
Universidad de Granada

Departamento de Ciencias de la Computación
e Inteligencia Artificial

Programa de Doctorado en Ciencias de la Computación
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Resumen

En esta tesis se han abordado varios problemas relacionados con la presencia de ruido en los
datos en tareas de clasificación. Dos ĺıneas principales de investigación, vinculadas con las dos
propuestas clásicas para tratar el ruido, constituyen su contenido: estudios y propuestas para el
tratamiento de datos con ruido tanto a nivel de algoritmos como a nivel de preprocesamiento de
datos. Los objetivos llevados a cabo fueron:

1. Proponer y analizar alternativas para hacer que los clasificadores funcionen mejor con datos
con ruido, con independencia del clasificador seleccionado y las caracteŕısticas de los datos.

2. Profundizar en el problema del ruido de atributos, que usualmente ha sido menos estudiado
que el problema de ruido de clases en la literatura.

3. Analizar la necesidad de la aplicación de las técnicas de preprocesamiento del ruido
basándonos en las propiedades de los datos y diseñar nuevos métodos de preprocesamiento
del ruido.

4. Estudiar y proponer medidas de evaluación del comportamiento de los clasificadores con datos
con ruido.

Con estos objetivos en mente, se han aplicado sistemas de clasificación basados en múltiples
clasificadores para tratar con datos con ruido, obteniendo buenos resultados. Igualmente, se ha
propuesto un esquema de ponderación de caracteŕısticas basado en métodos de imputación y test
estad́ısticos. Esta combinación permite reducir el impacto del ruido de atributos y ha mostrado
superar a otros métodos de tratamiento del ruido de atributos del estado del arte.

También se ha estudiado la relación entre las caracteŕısticas de los datos, analizando sus medias
de complejidad, y la eficiencia de los filtros del ruido, llegando a la conclusión de que el filtrado
del ruido es beneficioso cuando se trata con problemas con un alto grado de solapamiento entre las
clases. Además, se han propuesto varios métodos de preprocesamiento de ruido, principalmente
basados en el uso de múltiples clasificadores y filtros, que han mostrado buenos resultados al tratar
con datos con ruido.

Finalmente, se han planteado varias medidas de evaluación del comportamiento de los clasifi-
cadores con datos con ruido. Se han analizado las propiedades de cada una de ellas, llegando a la
conclusión de que es necesario considerar el rendimiento y la robustez en dichas medidas si se desea
obtener un buen estimador del comportamiento de los clasificadores al entrenar en problemas con
ruido.
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Chapter I

PhD dissertation

1. Introduction

In the last decades, the advance of technology has produced an increment in the amount of data
to process in applications of many fields (such as medicine or economy). This fact has implied the
need of new techniques to manage and analyze this vast amount of data. Since these tasks exceed
the human capabilities, the development of automatic procedures to address these issues has been
essential [BHS09, Bra07].

Thus, both the acquisition of new knowledge from large amounts of data and its analysis have
become tasks highly relevant. In the literature, these works are usually included within the Knowl-
edge Discovery in Databases (KDD) [Fri97, TSK05] process. The main aim of the knowledge
obtained through the KDD process is the utility, that is, the knowledge must be useful to the
problem addressed. The steps of the KDD process are described in the following (see Figure 1):

1. Data selection. It is addressed from the previous knowledge of experts in the problem.

2. Data preprocessing. It includes the cleaning of the data (treatment of errors and corrup-
tions) and its reduction (selection of the features and the more representative examples of
the problem) in order to facilitate the data mining stage.

3. Data transformation. Available data are transformed into a structured representation that
reflects the knowledge of the problem in the initial data.

4. Data mining. Patterns of knowledge are constructed from the analysis of the data.

5. Data interpretation. This stage aims to understand the patterns obtained in a way in
which they could be useful for the users.

The main phase of the KDD process is its fourth stage, that is, the data mining [TSK05] stage.
This is focused on the identification of patterns and the prediction of relationships among the data.
Generally, data mining techniques are classified into descriptive (when they are used to discover
patterns in the data) and predictive (when they are used to predict the behavior of a model through
the analysis of the data). These processes (descriptive and predictive) are usually carried out using
machine learning algorithms [Alp10], which are defined as those mechanisms that are able to induce

1
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Figure 1: The KDD process.

knowledge from the data. Two main types of problems are considered depending on the information
available by the machine learning algorithm for the extraction of knowledge:

1. Supervised learning problems. This establishes a relationship between the input variables
and the output (target variable), which are all known, in order to predict the output of
new examples whose target variable is unknown. This problem is divided into two di↵erent
problems depending on the type of target variable: (i) classification [DHS00], in which the
values of the target variable (also known as class) are finite; and (ii) regression [CM98], in
which the values of the target variable are continuous.

2. Unsupervised learning problems. In this problem, in which the values of the target
variable are unknown, the main aim is to describe the relationships among the data. This
is mainly divided into two groups of problems: (i) clustering [Har75], in which the data are
separated into di↵erent groups that share similar characteristics; and (ii) association [AIS93],
in which the relationships among transactional data are identified.

Classification methods learn to categorize items (examples) into several predefined classes from
a model (classifier) that is constructed from a set of examples (the training set) and then, it is
applied to predict the class of examples of another set (the test set), which has not been used in the
learning phase. The performance of the classifier can be measured using di↵erent metrics, such as
the accuracy (which is viewed as the confidence of the classifier learned), the learning time required
to build classifier or its interpretability (the clarity and credibility of the classifier from the human
point of view).

Since classifiers are built from a training data set, their classification accuracy is directly influ-
enced by the quality of these data. Data quality depends on several components [WSF95], e.g., the
source and the input procedure, inherently subject to errors. Thus, real-world data sets usually
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contain imperfect data, formally known as noise [ZW04], that may hinder the classifiers built and,
therefore, the interpretations and decisions obtained from them.

Two types of noise in a given data set can be distinguished based on the two types of variables
of a classification problem (output variable or class and input variables or attributes) [Wu96]:

1. Class noise. It occurs when an example is incorrectly labeled due to the presence of noise
in the class label of the training examples.

2. Attribute noise. It refers to corruptions in the values of one or more attributes of the data
set. Examples of attribute noise are: erroneous attribute values, unknown or missing values
(MV) [JL13], and irrelevant attributes to build the classifier.

Given the loss of accuracy produced by noise, two ways have been proposed in the specialized
literature in order to mitigate its e↵ects:

1. Algorithm level approaches. They are mainly based on the adaptation of the algorithms
to properly handle the noise [Qui93]. These methods are known as robust learners and they
are characterized by being less influenced by noisy data.

2. Data level approaches. They preprocess the data sets aiming to remove or correct the
noisy examples [BF99].

Even though both techniques can provide good results, they present some drawbacks. Thus,
for example, the adaptation of the algorithms depends on the particular algorithm to modify.
Therefore, the same adaptation is not directly extensible to other learning algorithms, since it
depends of the characteristics of the method. This approach requires to change an existing method,
which neither is always possible nor easy to develop. For these reasons, it is important to investigate
other mechanisms closely related to the algorithm level approaches, which could lead to decrease
the e↵ects caused by noise without neither needing to adapt each specific algorithm.

Several works have claimed that simultaneously using classifiers of di↵erent types and combining
their predictions may improve classification performance on di�cult problems, such as satellite
image classification or fingerprint recognition [HHS94, KPD90]. If multiple classifiers are combined,
complementing each other, the generalization capabilities of the system may improve. This fact
is a key factor in problems with noise since the overfitting to the new characteristics introduced
by the noisy examples is avoided [Ten99]. Therefore, the application of these techniques based
on the usage of multiple classifiers when working with noisy data would be interesting. Di↵erent
strategies can be used in order to perform this task. One of them is to combine the predictions of
di↵erent classifiers that are created with di↵erent classification algorithms over the same training
set. These techniques are traditionally known as Multiple Classifier Systems (MCSs) [HHS94].
Another possibility is to employ decomposition strategies such as, for example, the One-vs-One
(OVO) [KPD90] decomposition, in which di↵erent classifiers are built with same learning algorithm
on di↵erent training sets that are created considering each pair of classes separately. Thus, the
aforementioned modifications at the algorithm level are avoided using these techniques (MCSs or
decomposition strategies), while a better performance is expected against noisy data.

Regarding to the data level approaches, noise filters are commonly used in order to detect and
eliminate class noise [BF99]. Some of them, which are based on the usage of multiple classifiers,
show some advantages detecting noisy examples compared to other simpler filters. However, there
are some filtering paradigms that o↵er possibilities that methods based on multiple classifiers found
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in the literature still do not incorporate. For example, iterative noise filters [KR07] are based on
the interesting idea that the noise detected at a stage does not influence the noise detection at
posterior stages. On the other hand, filters that measure the degree of noise of each example
[GLD00] allow one to control the conservativeness level of the filter, that is, if they remove a higher
or lower number of examples. The combination of these types of noise filters taking advantage of
the strengths of the di↵erent paradigms should be an important advance in the field of the filtering
techniques. Similarly, the application of these powerful noise filters based on multiple classifiers
can be extended to classification problems with noise in which the number of examples of each
class is not the same (imbalanced classification) [HYKL06]. According to our best knowledge, this
has not been studied in the literature yet, where many of the approaches are based on combining
a re-sampling technique (which somehow balances the number of examples of each class) with a
subsequent filtering that is performed with noise filters that are usually very simple attending to
the complexity of the problem addressed [Wil72, Tom76].

In light of the aforementioned, it is possible to deduce that noise preprocessing techniques found
in the literature are mainly noise filtering methods. Some works show that the e↵ectiveness of the
filtering (the precision of the filter to remove noisy examples) mainly depends on the characteristics
of the data [WZ08], although this issue has not been deeply studied. It would be useful to detect
which are these characteristics of the data that make the filter works better or worse. Furthermore,
the possibility of correcting, rather than eliminating, the noisy examples has not received enough
attention in the literature yet. Since many existing noise filters create a model to label the training
examples (removing those examples in which the predicted and the original class do not match),
their transformation into a noise corrector may be immediate by replacing the original class of the
example for that predicted by the filter.

Note that both types of techniques, data level and algorithm level approaches, mainly focus on
class noise, whereas attribute noise has not been enough studied because its detection and treatment
are more complex. Even though class noise is more disruptive to classification performance [ZW04],
attribute noise is more common than class noise and therefore, it is interesting to deepen in its
study. In the case of those attributes with less importance to build the model, there are a series of
techniques based on the k-Nearest Neighbors (k-NN) [McL04] classifier aiming to cope the problems
that they produce. These are formally known as feature weighting methods [WAM97]. Their purpose
is to weight the di↵erent attributes in order to help building the classifier. Most of these methods
do not show a very good performance in many noisy classification problems and new proposals in
this field should be of great interest.

Finally, the study of evaluation measures of the classifiers dealing with noisy data has been
slightly studied in the literature and lacks of consensus. Therefore, its analysis and the proposal
of measures of evaluation of the behavior of classifiers in these circumstances is very important to
progress in this field.

This thesis develops the open issues raised in the introduction, with the aim of deepening
in the field of classification with noisy data. After this introductory section, the next section
(Section 2.) is devoted to describe in detail the four main areas related: noisy data in classification
(Section 2.1), noise filters (Section 2.2), the usage of multiple classifiers and decomposition strategies
in classification (Section 2.3) and feature weighting techniques (Section 2.4). All of them are
fundamental areas for defining and describing the proposals presented as a results of this thesis.

Next, the justification of this memory will be given in Section 3., describing the open problems
addressed. The objectives pursued when tackling them are described in Section 4.. Section 5.
presents a summary on the works that compose this memory. A joint discussion of results is
provided in Section 6., showing the connection between each of the objectives and how they have
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been reached. A summary of the conclusions drawn is provided in Section 7.. Finally, in Section
8. we point out several open future lines of work derived from the results achieved.

The second part of the memory is constituted by eight journal publications and two conference
publications. These publications are the following:

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2013) Tackling the Problem of Classifi-
cation with Noisy Data using Multiple Classifier Systems: Analysis of the Performance and
Robustness. Information Sciences 247: 1–20

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) Analyzing the presence of noise in
multi-class problems: alleviating its influence with the One-vs-One decomposition. Knowledge
and Information Systems 38(1): 179–206

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Statistical computation of feature
weighting schemes through data estimation for nearest neighbor classifiers. Pattern Recogni-
tion 47(12): 3941–3948

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Improving the behavior of the nearest
neighbor classifier against noisy data with feature weighting schemes. In Hybrid Artificial In-
telligence Systems, volumen 8480 of Lecture Notes in Computer Science, pp. 597–606. Springer
International Publishing

• Sáez J. A., Luengo J., and Herrera F. (2013) Predicting noise filtering e�cacy with data
complexity measures for nearest neighbor classification. Pattern Recognition 46(1): 355–364

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) INFFC: An iterative noise filter based
on the fusion of classifiers with noise sensitiveness control (submitted)

• Sáez J. A., Luengo J., Stefanowski J., and Herrera F. (2014) SMOTE-IPF: Addressing the
noisy and borderline examples problem in imbalanced classification by a re-sampling method
with filtering, doi: 10.1016/j.ins.2014.08.051. Information Sciences (in press)

• Sáez J. A., Luengo J., Shim S., and Herrera F. (2014) Class Noise Reparation by an Aggre-
gated Noise Filter Ensemble Voting Algorithm (submitted)

• Sáez J. A., Luengo J., and Herrera F. (2011) Fuzzy Rule Based Classification Systems versus
Crisp Robust Learners Trained in Presence of Class Noise’s E↵ects: a Case of Study. In
11th International Conference on Intelligent Systems Design and Applications (ISDA 2011),
Córdoba (Spain), pp. 1229–1234

• Sáez J. A., Luengo J., and Herrera F. (2014) Evaluating the classifier behavior with noisy data
considering performance and robustness: the Equalized Loss of Accuracy measure (submitted)

Introducción

En las últimas décadas, el avance de la tecnoloǵıa ha conllevado un enorme aumento en la cantidad
de datos a procesar en aplicaciones de muy diversos campos (como la medicina o la economı́a). Este
hecho ha supuesto la necesidad de nuevas técnicas para gestionar y analizar esta ingente cantidad
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de datos. Dado que estas tareas sobrepasan las capacidades humanas, ha sido imprescindible el
desarrollo de procedimientos automáticos para su abordaje [BHS09, Bra07].

Aśı pues, tanto la adquisición de nuevo conocimiento a partir de grandes cantidades de datos
como su análisis se han convertido en tareas de gran relevancia en la actualidad. En la literatura
especializada, estas labores se engloban normalmente dentro del proceso de Descubrimiento de
Conocimiento en Bases de Datos (Knowledge Discovery in Databases, KDD) [Fri97, TSK05]. El
conocimiento obtenido mediante el proceso de KDD tiene como requisito fundamental la utilidad,
de forma que este conocimiento tenga sentido para el problema abordado. Las fases principales del
KDD se describen a continuación (ver Figura 2):

1. Selección de datos. Esta etapa se realiza a partir del conocimiento previo de expertos en
el problema a tratar.

2. Preprocesamiento de datos. Éste incluye la limpieza de los datos (tratamiento de er-
rores/corrupciones) y su reducción (selección tanto de las caracteŕısticas como de los ejemplos
más representativos del problema) para facilitar la cuarta etapa de mineŕıa de datos.

3. Transformación de datos. Se transforman los datos disponibles en una representación
estructurada que refleje el conocimiento del problema presente en los datos iniciales.

4. Mineŕıa de datos. Se construyen patrones de conocimiento a partir del análisis de los datos.

5. Interpretación de datos. Esta etapa tiene como objetivo la comprensión de los patrones
obtenidos, de forma que puedan ser útiles para los usuarios.

La fase principal del proceso de KDD es su cuarta etapa de mineŕıa de datos [TSK05]. Ésta se
centra en la identificación de patrones y la predicción de relaciones entre los datos. Normalmente, las
técnicas de mineŕıa de datos se clasifican en descriptivas (cuando se usan para descubrir patrones
entre los datos) y predictivas (cuando se usan para predecir el comportamiento de un modelo
a través del análisis de los datos). Estos procesos (descriptivos y predictivos) se llevan a cabo
normalmente mediante el uso de algoritmos de aprendizaje automático [Alp10], definidos como
mecanismos capaces de inducir conocimiento a partir de datos. En función de la información
de la que disponga el algoritmo de aprendizaje automático para llevar a cabo la extracción de
conocimiento, se pueden considerar principalmente dos tipos de problemas:

1. Aprendizaje supervisado. Es aquel que pretende establecer una relación entre las variables
de entrada y salida (variable objetivo), siendo todas conocidas, con el fin de predecir la salida
de nuevos ejemplos cuya variable objetivo es desconocida. En función del tipo de variable
objetivo, este problema se subdivide en dos problemas diferentes: (i) clasificación [DHS00],
donde los valores de la variable objetivo (conocida como clase) son discretos; y (ii) regresión
[CM98], donde los valores de la variable objetivo son continuos.

2. Aprendizaje no supervisado. En éste, donde los valores de la variable objetivo no son
conocidos, se pretenden describir las relaciones entre los datos. Se divide principalmente en
dos grupos de problemas: (i) clustering [Har75], donde se desea separar los datos en distintos
grupos que comparten caractersticas similares; y (ii) asociación [AIS93], donde se trata de
identificar las relaciones entre datos transaccionales.

Los métodos de clasificación aprenden a categorizar elementos (más conocidos como ejemplos)
dentro de varias clases predefinidas mediante la creación de un modelo, conocido como clasificador.
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Figure 2: El proceso de KDD.

Éste se construye a partir de un conjunto de ejemplos (el conjunto de entrenamiento) y después
es aplicado para predecir la clase de los ejemplos de otro conjunto (el conjunto de test) que no
han sido previamente utilizados en la fase de aprendizaje. El rendimiento del clasificador se puede
medir de distintas formas, entre las que cabe mencionar la precisión (entendida como la confianza
del clasificador aprendido), el tiempo de aprendizaje requerido para construir el clasificador o su
interpretabilidad (la claridad y credibilidad del clasificador desde el punto de vista humano).

Dado que el clasificador se construye a partir de un conjunto de datos de entrenamiento, su
rendimiento se ve directamente influido por la calidad de dichos datos. Esta calidad depende de
varios componentes [WSF95] como, por ejemplo, los procedimientos de obtención y entrada de
datos, que están inherentemente sujetos a errores. Aśı pues, los conjuntos de datos que se usan
normalmente contienen datos con corrupciones, formalmente conocidas como ruido [ZW04], que
pueden perjudicar a los clasificadores construidos y, por tanto, a las interpretaciones y decisiones
obtenidas a partir de ellos.

En base a los dos tipos de variables existentes en un problema de clasificación (variables de
entrada o atributos y variable objetivo o clase), se distinguen dos tipos de ruido [Wu96]:

1. Ruido de clase. Éste ocurre cuando un ejemplo está incorrectamente etiquetado.

2. Ruido de atributos. Éste se refiere a corrupciones en los valores de uno o más atributos
en el conjunto de datos. Algunos ejemplos de ruido de atributos son: valores de atributos
erróneos, valores de atributos perdidos o desconocidos (conocidos como missing values, MV
[JL13]) y atributos irrelevantes o de escasa importancia para construir el clasificador.

Debido a la perdida de precisión producida por el ruido, en la literatura especializada se han
propuesto tradicionalmente dos formas de mitigar sus efectos:

1. Enfoques a nivel de algoritmos. Éstos se basan principalmente en la adaptación de
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los algoritmos con el fin de manejar de forma adecuada el ruido [Qui93]. Estos métodos se
conocen como robust learners y se caracterizan por verse menos afectados por el ruido.

2. Enfoques a nivel de datos. Mediante el preprocesamiento de los datos se intentan eliminar
o corregir los ejemplos con ruido [BF99].

Si bien ambos tipos de enfoques pueden proporcionar buenos resultados, existen algunas limita-
ciones. Aśı, por ejemplo, la adaptación de algoritmos depende del algoritmo concreto a modificar.
Por tanto, el mismo resultado no es directamente aplicable a otros algoritmos de aprendizaje, ya
que el beneficio proviene de la propia adaptación. Este enfoque requiere el cambio de un método
existente, que no es siempre posible ni fácil de realizar, y puede estar orientado a un tipo de ruido
con unas caracteŕısticas determinadas. Por estos motivos, es interesante investigar mecanismos
cercanos a los enfoques a nivel de algoritmos que reduzcan los efectos del ruido sin la necesidad de
adaptar cada algoritmo concreto ni tener que hacer supuestos sobre las caracteŕısticas del ruido.

Algunos trabajos exponen que usar simultáneamente distintos clasificadores y combinar sus
predicciones puede mejorar el rendimiento en problemas de clasificación dif́ıciles como son la clasi-
ficación de imágenes de satélites o el reconocimiento de huellas dactilares [HHS94, KPD90]. Al
combinar múltiples clasificadores, de forma que se complementen unos a otros, es posible mejo-
rar las capacidades de generalización del sistema, lo cual es una cuestión clave en problemas con
ruido ya que se evita el sobreajuste a las nuevas caracteŕısticas introducidas por los ejemplos
con ruido [Ten99]. Aśı pues, seŕıa interesante la aplicación de estas técnicas basadas en el uso
de múltiples clasificadores cuando los datos presentan ruido, para lo cual es posible seguir difer-
entes estrategias. Una de ellas es combinar las predicciones de distintos clasificadores creados con
diferentes algoritmos de clasificación sobre el mismo conjunto de entrenamiento. Estas técnicas son
conocidas tradicionalmente como Sistemas de Múltiples Clasificadores (Multiple Classifier Systems,
MCSs) [HHS94]. Otra posibilidad es emplear estrategias de descomposición como puede ser, por
ejemplo, la estrategia Uno-frente-Uno (One-vs-One, OVO) [KPD90], la cual construye diferentes
clasificadores con el mismo algoritmo de aprendizaje sobre diferentes conjuntos de entrenamiento
creados considerando cada par de clases por separado. De la forma que sea (MCSs o estrategias de
descomposición), utilizando estas técnicas se evitan las modificaciones a nivel de algoritmos que se
han comentado, mientras que se espera un mejor comportamiento frente a los datos con ruido.

En cuanto a los enfoques a nivel de datos, el uso de múltiples clasificadores ya ha sido propuesto
en algunos trabajos con el fin de detectar y eliminar el ruido de clase [BF99]. Estas técnicas se
conocen como filtros del ruido. Los filtros del ruido basados en múltiples clasificadores muestran
algunas ventajas en cuanto a la capacidad de detección del ruido frente a otros que pueden consid-
erarse más sencillos. Sin embargo, hay algunos paradigmas de filtrado que ofrecen posibilidades que
los métodos basados en múltiples clasificadores existentes en la literatura todav́ıa no incorporan.
Por ejemplo, los filtros de ruido iterativos [KR07] se basan en la interesante idea de que el ruido
detectado en una etapa no influya en la detección de ruido en etapas posteriores. Por otro lado,
los filtros que utilizan medidas del grado de ruido de cada ejemplo [GLD00] permiten controlar de
forma sencilla el nivel de conservación del filtro, es decir, si se eliminan un número mayor o menor
de ejemplos. La combinación de estos tipos de filtros de ruido con el objetivo de aprovechar las
ventajas de los diferentes paradigmas seŕıa un importante avance dentro de este campo. De igual
modo, la aplicación de estos potentes filtros del ruido basados en múltiples clasificadores puede
extenderse a problemas de clasificación con ruido donde el número de ejemplos de cada clase es de-
sigual (problemas no balanceados) [HYKL06]. Esto, de acuerdo con nuestro conocimiento, todav́ıa
no se ha estudiado en la literatura, donde muchos de los enfoques se basan en combinar una técnica
de remuestreo (que balancea en cierto grado el número de ejempos de cada clase) con un filtrado
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posterior realizado con filtros que suelen ser muy sencillos y no tan potentes, en determinadas
ocasiones, como podŕıa exigir un problema de tal complejidad [Wil72, Tom76].

Como se ha podido deducir de lo anteriormente expuesto, las técnicas de preprocesamiento
del ruido que se encuentran en la literatura son principalmente métodos de filtrado, es decir,
son técnicas que eliminan ejemplos con ruido en el conjunto de entrenamiento. Algunos trabajos
muestran que la eficacia del filtrado (la precisión del filtro al eliminar los ejemplos con ruido)
depende fundamentalmente de las caracteŕısticas de los datos con los que se trabaja [WZ08], aunque
esto no ha sido profundamente estudiado. Seŕıa útil detectar cuáles son estas carceteŕıstcas de
los datos que pueden hacer que el filtrado funcione mejor o peor. Por otro lado, la posibilidad
de corregir, en vez de eliminar, los ejemplos con ruido, tampoco ha sido aún lo suficientemente
estudiada en la literatura. Dado que una de las caracteŕısticas de muchos de los filtros de ruido
existentes es que crean un modelo para etiquetar los ejemplos de entrenamiento (de forma que
eliminan un ejemplo si la clase predicha y la original en el ejemplo no coinciden), su transformación
a un corrector de ruido es inmediata sin más que sustituir la clase del ejemplo por la predicha por
el filtro.

Debe notarse que, tanto los enfoques a nivel de datos como los enfoques a nivel de algoritmos que
se encuentran en la literatura, se centran principalmente en el ruido de clase, mientras que el ruido
de atributos no ha sido tan estudiado debido a que su detección y tratamiento son más complejos.
Ya que el ruido de atributos es bastante más común que el de clase, es de interés profundizar en
él. En el caso de aquellos atributos con escasa importancia e información para la construcción del
modelo, existen una serie de técnicas basadas en el clasificador k-Nearest Neighbors (k-NN) [McL04]
cuyo objetivo es hacer frente a los problemas que producen. Son los conocidos como métodos de
ponderación de caracteŕısticas o feature weighting methods [WAM97], cuyo objetivo es ponderar los
distintos atributos para ayudar a construir el modelo. La mayoŕıa de estos métodos no muestran
muy buen comportamiento en gran variedad de problemas de clasificación y nuevas propuestas en
este campo seŕıan de gran interés.

Finalmente, el estudio de medidas de evaluación de los clasificadores cuando se trabaja con
datos con ruido no ha sido suficientemente abordado en la literatura y carece de consenso. Por
tanto, su análisis y la propuesta de medidas de evaluación del comportamiento de los clasificadores
en estas circunstancias es muy importante para avanzar en este campo.

La presente tesis prentende desarrollar las cuestiones abiertas planteadas durante la intro-
ducción, con el objetivo de profundizar en el campo de la clasificación con datos con ruido. Tras esta
sección introductoria, la siguiente sección (Sección 2.) está dedicada a describir en detalle cuatro
principales áreas relacionadas: los datos con ruido en clasificación (Sección 2.1), los filtros de ruido
(Sección 2.2), el uso de múltiples clasificadores y estrategias de descomposición en clasificación
(Sección 2.3) y las técnicas de ponderación de caracteŕısticas (Sección 2.4). Todas ellas son áreas
fundamentales para definir y describir las propuestas presentadas como resultado de esta tesis.

Después, la justificación de esta memoria se presenta en la Sección 3., describiendo los problemas
abiertos abordados. Los objetivos perseguidos al abordar dichos problemas son descritos en la
Sección 4.. La Sección 5. presenta un resumen de los trabajos que componen esta memoria. Se
aporta una discusión conjunta de resultados en la Sección 6., mostrando la conexión entre cada
uno de los objetivos y como ha sido alcanzado cada uno de ellos. En la Sección 7. se incluye un
resumen de las conclusiones alcanzadas. Finalmente, en la Sección 8. se destacan varias ĺıneas de
trabajo futuro abiertas, derivadas de los resultados alcanzados.

La segunda parte de la memoria se constituye de ocho publicaciones en revistas y otras dos en
congresos. Estas publicaciones son las siguientes:
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• Sáez J. A., Galar M., Luengo J., and Herrera F. (2013) Tackling the Problem of Classifi-
cation with Noisy Data using Multiple Classifier Systems: Analysis of the Performance and
Robustness. Information Sciences 247: 1–20

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) Analyzing the presence of noise in
multi-class problems: alleviating its influence with the One-vs-One decomposition. Knowledge
and Information Systems 38(1): 179–206

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Statistical computation of feature
weighting schemes through data estimation for nearest neighbor classifiers. Pattern Recogni-
tion 47(12): 3941–3948

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Improving the behavior of the nearest
neighbor classifier against noisy data with feature weighting schemes. In Hybrid Artificial In-
telligence Systems, volumen 8480 of Lecture Notes in Computer Science, pp. 597–606. Springer
International Publishing

• Sáez J. A., Luengo J., and Herrera F. (2013) Predicting noise filtering e�cacy with data
complexity measures for nearest neighbor classification. Pattern Recognition 46(1): 355–364

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) INFFC: An iterative noise filter based
on the fusion of classifiers with noise sensitiveness control (submitted)

• Sáez J. A., Luengo J., Stefanowski J., and Herrera F. (2014) SMOTE-IPF: Addressing the
noisy and borderline examples problem in imbalanced classification by a re-sampling method
with filtering, doi: 10.1016/j.ins.2014.08.051. Information Sciences (in press)

• Sáez J. A., Luengo J., Shim S., and Herrera F. (2014) Class Noise Reparation by an Aggre-
gated Noise Filter Ensemble Voting Algorithm (submitted)

• Sáez J. A., Luengo J., and Herrera F. (2011) Fuzzy Rule Based Classification Systems versus
Crisp Robust Learners Trained in Presence of Class Noise’s E↵ects: a Case of Study. In
11th International Conference on Intelligent Systems Design and Applications (ISDA 2011),
Córdoba (Spain), pp. 1229–1234

• Sáez J. A., Luengo J., and Herrera F. (2014) Evaluating the classifier behavior with noisy data
considering performance and robustness: the Equalized Loss of Accuracy measure (submitted)

2. Preliminaries

In this section we describe all the background information involved in this thesis. Firstly, Section 2.1
presents an introduction to noisy data in the field of classification. Secondly, Section 2.2 describes
some previous works on noise filters. Thirdly, Section 2.3 shows a snapshot on classification with
multiple classifiers and decomposition strategies. Finally, Section 2.4 provides information about
feature weighting methods for classification, its main characteristics and some examples of such
techniques that have been proposed in the literature.
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2.1 Introduction to noisy data in classification

Data gathered from real-world problems are never perfect and often su↵er from corruptions that
may hinder the performance of the system in terms of the classification accuracy, building time,
size and interpretability of the classifier [ZKS04]. Noise mainly a↵ects the data acquisition and
preprocessing phases, having two main sources [ZW04]: implicit errors introduced by measurement
tools, such as di↵erent types of sensors; and random errors introduced by batch processes or experts
when the data are gathered, such as in a document digitalization process. Hence, classification
problems containing noise are complex problems and accurate solutions are often di�cult to achieve.

A large number of components determine the quality of a data set [WSF95]. Among them,
the class labels and the attribute values directly influence the quality of a classification data set.
The quality of the class labels refers to whether the class of each example is correctly assigned;
otherwise, the quality of the attributes refers to their capability of properly characterizing the
examples for classification purposes. Based on these two information sources, two types of noise
can be distinguished in a given data set [Wu96] (see Figure 3):

1. Class noise. This occurs when an example is incorrectly labeled. Class noise can be at-
tributed to several causes, such as subjectivity during the labeling process, data entry errors,
or inadequacy of the information used to label each example. Two types of class noise can be
distinguished: (i) contradictory examples – duplicate examples have di↵erent class labels –,
and (ii) misclassifications – examples that are labeled as a class di↵erent from the real one.

2. Attribute noise. This refers to corruptions in the values of one or more attributes. Examples
of attribute noise are: erroneous attribute values, missing or unknown attribute values and
irrelevant attributes to build the classifier.

In this thesis, class noise refers to misclassifications, whereas attribute noise generally refers to
erroneous attribute values (even though those attributes less important to build the model are also
studied) because they are the most common in real-world data [ZW04].

Noise hinders the knowledge extraction from the data and spoils the models obtained using that
noisy data when they are compared to the models learned from clean data from the same problem,
which represent the real implicit knowledge of the problem [ZW04]. In this sense, robustness
[Hub81] is the capability of an algorithm to build models that are insensitive to data corruptions
and su↵er less from the impact of noise; that is, the more robust an algorithm is, the more similar
the models built from clean and noisy data are.

Checking the e↵ect of noisy data on the performance of classifier learning algorithms is necessary
to improve their reliability and has motivated the study of how to generate and introduce noise
into the data. Noise generation can be characterized by three main characteristics:

1. The place where the noise is introduced. Noise may a↵ect the input attributes or the
output class, impairing the learning process and the resulting model.

2. The noise density distribution. The way in which the noise is present can be, for example,
uniform or Gaussian.

3. The magnitude of generated noise values. The extent to which the noise a↵ects the
data set can be relative to each data value of each attribute, or relative to the minimum,
maximum and standard deviation for each attribute.
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Figure 3: Information sources and types of noise in a classification data set.

Based on these three characteristics, the two types of noise (class and attribute noise) have been
modeled in the literature using four main noise schemes; in such a way, the presence of those types
of noise will allow one to simulate the behavior of the classifiers in these two scenarios:

1. Class noise usually occurs on the boundaries of the classes, where the examples may have
similar characteristics –although it can occur in any other area of the domain. In this thesis,
class noise is introduced using an uniform class noise scheme [Ten99] (randomly corrupting
the class labels of the examples) and a pairwise class noise scheme [ZWC03] (labeling exam-
ples of the majority class with the second majority class). Considering these two schemes,
noise a↵ecting any pair of classes and only the two majority classes are simulated, respectively.

2. Attribute noise can originate from several sources, such as transmission constraints, faults
in sensor devices, irregularities in sampling and transcription errors [Ten04]. The erroneous
attribute values can be totally unpredictable, i.e., random, or imply a low variation with re-
spect to the correct value. In the literature, the uniform attribute noise scheme [ZWY04] and
the Gaussian attribute noise scheme are used in order to simulate each one of the possibilities,
respectively.

Since errors in real-world data sets are therefore common, techniques that eliminate noise or
reduce its impact are needed [Wu96]. Two main alternatives have been proposed in the literature
to deal with noisy data:

• Algorithm level approaches [Qui93, Coh95]. Also known as robust learners, these are
techniques characterized by being less influenced by noisy data. Examples of a robust learner
are C4.5 [Qui93] or RIPPER [Coh95]. These classifiers have been adapted to properly handle
the noise. Thus, for example, C4.5 uses pruning strategies to reduce the chances that the
trees are overfitting due to noise in the training data.

• Data level approaches [BF99, KR07]. The most well-known type of methods within this
group is that of the noise filters, described in the next section. They identify noisy instances
which can be eliminated from the training data.
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2.2 Noise filters

Noise filters are preprocessing methods to detect and eliminate noisy examples in the training set
[BF99]. The result of noise elimination in preprocessing is a reduced and cleaned training set
which is then used as an input to a machine learning algorithm. The separation of noise detection
and learning has the advantage that noisy instances do not influence the classifier building design
[GLD00].

Noise filters are generally oriented to deal with instances with class noise from the training
data. Elimination of such instances has been shown to be advantageous [GBLG99]. However,
the elimination of instances with attribute noise seems counterproductive [ZW04] since they still
contain valuable information in other attributes which can help to build the classifier.

Some of these filters are based on the computation of measures over the training set. For
example, the proposal in [GLD00] is based on the elimination of noisy examples that reduce the
Complexity of the Least Complex Correct Hypothesis value of the training set.

Other filtering methods are based on the sensitivity of the k-NN classifier [McL04] to noisy
data, particularly if k is low [KK07]. Within this group, the Edited Nearest Neighbor (ENN)
[Wil72] noise filter is one of the most well-known methods. It removes those examples which class
does not agree with that of the majority of its k nearest neighbors. One of its variations is the All
k-Nearest Neighbors (AllKNN) [Tom76] filter. It applies the NN rule k times varying the number of
neighbors considered between 1 to k. If one instance is misclassified by the NN rule, it is registered
as removable from the training set. Then all those that do meet the criteria are removed at once.

An interesting group of filtering techniques are based on the predictions of classifiers. The
Classification Filter (CF) proposed in [GBLG99] performs a partition of the training set into n

subsets, then a set of classifiers is trained from the union of any n � 1 subsets; the classifiers are
used to classify the examples in the excluded subset, eliminating the examples that are incorrectly
classified. This filter has the risk to remove too many instances due to the usage of a single
classifier. To solve this problem, ensembles of classifiers are used to identify mislabeled instances;
the proposals of [BF99, KR07] are two of the most representative and well known methods within
this field (described hereafter).

The Ensemble Filter (EF), proposed in [BF99], uses a set of di↵erent learning algorithms to
remove the potentially noisy instances. This filter is based on the idea that, if some examples
have been mislabeled and it is assumed that the label errors are independent of the particular
classifiers learned from the data, collecting predictions from di↵erent classifiers could provide a
better estimation of mislabeled examples than collecting information from a single classifier. In
order to perform the removal of noisy examples, first, the training data is classified using an n-fold
cross-validation with each classification algorithm and then, the noisy examples are identified using
a voting scheme (consensus, which removes an example if it is misclassified by all the classifiers; or
majority, which removes an example if it is misclassified by more than half of the classifiers).

Another example of ensemble filters is the Iterative-Partitioning Filter (IPF) [KR07], which
proposes a similar technique, but removes the noisy data iteratively using several classifiers built
with the same learning algorithm. The authors of this method claimed that a iterative elimination
of noisy examples implies that the examples removed in one iteration do not influence the detection
in subsequent ones, resulting in a more accurate noise filtering, Thus, in each iteration, the current
training data set is split into n equal sized subsets and the C4.5 classifier is built over each of these
n subsets to evaluate the whole training set. Then, the incorrectly labeled examples are removed
from it (according to the majority or consensus scheme) and a new iteration is started.
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2.3 Multiple classifiers and decomposition strategies for classification tasks

Given a set of problems, finding the best overall classification algorithm is sometimes di�cult
because some classifiers may excel in some cases and perform poorly in others. Moreover, even
though the optimal match between a learning method and a problem is usually searched, this
match is generally di�cult to achieve and perfect solutions are rarely found for complex problems
[HHS94]. Thus, several motivations to combine several classifiers are found in the literature:

• To avoid the necessity of choosing a specific learning method for a concrete classification
problem; all of them might be used, taking advantage of the strengths of each method, while
avoiding its weaknesses.

• To avoid the choice of some arbitrary but important initial condition, e.g., those involving
the parameters of the learning method.

• To introduce some randomness to the training process in order to obtain di↵erent alternatives
that can be combined to improve the results obtained by the individual classifiers.

There are several strategies to use more than one classifier for a single classification task [HHS94].
Among them, parallel approaches focus the majority of classifier combination research due to its
simplicity and the fact that they enable one to take advantage of the aforementioned factors. In this
approach, all available classifiers are used for the same input example in parallel. The outputs from
each classifier are then combined to obtain the final prediction. Thus, some of the most well-known
decisions combination proposals are the following:

• Majority vote (MAJ) [MKK87]. This is a simple but powerful approach, where each
classifier gives a vote to the predicted class and the most voted one is chosen as the output.

• Weighted majority vote (W-MAJ) [SG84]. Similarly to MAJ, each classifier gives a vote
for the predicted class, but in this case, the vote is weighted depending on the competence
(accuracy) of the classifier in the training phase.

• Naive Bayes (NB) [TMM+81]. This method assumes that the base classifiers are mutually
independent. Hence, the predicted class is that one obtaining the highest posterior probability.
In order to compute these probabilities, the confusion matrix of each classifier is considered.

• Behavior-Knowledge Space (BKS) [HS95]. This is a multinomial method that indexes
a cell in a look-up table for each possible combination of classifiers outputs. A cell is labeled
with the class to which the majority of the instances in that cell belong to. A new instance
is classified by the corresponding cell label; in case that for the cell is not labeled or there is
a tie, the output is given by MAJ.

The most common strategy to train all the base classifiers is using the same training data set
with all of them and to compute the parameters of the aggregation methods, as it is recommended
in [Kun04]. Using a separate set of examples to obtain such parameters can imply some important
training data to be ignored and this fact is generally translated into a loss of accuracy of the final
system built.

Another possibility to use multiple classifiers for a classification task is to employ the same
classification algorithm over di↵erent data samples taken from the same training data and, then,



2. Preliminaries 15

training a classifier in each of these samples and combining their predictions. Thus, if the classifica-
tion problem has several classes (multi-class classification problem), a way to build these di↵erent
data samples is to decompose the multi-class problem into a set of easier to solve binary subprob-
lems, aiming to reduce the complexity of the original problem. Each one of the classes of the binary
subproblem will be the joint of one or more classes of the original problem. This methodology is
formally known as decomposition strategies [GFB+11], [Fur02]. Several motivations for the usage
of these binary decomposition strategies in multi-class classification problems can be found in the
literature:

• The separation of the classes becomes easier (less complex), since less classes are considered
in each subproblem [MM96], [Fur02].

• Classification algorithms, whose extension to multi-class problems is not easy, can address
multi-class problems using decomposition techniques [Fur02].

• Decomposition allows one to easily parallelize the classifier learning, since the binary sub-
problems are independent and can be solved with di↵erent processors.

Dividing a problem into several new subproblems, which are then independently solved, implies
the need of a second phase where the outputs of each problem need to be aggregated. Therefore,
decomposition includes two steps:

1. Problem division. The problem is decomposed into several binary subproblems which are
solved by independent binary classifiers, called base classifiers. The most studied decompo-
sition strategies in the literature are: One-vs-One (OVO) [KPD90], which trains a classifier
to distinguish between each pair of classes, and One-vs-All (OVA) [AMMR95], which trains
a classifier to distinguish each class from all other classes.

2. Combination of the outputs [GFB+11]. The di↵erent outputs of the binary classifiers must
be aggregated in order to output the final class prediction.

Among the decomposition strategies, OVO is the most common approach due to the several
advantages shown in the literature with respect to OVA [GFB+11], [Fur02]:

• OVO creates simpler borders between classes than OVA.

• OVO generally obtains a higher classification accuracy and a shorter training time than OVA
because the new subproblems are easier and smaller.

• OVA has more of a tendency to create imbalanced data sets which can be counterproductive.

• The application of the OVO strategy is widely extended and most of the software tools
considering binarization techniques use it as default.

The OVO decomposition strategy consists of dividing a classification problem with M classes
into M(M � 1)/2 binary subproblems. A classifier is trained for each new subproblem only consid-
ering the examples from the training data corresponding to the pair of classes (�i, �j) with i < j

considered. When a new instance is going to be classified, it is presented to all the the binary
classifiers. This way, each classifier discriminating between classes �i and �j provides a confidence
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degree rij 2 [0, 1] in favor of the former class (and hence, rji is computed by 1�rij). These outputs
are represented by a score matrix R:

R =

0

BBB@

� r12 · · · r1M

r21 � · · · r2M
...

...
rM1 rM2 · · · �

1

CCCA
(I.1)

The final output is derived from the score matrix by di↵erent aggregation models. The most
used and simplest combination is the application of a voting strategy:

Class = arg max
i=1,...,M

X

1j 6=iM

sij (I.2)

where sij is 1 if rij > rji and 0 otherwise. Therefore, the class with the largest number of votes
will be predicted. This strategy has proved to be competitive with di↵erent classifiers obtaining
similar results in comparison with more complex strategies [GFB+11].

2.4 Feature weighting schemes in nearest neighbor classification

The Nearest Neighbor (NN) classifier [CH67] is one of the most widely used methods in classification
tasks due to its simplicity and good behavior in many real-world domains [WKRQ+07]. It is
a nonparametric classifier which simply uses the full training data set to establish a classification
rule, based on the most similar or nearest training instance to the query example. Data preparation
[Pyl99] provides a number of ways to improve the performance of NN, such as Prototype Selection
[GDCH12] or Feature Selection [LM07, XZB14]. A di↵erent, yet powerful approach is Feature
Weighting [WAM97].

The main objective of Feature Weighting methods is to reduce the sensitivity of the NN rule
to redundant, irrelevant or noisy features. This is achieved by modifying its similarity function
[CGG+09] with the inclusion of weights. These weights can be regarded as a measure of how useful
a feature is with respect to the final classification task. The higher a weight is, the more influence
the associated feature will have in the decision rule used to compute the classification of a given
example. Therefore, an adequate scheme of weights could be used to highlight the best features of
the domain of the problem, diminishing the impact of redundant, irrelevant and noisy ones. Thus,
the accuracy of the classifier could be greatly improved if a proper selection of weights is made.

In the case of the NN classifier, most of the techniques developed to include Feature Weight-
ing schemes have been focused on incorporating the weights in the distance measure, mainly to
Euclidean distance (see Equation I.3, where X and Y are two instances and M is the number of
features that describes them). In spite of its simplicity, the usage of Euclidean distance has been
preferred in many research approaches, since it is easy to optimize and shows a good discriminative
power in most classification tasks. In fact, it is the most commonly used similarity measure in the
instance based learning field [AKA91].

d(X, Y ) =

vuut
MX

i=0

(xi � yi)2 (I.3)
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Feature Weighting methods often extend this definition through the inclusion of weights asso-
ciated with each feature (Wi, usually Wi 2 [0, 1]). These modify the way in which the distance
measure is computed (Equation I.4), increasing the relevance (the squared di↵erence between fea-
ture’s values) of those features with greater weights associated with them (near to 1.0).

dw(X, Y ) =

vuut
MX

i=0

Wi · (xi � yi)2 (I.4)

The application of this technique to the NN classifier has been widely addressed. The most
complete study undertaken to this end can be found in [WAM97], in which a review of several
Feature Weighting methods for Lazy Learning algorithms [Aha97] is presented (with most of them
applied to improve the performance of the NN rule). In this review, Feature Weighting techniques
are categorized by several dimensions, regarding the weight learning bias, the weight space (bi-
nary or continuous), the representation of features employed, their generality and their degree of
employment of domain specific knowledge.

A wide range of classical Feature Weighting techniques are available in the literature, both
classical (see [WAM97] for a complete review) and recent [PV06, FI08]. The most well known
compose the family of Relief-based algorithms. The Relief algorithm [KR92] has been widely
studied and modified, producing several interesting variations of the original approach. Some of
them [SK03, Sun07] are based on ReliefF [Kon94], which is the first adaptation of Relief as a
Feature Weighting approach. In addition to these approaches, Feature Weighting methods are also
very useful when considered as a part of larger supervised learning schemes. In these approaches,
Feature Weighting can be regarded as an improved version of Feature Selection. Again, if the
weights scheme is properly chosen, Feature Weighting can play a decisive role in enhancing the
performance of the NN classifier in these techniques [DTGH12].

3. Justification

As it has been shown in the previous sections, the presence of noise in data is a common problem
that produces several negative consequences in classification problems. Given the negative e↵ects
produced by noise, the need of techniques to deal with it and the analysis of their impact and
characteristics have always had a notable relevance in the literature.

However, if new studies on the framework of noisy data in classification are desired to be
developed, the following key issues should be taken into consideration:

• There are two main approaches to deal with noisy data in classification: algorithm level
(robust learners) and data level approaches (noise preprocessing techniques) [ZW04].

• Algorithm level approaches depend on the classification algorithm and require to adapt an
existing method, which neither is always possible nor easy to develop. In many cases, they
also depend on the characteristics of the noise. For these reasons, it is important to investigate
other mechanisms, which could lead to decrease the e↵ects caused by noise without adapting
each specific algorithm or having to make assumptions about the type of noise present in the
data.

• Furthermore, most of the works in the literature focus on the class noise problem, whereas
the attribute noise problem is less studied because its treatment is usually more complex.
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Since attributes with missing values have been widely studied in the literature [ZW04], new
research e↵orts on the erroneous attribute values and attributes with low influence in the
classifier building will imply a higher novelty in this field.

• Data level approaches, concretely noise filters, usually depend on the characteristics of the
data and the noise [WZ08]. However, these characteristics, which determine the e�cacy of
the noise filters, are not enough concreted in any work of the literature. Furthermore, even
though there are many proposals of paradigms of noise filtering in standard classification
(for example, classification filtering, distance-based filtering or ensemble-based filtering), an
interesting trend would be to propose advanced noise filtering techniques trying to take ad-
vantages of the strengths of the di↵erent paradigms. It would be also interesting to develop
new proposals of advanced noise filtering techniques adapted to the characteristic of classifi-
cation problem, such as the degree of balance among the classes (imbalanced classification),
when the data are mainly characterized by the presence of noisy data.

• Most of the data level approaches are focused on the elimination of noisy examples from the
training data by means of the well-known noise filters. However, instance filtering can be
harmful as it may eliminate more examples than necessary or produce an information loss
[KB81]. For this reason, a direct alternative would be to correct the class label of those suspi-
cious examples that are potentially noisy when possible, trying to avoid the aforementioned
problem of noise filtering techniques.

• Finally, there are few proposals of evaluation metrics on the classifier behavior when the
classification problem is mainly characterized by the presence of noisy data. The concept of
robustness must be also considered in such evaluation metrics and it would be systematically
included in comparisons of classifiers build from noisy data. Therefore, the study of such
metrics and new proposals to measure the behavior of classifiers with noisy data are necessary.

All these issues refers to a common topic, which is also the main subject of this thesis: deepen
in the problem of noisy data in classification developing di↵erent studies and proposals related to
the two main ways to deal with it that have been proposed in the literature (algorithm level and
data level approaches).

4. Objectives

After studying the current state of all the areas described in the previous sections, it is possible
to focus on the actual objectives of the thesis. They will include the research and analysis of
the background fields described before, and the development of studies analyzing di↵erent aspects
related to the problem of noisy data and proposals of advanced models to deal with noise in
classification based on their most promising properties of each field. More specifically, the objectives
are:

• To propose and analyze non-preprocessing alternatives to make the classifiers
perform better with noisy data, with independence of the classifier selected and
the characteristics of the noise. Since both knowing the real characteristic of the noise
and adapting each single classification method are tasks hard to perform at the algorithm
level approaches, proposals (such as techniques based on the usage of multiple classifiers)
that may increase the performance of classification techniques without modifications of the
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methods and assumptions on the characteristics of data will be very useful. These proposals
should be well justified and have properties that improve the classification capabilities of
classifiers trained from noisy data.

• To deepen in the attribute noise problem, which is usually less studied than the
class noise problem in the literature. Erroneous attribute values and those with less
importance to the classification task are maybe the two less studied types of attribute noise.
Feature Weighting schemes are a group of techniques designed to reduce the importance of
noisy or irrelevant attributes, whereas the most important features for the classification task
are maximized. Therefore, this type of techniques seems to be well adapted to deal with the
aforementioned types of attribute noise. Its study and the development of new proposals in
this field seem to be very promising approaches to better understand the problem of attribute
noise in classification.

• To analyze the necessity of the application of noise preprocessing techniques based
on the properties of the data and to design new competitive noise preprocessing
methods. It would be interesting to determine which are the properties of the data that
makes the usage of a noise preprocessing technique to be e�cient, since their behavior is
basically determine by these [WZ08]. In order to achieve this goal, data complexity metrics
[BH06] of the classification problem, which are a recent proposal to represent characteristics of
the data which are considered di�cult in classification tasks (such as the overlapping among
classes, their separability or the linearity of the decision boundaries) could be used. Further-
more, it would be interesting to propose new preprocessing methods considering advanced
noise filtering paradigms, to propose new paradigms (for example, based on the correction
of noise, instead of its elimination) or to design new filtering strategies adapted to concrete
properties of the data (such as the imbalance ratio among the classes).

• To study and propose evaluation metrics of the behavior of classifiers with noisy
data. In spite of its great relevance, evaluation metrics when training with noisy data have not
been enough studied in the literature. Hence, it is important to analyze which are the aspects
to evaluate when training a classifier from noisy data (such as the traditional performance,
but also the robustness of the classifier) and reflect them into new evaluation metrics under
such circumstances.

5. Summary

This thesis is composed by ten works, organized into four di↵erent parts. Each part is devoted to
pursue one of the objectives described, contributing as a whole in the deepening in the problem of
noisy data in classification by means of di↵erent studies and proposals.

• Non-preprocessing alternatives based on multiple classifiers to deal with noisy data.

• Feature weighting schemes to treat with attribute noise in nearest neighbor classifiers.

• Data level approaches and proposals to deal with noisy data.

• Evaluation measures of the behavior of classifiers with noisy data.

This section shows a summary of the di↵erent proposals presented in this dissertation, describing
the associated publications and their main contents.
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5.1 Non-preprocessing alternatives based on multiple classifiers to deal with

noisy data

In the literature, it is claimed that building several classifiers from noisy training data and combining
their predictions is an interesting method of overcoming the individual problems produced by noise
in each classifier [HHS94]. This statement is usually not supported by thorough empirical studies
considering problems with di↵erent types and levels of noise. Neither they show what type of
noise is better handled by multiple classifier techniques. Furthermore, in noisy environments, the
noise robustness of the methods can be more important than the performance results themselves
and, therefore, it must be carefully studied. It should be mentioned that, in real situations, the
existence of noise in the data sets is usually unknown. Hence, tools (such as multiple classifier
techniques) which are able to manage the presence of noise in the data sets, despite its type or
quantity (or unexistence), are of great interest. Furthermore, these strategies can be used with any
of the existing classifiers in the literature.

In our first contribution in this topic, we aim to reach conclusions on the aforementioned as-
pects focusing on the analysis of the behavior, in terms of performance and robustness, of several
Multiple Classifier Systems against their individual classifiers when these are trained with noisy
data, studying to what extent the behavior of these MCSs depends on that of the individual clas-
sifiers. In order to accomplish this study, several classification algorithms (SVM [CV95], C4.5
[Qui93] and k-NN [McL04]), of varying noise robustness, will be chosen and compared with respect
to their combination. All these classification algorithms will be combined using di↵erent decisions
combination methods [MKK87, SG84, TMM+81, HS95] to create MCSs of di↵erent sizes and char-
acteristics. Two forms to create diversity will be considered: (i) considering di↵erent individual
classifiers trained with the whole training data (heterogeneous base classifiers) and (ii) considering
only one baseline classifier trained with di↵erent random samples of the training data of equal size
as the original training data (using bagging).

Multi-class problems with noisy data are analyzed in our second contribution. In this case,
an interesting approach to reduce the e↵ect of noise is to decompose the problem into several
binary subproblems, reducing the complexity and, consequently, dividing the e↵ects caused by
noise into each of these subproblems. These techniques are referred to as binary decomposition
strategies [LdCG08]. The most studied schemes in the literature are: OVO [KPD90], which trains a
classifier to distinguish between each pair of classes, and OVA [AMMR95], which trains a classifier
to distinguish each class from all other classes. We will analyze the usage of the OVO strategy, which
generally out-stands over OVA [GFB+11, RK04], and check its suitability with noisy training data.
Several well-known classification algorithms (C4.5 [Qui93], RIPPER [Coh95] and k-NN [McL04]),
with or without decomposition, will be trained on them in order to check when decomposition is
advantageous.

In order to reach meaningful conclusions based on the characteristics of the noise, a large
collection of real-world data sets will be considered and di↵erent types of noise, present in real-
world data, and several noise levels will be introduced into them, since these are usually unknown in
real-world data. Two di↵erent types of noise, class and attribute noise, and four di↵erent schemes
to introduce them will be considered [ZW04]. A large number of noise levels - from 5% to 50%, by
increments of 5% - will be also studied. In the case of MCSs, the experimentation will consist of a
total of 1640 noisy data sets and 800 data sets will be created in the study considering the OVO
decomposition strategy. The results obtained will be contrasted using the proper statistical tests,
as recommended in the specialized literature [Dem06].

The journal articles associated to this part are:
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• Sáez J. A., Galar M., Luengo J., and Herrera F. (2013) Tackling the Problem of Classifi-
cation with Noisy Data using Multiple Classifier Systems: Analysis of the Performance and
Robustness. Information Sciences 247: 1–20

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) Analyzing the presence of noise in
multi-class problems: alleviating its influence with the One-vs-One decomposition. Knowledge
and Information Systems 38(1): 179–206

5.2 Feature weighting schemes to treat with attribute noise in nearest neighbor

classifiers

The NN classifier [CH67] is one of the most widely used methods in classification tasks due to
its simplicity and good behavior in many real-world domains [WKRQ+07]. The most frequently
used similarity function for the NN classifier is Euclidean distance [AKA91]. However, it is very
sensitive to noisy, redundant and irrelevant features, which may cause its performance to deteriorate
[CGG+09]. Feature weighting methods [WAM97] try to overcome this problem by incorporating
weights into the similarity function to increase or reduce the importance of each feature, according
to how they behave in the classification task. By contrast to Feature Selection [LM07, XZB14,
Ker14, LQDZ13], the usage of weighting schemes provides the classifiers with a way of considering
features partially, giving them some degree of importance in the classification task. This is usually
preferred since weak, yet useful features may still be considered, instead of forcing the methods to
either accept or completely ignore them.

Our aim is to propose a novel approach for weighting features in the NN classification, based
on the usage of imputation methods [LGH12, FKD08]. These are commonly employed to estimate
those feature values in a data set that are unknown, formally known as missing values [JL13], using
the rest of the data available. Therefore, imputation methods enable us to sample values from an
estimated distribution of the original data set, in which the value of each feature is conditioned to
the rest of the features or all the data. The generated samples of each feature can be compared
with the original values in order to detect the relevance of each feature, depending on the accuracy
of the estimation for that feature performed by the imputation method. The Kolmogorov-Smirnov
statistic [Smi39] may then be used to evaluate the di↵erences between the original distribution of
the feature’s values and that of the imputed ones. It is thus possible to measure how well the values
of each feature can be predicted using the rest of the data.

In our first contribution, we focus of classification problems with low or inexistent noise. In
these problems, we want to reduce the importance of irrelevant attributes while maximizing the
importance of the rest of attributes in order to facilitate the classifier building. Thus, we use the
aforementioned procedure to give more importance to those features with high changes between
their original and estimated value distributions - these features keep most of the structural infor-
mation of the data and are not easily predictable using the rest of the data, which reduces the
e↵ect of those features that are easily predictable, and which are therefore likely to be redundant
or irrelevant.

In our second contribution, we focus on classification problems with a notable quantity of noise.
In this case, we adapt the above procedure inverting the weighting scheme: we give less importance
to those features with high changes between their original and estimated value distributions and
therefore they contain too much noise and we increment the e↵ect of those features that are easily
predictable, and which have therefore a less amount of noise.

In order to complete these studies, we will perform an experimentation in which our first proposal
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will be compared with several classic and recent proposals of feature weighting, considering 25
supervised classification problems taken from the Keel-dataset repository [AFFL+11]. Our second
proposal will be compared with the classic NN classifier considering the aforementioned 25 data
sets, in which di↵erent types and levels of noise are introduced.

The publications associated to this part are:

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Statistical computation of feature
weighting schemes through data estimation for nearest neighbor classifiers. Pattern Recogni-
tion 47(12): 3941–3948

• Sáez J. A., Derrac J., Luengo J., and Herrera F. (2014) Improving the behavior of the nearest
neighbor classifier against noisy data with feature weighting schemes. In Hybrid Artificial In-
telligence Systems, volumen 8480 of Lecture Notes in Computer Science, pp. 597–606. Springer
International Publishing

5.3 Data level approaches and proposals to deal with noisy data

Noise filters [Wil72, BF99] are employed to remove corrupted data and improve the classification
performance, particularly of instance-based learners such as the NN classifier [CH67]. However,
their e�cacy depends on the properties of the data [WZ08]. These can be analyzed by what
are known as data complexity measures [BH06], which are characteristics of the data which are
considered di�cult in classification tasks, such as the overlapping among classes or their separability.
Our first contribution in this field consists of studying the relation between the complexity metrics
of a data set and the e�cacy of several noise filters to improve the performance of the noise-sensitive
NN classifier. A methodology is proposed to extract a rule set based on data complexity measures
that enables one to predict in advance whether the use of noise filters will be statistically beneficial.
This prediction can help, for example, to determine an appropriate noise filter for a concrete noisy
data set –that filter providing a significant advantage in terms of the results– or to design new noise
filters which select more or less aggressive filtering strategies considering the characteristics of the
data.

The second contribution to the field of noise filtering techniques is to propose a new noise filtering
method, based on combining di↵erent noise filtering paradigms in order to increase the accuracy of
the classification algorithms used later. First, the filtering is based on the fusion of the predictions
of several classifiers used to detect the presence of noise. Thus, we consider the combination of
classifiers instead of using only one to detect noise. Second, the proposed method follows an iterative
noise filtering scheme that allows us to avoid using detected noisy examples in the next phases of
the filtering. Third, we also introduce a noisy score to control the filtering sensitiveness, and hence,
the amount of noisy examples removed in each iteration can be adapted to the necessities of the
practitioner. In this way, we take advantage of the three di↵erent paradigms. The validity of the
proposed method will be studied in an exhaustive experimental study, considering 25 real-world
data sets, into which di↵erent class noise levels will be introduced (from 5% to 30%, by increments
of 5%). The filtered data sets will be then used to create classifiers with several learning methods
of a di↵erent and well-known behavior against noise. We will compare the new filtering method
against the state-of-the-art methods to deal with noisy data sets.

In our third contribution, we focus on the e↵ects of noise in classification data sets that have an
unequal class distribution among their examples. This problem is known as imbalanced classifica-
tion [HYKL06]. The Synthetic Minority Over-sampling Technique (SMOTE) [CBHK02] is one of
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the most well-know data pre-processing methods to cope with it and to balance the di↵erent num-
ber of examples of each class. However, if imbalanced problems su↵er from noise, certain intrinsic
limitations of SMOTE can aggravate the problem produced by noisy examples and current general-
izations of SMOTE are not correctly adapted to their treatment. Our work proposes the extension
of SMOTE through a new element, the iterative ensemble-based noise filter IPF [KR07] (which has
been used in standard classification only), which can overcome the problems produced by noisy
examples in imbalanced data sets. This extension results in SMOTE-IPF. The properties of this
proposal will be discussed in a comprehensive experimental study. It will be compared against a
basic SMOTE and its most well-known generalizations. The experiments will be carried out both
on a set of synthetic data sets with di↵erent levels of noise and shapes of borderline examples as
well as real-world data sets. Furthermore, the impact of introducing additional di↵erent types and
levels of noise into these real-world data will be studied.

The problem of instance filtering is that it can be harmful as it may eliminate more examples
than necessary or produce an information loss [KB81]. This is studied in our fourth contribution,
in which we introduce a new proposal where the goal is not to filter the instances but to correct the
mislabeled ones if possible. Only in the case where the instance is completely skewed it is eliminated
from the data set. Relabeling noisy instances is performed by the use of an ensemble of specialized
class noise filters. By aggregating the information they provide for each instance it is possible
to repair the class label in many cases and to discard fewer instances than any of the individual
filters would do. The dual behavior of the method –label repairing and noise filtering– is intended
to achieve the desired balance between overcleansing and maintaining questionable instances. In
order to check the validity of the proposal, a thorough empirical study will be developed. We will
introduce class noise into 25 base data sets and creating a total of 175 data sets. Several class noise
levels will be introduced into them, since these are usually unknown in real-world data, from 5% to
30%, by increments of 5%. The test accuracy of k-NN with the proposal and the baseline data sets
will be compared using Wilcoxon’s statistical test [GFLH10] in order to check the significance of the
di↵erences found. The analysis will be also continued and extended by using a learner considered
robust to noise as is C4.5 [Qui93] and a SVM also considered being noise sensitive [Vap98].

The journal articles associated to this part are:

• Sáez J. A., Luengo J., and Herrera F. (2013) Predicting noise filtering e�cacy with data
complexity measures for nearest neighbor classification. Pattern Recognition 46(1): 355–364

• Sáez J. A., Galar M., Luengo J., and Herrera F. (2014) INFFC: An iterative noise filter based
on the fusion of classifiers with noise sensitiveness control (submitted)

• Sáez J. A., Luengo J., Stefanowski J., and Herrera F. (2014) SMOTE-IPF: Addressing the
noisy and borderline examples problem in imbalanced classification by a re-sampling method
with filtering, doi: 10.1016/j.ins.2014.08.051. Information Sciences (in press)

• Sáez J. A., Luengo J., Shim S., and Herrera F. (2014) Class Noise Reparation by an Aggre-
gated Noise Filter Ensemble Voting Algorithm (submitted)

5.4 Evaluation measures of the behavior of classifiers with noisy data

One may wonder how to know which systems are more suitable or are better adapted to deal
with noisy data. Even though some classifiers have been related to this capability of working with
imperfect data, this fact is usually based on only checking the accuracy of those and other classifiers
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over a concrete collection of data sets, with independence of the type and noise level present in
the data. This analysis procedure has a double disadvantage in noisy environments. First of all,
the study of the performance alone does not provide enough information on the classifier behavior
a↵ected by the noise [KZ94, Kha96]. Moreover, a study with a controlled (probably artificial)
noise level for each data set is also necessary to reach meaningful conclusions when evaluating the
classifier behavior against noise [ZW04].

In our first contribution, we propose a simple and intuitive metric: the Relative Loss of Accuracy
(RLA). This metric is mainly based on the concept of robustness [KZ94, Kha96], an important issue
in noisy environments that must be carefully studied. It computes the percentage variation between
the performance of the classifier trained with noisy data and that trained with clean data. This
metric will be computed in an case of study where we will compare a Fuzzy Rule Based Classification
System (FURIA [HH09]) versus a crisp robust learner (C4.5 [Qui93]), both trained on data sets
with di↵erent levels of class noise.

The main problem of RLA is that it may carry some problems when two di↵erent classifiers
are compared. In our second contribution, we propose a new single score to perform an analysis
of the classifier behavior with noisy data from a double point of view focusing on the classic
performance assessment of the methods but also on their robustness. Since performance and
robustness are di↵erent concepts, the conclusions that they provide may also be di↵erent. In this
second work, we analyze the existing robustness measures in the classification framework focusing
on their advantages and disadvantages and motivate the necessity of combining the robustness and
performance concepts to obtain an unified conclusion on the expected behavior of the methods with
noisy data. We will propose a new behavior-against-noise measure to characterize the behavior of a
method with noisy data, the Equalized Loss of Accuracy (ELA) measure, which tries to minimize the
problems of considering performance and robustness measures individually. In order to complete our
analysis, we will perform an experimental evaluation of the behavior and representativeness of the
di↵erent measures, considering several classifiers with a known behavior against noise (concretely,
C4.5 [Qui93] and SVM [CV95]). The behavior of such classifiers described by using ELA will
be tested using 32 data sets from the KEEL-dataset repository [AFFL+11], over which we will
introduce a 10% of noise level into the class labels in a controlled way [ZW04].

The publications associated to this part are:

• Sáez J. A., Luengo J., and Herrera F. (2011) Fuzzy Rule Based Classification Systems versus
Crisp Robust Learners Trained in Presence of Class Noise’s E↵ects: a Case of Study. In
11th International Conference on Intelligent Systems Design and Applications (ISDA 2011),
Córdoba (Spain), pp. 1229–1234

• Sáez J. A., Luengo J., and Herrera F. (2014) Evaluating the classifier behavior with noisy data
considering performance and robustness: the Equalized Loss of Accuracy measure (submitted)

6. Discussion of results

The following subsections summarize and discuss the results of each specific stage of the thesis.
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6.1 Non-preprocessing alternatives based on multiple classifiers to deal with

noisy data

In our first work, we analyze how well several MCSs behave with noisy data by means the realization
of a huge experimental study. The results obtained show that the MCSs studied statistically
improve the performance of their single classification algorithms when dealing with noisy data in
the majority of cases. The improvement depends on many factors, such as the type and level of
noise. Moreover, the performance of the MCSs built with heterogeneous classifiers depends on
the performance of their single classifiers, so it is recommended to study the behavior of each
single classifier before building the MCS. Generally, the MCSs studied perform better with class
noise than with attribute noise. The robustness results show that the MCS built with heterogeneous
classifiers will not be more robust than the most robust among their single classification algorithms.
In fact, the robustness can always be shown as an average of the robustnesses of the individual
methods. BagC4.5 is an exception: it becomes more robust than its single classifier C4.5. The
study of several decisions combination methods shows that the majority vote scheme is a simple
yet powerful alternative to other techniques when working with noisy data.

The main reason for the better performance of MCSs with noisy data can be attributed to the
increment of the capability of generalization when an MCS is built. Each single classifier is known
to make errors, but since they are di↵erent, that is, they have di↵erent behaviors over di↵erent
parts of the domain, misclassified examples are not necessarily the same [KHDM98], and the same
is true for noisy instances. This fact enables MCSs to achieve a better generalization from the
examples of a problem and leads to better avoiding the overfitting of noisy data and, therefore, to
obtain more accurate solutions.

The other contribution to this topic analyzes the suitability of the usage of the OVO decomposi-
tion when dealing with noisy training data sets in multi-class problems. The results obtained show
that the OVO decomposition improves the baseline classifiers in terms of accuracy when data is
corrupted by noise in all the noise schemes studied. The robustness results are particularly notable
with the more disruptive noise schemes - the random class noise scheme and the random attribute
noise scheme - where a larger amount of noisy examples and with higher corruptions are available,
which produces greater di↵erences (with statistical significance).

Three hypotheses aim to explain the better performance and robustness of the methods using
OVO when dealing with noisy data: (i) the distribution of the noisy examples in the subproblems,
(ii) the increase of the separability of the classes and (iii) the possibility of collecting information
from di↵erent classifiers.

6.2 Feature weighting schemes to treat with attribute noise in nearest neighbor

classifiers

Our works in this topic are based on a new scheme for feature weighting developed to improve
the performance of the NN classifier, in which the weights are computed by combining imputation
methods and the Kolmogorov-Smirnov statistic.

In our first contribution, we focus on a problem of low quantity of erroneous attribute values,
where we want to reduce the importance of irrelevant attributes, so we give more importance to
those features that keep most of the structural information of the data and we reduce the e↵ect
of those features that are likely to be redundant or irrelevant. From the experimental results it
is possible to conclude that our feature weighting scheme is not very sensitive to the imputation
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method selected, since the results obtained in every case are quite similar regardless of the specific
imputation technique chosen, and statistical di↵erences among them have not been found. The
results obtained show that all our approaches enhance the performance of NN to a greater degree
than the rest of the feature weighting methods analyzed. They also show a robust behavior in
several domains, in contrast to the rest of the classifiers, which demonstrate a variable performance
when di↵erent data sets are considered. The statistical analysis performed confirms our conclusions.

In our second contribution, we focus on classification problems with a notable quantity of noisy
examples (viewed as erroneous values). We have assigned a lower weight to that features that were
more a↵ected by the presence of noise (those features whose original and imputed distribution of
values were more di↵erent). We have reduced the importance of these features that contain the
more harmful noise and increased the importance of those features that are easily predictable, and
which have a less amount of noise. The results obtained show that our approach enhance the
performance of NN in the presence of several types and levels of noise. The statistical analysis
supports our conclusions, even though in some cases the null hypothesis is not rejected.

6.3 Data level approaches and proposals to deal with noisy data

Our first contribution proposes a methodology to extract a rule set based on data complexity
measures to predict in advance when a noise filter will statistically improve the results of the
nearest neighbor classifier. The rule set proposed provides a good prediction performance of the
noise filtering e�cacy, showing that the conditions under which a noise filter works well are similar
for other noise filters. The analysis of the rule set provided shows that, generally, noise filtering
statistically improves the classifier performance of the nearest neighbor classifier when dealing with
problems with a high value of overlapping among the classes. However, if the problem has several
clusters with a low overlapping among them, noise filtering is generally unnecessary and can indeed
cause the classification performance to deteriorate. The validation process carried out shows that
the final rule set provided is fairly accurate in predicting the e�cacy of noise filters before their
application and it produces an improvement with respect to the indiscriminate usage of noise filters.

In our second contribution, we propose a new iterative noise filtering method based on the
fusion of the predictions of several classifiers. We also introduce a noisy score to control the filtering
sensitiveness and remove more or less noisy examples according to the practitioner’s necessities. We
compare our proposal (INFFC) against other well-known filters found in the literature over a large
collection of real-world data sets with di↵erent levels of class noise. The validity of the proposed
method is studied in an exhaustive experimental study. From the experimental results it is possible
to conclude that our noise filter enhance the performance of the rest of the noise filters and also
no preprocessing. It also shows a robust behavior in several domains, in contrast to the rest of
the filters, which demonstrate a variable performance when di↵erent data sets are considered. The
statistical analysis performed supports our conclusions.

In our third contribution, we focus on the presence of noisy and borderline examples in imbal-
anced data. SMOTE is extended with a new element, the IPF noise filter (resulting in SMOTE-
IPF), to control the noise introduced by the balancing between classes produced by SMOTE and to
make the class boundaries more regular. The results obtained show that our proposal has a notably
better performance when dealing with imbalanced data sets with noisy and borderline examples
in the di↵erent scenarios considered. Our proposal especially outperforms the rest of the methods
with the more complex to learn data sets in each group of data sets: the non-linear synthetic data
sets and the attribute noise real-world data sets. These observations are supported by statistical
tests. One must consider that the ensemble-nature of IPF, which constitutes a robust and accu-
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rate way of detecting mislabeled examples, the iterative noise detection and elimination processes
carried out and the possibility of controlling the diversity between classifiers are the key points of
IPF which finally produce a more accurate filtering process. All these factors help SMOTE-IPF to
obtain better performances than other re-sampling techniques in the scenarios considered.

Finally, in our fourth contribution we propose a method based on a ensemble of noise filters
whose main objective is the correction of class noise in the data, even though it also removes some
examples where the correction is not reliable. The results obtained shows that the use of our
preprocessing improves the performance results without preprocessing when data is corrupted by
noise (for all the noise levels for the noise-sensitive methods NN and SVM and for intermediate-high
noise levels for the robust method C4.5). When no noise is induced into the data, preprocessing
or not CNC show a equivalent behavior. All these observations are supported by statistical tests.
We also analyze the working of our proposal in terms of the number of examples corrected and
removed, showing that a great e�cacy of the correction process and very low rates of removed
examples, which is desirable in many domains.

6.4 Evaluation measures of the behavior of classifiers with noisy data

In our works related to this topic, we propose two evaluation metrics: RLA and ELA. These
proposals are based on the idea that performance and robustness are two independent concepts
that imply di↵erent conclusions.

In our first contribution, we propose the RLA metric, which is mainly focused on the concept
of robustness. We use RLA to compare two classifiers (FURIA and C4.5). The results obtained
indicate that FURIA has better test accuracy and a higher robustness (as indicated by RLA) than
C4.5 when training with data with class noise.

However, RLA may present some problems when di↵erent classifiers are compared, which is
discussed in our second contribution. In this work, we analyze the existing robustness measures
pointing out their main drawbacks. We propose ELA, which considers both concepts together
(performance and robustness). This seems to be crucial in order determine the expected behavior
of the classifiers against noise. We experimentally compare the ELA and RLA measures, showing
that the evaluation of the ELA and RLA metrics agree in some cases, but in other cases the behavior
of the RLA is not so desirable since it is only based on the percentage variation of the performance
without and with noise. The results obtained show that ELA is able to overcome some of the
problems that RLA produces, being useful to represent the behavior of the classifiers against noise.

7. Concluding remarks

This thesis has addressed several problems related to the presence of noisy data in classification
tasks. Two main research lines, related to the two classic proposals to deal with noisy data, compose
this dissertation: studies and proposals for the treatment of noisy data at the algorithm level and
data level.

The algorithm level approaches to deal with noisy data present some problems: the adaptation
of each particular algorithm to train with noisy data and, sometimes, knowing the characteristics
of noise to perform that adaptation. In order to avoid the aforementioned problems, Multiple
Classifier Systems and the One-vs-One decomposition strategy have been applied providing good
results when noisy data are considered.
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Among the algorithm level approaches, a new classifier based on the nearest neighbor rule has
been proposed to deal with noisy data. This method weights the di↵erent attributes to reduce the
importance of those that do not contribute to successfully create the classifier. It is based on a
novel idea that combines imputation methods and the Kolmogorov-Smirnov test to measure the
changes between the distributions of the original and imputed values. The proposed model has
been able to outperform other feature weighting methods proposed in the literature and the classic
nearest neighbor classifier with good results.

Another part of this thesis has been devoted to the development of studies and proposals to deal
with noisy data at the data level. The characteristics of the data that determine the performance
of noise filters haven been studied, analyzing their data complexity metrics. This study is very
important due to the large number of noise filters found in the literature. Within this research
line, several noise filtering methods have been proposed. The first one (INFFC) combines several
filtering paradigms (filters based on multiple classifiers, iterative filtering and the use of noise
metrics) in order to take advantage of each one. We have also proposed another preprocessing
method based on the filtering of noise (SMOTE-IPF) in the field of imbalanced classification. Both
have outperformed the rest of noise filtering techniques of the state-of-the-art which they have been
compared with, showing their potential in this field. On the other hand, a class noise correction
technique has been proposed (CNC), based on a ensemble of multiple filters, which attempts to
correct, rather than eliminate, the examples identified as noise. This last proposal has been a point
of innovation in the field of preprocessing of noisy data, due to most of the techniques proposed in
the literature just filter instances.

Finally, we have focused on the study of measures of evaluation of classifiers dealing with
noisy data. The proposal of measures evaluating the classifiers in these circumstances seems to be
important to progress in this field. We have proposed several measures of evaluation, such as RLA
and ELA, and the properties of each one have been analyzed. Even though both measures can
be used, RLA works better when the robustness of a single classifier is evaluated, but it has some
problems when di↵erent classifiers are compared. Thus, ELA is able to solve some of the problems
that RLA implies and it is useful to represent the behavior of di↵erent classifiers with noisy data.

Conclusiones

En esta tesis se han abordado varios problemas relacionados con la presencia de ruido en los datos
en tareas de clasificación. Dos ĺıneas principales de investigación, vinculadas con las dos propuestas
clásicas para tratar el ruido, conforman esta disertación: estudios y propuestas para el tratamiento
de datos con ruido tanto a nivel de algoritmos como a nivel de preprocesamiento de datos.

Los enfoques a nivel de algoritmos para tratar con datos con ruido presentan algunos problemas:
la adaptación de cada algoritmo particular para entrenar con datos con ruido y, en muchas ocasiones,
la necesidad de conocer las caracteŕısticas del ruido para realizar dicha adaptación. Con el fin de
evitarlos, se han aplicado técnicas basadas en Sistemas de Múltiples Clasificadores y la estrategia de
descomposición Uno-frente-Uno, que permiten evitar estos problemas mostrando buenos resultados
al tratar con el ruido.

Dentro de los enfoques a nivel de algoritmos, también se ha propuesto un nuevo clasificador
basado en la regla del vecino más cercano para tratar con datos con ruido. Este método pondera los
distintos atributos para reducir la importancia de aquellos que no contribuyen a crear correctamente
el modelo. Se basa en una novedosa idea que combina métodos de imputación y el test Kolmogorov-
Smirnov para medir los cambios entre las distribuciones de valores original e imputada. El modelo
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propuesto ha sido capaz de superar a otros métodos de ponderación de caracteŕısticas existentes
en la literatura y al clasificador del vecino más cercano con buenos resultados.

Otra parte de esta tesis se ha dedicado al campo de estudios y propuestas para tratar con datos
con ruido a nivel de datos. Se ha estudiado cuáles son las caracteŕısticas de los datos, analizando
sus medias de complejidad, que determinan el mejor o peor funcionamiento de las técnicas de
filtrado del ruido. Este estudio es importante debido a la gran cantidad de técnicas de filtrado
existentes. Dentro de esta ĺınea también se han propuesto varios métodos de filtrado del ruido. El
primero de ellos (INFFC) combina varios paradigmas de filtrado (basado en múltples classificadores,
filtrado iterativo y usando medidas del ruido), con el fin de aprovechar las ventajas de cada uno de
ellos. También hemos propuesto otro método de preprocesamiento basado en el filtrado del ruido
(SMOTE-IPF) en el campo de la clasificación no balanceada. Ambos han mostrado superar al
resto de ténicas de filtrado en el estado del arte con las que han sido comparados, lo cual muestra
su potencial en este campo. Por otro lado, se ha propuesto una técnica de corrección de datos
con ruido de clase (CNC), basada en un ensemble de múltiples filtros, que intenta corregir, en vez
de eliminar, los ejemplos identificados como ruido. Esta última propuesta ha supuesto un punto
de innovación en el campo del preprocesamiento de datos con ruido, debido a que la mayoŕıa de
técnicas propuestas en la literatura son filtros de ruido.

Por último, nos hemos centrado en el estudio de medidas de evaluación de los clasificadores
cuando se trabaja con datos con ruido. La propuesta de medidas de evaluación de clasificadores
en estas circunstancias parece importante para avanzar en este campo. Hemos propuesto varias
medidas de evaluación, como RLA y ELA, y se han analizado las propiedades de cada una de ellas.
RLA parece funcionar correctamente cuando se quiere medir la robustez de un único clasificador,
pero presenta algunos problemas cuando se pretenden comparar varios clasificadores distintos. Aśı,
los resultados obtenidos muestran que ELA es capaz de solventar algunos de los problemas que
RLA supone, siendo útil para representar el comportamiento de distintos clasificadores con datos
con ruido y permitir su comparación.

8. Future work

The results achieved in this PhD thesis may open new future trends in di↵erent challenging prob-
lems. In what follows, we present some research lines that can be addressed starting from the
current studies:

• Combination of multiple classifier strategies with noise preprocessing techniques
when dealing with noisy data. Our papers have shown good results of Multiple Clas-
sifier Systems and the One-vs-One decomposition strategy when training with noisy data,
particularly with the most disruptive noise schemes [SGLH13, SGLH14a]. These techniques
allow one to employ noise preprocessing methods, such as the noise filters [Wil72, BF99],
combining in this way these two di↵erent strategies. Thus, noise a↵ecting each one of the
classifiers created by the multiple classifier strategies could be reduced and, therefore, the
prediction capabilities of the final system may improve.

• Treatment of erroneous attribute values. The problem of erroneous class values or
mislabeled examples, which is a type of class noise, has been widely addressed in the liter-
ature [ZW04]. Thus, for example, there are many noise filtering techniques that have been
proposed to cope with it [Wil72, BF99, KR07, GBLG99]. However, the problem of erroneous
attribute values as a type of attribute noise has been less studied in the specialized literature,
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since its identification and treatment are more complex than in the case of mislabeled ex-
amples. It has been proven that the elimination of instances with erroneous attribute values
is counterproductive since they still contain valuable information in other attributes which
can help to build the classifier [ZW04]. However, a possible alternative could be to correct
these erroneous attribute values instead of removing the complete noisy example from the
training data. This procedure may imply an improvement to the model built without the
loss of useful information that the elimination of examples suppose. In order to accomplish
this idea, it could be interesting to follow a similar scheme to that of our work [SDLH14a],
trying to correct those attribute values that present higher di↵erences between the real value
of the attribute of an example and its estimated value obtained by means of the usage of
imputation methods [BM03].

• Design of new fuzzy algorithms adapted to noisy data. Fuzzy Rule-Based Classifica-
tion Systems (FRBCSs) [INN04] are widely employed due to their ability to build a linguistic
model interpretable to the users with the possibility of mixing di↵erent information such as
that proceeding from expert knowledge and information from mathematical models or em-
pirical measures. Traditionally, fuzzy systems have been related to the capability of working
with imperfect data, even though most of them are not specially designed to deal with noisy
data. Fuzzy rules and inference processes of fuzzy systems which di↵er from those with classic
crisp systems may enable one to better avoid the overfitting of noisy instances and obtain
more accurate and robust classifiers. If the presence of noise in the data is explicitly modeled
in the fuzzy systems, it is more likely that its behavior with noisy data to be improved.

• Study of the problem of noise in big data. The problem of big data a↵ects to classical
and advanced data mining techniques [BBBE11]. It refers to the challenges and advantages
derived from collecting and processing vast amounts of data. Formally, it is defined as the
quantity of data that exceeds the processing capabilities of a given system. The main chal-
lenges are to deal with the increasing scale of data at the level of number of instances, at
the level of features or characteristics and the complexity of the problem. Nowadays, with
the availability of cloud platforms we dispose of su�cient processing units to extract valuable
knowledge from massive data. Therefore, the adaptation of data mining techniques to emerg-
ing technologies, such as distributed computation, will be a mandatory task to overcome their
limitations. Noise filters found in the literature, and also these ones proposed in this thesis,
are not directly extensible to the big data problem since they are limited by the memory and
processor capabilities of the system used. Therefore, they require of intelligent strategies that
allow one to use them with huge amounts of data.

• Tackling other learning paradigms with noise preprocessing techniques. Besides
standard classification problems, there are many other challenges in machine learning which
are of great interest to the research community [YW06]. For example, in this thesis a noise
preprocessing technique for imbalance classification problems has been proposed [SLSH14b].
We consider that the lessons learned in this thesis can be used to explore new problems. For
example, this is the case of the one-class classification [ZYY+14], in which the classifier is built
on the basis of examples coming only from a single class, while it must discriminate between
the known examples and new, unseen examples. Applying noise preprocessing techniques in
this topic may be useful to reduce computational complexity and sensitivity to noisy data of
the models. Another example is multi-label classification [TK07], in which one instance can
be assigned to multiple classes. Due to the increase in the complexity of the classification
process in this scenario, the adaptation of noise preprocessing techniques is a very challenging
and interesting task.
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a b s t r a c t

Traditional classifier learning algorithms build a unique classifier from the training data.
Noisy data may deteriorate the performance of this classifier depending on the degree of
sensitiveness to data corruptions of the learning method. In the literature, it is widely
claimed that building several classifiers from noisy training data and combining their pre-
dictions is an interesting method of overcoming the individual problems produced by noise
in each classifier. This statement is usually not supported by thorough empirical studies
considering problems with different types and levels of noise. Furthermore, in noisy envi-
ronments, the noise robustness of the methods can be more important than the perfor-
mance results themselves and, therefore, it must be carefully studied. This paper aims to
reach conclusions on such aspects focusing on the analysis of the behavior, in terms of per-
formance and robustness, of several Multiple Classifier Systems against their individual
classifiers when these are trained with noisy data. In order to accomplish this study, sev-
eral classification algorithms, of varying noise robustness, will be chosen and compared
with respect to their combination on a large collection of noisy datasets. The results
obtained show that the success of the Multiple Classifier Systems trained with noisy data
depends on the individual classifiers chosen, the decisions combination method and the
type and level of noise present in the dataset, but also on the way of creating diversity
to build the final system. In most of the cases, they are able to outperform all their single
classification algorithms in terms of global performance, even though their robustness
results will depend on the way of introducing diversity into the Multiple Classifier System.

! 2013 Elsevier Inc. All rights reserved.

1. Introduction

Classifier learning algorithms aim to extract the knowledge from a problem from the available set of labeled examples
(training set) in order to predict the class for new, previously unobserved, examples [8]. Classic learning algorithms [36,4]
build a unique model, called a classifier, which attempts to generalize the peculiarities of the training set. Therefore, the suc-
cess of these methods, that is, their ability to classify new examples, highly depends on the usage of a concrete feature
descriptor and a particular inference procedure, and directly on the training data.
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Real-world data, which is the input of the classifier learning algorithms, are affected by several components [42,52,37];
among them, the presence of noise is a key factor. Noise is an unavoidable problem, which affects the data collection and
data preparation processes in Data Mining applications, where errors commonly occur [48,50]. The performance of the clas-
sifiers built under such circumstances will heavily depend on the quality of the training data, but also on the robustness
against noise of the classifier itself. Hence, classification problems containing noise are complex problems and accurate solu-
tions are often difficult to achieve with a unique classifier system – particularly if this classifier is noise-sensitive.

Several works have claimed that simultaneously using classifiers of different types, complementing each other, improves
classification performance on difficult problems, such as satellite image classification [27], fingerprint recognition [30] and
foreign exchange market prediction [33]. Multiple Classifier Systems (MCSs) [15,14,32,45] are presented as a powerful solu-
tion to these difficult classification problems, because they build several classifiers from the same training data and therefore
allow the simultaneous usage of several feature descriptors and inference procedures. An important issue when using MCSs
is the way of creating diversity among the classifiers [24], which is necessary to create discrepancies among their decisions
and hence, to take advantage from their combination.

MCSs have been traditionally associated with the capability of working accurately with problems involving noisy data
[15]. The main reason supporting this hypothesis could be the same as one of the main motivations for combining clas-
sifiers: the improvement of the generalization capability (due to the complementarity of each classifier), which is a key
question in noisy environments, since it might allow one to avoid the overfitting of the new characteristics introduced
by the noisy examples [39]. Most of the works studying MCSs and noisy data are focused on techniques like bagging
and boosting [7,25,20], which introduce diversity considering different samples of the set of training examples and use
only one baseline classifier. For example, in [7] the suitability of randomization, bagging and boosting to improve the per-
formance of C4.5 was studied. The authors reached the conclusion that with a low noise level, boosting is usually more
accurate than bagging and randomization. However, bagging outperforms the other methods when the noise level in-
creases. Similar conclusions were obtained in the paper of Maclin and Opitz [25]. Other works [20] compare the perfor-
mance of boosting and bagging techniques dealing with imbalanced and noisy data, reaching also the conclusion that
bagging methods generally outperforms boosting ones. Nevertheless, explicit studies about the adequacy of MCSs (differ-
ent from bagging and boosting, that is, those introducing diversity using different base classifiers) to deal with noisy data
have not been carried out yet. Furthermore, most of the existing works are focused on a concrete type of noise and on a
concrete combination rule. On the other hand, when data are suffering from noise, a proper study on how the robustness
of each single method influences the robustness of the MCS is necessary, but this fact is usually overlooked in the
literature.

This paper aims to develop a thorough analysis of the behavior of several MCSs with noisy training data with respect to
their individual components (classifiers), studying to what extent the behavior of these MCSs depends on that of the indi-
vidual classifiers. The classic hypothesis about the good behavior of MCSs with noisy data will be checked in detail and
the conditions under which the MCSs studied work well with noisy data will be analyzed. In order to reach meaningful con-
clusions based on the characteristics of the noise, a large collection of real-world datasets will be considered and different
types of noise, present in real-world data, and several noise levels will be introduced into them, since these are usually un-
known in real-world data. Two different types of noise, class and attribute noise, and four different schemes to introduce
them will be considered. The experimentation will consist of a total of 1640 datasets. The results taken from these datasets
will be analyzed taking into account two different factors: (i) the performance, and (ii) the robustness, i.e., the capability of the
classifier to be insensitive to the increments in the noise level, of each method in each noisy dataset. The results obtained will
also be contrasted using the proper statistical tests, as recommended in the specialized literature [16,17,10,11].

The choice of the single classification algorithms used to build the MCSs is based on their behavior with noisy data. In
such a way, one is able to extract meaningful conclusions from the point of view of noise. Three algorithms have been se-
lected, among the top ten algorithms in Data Mining [47], each one belonging to a different learning paradigm, and having
a well-known differentiated robustness to noise: a Support Vector Machine (SVM) [5], C4.5 [36] and k-Nearest Neighbors (k-
NN) [29].

All these classification algorithms will be combined using different decisions combination methods [28,38,41,18] to cre-
ate MCSs of different sizes and characteristics. Two forms to create diversity will be considered: (i) considering different indi-
vidual classifiers trained with the whole training data (heterogeneous base classifiers) and (ii) considering only one baseline
classifier trained with different random samples of the training data of equal size as the original training data (using bag-
ging). In this way, whether the performance and noise-robustness of the individual components is related to that of the cor-
responding MCS will be verified. All the conclusions and lessons learned from the analysis of the empirical results will be
included in a specific section at the end of this paper.

A web-page with all the complementary material associated with this paper is available at http://www.sci2s.ugr.es/
mcs_noise, including the basic information of this paper, all the datasets created and the complete results obtained for each
classification algorithm, in such a way that this work becomes easily reproducible by other researchers.

The rest of this paper is organized as follows. Section 2 presents an introduction to classification with noisy data. Section 3
gives the motivations for the usage of MCSs. Next, Section 4 describes the experimental framework. Section 5 includes the
experimental results and their analysis. Section 6 studies the results of different decisions combination methods. Section 7
presents the lessons learned and, finally, Section 8 presents some concluding remarks.
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2. Noisy data in classification problems

First, this section introduces the problem of noisy data in classification (Section 2.1) and then, it describes how to simu-
late different types of noise present in real-world data (Section 2.2).

2.1. Introduction to noisy data

Data gathered from real-world problems are never perfect and often suffer from corruptions that may hinder the perfor-
mance of the system in terms of the classification accuracy, building time, size and interpretability of the classifier [51].
Noise mainly affects the data acquisition and preprocessing phases, having two main sources [52]: implicit errors introduced
by measurement tools, such as different types of sensors; and random errors introduced by batch processes or experts when
the data are gathered, such as in a document digitalization process.

A large number of components determine the quality of a dataset [42]. Among them, the class labels and the attribute
values directly influence the quality of a classification dataset. The quality of the class labels refers to whether the class
of each example is correctly assigned; otherwise, the quality of the attributes refers to their capability of properly charac-
terizing the examples for classification purposes – obviously, if noise affects attribute values, this capability of characteriza-
tion and therefore, the quality of the attributes, is reduced. Based on these two information sources, two types of noise can be
distinguished in a given dataset [46,3]:

1. Class noise. This occurs when an example is incorrectly labeled. Class noise can be attributed to several causes, such
as subjectivity during the labeling process, data entry errors, or inadequacy of the information used to label each
example. Two types of class noise can be distinguished: (i) contradictory examples [13] – duplicate examples have
different class labels –, and (ii) misclassifications [53] – examples that are labeled as a class different from the real
one.

2. Attribute noise. This refers to corruptions in the values of one or more attributes. Examples of attribute noise are:
erroneous attribute values, missing or unknown attribute values, and incomplete attributes or ‘‘do not care’’ values.

In this paper, class noise refers to misclassifications, whereas attribute noise refers to erroneous attribute values, because
they are the most common in real-world data [52]. Furthermore, erroneous attribute values, unlike other types of attribute
noise, such as missing values (which are easily detectable), have received less attention in the literature.

Noise hinders the knowledge extraction from the data and spoils the models obtained using that noisy data when they are
compared to the models learned from clean data from the same problem, which represent the real implicit knowledge of the
problem [52]. In this sense, robustness [19] is the capability of an algorithm to build models that are insensitive to data cor-
ruptions and suffer less from the impact of noise; that is, the more robust an algorithm is, the more similar the models built
from clean and noisy data are. Thus, a classification algorithm is said to be more robust than another if the former builds
classifiers which are less influenced by noise than the latter. Robustness is considered more important than performance
results when dealing with noisy data, because it allows one to know a priori the expected behavior of a learning method
against noise in those cases where the characteristics of noise are unknown.

In order to analyze the degree of robustness of the classifiers in the presence of noise, we will compare the performance of
the classifiers learned with the original (without induced noise) dataset with the performance of the classifiers learned using
the noisy dataset. Therefore, those classifiers learned from noisy datasets that are more similar (in terms of results) to the
noise-free1 classifiers will be the most robust ones. An example of a robust learner is the C4.5 decision tree learning algorithm
[36] considered in this paper, which uses pruning strategies to reduce the chances of trees being influenced by the noise in the
training data [34,35]. One of the objectives of this paper is to check whether the performance and robustness of C4.5 trained
with noisy data can be improved by incorporating it into an MCS.

2.2. Simulating the noise of real-world datasets

Checking the effect of noisy data on the performance of classifier learning algorithms is necessary to improve their reli-
ability and has motivated the study of how to generate and introduce noise into the data. Noise generation can be charac-
terized by three main characteristics [52]:

1. The place where the noise is introduced. Noise may affect the input attributes or the output class, impairing the learn-
ing process and the resulting model.

2. The noise distribution. The way in which the noise is present can be, for example, uniform [39,54] or Gaussian [53,52].
3. The magnitude of generated noise values. The extent to which the noise affects the dataset can be relative to each data

value of each attribute, or relative to the minimum, maximum and standard deviation for each attribute [53,54,52].

1 Noise-free refers to the original datasets without induced noise, which might contain noise that is not quantifiable.
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In contrast to other studies in the literature, this paper aims to clearly explain how noise is defined and generated (see
Section 4.2 for more details), and also to properly justify the choice of the noise introduction schemes. Furthermore, the noise
generation software has been incorporated into the KEEL tool [2] for its free usage. The two types of noise considered in this
work, class and attribute noise, have been modeled using four different noise schemes; in such a way, the presence of those
types of noise will allow one to simulate the behavior of the classifiers in these two scenarios:

1. Class noise usually occurs on the boundaries of the classes, where the examples may have similar characteristics –
although it can occur in any other area of the domain. In this paper, class noise is introduced using an uniform class noise
scheme [39] (randomly corrupting the class labels of the examples) and a pairwise class noise scheme [53,52] (labeling
examples of the majority class with the second majority class). Considering these two schemes, noise affecting any pair
of classes and only the two majority classes are simulated, respectively.

2. Attribute noise can proceed from several sources, such as transmission constraints, faults in sensor devices, irregularities
in sampling and transcription errors [40]. The erroneous attribute values can be totally unpredictable, i.e., random, or
imply a low variation with respect to the correct value. We use the uniform attribute noise scheme [54,52] and the Gaussian
attribute noise scheme in order to simulate each one of the possibilities, respectively. We introduce attribute noise in
accordance with the hypothesis that interactions between attributes are weak [52]; as a consequence, the noise intro-
duced into each attribute has a low correlation with the noise introduced into the rest.

3. Multiple Classifier Systems for classification tasks

This section focuses on describing the usage of MCSs for classification tasks. Section 3.1 presents the motivations for the
usage of MCSs, whereas Section 3.2 describes the different ways usually considered to build an MCS. Next, Section 3.3 shows
different methods to combine the outputs of the classifiers. Finally, Section 3.4 explains how the MCSs of this paper are built.

3.1. Single classifiers against their combination

Given a set of problems, finding the best overall classification algorithm is sometimes difficult because some classifiers
may excel in some cases and perform poorly in others. Moreover, even though the optimal match between a learning method
and a problem is usually searched, this match is generally difficult to achieve and perfect solutions are rarely found for com-
plex problems [14,15]. This is a reason for using MCSs [15,14,32], since it is not necessary to choose a specific learning meth-
od. All of them might be used, taking advantage of the strengths of each method, while avoiding its weaknesses.
Furthermore, there are other motivations to combine several classifiers [14]:

! To avoid the choice of some arbitrary but important initial condition, e.g., those involving the parameters of the
learning method.

! To introduce some randomness to the training process in order to obtain different alternatives that can be combined
to improve the results obtained by the individual classifiers.

! To use complementary classification methods improves dynamic adaptation and flexibility.

3.2. Using several classifiers for a classification problem

There are several strategies to use more than one classifier for a single classification task [15]:

! Dynamic classifier selection. This is based on the fact that one classifier may outperform all others using a global per-
formance measure but it may not be the best in all parts of the domain. Therefore, this type of methods divide the
input domain into several parts and aim to select the classifier with the best performance in that part.

! Multi-stage organization. This builds the classifiers iteratively. At each iteration, a group of classifiers operates in par-
allel and their decisions are then combined. A dynamic selector decides which classifiers are to be activated at each
stage based on the classification performances of each classifier in previous stages.

! Sequential approach. A classifier is used first and the other ones are used only if the first does not yield a decision with
sufficient confidence.

! Parallel approach. All available classifiers are used for the same input example in parallel. The outputs from each clas-
sifier are then combined to obtain the final prediction.

Although the first three approaches have been explored to a certain extent, the majority of classifier combination research
focuses on the fourth approach, due to its simplicity and the fact that it enables one to take advantage of the factors pre-
sented in the previous section. For these reasons, this paper focus on the fourth approach.
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3.3. Decisions combination in multiple classifiers systems

As has been previously mentioned, parallel approaches need a posterior phase of combination after the evaluation of a
given example by all the classifiers. Many decisions combination proposals can be found in the literature, such as the inter-
section of decision regions [12], voting methods [28], prediction by top choice combinations [43], use of the Dempster–Sha-
fer theory [26,49] or ranking methods [15]. In concrete, we will study the following four combination methods for the MCSs
built with heterogeneous classifiers:

1. Majority vote (MAJ) [28]. This is a simple but powerful approach, where each classifier gives a vote to the predicted class
and the most voted one is chosen as the output.

2. Weighted majority vote (W-MAJ) [38]. Similarly to MAJ, each classifier gives a vote for the predicted class, but in this
case, the vote is weighted depending on the competence (accuracy) of the classifier in the training phase.

3. Naive Bayes (NB) [41]. This method assumes that the base classifiers are mutually independent. Hence, the predicted
class is that one obtaining the highest posterior probability. In order to compute these probabilities, the confusion matrix
of each classifier is considered.

4. Behavior-Knowledge Space (BKS) [18]. This is a multinomial method that indexes a cell in a look-up table for each pos-
sible combination of classifiers outputs. A cell is labeled with the class to which the majority of the instances in that cell
belong to. A new instance is classified by the corresponding cell label; in case that for the cell is not labeled or there is a
tie, the output is given by MAJ.

We always use the same training dataset to train all the base classifiers and to compute the parameters of the aggregation
methods, as it is recommended in [23]. Using a separate set of examples to obtain such parameters can imply some impor-
tant training data to be ignored and this fact is generally translated into a loss of accuracy of the final MCS built.

In MCSs built with heterogeneous classifiers, all of them may not return a confidence. Even though each classifier can be
individually modified to return a confidence for its predictions, such confidences will come from different computations
depending on the classifier adapted and their combination could become meaningless. Nevertheless, in MCSs built with
the same type of classifier, this fact does not occur and it is possible to combine their confidences since these are homoge-
neous among all the base classifiers [23]. Therefore, in the case of Bagging, given that the same classifier is used to train all
the base classifiers, the confidence of the prediction can be used to compute a weight and, in turn, these weights can be used
in a weighted voting combination scheme.

3.4. Multiple Classifier Systems used in the experimentation

The choice of the learning algorithms used in this paper – SVM [5], C4.5 [36] and k-NN [29] – is based on their good
behavior in a large number of real-world problems; moreover, they were selected because these methods have a highly dif-
ferentiated and well known noise-robustness, which is important in order to properly evaluate the performance of MCSs in
the presence of noise. This section briefly describes their operating procedures, with special reference to their noise handling
mechanisms, allowing one to better understand the results of the impact of noise on them in the experimentation
(Section 5).

! C4.5 decision tree generator [36]. C4.5 is considered a robust learner tolerant to noisy data. It iteratively builds a decision
tree that correctly classifies the largest number of examples (defined by the window size). As indicated in [9], the main
problem of windowing techniques is that the process may incorporate all noisy examples into the learning window,
because they may be misclassified by an apparently good rule. In order to avoid this problem as well as over-fitting to
noisy data, C4.5 uses pruning strategies to reduce the chances of classifiers being affected by noisy examples from the
training data [34,35]. For example, in this paper, a post-pruning process is carried out, which discards unreliable parts
from the fully grown decision tree. Nevertheless, this process is based on statistical assumptions that might be unreliable,
since they depend on the training data. Therefore, when the noise level is relatively high, even a robust learner such as
C4.5 may obtain a poor performance.
! Support Vector Machine [5]. SVM builds a hyperplane that separates examples of different classes maximizing the dis-

tance, that is, the margin, of the examples lying near the separating hyperplane, which are called support vectors. A better
generalization is generally achieved when the distances from the examples of both classes to the hyperplane are larger,
because the maximization of the margin of separation reduces the empirical risk instead of the expected risk. SVM relies
on the support vectors, which are identified from the training instances, to derive the decision model. Thus, the hyper-
planes found by SVM can be easily altered including or excluding a single noisy example [31]. Furthermore, the implicit
interdependence among the input attributes – since they are fused into two factors in the learning phase – may also cause
difficulties when noise is introduced into the training data, which disrupts the interrelations and correlations between the
attributes. Thus, SVM should a priori be more noise-sensitive than C4.5. We have used the Puk kernel for SVM, whose
expression is given in Eq. (1):
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where xi and xj are two vectors, and r and x control the half-width and the tailing factor of the peak of the function.
! k-Nearest Neighbors [29]. This method searches the k most similar examples to the given one using a distance function

in order to determine its class. The function used in this paper is the Heterogeneous Value Distance Metric (HVDM), which
computes the distance between the values of each attribute based on the training data distribution. In the experimenta-
tion, three different values of k are considered: 1, 3 and 5. The value of k determines a higher or lower sensitivity to noise
[22]. Thus, if only one nearest neighbor is considered, k-NN relies on each single example to derive the decision model and
the decision regions can be easily altered by individual examples. Otherwise, higher k values make the model more
robust. In order to find the k nearest neighbors in the space of numerical and nominal attributes, the Heterogeneous Value
Difference Metric (HVDM) metric is applied [44].

Considering the previous classifiers (SVM, C4.5 and k-NN), the following MCS are built:

1. MCS3-k. These MCSs are composed by 3 individual classifiers (SVM, C4.5 and k-NN). Three values of k are considered (1, 3
and 5), so we will create three different MCS3-k denoted as MCS3-1, MCS3-3 and MCS3-5.

2. MCS5. This is composed by 5 different classifiers: SVM, C4.5 and k-NN with the 3 different values (1, 3 and 5).
3. BagC4.5. This MCS considers C4.5 as baseline classifier. In this case, for the decisions combination method we use as con-

fidence the accuracy of the leaf predicting the class, which is computed as the percentage of correctly classified train
examples from the total number of covered ones.

Therefore, the MCSs built with heterogeneous classifiers (MCS3-k and MCS5) will contain a noise-robust algorithm (C4.5),
a noise-sensitive method (SVM) and a method whose robustness varies depending on the value of k (k-NN). Hence, how the
behavior of each MCS3-k and the MCS5 depends on that of each single method can be analyzed. In the case of BagC4.5, it is
compared to its base classifier, that is, C4.5.

The configuration parameters used to build the classifiers considered are shown in Table 1. The same parameter setup for
each classification algorithm, considered either as part of a MCS or individually, has been used for all the datasets. This will
help us to know to what extent the same classifier trained with the same parameters over the same training data can imply
an advantage incorporating it into a MCS with respect to its usage alone.

4. Experimental framework

First, this section describes the base datasets used in the experiments (Section 4.1). Second, the processes to induce noise
into them are introduced (Section 4.2). Finally, the methodology for the analysis of the results is explained in Section 4.3.

4.1. Base datasets

The experimentation is based on forty real-world classification problems from the KEEL-dataset repository2 [1]. Table 2
shows the datasets sorted by the number of classes (#CL). Moreover, for each dataset, the number of examples (#EX) and the
number of attributes (#AT), along with the number of numeric and nominal attributes are presented. Some of the largest data-
sets (nursery, page-blocks, penbased, satimage, splice) were stratified at 10% in order to reduce the computational time required
for training, given the large amount of executions carried out in this paper. For datasets containing missing values (such as auto-
mobile or dermatology), instances with missing values were removed from the datasets before the partitioning.

4.2. Introducing noise into datasets

In the previous datasets, as in most of the real-world datasets, the initial amount and type of noise present are unknown.
Therefore, no assumptions about the base noise type and level can be made. For this reason, these datasets are considered to
be noise free, in the sense that no recognizable noise has been induced into them. In order to control the amount of noise in
each dataset and check how it affects the classifiers, noise is introduced into each dataset in a supervised manner. Four dif-
ferent noise schemes proposed in the literature, as explained in Section 2, are used in order to introduce a noise level x% into
each dataset:

1. Introduction of class noise.
! Uniform class noise [39]. x% of the examples are corrupted. The class labels of these examples are randomly replaced

by another one from the M classes.

2 http://www.keel.es/datasets.php.
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! Pairwise class noise [53,52]. Let X be the majority class and Y the second majority class, an example with the label X
has a probability of x/100 of being incorrectly labeled as Y.

2. Introduction of attribute noise.
! Uniform attribute noise [54,52]. x% of the values of each attribute in the dataset are corrupted. To corrupt each attri-

bute Ai, x% of the examples in the data set are chosen, and their Ai value is assigned a random value from the domain Di

of the attribute Ai. An uniform distribution is used either for numerical or nominal attributes.
! Gaussian attribute noise. This scheme is similar to the uniform attribute noise, but in this case, the Ai values are cor-

rupted, adding a random value to them following a Gaussian distribution of mean = 0 and standard devia-
tion = (max &min)/5, being max and min the limits of the attribute domain ðDiÞ. Nominal attributes are treated as
in the case of the uniform attribute noise.

In order to create a noisy dataset from the original one, the noise is introduced into the training partitions as follows:

1. A level of noise x%, of either class noise (uniform or pairwise) or attribute noise (uniform or Gaussian), is introduced
into a copy of the full original dataset.

2. Both datasets, the original one and the noisy copy, are partitioned into 5 equivalent folds, that is, with the same
examples in each one.

3. The training partitions are built from the noisy copy, whereas the test partitions are formed from examples from the
base dataset, that is, the noise free dataset.

We introduce noise, either class or attribute noise, only into the training sets since we want to focus on the effects of noise
on the training process. This will be carried out observing how the classifiers built from different noisy training data for a
particular dataset behave, considering the accuracy of those classifiers, with the same clean test data. Thus, the accuracy
of the classifier built over the original training set without additional noise acts as a reference value that can be directly com-
pared with the accuracy of each classifier obtained with the different noisy training data. Corrupting the test sets also affects
the accuracy obtained by the classifiers and therefore, our conclusions will be not only limited to the effects of noise on the
training process.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of a stratified 5-fold cross-validation.
Hence, a total of 25 runs per dataset, noise type and level are averaged. 5 partitions are used because, if each partition has a
large number of examples, the noise effects will be more notable, facilitating their analysis.

As a consequence, a large collection of new noisy datasets are created from the aforementioned forty base datasets. Both
types of noise are independently considered: class and attribute noise. For each type of noise, the noise levels ranging from
x = 0% (base datasets) to x = 50%, by increments of 5%, are studied. Therefore, 400 noisy datasets are created with each of the
four aforementioned noise schemes. The total number of datasets in the experimentation is 1640. Hence, considering the
5x5fcv of the 1640 datasets, 41000 executions are carried out for each classification algorithm. All these datasets are avail-
able on the web-page associated with this paper.

Table 1
Parameter configuration for the classification algorithms.

SVM C4.5 k-NN

! Cost: C = 100, Tolerance: t = 0.001
! Parameter for the round-off error: ! = 10&12

! Type of Kernel: Puk with r = 1, x = 1
! Data preprocessing: Normalization in [0,1]
! Fit logictics models to the output

! Confidence level: c = 0.25
! Minimal instances per leaf: i = 2
! Prune after the tree building

! Number of neighbors: k = 1,3 and 5
! Distance function: HVDM

Table 2
Summary description for the classification datasets.

Dataset #EX #AT #CL Dataset #EX #AT #CL Dataset #EX #AT #CL Dataset #EX #AT #CL

banana 5300 2(2/0) 2 spambase 4597 57(57/0) 2 hayes-roth 160 4(4/0) 3 glass 214 9(9/0) 7
german 1000 20(13/7) 2 twonorm 7400 20(20/0) 2 car 1728 6(0/6) 4 shuttle 2175 9(9/0) 7
heart 270 13(13/0) 2 wdbc 569 30(30/0) 2 lymphography 148 18(3/15) 4 zoo 101 16(0/16) 7
ionosphere 351 33(33/0) 2 balance 625 4(4/0) 3 vehicle 846 18(18/0) 4 satimage 643 36(36/0) 7
magic 19020 10(10/0) 2 splice 319 60(0/60) 3 nursery 1296 8(0/8) 5 segment 2310 19(19/0) 7
monk 432 6(6/0) 2 contraceptive 1473 9(9/0) 3 page-blocks 548 10(10/0) 5 ecoli 336 7(7/0) 8
phoneme 5404 5(5/0) 2 iris 150 4(4/0) 3 cleveland 297 13(13/0) 5 led7digit 500 7(0/7) 10
pima 768 8(8/0) 2 new-thyroid 215 5(5/0) 3 automobile 159 25(15/10) 6 penbased 1099 16(16/0) 10
ring 7400 20(20/0) 2 thyroid 720 21(6/15) 3 dermatology 358 33(1/32) 6 yeast 1484 8(8/0) 10
sonar 208 60(60/0) 2 wine 178 13(13/0) 3 flare 1066 11(0/11) 6 vowel 990 13(13/0) 11
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4.3. Methodology of analysis

In order to check the behavior of the different methods when dealing with noisy data, the results of each MCS are com-
pared with those of their individual components using two distinct properties:

1. The performance of the classification algorithms on the test sets for each level of induced noise, defined as its accuracy
rate. For the sake of brevity, only averaged results are shown (the rest can be found on the web page associated with this
paper), but it must be taken into account that the conclusions drawn in this paper are based on the proper statistical anal-
ysis, which considers all the results (not averaged).

2. The robustness of each method is estimated with the relative loss of accuracy (RLA) (Eq. (2)), which is used to measure the
percentage of variation of the accuracy of the classifiers at a concrete noise level with respect to the original case with no
additional noise:

RLAx% ¼
Acc0% & Accx%

Acc0%
; ð2Þ

where RLAx% is the relative loss of accuracy at a noise level x%, Acc0% is the test accuracy in the original case, that is, with 0% of
induced noise, and Accx% is the test accuracy with a noise level x%.

In order to properly analyze the performance and RLA results, Wilcoxon’s signed rank statistical test is used, as suggested
in the literature [6]. This is a non-parametric pairwise test that aims to detect significant differences between two sample
means; that is, between the behavior of the two algorithms involved in each comparison. For each type and noise level,
the MCS and each single classifier will be compared using Wilcoxon’s test and the p-values associated with these compar-
isons will be obtained. The p-value represents the lowest level of significance of a hypothesis that results in a rejection and it
allows one to know whether two algorithms are significantly different and the degree of this difference. Both performance
and robustness are studied because the conclusions reached with one of these metrics need not imply the same conclusions
with the other.

5. Analysis of the results: Noisy data in Multiple Classifier Systems

This section presents the results of performance and robustness of the MCSs trained with noisy data with respect to their
individual classifier components. Section 5.1 analyzes the results obtained with class noise, whereas Section 5.2 is devoted to
the attribute noise. Each one of these sections is divided into two main parts: the first part describes the results obtained
comparing each MCS with each of its components, whereas the second one analyzes these results for each type of noise.
Due to the large amount of results, they should be properly outlined. As a consequence, only the general behavior of the
methods will be described in order to reach meaningful conclusions (without observing the characteristics of each single
dataset). This section is devoted to the study of the MAJ scheme for the final class prediction in order to consider its results
as a reference, since it is the simplest method; other decisions combination schemes are analyzed in Section 6.

5.1. First scenario: Datasets with class noise

Table 3 shows the performance (top part of the table) and robustness (bottom part of table) results of each classification
algorithm at each noise level on datasets with class noise. Each one of these parts in the table (performance and robustness
parts) is divided into other two parts: one with the results of the uniform class noise and another with the results of the
pairwise class noise. A star ‘'’ next to a p-value indicates that the corresponding single algorithm obtains more ranks than
the MCS in Wilcoxon’s test comparing the individual classifier and the MCS. Note that the robustness can only be measured if
the noise level is higher than 0%, so the robustness results are presented from a noise level of 5% and higher.

The performance results in this table are summarized below:

! Performance results with uniform class noise.
1. Results of MCS3-k.

– MCS3-k vs. SVM. MCS3-k is statistically better than SVM regardless of the value of k. Moreover, the higher the value
of k, the lower the p-values are.

– MCS3-k vs. C4.5. The performance of MCS3-k with respect to C4.5 heavily depends on the value of k. In MCS3-1
statistical differences are only found at the lowest noise levels (up to 5%), whereas MCS3-3 maintains these differ-
ences up to 30%. For the rest of the noise levels, both MCS3-1 and MCS3-3 are statistically equivalent to C4.5,
although MCS3-3 generally obtains more ranks than C4.5. Finally, MCS3-5 is statistically better than all its individ-
ual components at all noise levels.

– MCS3-k vs. k-NN. Statistical differences are found between MCS3-k and k-NN regardless of the value of k. Further-
more, as the value of k increases, so does the corresponding p-value at the different noise levels (note that very low
p-values are obtained in the case of k = 1).
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Table 3
Performance and robustness results on datasets with class noise.

x% Results p-values

Single methods Multi-classifiers MCS3-1 vs. MCS3-3 vs. MCS3-5 vs. MCS5 vs. BagC4.5
vs.

SVM C4.5 1-NN 3-NN 5-NN MCS3-
1

MCS3-
3

MCS3-
5

MCS5 BagC4.5 SVM C4.5 1-NN SVM C4.5 3-NN SVM C4.5 5-NN SVM C4.5 1-NN 3-NN 5-NN C4.5

Performance
Uniform class noise

0% 83.25 82.96 81.42 82.32 82.32 85.42 85.48 85.52 83.74 85.18 5.2E&03 1.8E&03 7.1E&04 1.3E&02 5.0E&04 3.1E&03 1.0E&02 2.8E&04 5.0E&03 4.4E&01 1.9E&02 1.4E&04 9.7E&06 2.2E&03 1.5E&07
5% 81.04 82.48 78.68 81.67 82.06 84.11 84.86 85.03 83.15 85.10 2.6E&04 3.0E&02 1.3E&06 2.4E&05 6.1E&04 7.8E&04 5.5E&06 2.2E&04 4.6E&03 6.6E&03 1.6E&02 4.2E&08 2.7E&06 3.5E&02 6.6E&08

10% 79.58 82.08 76.28 80.84 81.56 83.00 84.25 84.57 82.60 84.87 1.1E&04 3.9E&01 1.3E&07 1.5E&06 3.5E&03 7.8E&04 2.1E&07 4.5E&04 1.1E&02 1.7E&03 4.8E&02 3.9E&08 1.1E&06 8.1E&02 1.3E&07
15% 78.26 80.88 73.71 79.71 80.94 81.60 83.21 83.63 81.74 84.20 1.5E&04 7.1E&01 6.1E&08 1.3E&06 3.1E&03 4.7E&04 1.7E&07 6.1E&04 5.3E&02 2.1E&03 4.5E&02 3.6E&08 1.3E&06 2.9E&01 1.3E&07
20% 76.55 79.97 71.22 78.18 80.09 80.09 81.98 82.69 80.55 83.58 5.8E&05 9.5E&01⁄ 1.0E&07 8.1E&07 2.0E&02 2.7E&04 1.7E&07 8.6E&04 6.2E&02 8.6E&04 7.4E&02 4.5E&08 1.1E&06 8.5E&01 6.3E&07
25% 75.05 79.02 68.78 76.68 79.27 78.53 80.87 81.78 79.50 82.80 3.7E&04 4.7E&01⁄ 7.0E&08 2.1E&06 4.8E&02 2.2E&04 1.0E&07 1.2E&03 1.2E&01 2.4E&03 5.3E&02 3.6E&08 2.2E&06 9.3E&01⁄ 8.1E&07
30% 73.82 77.90 65.88 75.09 78.18 77.10 79.69 80.75 78.18 81.79 2.8E&04 3.5E&01⁄ 6.1E&08 1.7E&06 8.3E&02 1.9E&04 2.3E&07 2.0E&03 1.0E&01 1.9E&03 3.2E&01 3.6E&08 5.2E&06 5.2E&01⁄ 4.0E&06
35% 72.31 76.28 63.51 72.95 76.67 75.11 77.87 79.16 76.44 80.39 1.7E&03 2.1E&01⁄ 6.5E&08 2.9E&06 1.5E&01 9.2E&05 5.3E&07 5.4E&03 1.0E&01 3.1E&03 5.0E&01 3.6E&08 4.9E&06 3.3E&01⁄ 4.6E&06
40% 70.69 74.51 61.00 70.71 75.09 73.20 76.04 77.56 74.72 78.85 7.2E&03 2.0E&01⁄ 7.0E&08 1.8E&05 1.8E&01 7.8E&05 2.1E&06 5.6E&03 9.0E&02 5.2E&03 4.9E&01 3.6E&08 1.6E&06 3.8E&01⁄ 3.9E&05
45% 69.10 72.07 58.68 68.00 72.57 70.68 73.61 75.27 72.16 77.06 4.3E&02 2.0E&01⁄ 1.4E&07 1.2E&04 1.7E&01 7.3E&05 3.1E&06 6.6E&03 7.8E&02 2.4E&02 5.0E&01 3.6E&08 1.8E&06 5.5E&01⁄ 9.2E&05
50% 67.07 69.22 55.55 65.39 70.40 67.64 70.82 72.70 69.43 74.31 5.4E&01 1.4E&01⁄ 1.1E&07 6.7E&04 1.6E&01 2.3E&04 2.3E&05 4.8E&03 1.4E&01 8.1E&02 7.1E&01 3.6E&08 5.5E&06 2.4E&01⁄ 1.3E&04

Pairwise class noise
0% 83.25 82.96 81.42 82.32 82.32 85.42 85.48 85.52 83.74 85.18 5.2E&03 1.8E&03 7.1E&04 1.3E&02 5.0E&04 3.1E&03 1.0E&02 2.8E&04 5.0E&03 4.4E&01 1.9E&02 1.4E&04 9.7E&06 2.2E&03 1.5E&07
5% 81.77 82.59 79.58 81.83 82.10 84.75 85.19 85.28 83.54 84.97 1.6E&04 1.0E&02 2.1E&06 1.2E&04 4.3E&04 7.4E&04 9.7E&05 1.7E&04 4.6E&03 2.7E&02 1.1E&02 1.6E&07 9.3E&07 1.8E&03 3.0E&07

10% 80.74 82.17 77.73 80.87 81.61 83.95 84.61 84.86 82.99 84.62 1.2E&04 5.8E&02 1.2E&07 6.2E&05 2.3E&03 4.3E&05 2.0E&05 3.9E&04 2.8E&03 1.7E&02 3.5E&02 6.1E&08 5.3E&07 6.1E&03 2.1E&07
15% 79.72 81.54 75.99 79.60 80.84 83.09 83.89 84.29 82.23 83.75 7.3E&05 1.6E&01 7.0E&08 2.0E&05 5.6E&03 4.9E&06 7.1E&06 5.2E&04 6.4E&04 1.2E&02 9.0E&02 4.5E&08 2.8E&07 5.2E&03 1.2E&06
20% 79.11 80.87 74.25 77.81 79.33 82.21 83.06 83.50 80.99 83.01 2.0E&04 3.5E&01 8.2E&08 3.3E&05 1.9E&02 3.8E&07 1.2E&05 1.8E&03 6.7E&06 4.4E&02 4.3E&01 4.5E&08 2.3E&07 2.9E&04 2.5E&06
25% 77.80 79.59 72.27 75.75 77.52 80.81 81.64 82.14 79.54 81.46 3.3E&04 4.5E&01 6.5E&08 9.7E&05 7.6E&02 3.3E&07 2.6E&05 2.8E&03 2.7E&06 8.5E&02 6.6E&01 4.5E&08 1.7E&07 1.1E&04 1.1E&04
30% 76.64 78.81 70.46 73.45 75.19 79.52 80.24 80.76 77.48 79.74 2.1E&03 8.2E&01 5.6E&08 2.7E&04 4.0E&01 2.0E&07 6.9E&05 8.8E&02 7.1E&07 5.5E&01 3.3E&01⁄ 4.2E&08 1.4E&07 2.2E&05 5.0E&02
35% 75.17 76.90 68.88 71.05 72.64 77.65 78.13 78.66 75.20 77.26 2.2E&02 8.6E&01 1.0E&07 1.4E&02 6.2E&01 9.5E&08 3.4E&03 2.4E&01 4.6E&07 6.0E&01⁄ 1.4E&01⁄ 1.2E&07 4.5E&08 1.8E&05 4.0E&01
40% 73.13 74.83 66.58 68.17 69.25 75.25 75.61 75.93 72.21 74.15 3.8E&02 8.0E&01⁄ 4.5E&08 1.9E&02 9.7E&01⁄ 1.3E&07 1.4E&02 5.8E&01 3.0E&07 2.8E&01⁄ 6.2E&02⁄ 1.4E&07 1.5E&07 5.5E&06 4.3E&01⁄

45% 70.38 71.18 64.95 65.58 66.05 71.82 71.97 72.01 68.85 69.95 2.7E&01 7.5E&01 1.1E&07 2.2E&01 6.5E&01 2.0E&07 1.8E&01 5.1E&01 4.0E&07 1.5E&01⁄ 2.3E&01⁄ 8.7E&07 1.5E&07 1.4E&06 4.7E&01⁄

50% 65.92 60.29 63.06 62.71 62.42 64.46 64.23 64.00 63.67 62.40 2.6E&02⁄ 2.6E&05 1.1E&01 1.8E&02⁄ 3.3E&05 7.8E&02 1.1E&02⁄ 6.6E&05 1.2E&01 7.6E&02⁄ 4.1E&04 5.2E&01 2.5E&02 3.7E&02 2.4E&03

Robustness
Uniform class noise

5% 2.72 0.58 3.35 0.84 0.33 1.59 0.73 0.61 0.76 0.07 3.2E&03 2.3E&05⁄ 3.3E&07 9.2E&06 2.3E&01⁄ 3.4E&01 3.5E&06 9.5E&01 1.8E&01⁄ 8.7E&05 6.1E&01⁄ 3.6E&08 6.2E&03 4.5E&04⁄ 1.2E&02
10% 4.44 1.10 6.16 1.85 0.95 2.91 1.47 1.12 1.43 0.36 7.2E&03 1.5E&06⁄ 1.0E&07 4.6E&05 9.3E&02⁄ 1.5E&02 3.1E&06 7.1E&01 2.7E&01⁄ 1.2E&04 4.8E&01⁄ 3.6E&08 1.3E&03 3.3E&04⁄ 3.3E&04
15% 6.07 2.64 9.13 3.07 1.67 4.59 2.72 2.31 2.35 1.20 3.6E&02 2.8E&04⁄ 9.3E&07 9.7E&05 6.9E&01⁄ 3.8E&02 1.9E&05 3.4E&01 1.9E&01⁄ 6.7E&04 4.7E&01 4.2E&08 1.0E&04 1.9E&03⁄ 2.3E&04
20% 8.16 3.78 12.10 4.88 2.64 6.40 4.24 3.47 3.85 1.94 1.5E&02 3.1E&05⁄ 1.2E&06 1.1E&04 2.6E&01⁄ 4.4E&02 2.3E&05 3.8E&01 2.8E&01⁄ 2.7E&04 7.4E&01 5.2E&08 5.5E&04 4.1E&04⁄ 3.9E&04
25% 9.89 5.00 14.97 6.84 3.70 8.26 5.54 4.52 5.10 2.93 7.4E&02 1.1E&05⁄ 1.2E&06 2.6E&04 2.5E&01⁄ 3.5E&02 2.7E&05 3.7E&01 5.0E&01⁄ 9.0E&04 9.4E&01⁄ 3.9E&08 5.2E&05 1.4E&03⁄ 2.4E&04
30% 11.38 6.36 18.71 8.60 4.97 9.95 6.92 5.78 6.72 4.08 8.8E&02 4.6E&05⁄ 1.8E&07 1.5E&04 2.8E&01⁄ 2.8E&02 8.6E&06 3.8E&01 5.9E&01⁄ 1.2E&03 4.7E&01⁄ 3.6E&08 1.8E&03 6.7E&04⁄ 8.4E&03
35% 13.16 8.39 21.26 10.99 6.65 12.33 9.10 7.72 8.67 5.83 3.3E&01 3.3E&05⁄ 6.6E&07 5.5E&04 2.6E&01⁄ 3.3E&02 1.3E&04 4.3E&01 9.8E&01⁄ 4.8E&03 5.5E&01⁄ 3.9E&08 7.1E&04 5.8E&04⁄ 4.6E&03
40% 15.08 10.54 24.15 13.59 8.31 14.54 11.20 9.55 10.56 7.60 6.6E&01 8.2E&05⁄ 1.5E&06 2.8E&03 3.0E&01⁄ 9.9E&03 1.7E&04 2.5E&01 9.7E&01⁄ 1.1E&02 6.1E&01⁄ 3.9E&08 1.1E&04 1.4E&03⁄ 5.0E&03
45% 17.07 13.49 27.07 16.96 11.54 17.56 14.10 12.30 13.86 9.77 8.7E&01⁄ 9.7E&05⁄ 8.1E&06 1.2E&02 3.5E&01⁄ 1.2E&02 3.5E&04 3.8E&01 8.6E&01 6.0E&02 6.2E&01⁄ 5.2E&08 2.2E&04 1.4E&02⁄ 7.8E&03
50% 19.47 17.00 30.58 19.56 13.49 21.08 17.41 15.35 16.81 12.99 1.9E&01⁄ 1.3E&04⁄ 1.3E&05 5.1E&02 4.9E&01⁄ 2.1E&02 1.6E&03 1.5E&01 8.4E&01⁄ 1.5E&01 7.1E&01⁄ 4.2E&08 8.2E&04 5.9E&03⁄ 8.8E&03

Pairwise class noise
5% 1.72 0.47 2.12 0.58 0.18 0.79 0.34 0.28 0.17 0.27 2.8E&02 1.3E&02⁄ 8.7E&07 9.4E&04 8.0E&01 4.1E&02 7.8E&04 5.5E&01 6.7E&01⁄ 9.4E&04 2.4E&01 1.2E&07 9.9E&05 7.6E&01⁄ 5.4E&01

10% 2.97 1.00 4.20 1.59 0.78 1.73 1.05 0.81 0.76 0.69 6.6E&03 2.0E&04⁄ 6.7E&06 3.9E&04 2.4E&01⁄ 4.2E&03 6.6E&05 5.6E&01 4.6E&01 1.1E&03 8.6E&01 1.8E&07 4.6E&06 7.3E&01⁄ 1.2E&01
15% 4.11 1.82 6.23 3.06 1.64 2.81 1.95 1.53 1.68 1.81 1.4E&02 1.7E&03⁄ 2.1E&06 1.9E&04 1.3E&01⁄ 1.6E&03 5.5E&05 5.1E&01 4.2E&02 2.7E&03 3.9E&01⁄ 1.2E&07 4.0E&06 8.1E&01⁄ 7.8E&01⁄

20% 4.86 2.66 8.21 5.10 3.33 3.86 2.97 2.51 3.08 2.67 7.2E&02 1.7E&03⁄ 1.0E&05 3.7E&03 9.0E&02⁄ 4.3E&04 4.1E&04 7.4E&01⁄ 3.0E&03 6.8E&02 4.0E&02⁄ 2.1E&07 3.3E&06 2.4E&01 7.2E&01⁄

25% 6.41 4.33 10.57 7.32 5.24 5.55 4.68 4.16 4.69 4.53 2.5E&01 2.1E&02⁄ 6.7E&06 2.7E&02 4.2E&01⁄ 4.1E&04 4.4E&03 7.5E&01 3.7E&03 3.5E&01 8.8E&02⁄ 1.6E&07 9.9E&07 5.0E&02 3.1E&01⁄

30% 7.81 5.33 12.75 9.96 7.80 7.11 6.35 5.81 7.16 6.56 3.8E&01 2.7E&03⁄ 6.3E&06 6.4E&02 7.4E&02⁄ 7.3E&05 1.2E&02 3.6E&01⁄ 8.6E&04 5.9E&01⁄ 5.8E&04⁄ 2.6E&07 4.6E&06 3.6E&02 5.0E&03⁄

35% 9.59 7.68 14.28 12.51 10.53 9.30 8.88 8.32 9.64 9.50 3.8E&01 6.9E&03⁄ 6.6E&05 3.6E&01 1.5E&02⁄ 1.1E&04 1.3E&01 1.1E&01⁄ 3.9E&04 2.7E&01⁄ 1.0E&03⁄ 1.6E&05 8.1E&06 2.3E&02 3.2E&03⁄

40% 12.01 10.19 17.20 15.93 14.53 12.08 11.83 11.52 13.17 13.09 5.5E&01 7.8E&03⁄ 4.4E&05 4.4E&01 5.6E&03⁄ 5.5E&05 3.3E&01 1.2E&02⁄ 6.9E&05 1.4E&01⁄ 9.7E&05⁄ 6.6E&05 8.6E&06 5.8E&04 1.2E&04⁄

45% 15.19 14.59 18.96 18.84 18.03 16.05 15.96 16.01 16.92 17.93 7.3E&01⁄ 1.1E&01⁄ 1.0E&03 8.1E&01⁄ 1.2E&01⁄ 3.3E&04 7.7E&01⁄ 9.6E&02⁄ 1.4E&04 8.8E&02⁄ 1.7E&03⁄ 1.9E&02 1.1E&04 2.7E&04 8.7E&05⁄

50% 20.30 26.70 21.18 21.94 22.11 24.13 24.54 24.90 22.70 26.41 1.4E&04⁄ 2.6E&03 1.1E&01⁄ 5.8E&05⁄ 5.9E&03 7.8E&01⁄ 3.1E&05⁄ 2.4E&02 9.4E&01 4.1E&02⁄ 1.6E&02 8.8E&03⁄ 7.4E&01⁄ 5.8E&01 8.4E&01

J.A.Sáez
et

al./Inform
ation

Sciences
247

(2013)
1–20

9



2. Results of MCS5. MCS5 statistically outperforms SVM (except without induced noise) and C4.5 (up to 25%; they are
equivalent at the rest of the noise levels). Statistical differences are also found with 1-NN and 3-NN at all the noise
levels and with 5-NN at the lowest noise levels (below of 15%; both are equivalent at the rest of the noise levels).
The p-values increase with larger values of k.

3. Results of BagC4.5. BagC4.5 is statistically better than C4.5 at all the noise levels.
! Performance results with pairwise class noise.

1. Results of MCS3-k.
– MCS3-k vs. SVM. MCS3-k statistically outperforms its individual components when the noise level is below 45%,

whereas it only performs statistically worse than SVM when the noise level reaches 50% (regardless of the value
of k). The p-values at the different noise levels decrease as k increases.

– MCS3-k vs. C4.5. MCS3-k obtains more ranks than C4.5 in most of the cases; moreover, it is statistically better than
C4.5 when the noise level is below 15% (k = 1), 30% (k = 3) and 35% (k = 5).

– MCS3-k vs. k-NN. MCS3-k statistically outperforms k-NN regardless of the value of k. The p-values at the different
noise levels increase with larger values of k.

2. Results of MCS5. In general, MCS5 is statistically better than SVM up to 25% and C4.5 up to 15%; there are not differ-
ences at the rest of the noise levels. Statistical differences are also found with k-NN regardless the value of k (the p-
values increase with larger values of k).

3. Results of BagC4.5. BagC4.5 statistically outperform C4.5 up to a 30% of noise level.

Hereafter, the robustness results obtained are summarized:

! Robustness results with uniform class noise.
1. Results of MCS3-k.

– MCS3-k vs. SVM. MCS3-1 is significantly more robust than SVM up to a noise level of 30%. Both are equivalent from
35% onwards-even though MCS3-1 obtains more ranks at 35–40% and SVM at 45–50%. In the cases of k = 3 and
k = 5, MCS3-k statistically outperforms SVM.

– MCS3-k vs. C4.5. The robustness of C4.5 excels with respect to MCS3-1, observing the differences found. Regarding
MCS3-3 and MCS3-5, they are equivalent to C4.5-although C4.5 obtains more ranks with k = 3 and MCS3-k with
k = 5.

– MCS3-k vs. k-NN. MCS3-k is statistically better than k-NN (with k = 1 and k = 3, even though the p-values for k = 3
are higher than those for k = 1). Otherwise, MCS3-5 is statistically equivalent to 5-NN at all the noise levels.

2. Results of MCS5. In general, MCS5 is statistically more robust than SVM, 1-NN and 3-NN, equivalent to C4.5 and less
robust than 5-NN.

3. Results of BagC4.5. BagC4.5 statistically outperforms C4.5.
! Robustness results with pairwise class noise.

1. Results of MCS3-k.
– MCS3-k vs. SVM. MCS3-1 statistically overcomes SVM up to a 20% noise level, they are equivalent up to 45% and

MCS3-1 is outperformed by SMV at 50%. Similar behavior is shown with MCS3-3 and MCS3-5, but the statistical
differences in favor of the MCS3-k remain up to 30%.

– MCS3-k vs. C4.5. C4.5 is statistically more robust than MCS3-1 (except in highly affected datasets, 45–50%). MCS3-3
and C4.5 are equally robust in most of the cases, even though C4.5 excels at some noise levels. No differences are
found between MCS3-5 and C4.5, obtaining larger p-values than with the other values of k.

– MCS3-k vs. k-NN. The superiority of MCS3-k against k-NN is notable, as it is statistically better at all noise levels; in
addition, the values increase with the value of k.

2. Results of MCS5. MCS5 is statistically more robust than SVM up to 20% of noise level, equivalent up to 40% and worse
at 45–50%. It statistically outperforms C4.5 up to 15% and, in general, it is worse onwards. Statistical differences with
1-NN and 3-NN are found (except at the highest noise level). MCS5 is also statistically better than 5-NN between the
noise levels 25–45% and it is equivalent at the rest of the noise levels.

3. Results of BagC4.5. BagC4.5 is equivalent up to a noise level of 25% and worse at the rest of the noise levels.

From these performance and robustness results, the following points can be concluded:

1. The uniform scheme is the most disruptive class noise for the majority of the classifiers (single classifiers, MCS3-k and
MCS5) but for BagC4.5, which is more affected by the pairwise noise. However, from a medium noise level (15–25%)
onwards, the pairwise class noise becomes more disruptive for 3-NN and 5-NN (and consequently for MCS3-3, MCS3-
5 and also for MCS5). This fact clearly indicates that the behavior of each single classification algorithm trained with noisy
data influences that of the corresponding MCS into which it is incorporated (in the case of the MCSs built with
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heterogeneous classifiers). In addition, the sampling mechanism used to select the training examples can also affect the
results (in the case of BagC4.5). The reasons of the behavior of each type of MCS (built with heterogeneous classifiers and
with bagging) with both kinds of class noise are given in the following points:
! The higher disruptiveness of the uniform class noise in MCSs built with heterogeneous classifiers can be attributed to

two main reasons: (i) this type of noise affects all the output domain, that is, all the classes, to the same extent,
whereas the pairwise scheme only affects the two majority classes; (ii) a noise level x% with the uniform scheme
implies that exactly x% of the examples in the datasets contain noise, whereas with the pairwise scheme, the number
of noisy examples for the same noise level x% depends on the number of examples of the majority class Nmaj; as a con-
sequence, the global noise level in the whole dataset is usually lower–more specifically, the number of noisy examples
can be computed as (x ( Nmaj)/100.
1-NN is very sensitive to the number of noisy examples and it is therefore highly affected by the uniform class noise.
Nevertheless, the pairwise class noise affects 3-NN and 5-NN more than the uniform class noise when the noise level is
high enough–despite the former generating a lower number of noisy examples. This fact can be attributed to the fact
that the uniform class noise generates more examples, but their presence in the output domain is more dispersed
(since it affects all the classes). 3-NN and 5-NN take into account more than one neighbor in their prediction, hence,
they can correctly predict the class of the examples that are close to those noisy training examples, since the rest of the
neighbors are likely to be correctly labeled. However, with the pairwise scheme, it is more likely for these noisy exam-
ples to be close to each other, since all of them belonged to the majority class. Therefore, most of the neighbors used in
the predictions of 3-NN and 5-NN in these noisy areas are incorrectly labeled, since these methods are more sensitive
to this type of noise.

! BagC4.5 is more affected by the pairwise noise than by the uniform noise, whereas C4.5 behaves oppositely. This can
be attributed to the diversity that both noise schemes produce in BagC4.5. In this case, the diversity comes from the
examples in each sample used to train a classifier, since the baseline classifier is always the same (C4.5). The uniform
noise introduces more diversity than the pairwise noise (since the noise affects all the classes instead of only two clas-
ses) and BagC4.5 take advantage of this higher diversity. This good behavior of BagC4.5 with the uniform class noise
has been also mentioned in previous works [7].

2. The performance results show that:
! Uniform class noise. Each MCS3-k generally outperforms its single classifier components. MCS3-k is better than SVM

and k-NN regardless of the value of k, whereas it only performs statistically better than C4.5 at the lowest noise levels
– even though the noise level where MCS3-k is better increases together with the value of k, obtaining significant dif-
ferences at all the noise levels with k = 5. MCS5 is better than SVM, 1-NN and 3-NN but only better than C4.5 and 5-NN
at the lowest noise levels. BagC4.5 always outperforms C4.5.

! Pairwise class noise. MCS3-k improves SVM up to a 40% noise level, it is better than C4.5 at the lowest noise levels –
these noise levels are lower than those of the uniform class noise – and also outperforms k-NN. Therefore, the behavior
of MCS3-k with respect to their individual components is better in the uniform scheme than in the pairwise one. MCS5
is better than SVM and C4.5 at the lowest noise levels and better than k-NN regardless the value of k. BagC4.5 outper-
forms C4.5 if the noise levels is not very high.

3. The robustness results show that the higher the value of k, the greater the robustness of the MCS3-k. This fact is partic-
ularly notable with the most disruptive noise scheme, i.e., the uniform class noise scheme. Moreover:
! Uniform class noise. MCS3-k are generally more robust, even though they are never more robust than all their com-

ponents. The same occurs with MCS5; it is even less robust compared to 5-NN. BagC4.5 is more robust than C4.5.
! Pairwise class noise. MCS3-k are more robust against uniform class noise than against pairwise noise. They are more

robust than their single classifiers at lower noise levels than in the case of the uniform noise (in the case of SVM) or are
indeed less robust statistically or equivalent in all the noise levels (in the case of C4.5) – even though MCS3-k is gen-
erally more robust than k-NN. In this case, MCS5 is sometimes less robust than its single classifiers and BagC4.5 is
equal (at lowest noise levels) or less robust than C4.5.

5.2. Second scenario: Datasets with attribute noise

Table 4 shows the performance and robustness results of each classification algorithm at each noise level on datasets with
attribute noise.

The results in this table are summarized hereafter:

! Performance results with uniform attribute noise.
1. Results of MCS3-k.

– MCS3-k vs. SVM. MCS3-k statistically outperforms SVM regardless of the value of k. The p-values at the different
noise levels decrease when k increases.

– MCS3-k vs. C4.5. MCS3-1 performs well at the lowest noise levels (up to 10%), and is equivalent to C4.5 at the rest
of the noise levels. Statistical differences are found in favor of MCS3-3 and MCS3-5 up to 15%, and are equivalent to
C4.5 at the rest of the noise levels (even though MCS3-5 obtains lower p-values than MCS3-3).
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Table 4
Performance and robustness results on datasets with attribute noise.

x% Results p-values

Single methods Multi-classifiers MCS3-1 vs. MCS3-3 vs. MCS3-5 vs. MCS5 vs. BagC4.5
vs.

SVM C4.5 1-NN 3-NN 5-NN MCS3-
1

MCS3-
3

MCS3-
5

MCS5 BagC4.5 SVM C4.5 1-NN SVM C4.5 3-NN SVM C4.5 5-NN SVM C4.5 1-NN 3-NN 5-NN C4.5

Performance
Uniform attribute noise

0% 83.25 82.96 81.42 82.32 82.32 85.42 85.48 85.52 83.74 85.18 5.2E&03 1.8E&03 7.1E&04 1.3E&02 5.0E&04 3.1E&03 1.0E&02 2.8E&04 5.0E&03 4.4E&01 1.9E&02 1.4E&04 9.7E&06 2.2E&03 1.5E&07
5% 82.83 82.62 80.17 81.20 81.38 84.57 84.84 84.77 82.96 84.89 2.8E&03 1.2E&02 2.4E&05 6.7E&04 1.7E&03 8.7E&05 6.4E&04 1.7E&03 9.4E&04 9.8E&02 5.8E&02 5.2E&06 6.6E&07 1.4E&04 1.5E&07

10% 81.78 81.58 78.52 79.78 80.25 83.33 83.64 83.80 81.69 84.36 3.9E&03 8.3E&02 8.1E&06 1.3E&03 8.1E&03 1.4E&04 7.4E&04 1.8E&03 5.8E&04 2.1E&01 7.8E&02 2.0E&06 1.5E&06 1.0E&03 2.3E&07
15% 80.25 80.64 77.22 78.66 79.25 81.81 82.18 82.31 80.61 83.51 5.2E&03 2.8E&01 9.2E&06 3.9E&03 5.8E&02 2.4E&04 2.6E&03 3.8E&02 1.0E&03 1.4E&01 2.4E&01 2.2E&06 2.0E&06 7.4E&04 6.5E&08
20% 78.75 79.98 75.73 77.52 78.40 80.64 81.14 81.42 79.68 82.92 4.4E&03 6.2E&01 5.2E&06 2.1E&03 1.9E&01 7.8E&05 1.5E&03 1.3E&01 3.9E&04 1.3E&01 4.0E&01 4.0E&07 4.6E&07 2.5E&03 4.3E&07
25% 77.58 78.92 74.26 76.20 77.39 79.37 79.85 80.22 78.53 82.03 2.8E&03 9.7E&01 3.8E&06 2.1E&03 5.1E&01 1.3E&04 8.2E&04 1.6E&01 5.5E&04 1.2E&01 9.6E&01 3.0E&07 5.0E&07 5.9E&03 1.7E&07
30% 76.09 77.64 72.58 74.84 76.04 77.97 78.42 78.75 77.14 80.99 2.1E&03 9.4E&01⁄ 1.0E&05 1.1E&03 6.9E&01 2.7E&04 3.7E&04 2.3E&01 4.8E&03 5.8E&02 9.1E&01⁄ 4.6E&07 1.5E&06 6.6E&03 1.7E&07
35% 74.11 76.33 71.11 73.68 74.95 76.26 76.91 77.23 75.96 79.94 5.2E&04 7.8E&01⁄ 1.2E&05 4.7E&04 7.8E&01 2.6E&04 1.2E&04 3.8E&01 7.5E&03 2.1E&02 9.4E&01⁄ 3.5E&07 4.3E&07 5.3E&03 4.3E&07
40% 72.75 75.19 69.58 72.22 73.60 74.84 75.57 76.03 74.58 78.76 9.9E&03 7.6E&01⁄ 1.3E&06 2.3E&03 7.7E&01 1.6E&04 1.0E&03 4.0E&01 2.8E&03 6.8E&02 7.4E&01⁄ 1.5E&07 8.1E&07 4.6E&03 1.3E&06
45% 70.51 73.38 68.10 70.85 72.38 72.93 73.70 74.27 73.03 77.38 1.9E&03 6.3E&01⁄ 3.7E&05 9.4E&04 9.7E&01 1.2E&03 2.4E&04 4.5E&01 1.4E&02 3.2E&02 7.0E&01⁄ 2.0E&06 4.0E&06 4.2E&02 2.0E&06
50% 69.46 72.12 66.59 69.16 70.87 71.36 72.14 72.85 71.57 76.18 1.2E&02 3.1E&01⁄ 2.7E&05 2.4E&03 6.8E&01⁄ 5.2E&04 6.1E&04 7.9E&01 7.8E&03 5.6E&02 5.5E&01⁄ 6.1E&07 3.3E&06 5.1E&02 1.8E&06

Gauss ian attribute noise
0% 83.25 82.96 81.42 82.32 82.32 85.42 85.48 85.52 83.74 85.18 5.2E&03 1.8E&03 7.1E&04 1.3E&02 5.0E&04 3.1E&03 1.0E&02 2.8E&04 5.0E&03 4.4E&01 1.9E&02 1.4E&04 9.7E&06 2.2E&03 1.5E&07
5% 83.40 82.70 80.79 81.87 81.89 85.12 85.27 85.29 83.45 85.27 2.4E&03 3.0E&03 4.0E&05 2.3E&03 4.5E&04 6.4E&04 3.5E&03 3.3E&04 3.0E&03 2.4E&01 1.9E&02 7.6E&06 3.5E&06 6.4E&04 1.2E&07

10% 82.83 82.15 80.08 81.25 81.32 84.49 84.62 84.55 82.89 84.71 3.4E&03 4.8E&03 4.0E&05 1.6E&03 1.7E&03 7.8E&04 2.5E&03 1.9E&03 2.5E&03 2.4E&01 2.1E&02 1.5E&05 1.7E&06 3.5E&04 2.4E&07
15% 82.35 81.74 79.30 80.55 80.93 84.03 84.24 84.35 82.43 84.51 1.2E&02 5.4E&03 1.0E&05 7.8E&03 7.7E&04 4.0E&05 1.9E&03 5.4E&04 1.1E&03 1.9E&01 2.2E&02 8.1E&06 6.6E&07 1.6E&03 6.1E&08
20% 81.62 81.16 78.52 79.95 80.46 83.33 83.52 83.65 81.83 84.00 4.4E&03 2.1E&02 1.0E&05 2.7E&03 5.9E&03 1.9E&04 5.2E&04 2.6E&03 1.2E&03 1.4E&01 7.6E&02 8.1E&06 8.7E&07 2.4E&03 5.4E&07
25% 81.14 80.60 77.70 79.42 80.03 82.62 82.92 83.16 81.41 83.44 3.4E&03 4.3E&02 4.0E&05 8.6E&04 4.8E&03 5.8E&04 3.5E&04 2.0E&03 3.7E&03 1.1E&01 6.0E&02 1.4E&06 9.3E&07 4.0E&03 2.0E&07
30% 80.48 80.25 76.74 78.42 79.20 81.85 82.15 82.37 80.56 83.08 1.1E&02 2.0E&01 1.0E&05 2.7E&03 6.4E&02 1.6E&04 9.9E&04 1.9E&02 1.4E&03 9.8E&02 1.9E&01 2.0E&06 2.8E&07 1.2E&03 3.5E&07
35% 79.76 79.25 75.85 77.68 78.46 81.03 81.32 81.54 79.75 82.27 2.6E&02 1.2E&01 2.0E&05 1.2E&02 3.0E&02 7.8E&04 7.8E&03 5.4E&03 2.5E&03 3.1E&01 1.5E&01 1.6E&06 1.9E&06 2.1E&03 1.1E&07
40% 78.88 78.84 74.82 77.11 78.03 80.34 80.87 81.04 79.32 81.87 1.6E&02 4.0E&01 1.0E&05 4.0E&03 6.8E&02 2.2E&04 3.2E&03 1.9E&02 2.4E&03 2.1E&01 3.6E&01 3.3E&07 8.1E&07 5.6E&03 7.3E&07
45% 78.27 77.80 74.01 76.02 76.99 79.45 79.71 79.98 78.25 81.04 3.5E&02 2.6E&01 0.0E + 00 1.3E&02 1.3E&01 5.5E&04 6.6E&03 3.7E&02 1.9E&03 4.3E&01 3.1E&01 8.1E&07 3.1E&06 7.2E&03 2.4E&06
50% 77.26 77.01 73.31 75.59 76.50 78.49 79.08 79.21 77.86 80.39 2.2E&02 3.4E&01 3.0E&05 3.9E&03 7.6E&02 3.0E&04 2.9E&03 3.0E&02 5.4E&03 2.9E&01 2.7E&01 8.1E&07 1.8E&06 1.1E&03 2.4E&06

Robustness
Uniform attribute noise

5% 0.16 0.39 1.38 1.28 0.97 0.95 0.71 0.85 0.94 0.34 2.8E&01 1.3E&01⁄ 2.6E&01 8.1E&02 3.7E&01⁄ 4.9E&02 2.4E&01 1.7E&01⁄ 2.7E&02 2.6E&01 6.0E&02⁄ 1.2E&02 2.4E&03 4.7E&02 5.2E&01
10% 1.38 1.68 3.63 3.29 2.52 2.40 2.11 1.98 2.57 0.91 6.7E&01⁄ 6.6E&02⁄ 1.3E&02 5.5E&01 3.0E&01⁄ 7.5E&03 4.1E&01 4.6E&01⁄ 4.8E&02 8.4E&01⁄ 1.5E&01⁄ 7.8E&04 4.5E&04 5.6E&01 7.8E&03
15% 3.28 2.84 5.19 4.29 3.39 4.23 3.86 3.76 3.63 1.95 8.6E&01⁄ 1.8E&02⁄ 7.8E&02 5.9E&01 5.5E&02⁄ 8.3E&02 5.3E&01 3.7E&02⁄ 3.3E&01 6.5E&01 1.8E&01⁄ 6.7E&04 7.2E&03 5.5E&01 7.8E&03
20% 5.06 3.60 6.78 5.53 4.35 5.54 5.02 4.80 4.68 2.63 6.1E&01 5.2E&03⁄ 1.3E&02 4.3E&01 3.7E&02⁄ 2.7E&02 3.2E&01 3.2E&02⁄ 1.1E&01 3.5E&01 8.5E&02⁄ 2.6E&05 3.7E&03 8.2E&01 1.2E&02
25% 6.45 4.98 8.47 7.04 5.41 7.09 6.61 6.23 6.10 3.73 9.8E&01 5.9E&03⁄ 9.5E&03 7.6E&01 2.2E&02⁄ 1.9E&02 2.9E&01 5.5E&02⁄ 1.1E&01 5.5E&01 3.2E&02⁄ 3.1E&05 6.9E&03 7.3E&01⁄ 4.6E&03
30% 8.35 6.62 10.73 8.67 7.17 8.85 8.36 8.06 7.84 5.00 7.8E&01 2.6E&03⁄ 1.2E&02 6.7E&01 6.9E&03⁄ 6.0E&02 2.9E&01 2.2E&02⁄ 2.6E&01 5.0E&01 4.0E&02⁄ 4.6E&05 5.4E&03 1.0E + 00 5.2E&04
35% 10.62 8.23 12.32 9.93 8.13 10.79 10.12 9.82 9.17 6.24 3.1E&01 4.4E&03⁄ 2.0E&02 2.3E&01 2.8E&02⁄ 4.1E&02 1.0E&01 4.1E&02⁄ 4.4E&01 1.7E&01 8.5E&02⁄ 3.5E&05 5.9E&03 8.6E&01⁄ 1.4E&04
40% 12.13 9.60 14.29 11.64 9.71 12.44 11.67 11.23 10.74 7.57 7.8E&01⁄ 1.1E&02⁄ 2.0E&03 8.1E&01 4.8E&02⁄ 2.0E&02 5.8E&01 9.3E&02⁄ 1.3E&01 6.6E&01 7.4E&02⁄ 2.4E&06 4.8E&03 9.0E&01 1.2E&03
45% 14.92 11.87 16.04 13.28 10.91 14.73 13.98 13.38 12.75 9.31 6.9E&01 1.1E&02⁄ 2.5E&02 5.5E&01 6.8E&02⁄ 9.3E&02 2.2E&01 1.3E&01⁄ 3.5E&01 4.2E&01 1.6E&01⁄ 2.4E&04 9.9E&03 6.6E&01⁄ 3.2E&04
50% 16.28 13.46 17.70 15.17 12.48 16.68 15.85 15.09 14.40 10.75 8.5E&01⁄ 3.4E&03⁄ 2.0E&02 6.9E&01 4.0E&02⁄ 3.0E&02 2.9E&01 1.3E&01⁄ 2.9E&01 4.6E&01 1.0E&01⁄ 1.6E&04 3.4E&03 7.5E&01⁄ 3.3E&04

Gaussian attribute noise
5% &0.46 0.33 0.80 0.50 0.58 0.31 0.19 0.25 0.32 &0.16 7.8E&02 1.4E&01⁄ 3.2E&01 6.8E&02 9.6E&01 3.3E&01 1.2E&01 6.0E&01⁄ 5.4E&01 1.6E&01 6.4E&01⁄ 8.1E&02 1.2E&01 1.2E&01 8.9E&02

10% 0.25 0.94 1.60 1.28 1.20 1.03 0.98 1.16 0.92 0.53 1.7E&01 2.4E&01⁄ 2.6E&01 2.5E&01 4.8E&01⁄ 9.0E&02 7.7E&01 2.3E&01⁄ 4.1E&01 2.2E&01 8.4E&01⁄ 3.5E&02 2.2E&02 6.4E&02 1.7E&01
15% 0.75 1.48 2.51 2.09 1.84 1.54 1.39 1.32 1.48 0.77 9.9E&01⁄ 1.3E&01⁄ 5.3E&02 5.5E&01 6.0E&01⁄ 1.6E&02 4.1E&01 7.5E&01⁄ 2.2E&01 6.2E&01 6.5E&01⁄ 8.2E&04 5.9E&03 5.3E&01 3.8E&02
20% 1.74 2.10 3.36 2.74 2.03 2.36 2.21 2.14 2.07 1.35 3.3E&01 1.2E&01⁄ 1.0E&01 8.3E&02 1.4E&01⁄ 2.6E&02 9.3E&02 3.3E&01⁄ 3.1E&01 2.8E&01 2.0E&01⁄ 8.8E&03 1.8E&03 8.3E&01 2.0E&01
25% 2.32 2.89 4.25 3.27 2.67 3.20 2.95 2.73 2.56 2.03 6.2E&01 1.7E&01⁄ 5.8E&02 3.9E&01 3.1E&01⁄ 8.5E&02 2.1E&01 6.2E&01⁄ 5.0E&01 2.6E&01 7.0E&01⁄ 3.9E&04 8.1E&03 6.6E&01 4.2E&02
30% 3.14 3.25 5.64 4.70 3.80 4.14 3.86 3.65 3.76 2.44 7.3E&01⁄ 1.3E&02⁄ 7.2E&02 5.4E&01 3.8E&02⁄ 2.6E&02 2.6E&01 1.1E&01⁄ 2.5E&01 4.0E&01 1.4E&01⁄ 3.2E&03 1.3E&03 7.3E&01 5.0E&02
35% 4.11 4.52 6.67 5.60 4.48 5.09 4.82 4.63 4.62 3.38 7.1E&01⁄ 1.4E&01⁄ 4.5E&02 8.7E&01 3.8E&01⁄ 5.6E&02 5.4E&01 5.8E&01⁄ 4.6E&01 7.7E&01 4.9E&01⁄ 2.1E&04 1.5E&03 9.8E&01⁄ 6.0E&03
40% 5.23 5.02 7.91 6.17 4.96 5.93 5.38 5.24 5.11 3.89 9.4E&01 1.5E&02⁄ 2.6E&03 4.0E&01 2.4E&01⁄ 7.2E&03 3.8E&01 2.0E&01⁄ 5.3E&01 4.0E&01 3.1E&01⁄ 6.7E&06 1.0E&03 6.8E&01 4.2E&02
45% 6.02 6.30 8.96 7.54 6.39 7.03 6.80 6.53 6.38 4.88 8.3E&01⁄ 1.8E&01⁄ 1.4E&02 9.1E&01⁄ 3.5E&01⁄ 3.6E&02 9.4E&01⁄ 5.5E&01⁄ 7.2E&01 7.9E&01 4.5E&01⁄ 4.1E&05 1.8E&03 6.3E&01 2.7E&02
50% 7.28 7.29 9.51 7.75 6.68 8.14 7.50 7.43 6.68 5.60 9.8E&01 6.0E&02⁄ 5.1E&02 4.4E&01 3.9E&01⁄ 3.0E&02 5.4E&01 2.6E&01⁄ 5.9E&01 3.4E&01 4.8E&01⁄ 9.2E&05 1.6E&03 5.8E&01 6.6E&03
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– MCS3-k vs. k-NN. MCS3-k is statistically better than k-NN regardless of the value of k. The p-values increase
together with k.

2. Results of MCS5. MCS5 outperforms k-NN for the different values of k (the p-values increase together with k). MCS5 is
equivalent to SVM below of the noise level 30% and better from this level. MCS5 is better than C4.5 at the lowest noise
levels (up to 10%), equivalent at intermediate noise levels (15–25%) and worse at the rest of the noise levels.

3. Results of BagC4.5. BagC4.5 is better than C4.5 at all the noise levels.
! Performance results with Gaussian attribute noise.

1. Results of MCS3-k.
– MCS3-k vs. SVM. MCS3-k is significantly better than SVM regardless of the k value. The p-values at the different

noise levels decrease as k increases.
– MCS3-k vs. C4.5. MCS3-k performs well up to 25% (k = 1) and at all noise levels for k = 3 and k = 5. The p-values at

the different noise levels decrease as k increases.
– MCS3-k vs. k-NN. MCS3-k performs statistically better than k-NN regardless of the value of k. The p-values at the

different noise levels increase with greater values of k.

2. Results of MCS5. MCS5 outperforms k-NN for the different values of k (the p-values increase together with k). MCS5
works well below 30% compared with C4.5 and both are equivalent onwards. MCS5 is also equivalent to SVM at all the
noise levels.

3. Results of BagC4.5. BagC4.5 is better than C4.5 at all the noise levels.

The robustness results obtained are summarized below:

! Robustness results with uniform attribute noise.
1. Results of MCS3-k.

– MCS3-k vs. SVM. MCS3-k is equivalent to SVM regardless of the value of k. MCS3-k generally obtains more ranks,
except for some cases with k = 1. The p-values at the different noise levels decrease as k increases.

– MCS3-k vs. C4.5. C4.5 obtains more ranks, outperforming MCS3-k. This superiority is not significant at the lowest
noise levels (up to 5–10%). The p-values at the different noise levels increase with k.

– MCS3-k vs. k-NN. MCS3-k obtains more ranks than k-NN. Statistical differences are found with with k = 1 and k = 3.
MCS3-5 outperforms 5-NN at the lowest noise levels (5% and 10%) and is equivalent at the rest. The p-values at the
different noise levels increase with the value of k.

2. Results of MCS5. MCS5 is equivalent to SVM, 5-NN and C4.5 (it is even worse at some isolated noise levels). However,
it is better than 1-NN and 3-NN.

3. Results of BagC4.5. Generally, BagC4.5 obtains more ranks than C4.5.
! Robustness results with Gaussian attribute noise.

1. Results of MCS3-k.
– MCS3-k vs. SVM. No remarkable differences are found between MCS3-k and SVM. For k = 1 and k = 3, MCS3-k is

only better at 5%. In most of the cases MCS3-k obtains more ranks than SVM, although some exceptions are found
with k = 1.

– MCS3-k vs. C4.5. C4.5 obtains more ranks, although both methods are statistically equivalent. Moreover, C4.5 is
better at some noise levels with k = 1.

– MCS3-k vs. k-NN. MCS3-k obtains more ranks than k-NN, although statistical differences are only found with k = 1
and k = 3. The p-values with different noise levels increase together with k.

2. Results of MCS5. MCS5 is equivalent to SVM, C4.5 and 5-NN and better than 1-NN and 3-NN at most of the noise
levels.

3. Results of BagC4.5. Generally, BagC4.5 is better than C4.5 except at some isolated noise levels.

From these performance and robustness results, the following remarks can be made:

1. The results on datasets with uniform attribute noise are much worse than those on datasets with Gaussian noise for all
the classifiers, including MCSs. Hence, the most disruptive attribute noise is the uniform scheme.

2. The results of performance on datasets with attribute show:
! Uniform attribute noise. This is the most disruptive noise scheme; MCS3-k outperforms SVM and k-NN. However, with

respect to C4.5, MCS3-k is significantly better at the lowest noise levels (up to 10–15%), and is equivalent at the rest of
the noise levels. MCS5 is better than k-NN regardless the value of k and it is better than SVM only from an intermediate
noise level (30%). The results of MCS5 compared to C4.5 depends on the noise level: they are better if the noise level is
lower. BagC4.5 outperforms C4.5.
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! Gaussian attribute noise. This is the least disruptive noise scheme; MCS3-k outperforms its individual classifiers in
most of the cases, particularly if the noise level is relatively low. Thus, MCS3-k is generally the best method with
k = 3 and k = 5. In the case of k = 1, MCS3-1 is only better than 1-NN and SVM, and better than C4.5 at the lowest noise
levels (up to 25%). MCS5 is better than k-NN regardless the value of k, equivalent to SVM and it is better or equivalent
to C4.5 (depending if the noise level is low or high, respectively). BagC4.5 also outstands over C4.5 in this case.

3. The robustness results show, as in the case of the robustness results with class noise, that the higher the value of k is, the
greater robustness the MCS3-k has. This fact is particularly notable with the most disruptive noise scheme (the uniform
one) but also when the noise level becomes high in both schemes, uniform and Gaussian. Moreover, the following points
must be stressed:
! Uniform attribute noise. The robustness of the MCS3-k does not outperform that of its individual classifiers, as it is

statistically equivalent to SVM and sometimes worse than C4.5. Regarding k-NN, MCS3-k performs better than 1-
NN and 3-NN, but is equivalent to 5-NN. The same occurs with MCS5, since it is equivalent to SVM, 5-NN and C4.5
and, at some noise levels, even worse than C4.5. The exception is with BagC4.5, which is more robust than C4.5.

! Gaussian attribute noise. The robustness results are better than those of the uniform noise. The main difference in this
case is that MCS3-k and MCS5 are not statistically worse than C4.5. BagC4.5 is also more robust than C4.5, except at
some isolated noise levels.

6. Comparing different decisions combination methods

In this section a series of decisions combination methods (W-MAJ, NB and BKS) are compared with respect to the MAJ
scheme used in the previous section. The performance and robustness of the MCSs built with heterogeneous classifiers
(MCS3-k and MCS5) using these combination methods are studied. The results of each one of these three techniques (W-
MAJ, NB and BKS) are compared to those of the MAJ scheme using Wilcoxon test. Table 5 shows the performance and robust-
ness results of the decisions combination methods on datasets with class noise.

From this table, it can be observed that:

1. Performance results:
(a) Uniform class noise.
! Attending to the average results, MAJ is generally the best method, followed by NB; W-MAJ and BKS are placed to a

certain distance of the previous ones.
! The p-values obtained show that MAJ is better than W-MAJ and NB (from a noise level of 5–10% approximately). At

the lowest noise levels W-MAJ and NB are even better than MAJ. In addition, MAJ is better than BKS.

(b) Pairwise class noise.
! The average results show that, in MCS3-k, MAJ is the best method, followed by NB and W-MAJ (with equaled

results at some noise levels). The worst method is BKS. In MCS5, the situation is different: the best methods are
W-MAJ and NB, followed by BKS and MAJ to a certain distance.

! Attending to the p-values, W-MAJ and NB are usually better than MAJ in MCS3-k at extreme noise levels (0–5% and
45–50%). In MCS5, W-MAJ and NB are clearly better than MAJ, but MAJ is better than BKS (except at the highest
noise levels–from a noise level of 40% onwards).

2. Robustness results:
(a) Uniform class noise.
! W-MAJ and BKS share the best average results, followed by NB and MAJ.
! However, the p-values show that MAJ is more robust than the rest of the methods.

(b) Pairwise class noise.
! The average results show that, in MCS3-k, W-MAJ and NB are the best methods, followed by BKS and MAJ in the

last position. In MCS5, NB and BKS are the first methods in average results, followed by W-MAJ and MAJ (except at
the highest noise levels where MAJ is better).

! The p-values show that MAJ is more robust up to an intermediate noise level (25–30%). Then, the rest of the meth-
ods are equivalent or even more robust (45–50% of noise level approximately).

Table 6 shows the performance and robustness results of the decisions combination methods on datasets with attribute
noise.

From this table, it can be observed that:

1. Performance results.
(a) Uniform attribute noise.
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Table 5
Performance and robustness results on datasets with class noise: comparison of decisions combination methods.

x% Results p-values

Majority Weighted Bayes BKS Weighted Bayes BKS

MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5

Performance
Uniform class noise

0% 85.42 85.48 85.52 83.74 84.92 85.04 85.04 85.83 85.03 85.22 85.29 86.10 84.25 84.39 84.39 84.72 9.2E&01⁄ 8.0E&01⁄ 5.0E&01 3.0E&02⁄ 9.3E&01⁄ 9.2E&01⁄ 9.5E&01 1.2E&02⁄ 2.4E&02 3.4E&02 2.6E&02 7.8E&01
5% 84.11 84.86 85.03 83.15 82.27 83.05 83.17 84.61 82.36 82.61 82.73 84.57 81.54 81.48 81.51 82.26 1.5E&01 4.9E&02 2.1E&01 2.5E&01⁄ 6.2E&02 4.9E&03 1.0E&02 2.9E&01⁄ 5.4E&04 1.9E&05 5.9E&06 2.8E&02

10% 83.00 84.25 84.57 82.60 80.47 80.83 80.94 83.15 80.84 81.25 81.29 83.14 79.93 80.04 80.09 81.02 1.2E&02 4.2E&04 6.4E&05 6.0E&01 2.0E&02 9.0E&05 1.8E&04 9.1E&01 3.1E&05 5.5E&07 2.5E&07 5.6E&03
15% 81.60 83.21 83.63 81.74 79.02 79.43 79.44 80.98 79.23 79.51 79.67 81.28 78.37 78.37 78.31 79.60 5.7E&03 2.1E&04 6.6E&05 1.3E&01 3.5E&03 2.9E&05 2.2E&05 2.9E&01 2.3E&05 6.1E&07 1.3E&07 2.0E&03
20% 80.09 81.98 82.69 80.55 77.02 77.45 77.68 78.03 77.40 77.70 77.86 79.33 76.47 76.60 76.57 77.91 1.1E&03 4.2E&05 1.3E&05 6.4E&02 9.2E&04 5.5E&06 3.1E&06 9.6E&02 1.4E&06 9.8E&08 8.2E&08 1.2E&03
25% 78.53 80.87 81.78 79.50 74.86 75.73 76.12 75.42 75.54 75.93 76.18 77.57 74.71 74.94 74.97 76.53 3.4E&04 2.2E&05 1.3E&05 1.4E&02 7.1E&04 6.3E&06 9.2E&07 3.2E&02 5.2E&06 8.8E&08 4.8E&08 1.0E&03
30% 77.10 79.69 80.75 78.18 72.68 73.54 74.35 73.56 74.17 74.60 74.80 76.06 73.18 73.37 73.36 75.01 1.5E&04 2.0E&06 4.4E&06 5.1E&03 2.4E&04 1.3E&06 3.7E&07 2.3E&02 2.4E&06 8.2E&08 4.2E&08 9.4E&04
35% 75.11 77.87 79.16 76.44 70.91 71.37 71.92 71.39 72.37 72.80 73.15 74.29 71.46 71.66 71.62 73.15 9.6E&05 2.2E&06 1.9E&06 3.5E&03 3.5E&04 1.9E&06 9.0E&07 1.9E&02 3.8E&06 5.6E&08 3.6E&08 4.7E&04
40% 73.20 76.04 77.56 74.72 68.95 69.37 69.94 68.77 70.46 70.97 71.37 72.31 69.45 69.59 69.65 71.08 9.0E&05 5.4E&06 3.8E&06 3.4E&04 8.3E&04 7.5E&06 3.4E&06 1.8E&02 6.7E&06 4.3E&07 1.7E&07 3.2E&04
45% 70.68 73.61 75.27 72.16 66.57 67.30 67.75 66.19 68.45 68.91 69.30 70.08 67.35 67.68 67.63 69.01 1.1E&04 5.8E&06 2.1E&06 4.5E&04 2.2E&03 2.0E&05 2.6E&06 1.2E&02 1.2E&05 8.7E&07 1.7E&07 1.1E&03
50% 67.64 70.82 72.70 69.43 63.33 64.33 64.81 63.50 65.99 66.30 66.76 67.40 64.68 65.01 65.07 66.19 1.7E&03 2.6E&06 1.7E&06 2.2E&04 5.6E&02 2.5E&05 5.0E&06 3.3E&02 2.1E&04 8.1E&07 2.6E&07 1.7E&03

Pairwise class noise
0% 85.42 85.48 85.52 83.74 84.92 85.04 85.04 85.83 85.03 85.22 85.29 86.10 84.25 84.39 84.39 84.72 9.2E&01⁄ 8.0E&01⁄ 5.0E&01 3.0E&02⁄ 9.3E&01⁄ 9.2E&01⁄ 9.5E&01 1.2E&02⁄ 2.4E&02 3.4E&02 2.6E&02 7.8E&01
5% 84.75 85.19 85.28 83.54 83.50 84.12 84.18 85.19 83.43 83.63 83.66 85.01 82.74 82.76 82.78 83.27 1.2E&01 1.1E&01 1.3E&01 2.3E&01⁄ 5.5E&03 7.1E&04 1.9E&03 6.4E&01⁄ 8.7E&05 1.1E&05 2.3E&05 1.9E&02

10% 83.95 84.61 84.86 82.99 81.83 82.11 82.24 84.43 82.33 82.42 82.52 83.59 81.51 81.61 81.60 82.17 2.5E&02 3.1E&02 1.7E&02 2.6E&01⁄ 1.9E&03 2.7E&04 1.8E&04 3.2E&01 3.3E&05 2.9E&06 1.1E&06 6.1E&03
15% 83.09 83.89 84.29 82.23 80.81 81.08 81.28 83.36 81.19 81.36 81.31 82.41 80.37 80.51 80.53 81.04 1.5E&02 3.1E&02 9.3E&03 2.9E&01⁄ 1.4E&03 2.2E&04 6.9E&05 1.6E&01 1.3E&05 2.1E&06 4.6E&07 9.1E&03
20% 82.21 83.06 83.50 80.99 80.18 80.49 80.59 82.33 80.49 80.67 80.63 81.43 79.71 79.84 79.87 80.38 3.3E&02 2.8E&02 4.9E&03 2.1E&01⁄ 2.1E&03 7.1E&04 1.2E&04 3.7E&01 6.9E&05 9.2E&06 2.5E&06 4.7E&02
25% 80.81 81.64 82.14 79.54 78.83 79.12 79.20 80.25 78.96 79.17 79.22 79.80 78.33 78.47 78.57 79.06 1.0E&02 9.8E&03 6.5E&03 2.8E&01⁄ 5.0E&03 1.7E&03 1.1E&03 2.8E&01 2.1E&04 3.7E&05 1.4E&05 9.8E&02
30% 79.52 80.24 80.76 77.48 77.64 77.90 77.99 78.62 77.90 78.03 78.09 78.29 77.25 77.36 77.50 77.84 8.4E&02 5.6E&02 1.2E&02 7.4E&02⁄ 4.0E&02 9.1E&03 3.0E&03 9.1E&01 2.2E&03 1.8E&04 6.2E&05 7.7E&01
35% 77.65 78.13 78.66 75.20 76.09 76.42 76.58 76.98 76.42 76.56 76.51 76.73 75.71 75.81 75.86 76.17 4.6E&01 2.8E&01 1.1E&01 6.5E&03⁄ 2.2E&01 1.3E&01 4.1E&02 2.9E&01⁄ 2.1E&02 1.0E&02 2.5E&03 5.6E&01⁄

40% 75.25 75.61 75.93 72.21 74.09 74.23 74.27 74.87 74.50 74.58 74.55 75.03 73.96 74.05 74.09 74.27 7.4E&01 3.2E&01 2.4E&01 1.0E&03⁄ 4.9E&01 2.6E&01 1.4E&01 6.1E&03⁄ 1.4E&01 5.1E&02 2.9E&02 8.5E&02⁄

45% 71.82 71.97 72.01 68.85 71.65 71.54 71.44 71.75 71.61 71.77 71.85 72.60 71.26 71.35 71.35 71.31 5.8E&01⁄ 7.6E&01⁄ 9.5E&01⁄ 8.3E&05⁄ 9.6E&01⁄ 9.9E&01 9.1E&01 6.2E&05⁄ 4.6E&01 4.5E&01 4.3E&01 4.7E&02⁄

50% 64.46 64.23 64.00 63.67 65.77 65.74 65.71 66.15 67.08 67.26 67.32 68.96 66.67 66.63 66.67 66.64 1.2E&02⁄ 8.1E&03⁄ 4.7E&03⁄ 3.4E&03⁄ 1.7E&04⁄ 4.1E&05⁄ 1.6E&05⁄ 2.6E&07⁄ 2.1E&03⁄ 1.6E&03⁄ 4.1E&04⁄ 6.9E&03⁄

Robustness
Uniform class noise

5% 1.59 0.73 0.61 0.76 3.18 2.50 2.35 1.62 3.27 3.18 3.10 1.85 3.34 3.49 3.44 2.83 2.7E&02 9.8E&03 8.5E&02 5.8E&02 3.0E&04 1.5E&06 1.1E&05 1.5E&04 1.6E&04 4.3E&07 3.8E&07 7.3E&05
10% 2.91 1.47 1.12 1.43 5.22 4.99 4.88 3.42 5.04 4.77 4.78 3.46 5.23 5.18 5.08 4.26 4.4E&03 7.6E&04 1.6E&04 1.1E&03 8.8E&05 9.4E&06 1.7E&06 8.6E&04 4.9E&05 1.5E&06 4.0E&07 5.2E&05
15% 4.59 2.72 2.31 2.35 6.98 6.75 6.75 6.14 7.00 6.88 6.76 5.70 7.11 7.21 7.24 5.99 3.0E&02 2.1E&04 2.0E&04 1.2E&03 7.5E&04 1.9E&06 7.9E&07 2.3E&04 8.2E&04 7.6E&06 1.1E&06 1.4E&04
20% 6.40 4.24 3.47 3.85 9.37 9.10 8.87 9.67 9.15 9.01 8.91 7.99 9.42 9.35 9.37 8.06 3.0E&03 1.4E&04 1.9E&04 4.4E&04 1.7E&04 1.2E&06 2.4E&06 2.0E&04 4.4E&05 8.7E&07 1.4E&06 1.8E&05
25% 8.26 5.54 4.52 5.10 11.94 11.17 10.71 12.66 11.32 11.09 10.86 10.02 11.51 11.32 11.25 9.64 3.1E&03 8.0E&05 1.3E&04 3.7E&04 2.5E&04 3.1E&06 2.3E&07 1.5E&04 8.7E&05 9.9E&07 2.6E&07 3.7E&05
30% 9.95 6.92 5.78 6.72 14.63 13.85 12.87 14.93 12.93 12.64 12.48 11.79 13.29 13.15 13.13 11.37 1.7E&03 6.2E&06 6.1E&06 1.8E&04 4.4E&04 4.7E&07 3.4E&07 1.3E&04 4.6E&05 7.6E&07 2.6E&07 1.0E&04
35% 12.33 9.10 7.72 8.67 16.68 16.42 15.75 17.44 15.04 14.75 14.41 13.85 15.32 15.16 15.20 13.58 3.5E&03 1.2E&05 1.8E&05 8.2E&05 1.5E&03 2.6E&06 1.0E&06 2.6E&04 2.7E&04 2.4E&06 1.3E&06 3.5E&04
40% 14.54 11.20 9.55 10.56 18.99 18.77 18.07 20.46 17.25 16.86 16.49 16.12 17.70 17.58 17.51 15.95 2.6E&03 2.3E&05 1.1E&05 3.0E&05 3.5E&03 8.5E&06 2.9E&06 3.2E&04 2.2E&04 1.0E&05 4.3E&06 1.3E&04
45% 17.56 14.10 12.30 13.86 21.89 21.26 20.76 23.53 19.66 19.34 18.97 18.76 20.23 19.90 19.96 18.43 2.9E&03 1.7E&05 5.4E&06 7.3E&05 1.7E&02 4.1E&05 4.4E&06 8.6E&04 7.4E&04 2.3E&05 5.2E&06 9.4E&04
50% 21.08 17.41 15.35 16.81 25.63 24.67 24.07 26.38 22.47 22.33 21.87 21.80 23.29 23.00 22.91 21.68 1.4E&02 2.3E&05 4.0E&06 1.5E&05 1.7E&01 8.3E&05 1.2E&05 1.6E&03 9.1E&03 2.2E&05 6.7E&06 1.7E&03

Pairwise class noise
5% 0.79 0.34 0.28 0.17 1.65 1.17 1.09 0.83 1.83 1.83 1.87 1.27 1.74 1.88 1.84 1.67 1.2E&02 2.3E&02 6.4E&02 6.9E&03 2.2E&04 7.3E&05 6.5E&05 1.7E&05 6.7E&04 3.5E&05 2.1E&04 1.4E&04

10% 1.73 1.05 0.81 0.76 3.56 3.44 3.31 1.75 3.13 3.25 3.20 2.91 3.18 3.22 3.24 2.94 5.5E&03 5.2E&03 1.6E&02 1.5E&02 2.4E&04 1.3E&05 5.9E&06 2.4E&05 2.8E&04 9.2E&05 1.8E&05 2.1E&04
15% 2.81 1.95 1.53 1.68 4.72 4.61 4.40 3.00 4.39 4.45 4.58 4.22 4.51 4.50 4.46 4.27 2.7E&02 8.0E&03 5.8E&03 5.8E&02 7.1E&04 3.1E&05 2.5E&06 4.6E&05 4.3E&04 3.5E&05 1.1E&05 3.5E&04
20% 3.86 2.97 2.51 3.08 5.46 5.32 5.22 4.19 5.23 5.28 5.38 5.35 5.28 5.26 5.20 4.98 1.2E&01 4.5E&02 1.2E&02 5.8E&01 6.9E&03 6.7E&04 4.1E&05 9.0E&04 1.3E&02 1.3E&03 3.3E&04 2.5E&02
25% 5.55 4.68 4.16 4.69 7.06 6.95 6.87 6.58 7.01 7.01 7.02 7.23 6.87 6.86 6.73 6.52 2.3E&01 5.9E&02 3.3E&02 8.2E&01 1.9E&02 8.1E&03 1.1E&03 4.0E&03 5.3E&02 7.2E&03 3.9E&03 1.4E&01
30% 7.11 6.35 5.81 7.16 8.45 8.40 8.32 8.47 8.25 8.35 8.35 8.95 8.16 8.16 7.99 8.01 4.0E&01 4.1E&01 6.5E&02 5.1E&01⁄ 8.8E&02 2.1E&02 6.6E&03 1.5E&01 2.2E&01 4.5E&02 2.1E&02 7.3E&01
35% 9.30 8.88 8.32 9.64 10.21 10.09 9.93 10.34 9.94 10.01 10.14 10.76 9.94 9.96 9.90 9.92 6.3E&01 8.4E&01 6.0E&01 1.0E&01⁄ 2.0E&01 2.4E&01 1.0E&01 9.6E&01⁄ 2.2E&01 2.1E&01 1.2E&01 5.9E&01⁄

40% 12.08 11.83 11.52 13.17 12.51 12.60 12.57 12.75 12.14 12.29 12.40 12.67 11.96 11.99 11.93 12.20 7.1E&01⁄ 7.9E&01 7.7E&01 3.5E&02⁄ 5.0E&01 4.1E&01 2.7E&01 1.2E&01⁄ 7.7E&01 5.8E&01 4.8E&01 1.6E&01⁄

45% 16.05 15.96 16.01 16.92 15.33 15.64 15.78 16.20 15.45 15.46 15.42 15.37 15.10 15.12 15.11 15.59 3.6E&01⁄ 5.4E&01⁄ 6.5E&01⁄ 2.5E&02⁄ 7.2E&01⁄ 8.1E&01⁄ 7.4E&01⁄ 1.0E&02⁄ 6.6E&01⁄ 8.0E&01⁄ 7.2E&01⁄ 1.3E&01⁄

50% 24.13 24.54 24.90 22.70 21.93 22.08 22.13 22.39 20.55 20.50 20.50 19.38 20.34 20.48 20.43 20.82 5.4E&03⁄ 7.8E&03⁄ 5.1E&03⁄ 2.5E&01⁄ 4.3E&05⁄ 2.1E&05⁄ 5.9E&06⁄ 3.7E&04⁄ 2.3E&05⁄ 4.4E&05⁄ 1.0E&05⁄ 4.8E&02⁄
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Table 6
Performance and robustness results on datasets with attribute noise: comparison of decisions combination methods.

x% Results p-values

Majority Weighted Bayes BKS Weighted Bayes BKS

MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-
1

MCS3-
3

MCS3-
5

MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5 MCS3-1 MCS3-3 MCS3-5 MCS5

Performance
Uniform attribute noise

0% 85.42 85.48 85.52 83.74 84.92 85.04 85.04 85.83 85.03 85.22 85.29 86.10 84.25 84.39 84.39 84.72 9.2E&01⁄ 8.0E&01⁄ 5.0E&01 3.0E&02⁄ 9.3E&01⁄ 9.2E&01⁄ 9.5E&01 1.2E&02⁄ 2.4E&02 3.4E&02 2.6E&02 7.8E&01
5% 84.57 84.84 84.77 82.96 83.58 83.78 83.80 84.69 84.25 84.46 84.38 85.13 83.56 83.39 83.29 83.87 9.8E&02 6.8E&02 2.9E&02 1.1E&01⁄ 7.4E&01 5.7E&01 7.7E&01 2.5E&02⁄ 1.9E&02 6.4E&03 3.4E&03 2.9E&01

10% 83.33 83.64 83.80 81.69 82.51 82.63 82.59 82.86 83.10 83.25 83.27 84.09 82.28 82.17 82.17 82.65 1.1E&01 1.8E&01 5.5E&02 3.1E&01⁄ 8.2E&01 8.1E&01 5.2E&01 1.3E&02⁄ 1.2E&02 3.5E&03 5.9E&03 6.2E&01
15% 81.81 82.18 82.31 80.61 80.69 80.87 80.93 81.04 81.42 81.61 81.64 82.45 80.89 80.72 80.63 81.14 5.2E&02 1.0E&01 5.6E&02 8.0E&01 2.6E&01 1.7E&01 1.5E&01 9.0E&02⁄ 3.2E&02 5.5E&03 7.7E&03 3.5E&01
20% 80.64 81.14 81.42 79.68 78.73 79.18 79.34 79.22 79.82 79.98 80.01 81.03 79.31 79.20 79.16 79.80 5.8E&03 6.4E&03 5.1E&03 6.6E&01 1.2E&01 5.3E&02 3.9E&02 2.9E&01⁄ 2.2E&03 1.8E&03 3.0E&03 2.9E&01
25% 79.37 79.85 80.22 78.53 77.18 77.64 77.98 77.99 78.46 78.66 78.74 79.69 78.07 78.00 78.02 78.60 2.2E&03 3.2E&03 1.8E&03 3.6E&01 8.4E&02 4.6E&02 1.8E&02 3.1E&01⁄ 2.3E&03 9.4E&04 5.0E&04 3.2E&01
30% 77.97 78.42 78.75 77.14 75.23 75.50 75.75 76.53 76.84 76.87 77.05 78.07 76.54 76.39 76.40 76.98 4.8E&04 2.9E&04 9.2E&05 4.0E&01 3.6E&02 1.5E&02 8.7E&03 6.5E&01⁄ 1.6E&03 4.3E&04 1.1E&04 1.7E&01
35% 76.26 76.91 77.23 75.96 73.44 73.57 73.69 74.66 74.78 74.90 74.99 76.16 74.61 74.60 74.53 75.29 9.0E&05 8.5E&05 1.2E&05 1.6E&01 4.8E&03 4.4E&03 1.5E&03 5.4E&01 3.7E&04 5.8E&04 6.2E&05 5.1E&02
40% 74.84 75.57 76.03 74.58 72.34 72.60 72.76 72.92 73.24 73.37 73.44 74.43 73.02 72.99 73.18 73.73 5.5E&03 1.1E&03 4.5E&04 1.4E&01 3.8E&02 2.0E&02 6.5E&03 6.8E&01 5.6E&03 2.3E&03 7.4E&04 3.1E&01
45% 72.93 73.70 74.27 73.03 70.26 70.64 70.78 70.90 70.99 71.10 71.20 72.05 70.87 70.81 70.92 71.63 8.3E&04 5.4E&04 1.4E&04 5.5E&02 5.2E&03 5.2E&03 1.6E&03 4.4E&01 1.3E&03 4.4E&04 8.2E&05 1.6E&01
50% 71.36 72.14 72.85 71.57 69.22 69.32 69.45 69.61 69.65 69.82 69.83 70.54 69.47 69.51 69.69 70.37 5.2E&03 1.3E&03 2.1E&04 1.1E&01 1.2E&02 5.2E&03 8.6E&04 1.8E&01 3.0E&03 5.0E&04 6.2E&05 1.4E&01

Gaussian attribute noise
0% 85.42 85.48 85.52 83.74 84.92 85.04 85.04 85.83 85.03 85.22 85.29 86.10 84.25 84.39 84.39 84.72 9.2E&01⁄ 8.0E&01⁄ 5.0E&01 3.0E&02⁄ 9.3E&01⁄ 9.2E&01⁄ 9.5E&01 1.2E&02⁄ 2.4E&02 3.4E&02 2.6E&02 7.8E&01
5% 85.12 85.27 85.29 83.45 84.26 84.26 84.28 85.29 85.02 85.03 84.99 85.70 84.15 84.06 84.01 84.37 3.4E&01 1.3E&01 1.3E&01 5.1E&02⁄ 8.0E&01⁄ 7.8E&01⁄ 8.8E&01⁄ 2.2E&02⁄ 2.3E&02 3.4E&02 2.3E&02 6.5E&01

10% 84.49 84.62 84.55 82.89 83.47 83.47 83.40 84.01 84.30 84.33 84.34 85.12 83.57 83.39 83.23 83.76 1.1E&01 4.9E&02 7.2E&02 3.5E&01⁄ 9.9E&01⁄ 9.1E&01 9.1E&01 1.4E&02⁄ 1.2E&02 1.5E&02 1.0E&02 4.8E&01
15% 84.03 84.24 84.35 82.43 83.03 83.07 83.05 83.20 83.59 83.71 83.83 84.68 83.00 82.89 82.82 83.26 1.2E&01 1.3E&01 5.4E&02 4.6E&01⁄ 7.4E&01 6.1E&01 8.4E&01⁄ 1.9E&02⁄ 2.1E&02 2.0E&02 5.6E&03 3.9E&01
20% 83.33 83.52 83.65 81.83 82.04 82.13 82.16 81.86 82.83 82.93 82.98 83.94 82.23 82.13 82.10 82.45 5.0E&02 4.8E&02 1.1E&02 8.7E&01 5.1E&01 4.5E&01 4.3E&01 2.6E&02⁄ 1.0E&02 3.0E&03 2.4E&03 2.9E&01
25% 82.62 82.92 83.16 81.41 81.07 81.28 81.53 81.32 82.18 82.44 82.54 83.40 81.78 81.77 81.72 82.20 2.2E&02 5.1E&03 4.7E&03 4.6E&01 3.2E&01 2.3E&01 2.0E&01 8.9E&02⁄ 1.5E&02 3.7E&03 2.1E&03 3.7E&01
30% 81.85 82.15 82.37 80.56 79.84 80.03 80.27 80.59 81.44 81.57 81.70 82.58 80.96 80.88 80.89 81.39 3.3E&02 8.6E&03 6.5E&03 4.7E&01 5.0E&01 2.7E&01 3.2E&01 1.1E&01⁄ 2.6E&02 1.5E&02 1.6E&02 4.4E&01
35% 81.03 81.32 81.54 79.75 79.12 79.28 79.58 79.84 80.58 80.80 80.84 81.61 80.22 80.21 80.22 80.62 3.5E&02 1.9E&02 1.9E&02 5.8E&01 2.8E&01 6.3E&01 4.9E&01 1.7E&01⁄ 3.4E&02 2.6E&02 3.5E&02 7.2E&01
40% 80.34 80.87 81.04 79.32 78.37 78.58 78.70 79.00 79.64 79.97 80.01 80.83 79.27 79.28 79.19 79.88 2.9E&02 2.1E&02 1.0E&02 7.5E&01 3.2E&01 1.8E&01 2.0E&01 4.8E&01⁄ 3.7E&02 6.1E&03 6.6E&03 5.3E&01
45% 79.45 79.71 79.98 78.25 77.66 77.88 78.04 78.09 78.92 79.12 79.10 79.89 78.55 78.58 78.46 78.92 1.3E&01 7.0E&02 2.7E&02 8.9E&01 3.5E&01 3.9E&01 2.5E&01 1.9E&01⁄ 4.0E&02 3.0E&02 6.9E&03 6.9E&01
50% 78.49 79.08 79.21 77.86 76.73 77.07 77.23 77.37 77.97 78.12 78.23 79.03 77.59 77.64 77.60 78.15 5.9E&02 1.9E&02 2.7E&02 9.1E&01 2.0E&01 6.1E&02 9.7E&02 6.6E&01⁄ 2.2E&02 4.0E&03 3.9E&03 5.6E&01

Robustness
Uniform attribute noise

5% 0.95 0.71 0.85 0.94 1.44 1.47 1.47 1.39 0.84 0.85 1.07 1.12 0.69 1.10 1.21 0.89 1.1E&01 3.2E&02 2.4E&01 3.2E&01 7.6E&01 3.7E&01 9.5E&01 5.9E&01⁄ 6.5E&01 1.7E&01 3.2E&01 4.9E&01
10% 2.40 2.11 1.98 2.57 2.64 2.78 2.86 3.69 2.16 2.28 2.36 2.31 2.19 2.52 2.48 2.35 4.1E&01 4.0E&01 2.6E&01 2.0E&01 9.5E&01⁄ 7.6E&01 5.3E&01 1.6E&01⁄ 9.6E&01 2.3E&01 3.1E&01 8.0E&01
15% 4.23 3.86 3.76 3.63 4.82 4.90 4.86 5.88 4.17 4.23 4.31 4.30 3.89 4.25 4.36 4.16 1.4E&01 2.1E&01 2.1E&01 4.2E&02 6.6E&01 4.4E&01 3.0E&01 5.0E&01 5.5E&01⁄ 3.3E&01 3.1E&01 4.0E&01
20% 5.54 5.02 4.80 4.68 7.17 6.87 6.70 8.03 6.03 6.10 6.19 5.90 5.68 5.99 6.06 5.65 4.2E&02 2.3E&02 2.9E&02 1.2E&02 3.1E&01 1.3E&01 8.6E&02 4.6E&01 2.8E&01 8.5E&02 8.5E&02 3.1E&01
25% 7.09 6.61 6.23 6.10 8.99 8.69 8.28 9.43 7.58 7.64 7.63 7.44 7.16 7.42 7.37 7.08 9.3E&02 4.9E&02 2.8E&02 1.5E&02 2.6E&01 1.1E&01 3.8E&02 3.5E&01 7.6E&01 1.8E&01 1.1E&01 5.2E&01
30% 8.85 8.36 8.06 7.84 11.52 11.42 11.12 11.19 9.58 9.81 9.69 9.38 9.06 9.42 9.41 9.10 1.7E&02 8.0E&03 2.6E&03 2.0E&02 2.8E&01 7.4E&02 2.7E&02 3.7E&01 6.6E&01 1.7E&01 4.4E&02 4.6E&01
35% 10.79 10.12 9.82 9.17 13.50 13.59 13.45 13.24 11.89 11.98 11.98 11.50 11.26 11.41 11.50 11.00 6.8E&03 1.3E&03 5.4E&04 8.4E&03 1.3E&01 4.0E&02 8.7E&03 5.3E&02 3.8E&01 1.4E&01 4.2E&02 2.6E&01
40% 12.44 11.67 11.23 10.74 14.73 14.63 14.44 15.14 13.59 13.68 13.68 13.40 13.07 13.26 13.04 12.78 2.3E&01 6.0E&02 3.7E&02 2.0E&02 4.0E&01 2.0E&01 1.0E&01 1.7E&01 6.5E&01 4.7E&01 3.0E&01 8.8E&01
45% 14.73 13.98 13.38 12.75 17.30 17.05 16.88 17.53 16.31 16.42 16.37 16.23 15.71 15.91 15.79 15.31 4.3E&02 2.0E&02 1.0E&02 6.4E&03 1.7E&01 6.0E&02 3.4E&02 7.2E&02 4.0E&01 2.4E&01 9.8E&02 4.4E&01
50% 16.68 15.85 15.09 14.40 18.56 18.63 18.45 19.04 17.97 17.97 18.06 18.03 17.45 17.55 17.33 16.88 1.7E&01 3.2E&02 1.0E&02 1.2E&02 2.3E&01 8.1E&02 7.8E&03 3.0E&02 4.9E&01 1.8E&01 3.4E&02 3.9E&01

Gaussian attribute noise
5% 0.31 0.19 0.25 0.32 0.64 0.90 0.90 0.69 &0.04 0.22 0.38 0.47 0.02 0.33 0.38 0.31 1.9E&01 6.5E&02 3.0E&02 1.6E&01 5.8E&01 4.6E&01 7.0E&01 6.9E&01⁄ 9.0E&01 2.1E&01 4.4E&01 7.7E&01

10% 1.03 0.98 1.16 0.92 1.63 1.86 1.97 2.34 0.81 1.09 1.17 1.16 0.69 1.12 1.32 1.05 8.6E&02 8.2E&02 3.5E&01 4.5E&02 5.8E&01 6.0E&01 8.9E&01⁄ 6.0E&01⁄ 9.8E&01 3.9E&01 4.6E&01 5.1E&01
15% 1.54 1.39 1.32 1.48 2.05 2.26 2.31 3.31 1.59 1.76 1.70 1.62 1.33 1.62 1.73 1.58 1.3E&01 7.5E&02 1.3E&01 3.2E&02 6.3E&01 3.4E&01 3.5E&01 8.2E&01⁄ 7.7E&01⁄ 5.6E&01 3.5E&01 6.2E&01
20% 2.36 2.21 2.14 2.07 3.29 3.41 3.41 4.93 2.54 2.69 2.75 2.48 2.33 2.58 2.65 2.58 1.8E&02 2.0E&02 2.9E&02 5.7E&03 3.0E&01 1.2E&01 1.8E&01 8.0E&01⁄ 4.4E&01 2.2E&01 1.4E&01 4.3E&01
25% 3.20 2.95 2.73 2.56 4.53 4.51 4.20 5.58 3.31 3.27 3.24 3.14 2.84 3.00 3.09 2.83 4.4E&02 1.1E&02 1.5E&02 1.8E&03 5.6E&01 4.0E&01 2.3E&01 4.8E&01 6.2E&01⁄ 6.0E&01 2.5E&01 4.4E&01
30% 4.14 3.86 3.65 3.76 6.07 6.05 5.76 6.38 4.17 4.28 4.23 4.04 3.82 4.07 4.06 3.81 1.7E&01 3.6E&02 2.7E&02 7.8E&03 7.2E&01 4.2E&01 3.3E&01 3.9E&01 5.0E&01⁄ 6.8E&01 4.9E&01 7.6E&01
35% 5.09 4.82 4.63 4.62 7.00 7.02 6.61 7.25 5.25 5.23 5.28 5.20 4.77 4.94 4.92 4.76 7.4E&02 3.7E&02 6.7E&02 2.3E&02 8.0E&01 4.9E&01 4.1E&01 5.7E&01 4.6E&01⁄ 8.3E&01⁄ 8.9E&01 9.6E&01⁄

40% 5.93 5.38 5.24 5.11 7.95 7.90 7.74 8.27 6.44 6.28 6.32 6.18 5.97 6.13 6.22 5.69 7.4E&02 5.0E&02 2.1E&02 3.4E&02 5.0E&01 2.1E&01 1.8E&01 2.5E&01 7.1E&01⁄ 6.2E&01 2.5E&01 7.5E&01
45% 7.03 6.80 6.53 6.38 8.82 8.73 8.51 9.32 7.31 7.29 7.41 7.28 6.90 6.98 7.15 6.91 2.1E&01 1.3E&01 1.8E&01 5.5E&02 8.9E&01 4.9E&01 3.2E&01 4.4E&01 8.3E&01⁄ 9.3E&01 4.8E&01 6.0E&01
50% 8.14 7.50 7.43 6.68 9.94 9.68 9.47 10.10 8.43 8.47 8.42 8.23 8.04 8.09 8.17 7.78 9.2E&02 4.6E&02 5.2E&02 5.8E&02 6.1E&01 1.9E&01 2.2E&01 1.6E&01 7.7E&01⁄ 5.8E&01 4.8E&01 2.9E&01
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! The average results show that, in MCS3-k, MAJ and NB are the best methods, whereas BKS and W-MAJ are the
worst ones. In MCS5, NB is the best method; BKS and MAJ are the following methods and W-MAJ is placed at
the last positions at many noise levels.

! The p-values show that MAJ is better than W-MAJ from 20% onwards. It is better than NB for MCS3-3 and MCS3-5
from a noise level 20–25% and for MCS5 at the highest noise levels (45–50%), but this does not occur with MCS3-1.
MAJ is neither better than BKS (only at some intermediate-high noise levels).

(b) Gaussian attribute noise.
! In MCS3-k, MAJ and NB are the best methods in average results, followed by BKS and W-MAJ. In MCS5, the ranking

is composed by NB, and BKS, MAJ and W-MAJ (these last three obtain the lowest average results at most of the
noise levels).

! The p-values show that MAJ is not better than NB nor BKS. It is generally better than W-MAJ, even though they are
equivalent at some isolated noise levels.

2. Robustness results.
(a) Uniform attribute noise.
! The average results show that W-MAJ is the best method, followed by NB, BKS and MAJ.
! Attending to the p-values, we observe that, in general, MAJ is better than W-MAJ (from 20% onwards), even though

they are equivalent at some high noise levels considering MCS3-1. MAJ is also better than NB for medium–high
noise levels (except for MCS3-1, where both are equivalent). BKS is equivalent to MAJ, except for MCS3-5 and
MCS3-5 where MAJ is better than BKS from 20% onwards.

(b) Gaussian attribute noise.
! W-MAJ obtains the best average results. It is followed by NB, and the worst combination methods are BKS and MAJ.
! The p-values show that MAJ is usually better than W-MAJ (except at some isolated noise level where both are

equivalent). In general, MAJ is equivalent to NB and BKS, even though NB and BKS are better than MAJ for some
MCSs (NB is better for MCS5 and BKS is better for MCS3-1).

7. On the usage of Multiple Classifier Systems with noisy data: Lessons learned

In this paper a thorough empirical study has been performed in order to find the conditions under which the MCSs stud-
ied (the three MCS-k, the MCS5 and BagC4.5) behave well with noisy data, as well as the terms of this improvement. From
the results shown in the previous section and their corresponding analysis, several lessons can be learned:

1. The behavior of the studied MCSs built with heterogeneous classifiers depend on the behavior of their individual
classifiers with noisy data. This situation can be clearly observed in the obtained results where, for example, a higher
value of k-and therefore a better performance and robustness of k-NN-implies that the corresponding MCS3-k attains
a better performance and robustness. This higher robustness is particularly notable with the most disruptive noise
schemes (uniform class and attribute noise) and the highest noise levels. However, BagC4.5 gain robustness against sev-
eral noise types (such as the uniform class or attribute noises) which C4.5 is weaker with.

2. The study of behavior of each single classifier considered to build an MCS in noisy environments is an important
issue. For example, SVM obtains the highest performance without noise but is the most affected when class noise is con-
sidered. Hence, it is recommended to execute all the available classifiers to check which are more suitable for the type and
level of noise, finally choosing those performing better in order to build the MCS.

3. Different types of noise have a very different disruptiveness and, therefore, they do not affect the performance in
the same way. For the classifiers studied, the uniform class noise is generally more disruptive than the pairwise class
noise-except in the case of BagC4.5 and for the medium–highest noise levels with those classifiers involving k-NN with
k = 3,5. We must not forget that uniform class noise can be more disruptive because it affects more examples than the
pairwise class noise. The uniform attribute noise is more disruptive than the Gaussian attribute noise. Moreover, the uni-
form class noise is more disruptive than the uniform attribute noise.

4. On the behavior of the studied MCSs with data with class noise. The performance of the studied MCSs compared to that
of their individual classifiers is better with the uniform class noise (the more disruptive scheme) than with the pairwise
noise, since the differences between MCSs and their base classifiers are more accentuated with the uniform noise. The
robustness results show a similar conclusion, with the MCSs generally more robust with the uniform class noise and
obtaining in this case lower p-values in the comparisons with respect to their individual classifiers.

5. On the behavior of the studied MCSs with data with attribute noise. The studied MCSs perform better than their indi-
vidual classifiers with the less disruptive attribute noise scheme (Gaussian) and slightly worse with the more disruptive
one (uniform). Similar conclusions are drawn from the robustness results. The exception is BagC4.5, which perform
clearly better than C4.5 with both schemes.
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6. Different types of noise affect the studied MCSs differently. The studied MCSs built with heterogeneous classifiers work
worse with attribute noise than with class noise. With attribute noise, MCSs significantly improve the results of the more
robust single method, that is, C4.5, if the noise is not very disruptive (Gaussian) or if the noise level is low enough. How-
ever, it is important to note that BagC4.5 works well with both types of noise except with the pairwise class noise, in
which it does not perform as accurate as with other types of noise.

7. Even though the studied MCSs built with heterogeneous classifiers may lead to an improvement in the performance
results working with noisy data, they will never be statistically more robust than the most robust of its individual
classifiers. The improvement of performance will depend on many factors, as mentioned above, but it is likely to occur if
the proper base classifiers are selected. However, an improvement in the robustness of the methods seems to be difficult.
In fact, the robustness of the MCS built can be thought of as the average of the robustness of each of its single classifiers.
Fig. 1 shows the distribution of the robustness results of each single classification algorithm and each MCS3-k for each
noise scheme at the medium noise level considered in this paper; that is, 25%. As it can be appreciated in this figure,
the distribution of the robustness values of each MCS3-k is always between the distribution of the least and most robust
single classifiers–even though this fact is more observable in the robustness results with class noise. However, from the
results obtained we observe that using BagC4.5 the robustness of its only single classifier C4.5 can be improved.

8. The majority vote scheme is a powerful alternative against other decision combination methods for the MCS stud-
ied when working with noisy data. Even though MAJ is outperformed with some types of noise and at some noise levels,
it performs relatively well for most of the noise types. Since the type and level of noise is usually unknown in real-world
data, its usage can be recommended.

(a) Uniform class noise. (b) Pairwise class noise.

(c) Uniform attribute noise. (d) Gaussian attribute noise.

Fig. 1. Box-plots representing the distribution of the RLA results with a 25% noise level for MCS3-k and its individual classifiers. The RLA metric (Eq. (2)) is
used to estimate the robustness of a classifier at a noise level comparing the accuracy of the classifier at that noise level with respect to that of the classifier
trained without additional noise.
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The main reason for the better performance of MCSs with noisy data can be attributed to the increment of the capability
of generalization when an MCS is built. Each single classifier is known to make errors, but since they are different, that is,
they have different behaviors over different parts of the domain, misclassified examples are not necessarily the same
[21], and the same is true for noisy instances. This fact enables MCSs to achieve a better generalization from the examples
of a problem and leads to better avoiding the overfitting of noisy data and, therefore, to obtain more accurate solutions. Some
classifiers can tolerate the noise better or are more sensitive than others, depending on the different parts of the input/out-
put space. Combining several classifiers, preferably noise-tolerant in most of the input/output space, may lead them to com-
plement each other, obtaining a higher noise-robustness, or at least better generalization capabilities. Thus, if a set of noisy
examples does not affect the learning of a concrete set of classifiers, their predictions will not be hindered.

8. Concluding remarks

This paper analyzes how well several MCSs behave with noisy data by means the realization of a huge experimental
study. In order to do this, both the performance and the noise-robustness of different MCSs have been compared with respect
to their single classification algorithms. A large number of noisy datasets have been created considering different types,
schemes and levels of noise to perform these comparisons.

The results obtained have shown that the MCSs studied do not always significantly improve the performance of their sin-
gle classification algorithms when dealing with noisy data, although they do in the majority of cases (if the individual com-
ponents are not heavily affected by noise). The improvement depends on many factors, such as the type and level of noise.
Moreover, the performance of the MCSs built with heterogeneous classifiers depends on the performance of their single clas-
sifiers, so it is recommended that one studies the behavior of each single classifier before building the MCS. Generally, the
MCSs studied are more suitable for class noise than for attribute noise. Particularly, they perform better with the most dis-
ruptive class noise scheme (uniform one) and with the least disruptive attribute noise scheme (Gaussian one). However,
BagC4.5 works well with both types of noise, with the exception of the pairwise class noise, where its results are not as accu-
rate as with other types of noise.

The robustness results show that the studied MCS built with heterogeneous classifiers will not be more robust than the
most robust among their single classification algorithms. In fact, the robustness can always be shown as an average of the
robustnesses of the individual methods. The higher the robustnesses of the individual classifiers are, the higher the robust-
ness of the MCS is. Nevertheless, BagC4.5 is again an exception: it becomes more robust than its single classifier C4.5.

The study of several decisions combination methods show that the majority vote scheme is a simple yet powerful alter-
native to other techniques when working with noisy data.
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Abstract The presence of noise in data is a common problem that produces several negative
consequences in classification problems. In multi-class problems, these consequences are
aggravated in terms of accuracy, building time, and complexity of the classifiers. In these
cases, an interesting approach to reduce the effect of noise is to decompose the problem
into several binary subproblems, reducing the complexity and, consequently, dividing the
effects caused by noise into each of these subproblems. This paper analyzes the usage of
decomposition strategies, and more specifically the One-vs-One scheme, to deal with noisy
multi-class datasets. In order to investigate whether the decomposition is able to reduce the
effect of noise or not, a large number of datasets are created introducing different levels and
types of noise, as suggested in the literature. Several well-known classification algorithms,
with or without decomposition, are trained on them in order to check when decomposition is
advantageous. The results obtained show that methods using the One-vs-One strategy lead
to better performances and more robust classifiers when dealing with noisy data, especially
with the most disruptive noise schemes.
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1 Introduction

Any classification problem [14,49] consists of m training examples, characterized by n
attributes Ai , i = 1, . . . , n that are either numerical or categorical, with Di their correspond-
ing domains. Thus, an example x is represented as an n-dimensional attribute vector

x = (x1, . . . , xn) ∈ D = D1 × · · · × Dn .

Each of these examples is labeled with one out of the M possible classes L={λ1, . . . , λM }.
Many current real-world classification problems, such as the classification of cancer tissues
[5] or the recognition of business documents [36], must distinguish between more than two
classes, that is, M > 2. These problems are formally known as multi-class classification
problems.

Classification algorithms aim to extract the implicit knowledge from previously known
labeled examples of the problem creating a model, called a classifier, which should be capa-
ble of predicting the class for new unobserved examples. For this reason, the classification
accuracy of a classifier is directly influenced by the quality of the training data used. Data
quality depends on several components [50], for example, the source and the input proce-
dure, inherently subject to errors. Real-world datasets usually contain corrupted data that
may hinder the interpretations, decisions, and therefore, the classifiers built from that data.

Usually, the more classes in a problem, the more complex it is. In multi-class learning,
the generated classifier must be able to separate the data into more than a pair of classes,
which increases the chances of incorrect classifications (in a two-class balanced problem,
the probability of a correct random classification is 1/2, whereas in a multi-class problem it
is 1/M). Furthermore, in problems affected by noise, the boundaries, the separability of the
classes, and therefore, the prediction capabilities of the classifiers may be severely hindered.

Given the loss of accuracy produced by noise, the need of techniques to deal with it has
been proved in previous works [9,23,56]. In the specialized literature, two ways have been
proposed in order to mitigate the effects produced by noise:

1. Adaptation of the algorithms to properly handle the noise [11,42]. These methods are
known as robust learners and they are characterized by being less influenced by noisy
data.

2. Preprocessing of the datasets aiming to remove or correct the noisy examples [8,18].

However, even though both techniques can provide good results, drawbacks exist. The
former depends on the classification algorithm, and therefore, the same result is not directly
extensible to other learning algorithms, since the benefit comes from the adaptation itself.
Moreover, this approach requires to change an existing method, which neither is always pos-
sible nor easy to develop. However, the latter requires the usage of a previous preprocessing
step, which is usually time-consuming. Furthermore, these methods are only designed to
detect an specific type of noise and hence, the resulting data might not be perfect [53]. For
these reasons, it is important to investigate other mechanisms, which could lead to decrease
the effects caused by noise without neither needing to adapt each specific algorithm nor
having to make assumptions about the type and level of noise present in the data.

When dealing with multi-class problems, several works [6,27] have demonstrated that
decomposing the original problem into several binary subproblems is an easy, yet accurate
way to reduce their complexity. These techniques are referred to as binary decomposition
strategies [32]. The most studied schemes in the literature are: One-vs-One (OVO) [27],
which trains a classifier to distinguish between each pair of classes, and One-vs-All (OVA)
[6], which trains a classifier to distinguish each class from all other classes. Both strategies
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can be encoded within the error-correcting output codes framework [4,13]. However, none of
these works provide any theoretical nor empirical results supporting the common assumption
that supposes a better behavior against noise of decomposition techniques (than not using
decomposition). Neither they show what type of noise is better handled by decomposition
techniques.

On this account, this paper analyzes the usage of the OVO strategy, which generally
outstands over OVA [15,16,24,43,45], and checks its suitability with noisy training data. It
should be mentioned that, in real situations, the existence of noise in the datasets is usually
unknown—therefore, neither the type nor the quantity of noise in the dataset can be known or
supposed a priori. Hence, tools which are able to manage the presence of noise in the datasets,
despite its type or quantity (or unexistence), are of great interest. If the OVO strategy (which
is a simple yet effective methology when clean1 datasets are considered) is also able to
properly (better than the baseline non-OVO version) handle the noise, its usage could be
recommended in spite of the presence of noise and without taking into account its type.
Furthermore, this strategy can be used with any of the existing classifiers which are able to
deal with two-class problems. Therefore, the problems of algorithm level modifications and
preprocessing techniques could be avoided, and if desired, they could also be combined.

In order to carry out the analysis, a thorough empirical study will be developed considering
several well-known learning algorithms having a very different behavior with noisy data:
two rule-based systems, which are considered robust to noise—C4.5 [42] and Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) [11]—and an instance-based
learning method, which is considered very noise-sensitive—k-Nearest Neighbors (k-NN)
[35]—will be studied. Even though the theoretical robustness of these methods has been
previously studied [29,40,41], there is a lack of empirical studies analyzing the real behavior
of such methods when dealing with noisy data, particularly if the OVO decomposition is
used. Considering two different noise categories, class and attribute noise, 800 datasets will
be created [56]. Several noise schemes presented in the literature will be used to introduce
these types of noise [46,56–58] and a large number of noise levels—from 5 to 50 %, by
increments of 5 %—will be also studied. The differences between the OVO and non-OVO
(baseline) classifiers will be analyzed through an analysis of both the accuracy and the
robustness achieved on these datasets. The results obtained will be contrasted using the
proper statistical tests, as recommended in the specialized literature [12].

The experimental framework stated will allow us to extract a series of conclusions on
the effect of noise in multi-class problems and the usage of OVO in this scenario. We will
concrete the types of noise—class (random/pair) or attribute noise(random/Gaussian)—that
are more detrimental for the classifier performance and those where OVO provides a higher
advantage. We will also determine in which extent OVO helps robust and noise-sensitive
learners to deal with noisy data and the reasons of the increase of the robustness of such
methods when using OVO. All these conclusions will be presented in Sect. 7.

A web page with all the complementary material associated with this paper is available at
http://sci2s.ugr.es/ovo_noise, including the basic information of this paper, all the datasets
created, and the complete results obtained for each classification algorithm.

The rest of this paper is organized as follows. Section 2 presents an introduction to classifi-
cation with noisy data. Section 3 is devoted to the motivations for the usage of binary decom-
position strategies in multi-class classification problems and recalls the OVO decomposition
scheme. Next, Sect. 4 describes the experimental framework. Section 5 includes the analysis

1 We refer to clean and noise-free datasets to the original datasets without additional induced noise, despite
they might have noise, but it is not quantifiable, and hence it cannot be used to evaluate the robustness of the
methods against noise.
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of the results obtained by the classifiers on data with class noise, whereas Sect. 6 focuses on
attribute noise. Section 7 provides a summary including the conclusions that can be extracted
from the analysis of the results. Finally, Sect. 8 presents the concluding remarks.

2 Classification with noisy data

Real-world data are never perfect and often suffers from corruptions that may hinder the
analysis of the data and their interpretations, that is, the models extracted and hence the
decisions made on their basis. In classification, noise can negatively affect the system per-
formance in terms of classification accuracy, building time, size, and interpretability of the
classifier [55,56]. The presence of noise in the data may affect the intrinsic characteristics
of a classification problem, since these corruptions could introduce new properties in the
problem domain. For example, noise can lead to the creation of small clusters of examples
of a particular class in areas of the domain corresponding to another class, or it can cause
the disappearance of examples located in key areas within a specific class. The boundaries
of the classes and the overlapping between them are also factors that can be affected as a
consequence of noise. All these alterations difficult the knowledge extraction from the data
and spoil the models obtained using that noisy data when they are compared to the models
learned from clean data, which represent the real implicit knowledge of the problem [56].

The quality of a dataset is determined by a large number of components [50]. Among
them, the class labels and the attribute values are two sources influencing the quality of
a classification dataset. The quality of the class labels refers to whether the class of each
example is correctly assigned; the quality of the attributes refers to the capability to charac-
terize the examples for classification purposes. Two types of noise in a given dataset can be
distinguished based on these two information sources [52]:

1. Class noise (or labeling errors). It occurs when an example is incorrectly labeled. Class
noise can be attributed to several causes, such as subjectivity during the labeling process,
data entry errors, or inadequacy of the information used to label each example. Two types
of class noise can be distinguished:

– Contradictory examples. There are duplicate examples in the dataset having different
class labels [21].

– Misclassifications. Examples are labeled with other class label different from the real
one [57].

2. Attribute noise. It refers to corruptions in the values of one or more attributes. Examples
of attribute noise are: erroneous attribute values, missing or unknown attribute values,
and incomplete attributes or “do not care” values.

In this paper, class noise refers to misclassifications, whereas attribute noise refers to
the erroneous attribute values, because they are the most common in real-world data [56].
Furthermore, erroneous attribute values, unlike other types of attribute noise, such as missing
values [33] (which are easily detectable), have been less studied in the literature.

Treating class and attribute noise as corruptions of the class labels and attribute values,
respectively, has been also considered in other works in the literature [37,56]; for instance,
in [56], the authors reached a series of interesting conclusions, showing that attribute noise
is more harmful than class noise or that eliminating or correcting examples in datasets with
class and attribute noise, respectively, may improve classifier performance. They also showed
that attribute noise is more harmful in those attributes highly correlated with the class labels.
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In [37], the authors checked the robustness of methods from different paradigms, such as
probabilistic classifiers, decision trees, instance-based learners or support vector machines,
studying the possible causes of their behaviors.

However, most of the works found in the literature are only focused on class noise. In
[7], the problem of multi-class classification in the presence of labeling errors was studied.
The authors proposed a generative multi-class classifier to learn with labeling errors, which
extends the multi-class quadratic normal discriminant analysis by a model of the mislabeling
process. They demonstrated the benefits of this approach in terms of parameter recovery as
well as improved classification performance. In [22], the problems caused by labeling errors
occurring far from the decision boundaries in multi-class Gaussian process classifiers were
studied. The authors proposed a robust multi-class Gaussian process classifier, introducing
binary latent variables that indicate when an example is mislabeled. Similarly, the effect of
mislabeled samples appearing in gene expression profiles was studied in [54]. A detection
method for these samples was proposed, which take advantage of the measuring effect of
data perturbations based on the support vector machine regression model. They also proposed
three algorithms based on this index to detect mislabeled samples. An important common
characteristic of these works, also considered in this paper, is that the suitability of the pro-
posals was evaluated on both real-world and synthetic or noisy-modified real-world datasets,
where the noise can be somehow quantified.

In order to model class and attribute noise, we consider four different synthetic noise
schemes found in the literature, in such a way that we can simulate the behavior of the
classifiers in the presence of noise:

1. Class noise usually occurs on the boundaries of the classes, where the examples have
similar characteristics—although it might occur on any other areas of the domain. In
this paper, class noise is introduced using a random class noise scheme [46] (randomly
corrupting the class labels of the examples) and a pairwise class noise scheme (labeling
examples of the majority class with the second majority class) [56,57]. Considering
these two schemes, the similarities between any pair of classes and only between the two
majority classes are simulated, respectively.

2. Attribute noise can proceed from several sources, such as transmission constraints, faults
in sensor devices, irregularities in sampling, and transcription errors [47]. The erroneous
attribute values can be totally unpredictable, that is, random, or they can imply a low
variation with respect to the correct value. We use a random attribute noise scheme
[56,58] and a Gaussian attribute noise scheme [44] in order to simulate each one of the
possibilities, respectively. We introduce attribute noise in accordance with the hypothesis
that interactions between attributes are weak [56]. As a result, the noise introduced
into each attribute has a low correlation with the noise introduced into the rest of the
attributes.

Robustness is the capability of an algorithm to build models that are insensitive to data
corruptions and suffer less from the impact of noise [25]. Thus, a classification algorithm is
said to be more robust than other one if the former builds classifiers which are less influenced
by noise than the latter, that is, more robust. In order to analyze the degree of robustness of the
classifiers in the presence of noise, we will compare the performance of the classifiers learned
with the original (without induced noise) dataset with the performance of the classifiers
learned using the noisy dataset. Therefore, those classifiers learned from noisy datasets being
more similar (in terms of results) to the noise-free classifiers will be the most robust ones.
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3 Addressing multi-class classification problems by decomposition

Multi-class classification problems are frequent in real-world classification tasks. Examples
of such problems are the classification of micro-arrays [30], electroencephalogram signals
[19] or texts [31], and audio streams [1]. These problems are more general and complex than
the special case of two classes, that is, binary classification problems.

In the literature, multi-class classifier learning has been overcome in two different ways
[32]: (1) adapting the internal operations of the learning algorithm and (2) decomposing the
multi-class problem into a set of easier to solve binary subproblems. The former embeds
the management of the multiple classes in the algorithm, whereas the latter aims to reduce
the complexity of the original problem by decomposing it into simpler binary subproblems.
In such a way, any binary classifier learning algorithm can be used as base learner, without
needing to adapt its learning procedure. The first alternative may be a very complex issue
[38]; therefore, it is common to use the decomposition alternative when the algorithms are
not easily adaptable, that is, suppor vector machines [48], but also when adaptations exist,
since its benefits have been proved [16].

3.1 Decomposition strategies for multi-class problems

Several motivations for the usage of binary decomposition strategies in multi-class classifi-
cation problems can be found in the literature [15,16,24,43]:

– The separation of the classes becomes easier (less complex), since less classes are consid-
ered in each subproblem [15,34]. For example, in [28], the classes in a digit recognition
problem were shown to be linearly separable when considered in pairs. A simpler alter-
native than learning a unique nonlinear classifier to separate all classes simultaneously.

– Classification algorithms, whose extension to multi-class problems is not easy, can
address multi-class problems using decomposition techniques [15].

– In [39], the advantages of the usage of decomposition was pointed out when the classifi-
cation errors for different classes have distinct costs. The binarization allows the binary
classifiers generated to impose preferences for some of the classes.

– Decomposition allows one to easily parallelize the classifier learning, since the binary
subproblems are independent and can be solved with different processors.

Dividing a problem into several new subproblems, which are then independently solved,
implies the need of a second phase where the outputs of each problem need to be aggregated.
Therefore, decomposition includes two steps:

1. Problem division. The problem is decomposed into several binary subproblems which are
solved by independent binary classifiers, called base classifiers [15]. Different decom-
position strategies can be found in the literature [32]. The most common one is OVO
[27].

2. Combination of the outputs [16]. The different outputs of the binary classifiers must
be aggregated in order to output the final class prediction. In [16], an exhaustive study
comparing different methods to combine the outputs of the base classifiers in the OVO and
OVA strategies is developed. Among these combination methods, the weighted voting
[26] and the approaches in the framework of probability estimates [51] are highlighted.

This paper focuses the OVO decomposition strategy due to the several advantages shown
in the literature with respect to OVA [15,16,24,43]:
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– OVO creates simpler borders between classes than OVA.
– OVO generally obtains a higher classification accuracy and a shorter training time than

OVA because the new subproblems are easier and smaller.
– OVA has more of a tendency to create imbalanced datasets which can be counterproduc-

tive [17,45].
– The application of the OVO strategy is widely extended and most of the software tools

considering binarization techniques use it as default [3,10,20].

3.2 One-vs-One decomposition scheme

The OVO decomposition strategy consists of dividing a classification problem with M classes
into M(M − 1)/2 binary subproblems. A classifier is trained for each new subproblem only
considering the examples from the training data corresponding to the pair of classes (λi , λ j )

with i < j considered.
When a new instance is going to be classified, it is presented to all the binary classifiers.

This way, each classifier discriminating between classes λi and λ j provides a confidence
degree ri j ∈ [0, 1] in favor of the former class (and hence, r ji is computed by 1 − ri j ). These
outputs are represented by a score matrix R:

R =

0

BBB@

− r12 · · · r1M
r21 − · · · r2M
...

...

rM1 rM2 · · · −

1

CCCA
(1)

The final output is derived from the score matrix by different aggregation models. The
most used and simplest combination, also considered in the experiments of this paper, is the
application of a voting strategy:

Class = arg max
i=1,...,M

X

1≤ j %=i≤M

si j (2)

where si j is 1 if ri j > r ji and 0 otherwise. Therefore, the class with the largest number of
votes will be predicted. This strategy has proved to be competitive with different classifiers
obtaining similar results in comparison with more complex strategies [16].

4 Experimental framework

First, the base datasets used in the experiments are described (Sect. 4.1). Afterward, how the
noise is induced into them is explained (Sect. 4.2). The algorithms used as base classifiers
and their parameters are presented in Sect. 4.3. Finally, the methodology for the analysis of
the results is explained in Sect. 4.4.

4.1 Base datasets

The experimentation is based on twenty real-world multi-class classification problems from
the KEEL-dataset repository2 [2]. Table 1 shows the datasets sorted by the number of classes
(#CLA). Moreover, for each dataset, the number of examples (#EXA) and the number of
attributes (#ATT), along with the number of real, integer and nominal attributes (R/I/N) are

2 http://www.keel.es/datasets.php.
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Table 1 Summary description of the classification datasets

Dataset #CLA #EXA #ATT (R/I/N) Dataset #CLA #EXA #ATT (R/I/N)

Balance 3 625 4 (4/0/0) Flare 6 1,066 11 (0/0/11)

Contraceptive 3 1,473 9 (0/9/0) Glass 7 214 9 (9/0/0)

Iris 3 150 4 (4/0/0) Satimage 7 643 36 (0/36/0)

Newthyroid 3 215 5 (4/1/0) Segment 7 2,310 19 (19/0/0)

Splice 3 319 60 (0/0/60) Shuttle 7 2,175 9 (0/9/0)

Thyroid 3 720 21 (6/15/0) Ecoli 8 336 7 (7/0/0)

Vehicle 4 846 18 (0/18/0) Led7digit 10 500 7 (7/0/0)

Nursery 5 1,269 8 (0/0/8) Penbased 10 1,099 16 (0/16/0)

Page-blocks 5 547 10 (4/6/0) Yeast 10 1,484 8 (8/0/0)

Automobile 6 150 25 (15/0/10) Vowel 11 990 13 (10/3/0)

presented. Some of the largest datasets (nursery, page-blocks, penbased, satimage, splice,
and led7digit) were stratified at 10 % in order to reduce the computational time required for
training, given the large amount of executions carried out. For datasets containing missing
values (such as automobile or dermatology), instances with missing values were removed
from the dataset before the partitioning.

4.2 Introducing noise into datasets

In the datasets presented in the previous section, the initial amount and type of noise present
on them are unknown. Therefore, no assumptions about the base noise type and level can
be made. For this reason, these datasets are considered to be noise-free, in the sense that
no new noise has been induced. In order to control the amount of noise in each dataset and
to check how it affects the classifiers, noise is introduced into each dataset in a supervised
manner. Four different noise schemes, which are proposed in the specialized literature, are
used in order to introduce a noise level of x % into each dataset. The following procedures
are followed in order to induce the different noise schemes:

1. Introduction of class noise.

– Random class noise [46]. It supposes that exactly x % of the examples are corrupted.
The class labels of these examples are randomly changed by other one out of the M
classes.

– Pairwise class noise [56,57] . Being X the majority class and Y the second majority
class, an example with the label X has a probability of x/100 of being incorrectly
labeled as Y .

2. Introduction of attribute noise.

– Random attribute noise [56,58]. x % of the values of each attribute in the dataset
are corrupted. To corrupt an attribute Ai , approximately x % of the examples in the
data set are chosen, and their Ai value is assigned a random value from Di . A uniform
distribution is used either for numerical or nominal attributes.

– Gaussian attribute noise [44]. This scheme is similar to the random attribute noise,
but in this case, the Ai values are corrupted adding a random value to them following
a Gaussian distribution of mean = 0 and standard deviation = (max − min)/5,

123



Analyzing the presence of noise in multi-class problems 187

being max and min the upper and lower limits of Di , respectively. Nominal attributes
are treated as in the case of the random attribute noise.

In order to create a noisy dataset from an original noise-free dataset, the noise is introduced
into the training partitions as follows:

1. A unique identifier, that is, an index, is assigned to each example of the full original
dataset.

2. A level of noise x %, of either class noise (random or pairwise) or attribute noise (random
or Gaussian), is introduced into a copy of the full original dataset. Each example maintains
its identifier in this noisy copy.

3. Both datasets, the original one and the noisy copy, are partitioned into fivefolds. Each
one of the folds in the original dataset must have examples with the same identifiers that
the corresponding fold in the noisy copy.

4. The training partitions are built from the noisy copy (using 4 of the fivefolds), whereas
the test partitions are formed of instances from the original dataset (using the fold with
examples whose identifiers have not been considered in the training set).

Introducing noise into the training partitions while keeping the test partitions noise-free,
as performed in other works in the literature [56], allows one to observe how noisy data affect
the training process, observing how the test results are degraded depending on the type and
level of noise introduced. Furthermore, the robustness of the methods can be better studied
since the effects of noise are isolated in the training process.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of a
stratified fivefolds cross-validation (5-fcv). Hence, a total of 25 runs per dataset, noise type,
and level are averaged. Each fold has a larger number of examples considering 5 partitions
than considering a higher number of partitions, for example, 10, which is desirable in multi-
class problems where some of the classes might be not represented in the test sets. Therefore,
the performance of each classifier built is evaluated with a larger number of examples in each
test set of the 5-fcv. This fact lets that little modifications in the classifier due to the effect
of noise on training sets to be shown better in test sets because we consider a larger number
of examples. Furthermore, performing 5 runs of each 5-fcv, the final results obtained are
stabilized.

A large collection of new noisy datasets are created from the aforementioned 20 base
datasets. Both types of noise are independently considered: class and attribute noise. For
each type of noise, the noise levels ranging from x = 0 % (base datasets) to x = 50 %, by
increments of 5 %, are studied. Therefore, 200 noisy datasets are created for each of the four
noise schemes. The total number of datasets in the experimentation is 820. Hence, considering
the 5 × 5fcv of the 820 datasets, 20,500 executions are carried out for each classifier (which
are repeated for the OVO and non-OVO versions). All these datasets are available on the web
page associated with this paper.

4.3 Algorithms and parameters

The choice of the learning algorithms—C4.5 [42], RIPPER [11], and k-NN [35]—has been
made on the basis of their good behavior in a large number of real-world problems and their
different characteristics against noise. They have been also considered in previous works
focused on noisy data [37,56]. Moreover, notice that all these learning methods are capable
of handling multiple classes inherently, which is needed in order to be comparable against
the usage of the OVO strategy.
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Table 2 Setup of the parameters for the classification algorithms

Rule-based learning Instance-based learning

C4.5 RIPPER k-NN

Confidence: c = 0.25 Folds: f = 3 Neighbors: k = 3, 5

Min. instances per leaf: i = 2 Optimizations: r = 2 Distance: HVDM

Pruned tree

C4.5 and RIPPER are considered robust learners tolerant to noisy data. Both use pruning
strategies to reduce the chances of classifiers to be affected by noisy instances from the
training data [40,41]. However, when the noise level is relatively high, even these robust
learners may obtain a poor performance. Regarding k-NN, it is known to be more sensitive
to noise than other learning algorithms. Furthermore, the value of k determines a higher or
lower sensitivity to noise [29], since a larger value of k usually implies a lower influence on
the prediction of the closest potential noisy examples. In this manner, this paper studies the
effect of noise on the performance of robust and noise-sensitive learners, and more specifically
focusing on multi-class problems, it compares their baseline results with respect to the usage
of the OVO strategy. Hence, we check whether the advantages usually attributed to OVO are
maintained in the presence of noise or not; in such a way, we provide an in-depth study of
these cases (Sects. 5, 6) followed by a thorough explanation of the results (Sect. 7).

The classification algorithms have been executed using the default parameters recom-
mended by the authors, which are shown in Table 2.

4.4 Methodology of analysis

In order to check the suitability of methods using OVO when dealing with noisy data, the
results of C4.5, RIPPER, 3-NN, and 5-NN with and without decomposition are compared
one another using three distinct properties:

1. The performance of the classification algorithms on the test sets for each level of induced
noise defined as its accuracy rate. For the sake of brevity, only averaged results are shown
(the rest can be found on the web page associated with this paper), but it must be taken into
account that our conclusions are based on the proper statistical analysis, which considers
all the results (not averaged).

2. The relative loss of accuracy (RLA) (Eq. 3) is used to measure the percentage of variation
of the accuracy of the classifiers in a concrete noise level with respect to the original case
with no additional noise:

RLAx % = Acc0 % − Accx %

Acc0 %
, (3)

where RLAx % is the relative loss of accuracy at a noise level x %, Acc0 % is the test
accuracy in the original case, that is, with 0 % of induced noise, and Accx % is the test
accuracy with a noise level x %.

3. Box-plots are used to easily analyze the distribution of the RLA values. The values of the
median and the interquartile range, along with its size, can provide a good approximation
about the robustness of the methods over all the datasets. Thus, a method with a lower
median and a lower and more compact interquartile range will be always preferable, since
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its behavior with new noisy datasets is more similar in accuracy to that obtained with the
original dataset.

In order to properly analyze the performance and RLA results, the Wilcoxon’s signed rank
statistical test is used, as suggested in the literature [12]. This is a nonparametric pairwise test
that aims to detect significant differences between two sample means, that is, the behavior of
the two algorithms involved in each comparison. For each type and noise level, the OVO and
non-OVO versions will be compared using Wilcoxon’s test and the p values associated with
these comparisons will be obtained. The p value represents the lowest level of significance
of a hypothesis that results in a rejection and it allows one to know whether two algorithms
are significantly different and the degree of their difference. We will consider a difference
to be significant if the p value obtained is lower than 0.1—even though p values slightly
higher than 0.1 might be showing important differences. We study both, performance and
robustness, because the conclusions reached with one of these metrics necessary not imply
the same conclusions with the other one.

5 Analysis of the OVO strategy with class noise

In this section, the performance and robustness of the classification algorithms using the
OVO decomposition with respect to its baseline results when dealing with data suffering
from class noise are analyzed. Section 5.1 is devoted to the study of the random class noise
scheme, whereas Sect. 5.2 analyzes the pairwise class noise scheme. The results obtained for
each single dataset can be found on the web page associated with this paper.

5.1 Random class noise scheme

Table 3 shows the test accuracy and RLA results for each classification algorithm at each
noise level along with the associated p-values between the OVO and the non-OVO version
from the Wilcoxon’s test. The few exceptions where the baseline classifiers obtain more ranks
than the OVO version in the Wilcoxon’s test are indicated with a star next to the p value.

From these results, the following points can be highlighted:

– The test accuracy of the methods using OVO is higher at all the noise levels. Moreover,
the low p values show that this advantage in favor of OVO is significant.

– The RLA values of the methods using OVO are lower than those of the baseline methods
at all noise levels. These differences are also statistically significant as reflected by the
low p values. Only at some very low noise levels—5 and 10 % for C4.5 and 5 % for 5-
NN—the results between the OVO and the non-OVO version are statistically equivalent,
but notice that the OVO decomposition does not hinder the results, simply the loss is not
lower.

Figure 1 shows the distribution of the RLA results of each algorithm at each noise level on
datasets with random class noise. For all the classification algorithms, these graphics show
that the medians of the RLA results of the OVO approach are much lower with respect to
those of non-OVO. Moreover, the interquartile range is generally lower and more compact
for OVO. Therefore, when noise randomly affects the class labels, the suitability of the
OVO decomposition is proved to be advantageous. The binary decomposition of the problem
provides better predictions. Hence, OVO is more robust against this type of class noise,
obtaining a greater performance and a lower RLA result. This may be attributed to the
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Table 3 Test accuracy, RLA results, and p values on datasets with random class noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.13 82.14 73.51 80.82 81.00 82.93 81.65 83.14

10 80.50 81.71 71.30 79.86 80.00 82.29 81.01 82.56

15 79.37 81.39 68.52 78.41 78.76 81.49 80.39 82.13

20 78.13 80.27 66.71 77.35 76.91 80.01 79.55 81.36

25 76.96 79.54 64.26 76.25 75.15 78.99 78.43 80.58

30 75.22 78.87 62.91 74.98 73.24 77.39 77.21 79.82

35 73.35 77.89 60.48 73.40 70.82 75.30 75.48 78.28

40 71.10 76.88 58.32 72.12 68.18 73.08 73.82 76.83

45 67.96 75.74 56.18 69.98 64.90 70.27 70.86 74.93

50 64.18 73.71 53.79 67.56 61.66 66.98 68.04 72.73

p values (%)

0 – – – –

5 0.0206 0.0001 0.0003 0.0033

10 0.0124 0.0001 0.0001 0.0036

15 0.0008 0.0001 0.0001 0.0137

20 0.0028 0.0001 0.0004 0.0017

25 0.0010 0.0001 0.0002 0.0032

30 0.0002 0.0001 0.0003 0.0013

35 0.0003 0.0001 0.0008 0.0028

40 0.0002 0.0001 0.0005 0.0111

45 0.0003 0.0001 0.0019 0.0019

50 0.0001 0.0001 0.0028 0.0008

RLA value

Results (%)

0 – – – –

5 0.66 0.73 6.04 1.59 1.07 0.57 0.63 0.38

10 1.56 1.28 9.35 2.79 2.27 1.33 1.46 1.12

15 3.01 1.65 13.13 4.56 3.96 2.34 2.37 1.67

20 4.63 3.15 15.44 5.86 6.20 4.15 3.48 2.67

25 6.12 3.98 18.89 7.23 8.37 5.33 4.87 3.61

30 8.36 4.90 20.74 8.82 10.78 7.27 6.40 4.53

35 10.77 6.11 23.97 10.76 13.48 9.74 8.46 6.38

40 13.46 7.41 26.72 12.35 16.79 12.35 10.30 8.11

45 17.30 8.86 29.70 15.05 20.74 15.79 14.12 10.48

50 21.87 11.29 32.74 18.10 24.51 19.64 17.47 13.12

p values (%)

0 – – – –

5 0.7369* 0.0003 0.0040 0.6012
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Table 3 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.5257 0.0001 0.0017 0.1354

15 0.0025 0.0001 0.0012 0.0731

20 0.0304 0.0001 0.0004 0.0479

25 0.0017 0.0001 0.0005 0.0522

30 0.0006 0.0001 0.0005 0.0124

35 0.0003 0.0001 0.0025 0.0276

40 0.0001 0.0001 0.0012 0.0333

45 0.0002 0.0001 0.0022 0.0057

50 0.0001 0.0001 0.0036 0.0015

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(c) (d)

Fig. 1 Box-plots representing the distribution of the RLA results on datasets with random class noise

division of the mislabeled examples, hindering in this way only some classifiers. As these
classifiers are only a part of the global system, they do not affect as much as in the original
case.
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5.2 Pairwise class noise scheme

The pairwise class noise results are shown in Table 4. The test accuracy and RLA of each
classification algorithm at each noise level are presented. The associated p values between
the OVO and non-OVO version of each algorithm are also shown. The following points can
be concluded:

– The test accuracy of the methods using OVO is statistically better—as shown by the
p values—than those of non-OVO at almost all noise levels. C4.5 and RIPPER at a
noise level of 50 % are exceptions: with C4.5, both OVO and non-OVO, are statistically
equivalent; with RIPPER, the non-OVO version is statistically better. In the last part of
this subsection, we try to obtain an explanation to these results.

– Attending to the RLA results:

– C4.5 with OVO is only statistically better at intermediate noise levels 15–20 %. Both
methods are statistically equivalent in the rest of noise levels—except at the maximum
noise level, 50 %, where non-OVO is statistically better. But having equivalent RLA,
OVO performs statistically better in most of the cases.

– Both versions of RIPPER, with and without OVO, are statistically equivalent at all
noise levels—except at the maximum noise level 50 % where non-OVO is statistically
better.

– 3-NN and 5-NN with OVO present better RLA results. The lower p-values are gen-
erally obtained from 20 to 25 % of noise. Other levels of noise are also remarkable
with 5-NN, as 5 %.

Figure 2 shows the distribution of RLA results with pairwise class noise. These graphics
show similar conclusions to those obtained from the analysis of the RLA results and the
corresponding p-values:

– At the lowest noise levels, C4.5 and RIPPER using OVO are slightly better than non-OVO
(attending to their medians and interquartile ranges). However, from 30 % on (C4.5) and
from 25 % on (RIPPER), the methods using OVO are more detrimental than those not
using it.

– 3-NN and 5-NN with and without OVO are much more similar, but OVO is better at some
noise levels.

These results show that OVO achieves more accurate predictions when dealing with this
type of noise; however, it is not so advantageous with C4.5 or RIPPER as with k-NN in terms
of robustness when noise only affects one class. For example, the behavior of RIPPER with
this noise scheme can be related to the hierarchical way in which the rules are learned: it starts
learning rules of the class with the lowest number of examples and continues learning those
classes having more examples. When introducing this type of noise, RIPPER might change
its training order, but the remaining part of the majority class can still be properly learned,
since it has now more priority. Moreover, the original second majority class, now with noisy
examples, will probably be the last one to be learned and it would depend on how the rest of
the classes have been learned. Decomposing the problem with OVO, a considerable number
of classifiers will have a notable quantity of noise—those of the majority and the second
majority classes and hence, the tendency to predict the original majority class decreases—
when the noise level is high, it strongly affects the accuracy, since the majority has more
influence on it.
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Table 4 Test accuracy, RLA results, and p values on datasets with pairwise class noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.40 82.24 76.94 81.71 81.24 83.02 81.78 83.19

10 80.94 81.86 75.94 80.71 80.65 82.36 81.42 82.82

15 80.43 81.71 75.64 80.32 79.25 80.97 80.49 81.94

20 79.82 81.03 74.77 79.62 77.75 79.65 79.41 81.01

25 78.96 80.28 73.89 78.67 75.88 77.71 77.55 79.08

30 78.49 79.26 73.38 78.05 73.53 75.47 75.29 76.81

35 77.41 78.28 71.89 76.42 71.24 73.18 72.92 74.50

40 76.17 76.91 71.60 76.19 68.77 70.89 69.89 71.65

45 73.45 74.26 70.73 74.04 66.55 68.48 67.13 68.83

50 63.63 63.52 67.11 65.78 64.11 65.86 64.02 65.52

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.025 0.0001 0.0152 0.0228

10 0.0033 0.0003 0.0019 0.0137

15 0.0022 0.0003 0.0036 0.0090

20 0.0017 0.0002 0.0005 0.0022

25 0.0008 0.0005 0.0012 0.0015

30 0.0090 0.0001 0.0045 0.0100

35 0.0366 0.0013 0.0002 0.0032

40 0.0276 0.0003 0.0015 0.0040

45 0.0333 0.0333 0.0022 0.0072

50 0.5016* 0.0930* 0.0008 0.0057

RLA value

Results (%)

0 – – – –

5 0.30 0.56 1.17 0.48 0.74 0.44 0.48 0.34

10 0.91 1.01 2.38 1.72 1.25 1.22 0.89 0.82

15 1.62 1.25 2.58 2.17 2.88 2.81 2.05 1.88

20 2.39 2.13 3.52 3.03 4.69 4.33 3.29 2.93

25 3.52 3.13 4.58 4.22 6.75 6.58 5.48 5.22

30 4.16 4.49 5.13 4.84 9.57 9.09 8.05 7.81

35 5.50 5.69 6.77 6.82 12.12 11.76 10.76 10.41

40 7.01 7.38 7.25 7.12 15.03 14.29 14.37 13.68

45 10.38 10.65 8.28 9.70 17.57 17.01 17.53 16.86

50 21.03 22.28 12.22 18.75 20.23 20.00 21.06 20.67

p values (%)

0 – – – –

5 0.2043* 0.2790 0.2954 0.1354
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Table 4 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.8721* 0.3317 0.3507 0.3507

15 0.0304 0.3507 0.2043 0.5503

20 0.0859 0.4781 0.2959 0.0674

25 0.3317 0.9702 0.1005 0.0620

30 0.6813 0.6542 0.2471 0.3507

35 0.7652 0.6542* 0.0674 0.1913

40 0.6274 0.6274* 0.1169 0.0793

45 0.7369 0.1169* 0.1259 0.0522

50 0.0400* 0.0001* 0.0731 0.0620

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(d)(c)

Fig. 2 Box-plots representing the distribution of the RLA results on datasets with pairwise class noise

In contrast with the rest of noise schemes, with this noise scheme, all the datasets have
different real percentages of noisy examples at the same noise level of x %. This is because
each dataset has a different number of examples of the majority class, and thus a noise
level of x % does not affect all the datasets in the same way. In this case, the percentage of
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Table 5 Noise levels—remarked with gray—where the RLA results of OVO are better that those of the
non-OVO version

noisy examples with a noise level of x % is computed as (x · Nmaj)/100, where Nmaj is the
percentage of examples of the majority class.

Therefore, in order to deepen in the analysis of the robustness results with this noise
scheme, the RLA results on each single dataset must be studied. With this aim, Table 5
shows for each dataset, remarked in gray, those noise levels where the OVO version obtains
better RLA results than the non-OVO version. The datasets appearing in this table are
sorted by their percentage of examples of the majority class (Nmaj). Noise affects adja-
cent datasets similarly—since close datasets have similar percentages of noisy examples at
the same noise level of x %. Thus, those datasets and noise levels where OVO works better
are easily identified.

From this table, several conclusions can be drawn:

– C4.5 and RIPPER with OVO have better RLA results on those dataset having a large
number of examples of the majority class.

– 3-NN and 5-NN with OVO have better RLA results, without being affected by the number
of examples of the majority class.

Therefore, following the previous analysis, we can state that when the noise only affects
one class, OVO clearly provides advantages in terms of the accuracy of the classifiers built.
However, methods using OVO are affected by noise in a similar way to those that do not use
OVO, that is, both have similar robustness, although OVO outstands at some noise levels. The
robustness of C4.5 and RIPPER with OVO is remarkable with those datasets having a large
number of majority class examples, that is, with those dataset where the noise percentage is the
highest. The robustness of k-NN methods is not so dependent on the number of examples of
the majority class, and the methods with OVO have better RLA results, which are distributed
more homogeneously.

6 Analysis of the OVO strategy with attribute noise

In this section, the performance and robustness of the classification algorithms using OVO
in comparison with its non-OVO version when dealing with data with attribute noise are
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analyzed. Section 6.1 is devoted to the study of the random attribute noise scheme, whereas
Sect. 6.2 analyzes the Gaussian attribute noise scheme.

6.1 Random attribute noise scheme

The test accuracy, RLA results, and p values of each classification algorithm at each noise
level are shown in Table 6. From these results, the following points can be highlighted:

– The test accuracy of the methods using OVO is always statistically better at all the noise
levels.

– The RLA values of the methods using OVO are lower than those of the baseline methods
at all noise levels—except in the case of C4.5 with a 5 % of noise level. Regarding the p
values, a clear tendency is observed, the p-value decreases when the noise level increases
with all the algorithms.

– With most of the methods—C4.5, RIPPER, and 5-NN—the p values of the RLA results at
the lowest noise levels (up to 20–25 %) show that the robustness of OVO and non-OVO
methods is statistically equivalent. From that point on, the OVO versions statistically
outperform the non-OVO ones. The case of 3-NN is even more favorable to OVO, since
only a high p value is found at the lowest noise level, i.e., 5 %.

Figure 3 shows the box-plots of RLA results. For all the classification algorithms and noise
levels, these graphics show that the medians of the RLA results of OVO are much lower with
respect those of non-OVO. Moreover, the interquartile range is also generally lower and more
compact for the methods using OVO.

Therefore, the usage of OVO is clearly advantageous in terms of accuracy and robustness
when noise affects the attributes in a random and uniform way. This behavior is particularly
notable with the highest noise levels, where the effects of noise are expected to be more
detrimental.

6.2 Gaussian attribute noise scheme

In Table 7, the test accuracy and RLA results of each classification algorithm at each noise
level, along with the associated p value between the OVO and non-OVO version of each
algorithm, are shown. From these results, the following conclusions can be pointed out:

– The test accuracy of the methods using OVO is better at all the noise levels. Moreover,
the low p values show that this advantage in favor of OVO is statistically significant.

– Regarding the RLA results, the p values show a clear decreasing tendency when the
noise level increases with all the algorithms. In the case of C4.5, OVO is statistically
better from a 35 % of noise level on, and in 3-NN from 20 % on. RIPPER and 5-NN
are statistically equivalent at all noise levels—although 5-NN with OVO obtains higher
Wilcoxon’s ranks.

It is important to note that in some cases, particularly in the comparisons involving RIP-
PER, some RLA results show that OVO is better than the non-OVO version in average but
the latter obtains more ranks in the statistical test—even though these differences are not
significant. This is due to the extreme results of some individual datasets, such as led7digit
or flare, in which the RLA results of the non-OVO version are much worse than those of the
OVO version. Anyway, we should notice that average results themselves are not meaning-
ful and the corresponding nonparametric statistical analysis must be carried out in order to
extract meaningful conclusions, which reflects the real differences between algorithms.
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Table 6 Test accuracy, RLA results, and p values on datasets with random attribute noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.26 82.10 77.18 81.50 80.90 82.53 81.01 82.45

10 80.31 81.65 76.08 80.85 79.23 81.52 79.81 81.34

15 79.39 80.83 74.83 80.03 78.31 80.22 78.97 80.31

20 78.71 80.27 73.95 79.15 76.99 79.20 77.63 79.38

25 77.54 79.64 72.77 78.11 75.36 77.71 76.58 77.96

30 76.01 78.25 71.25 77.06 73.37 76.05 74.68 76.46

35 74.55 77.42 70.05 76.15 71.62 74.28 73.05 75.01

40 73.58 76.19 68.66 74.56 69.62 72.66 71.29 73.65

45 71.79 75.21 67.64 73.35 67.56 70.56 69.26 71.53

50 70.49 73.51 65.50 71.66 65.88 69.15 67.72 70.07

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.0400 0.0012 0.0038 0.0100

10 0.0169 0.0003 0.0004 0.0910

15 0.0169 0.0001 0.0022 0.0707

20 0.0057 0.0003 0.0008 0.0015

25 0.0007 0.0005 0.0017 0.0080

30 0.0043 0.0001 0.0005 0.0112

35 0.0004 0.0001 0.0019 0.0032

40 0.0032 0.0001 0.0005 0.0006

45 0.0009 0.0002 0.0008 0.0012

50 0.0036 0.0007 0.0001 0.0011

RLA value

Results (%)

0 – – – –

5 0.50 0.74 0.97 0.80 0.98 0.94 1.39 1.20

10 1.82 1.32 2.56 1.62 3.45 2.23 3.03 2.62

15 3.02 2.41 4.24 2.69 4.31 3.82 3.97 3.87

20 3.88 3.11 5.46 3.77 5.85 4.99 5.72 5.03

25 5.48 3.87 7.10 5.13 7.96 6.87 6.94 6.80

30 7.54 5.77 9.20 6.42 10.71 9.01 9.57 8.76

35 9.38 6.70 10.89 7.57 12.65 11.12 11.57 10.49

40 10.64 8.25 12.81 9.64 15.22 12.98 13.73 12.08

45 13.04 9.60 14.13 11.24 17.91 15.72 16.34 14.85

50 14.74 11.74 17.21 13.33 19.96 17.40 18.14 16.55

p values (%)

0 – – – –

5 0.4115* 0.5016* 0.8813* 0.5755
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Table 6 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.4781 0.5755 0.1560 1.0000*

15 0.2471 0.3507 0.2627 0.9108

20 0.2471 0.1454 0.0930 0.1354

25 0.0930 0.2322 0.0620 0.5257

30 0.0304 0.0438 0.0124 0.1672

35 0.0015 0.0064 0.0333 0.0731

40 0.0569 0.0036 0.0100 0.0111

45 0.0137 0.0251 0.0064 0.0152

50 0.0152 0.0064 0.0008 0.0228

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(c) (d)

Fig. 3 Box-plots representing the distribution of the RLA results on datasets with random attribute noise

Figure 4 shows the distribution of the RLA results by means of box-plots. As in the case
of the random attribute noise, these graphics show that the medians and interquartile ranges
of the RLA results of OVO are much lower with respect to those of non-OVO.
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Table 7 Test accuracy, RLA results and p values on datasets with Gaussian attribute noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.46 82.33 76.82 81.64 81.29 83.02 81.52 83.09

10 80.93 81.67 76.53 81.12 80.88 82.54 80.91 82.52

15 80.51 81.69 76.16 80.64 79.87 81.72 80.61 82.21

20 79.77 81.11 75.35 80.06 79.56 81.41 80.16 81.74

25 79.31 80.98 74.69 79.72 78.87 80.90 79.85 81.21

30 79.03 80.40 74.46 78.93 77.98 80.29 78.84 80.77

35 77.95 79.94 73.85 78.76 77.05 79.35 78.12 79.75

40 77.36 79.51 72.94 78.10 76.27 78.60 77.53 79.11

45 76.38 78.64 72.37 77.34 75.11 77.48 76.58 78.25

50 75.29 78.03 71.57 76.27 74.90 77.10 76.02 77.72

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.0442 0.0003 0.0033 0.0050

10 0.1262 0.0004 0.0089 0.0064

15 0.0152 0.0003 0.0033 0.0169

20 0.0048 0.0002 0.0033 0.0036

25 0.0019 0.0002 0.0100 0.0187

30 0.0051 0.0003 0.0008 0.0025

35 0.0007 0.0002 0.0036 0.0040

40 0.0019 0.0003 0.0025 0.1262

45 0.0004 0.0004 0.0017 0.0364

50 0.0004 0.0008 0.0019 0.0251

RLA value

Results (%)

0 – – – –

5 0.28 0.47 1.53 0.62 0.57 0.44 0.88 0.46

10 0.92 1.27 1.90 1.26 1.11 0.98 1.68 1.13

15 1.53 1.25 2.38 1.84 2.57 2.02 2.10 1.56

20 2.40 1.99 3.49 2.59 2.74 2.32 2.51 2.09

25 3.05 2.13 4.44 2.97 3.73 2.98 2.91 2.75

30 3.42 2.91 4.66 3.95 5.00 3.74 4.34 3.32

35 4.86 3.43 5.52 4.18 6.27 4.87 5.19 4.61

40 5.67 4.03 6.74 4.96 7.23 5.85 6.03 5.38

45 6.95 5.14 7.46 5.99 8.79 7.26 7.25 6.51

50 8.37 5.87 8.50 7.35 8.80 7.64 7.82 7.16

p values (%)

0 – – – –

5 0.3144* 0.5503 0.6274 0.4781
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Table 7 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.0766* 0.8519* 0.9702 0.4115

15 0.5755 0.3507* 0.5016 0.4115

20 0.8405 0.9108* 0.1913 0.3905

25 0.3547 0.9702* 0.2627 0.9108

30 0.6542 0.2627* 0.1005 0.2627

35 0.1354 1.0000* 0.1169 0.3507

40 0.1169 0.3905 0.0620 0.9405

45 0.0930 0.9405* 0.0859 0.2471

50 0.0090 0.6542* 0.0731 0.2180

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(d)(c)

Fig. 4 Box-plots representing the distribution of the RLA results on datasets with Gaussian attribute noise

Hence, the OVO approach is also suitable considering the accuracy achieved with this
type of attribute noise. The robustness results are similar between the OVO and non-OVO
versions with RIPPER and 5-NN. However, in C4.5 and 3-NN, there are statistical differences
in favor of OVO at the highest noise levels. The box-plots show that methods using OVO
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have a better and more homogeneous behavior with all the datasets, that is, methods using
OVO have a more similar behavior with noisy problems, whereas the robustness results are
much more unpredictable with the non-OVO methods. Hence, the behavior of the non-OVO
methods is much better with some particular datasets, whereas with others is much worse.
Nevertheless, regardless of the dataset considered, OVO is more stable with respect to its
robustness results.

7 OVO Decomposition and Noise Schemes: Lessons Learned

Attending to the accuracy and robustness results analyzed in the previous sections, several
conclusions can be extracted about the degree of disruptiveness of the different types of noise:

1. Class Noise. The random class noise scheme is much more disruptive than the pairwise
class noise scheme.

2. Attribute Noise. The random attribute noise scheme is more disruptive than the Gaussian
attribute noise scheme.

3. Class vs. Attribute Noise. The random class noise is clearly more disruptive than the
random attribute noise. The ranking of disruptiveness follows with the pairwise class
noise and the Gaussian attribute noise.

Regarding the behavior of the methods using the OVO decomposition when dealing with
the different noise types, the following points can be pointed out:

1. OVO & Class Noise. The methods using OVO have better classification accuracies at
the different noise levels. The robustness of the methods using OVO is more notable with
the random class noise scheme, although it also outstands with the pairwise class noise
scheme on those datasets with the highest percentages of noisy examples.

2. OVO & Attribute Noise. The usage of the OVO approach produces better accuracies
with both attribute noise schemes. The robustness results of OVO are remarkable with
the random attribute noise scheme, where the differences are larger due to its higher
disruptiveness.

3. OVO & Homogeneity of the Robustness Results. The box-plots representing the distri-
bution of RLA results show that methods using OVO are expected to have a more similar
behavior with problems suffering from noise, being generally more robust than methods
not using OVO.

The following remarks can be made about how the methods with a different noise tolerance
benefit from the usage of OVO:

1. OVO & Robust Learners. In spite of being robust learners, the performance of C4.5
and RIPPER with the more disruptive noise schemes—the random class noise scheme
and the random attribute noise scheme—is much more deteriorated as the noise level
increases if they do not use OVO. Therefore, the good behavior of both methods with OVO
considering standard datasets [16] remains with noisy datasets. Indeed, their differences
with respect to the baseline classifiers are increased.

2. OVO & Noise-sensitive Learners. k-NN methods also benefits from the usage of OVO.
The differences of robustness between the OVO and non-OVO version, although they are
generally in favor of OVO, are not so accentuated as in the case of the robust learners. With
the less disruptive noise schemes—the pairwise class noise and the Gaussian attribute
noise—RLA results of OVO and non-OVO are affected more similarly than in the case
of the random noise schemes, where the differences increases along with the noise level.
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Therefore, the methods using OVO obtain better performances than baseline methods
when noise is present in the data. Methods using OVO also generally create more robust
classifiers than baseline classifiers when the noise level increases, and particularly, with the
more disruptive noise schemes—random class noise and random attribute noise. We can
conclude that these results may be supported by the following hypotheses:

1. Distribution of the noisy examples in the subproblems. When decomposing the prob-
lem into several binary subproblems with OVO, the complexity of the original problem
decreases. As a consequence, noisy examples are divided into each subproblem, which
also decreases the effect of noise in each binary classifier, thereby having a lower influence
in the final performance.

2. Increase of the separability of the classes. The decomposition increases the separability
of the classes, since only one boundary must be established. The corruptions of noise in
these regions is less notable and the classifiers are less influenced.

3. Collecting information from different classifiers. The aggregation of the outputs from
the base classifiers produces more robust classifiers, since some fails can be corrected.
Besides, if a noisy example does not belong to one of both classes involved in the learning
of a classifier, the classifier will not be affected by that example, and its predictions will
not be hindered.

8 Concluding remarks

This paper analyzes the suitability of the usage of the OVO decomposition when dealing
with noisy training datasets in multi-class problems. A large number of noisy datasets have
been created considering different types, schemes, and levels of noise, as proposed in the
literature. The C4.5 and RIPPER robust learners and the noise-sensitive k-NN method have
been evaluated on these datasets, with and without the usage of OVO.

The results obtained have shown that the OVO decomposition improves the baseline clas-
sifiers in terms of accuracy when data are corrupted by noise in all the noise schemes studied.
The robustness results are particularly notable with the more disruptive noise schemes—the
random class noise scheme and the random attribute noise scheme—where a larger amount of
noisy examples and with higher corruptions are available, which produces greater differences
(with statistical significance).

Three hypotheses have been introduced aiming to explain the better performance and
robustness of the methods using OVO when dealing with noisy data: (1) the distribution of
the noisy examples in the subproblems, (2) the increase of the separability of the classes, and
(3) the possibility of collecting information from different classifiers.

As final remark, we must emphasize that one usually does not know the type and level
of noise present in the data of the problem that is going to be addressed. Decomposing a
problem suffering from noise with OVO has shown a better accuracy, higher robustness,
and homogeneity with all the classification algorithms tested. For this reason, the usage of
the OVO decomposition strategy in noisy environments can be recommended as an easy to
applicate, yet powerful tool to overcome the negative effects of noise in multi-class prob-
lems.

In future works, the synergy between OVO in combination with noise preprocessing
techniques will be studied in order to check its suitability to deal with noisy data. Moreover,
the behavior of OVO in different noisy frameworks must be studied, that is, where both the
training and the test sets are affected by noise.
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a b s t r a c t

The Nearest Neighbor rule is one of the most successful classifiers in machine learning. However, it is
very sensitive to noisy, redundant and irrelevant features, which may cause its performance to
deteriorate. Feature weighting methods try to overcome this problem by incorporating weights into
the similarity function to increase or reduce the importance of each feature, according to how they
behave in the classification task. This paper proposes a new feature weighting classifier, in which the
computation of the weights is based on a novel idea combining imputation methods – used to estimate a
new distribution of values for each feature based on the rest of the data – and the Kolmogorov–Smirnov
nonparametric statistical test to measure the changes between the original and imputed distribution of
values. This proposal is compared with classic and recent feature weighting methods. The experimental
results show that our feature weighting scheme is very resilient to the choice of imputation method and
is an effective way of improving the performance of the Nearest Neighbor classifier, outperforming the
rest of the classifiers considered in the comparisons.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Nearest Neighbor (NN) classifier [1] is one of the most
widely used methods in classification tasks due to its simplicity
and good behavior in many real-world domains [2]. It is a
nonparametric classifier which simply uses the full training data
set to establish a classification rule, based on the most similar or
nearest training instance to the query example.

The most frequently used similarity function for the NN
classifier in the instance-based learning area is Euclidean distance
[3]. However, redundant, irrelevant and highly correlated features
may lead to erroneous similarities between the examples obtained
and, therefore, to a deterioration in performance [4]. One way of
overcoming this problem lies in modifying the similarity function,
that is, the way in which the distances are computed. With this
objective, weighting schemes can be applied in order to improve
the similarity function, by introducing a weight for each of the
features. High weights are assigned to those features that are
helpful to classification and low weights are assigned to harmful
or redundant features.

Feature Weighting methods [5] are able to enhance the NN
classifier following the above procedure. By contrast to Feature
Selection [6–9], the usage of weighting schemes provides the
classifiers with a way of considering features partially, giving them
some degree of importance in the classification task. This is usually
preferred since weak, yet useful features may still be considered,
instead of forcing the methods to either accept or completely
ignore them. Many approaches using Feature Weighting have been
proposed in the literature, some of which have focused on the NN
classifier [10–12].

This paper proposes a novel approach for weighting features,
based on the usage of imputation methods [13,14]. These are
commonly employed to estimate those feature values in a data set
that are unknown, formally known as missing values (MV) [15],
using the rest of the data available. Therefore, imputation methods
enable us to estimate a new distribution of the original data set, in
which the distribution of each feature is conditioned to the rest of
the features or all the data. These conditioned distributions of each
feature can be compared with the original ones in order to detect
the relevance of each feature, depending on the accuracy of the
estimation for that feature performed by the imputation method.

The Kolmogorov–Smirnov statistic [16] may then be used to
evaluate the differences between the original distribution of the
features and that of the imputed ones. It is thus possible to
measure how well the values of each feature can be predicted
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using the rest of the data. This enables us to give more importance
to those features with high changes between their original and
estimated value distributions – these features keep most of the
structural information of the data and are not easily predictable
using the rest of the data, which reduces the effect of those
features that are easily predictable, and which are therefore likely
to be redundant.

The study is completed with an experimentation in which our
proposal is compared with several classic and recent proposals of
feature weighting, considering 25 supervised classification pro-
blems taken from the Keel-Dataset repository [17]. A web page
with material complementary to this paper is available at http://
sci2s.ugr.es/fw-imputation including the data sets used and the
performance results of each classifier.

The rest of this paper is organized as follows. Section 2
introduces imputation and feature weighting methods. In Section
3 we describe our proposal. In Section 4 we present the experi-
mental framework, and in Section 5 we analyze the results
obtained. Finally, in Section 6 we enumerate some concluding
remarks.

2. Preliminaries

This section introduces our proposal's main topics: imputation
in Section 2.1 and feature weighting in Section 2.2.

2.1. Imputation methods for the estimation of values

Many real-world problems contain missing values as a result of,
for example, manual data entry procedures or equipment errors.
This poses a severe problem for machine learning applications,
since most classifiers cannot work directly with incomplete data
sets. Furthermore, MVs may cause different problems in a classi-
fication task [13]: (i) loss of efficiency, (ii) complications in
handling and analyzing the data and (iii) bias resulting from
differences between missing and complete data. Therefore, a
preprocessing stage in which the data are prepared and cleaned
is usually required [18].

Imputation methods [14,19] aim to predict a value for each MV.
In most cases, the features of a data set are not independent of
each other. Thus, through the identification of relationships among
features, MVs can be determined. An advantage of this approach is
that the MV treatment is independent of the learning algorithm
used. Hence, the user is able to select the most appropriate
imputation depending on the learning approach considered [13].

One of the simplest imputation methods is based on the NN
rule: k-NN Imputation (KNNI). C4.5 or CN2 usually benefit from its
usage [19]. Other approaches try to improve or complement its
performance over various domains, for example, in [20] a Support
Vector Machine (SVM) was used to fill in MVs (SVMI).

Other works are mostly focused on studying the behavior of
several imputation methods in a specific scenario. For example, in
[21], the authors induced MVs in several data sets. The prediction
value – that is, the similarity of the imputed value to the originally
removed one – of several imputation methods, such as Regularized
Expectation-Maximization [22] or Concept Most Common (CMC)
[23], and the accuracy obtained by several classifiers were studied.
From the results, the authors stated that better prediction results
do not imply better classification results. A similar approach was
adopted in [14], in which the behavior of classifiers belonging to
different paradigms, such as decision trees or instance-based
learning methods, was studied over data sets with different levels
of MVs.

All the aforementioned works have shown that imputation
methods work properly when estimating missing values from the

rest of the available data. They are therefore also suitable for use in
our proposal.

2.2. Feature weighting in nearest neighbor classification

Data preparation [18,24] provides a number of ways to improve
the performance of the NN classifier, such as Prototype Selection
[25] or Feature Selection [6–9]. A different, yet powerful approach
is Feature Weighting [5].

Feature Weighting methods can be included as a part of
another type of more general methods: those based on adaptive
distance measures [26–29]. These techniques try to learn distance
metrics from the labeled examples of a problem in order to
improve the classification performance. A reference work within
this topic is, for example, that of Weinberger and Saul [26], in
which the Mahanalobis distance metric is learned for k-nearest
neighbor classification by semidefinite programming. The metric is
trained in order that the k-nearest neighbors always belong to the
same class while examples from different classes are separated by
a large margin. On the other hand, the approach of [29] proposes a
framework in which the metrics are parameterized by pairs of
identical convolutional neural nets. Other works [27,28] consider
schemes for locally adaptive distance metrics that change across
the input space to overcome the bias problem of NN when
working in high dimensions. In [27] a local linear discriminant
analysis is used to compute neighborhoods, whereas in [28] a
technique that computes a locally flexible metric by means of
support vector machines is proposed.

The main objective of Feature Weighting methods is to reduce
the sensitivity of the NN rule to redundant, irrelevant or noisy
features. This is achieved by modifying its similarity function [4]
with the inclusion of weights. These weights can be regarded as a
measure of how useful a feature is with respect to the final
classification task. The higher a weight is, the more influence the
associated feature will have in the decision rule used to compute
the classification of a given example. Therefore, an adequate
scheme of weights could be used to highlight the best features
of the domain of the problem, diminishing the impact of redun-
dant, irrelevant and noisy ones. Thus, the accuracy of the classifier
could be greatly improved if a proper selection of weights is made.

In the case of the NN classifier, most of the techniques
developed to include Feature Weighting schemes have been
focused on incorporating the weights in the distance measure,
mainly to Euclidean distance (see Eq. (1), where X and Y are two
instances and M is the number of features that describes them). In
spite of its simplicity, the usage of Euclidean distance has been
preferred in many research approaches, since it is easy to optimize
and shows a good discriminative power in most classification
tasks. In fact, it is the most commonly used similarity measure in
the instance based learning field [3].

dðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
M

i ¼ 0
ðxi%yiÞ

2

s

ð1Þ

Feature Weighting methods often extend this definition
through the inclusion of weights associated with each feature
(Wi, usually WiA ½0;1'). These modify the way in which the
distance measure is computed (Eq. (2)), increasing the relevance
(the squared difference between feature's values) of those features
with greater weights associated with them (near to 1.0).

dwðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
M

i ¼ 0
Wi ( ðxi%yiÞ

2

s

ð2Þ

The application of this technique to the NN classifier has been
widely addressed. To the best of our knowledge, the most
complete study undertaken to this end can be found in [5], in
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which a review of several Feature Weighting methods for Lazy
Learning algorithms [30] is presented (with most of them applied
to improve the performance of the NN rule). In this review, Feature
Weighting techniques are categorized by several dimensions,
regarding the weight learning bias, the weight space (binary or
continuous), the representation of features employed, their gen-
erality and their degree of employment of domain specific
knowledge.

A wide range of classical Feature Weighting techniques are
available in the literature, both classical (see [5] for a complete
review) and recent [10,12]. The most well known compose the
family of Relief-based algorithms.

The Relief algorithm [31] (which was originally a Feature
Selection method [6]) has been widely studied and modified,
producing several interesting variations of the original approach.
Some of them [32,11] are based on ReliefF [33], which is the first
adaptation of Relief as a Feature Weighting approach.

In addition to these approaches, Feature Weighting methods
are also very useful when considered as a part of larger supervised
learning schemes. In these approaches, Feature Weighting can be
regarded as an improved version of Feature Selection (in fact,
Feature Selection is a binary version of Feature Weighting, defining
a weight of 1 if a feature is selected, or 0 if it is discarded). Again, if
the weights scheme is properly chosen, Feature Weighting can
play a decisive role in enhancing the performance of the NN
classifier in these techniques [34].

3. A weighting algorithm based on feature differences after
values imputation

This section describes the weighting method proposed, which
is based on three main steps (see Fig. 1):

1. Imputation of the data set (Section 3.1): In this phase, an
imputation method is used to build a new estimated data set
DS0 from the original one DS.

2. Computation of weights (Section 3.2): The distribution of the
values of each feature fi of DS and the corresponding estimated
feature f 0i of DS

0 are compared using the Kolmogorov–Smirnov

statistical test. This enables the extraction of the Di
n statistic for

each feature fi.
3. Construction of the classifier (Section 3.3): Once the Di

n statistic
is computed for each feature i, the NN classifier is used,
incorporating a modified version of Euclidean distance. This
version is based on a weighting scheme derived from the Di

n

statistics.

The following sections describe each of these steps in depth.
Section 3.1 is devoted to the imputation phase, whereas Section
3.2 describes the computation of the weights. Finally, Section 3.3
characterizes the classification model.

3.1. Imputation of the data set

The first step consists of creating a whole new estimated data
set DS0 from the original one DS. In order to do this, an imputation
method is used (in this paper we will consider KNNI [19], CMC [23]
and SVMI [20], although other imputation methods may be
chosen). If the original data set DS is composed of the features
f 1; f 2;…; f M , the imputed data set DS0 will be formed by the
features f 01; f

0
2;…; f 0M whose values are obtained by the imputation

method.
The procedure to obtain DS0 from DS is represented in

Algorithm 1. This is based on assuming iteratively that each
feature value of each example of the data set DS, that is, eðf iÞ, is
missing (lines 2–5). Then, the imputation method IM is used to
predict a new value for that feature value (line 6). The new data set
DS0 is obtained by repeating this process for each feature value,
until the whole data set has been processed. Carrying out this
process, it is possible to estimate a distribution of values for each
feature, which is conditioned to the rest of the features or the
totality of the data. The new data set DS0 will contain these
conditioned distributions for each feature. This will allow us to
check those features that are more difficult to predict with the rest
of the features/data and contain the structural information of the
data set, making them more important to the classification task.

Algorithm 1. Pseudocode of the first step of the method: imputa-
tion of the dataset.

Input: original dataset DS, imputation method IM.
Output: estimated dataset DS0.

1 Set DS0 ¼∅;
2 for each example eADS do
3
4
5
6
7
8

e0 ¼ null;
for each feature f i do""""
Suppose eðf iÞ as missing;
e0ðf 0iÞ⟵Estimate the value for eðf iÞ using IM over DS;

end
DS0⟵DS0 [ fe0g

"""""""""""""""
9 end

3.2. Computation of weights using the Kolmogorov–Smirnov test

The next step consists of measuring which features are most
changed after the application of the imputation method. Given the
nature of the imputation techniques, some features are expected
to remain unchanged (or to present only small changes in their
values’ distribution) whereas other features may present a higher
level of disruption when their imputed values are compared with
the original ones. The Kolmogorov–Smirnov test [16] provides a
way of measuring these changes. This test works by computing aFig. 1. Feature weighting method proposed.
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statistic Dn, which can be regarded as a measure of how different
two samples are.

The test is a nonparametric procedure for testing the equality of
two continuous, one-dimensional probability distributions. It
quantifies a distance between the empirical distribution functions
of two samples. The null distribution of its statistic, Dn, is
computed under the null hypothesis that the samples are drawn
from the same distribution.

The main advantage of using the Dn statistic (computed in the
Kolmogorov–Smirnov test) instead of other simpler statistics such
as the variance is that, for our purpose, which consists of measur-
ing the similarity of two given distributions, shape measures used
to compare the two distributions are more appropriate than other
types of measures (such as dispersion measures in the case of the
variance). Thus, when comparing two distributions, the changes in
the variance do not provide enough information on how similar
the two distributions are. Variances are only a measure of how the
values of an attribute are concentrated around the mean, and is
just one of the many factors that may be changed by distribution.
However, the Dn statistic contains the structural information that
describes how the distribution has changed. This can be done by
identifying where the higher or lower concentrations of values are
(in the lowest values of the distribution, in the highest values, if
there are several intervals with a higher concentration of values,
etc.). Thus, the Dn statistic is therefore much more representative
than a simple comparison between the variances of the two
distributions.

On the other hand, two samples of values with the same
variance do not necessarily imply that both follow the same
distribution (the same shape), or even that they have similar
distributions. A simple example in which the variance does not
work properly can be seen in regard to the property that makes
the variance invariant to changes in the origin. Suppose two
attributes: A (real distribution of values of an attribute) and A0

(the distribution with the estimated values of that attribute).
Assume that A0 ¼ AþC, where C is a constant. Then,
varianceðAÞ ¼ varianceðA0Þ. The two samples have the same var-
iance, even though they obviously come from two different
distributions and this fact is not detected using the variance. This
problem is avoided if the Dn statistic is employed.

Given two samples, X and Y, and their empirical distribution
functions FX and FY

FXðxÞ ¼
1
n

∑
n

i ¼ 1
IXi rx; FY ðxÞ ¼

1
n

∑
n

i ¼ 1
IYi rx ð3Þ

(where IXi rx is the indicator function, equal to 1 if Xirx and equal
to 0 otherwise) the Kolmogorov–Smirnov statistic is

Dn ¼ sup
x
jFX%FY j ð4Þ

Table 1 shows two toy samples (where two distributions of
values X ¼ fX1;…;Xng and Y ¼ fY1;…;Yng with n¼5 are given),
whereas Table 2 shows an example of the computation of the
Kolmogorov–Smirnov statistic from them.

In the approach of this paper, the Dn statistic provides a
valuable way of estimating the degree of change undergone by a
feature through the imputation process. By computing the Dn

statistic associated with the differences between both samples of
the feature (original and imputed), it is possible to measure the
greater degree of difference between the expected distribution of

both samples. Hence, the greater Dn value obtained, the more
different the imputed version of the feature distribution will be
(when compared with the original one).

The Dn statistic can be easily transformed into a weight. Since
DnA ½0;1', features with a lower value of Dn (near to 0.0) it will
have little influence on the computation of the similarity function
of the NN rule, whereas features with a higher value of Dn (near to
1.0) will be the most influential when computing the distance
between two examples. Defining the statistical Di

n for the feature i
as

Di
n ¼ Kolmogorov–Smirnovðf i; f

0
iÞ 8 i; f iAA; f

0
iAA

0 ð5Þ

(where A denotes the set of features of the original data set DS and
A0 denotes the set of features imputed in DS0), then the weights
WiA ½0;1' computed for a feature f iAA are

Wi ¼Di
n ∑

M

j ¼ 1
Dj
n

,

ð6Þ

3.3. Final classification model

The final classifier considers NN with the weighted Euclidean
distance (Eq. (2)) and the weights computed throughout the
Kolmogorov–Smirnov statistic (Eq. (6)).

Considering weights computed from the Dn statistic, we aim to
highlight the effect that changing features have on the computa-
tion of the distance. These features, with a larger associated Dn

value, will be those poorly estimated by the imputation method
(whose sample distribution differs greatly if the original and
imputed versions are compared). They are preferred since they
keep most of the structural information of the data, and are the
key features describing the data set (they cannot be properly
estimated using the rest of the data).

By contrast, features with a small Dn value will be those whose
sample distribution has not been changed after the application of
the imputation method. Since these features are easily estimated
when the rest of the data is available (the imputation method can
recover their values properly), they are not preferred in the final
computation of the distance, and thus a lower weight is assigned
to them.

4. Experimental framework

This section presents the framework of the experimental study
conducted. The imputation methods considered in the previous
section are presented in Section 4.1, whereas Section 4.2 is
devoted to the feature weighting methods used. Section 4.3

Table 1
Two toy samples of size n¼5.

X¼{X1¼0.01, X2¼0.11, X3¼0.12, X4¼0.22, X5¼0.85}
Y¼{Y1¼0.09, Y2¼0.41, Y3¼0.65, Y4¼0.73, Y5¼0.91}

Table 2
Example of the computation of the Kolmogorov–Smirnov statistic.

x FX FY jFX%FY j supx jFX%FY j

0 0 0 0 0
0.01 0.2 0 0.2 0.2
0.09 0.2 0.2 0 0.2
0.11 0.2 0.2 0.2 0.2
0.12 0.6 0.2 0.4 0.4
0.22 0.8 0.2 0.6 0.6
0.41 0.8 0.4 0.4 0.6
0.65 0.8 0.6 0.2 0.6
0.73 0.8 0.8 0 0.6
0.85 1.0 0.8 0.2 0.6
0.91 1.0 1.0 0 0.6

Dn 0.6
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describes the data sets employed. Finally, Section 4.4 describes the
methodology followed to analyze the results.

4.1. Imputation methods

The proposal described in this paper allows us to include any
standard imputation method. For the sake of generality, we have
chosen to test the behavior using three different imputation
techniques, well-known representatives of the field [13,19]:

1. KNNI [19]: Based on the k-NN algorithm, every time an MV is
found in a current example, KNNI computes the k nearest
neighbors and their average value is imputed. KNNI also uses
the Euclidean distance as a similarity function.

2. CMC [23]: This method replaces the MVs by the average of all
the values of the corresponding feature considering only the
examples with the same class as the example to be imputed.

3. SVMI [20]: This is an SVM regression-based algorithm devel-
oped to fill in MVs. It works by firstly selecting the examples in
which there are no missing feature values. In the next step, the
method sets one of the input features, some of the values of
which are missing, as the decision feature, and the decision
feature as the input feature. Finally, an SVM for regression is
used to predict the new decision feature.

The parameter setup used for their execution is presented in
Table 3. Each imputation method considered will lead to a
different feature weighting classifier. Throughout the study, we
will denote them as FW-KNNI, FW-CMC and FW-SVMI.

4.2. Feature weighting methods for NN

In order to check the performance of the approach proposed,
the following feature weighting algorithms for nearest neighbor
classification as comparison methods have been chosen:

1. NN [1]: The NN rule is used as a baseline limit of performance
which most of the methods should supersede.

2. CW [10]: A gradient descent based algorithm developed with
the aim of minimizing a performance index that is an approx-
imation of the leave one out error over the training set. In this
approach, weights are obtained for each combination of feature
and class, that is, the set of weights is different depending on
the class of each training example.

3. MI [5]: Mutual Information (MI) between features can be used
successfully as a weighting factor for NN based algorithms. This
method was marked as the best preset FW method in [5].

4. ReliefF [33]: The first Relief-based method adapted to perform
the FW process. By contrast to the original Relief method,
weights computed in ReliefF are not binarized to 0,1. Instead,
they are used as final weights for the NN classifier. This method
was noted as the best performance-based FW method in [5].

5. IRelief [11]: A multiclass, iterative extension of Relief. The
objective function of the iterative process aims at reducing
the distances between each example and its nearest hit
(nearest training example of the same class) and increasing

the distances between each example and its nearest enemy
(nearest training example of another class).

Table 4 summarizes the parameter setup used for the feature
weighting methods in the experimental study, which was used in
the reference in which the methods were originally described.

4.3. Data sets

The experimentation considers 25 data sets from the KEEL-
Dataset repository [17]. They are described in Table 5, where #EXA
refers to the number of examples, #FEA to the number of numeric
features and #CLA to the number of classes.

For data sets containing missing values (such as bands or
dermatology), the examples with missing values were removed
from the data sets before their usage and thus all the attribute
values of the data sets considered are known. In this way, the
percentage of missing values of each data set does not influence
the results or conclusions obtained and it does not harm the
methods that are not specially designed to deal with them.
Therefore, the only missing values considered in this paper are
those assumed during the execution of Algorithm 1 in order to
build the new estimated distribution of values.

4.4. Methodology of analysis

The performance estimation of each classifier on each data set
is obtained by means of 3 runs of a 10-fold distribution optimally
balanced stratified cross-validation (DOB-SCV) [35], averaging its
test accuracy results. The usage of this partitioning reduces the
negative effects of both prior probability and covariate shifts [36]
when classifier performance is estimated with cross-validation
schemes. The results with the standard cross-validation can be
found on the web page of this paper.

Statistical comparisons of the data sets considered will be also
performed. Wilcoxon's test [37] will be applied to study the
differences among the proposals of this paper and also between

Table 3
Parameter specification for the imputation methods.

Algorithm Ref. Parameters

KNNI [19] k value: 10
CMC [23] It has no parameters to be fixed
SVMI [20] Kernel type: RBF, C: 1.0, RBF-γ: 1.0

Table 4
Parameter specification for the classifiers of the study.

Algorithm Ref. Parameters

NN [1] It has no parameters to be fixed
CW [10] β: Best in ½0:125;128', μ: Best in ½0:001;0:1',

ϵ: 0.001, Iterations: 1000
MI [5] It has no parameters to be fixed
ReliefF [33] K value: Best in ½1;20'
IRelief [11] Maximum iterations: 100, ϵ: 0.00001, σ: Best in ½0:001;1000'

Table 5
Data sets employed in the experimentation.

Data set #EXA #FEA #CLA Data set #EXA #FEA #CLA

banana 5300 2 2 pima 768 8 2
bands 365 19 2 satimage 6435 36 7
bupa 345 6 2 sonar 208 60 2
dermatology 358 34 6 tae 151 5 3
ecoli 336 7 8 texture 5500 40 11
heart 270 13 2 vowel 990 13 11
hepatitis 80 19 2 wdbc 569 30 2
ionosphere 351 33 2 wine 178 13 3
iris 150 4 3 wq-red 1599 11 11
led7digit 500 7 10 wq-white 4898 11 11
mov-libras 360 90 15 wisconsin 683 9 2
newthyroid 215 5 3 yeast 1484 8 10
phoneme 5404 5 2
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each of these proposals and NN using the Euclidean distance.
Regarding the comparison among feature weighting methods, the
results of the Friedman Aligned test [38] and the Finner procedure
[39] will be computed. Comparisons with other tests, such as the
Holm test [40], may be found on the web page of this paper. More
information about these statistical procedures can be found at
http://sci2s.ugr.es/sicidm/.

5. Analysis of results

This section presents the analysis of the results obtained.
Table 6 shows the test accuracy obtained by each classifier on
each data set. The best results for each data set are highlighted in
bold. From this table, several remarks can be made:

) The method obtaining the best results in most single data sets
is FW-KNNI (in 6 of the 25 data sets). It is followed by IRelief (5
data sets), FW-CMC, FW-SVMI and CW (4 data sets), MI and
ReliefF (3 data sets) and NN (1 data set).
) Even though IReliefF or CW obtain the best results in a certain

number of data sets – 5 and 4 respectively –, they show a
variable performance for different problems. For instance, in
data sets such as banana and tae, CW's results are very far from
the results obtained by the best performing methods in these
data sets. The same occurs for IRelief – in bands, phoneme and
wq-white – whereas this issue is not very remarkable with
regard to any of the other proposals of this paper. This fact
shows that our methods are generally more robust than those
of the rest of the algorithms included in the comparison.
) Regardless of the imputation method selected, our approaches

usually obtain results close to those of the best performing
method in each data set. Moreover, all of them obtain better
accuracy on average than the comparison methods over the 25
problems.

To add depth to the analysis of the results, several statistical
comparisons are performed below, studying the differences
among the proposals of this paper, their comparison with NN
and also with the rest of the feature weighting methods.

Comparison among the feature weighting methods based on
imputation: The results of the three proposals of this paper (FW-
KNNI, FW-CMC and FW-SVMI) shown in Table 6 are quite similar.
In order to study whether there are statistical differences among
them, Wilcoxon's test has been performed – see Table 7. In this
table, the classifier of each row is established as the control
method for the statistical test and its ranks (Rþ), the ranks in
favor of the method of the column (R%) and the p-value
associated are shown. From the high p-values obtained in these
comparisons, one can conclude that statistical differences among
the three proposals do not exist. This fact shows the robustness of
the proposal independent of the imputation method chosen.
Therefore, the good behavior of the approach is due to the strategy
for obtaining the weights, which combines imputation methods
and the Kolmogorov–Smirnov test; the concrete imputation
method employed does not influence the results so much.

Comparison with NN: Table 8 shows the results of applying
Wilcoxon's test to each of the proposals performed and NN. As the
table shows, every proposal is statistically better than NN due to
the low p-values obtained – all are lower than 0.05. This shows

Table 6
Test accuracy results.

Data set CW MI ReliefF IRelief NN FW-KNNI FW-CMC FW-SVMI

banana 61.59 59.51 87.7 88.00 87.87 87.91 87.79 87.60
bands 72.31 45.27 65.99 36.97 72.04 72.04 69.02 69.85
bupa 62.36 42.02 59.09 55.35 62.36 64.11 64.09 63.50
dermatology 95.18 97.19 96.9 93.22 94.9 94.62 95.75 95.21
ecoli 80.09 78.88 70.69 76.88 80.09 79.77 80.09 80.67
heart 76.3 82.96 78.89 78.89 74.81 73.7 75.19 75.19
hepatitis 82.94 81.27 80.26 85.65 82.94 85.62 81.83 82.94
ionosphere 85.96 87.4 90.26 91.11 87.11 88.55 87.09 87.67
iris 96.00 83.33 95.33 94.67 95.33 95.33 96.00 94.00
led7digit 44.88 51.55 51.6 51.62 44.88 52.45 51.55 52.03
mov-libras 82.81 69.85 25.6 84.1 82.81 85.73 85.95 85.51
newthyroid 97.19 94.35 98.59 95.32 97.19 96.26 97.19 96.71
phoneme 90.43 76.85 68.24 72.63 90.41 91.04 91.06 91.08
pima 70.45 69.13 63.02 66.28 70.45 70.97 70.71 70.19
satimage 90.94 90.46 90.89 90.64 90.88 90.71 90.71 90.94
sonar 86.52 73.13 84.99 87.52 86.52 86.97 86.55 86.02
tae 42.07 31.81 28.63 69.42 42.07 65.55 65.55 65.55
texture 99.15 98 99.09 98.8 99.15 99.15 99.07 99.15
vowel 99.39 80.51 98.89 99.19 99.39 99.49 99.39 99.39
wdbc 95.97 96.14 93.46 95.26 95.96 94.91 95.8 95.97
wine 95.58 97.84 98.36 97.25 95.58 95.58 96.14 96.69
wq-red 53.72 48.96 66 63.76 53.66 66.19 65.74 65.55
wq-white 50.19 54.06 51.1 20.89 50.17 66.67 67.36 67.04
wisconsin 95.61 96.49 96.78 96.49 96.04 96.04 95.75 96.05
yeast 51.68 37.95 43.03 49.3 51.55 53.71 54.05 53.57

Average 78.37 73 75.34 77.57 79.37 82.12 81.98 81.92

Best result (out of 25) 4 3 3 5 1 6 4 4

Table 7
Wilcoxon's comparison of the proposed methods.

FW-KNNI FW-CMC FW-SVMI

Method Rþ R% p-value Rþ R% p-value Rþ R% p-value

FW-KNNI – – – 159 166 1.0000 191.5 133.5 0.4273
FW-CMC 166 159 0.9140 – – – 154 146 0.8970
FW-SVMI 133.5 191.5 1.0000 146 154 1.0000 – – –
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that the application of our approach to feature weighting improves
the performance of the NN classifier significantly, regardless of the
specific imputation method chosen.

Comparison among feature weighting methods: Table 9 presents
the statistical comparison performed for each proposal (FW-KNNI,
FW-CMC and FW-SVMI). Each proposal is independently com-
pared with the rest of the feature weighting methods since we
have already confirmed that there are no significant differences
among our three approaches (see Table 7). The ranks obtained by
the Friedman Aligned procedure (Rank column), which represent
the effectiveness associated with each algorithm, and the p-value
related to the significance of the differences found by this test (pFA
row) are shown. The pFinn column shows the adjusted p-value
computed by the Finner test.

Looking at Table 9, we can observe that:

) The average ranks obtained by our proposals are the best (the
lowest) and they are notably differentiated from the ranks of
the rest of the methods.
) These are followed by CW, IRelief and ReliefF with very close

ranks among them. MI obtains the highest rank.
) The p-values of the Friedman Aligned test are very low in every

case, meaning that the differences found among the methods
are very significant.
) The p-values obtained with the Finner procedure when com-

paring FW-KNNI, FW-CMC and FW-SVMI with the comparison
algorithms are very low. The differences found are always
significant (lower than 0.1), except in the case of FW-CMC
and FW-SVMI with CW, in which the p-value obtained is still
very low.

From the results of Tables 6– 9, it is possible to conclude that
the proposals presented in this paper perform better than the rest
of the feature weighting methods considered. They are also able to
improve the performance of the NN classifier. Even though they do
not obtain the best results in a large number of single data sets, the
statistical tests illustrate the improvement of performance
achieved by our approaches, showing a great robustness and a
good behavior in most of the data sets. The comparison among our
three proposals does not show statistical differences, suggesting
that the strategy for obtaining the weights performs accurately
independent of the concrete imputation method employed.

6. Conclusions

In this paper we have proposed a new scheme for feature
weighting developed to improve the performance of the NN
classifier, in which the weights are computed by combining
imputation methods and the Kolmogorov–Smirnov statistic. From
the experimental results it is possible to conclude that our feature
weighting scheme is not very sensitive to the selection of the
imputation method, since the results obtained in every case are
quite similar regardless of the specific imputation technique
chosen, and statistical differences among them have not
been found.

The results obtained show that all our approaches enhance the
performance of NN to a greater degree than the rest of the feature
weighting methods analyzed. They also show a robust behavior in
several domains, in contrast to the rest of the classifiers, which
demonstrate a variable performance when different data sets are
considered. The statistical analysis performed confirms our con-
clusions. The results with standard cross-validation provide simi-
lar conclusions to those shown here (see the results at http://sci2s.
ugr.es/fw-imputation).
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Abstract. The Nearest Neighbor rule is one of the most successful clas-
sifiers in machine learning but it is very sensitive to noisy data, which
may cause its performance to deteriorate. This contribution proposes
a new feature weighting classifier that tries to reduce the influence of
noisy features. The computation of the weights is based on combining
imputation methods and non-parametrical statistical tests. The results
obtained show that our proposal can improve the performance of the
Nearest Neighbor classifier dealing with di↵erent types of noisy data.

Keywords: noisy data, feature weighting, classification.

1 Introduction

The Nearest Neighbor (NN) classifier [4] uses the full training dataset to establish
a classification rule, based on the most similar or nearest training instance to the
query example. The most frequently used similarity function for the NN classifier
is Euclidean distance [1] (see Equation 1, where X and Y are two instances and
M is the number of features that describes them).

d(X, Y ) =

vuut
MX

i=0

(xi � yi)2 (1)

However, features containing enough noise may lead to erroneous similarities
between the examples obtained and, therefore, to a deterioration in the per-
formance of NN, which is known to be very sensitive to noisy data [10]. One
way of overcoming this problem lies in modifying the similarity function, that
is, the way in which the distances are computed. With this objective, Feature
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Weighting methods [12], [9] try to improve the similarity function, by introduc-
ing a weight for each of the features (Wi, usually Wi 2 [0, 1]). These methods,
which are mostly based in the Euclidean distance, modify the way in which the
distance measure is computed (Equation 2), increasing the relevance of those
features with greater weights associated with them (near to 1.0).

dw(X, Y ) =

vuut
MX

i=0

Wi · (xi � yi)2 (2)

These weights Wi can be regarded as a measure of how useful a feature is
with respect to the final classification task. The higher a weight is, the more
influence the associated feature will have in the decision rule used to compute
the classification of a given example. Therefore, an adequate scheme of weights
could be used to diminish the worst features of the domain of the problem, which
could be those containing the more harmful amount of noise to the classification
task. Thus, the accuracy of the classifier could be greatly improved if a proper
selection of weights is made.

This contribution proposes a novel approach for weighting features, based on
the usage of imputation methods [3], [6], [5]. These are commonly employed to
estimate those feature values in a dataset that are unknown, formally known as
missing values (MV), using the rest of the data available. Therefore, imputation
methods enable us to estimate a new distribution of the original dataset, in
which the distribution of each feature is conditioned to the rest of the features
or all the data. These conditioned distributions of each feature can be compared
with the original ones in order to detect the relevance of each feature, depending
on the accuracy of the estimation for that feature performed by the imputation
method.

The Kolmogorov-Smirnov statistic [11] may then be used to evaluate the dif-
ferences between the original distribution of the features and that of the imputed
ones. It is thus possible to measure how well the values of each feature can be
predicted using the rest of the data. This enables us to give less importance
to those features with high changes between their original and estimated value
distributions - these features that contain too much noise or the more harmful
noise and therefore are not easily predictable using the rest of the data, which
increases the e↵ect of those features that are easily predictable, and which have
therefore likely a less amount of noise.

The study is completed with an experimentation in which our proposal is
compared with the NN classifier, considering 25 supervised classification prob-
lems taken from the Keel-Dataset repository [2], into which we will introduce
di↵erent types and levels of noise.

The rest of this contribution is organized as follows. In Section 2 we describe
our proposal. In Section 3 we present the experimental framework, and in Section
4 we analyze the results obtained. Finally, in Section 5 we enumerate some
concluding remarks.
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2 A Weighting Scheme to Reduce the E↵ect of Noisy
Data

This section describes the weighting method proposed, which is based on three
main steps, described in the following subsections. Section 2.1 is devoted to the
first step (called the imputation phase), whereas Section 2.2 describes the second
step (the computation of the weights). Finally, Section 2.3 characterizes the third
step (the classification model).

2.1 Imputation of the Dataset

The first step consists of creating a whole new estimated dataset DS

0 from the
original one DS. In order to do this, an imputation method is used. In this
contribution we will consider the following imputation methods (although other
imputation methods may be chosen):

1. KNNI [3]. Based on the k-NN algorithm, every time an MV is found in
a current example, KNNI computes the k (k = 10 in our experimentation)
nearest neighbors and their average value is imputed. KNNI also uses the
Euclidean distance as a similarity function.

2. CMC [6]. This method replaces the MVs by the average of all the values of
the corresponding feature considering only the examples with the same class
as the example to be imputed.

3. SVMI [5]. This is an SVM regression-based algorithm developed to fill in
MVs. It works by firstly selecting the examples in which there are no missing
feature values. In the next step, the method sets one of the input features,
some of the values of which are missing, as the decision feature, and the
decision feature as the input feature. Finally, an SVM for regression is used
to predict the new decision feature.

If the original dataset DS is composed of the features f1, f2, . . . , fM , the
imputed dataset DS

0 will be formed by the features f

0
1, f

0
2, . . . , f

0
M whose values

are obtained by the imputation method.
The procedure to obtain DS

0 from DS is based on assuming iteratively that
each feature value of each example of the dataset DS, that is, e(fi), is missing.
Then, the imputation method IM is used to predict a new value for that feature
value. The new dataset DS

0 is obtained by repeating this process for each feature
value, until the whole dataset has been processed. Carrying out this process, it is
possible to estimate a distribution of values for each feature, which is conditioned
to the rest of the features or the totality of the data. The new dataset DS

0 will
contain these conditioned distributions for each feature.

2.2 Computation of Weights Using the Kolmogorov-Smirnov Test

The next step consists of measuring which features are most changed after the
application of the imputation method. Given the nature of the imputation tech-
niques, some features are expected to remain unchanged (or to present only
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small changes in their values’ distribution) whereas other features may present
a higher level of disruption when their imputed values are compared with the
original ones. Thus, those features that are more di�cult to predict with the
rest of the features/data will contain the more harmful noise and therefore we
will try to make them less important to the classification task. The Kolmogorov-
Smirnov test [11] provides a way of measuring these changes. This test works by
computing a statistic Dn, which can be regarded as a measure of how di↵erent
two samples are.

The test is a nonparametric procedure for testing the equality of two contin-
uous, one-dimensional probability distributions. It quantifies a distance between
the empirical distribution functions of two samples. The null distribution of its
statistic, Dn, is computed under the null hypothesis that the samples are drawn
from the same distribution.

Given two samples, X and Y , and their empirical distribution functions FX

and FY

FX(x) =
1

n

nX

i=1

IXix, FY (x) =
1

n

nX

i=1

IYix (3)

(where IXix is the indicator function, equal to 1 if Xi  x and equal to 0
otherwise) the Kolmogorov-Smirnov statistic is

Dn = sup
x

|FX � FY | (4)

In the approach of this contribution, the Dn statistic provides a valuable way
of estimating the degree of change undergone by a feature through the impu-
tation process. By computing the Dn statistic associated with the di↵erences
between both samples of the feature (original and imputed), it is possible to
measure the greater degree of di↵erence between the expected distribution of
both samples. Hence, the greater Dn value obtained, the more di↵erent the
imputed version of the feature distribution will be (when compared with the
original one).

The Dn statistic can be easily transformed into a weight. Since Dn 2 [0, 1],
features with a lower value of Dn (near to 0.0) it will have little influence on the
computation of the similarity function of the NN rule, whereas features with a
higher value of Dn (near to 1.0) will be the most influential when computing the
distance between two examples. Defining the statistical D

i
n for the feature i as

D

i
n = Kolmogorov-Smirnov(efi , ef 0

i
) (5)

(where efi and ef 0
i

are the empirical distributions of the features fi 2 A and
f

0
i 2 A0 respectively, and A denotes the set of features of the original dataset DS

and A0 denotes the set of features imputed in DS

0), then the weights Wi 2 [0, 1]
computed for a feature fi 2 A are

Wi = (1 � D

i
n)/(

MX

j=1

1 � D

j
n) (6)
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Therefore, the Kolmogorov-Smirnov test is applied to measure the degree
of di↵erence between each attribute fi and its estimated version f

0
i ; then, this

di↵erence is used to build the weight for the attribute fi (see Equation 6).

2.3 Final Classification Model

The final classifier considers NN with the weighted Euclidean distance (Equa-
tion 2) and the weights computed throughout the Kolmogorov-Smirnov statistic
(Equation 6). Since we will consider three di↵erent imputation methods (KNNI,
CMC and SVMI), three di↵erent feature weighting classifiers will be created.
Throughout the study, we will denote them as FW-KNNI, FW-CMC and FW-
SVMI according to the imputation method used.

Considering weights computed from the Dn statistic, we aim to reduce the
e↵ect that changing features have on the computation of the distance. These
features, with a larger associated Dn value, will be those easily estimated by the
imputation method (whose sample distribution di↵ers poorly if the original and
imputed versions are compared). They are preferred since they will contain a
less harmful noise, and are the key features describing the dataset.

By contrast, features with a small Dn value will be those whose sample distri-
bution has been greatly changed after the application of the imputation method.
Since these features are not easily estimated when the rest of the data is avail-
able (the imputation method cannot recover their values properly), they are not
preferred in the final computation of the distance, and thus a lower weight is
assigned to them.

3 Experimental Framework

Section 3.1 describes the base datasets employed and Section 3.2 shows the noise
introduction processes. Finally, Section 3.3 describes the methodology followed
to analyze the results.

3.1 Base Datasets

The experimentation considers 25 real-world datasets from the KEEL-Dataset
repository [2]. They are described in Table 3, where #EXA refers to the number
of examples, #FEA to the number of numeric features and #CLA to the number
of classes. For datasets containing missing values (such as bands or dermatology),
the examples with missing values were removed from the datasets before their
usage and thus all the attribute values of the datasets considered are known. In
this way, the percentage of missing values of each dataset does not influence the
results or conclusions obtained. Therefore, the only missing values considered in
this contribution are those assumed during the execution of our proposal.
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Table 1. Datasets employed in the experimentation

dataset #EXA #FEA #CLA dataset #EXA #FEA #CLA

banana 5300 2 2 pima 768 8 2
bands 365 19 2 satimage 6435 36 7
bupa 345 6 2 sonar 208 60 2
dermatology 358 34 6 tae 151 5 3
ecoli 336 7 8 texture 5500 40 11
heart 270 13 2 vowel 990 13 11
hepatitis 80 19 2 wdbc 569 30 2
ionosphere 351 33 2 wine 178 13 3
iris 150 4 3 wq-red 1599 11 11
led7digit 500 7 10 wq-white 4898 11 11
mov-libras 360 90 15 wisconsin 683 9 2
newthyroid 215 5 3 yeast 1484 8 10
phoneme 5404 5 2

3.2 Introducing Noise into Datasets

In order to control the amount of noise in each dataset and to check how it a↵ects
the classifiers, noise is introduced into each dataset in a supervised manner. Two
di↵erent noise schemes, which are proposed in the specialized literature [14], are
used in order to introduce a noise level of x% into each dataset.

– Random Class Noise. It supposes that exactly x% of the examples are
corrupted. The class labels of these examples are randomly changed by other
one out of the M classes.

– Random Attribute Noise. x% of the values of each attribute in the
dataset are corrupted. To corrupt an attribute Ai, approximately x% of
the examples in the dataset are chosen, and their Ai value is assigned a ran-
dom value from Di. A uniform distribution is used either for numerical or
nominal attributes.

A collection of new noisy datasets are created from the aforementioned 25
base real-world datasets. Both types of noise are independently considered: class
and attribute noise. For each type of noise, the noise levels x = 10% and x = 30%
are studied. Thus, the results of our proposal will be compared with those of NN
considering three di↵erent scenarios: with the 25 unaltered real-world datasets,
with the 25 datasets with a 10% of noise level and with the 25 datasets with a
30% of noise level.

3.3 Methodology of Analysis

The performance estimation of each classifier on each dataset is obtained by
means of 3 runs of a 10-fold distribution optimally balanced stratified cross-
validation (DOB-SCV) [7], averaging its test accuracy results. The usage of this
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partitioning reduces the negative e↵ects of both prior probability and covariate
shifts [8] when classifier performance is estimated with cross-validation schemes.

For the sake of brevity, only the averaged performance results are shown
for each classification algorithms at each type and level of induced noise, but
it must be taken into account that our conclusions are based on the proper
statistical analysis, which considers all the results (not averaged). Thus, in order
to properly analyze the results obtained, Wilcoxons signed rank statistical test
[13] is used, as suggested in the literature. This is a non-parametric pairwise
test that aims to detect significant di↵erences between two sample means; that
is, between the behavior of the two algorithms involved in each comparison
(which is usually viewed as the the averaged test performance results for each
dataset). For each type and noise level, our proposal and NN using the Euclidean
distance will be compared using Wilcoxons test and the p-values associated
with these comparisons will be obtained. The p-value represents the lowest level
of significance of a hypothesis that results in a rejection and it allows one to
know whether two algorithms are significantly di↵erent and the degree of this
di↵erence.

4 Analysis of Results

This section presents the analysis of the results obtained. Each table of results
is divided into two di↵erent parts. On the left hand of the table the average
accuracy results are found, whereas on the right hand of the table the associated
Wilconson’s test p-values resulting of the comparison of each one of our proposals
with the NN method are shown.

Table 2 shows the test accuracy obtained by each classifier on base and class
noise datasets.

Table 2. Results on base and class noise datasets and associated p-values

Accuracy p-values

Method Base x = 10% x = 30% Base x = 10% x = 30%

NN 79.37 74.96 65.46 - - -
FW-CMC 81.98 77.38 67.46 0.1107 0.1107 0.0787
FW-KNNI 81.97 77.36 67.41 0.1447 0.0827 0.2699
FW-SVMI 81.94 77.30 67.19 0.0626 0.0647 0.4352

From this table, several remarks can be made:

– The performance results of each one of our proposals is better than those of
the NN method with the base datasets and also with the class noise datasets
(approximately, higher than a 2% in all the cases).
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– As the table shows, every proposal obtains low p-values when they are com-
pared with NN: with the base datasets and both levels of class noise in the
case of FW-CMC and with the base datasets and the noise level x = 10% in
the case of the methods FW-KNNI and FW-SVMI. Some of these compar-
isons are also significant at a level of significance 0.1. This shows that the
application of our approach to feature weighting improves the performance
of the NN classifier with datasets su↵ering from class noise (sometimes sig-
nificantly), regardless of the specific imputation method chosen.

On the other hand, Table 3 shows the test accuracy obtained by each classifier
on base and attribute noise datasets. The following points are observed from this
table:

– Our methods also outperforms the performance of NN with the datasets
with di↵erent levels of attribute noise (generally they are a 2% better with
the base datasets, a 1% better with the noise level x = 10% and a 0.5% with
the noise level x = 30%).

– The Wilcoxon’s test p-values are also low, showing and advantage of our
three proposals, even though in the case of FW-SVMI against NN with the
noise level of x = 30% the p-value obtained is slightly higher. However, very
low p-values are obtained with the two noise levels for the methods FW-
CMC and FW-KNNI; they are indeed significant considering a significance
level of 0.1.

Table 3. Results on base and attribute noise datasets and associated p-values

Accuracy p-values

Method Base x = 10% x = 30% Base x = 10% x = 30%

NN 79.37 71.69 58.40 - - -
FW-CMC 81.98 72.62 59.17 0.1107 0.0067 0.0002
FW-KNNI 81.97 72.58 58.87 0.1447 0.0483 0.0246
FW-SVMI 81.94 72.44 58.61 0.0626 0.1318 0.2414

From the results of Tables 2-3, it is possible to conclude that the proposals
presented in this contribution are able to improve the performance of the NN
classifier dealing with noisy data, and in some cases, in a significant way.

5 Conclusions

In this contribution we have proposed a new scheme for feature weighting devel-
oped to improve the performance of the NN classifier in presence of noisy data,
in which the weights are computed by combining imputation methods and the
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Kolmogorov-Smirnov statistic. We have assigned a lower weight to that features
that were more a↵ected by the presence of noise (those features whose original
and imputed distribution of values were more di↵erent). In this way, we have
reduced the importance of these features that contain the more harmful noise
and therefore are not easily predictable using the rest of the data and increased
the importance of of those features that are easily predictable, and which have
therefore likely a less amount of noise.

The results obtained show that all our approaches enhance the performance
of NN in the presence of noise. The statistical analysis performed confirms our
conclusions, even though in some cases the di↵erences found are not statistically
significant.
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a b s t r a c t

Classifier performance, particularly of instance-based learners such as k-nearest neighbors, is affected
by the presence of noisy data. Noise filters are traditionally employed to remove these corrupted data
and improve the classification performance. However, their efficacy depends on the properties of the
data, which can be analyzed by what are known as data complexity measures. This paper studies the
relation between the complexity metrics of a dataset and the efficacy of several noise filters to improve
the performance of the nearest neighbor classifier. A methodology is proposed to extract a rule set
based on data complexity measures that enables one to predict in advance whether the use of noise
filters will be statistically profitable. The results obtained show that noise filtering efficacy is to a great
extent dependent on the characteristics of the data analyzed by the measures. The validation process
carried out shows that the final rule set provided is fairly accurate in predicting the efficacy of noise
filters before their application and it produces an improvement with respect to the indiscriminate
usage of noise filters.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Real-world data is commonly affected by noise [1,2]. The
building time, complexity and, particularly, the performance of the
model, are usually deteriorated by noise in classification problems
[3–5]. Several learners, e.g., C4.5 [6], are designed taking these
problems into account and incorporate mechanisms to reduce the
negative effects of noise. However, many other methods ignore
these issues. Among them, instance-based learners, such as
k-nearest neighbors (k-NN) [7–9], are known to be very sensitive
to noisy data [10,11].

In order to improve the classification performance of noise-
sensitive methods when dealing with noisy data, noise filters
[12–14] are commonly applied. Their aim is to remove potentially
noisy examples before building the classifier. However, both correct
examples and examples containing valuable information can also be
removed. This fact implies that these techniques do not always
provide an improvement in performance. As indicated by Wu and
Zhu [1], the success of these methods depends on several circum-
stances, such as the kind and nature of the data errors, the quantity
of noise removed or the capabilities of the classifier to deal with the
loss of useful information related to the filtering. Therefore, the

efficacy of noise filters, i.e., whether their usage causes an improve-
ment in classifier performance, depends on the noise-robustness
and the generalization capabilities of the classifier used, but it also
strongly depends on the characteristics of the data.

Data complexity measures [15] are a recent proposal to
represent characteristics of the data which are considered diffi-
cult in classification tasks, e.g., the overlapping among classes,
their separability or the linearity of the decision boundaries.

This paper proposes the computation of these data complexity
measures to predict in advance when the usage of a noise filter
will statistically improve the results of a noise-sensitive learner:
the nearest neighbor classifier (1-NN). This prediction can help, for
example, to determine an appropriate noise filter for a concrete
noisy dataset – that filter providing a significant advantage in terms
of the results – or to design new noise filters which select more or
less aggressive filtering strategies considering the characteristics of
the data. Choosing a noise-sensitive learner facilitates the checking
of when a filter removes the appropriate noisy examples in contrast
to a robust learner—the performance of classifiers built by the
former is more sensitive to noisy examples retained in the dataset
after the filtering process. In addition, this paper has the following
objectives:

1. To analyze the relation between the characteristics of the data
and the efficacy of several noise filters.

2. To find a reduced set of the most appropriate data complexity
measures for predicting the noise filtering efficacy.
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3. Even though each noise filter may depend on concrete char-
acteristics of the data to work correctly, it would be interesting
to identify common characteristics of the data under which
most of the noise filters work properly.

4. To provide a set of interpretable rules which a practitioner can
use to determine whether to use a noise filter with a classi-
fication dataset.

A web page with the complementary material of this paper is
available at http://sci2s.ugr.es/filtering-efficacy. It includes the
details of the experimentation, the datasets used, the performance
results of the noise filters and the distribution of the data complex-
ity metrics of the datasets.

The rest of this paper is organized as follows. Section 2 presents
data complexity measures. Section 3 introduces the noise filters and
enumerates those considered in this paper. Section 4 describes the
method employed to extract the rules predicting the noise filtering
efficacy. Section 5 shows the experimental study performed and the
analysis of results. Finally, Section 6 enumerates some concluding
remarks.

2. Data complexity measures

In this section, first a brief review of recent studies on data
complexity metrics is presented (Section 2.1). Then, the measures
of overlapping (Section 2.2), the measures of separability of
classes (Section 2.3) and the measures of geometry (Section 2.4)
used in this paper are described.

2.1. Recent studies on data complexity

There are some methods used in classification, either learner
or preprocessing techniques, which work well with concrete
datasets, while other techniques work better with different ones.
This is due to the fact that each classification dataset has
particular characteristics that define it. Issues such as the general-
ity of the data, the inter-relationships among the variables and
other factors are key for the results of such methods. An emergent
field proposes the usage of a set of data complexity measures to
quantify these particular sources of the problem on which the
behavior of classification methods usually depends [15].

A seminal work on data complexity is [16], in which some
complexity measures for binary classification problems are proposed,
gathering metrics of three types: overlaps in feature values from
different classes; separability of classes; and measures of geometry,
topology and density of manifolds. Extensions can also be found in
the literature, such as in the work of Singh [17], which offers a review
of data complexity measures and proposes two new ones.

From these works, different authors attempt to address different
data mining problems using these measures. For example, Baum-
gartner and Somorjai [18] define specialized measures for regular-
ized linear classifiers. Other authors try to explain the behavior of
learning algorithms using these measures, optimizing the decision
tree creation in the binarization of datasets [19] or to analyze fuzzy-
UCS and the model obtained when applied to data streams [20]. The
data complexity measures have been referred to other related fields,
such as gene expression analysis in Bioinformatics [21,22].

The research efforts in data complexity are currently focused
on two fronts. The first aims to establish suitable problems for a
given classification algorithm, using only the data characteristics,
and thus determining their domains of competence. In this line
of research recent publications, e.g., the works of Luengo and
Herrera [23] and Bernadó-Mansilla and Ho [24], provide a first
insight into the determination of an individual classifier’s
domains of competence. Parallel to this, Sánchez et al. [25] study

the effect of data complexity on the nearest neighbor classifier.
The relationships between the domains of competence of similar
classifiers were analyzed by Luengo and Herrera [26], indicating
that related classifiers benefit from common sources of complex-
ity of the data.

Data complexity measures are increasingly used in order to
characterize when a preprocessing stage will be beneficial to a
subsequent classification algorithm in many challenging domains.
Garcı́a et al. [27] firstly analyzed the behavior of the evolutionary
prototype selection strategy using one complexity measure based
on overlapping. Further developments resulted in a characteriza-
tion of when the preprocessing in imbalanced datasets is bene-
ficial [28]. The data complexity measures can also be used online
in the data preparation step. An example of this is the work of
Dong [29], in which a feature selection algorithm based on
complexity measures is proposed.

This paper follows the second research line. It aims to
characterize when a filtering process is beneficial using the
information provided by the data complexity measures. Noise
will affect the geometry of the dataset, and thus the values of the
data complexity metrics. It can be expected that such metrics will
enable one to know in advance whether noise filters will be useful
for the given dataset.

In this study, 11 of the metrics proposed by Ho and Basu [16]
will be analyzed. In the following subsections, these measures,
classified by their family, are briefly presented. For a deeper
description of their characteristics, the reader may consult [16].

2.2. Measures of class overlapping

These measures focus on the effectiveness of a single feature
dimension in separating the classes, or the composite effects of a
number of dimensions. They examine the range and spread of
values in the dataset within each class and check for overlapping
among different classes.

" F1—maximum Fisher’s discriminant ratio: This is the value of
Fisher’s discriminant ratio of the attribute that enables one to
better discriminate between the two classes, computed as

F1¼ max
i ¼ 1,...,d

ðmi,1%mi,2Þ
2

s2
i,1þs2

i,2

ð1Þ

where d is the number of attributes, and mi,j and s2
i,j are the

mean and variance of the attribute i in the class j, respectively.
" F2—volume of the overlapping region: This measures the

amount of overlapping of the bounding boxes of the two
classes. Let maxðf i,CjÞ and minðf i,CjÞ be the maximum and
minimum values of the feature fi in the set of examples of class
Cj, let minmaxi be the minimum of maxðf i,CjÞ,ðj¼ 1,2Þ and
maxmini be the maximum of minðf i,CjÞ,ðj¼ 1,2Þ of the feature
fi. Then, the measure is defined as

F2¼
Y

i ¼ 1...d

minmaxi%maxmini

maxðf i,C1 [ C2Þ%minðf i,C1 [ C2Þ
ð2Þ

" F3—maximum feature efficiency: This is the maximum fraction
of points distinguishable with only one feature after removing
unambiguous points falling outside of the overlapping region
in this feature [30].

2.3. Measures of separability of classes

These give indirect characterizations of class separability. They
assume that a class is made up of single or multiple manifolds
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that form the support of the probability distribution of the given
class. The shape, position and interconnectedness of these mani-
folds give hints of how well the two classes are separated, but
they do not describe separability by design.

" L1—minimized sum of error distance by linear programming:
This is the value of the objective function that tries to minimize
a linear classifier obtained by the linear programming formula-
tion proposed by Smith [31]. The method minimizes the sum of
distances of error points to the separating hyperplane. The
measure is normalized by the number of points in the problem
and also by the length of the diagonal of the hyper-rectangular
region enclosing all training points in the feature space.
" L2—error rate of linear classifier by linear programming: This

measure is the error rate of the linear classifier defined for L1,
measured with the training set.
" N1—rate of points connected to the opposite class by a minimum

spanning tree: N1 is computed using a minimum spanning tree
[32], which connects all the points to their nearest neighbors.
Then the number of points connected to the opposite class by
an edge of this tree are counted. These are considered to be the
points lying next to the class boundary. N1 is the fraction of
such points over all points in the dataset.
" N2—ratio of average intra/inter class nearest neighbor distance:

This is computed as

N2¼
Pm

i ¼ 0 intraðxiÞPm
i ¼ 0 interðxiÞ

ð3Þ

where m is the number of examples in the dataset, intraðxiÞ the
distance to its nearest neighbor within the class, and interðxiÞ
the distance to the nearest neighbor of any other class. This
metric compares the within-class spread with the distances to
the nearest neighbors of other classes. Low values of this
metric suggest that the examples of the same class lie close in
the feature space, whereas large values indicate that the
examples of the same class are dispersed.
" N3—error rate of the 1-NN classifier: This is the error rate of a

nearest neighbor classifier estimated by the leave-one-out
method. This measure denotes how close the examples of
different classes are. Low values of this metric indicate that
there is a large gap in the class boundary.

2.4. Measures of geometry, topology, and density of manifolds

These measures evaluate to what extent two classes are
separable by examining the existence and shape of the class
boundary. The contributions of individual feature dimensions are
combined and summarized in a single score, usually a distance
metric, rather than evaluated separately.

" L3—nonlinearity of a linear classifier by linear programming:
Hoekstra and Duin [33] propose a measure for the nonlinearity
of a classifier with respect to a given dataset. Given a training
set, the method first creates a test set by linear interpolation
(with random coefficients) between randomly drawn pairs of
points from the same class. Then, the error rate of the classifier
(trained by the given training set) on this test set is measured.
" N4—nonlinearity of the 1-NN classifier: The error is calculated

for a nearest neighbor classifier. This measure is for the
alignment of the nearest neighbor boundary with the shape
of the gap or overlap between the convex hulls of the classes.
" T1—ratio of the number of hyperspheres, given by E-neighborhoods,

by the total number of points: The local clustering properties of
a point set can be described by an E-neighborhood pretopology
[34]. Instance space can be covered by E-neighborhoods by

means of hyperspheres (the procedure to compute them can
be found in [16]). A list of such hyperspheres needed to
cover the two classes is a composite description of the shape of
the classes. The number and size of the hyperspheres indicate
how much the points tend to be clustered in hyperspheres or
distributed in thinner structures. In a problem where each
point is closer to points of the other class than points of its
own, each hypersphere is retained and is of a low size. T1 is the
normalized count of the retained hyperspheres by the total
number of points.

3. Corrupted data treatment by noise filters

Noise filters are preprocessing mechanisms designed to detect
and eliminate noisy examples in the training set. The result of
noise elimination in preprocessing is a reduced and improved
training set which is then used as an input to a machine learning
algorithm.

There are several of these filters based on using the distance
between examples to determine their similarity and create neighbor-
hoods. These neighborhoods are used to detect suspicious examples
which can then be eliminated. The Edited Nearest Neighbor [12] or
the Prototype Selection based on Relative Neighborhood Graphs [35]
are some examples of methods that can be found within this group of
noise filters.

Another group of noise filters creates classifiers over several
subsets of the training data in order to detect noisy examples.
Brodley and Friedl [13] trained multiple classifiers built by
different learning algorithms, such as k-NN [7], C4.5 [6] and a
Linear Discriminant Analysis [36], from a corrupted dataset and
then used them to identify mislabeled data, which are character-
ized as the examples that are incorrectly classified by the multiple
classifiers. Similar techniques have been widely developed con-
sidering the building of several classifiers with the same learning
algorithm [37,38]. Instead of using multiple classifiers learned
from the same training set, Gamberger et al. [37] suggest a Classi-
fication Filter (CF) approach, in which the training set is partitioned
into n subsets, then a set of classifiers is trained from the union
of any n%1 subsets; those classifiers are used to classify the
examples in the excluded subset, eliminating the examples that
are incorrectly classified.

The noise filters analyzed in this paper are shown in Table 1.
They have been chosen due to their good behavior with many
real-world problems.

4. Obtaining rules to predict the noise filtering efficacy

In order to provide a rule set based on the characteristics of the
data which enables one to predict whether the usage of noise
filters will be statistically beneficial, the methodology shown in

Table 1
Noise filters employed in the experimentation.

Filter Reference Abbreviation

Classification filter [37] CF
Cross-validated committees filter [38] CVCF
Ensemble filter [13] EF
Edited nearest neighbor with estimation of
probabilities threshold

[39] ENNTh

Edited nearest neighbor [12] ENN
Iterative-partitioning filter [40] IPF
Nearest centroid neighborhood edition [41] NCNEdit
Prototype selection based on relative
neighborhood graphs

[35] RNG
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Fig. 1 has been designed. The complete process1 is described as
follows.

1. 800 different classification datasets are built as follows (these
are common to all noise filters):
" The 34 datasets shown in Table 2 have been selected from

the KEEL-dataset repository2 [42].
" 200 binary datasets – with more than 100 examples in each

one – are built from these 34 datasets. Multi-class datasets
are used to create other binary datasets by means of the
selection and/or combination of their classes. Only problems
with two classes are considered as the data complexity
measures are only well defined to work on binary problems.
The amount of examples of the two classes has been taken

into account in order to create the datasets; they are
intended to be as similar as possible. Let IR be the fraction
between the number of examples of the majority and the
minority class—formally known as imbalanced ratio [43].
In order to control the size of both classes, only datasets with
a low imbalanced ratio were created, specifically with
1r IRr2:25. Therefore, the size of both classes is suffi-
ciently similar. This prevents filtering methods from deleting
all the examples from the minority class, which can occur if
a high imbalanced ratio is present in the data since the
filtering methods used do not take into account the class
imbalance and may consider these examples to be noise.
" Finally, in order to study the behavior of the noise filters in

several circumstances, several noise levels x (0%, 5%, 10%
and 15%) are introduced into these 200 datasets, resulting
in 800 datasets. Noise is introduced in the same way as in
[3], a reference paper in the framework of noisy data in
classification. Each attribute Ai is corrupted separately: x%
of the examples are chosen and the Ai value of each of these

Fig. 1. Methodology to obtain the rule set predicting the noise filtering efficacy.

Table 2
Base datasets and their number of instances (#INS), attributes (#ATT) and classes (#CLA). (R/I/N) refers to the number of real, integer and nominal
attributes.

Dataset #INS #ATT (R/I/N) #CLA Dataset #INS #ATT (R/I/N) #CLA

australian 690 14 (3/5/6) 2 led7digit 500 7 (7/0/0) 10
balance 625 4 (4/0/0) 3 mammographic 830 5 (0/5/0) 2
banana 5300 2 (2/0/0) 2 monk-2 432 6 (0/6/0) 2
bands 365 19 (13/6/0) 2 mushroom 5644 22 (0/0/22) 2
bupa 345 6 (1/5/0) 2 pima 768 8 (8/0/0) 2
car 1728 6 (0/0/6) 4 ring 7400 20 (20/0/0) 2
chess 3196 36 (0/0/36) 2 saheart 462 9 (5/3/1) 2
contraceptive 1473 9 (0/9/0) 3 sonar 208 60 (60/0/0) 2
crx 653 15 (3/3/9) 2 spambase 4597 57 (57/0/0) 2
ecoli 336 7 (7/0/0) 8 tae 151 5 (0/5/0) 3
flare 1066 11 (0/0/11) 6 tic-tac-toe 958 9 (0/0/9) 2
glass 214 9 (9/0/0) 7 titanic 2201 3 (3/0/0) 2
hayes-roth 160 4 (0/4/0) 3 twonorm 7400 20 (20/0/0) 2
heart 270 13 (1/12/0) 2 wdbc 569 30 (30/0/0) 2
housevotes 232 16 (0/0/16) 2 wine 178 13 (13/0/0) 3
ionosphere 351 33 (32/1/0) 2 wisconsin 683 9 (0/9/0) 2
iris 150 4 (4/0/0) 3 yeast 1484 8 (8/0/0) 10

1 The datasets used in this procedure and the performance results of 1-NN –
with and without the usage of noise filters – can be found on the web page of this
paper.

2 http://www.keel.es/datasets.php.
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examples is assigned a random value of the domain of that
attribute following a uniform distribution. One must take
into account that these 200 datasets may contain noise, so
the real noise level after the noise introduction process may
be higher.

2. These 800 datasets are filtered with a noise filter, leading to
800 new filtered datasets.

3. The test performance of 1-NN [7,44,45] on each of the 800
datasets, both with and without the application of the noise
filter, is computed. The estimation of the classifier perfor-
mance is obtained by means of three runs of a 10-fold cross-
validation and their results are averaged. The AUC metric [46]
is used due it being commonly employed when working with
binary datasets and the fact that it is less sensitive to class
imbalance. The performance estimation is used to check which
datasets are improved in their performance by 1-NN when
using the noise filter.

4. A classification problem is created with each example being
one of the datasets built and in which:
" The attributes are the 11 data complexity metrics for each

dataset. The distribution of the values of each data com-
plexity measure can be found on the web page with
complementary material for this paper.
" The class label represents whether the usage of the noise

filter implies a statistically significant improvement of the
test performance. Wilcoxon’s statistical test [47] – with a
significance level of a¼ 0:1 – is applied to compare the
performance results of the 3'10 test folds with and with-
out the usage of the noise filter. Depending on whether the
usage of the noise filter is statistically better than the lack
of filtering, each example is labeled as positive or negative,
respectively.

5. Finally, similar to the method of Orriols-Puig and Casillas [20],
the C4.5 algorithm [6] is used to build a decision tree on the
aforementioned classification problem, which can be trans-
formed into a rule set. The performance estimation of this rule
set is obtained using a 10-fold cross-validation. By means of
the analysis of the decision trees built by C4.5, it is possible to
check which are the most important data complexity metrics
to predict the noise filtering efficacy, i.e., those in the top levels
of the tree and appearing more times, and their performance
examining the test results.

5. Experimental study

The experimentation is organized in five different parts, each
one in a different subsection and with a different objective:

1. To check to what extent the noise filtering efficacy can be
predicted using data complexity measures (Section 5.1). In order
to do this, the procedure described in Section 4 is followed
with each noise filter. Thus, a rule set based on all the data
complexity measures is learned to predict the efficacy of each
noise filter. Its performance, which is estimated using a 10-fold
cross-validation, gives a measure of the relation existing
between the data complexity metrics and the noise filtering
efficacy—a higher performance will imply a stronger relation.

2. To provide a reduced set of data complexity metrics that best
determine whether to use a noise filter and do not cause the
prediction capability to deteriorate (Section 5.2). The decision
trees built in the above step by C4.5 are analyzed, studying
two elements:
" The order, from 1 to 11, in which the first node correspond-

ing with each data complexity metric appears in the
decision tree, starting from the root. This order is averaged
over the 10 folds.

" The percentage of nodes of each data complexity metric in
the decision tree, averaged over the 10 folds.

This analysis will provide the better discriminating metrics
and those appearing more times in the decision trees—they
are not necessarily placed in the top positions of the tree but
are still important to discriminate between the two classes. In
this way, the rule sets obtained in the above step are simplified
and thus become more interpretable.

3. To find common characteristics of the data on which the efficacy
of all noise filters depends (Section 5.3). Each noise filter may
depend on concrete values of the data complexity metrics, i.e.,
on concrete characteristics of the data, to work properly.
However, it is interesting to investigate whether there are
common characteristics of the data under which all noise
filters work properly. To do this, the rule set learned with each
noise filter will be applied to predict the efficacy of the rest of
the noise filters. The rule set achieving the highest perfor-
mance predicting the efficacy of the different noise filters will
have rules more similar to the rest of noise filters, i.e., the rules
will cover similar areas of the domain.

4. To provide the rule set which works best predicting the noise
filtering efficacy of all the noise filters (Section 5.4). The study
of the above point will provide the rule set which best
represents the characteristics under which the majority of
the noise filters work well. The behavior of these rules with
each noise filter will be analyzed in this section, paying atten-
tion to the coverage of each rule—the percentage of examples
covered, and its accuracy—the percentage of correct classifica-
tions among the examples covered.

5. To perform an additional validation of the chosen rule set
(Section 5.5). Even though the behavior of each rule set is
validated using a 10-fold cross-validation in each of the above
steps, a new validation phase with new datasets is performed
in this section. These datasets are used to check if the chosen
rule set is really more advantageous than the indiscriminate
application of the noise filters to all the datasets.

5.1. Data complexity measures and noise filtering efficacy

The procedure described in Section 4 has been followed with
each one of the noise filters. Table 3 shows the performance
results of the rule sets obtained with C4.5 on the training and test
sets for each noise filter when predicting the noise filtering
efficacy, i.e., when discriminating between the aforementioned
positive and negative classes.

The training performance is very high for all the noise
filters – it is close to the maximum achievable performance –
and there are no differences between the eight noise filters.
The test performance results, although not at the same level as

Table 3
Performance results of C4.5 predicting the noise filtering efficacy (11 data
complexity measures used).

Noise filter Training Test

CF 0.9979 0.8446
CVCF 0.9966 0.8353
EF 0.9948 0.8176
ENNTh 0.9958 0.8307
ENN 0.9963 0.8300
IPF 0.9973 0.8670
NCNEdit 0.9945 0.8063
RNG 0.9969 0.8369

Mean 0.9963 0.8335

J.A. Sáez et al. / Pattern Recognition 46 (2013) 355–364 359



the training results, are also noteworthy. All of them have more
than 0.8 success, with the averaged test performance of all the
noise filters higher than 0.83. These results show that noise
filtering efficacy can be predicted with a good performance by
means of data complexity measures. Therefore, a clear relation
can be seen between both concepts, i.e., data complexity metrics
and filtering efficacy.

5.2. Metrics that best predict the noise filtering efficacy

In order to find the subset of data complexity measures that
enables the best decision to be made of whether a noise filter
should be used, the decision trees built by C4.5 in the previous
section are analyzed. Table 4 shows the averaged order of each
data complexity measure in which it appears in the decision trees
built for each noise filter.

These results show that the three best measures are generally
F2, N2 and F3:

" F2 is the first measure for all noise filters.
" N2 is placed in six of the eight noise filters as the second

metric.
" F3 is placed between the second and third positions in another

six of the eight noise filters.

The following two measures in importance are T1 and F1:

" T1 appears in seven of the eight noise filters between the
second and fifth positions.
" F1 appears in six of the eight noise filters between the third

and fifth positions.

The rest of the measures have a lower discriminative power,
due their positions being worse. Averaged results for all noise
filters also support these conclusions. Therefore, the aforemen-
tioned measures (F2, N2, F3, T1 and F1) are the most important
for all the noise filters, even though the concrete order can vary
slightly from some filters to others.

From these results, the measures of overlapping among the
classes (F1, F2 and F3) are the group of metrics that most
influence predictions of the filtering efficacy. The filtering efficacy
is particularly dependent on the volume of the overlapping region
(F2) and, to a lesser degree, on the rest of the overlapping metrics
(F3 and F1) which, using different methods, compute the dis-
criminative power of the attributes. The dispersion of the exam-
ples within each class (N2) and the shape of the classes and the
complexity of the decision boundaries (T1) must also be taken
into account to predict the filtering efficacy. In short, all these
metrics provide information about the shape of the classes and
the overlapping among them, which may be key factors in the
success of any noise filtering technique.

Since the efficacy of the noise filters has been studied over the
results of the 1-NN classifier, one could expect a greater influence
of measures based on 1-NN, such as N3 and N4. These measures
are based on the error rate of the 1-NN classifier –the former is
computed on the training set whereas the latter is computed on
an artificial test set. It is important to point out that 1-NN is very
sensitive to the closeness of only one example to others belonging
to a different class [16,25] and a similar error rate may be due to
multiple situations where the filtering may be beneficial or not,
for example:

1. Existence of isolated noisy examples.
2. A large overlapping between the classes.
3. Closeness between the classes (although overlapping does not

exist).

A noise filtering method is likely to be beneficial in the first
scenario because isolated noisy examples are likely to be identi-
fied and removed, improving the final performance of the classi-
fier. However, the situation is not so clear in the other two
scenarios: the filtering may delete important parts of the domain
and disturb the boundaries of the classes or, on the contrary, it
may clean up the overlapping region and create more regular
class boundaries [1,48]. Therefore, the multiple causes on which
the error rate of 1-NN depends imply that measures based on it,
such as N3 and N4, are not always good indicators of the noise
filtering efficacy.

Table 5 shows the percentage of nodes referring to each data
complexity measure in the decision trees for each of the noise
filters. These results provide similar conclusions to those of the
order results, with the most representative measures again being
F1, F2, F3, N2 and T1, while the rest of the measures have lower
percentages.

The order and percentage results show that the measures F1,
F2, F3, N2 and T1 are the most discriminative and have a higher
number of nodes in the decision trees. It is aimed to attain a
reduced set, from among these five metrics, that enables filtering
efficiency to be predicted without a loss in accuracy with respect
to all the measures. In order to avoid the study of all the existing
combinations of the five metrics, the following experimentation
is mainly focused on the measures F2, N2 and F3, the most
discriminative ones—since the order results can be considered
more important than the percentage results. The incorporation
into this set of T1, F1 or both is also studied. The prediction
capability of the measure F2 alone, since is the most discrimina-
tive one, is also shown. All these results are presented in Table 6.

The training results of these combinations do not change with
respect to the usage of all the metrics. However, the test
performance results improve in many cases the results of using
all the metrics, particularly in the cases of F2–N2–F3–T1–F1 and

Table 4
Averaged order of the data complexity measures in the decision trees.

Metric CF CVCF EF ENNTh ENN IPF NCNEdit RNG Mean

F1 3.70 4.80 5.90 8.60 6.40 4.50 6.00 8.20 6.01
F2 1.40 1.00 1.00 1.00 1.00 1.00 1.50 1.00 1.11
F3 2.50 3.40 10.10 5.80 4.10 3.30 7.20 4.50 5.11
N1 10.50 9.90 9.10 10.30 8.40 7.10 8.10 8.50 8.99
N2 6.20 2.00 3.30 8.00 2.30 3.00 4.60 2.70 4.01
N3 8.80 8.50 7.80 11.00 7.00 9.50 7.90 8.70 8.65
N4 7.40 9.70 9.90 7.20 11.00 10.50 8.20 5.60 8.69
L1 9.20 10.00 7.90 9.70 11.00 6.00 9.40 9.60 9.10
L2 8.10 6.80 9.30 8.40 10.30 10.00 11.00 10.50 9.30
L3 7.80 8.70 4.60 8.60 11.00 5.90 7.80 8.40 7.85
T1 6.70 6.80 5.20 3.50 4.80 11.00 6.30 4.50 6.10

Table 5
Percentage of the number of nodes of each data complexity measure in the
decision trees.

Metric CF CVCF EF ENNTh ENN IPF NCNEdit RNG Mean

F1 22.45 21.24 14.94 8.47 17.07 20.66 18.67 5.71 16.15
F2 15.31 11.50 14.94 18.64 12.20 9.09 14.67 9.52 13.23
F3 16.33 23.01 2.30 13.56 20.73 23.14 12.00 18.10 16.15
N1 2.04 2.65 3.45 1.69 8.54 8.26 5.33 3.81 4.47
N2 8.16 11.50 17.24 6.78 19.51 9.92 16.00 19.05 13.52
N3 5.10 5.31 5.75 0.00 6.10 3.31 6.67 4.76 4.62
N4 8.16 3.54 2.30 13.56 0.00 0.83 6.67 12.38 5.93
L1 3.06 2.65 8.05 3.39 0.00 7.44 2.67 5.71 4.12
L2 6.12 7.08 5.75 8.47 1.22 2.48 0.00 0.95 4.01
L3 5.10 3.54 16.09 6.78 0.00 14.88 9.33 4.76 7.56
T1 8.16 7.96 9.20 18.64 14.63 0.00 8.00 15.24 10.23
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F2–N2–F3–T1. This is because the unnecessary measures to
predict the filtering efficacy which can introduce a bias into the
datasets have been removed. However, the usage of the measure
F2 alone to predict the noise filtering efficacy with a good
performance can be discarded, since its results are not good
enough compared with the cases where more than one measure
is considered. This fact reflects that the usage of single measures
does not provide enough information to achieve a good filtering
efficacy prediction result. Therefore, it is necessary to combine
several measures which examine different aspects of the data.

In order to determine which combination of measures is
chosen as the most suitable one, Wilcoxon’s statistical test is
performed, comparing the test results of Tables 3 and 6 of each
noise filter. Table 7 shows the ranks obtained by each combina-
tion of metrics.

From these results, the combinations of metrics F2–N2–F3–T1
and F2–N2–F3–T1–F1 are noteworthy. Removing some data
complexity metrics improves the performance with respect to
all the metrics. However, it is necessary to retain a minimum
number of metrics representing as much information as possible.
Note that these two sets contain measures of three different
types: overlapping, separability of classes and geometry of the
dataset. Therefore, even though the differences are not significant
in all cases, the combination with more ranks and a lower number
of measures, i.e., F2–N2–F3–T1, can be considered the most
appropriate and will be chosen for a deeper study.

5.3. Common characteristics of the data on which the efficacy of the
noise filters depends

From the results shown in Table 6, the rules learned with any
noise filter can be used to accurately predict filtering efficacy
because they obtain good test performance results. However,
these rules should be used to predict the behavior of the filter
from which they have been learned.

It would be interesting to provide a single rule set, better
adapting the behavior of all the noise filters. In order to do this,
the rules learned to predict the behavior of one filter will be
tested to predict the behavior of the rest of the noise filters (see

Table 8). From these results, the prediction performance of the
rules learned for the RNG filter is clearly the more general, since
they are applicable to the rest of the noise filters obtaining the
best prediction results—see the last column with an average of
0.8786. Therefore, this rule set has rules that are more similar to
the rest of the noise filters and thus, it represents better the
common characteristics on which the efficacy of all noise filters
depends.

5.4. Analysis of the chosen rule set

The rule set chosen to predict the filtering efficacy of all the
noise filters is shown in Table 9. The analysis of such rules is
shown in Table 10, where the coverage (Cov) and the accuracy
(Acc) of each rule is shown.

These results show that the rules with the highest coverage in
predicting the behavior of all noise filters are R6, R5 and R10.
Moreover, the rules predicting the positive examples have a very
high accuracy rate, close to 100%. The rule R5 has the highest
coverage among the rules predicting the negative class, although
its accuracy is a bit lower than that of the rules R6 and R10. This
could be due to the fact that the datasets in which the application
of a noise filter implies a disadvantage are more widely dispersed
in the search space and, that being so, creating general rules is
more complex. The rest of the rules have a lower coverage,
although their accuracy is generally high, so they are more
specific rules.

The rules R6 and R10 are characterized by having a value of F2
higher than 0.43. Moreover, the rule R6 requires a value of T1
lower than 0.9854, i.e., a large part of the domain of the metric T1.
However, as reflected in the experimentation in [16] and also on
the web page with complementary material for this paper, a large
number of datasets have a T1 value of around 1. The incorpora-
tion, therefore, of the measure T1 into the rules and the multiple
values between 0.9 and 1 of this metric in the antecedents should
not be surprising.

By contrast, the rule R5 has a value of F2 lower than 0.43.
Other metrics are also included in this rule, such as N2 with a
value higher than 0.41 and F3 with a value higher than 0.1.

Table 6
Performance results of C4.5 predicting the noise filtering efficacy (measures used: F2, N2, F3, T1 and F1).

Noise filter F2 F2–N2–F3–T1–F1 F2–N2–F3–F1 F2–N2–F3–T1 F2–N2–F3

Training Test Training Test Training Test Training Test Training Test

CF 0.9991 0.7766 0.9975 0.8848 0.9986 0.8623 0.9983 0.8949 0.9972 0.8713
CVCF 1.0000 0.5198 0.9997 0.8102 0.9983 0.7943 0.9994 0.8165 0.9977 0.8152
EF 1.0000 0.7579 0.9993 0.8102 0.9991 0.8101 0.9997 0.8297 0.9997 0.8421
ENNTh 1.0000 0.8419 0.9996 0.8309 0.9996 0.8281 0.9907 0.8052 0.9992 0.8302
ENN 1.0000 0.7361 0.9928 0.8942 0.9935 0.8662 0.9966 0.8948 0.9967 0.7946
IPF 1.0000 0.7393 0.9975 0.8378 0.9989 0.8119 0.9986 0.8019 0.9985 0.7725
NCNEdit 0.9981 0.8024 0.9977 0.8164 0.9982 0.8231 0.9983 0.8436 0.9912 0.8136
RNG 0.9993 0.7311 0.9967 0.8456 0.9983 0.8086 0.9989 0.8358 0.9980 0.7754

Mean 0.9996 0.7381 0.9976 0.8413 0.9981 0.8256 0.9976 0.8403 0.9973 0.8144

Table 7
Ranks computed by Wilcoxon’s test Rþ/R% , representing the ranks obtained by the combination of the row and the column,
respectively. All refers to the usage of all the complexity metrics.

Metrics F2–N2–F3 F2–N2–F3–T1 F2–N2–F3–F1 F2–N2–F3–F1–T1 All

F2–N2–F3 – 6/30 12/24 8/28 11/25
F2–N2–F3–T1 30/6 – 30/6 19/17 20/16
F2–N2–F3–F1 24/12 6/30 – 3/33 13/23
F2–N2–F3–F1–T1 28/8 17/19 33/3 – 23/13
All 25/11 16/20 23/13 13/23 –
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From the analysis of these three rules, which are the most
representative, it can be concluded that a high value of F2
generally leads to a statistical improvement in the results of the
nearest neighbor classifier if a noise filter is used. If the classifica-
tion problem is rather simple, with a lower value of F2, the
application of a noise filter is generally not necessary. The high
values of the measure N2 in the rule R5 reflects the fact that the
examples of the same class are dispersed. Thus, when dealing
with complex problems with high degrees of overlapping, filter-
ing can improve the classification performance. However, if the
problem is rather simple, with low degrees of overlapping, and
moreover the examples of the same class are dispersed, e.g., if
there are many clusters with low overlapping among them, noise

Table 8
Performance results of the rules learned with the method in the column predicting the efficacy of the noise filter in the row.

Noise filter CF CVCF EF ENN ENNTh IPF NCNEdit RNG

CF – 0.8848 0.8631 0.9049 0.8114 0.9230 0.8590 0.9172
CVCF 0.8030 – 0.7656 0.8884 0.7373 0.9024 0.7747 0.9115
EF 0.8756 0.8044 – 0.8597 0.8540 0.8425 0.8824 0.8901
ENN 0.7795 0.8588 0.7804 – 0.7512 0.8161 0.7804 0.8865
ENNTh 0.7900 0.7681 0.8176 0.8083 – 0.8114 0.8362 0.8267
IPF 0.8455 0.9092 0.7922 0.8680 0.7164 – 0.7915 0.8694
NCNEdit 0.8313 0.7644 0.8462 0.7897 0.8120 0.8333 – 0.8487
RNG 0.7959 0.7988 0.8069 0.8251 0.7538 0.8128 0.8130 –

Mean 0.8173 0.8269 0.8103 0.8491 0.7766 0.8488 0.8196 0.8786

Table 9
Rule set chosen to predict the noise filtering efficacy.

Rule F2 N2 T1 F3 Filter

R1 r0:439587 r0:264200 r0:995100 Positive
R2 r0:439587 r0:264200 40:995100 Negative
R3 r0:439587 (0.2642, 0.419400] Negative
R4 r0:439587 40:419400 r0:101900 Positive
R5 r0:439587 40:419400 40:101900 Negative
R6 40:439587 r0:985400 Positive
R7 40:439587 r0:298600 (0.985400, 0.994900] Positive
R8 40:439587 (0.298600, 0.344700] (0.985400, 0.994900] Negative
R9 40:439587 r0:344700 40:994900 Negative
R10 40:439587 (0.344700, 0.836984] (0.985400, 0.996005] Positive
R11 40:439587 (0.344700, 0.515300] 40:996005 r0:294916 Negative
R12 40:439587 (0.515300, 0.836984] 40:996005 r0:294916 Positive
R13 40:439587 (0.344700, 0.836984] 40:996005 40:294916 Negative
R14 40:439587 40:836984 40:985400 r0:011076 Negative
R15 40:439587 40:836984 40:985400 40:011076 Positive

Table 10
Analysis of the behavior of the chosen rule set, which comes from the RNG filter, with all the noise filters.

Rule CF CVCF EF ENN ENNTh IPF NCNEdit

Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc Cov Acc

R1 4.05 100.00 6.47 100.00 3.24 100.00 4.46 100.00 3.72 66.67 5.58 100.00 3.50 85.71
R2 1.21 33.33 1.29 33.33 0.46 0.00 1.34 33.33 1.24 100.00 1.20 33.33 1.00 50.00
R3 1.21 33.33 1.72 25.00 0.46 100.00 1.79 75.00 2.48 100.00 1.59 25.00 2.50 100.00
R4 3.64 100.00 3.02 100.00 2.31 100.00 1.34 100.00 1.65 25.00 3.19 100.00 2.00 75.00
R5 12.96 75.00 8.19 57.89 11.11 62.50 18.30 75.61 23.14 85.71 11.95 60.00 21.00 80.95
R6 38.06 98.94 42.67 100.00 42.13 98.90 38.84 97.70 35.95 94.25 41.04 98.06 34.00 97.06
R7 3.24 100.00 3.02 100.00 2.78 100.00 2.68 100.00 2.48 100.00 1.99 100.00 2.00 100.00
R8 0.40 0.00 0.86 0.00 0.46 0.00 0.89 0.00 0.83 0.00 1.20 0.00 1.00 0.00
R9 4.05 10.00 3.45 25.00 3.70 0.00 5.80 69.23 4.55 18.18 3.19 25.00 4.00 12.50
R10 14.98 100.00 14.66 100.00 15.28 100.00 12.95 96.55 12.40 93.33 14.74 100.00 11.00 90.91
R11 0.81 50.00 0.86 50.00 0.93 0.00 1.34 100.00 2.07 40.00 1.20 33.33 0.50 0.00
R12 6.48 100.00 7.76 94.44 7.87 94.12 4.46 90.00 4.13 90.00 6.37 93.75 8.00 93.75
R13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R14 3.64 55.56 2.16 20.00 3.70 50.00 2.68 50.00 2.89 42.86 2.79 42.86 4.50 66.67
R15 4.45 100.00 3.88 100.00 5.56 100.00 2.68 83.33 1.65 75.00 2.79 100.00 4.00 87.50

Table 11
Base datasets used for the validation phase.

Dataset #INS #ATT (R/I/N) #CLA

abalone 4174 8 (7/0/1) 28
breast 277 9 (0/0/9) 2
dermatology 358 34 (0/34/0) 6
german 1000 20 (0/7/13) 2
page-blocks 5472 10 (4/6/0) 5
phoneme 5404 5 (5/0/0) 2
satimage 6435 36 (0/36/0) 7
segment 2310 19 (19/0/0) 7
vehicle 846 18 (0/18/0) 4
vowel 990 13 (10/3/0) 11
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filtering is not usually necessary—since the filtering may remove
any of those clusters and be detrimental to the test performance.

5.5. Validation of the chosen rule set

In order to validate the usefulness of the rule set provided in the
previous section to discern when to apply a noise filter to a concrete
dataset, an additional experimentation has been prepared consider-
ing the 10 datasets shown in Table 11. From these datasets, another
300 binary ones have been created in the same way as explained in
Section 4, but increasing the noise levels up to 25%.

For each noise filter, the test performance of 1-NN is computed
for these datasets in two different cases:

1. Indiscriminately applying the noise filter to each training
dataset.

2. Applying the noise filter to a training dataset only if the rule
set of Section 5.4 so indicates. Concretely, the rule set indicates
that noise filters must be applied in a 56% of the cases.

Then, the test results of both cases are compared using
Wilcoxon’s test. Table 12 shows the ranks obtained by case 1
(R%) and case 2 (Rþ) along with the corresponding p-values.

The results of this table show that, with some noise filters such
as ENNTh and ENN, the advantage of using the rule set is more
accentuated, whereas with others, such as CVCF and EF, this
difference is less remarkable. However, very low p-values have
been obtained in all the comparisons, which implies that the
usage of the rule set to predict when to apply filtering is clearly
positive with all the noise filters considered. Therefore, the
conclusions obtained in the previous sections are maintained in
this validation phase, even though a wider range of noise levels
have been considered in the latter.

6. Concluding remarks

This paper has studied to what extent noise filtering efficacy
can be predicted using data complexity measures when the
nearest neighbor classifier is employed. A methodology to extract
a rule set based on data complexity measures to predict in
advance when a noise filter will statistically improve the results
has been provided.

The results obtained have shown that there is a notable relation
between the characteristics of the data and the efficacy of several
noise filters, as the rule sets have good prediction performances.
The most influential metrics are F2, N2, F3 and T1. Moreover, a
single rule set has been proposed and tested to predict the noise
filtering efficacy of all the noise filters, providing a good prediction
performance. This shows that the conditions under which a noise
filter works well are similar for other noise filters.

The analysis of the rule set provided shows that, generally,
noise filtering statistically improves the classifier performance of
the nearest neighbor classifier when dealing with problems with
a high value of overlapping among the classes. However, if the
problem has several clusters with a low overlapping among them,

noise filtering is generally unnecessary and can indeed cause the
classification performance to deteriorate.

This paper has focused on the prediction of noise filtering
efficacy with the nearest neighbor classifier due it being perhaps
the most noise-sensitive learner and then, the true filtering
efficacy was checked. In future works, how noise filtering efficacy
can be predicted for other classification algorithms with different
noise-tolerance will be studied.
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José A. Sáeza,⇤, Mikel Galarb, Julián Luengoc, Francisco Herreraa

a
Department of Computer Science and Artificial Intelligence, University of Granada, CITIC-UGR,

Granada, Spain, 18071

b
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Abstract

In classification, noise may deteriorate the system performance and increase the complexity of

the models built. In order to mitigate its consequences, several approaches have been proposed

in the literature. Among them, noise filtering, which removes noisy examples from the training

data, is one of the most used. This paper proposes a new noise filtering method that combines

several filtering strategies in order to increase the accuracy of the classification algorithms

used later. The filtering is based on the fusion of the predictions of several classifiers used to

detect the presence of noise. We translate the idea behind multiple classifier systems, where

the information gathered from di↵erent models is combined, to noise filtering. In this way, we

consider the combination of classifiers instead of using only one to detect noise. Additionally,

the proposed method follows an iterative noise filtering scheme that allows us to avoid the

usage of detected noisy examples in each new iteration of the filtering process. Finally, we

introduce a noisy score to control the filtering sensitiveness, in such a way that the amount of

noisy examples removed in each iteration can be adapted to the necessities of the practitioner.

The first two strategies (use of multiple classifiers and iterative filtering) are used to improve

the filtering accuracy, whereas the last one (the noisy score) controls the conservativeness of

the filter removing potentially noisy examples. The validity of the proposed method is studied

in an exhaustive experimental study. We compare the new filtering method against several

state-of-the-art methods to deal with noisy datasets and study their e�cacy in three classifiers

with di↵erent sensitiveness to noise.
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1. Introduction

Data collection and preparation processes are commonly subjected to errors in Data Mining

applications [1, 2]. For this reason, real-world datasets usually contain imperfections or noise

[3, 4, 5]. In classification, a model is built from labeled examples, which should be capable of

reliably predicting the class for new previously unobserved examples. Obviously, if the data

used to train this model (formally known as a classifier) are corrupted, both the learning phase

and the model obtained will be negatively a↵ected. The former will require more time to find

a solution but also more examples in order to be able to obtain an accurate classifier. As a

consequence, the final model will probably be less accurate due to the presence of noise, and it

will be more complex, since non-real patterns may be modeled.

Two di↵erent types of noise can be found in classification datasets: attribute and class noise

[3]. Class noise is the most disruptive type of noise since incorrectly labeled examples have

a high impact when building classifiers, whose performance is often reduced [3, 6]. On this

account, many works in the literature, including this paper, focus on its treatment [7, 8, 9, 10].

Among these works, two types of approaches have been proposed to deal with class noise [3]:

1. Algorithm level approaches [11, 12]. The methods in this category comprise the adapta-

tions of existing algorithms to properly handle the noise or being less influenced by its

presence.

2. Data level approaches [7, 8]. These methods consist of preprocessing the datasets aiming

at getting rid of the noisy examples as a previous step.

Algorithm level approaches are not often an available choice since they depend on the par-

ticular adaptation of each classification algorithm, and therefore they are not directly extensible

to other learning algorithms. Otherwise, data level approaches are independent of the classifier

used and allow one to preprocess the datasets beforehand in order to use them to train di↵er-

ent classifiers (hence, the computation time needed to prepare the data is only required once).

Thus, the latter type of techniques is usually the most popular choice.

Among data level approaches, noise filters, which remove noisy examples from the training

data, are widely used due to their benefits in the learning in terms of classification accuracy and

complexity reduction of the models built [7, 13]. Even though several noise filtering schemes

are proposed in the literature [7, 14, 15, 16], their study focuses our attention on three main

paradigms:

• Ensemble-based filtering [7]. There are studies where some authors proposed the usage of

ensembles for filtering. The main advantage of these approaches is based on the hypothesis
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that collecting predictions from di↵erent classifiers could provide a better class noise

detection than collecting information from a single classifier.

• Iterative filtering [17]. The strength of this type of filters is using an iterative elimination

of noisy examples under the idea that the examples removed in one iteration do not

influence the noise detection in subsequent ones.

• Metric-based filtering [14, 9]. These noise filters are based on the computation of measures

over the training data and usually allow the practitioner to control the conservativeness

level of the filtering in such a way that only examples whose estimated noise level exceed

a prefixed threshold are removed.

On this account, this paper proposes a novel noise filtering technique combining these three

noise filtering paradigms: the usage of ensembles for filtering, the iterative filtering and the

computation of noise measures. The proposal of this paper removes noisy examples in multiple

iterations considering filtering techniques that employ systems based on the Fusion of Classifiers

(FC), also known as Multiple Classifier Systems (MCSs) [18, 19, 20]. This type of systems have

already shown a good behavior with noisy data in the field of classification [21, 6]. Besides, our

filtering proposal uses a noise score computed over each potentially noisy example in order to

determine which of them are finally eliminated in each iteration. In this way, we take advantage

of the three di↵erent paradigms. The proposed method is called Iterative Noise Filter based on

the Fusion of Classifiers (INFFC).

A thorough empirical study will be developed comparing several representative noise filters

with our proposal. All of them will be used to preprocess 25 real-world datasets, into which

di↵erent class noise levels will be introduced (from 5% to 30%, by increments of 5%). The

filtered datasets will be then used to create classifiers with three learning methods of a di↵erent

and well-known behavior against noise: a learner considered robust to noise as C4.5 [11] is,

a Support Vector Machine (SVM) [22], considered accurate but being noise sensitive and the

Nearest Neighbor rule [23] which is also considered very noise sensitive. Their test accuracy

over the datasets preprocessed with our proposal and the other existing filters will be compared

using the appropriate statistical tests [24] in order to check the significance of the di↵erences

found. Full results and details of the experimentations are available in the webpage associated

to this paper at http://sci2s.ugr.es/INFFC.

The rest of this paper is organized as follows. Section 2 presents an introduction to classi-

fication with noisy data. In Section 3 we introduce the details of the noise filter proposed. In

Section 4 we describe the experimental framework, whereas in Section 5 we analyze the results

obtained. Finally, in Section 6 we enumerate some concluding remarks.
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2. Classification with noisy data

This section first introduces the problem of noisy data in the classification framework in

Section 2.1. Next, previous works on noise filters are briefly reviewed in Section 2.2, paying

special attention to those filters on which our proposal is based.

2.1. Noise in classification problems

Noise is anything that obscures the relationship between the attributes of an example and

its class [25]. For example, noise may be present as errors in the source and input of the data

a↵ecting the quality of the dataset [26]. In classification, this quality is mainly influenced by

two information sources, that is, the class labeling and the attributes’ value sampling. Based on

these two information sources, two types of noise are traditionally distinguished in the literature

[3]: attribute noise and class noise.

Attribute noise a↵ects the values of one or more attributes of examples in a dataset. It

can proceed from several sources, such as transmission constraints, faults in sensor devices and

transcription errors [27]. Class noise (or labeling errors) is produced when the examples are

labeled with the wrong classes. Class noise is recognized to be more harmful than attribute

noise to classifier performance mainly due to the fact that whereas the importance of each

feature for learning may be di↵erent, labels always have a large impact on learning [3, 21, 6].

For this reason, this paper focuses on class noise, aiming at removing those wrongly labeled

examples from the datasets.

Class noise can be attributed to several causes [25]. One of them is the inadequacy of

the information used to label each example, for example, when a amnesic patient imprecisely

answers the questions of the doctor [28]. Data entry errors and the subjectivity during the

labeling process also can produce class noise; for example, in medical applications a variability

in the labeling by several experts may exist [29].

Among the e↵ects of class noise in the system performance, the most frequently reported

consequence is the decrement of classification accuracy [6]. Class noise can also a↵ect the

complexity of the classifier built in terms of size and interpretability (for example, in [7], it is

shown how the size of decision trees increases when class noise is present).

Errors in real-world datasets are therefore common and techniques that eliminate noise or

reduce its impact are need [3]. Two main alternatives have been proposed in the literature to

deal with noisy data:

• Algorithm level approaches. Also known as robust learners, these are techniques charac-

terized by being less influenced by noisy data. Examples of a robust learner are C4.5
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[11] or RIPPER [12]. These classifiers have been adapted to properly handle the noise.

Thus, for example, C4.5 uses pruning strategies to reduce the chances that the trees are

overfitting due to noise in the training data [30].

• Data level approaches. The most well-known type of methods within this group is that

of noise filters [7, 17]. They identify noisy instances which can be eliminated from the

training data. These methods are used with many learners that are sensitive to noisy

data and require data preprocessing to address the problem, even though robust learners

also benefit from their usage. The separation of noise detection and learning phase has

the advantage of avoiding the usage of noisy instances in the classifier building process

[14]. Our proposal is included into this group of methods.

2.2. Noise filters

Preprocessing the dataset aiming to clean the noisy examples is one of the most common

approaches when training data are a↵ected by noise [7]. Noise filters are designed to eliminate

noisy examples in the training set, which is then used as an input to classifiers [7, 17, 5]. They

are particularly oriented to remove class noise, since the elimination of such examples has shown

to be advantageous [8]. However, the elimination of instances with attribute noise seems to be

counterproductive [30, 3], since they still contain valuable information in other attributes which

can help to build a more accurate classifier.

Even though several noise filtering schemes are proposed in the literature [7, 14, 15, 16], the

following three groups have interesting bases as their foundaments:

• Ensemble-based filtering [7]. They are based on using several classifiers to detect the noisy

examples, which are those mislabeled by a part of these classifiers.

• Iterative filtering [17]. They are based on removing the noisy examples iteratively. In this

way, they try to avoid the fact that noisy examples may influence the detection of noise

in other examples.

• Metric-based filtering [14]. Their main characteristic is that they allow one to easily

control the conservativeness level of the filtering.

Even though metric-based filtering methods has the advantage of controlling the conser-

vativeness level of the filtering, they are generally simple approaches and do not perform as

well as other more advanced types of noise filters in many cases. For this reason, many other

approaches have been proposed in the literature [9, 10, 8, 7].
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There are filtering methods that are based on the fact that the k-NN classifier [23] is sensitive

to noisy data [9, 10], particularly when k is low [31]. Other type of noise filters uses classifiers

to detect the noisy examples, which are those that are misclassified. The Classification Filter

(CF) [8] performs a partitioning of the training set into n subsets, then a set of classifiers is

trained from the union of any n � 1 subsets; those classifiers are afterwards used to classify the

examples in the excluded subset, eliminating the incorrectly classified examples. This filter has

the risk of removing too many instances due to the usage of a single classifier. In order to solve

this problem, ensembles of classifiers are used to identify mislabeled instances; the proposals of

[7, 17] are two of the most representative and well known methods within this field (described

hereafter).

The Ensemble Filter (EF) [7] uses a set of three learning algorithms (C4.5 [11], 1-NN

[23] and LDA [32]) to remove the potentially noisy instances. The training data is classified

using an n-fold cross-validation with each classification algorithm and the noisy examples are

identified using a voting scheme. Two voting schemes are proposed: consensus (which removes

an example if it is misclassified by all the classifiers) and majority (which removes an example

if it is misclassified by more than a half of the classifiers).

The Iterative-Partitioning Filter (IPF) [17] proposes a similar technique, but removes the

noisy data iteratively using several classifiers built with the same learning algorithm. IPF

removes noisy examples in multiple iterations until the quantity of examples eliminated is under

a threshold. In each iteration, the current training dataset is split into n equal sized subsets

and the C4.5 classifier is built over each of these n subsets to evaluate the whole training

set. Then, the incorrectly labeled examples are removed from it (according to one of the two

aforementioned voting schemes) and a new iteration is started.

Both methods, EF and IPF, claimed two important postulates in the field of the filtering

techniques:

1. Brodley and Friedl (EF) [7] stated that if some examples have been mislabeled and it is

assumed that the label errors are independent of the particular classifier learned from the

data, collecting predictions from di↵erent classifiers could provide a better estimation of

mislabeled examples than collecting information from a single classifier.

2. Khoshgoftaar and Rebours (IPF) [17] claimed that a iterative elimination of noisy exam-

ples implies that the examples removed in one iteration do not influence the detection in

subsequent ones, resulting in a more accurate noise filtering.

However, the methods belonging to these approaches have some drawbacks. Since EF, which

is an ensemble-based filter, does not follow an iterative elimination of the noisy examples,
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the classifiers are built from wrong data, and therefore their noise detection may be biased.

Otherwise, the IPF iterative noise filter only considers one classification algorithm to build the

filter, and thus it does not benefit from collecting information from di↵erent models built with

di↵erent classification algorithms.

In this work, we aim to follow these postulates at the same time, combining both types of

mechanisms to develop a new filtering method. In addition, we also take into account di↵erent

measures of noise in each potentially noise example in order to decide whether it should be

removed or not. In this way, we take advantage of the strengths of each type of filtering

method to create a new noise filter. The complete proposal is explained in the next section.

3. The Iterative Noise Filter based on the Fusion of Classifiers

Inspired by the ideas that motivated the design of the EF and IPF filters, the proposal of

this paper removes noisy examples in multiple iterations considering filtering techniques based

on the usage of multiple classifiers [18, 21, 33]. For this reason, we have called our proposal

Iterative Noise Filter based on the Fusion of Classifiers. Figure 1 shows an scheme of the

filtering method proposed. Three steps are carried out in each iteration. First, a preliminary

filtering is performed with a FC-based filter. Then, another FC-based filter is built from the

examples that are not identified as noisy in the preliminary filtering to detect the noisy examples

in the full set of instances in the current iteration. Finally, noisy examples are only removed if

they exceed a noise score metric.

The building of the FC-based filter is described in Section 3.1. Then, the three main steps

carried out at each iteration are described in separate sections:

1. Preliminary filtering (Section 3.2). This first step removes a part of the existing noise

in the current iteration to reduce its influence in posterior steps. More specifically, noise

examples identified with high confidence are expected to be removed in this step.

2. Noise-free filtering (Section 3.3). A new filtering, which is built from the partially

clean data from the previous step, is applied over all the training examples in the current

iteration resulting into two sets of examples: a clean and a noisy set. This filtering is

expected to be more accurate than the previous one since the noise filters are built from

cleaner data.

3. Final removal of noise (Section 3.4). A noise score is computed over each potentially

noisy example from the noisy set obtained in the previous step in order to determine

which of them are finally eliminated.
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Figure 1: Filtering method proposed: Iterative Noise Filter based on the Fusion of Classifiers.

We introduce these three steps in each iteration aiming at removing noisy examples with

maximum reliability, that is, those which are noisy examples with great confidence. In this

way, examples that may be noisy or not, are leaved in the training set for posterior processing.

Ensuring that only the examples that are most likely to be noise are removed implies that it

will be less probable to delete noise-free examples, which would harm the learning process.

Finally, the iterative process stops when, for a number of consecutive iterations k, the

number of identified noisy examples in each of these iterations k is less than a percentage p

of the size of the original training dataset (in this paper, these parameters are set to k = 3

iterations and p = 1%).

Table 1 describes the notation used in the following sections to describe the di↵erent sets of

examples considered in our filter.

3.1. Noise filter based on the fusion of classifiers

The filtering technique used in the steps 2 and 3 in each iteration of the method proposed

in this paper is based on the combination of di↵erent classifiers. This filtering strategy was
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Table 1: Sets of examples used in the proposed noise filter.

Set Description

D
T

Initial training set

C
T

Training set at the start of the iteration

C
PC

and C
PN

Sets of clean and noisy examples from C
T

provided by the preliminary filtering

C
C

and C
N

Sets of clean and noisy examples from C
T

provided by the noise-free filtering

C
F

Filtered C
T

previously used in the EF noise filter [7]. However, there are two main di↵erences of our

filtering technique with respect to EF:

1. Noise evaluation strategy. The authors of EF proposed the usage of a k-fold cross-

validation to label each example as correct or noisy by each classifier, whereas in our

proposal all the training examples are considered to create only one model with each

classifier to label the examples. Thus, the time complexity of the method is reduced.

2. Classifiers used to build the filter. The authors of EF propose to use C4.5 [11], 1-NN

[23] and LDA [32], whereas we propose to change 1-NN by 3-NN and LDA by Logistic

regression (LOG) [32], respectively. These changes are mainly motivated by the noise

evaluation strategy used. Since our FC-based filter only builds one model to label each

example as clean or noisy, it needs to include classifiers that behave better with noisy

data than the very noise-sensitive 1-NN and LDA methods used in EF. Because of this,

we increment the k value of the k-NN method, increasing its robustness against noise

[31]. On the other hand, LOG is an statistical classifier, such as LDA, but is recognized

to behave better in several domains. In this way, we improve the global behavior of the

filter when detecting noisy examples since 3-NN and LOG could be considered better than

LDA and 1-NN when dealing with noisy data.

In the following, the classifiers used by our FC-based filter are briefly described along with

their respective noise-tolerance:

• C4.5 decision tree generator [11]. C4.5 constructs a decision tree in a top-down way,

using the normalized information gain (di↵erence in entropy) that results from choosing

an attribute to split the data. It is considered a robust learner, which uses pruning

strategies to reduce the chances of classifiers being a↵ected by noisy examples [30].

• k-Nearest Neighbors [23]. This finds a group of k examples in the training set that
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are closest to the test pattern. The predicted class label is based on the predominance

of a particular class in this neighborhood. The value of k determines a higher or lower

sensitivity of k-NN to noise [31].

• Logistic regression [32]. This method is a discriminative probabilistic classification

model based on the logistic function. Due to its probabilistic nature, one can expect that

it behaves relatively well with low noise levels but it performs worse when the noise level

increases.

After obtaining the prediction of each one of the aforementioned classifiers over the set of

examples to evaluate, those examples incorrectly classified by the majority of the classifiers,

that is, 2 of the 3 classifiers, are labeled as noisy. It is important to note that we can also use

the consensus scheme to determine which examples are noisy, but in this paper we will use the

majority scheme in all the ensemble-based filters, making the results comparable. Furthermore,

remember that in our proposal we use the same data to train each classifier and evaluate them

to determine the examples to be tagged as noisy.

3.2. Preliminary filtering

Data that we want to filter CT (note that CT = DT at the first iteration) are, logically, likely

to contain noisy examples. Therefore, filtering based on these noisy data may be misleading

since the filtering models built are a↵ected by the noisy examples. Thus, these data are not

reliable enough to decide the final elimination of the noisy examples. On this account, we first

perform a preliminary filtering of the dataset CT at each iteration in order to remove most of

the potentially noisy examples. Afterwards, we consider a second filtering step, the noise-free

filtering, in which the filter is trained only with the examples considered as noise-free (CPC) at

this stage, and thus its noise identification is expected to be more reliable.

The filtering consists of the creation of a system based on the fusion of classifiers considering

the three aforementioned classifiers (C4.5, 3-NN and LOG) from CT (the training set at the

start of the iteration). This FC-based filter is used to evaluate the examples of the same set

CT . The noisy examples CPN identified by the filter are removed from CT , resulting in the

training data CPC .

Please, note that the noise identification of this first filtering is based on data which may

contain noise. Thus, the noise identified in this step may be erroneous and noisy data will

be probably considered as clean data and vice versa; this is the reason why we call this step

preliminary filtering.
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3.3. Noise-free filtering

The filtered dataset provided by the preliminary filtering (CPC) is a cleaner version than

the training set at the start of the iteration CT . Therefore, the FC-based filter built from these

cleaner data CPC is expected to perform a more accurate identification of the noise in CT , since

the models built for filtering are not a↵ected by the most disruptive noisy examples previously

detected and removed from CT .

Therefore, in the second step of each iteration, a new FC-based filter is created considering

CPC , that is, CT after the preliminary filtering (without the noisy examples identified in the first

step). This filter is evaluated on the examples of the whole set CT (all the training examples in

the current iteration). This results in two di↵erent sets of examples: CC ✓ CT , which consists

of those examples considered as clean by the filter and CN ✓ CT , which is the set of examples

considered as potentially noisy (note that CC \ CN = ; and CC [ CN = CT ).

Note that the noise identification carried out by the FC-based filter in this step is based on

the filtered CT , so it is expected to be more accurate in identifying noise that the filter in the

previous step; this is the reason why we call this step noise-free filtering.

3.4. Final removal of noise: the noise score

This last step controls the noise sensitiveness of the filter moderating the amount of noisy

examples removed. By means of this last step, we try to ensure that only true noisy examples

are removed. Hence, questionable examples are analyzed in posterior iterations, since the

elimination of non-noisy examples may carry a significant decrease in accuracy and therefore it

is important to be sure that they are truly noise.

The noisy examples identified in the second step of the iteration CN are those considered

to analyze with the noise score. They are ordered according to this noise score, from those

which are more probably noise to those which are less probably noise or that may be indeed

clean examples wrongly identified as noisy by the filter. Finally, the examples that exceed a

threshold set by the user are eliminated (the e↵ects of di↵erent values of the threshold on the

filtering will be studied in Section 5.6). In order to define the noise score, we have made the

following assumptions:

Assuption 1. The class label of some training examples may be erroneous.

Any dataset is susceptible of containing noise [3]. Since our proposal is particularly designed

to deal with datasets with class noise, one cannot blindly trust on the class of all the examples.

Assuption 2. Noisy examples detected by any filter may be incorrect.
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From the above premise, decisions obtained from noisy data may be also incorrect. In

our proposal, this assumption is related to the decisions made by the noise filter in which the

examples that are noisy are presented. Therefore, the set of noisy examples detected in the

second step at each iteration, that is, the set of noisy examples to analyze with the noise score,

need not be correct. Thus, examples labeled as noise might be clean and vice versa.

Assuption 3. Examples in noisy clusters are less reliable.

The information obtained from a cluster of noisy examples, that is, an agglomeration of noisy

examples, is less reliable. Our proposal will be tested with several percentages of examples with

class noise in the training set, more specifically up to 30% (see Section 4.1). Therefore, it is very

likely that clusters of noisy examples will be created, particularly for the higher noise levels,

in which a higher quantity of examples are corrupted. In this scenario, an example that was

labeled as noise by the filter may be clean (clean examples within the cluster may be labeled

as noise), and vice versa. The same occurs with the class labels: it is clear that in a cluster

of noisy examples, most of them would have the class label incorrectly assigned. Therefore,

information coming from these clusters should be taken cautiously (with less confidence).

Assuption 4. The presence of examples with di↵erent class labels in the neighborhood of an

example may indicate that it is a noisy example.

The more examples in the neighborhood (k nearest neighbors) of an example e have their

class label di↵erent to that of the example e, the more likely for this example e to be noisy

is. It will be even more likely for e to be noisy if, in addition, its nearest neighbors have been

labeled as clean examples by the noise filter.

Assuption 5. The presence of examples with the same class label in the neighborhood of an

example may indicate that it is a clean example.

The more examples in the neighborhood (k nearest neighbors) of an example e have the

same class label to that of the example e, the more likely for the example e to be clean is. It

will be even more likely for e to be clean if, in addition, its nearest neighbors have been labeled

as clean examples by the noise filter.

On account of these assumptions, we will consider the following information (provided by

the examples from CT ) in order to set the confidence of an example e 2 CN labeled as noisy to

be noisy:

1. Detection results of the noise-free FC-based filter (related to Assuptions 1 and 2):

each example is labeled as clean or noisy by the FC-based filter constructed in the second

step of the method.
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2. Information of each training example as belonging to the neighborhood of

other noisy examples (related to Assuption 3): the times that one example is among

the k nearest neighbors of other examples labeled as noisy in CN (denoted as t(e)). This

value provides an idea of how involved is an example in noisy areas (clusters with noise).

If the value is high, it means that this example is among the nearest neighbors of many

other examples that may have noise.

3. Information of the neighborhood of each example e (related to Assuptions 4 and

5): the classes of e and the examples close to e, that is, its k nearest neighbors (k = 5 is

considered in this paper).

Based on Assumption 3, we have defined the function confidence(e) (see Equation 1). It

checks whether the example e is close to other noisy examples. Figure 2 shows the plot of

the function confidence with respect to t(e), the number of times that e is present in the

neighborhood of other noisy examples. As it can be observed in this figure, the function

confidence returns values in the interval (0, 1]. The value of confidence(e) is higher if e is not

in the neighborhood of other noisy examples, whereas it is lower if e is in the neighborhood of

several noisy examples. Hence, if confidence(e) = 1 (when e is not among the nearest neighbors

of any noisy example), the information that this example provides (such as its class label and its

label clean or noise given by the FC-based filter) is very reliable. However, if confidence(e) ⇡ 0

(when e is among the nearest neighbors of many noisy examples), the information that it

provides must not be taken into account.

confidence(e) =
1p

1 + t(e)2
(1)

2 4 6 8 10
t!e"

0.2

0.4

0.6

0.8

1.0

confidence!e"

Figure 2: Graphical representation of the function confidence(e).

Similarly, based on Assumptions 3-5, we have defined the function neighborhood(e) (Equa-

tion 2). Its aim is to analyze the neighborhood of a given example e (its k nearest neighbors)
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to determine the degree of e being in a noisy cluster.

neighborhood(e) =

P
k

i=1 clean(e
i

) · confidence(e
i

) · di↵erentClasses(e, e
i

)

k

(2)

This function computes an average value of the k nearest neighbors considering their classes

(function di↵erentClasses(e, ei)), the degree of the cleanness of each neighbor of e (function

clean(ei)) and how can we rely on each neighbor (function confidence(ei)).

The function di↵erentClasses(e1, e2), defined in Equation 3, takes into account Assumptions

4 (di↵erent classes increase the noise score) and 5 (coincident classes reduce the noise score).

In such away, if the example e and its neighbor ei have di↵erent class labels the value of

neighborhood(e) increases, whereas if they have the same class label the value of neighborhood(e)

is reduced.

di↵erentClasses(e1, e2) =

8
<

:
1, if class(e1) 6= class(e2)

�1, if class(e1) = class(e2)
(3)

Furthermore, Assumptions 4 and 5 state that clean examples must have a higher weight

than examples with noise in the computation of the noise score. Thus, the function clean(ei)

is defined based on the consideration that the number of noisy examples surrounding a given

example ei (that is, n(ei)) is an indicator of the cleanness of that example - see Table 2 in order

to check the di↵erence between the functions t(e) and n(e). Thus, clean examples surrounded

by many clean examples have an higher degree of cleanness than clean examples surrounded

by noisy examples, since one must not trust in the information provided from areas with many

noisy examples (Assumption 3). The same occurs with the noisy examples: if a noisy example

is surrounded by many other noisy examples, one can say that this example has a lower degree

of noisiness than other noisy example surrounded by clean examples, which is placed in a more

reliable area. For these reasons, the function clean(ei) is defined as follows:

clean(e
i

) =
k + isnoise(e

i

) · (n(e
i

) � k)

2k

, isnoise(e
i

) =

8
<

:
1, if e

i

is noise

�1, if e

i

is clean

(4)

The function isnoise(ei), used by clean(ei), simply returns 1 if ei is a noisy example and -1 if

it is clean. Recall that the belonging of each example to the clean and noise sets is determined

by the FC-based filter used in the second step of the filtering.

Thus, the function clean(e) (see Figure 3) provides a value of the cleanness of the example

e (not only if it is clean or noise as it is performed by the FC-based filter). The motivation for

its usage is that some examples are expected to have a higher degree of confidence to be clean

than other ones, and the same occurs with the noisy examples. It considers the fact that a
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Table 2: Di↵erence between the functions t(e) and n(e).

Function Description

t(e) Number of times that e is among the k nearest neighbors of other noisy examples in C
N

n(e) Number of noisy examples in C
N

among the k nearest neighbors of the example e

clean example is more reliable than an example with noise (Assumptions 4 and 5). As Figure

3 shows, this function returns values in the interval [0, 1], being 0 the value corresponding to an

example with a maximum degree of being noise and 1 the value corresponding to an example

having a maximum degree of being clean. Concretely, the interval [0, 0.5] is that of the values

of noisy examples (0 for a noisy example in a cluster of clean examples and 0.5 for a noisy

example in a cluster of noisy examples), whereas the interval [0.5, 1] is that of the values of

clean examples (0.5 for a clean example in a cluster of noisy ones and 1 for a clean example in

a clean cluster). Thus, a higher value of cleanness is assigned to clean examples (considered by

the FC-based filter) than to noisy examples.

1 2 3 4 5
n!e"

0.2

0.4

0.6

0.8

1.0

clean!e"

clean example

noisy example

Figure 3: Graphical representation of the function clean(e). The value of clean(e) depends

on the label of e (clean or noisy) provided by the noise-free filtering (the second step in each

iteration).

Finally, the computation of the noise score NS for an example e 2 CN is mainly based on

the analysis of its neighborhood, represented by neighborhood(e), and this value is weighted by

the reliability of the own example e, represented by confidence(e). Thus, both functions are

combined to define the noise score NS (e) as follows:

NS(e) = confidence(e) · neighborhood(e) (5)

As we have previously commented, the function confidence(e) is defined in the interval
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(0, 1], whereas the function neighborhood(e) is defined in [�1, 1]. Therefore, NS is defined in

the interval [�1, 1], being higher if the example e is more likely to have noise. The sign of the

result provided by the function neighborhood(e) defines if the example e is in fact clean (negative

values) or noisy (positive values), whereas its absolute value defines the degree of confidence

of this choice (being -1 the value corresponding if the example e is totally clean and 1 if the

example e is probably noise). A value NS (e) = 0 implies that there is not reliable information

about if the example e is clean or noise. On the other hand, the function confidence(e) is

another factor that establishes how representative the result provided by neighborhood(e) is,

based on the degree of membership of e to noisy clusters.

After calculating the noise score for each potential noise example in CN , those examples

with a noise score higher than a threshold set by the user are removed. In the experimentation

carried out in this paper, this threshold is by default fixed to 0. Thus, those examples in which

there is any indication that they are noisy because their NS (e) > 0 are deleted. However, we

also study the behavior of proposed filter with other di↵erent values of the threshold in Section

5, showing that it is robust with respect to this value.

4. Experimental framework

This section presents the details of the experimental study carried out in order to check

the validity of the proposed noise filter. First, Section 4.1 describes the datasets used. Then,

Section 4.2 shows the parameter setup for the classification algorithms used in the FC-based

filter. Section 4.3 presents the noise filters compared with our proposal. Finally, Section 4.4

describes the methodology followed to analyze the results.

4.1. Datasets

The experimentation is based on the 25 datasets from the KEEL-Dataset repository [34]

shown in Table 3, where #EX refers to the number of examples, #AT to the number of

attributes and #CL to the number of classes. Some of the largest datasets (penbased, satimage,

shuttle and splice) were stratified at 10% in order to reduce the computational time required

for training, given the large amount of executions carried out. Examples containing missing

values are removed from the datasets before their usage.

In order to control the amount of noise in each dataset, di↵erent noise levels x% are in-

troduced into each training dataset in a supervised manner following an uniform class noise

scheme [35]: x% of the examples are corrupted randomly replacing the class labels of these

examples by other ones from the set of classes. We will consider the noise levels ranging from
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Table 3: Base datasets used in the experimentation.

Dataset #EX #AT #CL Dataset #EX #AT #CL

automobile 159 25(15/10) 6 monk 432 6(6/0) 2

balance 625 4(4/0) 3 new-thyroid 215 5(5/0) 3

banana 5300 2(2/0) 2 penbased 1099 16(16/0) 10

car 1728 6(0/6) 4 pima 768 8(8/0) 2

cleveland 297 13(13/0) 5 satimage 643 36(36/0) 7

contraceptive 1473 9(9/0) 3 shuttle 2175 9(9/0) 7

dermatology 358 33(1/32) 6 splice 319 60(0/60) 3

ecoli 336 7(7/0) 8 twonorm 7400 20(20/0) 2

flare 1066 11(0/11) 6 vehicle 846 18(18/0) 4

german 1000 20(13/7) 2 wdbc 569 30(30/0) 2

glass 214 9(9/0) 7 yeast 1484 8(8/0) 10

ionosphere 351 33(33/0) 2 zoo 101 16(0/16) 7

iris 150 4(4/0) 3

x = 0% (base datasets) to x = 30%, by increments of 5%. As a consequence, 150 noisy datasets

with class noise are created from the aforementioned 25 base datasets (a total of 175 datasets).

All these datasets are available on the webpage associated with this paper.

In order to create a noisy dataset from the original one, the noise is introduced into the

training partitions as follows:

1. A level of noise x% of class noise is introduced into a copy of the full original dataset.

2. Both datasets, the original one and the noisy copy, are partitioned into 5 equivalent folds,

that is, with the same examples in each one.

3. The training partitions are built from the noisy copy, whereas the test partitions are

formed from examples from the base dataset, that is, the noise free dataset.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of

a stratified 5-fold cross-validation. Hence, a total of 25 runs per dataset and noise level are

averaged. The aforementioned 175 datasets will be preprocessed with our approach an other

7 noise filters resulting in 1400 new preprocessed datasets. The preprocessing with all the 8

noise filters of the 5x5 folds for each one of the 175 unprocessed datasets implies a total of

35000 executions, and the running of each one of the three classification algorithms (C4.5,

SVM and k-NN) of the 5x5fcv of the 1575 datasets (175 unprocessed and 1400 processed)

results in 118125 additional executions, from which the results obtained are analyzed in this

paper. Furthermore, we have performed additional experiments with several thresholds for our

proposal, which increases the number of experiments carried out.
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4.2. Parameter setup of the FC-based filter

The parameter setup for the three classification algorithms used by our FC-based filter is

presented in Table 4:

Table 4: Parameter specification for the classification algorithms used in the FC-based filter.

Classifier Ref. Parameters

C4.5 [11] Confidence: 0.25, minimal instances per leaf: 2, prune after the tree building

k-NN [23] k = 3, Euclidean distance

LOG [32] Ridge value in the log-likelihood: 10�8

4.3. Noise filtering methods

The noise filters used for the comparison have been chosen due they apply di↵erent filtering

strategies and are well-known representatives of the field. They are briefly described in the

following:

1. Edited Nearest Neighbor (ENN) [9]. This algorithm removes those examples which class

does not agree with that of the majority of its k nearest neighbors.

2. All k-Nearest Neighbors (AllKNN) [16]. This applies the k-NN rule k times varying the

number of neighbors considered between 1 to k. Those examples misclassified by k-NN

are removed from the training set when all the values of k have been considered.

3. Classification Filter (CF) [8]. CF splits the training set into n subsets. A set of classifiers

is trained from the union of any n�1 subsets. The examples misclassified in the excluded

subset are then eliminated from the training set.

4. Multiedit (ME) [15]. This splits the training data into n parts. k-NN classifies the exam-

ples from the part x considering the part (x+1) mod n as training set and the misclassified

examples are removed. This process is repeated until no examples are eliminated.

5. Nearest Centroid Neighbor Edition (NCNE) [10]. This is a slight modification of ENN,

which consists of discarding from the training set every example misclassified by the k

nearest centroid neighbors (k-NCN) rule.

6. Ensemble Filter (EF) [7]. EF classifies the training data using an n-fold cross-validation

with several classification algorithms. Then, the noisy examples are identified using a

voting scheme (consensus or majority) and removed from the training data.
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7. Iterative-Partitioning Filter (IPF) [17]. IPF removes noisy examples in multiple itera-

tions. In each iteration, the training data is split into n subsets and C4.5 is built over

each of these subsets to evaluate all the examples. Then, the examples misclassified are

removed (using the consensus or majority scheme) and a new iteration is started.

The parameter setup for all the noise filters is shown in Table 5. Even though almost all

of the parameters are the default ones recommended by the authors of such filters, we have set

the majority scheme and n = 3 partitions for ensemble-based filters in order to establish a fair

comparison among this type of filters.

Table 5: Parameter specification for the noise filters.

Filter Ref. Abbreviation Parameters

AllKNN [16] AllKNN k value: 3, Distance: Euclidean

Classification Filter [8] CF Classifier: C4.5, n: 3

Edited Nearest Neighbor [9] ENN k value: 3, Distance: Euclidean

Multiedit [15] ME k value: 1, Subblocks: 3, Distance: Euclidean

Nearest Centroid Neighborhood Edition [10] NCNE k value: 3

Ensemble Filter [7] EF Voting scheme: majority, n: 3

Iterative-Partitioning Filter [17] IPF Voting scheme: majority, n: 3

Iterative Noise Filter based on the Fusion of Classifiers - INFFC Voting scheme: majority, n: 3

Note that EF and IPF are filtering approaches based on the use of ensembles (ensemble-

based filters), whereas the rest of the methods are based on single classifiers and/or measures

(non-ensemble filters). Therefore, we will consider these two groups in the comparisons carried

out in the following section.

4.4. Methodology of analysis

The e↵ect of the aforementioned filters along with our proposal will be analyzed comparing

the performance obtained for each dataset with three di↵erent classifiers: C4.5 [11], SVM [22]

and k-NN [23] with k = 1. As we have already mentioned, the performance estimation is

obtained by means of 5 runs of a 5-fold stratified cross-validation, averaging the test accuracy

results. Given the large amount of results obtained, for the sake of brevity only averaged

results are shown in the paper (the detailed results can be found on the web page associated

with this paper), but it must be taken into account that our conclusions are based on the proper

statistical analysis, which considers all the results (not averaged). In addition, the number of

datasets preprocessed with each filter in which each classifier obtains the best result is shown.

The performance of our approach is studied with each classifier (C4.5, SVM and 1-NN)

using statistical comparisons in three di↵erent scenarios:
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1. Comparison between INFFC and not applying preprocessing (Section 5.2). By means of

this comparison we try to check if the application of noise filtering techniques implies an

advantage with respect to no preprocessing (None).

2. Comparison among INFFC and the non-ensemble filters (Section 5.3). Its motivation is

to check the behavior of our proposal against classic state-of-the-art filters belonging to

other di↵erent paradigms from ensemble-based methods. These include the noise filters

AllKNN, CF, ENN, ME and NCNE.

3. Comparison among INFFC and the ensemble-based filters (Section 5.4). We also compare

our proposal, which is based on ensembles of classifiers, with other related noise filters

that also use multiple classifiers (EF and IPF).

We have separately studied the di↵erences between our proposal and the non-ensemble and

ensemble methods for two main reasons. First, the separation is motivated by the di↵erent

nature of the methods of both groups. Second, performing a multiple statistical comparison

usually requires a much higher quantity of datasets to detect significant di↵erences when the

number of comparison methods increases. Multiple statistical comparisons are then limited

by the number of datasets and an unified comparison can only be performed if a much higher

quantity of datasets than the one considered in this paper is available for study.

Wilcoxon’s test [36] will be applied to study the di↵erences between the proposal of this

paper and no using preprocessing. The p-values associated with the comparison of the results

of the two methods involved over all the datasets will be obtained. The p-value represents the

lowest level of significance of a hypothesis that results in a rejection and it allows one to know

whether two algorithms are significantly di↵erent and the degree of their di↵erence. We will

consider a di↵erence to be significant if the p-value obtained is lower than 0.1 - even though

p-values slightly higher than 0.1 might be showing important di↵erences.

Regarding the comparison between our approach and the other noise filters (either non-

ensemble or ensemble-based methods), the Friedman Aligned-ranks test [24, 37] will be used.

We will use this test to compute the set of ranks that represent the e↵ectiveness associated with

each algorithm and the p-value related to the significance of the di↵erences found by this test.

In addition, the adjusted p-value with Holm test [38] will be computed. More information about

these tests and other statistical procedures can be found at http://sci2s.ugr.es/sicidm/.

Other point to analyze includes an analysis of which examples are removed from the data

set belong to those corrupted by the noise introduction scheme and which to the non-corrupted

set of examples. Consider that DT = DN tDO, being DN the set of examples whose class labels

have been corrupted by the noise scheme and DO the set of original non-corrupted examples.
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On the other hand, each noise filter removes a set of examples DR ✓ DT . Based on these sets of

examples, we have defined two di↵erent metrics in order to check the capabilities of elimination

of each noise filter (see Table 6).

Finally, we will also study the e↵ect of the noise threshold in the performance of our ap-

proach, by comparing the results of INFFC considering several thresholds by means of the usage

of the Friedman Aligned procedure and the Holm test.

Table 6: Measures computed.

Metric description Expression

Eliminations among the corrupted examples 100 |DN\DR|
|DN |

Eliminations among the non-corrupted examples 100 |DO\DR|
|DO|

5. Analysis of results

This section presents the analysis of the results obtained. First, performance results are

presented and analyzed in Section 5.1. To add depth to the analysis of the results, several

statistical comparisons are performed, studying the di↵erences among the proposal of this

paper and not preprocessing (Section 5.2), its comparison with the other non-ensemble methods

(Section 5.3) and its comparison with the other ensemble-based methods (Section 5.4). The

analysis of the examples removed by each noise filter is shown in Section 5.5, whereas the study

on the behavior of INFFC with di↵erent thresholds for the noise score is shown in Section 5.6.

5.1. Accuracy results and number of datasets with best result

Table 7 shows the test accuracy obtained by each classifier when using each one of the 8

filters considered and without preprocessing (None column). This table also shows the number

of datasets on which each filter provides the best result with each one of the three classifiers

and noise level. The best results at each noise level are highlighted in boldface. From this table,

several remarks can be made:

1. Test accuracy results:

• For all the classifiers (C4.5, SVM and 1-NN), INFFC is the best method at all the

noise levels, and also without additional noise.

• Considering C4.5, the results of IPF and EF are also remarkable (even though they

are lower than those of INFFC). In general, the worst filters are ME and AllKNN.
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Table 7: Test accuracy of each classifier (C4.5, SVM and 1-NN) and number of datasets on

which each filter provides the best result (best results are remarked in bold).

Test accuracy Best (out of 25)

Method 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

C4.5

AllKNN 79.20 78.87 78.48 78.00 77.39 77.36 76.35 1 0 0 1 1 1 1

CF 80.43 80.21 79.83 79.37 78.87 78.63 78.01 0 0 0 0 1 0 0

ENN 80.09 79.87 79.75 79.06 78.76 78.33 77.65 0 2 2 0 3 5 1

EF 80.41 80.22 79.83 79.56 79.33 79.01 78.46 2 5 6 5 5 3 3

IPF 81.18 80.79 80.56 79.92 79.32 79.27 79.03 6 3 2 3 1 5 1

ME 77.88 77.60 76.79 76.60 75.52 75.32 74.45 3 1 0 0 0 2 0

NCNE 80.58 80.23 79.98 79.18 78.65 78.43 77.41 1 1 2 3 1 1 0

INFFC 81.77 81.57 81.21 80.97 80.44 80.07 79.99 8 9 9 12 12 8 17

None 81.32 80.89 80.35 79.46 78.24 77.21 76.16 7 5 5 2 2 0 2

SVM

AllKNN 77.89 77.50 77.48 76.76 75.86 75.14 74.20 3 3 4 2 1 1 1

CF 79.53 79.00 78.79 78.28 77.75 77.40 76.75 0 1 0 2 0 1 1

ENN 78.60 78.48 78.24 77.91 77.25 76.87 75.83 1 1 1 1 1 1 0

EF 79.72 79.33 79.02 78.73 78.20 78.24 77.56 3 4 3 4 4 2 4

IPF 79.76 79.42 79.28 78.88 78.47 78.29 77.84 2 1 1 0 1 4 4

ME 77.25 76.87 76.21 75.49 74.90 74.25 73.25 0 0 0 1 0 2 0

NCNE 78.92 78.56 78.01 77.33 76.15 75.21 74.11 3 3 1 3 1 0 1

INFFC 80.71 80.43 80.17 79.89 79.67 79.41 78.97 6 9 12 10 13 10 11

None 79.98 77.80 76.06 74.71 72.87 71.05 69.77 8 4 3 4 4 4 3

1-NN

AllKNN 79.09 78.80 78.38 77.75 77.31 76.65 76.24 6 5 5 2 1 0 1

CF 79.99 79.76 79.56 79.07 79.01 78.18 77.73 1 0 2 1 2 2 0

ENN 79.58 79.32 78.98 78.56 78.18 77.43 76.92 0 1 0 1 1 0 0

EF 79.95 79.61 79.32 79.05 78.84 78.43 78.27 2 4 2 5 6 3 6

IPF 80.29 79.95 79.70 79.40 79.22 78.74 78.52 2 4 4 4 3 4 4

ME 77.18 76.88 76.17 75.85 75.37 74.81 74.01 0 0 0 1 1 4 1

NCNE 80.01 79.70 79.22 78.46 77.87 77.29 76.22 4 3 5 2 2 1 0

INFFC 80.75 80.37 80.10 79.89 79.65 79.25 79.17 4 8 8 10 8 12 13

None 79.15 76.43 74.01 71.67 69.49 67.04 64.07 7 2 0 0 1 0 0

The behavior of None should be mentioned: at the lowest noise levels (up to 10%),

it obtains good test accuracy results; at intermediate noise levels, from 15% to 20%,

it obtains medium results compared with the rest of the noise filters; finally, when

the noise level is higher than 25% it obtains the worst results, as expected.

• The results of SVM are similar to those of C4.5. The two best filters after INFFC

are IPF and EF. The worst filters are again ME and AllKNN (up to 5% of noise)

and from 10% onwards, None is clearly the worst method. However, None obtains
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very good results without noise.

• Regarding to 1-NN, INFFC is usually followed by IPF, even though CF (up to 20%)

and EF (from 20% onwards) are obtain remarkable results. The worst results are

obtained usually by ME and None.

• Even though filters may be counterproductive without excessive noise since they are

more likely to remove clean examples, one must realize that they only imply a low

loss of accuracy without noise (0% of noise level). In any case, we must known that

this observation is based on average results. In order to reach meaningful conclusions

we should use statistical test as it is recommended in the specialized literature [24],

and it is performed in the following sections.

2. Number of datasets with best result:

• INFFC generally obtains the best results in the higher number of datasets with

independence of the classifier considered. There are two exceptions: for the noise

sensitive classifiers, SVM and 1-NN, None highlights over the rest of filtering tech-

niques. These exceptions can be attributed to the fact that, without any noise, SVM

and 1-NN are able to build accurate classifiers. Thus, in absence of noise, the more

information (number of examples) they have, the more exact the models constructed

may be (so they do not need the application of filtering techniques in this case).

However, their behavior obviously go worse when the noise level increases, since

they are considered very noise-sensitive techniques.

• For C4.5, IPF and EF (and None at the lowest noise levels, up to 10%) also obtains

good results.

• For SVM, IPF only obtains good results at the highest noise levels, from 25% on-

wards. The results of EF, AllKNN (up to 10%) or None must be also considered,

since they are also good compared with the rest of noise filters.

• For 1-NN, IPF and EF also highlight at many noise levels, whereas AllKNN and

NCNE only obtains good results at the lowest noise levels (up to 10%).

5.2. Comparison between INFFC and not preprocessing

The results of INFFC with each one of the classifiers (C4.5, SVM and 1-NN) are compared

with those of the datasets without preprocessing (None). In order to study whether there

are statistical di↵erences among them, Wilcoxon’s test has been performed - see Table 8. In

this table, INFFC and None using di↵erent classifiers (C4.5, 1-NN and SVM) are compared
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using the Wilcoxon’s test and the p-value associated are shown. From the very low p-values

obtained in these comparisons, one can conclude that there exist statistical di↵erences for all

the classifiers at all the noise levels between the usage of our filter and None (considering a

significance level of ↵ = 0.1). For C4.5 and SVM without noise, even though these di↵erences

are not significant, very low p-value are obtained. This fact shows the great advantage of

applying filtering techniques with respect to no preprocessing, particularly when the noise level

increases.

Table 8: p-values of the Wilcoxon’s test after comparing the proposed filter versus no prepro-

cessing using each one of the three classifiers: C4.5, SVM and 1-NN.

Method 0% 5% 10% 15% 20% 25% 30%

C4.5 0.14854 0.02831 0.02735 0.00172 0.00010 0.00004 0.00006

SVM 0.17024 0.00189 0.00081 0.00019 0.00017 0.00017 0.00010

1-NN 0.01702 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001

5.3. Comparison among INFFC and the non-ensemble filters

Table 9 presents the statistical comparison performed among INFFC and the non-ensemble

filters using each one of the three classifiers considered (C4.5, SVM and 1-NN). The results

using these filters are statistically compared; Table 9 shows for each filter a results in the form

ranks/p-value, where ranks represent the ranks obtained by the Friedman Aligned procedure

and p-value is the adjusted p-value computed by the Holm test. This table also shows the

p-value associated with the significance of the di↵erences found by the Friedman Aligned test.

Looking at Table 9, we can observe that:

1. Results of C4.5. INFFC is significantly better than all the other filters at all the noise

levels considering a significance level of ↵ = 0.1, although there are a exception: the

comparison versus NCNE at the two lowest noise levels (0% and 5%), even thought the

p-values are relatively low (close to 0.2 and 0.1, respectively).

2. Results of SVM. INFFC is statistically better than the rest of the filters, even though

with NCNE and CF without noise these p-values are slightly higher than 0.1.

3. Results of 1-NN. INFFC is statistically better than AllKNN and ME at all the noise

levels. It also is statistically better than ENN and NCNE from 15% onwards (and it

obtains a very low p-value close to 0.1 versus ENN with 10% of noise level). Finally,

INFFC is statistically better than CF at the highest noise levels, from 25% onwards,

although relatively low p-values are obtained with 15% and 20% (close to 0.17 and 0.14,
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respectively). Thus, in the worst cases, at the lowest noise levels, INFFC shows a better

behavior, but without statistical di↵erences.

Table 9: Results for each non-ensemble filter and noise level in the form ranks/p-value, where

ranks represent the ranks obtained by the Friedman Aligned test and p-value is the adjusted

p-value computed by the Holm test. Those cases where the null hypothesis is not rejected

(↵ = 0.1) are indicated with a star (*).

Method 0% 5% 10% 15% 20% 25% 30%

C4.5

AllKNN 98.46/0.00007 109.56/0.00000 109.54/0.00000 109.37/0.00000 108.15/0.00000 102.79/0.00000 109.31/0.00000

CF 80.50/0.01292 72.42/0.04831 77.42/0.00481 81.94/0.00046 77.13/0.00166 70.42/0.03724 72.27/0.00101

ENN 71.25/0.06861 71.29/0.04831 66.23/0.04736 62.10/0.02753 62.73/0.02124 66.96/0.03724 68.85/0.00135

ME 114.88/0.00000 114.06/0.00000 117.08/0.00000 113.90/0.00000 120.25/0.00000 117.85/0.00000 117.35/0.00000

NCNE 61.17/0.18944* 61.40/0.12673* 62.85/0.04736 69.21/0.01115 68.87/0.01043 72.15/0.03724 74.56/0.00075

INFFC 44.73 42.27 37.88 34.48 33.87 40.83 28.67

SVM

AllKNN 95.54/0.00020 97.92/0.00008 89.94/0.00289 91.65/0.00033 98.73/0.00000 98.31/0.00000 90.46/0.00000

CF 67.13/0.12529* 72.88/0.04587 69.31/0.08286 72.02/0.03531 66.69/0.01048 67.69/0.00590 66.38/0.00276

ENN 85.00/0.00393 78.15/0.02111 74.00/0.06993 69.77/0.03531 68.17/0.01048 68.13/0.00590 73.27/0.00079

ME 110.54/0.00000 107.62/0.00000 107.98/0.00001 111.69/0.00000 106.98/0.00000 105.50/0.00000 105.73/0.00000

NCNE 68.06/0.12529* 70.04/0.04587 82.19/0.01720 83.58/0.00295 97.23/0.00000 100.48/0.00000 106.27/0.00000

INFFC 44.73 44.38 47.58 42.29 33.19 30.88 28.88

1-NN

AllKNN 91.08/0.01439 94.65/0.00418 90.85/0.00738 97.77/0.00012 103.52/0.00000 98.23/0.00000 90.31/0.00001

CF 69.06/0.49687* 64.71/0.74839* 62.56/0.39177* 62.38/0.17781* 56.13/0.14441* 59.19/0.05091 60.25/0.02636

ENN 75.54/0.28394* 75.98/0.22132* 77.65/0.11785* 73.10/0.05527 74.31/0.00723 85.27/0.00012 83.44/0.00009

ME 118.90/0.00000 119.02/0.00000 118.69/0.00000 116.12/0.00000 114.19/0.00000 107.38/0.00000 104.46/0.00000

NCNE 61.83/0.56389* 63.06/0.74839* 69.42/0.32044* 76.13/0.04347 85.00/0.00050 86.19/0.00012 100.12/0.00000

INFFC 54.6 53.58 51.83 45.5 37.85 34.73 32.42

5.4. Comparison among INFFC and the ensemble-based filters

Table 10 presents the statistical comparison performed among INFFC and the ensemble-

based filters using each one of the three classifiers considered (C4.5, SVM and 1-NN). Looking

at Table 10, we can observe that, for C4.5 and SVM, INFFC is clearly better than EF and

IPF at all the noise levels. With 1- NN, our proposal is statistically better than the other two

ensemble-based filters from 20% onwards, considering a significance level ↵ = 0.1 (at the other

noise levels, very low p-values are obtained, all close to 0.1 except for 10% in which the p-value

is higher.
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Table 10: Results for each ensemble-based filter and noise level in the form ranks/p-value, where

ranks represent the ranks obtained by the Friedman Aligned test and p-value is the adjusted

p-value computed by the Holm test. Those cases where the null hypothesis is not rejected

(↵ = 0.1) are indicated with a star (*).

Method 0% 5% 10% 15% 20% 25% 30%

C4.5

EF 48.78/0.00032 45.60/0.00106 46.28/0.00185 44.26/0.00078 40.92/0.00702 42.58/0.01139 46.16/0.00017

IPF 39.70/0.02143 44.16/0.00123 41.86/0.00944 46.20/0.00047 48.78/0.00014 44.44/0.00924 45.88/0.00017

INFFC 25.52 24.24 25.86 23.54 24.3 26.98 21.96

SVM

EF 44.04/0.00330 43.80/0.00153 44.16/0.00737 44.22/0.00753 47.76/0.00007 46.02/0.00060 46.24/0.00105

IPF 44.68/0.00330 45.94/0.00087 43.58/0.00737 43.42/0.00753 44.04/0.00040 44.24/0.00088 42.90/0.00343

INFFC 25.28 24.26 26.26 26.36 22.2 23.74 24.86

1-NN

EF 42.90/0.10551* 41.54/0.13166* 39.22/0.33988* 42.12/0.11285* 40.64/0.09284 44.60/0.00761 39.96/0.11043*

IPF 40.14/0.13644* 41.90/0.13166* 41.62/0.33988* 41.52/0.11285* 43.08/0.07571 42.64/0.00999 43.92/0.05036

INFFC 30.96 30.56 33.16 30.36 30.28 26.76 30.12

5.5. Number of examples removed by each filter

Table 11 shows the results for the two metrics described in Table 6, referring to percentages

of examples removed by each noise filter at each noise level in the sets of corrupted examples

and non-corrupted examples. For sake of generality, only average results for each metric at

each noise level are shown. The complete results for each data set at each noise level can be

found in the webpage associated with this paper. The analysis of this table of results leads to

following observations:

1. Examples removed among the corrupted examples. Generally, the number of

examples removed among the corrupted examples (with noise) is maintained for all the

filters at the di↵erent noise levels. However, this capability of noise detection is reduced

for most of the noise filters when the noise level increases, except for the the INFFC, IPF

and ME filters, which are less a↵ected for the increasing of the noise level.

Even though INFFC is the filter that detects less noisy examples. This fact is more

clearly observed at the lowest noise levels (for example, between AllKNN and INFFC a

high di↵erence can be observed). However, this di↵erence is usually decreased when noise

level increases. This may be due to the fact that, with low noise levels, the amount of

noisy examples is small and the detection of some of these examples may notably alter
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this percentage, whereas more examples identified as noisy are need to notably alter this

percentage at higher noise levels.

Therefore, even though INFFC detects less noisy examples, it obtains good noise elimi-

nation results (around 87% at all the noise levels). It can be considered to be comparable

to the rest of the noise filters, particularly when the noise level increases (for example,

with CF, ENN, IPF or NCNE).

2. Examples removed among the original non-corrupted examples. The number

of examples removed among non-corrupt examples (those in which noise has not been

introduced) changes in a higher degree for the majority of the noise filters when the noise

level increases. Thus, for example, AllKNN drastically removes more examples when the

noise level increases (from a 31.82% at 5% of noise level to 46.82 at 30% of noise level).

Something similar occurs with the rest of the filters, with the exception of INFFC and IPF,

which are able to better maintain the number of examples removed in this set. INFFC

is the method that less examples removes among the non-corrupted examples, with great

di↵erences with respect to the rest of the noise filters considered. For example, it obtains

12.92% versus 17.31% of IPF (the second method that removes less examples) and versus

46.82% of AllKNN (the method that removes the largest number of examples).

As a conclusion, it can be said that our proposal is able to maintain the level of elimination in

both the corrupted and non-corrupted sets of examples regardless of the noise level. Even though

it removes less examples among the corrupted examples, it maintains a similar elimination level

to other noise filters, particularly when the noise level increases. However, almost all the filters

behaves worse considering the non-corrupted set of examples. They eliminate large amounts

of possible clean examples compared with INFFC. Thus our method is able to maintain a

good balance between the examples that one must delete and those that must not. Moreover,

observing the results obtained along this study, the importance of maintaining as many non-

corrupted examples as possible can be highlighted, since statistically better results are obtained

even though less noisy examples are removed. Hence, a good balance between the elimination

of noisy examples and the correct detection of noise-free example should be maintained.

5.6. Influence of the threshold in INFFC

In addition to the comparison with respect to the state-of-the-art filtering methods, we

have studied the e↵ect of the value of the threshold in our proposal. In order to perform this

analysis, we have computed the number of examples for each value of the noise score on which

this metric has been computed, considering all the datasets used in this paper. These results
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Table 11: Percentages of examples removed by each noise filter at each noise level in the sets

of corrupted examples and non-corrupted examples (the best results are remarked in bold).

Set Corrupted examples Non-corrupted examples

Noise level 5% 10% 15% 20% 25% 30% 5% 10% 15% 20% 25% 30%

AllKNN 95.67 94.77 94.47 94.57 93.85 93.58 31.81 34.86 37.87 40.73 43.65 46.82

CF 90.98 90.63 90.26 90.12 89.51 88.90 20.38 21.02 22.31 23.33 24.40 26.07

ENN 92.36 90.81 90.23 90.00 88.89 88.28 20.39 21.42 22.60 23.92 25.65 27.48

EF 93.18 92.65 92.32 92.08 91.65 91.63 19.21 19.92 21.02 21.95 22.77 24.46

IPF 90.51 89.72 89.68 89.55 89.09 89.16 15.42 15.56 16.17 16.62 16.87 17.31

ME 92.98 92.73 92.58 92.54 92.39 92.70 30.54 32.51 34.69 36.56 38.64 40.97

NCNE 91.84 90.17 89.52 88.12 87.78 86.24 20.71 22.58 24.45 26.66 28.77 31.19

INFFC 87.86 86.75 86.86 86.73 87.17 87.03 11.58 11.84 12.00 12.34 12.78 12.92

are represented in Figure 4 for four noise levels, that are 0%, 10%, 20% and 30% (the graphics

for rest of noise levels can be found in the webpage associated to this paper).

Attending to Figure 4, two points must be remarked:

• The distribution of the noise score displaces to the right (to higher values) when the noise

level increases. This is due to the fact that, increasing the number of noisy examples in a

dataset produces a higher appearance of examples that are more easily identified as noisy

by the noise metric (even though they are not necessarily noisy since they may be in noisy

clusters), and therefore their noise score is higher.

• Most of the values of the noise score are in the interval (-0.5, 0.8). On this account, we

have chosen this interval of values to perform an study of the behavior of the proposed

filter considering several values of the threshold, in order to check how it a↵ects to the

results obtained.

Table 12 shows for each of the thresholds considered in INFFC (from 0-5 to 0.8, by incre-

ments of 0.1) the results in the form ranks/p-value, where ranks represent the ranks obtained

by the Friedman Aligned procedure and p-value is the adjusted p-value computed by the Holm

test. In order to perform this comparison we have considered the results of the C4.5 classifier,

although the results with SVM and 1-NN (found in the webpage of the paper) provide similar

results to those shown here. The results of Table 12 show that the thresholds selected as the

those with the best Friedman Aligned rankings are 0, 0.1 and 0.2 at most of the noise levels. In

general, no statistical di↵erences are found between these thresholds and consider lower values,

even though they are generally statistically better that higher values of the threshold. This

fact shows that removing all the potentially noisy examples in each iteration is not always the
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(a) 0% of class noise. (b) 10% of class noise.

(c) 20% of class noise. (d) 30% of class noise.

Figure 4: Distribution of the noise score for di↵erent noise levels. Each figure represents the

number of examples for each value of the noise score on which this metric has been computed,

considering all the datasets used in this paper.

best option. Thus, in many cases, it is better to adopt more conservative strategies to detect

and remove the noisy examples (even though this advantage may not be statistically better, as

shown in our experimentation). However, removing very low quantities of noisy examples in

each iteration seems to be a worse alternative, since statistical di↵erences are found comparing

the highest thresholds with the lower one set as control methods by the Friedman Aligned-ranks

test.
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Table 12: Results for comparison among INFFC considering di↵erent thresholds in the form

ranks/p-value, where ranks represent the ranks obtained by the Friedman Aligned-ranks test

and p-value is the adjusted p-value computed by the Holm test. Those cases where the null

hypothesis is not rejected (↵ = 0.1) are indicated with a star (*).

Threshold 0% 5% 10% 15% 20% 25% 30%

-0.5 160.90/1.00000* 169.80/0.41766* 155.68/1.00000* 144.08/0.99949* 134.06/1.00000* 119.68/1.00000* 110.46/1.00000*

-0.4 159.38/1.00000* 167.74/0.43093* 156.20/1.00000* 143.88/0.99949* 132.62/1.00000* 118.50/1.00000* 110.80/1.00000*

-0.3 158.92/1.00000* 163.52/0.43225* 158.00/1.00000* 141.60/0.99949* 124.26/1.00000* 115.98/1.00000* 108.54/1.00000*

-0.2 167.56/1.00000* 155.38/0.60225* 158.36/1.00000* 136.18/0.99949* 120.24/1.00000* 118.64/1.00000* 109.16/1.00000*

-0.1 172.50/1.00000* 147.38/0.74059* 150.86/1.00000* 127.82/1.00000* 116.84/1.00000* 112.54/1.00000* 112.76/1.00000*

0 159.08/1.00000* 137.98/0.81359* 141.06/1.00000* 120.82/1.00000* 112.76/1.00000* 115.18/1.00000* 104.36

0.1 156.10/1.00000* 114.24 141.66/1.00000* 104.58/1.00000* 108.48 103.18 110.22/1.00000*

0.2 146.1 117.40/0.91208* 124.88 102.14 115.66/1.00000* 113.00/1.00000* 129.10/1.00000*

0.3 159.70/1.00000* 165.72/0.43225* 160.02/1.00000* 192.36/0.01295 171.92/0.21311* 188.38/0.02328 195.10/0.01217

0.4 182.54/1.00000* 204.50/0.01450 200.64/0.07303 230.98/0.00006 224.54/0.00045 244.80/0.00001 253.30/0.00000

0.5 204.02/0.42982* 226.40/0.00089 219.26/0.00974 239.64/0.00002 263.28/0.00000 264.26/0.00000 270.58/0.00000

0.6 209.42/0.31528* 229.60/0.00070 228.14/0.00339 256.98/0.00000 274.98/0.00000 279.40/0.00000 278.90/0.00000

0.7 210.20/0.31528* 229.84/0.00070 231.14/0.00266 258.86/0.00000 278.82/0.00000 281.88/0.00000 282.24/0.00000

0.8 210.58/0.31528* 227.50/0.00083 231.10/0.00266 257.08/0.00000 278.54/0.00000 281.58/0.00000 281.48/0.00000

As final remark, one must realize that all the reported results and the statistical comparisons

performed show the suitability of our filtering approach dealing with class noise datasets. The

combination of the iterative ensemble-based filter and the noise score to control the noise

sensitiveness is shown as a good alternative to other existing noise filters found in the literature.

The threshold of the proposal must be carefully fixed in order to obtain the best possible results.

Very high values of the threshold seems to be inferior to choosing lower values - we recommended

that this threshold is fixed close to 0, according to our experimentation.

6. Concluding remarks

This paper proposes a new noise filtering method combining three di↵erent noise filtering

paradigms: the usage of ensembles for filtering, the iterative filtering and the computation

of noise measures. Thus, we propose an iterative noise filtering method based on the fusion

of the predictions of several classifiers. We also introduce a noisy score to control the filtering

sensitiveness and remove more or less noisy examples according to the practitioner’s necessities.

We have compared our proposal against other well-known filters found in the literature over a

large collection of real-world datasets with di↵erent levels of class noise.

The most remarkable idea behind the analysis of results is that INFFC maintains a similar

elimination level of noisy examples than that of other noise filters, particularly when the noise

level increases. However, almost all the filters studied in this paper eliminate higher amounts
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of clean examples compared with INFFC. Thus our method is able to maintain a good balance

between the examples that one must delete (noisy examples) and those that must not (clean

examples). Furthermore, from the experimental results we can conclude that our noise filter

enhance the performance of the rest of the noise filters and no preprocessing. The statistical

analysis performed supports our conclusions.

The analysis on the impact of the threshold fixed in the noise score shows that removing

all the potentially noisy examples in each iteration is not always the best option, but neither

removing very low quantities of noisy examples. Hence, a balance must be found in order to

obtain the desired results. For this reason, we recommend a threshold close to 0, whose optimal

value can be adapted depending on the problem.
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Abstract

Classification datasets often have an unequal class distribution among their examples. This problem

is known as imbalanced classification. The Synthetic Minority Over-sampling Technique (SMOTE) is

one of the most well-know data pre-processing methods to cope with it and to balance the di↵erent

number of examples of each class. However, as recent works claim, class imbalance is not a problem

in itself and performance degradation is also associated with other factors related to the distribution

of the data. One of these is the presence of noisy and borderline examples, the latter lying in the

areas surrounding class boundaries. Certain intrinsic limitations of SMOTE can aggravate the problem

produced by these types of examples and current generalizations of SMOTE are not correctly adapted

to their treatment.

This paper proposes the extension of SMOTE through a new element, an iterative ensemble-based

noise filter called Iterative-Partitioning Filter (IPF), which can overcome the problems produced by

noisy and borderline examples in imbalanced datasets. This extension results in SMOTE-IPF. The

properties of this proposal are discussed in a comprehensive experimental study. It is compared against

a basic SMOTE and its most well-known generalizations. The experiments are carried out both on a

set of synthetic datasets with di↵erent levels of noise and shapes of borderline examples as well as real-

world datasets. Furthermore, the impact of introducing additional di↵erent types and levels of noise into

these real-world data is studied. The results show that the new proposal performs better than existing

SMOTE generalizations for all these di↵erent scenarios. The analysis of these results also helps to

identify the characteristics of IPF which di↵erentiate it from other filtering approaches.
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1. Introduction

Several real-world classification problems in fields such as text categorization [49], medicine [52],

bankruptcy prediction [38] and intrusion detection [31], are characterized by a highly imbalanced distri-

bution of examples among the classes. In these problems, one class (known as the minority or positive

class) contains a much smaller number of examples than the other classes (the majority or negative

classes). The minority class is often the most interesting from the application point of view [11, 5].

Class imbalance constitutes a di�culty for most learning algorithms which assume an approximately

balanced class distribution and are biased toward the learning and recognition of the majority class. As

a result, minority class examples usually tend to be misclassified.

The problem of learning from imbalanced data has been intensively researched in the last decade

and several methods have been proposed to address it - for a review see, e.g., [24]. Re-sampling methods

[9, 8, 33, 47] are a classifier-independent type of techniques that modify the data distribution taking into

account local characteristics of examples to change the balance between classes. There are numerous

works discussing their advantages [4, 10]. Among these methods, the Synthetic Minority Over-sampling

Technique (SMOTE) [9] is one of the most well-known; it generates new artificial minority class exam-

ples by interpolating among several minority class examples that lie together.

However, some researchers have shown that the class imbalance ratio is not a problem itself. Even

though the observation of a low classification performance in some concrete imbalanced problems may

be influenced by the validation scheme used to estimate this performance of the classifiers [35], the clas-

sification performance degradation is usually linked to other factors related to data distributions [28],

[22], [40]. Among them, in [40] the influence of noisy and borderline examples on classification perfor-

mance in imbalanced datasets is experimentally studied. Borderline examples are defined as examples

located either very close to the decision boundary between minority and majority classes or located in

the area surrounding class boundaries where classes overlap. The authors of [33, 40] refer to noisy

examples as those from one class located deep inside the region of the other class. Furthermore, this

paper, considers noisy examples in the wider sense of [57, 43], in which they are treated as examples

corrupted either in the attribute values or the class label.

Even though SMOTE achieves a better distribution of the number of examples in each class, when

used in isolation it may obtain results that are not as good as they could be or it may even be coun-

terproductive in many cases. This is because SMOTE presents several drawbacks related to its blind

oversampling, whereby the creation of new positive (minority) examples only takes into account the

closeness among positive examples and the number of examples of each class, whereas other charac-

teristics of the data are ignored - such as the distribution of examples from the majority classes. These

drawbacks, which can further aggravate the di�culties produced for noisy and borderline examples in
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the learning process, include: (i) the creation of too many examples around unnecessary positive ex-

amples which do not facilitate the learning of the minority class, (ii) the introduction of noisy positive

examples in areas belonging to the majority class and (iii) the disruption of the boundaries between

the classes and, therefore, an increase in the overlapping between them. In order to overcome these

problems, two di↵erent approaches are followed in the literature:

1. Modifications of SMOTE (hereafter called change-direction methods). These guide the creation

of positive examples performed by SMOTE towards specific parts of the input space, taking into

account specific characteristics of the data. Within this group, the Safe-Levels-SMOTE (SL-

SMOTE) [8], the Borderline-SMOTE (B1-SMOTE and B2-SMOTE) [23] or LN-SMOTE [37]

methods are found, which try to create positive examples close to areas with a high concentration

of positive examples or only inside the boundaries of the positive class.

2. Extensions of SMOTE by integrating it with additional techniques (these extensions will be re-

ferred to as filtering-based methods since SMOTE is integrated with either special cleaning or

filtering methods). In the standard classification tasks, noise filters are often used in order to de-

tect and eliminate noisy examples from training datasets and also to clean up and to create more

regular class boundaries [55, 53]. Experimental studies, such as [4], confirm the usefulness of

integrating such filters - e.g., Edited Nearest Neighbor Rule (ENN) or Tomek Links (TL) [53] - as

a post-processing step after using SMOTE.

The ability to deal with imbalanced datasets with noisy and borderline examples of methods belong-

ing to both approaches will be studied in the experimental section, even though this paper also proposes

a new extension of SMOTE. Existing extensions of SMOTE are very simple because they are based on

using a single learning algorithm or simple measures such as, e.g., k-Nearest Neighbors (k-NN) [39]

paradigm inside ENN [55] - used in SMOTE-ENN.

Some works highlight the good behavior of ensembles for classification in noisy environments,

showing that the combined use of several classifiers is a good alternative in these scenarios as opposed to

the employment of single classifiers [42], [43]. In the same way, some authors also propose the usage of

ensembles for filtering [7], [17], [18], [54]. However, all these works only consider the point of view of

the standard classification and the overall classification accuracy. Thus, ensembles are used for filtering

in [7] considering that some examples have been mislabeled and the label errors are independent of

particular classifiers learned from the data. In this scenario, the authors claim that collecting predictions

from di↵erent classifiers could provide a better estimation of mislabeled examples rather than collecting

information from a single classifier only. According to our best knowledge, these ensemble-based filters

have not yet been used in the context of learning from imbalanced data. Analyzing such filters focuses

our attention on the Iterative-Partitioning Filter (IPF) [32]. Its characteristics di↵erentiate it from most
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of the filters, making it particularly suitable to overcome the problems produced by noisy and borderline

examples specific to the dataset plus those additional ones that SMOTE may introduce.

The main aim of this paper is to propose and examine a new extension of SMOTE, in which the

IPF noise filter is applied in post-processing resulting in SMOTE-IPF - its implementation can be found

in KEEL1 [2]. Its suitability for handling noisy and borderline examples in imbalanced data will be a

particular focus of evaluation as these are one of the main sources of di�culties for learning algorithms.

Di↵erences between this approach and other re-sampling methods also based on generalizations of

SMOTE will be discussed and studied. One cannot treat this proposal as a simple combination of two

methods, as we want to study more deeply the conditions of its appropriate use in dealing with di↵erent

types of noise in imbalanced data which have not been considered yet. We discuss its properties in

comparison to other previous, related generalizations of SMOTE.

The other contribution of this paper is to provide a comprehensive experimental comparison of

SMOTE-IPF with these generalizations. Moreover, di↵erent data factors will be considered in these

parts of this experimental study. A first part will be carried out with special synthetic datasets con-

taining di↵erent shapes of the minority class example boundaries and levels of borderline examples, as

considered in related studies [22, 28, 29, 40]. Additionally, a set of real-world datasets which are also

known to be a↵ected by noisy and borderline examples will be considered. All of these were used in

[40] and are available in the KEEL-dataset repository [1]. Yet another contribution of this paper will be

to introduce additional class or attribute noise into these real-world datasets and to study its impact on

compared SMOTE generalizations. After preprocessing these datasets, the performances of the classi-

fiers built with C4.5 [41] will be evaluated and they will also be contrasted using the proper statistical

tests as recommended in the specialized literature [14, 19, 25]. The characteristics of IPF which dif-

ferentiate it from other filters and a discussion on the strengths and weaknesses of IPF in dealing with

imbalanced datasets with noisy and borderline examples will be analyzed in Section 6.

In addition, experiments with many other classification algorithms on the preprocessed datasets

will be carried out in order to show the behavior of the preprocessing techniques with di↵erent classi-

fiers. These are k-NN [39], a Support Vector Machine (SVM) [13, 51], Repeated Incremental Pruning

to Produce Error Reduction (RIPPER) [12] and PART [16]. Due to length restrictions, their results

are only included on the web-page associated with this paper, available at http://sci2s.ugr.es/

noisebor-imbalanced. This web-page also includes the basic information of this paper, the datasets

used and the parameter setup for all the classification algorithms.

The rest of this paper is organized as follows. Section 2 presents the imbalanced dataset problem.

Section 3 is devoted to the motivations behind our extension of SMOTE. Next, Section 4 describes

1www.keel.es
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the experimental framework. Section 5 includes the analysis of the experimental results, and Section

6 outlines the results and the suitability of IPF for the problem treated. Finally, in Section 7, some

concluding remarks are presented.

2. Classification for imbalanced datasets

In this section, first the problem of imbalanced datasets is introduced in Section 2.1. Some additional

problems related to class imbalance that may harm classifier performance are described in Section 2.2.

2.1. The problem of imbalanced datasets

The main di�culty of imbalanced datasets is that a standard classifier might ignore the importance

of the minority class because its representation inside the dataset is not strong enough and the classifier

is biased toward the majority class or, in other words, it is oriented to achieve a good total classification

accuracy. Consequently, the examples that belong to the minority class are misclassified more often

than those belonging to the majority class [27].

This type of data may be categorized depending on its imbalance ratio (IR) [15], which is defined as

the relation between the majority class and minority class examples, by the expression

IR =
N�

N+
(1)

where N� and N+ are the number of examples belonging to the majority and minority classes, respec-

tively. Thus, a dataset is imbalanced when IR > 1.

A large number of approaches have been previously proposed to deal with the class imbalance

problem. These approaches can be mainly categorized in two groups [3]:

1. Algorithmic level approaches. This group of methods tries to change search techniques or the

classification decision strategies to impose bias toward the minority class or to improve the pre-

diction performance by adjusting weights for each class [27].

2. Data level approaches. This group of methods preprocess the dataset modifying the data distri-

bution to change the balance between classes considering local characteristics of examples [4].

Furthermore, cost-sensitive learning solutions incorporating both the data and algorithmic level ap-

proaches assume higher misclassification costs with samples in the minority class and seek to minimize

the high cost errors [50].

There are some data level approaches particularly adapted to the usage of a concrete classifier. For

example, the authors of [36] propose an evolutionary framework that uses an instance generation tech-

nique that modifies the original training set based on the performance of a specific classifier on the
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minority class. However, this is not the most common scenario and the great advantage of data level

approaches is that they are more versatile, since their use is independent of the classifier selected. Fur-

thermore, one may preprocess all datasets beforehand in order to use them to train di↵erent classifiers.

In this manner, the computation time needed to prepare the data is only required once. For these reasons,

the proposal made in this paper belongs to this group of methods. In addition, re-sampling approaches

can be categorized into two sub-categories: under-sampling [53, 55], which consists of reducing the

data by eliminating examples belonging to the majority class with the objective of balancing the number

of examples of each class; and over-sampling [9, 8], which aims to replicate or generate new positive

examples in order to gain importance, improving the importance of this class.

In order to estimate the quality of classifiers built from imbalanced data, several measures have

been proposed in the literature [24]. This is because the most widely used empirical measure, total

accuracy, does not distinguish between the number of correct labels of di↵erent classes, which in the

ambit of imbalanced problems may lead to erroneous conclusions. This paper considers the usage of

the Area Under the ROC Curve (AUC) measure [6], which provides a single-number summary for the

performance of learning algorithms and it is recommended in many other works in the literature [4, 15].

2.2. Other factors characterizing imbalanced data

The imbalance ratio between classes is a problem that may hinder the performance of classifiers.

However, it is not the only source of di�culty for classifiers; recent works have indicated other relevant

issues related to the degradation of performance:

• Presence of small disjuncts [28, 29] (Figure 1a). The minority class can be decomposed into many

sub-clusters with very few examples in each one, surrounded by majority class examples. This is

a source of di�culty for most learning algorithms in detecting enough of these sub-concepts.

• Overlapping between classes [22, 21] (Figure 1b). There are often some examples from di↵erent

classes with very similar characteristics, in particular if they are located in the regions around

decision boundaries between classes. These examples refer to overlapping regions of classes.

Closely related to the overlapping between classes, in [40] another interesting problem in imbalanced

domains is pointed out: the higher or lower presence of examples located in the area surrounding class

boundaries, which are called borderline examples. Researchers have found that misclassification often

occurs near class boundaries where overlapping usually occurs as well and it is hard to find a feasible

solution for it [20]. The authors in [40] showed that classifier performance degradation was strongly

a↵ected by the quantity of borderline examples and that the presence of other noisy examples located

farther outside the overlapping region also made the task of re-sampling methods very di�cult.
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(a) Small disjuncts (b) Overlapping

Figure 1: Examples of the imbalance between classes: (a) small disjuncts and (b) overlapping between

classes.

This paper focuses on studying the influence of noisy and borderline examples in generalizations of

SMOTE, considering the synthetic datasets and also the real-world ones used in [40] along with new

noisy datasets built from the latter. These datasets will be described in Section 4. To clarify terminology,

one must distinguish (inspired by [40, 33]) between safe, borderline and noisy examples (see Figure 2):

• Safe examples are placed in relatively homogeneous areas with respect to the class label.

• Borderline examples are located in the area surrounding class boundaries, where either the mi-

nority and majority classes overlap or these examples are very close to the di�cult shape of the

boundary - in this case, these examples are also di�cult as a small amount of the attribute noise

can move them to the wrong side of the decision boundary [33].

• Noisy examples are individuals from one class occurring in the safe areas of the other class.

According to [33] they could be treated as examples a↵ected by class label noise. Notice that

the term noisy examples will be further used in this paper in the wider sense of [57], in which

noisy examples are corrupted either in their attribute values or the class label.

The examples belonging to the last two groups often do not contribute to a correct class prediction

[30]. Therefore, one could ask whether removing them (all or the most di�cult misclassification parts)

could improve classification performance. Thus, this paper proposes the use of noise filters to achieve

this goal, because they are amply used with good results in classification. We are particularly interested

in ensemble filters as they are the most careful when deciding whether an example should be viewed as

noise and removed.
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Figure 2: The three types of examples considered in this paper: safe examples (labeled as s), borderline

examples (labeled as b) and noisy examples (labeled as n). The continuous line shows the decision

boundary between the two classes.

3. SMOTE along with noise filters to tackle noisy and borderline examples

In this section, first, the main details of the proposed extension of SMOTE are given in Section 3.1.

Next, its two implicated parts are described in depth: the SMOTE algorithm in Section 3.2 and noise

filters in Section 3.3.

3.1. Combining re-sampling and noise filters

As has been mentioned previously, SMOTE is one of the most well-known and widely used re-

sampling techniques, however it may still have problems with some distributions of data. Two di↵erent

generalizations of SMOTE have been proposed in the literature in order to improve final classification

performance: change-direction and filtering-based methods - for the evaluation and discussion of their

limitations see also [37]. The former, however, may present several important drawbacks when imbal-

anced datasets are su↵ering from noisy and borderline examples:

1. Noisy and borderline examples could be removed from the data to improve the final performance

[30] but change-direction methods do not allow this option since their only function is to create

new positive examples.

2. The creation of new positive examples, although directed towards specific parts of the input space,

may be erroneous because it is based on data with noisy examples. This fact shows, once again,

the need to introduce a cleaning phase after the creation of examples.
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Methods based on extending SMOTE with additional cleaning seem to be more appropriate to deal

with imbalanced problems with noisy and borderline examples. These methods follow two postulates:

1. Class distribution has to be transformed, e.g., balanced in some degree, in order to support the

learning of classifiers [4].

2. The most di�cult noisy and borderline examples should be removed from the training data since

they are often the most di�cult for learning [30, 18].

The first task can be coped with by means of using re-sampling techniques. The SMOTE algorithm

[9] helps to balance the class distribution, avoiding the overfitting problem that might be produced by

using other techniques such as simple Random Over-sampling [4]. Furthermore, SMOTE can fill the

interior of minority class sub-parts with synthetic minority class examples. This is a positive fact since

in imbalanced datasets with a considerable quantity of borderline examples, minority class clusters are

usually defined by those with an emptier interior. Nevertheless, class clusters may not be well defined

in cases where some majority class examples might be invading the minority class space. The opposite

can also be true, since interpolating minority class examples can expand the minority class clusters,

introducing artificial minority class examples too deeply into the majority class space. This additional

minority noise is also caused by the blind over-generalization of SMOTE-based techniques of looking

for nearest neighbors from the minority class only. Both situations could introduce additional noise into

datasets.

The aforementioned problems are already well known. They have been tackled by combining

SMOTE with an additional step of under-sampling, e.g., with the ENN filtering [55], which aims to

remove mislabeled data from the training data after the usage of SMOTE. However, these methods do

not perform this task as well as they should in all cases.

The second task requires specific and more powerful methods designed to eliminate mislabeled

examples when datasets have a considerable number of such examples. A group of methods that address

this problem is ensemble-based noise filters [18, 7, 54]. This paper proposes the extension of SMOTE

with one of these filters: the IPF filter [32], which will be responsible for removing noisy examples

originally present in the dataset and also those created by SMOTE. Besides this, IPF cleans up class

boundaries, making them more regular and facilitating in this way the posterior learning phase [18].

These two techniques (SMOTE and IPF) must be applied to the imbalanced dataset in the correct

order in order to obtain reasonable final results: SMOTE in the first place and then the IPF noise filter.

This is due to IPF being designed to deal with standard classification datasets. Its application over an

imbalanced dataset before the usage of SMOTE (which balances the distribution of classes) may carry

the risk of removing all the examples from the minority class, which may be seen as noisy examples be-

cause they are underrepresented in the dataset. In short, as a summary and justification of this approach,
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it is claimed that:

1. The SMOTE algorithm fulfills a dual function: it balances the class distribution and it helps to fill

in the interior of sub-parts of the minority class.

2. The IPF filter removes the noisy examples originally present in the dataset and also those created

by SMOTE. Besides this, IPF cleans up the boundaries of the classes, making them more regular.

Note that the scheme proposed (SMOTE-IPF) enables one to replace SMOTE with any of its modi-

fications, in particular, the change-direction generalizations. However, in this paper we prefer to use the

basic version of SMOTE because it is consistent with earlier research on the usage of filtering techniques

and facilitates the comparison with them. The usage of IPF may also disturb the e↵ects of the earlier

modifications of examples by the change-direction methods. Moreover, some of these methods strongly

focus on the over-sampling of concrete regions of the original data. For example, Borderline-SMOTE

may over-strength the boundary zone, which will be problematic for studying data with many noisy and

borderline examples.

3.2. The synthetic minority over-sampling technique

SMOTE [9], introduced by Chawla and co-authors, is now one of the most popular over-sampling

methods. In this approach, the positive class is over-sampled by taking each minority class example and

introducing synthetic examples along the line segments joining any/all of the k minority class nearest

neighbors. In order to find these neighbors in the space of numerical and nominal attributes, the HVDM

metric is applied [56]. Depending on the amount of oversampling required, neighbors from the k nearest

neighbors are randomly chosen. Analyzing the current literature on the usage of SMOTE, one can notice

that k = 5 neighbors is usually chosen. This procedure of building a local neighborhood is also often

applied in other resampling methods, such as SPIDER. Although one could ask a more general question

by tuning a particular k value depending on the given data characteristics, we decided to use one value

k = 5 to be more consistent with other related works on SMOTE and its generalizations since they were

compared using the same data sets as we have chosen for our study. Taking the same motivations to be

consistent with related works, we tune the oversampling amount to balance both classes to 50%.

Synthetic examples are generated in the following way. Take the di↵erence between the feature

vector (sample) under consideration and its nearest neighbor. Multiply this di↵erence by a random

number between 0 and 1, and add it to the feature vector under consideration. This causes the selection

of a random point along the line segment between two specific features. This approach e↵ectively forces

the decision region of the minority class to become more general.
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3.3. Noise filters

Noise filters are preprocessing mechanisms designed to detect and eliminate noisy examples in the

training set [55, 7, 32, 44]. The result of noise elimination in preprocessing is a reduced training set

which is then used as an input to a machine learning algorithm.

Some of these filters are based on the computation of di↵erent measures over the training data. For

instance, the method proposed in [18] is based on the observation that the elimination of noisy examples

reduces the Complexity of the Least Complex Correct Hypothesis value of the training set.

In addition, there are many other noise filters based on the usage of ensembles. In [7], multiple

classifiers belonging to di↵erent learning paradigms were built and trained from a possibly corrupted

dataset and then used to identify mislabeled data, which is characterized as the examples that are incor-

rectly classified by the multiple classifiers. Similar techniques have been widely developed considering

the building of several classifiers with the same learning algorithm [17, 54]. Instead of using multiple

classifiers learned from the same training set, in [17] a Classification Filter (CF) approach is suggested,

in which the training set is partitioned into n subsets, then a set of classifiers is trained from the union of

any n � 1 subsets; those classifiers are used to classify the examples in the excluded subset, eliminating

the examples that are incorrectly classified.

From our knowledge and preliminary, earlier experiments performed with di↵erent ensemble-based

filters, e.g., the Ensemble Filter (EF) [7], the Cross-Validated Committees Filter (CVCF) [54], CF and

others, the notable good behavior of the Iterative-Partitioning Filter [32] when detecting noisy examples

must be pointed out. IPF has characteristics which di↵erentiate it from most of the noise filters and may

provide the reasons why it performs better than them - they will be analyzed and discussed in Section 6.

IPF removes noisy examples in multiple iterations until a stopping criterion is reached. The iterative

process stops when, for a number of consecutive iterations k, the number of identified noisy examples

in each of these iterations is less than a percentage p of the size of the original training dataset. Initially,

the method starts with a set of noisy examples A = ;. The basic steps of each iteration as follows:

1. Split the current training dataset E into n equal sized subsets.

2. Build a classifier with the C4.5 algorithm over each of these n subsets and use them to evaluate

the whole current training dataset E.

3. Add to A the noisy examples identified in E using a voting scheme (consensus or majority).

4. Remove the noisy examples: E  E \ A.

Two voting schemes can be used to identify noisy examples: consensus and majority. The former

removes an example if it is misclassified by all the classifiers, whereas the latter removes an example if

it is misclassified by more than half of the classifiers.
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The parameter setup for the implementation of IPF used in this work has been determined experi-

mentally in order to better fit it to the characteristics of imbalanced datasets with noisy and borderline

examples once they have been preprocessed with SMOTE. More precisely, the majority scheme is used

to identify the noisy examples, n = 9 partitions with random examples in each one are created and k = 3

iterations for the stop criterion and p = 1% of removed examples are considered. This parameter setup

is based on a study of the influence of each parameter on the results - the justification of each parameter

value and its influence is given in Section 6.3.

4. Experimental framework

In this section, the details of the experimental study developed in this paper are presented. First, in

Section 4.1, we describe how the synthetic imbalanced datasets with borderline examples were built.

Then, the real-world datasets and the noise introduction processes are presented in Section 4.2. In Sec-

tion 4.3 the preprocessing techniques considered in this work are briefly described. Finally, in Section

4.4, the methodology of the analysis carried out is described.

4.1. Synthetic imbalanced datasets with borderline examples

This paper uses the family of synthetic datasets used in prior research on the role of borderline

examples [40]. These data were created following other experimental studies of small disjuncts [28,

29] and overlapping between classes [21]. However, these studies were focused on studying single

factors and very simple (lines and rectangles) shapes of decision boundaries. Thus, the authors of [40]

created more complex data a↵ected by many factors, including borderline examples. Many datasets with

di↵erent configurations were generated by special software and evaluated; for more details see [46]. In

this paper we consider these configurations of datasets which were the basis for the previous analysis

of the role of borderline examples for di↵erent basic classifiers, such as C4.5, and re-sampling methods

[40]. These datasets are briefly characterized below:

1. Number of classes and attributes. This work focuses on binary classification problems (the mi-

nority versus the majority class) with examples randomly and uniformly distributed in the two-

dimensional real-value space.

2. Number of examples and imbalance ratios. Multiple datasets with two di↵erent numbers of ex-

amples and imbalance ratios are considered: datasets with 600 examples and IR = 5 and datasets

with 800 examples and IR = 7. The values of the parameters resulted from the assumption of hav-

ing at least 20 examples for the subpart of the decomposed minority class. Smaller cardinalities

led to unstable results [46].
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3. Shapes of the minority class. Three di↵erent shapes of the minority class surrounded uniformly

by the majority class are taken into account:

• Sub-cluster (Figure 3a): the examples from the minority class are located inside rectangles

following related works on small disjuncts [28].

• Clover (Figure 3b): represents a more di�cult, non-linear setting, in which the minority

class resembles a flower with elliptic petals.

• Paw (Figure 3c): the minority class is decomposed into 3 elliptic subregions of varying

cardinalities, in which two subregions are located close to each other, and the smaller sub-

region is separated.

The minority class is decomposed into 5 parts except for paw data with 3 subregions. Paw could

better represent real-world data than clover. Moreover, both clover and paw should be more

di�cult to learn than the simple circles that were considered in some related works.

4. Disturbance ratios (DR). The impact of disturbing the borders of sub-regions in the minority

class will is studied. This is carried out by increasing the ratio of borderline examples, i.e., the

disturbance ratio, from the minority class subregions. 5 levels of DR are considered: 0%, 30%,

50%, 60% and 70%. The width of the borderline overlapping areas is comparable to the width

of the safe parts of sub-regions. The aforementioned DR values result from earlier studies [46]

which showed that smaller values (less than 20%) did not a↵ect the performance of the considered

classifier very much. Moreover, higher values will better discriminate between the usefulness of

di↵erent preprocessing methods [40].

(a) Sub-cluster. (b) Clover. (c) Paw.

Figure 3: Shapes of the minority class.

In such a way, 30 synthetic datasets with the above mentioned properties have been managed, all of

which are available on the web-page associated with this paper.
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4.2. Real-world datasets

The choice of the real-world datasets was based on the work on imbalanced classification with noisy

and borderline examples presented in [40]. These are available at the KEEL-dataset repository2 [1] or

have been provided by the authors of [45] in the case of the acl dataset. Multi-class datasets are modified

to obtain two-class imbalanced problems, defining the joint of one or more classes as positive and the

remainder as negative. Table 1 shows the characteristics of these datasets. For each one, the number of

examples (#Exa), attributes (#Att), the name of the minority class (Min), the number of examples of the

minority class (#Min), of the majority class (#Maj) and the imbalance ratio (IR) are shown.

Table 1: Characteristics of the real-world datasets.

Dataset #Exa #Att Min #Min #Maj IR

acl 140 6 with knee injury 40 100 2.5

breast 286 9 recurrence-events 85 201 2.36

bupa 345 6 sick 145 200 1.38

cleveland 303 13 positive 35 268 7.66

ecoli 336 7 imU 35 301 8.60

haberman 306 3 died 81 225 2.78

hepatitis 155 19 die 32 123 3.84

newthyroid 215 5 hyper 35 180 5.14

pima 768 8 positive 268 500 1.87

These data are also characterized by a large number of di�cult examples, which could be recognized

as borderline or noisy ones. In [37] a simple analysis of a local neighborhood has been made with k-

NN classifiers according to rules applied in Borderline-SMOTE [23]. So, an example was treated as

noisy if all its neighbors belong to opposite classes, as a borderline example if it was misclassified by

the majority of the opposite classes and safe if it was correctly classified. Nearly all of these datasets

were di�cult with respect to the minority class as they contained much less safe examples than others.

In particular, in the cleveland dataset the minority class contains 35 examples with 22 noisy and 13

borderline ones. A similar situation occurs for breast cancer. Some other datasets, e.g., haberman or

ecoli, contain more borderline examples than noisy ones (e.g. haberman has 51 and 20 respectively plus

10 safe ones). As the number of noisy examples is quite high compared to the size of the minority class

these data sets are chosen to study their impact. The exception is newthyroid, which seems to contain

easier to understand data as its number of safe examples is higher than the others.

Furthermore, we decided that these real-world datasets could be transformed into more complex

and even more di�cult versions with an artificially increased noise level. In such a way, two di↵erent

2
http://www.keel.es/datasets.php
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noise levels will be introduced into them: x = 20% and x = 40%. The introduction of noise consists of

separately corrupting either the class labels or the attribute values of some examples belonging to each

dataset. These corruptions respectively belong to the noise categories formally known as class noise and

attribute noise and were amply used and studied in [57], a reference paper in the framework of noisy

data in classification. The same two noise introduction schemes proposed by the authors of that paper

are used in this work, so that:

• Class noise is introduced into the datasets following a pairwise scheme in which a majority class

example has a probability of x/100 to be incorrectly labeled as belonging to the minority class.

• Attribute noise is introduced into the original datasets corrupting each attribute separately. To

corrupt each attribute Ai, approximately x% of the examples in the dataset are chosen and the

value of Ai of each of these examples is assigned a random value between the minimum and

maximum of the domain of that attribute following a uniform distribution (if Ai is numerical), or

choosing a random value of the domain (if Ai is nominal).

The performance estimation of each classifier for each of these real-world datasets, and also for the

synthetic ones, is obtained by means of 5 runs of a stratified 5-fold cross-validation and their results are

averaged. Dividing the dataset into 5 folds is considered in order to dispose of a su�cient quantity of

minority class examples in the test partitions. In this way, test partition examples are more representative

of the underlying knowledge and meaningful performance results can be obtained.

4.3. Re-sampling techniques for comparison

Di↵erent re-sampling techniques to adjust the class distribution in the training data based on gener-

alizations of SMOTE are studied in this paper. The usefulness of a new SMOTE extension is studied

in a comprehensive comparative study with other, related versions of SMOTE, in particular the best

known representations of change-direction and filtering-based methods. Table 2 shows the SMOTE-

based methods considered in this study - a wider description of such methods is found on the web-page

associated with this paper.

Table 2: Re-sampling techniques considered.

Method Reference Method Reference

SMOTE [9] SL-SMOTE [8]

SMOTE-TL [4] B1-SMOTE [23]

SMOTE-ENN [4] B2-SMOTE [23]
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Note that SMOTE-TL and SMOTE-ENN are approaches based on extending SMOTE with an ad-

ditional filtering (filtering-based methods), whereas SL-SMOTE, B1-SMOTE and B2-SMOTE are ap-

proaches based on directing the creation of the positive examples (change-direction methods).

4.4. Analysis methodology

In order to check the suitability of the proposed extension of SMOTE versus the other re-sampling

techniques when dealing with imbalanced datasets with noisy and borderline examples, the experiments

are divided into three di↵erentiated parts depending on the type of datasets considered in each one:

synthetic, real-world and noisy modified real-world datasets.

The e↵ect of the aforementioned preprocessing techniques will be analyzed comparing the AUC

for each dataset obtained with C4.5 [41], which has been used in many other works in imbalanced

classification, in particular concerning SMOTE [47, 48]. Furthermore, it is known to be more sensitive

to di↵erent factors of imbalanced data than, e.g., SVM [13] and is often used inside the ensembles. The

standard parameters along with a post-pruning have been considered for the executions.

For each of the three types of datasets, the AUC results obtained by C4.5 for our approach against (i)

not applying preprocessing and applying SMOTE alone, (ii) the other filtering-based methods (SMOTE-

ENN and SMOTE-TL) and (iii) the change-direction methods (B1-SMOTE, B2-SMOTE and SL-SMOTE)

will be separately compared. We have separately studied the di↵erences between our proposal and the

filtering-based and change-direction methods for two main reasons. First, the separation is motivated by

the di↵erent nature of the methods of both groups that share common characteristics, which allow us to

independently obtain conclusions with each kind of method. On the other hand, performing a multiple

statistical comparison usually requires a much higher quantity of datasets to detect significant di↵er-

ences when the number of comparison methods increases. Multiple statistical comparisons are then

limited by the number of datasets, and the comparison grouping the two types of methods (filtering-

based and change-direction) can only be performed if a much higher quantity of datasets than the one

considered in this paper is available for study.

Additionally, statistical comparisons in each of these cases will be also performed. Wilcoxon’s

signed ranks statistical test [14] will be applied to compare SMOTE-IPF with no preprocessing and the

usage of SMOTE alone. This is a non-parametric pairwise test that aims to detect significant di↵erences

between two sample means; that is, the behavior of the two algorithms involved in each comparison.

The results of the two methods involved in the comparison over all the datasets will be compared using

Wilcoxon’s test and the p-values associated with these comparisons will be obtained. The p-value

represents the lowest level of significance of a hypothesis that results in a rejection and it allows one to

know both whether two algorithms are significantly di↵erent and the degree of their di↵erence.
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Regarding the comparison between our approach and the other re-sampling techniques (either filtering-

based or change-direction methods), the aligned Friedman’s procedure [19] will be used. This is an ad-

vanced nonparametric test for performing multiple comparisons, which improves the classic Friedman

test. The Friedman test is based on sets of ranks, one set for each data set; and the performances of the

algorithms analyzed are ranked separately for each data set. Such a ranking scheme allows for intra-set

comparisons only, since inter-set comparisons are not meaningful. When the number of algorithms for

comparison is small, this may pose a disadvantage. In such cases, comparability among data sets is

desirable and we can employ the method of aligned ranks [26]. Because of this, we will use the aligned

Friedman’s test to compute the set of ranks that represent the e↵ectiveness associated with each algo-

rithm and the p-value related to the significance of the di↵erences found by this test. In addition, the

adjusted p-value with Hochberg’s test [25] will be computed. More information about these tests and

other statistical procedures can be found at http://sci2s.ugr.es/sicidm/.

We will consider a di↵erence to be significant if the p-value obtained is lower than 0.1 [14], [19] -

even though p-values slightly higher than 0.1 might be also showing important di↵erences.

5. Evaluation of re-sampling methods with noisy and borderline examples

In this section, the performance of C4.5 using the di↵erent preprocessing techniques over the imbal-

anced datasets with noisy and borderline examples is analyzed. In Section 5.1, the results considering

synthetic datasets are analyzed, whereas Section 5.2 and Section 5.3 are respectively devoted to analyz-

ing the results on the real-world datasets and the noisy modified real-world ones.

5.1. Results on synthetic datasets

Table 3 presents the AUC results obtained by C4.5 on each synthetic dataset when preprocessing

with each re-sampling approach considered in this paper. The column denoted by None corresponds to

the case in which no re-sampling is performed prior to C4.5. The best case for each dataset is highlighted

in bold. From these results, the following main points should be stressed:

• Increasing DR, fixing a shape of the minority class and an IR, strongly deteriorates the perfor-

mance of C4.5 without preprocessing.

• Preprocessing improves the performance with respect to the case without preprocessing in nearly

all the datasets. The improvements in the results for each single dataset reflect this fact.

• SMOTE-IPF obtains better results than the rest of the re-sampling methods in 11 of the 30 datasets

considered and obtains results close to the best performances in the rest of the cases.
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• Without preprocessing, linear rectangle shapes (sub-cluster datasets) are easier to learn than non-

linear ones (clover or paw), since the former obtain higher performances. However, with most of

the preprocessing techniques the non-linear paw datasets even outperform the linear sub-cluster

datasets at the same DR level.

• The highest improvements of SMOTE-IPF are obtained in the learning of non-linear datasets,

since 8 of the 11 overall best performance results are obtained for these types of datasets, which

are the most di�cult ones.

Table 4 collects the results of applying Wilcoxon’s signed ranks statistical test between SMOTE-IPF

versus None and SMOTE. As the p-values (pWilcoxon) and the sums of ranks (R+ and R�) reflect, the

application of SMOTE-IPF produces an improvement in the results obtained with respect to not prepro-

cessing or preprocessing only with SMOTE with these synthetic imbalanced datasets with borderline

examples.

Regarding the comparison between re-sampling techniques considering the synthetic datasets, Table

5 presents the ranks of the aligned Friedman’s procedure (Rank column) for each group of techniques

(filtering-based methods and change-direction ones). In the case of the Friedman’s aligned rank test,

the method with the best average ranking among all the datasets is considered to be the best. Please note

that SMOTE-IPF is established in all the cases as the control algorithm because it has obtained the best

aligned Friedmans rank, indicating the high performance of the approach.

The p-value related to the significance of the di↵erences found by the aligned Friedman’s test

(pAlignedFriedman row) is also shown. In addition, the pHochberg column shows the adjusted p-value with

Hochberg’s test. Post-hoc tests indicate those methods that the control algorithm outperforms signifi-

cantly.

Looking at Table 5, one can make some observations:

• The average rank for SMOTE-IPF obtained by the aligned Friedman’s test is the best, i.e. the

lowest, in all the considered cases and it is notably di↵erentiated from the ranks of the rest of the

methods. This occurs with both filtering-based and change-direction methods.

• Comparing ranks for filtering-based methods, SMOTE-IPF is followed by SMOTE-TL. SMOTE-

ENN obtains the highest rank notably di↵erentiated from the rest.

• Among the change-direction methods, SL-SMOTE outperforms the ranks of B1-SMOTE and

B2-SMOTE, which are quite similar.

• The p-values of the aligned Friedman’s test are very low in all the scenarios, which shows a great

significance in the di↵erences found.
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Table 3: AUC results obtained by C4.5 on synthetic datasets with borderline examples.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE-IPF

sub-cluster IR=5, DR=0 94.10 93.00 90.00 91.30 91.50 94.20 93.50 92.70

sub-cluster IR=5, DR=30 64.80 81.90 81.80 81.30 82.20 79.20 80.00 83.40

sub-cluster IR=5, DR=50 51.30 80.80 77.80 81.00 80.40 77.30 77.50 77.80

sub-cluster IR=5, DR=60 52.00 78.60 77.00 77.80 78.10 77.00 73.10 79.70

sub-cluster IR=5, DR=70 50.00 77.50 77.00 79.20 82.30 78.50 78.00 80.10

sub-cluster IR=7, DR=0 87.50 94.79 93.07 92.29 90.79 95.42 95.64 95.21

sub-cluster IR=7, DR=30 76.86 81.57 79.64 77.64 81.71 80.29 79.71 83.00

sub-cluster IR=7, DR=50 53.86 78.29 75.29 78.50 81.29 75.79 74.79 78.57

sub-cluster IR=7, DR=60 50.00 80.21 75.71 78.57 81.36 73.93 73.86 79.79

sub-cluster IR=7, DR=70 50.00 82.50 78.21 81.07 81.21 76.43 73.14 80.93

clover IR=5, DR=0 70.50 83.50 86.80 87.30 85.70 86.40 86.80 85.50

clover IR=5, DR=30 54.30 83.80 83.40 84.20 81.10 81.20 81.90 85.30

clover IR=5, DR=50 51.60 83.40 81.00 84.40 83.00 79.90 83.10 82.40

clover IR=5, DR=60 56.50 80.80 80.50 81.50 78.70 76.90 78.70 82.20

clover IR=5, DR=70 50.00 77.20 76.10 79.40 77.10 74.10 78.70 79.00

clover IR=7, DR=0 70.71 87.93 87.79 89.36 88.21 87.14 88.93 91.64

clover IR=7, DR=30 53.21 83.64 83.14 81.00 84.36 79.29 81.29 85.71

clover IR=7, DR=50 50.00 81.21 82.86 82.00 78.71 78.93 73.36 81.93

clover IR=7, DR=60 50.00 78.79 77.71 82.21 77.21 77.79 71.71 82.14

clover IR=7, DR=70 51.57 78.29 76.07 78.86 78.29 75.57 72.79 80.21

paw IR=5, DR=0 91.00 96.30 94.90 94.90 92.80 93.10 93.30 94.50

paw IR=5, DR=30 70.00 84.40 86.40 84.20 84.50 84.80 87.30 84.90

paw IR=5, DR=50 67.90 84.60 83.30 83.90 85.00 81.70 82.80 84.90

paw IR=5, DR=60 54.10 81.00 81.30 81.90 82.30 76.30 78.90 83.30

paw IR=5, DR=70 57.70 82.80 83.50 84.40 82.70 80.60 80.40 83.40

paw IR=7, DR=0 68.29 93.43 93.93 93.43 92.93 95.21 93.79 94.29

paw IR=7, DR=30 56.71 84.29 84.93 84.21 83.50 84.36 85.43 85.29

paw IR=7, DR=50 50.00 85.00 84.79 84.86 84.29 78.14 79.71 85.79

paw IR=7, DR=60 53.00 83.36 80.71 82.57 83.00 72.71 75.14 82.14

paw IR=7, DR=70 50.00 82.57 80.57 79.93 84.14 78.64 77.71 85.71

• The adjusted p-values by Hochberg’s test are very low in all comparisons.

From the results of Tables 3, 4 and 5, one can conclude that SMOTE-IPF performs better than other

SMOTE versions when dealing with the synthetic imbalanced datasets built with borderline examples,

particularly in those with non-linear shapes of the minority class. All the statistical tests also clearly
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Table 4: Wilcoxon’s test results for the comparison of SMOTE-IPF (R+) versus None and SMOTE (R�)

on synthetic datasets considering the AUC results obtained by C4.5.

Methods R+ R� pWilcoxon

SMOTE-IPF vs. None 464.0 1.0 < 0.0001

SMOTE-IPF vs. SMOTE 366.0 99.0 0.0050

Table 5: Multiple statistical comparison with synthetic datasets.

Algorithm Rank pHochberg

Fi
lte

rin
g

SMOTE-IPF 26.73 -

SMOTE-ENN 64.93 < 0.000001

SMOTE-TL 44.83 0.007289

pAlignedFriedman 0.000014363186

C
ha

ng
e-

D
ir.

SMOTE-IPF 30.30 -

SL-SMOTE 47.85 0.050698

B1-SMOTE 83.15 < 0.000001

B2-SMOTE 80.70 < 0.000001

pAlignedFriedman 0.00002425464

show the statistical significance of this better performance of SMOTE-IPF.

5.2. Results on real-world datasets

Table 6 presents the AUC results obtained by C4.5 on each real-world dataset with noisy and bor-

derline examples when preprocessing with each re-sampling approach. With these types of datasets,

the application of preprocessing techniques does not always obtain the expected results. For instance,

some of the selected preprocessing methods, such as SMOTE-ENN, SMOTE-TL and B2-SMOTE, do

not outperform the performance of None on acl and bupa datasets. acl could be considered as an easier

dataset for basic methods (this has also been observed in [40]) while bupa could be characterized by

other complex data factors apart from the presence of noisy and borderline examples.

Wilcoxon’s test between SMOTE-IPF and None and the aligned Friedman’s and Hochberg’s multiple

comparison tests comparing SMOTE-IPF along with the rest of re-sampling techniques are respectively

found in Table 7 and Table 8.

From the AUC results of Table 6 and the statistical comparisons performed in Table 7 and Table 8,

one should note that:

• The Wilcoxon’s test between SMOTE-IPF and None, and between SMOTE-IPF and SMOTE
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Table 6: AUC results obtained by C4.5 on real-world datasets with noisy and borderline examples.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE-IPF

acl 88.75 86.75 86.75 88.00 85.25 89.00 88.00 88.50

breast 61.73 60.56 63.70 62.01 64.72 63.31 63.58 64.40

bupa 64.40 66.88 61.46 60.18 66.84 68.60 63.61 67.53

cleveland 52.58 54.85 57.22 64.33 60.07 54.75 56.66 62.82

ecoli 72.46 82.16 89.97 82.33 84.52 79.55 79.37 86.55

haberman 57.57 65.41 64.68 62.03 67.07 61.40 60.23 66.76

hepatitis 67.66 71.38 71.90 71.15 68.53 66.39 62.70 72.25

newthyroid 90.87 96.35 94.64 94.37 90.95 93.45 97.18 96.63

pima 70.12 71.29 71.40 69.48 73.97 70.94 73.77 73.58

Table 7: Wilcoxon’s test results for the comparison of SMOTE-IPF (R+) versus None and SMOTE (R�)

on real-world datasets considering the AUC results obtained by C4.5.

Methods R+ R� pWilcoxon

SMOTE-IPF vs. None 44.0 1.0 0.0078

SMOTE-IPF vs. SMOTE 45.0 0.0 0.0039

Table 8: Multiple statistical comparison with real-world datasets.

Algorithm Rank pHochberg

Fi
lte

rin
g

SMOTE-IPF 6.89 -

SMOTE-ENN 16.00 0.014890

SMOTE-TL 19.11 0.002178

pAlignedFriedman 0.037679463832

C
ha

ng
e-

D
ir.

SMOTE-IPF 9.33 -

SL-SMOTE 16.11 0.172352

B1-SMOTE 23.67 0.007804

B2-SMOTE 24.89 0.005208

pAlignedFriedman 0.064566807525

again clearly shows an improvement in the results obtained with respect to not preprocessing or

applying SMOTE alone.

• SMOTE-IPF only obtains the best results on one single dataset (hepatitis) considering all the

preprocessing methods. However, the Friedman’s rank of SMOTE-IPF is clearly the best result
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compared with the rest of re-sampling techniques if the performance of all the datasets is summa-

rized. This shows the great robustness of SMOTE-IPF when applied to the real-world datasets.

• The p-values of the aligned Friedman’s test are very low in all the scenarios, which shows a great

significance in the di↵erences found.

• The adjusted p-values by Hochberg’s test are also very low in all comparisons, particularly with

the filtering-based methods, even though with SL-SMOTE the p-value obtained is a little higher.

Therefore, the suitability of SMOTE-IPF to address imbalanced real-world datasets with noisy

and borderline examples is statistically shown.

Comparing the results of the synthetic datasets in Table 5 with respect to those of the real-world

ones in Table 8, one observes that some of the methods that obtain the better Friedman’s ranks on

synthetic datasets, such as SMOTE-TL among the filtering-based methods, obtain less notable results

on real-world ones. The latter data are perhaps more complex than the former and they may require

more elaborate techniques. SMOTE-IPF remains the best method considering its aligned Friedman’s

rank and the Hochberg’s test p-values with both synthetic and real-world datasets.

5.3. Results on noisy modified real-world datasets

This section is devoted to the analysis of the AUC results obtained by C4.5 on the noisy modified

real-world datasets (see Table 9). From this table, one can observe that:

• Outperforming the results of None by the re-sampling methods is often more di�cult when deal-

ing with more noisy real-world datasets than with real-world datasets without additional noise.

For instance, the performance of None on the newthyroidx=20% and pimax=40% datasets with class

noise are the best results with respect to considering the use of preprocessing.

• The observation of the best results in each single dataset show that SMOTE-IPF is the best method

in 8 of 18 class noise datasets, whereas it is the best in 9 of 18 attribute noise datasets. SMOTE-

ENN and B2-SMOTE are also notable, with each obtaining 3 of 18 of the best results in class

noise datasets and 2 of 18 in attribute noise datasets.

Table 10 shows the results of comparing the application of Wilcoxon’s test to SMOTE-IPF with

None and SMOTE, whereas Table 11 shows the aligned Friedman’s test and the Hochberg’s test results

comparing SMOTE-IPF with respect to the rest of re-sampling techniques.

From these tables, one can make some observations:

• The need to apply advanced preprocessing techniques is shown by the low p-values obtained in

Table 10, even though a slightly higher p-value (0.1551) is obtained comparing SMOTE-IPF and

None with 20% of class noise.
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Table 9: AUC results obtained by C4.5 on noisy modified real-world datasets with both class noise and

attribute noise.

Dataset None SMOTE SMOTE-ENN SMOTE-TL SL-SMOTE B1-SMOTE B2-SMOTE SMOTE-IPF

C
la

ss
N

oi
se

aclx=20% 86.50 87.25 81.75 82.00 85.50 83.75 81.75 88.25

breastx=20% 63.32 63.44 62.96 59.78 64.44 61.31 67.12 64.15

bupax=20% 60.75 63.35 56.05 63.47 62.89 61.94 64.81 61.46

clevelandx=20% 66.07 61.47 50.00 70.93 60.33 59.79 58.83 63.51

ecolix=20% 73.58 75.86 83.55 75.45 78.38 75.64 79.37 78.42

habermanx=20% 62.18 62.61 60.95 53.97 62.65 59.82 61.03 62.25

hepatitisx=20% 70.37 62.09 66.90 71.68 69.87 62.10 60.89 77.58

newthyroidx=20% 92.06 87.98 90.44 79.40 89.92 84.17 89.72 88.21

pimax=20% 68.99 72.70 71.63 66.09 67.28 69.69 70.09 73.08

aclx=40% 68.50 71.00 74.00 62.50 66.75 66.75 73.50 74.75

breastx=40% 56.41 57.26 61.87 53.65 55.54 57.28 59.52 55.86

bupax=40% 55.03 52.10 55.29 50.68 53.42 55.53 56.59 56.02

clevelandx=40% 57.02 58.97 61.41 59.57 52.65 59.19 59.94 62.98

ecolix=40% 60.76 55.65 69.61 53.36 56.48 61.10 61.89 71.12

habermanx=40% 50.00 50.00 53.16 51.19 50.00 50.00 50.00 61.92

hepatitisx=40% 50.00 53.60 56.49 58.57 61.79 56.67 50.00 65.54

newthyroidx=40% 50.00 51.03 57.58 53.53 51.03 56.59 51.03 53.29

pimax=40% 62.63 60.75 54.19 53.40 61.72 61.56 62.16 61.85

A
ttr

ib
ut

e
N

oi
se

aclx=20% 73.25 68.25 73.00 68.25 70.75 72.75 74.00 70.00

breastx=20% 54.56 64.03 63.40 55.47 60.77 61.01 59.46 62.81

bupax=20% 53.10 51.47 56.23 51.31 55.35 52.36 55.23 58.41

clevelandx=20% 53.33 57.30 56.54 58.62 57.34 54.28 54.66 63.89

ecolix=20% 59.93 71.70 64.81 62.65 74.03 65.61 67.48 72.89

habermanx=20% 55.68 59.09 63.25 57.42 58.07 60.42 59.41 62.81

hepatitisx=20% 78.26 65.10 72.69 70.99 75.58 74.52 85.23 78.74

newthyroidx=20% 80.60 87.26 83.61 83.02 85.32 86.90 84.05 87.58

pimax=20% 66.71 65.85 67.64 63.72 63.99 63.17 64.80 69.99

aclx=40% 83.25 79.50 79.75 80.75 84.00 82.50 79.50 86.25

breastx=40% 52.00 55.52 60.14 50.99 56.51 57.28 53.08 56.53

bupax=40% 57.40 61.28 58.98 54.97 59.88 61.66 57.54 57.93

clevelandx=40% 59.99 50.00 58.74 62.73 64.61 50.94 61.52 65.69

ecolix=40% 65.81 70.78 74.13 74.56 72.14 70.46 67.61 73.02

habermanx=40% 50.18 62.88 63.23 61.21 61.30 62.33 58.60 66.22

hepatitisx=40% 76.61 63.34 65.08 61.39 70.78 69.29 70.06 77.34

newthyroidx=40% 83.77 89.52 88.13 90.16 87.58 88.93 90.04 91.55

pimax=40% 62.87 63.84 65.48 65.42 68.47 64.26 63.99 66.91

• SMOTE-IPF is established with both types of noise (class and attribute noise), both noise levels
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Table 10: Wilcoxon’s test results for the comparison of SMOTE-IPF (R+) versus None and SMOTE (R�)

on real-world datasets with both class noise and attribute noise considering the AUC results obtained by

C4.5.

Class Noise - 20% Class Noise - 40% Attribute Noise - 20% Attribute Noise - 40%

Methods R+ R� pWilcoxon R+ R� pWilcoxon R+ R� pWilcoxon R+ R� pWilcoxon

SMOTE-IPF vs. None 34.0 11.0 0.1551 42.0 3.0 0.0195 43.0 2.0 0.0117 45.0 0.0 0.0039

SMOTE-IPF vs. SMOTE 37.0 8.0 0.0977 43.0 2.0 0.0117 42.0 3.0 0.0195 39.0 6.0 0.0546

Table 11: Multiple statistical comparison with real-world datasets with both class noise and attribute

noise.

Class Noise - 20% Class Noise - 40% Attribute Noise - 20% Attribute Noise - 40%

Algorithm Rank pHochberg Rank pHochberg Rank pHochberg Rank pHochberg

SMOTE-IPF 9.22 - 7.56 - 6.11 - 7.44 -

SMOTE-ENN 15.56 0.090521 12.89 0.154044 13.67 0.043455 16.00 0.022221

SMOTE-TL 17.22 0.065019 21.56 0.000366 22.22 0.000033 18.56 0.005964

pAlignedFriedman 0.03280041552 0.040217689132 0.043181723863 0.037237166607

SMOTE-IPF 11.00 - 9.11 - 9.11 - 8.89 -

SL-SMOTE 15.56 0.359013 26.11 0.001859 20.33 0.025274 16.00 0.152201

B1-SMOTE 28.44 0.001332 20.39 0.046325 24.33 0.006531 21.33 0.024445

B2-SMOTE 19.00 0.214458 18.39 0.061755 20.22 0.025274 27.78 0.000428

pAlignedFriedman 0.065317774636 0.067460983239 0.06469719834 0.069232529882

(20% and 40%) and with both types of techniques (filtering-based and change-direction methods)

as the control algorithm because it obtains the best aligned Friedman’s rank.

• The p-values of the aligned Friedman’s test are low with both class and attribute noise. However,

the most significant di↵erences are found when comparing against the filtering-based techniques

rather than against the change-direction ones.

• The adjusted p-values by Hochberg’s test are generally low in all comparisons, with the exception

of 20% of class noise in the change-direction group of methods, in which the highest p-values

are obtained. The p-values are lower in the case of the attribute noise datasets than in the class

noise datasets for a noise level of 20%. However, increasing the noise level up to 40% makes the

di↵erences found more significant independently of the type of noise.

Therefore, SMOTE-IPF also performs well in this scenario with these datasets, with additional noise

induced as the AUC results and statistical comparisons show. The better performance and statistical

significance of the results of SMOTE-IPF with the attribute noise datasets must be pointed out. This
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property seems to be important due to the fact that attribute noise is much more common than class

noise in real-world datasets, as indicated in [57].

5.4. Analysis of the noise filters in imbalanced datasets preprocessed with SMOTE

Since the only di↵erence among all the existing filtering-based methods is the type of noise filter

used, in this section the results of the filtering process are analyzed. Four additional criteria will be stud-

ied based on the percentage of examples removed by the noise filters after preprocessing with SMOTE.

We analyze the percentage of examples filtered with respect to the set of: (i) all the examples (%To-

tal), (ii) the synthetic positive examples created by SMOTE (%Synt), (iii) the original positive examples

(%Pos) and (iv) the original negative examples (%Neg). For the sake of simplicity, only ENN and IPF

will be compared and also only the noise level (20%) will be studied, even though the results of the

other filtering method (TL) and the other noise level (40%) are found in the web-page associated with

this paper.

Table 12 shows the percentage of examples removed in synthetic datasets with borderline examples.

The analysis of these results leads to the following observations:

• ENN usually removes more examples (%Total) in sub-cluster and paw datasets, whereas IPF

removes more examples only in clover datasets. One must note that clover datasets have more

non-linear shapes of the minority class than the rest of the types of datasets.

• The %Synt results show similar conclusions to those of %Total results. It is important to point out

that ENN does not remove any examples in clover datasets.

• ENN usually removes large quantities of examples of the original positive examples (%Pos),

whereas IPF removes very low quantities independently of the type of dataset.

• IPF usually removes more examples of the negative class (%Neg) in sub-cluster and paw datasets,

whereas it removes less examples in clover datasets.

Table 13 shows the percentage of examples removed in real-world datasets with noisy and borderline

examples. These results show the following points:

1. Real-world datasets. IPF removes more synthetic positive examples (%Synt) and more original

negative examples (%Neg) in almost all the datasets, where as it always removes less original

positive examples (%Pos).

2. Noisy modified real-world datasets. IPF removes more synthetic examples (%Synt) in almost

all the datasets and it removes less original positive examples (%Pos) with both types of noise.

However, there is an important di↵erence in the percentage of negative examples removed %Neg
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Table 12: Percentages of examples removed by ENN and IPF after preprocessing the synthetic datasets

with SMOTE.

ENN IPF ENN IPF ENN IPF ENN IPF

Dataset %Total %Synt %Pos %Neg

sub-cluster IR=5, DR=0 14.30 7.65 9.00 6.25 19.00 0.00 17.60 10.30

sub-cluster IR=5, DR=30 17.83 14.65 10.19 9.44 41.50 3.00 19.20 21.15

sub-cluster IR=5, DR=50 20.88 17.00 11.44 6.69 50.00 1.75 22.60 28.30

sub-cluster IR=5, DR=60 18.23 16.72 9.31 8.63 49.50 1.50 19.10 26.25

sub-cluster IR=5, DR=70 19.90 17.93 10.69 7.50 49.00 1.25 21.45 29.60

sub-cluster IR=7, DR=0 12.73 4.64 6.96 7.08 22.75 0.00 16.25 3.21

sub-cluster IR=7, DR=30 15.68 14.23 8.67 5.42 45.50 2.00 17.43 23.54

sub-cluster IR=7, DR=50 17.27 15.52 9.08 6.83 54.50 2.50 18.96 24.82

sub-cluster IR=7, DR=60 16.11 17.45 9.25 5.42 54.50 0.25 16.50 30.21

sub-cluster IR=7, DR=70 16.89 18.29 7.92 5.42 57.75 0.25 18.75 31.89

clover IR=5, DR=0 3.05 8.80 0.00 2.19 13.00 1.25 3.50 15.60

clover IR=5, DR=30 6.75 11.83 0.00 3.94 37.25 0.50 6.05 20.40

clover IR=5, DR=50 9.05 13.75 0.00 3.81 53.00 1.50 7.50 24.15

clover IR=5, DR=60 10.18 13.10 0.00 2.88 60.50 0.25 8.25 23.85

clover IR=5, DR=70 10.87 14.93 0.00 3.69 65.50 0.75 8.65 26.75

clover IR=7, DR=0 2.64 6.05 0.00 1.54 19.75 1.00 2.46 10.64

clover IR=7, DR=30 4.77 10.84 0.00 3.04 44.25 0.00 3.21 19.07

clover IR=7, DR=50 6.98 11.75 0.00 2.75 63.50 1.50 4.89 20.93

clover IR=7, DR=60 8.13 12.00 0.00 2.62 71.25 0.50 6.07 21.68

clover IR=7, DR=70 8.09 12.70 0.00 2.88 75.25 0.50 5.43 22.86

paw IR=5, DR=0 7.75 4.08 2.06 1.25 7.50 0.25 12.35 7.10

paw IR=5, DR=30 14.48 9.25 7.50 1.94 20.75 1.25 18.80 16.70

paw IR=5, DR=50 17.20 9.58 9.00 2.75 23.50 0.25 22.50 16.90

paw IR=5, DR=60 16.25 10.85 5.06 2.31 28.00 1.25 22.85 19.60

paw IR=5, DR=70 17.38 10.47 7.56 1.69 30.75 1.00 22.55 19.40

paw IR=7, DR=0 7.45 4.02 2.75 1.50 7.75 0.25 11.43 6.71

paw IR=7, DR=30 13.21 8.34 5.71 2.54 22.25 0.50 18.36 14.43

paw IR=7, DR=50 14.98 8.98 6.38 2.92 26.00 0.75 20.79 15.36

paw IR=7, DR=60 14.46 10.93 4.63 2.42 32.25 1.00 20.36 19.64

paw IR=7, DR=70 15.50 10.68 5.79 2.17 36.50 0.50 20.82 19.43

in both types of noise: IPF generally removes less negative examples than ENN with class noise

datasets and more examples with attribute noise datasets.

The percentages of the total number of examples removed %Total do not provide significant results
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in any of the aforementioned cases. Furthermore, it is important to remark that, in many datasets, ENN

does not remove any synthetic examples.

Table 13: Percentages of examples removed by ENN and IPF after preprocessing the real-world and

noisy modified real-world datasets with SMOTE.

ENN IPF ENN IPF ENN IPF ENN IPF

Dataset %Total %Synt %Pos %Neg

R
ea

l-w
or

ld

acl 7.50 15.00 0.42 22.50 26.88 7.50 4.00 13.50

breast 37.06 29.97 38.50 30.72 40.42 31.48 34.82 28.91

bupa 33.81 23.50 0.00 22.73 46.55 27.07 33.88 21.13

cleveland 8.92 9.26 0.00 3.42 87.86 29.29 6.11 11.65

ecoli 5.73 7.85 0.00 4.51 48.57 2.14 5.82 11.46

haberman 20.44 27.17 13.02 24.98 52.46 21.32 13.67 30.67

hepatitis 10.19 17.18 0.00 18.01 49.67 1.67 10.73 19.51

newthyroid 1.46 4.44 0.00 8.28 9.29 1.43 1.11 1.94

pima 21.10 20.67 0.65 17.89 42.82 19.31 18.95 22.70

C
la

ss
N

oi
se

aclx=20% 22.58 20.88 4.22 32.05 38.82 30.63 16.50 10.70

breastx=20% 42.62 35.42 34.52 38.25 47.09 46.70 40.98 25.88

bupax=20% 41.74 33.69 0.00 24.17 48.10 39.56 38.96 28.64

clevelandx=20% 24.54 22.04 0.00 12.45 75.96 51.47 19.14 16.24

ecolix=20% 19.09 25.37 0.00 26.48 60.74 29.16 15.88 23.22

habermanx=20% 35.39 31.90 14.22 28.94 50.20 33.52 32.03 31.70

hepatitisx=20% 19.77 31.22 0.00 34.18 51.80 30.74 15.91 30.01

newthyroidx=20% 16.69 21.93 0.00 34.52 49.28 36.22 10.10 8.57

pimax=20% 33.83 26.77 2.52 25.85 40.32 26.40 31.97 27.21

A
ttr

ib
ut

e
N

oi
se

aclx=20% 18.00 19.88 2.50 23.75 54.37 13.75 12.75 20.00

breastx=20% 35.59 31.09 37.81 34.75 31.16 34.88 36.10 27.37

bupax=20% 40.44 32.25 0.00 23.64 58.79 26.38 38.25 38.88

clevelandx=20% 8.25 10.49 0.00 4.73 85.71 32.14 5.06 12.59

ecolix=20% 8.72 11.09 0.94 4.98 52.14 3.57 10.55 17.36

habermanx=20% 21.56 26.94 10.77 25.52 52.77 18.83 17.22 30.78

hepatitisx=20% 11.05 21.48 0.00 24.21 60.67 4.00 10.20 22.71

newthyroidx=20% 5.00 9.58 0.00 14.66 40.00 5.00 2.22 6.39

pimax=20% 29.23 25.95 6.25 23.06 52.42 23.32 27.45 28.70

From the results shown in this section, it can be observed that an important characteristic of the

filtering performed by IPF is that it usually removes less original positive examples than ENN. One

must not forget that, although noisy examples exist in the original dataset, the minority class is usually

under-represented and the classifier should mainly reflect the properties of these original examples.

Thus, being more conservative with regard to removing too many examples from the minority class
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seems to be an advantage.

IPF removes more synthetic positive examples created by SMOTE than ENN in real-world and noisy

modified real-world datasets, along with the more complex non-linear synthetic datasets (clover). These

types of datasets are the most complex considered in this paper and it is therefore more likely that the

synthetic examples introduced by SMOTE will be noisy.

With noisy real-world datasets - which are more likely to su↵er from attribute noise than from

class noise [57] - and noisy modified real-world datasets with attribute noise, the number of original

negative examples removed by IPF is larger than with other noise filters, whereas with class noise

datasets the quantity of negative examples removed by IPF is generally fewer. This is due to real-world

and attribute noise datasets having larger quantities of negative examples su↵ering from noise than class

noise datasets. It seems to be logical to delete more negative examples in these types of datasets than

in class noise datasets and this is indeed the behavior of IPF. Therefore, this fact leads one to think that

IPF performs a more accurate filtering than other noise filters in these scenarios.

6. SMOTE-IPF: suitability of the approach, strengths and weaknesses

This section summarizes the main conclusions obtained in the experimental section. Section 6.1

outlines the results obtained with the di↵erent types of datasets. Then, Section 6.2 describes the charac-

teristics of IPF that make it suitable for this type of problem when preprocessed with SMOTE. Section

6.3 analyzes the main drawback of SMOTE-IPF, its parametrization. Finally, Section 6.4 establishes a

hypothesis in order to explain its good behavior in the di↵erent scenarios considered.

6.1. Results obtained with the di↵erent types of datasets

The experimental results shows that SMOTE-IPF statistically outperforms the rest of the meth-

ods with all the types of datasets considered: synthetic datasets with borderline examples, real-world

datasets with noisy and borderline examples and noisy modified real-world datasets. It is particularly

suitable for the most complex types of problems: the non-linear synthetic datasets and the noisy modi-

fied real-world problems. Within the latter group, it particularly stands out with attribute noise datasets,

which is the most common type of noise [57] and, in this case, it is also the most disruptive one due

it a↵ecting both classes, whereas class noise only a↵ects the majority class. The increase in the noise

level makes the di↵erences in favor of SMOTE-IPF still more remarkable.

6.2. Characteristics of IPF and suitability for problems preprocessed with SMOTE

One important fact that makes IPF suitable for imbalanced datasets with noisy and borderline exam-

ples preprocessed with SMOTE is its iterative elimination of noisy examples. This fact implies that the
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examples removed in one iteration do not influence detection in subsequent ones, resulting in a more

accurate noise filtering.

Furthermore, the ensemble nature of IPF enables it to collect predictions from di↵erent classifiers

which may provide a better estimation of di�cult noisy examples, as apposed to collecting information

from a single classifier only [7]. IPF also enables the creation of more di↵erent classifiers - using ran-

dom partitions, for example - than other ensemble-based filters due to it providing more freedom when

creating the partitions from which these classifiers are built. Creating diversity among the classifiers

built is a key factor when ensembles of classifiers are used [34]. Finally, unlike other ensemble-based

filters such as EF, which uses di↵erent classification algorithms to build the classifiers, IPF only requires

one classification algorithm and is thus simpler.

6.3. On the parametrization of IPF

The choice of the di↵erent parameters of IPF can be seen as its main drawback, since there are

numerous parameters and the behavior of the filter is quite dependent on their values. From our many

experiments we can draw several conclusions regarding the influence of the di↵erent parameters on the

performance results.

We have confirmed that using the majority scheme leads to better results than the consensus scheme

since the number of noisy and borderline examples is large enough in comparison with the quantity of

safe examples. The consensus scheme is very strict in removing examples and does not enable one to

remove enough examples to change the performance significantly.

Regarding the number of partitions, a larger number usually implies better noise detection (and also

a higher preprocessing time) since the voting scheme depends on more information. It is recommended

that this number be odd, in order to avoid ties in the votes of the classifiers. Considering n = 9 partitions

leads to a good balance between computational cost and performance.

The way to build the partitions enables one to control the diversity among classifiers. We have

tested di↵erent strategies to create the partitions, such as stratified cross-validation - e.g. EF or CVCF

- or random partitions. Random partitions were considered because they lead to better performance

results since, as was expected, the partitions and, therefore the classifiers built, are more di↵erent.

The rest of the parameters allow a wider range of possibilities obtaining similar performances. Stan-

dard parameters recommended by the authors of IPF also work well with our SMOTE-preprocessed

imbalanced datasets, so they are fixed to k = 3 iterations for the stop criterion and p = 1% for the

percentage of removed examples.

6.4. Hypothesis to explain the good behavior of IPF with respect to other filters

The properties of IPF seem to be well adapted to the removal of noisy and borderline examples,

implying an advantage over other noise filters. Most of the noise filters combined with SMOTE, such
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as ENN or TL, have a noise identification based on distances among examples to their nearest neigh-

bors, taking into account their classes. This issue, although overlooked in the literature, may be an

important drawback: since SMOTE is based on the distance to the nearest neighbors to create a new

positive example, such synthetic examples introduced by SMOTE, although noisy, are highly likely to

not be identified by filters based on distances to the nearest neighbors. Using a noise identification

method based on more complex rules, such as IPF, enables one to group larger quantities of examples

with similar characteristics, although exceptions exist that will be considered to be noise, avoiding the

aforementioned problem and detecting noisy examples easily.

7. Concluding remarks

This paper has focused on the presence of noisy and borderline examples, which is an important

and contemporary research issue for learning classifiers from imbalanced data. It has been proposed to

extend SMOTE with a new element, the IPF noise filter, to control the noise introduced by the balancing

between classes produced by SMOTE and to make the class boundaries more regular. The suitability of

the approach in this scenario has been analyzed.

Synthetic imbalanced datasets with di↵erent shapes of the minority class, imbalance ratios and levels

of borderline examples have been considered. A set of real-world imbalanced datasets with di↵erent

quantities of noisy and borderline examples and other factors have been also considered. Additional

noise has been introduced into the latter considering two noise schemes: a class noise scheme and an

attribute noise scheme. All these datasets have been preprocessed with our proposal and several re-

sampling techniques that can be found in the literature. Finally, the C4.5 algorithm has been tested over

these preprocessed datasets.

The values of the AUC measure have shown that our proposal has a notably better performance

when dealing with imbalanced datasets with noisy and borderline examples with both synthetic and real-

world datasets. SMOTE-IPF also outperforms the rest of the methods with the real-world datasets with

additional noise. Our proposal especially outperforms the rest of the methods with the more complex

to learn datasets in each group of datasets: the non-linear synthetic datasets and the attribute noise

real-world datasets. These observations are supported by statistical tests.

The experiments performed with others classifiers (k-NN, SVM, RIPPER and PART) have provided

similar results and conclusions on the superiority of SMOTE-IPF to those shown for C4.5. Although

statistical di↵erences are less significant using SVM and RIPPER with attribute noise datasets, SMOTE-

IPF obtains the better performances and the aligned Friedman’s ranks. The especially good results of

SMOTE-IPF on the synthetic datasets using RIPPER and on the class noise datasets using k-NN must

also be pointed out. These results have been better than those of C4.5 shown here.
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One must consider that the ensemble-nature of IPF, which constitutes a robust and accurate way of

detecting mislabeled examples, the iterative noise detection and elimination processes carried out and

the possibility of controlling the diversity between classifiers are the key points of IPF which finally pro-

duce a more accurate filtering process. All these factors help SMOTE-IPF to obtain better performances

than other re-sampling techniques in the scenarios considered.
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José A. Sáeza,⇤, Julián Luengob, Seong-O Shimc, Francisco Herreraa

a
Department of Computer Science and Artificial Intelligence, University of Granada, CITIC-UGR, Granada,

Spain, 18071

b
Department of Civil Engineering, LSI, University of Burgos, Burgos, Spain, 09006

c
Faculty of Computing and Information Technology - North Jeddah, King Abdulaziz University, 21589,

Jeddah, Saudi Arabia

Abstract

Obtaining data in the real world is subject to imperfections. In the data collecting process,

a common consequence of these imperfections is the appearance of noise. In classification,

noisy data may deteriorate the performance of a classifier depending on the learning method

sensitiveness to data corruptions. A particular disruptive type of noise in classification occurs

when noise a↵ects example class labeling, as it may severely mislead the model building.

Several strategies have emerged to deal with class noise in classification. Among the most

popular is that of filtering. However, instance filtering can be harmful as it may eliminate

more examples than necessary or produce loss of information. For this reason, we advance

a new proposal based on an ensemble of noise filters with the goal to not only to filter the

instances but correct, if possible, those that are mislabeled. Using the label that every base

filter considers correct for a given instance, a voting scheme is applied to decide whether the

instance label is filtered, relabeled or maintained. In order to avoid the negative influence of

overlapped examples in class boundaries, we also study the use of ENN to clear such boundaries

before creating the ensemble of filters.

Keywords:
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1. Introduction

The aim of classification algorithms is to extract implicit knowledge from previously known

labeled examples of a problem by creating a model by induction, called a classifier, that is

⇤Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
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capable of predicting the class for new unlabeled examples. For this reason, the classification

accuracy of a classifier is directly influenced by the quality of the labeled data used for its

training. Data quality depends on several components [31] such as, for example, the source

and the input procedure. As a consequence, data gathered from real-world problems are inher-

ently subject to errors. Thus, limitations or disturbances of measurement instruments usually

generate the occurrence of noise in the data [36], [23].

Noise is an unavoidable problem and the origin of errors that a↵ect data collection and

data preparation processes in Data Mining applications [34, 35]. Classifiers with built-in noisy

frameworks will heavily depend on the quality of the training data and also on the robustness to

noise of the classifier itself to obtain a good accuracy. Hence classification problems containing

noise are complex and accurate solutions are often di�cult to achieve, particularly if the clas-

sifier is noise-sensitive. Noise can be observed both in the input attributes or the class labels,

and as a consequence two types of noise are usually distinguished in the literature: attribute

and class noise [37].

Class noise (also known as label noise) is widely denoted as the most harmful type of noise to

the classifier performance [37], due to incorrectly labeled examples severely biasing the learning

method. These result in inaccurate models. Class noise usually appears mainly due two causes:

(i) contradictory examples [14] – examples with identical input attribute values having di↵erent

class labels –, and (ii) misclassifications [37], also known as mislabeled examples – examples

that are incorrectly labeled. Detecting contradictory examples is easier than identifying mis-

classifications [37]. For this reason most of the literature, including this work, is focused on

the study of misclassifications and, thus, the term class noise usually referred to this type of

noise [28, 25]. The performance of classifiers built with mislabeled examples will depend on the

amount of data with incorrect class labels, as well as the capacity of the methods to deal with

class noise.

In order to reduce the e↵ects produced by noise, two main approaches have been proposed

in the specialized literature:

1. The use of robust learners methods, distinguished by being less a↵ected by noisy examples.

These classifiers have been developed or adapted to appropriately deal with noise [22, 4].

2. Preprocessing the datasets to remove or correct the noisy examples [3, 8] is the most

common approach if no robust learner is available or eligible.

Adapting a learning method to make it robust against noise is not simple as it can be

di�cult and time consuming. It is also not often an available choice, although the use of

multiple classifier systems have proved to be helpful to this respect [24]. As a consequence,
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preprocessing to clean the data is usually the most popular choice to remove instances and has

no e↵ect in the model inference process [9].

The use of ensembles for filtering in the class noise framework has been studied for some

decades [3], [30], [16], [27]. Brodley and Friedl [3] introduced this use claiming that if some

examples have been mislabeled and it is assumed that the label errors are independent of

particular classifiers inferred from the data, collecting predictions from di↵erent classifiers could

provide a better estimation of mislabeled examples than collecting information from a single

classifier. Based on this idea, Verbaeten and Assche proposed the Cross-Validated Committees

Filter (CVCF) [30]. This filtering method used a cross-validation scheme to split the full

training data and buildt classifiers in each training subset, which were later used to identify

the potentially noisy examples. Khoshgoftaar and Rebours proposed an iterative noise filter

called the Iterative- Partitioning Filter (IPF) [16], which removed noisy examples in multiple

iterations until an stopping criterion was fulfilled. All these aimed to improve the accuracy of the

classifiers to be induced from the data. One of the most recent research on noise identification

based on ensembles is the work of Sluban et al. [27]. These authors proposed to create a

ranking of noisy instances according to the predictions undertaken by several di↵erent noise

detection algorithms, and later supervised by a domain expert. However, the main aim of the

work of Sluban et al. is not the filtering of the noisy data but to achieve a noise and outlier

identification to achieve an improved understanding of the data.

As indicated by Frénay and Verleysen [7], removing mislabeled instances is more e�cient

than repairing and relabeling them [19, 5]. However this removing may be excessive [17] and

be aggravated in imbalanced classification where the minority class instances are prone to be

easily misclassified [15]. In any case, maintaining the noisy instances as Brodley and Friedl [3]

suggest, is even worse than overfiltering (or overcleansing [7]). Thus a balance between the

excessive filtering and the conservation of every instance must be found. Very few proposals

try to tackle this balance, so the problem remains mainly open [7].

In this paper we aim to provide a novel preprocessing technique capable of repairing the

class noisy instances when possible as well act as a filter when the class label for the instance

is undoubtedly noisy and cannot be safely relabeled. Relabeling noisy instances is performed

by the use of an ensemble of specialized class noise filters. By aggregating the information

they provide for each instance it is possible to repair the class label in many cases and discard

fewer instances than that of the individual filters. The dual behavior of the method –label

repairing and noise filtering– is intended to achieve the desired balance between overcleansing

and maintaining questionable instances.

In order to verify the validity of the proposal, a thorough empirical study will be developed

3



using the k-Nearest Neighbors (k-NN) [18] classifier, which is considered very noise-sensitive,

a learner that is robust to noise as is C4.5 [22], as well as a SVM classifier known to be

precise but also for being noise sensitive [29]. The hypothesis of this proposal improving the

performance of these classifiers with noisy data will be checked in detail and the conditions

under which the proposal works well with noisy data will be analyzed. In order to reach

meaningful conclusions based on the characteristics of the noise, a large collection of real-world

datasets will be considered. We will introduce class noise into 25 base datasets to create a

total of 175 datasets. It should be mentioned that, in real situations, the quantification of

noise is for the most part impossible and therefore neither the initial type nor the quantity

of noise in the dataset can be known or supposed a priori. For that reason, several class

noise levels, from 5% to 30% with increments of 5%, will be introduced, since these are usually

unknown in real-world data. The results obtained will be contrasted using Wilcoxon’s statistical

Test [13, 11] in order to identify the significance of the di↵erences. We will also determine

the ability of our proposal to identify the noisy inducted examples and how it is capable of

correctly relabeling them by comparing them with the noise free dataset. Full results and

details of the experimentations are available in the webpage associated with this paper http:

//sci2s.ugr.es/class-noise-correction.

The rest of this paper is organized as follows. Section 2 presents an introduction to clas-

sification with noisy data. Section 3 introduces the proposal that is able to repair class noise.

Section 4 presents the experimental framework, and Section 5 analyzes the results obtained.

Finally, Section 6 enumerates a series of concluding remarks.

2. Classification with noisy data

This section presents the concept of noisy data in the field of classification in Subsection 2.1.

This is followed by Subsection 2.2 that presents noise filters in general, along with a description

of the noise filters used in this paper.

2.1. Introduction to noisy data

Real-world data is far from being perfect and accurate. Errors made by measurement

instruments, corruptions and inaccuracies may harm interpretation of data, the design of models

and the making of decisions. In the particular scenario of this paper, noise can negatively a↵ect

the classifier performance in several aspects as building time, size and interpretability of the

model obtained [36, 37].
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The e↵ects of how noise a↵ects the characteristics of a classification problem can be observed

by analyzing its spatial characteristics. Noise may create small clusters of instances of a par-

ticular class in the instance space corresponding to another class, displace or remove instances

located in key areas within a concrete class or disrupt the boundaries of the classes resulting in

an increased boundaries overlap. As an ultimate consequence, all these alterations result in a

corruption of the knowledge extracted from the problem, spoiling the classifiers built from that

noisy data especially when compared to the same classifiers built from equivalent clean data

that more accurately builds a model from the problem [37].

In order to avoid or diminish the e↵ects of noise, it is essential to identify the components

that can be a↵ected by noise and establish what extent they are a↵ected. As described by

Wang et al. [31], the quality of any dataset is determined by a large number of components.

Among them, the class labels and the attribute values are two sources influencing the quality

of a classification dataset [33]. The quality of the class labels represents whether the class of

each instance is correctly assigned and the quality of the attributes indicates how well they

characterize instances for classification purposes. Based on these two information sources, we

can distinguish two types of noise in a given dataset [37, 33]:

1. Class noise. Also known as labeling errors or label noise, it occurs when an instance

belongs to the incorrect class. Class noise can be attributed to several causes, including

subjectivity during the labeling process, data entry errors, or inadequacy of the informa-

tion used to label each instance. There are two possible types of class noise:

• Contradictory instances: the same instances appear more than once and are labeled

with di↵erent classes. A possible scenario for this type of class noise can occur when

records processed within di↵erent systems bearing di↵erent data formats are merged

[14] or by a faulty attribute selection/creation.

• Misclassifications: are instances labeled with the wrong classes. In this paper we

use this type of error for class noise due to its frequency in real-world data, since it

generally occurs at the boundaries of the classes where di↵erent classes have similar

attribute values.

2. Attribute noise. This is used to refer to corruptions in the values of one or more attribute

of instances in a dataset. Examples of attribute noise include: erroneous attribute values,

missing or unknown attribute values, and incomplete attributes or “do not care” values.

In our work we treat as attribute noise the erroneous attribute values. This is due to the

fact that, unlike other types of attribute noise such as missing values, this type has been

little studied in the literature and is very common in real-world data [37].
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Several methods have been studied in the literature to deal with noisy data and to obtain

higher classification accuracies on test data:

• Robust learners [22]. These are techniques characterized by being less influenced by noisy

data. An example of a robust learner is the C4.5 algorithm [22]. C4.5 uses pruning

strategies to reduce the chances that the trees are overfitting to noise in the training data

[21]. However, if the noise level is relatively high, even a robust learner may have a poor

performance. By including C4.5 in our experiments, we have attempted to verify that the

e↵ect of noise on the performance of the classifiers built by robust learners may be lower

by using our proposal.

• Noise filters [3, 16, 30]. They identify instances which can be eliminated from the train-

ing data. These are used with many learners sensitive to noisy data and require data

preprocessing to address the problem. We propose to avoid the elimination of instances

by means of aggregating the decisions of di↵erent filters and, if possible, relabel instead

of deleting them.

• Data polishing methods [28]. Their aim is to correct noisy instances prior to training

a learner. This option is only viable, due to the problem of time consumption, when

datasets are small. Several works [37, 28] claim that complete or partial noise correction

in training data, with test data still containing noise, improves test performance results

in comparison with no preprocessing. Our proposal initially tries to repair the instance

label when several filters agree on a label di↵erent to the current shown by the instance.

2.2. Noise filters

Noise filters are preprocessing mechanisms designed to detect and eliminate noisy examples

in the training set [3, 16, 23]. The result of noise elimination in preprocessing is a reduced

training set which is then used as an input to a machine learning algorithm. The separation

of noise detection and learning has the advantage that noisy instances do not influence the

classifier design [10].

Noise filters are generally oriented to detect and eliminate instances with class noise from the

training data. Elimination of such instances has been shown to be advantageous [8]. However,

the elimination of instances with attribute noise seems counterproductive [21, 37] since instances

with attribute noise still contain valuable information in other attributes which can help to build

the classifier.

Some of these filters are based on the computation of di↵erent measures on the training

data. For instance, the method proposed by Gamberger et al. [10] is based on the notion
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that the elimination of noisy examples reduces the Complexity of the Least Complex Correct

Hypothesis value of the training set.

In addition, there are many other noise filters based on the use of ensembles. Brodley and

Friedl [3] propose the use of multiple classifiers belonging to di↵erent learning paradigms and

trained from a possibly corrupted dataset to identify mislabeled data, which are characterized

as the examples that are incorrectly classified by the multiple classifiers. Similar techniques

have been widely developed related to the building of several classifiers with the same learning

algorithm [8, 30]. Instead of using multiple classifiers gleaned from the same training set,

Gamberger et al. [8] suggest a Classification Filter (CF) approach, in which the training set

is partitioned into n subsets, then a set of classifiers is trained from the union of any n � 1

subsets; those classifiers are used to classify the examples in the excluded subset, eliminating

the examples that are incorrectly classified.

For our proposal, we employ three noise filters designed to deal with mislabeled instances:

the Prototype Selection based on Relative Neighborhood Graphs, the Cross-Validated Committees

Filter and the Iterative-Partitioning Filter :

1. Prototype Selection based on Relative Neighborhood Graphs (RNG) [26]. This builds

a proximity undirected graph G = (V, E), in which each vertex in V corresponds to an

example from the training set DT . Two vertices are connected by an edge (xi, xj) 2 E

if and only if xi and xj satisfy a neighborhood relation (see Equation 1, where d is the

distance function). In this case, we state that these instances are graph neighbors. RNG

discards those instances misclassified by their majority of graph neighbors.

(xi, xj) 2 E , d(xi, xj)  max(d(xi, xk), d(xj , xk)), 8xk 2 DT , k 6= i, j. (1)

2. Cross-Validated Committees Filter (CVCF) [30]. CVCF is mainly based on performing

a �-fold cross-validation to split the full training data and on building classifiers using

decision trees in each training subset. The training dataset DT is split into � equal sized

subsets and, for each of these � parts, C4.5 is trained with the other � � 1 parts. The

examples in the training set DT which are incorrectly labeled (following a voting scheme)

among the � classifiers are removed. Two voting schemes can be used to identify the noisy

examples: consensus and majority. The first removes an example if it is misclassified by

all the classifiers, whereas the second removes an example if it is misclassified by more

than half of the classifiers. Consensus filters are characterized by being conservative in

rejecting good data at the expense of retaining bad data. Majority filters are better at

detecting bad data at the expense of rejecting good data.
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3. Iterative-Partitioning Filter (IPF) [16]. IPF removes noisy examples in multiple iterations

until the quantity of examples eliminated in KIPF successive iterations is low enough (it

is less than a percentage PIPF of the size of DT ). In each iteration, the current training

dataset TIPF is split into � equal sized subsets and the C4.5 classifier is built over each

of these � subsets to evaluate TIPF . Then, the examples incorrectly labeled of TIPF are

removed (according to one of the two aforementioned voting schemes) and a new iteration

is begun.

3. Class noise reparation by an aggregated noise filters ensemble voting algorithm

Filtering is a successful approach but it is prone to produce some drawbacks. The elimination

of examples in the dataset may be harmful, especially when the data is costly to obtain or

incorrectly labeled as noise. A typical case of this occurs in imbalanced classification, where

the minority class examples may be incorrectly recognized as noise. Excessive filtering can

also produce smaller classifier models due to a smaller training dataset and this simplicity can

actually yield an inaccurate model [20]. Filtering may also be dependant on the classification

algorithm to be applied afterwards, as some robust learners are less sensitive to noise as we

have mentioned and thus may benefit from a less aggressive filtering over the instances. Data

polishing methods, on the other hand, is a perfect solution in these cases, keeping more instances

in the dataset and allowing robust learners to benefit from a larger amount of data. However,

the complete repair of the dataset is not always possible.

An intermediate approach is where the instances are repaired, i.e. relabeled if a↵ected by

class noise, when it is possible to establish that they are noisy and the class label they belong to

with a high confidence degree. When the instance cannot be repaired due to the impossibility

of determining the true class label, a safe filtering can be applied.

In this section we describe a preprocessing method that obeys the aforementioned way of

working, focusing in relabeling and repairing the instances when possible. This is denoted Class

Noise Corrector (CNC). In order to repair the instances we will use the filtering algorithms

introduced in Section 2.2. Using several di↵erent noise filters enables the proposal to obtain,

with respect to correct ones, a more founded discrimination over the noisy instances. It is

essential to note that the filters are based on classifiers, so a class prediction is ultimately made

by each noise filter. In ensemble class noise filters, when the base classifiers do not agree with

the current class label of the treated example, they are considered noise and dropped from the

dataset.

If several class noise filters are gathered together, their outputs for each instance can be
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Figure 1: Main schema of the ensemble based class noise reparation filter CNC

compared. A simple way to aggregate the filter’s output is the majority voting scheme:

1. When the label predicted by the noise filters is the same or the most voted and it matches

the current example label, the label remains unchanged.

2. When the label predicted by all the noise filters is the same and it does not match

the current example label, the label is changed to the predicted one. This case can be

considered as a polishing or correction of the data.

3. When situations 1 and 2 do not hold, the example is considered noisy and it is erased from

the dataset. This approach can potentially erase correct examples, but this is preferable

to leaving noisy examples in the dataset [3].

In the experimentation carried out in this paper we will treat with our proposal (correcting

or removing) those examples whose label predicted by the majority of the noise filters, that is,

when two of the three noise filters do not match the current example label.

Figure 1 depicts the process, where several class noise filters can be used using a voting

scheme over their outputs. Using the examples from the training set that is being considered,

the first step is to apply the proposal in order to correct the noisy examples (marked in blue).

This proposed technique is based in the decision yielded by several well-known filters, forming

a filtering ensemble. Using an ensemble is motivated as the robustness of the decision taken
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will be higher, taking advantage of the di↵erent approaches used to identify a noisy example.

Once the Training data (Tr) is corrected, any suitable standard classification algorithm can be

safely applied. It is expected that the generalization obtained by the model generated will be

better than using the Tr data without applying the proposal. In order to correctly evaluate

such an improvement in the generalization and accuracy abilities of the model, the remaining

test data (Ts) is used. The noise-free model generated should be less sensible to overfitting,

and thus obtain better results in noisy environments.

The following is an outline of the proposal:

1. First a copy of the training set Tr is cleaned using ENN [32]. By this procedure, the

frontiers between the classes’ hulls are clearly defined before “training” the filters. Our

aim is to avoid borderline examples that negatively influence the filters construction.

2. Using this cleaned copy of Tr, a group of noise filtering methods are applied (RNG, CVCF

and IPF). Thanks to the previous cleaning carried out in step 1, the filters thus created

will rely on examples of each class which clearly belong to it.

3. Once all the filters are created, an aggregation over the filters output is performed:

(a) If the majority of the filters indicate that the class label for the example is correct,

the example is left as is.

(b) If the majority of the filters indicate that the class label for the example is other

than the current one, the example is relabeled with the consensual label.

(c) If a consensus between the filters’ output for the analyzed example is not reached,

the example is considered as irreparable and it is deleted.

Graphically, this process can be summarized in Figure 2. As can be appreciated, the ENN

filtered version of the training set Tr is used only to train the base classifiers contained in the

noise filters. All the instances from Tr will be evaluated by the noise filter ensemble, no matter

if they where taken out by ENN or not. Provided the use of three filters, at least two coincident

votes are necessary to consider consensus between the filters’ output.

The proposal has been implemented in KEEL, a Java-based open source Data Mining plat-

form. All of the base filters’ source code is currently available.

4. Experimental framework

This section presents the details of the experimental study carried out in order to check

the behavior of our proposal. First, Section 4.1 describes the datasets used. Then, Section 4.2

presents the noise filters included in our proposal. Finally, Section 4.3 describes the methodology

followed to analyze the results.
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Figure 2: Detail of the CNC repairing process over the instances of the complete training set

Tr.

4.1. Datasets

The experimentation is based on 25 datasets from the KEEL-Dataset repository [1]. They

are described in Table 1, where #EXA refers to the number of examples, #ATT to the number

of attributes and #CLA to the number of classes. Some of the largest datasets (nursery,

shuttle and splice) were stratified at 10% in order to reduce the computational time required

for training, given the large amount of executions carried out. Examples containing missing

values are removed from the datasets before use.

In order to control the amount of noise in each dataset and check how it a↵ects the

classifiers, noise is introduced into each dataset. We introduce a class noise level L% =

100 ⇤ (#noisyexamples)/#examples into each complete dataset following an uniform class

noise scheme [28] in which the L% of the examples are corrupted. The class labels of these

examples are randomly replaced by another one from the C classes. In our experimentation, we

will consider the noise levels ranging from L = 0% (base datasets) to L = 30%, by increments of

5%. As a consequence, 150 noisy datasets with class noise are created from the aforementioned

25 base datasets (a total of 175 datasets). All these datasets are available on the webpage

associated with this paper.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of

a stratified 5-fold cross-validation. Hence, a total of 25 runs per dataset and noise level are
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Table 1: Base datasets used in the experimentation.

Dataset #EXA #ATT #CLA Dataset #EXA #ATT #CLA

balance 625 4 3 newthyroid 215 5 3

banana 5300 2 2 nursery 1296 8 5

cleveland 297 13 5 pima 768 8 2

contraceptive 1473 9 3 segment 2310 19 7

dermatology 358 34 6 shuttle 2175 9 7

ecoli 336 7 8 sonar 208 60 2

german 1000 20 2 splice 319 60 3

glass 214 9 7 vehicle 846 18 4

heart 270 13 2 wdbc 569 30 2

ionosphere 351 33 2 wine 178 13 3

iris 150 4 3 yeast 1484 8 10

lymph 148 18 4 zoo 101 16 7

monk-2 432 6 2

averaged out. The noisy instances will be present only in the training partitions, as any instance

in the test partitions with induced noise is replaced by its original version. It is necessary to

note that we ensure the the corrupted instances shared by two or more training partitions are

the same, but the test partitions used to compute the performance measures are not a↵ected.

In each run, the training partitions are preprocessed using our proposal and also the base

filters, resulting in a preprocessed training partition for each filter. Then three classification

algorithms (k-NN, SVM and C4.5) are applied to build a model using every training partition,

and to obtain the test performance over the associated test partition.

4.2. Noise filtering methods

The proposal described in this paper allows us to include in it any standard noise filter. For

the sake of generality, we have chosen to test the behavior using three di↵erent noise filtering

techniques that are well-known representatives of the field [7]: RNG [26], CVCF [30] and IPF

[16].

The parameter setup used for their execution is presented in Table 2. Even though almost

all of the parameters are the default examples recommended by the authors of such filters, we

have chosen to di↵erentiate the behavior of the filters by choosing a di↵erent voting scheme for

CVCF and IPF. On the one hand, CVCF is used with a consensus scheme (making it more

restrictive) and IPF is used with the majority scheme (so that it detects more noisy examples).

We are interested in having filters that behave di↵erently against the noise. This di↵erentiation

is achieved not only by having di↵erent filters but also by di↵erent voting schemes.
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Table 2: Parameter specification for the noise filters.

Algorithm Ref. Parameters

RNG [26] Distance function: Euclidean

CVCF [30] Voting scheme: consensus, �: 4

IPF [16] Voting scheme: majority, �: 5, K
IPF

: 3, P
IPF

: 1%

4.3. Methodology of analysis

In order to check how well our proposal behaves dealing with class noise, the analysis

performed in the next section is divided into five di↵erent parts:

1. To study the advantages in classification performance of preprocessing with our approach

versus no-preprocessing (Section 5.1).

2. To study of the behavior of the class noise corrector from the point of view of the data:

analysis of the examples corrected and removed (Section 5.2).

3. To compare CNC against each one of the noise filters that compose it (Section 5.3).

4. To study the advantage provided by using an ensemble of filters within CNC against

consider CNC only with one filtering method (Section 5.4).

5. To study how the usage of the ENN filter a↵ects the behavior of our approach (Section

5.5).

Regarding to the first point, the performance estimation of each classifier (k-NN, SVM and

C4.5) on each dataset is obtained, averaging its test accuracy results. In order to properly

analyze these performance results, Wilcoxon’s Signed Rank Statistical Test is used [6]. The

usage of non-parametrical statistical tests is recommended in these types of comparisons since

the conditions to apply parametrical tests are not usually fulfilled [6], [12]. For each noise level,

the results of our proposal and the classifier without preprocessing are compared by means of

Wilcoxon’s Test and the p-values associated with these comparisons are obtained.

The second point to study includes an analysis of which examples are corrected and which

are removed from the dataset, and which belong to those corrupted by the noise introduction

scheme and which to the non-corrupted set. Consider DT = DN [ DO, being DN the set of

examples whose class labels have been corrupted by the noise scheme and DO the set of original

non-corrupted examples. On the other hand, our proposal acts (modifying the class label or

removing the example) over a set of examples M = {MC [ME} ✓ DT , with MC being the set of

the examples corrected by our method and ME the set of examples eliminated. We also define
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the set MCC ✓ MC as the set of examples which are corrected and their label is equal to that

of the original set without induced corruptions. In order to check the behavior of the proposed

method, we compute 5 di↵erent metrics related with its capabilities of the correction/elimination

(see Table 3). Moreover, we compare such measures over all the datasets among the di↵erent

noise levels using the Friedman Aligned Test [12]. In this way, for each metric we will be able to

establish an order between the di↵erent noise levels, checking in which noise level the measure

is higher or lower.

Table 3: Measures computed.

Metric Description Expression

cDN Corrections among the corrupted examples 100 |DN\MC |
|DN |

ccDN Correct corrections among the corrected examples 100 |DN\MCC |
|DN\MC |

eDN Eliminations among the corrupted examples 100 |DN\ME |
|DN |

cDO Corrections among the non-corrupted examples 100 |DO\MC |
|DO|

eDO Eliminations among the non-corrupted examples 100 |DO\ME |
|DO|

The third point analyzes how CNC behaves toward each one of the filters that compose it

(RNG, CVCF and IPF). In these comparisons we take into consideration the test accuracy of

CNC and the three aforementioned filters, and Wilcoxon’s test p-values associated to each one

of the comparisons.

The rest of the points (fourth and fifth) aim to deepen the question of how the di↵erent

characteristics of CNC a↵ect the results obtained. In concrete, what is the advantage of using

an ensemble of filters within CNC with respect to considering a single filter within CNC (fourth

point) and the study of the usage of ENN in CNC (fifth point). In the latter, we study the

classical accuracy used in the previous analysis, in addition to another evaluation traditionally

employed in imbalanced classification: the Area Under the ROC Curve (AUC) measure [2]. The

use of such metric employed in imbalanced classification provides an idea on how the removal of

examples performed by each noise filter is a↵ecting the examples of each class, since noise filters

tend to eliminate the examples of classes with fewer instances, a fact that is not desirable.

5. Analysis of results

This section presents the analysis of the results. Section 5.1 is devoted to the analysis of

the performance results of our proposal versus not preprocessing. Section 5.2 describes the

percentages of examples corrected and removed by our proposal. Then, Section 5.3 compares
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CNC against each one of the noise filters that compose it. Section 5.4 shows the advantage

provided by using an ensemble of filters within CNC against considering CNC only with one

filtering method. Finally, Section 5.5 shows how the ENN filter a↵ects the behavior of our

approach.

5.1. Performance results of CNC versus not preporcessing

The performance results of NN, SVM and C4.5 using our approach (CNC rows) and without

preprocessing (None rows) are presented in Table 4. For the sake of brevity, only average results

are presented, even though the complete results for each dataset are accessible in the webpage

of this paper. Along with these average results, this table also shows the number of datasets

(out of 25) in which the CNC method is the best (best rows) and Wilcoxon’s test p-value

associated with the comparison between CNC and None (p-value rows). The best performance

result for each noise level and those p-values showing significant di↵erences in the comparisons

(considering a significance level ↵ = 0.1) are highlighted in bold.

Table 4: Test accuracy results without preprocessing (None) and with the CNC preprocessing.

For each noise level, the best accuracy results are noted in bold. p-value rows show the p-values

obtained by Wilcoxon’s Signed Ranks Test when comparing CNC vs None (those cases where

None obtains more ranks in the comparison are indicated with an asterisk *). best rows reveal

the number of datasets (out of 25) in which the CNC method is the best.

NN 0% 5% 10% 15% 20% 25% 30%

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27

None 78.89 76.35 74.18 71.82 69.58 67.30 64.47

p-value 6.67E-02 1.01E-05 1.19E-07 1.19E-07 1.19E-07 5.96E-08 5.96E-08

best 15 22 24 24 24 25 25

SVM 0% 5% 10% 15% 20% 25% 30%

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84

None 81.24 78.76 77.20 76.01 74.32 72.65 71.33

p-value 3.17E-01 2.03E-03 4.89E-04 1.62E-04 1.83E-05 1.51E-05 1.23E-05

best 14 21 19 22 21 22 21

C4.5 0% 5% 10% 15% 20% 25% 30%

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08

None 81.10 80.71 80.30 78.96 78.07 77.14 76.05

p-value *5.68E-01 6.19E-01 1.82E-01 6.73E-03 2.50E-04 5.39E-05 1.40E-04

best 12 16 18 21 22 23 21

From this table, several remarks can be made:

15



1. Performance results of NN. The average results show that preprocessing by means of

our proposal is better than not preprocessing at every noise level. The di↵erences increase

along with the noise level. Comparing the limit cases (datasets without noise and with a

30% of class noise), the average results only vary 1.82% with CNC. Otherwise, in the case

of no-preprocessing, the di↵erence is more accentuated at each noise level, reaching the

maximum di↵erence when the noise level is the highest (30%), that is, 14.42%. This fact

shows the importance of CNC in these cases, helping to the maintenance of the initial

performance without induced noise when class noise is considered.

The number of datasets in which each alternative (preprocessing or not) is better only

shows a slight advantage in favor of CNC when no induced noise is considered (15 versus

10). For the rest of the noise levels, CNC is better than no preprocessing for almost all

the datasets (being the number of datasets in which CNC is better always higher than 22

and, in some cases, the improvement is indeed for all the datasets, such as in the cases of

25% and 30% of noise level). The Wilcoxon Test p-values show that significant di↵erences

are always found in favor of CNC due to the obtention of low p-values, showing again the

validity of our proposal.

2. Performance results of SVM. These results are similar to those obtained with the NN

classifier. Thus, average results are always better for the preprocess than those with no

preprocess, and the number of datasets with best results is also in favor of our proposal.

The p-values also show statistical di↵erences for all the noise levels, with the exception of

0%, in which no statistical di↵erences are found in the comparison of CNC with respect

to the absence of preprocessing.

3. Performance results of C4.5. In this case, the advantage of CNC is observed from

15% of class noise onwards. Even though at lower noise levels (5% and 10%) CNC is

better in terms of accuracy and number of datasets with the best results. From this noise

level (15%), the average, the number of datasets with best results and the Wilcoxon Test

p-values (which show statistical di↵erences), show a clear advantage of CNC. For the low

noise levels both methods show a similar behavior and no statistical di↵erences are found.

These results reveal that our proposal is valid for methods that are sensitive to noise (such

as NN or SVM), and that, for robust methods (C4.5), it only implies an improvement if the

noise level is relatively high (from 15% onwards).

Even though no significant di↵erences have been observed between the two alternatives

(CNC and None) without induced noise for SVM and for the lowest noise levels for C4.5 (below

10%), this fact can result due to the application of CNC not being noticeable enough in some

16



cases because of the very low quantities of class noise (or non-existent). However, when the

noise level is higher (from 5% onwards for SVM and from 15% onwards for C4.5), the behavior

or the proposal improves notably contrary to not preprocessing.

5.2. Analysis of the examples corrected and removed by CNC

Table 5 shows the results for the five metrics described in Table 3. For sake of simplicity,

only the average results for each metric at each noise level are shown. The complete results of

each metric for each dataset at each noise level can be found in the webpage associated with

this paper. Furthermore, the rankings obtained by the Friedman Aligned procedure are also

shown in order to help to sort each measure by the noise levels in an incremental way.

Table 5: Average results and rankings obtained with the Friedman Aligned for each metric at

each noise level.

Measure Rankings

Noise cDN ccDN eDN cDO eDO cDN ccDN eDN cDO eDO

0% - - - 5.53 6.89 - - - 68.24 139.80

5% 71.64 92.28 16.88 5.47 7.23 21.20 77.12 126.16 72.16 129.00

10% 66.77 93.30 19.42 5.41 7.42 50.72 63.42 101.52 78.88 120.24

15% 65.80 93.11 20.49 5.33 7.88 59.28 67.98 90.72 85.84 90.20

20% 63.15 93.68 22.79 5.22 8.33 89.92 67.20 61.88 100.64 62.96

25% 61.47 92.90 23.55 5.20 8.67 107.92 82.48 48.00 100.72 40.76

30% 59.50 92.37 25.80 5.13 9.27 123.96 94.80 24.72 109.52 33.04

The analysis of these results leads to following observations:

1. Modifications of the proposal a↵ecting the corrupted examples (cDN , cc

DN and

e

DN ). The average results for all the datasets show that the corrections (cDN ) diminish,

whereas the eliminations (eDN ) increment along with the noise level. Furthermore, the

corrections c

DN represent a high percentage (always higher than a 59%) and the elimina-

tions e

DN are low values (lower than a 26%). On the other hand, the correct corrections

percentage among the corrected examples is also very high (higher than a 92%).

2. Modifications of the proposal a↵ecting the original examples (cDO and e

DO).

The corrections (cDO ) diminish, whereas the eliminations (eDO ) increment along with the

noise level. Moreover, the corrections are always lower than a 5% (and they therefore

imply a number relatively low) and the eliminations are also low (lower than a 10%).
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It is important to note that, the rankings obtained with the Friedman Aligned Test to sort

the distribution of each metric among the di↵erent noise levels show similar results to those

of the average results. Even though for some noise levels the positions may be changed, the

tendency described in the two previous points is followed.

To conclude, the results obtained in this section show that, in general, the percentage

of examples corrected diminish along with the increase of the noise level. Nevertheless, the

eliminations increase along with the noise level. A possible explanation of these results could

be simply based on the increment of density of corrupted examples in a concrete area of the

domain as the noise increases, that is, the creation of clusters of corrupted examples of either

the same or di↵erent class. These clusters are more likely to be created when the noise level

is higher and they can a↵ect both the other corrupted or the original examples, implying a

variation with the noise level of each one of the five metrics analyzed above. Thus, clusters

with a considerable quantity of corrupted examples may a↵ect in a higher degree other examples

around them than isolated examples, which can be easily identified and treated. Furthermore,

if the corrupted examples are grouped (with the same or di↵erent class labels), the correction

is also more di�cult to perform, and if it is done, it is probably less e↵ective.

In order to better explain this idea, we have built the bi-dimensional synthetic datasets

illustrated in Figure 3. Figure 3(a) represent the original dataset without induced noise, whereas

Figures 3(b) and 3(c) represent the same dataset with a respectively low and high quantity of

examples with class noise. In these datasets we have examples belonging to three di↵erent

classes: �, ⇤ and 4. Analyzing these figures, we can observe the following:

1. In the case where a low class noise level is considered (Figure 3(b)), corrupted examples

are likely to be isolated. Therefore, they will be recognized as noisy more easily by this

approach and their correct class can be also easily identified because they are probably

rounded by examples of only one class.

2. In the case where a high class noise level is considered, it is more likely that, for a concrete

area of the domain, there is a notable concentration of corrupted examples (see areas A

and B in Figure 3(c)). The following situations could be produced:

• In the area B, where some three examples of class 4 have been introduced, it is likely

that these examples be considered correct by our approach and their class label not

be modified. On the other hand, in the area A, the new corrupted example with

class 4 could belong to the class � and be, therefore, wrongly corrected. These

examples could explain the reduction of the metric representing the corrections of

the proposal c

DN when the noise level increases.
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(a) Original non-corrupted data. (b) Low level of class noise.

(c) High level of class noise.

Figure 3: A synthetic dataset with (a) non-corrupted examples, (b) a low quantity of examples

with class noise and (c) a high quantity of examples with class noise and two clusters of corrupted

data (A and B).

• When the noise level increases, the corrupted examples a↵ect more their original non-

corrupted surrounding examples and therefore it is more likely that these original

examples will be identified as noisy by the proposal (it seems that this original

example is noisy because is near several noisy examples). In some cases, this fact

may imply a correction by CNC among the original examples. This is represented

in the Figure 3(c), in the area A. The correct and non-corrupted example with class

⇤ is likely to be a↵ected by a correction of our proposal since it is surrounded by

several corrupted examples of the class �, and then a consensus among all the noise

filters of CNC may be produced.

• In particular, when several corrupted examples are grouped in a cluster and they

possess di↵erent class labels (or they are placed close to the boundaries of the classes)
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and a↵ect other corrupted or original examples, it is likely that this example be

removed by our approach, since it is more di�cult to find a consensus among the

decisions of the filters to correct its class. This is represented in Figure 3(c), in

area B. The correct and non-corrupted examples with class ⇤ and � are likely to

be a↵ected by a elimination of our proposal since they are relatively isolated and

surrounded by several examples of di↵erent classes.

5.3. Comparison of CNC versus RNG, CVCF and IPF

Table 6 shows the accuracy results and the Wilcoxon Test p-values of CNC compared to

those of each of the filters that compose it: RNG, CVCF and IPF. The p-values highlighted

in bold show significant di↵erences in favor of CNC (with ↵ = 0.1), while the p-values with an

asterisk ‘*’ indicate that the single filter has obtained more ranks than CNC in the Wilcoxon

Test.

Table 6: Test accuracy results and the Wilcoxon Test p-values of the comparison of CNC versus

RNG, CVCF and IPF filters. The cases where the filter obtains more ranks are indicated with

an asterisk *, and those showing significant di↵erences in favor of CVC are in bold.

Method Accuracy p-values

NN 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 1.00E+00 *7.98E-01 3.31E-01 4.76E-01 9.57E-02 3.78E-03 2.75E-02

RNG 80.34 80.07 79.59 79.26 78.74 77.71 77.56

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 1.73E-01 1.60E-02 1.03E-04 1.01E-05 8.34E-07 5.96E-07 5.96E-08

CVCF 79.54 78.69 77.78 76.38 75.23 73.59 71.62

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 *1.99E-01 *4.59E-01 *6.68E-01 *3.82E-01 *9.68E-01 1.65E-01 1.82E-01

IPF 80.45 80.08 79.85 79.62 79.17 78.34 78.03

SVM 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 1.92E-01 2.09E-01 2.29E-02 2.75E-02 1.15E-02 5.56E-04 7.42E-04

RNG 81.40 81.20 80.80 80.36 79.65 79.04 78.40

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 2.64E-01 5.51E-02 2.19E-02 3.09E-03 1.62E-04 1.01E-05 3.19E-05

CVCF 81.64 80.88 80.24 78.89 77.64 76.52 74.93

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 *7.16E-01 8.40E-01 9.89E-01 6.77E-01 2.53E-01 2.11E-01 3.00E-01

IPF 82.14 81.80 81.52 81.16 80.47 80.29 79.70

C4.5 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 4.20E-01 2.53E-01 7.10E-02 3.97E-01 1.07E-01 8.82E-03 6.26E-02

RNG 80.77 80.41 80.29 79.78 79.35 78.99 78.63

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 *4.75E-01 *9.68E-01 6.67E-01 9.57E-02 9.12E-04 6.37E-05 4.30E-04

CVCF 81.18 80.79 80.48 79.53 78.21 77.37 76.24

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 *6.13E-03 *7.37E-03 *4.83E-02 *1.14E-01 *1.07E-01 *9.46E-01 9.54E-01

IPF 81.69 81.57 81.29 80.64 80.33 79.68 78.91

From this table, it is possible to deduce that CNC is always better in terms of accuracy than

20



the CVCF filter (except for C4.5 with no noise). Furthermore, CNC obtains more ranks than

CVCF with the noise sensitive learners (NN and SVM) at all the noise levels, and from 10%

onwards in the case of the C4.5 robust learner. The p-values also show that these di↵erences

are significant in most of the cases. In the case of NN and SVM these di↵erences are significant

from 5% onwards, whereas for C4.5 the di↵erences are significant from 15% onwards.

CNC outperforms RNG for SVM and for C4.5 at all the noise levels and NN from 10%

onwards. In these cases, statistical di↵erences with the Wilcoxon Test are only observed from

20% with NN, 10% with SVM and the noise levels of 10%, 25% and 30% with C4.5.

Finally, considering the comparison with IPF, the accuracy results show that CNC is only

better from 25% onwards in the case of NN, 10% with SVM and only in the last noise level

with C4.5. However, the Wilcoxon Test shows no statistical di↵erences in favor of any of the

methods of comparison in any of these cases.

To conclude, we can claim that CNC is able to overcome both the CVCF filter at almost

all the noise levels and the RNG filter when the noise level is high enough (with p-values below

0.1). However, no statistical di↵erences have been found in the comparison of CNC and IPF

with any of the classifiers studied (NN, SVM and C4.5).

It is important to note that IPF and CVCF stand out (since higher performances and higher

p-values are obtained in the comparisons) when C4.5 is used than when any of the other two

classifiers (NN or SVM) is used. This fact may be due to the filtering performed by CVCF and

IPF using C.45 as internal classifier and it can imply an advantage to these filters when C4.5

is later used as a classifier.

Note that performing a correction is a more complex task than removing noise. The filtering

of noisy examples only requires their identification, whereas the correction requires this stage as

well as an additional phase of correction, in which one of all the possible classes of the problem

must be chosen (obviously, the more classes a problem has, the more complex it is to chose the

correct class of a noisy example). This fact can explain the results obtained in the less favorable

case (versus IPF), where no statistical di↵erences are found that favor on any of the methods.

5.4. Using ensembles versus single filters within CNC

Table 7 shows the accuracy results of the comparison of CNC built with the ensemble of

the three filters (RNG, CVCF and IPF) discussed in Section 2.2 versus CNC considering each

of the filters separately. Also shown are the p-values obtained with the Wilcoxon Test.

This table shows that the use of an ensemble of filters is, in general, statistically beneficial

compared to using each separate filter. The single exception is the case of using CVCF within

CNC with the methods SVM and C4.5, in which no statistical di↵erences are found at almost
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all the noise levels. Here only statistical di↵erences are found at 30% of noise level for SVM in

favor of CNC and at the noise levels 0% and 15% for C4.5 in favor of CNCCV CF .

These results reveal that, in most of the cases studied (including the exceptions we men-

tioned), using an ensemble of filters within CNC, rather than using a single filter within CNC,

may improve the capability to detect noisy examples.

Table 7: Test accuracy results and the Wilcoxon Test p-values comparing CNC built with the

ensemble of the three filters RNG, CVCF and IPF (CNC rows) versus CNC considering each

one of the filters separately (CNCRNG, CNCCV CF and CNCIPF rows). The cases where CNC

with a single filter obtains more ranks in the comparison are indicated with an asterisk *, and

those with significant di↵erences in favor of CVC are in bold.

Method Accuracy p-values

KNN 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 5.96E-07 1.13E-06 1.79E-07 1.79E-07 1.79E-07 1.79E-07 1.79E-07

CNC
RNG

77.46 77.04 76.60 75.78 74.75 73.75 72.59

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 9.57E-02 2.03E-02 6.73E-03 5.56E-04 2.03E-03 5.33E-05 3.29E-04

CNC
CV CF

79.92 79.49 79.36 78.71 78.30 77.76 77.30

CNC 80.09 79.83 79.69 79.28 79.08 78.58 78.27 6.56E-06 3.19E-05 3.28E-06 3.28E-06 1.49E-06 1.97E-06 5.25E-06

CNC
IPF

78.10 77.76 77.34 76.81 76.36 76.13 75.21

SVM 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 8.08E-04 3.76E-04 1.62E-04 2.03E-03 3.76E-04 4.54E-05 8.17E-06

CNC
RNG

80.09 79.47 79.01 78.19 76.70 76.18 74.89

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 *9.89E-01 3.00E-01 5.81E-01 3.67E-01 2.11E-01 2.11E-01 7.10E-02

CNC
CV CF

82.15 81.80 81.66 81.17 80.62 80.21 79.42

CNC 81.94 81.77 81.52 81.24 80.78 80.48 79.84 3.18E-02 1.73E-02 5.07E-03 1.30E-03 1.63E-03 3.19E-05 1.88E-04

CNC
IPF

80.35 80.00 79.68 79.31 78.94 78.10 77.44

C4.5 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 1.13E-06 8.17E-06 5.96E-08 5.96E-07 1.19E-07 5.96E-08 2.98E-07

CNC
RNG

78.25 77.97 77.30 76.71 75.78 75.09 74.33

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 *4.51E-02 *3.26E-01 *3.00E-01 *7.55E-02 *3.67E-01 *4.12E-01 *4.76E-01

CNC
CV CF

81.30 81.00 80.88 80.29 80.10 79.70 79.23

CNC 81.03 80.79 80.69 79.97 79.85 79.64 79.08 3.81E-05 3.28E-06 4.42E-05 6.37E-05 2.56E-06 1.01E-05 3.19E-05

CNC
IPF

80.16 79.79 79.48 78.61 78.51 78.10 77.35

5.5. Analysis on the use of ENN within CNC

Table 8 shows the p-values associated with the comparison of CNC versus each one of the

methods of each row (None, RNG, CVCF and IPF), with and without the use of ENN within

CNC. We have studied the results of two di↵erent evaluation measures: the classical accuracy

(ACC) and the Area Under the ROC Curve (AUC) measure [2], which is usually employed with
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imbalanced classification problems where the number of examples in each class is not equal.

Due to the large number of results, only the p-values and the method obtaining more ranks in

the Wilcoxon Test are shown, since in this case we are not interested in the concrete value of

the performance of each individual case, but rather whether there is a improvement or decline

in the comparisons. The complete results of accuracy and AUC are available at this paper’s

website.

Table 8: The Wilcoxon Test p-values associated with the comparison of CNC (with and without

ENN) versus None, RNG, CVCF and IPF, considering the accuracy and the AUC.

Noise 0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%

ACC Considering ENN Not considering ENN

vs NN NN

None 6.67E-02 1.01E-05 1.19E-07 1.19E-07 1.19E-07 5.96E-08 5.96E-08 5.85E-03 1.19E-07 5.96E-08 1.19E-07 5.96E-08 5.96E-08 5.96E-08

RNG 1.00E+00 *7.98E-01 3.31E-01 4.76E-01 9.57E-02 3.78E-03 2.75E-02 9.89E-01 8.40E-01 2.41E-01 5.81E-01 6.57E-01 2.11E-01 4.43E-01

CVCF 1.73E-01 1.60E-02 1.03E-04 1.01E-05 8.34E-07 5.96E-07 5.96E-08 2.94E-03 1.51E-05 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08

IPF *1.99E-01 *4.59E-01 *6.68E-01 *3.82E-01 *9.68E-01 1.65E-01 1.82E-01 7.57E-01 9.43E-01 *9.54E-01 *3.00E-01 *8.08E-04 *7.87E-02 *7.19E-03

vs SVM SVM

None 2.76E-01 1.03E-03 1.62E-04 4.54E-05 1.51E-05 5.25E-06 8.17E-06 1.92E-01 1.83E-05 5.25E-06 2.66E-05 5.25E-06 4.17E-06 6.56E-06

RNG 1.92E-01 2.09E-01 2.29E-02 2.75E-02 1.15E-02 5.56E-04 7.42E-04 5.16E-02 1.41E-01 2.55E-02 1.14E-01 5.88E-02 2.75E-02 8.82E-03

CVCF 2.64E-01 5.51E-02 2.19E-02 3.09E-03 1.62E-04 1.01E-05 3.19E-05 5.69E-02 2.78E-03 4.60E-03 1.03E-04 1.51E-05 2.21E-05 1.51E-05

IPF *7.16E-01 8.40E-01 9.89E-01 6.77E-01 2.53E-01 2.11E-01 3.00E-01 2.16E-01 1.07E-01 4.75E-01 3.31E-01 7.10E-01 *5.68E-01 *6.96E-01

vs C4.5 C4.5

None *7.53E-01 6.07E-01 2.21E-01 2.96E-02 3.76E-04 5.39E-05 1.40E-04 5.69E-02 9.63E-04 9.08E-05 2.56E-06 1.79E-07 5.96E-07 1.49E-06

RNG 4.20E-01 2.53E-01 7.10E-02 3.97E-01 1.07E-01 8.82E-03 6.26E-02 2.50E-04 2.44E-05 7.19E-03 3.19E-05 3.29E-04 4.60E-03 2.76E-01

CVCF *4.75E-01 *9.68E-01 6.67E-01 9.57E-02 9.12E-04 6.37E-05 4.30E-04 1.52E-01 2.05E-04 3.42E-03 2.56E-06 3.28E-06 1.13E-06 3.28E-06

IPF *6.13E-03 *7.37E-03 *4.83E-02 *1.14E-01 *1.07E-01 *9.46E-01 9.54E-01 8.98E-01 6.58E-01 1.52E-01 5.16E-02 1.28E-01 1.69E-01 5.11E-01

AUC Considering ENN Not considering ENN

vs NN NN

None *2.42E-01 6.57E-01 3.93E-02 2.36E-02 4.89E-04 1.88E-04 1.23E-05 7.67E-01 2.36E-02 3.29E-04 7.50E-05 2.98E-07 1.79E-07 5.96E-08

RNG *1.20E-01 *3.93E-02 *5.27E-01 *2.31E-01 *4.76E-01 4.59E-01 7.78E-01 1.56E-01 1.14E-01 1.43E-01 1.73E-01 2.11E-01 4.51E-02 8.02E-02

CVCF *2.31E-01 *3.53E-01 8.19E-01 4.12E-01 1.73E-01 9.57E-02 3.18E-02 *9.79E-01 2.11E-01 6.73E-03 9.12E-04 4.30E-04 1.20E-04 2.66E-05

IPF *4.91E-02 *1.36E-02 *8.02E-02 *1.07E-01 *1.07E-01 *7.98E-01 *5.63E-01 2.64E-01 3.91E-01 7.26E-01 *6.57E-01 *1.14E-01 *7.06E-01 *3.31E-01

vs SVM SVM

None *8.02E-02 *6.96E-01 4.76E-01 1.20E-01 1.47E-02 3.78E-03 1.87E-02 *3.46E-01 1.34E-01 1.36E-02 1.82E-03 1.88E-04 3.76E-04 1.30E-03

RNG *5.10E-01 *5.81E-01 7.16E-01 3.97E-01 3.39E-01 2.42E-01 2.11E-01 7.55E-02 6.67E-02 6.73E-03 2.96E-02 2.55E-02 4.22E-02 1.63E-03

CVCF *8.51E-02 *2.88E-01 *3.67E-01 9.46E-01 5.27E-01 8.02E-02 7.10E-02 *3.33E-01 4.76E-01 3.97E-01 1.65E-01 1.47E-02 1.05E-02 2.03E-03

IPF *8.51E-02 *5.88E-02 *1.41E-01 *3.26E-01 8.40E-01 8.61E-01 *8.40E-01 6.91E-02 6.52E-03 2.53E-01 4.51E-02 9.57E-02 9.57E-02 9.57E-02

vs C4.5 C4.5

None *7.42E-04 *1.36E-02 *8.51E-02 *1.56E-01 *7.37E-01 5.63E-01 5.45E-01 9.32E-01 7.53E-01 7.38E-02 3.78E-03 2.51E-03 5.56E-04 1.87E-02

RNG 8.64E-01 3.97E-01 2.88E-01 *9.46E-01 9.25E-01 1.48E-01 4.27E-01 1.51E-05 2.38E-07 4.54E-05 1.01E-05 1.97E-06 8.08E-04 2.19E-02

CVCF *6.50E-04 *8.08E-04 *2.36E-02 *4.22E-02 *3.26E-01 *8.61E-01 5.81E-01 1.00E+00 7.32E-01 3.39E-01 4.51E-02 2.55E-02 5.51E-02 1.60E-02

IPF *4.60E-03 *3.29E-04 *1.30E-03 *7.15E-04 *6.50E-04 *8.02E-02 *2.11E-01 5.77E-01 8.93E-01 2.53E-01 5.16E-02 4.75E-01 9.25E-01 5.11E-01

The accuracy results (ACC) shown in Table 8 considering the use of ENN are the same as

those discussed in the previous sections. They reveal that the CNC method generally works

well compared to None and the other filters (with the exception of IPF, and especially with

C4.5 at the lowest noise levels). The results of CNC improve for C4.5 when ENN is not applied,

are comparable for SVM and are decreased for NN (particularly versus IPF).
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This fact may be because ENN is based on the k-NN decision rule to remove the noisy

examples, which can be particularly beneficial if this classifier is subsequently considered. By

contrast, using a robust algorithm such as C4.5, the cleansing performed by ENN is not always

necessary (C4.5 uses a post-pruning process to build the model).

However, regarding to the AUC metric, the a↵ects of the application of ENN can be clearly

appreciated. Considering the use of ENN, CNC works apparently badly, particularly in the case

of C4.5, which is a robust method that maybe does not require a cleaning step and penalizes our

method. However, it is clear that not considering ENN is positive for CNC using all classifiers,

since much better results are obtained when it is compared to None and the rest of the filters.

This may mean that the cleaning step of ENN within CNC is possibly detrimental in cases

where the classes are not balanced (ENN or any filtering method, in general). Not applying

ENN is such cases implies that the AUC metric obtains good results for CNC. Therefore, it

can be proposed that the application of the ENN step is optional, depending on the specific

characteristics of the problem confronted.

6. Conclusions

This paper has focused on the presence of class noise examples which is an important research

issue while learning classifiers, particularly noise-sensitive ones. A class noise correction and

filtering method has been proposed based on a ensemble of three filters (RNG, CVCF and IPF)

whose main objective is the correction of class noise in the data, even though it also removes

some examples where the correction is not reliable. The suitability of this approach in this

scenario has been analyzed using a large number of noisy datasets created considering di↵erent

noise levels. The k-NN, SVM and C4.5 classifiers have been evaluated on these datasets, with

and without the use of the preprocessing with our approach.

The results obtained have shown that the use of our preprocessing improves the performance

results without preprocessing when the data are corrupted by noise (for all the noise level

for the noise-sensitive methods k-NN and SVM and for intermediate-high noise levels for the

robust method C4.5). When no noise is introduced into the data, in general, no statistical

di↵erences have been found between CNC and not preprocessing. All these observations have

been supported by applying appropriate statistical tests.

We also have analyzed the validity of our proposal in terms of the number of examples

corrected and removed, showing the e�cacy of the correction process and low rates of removed

examples, which is desirable in many domains (for example, in imbalanced domains).

We have also compared CNC versus each one of the filters that compose it (RNG, CVCF
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and IPF), reaching the conclusion that CNC is able to overcome CVCF at almost all the noise

levels, RNG when the noise level is enough high and no statistical di↵erences have been found

in the comparison with IPF. Furthermore, we have checked the usefulness of using an ensemble

of noise filters within CNC, which has shown with some exceptions, a good behavior against the

consideration of CNC with only one noise filter. Finally, we have shown that the elimination

of the step of ENN within CNC may improve its AUC results compared to the rest of noise

filters. This may be related to the elimination of the examples belonging to minority classes by

part of ENN and the rest of the noise filters.

In future research the behavior of other filters in the ensemble could be studied as well as

the adequacy of this proposal for other types of noise presented in real-world data.
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Abstract—The presence of noise is common in any real-world
dataset and may adversely affect the accuracy, construction
time and complexity of the classifiers in this context. Tradition-
ally, many algorithms have incorporated mechanisms to deal
with noisy problems and reduce noise’s effects on performance;
they are called robust learners. The C4.5 crisp algorithm is a
well-known example of this group of methods. On the other
hand, models built by Fuzzy Rule Based Classification Systems
are widely recognized for their robustness to imperfect data,
but also for their interpretability.

The aim of this contribution is to analyze the good behavior
and robustness of Fuzzy Rule Based Classification Systems
when noise is present in the examples’ class labels, especially
versus robust learners. In order to accomplish this study, a
large number of datasets are created by introducing different
levels of noise into the class labels in the training sets. We
compare a Fuzzy Rule Based Classification System, the Fuzzy

Unordered Rule Induction Algorithm, with respect to the C4.5
classic robust learner which is considered tolerant to noise.
From the results obtained it is possible to observe that Fuzzy
Rule Based Classification Systems have a good tolerance, in
comparison to the C4.5 algorithm, to class noise.

Keywords-Noisy Data; Class Noise; Fuzzy Rule Based Sys-
tems; Robust Learners; Classification.

I. INTRODUCTION

Fuzzy Rule Based Classification Systems (FRBCSs) [1],
[2] are widely used due to their ability to build a linguistic
model interpretable to the users with the possibility of mix-
ing different information such as that proceeding from expert
knowledge and information from mathematical models or
empirical measures. Among the applications of FRBCSs we
can find proposals in a variety of fields, including standard
classification [3], [4], detection of intrusions [5] or medical
applications [6].

One goal of classification algorithms is to form a gen-
eralization from a set of labeled training instances so that
classification accuracy for previously unobserved instances
is maximized. Hence the accuracy of the model created by
any induction-based learning algorithm is determined by the
quality of training data upon which this model is built. Data
quality is determined by several components [7], among
which are the source of that data and the input of the data,
inherently subject to error. Thus, real-world datasets rarely

lack these types of error and they usually have corruptions
that can affect the interpretations, decisions taken and the
models created from the data.

Therefore, the maximum achievable accuracy depends not
only on the quality of the data, but also on the appropriate-
ness of the chosen learning algorithm for the data. Knowing
what kind of classification algorithms are more suitable
when working with noisy data is a challenging question.

In this work we will analyze the suitability of FRBCSs,
specifically we will focus on the Fuzzy Unordered Rule
Induction Algorithm (FURIA) [4], when dealing with noise
in examples’ class labels and we will compare it to the C4.5
crisp algorithm [8] which is considered tolerant to noise and
can be translated as a rule set. When training a classifier
with problems with noise, the capability of this classifier to
avoid the overfitting of the new characteristics introduced
by the noisy examples is a key question [9]. Due to the
inherent characteristics of fuzzy rules and the inference
process of the FRBCSs that differ from those of the classic
crisp systems, models obtained by FRBCSs are expected to
absorb noise and work better than crisp interval rules used
by robust learners such as C4.5. These characteristics enable
the creation of a better generalization from the instances of
the problem, since they better avoid the overfitting of noisy
data and, therefore, obtain more robust and accurate models.

In order to carry out this comparison, we will con-
sider 19 datasets from the KEEL-dataset repository [10].
Four different levels of noise are taken into account in
the experimentation: 5%, 10%, 15% and 20%. Thus, 76
new synthetic datasets are created with class noise in the
training sets. As we will consider two different types of
class noise, the number of datasets created is doubled, for
an experimentation with a total of 171 datasets. We will
obtain the test accuracy of the models created with all the
classification algorithms and we will use the Wilcoxon’s
statistical test [11] in order to check the significance of the
differences found. We will propose a measure to quantify
the degradation of the test accuracy of the models with the
introduction of noise with respect to the original obtained
without noise. We will also check the number of rules of
each model in order to see how the size of the models is
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affected by the noise.
The remainder of this paper is organized as follows.

Section II presents an introduction to classification with
noisy data. Next, Section III describes the FRBCS used in
our work. Section IV shows the details of the experimental
framework, which summarizes the datasets used, the valida-
tion scheme and the process to build the noisy datasets, along
with the parameters used by the classification algorithms,
and the scheme of comparisons. Section V includes the
analysis and the experimental results obtained by the FURIA
algorithm versus the C4.5 robust learner. Next, in Section
VI we analyze the causes of the good behavior of FRBCSs
when dealing with class noise. Finally, in Section VII we
make some concluding remarks.

II. CLASSIFICATION WITH NOISY DATA

Real-world data is never perfect and often suffers from
corruptions that may harm interpretations of the data, models
created and decisions made. In classification, noise can
negatively affect the system performance in terms of classi-
fication accuracy, time in building, size and interpretability
of the classifier built [12].

The quality of any dataset is determined by a large number
of components as described in [7]. Some of these are the
source of the data and the input of the data, which are
inherently subject to error.

Class labels and attributes are two information sources
which can influence the quality of a classification dataset.
The quality of the class labels represents whether the class
of each instance is correctly assigned; and the quality of
the attributes indicates how well the attributes characterize
instances for classification purposes.

Based on these two information sources which define
the quality of a classification dataset we can distinguish
two types of noise in a given dataset [13]: class noise and
attribute noise.

1) Class noise or labeling errors occur when an instance
belongs to the incorrect class. Class noise can be at-
tributed to several causes, including subjectivity during
the labeling process, data entry errors, or inadequacy
of the information used to label each object. There are
two possible types of class noise:

• Contradictory examples: the same examples ap-
pear more than once and are labeled with different
classes [14].

• Misclassifications: instances are labeled with the
wrong classes [15].

2) Attribute noise is used to refer to corruptions in the
values of one or more attribute of instances in the
dataset. Examples of attribute noise include: erroneous
attribute values, missing or unknown attribute values,
and incomplete attributes or “do not care” values.

The two most common approaches to noisy data in
the literature are robust learners and noise preprocessing
techniques:

• Robust learners are characterized by being less influ-
enced by noisy data. An example of a robust learner
is the C4.5 algorithm [8]. C4.5 uses pruning strategies
to reduce the chances of trees being built with noise
in the training data [16]. However, when the noise
level becomes relatively high, even a robust learner may
obtain a poor performance.

• Noise preprocessing techniques try to remove the neg-
ative impact of noise in the datasets prior to creating a
model over the original data. Among these techniques,
the most well-known methods are noise filtering ones.
Their objective is to identify noisy instances which can
be eliminated from the training data [17], [18].

In this contribution, we study mislabeled data as noise
because it is very common in real-world data [12], [15].
These errors can be produced in situations where different
classes have similar symptoms, as generally happens on the
class boundaries. Furthermore, we compare the behavior of
the FRBCS considered in our work with the well-known
C4.5 robust learner. We want to verify that the effect of
class noise on the accuracy and size of the models created
by the FURIA algorithm is lower than on the models built
by the C4.5 robust learner.

III. FUZZY RULE BASED CLASSIFICATION SYSTEMS

This section describes the basis of the fuzzy model that
we have used in our study. First we introduce the basic
notation that we will use later to describe the FRBCS. Next
we describe the FURIA method in Subsection III-A.

Any classification problem consists of w training patterns
xp = (xp1, . . . , xpn), p = 1, 2, . . . , w, labeled with one of
M possible classes L = {�1, . . . , �M}, where xpi is the i-th
attribute value (i = 1, 2, . . . , n) of the p-th training pattern.
In this paper, we use fuzzy rules with a single class and a
rule weight associated to this class in the consequent [19]:

Rule R

j

:IF x1 is A

1
j

AND . . . AND x

n

is A

n

j

THEN CLASS = C

j

WITH RW

j

(1)

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is
an n-dimensional pattern vector, A

i
j is an antecedent fuzzy

set, Cj is a class label and RWj is the rule weight [20].

A. Fuzzy Unordered Rule Induction Algorithm

FURIA [4] builds upon the RIPPER interval rule induc-
tion algorithm [21]. The model built by FURIA uses fuzzy
rules of the form given in Equation (1) where A

k
j is a

fuzzy set I

F = (�s,L
, �

c,L
, �

c,U
, �

s,U ) with a trapezoidal
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(2)

and Cj 2 L = {�1, . . . , �M} is a class label. The rule
weight RWj of the rule Rj is computed as

RW

j

=
2
|D(c)

T
|

|DT | +
P

x2D

(c)
T

µ

Rj (x)

2 +
P

x2DT
µ

Rj (x)
(3)

where DT denotes the training set instances, D

(c)
T denotes

the subset of training instances with the label �c and
µRj

(x) =
Q

i=1...n I

F
i (xi)

To assign an output to a new example, suppose that fuzzy
rules R1, . . . , Rk have been learned for class �c. For a new
query instance x, the support of this class is defined by

s

c

(x) =
kX

j=1

µ

Rj (x)RW

j

(4)

The class predicted by FURIA is the one with maximal
support. In the case of a tie, a decision in favor of the class
with the highest frequency is made. When the query is not
covered by any rule, a rule stretching method is proposed
based on modifying the rules in a local way so as to make
them applicable to the query. In order to do this it is checked
the order in which the antecedents appear in the rule, and
all premises from the first one that do not match the new
instance are eliminated.

FURIA builds the fuzzy rule base by means of these two
steps:

1) Learn a rule set for every single class �c of the
problem, using a one-versus-all decomposition. In
order to do this, the RIPPER algorithm is used, which
consists of two fundamental steps described in [21]:
the building and the optimization phase.

2) Obtain the fuzzy rules by means of fuzzifying the
final rules from the above step. Each rule is fuzzified
retaining the same structure as the original rule and
replacing original intervals in the antecedent with
fuzzy intervals. To fuzzify an interval, it is required
to compute the four parameters needed for the trape-
zoidal fuzzy set from the original interval (complete
procedure is described in [4]).

IV. EXPERIMENTAL FRAMEWORK

In this section, we first describe the original datasets
our experimentation is based on in Subsection IV-A. Then,
in Subsection IV-B, the noise introduction process over
the above mentioned original datasets and the class noise
levels in order to create the final datasets are presented.
Section IV-C indicates the parameters for the classification

algorithms used for this work. Finally, Section IV-D estab-
lishes the comparison methodology carried out between the
FRBCS and the robust learner considered.

A. Original Datasets
The experimentation has been based on 19 datasets taken

from the KEEL-dataset repository1 [10]. Table I summarizes
the properties of the originally selected datasets. For each
dataset, the number of instances (#Ins), the number of
numeric attributes (#Att) along with the number of real and
integer attributes (R/I) and the number of classes (#Cla) are
presented.

Table I
ORIGINAL DATASETS USED FROM THE KEEL-DATASET REPOSITORY

Dataset #Ins #Att (R/I) #Cla Dataset #Ins #Att (R/I) #Cla
contraceptive 1,473 9 (0/9) 3 satimage 6,435 36 (0/36) 7
ecoli 336 7 (7/0) 8 segment 2,310 19 (19/0) 7
glass 214 9 (9/0) 7 sonar 208 60 (60/0) 2
heart 270 13 (1/12) 2 spambase 4,597 57 (57/0) 2
ionosphere 351 33 (32/1) 2 thyroid 7,200 21 (6/15) 3
iris 150 4 (4/0) 3 twonorm 7,400 20 (20/0) 2
page-blocks 5,472 10 (4/6) 5 wdbc 569 30 (30/0) 2
penbased 10,992 16 (0/16) 10 wine 178 13 (13/0) 3
pima 768 8 (8/0) 2 yeast 1,484 8 (8/0) 10
ring 7,400 20 (20/0) 2

The accuracy estimation of each classifier is obtained by
means of 5 runs of a stratified 5-fold cross-validation. The
dataset is divided into 5 partition sets with equal numbers of
examples and maintaining the proportion between classes in
each fold. Each partition set is used as a test for the model
learned from the four remaining partitions. This procedure is
repeated 5 times. We use 5 partitions since if each partition
has a large number of examples the noise’s effects will be
more notable, facilitating their analysis.

B. Process for Inducing Noise in Datasets
The initial amount of noise present in the previous datasets

is unknown so we cannot make any assumptions about this
base noise level. Therefore, as we want to control the level
of noise in the existing data, we use a manual mechanism
to add noise to each dataset.

From the 19 original datasets from the KEEL-dataset
repository we have created new noisy datasets considering
the introduction of class noise in the training sets. We have
taken into account four levels of noise: x = 5%, x = 10%,
x = 15% and x = 20%. Introducing noise only in training
sets and testing the models built over clean test sets will
let us to check how classifier’s generalization capability is
affect by the noise’s effect.

In order to introduce a level of class noise x% in a dataset,
we use two different schemes:

• Pairwise class noise scheme. Class noise is introduced
into the datasets following the pairwise scheme used

1http://www.keel.es/datasets.php
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in [15]: given a pair of classes (X , Y ), with X the
majority class and Y the second majority class, and
a noise level x%, an instance with the label X has a
probability of x% of being incorrectly labeled as Y .

• Random class noise scheme. We have also used a
more general class noise scheme than that described
above. In this scheme, a level of noise of x% supposes
that exactly x% of the examples are corrupted. The
class labels of these examples are aleatory changed by
different ones within the domain of the class.

In order to create a noisy synthetic dataset from the
original one, the noise is introduced consistently by means
of the following steps:

1) A level of noise x% of a concrete type of class noise
is introduced into a copy of the full original dataset.

2) Both datasets, the original one and the noisy copy, are
partitioned into 5 equivalent folds, i.e. the examples
within each fold of the noisy copy are the same as
those within the corresponding fold of original dataset.

3) We use a 5-fold cross-validation scheme for new
synthetic datasets. The datasets are created by building
the training sets with the noisy copy and the test sets
with the original copy.

In this manner, we have created 76 datasets with the pairwise
class noise scheme and 76 with the random class noise
scheme. The total number of datasets of the experimentation
is therefore 171.

C. Parameters Configuration
The classification algorithms have been executed with the

KEEL tool2 [22] using the best parameters on average as
shown in Table II.

Table II
PARAMETERS CONFIGURATION FOR CLASSIFICATION ALGORITHMS

FURIA C4.5

• Number of folds: f = 3
• Num. of optimizations: k = 2
• Min. instances per premise: i = 2

• Confidence level: c = 0.25
• Min. instances per leaf: i = 2
• Prune after the tree building

D. Comparison methodology
In order to check which kind of algorithms, FRBCSs or

robust crisp methods, are more tolerant when dealing with
class noise, we compare the FURIA fuzzy method with
the C4.5 crisp robust learner. We perform this comparison
training the methods with noisy data, and testing the models
are over clean data. In order to be able to carry out this study
we use three distinct methods:

1) The mean accuracy provided by the classification
algorithms over the test sets for each level of induced

2www.keel.es

noise, defined as its performance averaged across all
classification problems. Over the test accuracy results,
we also use the Wilcoxon’s signed ranks statistical test
[11] with a level of significance of ↵ = 0.05. For each
level of noise, we compare an FRBCS versus a crisp
method using the Wilcoxon’s test and we obtain the
p-values associated with these comparisons.

2) We use the relative loss of accuracy (RLA) (Equation
5) to observe the form in which the accuracy of the
model is affected when increasing the levels of noise
with respect to the case with no noise:

RLA

x% =
Acc0% � Acc

x%

Acc0%
(5)

where RLAx% is the relative loss of accuracy at a
level of noise x%, Acc0% is the mean accuracy in test
in the original case, that is, with 0% of induced noise,
and Accx% is the mean accuracy in test with a level
of noise x%.

3) We also use the relative increase of rules (RIR) (Equa-
tion 6) since another aspect that can be affected by the
noise is the model’s size [12], [18] and therefore, the
number of rules can be related to the robustness of the
model learned:

RIR

x% =
Rules

x% � Rules0%

Rules0%
(6)

where RIRx% is the relative increase of rules at a
level of noise x%, Rules0% is the mean number of
rules of the model learned from the training set with
no additional noise, and Rulesx% is the mean number
of rules of the model learned from the training set with
a level of noise x%.

V. CLASS NOISE’S EFFECT ON CLASSIFIERS’
PERFORMANCE

In this section we focus on the analysis of the behavior of
the FURIA fuzzy method versus the C4.5 algorithm when
training with noisy data and the models are tested over clean
test sets.

Table III shows the results of both schemes of class
noise considered. The first part of the table shows the
mean accuracy in test at each level of induced noise. Along
with these results, the second part of the table shows the
Wilcoxon’s test p-values.

The mean accuracy in test of FURIA is always better than
that of C4.5 for each level of induced noise in both noise
schemes. This clearly shows the better performance of the
FRBCS when training with data with class noise. From the
associated p-values (considering a level of significance of
↵ = 0.05) we can say that there are significant differences
in the results. This occurs with both class noise schemes for
all levels of noise. However, it highlights the better behavior
of FURIA with the random class noise scheme with respect
to C4.5, due to the latter’s test accuracy being more affected
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Table III
RESULTS ON DATASETS WITH CLASS NOISE: TEST ACCURACY AND RELATED P-VALUES

Mean accuracy in test p-values for class noise
Noise % 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

Pa
irw

is
e FURIA 85.81 85.37 84.74 84.23 83.10

1.1444E-5 1.9074E-5 9.652E-4 1.6404E-4 2.022E-3
C4.5 83.93 83.66 82.81 82.25 81.41

R
an

do
m FURIA 85.81 85.17 84.54 84.06 83.66

1.1444E-5 7.63E-6 3.356E-4 3.814E-5 1.1444E-5
C4.5 83.93 82.97 82.38 81.69 80.28

Table IV
RESULTS ON DATASETS WITH CLASS NOISE: RELATIVE LOSS OF ACCURACY IN TEST AND RELATIVE INCREASE OF RULES IN TRAINING

Relative loss of accuracy Relative increase of rules
Noise % 5% 10% 15% 20% 5% 10% 15% 20%

Pa
irw

is
e FURIA 0.0051 0.0127 0.0191 0.0331 -0.03 -0.07 -0.08 -0.10

C4.5 0.0035 0.0141 0.0212 0.0323 0.05 0.11 0.16 0.18

R
an

do
m FURIA 0.0073 0.0152 0.0207 0.0253 -0.01 -0.04 -0.07 -0.08

C4.5 0.0124 0.0204 0.0285 0.0466 0.10 0.14 0.27 0.30

than that of the former one than in the case of the pairwise
class noise scheme. The p-values also reflect this fact, since
lower p-values are generally obtained for the random class
noise scheme.

In order to obtain an approximation of the greater or lower
robustness of the considered methods against class noise,
Table IV shows the averages of the results of relative loss
of accuracy in test of each classification algorithm and the
relative increase of rules for each level of induced noise and
both class noise schemes.

As is shown in Table IV, the RLA is lower for FURIA
than for C4.5 at all considered levels of noise for both class
noise schemes. However, with 5% and 20% of the pairwise
class noise scheme this does not occur, although these values
are very close. This again shows the greater robustness of
FURIA when dealing with mislabeled data.

Regarding the RIR, for both class noise schemes, the
results obtained by the FURIA fuzzy method must be
highlighted. These results are indeed reduced with respect
to the case with no noise when higher levels of class noise
are introduced in the datasets. The number of rules of the
FURIA algorithm is on average much better than that of
the C4.5 algorithms. FURIA’s rule stretching method can
influence in this fact. We may conclude that the FURIA
algorithm has greater robustness against class noise with
respect to C4.5.

VI. REASONS OF FRBCSS’ BETTER PERFORMANCE
WITH DATA WITH CLASS NOISE

In this section we perform the analysis of the reasons
why FRBCSs present greater robustness than crisp robust
methods when dealing with data with class noise. This better
behavior is due to FRBCSs having a series of properties that

make them different from most of the crisp systems when
dealing with class noise. Some of these properties, the most
general, that we can emphasize are:

1) The use of fuzzy sets in the antecedents of the rules, in-
stead of crisp intervals. This lets, for instance, to give
more or less importance to the class of an example
predicted by a rule, according to whether this example
falls in one area or another of the membership function
of the antecedents of this rule. Noisy examples can
fall in areas with a lower value of the membership
function of the antecedents of the rule while belonging
to a different class to that predicted by the rule. Thus,
these noisy examples will be influenced to a lower
degree by the prediction of this rule.

2) The assignment of a weight to each fuzzy rule. This,
along with the fuzzy sets in the antecedents, enables an
overlapping between fuzzy rules. If several rules cover
an example, the rule weights (and the membership
function in the fuzzy sets) will let to determine the
most appropriate rule that covers this example. The
possible overlapping between rules is a very important
fact when dealing with noisy data, because it causes
the rules to be less affected by the noise that corrupts
other rules.

3) The aggregation of the fuzzy rules’ predictions in order
to predict the final class of an example. This is a
natural, robust way to deal with noise because the
prediction is not only determined by the action of a
single rule, but it is determined by the intervention
of all or a part of the rules of the model. It is
possible to use this thanks to the two above mentioned
characteristics.
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These properties cause the FRBCSs to be less affected
when class noise is induced in datasets. Therefore, these
systems achieve a lower overfitting of noise, leading to an
increase in the accuracy of labeling test examples.

VII. CONCLUDING REMARKS

In this contribution we have analyzed the advantages of
FRBCSs when dealing with data with class noise. The good
performance and tolerance of the FURIA fuzzy method
compared with the C4.5 crisp robust learner when class noise
is present has been highlighted.

We have considered two different kinds of class noise:
the pairwise class noise scheme and the random class noise
scheme. Based on them, we have created 76 datasets with the
former one and 76 datasets with the latter, by introducing
noise in the training partitions and the models have been
evaluated over clean test sets.

The results obtained have indicated that FRBCSs have
better test accuracy and a better robustness in terms of the
model’s size when training with data with class noise than
classic crisp robust learners.
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[3] J. C. Hühn and E. Hüllermeier, “FR3: a fuzzy rule learner
for inducing reliable classifiers,” IEEE Transactions on Fuzzy
Systems, vol. 17, pp. 138–149, 2009.

[4] ——, “FURIA: An Algorithm for Unordered Fuzzy Rule
Induction,” Data Mining and Knowledge Discovery, vol. 19,
no. 3, pp. 293–319, 2009.

[5] C.-H. Tsang, S. Kwong, and H. Wang, “Genetic-fuzzy rule
mining approach and evaluation of feature selection tech-
niques for anomaly intrusion detection,” Pattern Recognition,
vol. 40, pp. 2373–2391, 2007.

[6] G. Schaefer, M. Zviek, and T. Nakashima, “Thermography
based breast cancer analysis using statistical features and
fuzzy classification,” Pattern Recognition, vol. 42, no. 6, pp.
1133–1137, 2009.

[7] R. Y. Wang, V. C. Storey, and C. P. Firth, “A Framework
for Analysis of Data Quality Research,” IEEE Transactions
on Knowledge and Data Engineering, vol. 7, no. 4, pp. 623–
640, 1995.

[8] J. R. Quinlan, C4.5: programs for machine learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers, 1993.

[9] C.-M. Teng, “Correcting Noisy Data,” in Proceedings of the
Sixteenth International Conference on Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers,
1999, pp. 239–248.

[10] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a,
L. Sánchez, and F. Herrera, “KEEL Data-Mining Software
Tool: Data Set Repository, Integration of Algorithms and Ex-
perimental Analysis Framework,” Journal of Multiple-Valued
Logic and Soft Computing, in press, 2010.
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1. Introduction

It is widely know that classifier performance is influenced by the quality of the training data

upon which this classifier is built [20]. Since real-world data sets rarely are clean of corruptions

[18], these can therefore a↵ect the decisions taken by the classifiers built from these data [22].

However, the maximum achievable performance depends not only on the quality of the data,

but also on the appropriateness of the chosen classification algorithm for the data.

Knowing what kind of classification algorithms are most suitable when working with noisy

data is a challenging proposition [22, 15, 10]. Ideally, since the systems must be adapted to the

data they treat, if the data that we train are characterized by their inaccuracy, then systems

that create classifiers capable of handling some degree of imprecission are needed [20]. One

may wonder how to know which systems are more suitable or are better adapted to deal with

these noisy data. Even though some classifiers have been related to this capability of working

with imperfect data, this fact is usually based on only checking the accuracy of those and other

classifiers over a concrete collection of data sets, with independence of the type and noise level

present in the data. This analysis procedure has a double disadvantage in noisy environments.

First of all, the study of the performance alone does not provide enough information on the

classifier behavior a↵ected by the noise [9, 8, 14]. Moreover, a study with a controlled (probably

artificial) noise level for each data set is also necessary to reach meaningful conclusions when

evaluating the classifier behavior against noise [22].

This paper proposes a new single score to perform an analysis of the classifier behavior

with noisy data trying to solve the aforementioned problems. This will be done from a double

point of view focusing on the classic performance assessment of the methods but also on their

robustness [9, 8, 14], an important issue in noisy environments that must be carefully studied.

We understand as performance the accuracy of a classifier predicting the class of a new example,

whereas the noise robustness has been defined as the classifier accuracy loss rate [9, 8], which

is produced by presence of noise in the data, with respect to the case without noise. Since

performance and robustness are di↵erent concepts, the conclusions that they provide may also

be di↵erent, yet this comparative analysis remains disregarded in the literature.

Even though the robustness of the methods is important dealing with noisy data, there are

a lack of proposals of robustness-based measures in the literature and the few existing ones

also present several drawbacks. This paper will analyze the existing robustness measures in

the classification framework focusing on their advantages and disadvantages. We will moti-

vate the necessity of combining the robustness and performance concepts to obtain an unified

conclusion on the expected behavior of the methods with noisy data. We will propose a new
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behavior-against-noise measure to characterize the behavior of a method with noisy data, the

Equalized Loss of Accuracy (ELA) measure, which tries to minimize the problems of considering

performance and robustness measures individually.

In order to complete our analysis, we will perform an experimental evaluation of the behavior

and representativeness of the di↵erent measures, considering several classifiers with a known

behavior against noise (concretely, the C4.5 decision tree generator [13] and a Support Vector

Machine [6]). The behavior of such classifiers described by using ELA will be tested using 32

data sets from the KEEL-dataset repository [2], over which we will introduce a 10% of noise

level into the class labels in a controlled way [22]. All these data sets and other complementary

material associated with this paper, such as the performance and robustness-based metrics

results, are available at the web-page http://sci2s.ugr.es/ela_noise.

The rest of this paper is organized as follows. Section 2 presents an introduction to noisy

data and robustness in classification. Next, Section 3 describes the new proposed measure ELA.

Section 4 shows the details of the experimental framework including the noise introduction

process, the parameter setup for the algorithms and the comparison methodology. Section 5

includes the analysis of the experimental results obtained with the di↵erent robustness-based

metrics. Finally, in Section 6 we point out some concluding remarks.

2. Classification with noisy data

This section presents an introduction to noisy data in the field of classification, found in

Section 2.1. Then, the concept of robustness in classification is explained in Section 2.2.

2.1. Introduction to noisy data

The quality of any data set is determined by a large number of components as described in

[18]. Two of these are the source of the data and the input of the data, which are inherently

subject to error. Thus, real-world data is rarely perfect it is often a↵ected by corruptions

that hinder the models built as well as the interpretations and decisions made from them. In

the particular framework of classification, the most notable e↵ect of noise is that it negatively

a↵ects the system performance in terms of classification accuracy, time in building, size and

interpretability of the model obtained [21, 22]. In the literature there are two types of noise

distinguished [19]:

1. Class noise [4, 1]. Also known as labeling errors, they occur when an instance belongs to

the incorrect class due to, for example, data entry errors or inadequacy of the information

used to label each instance.
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2. Attribute noise [22, 17]. This is used to refer to corruptions in the attribute values of

instances in a data set. Examples of attribute noise include: erroneous attribute values,

missing or unknown attribute values, and incomplete attributes or “do not care” values.

In this paper we consider the most common type of class noise, which is also the most

disruptive; this is known as misclassifications and refers to those examples incorrectly labeled

with a wrong class label [22].

Therefore, since errors in real-world data sets are common, actions must be taken to mitigate

their consequences [19]. Several methods have been studied in the literature to deal with noisy

data [22]. They follow two main postulates: (i) the adaptation of the algorithms to properly

handle the noise [13], [5] and; (ii) the preprocessing of the data sets aiming to remove or correct

the noisy examples [3]. The former are also known as robust learners and they are characterized

by being less influenced by noisy data. An example of a robust learner is the C4.5 algorithm

[13] considered in the experimental case of study of this paper, which uses pruning strategies

to reduce the chances that the trees are overfitting to noise in the training data [12]. However,

if the noise level is relatively high, even a robust learner may have a poor performance.

2.2. Robustness measures

Noise hinders the knowledge extraction from the data and spoils the models obtained using

these noisy data when they are compared to the models learned from clean data from the same

problem [22]. In this sense, robustness [7] is the capability of an algorithm to build models that

are insensitive to data corruptions and su↵er less from the impact of noise; that is, the more

robust an algorithm is, the more similar the models built from clean and noisy data are. Thus,

a classification algorithm is said to be more robust than another if the former builds classifiers

which are less influenced by noise than the latter. Robustness is considered very important

when dealing with noisy data, because it allows one to expect a priori the amount of variation

of the learning method’s performance against noise with respect to the noiseless performance in

those cases where the characteristics of noise are unknown. It is important to note that a higher

robustness of a classifier does not imply a good behavior of that classifier with noisy data, since

a good behavior implies a high robustness but also a high performance without noise.

In the literature, the measures that are used to analyze the degree of robustness of the

classifiers in the presence of noise compare the performance of the classifiers learned with the

original (without controlled noise) data set with the performance of the classifiers learned using

a noisy version of that data set. Therefore, those classifiers learned from noisy data sets that

are more similar (in terms of results) to the noise-free classifiers will be the most robust ones.
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To the best of our knowledge, the robustness-based measures found in the literature are the

two following:

1. The robustness measure proposed in [9] considers the performance of Bayesian Decision

rule as a reference, which is considered as the classifier providing the minimal risk when

the training data are not corrupted. Concretely, the next expression is used:

BRM

x% =
E

x% � E

E

, (1)

where Ex% is the risk (that we will understand as the classification error rate in our case)

of the classifier at a noise level x% and E is the risk of the Bayesian Decision rule without

noise. This classifier is a theoretical decision rule, that is, it is not learned from the data,

which depends on the data generating process. Its error rate is by definition the minimum

expected error that can be achieved by any decision rule.

2. The Relative Loss of Accuracy (RLA) is the robustness measure employed in [14] and was

defined as:

RLA

x% =
A0% � A

x%

A0%
, (2)

where A0% is the accuracy of the classifier with a noise level 0%, and Ax% is the accuracy

of the classifier with a noise level x%. RLA evaluates the robustness as the loss of accuracy

with respect to the case without noise A0%, weighted by this value A0%. This measure

has two clear advantages: (i) it is simple and interpretable and (ii) to the same values of

loss A0% � Ax%, the methods having a higher value of accuracy without noise A0% will

have a lower RLA value.

In the next section, some shortcomings of these measures are explained.

3. The Equalized Loss of Accuracy measure

This section discusses the problems of the existing robustness-based measures as indicators

of the behavior of a classifier with noisy data (Section 3.1) and the necessity of combining the

robustness and the performance of the classifier (Section 3.2). Finally, we present the ELA

measure as our proposal (Section 3.3).

3.1. Problems of the existing robustness measures

Even though the robustness-based measures presented in the above section let us to evaluate

the higher or lower robustness of the classifiers, they have a series of important disadvantages
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which do not make their usage recommendable. In [8] two main points that a robust algorithm

must satisfied are established:

1. It must have a good initial accuracy A0%.

2. When the noise level is increased, it must su↵er a low loss if the noise level is low and the

performance must not be drastically deteriorated when the noise level is high.

The measure proposed in [9] (Equation (1)) considers these two points, even though it has

a clear disadvantage: it is based on a theoretical model. Thus, the quality of the performance

without noise is determined with respect to that of the optimal Bayesian classifier for the

data. This optimal performance can be rarely computed since it is typically characterized by

probability distributions on the input/output space, which are intrinsic to the data set and are

rarely known. The estimation of these distributions from the data generally requires the choice

of a known probability distribution that could not properly represent the characteristics of the

data. For this reason this measure is not feasible for practical cases, where mixed data and

computation time bound the obtention of the Bayesian classifier.

On the other hand, the RLA measure (Equation (2)) has several points considered as draw-

backs:

• From the two points implied in the definition of a robust algorithm given above, point 1,

that is, the necessity to have a good initial performance A0%, has a very low influence in

the RLA equation; being point 2 the main aspect computed by it.

• Classifiers obtaining a poor generalization from the training data without noise, that is,

those in which A0% is low, are usually a↵ected in a lower degree by the presence of noise

(their RLA value is therefore lower) than classifiers with a high A0%. In these cases, the

lower loss of accuracy is not due to the better capability of the algorithm to get adapted

to noise but for their inability to successfully model the data and for creating too general

models that are little a↵ected by noise.

• The RLA values do not represent the behavior against noise. For example, consider a

random classifier in a balanced data set with A0% = 50%. This classifier may maintain

an accuracy Ax% = 50% for di↵erent noise levels x% implying a robustness RLAx% = 0.

On the other hand, a classifier with a higher starting accuracy su↵ering from a very low

loss of accuracy when noise level increases has higher RLA values always RLAx% > 0,

and then it is less robust, even though its behavior with noisy data is better.

• The RLA measure presents problems if Ax% is higher than the base accuracy A0%, ob-

taining negative numbers of RLA. This fact is more frequent with classifiers with a low
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base accuracy A0%, whereas it is more rare with a good classifier with a high base accu-

racy A0%. These low negative values are interpreted as an excellent robustness, but they

denote a very bad working of the classifier without noise.

Apart from the aforementioned problems, the main drawback of the RLA measure is that

it assumes that both methods have the same robustness (RLA0% = 0) in the case without

controlled noise x = 0%. However, the information of the robustness without controlled noise

must be also taken into account. If we are interested in analyzing only a single classifier, the

RLA measure may su�ce, but it fails when comparing two di↵erent methods when their perfor-

mance without noise are di↵erent as important information is being ignored. RLA analyzes the

robustness in the classic sense of variation with respect to the case without noise and thus the

problem of knowing which methods will behave better with noisy data is considered partially.

Therefore, it seems necessary to somehow combine the robustness in the sense of performance

variation (as RLA makes) with the behavior without noise as (it is performed in [9]), but de-

termining the quality of that initial accuracy without depending of the results of any external

nor theoretical classifier.

3.2. Combining performance and robustness

As we as commented above, focusing only in the robustness, such as RLA makes it, in

order to determine the behavior of several methods against noise is a partial way to address

the problem. Thus, it is also important to properly consider the performance of these methods

without noise. For example, consider a classifier C1 that is only slightly a↵ected by the noise

and another classifier C2 that is a↵ected by the noise in a higher degree. If we ignore the initial

accuracy A0% of both methods without noise, the following two cases can be produced:

• If both methods C1 and C2 obtain two high and similar performances without noise, we

would probably choose C1 as the more robust method as it probably outperforms the

method C2 so far when we deal with new noisy data sets.

• If the performance of C1 is significantly lower than that of C2 without noise, then the

method C2 could be expected to be more accurate than the method C1 when noise appears

thanks to C2’s initial good behavior in spite of having a higher degradation of performance.

If we consider the usage of RLA, the second case would be incorrectly described. Fur-

thermore, with the RLA measure, bad classifiers will have less probability to deteriorate their

results to the same scale that a good classifier (they could indeed improve their results in an

extreme case) when noise is introduced. Finally, in order to better understand the importance
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of the initial performance (A0), consider how the RLA measure is defined for the limits of the

initial performance A0. For a classifier C1 with initial performance A0 = 1, the only possible

variation when introducing noise is that the classifier to be hindered as Ax  A0. However, for

another classifier C2 with an very low initial accuracy A0 ⇡ 0 the opposite may occur, being

probably Ax � A0. Therefore, we will obtain that RLA(C1)  RLA(C2). That would mean

that the worst imaginable classifier behaves better with noise than the almost perfect classifier.

3.3. The ELA measure

In order to overcome the problems mentioned in the above sections, we propose a correction

of the RLA measure inspired in the measure proposed in [9]. The new measure is:

ELAx% =
100 � Ax%

A0%
, (3)

Using a pessimistic approach comparing to the perfect classifier instead of the optimal

theoretical Bayesian classifier, it is possible to derive the expression mentioned as:

ELAx% =
100 � Ax

A0
=

100 � Ax + A0 � A0

A0
=

A0 � Ax

A0
+

100 � A0

A0
= RLAx% + f(A0) (4)

Therefore, ELA combines the robustness computed by RLA and a factor depending on the

initial accuracy A0 (f(A0) in Equation 4). Please, note that this factor f(A0) is precisely

ELA0%, that is, f(A0) = ELA0% = (100 � A0)/A0. Therefore, if we define ELAx% as a

measure of behavior with noise at a given noise level x%, then ELAx% is based on:

• the robustness of the method, that is, the loss of performance at a controlled noise level

x% (RLAx%).

• the behavior with noise for the clean data, that is, without controlled noise (ELA0%).

Figure 1 shows a graphical 3-dimensional representation of the RLA and ELA measures, in

which several similarities and di↵erences among these two metrics can be appreciated. For ex-

ample, both metrics have similar values when A0% is high and diverge along with the decrement

of A0% (even though in this case both RLA and ELA have higher values when Ax% is lower

and lower values when Ax% is higher). This divergence is produced thanks to the correction

obtained by considering the intial accuracy in the measure and is essential to overcome the

limitations of RLA.

The ELA measure changes the initial reference A0% of the RLA measure by a constant

value. As expressed by the BRM measure, the constant value should be the best attainable
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Figure 1: Representations of the RLA and ELA metrics.

accuracy value, and as proposes BRM the optimal Bayesian Decision Rule should be used to

obtain a theoretical best accuracy value based on the joint underlying distributions of the data

set. However, and as we have previously stated, this optimal value is rarely known. For this

reason we choose an upper bound to this unknown in practice optimal Bayesian classifier’s

accuracy instead. The safer and most pessimistic value used for A0 is fixed to 100% considering

it as the accuracy of a perfect classifier. In this way, the loss of accuracy respect to the perfect

classifier is weighted by the base accuracy A0%. As a result when taking into account the same

loss of accuracy 100 � Ax%, the classifier with better value of base accuracy A0% is considered

to have a better behavior against noise.

This measure used to evaluate the behavior of a classifier with noisy data overcomes some

problems of the RLA measure:

1. It takes into account the noiseless performance A0% when considering which classifier is
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more appropriate with noisy data. This fact makes ELA more suitable to compare the

behavior against noise between 2 di↵erent classifiers. We must take into account that

a benchmark data set might contain implicit and not controlled noise with a noise level

x = 0%.

2. A classifier with a low base accuracy A0% that is not deteriorated at higher noise levels

Ax% is not better than another better classifier su↵ering from a low loss of accuracy when

the noise level is increased.

Table 1 shows four simple examples that extend the aforementioned ideas about RLA and

ELA. These examples describe the possible problems caused by RLA and how they are solved by

the ELA measure. In these examples, we consider a classifier C1 with a good initial performance

without noise and a classifier C2 with a worse performance without noise. These are the

scenarios studied:

Example 1. C1 and C2 are equally hindered when the noise is introduced.

In this case, C1 is always more robust than C2 with both measures (RLA and ELA). To the

same amount of loss of accuracy, both ELA and RLA give more importance to the method with

a higher performance (C1). However, ELA makes more remarkable the di↵erence between C1

and C2 since it takes into account the initial situation (Initial ACC) and the loss of accuracy

(Final ACC). This information shows that is much probably that C1 behaves well with noisy

data considering ELA, whereas with RLA the di↵erences would be much lower.

Furthermore, it is important to note that, when the performance of both classifiers without

and with noise do not vary, RLA gives the same importance to both of them, but ELA clearly

establishes C1 as that classifier with the best behavior with noisy data (and this fact fits more

to the desirable answer than that provided by RLA).

Example 2. C1 and C2 are hindered when the noise is introduced but both have the same RLA

values.

In this case, even though the classifier C2 is equally robust than C1, C2 obviously is not

better than C1 and ELA is able to reflect this issue. This situation (to a same RLA value equal

to 0) also occurs if the classifiers do not alter their performance when the noise is introduced:

from InitialACC = 100 to FinalACC = 100, then ELA(C1) = 0, whereas from InitialACC =

50 to FinalACC = 50, ELA(C2) = 1, so C1 will behave better with noisy data than C2.

Example 3. C1 and C2 are benefited when the noise is introduced.
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In this rare case, both methods gain the same amount of performance when the noise is

introduced. RLA shows that method C2, which has a very poor performance, is more robust

than the method C1. ELA solves this problem and shows that the classifier C1 has a better

behavior with noisy data that the classifier C2.

Example 4. C1 is slightly a↵ected by the noise whereas C2 is slightly benefited by the noise.

This case clearly shows that RLA does not take into account the initial accuracy. Again, the

classifier C2 is more robust with RLA, whereas it clearly behaves worse with the ELA measure.

Table 1: Four di↵erent illustrative toy examples comparing RLA versus ELA.

Classifier C1 Classifier C2

Initial ACC Final ACC RLA ELA Initial ACC Final ACC RLA ELA

Example 1 100 100 0 0 50 50 0 1

100 96 0.04 0.04 50 46 0.08 1.08

100 92 0.08 0.08 50 42 0.16 1.16

Example 2 100 100 0 0 50 50 0 1

100 96 0.04 0.04 50 48 0.04 1.04

100 92 0.08 0.08 50 46 0.08 1.08

Example 3 80 80 0 0.25 30 30 0 2.33

80 84 -0.05 0.2 30 34 -0.13 2.2

80 88 -0.1 0.15 30 38 -0.27 2.07

Example 4 100 100 0 0 50 50 0 1

100 99.996 0.00004 0.00004 50 50.004 -0.00008 0.99992

100 99.992 0.00008 0.00008 50 50.008 -0.00016 0.99984

4. Experimental framework

In this section, we present the details of the experimentation developed in this paper. We

first show how to build the noisy data sets in Section 4.1. Then, Section 4.2 indicates the

classification methods used and their parameters. Finally, Section 4.3 establishes the analysis

methodology carried out.

4.1. Data sets

The experimentation has been based on 32 data sets taken from the KEEL-dataset reposi-

tory1 [2]. Table 2 summarizes the properties of the originally selected data sets. For each data

1
http://www.keel.es/datasets.php
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set, the number of instances (#Ins), the number of numeric attributes (#Att) and the number

of classes (#Cla) are presented.

Table 2: Base data sets used in the experimentation.

Data set #EX #AT #CL Data set #EX #AT #CL

automobile 159 25(15/10) 6 magic 19020 10(10/0) 2

balance 625 4(4/0) 3 monk 432 6(6/0) 2

banana 5300 2(2/0) 2 new-thyroid 215 5(5/0) 3

car 1728 6(0/6) 4 phoneme 5404 5(5/0) 2

cleveland 297 13(13/0) 5 pima 768 8(8/0) 2

contraceptive 1473 9(9/0) 3 ring 7400 20(20/0) 2

dermatology 358 33(1/32) 6 segment 2310 19(19/0) 7

ecoli 336 7(7/0) 8 sonar 208 60(60/0) 2

flare 1066 11(0/11) 6 spambase 4597 57(57/0) 2

german 1000 20(13/7) 2 twonorm 7400 20(20/0) 2

glass 214 9(9/0) 7 vehicle 846 18(18/0) 4

hayes-roth 160 4(4/0) 3 vowel 990 13(13/0) 11

heart 270 13(13/0) 2 wdbc 569 30(30/0) 2

ionosphere 351 33(33/0) 2 wine 178 13(13/0) 3

iris 150 4(4/0) 3 yeast 1484 8(8/0) 10

lymphography 148 18(3/15) 4 zoo 101 16(0/16) 7

In order to control the noise level in the existing data, we use a manual mechanism to add

noise into each training data set. Thus, we have considered the introduction of class noise

following the scheme proposed in [22, 16]. This scheme, also known as random class noise

scheme, introduces a noise level x% into a data set by randomly changing the class labels of

exactly x% of the examples by other one out of the other classes.

The accuracy estimation of each classifier is obtained by means of 5 runs of a stratified 5-fold

cross-validation. The data set is divided into 5 partition sets with equal numbers of instances

and maintaining the proportion between classes in each fold. Each partition set is used as a

test for the classifier learned from the four remaining partitions. This procedure is repeated 5

times.

4.2. Parameters

Two learning algorithms have been chosen to be used in this paper: C4.5 [13] and SVM

[6]. This choice is based on their good behavior in a large number of real-world problems;

moreover, they were selected because these methods have a highly di↵erentiated and well known

noise-robustness. In the following, their noise-tolerance is described along with the parameter

configuration used for the experimentation:
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• C4.5 decision tree generator [13]. C4.5 is considered a robust learner, which uses

pruning strategies to reduce the chances of classifiers being a↵ected by noisy examples

[12]. The parameter setup for C4.5 used in this paper is the following: confidence level

(0.25), minimal instances per leaf (2) and prune after the tree building.

• Support Vector Machine [6]. Since SVM relies on the support vectors (that are training

examples lying near the separating hyperplane) to derive the decision model, this can be

easily altered including or excluding a single noisy example [11]. Thus, SVM should a

priori be more noise-sensitive than C4.5. The parameter setup for SVM used in this

paper is the following: type of Kernel (Puk with � = 1, ! = 1), cost (C = 100), tolerance

(0.001) and parameter for the round-o↵ error (✏ = 10�12).

4.3. Methodology of analysis

The experimental analysis of the capabilities of the ELA measure will be based on a complete

case of study which involves the two aforementioned classification algorithms with a di↵erent

noise tolerance: the noise-robust algorithm C4.5 and the noise-sensitive method SVM. These

methods will be tested over the 32 base data sets without noise, that is x = 0%, and another 32

noisy data sets with the noise level x = 10%, which will be created with the random class noise

scheme. All the data sets created can be found on the web-page associated with this paper.

The classification accuracy of C4.5 and SVM will be computed on the 64 data sets (without

and with noise), along with their corresponding ELA and RLA results for the noise level 10%.

Please note that it is not our intention to establish the most robust method between C4.5 and

SVM, but to provide an ample and varied test bed where the two methods’ behavior will help

us to show the benefits of ELA measure against RLA. Because of this, our analysis will be

based on studying the similarities and di↵erences between the evaluations of ELA and RLA on

the behavior with noise of each classification algorithm with each data set.

5. Benefits of ELA against other robustness metrics: a case of study

In this section we focus on the analysis of the behavior of the classifiers to study (C4.5 and

SVM) when training with noisy data considering the usage of the ELA and RLA measures. As

we cannot know the probability distribution of the benchmark data sets, we cannot use BRM as

a comparison measure. Table 3 shows the performance results of C4.5 and SVM for all the data

sets considered in this paper (at the noise levels 0% and 10% as indicated in Section 4.3), and

their ELA and RLA results. From this case of study, several observations can be appreciated,

which be grouped into two main parts: global results (including the average and best rows in
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Table 3) and the individual results for each data set. These remarks on the results presented in

this table will be focused on the similarities and di↵erences between RLA and ELA, attending

to the problems of RLA and how ELA can solve them.

Table 3: Performance results for C4.5 and SVM at 0% and 10% of class noise level, and their

ELA and RLA results at 10% for all the data sets considered. Best results are remarked in

bold.

Measure Performance ELA RLA

Noise level 0% 10% 10% 10%

Data set C4.5 SVM C4.5 SVM C4.5 SVM C4.5 SVM

autos 77.10 69.29 73.56 64.50 0.3429 0.5123 0.0459 0.0691
balance 77.73 89.09 78.27 81.50 0.2796 0.2077 -0.0069 0.0852
banana 88.98 90.28 88.96 90.27 0.1241 0.1078 0.0002 0.0001

car 91.33 64.83 90.20 60.68 0.1073 0.6065 0.0124 0.0640
cleveland 51.58 45.85 52.26 41.47 0.9256 1.2766 -0.0132 0.0955
contraceptive 52.14 47.56 50.52 46.80 0.9490 1.1186 0.0311 0.0160

dermatology 93.91 96.92 93.02 96.59 0.0743 0.0352 0.0095 0.0034

ecoli 79.05 78.11 79.29 67.81 0.2620 0.4121 -0.0030 0.1319
flare 73.86 70.34 74.15 71.82 0.3500 0.4006 -0.0039 -0.0210

german 71.54 66.44 71.02 66.42 0.4051 0.5054 0.0073 0.0003

glass 66.07 71.40 64.46 65.22 0.5379 0.4871 0.0244 0.0866
hayes-roth 81.67 77.87 82.87 74.55 0.2097 0.3268 -0.0147 0.0426
heart 77.11 78.52 76.22 77.93 0.3084 0.2811 0.0115 0.0075

ionosphere 89.34 91.91 87.52 81.72 0.1397 0.1989 0.0204 0.1109
iris 95.07 94.53 94.13 87.20 0.0617 0.1354 0.0099 0.0775
lymphography 76.88 80.82 77.31 80.96 0.2951 0.2356 -0.0056 -0.0017
magic 85.10 87.18 84.69 86.57 0.1799 0.1540 0.0048 0.0070
monk-2 100.00 96.25 100.00 91.62 0.0000 0.0871 0.0000 0.0481
newthyroid 92.84 95.81 91.53 92.65 0.0912 0.0767 0.0141 0.0330
phoneme 85.88 87.18 84.76 86.66 0.1775 0.1530 0.0130 0.0060

pima 73.99 69.74 73.15 67.37 0.3629 0.4679 0.0114 0.0340
ring 90.06 97.09 88.72 91.54 0.1252 0.0871 0.0149 0.0572
segment 96.35 97.28 95.19 90.23 0.0499 0.1004 0.0120 0.0725
sonar 72.50 86.63 73.36 85.94 0.3674 0.1623 -0.0119 0.0080
spambase 92.57 93.57 91.32 91.20 0.0938 0.0940 0.0135 0.0253
twonorm 84.82 97.35 83.86 96.31 0.1903 0.0379 0.0113 0.0107

vehicle 71.04 80.69 68.91 74.75 0.4376 0.3129 0.0300 0.0736
vowel 78.59 99.33 74.91 87.11 0.3193 0.1298 0.0468 0.1230
wdbc 93.64 94.41 92.79 91.07 0.0770 0.0946 0.0091 0.0354
wine 92.23 97.30 89.75 95.95 0.1111 0.0416 0.0269 0.0139

yeast 55.54 57.44 53.34 54.39 0.8401 0.7940 0.0396 0.0531
zoo 92.29 80.64 91.70 73.08 0.0899 0.3338 0.0064 0.0938

average 81.28 82.24 80.37 78.50 0.2777 0.3117 0.0115 0.0457

best 12 20 16 16 16 16 23 9

Analysis of the global results. This part of the analysis compares the average results

for both C4.5 and SVM across all the data sets, by using the performance and those average

results of the ELA and RLA metrics, and the number of data sets where each classifier is the

best.
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Regarding the performance results, SVM has a better performance without noise than C4.5,

obtaining an average performance of 82.24 versus a 81.28 of C4.5. Furthermore, SVM is also

better in more data sets than C4.5, concretely in 20 of the 32 data sets. The situation reverses

when noise is considered, and C4.5 obtains a better average performance (80.37 versus 78.50

of SVM) and the same number of data sets in which each classifier is the best (16 data sets in

total). Note that these results without and with noise are consistent with the expected behavior

of both classifiers.

Since the results of SVM for many of the data sets drop in an higher degree than those

of C4.5, their average RLA value is therefore higher than that of C4.5 (0.0457 versus 0.0115).

Thus, SVM is clearly less robust considering this metric. The average of the ELA measure also

o↵ers the same final result, showing to C4.5 as the method that globally behaves better with

noisy data. These average results of both ELA and RLA are again in concordance with the

expected behavior of the two implied classifiers, since we knew that C4.5 could probably have

a better behavior with noise than SVM due to the punning mechanism.

However, as the accuracy of SVM is notably better than that of C4.5 without noise, the

number of data sets in which each method is the best considering ELA is not so clear in favor

of C4.5 like that of RLA. This fact is due to ELA considers the initial performance without

noise, but it is not taken into account by RLA, that only considers the percentage variation of

the performances with and without noise.

These global results highlights that ELA does not only use the loss of performance to

evaluate the behavior with noisy data as RLA makes, but also the performance without noise,

that must be considered to obtain a good evaluation metric of the behavior against noise as we

have previously commented in Section 3.

Analysis of the individual results for each data set. Even though the aforementioned

average results give an idea of how ELA and RLA work, it is interesting to observe their results

in each single data set to better understand the di↵erences and coincidences between both

metrics depending on the behavior of the classifiers. In order to properly analyze these results,

we categorize them into two di↵erent groups - a group devoted to those data sets in which the

evaluation of ELA and RLA agrees and another for those data sets in which this evaluation is

di↵erent:

1. ELA and RLA predict the same classifier with the best behavior. In this case,

it is important to note that, even though both metrics provide the same final result,

the di↵erence in these values for each classifier could be very di↵erent depending on the
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drop in performance with noise but also on the performance without noise (when ELA is

considered). We can di↵erentiate three scenarios within this case:

• One of the classifiers is better than the other one with and without noise and both

of them are deteriorated from the e↵ect of noise. There are some data sets (such

as autos and wine) in which both methods have a remarkable and similar loss of

performance, whereas in other data (such as banana, dermatology, heart, phoneme

and twonorm) this loss of performance is very low. In all these data sets, SVM has

always a better performance than C4.5. However, there are also other data sets,

in which C4.5 has the best performance and its loss of accuracy is also lower than

that of SVM, see for example car, iris, pima, zoo and monk-2. In these data sets

the method with the best performance is chosen by ELA and RLA as that behaving

best with noise.

• One of the classifiers improves and the other deteriorates its accuracy without noise

when noise is considered. All these data sets are characterized by C4.5 being the

method that behaves best with noisy data. For example, in the cleveland data set,

both classifiers have a low accuracy without noise (being SVM worse without noise

and deteriorating its accuracy, whereas C4.5 improves in presence of noise). The

same situation occurs with ecoli and hayes-roth, even though the initial performance

is higher than with cleveland.

• One of the classifiers has a better performance without noise, but it su↵ers a very

high drop in performance with noise and finally it has a worse performance in the

noisy data set. SVM is usually this classifier with a better performance without

noise but it is more a↵ected in the noisy version of the data set (see, for example,

the ionosphere, segment, spambase and wdbc data sets).

2. ELA and RLA predict a di↵erent classifier with the best behavior. This case is

perhaps more interesting than that of above since each one of the metrics give more impor-

tance to a di↵erent classifier with noisy data. Thus, we can clearly check the di↵erences

between ELA and RLA. We di↵erentiate two scenarios within this case:

• One or both classifiers improve in presence of noise. Note that all the data sets

under these circumstances are characterized by ELA giving a higher importance to

SVM (the method with the best performance without noise), whereas RLA highlights

C4.5 (the method that usually has a lower performance without noise but having a

higher improvement when noise is considered). For example, with balance and sonar,

even though C4.5 slightly improves with noisy data whereas SVM has a higher drop
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in performance, the latter is notably better than C4.5 without and with noise in

terms of performance. With other data sets, such as flare and lymphography, both

classifiers improve their results when noise is considered. In these cases, even though

C4.5 experiments an higher improvement in performance than SVM (and thus RLA

gives it more importance), the latter has remarkable better results without noise,

and this fact is also considered by ELA.

• Both classifiers deteriorate their performance when considering noise. Some data

sets (such as vehicle, ring, newtiroid, vowel. magic or yeast) are characterized by

SVM being more deteriorated than C4.5 by the noise, but also having a higher

performance without noise. Thus, RLA highlights C4.5 in this cases, whereas ELA

also considered the importance of the higher performance of SVM estimating that

it behaves better with noisy data. The opposite fact occurs with the german data

set, where C4.5 and SVM interchange their behaviors. With the glass data set,

although SVM is more a↵ected than C4.5 by the presence of noise, it obtains a

notable higher accuracy without noise. Thus, ELA establishes SVM as the method

with the best behavior with noisy data since it valorizes more than RLA the initial

accuracy (although the ELA value of SVM is very similar to that of C4.5), whereas

RLA establishes C4.5 as the best method based on the higher drop in performance

of SVM.

Another case is that of the contraceptive data set, where the two classifiers obtain a

very low accuracy without noise (SVM is indeed worse than C4.5, having a perfor-

mance lower than 50%). This particular case shows that RLA favors those algorithms

with lower classification performances without noise when the loss of performance of

the classifiers are comparable (although not equal), whereas ELA does not harm so

much the methods with higher performances.

Individual results for each data set again emphasize that RLA is only based on the percentage

drop in performance, giving no chance, for example, to those methods that experiment an

higher drop but having a very high performance without noise (being competitive enough when

the noise is considered). In contrast, ELA takes into account both factors, making its usage

overcoming some of the problems of the RLA measure.

6. Concluding Remarks

Performance and robustness are two independent concepts that imply di↵erent conclusions.

Considering both concepts together seems to be crucial in order determine the expected behavior

17



of the classifiers against noise. Therefore, a new measure is proposed to know the expected

behavior of a classifier with noisy data, the ELA measure, which tries to overcome some of the

problems of the existing robustness-based metrics.

In order to check the suitability of our proposal, we have analyzed the existing robustness

measures pointing out their main drawbacks and how ELA can solve them. We have provided

a variety of practical examples supporting our analysis. In order to complete this analysis, we

have experimentally compared the ELA and RLA measures, showing that the evaluation of the

ELA and RLA metrics agree in some cases, but in other cases the behavior of the RLA is not

so desirable since it is only based on the percentage variation of the performance without and

with noise. The results obtained show that ELA is able to overcome some of the problems that

RLA produces, being useful to represent the behavior of the classifiers against noise.
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