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Resumen:

Este proyecto tendrá como objetivo la comprensión de las antenas usadas en los Cubesats,
un tipo de picosatélite desarrollado mayormente en universidades. El trabajo se concentrará
en el análisis de sistemas usados en misiones previas dentro del ámbito de los picosatélites,
recepción de señales de otros satélites y diseño de un prototipo de modelado de antenas para
la misión GranaSAT.

Abstract:

The main objective of this Thesis is to understand the antennas used in Cubesats (a satellite
type becoming very popular among universities for teaching their students space related
skills while improving their background) and to develop a prototype for future development
in the GranaSAT mission. This Thesis aims to be a future reference for students developing
Cubesat antennas for GranaSAT.

For start, a brief introduction on antenna theory will be made for readability purposes, in-
troducing all the terms and the fundamental parameters necessary for understanding the
Thesis like scattering parameters, standing wave ratio, input impedance of an antenna, an
analysis of the radiation pattern , directivity, polarization and a brief analysis on consid-
erations for space communications. In space communications it is fundamental to achieve
circular polarization because of the effect of the ionosphere in the electromagnetic waves.
The strong electric charge can change the polarization in a way that is impossible to predict,
so at the ground station it is mandatory to have a circular polarized antenna.

After this introduction on antenna matters, an analysis of the solutions used in the previous
mission will be developed, specially considering different approaches, as well as the study of
the State of the Art solution. A popular receiving antenna called Quadrifilar Helix Antenna
will be simulated with the Feko software in order to understand its behaviour. After simula-
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tion, it will be built for obtaining the "‘know-how” about working with this kind of electronic
devices, attempting to receive NOAA (National Oceanic and Atmospheric Administration
from United States of America) satellites.

Once this antenna has been built and tested, a study of the chosen solution for Cubesats will
be performed in order to achieve working prototypes of a bodipole an antenna designed in
Standford and Turnstile antenna. Simulations for obtaining the feeding conditions depending
on the fabrication purposes (like a substrate of FR4) were performed obtaining the input
impedance. A study of the conditions of each antenna lead to choosing among different baluns
(balanced-unbalanced lines transformer) for impedance matching and feeding purposes. A
Printed Circuit Board (PCB) that could attach the balun coaxial configurations as well as
the antennas all in a double layer was designed. The antennas were built and tested to
compare them with the theoretical resonance frequency.

The test results were not satisfactory, as the antennas resonated at different frequencies,
obtainint unexpected results. A new analysis and a new solution is proposed for the Turnstile
antenna, achieving the expected frequency. The bodipole results were analysed and the
reason for having a different resonant frequency is explained.

A PCB that could integrate both antenna solutions will be proposed as future working lines
for persisting with the design of the antennas for GranaSAT.

http://granasat.ugr.es/
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CHAPTER

1

INTRODUCTION

1.1 Context

On my last year of the Degree in Telecommunication Technologies, I intended to do a study
of how other Cubesat missions have handled the communications of their picosatellite, and
perform a preliminary design for GranaSAT. GranaSAT is an academic design project from
the University of Granada consisting of the development of a picosatellite. A picosatellite
is an artificial satellite with the mass between 0.1 and 1 kg. The Cubesat with a mass
approximately of 1.33 kg is an example of a large picosatellite.

A Cubesat is a type of satellite that is becoming very popular among universities for teaching
their students space related skills while improving their background. The Cubesat program
was developed by research laboratories at California Polytechnic State University and Stan-
ford University in 1999. The purpose of the project is to provide a standard for design
of picosatellites to reduce costs and development time, increase accessibility to space, and
sustain frequent launches. An example of a Cubesat architecture is shown in Figure 1.1.
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Figure 1.1 – Interconnection of satellite subsystems [1]

Developers benefit from the sharing of information within the community. The aim of this
project is to create "‘educational opportunities for future leaders of industry"’ in their own
words. Following the same model over all the different missions and programs, more than
200 Cubesat have been created around the world [10].

Figure 1.2 – An artists rendition of Montana State University’s Explorer-1 CubeSat.

In this context, a considerable amount of universities have joined the spatial career and
are developing this type of picosatellites. The University of Granada wants to be a part
of this new wave of educational background so the program GranaSAT was created by the
Electronics and Computer Technologies department.

The GranaSAT mission aims to design a Cubesat step by step, without the need for ex-
perts. At the moment, there are different Degree and Master Thesis being developed for this
mission. Also it is participating in the BEXUS/REXUS program. The REXUS/BEXUS pro-
gram is realized under a bilateral Agency Agreement between the German Aerospace Center
(DLR) and the Swedish National Space Board (SNSB). The Swedish share of the payload
has been made available to students from other European countries through a collaboration
with the European Space Agency (ESA). This project in which I also take part leading the
mechanical department, is allowing us to learn the know-how about space missions and their
future applications in the GranaSAT program. The logos of both missions can be seen in
Figure 1.3.
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1
(a) (b)

Figure 1.3 – (a) Granasat and (b) REXUS/BEXUS logos

In parallel with the REXUS/BEXUS project, the technical parts of GranaSAT are being
developed following the standards [10]. Cubesat standard dimensions for the 1U model are
10x10x10 cm3 and in the standard the radio-communication systems prupose the use of
the VHF, UHF,S- and X-band. These systems must be much smaller than what is used in
conventional satellites due to space constraints.

With the help of other missions as well as the constraints from the standard [10], this Degree
Thesis aims to perform an overview of antennas used in Cubesats choosing between the
different approaches followed by other experiments. This Degree Thesis is intended to be
a guide for future students working in GranaSAT to implement the antenna system in the
picosatellite.

The laboratories dependent on the Electronics and Computer Technologies department of
Granada University will be used. In that environment, the possibility to use a network
analyser, a PCB milling machine and the different materials will help the creation of the
Hardware of this Degree Thesis.

1.2 Prior knowledge

This Degree Thesis needs some prior knowledge before being faced. A background on elec-
tromagnetism is necessary for understanding the antenna related theory and being able to
explain their behaviour. Also, a certain knowledge about space communications is needed
for a comprehensive approach of what is happening between the transmission and reception
on satellites. Advanced electronics and PCB design are important for understanding the
impedance matching as well as the process of design and fabrication of the PCBs. Some
other competences for having a correct development of the Thesis are self learning capacity
and autonomous organization.

1.3 Main bibliography

The main bibliography used for documenting this Degree Thesis is the following:

[2] Constantine A. Balanis. Antenna Theory: Analysis and Design. Wiley, 2005. ISBN
978-0471667827.
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[3] Lluís Jofre Roca, Ángel Cardama Aznar. Antenas. Edicions UPC, 2002. ISBN 84-8301-
625-7.

[8] American Radio Relay League. The ARRL Antenna Book. ARRL, 2000. ISBN 0-87259-
804-7.

[12] Feko. Reference guide. 2014.

With the books from C. Balanis [2] and A. Cardama [3], the antenna theory was approached.
They are the theoretical reference for understanding how the antennas are working. The
ARRL book [8] is the reference for passing from theory to practice, explaining problems
that can appear when building antennas and solutions to them. The Feko® reference guide
is the pillar for performing the simulations before approaching the building of the anten-
nas, understanding how they work and how the FR4 substrate of the PCB will change its
behaviour.
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CHAPTER

2

PROJECT GOALS

The requirements and constraints of this Thesis Degree will be presented as well as the
achieved results. The different project chapters will be described.

2.1 Objectives

The main objective of this Degree Thesis is to set a base for future working in the design
of GranaSAT antennas, understanding satellite communications, choosing the solution to
implement and test it in a preliminary design. This objective was divided when the project
was set out in February of 2014 in the following objectives:

• (1) To understand the main antenna parameters used for building antennas.

• (2) To study the most common approaches to antennas followed by other Cubesats.

• (3) To perform and understand electromagnetic simulations with a software used in
industry.

• (4) To build a receiver antenna in the UHF-VHF band.

• (5) To receive signals from already existing satellites.

• (6) To study antenna polarization with a built model.

• (7) To design a prototype of a working antenna with circular polarization to implement
in GranaSAT.
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• (8) To build a prototype of a working antenna with circular polarization to implement
with an easy deployment method, without the need of a mechatronics expert.

2.2 Achieved objectives

The 1st and 2nd goals correspond with a documentation stage. This stage was one of the
longest because of the lack of knowledge about antennas when facing the project. These
goals were all achieved as can be seen in Chapter 3, and in Chapter 4.

The 3rd goal was essential for understanding all the simulations performed during this whole
Degree Thesis. In Appendix A.1 there is a step by step guide of how to perform and explain
the simulation results, and in Chapter 4, Chapter 5 and Chapter 6 there are a large number
of simulations with Feko®, a piece of software largely used in the industry. This objective
was completely achieved.

Objectives 4, and 5 are concerned with the fabrication of a Quadrifilar Helix Antenna for
receiving NOAA satellites in Chapter 5. The antenna was built, fully achieving the 4th
objective and a noisy signal is received with a software defined radio, but not good enough
to obtain all the information the satellite sent. Objective 5 is partially achieved, and solutions
are proposed on the same chapter for receiving a clean signal.

The 6th, 7th and 8th objectives are met in Chapter 6, where an antenna system is proposed
with the mechanical restriction of their deployment. One antenna is made of tape measure,
allowing a simple deployment and another is integrated in the Cubesat. Two designs of this
system are proposed, building the simpler one (made with coaxial baluns) as a prototype and
proposing the second (with a balun composed of passive elements) for further work on the
development of GranaSAT antennas. The antennas built are tested and circular polarization
is achieved. This objective is fully achieved.

2.3 Workflow and brief summary

Once the context and the scope of this Degree Thesis is described, we can observe in Figure
2.1 the work flow chart followed.
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Figure 2.1 – Work flow chart

Based on the diagram, the chapters will be numbered with the common thread being the
understanding of Cubesat antennas.

• Chapter 3: A brief introduction on antenna theory with the description of all the pa-
rameters used during this Degree Thesis. The antennas will be modelled as impedances
and studied like a circuit.

• Chapter 4: An analysis of the antennas in previous missions as well as a description
of the State of the Art in Cubesat antennas will be performed. A software for satellite
tracking will be described and used for positioning the different satellites in their orbits.

• Chapter 5: There will be a presentation of some ground antennas used for receiving
satellites. An antenna for receiving the weather satellites of the National Oceanic and
Atmospheric Administration of the United States will be built and tested.

• Chapter 6: A 3D model of the Cubesat will be built for the antenna mechanical
constraints. Using the model developed and the analysis of Chapter 2 a prototype
PCB will be designed for mounting a turnstile antenna and a bodipole. Antennas are
built and tested. After obtaining results different than expected, an explanation of the
behaviour and a new model of PCB is designed.

• Chapter 7: Brief conclusion and future development.
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CHAPTER

3

ANTENNA THEORY
INTRODUCTION

In this chapter, a brief introduction of the main antenna parameters will be made. The
antennas will be analysed from a circuital point of view in this Degree Thesis. This analysis
will be focused on enumerating the essential parameters of an antenna to understand its
behaviour as well as on the parameters used during this thesis.

3.1 Introduction

Antennas belong to a class of electronic devices called transducers. This term is derived
from two Latin words, meaning literally “to lead across” or “to transfer.” Thus, a transducer
is a device that transfers, or converts, energy from one form to another. The purpose of an
antenna is to convert radio-frequency electric current to electromagnetic waves, which are
then radiated into space. The IEEE Standard Definitions of terms for Antennas (IEEE Std
145–1983) defines the antenna or aerial as “a means for radiating or receiving radio waves”.
The guiding device or transmission line may take the form of a coaxial line or a hollow
pipe (waveguide), and it is used to transport electromagnetic energy from the transmitting
source to the antenna, or from the antenna to the receiver. In the former case, we have a
transmitting antenna and in the latter a receiving antenna [2].

The main difference between an antenna and an ordinary electronic circuit is that normally
the dimensions of the components are small compared to the wavelength. In antenna theory
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the wavelength (λ) is defined as:

λ = c

f
(3.1.1)

Were in Equation 3.1.1 c is the speed of light and f the working frequency.

When circuit dimensions are small compared to λ, most of the electromagnetic energy is
confined to the circuit itself, and is used up either performing useful work or is converted
into heat. However, when the dimensions of wiring or components become significant com-
pared with the wavelength, some of the energy escapes trough radiation in the form of
electromagnetic waves [8]. The electric field in a transition device can be seen in Figure 3.1.

Figure 3.1 – Antenna as a transition device [2]

In this Degree Thesis the antennas will be considered from an electronic point of view. The
antenna will be considered as an impedance that will be feed by a source. For obtaining the
radiation pattern of them Feko® will be used for performing simulations.

3.2 Scattering parameters

Linear two-port (and multi-port) networks are characterized by a number of equivalent circuit
parameters such as the scattering matrix. Figure 3.2 shows a typical two port network.
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13
S-Parameters

13.1 Scattering Parameters

Linear two-port (and multi-port) networks are characterized by a number of equivalent
circuit parameters, such as their transfer matrix, impedance matrix, admittance matrix,
and scattering matrix. Fig. 13.1.1 shows a typical two-port network.

Fig. 13.1.1 Two-port network.

The transfer matrix, also known as the ABCD matrix, relates the voltage and current
at port 1 to those at port 2, whereas the impedance matrix relates the two voltages
V1, V2 to the two currents I1, I2:†[

V1

I1

]
=

[
A B
C D

][
V2

I2

]
(transfer matrix)

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

][
I1

−I2

]
(impedance matrix)

(13.1.1)

Thus, the transfer and impedance matrices are the 2×2 matrices:

T =
[
A B
C D

]
, Z =

[
Z11 Z12

Z21 Z22

]
(13.1.2)

The admittance matrix is simply the inverse of the impedance matrix, Y = Z−1. The
scattering matrix relates the outgoing waves b1, b2 to the incoming waves a1, a2 that
are incident on the two-port:

†In the figure, I2 flows out of port 2, and hence −I2 flows into it. In the usual convention, both currents
I1, I2 are taken to flow into their respective ports.

618 13. S-Parameters

[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
, S =

[
S11 S12

S21 S22

]
(scattering matrix) (13.1.3)

The matrix elements S11, S12, S21, S22 are referred to as the scattering parameters or
the S-parameters. The parameters S11, S22 have the meaning of reflection coefficients,
and S21, S12, the meaning of transmission coefficients.

The many properties and uses of the S-parameters in applications are discussed
in [1083–1122]. One particularly nice overview is the HP application note AN-95-1 by
Anderson [1098] and is available on the web [1457].

We have already seen several examples of transfer, impedance, and scattering ma-
trices. Eq. (10.7.6) or (10.7.7) is an example of a transfer matrix and (10.8.1) is the
corresponding impedance matrix. The transfer and scattering matrices of multilayer
structures, Eqs. (6.6.23) and (6.6.37), are more complicated examples.

The traveling wave variables a1, b1 at port 1 and a2, b2 at port 2 are defined in terms
of V1, I1 and V2, I2 and a real-valued positive reference impedance Z0 as follows:

a1 = V1 + Z0I1

2
√
Z0

b1 = V1 − Z0I1

2
√
Z0

a2 = V2 − Z0I2

2
√
Z0

b2 = V2 + Z0I2

2
√
Z0

(traveling waves) (13.1.4)

The definitions at port 2 appear different from those at port 1, but they are really
the same if expressed in terms of the incoming current −I2:

a2 = V2 − Z0I2

2
√
Z0

= V2 + Z0(−I2)
2
√
Z0

b2 = V2 + Z0I2

2
√
Z0

= V2 − Z0(−I2)
2
√
Z0

The term traveling waves is justified below. Eqs. (13.1.4) may be inverted to express
the voltages and currents in terms of the wave variables:

V1 =
√
Z0(a1 + b1)

I1 = 1√
Z0

(a1 − b1)

V2 =
√
Z0(a2 + b2)

I2 = 1√
Z0

(b2 − a2)
(13.1.5)

In practice, the reference impedance is chosen to be Z0 = 50 ohm. At lower fre-
quencies the transfer and impedance matrices are commonly used, but at microwave
frequencies they become difficult to measure and therefore, the scattering matrix de-
scription is preferred.

The S-parameters can be measured by embedding the two-port network (the device-
under-test, or, DUT) in a transmission line whose ends are connected to a network ana-
lyzer. Fig. 13.1.2 shows the experimental setup.

A typical network analyzer can measure S-parameters over a large frequency range,
for example, the HP 8720D vector network analyzer covers the range from 50 MHz to

Figure 3.2 – Two port general network

The scattering parameters of the two port network are defined in Equations 3.2.1, 3.2.2,
3.2.3 and 3.2.4.

S11 = b1

a1
|ZL=Z0 (3.2.1)

S12 = b1

a2
|Zs=Z0 (3.2.2)

S21 = b2

a1
|ZL=Z0 (3.2.3)

S22 = b2

a2
|Zs=Z0 (3.2.4)

The parameter S11 is known as the input reflection coefficient, S22 as the output reflec-
tion coefficient. The scattering parameters will be used for characterising different antenna
configurations under this thesis.

3.3 Standing Wave Ratio

The SWR is the ratio comparing the maximum value of a partial standing wave in comparison
with the minimum in an electrical transmission line. It is usually defined as a voltage ratio,
called Voltage Standing Wave Ratio. The definition of this parameter is in Equation 3.3.1.

SWR = 1 + ‖S11‖
1− ‖S11‖

(3.3.1)

3.4 Impedance

The input impedance of an antenna Zin will have a real part Rin(ω) and an imaginary part
Xin(ω) defined by the voltage-current relations on the input. Zin allows to obtain a circuital
model as seen in Figure 3.3. The antenna will be connected to a transmitter in order to
radiate the maximum power with the minimum loss possible. This can be achieved by doing
complex impedance matching (Figure 3.4).
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Figure 3.3 – An equivalent impedance of an antenna

Figure 3.4 – Impedance matching of an antenna to a source

3.5 Radiation pattern

A Radiation pattern defines the variation of the power radiated by an antenna as a function
of the angles θ, φ at a fix distance. The antenna is positioned at the origin of the spherical
coordinate axis (Figure 3.5). CONSIDERACIONES GENERALES SOBRE ANTENAS

El sistema de coordenadas
utilizado habitualmente en antenas es el
esférico. Para especificar una dirección
del espacio se utilizan los dos ángulos
θ, φ. En este sistema de coordenadas
(Fig. 1.1) se definen los vectores
unitarios        que forman una base
ortogonal. La orientación de los
vectores se determina mediante la
intersección de una esfera de radio r, un
cono de ángulo θ y un semiplano que
pasa por el eje z.

La onda electromagnética
radiada se compone de un campo
eléctrico                  y uno  magnético

; ambos son magnitudes
vectoriales y están ligados por las
ecuaciones de Maxwell.

A partir de los valores eficaces
de los campos se obtiene la densidad de
flujo por unidad de superficie mediante

donde se ha supuesto para los campos una variación temporal armónica y los símbolos *, Re y  H
denotan el complejo conjugado, la parte real y el producto vectorial.

Para los campos radiados, los módulos del campo eléctrico y del campo magnético están
relacionados por la impedancia característica del medio η, que en el vacío vale 120π Ω.

Por lo tanto, la densidad de potencia radiada también se puede calcular a partir de las
componentes transversales del campo eléctrico

La potencia total radiada se puede obtener como la integral de la densidad de potencia en una
superficie esférica que encierre a la antena

La intensidad de radiación es la potencia radiada por unidad de ángulo sólido en una
determinada dirección; sus unidades son vatios por estereorradián y a grandes distancias tiene la
propiedad de ser independiente de la distancia a la que se encuentre la antena.

La relación entre la intensidad de radiación y la densidad de potencia radiada es

y la potencia total radiada también se puede calcular integrando la intensidad de radiación en todas las
direcciones del espacio
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Figure 3.5 – Spherical coordinates [3]

If the antenna is observed from a long distance, the radiation will be seen as coming from a
single point. Very far from a point source the wave fronts are essentially plane waves. This
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3

is called the Fraunhofer regime, and the diffraction pattern is called Fraunhofer diffraction.
For antennas physically larger than a half-wavelength of the radiation they emit, the near
and far fields are defined in terms of the Fraunhofer distance following Equation 3.5.1.

df = 2D2

λ
(3.5.1)

Where, D is the largest dimmension of the radiatior.

Although a 3D radiation pattern can be useful for studying near and far field, for engineering
purposes it is better to have the information on 2D by making a cross-section diagram. There
are two main drawings:

• Cross-section with φ constant.

• Cross-section with θ constant.

An example of 2D diagram can be seen in Figure 3.6.

CONSIDERACIONES GENERALES SOBRE ANTENAS

Si bien la información de la radiación es tridimensional, puede ser de interés, y en muchos casos
suficiente, representar un corte del diagrama. Los cortes pueden hacerse de infinitas formas. Los más
habituales son los que siguen los meridianos en una hipotética esfera (cortes para φ constante) o los
paralelos (cortes con θ constante). La información de todos los cortes del diagrama es excesiva, por
lo que se recurre a representar dicha información sólo en los planos principales.

Los cortes bidimensionales del diagrama de radiación se pueden representar en coordenadas
polares o cartesianas. En el primer caso el ángulo en el diagrama polar representa la dirección del
espacio, mientras que el radio representa la intensidad del campo eléctrico o la densidad de potencia
radiada. En coordenadas cartesianas se representa el ángulo en abscisas y el campo o la densidad de
potencia en ordenadas.

La representación en coordenadas cartesianas permite observar los detalles en antenas muy
directivas, mientras que el diagrama polar suministra una información más clara de la distribución de
la potencia en las diferentes direcciones del espacio. Las figuras 1.3 y 1.4 muestran ejemplos de ambas
representaciones.

El campo se puede representar de forma absoluta o relativa, normalizando el valor máximo a la
unidad. También es bastante habitual la representación del diagrama con la escala en decibelios. El
máximo del diagrama de radiación es cero decibelios y en las restantes direcciones del espacio los
valores en dB son negativos. Es importante tener en cuenta que los diagramas de campo y de potencia
son idénticos cuando la escala está en decibelios.

En un diagrama de radiación típico, como los mostrados en las figuras anteriores, se aprecia una
zona en la que la radiación es máxima, a la que se denomina haz principal o lóbulo principal. Las
zonas que rodean a los máximos de menor amplitud se denominan lóbulos laterales y al lóbulo lateral
de mayor amplitud se denomina lóbulo secundario. A continuación se definen una serie de parámetros
importantes del diagrama.

El ancho de haz a -3 dB (∆θ-3db) es la separación angular de las direcciones en las que el diagrama
de radiación de potencia toma el valor mitad del máximo. En el diagrama de campo es la excursión
angular entre las direcciones en las que el valor del campo ha caído a 0,707 el valor del máximo.

El ancho de haz entre ceros (∆θc) es la separación angular de las direcciones del espacio en las
que el lóbulo principal toma un valor mínimo.
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Figure 3.6 – 2D radiation pattern examples [3]

3.5.1 Beamwith

The beamwith (∆θ−3dB), is the distance in degrees between the points where the transmitted
power is the half of its maximum (3dB).

3.5.2 Examples

There are three radiation patterns used as a base reference for understanding other radiation
pattern. They can be seen in Figure 3.7.

UHF-VHF Cubesat Antennas Design
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La relación de lóbulo principal a secundario (NLPS) es el cociente, expresado en dB, entre el
valor del diagrama en la dirección de máxima radiación y en la dirección del máximo del lóbulo
secundario. Normalmente, dicha relación se refiere al lóbulo secundario de mayor amplitud, que suele
ser adyacente al lóbulo principal.

La relación delante-atrás (D/A) es el cociente, también en dB, entre el valor del diagrama en la
dirección del máximo y el valor en la dirección diametralmente opuesta.

Si un diagrama de radiación presenta simetría de revolución en torno a un eje se dice que la
antena es omnidireccional. Toda la información contenida en el diagrama tridimensional puede
representarse en un único corte que contenga al eje.

Se denomina antena isótropa a una antena ideal que radie la misma intensidad de radiación en
todas las direcciones del espacio. Aunque no existe ninguna antena de estas características, es de gran
utilidad para definir los parámetros de la siguiente sección.

1.2.4  Directividad

La directividad D de una antena se define como la
relación entre la densidad de potencia radiada en
una dirección, a una distancia dada, y la densidad
de potencia que radiaría a esa misma distancia una
antena isótropa que radiase la misma potencia que
la antena

Si no se especifica la dirección angular, se
sobreentiende que la directividad se refiere a la
dirección de máxima radiación

Ejemplo 1.1 Directividad de un dipolo elemental
Un dipolo eléctricamente pequeño tiene un diagrama de radiación 

ANTENAS
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Fig. 1.5  Diagramas de radiación isótropo, omnidireccional y directivo.

Fig. 1.6  Directividad
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Figure 3.7 – (a) Isotropic, (b)omnidirectional and (c) directive radiation patterns [3]

An isotropic antenna is an antenna that delivers the same power into all space directions.
An omnidirectional antenna radiates its power uniformly in a plane. A directive antenna
directs its energy in a narrow beam.

3.6 Directivity

The directivity of an antenna is equal to power radiated in a direction divided by the power
density radiated at the same distance by an isotropic antenna (Equation 3.6.1).

D(θ, φ) = P (θ, φ)
Pr/4πr2 (3.6.1)

3.7 Polarization

An antenna’s polarization is that of its electric field, in the direction where the field strength
is maximum.

Figure 3.8 – Polarized electromagnetic wave [4]

Lineal polarization is achieved when the electric field and the magnetic field are perpendicular
to each other and to the direction the plane wave is propagating. If vertical and horizontal
elements in the same plane are fed out of phase (where the beginning of the RF period
applied to the feed point of the vertical element is not in time phase with that applied to
the horizontal), the resultant polarization is elliptical. Circular polarization is a special case
of elliptical polarization. The wave front of a circularly polarized signal appears (in passing
a fixed observer) to rotate every 90°between vertical and horizontal, making a complete
360°rotation once every period. Field intensities are equal to all instantaneous polarizations.
Circular polarization is frequently used for space communications [8].
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3.7.1 Axial ratio

The axial ratio is the ratio of orthogonal components of an E-field. When there is circular
polarization, the axial ratio is 0 dB. If the axial ratio is larger than 0 dB, we will have an
elliptical polarisation [2]. The axial ratio for lineal polarisation is infinite.

In Feko®, we can observe the polarization of an antenna using the axial ratio parameter as
shown in Figure 3.9.

Figure 3.9 – Axial ratio in dB shown by Feko®

3.8 Antenna system for space communication

There are two basic modes of space communications: satellite and earth-moon-earth (EME
also referred to as moonbounce). Both require consideration of the effects of polarization and
elevation angle which where commented on in Section 2, along with the azimuth directions
of transmitted and received signals. In this Degree Thesis, satellite communications will be
considered.

3.8.1 Azimuth and elevation angle

The azimuth (az) angle is the compass bearing, relative to geographic north, of a point on
the horizon directly beneath an observed object. The elevation (el) angle, also called the
altitude, of an observed object is determined by first finding the compass bearing on the
horizon relative to true north, and then measuring the angle between that point and the
object, from the reference frame of the observer. It is easier to understand these concepts
by looking at Figure 3.10.

UHF-VHF Cubesat Antennas Design
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Figure 3.10 – Azimuth-Altitude schematic [4]

3.8.2 Van Allen radiation belt

The Low Eath Orbit (LEO) and Medium Eath Orbit (MEO) satellites orbit in the Van
Allen belt, which lie between the magnetosphere and ionosphere. The Van Allen Belt is
formed by two zones encircling the earth in which there are relatively large numbers of high-
energy charged particles. LEO satellites are orbiting under the most intense and damaging
portions of the lower Van Allen belts. The energetic particles can damage the exposed
antenna components. Due to this effect, the electromagnetic wave can change its plane
of polarization. Receiver antennas on Earth should always have circular polarization for
receiving from Space.
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CHAPTER

4

PREVIOUS MISSIONS

Regarding the Cubesat programme, as the information is shared, an analysis of previous
educational missions can be made. The Cubesat antennas description are not only avail-
able on educational papers, a big number of enterprises and spin-offs have started selling
technology related to this field after a Cubesat development in different universities. The
analysis will be focused specially on 1U Cubesat (same size as GranaSAT). Their dimensions
are 10x10x10 cm3, so for an antenna bigger than 10 cm long a deployment method will be
needed.

This chapter starts with a small introduction to those antennas most used in Cubesat appli-
cations. After describing the most common antennas, a comparison chart of the technology
used will be presented. Using a free software real-time satellite tracking and orbit prediction
application we can check the frequencies used on each satellite and their position at the
moment, this software will be used for positioning the selected satellites still alive in their
trajectory.

4.1 Cubesat Antennas approaches

As mentioned before, our focus is on 1U Cubesats [10]. Following the standard design
requirements described in Chapter 2 different solutions are presented in different universities,
pursuing an evolution aiming for higher data rate. The different approaches considered for
space exploration are described on the following subsections, but as a starter, we can consider
the Table 4.1.

UHF-VHF Cubesat Antennas Design 17
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Antenna
type

Frequency range
in satellites Configuration Deployement Gain

[dB]
Beamwith

[◦]

Half wave
dipole

VHF
[30MHZ,300MHz] Unfolt Yes 2 78

UHF
[300MHz,3GHz]

Folded dipole
VHF

[30MHZ,300MHz] Bent No 2 78
UHF

[300MHz,3GHz]

Patch S-band
[1.5GHz,5.2GHz] Sticker No 7-9 65

Table 4.1 – Different Cubesat antenna aproaches
4.1.1 Dipole

A dipole antenna is a vertical radiator fed in the centre which consists of two terminals.
The length of the radiating element determines many of the properties of the antenna like
impedance, working frequency, radiation pattern, etc.

4.1.1.1 Theory

Historically, the λ/2 dipole is one of the most used by amateurs worldwide [8] because of it
easiness to build and its effective performance. A dipole is normally feed in the centre, but
there are as well off-centre-fed-dipoles.

The current is driven into a dipole with open circuit end. To understand how the current
can close its path we need to consider the parasitic capacitance between the arms of the
dipole which will generate a return path for the current as seen in Figure 4.1

Cp 

λ/4 

λ/4 

Figure 4.1 – Half wave dipole and its parasitic capacitance

As mentioned in Chapter 3 , we are interested in the antenna circuital analysis. For this
purpose, we are interested in obtaining the equivalent impedance of the antenna at the feed
point.
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The radiation resistance is defined by Equation 4.1.1

Rr = Pr
I(0)2 (4.1.1)

Pr is the total power radiated. It is obtained integrating the power density created by an
antenna in a completely covered closed surface. For obtaining I(0) we can consider an ideal
rectilinear wire with an small radius compared to wave length as seen in Figure 4.2

En el capítulo anterior se han encontrado las expresiones que nos permiten hallar los campos radiados
por una determinada distribución de corriente. En el presente capítulo se estudiarán las distribuciones
de corrientes más sencillas, las lineales.

4.1  Antenas elementales

4.1.1  Dipolo elemental

Vamos a analizar los campos y parámetros de radiación de un elemento de corriente de longitud �,
mucho menor que λ, recorrido por una corriente uniforme de valor eficaz I. Este elemento de corriente
o dipolo elemental tiene importancia por sí mismo, ya que un gran número de antenas en baja
frecuencia poseen estas características y además, por superposición de elementos de corriente, pueden
ser analizadas distribuciones de mayor longitud y no uniformes, como veremos posteriormente.
Consideremos la situación de la figura 4.1 con un hilo de corriente I, o la densidad correspon-
diente                          .

El potencial vector vendrá dado por la siguiente ecuación (3.28)

que, para una distribución lineal como la dada, toma la
forma

Para el dipolo elemental I es constante y dado que
�<<λ, tendremos que para los puntos situados a una distancia
r, se verifica �<<r, yθ′−≈ coszrR
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Fig. 4.1  Dipolo elemental

(4.1)

(4.2)

Figure 4.2 – Elemental dipole [3]

The current at the feed point is defined by Equation 4.1.2, if we consider the dipole as a
transmission line of parallel wires open-ended.

I0 = Im sin kH (4.1.2)

Where Im is the current maximum and k = 2π
λ
. Using a theoretical analysis we can determine

the impedance of the dipole as seen on [3]. The real part of the half wave dipole is then
Rr = 73Ω.

The imaginary part is calculated considering a transmission line open-ended.

Xe = −jZ0 cot kH (4.1.3)

Considering Z0 as the characteristic impedance of the transmission line formed by the dipole,
Xe = j21 Ω.

Zin = 73 + j21 Ω (4.1.4)
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4.1.1.2 Radiation Pattern

Using Feko® as described in the Appendix A.1, we developed a 3D model of a half wave
dipole at 75 MHz to obtain its radiation pattern. The results can be seen in Figure 4.3 with
the feeding port placed in the middle.

λ/2 

Figure 4.3 – Half wave dipole designed with Feko®

The solution frequency was set to 75 MHz and the segment radius to 1 mm for meshing.
The results obtained in POSTFEKO are shown in the Figures 4.4 and Figure 4.5.

Figure 4.4 – 3D Far field radiation pattern of a dipole

(a) (b)
Figure 4.5 – Far field radiation pattern of a dipole
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4.1.2 Folded dipole

The folded dipole consists of two conductors each of λ/2 length, connected. It has a wider
bandwidth than a fundamental dipole and a better mechanical strength.

4.1.2.1 Theory

The folded dipole input impedance is four times bigger than the normal dipole, this can be
proven if we assume the folded dipole to be as an unbalanced transmission line. the current
that circulates on the antenna under analysis is split into two different modes (Figure 4.6).

Figure 4.6 – Decomposition of a folded dipole into line mode and antenna mode [5]

A first mode in which we consider the folded dipole into line mode as defined in Figure 4.6.
The line impedance is defined by Equation 4.1.5

ZT = Z0 ∗
ZL + jZ0 tan(kl′)
Z0 + jZL tan(kl′) (4.1.5)

For the folded dipole we consider:
l′ = l

2 (4.1.6)

In line mode we consider the input impedance seen from the points a and b as a short-circuit,
obtaining:

ZL = 0 (4.1.7)

Replacing the values defined in Equations 4.1.6 and 4.1.7 into Equation 4.1.5:

ZT = jZ0 tan k l2 (4.1.8)

The voltage difference between a and b is equal to V
2 , so the current that flows into the line

is in Equation 4.1.9.
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IT = V/2
ZT

(4.1.9)

In the antenna mode the current IA (Equation 4.1.10) depends on the dipole’s input impedance,
which we will define as ZD.

IA = V/2
ZD

(4.1.10)

The radius used for computing ZD will be an equivalent wire radius defined in Equation
4.1.11.

ln ae = ln a+ 1
2 ln D

a
(4.1.11)

Once decomposed the model, we can compute the final value of the current:

Iin = IT + IA
2 = V (2ZD + ZT )

4ZTZD
(4.1.12)

Zin = V

Iin
= 4ZTZD

2ZD + ZT
(4.1.13)

Equation 4.1.13 can be used for computing the input impedance of a folded dipole of any
length. In this case we have the conditions defined in Equation 4.1.6, so then we can assume
that the current distribution on the folded dipole added together Iin will be the same as on
the half-wave dipole ID. The radiating power should be the same in both cases:

PD = PF (4.1.14)

1
2ZDI

2
D = 1

2ZinI
2
in (4.1.15)

1
2ZDI

2
D = 1

2Zin
ID
2

2
(4.1.16)

4ZD = Zin (4.1.17)
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4.1.2.2 Radiation Pattern

Using the Feko Software we designed a 3D model of a Folded dipole at a frequency of 137.5
MHz fed in the centre with a radius of 1 mm.

Figure 4.7 – 3D folded dipole model built on Feko

The results of the simulation for the radiation pattern are shown in Figure 4.8 and Figure
4.9.

Figure 4.8 – 3D gain pattern

(a) (b)
Figure 4.9 – Far field radiation patterns of a folded dipole depending on (a) θ and (b) φ

This antenna has largely been used in radio applications as it can be seen in chapter 5 in [8].
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4.1.3 Patch antenna

4.1.3.1 Theory

The idea of microstrip patch antennas arose from using printed circuit technology not only
for the circuit components and transmission lines but also for the radiating elements of an
electronic system. It was first proposed by Deschamps [13] in 1953, but did not become
practical until 1970 when this antenna was developed into more details.

The basic structure is described in Figure 4.10. It has a thin dielectric substrate above a
ground plane. The patch shape can be really different, but on the right of Figure 4.10 there
is a representation of the most common shapes.

A patch antenna is normally feed by either coaxial probe, microstrip line feed, aperture-
coupled feed and proximity feed (Figure 4.11).

Figure 4.10 – The basic structure of the microstrip patch antenna [6]

Figure 4.11 – Four common feeding methods of microstrip patch antenna [6]

This kind of antennas are available off-the-shelf, but for omnidirectional coverage we would
require multiple patch antennas. A patch antenna can be produced by printed circuit tech-
nology and does not need a deploy method. It has a greater gain than the dipole and folded
dipole antenna as described in Table 4.1.
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4.1.3.2 Radiation Pattern

We can design a 3D model of a patch antenna working on 7.5 GHz. We will create a perfect
electric conductor polygon that is supported in a dielectric substrate. In Figure 4.12 the
antenna can be seen in the middle of free space, marked on red.

Figure 4.12 – Patch antenna designed with Feko

The simulation results are in Figures 4.14.

Figure 4.13 – Results for a far field analysis for a single frequency
.
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(a) (b)
Figure 4.14 – Far field radiation pattern of a patch antenna depending on (a) θ and (b) φ

4.2 Comparative table

In the next table, an analysis of the previous missions is performed with its more important
parameters. Not all the Cubesat missions are described since that would be a complete
Bachelor Thesis on its own, but we have chosen different examples of antennas used for a
comparison.
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Mission Support Launch date Estimated life span Antenna development Antenna type Working frequency Positioning

AAU1 Cubesat
Aalborg University 

(Denmark)
30/06/2003 3 months Comercial from OSS  (price not available) Dipole 437.425 MHz  [Half duplex]

DTUsat-1
Technical University of 

Denmark
01/07/2003 0 days Designed at University

Canted turnstile  

[Half duplex]
437.475 MHz  [Half duplex]

ArduSat-1 Kickstarter 19/10/2013 2+ months Comercial from GomSpace (5.550 €) Turnstile Antenna 437.325 MHz  [Half duplex]

DL: 437.305 MHz

UL: 150 MHz

BEESAT2
Technical University of 

Berlin (Germany)
19/04/2013 2+ weeks Designed at University 2xMonopole 435.95 MHz [Half duplex]

DL: 435.950 MHz

UL:2.263 MHz

DL & CW: 430 MHz

UL: 144 MHz

Designed at University 3xMonopoleCUTE-1

Tokyo Institute of 

Technology (TITech) and 

SRTL (Space Robotics 

and Teleoperations 

Laboratory) of Tokyo 

(Japan)

30/06/2013 118+ months

UHF Monopole & S 

Patch antenna

Technical University of 

Berlin (Germany)
23/07/2009 43+ months Designed at University

Quarter-wave 

monopole 

antennas with 

toroidal radiation 

pattern.

BEESAT3
Technical University of 

Berlin (Germany)
19/04/2013 2+ weeks Designed at University

Vermont 

Lunar Cube

Vermont Technical 

College (USA)
20/10/2013 1+ month Commercial from ISIS (4.500 €)

BEESAT1 436 MHz [Half duplex]

Crossed dipoles

Table 4.2 – Comparison of different missions and their antenna approach
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As it can be seen in the comparative table, there are some commercial solutions starting at a
few thousand euros [14]. There are more than fifty enterprises that commercialise antennas
for Cubesats, and most of them come from a Cubesat project at University. Having the
whole communication system developed at the University allows the student to face a real
engineering challenge. In GranaSAT, we decide to develop the antenna at the university,
following the path of many universities like the Technical University of Berlin and Tokyo
Institute Technology among others.

The antenna approaches are different, but they all fit into the requirements established in
[10]. All of them are deployable, making the mechanics of the satellite more difficult and
error-prone.

4.2.1 Stanford University solution

As the engineering evolves within the Cubesat technologies, there are other solutions avoid-
ing deployable methods. The solution developed by the Space and System Development
Laboratory of Stanford requires a special mention. They developed a miniature satellite
(2.5x10x10cm) capable of imaging, on-board photo processing and analysis as well as down-
link. The Stanford Nano Picture Satellite (SNAPS) architecture is open and well docu-
mented, and allows end users to tailor hardware and software to their application [7].

SNAPS utilizes a “BodiPole” UHF antenna, which is integrated into the body of the space-
craft, avoiding deployable methods. It is a folded, bent dipole with a length of ∼ 30cm
working at 435 MHz.

Figure 4.15 – bodipole model from SNAPS [7]
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(a) (b)

Figure 4.16 – Dimensions of the bodipole designed by SNAPS [7]

The antenna gives an omnidirectional radiation pattern according to theory. A 3D model
design was built with Feko® (Figure 4.17) to gain a deeper knowledge about how the antenna
works. The obtained radiation pattern can be seen in Figure 4.18 and Figure 4.19.

Figure 4.17 – bodipole model built in Feko
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Figure 4.18 – 3D radiation pattern of the bodipole

(a) (b)

Figure 4.19 – Far field radiation pattern of the bodipole depending on (a) θ and (b) φ

This antenna has the advantage of achieving circular polarization as shown with Feko® with
simulations. The results of this simulation are shown in Figure 4.20.
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(a) (b)

Figure 4.20 – (a) Axial ratio on dB of the bodipole at 435 MHz and (b) Handedness

4.3 Gpredict

Gpredict is a real-time satellite tracking and orbit prediction application. It can track an
unlimited number of satellites and display their position and other data in lists, tables, maps,
and polar plots (radar view). Gpredict is free software licensed under the GNU General
Public License. Gpredict is different from other satellite tracking programs in that it allows
you to group the satellites into visualisation modules, for example, Cubesats.

For downloading it we only need to go to http://gpredict.oz9aec.net/ and download the
version for the operative system used.

4.3.1 Setting the ground station

On a first step, we can set the ground station to Granada to be able to know when different
satellites will pass above the city. For doing so we need to select the city or either introduce
the coordinates.

Figure 4.21 – Setting Granada as the ground station
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4.3.2 Cubesat tracking

There are different group of satellites to select available since we open the program for the
first time as seen in Figure 4.22.

Figure 4.22 – Different groups of satellites available in Gpredict

Selecting Cubesat we access to a big database of available satellites that are working at the
moment. From the comparison Table 4.2 we find the following satellites available on the
software:

Mission Status
AAU1 Cubesat Dead

DTUsat-1 Dead
ArduSat Dead

Vermont Lunar Cube Alive
BEESAT1 Alive
BEESAT2 Alive
BEESAT3 Alive
CUTE-1 Dead

Table 4.3 – Alive/Dead Cubesats listed on Table 4.2

The trajectory of different satellites can be observed, like Vermont Lunar Cube marked in
red in Figure 4.23.
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Figure 4.23 – Gpredict positioning the satellites under study

Orbit information can be accessed directly from the program (Figure 4.24).

Figure 4.24 – Vermont Lunar Cube orbit information

4.3.3 Transponders

The program allows to consult the frequencies of the transponders available for some satellites
as extracted from AMSAT Cubesat list.
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Figure 4.25 – Beesat-1 Transponder information on Gpredict®

By checking the AMSAT database we can complete the information available on Gpredict®
with the information provided by the IARU:

Mission Actual State Transponder
AAU1 Cubesat Dead 437.425 MHz

DTUsat-1 Dead Information not available
ArduSat Dead 437.325 MHz

Vermont Lunar Cube Alive 437.305 MHz
BEESAT1 Alive 436.000 MHz
BEESAT2 Alive 435.950 MHz
BEESAT3 Alive 435.950 MHz
CUTE-1 Dead Information not available

Table 4.4 – Actual state of the Cubesat listed on Table 4.2

Teresa Lucía Aparicio Jiménez

http://gpredict.oz9aec.net/
http://www.amsat.org/?page_id=1093 
http://gpredict.oz9aec.net/
http://www.amsatuk.me.uk/iaru/finished.php?cmd=1
http://www.cubesat.org/


CHAPTER

5

GROUND ANTENNA:
INTRODUCTORY MODEL

In [8] VHF and UHF antenna system are described as followed “Even with high gain an-
tennas, experimentation is greatly simplified at VHF and UHF because the antennas are a
physically manageable size. Setting up a home antenna range is within the means of most
amateurs, and much can be learned about the nature and adjustment of antennas”. The aim
of this chapter is to describe the main receiver antennas used for UHF and VHF communi-
cations to obtain more knowledge about how they work. After the analysis of the different
options, an antenna will be built step by step and its functionality will be checked.

5.1 Ultra High Frequency (UHF) and Very High Frequency (VHF)
antennas used by FM operators

5.1.1 The Yagi-Uda

Developed by Hidetsugu Yagi and Shintaro Uda in the 1920s, this antenna is a multielement
array widely used for amateur radio and distribution systems like television, as well as for
receiving LEO satellites. At the minimum, it consists of a single driven element (dipole) and
a single parasitic element, dependning on the positioning of the parasitic element it is called
a director or a reflector as seen in Figure 5.1.
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Figure 5.1 – Two-element Yagi systems using a single parasitic element [8]

Yagis employing 30 or more elements are not uncommon because one of its major advantages
is the possibility of increasing its gain by adding more numbers of directors. Nevertheless, if
the number of directors is increased, the directivity will increase as well. This directiviness
creates the necessity of a rotor to follow the satellites during its trajectories.

5.1.2 Ground-plane Antennas

A ground-plane antenna is a variant of the dipole antenna, designed for use with an unbal-
anced feed line such as coaxial cable. The main element of a ground-plane antenna is almost
always oriented vertically.

18-18 Chapter 18

Fig 23—These drawings illustrate the dimensions for the 144-MHz ground-plane antenna.

Fig 24—Dimensional information for the 222-MHz ground-plane antenna. Lengths for A, B, C and D are the total
distances measured from the center of the SO-239 connector. The corners of the aluminum plate are bent down at
a 45° angle rather than bending the  aluminum rod as in the 144-MHz model. Either method is suitable for these
antennas.

Figure 5.2 – Ground plane antenna example for 222 MHz [8]

It is really simple to mount, but it has lineal polarization, normally horizontal.
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5.1.3 Quadrifilar Helix Antenna

The QHA represents one specific form of helical antenna, commonly used for receiving data
from different satellites due to its hemispheric radiation pattern. It is normally used LEO
satellite communications, handsets of global positioning system receivers and satellite mobiles
as it is omnidirectional and circularly polarized.

It was developped by Kilgus in 1968 [15]. It is demonstrated that two bifilar helices with
orthogonal radials fed in phase quadrature produce a cardiod pattern shape (130 ◦ 3 dB
beamwith, 180 ◦ 6 dB beamwith) with less than 3 dB axial ratio over the hemisphere. The
form of the antenna is shown in Figure 5.3 for 137.5 MHz. Kilgus achieve to approximate
the QHA for two orthogonal dipole antennas, a bigger dipole marked on blue, and an smaller
on red [15].

0.2 m 

1
 m

 

0
.9

 m
 

Figure 5.3 – Quadrifilar Helix Antenna

One of the mayor drawbacks of this type of antenna is the complex feed network required
because of the phase shift necessary, but it performs a isotropic omnidirectional radiation
pattern which makes it ideal for receiving satellites, without the need of a rotor.

5.2 QHA antenna

On section 5.1 we have just seen some examples of antennas used for receiving UHF-VHF
signals. Signals become circularly polarized while passing through the ionosphere as seen in
Chapter 3. Therefore, we need a circular polarization antenna for receiving the signals.

As there is a lot of information about the building and tuning of the QHA and it has an
omnidirectional pattern allowing to receive almost during all the pass of the satellite, this is
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the antenna chosen to use as an introductory model.

5.2.1 Far field region

As this antenna will be used for receiving satellites, it will be working on far field, also called
Fraunhofer region as seen in Chapter 3, this region is determined by Equation 5.2.1:

df = 2D2

λ
(5.2.1)

It must satisfy these two conditions:

df >> D (5.2.2)

df >> λ (5.2.3)

Using Equation 5.2.1, and considering the physical length of the antenna as the loop formed
by its biggest conductor:

df = 22.39742

2.18 = 5.27m (5.2.4)

5.2.2 Antenna Simulations

Once we know the electric field we should expect from a QHA antenna, some simulations
can be performed in order to know the expected results after building the antenna. For this
purpose Feko® will be used as described in Appendix A.1.

5.2.2.1 3D Antenna

A QHA is based in two folded dipoles of different size connected in parallel. As this model is
more complicated that others already simulated with Feko® in this Degree Thesis, an step
to step approach for understanding the results of this antenna will be made.

5.2.2.2 Single bent dipole

The first model designed is a single folded dipole with the QHA bigger loop dimensions
(0.9x0.2m), seen in Figure 5.4.
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Figure 5.4 – Bigger loop of the QHA

Figure 5.5 – 3D radiation pattern of QHA bigger loop

(a) (b)

Figure 5.6 – Far field radiation pattern at 137.5 MHz depending on (a) θ and (b) φ

The radiation pattern shows a healthy gain in the horizontal direction perpendicular to the
plane of the loop.
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5.2.2.3 Two bent dipoles

An omnidirectional antenna in the horizontal plane can be achieved by using a second loop
perpendicular to the first (Figure 5.7). The second loop should be feed with a 90 ◦ phase
difference.

Figure 5.7 – Complete QHA

The polarization changes the results of simulation. In Figure 5.8 a first case and its results
are shown in Figure 5.9. In Figure 5.10 and Figure 5.11, the second case of polarization is
shown.

Figure 5.8 – First case of QHA polarization

(a) (b)

Figure 5.9 – Results of the first case of polarizacion (a) gain (dB) and (b) Handedness
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Figure 5.10 – Second case of QHA polarization

(a) (b)

Figure 5.11 – Results of the second case of polarizacion (a) gain (dB) and (b) Handedness

NOAA satellites are right handed polarized, therefore the solution chosen should be the one
shown in Figure 5.10. The 2D far field graphs are detailed in Figure 5.12. The gain has
decreased in comparison with the single bent dipole, but circular polarization for receiving
the satellite can be achieved.

(a) (b)

Figure 5.12 – Far field radiation pattern at 137.5 MHz depending on (a) θ and (b) φ
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5.3 QHA Building

Following the experimental information available online [16], an easy to build but performing
antenna for receiving at 137.5 MHz will be presented.

5.3.1 Materials

Following the requirements, a 137.5 MHz QHA was built. The material needed for doing so
is [16]:

1.) 1.5 meters of 32mm PCV pipe.

2.) 4.6 m of soft copper tube.

3.) 8 copper elbows for corners.

4.) Suitable coaxial line.

5.3.2 Procedure

1.) Cut the soft copper in appropriated lengths as seen in Figure 5.13, it is needed:

A.) 2x190mm bottom horizontal tubes

B.) 2x903mm short helix elements

C.) 2x1002mm long helix element tubes

D.) 2x90mm top horizontal elements

2.) Drill 4x8 mm holes at 90 degrees each other, a detailed picture of how this was done
is provided in Figure 5.14

3.) Assemble tubes as in Figure 5.14.

4.) Use the coaxial line to fabricate a choke balun as analysed and performed in Section
5.3.2.1.

Figure 5.13 – Copper tubes and bents
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(a) (b)
Figure 5.14 – (a) Drilling the PVC tube and (b) assembling the tubes

5.3.2.1 Balun description

A balun properly connects a balanced transmission line to an unbalanced transmission line.
It serves to maximize the impedance on the outside surface of the transmission line and to
decrease the amount of electrical field generated where the transmission line is attached to
the transmission line of the antenna [17].

In a coaxial cable, the currents on the inner conductor and the inside of the shield are equal
and opposite. This is because the fields from the two currents are confined to the same space.
If we fed an antenna with a coaxial without a balun, the current on the outer conductor
splits between the antenna conductor and the outside conductor.

This is why a balun is more than necessary when considering antennas design. To recall,
what we want for a balun is to cause the currents in the feed line conductors to be equal in
magnitude and opposite in phase resulting in a zero imbalance current.

For the QHA, we will use a choke balun. This type of balun is a coil in the coaxial feeding
the antenna as close to the feed point as possible. It will prevent the common mode currents
to propagate.

This is accomplished by presenting a high impedance to RF currents flowing outside the
coaxial shield, which forces currents in each side of a driven element to be equal. Using this
type of balun, the coaxial line will be differenced from the antenna itself.

For finishing the QHA building, the coaxial line will we wrapped around the mast four times
making the desired balun as seen in Figure 5.15:
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Figure 5.15 – Built balun

5.3.2.2 Final Antenna

The antenna built can be seen on the Figure 5.16:

Figure 5.16 – Antenna built

5.4 QHA Characterisation

After building the antenna, its characteristics have to be measured. For doing so, we will
use the Network Analyser E5071C from Agilent available at the laboratory.

We will be specially interested in measuring the S11 parameter and the Standing Wave
Ratio[SWR]:
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S11 = Γ = ZL − Z0

ZL − Z0
(5.4.1)

SWR = Vmax
Vmin

= 1 + |Γ|
1− |Γ| (5.4.2)

Ideally, if the impedance is matched:

S11 = 0⇒ SWR = 1 (5.4.3)

5.4.1 Agilent’s Network Analyser E5071C

The Network Analyser E5071C belongs to medium class electronic instrumentation device.
It has flexible configurations letting the user to choose the number of ports to be used,
frequency and bias teas.

The one in the lab has 4 ports and a frequency range from 100 kHz to 8.5 GHz. One of
its more stunning capabilities is the high temperature stability (0.005 dB/◦C). It also has a
wide dynamic range bigger than 123 dB.

The front panel is shown in Figure 5.17.

Figure 5.17 – E5071C Front panel [9]

There are two main parts, the Stimulus Block for defining signal sources and trigger and
the Response Block for setting the parameters of the measurement as well as the format in
which they data will be presented.

The values can be stored in csv format allowing to represent the data with Matlab or any
other processing tool. We can as well export the information displayed on the screen as an
image.
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5.4.2 Determining measurement conditions

The QHA built is made for 137.5 MHz. We will set this value as the centre frequency in our
Network Analyser, also a span of 50 MHz will be specified to have a complete view of our
antenna at frequencies of interest.

One of the most important parameters to define is the Intermediate Frequency Bandwidth
[IFB]. It determines the selectivity of the instrument, a narrow IF bandwidth configuration
requires more spectrum acquisitions for a given span and led to longer measurement times.
Although the drawback of a narrow IF bandwidth is longer measurement times, it can
significantly improve the instruments performance. Decreasing the bandwidth of an IFB
filter decreases the measured noise floor The sweep time[ST] is defined in Equation 5.4.4:

ST = Span

IFB2 (5.4.4)

This parameter should be taken into account when performing the measurements.

5.4.3 Calibration

The first step is to calibrate our device. For doing so we used the calibration kit available
and followed the recommended instruction from the user manual (insertar referencia?).

In this case we will use only one port for our QHA, so we will calibrate port 1. The steps
followed are:

1.) Specify calibration Kit.

2.) Select the number of ports that will be used.

3.) Measure the calibration for the OPEN standard.

4.) Measure the calibration for the SHORT standard.

5.) Measure the calibration for the LOAD standard.

The results of this calibration are presented in Figure 5.18
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(a) (b)

(c)
Figure 5.18 – a) OPEN calibration, b) SHORT calibration and c) LOAD calibration.

5.4.4 Measurement setup in the Electronics Laboratory

The antenna was positioned in the laboratory connected to the Network Analyser, the mea-
sured SWR is shown in Figure 5.19.

Figure 5.19 – SWR measurement of the built QHA
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The SWR is a good indicator that the antenna has a good impedance matching.

5.5 Reception with QHA

The NOAA satellites only pass overhead at certain times of the day, broadcasting a signal.
At the moment NOAA 15, 17, 18 and 19 are operational. Using Gpredict® it is possible to
know in advance when the satellites will pass over the ground station (Figure 5.20).

Figure 5.20 – Gpredict positioning NOAA satellites with future passes

To set up a NOAA weather satellite at a receive station it is needed:

1.) An rtl-sdr dongle (DVB-T USB receiver) working with SDRSharp.

2.) An audio piping method.

3.) A right hand circularly polarized antenna tuned at 137 MHz.

4.) Software for decoding the APT signal.

The DVB-T USB receiver is already available in the Electronic Engineering Laboratory, as
well as the antenna just built. For the audio piping method, the free software VB-Audio will
be set up and configured.

There is a lot of information online about setting the computer ready for reception, but the
fundamental is to have SDRSharp configured with an audio piping method for sending the
data directly to the signal decoder, in this case WXtoImg.

The setup configured with spectrum analyser the computer and the antenna is in Figure
5.21.
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Figure 5.21 – Set up for receiving at the terrace

When satellites were passing, it was possible to observe the signal with the spectrum analyser
Figure 5.22.

Figure 5.22 – Spectrum of the signal received

When connecting the antenna to the rtl-sdr dongle, we check first if the antenna is properly
connected to the computer. The reception of FM was achieved as seen in Figure 5.23.

When setting the rtl-sdr dongle to receive at the NOAA frequency with a bandwidth large
enough for not losing the signal due to doppler effect (40 KHz) there is a small signal shown
in the computer meanwhile there is something at the spectrum analyser. This test were
repeated obtaining the same results each time.
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(Loading Video...)

Figure 5.23 – Reception of FM signals with a QHA
As the SWR of the antenna is good enough for receiving in normal conditions, the problem
was coming from the polarization. If an antenna is badly polarized, the losses can be between
18 and 20 dB. The polarization was checked using a high frequency source and an oscilloscope
(Figure 5.24). A closed loop was used for measuring.

Figure 5.24 – Checking the polarization of the antenna.
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The results obtained are a phase difference of 70 ◦ instead of 90 ◦ (Figure 5.25).

(a) (b)
Figure 5.25 – (a) Phase difference between two connections (b) Phase difference between the other
two connections

Not having a correct polarization is due to the choke balun. To fix this the choke balun
should be built again.

5.5.1 Decoding the signal

Using the software WxtoImg it is possible to obtain the image from an audio file. For
example, with the following attached file as an example we can obtain different results,
depending on the options of the software (Figure 5.26).
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(a) (b)

(c)
Figure 5.26 – a) Black & White image b) False colour image c) Ocean temperature

The data obtained with our set up is:
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The decoded picture is shown in Figure 5.27.

Figure 5.27 – Decoded picture of the audio captured with the sdr-rtl

There is no telemetry data downloaded and the data is to noisy for a correct conversion.
The antenna should be made again, but for knowing the number of turns the balun should
have it is recommended to use the setup of Figure 5.24.
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CHAPTER

6

CUBESAT ANTENNA DESIGN

6.1 Antenna selection

Once we have made a carefully comparison of different antennas in Chapter 4 and have
overcome the main steps to build and characterise an antenna in Chapter 5 , it is the time to
choose the antenna to build for GranaSAT. As this is an introduction to the antenna design
of a Cubesat, we would like to test two different antennas.

In the first step, we would like to test the State of the Art solution, the one developed by
SNAPS [7].

In the second step, we would like to develop a model based on two crossed dipoles, obtaining
the gain of only one dipole but with circular polarization.

6.2 Antenna design

Antennas need a matching network for maximum power transfer. A balun is also necessary
for connecting from a balance signal to an unbalanced signal. Both can be combined in one
solution, implemented in a PCB fitting in the mechanical constraints of the Cubesat Manual
[10].
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6.2.1 Mechanical design

A PCB in a FR4 substrate through milling will be made. The antennas will be connected to
it. This PCB will be attached to the top part of the Cubesat, so it was necessary to define
the mechanical boundaries before working on the PCB.

6.2.1.1 3D printed Cubesat

The first step to start the design of Cubesat antennas in this Degree Thesis is to obtain the
dimensions from the Cubesat manual [10] as seen in Figure 6.1.
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Using the software SolidWorks® it is possible to create a 3D model of the Cubesat for
assembling purposes. As creating a new design from scratch is laborious and there is lots
of information online, some of the drawings from CO3 (Colorado Space Grant Consortium
Cubesat) were used for designing the model.

SolidWorks® allows to import Computer Aided Design (CAD) files or PDF files and recognise
the model drawn. Using this capability each different piece was created allowing the final
design to be as seen in Figure 6.2

Top part

Rail pannel

Nadir pannel

Bottom part

Rail pannel

Side pannel

Top part

Rail pannel

Nadir pannel

Bottom part

Rail pannel

Side pannel

Figure 6.2 – Cubesat model (a) in SolidWorks®

Once the model was designed it was possible to use the 3D printer available in the Elec-
tronic Laboratory for creating a prototype. The 3D printer available is a Prusa i3, with an
impression volume of 20x20x20 mm. The final Cubesat printed can be seen in Figure 6.3.

Figure 6.3 – 3D printed Cubesat

There are already some papers describing the possibility to send a plastic Cubesat made
out of Acrylonitrile butadiene styrene (ABS) [18]. So this prototype can be considered as a
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beginning for GranaSAT mechanical design.

After the model was designed and printed, the mechanical design of the top part was defined,
and it will be used in the Electronic Design Automation Software Altium for defining the
board shape of the PCB.

6.2.1.2 Antenna arrangement

One of the major problems with antenna design is its dimension. When talking about
picosatellites this fact becomes critical because of its small size and low weight. A deployable
antenna is the most coomon solution, but it can have problems related to pyrotechnical issues
or the possible blocking of the deployment method. Tape measure is used in many solutions
in this field for avoiding difficult mechanical methods of deployment. This material is flexible,
getting to its original position when deployed as seen in Figure 6.4. In this Degree Thesis,
this approach will be used for the turnstile antenna.

Figure 6.4 – On the left Cubesat before launch and on the right with antennas deployed [11]

Other solutions work for avoiding a deployment method in the aim of simplicity. This is the
case of the bodipole. This antenna was designed to be equivalent to a dipole but without
the unveiling, allowing to have a simpler mechanical design.

6.2.2 Matching networks and baluns

The input impedance of each antenna will be obtained with the help of Feko® simulations,
allowing us to design a balun and matching network for each development.

6.2.2.1 Bodipole

With Feko® the input impedance of the bodipole using the methodology detailed in the
Appendix A.1 can be obtained. The PCB in which the system will be built is FR4, this can
change the results of the antenna, so a simulation was performed with the FR4. The model
designed is in Figure 6.5 and the model without the FR4 is the one presented in Figure 4.17.
In Figure 6.6 the radiation pattern of each one is presented.
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Figure 6.5 – Bodipole with FR4 PCB in Feko®

(a) (b)
Figure 6.6 – (a) Gain of the bodipole and (b) with FR4 substrate

The input impedance changes because of the FR4 (Figure 6.7).

(a) (b)
Figure 6.7 – Bodipole impedance (a) real part and (b) imaginary part

The SWR changes considerably with the FR4 fabrication on a PCB as it can be seen in
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Figure 6.8.

Figure 6.8 – Bodipole VSWR

6.2.2.1.1 Using a coaxial balun

The solution proposed by SNAPS is to use a choke balun [7]. This choke balun is based in
the winding, creating an inductance that impedes common mode current. The choke allows
normal mode current to pass, where normal mode current is a pair of currents that are equal
and opposite in value. This choke balun is called transformer balun. They are normally
implemented like coiled coaxial cable, as seen in Chapter 5.

As this is a solution that requires a lot of space, a λ/2 balun will be tested. This balun
works on the same principle as transformer baluns, in fact, it is a transformer balun. One
side of the signal is transmitted as it is and the other side is produced by delaying the signal
by half a wave length. This inverts the signal to produce the opposing one. These baluns
work well enough but have the disadvantage of being restricted to a very narrow band of
frequencies [8]. For computing the length of the λ/2 coaxial line the propagation speed of
the wave should be considered.

The coaxial used is RG58 with an attenuation between 1.7dB and 5.6 dB [19]. The velocity
ratio is 0.666 from the speed of light.

6.2.2.1.2 Using passive components

The impedance that should be matched is Zinbodipole
= 35.86 + j38.26 from Figure 6.7. This

value should be matched achieving a balun, for feeding purposes. The software AppCAD by
Avago Technologies allows this, obtaining the solution shown in Figure 6.9.
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Figure 6.9 – Balun with impedance matching in AppCAD

6.2.2.2 Tunstile

The turnstile antenna based on crossed dipoles is frequently used in Cubesat applications.
Ideally, the dipoles should be thin wires (around 2 mm) as seen in Figure 6.10, but because of
mechanical reasons as seen in the subsection 6.2.1,a tape measure will be used. The results
are shown in Figures 6.11 and Figure 6.12.

Figure 6.10 – Crossed dipoles with FR4 PCB in Feko®
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(a) (b)
Figure 6.11 – (a) Gain of the turnstile antenna (b) with FR4 substrate

The input impedance changes because of the FR4 (Figure 6.7).

(a) (b)
Figure 6.12 – Impedance (a) real part and (b) imaginary part

As before, the PCB changes considerably the SWR as seen in Figure 6.13.
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Figure 6.13 – Turnstile SWR

6.2.2.2.1 Using a coaxial balun

This type of antenna is frequently used in amateur radio applications due to its easiness to
build and its circular polarization. The balun normally used is the one shown in Figure 6.14.

Figure 6.14 – Balun normally used for turnstile configuration

This configuration is based on the fact that a λ/4 transmission line will produce a 90 ◦ phase
shift. Transforming the impedance in a 4:1 relation, due to the fact that the RG59 cable is
a 75 Ω cable. The calculations on the cable length shall consider the velocity factor of the
cable available on the datasheet [19] with a velocity ratio of 0.666 times the speed of light.
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6.2.2.2.2 Using passive components

Once again it is possible to use passive components for achieving the phase shift. Circular
polarization is needed, so the passive circuits need to create a phase shift of 0 ◦,90 ◦,180 ◦ and
270 ◦. With a balun design a phase difference of 90 ◦ and −90 ◦ can normally be achieved.
With AppCAD this design can be made as seen in Figure 6.15.

Figure 6.15 – Turnstile with impedance matching in AppCAD

In the market, there is a large variety of power splitters with a phase shift that work in a wide
band. The phase shifter chosen was the QCN-5D+ by Minicircuits [20]. This components
will allow to achieve the four quadrants of polarization. This device will be used in the PCB
design.

6.2.3 PCB design for coaxial baluns

The solution with coaxial is chosen to be implemented first because it is flexible to changing
the balun configuration. As the antennas developed will be a prototype, the objective is to
economize the price of each prototype. Because of this, it is decided to develop a PCB that
can integrate both solutions (bodipole & turnstile) on a double layer PCB. The PCB design
is shown in Figures 6.16 and 6.17.

UHF-VHF Cubesat Antennas Design
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6.2.4 PCB design with passive components

With the AppCAD solution and the integration of a phase shifter with a high bandwidth, a
double layer PCB can be designed. The design aims to have the flexibilty to be used either
with the bodipole or with the turnstile, including both solutions. The proposed circuit is
shown in Figure 6.19. The use of two resistor of 0 ohms is for having the pads and being
able to shortcircuit the feeding with the chosen solution.

The purposed PCB design is in Figure 6.20 and Figure 6.21. The impedance of the tracks
can be obtained with AppCAD as well, obtaining the results in Figure 6.18.

Figure 6.18 – Impedance of the tracks with the design conditions

For obtaining the correct phase difference, the distances between the phase shifting are
the same for all antennas. The ground planes were made as small as possible for avoiding
interferences and achieving the simulated behaviour.
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6.3 Antennas fabrication

With the design of the prototype PCB defined, the fabrication of the antenna was undertaken.
A milling machine from LPFK was used for producing the PCB. The antennas were built in
measuring tape.

6.3.1 PCB fabrication

The first step for fabrication with a milling machine is to obtain the gerber files and NC drills
in Altium. This can be done by creating an Output job file by clicking Right Mouse Button
(RMB) on the project, and clicking Left Mouse Button (LMB) in add a new fabrication
output as seen in Figure 6.22.

Figure 6.22 – Creating a new fabrication output

Adding the gerber files and the NC drills is achieved in Figure 6.23 by doing LMB into Add
New Fabrication Output. The format should be 2:5 whenever possible (Figure 6.24).

Figure 6.23 – Requesting the gerber files and NC drills

Figure 6.24 – Selecting the minimum resolution available
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After obtaining all the required files, they should be imported in CCAM and proceed with the
fabrication. Because of the material available at the laboratory at the fabrication moment,
and as the layers are independent, it is decided to make a single layer PCB for each solution,
even though the design was for doubled sided PCB.

6.3.2 Antenna implementation on the PCB

Finally, the arrangements of the antennas were made with their corresponding balun as seen
in Figure 6.25 and Figure 6.26 .

Figure 6.25 – Turnstile antenna mounted with the coaxial balun

Figure 6.26 – Bodipole mounted with the coaxial balun

6.4 Antenna tests

After building the antennas, it was necessary to perform some test in order to verify their
behaviour.
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6.4.1 Bodipole

The antenna was connected to the network analyser and its SWR was measured to find out
the resonant frequency of the antenna. In Figure 6.27 the results of the measurement are
shown.

Figure 6.27 – Bodipole SWR measurements

It resonates at a different frequency than expected. After some research we could conclude
that the λ/2 balun does not provide impedance matching for this antenna, including as well
some disturbances in the system. As the choke balun is too big for fitting in the antenna
space proposed and this solution was thought to be implemented with passive components
[7], it was decided to test this system in the future with the passive network.

6.4.2 Turnstile

The turnstile antenna made with tape measure with a length of λ/4. It was connected to
the network analyser and the SWR was measured (Figure 6.28). There is a larger bandwith
than needed in order to characterise the different resonant points.
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Figure 6.28 – Turnstile SWR measurements

As can be seen, the SWR at 433 MHz is over 10. The resonant frequency of the antenna
is 897MHz, having a SWR of 2.63. As in simulation with thin wires the antenna works at
433 MHz, we decided to change the tape measure to copper wires and measure its SWR,
the results obtained are in Figure 6.29.

Figure 6.29 – SWR of the turnstile made with wires

The result obtained with the wires was that the antenna is resonant at 433 MHz. Therefore
the PCB and the balun is working properly. Facing the problem of the tape measure, we
faced different the fact that the metric tape is thinner than the wires (and from a different
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material). This can increase its resistance of radiation, changing the resonant frequency.
A copper pour was put in the antennas to increase its conductivity 6.30. The new SWR
measured is in Figure 6.31.

Figure 6.30 – Turnstile with copper pour

Figure 6.31 – SWR of the turnstile with copper pour

As the SWR decreases with the copper, we can conclude that the problem with the original
tape measure is its conductivity, explaining the behaviour of the original antennas.

6.5 Turnstile antenna with different length

As in the test done in the section above, it shows the resonant frequency of the antenna in
Figure 6.26 to be 897 MHz, which is exactly 2.07 times the resonant frequency desired, we
can conclude that doubling the length of the antenna will decrease by a half the resonant
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frequency [3]. Therefore, a new antenna was built with each part of metric tape equal to 31
cm (λ/2). The antenna built is in Figure 6.32.

Figure 6.32 – Original antenna with copper pour and double size antenna

The new results obtained are in Figure 6.33.

Figure 6.33 – SWR of the double size antenna

This antenna has a good SWR, to avoid losing power when receiving or transmitting. But
the circular polarization must be confirmed as well for proper functionality.
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6.5.1 Circular polarization

Circular polarization can be measured by using a monopole (with lineal polarization) to
receive the signal generated with the circularly polarized antenna [2]. A monopole working
at 433 MHz was built (Figure 6.34).

Figure 6.34 – Monopole working at 433 MHz

The setup used for measuring the polarization is in Figure 6.35.

Figure 6.35 – Setup for measuring circular polarization of the turnstile antenna

The methodology consists of transmitting with the turnstile antenna, and having the monopole
in front of it, make a rotation to observe if it continues receiving. The information shown in
the Spectrum Analyser is in Figure 6.36.
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Figure 6.36 – Spectrum analyser configured at 433 MHz and receiving trough the monopole

The reception works in all the angles of the monpole, achieving circular polarization as seen
in Figure 6.37.

Figure 6.37 – Monopole receiving in all angles at 433 MHz

With this changes, a fully working antenna with circular polarization, good impedance
matching and a method for an easy deployment is achieved.
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CHAPTER

7

CONCLUSION AND PLANS FOR
THE FUTURE

In this Degree Thesis and overview of UHF-VHF communications have been made, following
step by step electromagnetic simulations with a professional tool such as Feko® and building
different antennas to achieve a final working design of a Cubesat antenna. A small summary
on antenna theory was made to be able to understand the different parameters and the
comparison between antennas. After some research, a comparison between technologies was
made and a a receiving antenna was the first step to get the "‘know-how"’ about working
with these type of electronic devices. At the end a prototype was tested, making changes
until getting the desired solution, a fully working prototype with the necessary circular
polarization.

The proposed future work is a main part of this project, as it aims to be the first step
towards the design of a complete antenna system to implement in GranaSAT. The prototypes
developed and this Thesis should allow the future developers of GranaSAT antennas to
continue with the final implementation. The future guidelines for achieving a complete
working system are the following:

• Quadrifilar Helix Antenna:the polarization should be tested with a walkie-talkie
working at 137 MHz, analysing if the circular polarization is correctly achieved.

• Cubesat Antenna Design: Before the fabrication of the proposed PCB implemented
with passive components for the Cubesat, a simulation with Feko should be performed
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including the PSPICE models in Feko®. This will allow for confirmation of the be-
haviour of the circuit.

• Readjust the parameters for integration: Before integrating the antennas in the
satellite, the solar panels and final configuration of the Cubesat should be taken into
account, following the same methodology of simulation before the build stage.

• Request radio license if needed: Depending on the frequency of the final design,
a radio license might be needed.

From a personal point of view, after doing this work I consider I have gained a deeper
knowledge in how to effectively carry out an engineering project. This Thesis was a challenge
for me as I did not study antenna theory on its own in the Telecommunications Technology
Degree because of my specialization in Electronic Systems. Nevertheless, with this work I
consider myself better prepared to face a job search, and understanding about a fundamental
part of communications which are widely used today.
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APPENDIX

A.1 Feko Guide step by step

In this appendix a short and intuitive user guide for creating the 3D models and simulating
them in Feko® will be developed. An approach about the capabilities of this CAD will
be made followed by an overview of the main software used during this Degree Thesis,
CADFEKO and POSTFEKO. A free, fully featured version of Feko® but with limitations
on the size of the problem that it can solve can be used for free.

For further information about the software please consult the Reference Guide [12].

A.1.1 Feko® overview

Feko® is a comprehensive electromagnetic simulation software tool, based on state of the art
computational electromagnetics (CEM) techniques. It enables users to solve a wide range of
electromagnetic problems. Typical applications according to the Feko® website can include:

-Antenna designing

-Antenna placement

-Electromagnetic Compatibility (EMC)

-Biolectromagnetics

-RF components analysis
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-3D electromagnetic circuits

-Radomes

-Scattering problems

It allows to import and export CAD models, permiting the user to perform simulations about
real problems.

The solution technique used is based on the Method of Moments (MoM) hybridised with
other solutions techniques. This enables the software to use a different procedure depending
on different parts of the same model.

A.1.2 Feko® user interface

For a standard user there is a Graphical User Interface (GUI) composed of two main applica-
tions: CADFEKO for model definition, simulation and output specification and POSTFEKO
for post-processing of simulated results. The standard Feko workflow is detailed in Figure
A.1.

Figure A.1 – Feko workflow

A.1.2.1 CADFEKO

We can create 3D geometry using canonical structures, as well as import and modify CAD
models. It has a large amount of parameters to define and a big number of options.
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Figure A.2 – CADFEKO screen on startup

In this appendix, we will follow a step by step procedure for simulating a half wave dipole
described in Chapter 4.

A.1.2.1.1 Selecting the model unit

Depending on the application, the unit might change. This can be changed by doing RMB
on Model Unit and selecting the more convenient for us. In the dipole example the unit used
is meters shown in Figure A.3.

(a) (b)
Figure A.3 – Selecting the unit for the enviroment

A.1.2.1.2 Creating variables

In the variables tree, we can create those variables that we consider important, using equa-
tions and other variables for computing. For example, we can define the frequency under
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(f0) study by doing (RMB) on variables and selecting Add variable (Figure A.4:

Figure A.4 – Defining the frequency under study

We can create variables depending on others previously defined by including the expression
and using the (LMB) on Evaluate. In Figure A.5 the variable lambda is created.

Figure A.5 – Creating a variable from other variables

A.1.2.1.3 Creating 3D models

The leftmost bar (where some different shapes can be seen) will be used for creating the 3D
models . In this Final Degree Project, the line and polyline element were enough for creating
all the models required in this work. We will define the line or polyline point by point (either
with numbers or with variables) as depicted in Figure A.6 for a half wave dipole.
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(a) (b)
Figure A.6 – Menu for creating a line and a polyline

A.1.2.1.4 Creating ports

A port is needed for feeding the line. Using the RMB on port and selecting with LMB add
a wire port will create a port:

Figure A.7 – Selection for defining a wire port

Then we need to select the wire where the port will be and its position. The dipole will have
the feeding at the centre of it, so we need to select middle of the segment and do RMB on
the line as seen in Figure A.8. We can see a 3D placement of the port:
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Figure A.8 – Defining the wire port parameters

A.1.2.1.5 Excitations

We can add many different type of sources, but in the models under analysis in this work the
excitation used was the Voltage source. RMB on Excitations and LMB on Voltage source

Figure A.9 – Selecting a voltage source

On the next screen the wire port where the source is should be selected. Set the parameters
of the source include the voltage and the phase:

Figure A.10 – Defining the voltage source parameters

A.1.2.1.6 Solution frequency

The frequency can be a single one or a discrete interval for simulation purposes. Use RMB
on Frequency as seen in Figure A.11 and Figure A.12 for setting the parameters. In the
dipole example a single frequency analysis will be made for simpleness:
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1Figure A.11 – Selecting the frequency analysis

Figure A.12 – Setting a single frequency

A.1.2.1.7 Far field request

We can request a far field analysis using RMB on Calculation as seen in Figure A.13:

Figure A.13 – Requesting a far field calculation

On the Request Far Field window that appears, we should select the planes under study
defining ∆θ and ∆φ as well as the number of points requested. In Figure A.14 a complete
sphere for calculations was requested :
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Figure A.14 – Setting the far field request to cover all the points

A.1.2.1.8 Meshing

We need to convert the model into an assembly of finite point mesh for simulation purposes.
Therefore, we need to do RMB on Meshes:

Figure A.15 – Accesing the mesh options

We have to select the length of the wire segment as well as the radius. We should select a
radius small enough for having a uniform current distribution on the conductor, for example
1 mm (A.16):
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Figure A.16 – Setting the mesh parameters

A.1.2.1.9 Validating the model

Before the simulation starts, we have to validate that all the parameters needed are defined,
for doing so we perform LMB on Solution and select EM validate:

Figure A.17 – Validation of the parameters

A.1.2.2 Feko Solver

Once the model is created and defined, we can run the simulation by clicking on Run Feko.
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Figure A.18 – POSTEFEKO and Run FEKO® button

A.1.2.3 POSTFEKO

The standard FEKO workflow ends with result processing in POSTFEKO. Click on Run
POSTFEKO shown in Figure A.18. The POSTFEKO application will start automatically
with the results from the simulation. We will have to choose what to represent.

Figure A.19 – POSTFEKO main window

It is possible to export the data in .csv format for processing the information with other
software such as MATLAB®. This can be easily done by using the RMB on File, Export
and Data (Figure A.20).
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Figure A.20 – Exporting data from simulation

A.1.2.3.1 3D Far field model

On the leftmost part of the POSTEFKO main window (Figure A.19) we can select View 3D
far fields. We can select what to represent with the different options:

Figure A.21 – Far field options and results

With Feko® the polarization of an antenna can be known by plotting the axial ratio and the
handedness of the antenna under analysis. The results for the dipole created are in Figure
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(a) (b)
Figure A.22 – (a) Axial ratio and (b) handedness of a dipole

A.1.2.3.2 Working with the scattering parameters

If we click on Add a S-parameter graph (Figure A.19) we can work with the S parameters by
either obtaining a graphic of its value or either calculating other parameters from the S11
values.

Figure A.23 – S-parameter graph options

We can make expressions with the values from the S11 parameters, for example we can
obtain the VSWR defined by Equation 3.2.1:

Select with LMB the Magnitude option as seen in Figure A.23. Then LMB on Perform
calculations button and set the calculations of the new series:

Figure A.24 – Calculations for the VSWR
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A.1.2.3.3 Source data graph

Feko® has a large number of parameters that can be obtained, like:

-Impedance

-Admitance

-Voltage on the antenna

-Current on the antenna

-VSWR

-Source power

-Mismatch loss

-Active and loss power

-Efficiency of the antenna

RMB on Add a source data graph and select the parameter desired as seen in Figure A.25.

Figure A.25 – Source data graph options
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ACRONYMS

ABS Acrylonitrile butadiene styrene is a common thermoplastic used for 3D printing. 58

CAD Computer-aided design is the use of computer systems to assist in the creation, mod-
ification, analysis, or optimization of a design. 58, 83, 84

LEO A Low Earth Orbit is an orbit around Earth with an altitude between 160 kilometres
, with an orbital period of about 88 minutes, and 2,000 kilometres , with an orbital
period of about 127 minutes. 16, 35, 37

LMB Left Mouse Button. 72, 86–88, 91, 94

MEO is the region of space around the Earth above low Earth orbit (altitude of 2,000
kilometres) and below geostationary orbit (altitude of 35,786 kilometres. 16

NOAA National Oceanic and Atmospheric Administration is a federal agency from the
United States focused on the condition of the oceans and the atmosphere. xxi, 6, 41,
48, 49

PCB A printed circuit board (PCB) mechanically supports and electrically connects elec-
tronic components using conductive tracks, pads and other features etched from copper
sheets laminated onto a non-conductive substrate. viii, 4, 7, 55, 65, 73, 81

RMB Right Mouse Button. 72, 85–90, 92, 95
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SNAPS Stanford Nano Picture Satellite is engineered as an inspector satellite capable
of imaging, photo processing and analysis, and downlink. Given the dimensions of
the Containerized Satellite Dispenser (CSD), SNAPS will fit alongside a 3U satellite.
The minimal intrusion and limited risk of launching SNAPS opens opportunities for
photography of a deploying satellite or simply easier access to a launch. xx, 28, 29

SWR Standing Wave Ratio is the ratio of the amplitude of a partial standing wave at an
antinode (maximum) to the amplitude at an adjacent node (minimum), in an electrical
transmission line. xxii, xxiii, 11, 47, 60, 63, 64, 74–76

UHF Ultra High Frequency is the ITU-designated range of radio frequency electromagnetic
waves from 300 MHz and 3 GHz. xv, 3, 28, 35, 37

VHF Very High Frequency is the ITU-designated range of radio frequency electromagnetic
waves from 30 MHz to 300 MHz. xv, 3, 35, 37
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