene–sheet models into FDTD method. By em-

ploying vector–fitting techniques, the permittivity of graphene is expanded into a ra-

tional function series, of complex conjugate pole-residue pairs, which is implemented

into FDTD by an auxiliary differential equation formulation. Simple waveguiding

problems validate our approach.
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12.1 Introduction

Graphene, a conjugated sp2 carbon sheet arranged in a two dimensional (2D) hexag-

onal lattice, is likely to be the promising candidate plasmonic material used in

nanophotonics [264]. Compared with noble metal materials, doped graphene presents

unique appealing properties such as tunability, extreme confinement, crystalinity and

low losses [265].

Although there are still practical difficulties in exciting and detecting the Surface

plasmon-polariton (SPP) waves in graphene, numerous theoretical plasmonic devices

have been envisaged in advance [266], and promising transformation optics applica-

tions [267] are under study. Via changing the chemical potential using gate electric

and/or magnetic fields, the graphene conductivity in the THz and IR frequencies can

be tuned. This unique property can be used to construct one atom thick metamate-

rial cloaking devices. Other researchers have proposed structures of graphene SPP

waveguiding devices, which mimic the conventional Metal-Insulator-Metal (MIM)

optical waveguide (e.g. Bing Wang and Xiang Zhang theoretically investigate the

coupling of far-infrared SPPs between spatially separated graphene sheets.

Due to the difficulties in measuring the SPP field, numerical simulation has been

the essential manner to verify the theoretical analysis. Most researchers make use of

commercial EM software based on frequency domain method like FDFD and FEM.

Yet another popular numerical technique, like the FDTD method [223], is rarely

mentioned in solving the Maxwell system containing graphene material. A recent

work did RCS analysis of finite graphene sheets through an enhanced frequency–

dependent subcell FDTD method [268]. They handle the material dispersion only

by including the intraband (Drude) conductivity, while neglecting the interband

term. This approximation can obtain reasonable results where the intraband term

dominates at the lower frequecy band. However, the high frequency dynamic con-

ductivity is dominated by interband conductivity when |µc| < ~ω/2, especially for

slightly doped graphene. This remedy was improved in [269] through a Pade ap-

proximate spectral fit for graphene conductivity, yet this Pade fit method only gives

accurate approximation in a restricted spectrum region.

In this paper we propose a new accurate way to describe the equivalent permit-

tivity function of one-atom thick graphene as a sum of multiple complex-conjugate

pole-residue pairs obtained through a vector fitting tool [165]. The Auxiliary differ-

ential equation (ADE) method described in [161] is used in the parallel UGRFDTD

simulator employed in this work [247]. Numerical simulations serve to validate our

approach both for low and high frequency applications.
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12.2 Formulation of the dispersion model

12.2.1 Graphene conductivity

The graphene can be modeled as an infinitesimally thin surface characterized by a

surface conductivity σ(ω, µc,Γ, T ) [270],

σ(ω,µc,Γ, T ) =

je2(ω − j2Γ)

π~2

[
1

(ω − j2Γ)2

∫ x

0
ε

(
∂fd(ε)

∂ε
− ∂fd(−ε)

∂ε
dε

−
∫ x

0

fd(−ε)− fd(ε)
(ω − j2Γ)2 − 4(ε/~)2

dε

] (12.1)

where ω is the angular frequency, µc the chemical potential, Γ the scattering rate,

T the Kelvin temperature, −e the charge of an electron, ~ = h/2π the reduced

Planck’s constant, and fd the Fermi-Dirac distribution. Within the random-phase

approximation, the dynamic optical response of graphene can be derived from Kubo

formula in a complex form consisting of interband and intraband contributions. The

intraband term in Eq. (12.1) can be evaluated as:

σintra(ω, µc,Γ, T ) = −j e2kBT

π~2(ω − j2Γ)

(
µc
kBT

+ 2ln(e−µc/kBT + 1)

)
(12.2)

The interband conductivity can be approximated for kBT � |µc|, ~ω as

σinter(ω, µc,Γ, T ) =
−je2

4π~
ln

2|µc|−(ω − j2Γ)~
2|µc|+(ω − j2Γ)~

(12.3)

From Eq.(12.2) and (12.3), it is obvious that the intraband conductivity takes the

form of Drude model while the interband conductivity holds a complex form. (insert

figures for the plot of σ εeq

12.2.2 Complex conjugate pole-residue pair model

The 2D conductivity defined can be used to define an equivalent volume conductivity,

by using the method proposed in [267]. Assuming the graphene has a very small

thickness ∆, the volume conductivity is found by σvolume = σ
∆ , and the equivalent

volume current density can be deduced as ~J = σvolume ~E. Thus, the equivalent

complex permittivity of the ∆-thick graphene layer is εeq = ε0+ σ
jω∆ .When Re(εeq) <

0, the graphene layer acts like a thin metal film, and a TM mode SPP surface wave

can be supported.
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Figure 12.1: Surface conductivity of graphene for different µc

From the above formula, the complex relative permittivity values at various fre-

quencies can be calculated under different fabrication condition (µc,Γ, T ). Let us

propose that this complex relative permittivity can be described as a sum of partial

fractions in terms of complex conjugate pole-residue pairs as follows:

εeq = ε0ε∞ + ε0
∑
p

(
cp

jω − ap
+

c∗p
jω − a∗p

)
(12.4)

where ε∞ is the relative permittivity at infinite frequency, and ap and cp are the

p-th pole and residue, respectively.

The complex conjugate pole-residues in Eq.12.4 can be found by vector fitting

[165] techniques. The resulting model is both casual (automatically complies with

Kramers-Kronig relationships), and stable (poles are in the left complex semi-plane).

It can be implemented in time domain either in convolutional or in Auxiliary Dif-

ferential Equation (ADE) form. In this paper we have chosen the later using the

methodology described in [161] implemented into the parallel UGRFDTD simulator

[247] partially developed under the HIRF-SE 7PM EU Project [245].

Assuming the thickness of graphene is 1nm, we have listed in Table 12.1 the fitted

values of ap and rp for the cases used in our numerical simulations. The fitting

frequency band ranges from 1 THz to 600 THz which covers the whole interested

spectrum region. An 8th order model has been chosen for providing a good enough

model without sacrificing the computational time. Fig. 12.2 compares the com-

plex conjugate pole-residue model with the Kubo model, both for the high and low
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Table 12.1: Fitted pole-residue pairs for µc = 0.15ev, T = 300K, Γ = 0.5ps. A value
of ε∞ = 1.000136193409153 is found for the infinite–frequency parameter.

p ap (×1014) cp (×1017)
1 -0.000000311990089 9.952097029182077
2 -0.020059641266861 -9.95190402605314
3 −0.063439734110918 + j4.557315565339019 0.000289314063601 + j8.0429178158
4 −0.063439734110918− j4.557315565339019 0.000289314063601− j0.000000310333203
5 −0.026877401170715 + j4.557748555290389 0.000087819040210 + j0.000000235978050
6 −0.026877401170715− j4.557748555290389 0.000087819040210− j0.000000235978050
7 −0.165660164979658 + j4.554918677584330 0.000760076976401− j0.000003424982598
8 −0.165660164979658− j4.554918677584330 0.000760076976401 + j0.000003424982598
9 −0.424000644448006 + j4.541081141209922 0.001880592700406− j0.000032966348094
10 −0.424000644448006− j4.541081141209922 0.001880592700406 + j0.000032966348094
11 −1.043659450208929 + j4.459035469999526 0.004442370774092− j0.000180715146878
12 −1.043659450208929− j4.459035469999526 0.004442370774092 + j0.000180715146878
13 −2.399275629388681 + j3.994855305224047 0.009712908060073− j0.000642521125815
14 −2.399275629388681− j3.994855305224047 0.009712908060073 + j0.000642521125815
15 −4.430844678567260 + j1.951215718359759 0.017090807596325− j0.000771897787253
16 −4.430844678567260− j1.951215718359759 0.017090807596325 + j0.000771897787253

frequency band.

It can be noticed from Table 12.1 that not all the poles and residues are complex

conjugate, the first and second pole-residue pair are real values. In this case, since

the first pole is quite small (compared with the second pole), the effect of these two

pole-residue pairs can be interpreted as a Drude term, which account for the σintra

at the low frequency band (less than 20THz). The other pole-residue pairs can be

interpreted as several small modification terms to the permittivity model. These

facts agree with the analysis that σintra only takes effect in the low frequency band.

In the high frequency band, the influence of σinter should be taken into account.

Figure 12.2: Comparison of the complex permittivity found by vector fitting to that
found from the Kubo model.
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12.2.3 FDTD algorithm

Following the strategy of [161], the following FDTD updating equation for the E–

field is found (the magnetic field update equation remains unchanged):

~E(n+1) = ~En∆t+

2∆t· [∇× ~H(n+1/2)∆t −Re∑P
p=1](1 + kp) ~Jp

n∆t

2ε0ε∞ +
∑P

p=1 2Re(βp)

(12.5)

where Jp is the auxilary currents introduced by the complex-conjugate pole-residue

pairs. These are updated using the following equation after the E–field updating

~Jp
(n+1)∆t

= kp ~Jp
n∆t

+ βp

( ~E(n+1) − ~En∆t

∆t

)
(12.6)

the updating coefficients kp and βp can be calculated from the given poles and

residues as:

kp =
1 + ap∆t/2

1− ap∆t/2
, βp =

ε0cp∆t

1− ap∆t/2
(12.7)

12.3 Numerical Validation

To validate the complex-conjugate dispersion model for graphene, we first studied

an optical coupling system composed of two parallel free-standing graphene sheets

described in Fig.12.3-(b), which has been theoretically investigated in [271] by means

of FDFD method. The thickness of graphene is set to ∆ = 1nm, which is equivalent

to the mesh size along each direction.The equivalent permittivity of the graphene is

εeq = −45.082 + j0.719. To meet with the CFL-stability conditon, the timestep is

set to 1 × 10−18s. The Convolutional Perfectly Matched Layer (CPML) technique

permits to truncate, both the graphene dispersive layer, and the free–space (an 8–cell

layer is used here).

A waveguide mode source with 30THz harmonic wave is illuminated from free–space,

exciting either the symmetric or the anti-symmetric surface plasmon waves traveling

along the graphene sheets. The normalized Ez field along the width direction of

different modes is illustrated In Fig.12.3-(a). It should be noted that, the symmetric

and anti-symmetric modes are basic mode of the parallel plate system, while the

asymmetric mode can be considered as a hybrid mode of symmetry and asymmetry

mode. It can also be viewed as a off-axis excitation results of the input optical field.
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When the simulation reaches a steady state, the wavelength can be found from the

space field distribution, from which, the propagation constant β can be extracted.

For 50nm parallel plate distance, for the symmetric mode, we find βsym = 48.90 +

j0.58µm−1, while for anti-symmetric mode βantisym = 38.22 + j0.80µm−1. Thus,

the SPP wave for the symmetric mode presents a shorter spatial period compared

with anti-symmetric mode. This phenomenon can be easily viewed from the time

snapshots shown in Fig.12.3-(b) and Fig.12.3-(d)

Figure 12.3: Ez field of two parallel graphene sheets system excited at three different
modes. The distance between two graphene sheet is 50nm

This coupling effect between parallel graphene plates can be used to design splitters.

Fig.12.4-(a) and Fig.12.4-(b) show again different snapshots of the electric field in a

waveguide splitter. The spaces between the input and two output graphene sheets

are both d=50nm. The coupling distance is set to 220nm. If we change the chemical

potential at the upper/lower coupling arm, the coupling process can be tuned. In

Fig.12.4-(c)and Fig.12.4-(d) we show the time evolution of the tuned coupler whose

upper arm chemical potential has been changed to 0.05ev (within the coupling dis-

tance). Thus, the SPP wave is only coupled to the lower arm.

12.4 Conclusion

In this work, we have proposed a method to incorporate graphene sheet models into

the FDTD simulators. Vector–fitting has permitted us to express the permittivity

of graphene as a rational function series, with arbitrary order, of complex conjugate

pole-residue pairs. An ADE formulation has been employed into the UGRFDTD
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Figure 12.4: Ez field of two parallel graphene sheets system excited at anti-symmetric
mode. Distance between the two graphene sheet=30nm

solver. Waveguiding structures have served to illustrate and validate the effectiveness

of this method.



Chapter 13

Efficient excitation of

Waveguides Crank Nicolson

FDTD

S. G. Garcia, F. Costen, M. Fernandez Pantoja, L. D. Angulo, and J. Alvarez.

Efficient excitation of waveguides in crank-nicolson fdtd. Progress In Electromag-

netics Research Letters, 17:39–46, 2010. doi: 10.2528/PIERL10072008. URL http:

//www.jpier.org/PIERL/pier.php?paper=10072008

Abstract

In this paper we present a procedure to calculate the discrete modes propagated with

Crank–Nicolson FDTD in metallic waveguides. This procedure enables the correct

excitation of this kind of waveguides at any resolution. The problem is reduced to

solving an eigenvalue equation, which is performed, both in a closed form, for the

usual rectangular waveguide, and numerically in the most general case, validated

here with a ridged rectangular waveguide.
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13.1 Introduction

Two important problems, which have received a broad attention in literature, arise

in the simulation of multimode waveguides by time domain methods: on one hand,

the correct excitation of the incident modes at the feeding port and, on the other

hand, their subtraction at the end of the guide [273–281].

In this paper, we apply some of these techniques to characterize the discrete modes

(also known as mode templates [274]) propagating on arbitrarily–shaped conduct-

ing waveguides solved by the Crank–Nicolson Finite Difference Time Domain (CN–

FDTD) method. For this purpose we find the solution of the eigenvalue problem

numerically, for the general case, and analytically, for rectangular waveguides. The

numerical procedure is validated here with a simple ridged rectangular waveguide.

The CN–FDTD method [282–284] has been chosen for being a promising alternative

to the classical Yee–FDTD method, due to its unconditional stability, which is worth

to be extended to include all the features already developed for the classical FDTD

method

13.2 Discrete problem

Let us assume a conducting waveguide with arbitrary cross section, filled up with

a lossless homogeneous isotropic medium 1 with electrical parameters ε and µ, and

consider its axis in the Z direction. The modes propagating in the waveguide must

satisfy Maxwell’s curl equations, together with the boundary conditions at the metal-

lic walls: null tangential components of the ~E field, and null normal components of

the ~H field.

In order to solve this problem with Crank–Nicolson FDTD (CN–FDTD) [283, 284]

an average–in–time operator is applied to the fields affected by the space derivatives

in Maxwell’s curl equations, and all the derivative operators are replaced by the

centered difference operator. This results in an unconditionally stable scheme [282],

which permits to solve the fields located in the usual Yee–cube spatial disposition

with an implicit–in–space marching–on–in–time algorithm

Duf(u, . . .) =
f(u+ ∆u

2 , . . .)− f(u− ∆u
2 , . . .)

∆u
(13.1)

1Although the procedure is shown for simplicity for lossless media, it can be easily formulated
for lossy media.
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Ptf(t, . . .) =
f(t+ ∆t

2 , . . .) + f(t− ∆t
2 , . . .)

2
(13.2)

Placing the field components distributed in the usual Yee’s cube [37] ~r1 = (i,j+ 1
2
,k+ 1

2
),

~r2 = (i+ 1
2
,j,k+ 1

2
), ~r3 = (i+ 1

2
,j+ 1

2
,k), ~r4 = (i+ 1

2
,j,k), ~r5 = (i,j+ 1

2
,k), ~r6 = (i,j,k+ 1

2
), we can

write CN–FDTD as

µDtHn
x (~r1) = (DzPt)Eny (~r1)− (DyPt)Enz (~r1) (13.3)

µDtHn
y (~r2) = (DxPt)Enz (~r2)− (DzPt)Enx (~r2)

µDtHn
z (~r3) = (DyPt)Enx (~r3)− (DxPt)Eny (~r3)

εDtE
n+ 1

2
x (~r4) = (DyPt)H

n+ 1
2

z (~r4)− (DzPt)H
n+ 1

2
y (~r4)

εDtE
n+ 1

2
y (~r5) = (DzPt)H

n+ 1
2

x (~r5)− (DxPt)H
n+ 1

2
z (~r5)

εDtE
n+ 1

2
z (~r6) = (DxPt)H

n+ 1
2

y (~r6)− (DyPt)H
n+ 1

2
x (~r6)

Following the way employed in the non–discrete case, we will search for discrete

solutions of (13.3) with the general form

Ψmt(mx,my,mz) = Ψo(mx,my) e
−jβgmz∆zejωmt∆t

with βg being the propagation constant along the waveguide, and Ψo(mx,my) the

transversal profile amplitude. For these functions, Dz, Dt and Pt have the following

eigenvalues respectively

az = −2j
sin(βg

∆z
2 )

∆z
, at = 2j

sin(ω∆t
2 )

∆t
, nt = cos(ω

∆t

2
) (13.4)

The general solution of equations (13.3), as in the non–discrete case, can be divided

into two basic mode sets: Transverse Magnetic (TM), for which Hz = 0, and Trans-

verse Electric (TE), for which Ez = 0. It can be seen that for both TM and TE

modes, it is sufficient to obtain respectively Eoz and Hoz, to calculate the remaining

components. For instance, for the TM polarization (13.3) is equivalent to

Eox(i+ 1
2
,j) =

1

κ2
(azDxEoz(i+ 1

2
,j)) (13.5a)

Eoy(i,j+ 1
2

) =
1

κ2
(azDyEoz(i,j+ 1

2
)) (13.5b)

Hox(i,j+ 1
2

) =
1

κ2
(νtεDyEoz(i,j+ 1

2
)) (13.5c)

Hoy(i+ 1
2
,j) =

−1

κ2
(νtεDxEoz(i+ 1

2
,j)) (13.5d)(

DxDx +DyDy + κ2
)
Eoz(i,j) = 0 (13.5e)
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with the dispersion relationship

κ2 = a2
z − µενt2 , νt =

at
nt

= 2j
tan(ω∆t

2 )

∆t
(13.6)
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Figure 13.1: Arrangement of the fields at an edge of the guide

If we place the staircased conducting walls along the planes of Yee’s cube containing

the Ez component (Fig. 13.1), the boundary conditions at the planes parallel to XZ

are

(a)Eoz(i,j0) = 0 , (b)Eox(i+ 1
2
,j0) = 0 , (c)Hoy(i+ 1

2
,j0) = 0 (13.7)

and for the planes parallel to YZ

(a)Eoz(i0,j) = 0 , (b)Eoy(i0,j+
1
2

) = 0 , (c)Hox(i0,j+
1
2

) = 0 (13.8)

It can easily be deduced from Eqs. (13.5), that (13.7a) and (13.8a) are enough to

satisfy the remaining boundary conditions (13.7b-c) and (13.8b-c) automatically.

Analogously, the eigenvalue equation for the TE polarization is

(
DxDx +DyDy + κ2

)
Hoz(i+ 1

2
,j+ 1

2
) = 0 (13.9)
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Table 13.1: Closed form of the discrete TE and TM modes for a rectangular waveguide
of size a× b

TM (p, q non–null integers, Eo arbitrary)

Eox(i+ 1
2
,j) = −j 1

κ2 bzbxEocos
(pπ
a (i+ 1

2)∆x
)
sin
( qπ
b j∆y

)
Eoy(i,j+ 1

2) = −j 1
κ2 bzbyEosin

(pπ
a i∆x

)
cos
( qπ
b (j+ 1

2)∆y
)

Eoz(i,j) = Eosin(pπa i∆x)sin( qπb j∆y)

Hox(i,j+ 1
2) = j ε

κ2 btbyEosin
(pπ
a i∆x

)
cos
( qπ
b (j+ 1

2)∆y
)

Hoy(i+ 1
2
,j) = −j ε

κ2 btbxEocos
(pπ
a (i+ 1

2)∆x
)
sin
( qπ
b j∆y

)
Hoz(i+ 1

2
,j+ 1

2) = 0

TE (p, q non simultaneous null integers, Ho arbitrary)

Eox(i+ 1
2
,j) = j ε

κ2 btbyHocos
(pπ
a (i+ 1

2)∆x
)
sin
( qπ
b j∆y

)
Eoy(i,j+ 1

2) = −j ε
κ2 btbxHosin

(pπ
a i∆x

)
cos
( qπ
b (j+ 1

2)∆y
)

Eoz(i,j) = 0

Hox(i,j+ 1
2) = j 1

κ2 bzbxHosin
(pπ
a i∆x

)
cos
( qπ
b (j+ 1

2)∆y
)

Hoy(i+ 1
2
,j) = j 1

κ2 bzbyHocos
(pπ
a (i+ 1

2)∆x
)
sin
( qπ
b j∆y

)
Hoz(i+ 1

2
,j+ 1

2) = Hocos
(pπ
a (i+ 1

2)∆x
)
cos
( qπ
b (j+ 1

2)∆y
)

bx=
2 sin( pπ

a
∆x
2

)

∆x , by=
2 sin( qπ

b
∆y
2

)

∆y , bz=
2 sin(βg

∆z
2

)

∆z

bt=
2 tan(ω∆t

2
)

∆t

κ2 = 4
sin2( pπ

a
∆x
2

)

∆x2 + 4
sin2( qπ

b
∆y
2

)

∆y2 = a2
z − ν2

t µε

ωcutoff = 2
∆t arcsin

(√
sin2( pπ

a
∆x
2

)

(∆x/c∆t)2 +
sin2( qπ

b
∆y
2

)

(∆y/c∆t)2

)

Placing the waveguide walls in the same manner as in the TM case, the boundary

conditions reduce to

DyHoz(i+ 1
2
,j0) = 0 (XZ), DxHoz(i0,j+

1
2

) = 0 (YZ) (13.10)

These eigenvalue problems can be solved by numerical techniques, although an ana-

lytical solution can be sought in some simple cases. For instance, for a rectangular

waveguide, a closed–form solution is shown in Table I. It should be noticed that

the non–discrete solution is obtained from the discrete one by replacing the space

discrete variables in Table I by the continuous ones, and bt by ω, bx by pπ
a , by by qπ

b ,

and bz by βg, which are their respective limits when all the increments tend to 0.

The FDTD solution is totally similar just replacing tan(ω∆t
2 ) by sin(ω∆t

2 ) wherever

it appears.

To obtain a discrete numerical solution, for instance in the TE case, we first arrange

the values of Hoz(i+ 1
2
,j+ 1

2
) for all the discretized points on the waveguide cross section

on a single column vector ~Φ, and then, replacing the transverse discrete Laplacian

operator DxDx + DyDy by (13.1), equations (13.9) and (13.10) can be explicitly

written in matrix form as M̃~Φ = −κ2~Φ. Since M̃ turns out to be a sparse matrix
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(no more than 5 non–null elements per line), this eigenvalue problem can be solved

using well known linear algebra numerical techniques.

13.3 Implementation into CN–FDTD

The procedure described in [284] has been followed for the implementation of the

CN–FDTD equations (13.3). An iterative Krylov–based solution, employing the

BiCGStab solver has been applied. The discrete mode has been fed into the compu-

tational space with a total–field/scattered–field formulation implemented by means

of an equivalent set of surface currents on two Huygens’ planes [36]: one to inject the

propagating mode at a plane near one end of waveguide, and the other one close to

the other end to suppress it. Simple Mur first order boundary conditions are placed

at every end of the waveguide.

13.4 Results

Using the IMSL eigenvalue routines, we have obtained the TE numerical discrete

modes supported by an air–filled ridged rectangular waveguide (Fig. 13.2(middle)):

a total number of 937 modes can propagate in the waveguide 2. In order to test the

accuracy of the method, we have excited at 3.30 GHz the 9th TE mode, employing

for the simulation ∆x = ∆y = 333.3mm, ∆z = 9.0 mm, ∆t = 29.70 ps. This

mode, which has a numerical cutoff frequency of 33.30 MHz, propagates along the Z

axis with a low resolution (∼10 cells/wavelength), and it is poorly sampled in time

(∼10 samples/period). Fig. 13.2 shows the Hoz pattern of this mode, together with

the propagation of Ex along Z at y = 38∆y, after 1200 time steps. The null field

region beginning at z = 600∆z (the mode is excited at z = 400∆z) corresponds to

the scattered field zone. Less than 0.01% of the energy escapes from the total field

region, which proves the accuracy of the predicted mode propagation.

We have also excited a 10 mm side air–filled square waveguide, with a discrete

TM11 mode from Table I at 31 GHz. A coarse space–time sampling has been taken

∆x = ∆y = 1.667 mm, ∆z = 1.581 mm, ∆t = 3.12 ps, which results in ∼8 cell-

s/wavelength in the propagation direction, and ∼10 samples/period. The CN–FDTD

cut–off frequency of this mode is fc = 20.67GHz 3 . Fig. 13.3 shows the Ez pro-

file at (x = 3∆x, y = 3∆y), from z = 80∆z to z = 120∆z (the mode is excited

2The actual number of discrete modes is limited by the space discretization.
3Just for comparison: the non–discrete cut–off frequency is fc = 21.20GHz while the Yee–

FDTD discrete one is 21.11 GHz. The FDTD discrete solution is closer to the non–discrete one, as
expected, since the dispersion of CN–FDTD is higher than that of the classical Yee FDTD[285].
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Figure 13.2: Hoz pattern of the 9th TE mode for a ridged rectangular waveguide (top).
Geometry of this guide (middle). Propagation along the Z–axis of the Ex component of
the 9th mode, at y = 38 cells (bottom). All dimensions are in cells (∆x = ∆y = 333.3

mm, ∆z = 9.0 mm, ∆t = 29.70 ps)

at z = 0), after 300 time steps. Perfect agreement is shown between the discrete

mode propagated with CN–FDTD (dashed line) and its predicted propagation (’+’

symbols), while phase differences can be appreciated between the non–discrete mode

(sampled in time and in space) propagated with CN–FDTD (continuous line) and

its predicted evolution (’�’ symbols).

13.5 Conclusions

In this paper we have presented a procedure to obtain the discrete numerical modes

propagated by the CN–FDTD method in arbitrarily–shaped metallic waveguides.

We have reduced the problem to the solution of an eigenvalue problem, which has

been addressed in the general case by numerical techniques, and in an analytical

manner for rectangular waveguides.
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Chapter 14

Improving the SAR distribution

in Petri-dish cell cultures

L.D. Angulo, S.G. Garcia, M.F. Pantoja, C.C. Sanchez, and R.G. Martin. Improving

the sar distribution in petri-dish cell cultures. Journal of Electromagnetic Waves

and Applications, 24:815–826(12), 2010

Abstract

Petri dishes of different types are widely used in bioelectromagnetic experiments for

the assessment of the non–thermal biological effects of electromagnetic radiation.

Two important qualities required for the experimental setups are to guarantee a suf-

ficiently high level of exposure, and to maintain uniformity of the fields affecting the

cell culture under study. In this paper, we apply two novel techniques to improve both

parameters: the use of dishes with an elliptical shape, and the addition of metallic

patches underneath the Petri dish. Results for plane–wave illumination at 2.45 GHz

are shown. This methodology can also be extended to Petri dishes inside waveguide

applicators.
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14.1 Introduction

In vitro experiments complement epidemiological in vivo studies and are essential

for the evaluation of biological effects of radio–frequency (RF) electromagnetic radi-

ation. Non–thermal effect studies are becoming a topic of current focus because of

the amount of low–power RF devices employed in current devices [287, 288]. Two

important requirements are needed in non–thermal effects in vitro research: 1) the

uniformity of the specific absorption rate (SAR) distribution over the area of cells

under observation, and 2) exposures with a sufficiently high level of power (high

SAR), so that high–power amplifiers are not needed and the total system cost is not

further increased. To fulfill these minimum requirements is not an easy task, making

the design and characterization of exposure setups a challenging problem [289–293].

Circular–shaped Petri dishes of different sizes are commonly used to contain the cells

under investigation, which are cultured either as a monolayer at the bottom of the

dish or in suspension. Several authors have calculated SAR in the volume occupied

by the cells, reporting a strong dependence of its value and uniformity on several

parameters, such as the amount of liquid contained in the dish, the presence of a

meniscus, the polarization of the electromagnetic field, the frequency of operation,

the position of the dish inside the exposure chamber, etc. [289, 290, 292–295].

In this paper, we consider monolayer cultures [296, 297] of NB69 human neuroblas-

toma cells, illuminated by E–polarized traveling plane electromagnetic waves (E-field

vector perpendicular to the bottom of the Petri dish), and investigate the influence

on the SAR distributions of elongating the Petri dish in an elliptical way, and of

adding metallic patches underneath the dish. We show several cases where these

techniques improve the homogeneity of the SAR pattern and/or its magnitude with

respect to the usual Petri dish. However, although improved setup designs are pre-

sented, the objective of this study is not to provide a generally optimum design of

a Petri dish, but rather to make the reader aware of the need to perform numerical

experiments prior to designing specific Petri containers for cell exposure, bearing in

mind that appropriate changes in the shape of the dish1, and/or attaching metallic

patches underneath the dish, increase the SAR and its homogeneity.

Numerical techniques have been successfully employed in bioelectromagnetics over

past years, both in time and in frequency domain [298–302]. In this paper, to assess

the fields in all the Petri containers considered, the numerical simulations have been

1Though Petri dishes with uncommon geometries are not commercially available, and they need
to be manufactured, we still find it interesting to present this alternative to the Bioelectromagnetic
community.
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performed using the software package HFSS v11.1 [303]2, which is based on the finite

element method in the frequency domain, and is appropriate for the narrow band

nature of the problems addressed in this paper.

14.2 Circular Petri dish

We start by analyzing the behavior of a circular Petri dish (Nunc 35x10 mm type)

commonly used in bioelectromagnetic experiments [296, 297]. It has R0 = 16.9mm

inner radius, 1 mm–thick walls, and it is made of Polystyrene of measured relative

permittivity εr = 3 with negligible losses (tan δ < 0.0001) (Figs. 14.1 and 14.2).

The device is filled with a Ringer’s solution similar to the D–MEM medium of [305],

chemically supplemented in the way described in [297]. Its material properties found

from measurements were: dielectric permittivity εr = 77.5, conductivity σ = 2.3S/m

and density ρ = 1g/cm3. A monolayer culture of NB69 cells is placed at the bottom

of the dish, and assumed to span the first 50µm, with material parameters equal to

those of the Ringer’s solution. The dish is illuminated by a harmonic plane-wave

of frequency 2.5 GHz, propagating in free space, traveling along the +x̂ direction.

The average power density of the incoming wave is normalized to 1W/m2 and it is

polarized with the E-field vector along ẑ (E polarization). This polarization has been

proven to provide the most uniform exposure for monolayer cell cultures [289, 294].

The wavelengths at this frequency are 12.24cm for air, 7.07cm for plastic and 1.38cm

in the liquid.

We have conducted numerical simulations of the Petri dish, filled with different

amounts of liquid, with the numerical package HFSS 3. Since the effect of the menis-

cus in the SAR values is not negligible [293], the geometry (Fig. 14.2) has been

simulated, including a model from [293] for the meniscus shape, with the height of

the liquid over the bottom of the dish hm(r) being an increasing function of the

radial coordinate r

hm(r) = h+ 2.51
(
e−

R0−r
c + e−

R0+r
c − 2e−

R0
c

)
, |r| ≤ R0 (14.1)

2The commercial Finite Difference Time Domain package SEMCAD X [304] was also employed
only for validation to get the results of Fig. 14.3.

32nd–order basis functions together with adaptive h–refinement is employed. Perfect magnetic
conductor boundary conditions are placed in the symmetry plane to save computational resources
(Fig. 14.2). A total number of 27309 tetrahedra were employed for the full problem. The Ringer
solution volume was modeled with 7878 tetrahedra, with a minimum edge length of 0.53 mm., and
a maximum one of 6.29 mm.
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where h is the height of the liquid at the center, c is a parameter describing the

decay of the profile (in our case c = 2.01mm), and R0 = 16.9mm is the Petri dish

inner radius.

Figure 14.1: Petri dish geometry (the thickness of the walls is 1 mm)

Figure 14.2: 3D view of half Petri dish including the liquid and the meniscus (a
perfect magnetic conductor boundary condition is used in the simulations on the XZ

symmetry plane).

To observe the value of the electromagnetic field and the SAR in a place occupied by

the cells, but not too close to the Petri-dish walls, we define for all the simulations

in this paper, an observation region SI given by a circle of radius 15mm placed

at z = 25µm, which lies approximately in the middle of the monolayer of the cell

culture (thus assumed to have a negligible thickness). As suggested in [290], we

do not include the whole region (radius 16.9 mm) occupied by the cells to avoid
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taking values of SAR in positions near the walls, where SAR is usually strong and

inhomogeneous, partly due to the presence of the meniscus4.

To evaluate the level and the uniformity of SAR distribution in the SI region, we

define two parameters: the average SAR SI , µS ,

µS =
1

SI

∫
SI

SAR dS (14.2)

and an inhomogeneity factor , Fh, which gives a normalized measure of the dispersion

of the SAR values, and defined as the coefficient of variation (ratio of the standard

deviation to the mean)

FH =
100

µS

√
1

SI

∫
SI

|SAR− µS |2 dS (14.3)

Figs. 14.3 and 14.4 show, respectively, that µS and FH depend strongly on h:

µS increases monotonically with h (greater heights should be taken if we wish to

increase the SAR in the cultures), while FH increases or decreases depending on h,

and becomes monotonically decreasing for h > 2.8mm. As the height of h = 5mm

corresponds to the highest µS and almost the lowest FH of the examples considered,

this will be the reference design chosen for comparison in the rest of this paper.

Fig. 14.5 shows the SAR pattern for this case.

Figure 14.3: Average SAR calculated over the SI region for different heights of the
liquid.

4The thermal effect of the SAR on these regions cannot be neglected at all, when dealing
with thermal biological effects. However, for non–thermal effects studies (maximum temperature
rise<0.1K everywhere in the culture), researchers can exclude the cells near the walls to focus on
the biological effects noticed just in the SI area [296, 297]. In this paper, we do not deal with
the thermal study, which needs to be performed on beforehand to assess the adequate illumination
powers to be in the non–thermal regime.
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Figure 14.4: Coefficient of variation in the SI region for different heights of the liquid.

Figure 14.5: SAR distribution in the SI region with a liquid height h = 5mm

14.3 Elliptical Petri dishes

In this section, we explore the effect on the SAR values exerted by changing the

shape of the Petri dish, increasing its dimensions in an elliptical way. In particular,

the shape is considered to be an ellipse centered at x = 0 and y = 0 with semi–axes

(in mm.) 16.9Sx and 16.9Sy. We seek to improve the homogeneity of the SAR

distribution, as well as increasing its level, in the circular region SI defined in the

previous section, by varying Sx and Sy. The idea of distorting the shape emerged

after noticing that the SAR patterns usually do not show circular symmetry inside

circular Petri dishes, but rather, in most cases, the SAR isolines for constant z

resemble, at least partially, ellipses (Fig. 14.5).
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Figs. 14.6 and 14.7 display the average SAR, µS , and the inhomogeneity factor, FH ,

for different values of Sx and Sy. In all cases, both parameters are evaluated over

the region SI of radius=15mm defined in the previous section, and a height of the

liquid, measured at the center of the dish, of h = 5mm is always considered, with

the meniscus profile given by (14.1).

From Fig. 14.7 we note:

1. There is a decay of FH for increasing Sy values if 1 < Sy < 1.2 or 1.6 < Sy <

1.8.

2. Increasing Sx does not always improve homogeneity, as this depends on the

specific value of Sy.

3. For all the circular cases analyzed (Sx = Sy), it is always possible to find a

design with the same Sy but different Sx, which present a more uniform SAR

distribution than the circular one. For instance, for Sx = Sy = 1.4 there is

even a smaller dish (with Sx = 1.4, Sy = 1.3) with better FH .

From Fig. 14.6, we find relative variations which are smaller in µS than in Fh,

when Sx and Sy change. The highest values correspond to the largest Petri dishes

considered (Sx = 1.6 and Sy = 1.8), which also provide the most uniform SAR

distributions. The latter would constitute a good choice unless the experimental

set–up requires smaller–sized dishes. For a experiment having size restrictions, we

could choose from Figs. 14.6 and 14.7, a smaller dish, like Sx = 1.2 and Sy = 1.25,

which gives a tradeoff solution, providing a low FH (13%), and a rather high average

SAR value.

In conclusion, we have shown that the uniformity and level of SAR can be improved

by considering Petri dishes of elliptical shape, which can be optimized via numerical

analysis.

14.4 Metallic additions

In this section, we show that metallic additions at the bottom of the dish, with

the appropriate shape, also serve to improve both the homogeneity and the level

of the SAR. The shape of the metallic parts have been designed by trial and error,

examining the inhomogeneous SAR patterns. For instance, the SAR distribution of

Fig. 14.5 shows higher values of the fields inside a region with its borders resembling

the shape of a ”D”. A possible way to raise the level of the fields in the regions
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Figure 14.6: Average SAR for different values of Sx and Sy.

Figure 14.7: Inhomogeneity factor for different values of Sx and Sy

where their value is lower, is given by the placement underneath the dishes, of

metallic patches with their borders in areas of low field intensity, to take advantage

of the extra radiation at these zones.

To provide the optimum shape of the metallic patches, a systematic analysis could

also be employed, for instance, by optimization techniques, which is beyond the

scope of this work. Once again, our goal is only to introduce the idea of improving

the SAR homogeneity using this technique, and not to present the best possible

shape of the metal additions for this or any other case. To illustrate the procedure,

we have considered again the circular Petri dish filled with a liquid a liquid of height

h = 5mm, measured at the center of the dish, with the meniscus profile given by

(14.1).
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Fig. 14.8 shows the shape of the four different kinds of metallic attachments pro-

posed, and their relative location5. We call them: plate, plate–ring, ring and ring–

ring metallization. The height of the metal (copper) is 0.1mm and they are printed

on a 1mm thick FR4 epoxy layer (εr = 4.4, tan δ = 0.02), commonly used to build

printed circuit boards, on top of which the Petri dish is placed.

Figure 14.8: Geometry of the different metallic additions: From left to right: a) plate,
b) plate–ring, c) ring and d)ring–ring

Fig. 14.9 shows, the inhomogeneity factor FH calculated between 2 GHz and 3 GHz

for all the metallic shapes considered, and for the case without metallization. Notice

that the improved designs depend also on frequency, which needs to be taken into

account in any systematic optimization study. Taking for instance the interval from

2.2 GHz to 2.5 GHz, we see that all the cases with metallic additions provide a

better design than the case without metal. The one called ring–ring proves to be

the best in the frequency range of approximately from 2.1 GHz to 2.7 GHz.

Figure 14.9: Inhomogeneity factors for different metallic shapes calculated from 2 to
3 GHz.

5Since the exact mechanical data are lengthy to be provided, IGES geometrical files for these
lay–outs can be downloaded from http://maxwell.ugr.es/metalic.tar
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Figure 14.10: Average SAR compared for the different metallic shapes from 2 to 3
GHz.

Regarding the level of SAR µS (Fig. 14.10), all the metallic additions improve it with

respect to the no–metal case (except for frequencies close to 3GHz in the ring and

ring-ring configurations). The plate–ring achieves the highest µS values for almost

all the frequencies considered, but at the cost of providing a bad performance in

terms of uniformity. A tradeoff solution between uniformity and SAR level is seen

to be the ring–ring shape (between 2.1 GHz and 2.7 GHz).

14.5 Conclusions

Many parameters strongly affect the SAR distributions of Petri–dish cell cultures

under RF exposure: the presence of the meniscus, the amount of liquid in the dish,

etc.. In this paper, we analyze the influence of the shape of the dish, and the presence

of metallic elements on its underside, on the SAR level and on its uniformity.

Two novel techniques to improve the homogeneity and level of SAR values in Petri

dishes are introduced. One is based on changing the shape of the Petri dish in an

elliptical way, and the other one is based on the addition of thin metallic patches of

different shapes. Particular improved designs are presented using both techniques.



Appendix A

Resumen

Esta tesis presenta una agrupación de trabajos académicos publicados o enviados

para su publicación en revistas cient́ıficas. El tema principal de la tesis aborda el de-

sarrollo del método discontinuo de Galerkin para la simulación de la propagación de

ondas electromagnéticas en el dominio del tiempo. Está compuesta de 14 caṕıtulos,

cada uno de ellos correspondiente a un art́ıculo, y agrupados en seis partes.

• La primera parte (Caṕıtulo 1) es una revisión del estado del arte, a modo

de introducción, del método discontinuo de Galerkin (DG) en el dominio del

tiempo (TD). En este trabajo se enfatizan las técnicas que han sido testadas

directamente por nuestro grupo de investigación en el desarrollo de un pro-

grama propio, SEMBA (Simulador Electromagnético de Banda Ancha). Se

explican los fundamentos matemáticos del método y las técnicas espećıficas

usadas para modelar diferentes fenómenos electromagnéticos.

• La segunda parte (Caṕıtulos 2, 3, y 4) se enfoca en la semi-discretización

espacial del método DG. En el Caṕıtulo 2, se investiga la presencia de modos

espurios en gúıas de onda y se plantean formas para eliminar su presencia.

Los argumentos teóricos dados se validan mediante dos simulaciones de filtros

de microondas de los cuales se poseen resultados experimentales. El Caṕıtulo

3 presenta una hibridación de los métodos continuo de Galerkin (CG) y DG

como un modo de reducir los consumos de memoria y mejorar la eficiencia

computacional. Finalmente, en el Caṕıtulo 4 se presenta un estudio de la

precisión del método de DG incluyendo la integración temporal LF2 (Leap-

Frog de segundo orden); como conclusión se presenta una comparativa con el

método de diferencias finitas en el dominio del tiempo (FDTD) que permite

establecer pautas de uso para uno y otro método.
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• La tercera parte (Caṕıtulos 5 y 6) se centra en dos técnicas que se pueden usar

para realizar la integración temporal del método DG. El Caṕıtulo 5 presenta

una nueva técnica de paso temporal local (LTS). Esta técnica se puede usar

tanto para el método Runge-Kutta (RK) como para LF2 y su funcionamiento

se demuestra mediante una comparación con otras técnicas para distintos prob-

lemas de propagación. En el Caṕıtulo 6, se analiza el método Discontinuo

Galerkin en el espacio-tiempo (STDG), cuya diferencia principal es que el for-

malismo DG se usa también para la variable temporal. En este caṕıtulo se

muestra una novedosa forma de aplicar el método para que el algoritmo se

pueda plantear de forma pseudo-expĺıcita.

• La cuarta parte (Caṕıtulos 7 y 8) cubre el modelado de procesos electro-

magnéticos. El Caṕıtulo 7 se centra a las fuentes electromagnéticas, trasladando

a DGTD los principios de Huygens con los que se resuelve el problema en

FDTD. Se muestra como modelar iluminación con ondas planas y con fuentes

localizadas tales como dipolos eléctricos. El Caṕıtulo 8 es un estudio sobre el

modelado de materiales anisótropos. En particular se centra en como mode-

lar adecuadamente los flujos numéricos para tener en cuenta la anisotroṕıa de

la impedancia. Los resultados son validados mediante comparaciones con los

obtenidos por un software comercial.

• La quinta parte (Caṕıtulos 9, 10 y 11) presenta una validación del método

en distintos casos de aplicación para problemas de ingenieŕıa. En el Caṕıtulo

9, se demuestra la validez del método para la evaluación del efecto de cam-

pos radiados de alta intensidad (HIRF) en la compatibilidad electromagnética

(EMC). El Caṕıtulo 10 muestra una comparativa de los resultados obtenidos

por el método DGTD con LF2 para la simulación de una geometŕıa compleja

comúnmente utilizada como banco de pruebas por la NASA. Los resultados

se comparan con los obtenidos mediante el Método de los Momentos (MoM)

concluyéndose que el método DGTD es competitivo con las técnicas existentes.

El Caṕıtulo 11 demuestra las capacidades del método en un contexto de sim-

ulación de un radar de penetración de tierra (GPR). Se muestran resultados

similares a los obtenidos experimentalmente con un dispositivo GPR.

• La sexta parte (Caṕıtulos 12, 13, y 14) presenta otros trabajos publicados que

han sido llevados a cabo durante este periodo de tesis. La temática versa sobre

otros métodos numéricos en diversos contextos. El Caṕıtulo 12 muestra simu-

laciones de láminas de grafeno mediante la inclusión de modelos de materiales

dispersivos en FDTD. El Caṕıtulo 13 presenta un procedimiento para el cálculo

de los modos de propagación discretos en una gúıa de onda usando el método
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FDTD con Crank-Nicolson. Finalmente, el Caṕıtulo 14 demuestra el uso de

un simulador comercial, HFSS, que utiliza el método de elementos finitos en

el dominio de la frecuencia (FEMFD) para la optimización de las dosis de ra-

diación en el interior de placas Petri mediante la inclusión de metalizaciones y

cambios geométricos en las placas.

A.1 Contribuciones Cient́ıficas y Futuras Ĺıneas de Tra-

bajo

Los objetivos principales que han guiado el desarrollo de esta tesis han sido dos.

El primero ha sido explorar las posibilidades que ofrece la discretización espacial

basada en elementos discontinuos de Galerkin en la resolución de las ecuaciones de

Maxwell en el dominio del tiempo. El segundo ha sido proponer, implementar y

aplicar distintas alternativas de esta metodoloǵıa y aplicarlas en distintos contextos.

A continuación se destacan las contribuciones cient́ıficas logradas a lo largo de este

trabajo sirviendo como resumen de los resultados obtenidos. Finalmente, se enumera

una lista de futuras ĺıneas de trabajo en esta área.

A.1.1 Contribuciones Cient́ıficas

Podemos resumir abreviadamente los logros conseguidos en este trabajo de investi-

gación en los siguientes puntos:

1. Formulación del esquema espacial semi-discreto basado en elementos

discontinuos de Galerkin. La formulación se ha desarrollado de una forma

general, unificando diferentes esquemas en la evaluación del flujo, que han sido

aplicados con éxito a este método. La formulación incluye el tratamiento de

las condiciones de contorno más comunes, materiales anisótropos, dispersivos,

una implementación preliminar de láminas delgadas y condiciones de contorno

absorbentes (Silver-Mueller de primer orden) además de las condiciones de

frontera conformes y uniaxiales perfectamente adaptadas (PMLs).

2. Desarrollo e implementación de algoritmos basados en DGTD. Se han

aplicado los métodos de integración temporal LF2 y Runge-Kutta expĺıcito

de cuarto orden y bajo almacenamiento (LSERK4). En este contexto, se han

desarrollado con éxito estrategias de avance local en tiempo (LTS) que mitigan

la limitación impuesta por la condición de estabilidad, cŕıtica en los esquemas

de discretización temporal expĺıcitos.
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3. Desarrollo de nuevas técnicas de integración temporal. Se han desar-

rollado dos técnicas nuevas para la integración temporal. La técnica de LTS

por senda causal (CP-LTS) que permite realizar una integración temporal me-

diante los métodos LF2 y LSERK4 con importantes mejoras en la eficiencia

computacional. Los resultados se validaron en una serie de casos de prueba

y se compararon con otras técnicas existentes poniendo de manifiesto mejo-

ras respecto a la dispersión numérica. Por otro lado se han implementado

métodos DG en el espacio-tiempo (STDG) en dos dimensiones (una espacial y

una temporal). Se ha planteado una mejora respecto a las técnicas existentes

al proponer un esquema STDG pseudo-expĺıcito que mejora drásticamente la

eficiencia en problemas eléctricamente grandes.

4. Propuesta y análisis de una técnica h́ıbrida continua-discontinua de

Galerkin (CDGTD). Se ha propuesto un método novedoso consistente en

el ensamblaje mediante funciones continuas de agrupaciones con un número

moderado de elementos. Esto presenta ventajas claras en cuanto a los con-

sumos de memoria, tamaño del paso temporal y, en consecuencia, eficiencia

computacional para bases polinómicas de ordenes moderados. La técnica abre

una puerta al uso de métodos impĺıcitos, tradicionalmente prohibitivos, en

el dominio del tiempo. También permite interfactar de forma natural mal-

las tetraédricas y hexaédricas mediante una región de acoplamiento en la que

se usa el método CDGTD. La dispersión y disipación numérica de los esque-

mas resultantes se han analizado de forma teórica y mediante experimentos

numéricos.

5. Análisis del esquema semi-discreto DG y del algoritmo LFDG. La

dispersión y disipación de los métodos numéricos han sido estudiadas con es-

pecial énfasis en la identificación y mitigación de los modos espurios. Además,

se han estimado los órdenes de convergencia en las relaciones de dispersión

y disipación y estudiado la anisotroṕıa de ambos errores. En el caso del al-

goritmo LFDG, se han estudiado otros temas como la estabilidad y el coste

computacional. Se han explorado y evaluado los ĺımites del algoritmo LFDG.

Se ha llevado a cabo un análisis final estimando el coste computacional frente

a precisión, comparando los resultados con el método FDTD.

6. Validación y aplicación del algoritmo. Los algoritmos DGTD implemen-

tados han sido validados con filtros de microondas, antenas, problemas de com-

patibilidad electromagnética y de sección recta radar (RCS). Los resultados se

han comparado con medidas u otras técnicas numéricas. El método ha sido
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aplicado a problemas reales de ingenieŕıa, mostrando importantes propiedades:

robustez, estabilidad, versatilidad, eficiencia, escalabilidad y precisión.

A.1.2 Futuras Ĺıneas de Trabajo

Aunque muchos y muy diferentes métodos de cálculo electromagnético se han de-

sarrollado en profundidad para estudiar la mayor parte de los problemas prácticos

que nos encontramos en ingenieŕıa, todav́ıa existen vaćıos para los que se hace im-

prescindible explorar nuevas técnicas. Estas son algunas de las posibles ĺıneas que

podŕıa ser interesante desarrollar:

1. Desarrollo e implementación de capacidades adicionales. La técnica

DGTD tiene muchas similitudes con FDTD permitiendo la adaptación de mod-

elos ya existentes y extensamente probados. Entre ellos: modelos de capa del-

gada dispersivos y/o anisótropos, elementos circuitales discretos, modelos de

hilo delgado, ranuras delgadas, etc..

2. Mejora de la versatilidad en el uso de métodos de elementos finitos

en el dominio del tiempo (FEMTD), en general. Diferentes alternativas

podŕıan ser desarrolladas para mejorar la versatilidad de los métodos FEMTD

en simulaciones reales. Algunas son las siguientes: (i) utilización de mallas

h́ıbridas que contengan diferentes tipos de celdas, aprovechando las diferentes

propiedades de cada una de ellas, por ejemplo tetraedros en regiones complejas,

hexaedros en regiones sin detalles (ii) utilización de mallas estructuradas/no

estructuradas, para reducir el uso de memoria en zonas estructuradas donde

las matrices locales pueden compartirse; o (iii) el uso de elementos no con-

formes que permitan refinar localmente la malla, muy efectivo en la aplicación

de técnicas de refinamiento h, y en la simulación de problemas con un alto

contraste en las propiedades de los materiales.

3. Desarrollo de técnicas de adaptatividad tipo hp. Los problemas elec-

tromagnéticos tratados en este trabajo demuestran la importancia de la uti-

lización de adaptabilidad tipo hp. El desarrollo de técnicas de adaptación

eficientes tipo hp en simulaciones en el dominio del tiempo permitiŕıa la apli-

cación del método de una forma más automática. Para ello, un punto crucial

es una estrecha integración del mallador en el simulador electromagnético. El

desarrollo de técnicas dinámicas de adaptatividad hp espaciales y de orden

arbitrario en tiempo, capaces de adaptar dinámicamente la malla y el método

de integración durante la simulación, pueden reducir notablemente los tiempos

de cálculo de una simulación completa asegurando la precisión requerida.



262

4. Simulación multif́ısica. Existe una necesidad creciente de simulaciones

acopladas térmicas-mecánicas-electromagnéticas capaces de manejar la com-

plejidad de problemas reales (por ejemplo en la predicción de efectos de im-

pacto de un rayo en estructuras de materiales compuestos). El uso de mallas

no estructuradas basadas en tetraedros simplifica el acoplamiento multi-f́ısico

de diferentes modelos numéricos, que también utilizan este tipo de mallas.
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[124] Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel, and Serge Piperno. Con-

vergence and stability of a discontinuous galerkin time-domain method for the

3d heterogeneous maxwell equations on unstructured meshes. ESAIM: Math-

ematical Modelling and Numerical Analysis, 39:1149–1176, 11 2005. ISSN

1290-3841. doi: 10.1051/m2an:2005049. URL http://www.esaim-m2an.org/

action/article_S0764583X0500049X.

[125] D. Sarmany, M.A. Botchev, and J.J.W. van der Vegt. Time-integration

methods for finite element discretisations of the second-order maxwell equa-

tion. Computers & Mathematics with Applications, 65(3):528 – 543, 2013.

ISSN 0898-1221. doi: 10.1016/j.camwa.2012.05.023. URL http://www.

sciencedirect.com/science/article/pii/S0898122112004713.

[126] J. H. Williamson. Low-storage runge-kutta schemes. Journal of Computa-

tional Physics, 35(1):48 – 56, 1980. ISSN 0021-9991. doi: DOI:10.1016/

0021-9991(80)90033-9. URL http://www.sciencedirect.com/science/

article/B6WHY-4DD1NRP-H1/2/a1a09857d87c5a3538d4800fd648be47.

[127] Christopher A. Kennedy, Mark H. Carpenter, and R. Michael Lewis. Low-

storage, explicit runge-kutta schemes for the compressible navier-stokes equa-

tions. Appl. Numer. Math., 35:177–219, November 2000. ISSN 0168-9274. doi:

10.1016/S0168-9274(99)00141-5.

[128] C. Chauviere, J.S. Hesthaven, A. Kanevsky, and T. Warburton. High-order

localized time integration for grid-induced stiffness. In K.J. Bathe, editor,

http://dx.doi.org/10.1016/j.jcp.2009.09.038
http://www.sciencedirect.com/science/article/pii/S0021999107000861
http://www.sciencedirect.com/science/article/pii/S0021999107000861
http://www.esaim-m2an.org/action/article_S0764583X0500049X
http://www.esaim-m2an.org/action/article_S0764583X0500049X
http://www.sciencedirect.com/science/article/pii/S0898122112004713
http://www.sciencedirect.com/science/article/pii/S0898122112004713
http://www.sciencedirect.com/science/article/B6WHY-4DD1NRP-H1/2/a1a09857d87c5a3538d4800fd648be47
http://www.sciencedirect.com/science/article/B6WHY-4DD1NRP-H1/2/a1a09857d87c5a3538d4800fd648be47


Bibliography 277

Computational Fluid and Solid Mechanics 2003, pages 1883 – 1886. Elsevier

Science Ltd, Oxford, 2003. ISBN 978-0-08-044046-0. doi: http://dx.doi.org/

10.1016/B978-008044046-0.50461-9. URL http://www.sciencedirect.com/

science/article/pii/B9780080440460504619.

[129] Arne Taube, Michael Dumbser, Claus-Dieter Munz, and Rudolf Schneider. A

high-order discontinuous galerkin method with time-accurate local time step-

ping for the maxwell equations. International Journal of Numerical Modelling:

Electronic Networks, Devices and Fields, 22(1):77–103, 2009. ISSN 1099-1204.

doi: 10.1002/jnm.700. URL http://dx.doi.org/10.1002/jnm.700.

[130] Meilin Liu, K. Sirenko, and H. Bagci. An efficient discontinuous galerkin finite

element method for highly accurate solution of maxwell equations. Antennas

and Propagation, IEEE Transactions on, 60(8):3992–3998, 2012. ISSN 0018-

926X. doi: 10.1109/TAP.2012.2201092.

[131] Andreas Glaser and Vladimir Rokhlin. A new class of highly accurate solvers

for ordinary differential equations. Journal of Scientific Computing, 38(3):

368–399, 2009. ISSN 0885-7474. doi: 10.1007/s10915-008-9245-1. URL http:

//dx.doi.org/10.1007/s10915-008-9245-1.

[132] Richard S. Falk and Gerard R. Richter. Explicit finite element methods

for symmetric hyperbolic equations. SIAM J. Numer. Anal., 36(3):935–

952, March 1999. ISSN 0036-1429. doi: 10.1137/S0036142997329463. URL

http://dx.doi.org/10.1137/S0036142997329463.

[133] F Kretzschmar, S M Schnepp, I Tsukerman, and T Weiland. Discontinuous

galerkin methods with trefftz approximation. arXiv (submitted), 2013. URL

http://arxiv.org/abs/1302.6459.

[134] Susan C. Hagness Allen Taflove. Computational Electrodynamics The Finite-

Differences Time Domain Method. British Library, 2000.

[135] D.E. Merewether, R. Fisher, and F.W. Smith. On implementing a numeric

huygen’s source scheme in a finite difference program to illuminate scattering

bodies. Nuclear Science, IEEE Transactions on, 27(6):1829–1833, Dec 1980.

ISSN 0018-9499. doi: 10.1109/TNS.1980.4331114.

[136] R.J. Luebbers, K.S. Kunz, M. Schneider, and F. Hunsberger. A finite-

difference time-domain near zone to far zone transformation [electromagnetic

scattering]. Antennas and Propagation, IEEE Transactions on, 39(4):429 –

433, apr 1991. ISSN 0018-926X. doi: 10.1109/8.81453.

http://www.sciencedirect.com/science/article/pii/B9780080440460504619
http://www.sciencedirect.com/science/article/pii/B9780080440460504619
http://dx.doi.org/10.1002/jnm.700
http://dx.doi.org/10.1007/s10915-008-9245-1
http://dx.doi.org/10.1007/s10915-008-9245-1
http://dx.doi.org/10.1137/S0036142997329463
http://arxiv.org/abs/1302.6459


Bibliography 278

[137] Higher-order time-domain methods for the analysis of nano-photonic systems.

Photonics and Nanostructures - Fundamentals and Applications, 7(1):2 – 11,

2009. ISSN 1569-4410. doi: http://dx.doi.org/10.1016/j.photonics.2008.08.

006.

[138] R. Gomez Martin. Electromagnetic field theory for physicist and engineers:

Fundamentals and Applications. Grupo de Electromagnetismo de Granada,

2006.

[139] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-

tions: with Formulas, Graphs, and Mathematical Tables. Dover books on

mathematics. Dover, New York, June 1972. ISBN 0486612724. URL http:

//www.worldcat.org/isbn/0486612724.

[140] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electro-

magnetic waves. Journal of Computational Physics, 114:185–200, 1994. doi:

10.1006/jcph.1994.1159.

[141] S.D. Gedney and Bo Zhao. An auxiliary differential equation formulation for

the complex-frequency shifted pml. Antennas and Propagation, IEEE Trans-

actions on, 58(3):838 –847, 2010. ISSN 0018-926X. doi: 10.1109/TAP.2009.

2037765.

[142] Stephen D Gedney. An anisotropic perfectly matched layer-absorbing medium

for the truncation of fdtd lattices. Antennas and Propagation, IEEE Transac-

tions on, 44(12):1630–1639, 1996.
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[194] Marc Bernacki, Loula Fezoui, Stéphane Lanteri, and Serge Piperno. Parallel

discontinuous galerkin unstructured mesh solvers for the calculation of three-

dimensional wave propagation problems. Applied Mathematical Modelling, 30

(8):744 – 763, 2006. ISSN 0307-904X. doi: http://dx.doi.org/10.1016/j.apm.

2005.06.015. URL http://www.sciencedirect.com/science/article/pii/

S0307904X0500212X. Parallel and distributed computing for computational

mechanics.

[195] S.G. Garcia, M. Fernandez Pantoja, C.M. de Jong van Coevorden, A. Ru-

bio Bretones, and R. Gomez Martin. A new hybrid dgtd/fdtd method in 2-d.

Microwave and Wireless Components Letters, IEEE, 18(12):764 –766, 2008.

ISSN 1531-1309. doi: 10.1109/LMWC.2008.2007688.

http://www.sciencedirect.com/science/article/pii/S0021999102971184
http://www.sciencedirect.com/science/article/pii/S0021999102971184
http://www.sciencedirect.com/science/article/B6WHY-481663J-T/2/254a6251d0a26ffb20dbd50a48e187a5
http://www.sciencedirect.com/science/article/B6WHY-481663J-T/2/254a6251d0a26ffb20dbd50a48e187a5
http://dx.doi.org/10.1002/mop.21016
http://dx.doi.org/10.1002/mop.21016
http://dx.doi.org/10.1007/s10915-004-4152-6
http://www.sciencedirect.com/science/article/pii/S0307904X0500212X
http://www.sciencedirect.com/science/article/pii/S0307904X0500212X


Bibliography 285

[196] A.J. Jerri. The shannon sampling theorem 8212;its various extensions and

applications: A tutorial review. Proceedings of the IEEE, 65(11):1565–1596,

Nov 1977. ISSN 0018-9219. doi: 10.1109/PROC.1977.10771.

[197] J.R. Montejo-Garai and J. Zapata. Full-wave design and realization of mul-

ticoupled dual-mode circular waveguide filters. Microwave Theory and Tech-

niques, IEEE Transactions on, 43(6):1290–1297, 1995. ISSN 0018-9480. doi:

10.1109/22.390185.

[198] F. Alessandri, M. Chiodetti, A. Giugliarelli, D. Maiarelli, G. Martirano,

D. Schmitt, L. Vanni, and F. Vitulli. The electric-field integral-equation

method for the analysis and design of a class of rectangular cavity filters

loaded by dielectric and metallic cylindrical pucks. Microwave Theory and

Techniques, IEEE Transactions on, 52(8):1790–1797, Aug 2004. ISSN 0018-

9480. doi: 10.1109/TMTT.2004.831583.

[199] Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. Locally divergence-free

discontinuous galerkin methods for the maxwell equations. J. Comput. Phys.,

194:588–610, March 2004. ISSN 0021-9991. doi: 10.1016/j.jcp.2003.09.007.

URL http://dl.acm.org/citation.cfm?id=1008428.1008437.

[200] J Niegemann, W Pernice, and K Busch. Simulation of optical resonators using

dgtd and fdtd. Journal of Optics A: Pure and Applied Optics, 11(11):114015,

2009. URL http://stacks.iop.org/1464-4258/11/i=11/a=114015.

[201] Hassan Fahs, Abdelhamid Hadjem, Stephane Lanteri, Joe Wiart, and Man-Fai

Wong. Calculation of the sar induced in head tissues using a high-order dgtd

method and triangulated geometrical models. IEEE Transactions on Antennas

and Propagation, 59(12):4669 – 4678, August 2011. doi: 10.1109/TAP.2011.

2165471. URL http://hal.inria.fr/hal-00664102.

[202] N. C. Nguyen, J. Peraire, and B. Cockburn. Hybridizable discontinuous

galerkin methods for the time-harmonic maxwell’s equations. J. Comput.

Phys., 230(19):7151–7175, August 2011. ISSN 0021-9991. doi: 10.1016/j.

jcp.2011.05.018. URL http://dx.doi.org/10.1016/j.jcp.2011.05.018.

[203] Dan Kosloff and Hillel Tal-Ezer. A modified chebyshev pseudospectral method

with an o(n-1) time step restriction. Journal of Computational Physics, 104

(2):457 – 469, 1993. ISSN 0021-9991. doi: http://dx.doi.org/10.1006/jcph.

1993.1044. URL http://www.sciencedirect.com/science/article/pii/

S0021999183710442.

http://dl.acm.org/citation.cfm?id=1008428.1008437
http://stacks.iop.org/1464-4258/11/i=11/a=114015
http://hal.inria.fr/hal-00664102
http://dx.doi.org/10.1016/j.jcp.2011.05.018
http://www.sciencedirect.com/science/article/pii/S0021999183710442
http://www.sciencedirect.com/science/article/pii/S0021999183710442


Bibliography 286

[204] Timothy Warburton and Thomas Hagstrom. Taming the cfl number for discon-

tinuous galerkin methods on structured meshes. SIAM J. Numerical Analysis,

46(6):3151–3180, 2008.

[205] V. Girault, S. Sun, M. Wheeler, and I. Yotov. Coupling discontinuous galerkin

and mixed finite element discretizations using mortar finite elements. SIAM

Journal on Numerical Analysis, 46(2):949–979, 2008. doi: 10.1137/060671620.

URL http://epubs.siam.org/doi/abs/10.1137/060671620.

[206] Philippe R.B. Devloo, Agnaldo M. Farias, Sônia M. Gomes, and João L.
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[246] J. P. Bérenger. Numerical reflection from FDTD-PMLs: A comparison of the

split PML with the unsplit and CFS PMLs. IEEE Transaction on Antennas

and Propagation, 50(3):258–265, March 2002.

[247] Ugrfdtd webpage. URL http://www.ugrfdtd.com.

[248] S. Piperno. DGTD methods using modal basis functions and symplectic local

time-stepping: Application to wave propagation problems. Journal of Com-

putational Physics, 217:340–363, 2006.

[249] Roger F. Harrington. Field Computation by Moment Methods. Wiley-IEEE

Press, 1993. ISBN 0780310144.

http://www.jpier.org/PIERL/pier.php?paper=12030206
http://www.jpier.org/PIERL/pier.php?paper=12030206
http://www.hirf-se.eu
http://www.ugrfdtd.com


Bibliography 291

[250] A.C. Woo, H. T G Wang, M.J. Schuh, and M.L. Sanders. Em programmer’s

notebook-benchmark radar targets for the validation of computational elec-

tromagnetics programs. Antennas and Propagation Magazine, IEEE, 35(1):

84–89, Feb 1993. ISSN 1045-9243. doi: 10.1109/74.210840.

[251] M. Taskinen and P. Yla-Oijala. Current and charge integral equation formula-

tion. IEEE Transactions on Antennas and Propagation, 54(1):58–67, January

2006.

[252] W.C. Chew, E. Michielssen, J. M. Song, and J. M. Jin, editors. Fast and

Efficient Algorithms in Computational Electromagnetics. Artech House, Inc.,

Norwood, MA, USA, 2001. ISBN 1580531520.

[253] A. Poggio and E. Miller. Computer Techniques for Electromagenetics. Perga-

mon Press, 1973.

[254] R. Fernandez-Recio, D. Escot-Bocanegra, D. Poyatos-Martinez, and

M. Mulero-Valenzuela. Technical report on the verification of radar cross

section prediction of metallic targets by eads construcciones aeronaticas s.a.

Technical report, INTA, 2011.

[255] Workshop EM JINA, radar signatures, 2006.

[256] Ozgur Ergul and L. Gurel. Rigorous solutions of electromagnetic prob-

lems involving hundreds of millions of unknowns. Antennas and Propa-

gation Magazine, IEEE, 53(1):18–27, Feb 2011. ISSN 1045-9243. doi:

10.1109/MAP.2011.5773562.

[257] M.A. Hernández-López, S. González Garćıa, A. Rubio Bretones,
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