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Abstract. This paper presents a new application of assim-istry transport model (CTM) of the ®.YPHEMUS air qual-
ilating lidar signals to aerosol forecasting. It aims at in- ity modelling platform. We assimilate hourly averaged nor-
vestigating the impact of a ground-based lidar network onmalised range-corrected lidar signals #pRetrieved from

the analysis and short-term forecasts of aerosols through a 72h period of intensive and continuous measurements
case study in the Mediterranean basin. To do so, we emperformed in July 2012 by ground-based lidar systems
ploy a data assimilation (DA) algorithm based on the opti- of the European Aerosol Research Lidar Network (EAR-
mal interpolation method developed in thelAIR3D chem-  LINET) integrated into the Aerosols, Clouds, and Trace
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gases Research InfraStructure (ACTRIS) network and an ad- In order to model the transport and formation of aerosols,
ditional system in Corsica deployed in the framework of a variety of chemistry transport models (CTMs) have been
the pre-ChArMEx (Chemistry-Aerosol Mediterranean Ex- developed$impson et a).2003 Schaap et al2004 Hodzic
periment)/ TRAQA (TRAnsport a longue distance et Qualité et al, 2006 Sartelet et aJ.2007). In air quality modelling,
de I'Air) campaign. This lidar campaign was dedicated to CTMs are often employed to forecast aerosol concentrations.
demonstrating the potential operationality of a research netFor instance, the monitoring atmospheric composition and
work like EARLINET and the potential usefulness of assim- climate (MACC, http://www.gmes-atmosphere.g¢uhodel
ilation of lidar signals to aerosol forecasts. Particles with anand the BLYPHEMUS air quality modelling systemhtp://
aerodynamic diameter lower than 2.5 um (P#Yland those  cerea.enpc.fr/en/prevision.hingerform real-time forecasts
with an aerodynamic diameter higher than 2.5 um but lowerof aerosols over Europe. However, a CTM is always a simpli-
than 10 um (PM_25) are analysed separately using the li- fication of the real atmosphere, and there are large uncertain-
dar observations at each DA step. First, we study the spatidies in aerosol modellingRoustan et a].2010. A CTM is
and temporal influences of the assimilation of lidar signalslimited in terms of spatial and temporal resolutions. It is also
on aerosol forecasting. We conduct sensitivity studies on allimited to a restricted selection of physical and chemical pro-
gorithmic parameters, e.g. the horizontal correlation lengthcesses, which are often simplified or parametrised. In addi-
(Lp) used in the background error covariance matrix (50 km,tion, input data are often highly uncertain. Initial and bound-
100 km or 200 km), the altitudes at which DA is performed ary conditions of pollutants are two crucial factors in fore-
(0.75-3.5km, 1.0-3.5km or 1.5-3.5 km a.g.l.) and the assim<asting. Since initial and boundary conditions are often out-
ilation period length (12h or 24 h). We find that DA with puts from a larger-scale simulation, or from a fixed set of cli-
Ly =100 km and assimilation from 1.0 to 3.5kma.g.l. dur- matological average values based on long-term observations,
ing a 12 h assimilation period length leads to the best scorethey usually lack accuracy. On the other hand, aerosol mea-
for PM1o and PM 5 during the forecast period with refer- surements provide detailed insights into the atmosphere’s
ence to available measurements from surface networks. Securrent state, using satellite observations on a global scale
ondly, the aerosol simulation results without and with lidar or in situ measurements from ground-based or airborne in-
DA using the optimal parameterd.{=100km, an assim- struments. Unfortunately, although measurements can help
ilation altitude range from 1.0 to 3.5kma.g.l. and a 12 h to improve the knowledge of the atmosphere, they do not di-
DA period) are evaluated using the level 2.0 (cloud-screenedectly provide the necessary initial or boundary conditions
and quality-assured) aerosol optical depth (AOD) data fromfor aerosol modelling.
AERONET, and mass concentration measurements ¢ A technique referred to adata assimilation(DA here-
PMz5) from the French air quality (BDQA) network and after) was introduced to couple models and observations, and
the EMEP-Spain/Portugal network. The results show that theo improve the accuracy of input data of model forecasts,
simulation with DA leads to better scores than the one with-such as initial conditions or boundary conditiofialagrand
out DA for PM, 5, PMig and AOD. Additionally, the com- 1997 Roustan and Bocque2006. In meteorology, DA has
parison of model results to evaluation data indicates that théoeen employed to improve forecasts for more than three
temporal impact of assimilating lidar signals is longer than decadesl(orenc 1986 Kalnay, 2003 Lahoz et al. 2010.
36 h after the assimilation period. Common DA methods are the optimal interpolation (OI)/3-
dimensional variational (3D-Var) methoBé&ley, 1991, the
ensemble Kalman filter (EnKFE{ensen2009 and the 4-
dimensional variational (4D-Var) methotg Dimet and Ta-
lagrand 1986. Following efforts in DA for trace gas mod-
1 Introduction elling (Austin, 1992 Fisher and Lary 1995 Elbern and
Schmidt 1999, in recent years, DA has been increasingly
Aerosols consist of tiny pieces of solid or liquid matter sus- applied to aerosol forecast€gllins et al, 2001, Benedetti
pended in the atmosphere. They have an impact on vegetatiogt al, 2009 Tombette et a).2009 Pagowski et a).201Q Li
and human health by penetrating the respiratory system, andt al, 2013 Wang et al.2013.
can lead to respiratory and cardiovascular diseaBesk- The Ol method was used in several studies for improv-
ery and Popel996 Lauwerys et al.2007). They also in-  ing initial conditions of CTMs. For example, it was first de-
fluence visibility Wang et al. 2009 and affect the earth’s veloped to assimilate AOD (aerosol optical depth) retrieved
environment and climate by changing the amount of incom-by satellite during the Indian Ocean Experiment (INDOEX)
ing solar radiation and outgoing terrestrial long-wave radi- (Collins et al, 2001). The Ol method was also used in a sim-
ation retained in the earth’s systetntérgovernment Panel plified radiative transfer model bjduneeus and Boucher
on Climate Control, IPCC2013. Furthermore, they have (2007 to assimilate synthetic observations of MODIS (Mod-
an indirect effect, by changing the microphysical propertieserate Resolution Imaging Spectroradiometer) and CALIPSO
of clouds (ntergovernment Panel on Climate Control, IRCC (Cloud-Aerosol Lidar with Orthogonal Polarizationhd-
2013. hikary et al. (2008 assimilated monthly mean AOD data
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from MODIS and AERONET using the Ol method to pro- ing the emission in the dust source regi@enedetti et al.
duce three-dimensional distributions of AOD over Adiu (2009 also used the 4D-Var method in the European Cen-
et al. (2008 improved dust storm forecasts (dust concentra-tre for Medium-Range Weather Forecasts (ECMWF) for the
tions) over China by assimilating satellite retrieval data andGlobal and regional Earth-system Monitoring using Satellite
surface meteorological station daftombette et al(2009 (GEMS) and in situ data project, in order to issue aerosol
used the Ol method over western Europe for assimilatforecasts and reanalyses of aerosol fields using AOD data
ing PMyo (particulate matter with an aerodynamic diameter from satellite sensors.
lower than 10 um) mass concentration observations from the In meteorology, Ol was surpassed by 4D-Var or EnKF
BDQA (Base de Données de la Qualité de 'Air) network. (Kalnay, 2003, but it is still a commonly used DA method
The Ol method was also employed in a study of inverse modin CTMs, as Ol is simple to implement and is computation-
elling of optical observations (lidar backscatter coefficientsally cheaper than other DA methodd/¢ et al, 2008. By
and AOD) by chemical DAKahnert 2009. Pagowski et al.  contrast, 4D-Var assimilates observations over a time win-
(2010 used the Ol over the United States of America for dow which could yield better result8€nedetti and Fisher
DA of PMy5 (particulate matter of an aerodynamic diame- 2007) when the model is reliable. However, it is more com-
ter lower than 2.5 um) observatiorisu et al. (2011) devel-  plex to implement because the adjoint of the model is re-
oped a DA system using the Ol method within the National quired Benedetti et aJ.2009 Sugimoto and Unp2009.
Centers for Environmental Prediction (NCEP) for assimilat- Denby et al.(2008, Pagowski and Gre2012 and Candi-
ing MODIS AOD retrieval products (at 550 nm wavelength) ani et al.(2013 compared two different DA methods, the Ol
from both the Terra and Aqua satellites and for analysingand the EnKF, for aerosol forecasts. They reported that the
aerosol mass concentratiomfuneeus et a2012 used the  EnKF delivers slightly better results than the Ol, but the cost
Ol method to estimate the emission fluxes of a range ofof implementation of the EnKF is higher than that of the Ol,
aerosol species at a global scale by assimilating daily totatue to the high number of required model simulations. The
and fine-mode AOD at 550 nm from MODIS into a global Ol is then employed in this paper to assimilate observations
aerosol model of intermediate complexity. The Ol method sequentially.
was used byschwartz et al(2012 individually or simulta- Several aerosol properties have been assimilated for
neously to assimilate AOD at 550 nm retrieved from MODIS aerosol forecasts, e.g. surface mass concentratibngf al,
sensors and surface BM observations for the analysis of 2008 Tombette et a).2009 Pagowski et a).201Q Li et al.,
aerosol mass mixing ratios at each grid point. Recevithng 2013 Wang and Niy2013 Jiang et al.2013, aerosol par-
et al.(2013 used the Ol within an observing system simula- ticle number size distributionsviskari et al, 2012, AOD
tion experiment (OSSE) to investigate the potential impact ofdata from satellites or the AERONET netwoHtuneeus and
future ground-based lidar networks on the analysis and shortBoucher 2007 Adhikary et al, 2008 Benedetti et a).2009
term forecasts of Php over Europe. They showed a poten- Schutgens et gl2010a b; Liu et al, 2011 Huneeus et al.
tially powerful impact of the future lidar networks for Ryl 2012 Schwartz et a).2012), lidar backscatter coefficients
forecastsLi et al. (2013 used the OI for multiple aerosol (Huneeus and BoucheR007 Kahnert 2009 Sekiyama
species and for prediction of P in the Los Angeles basin. etal, 2010 and lidar extinction coefficientSampbell et a.
The Ol method was also employed in a mesoscale numeri201Q Zhang et al.2011). Most studies showed fast-fading
cal weather prediction system (GRAPES/CUACE_Dust) toDA impact on aerosol forecasting, especially in the early
study dust aerosol assimilation in eastern Asifaiig and  forecast hoursTombette et a).2009 Jiang et al. 2013.
Niu, 2013. Jiang et al.(2013 developed a DA system in Wang et al.(2013 found that information on the vertical
the WRF-Chem model using the Ol method to explore theprofile can extend the temporal influence of DA. However,
impact of assimilating surface observations of fgMver  in situ surface measurements and AOD data do not provide
China. vertically resolved information in the atmospheric column.
The EnKF method was employed to simulate severe dustidar backscatter coefficient profiles provide information
storm episodes occurring in March 2002 over China by as-on the aerosol vertical structure, but estimating the aerosol
similating surface dust concentration observatiduis €t al,, backscatter coefficient from single-wavelength elastic lidar
2008. The EnKF method was used to assimilate lidar atten-signals only (e.g. through the Klett—Fernald methktktt,
uated backscatter coefficients and depolarisation ratios cont985 using an a priori value of a lidar ratio (extinction-to-
tained in the CALIPSO Level 1B data s&dkiyama et al.  backscatter ratio) brings in errors of up to 30 %. No critical
2010. Also, a global aerosol assimilation system was devel-assumptions are needed to calculate aerosol backscatter co-
oped using the EnKF method for assimilating AOD and AAE efficients using the multi-wavelength aerosol lidar (e.g. Ra-
(aerosol Angstrém exponent) from the AERONET network man lidars), typically under nighttime condition&rismann
and the MODIS satelliteSchutgens et 3l2010a b). et al, 1992, but most operational lidar stations are single-
4D-Var was used to assimilate the lidar network Asian dustwavelength lidars. Furthermore, a multi-wavelength aerosol
data Sugimoto and Unp2009. They showed that DA is lidar is more costly and mainly dedicated to scientific pur-
effective for both improving the model results and estimat- poses than a single-wavelength aerosol lidar, and often per-
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forms at one visible light wavelength (e.g. 532nm), which The modelling domain is the same as the one used for
is not eye safe (e.g. aviation near the city). Therefore, it isthe forecasts dittp://cerea.enpc.fr/en/prevision.htrtlcov-
more realistic to put a single-wavelength aerosol lidar sys-ers western Europe and parts of eastern Europé W15
tem into operational service. That is wkiyang et al(2014 35°Ex 35°N, 70° N, see Fig.1), with a horizontal resolu-
developed for the first time DA algorithms to assimilate nor- tion of 0.5° x 0.5°. In the simulation, 14 vertical levels are
malised range corrected lidar signals @pRirectly at one  considered from the ground to an altitude of 12 00Qgr a
wavelength (e.g. 355 nm). (above ground level). The heights of the cell interfaces
This paper aims at investigating the usefulness ofare 0, 30, 60, 100, 150, 200, 300, 500, 750, 1000, 1500,
a ground-based lidar network in analysis and short-term fore2400, 3500, 6000 and 12000 ngd& Meteorological in-
casts of aerosols based on a case study over the Mediteputs are interpolated from reanalysis provided every 3h by
ranean. Important DA algorithm parameters are also studiedthe European Centre for Medium-Range Weather Forecasts
e.g. the correlation length in the background error covariancdECMWF). Boundary conditions are climatological condi-
matrix, the altitudes at which DA is performed, and the as-tions obtained from averaging boundary conditions from
similation period length. MOZART4 (Model for OZone And Related chemical Trac-
This paper is organised as follows. Sectibdescribes the ers version 4) Emmons et a).2010 over the years 2004—
modelling system, i.e. the CTMd2.AIR3D/POLYPHEMUS, 2008. Sea-salt emissions are assumed to be made up of
the Ol method and the experiment design. Se@iprovides  39.33 % of sodium, 55.025 % of chloride and 7.68 % of sul-
a description of the observations used. DA parameter testfate, and modelled followinylonahan et al(1986. Anthro-
are conducted in Sect. Results are shown and discussed in pogenic emissions of gases and aerosols are generated with
Sect.5. Our findings are summarised in Seft. the EMEP inventory for 2009. For example, the EMEP pro-
vides yearly emissions of PM and coarse PM (PM with
) an aerodynamic diameter higher than 2.5 um but lower than
2 Modelling system 10um). The PMs fraction is speciated into mineral dust,

PoLAIR3D (Sartelet et a).2007) is the Eulerian chemistry bIacI'< callrbon'and primary organic aerosol.. The I.DM coarse
: . fraction is attributed to mineral dust. In the simulation, Saha-

transport model (CTM) of the®.yPHEMUS air quality plat- ran dust is onlv forced by boundary conditions

form (Mallet et al, 2007 used to forecast atmospheric com- y y y :

. . The Ol approach is used for assimilating lidar signals from
positions such as ozone and PM concentratibttpi{/cerea. the model aerosol concentration outpiidang et al, 2014
enpc.fr/en/prevision.htmlavailable athttp://cerea.enpc.fr/ P g ; :

polyphemug/ The aerosol dynamic is modelled using the l’hﬁaigilysed mass concentratiog is obtained from the
Slze-REsolved Aerosol Model (SIREAM-SuperSorgam), q

which is described irDebry et al.(2007) and Kim et al.
(2011). SIREAM-SuperSorgam includes 20 aerosol species:x

mineral dust, black carbon, ammonium, sulfate, nitrate, chlo- S
. . ) : . wherexyp are the model mass concentratiomgsis the ob-
ride, sodium, primary organics and 12 secondary organic ; . . :
. . ) ._servation vectorH is the observation operator that simu-
species. It models coagulation and condensation/evaporatiof. : .
) - o o - lates normalised PRfrom the mass concentrations,, H
Five bins logarithmically distributed over the size range is the tanaent linear operator & andB and R are re
0.01-10um are used. The gas chemistry is solved with g P '

the CB05 (Carbon Bond version 5) chemical mechanism‘rsnp;t(r:it(':\g)\l/vt:ﬁ b:tc;g(rzoouln; arlz)(\j/iggzet\rl://gt;)lno(?irtrr?;got;/:;:\dnce
(Yarwood et al. 2005. PoOLAIR3D/SIREAM has previ- ' 9 ’ P 9

ously been used for DA using the optimal interpolation (Ol) o(r;r}PhemO;:;(letggg g)&gocngﬁg;g‘aeﬁg:?ly_?ﬁ: iﬁte?gr?a?l-ses
method Tombette et a).2009 Wang et al.2013 2014). 9 Y | Y

) PM25 and PMg_25 concentrations separately but simulta-
The aerosol optical property module developedviigng .
et al. (2014 is employed. It simulates the molecular neouslyWang et al(2014) reported that the latter algorithm

backscatter and extinction coefficiengi(ande) from the leads to better forecasts than the former, because the model

Boltzmann constant, the atmospheric pressure, and temperél)]cten simulates PMs better than P55, and the back-

S L round error varian f nd PMo_ r -
ture. The aerosol extinction and backscatter coefficiesgs ( ground error variances of PM and PMo._2 5 are set sepa

. - rately in the latter algorithm. Therefore, we employ the latter
andag) are simulated from the model aerosol concentration ' o .
. . algorithm in this paper. We set the background error covari-

outputs (i.e. aerosol water content and aerosol) by estimatin

: : "9 hce matrix as a block diagonal matrix having two main di-
the particle wet diameter and the aerosol complex refractive S :
. . ) . . . agonal blocks. One main diagonal block is set as the back-
index of a particle. Lidar signals (i.e. PRormalised at a

i . . round error variance maitrix of . Another i
reference altitude) and AOD are simulated as functions Oi?hgubadclf rgun(? ea:rgrevar?;nceomz\réix of (;[Me SV\fe e;;‘c’
the molecular backscatter and extinction coefficients and th 9 2.5

3
aerosol extinction and backscatter coefficients. The backgrOLsmd error of PM and PMo_25 at Spgnt
and 30 ug m* respectively inB, since the model simulates

PM25 more accurately than PMd_» 5 (see Sects). We take

a=xp+BHT(HBHT +R)"X(y — H[xp)), 1
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Figure 1. Locations of the different measurement sites used in this paper (see Tatld8 for the number of stations used in the different
networks). The rectangular area delimited by the black box shows our modelling domain. The red triangles indicate the locations of the
stations of the French air quality network (BDQA). The cyan squares indicate the locations of the stations of the EMEP-Spain/Portugal
network. The violet triangles indicate the locations of the stations around Barcelona. The green squares indicate the locations of the EMEP-
Europe stations. The orange diamonds indicate the locations of the AERONET stations. The dark blue/grey star markers indicate the locations
of ACTRIS/EARLINET stations. The grey star markers indicate lidar stations without data between 9 and 12 July or outside of the forecast
domain. The yellow star marker indicates the location of the Corsica lidar station. The dashed line shows the latituendfidH is used

to split the French stations in Sebtl

R = o1, whereo is an observation standard deviation (de- ité de I'Air) and ACTRIS/EARLINET campaigns are as-
pending on instrumental and representativeness error varsimilated. During the forecast period, DA is not performed.
ances) and is the identity matrix in the observation space. Hence, the model mass concentrations evolve depending on
The value ofo is different in each DA test. It is determined initial and boundary conditions, emissions and meteorology.
by a x? diagnosis, in which the scalar at each DA step is  Concentrations can be impacted by lidar DA far from the

defined by place where lidar signals are assimilated, because analysed
) b T T 1 b mass concentrations are transported by winds and diffusion
x“=@—Hx") (HBH +R)™“(y — H[x"]). (2)  (turbulence).

) In regional models, uncertainties are linked to input data
On averagey © should be equal to the number of observa- 5ng parametrisations, e.g. initial and boundary conditions

tions Ménard et al.1999. This x2 diagnosis could balance (Roustan et al2010, meteorological inputsi{awson et al.
observation and background errors. After DA, the analysedzoo-,) and emissionsde Meij et al, 2006 Napelenok et a).
concentrations are redistributed over the model variables fo'?OO@. Replacing some input data, such as boundary condi-
lowing the initial (background) chemical and size distribu- tjons or emissions, with another set of data which is also un-
tions (Tombette et a).2009 Wang et al.2013 2014. _ certain may either improve or deteriorate the aerosol simula-
The simulation with DA, referred to as the DA experi- (iong |ocally, depending on period/year and place. However,
ment, consists of two periods: an assimilation period andpp may be used to improve input data, such as initial condi-

a forecast period. During the assimilation period, at eachjgns, using observations (as done in this paper). The impact
time step, all available lidar data retrieved in the framework ¢ pa may vary locally with the quality of the input data
of the pre-ChArMEx (Chemistry-Aerosol Mediterranean Ex- ;g¢(.

periment)/ TRAQA (TRAnsport a longue distance et Qual-

www.atmos-chem-phys.net/14/12031/2014/ Atmos. Chem. Phys., 14, 1202053 2014
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Table 1. Description of the lidar systems used in this study. “Reso.” stands for resolution. “ASL” stands for a.s.l. (altitude above sea level).
The letters “p” and “c” in the wavelengths stand for parallel and cross linear polarisation component respectively.

Lidar site Site coordinates Measurement information
Latitude Longitude Altitude ASL Wavelengths Rawrange Rawtime Zenith
degree degree meter nanometre reso. meter reso. second angle degree

Athens 37.96 23.78 212 355, 532, 1064, 7.5 100 0
387, 607

Barcelona 41.389 2.112 115 355, 532, 1064, 3.75 60 52
387, 607

Bucharest 44.348 26.029 93 355, 532c, 532p, 3.75 60 0
1064, 387, 607

Clermont-Ferrand  45.761 3.111 420 355c, 355p, 387 7.5 60 0

Evora 38.568 —7.912 290 355, 532c¢, 532p, 30 30 5
1064, 387, 607

Granada 37.164 —-3.605 680 355, 532c¢, 532p, 7.5 60 0
1064, 387, 607

L'Aquila 42.368 13.351 656 351, 382 30 300 0

Madrid 40.456 3.726 669 355, 532, 1064, 7.5 60 0
387, 607

Potenza 40.601 15.723 760 355, 532¢, 532p, 3.75 60 0
1064, 387, 607

Corsica 42.280 9.520 50 355 15 50 15

Limassof 33.040 34.640 8 532, 607,1064,532p 7.5 48 0

Messinid 21.649 36.993 3 532, 532p 7.5 60 0

Payerné 6.943 46.813 491 355, 387, 407 3.25 60 0

* Limassol was not included, because it is outside of the model domain. Payerne and Messinia were not included, because data were not available.

Table 2. DA tests with different configurations for the evaluation stations were located on the northern side of the Mediter-
of the impact of the assimilation parameters on the forecésts. ranean. One of the goals of this campaign was to locate
is the horizontal correlation length used in the Balgovind approachgnd track aerosols in the lower and middle troposphere in
(Balgovind et al. 1983 to define the error covariance matix the Mediterranean region and to help improve our forecast
ability of CTMs using DA. The ground-based lidar stations
(blue/grey and yellow star markers in Fip.performed con-

Simulation name Lpin B  Assimilation altitude range

DA Ly, =50km
DA Ly, = 100km
DA Lj, = 200km
DA 0.75-3.5km
DA 1.5-3.5km

50km

100 km
200km
100 km
100 km

1.0-3.5kmag.l.
1.0-3.5kmaul.
1.0-3.5kmaul.
0.75-3.5 knal.
1.5-3.5kmal.

3 Observations

tinuous measurements from 9 July at 06:00 UTC until 12 July
at 06:00 UTC. The participating EARLINET stations include
Athens, Barcelona, Bucharest, Evora, Granada, L'Aquila, Li-
massol, Madrid, Messinia, Potenza, Payerne and Clermont-
Ferrand. The MISTRALS/ChArMEXx station was situated at
INRA (Institut National de la Recherche Agronomique), San
Giuliano, at about 3 km from the eastern coastline of Corsica
(see Figl). Data received by the Payerne and Messinia sta-
tions are not available. Also, data received by the Limassol

In the following, we describe the observations used in thisstation are not used in this paper, because Limassol is outside
study: the lidar signals used for assimilation, and surfaceof the model domain.

mass concentrations and AOD used for the DA validation.

3.1 Lidar observations

Table 1 shows the site coordinates and properties of the
lidar systems used in this campaign. The vertical resolu-
tion of measurements ranges from 3.25m to 30 m (depend-
ing on the lidar system). The temporal resolution of mea-

An intensive measurement effort was performed by 12surements ranges from 30s to 300s (depending on the li-
ground-based lidar stations from the ACTRIS/EARLINET dar system). The raw data (except those of the Corsica sta-

network Bosenberg et g§l.2003 Pappalardo et al2014

tion) were automatically treated by the single calculus chain

in the Mediterranean basin and one station in Corsica(SCC) developed by the EARLINET lidar networkt{p:

in the framework of the pre-ChArMEX/TRAQA and AC-

/Iwww.earlinetasos.odg(D’Amico et al, 2012 to generate

TRIS/EARLINET campaigns in July 2012 during 72 h. All integrated profiles of range-corrected lidar signals?PR

Atmos. Chem. Phys., 14, 120312053 2014
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Figure 2. Hourly averaged range-corrected lidar signals?():TR)m 06:00 UTC 9 July to 06:00 UTC 12 July at the Athens, Clermont-Ferrand,

Evora, Granada, L'Aquila and Potenza lidar stations.

near real time under cloud-free conditions. The SCC is anar zone. The linear approximation of the observed lidar sig-
automatic tool to get different types of aerosol products (e.gnal should be equal to the one of the simulated molecular
PRZ, aerosol extinction and backscatter coefficients) fromsignal (without aerosol contribution) in the molecular zone
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raw lidar data. In this work, only one type of the available (Wang et al.2014). In this paper, it is taken at 4750 ngd.,
products, PR, is used. All observations are integrated with which corresponds to the model level of 3500—-6000 kgl a
a time resolution of 1 h, the DA time step used in this study, (see Sect2). Figure2 shows PR at the Athens, Clermont-

and normalised at an altitude in the range of the moleculaferrand, Evora, Granada, L'Aquila and Potenza lidar sta-

zone. It is because there is almost no aerosol in the molecuions. Those at the other stations are shown later, inFig.
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Figure 3. Hourly averaged range-corrected lidar signals2(PIRJm 06:00 UTC 9 July to 06:00 UTC 12 July at the Barcelona, Bucharest,
Corsica and Madrid lidar stations.

Table 3. Number of stations used for BM, PM1g or AOD in the (see Figl). The French and Barcelona networks (triangles in

different networks. Fig. 1) provide hourly averaged mass concentration measure-
ments of PM s and PMg. The EMEP-Spain/Portugal and
Network name Number of stations used EMEP-Europe networks (squares in Fljprovide daily av-
PMio PMzs AOD eraged mass concentration measurements @PMe num-

BDQA 240 70 0 ber of used stations in the BDQA, Barcelona, EMEP-Europe
Barcelona 3 3 0 and EMEP-Spain/Portugal networks, which providesgbr
EMEP-Europe 7 0 0 PMz5 measurements in July 2012, is shown in Takl&he
EMEP-Spain/Portugal 22 0 0 BDQA network provides the most measurements, with 240
AERONET 0 0 13 stations for PMg and 70 stations for Pi.

The hourly AOD data at 355 nm are derived by level 2.0
(cloud-screened and quality-assured) AOD data at 340 and
3.2 Observations for validation 380 nm retrieved from AERONET (AErosol RObotic NET-
work, http://aeronet.gsfc.nasa.gpwllowing the Angstrém

We employ two independent data types for DA validation: [@W (Wang et al, 2014. The locations of the AERONET

surface mass concentration measurements (i.ez sPahd stations considered (e.g. stations that are close to the li-
PMy0) and AOD data. ' dar network and that provide the level 2.0 AOD data in

The surface mass concentration measurements are frofi® Pre-ChArMEX/TRAQA and ACTRIS/EARLINET cam-
the BDQA (Base de Données sur la Qualité de I'Air, the Pign) are shown as orange diamonds in HigThirteen
French national database for air quality which covers Francef\ERONET stations are used for validation in this paper (see
network, the Barcelona network (three stations), the EMEP-Table3).

Spain/Portugal network, and the EMEP-Europe database

Atmos. Chem. Phys., 14, 120312053 2014 www.atmos-chem-phys.net/14/12031/2014/
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Figure 4. Wind fields (arrows) at about 2 kmgal. at 08:00 UTC on 9, 10, 11 and 12 July 2012. The data are interpolated from ECMWF
fields.

3.3 Case study To check that the penetration of the Saharan dust plume
over the continent of Europe was limited, and to assess where

The Mediterranean basin is the receptacle of aerosols fromynalysed concentrations are transported to after assimila-

different origins, e.g. biogenic emissions, natural dust emistion, Fig. 6 shows 48 h backward trajectories (dashed lines)

sions from the SaharaMpulin et al, 1998 Hamonou  of air masses arriving at 2kmgl. and 72h forward tra-

etal, 1999, anthropogenic emissions from highly populated jectories (solid lines) of air masses departing at 2 kyda

coastal areas, marine aerosols, and wildfires. Emissions fromt 10 lidar stations. These data are outputs of the Hybrid

anthropogenic and biogenic origins strongly interact to formsijngle Particle Lagrangian Integrated Trajectory (HYSPLIT;

secondary organic aerosoqtelet et aJ2012. The aerosol  http://ready.arl.noaa.gov/HYSPLIT.phmodel Oraxler and

load is often high over the Mediterranean regidtutaud  Rolph 2014 Rolph 2014 using the Global Data Assimila-

etal, 201Q Nabat et al.2013. Therefore, it is a good place tion System (GDAS) meteorological data with a resolution

to test the usefulness of lidar DA to improve the forecast ofof 1° x 1°. These backward (forward) trajectories end (start)

CTMs. respectively at 06:00 UTC on 9 July 2012, 10 July 2012, 11
Figure4 shows wind fields at about 2 kmal. interpolated  July 2012 and 12 July 2012. They indicate that aerosols mea-

from ECMWF data for each morning of the lidar measure- syred in Spain, Portugal and France were transported to the

ment period, i.e. 9 July 2012 at 08:00 UTC, 10 July 2012 atnortheast or east. Aerosols measured by lidars at other sta-

08:00UTC, 11 July 2012 at 08:00 UTC, and 12 July 2012 attions (i.e. Athens, L'Aquila, Potenza, and Bucharest) were

08:00UTC. Westerly or northerly winds transported pollu- transported to the south or east. Those observations are in

tion over the Mediterranean during the lidar campaign. Fig-agreement with wind fields shown in Figy.In addition, there

ure5 shows the AODs at 550 nm retrieved from MSG (Me- s almost no rainfall along trajectories (not shown in this pa-

teosat Second Generation)/SEVIRI satellitéstpl//www. per).

icare.univ-lillel.fr/msg/ Thieuleux et al.2005 15 min im-

age averaged from all available images between 04:00 and

18:00UTC on 9-12 July 2012, where the high AODs ob-4 Assimilation parameter tests

served mainly in the southern part of the Mediterranean were

mostly due to Saharan dust. However, penetration of the Saln this section, we perform sensitivity tests, first on the DA

haran dust plume over the continent of Europe was limited period length, and then on the horizontal correlation length

except in the south of Italy and the south and east of Spainused in the background error covariance matrix and on the

At the Ersa surface station in Corsica, the chemical analy-assimilation altitude range.

sis of filters from 00:00 until 12:00 UTC on 11 July 2012

did not detect Saharan dustiicolas 2013, and the MIS- 4.1 Assimilation period length

TRALS/ChArMEXx aerosol lidar in Corsica does not show
evidence of a dust layer (see F8). Wang et al.(2013 compared the aerosol forecasts per-

formed after different assimilation periods varying from 6 h

www.atmos-chem-phys.net/14/12031/2014/ Atmos. Chem. Phys., 14, 1202053 2014
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Figure 5. Daytime (from 04:00 to 18:00 UTC) mean AOD at 550 nm derived from MSG/SEVIRI.

Table 4. Statistics (see AppendiX) of the simulation results for the different networks.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Network Species Simulation ~ Stations Obmean Sinfmean RMSE CorP MFB MFE
pg 3 pgn3  pgnr3 % % %
BDQA PM10 Without DA 240 14.1 9.8 8.8 40 -26 44
With DA 11.4 8.0 49 -14 40
PMps  Without DA 70 8.1 7.9 4.4 39 11 43
With DA 8.5 4.3 44 17 44
Barcelona PMg Without DA 3 22.2 151 8.9 Negh —37 39
With DA 20.1 70 Nat -6 26
PMyg  Without DA 3 17.0 12.5 60 Ngh -—27 33
With DA 14.5 4.7 Nar -11 24
EMEP-Spain/Portugal PM Without DA 22 16.0 12.8 6.9 58 22 24
With DA 13.7 6.3 63 15 17

1 «Ops.” stands for observatioR.“Sim.” stands for simulation® “Corr.” stands for correlatiorf: Correlation is not presentable for three stations.

to 3days, during which surface mass concentration observaPM;g and PM s, since the BDQA network provides most
tions were assimilated. They suggested that an assimilatiomeasurements of P)d and PM 5. We refer to AppendiA
period of 12 h is necessary to improve the aerosol forecastfor the definition of statistical indicators. Overall, the simula-
In this work, two DA period lengths, 12 h and 24 h, are em- tion with lidar DA leads to better scores than the simulation
ployed to study the impact of the assimilation period lengthwithout DA during the first 36 h of forecast. The improve-
on aerosol forecasting. The results are detailed in this sectiorments in DA are significant for PN. The RMSE (or cor-
relation) of PMo averaged over the first 36 h of forecast is
The 72h period of continuous lidar measurements from9.4 ug 3 (or 39 %) without DA, 8.4 pg m® (or 49 %) with
06:00 UTC 9 July to 06:00 UTC 12 July 2012 is split into 12 h DA and 8.4 ug m? (or 50 %) with 24 h DA. For PMs,
three experiments of 24 h each. For the assimilation periodhe improvements in DA are not significant, except for the
of 12 (or 24) hours, for each of the three experiments, thecorrelation. The RMSE (or correlation) of PM averaged
lidar data are assimilated during 12 (or 24) hours, and 60 tover the first 36 h of forecast is 4.5 pg#(or 37 %) with-
forecasts are issued at 06:00 UTC on 10, 11 and 12 July, resut DA and 4.4 pg m® (or 43 %) with either 12 h DA or with
spectively. All DA experiments use the same parameters (i.e24 h DA. Comparing DA with 24 h of analysis (DA test “24 h
the horizontal correlation length is 100 km and the assimila-DA") to 12 h of analysis (DA test “12 h DA"), the simulation
tion altitude ranges from 1.0 to 3.5kngd.), except for the  with 24 h of analysis delivers slightly better scores during the
assimilation period length. forecast period (to the right of the black lines). However, the
Figure 7 shows the scores, the RMSE (root mean squardlifference between DA tests “24 h DA’ and “12 h DA’ after
error) and the (Pearson) correlation calculated against thé h forecasts is barely significant. Since the measurement pe-
ground observations over France (the BDQA network) forriod of the lidar campaign in July 2012 lasted only 72 h, and

Atmos. Chem. Phys., 14, 120312053 2014 www.atmos-chem-phys.net/14/12031/2014/
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Figure 6. Backward (forward) trajectories of 48 h (72 h) at lidar site locations (black stars) at ZKdmesnding (or starting) at 06:00 UTC

9 July 2012, 06:00 UTC 10 July 2012, 06:00 UTC 11 July 2012 and 06:00 UTC 12 July 2012. Data are from the HYSPLIT model. Dashed
(solid) lines indicate backward (forward) trajectories, where the 12 h spacing is given by the discs. The backward trajectories pertain to the
source attribution problem of the lidar measurements, whereas the forward trajectories show the propagation of the DA updates around lidar
locations.

the simulation with 24 h of analysis does not lead to muchfigurations of DA for PM and PM 5 are shown in Fig10.
better scores than the one with 12 h of analysis during theThese scores are calculated against the observations of the
forecast period, we chose to perform DA experiments with anBDQA network. In this section, the impact of the horizon-
assimilation period of 12 h in the following to have sufficient tal correlation lengthLy, of the error covariance matri® is

DA experiments to evaluate the results of DA statistically. In studied, sincd.y, is an important parameter that determines
this case, the 72 h period of continuous lidar measurement® what horizontal extent the particle concentrations are cor-
is split into six 12 h assimilation periods (should 24 h DA rected by DA.

be chosen, the 72 h period of continuous lidar measurements At the beginning of the assimilation period, all simulations
would be split into only three disjoint 24 h assimilation pe- have the same scores, since the simulations without DA and
riods). Figure8 shows the schematic representation of thesewith DA use the same initial conditions. The improvement in
six DA experiments. Each DA experiment includes a 12 haerosol mass concentrations at stations over France starts 6 h
assimilation period (grey bars) and a 60h forecast periodafter the start of the DA experiment. This delay is due to the
(white bars). All DA experiments begin either at 06:00 UTC fact that the only lidar station in France used for this study is
or at 18:00UTC on 9, 10 or 11 July 2012. Fig®ehows in Corsica, away from continental France (see Higsnd6;

the schematic representation of the lidar measurement seghe station in Clermont-Ferrand provided too few observa-
ments assimilated in six DA experiments. At each DA step,tions due to bad weather during the campaign, seeJidt

all available lidar data retrieved from 10 lidar stations are as-is also because the assimilation altitude range is high: it starts

similated. higher than 1.0km.g.I. The analysed mass concentrations
therefore take time to be transported to the ground level. We
4.2 Assimilation correlation length find that the correlation lengthy, = 200 km (yellow lines in

Fig. 10) is too large, decreasing slightly the correlation co-
In Table 2, the different configurations of DA are sum- efficients for both PMo and PMs at French stations dur-
marised, with the horizontal correlation length (e.g. 50, N the assimilation period (to the left of the black lines in
100 and 200km) and the assimilation altitude range usedF'g 10).
The scores (i.e. RMSE and correlation) of the different con-

www.atmos-chem-phys.net/14/12031/2014/ Atmos. Chem. Phys., 14, 1202053 2014
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PM, validation with the BDQA network
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Hours Figure 8. Schematic representation of six DA experiments with
PM, ; validation with the BDQA network a 12 h assimilation period (grey colour) and a 60 h forecast period
s (white colour). “Exp.” stands for DA experiment.
i, gl|— WithoutDA -- 24hDA
T 9| — 12hDA
< . .
| PMz 5 on the first forecast day. This is because the analysed
z, zone in the model is set to be isotropic (a horizontal disc, the
I R centre of the disc being the measurement station, i.e. the li-
o O Y7 18 24 30 36 42 48 54 60 66 72 dar site), whereas the analysed zone should be horizontally
3 anisotropic, depending on the wind direction and the aerosol
é 0-5 ] spatial distribution (e.g. aerosol origins). Usihg= 200 km
= 0.4 defines an isotropic analysed zone which is too large, lead-
Z0.3f ing to a decrease in correlation coefficients. On the second
“ 0.2l forecast day, usingn = 200 km leads to much better scores
0 6 12 18 24 30 36 42 48 54 60 66 72 than usingLy, = 50km or Ly, = 100 km for both PMg and

Hours PMa 5. Moreover, the beneficial impact of the assimilation

Figure 7. The top (or bottom) panel shows the time evolution of with Ly = 200km IaStS.Ionger than .48 h. ltis becauge “S"f‘g
the RMSE (ug m3) and the correlation of P, (or PMy 5) aver- Ly =200 km leads to higher qorrectlons arounq the lidar site
aged over the different DA experiments for three experiment typesdue to the use of the Balgovind approa&algovind et al,
one without DA, one with 12 h of DA and one with 24h of DA. 1983 (the closer to the lidar site the grid point is, the higher
The scores are computed for the BDQA network (hourly data). Thethe correlation is). The corrections due to the higher correla-
vertical black lines denote the separation between the assimilatiotion around lidar sites (far away from France) are more accu-
period (to the left of the black lines) and the forecast (to the rightrate, and impact France later.
of the black lines). “12 DA’ (“24 DA") stands for DA with 12 (24)
hours of analysis. The forecasts of “12 DA" and “24 DA’ startatthe 4.3 Assimilation altitude range
same moment. The scores in the first 12 analysis hours of “24 DA
are not shown. The choice of the assimilation altitude range is influenced by
two factors. First, as the normalisation of range-corrected li-
dar signals is done at high altitudes, the lower the altitude
During the forecast period (to the right of the black lines is, the higher the error in the simulated lidar signal is. It is
in Fig. 10), the temporal impact of the assimilation of lidar mostly because the integration of simulated extinction co-
signals lasts longer than 36 h for all DA tests. Notice thatefficients from the considered altitude to the normalisation
the temporal impact of assimilating surface mass concentraaltitude leads to accumulation of errors of simulated lidar
tions was estimated to be between 6 and IRombette eta).  signals at high altitudes, especially in the case where high-
2009 Jiang et al.2013. The comparison of the DA tests altitude aerosol layers are not well modellaifang et al.
with Ly =50km (green lines in Figl0), Lp =100km (red = 2014. Second, the numerical computations of the lidar oper-
lines in Fig.10) and Ly = 200 km (yellow lines in Figl10) ator H and its tangent lidar operatét (see Eql) are very
shows that usind., = 100 km leads to better forecasts than costly. The larger the assimilation altitude range is, the more
using Ly = 50 km or L, = 200 km on the first forecast day. costly the numerical computation is. Hence, in this section,
In addition, usingLy = 200 km (yellow lines in Figl10) re- we investigate the impact of the assimilation altitude range
sults in a higher RMSE than the simulation without DA for on aerosol forecasting.
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Figure 9. Schematic representation of the lidar measurement segments assimilated (black segments) during the assimilation period for six

DA experiments. “Cler.-Ferr.” stands for Clermont-Ferrand.

We perform three DA tests (0.75-3.5kmgd, 1.5-  planation is that the scores in Fifj0 are computed using
3.5kmag.l. and a reference case 1.0-3.5kigla in the observations from the BDQA network, where most im-
Fig. 10). As shown in Fig10, assimilating lidar signals from provements are from assimilation of lidar signals in Spain or
0.75 to 3.5kmay.l. (magenta lines) leads to similar scores Portugal (see Figgl and6). However, of the lidar stations in
(with respect to hourly data of BDQA) as assimilating from Spain, only Madrid and Granada provided data between 0.75
1.0to 3.5km ay.l. (areference case, red lines). A first expla- and 1.0 km ay.l. (see Figs2 and3). In addition, assimilating
nation is that the observation variance (sum of instrumentalidar signals from 1.0 to 3.5kmal. (magenta lines) leads
and representativeness variances, fromyReliagnosis) of  to slightly better scores than from 1.5 to 3.5 km.h (black
the model level of 0.75-1.0 kmal. is set higher than those lines).
of the model levels from 1.0 to 3.5kmA. A second ex-
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Figure 10. The top (or bottom) panel shows the time evolution of Figure 11. The top (or bottom) panel shows the time evolution of
the RMSE (ug rii3) and the correlation of PM, (or PMy 5) aver- the RMSE (g 3) of PMy (or PMy 5) averaged over the differ-
aged for each of the six different experiments. The scores are COMg ¢ experiments without and with DAL(, — 100 km and altitude
puted for the BDQA network (hourly data). The vertical blacklines 40 1 o_3 5 km). For the six successive experiments, the time ori-
denote the separation between the 12 h assimilation period (to thain corresponds respectively to 06:00 UTC on 9 July, 18:00 UTC
left of the black lines) and the 60 h forecast period (to the right of on 9 July, 06:00 UTC on 10 July, 18:00 UTC on 10 July, 06:00 UTC
Ehe black lines). ‘I;he_ “DAL_h =50km”, "DA Lp =100 km a_tnd on 11 July and 18:00 UTC on 11 July. The scores are computed for
DA Lp = 200km” simulations correspond to an assimilation al- ,oq stations around Barcelona (hourly data, seelfighe verti-
titude range from 1.0 to 3.5km. The "DA 0.75-3.5km” and “DA | pjack lines denote the separation between the 12 h assimilation
1.5-3.5km” simulations correspond ig, = 100 km. period (to the left of the black lines) and the 60 h forecast period (to
the right of the black lines).

5 Results and discussions

) ) ) and PM s, the criteria evaluation goals are verified. How-
Tr_\e_ us Enywonmental Protection Agency (EPA) has 'SSl_Jedever, the model simulates PM better than PN, which is
minimal guidance on PM model performance evaluationgjignty underestimated. This is probably because road resus-
measures, goals, and critefylan and Russe(R008 sug-  pensjon of PM is not considered, either in the model or in the
gested using the mean fractional bias (MFB, %) and the meail,, ;t gata (e.g. boundary conditions). As a consequence, we
fractional error (MFE, %), because they bound the maximumy o« et 4 lower standard deviation for PMi.e. 5Sugntd)
bias and error (see Appendly. We evaluate the simulation o1 for PMo_25 (i.e. 30 ugnt3) in the background error
without DA using the hourly observations from the French .\ 4 riance matrig (see Eql).
BDQA network with these criteria. For P (or PMp 5), the
MFB and MFE averaged over all six experiments are respec-
tively —299% and 46 % (or 6% and 43 %). For both RM
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Validation with the EMEP-Spain/Portugal network
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Figure 12. Scatter plots of simulated P)§ mass concentrations without DA (left panel) and with DA (right panel) against dailygPM
measurements at several EMEP-Spain/Portugal stations.
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Figure 13. Time evolution of the hourly averaged measured AODs (green dots) and simulated AODs without DA (blue lines) and with DA
(red lines) over the first 36 h forecast period, at the AERONET stations of Rome and Bucharest.

As discussed in Sec#, the “DA L = 100km” DA 5.1 Validation with the BDQA network

test, which assimilates lidar signals retrieved from the lidar

campaign from_l.O to 3.5km@l. during 12h V\,’itth = For PMy, the averaged RMSE (correlation) over the first
100 km, and which performs 60 h forecasts, delivers the besf,)6 h of forecast is 8.8ugm¥ (40%) without DA and
scores during the forecast period. Therefore, in the foIIow-8 0 ug nT3 (49 %) with bA (see Tabld). For PN s, the av-
ing, we con5|_der the “DA_Lh =100km” DA test (“lec'_slr DA’ eraged RMSE (correlation) over the first 36 h of forecast is
hereafter). Since most improvements are in the first 36 h of4 4pug T3 (39 %) without DA and 4.3 pug m8 (44 %) with
forecast, we compute the scores only for this period hereafterD'A (see Tabled). Notice that DA imbroves Php more ef-
instead of for the whole forecast period (i.e. 60 ). ficiently than PM s. Therefore, DA would be very useful in
reducing the uncertainties in the simulation due to road resus-
pension of coarse PM. However, these improvements are not
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very significant, especially for Pp%, because most BDQA proved. During the assimilation and forecast periods (72 h),
stations are far away from the lidar network. Improvementsthe RMSE averaged over all six experiments is 6.9 gd m
are more significant when using only stations in the south ofwithout DA and 6.3 ugm?® with DA (see Table4). Com-
France. pared to the simulations without DA, DA (“Lidar DA") in-
Against the observations at BDQA stations on the south-creases the correlation from 58% to 63% (see Table
ern side of 44N (dashed line in Figl), the averaged RMSE Meanwhile, the mean bias error (MBE) decreases from 3.1
(MFB and MFE respectively) of PA over the first 36h  to 2.3 ugn73 (see Fig.12). Also, we compute the statistics
of forecast is 16.4pgn? (—53% and 30 % respectively) of the simulation results without and with DA using daily
without DA and 13.7 ugm? (—26 % and 46 % respectively) concentrations at all EMEP-Europe stations (seven stations,
with DA. For PM, 5, the averaged RMSE (MFB and MFE green squares in Fid). However, since EMEP-Europe sta-
respectively) over the first 36 h of forecast is 7.1 ygPm tions are far away from the lidar network, the PRMSE,
(—20% and 47 % respectively) without DA and 6.5ugin  correlation and bias are slightly but barely improved (not
(—6 % and 44 % respectively) with DA. The improvements shown).
in DA are more significant by comparisons to measurements
at BDQA stations south of 44\ than at all the BDQA sta- 5.4 Validation with the AERONET network
tions. Aerosol forecasts over these southern stations are im-

pacted by DA of the Corsica, Spain and Portugal lidar data™'9uré 13 shows the time evolution of the AOD measure-
(see Fig$). ments and AODs of the 36 h forecasts without DA and with

Moreover, we compare simulations with DA in the day- DA @ AERONET stations Rome (41.84, 12.65 E, 130m

time (DA is performed from 06:00 to 18:00 UTC) to simula- &9:I-) and Bucharest (44.38l, 26.03 E, 93m a.g.l.). The
tions with DA in the nighttime (DA is performed from 18:00 impact of assimilating lidar signals lasts about 36 h, which

to 06:00 UTC). We find that they lead to similar scores (re- 0Treésponds to the findings of Sedisl ands.2 _
sults not shown in this paper). Figure14 shows the scatter plots of simulated AODs with-

out and with DA against AOD from hourly measurements of
the AERONET network over the first 36 h of forecast, where
only 13 AERONET stations leeward and close to the lidar

Figure 11 shows the time evolution of the RMSE aver- Network are considered (see Fig. As shown by comparing
aged over all six experiments without and with lidar DA for the 1eft panels of Figsl2and14, the model simulates AOD
PMyo and PMys. The RMSEs are computed at three sur- better than PNp. This is mostly because the model simu-
face stations around the Barcelona lidar station (violet tri-1ates finé particles (Pi) better over the modelling domain
angles in Fig.1). We find that the impact of the assimila- (N0rizontal and vertical), and P tends to have larger con-
tion of lidar signals is longer than 48h in the forecast pe-ributions to optical properties than coarse particles when no
riod for both PMgo and PMs. The averaged RMSE of Pjg Sa_lharan dust event o_cc_utsr(azette et 812005 Randriami-
over the first 36 h of forecast is 8.9 ugfwithout DA and ~ &r1soa et al.2006. This is also probably because the model
7.0 ug i3 with DA (see Tabled). The averaged RMSE of may simulate the integrated mass concentration better than
PMs5 over the first 36 h of forecast is 6.0 pgthwithout  Vertically resolved mass concentrations. .

DA and 4.7 ug m3 with DA (see Tabled). We find that the As shown in F|g'.14, AODs are significantly |mproved
aerosol error reduction around Barcelona is higher than thd" the simulation with DA for high AOD observations (few
one over France and the south of France (estimated using tHe2S€S). When the observed AODs are larger than 0.4 (
BDQA network). That is because the surface stations around62), thé RMSE (MBE) is 0.23 (0.2) without DA against
Barcelona are close to the ground-based Barcelona lidar std2-20 (0-13) with lidar DA. It is because large AODs could
tion, leading to larger benefits of DA. Furthermore, the sur- be assoc'late'd with transport of particles above the boundary
face stations around Barcelona are also strongly influence{ye". which is not well simulated by the model (probably due
by the Evora and Madrid lidar sites due to wind fields, be- 0 1arge-scale model uncertainties), but which is followed by
cause Barcelona is on the leeward side of these lidar sitel€ lidars Wang etal.2014). It may also be that assimilation
during the lidar campaign in July 2012 (see F8ly. The im-  ©f lidar signals improves the estimation of aerosol mass con-
provements due to lidar DA associated with long-range transentrations more efficiently when aerosol concentrations are

port of pollution from Evora and Madrid are also validated. h_igh, €.g. during air pollution events, that is, when the lidar
signal is strong.

5.2 Validation with the Barcelona network

5.3 Validation with the EMEP-Spain/Portugal network

Figure 12 shows the scatter plots of simulated RMon-
centrations without and with DA against RMdaily mea-
surements at EMEP-Spain/Portugal stations (cyan squares in
Fig. 1). The PMy correlation and RMSE are slightly im-
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Figure 14.Scatter plots of simulated AODs without DA (left panel) and with DA (right panel) against AOD hourly measurements at different
AERONET stations over the first 36 h of forecast.

6 Conclusions ments from the EMEP-Spain/Portugal network and AOD
measurements from the AERONET network over Europe.
In this paper, a data assimilation (DA) algorithm based on theThe results showed that the simulation with DA leads to
optimal interpolation (Ol) method is used to assimilate lidar better scores than the one without DA for aerosol forecasts
signals (normalised PR for aerosol forecasts over Europe. (PMzs, PMig and AOD). Moreover, the temporal impact of
The lidar data were retrieved from a 72 h period of inten- assimilating lidar signals is longer than 36 h, whereas this
sive and continuous measurements in July 2012. The medemporal impact was estimated to be shorter in previous stud-
surements were performed by 12 ground-based lidar stationies that assimilated surface mass concentrations, e.g. between
of ACTRIS/EARLINET in the Mediterranean basin and one 6 and 12 h, byfombette et al(2009 andJiang et al(2013.
station in Corsica which was set up in the framework of the When the temporal impact was estimated using only the three
pre-ChArMEX/TRAQA campaign. stations around the Barcelona lidar site, the impact lasted
First, we studied the impact of the length of the lidar DA longer than 48 h. Additionally, since the model simulates fine
period on aerosol forecasts. We found that 24 h DA leadsparticles better than coarse particles, we set a higher error in
to slightly better forecasts than 12 h DA. However, the dif- the background error covariance matrix (see S&c#ndb5)
ferences between 24 h DA and 12h DA are small after 6 hfor coarse particles than for fine particles, leading to larger
of forecast. Furthermore, because the impact of lidar DAcorrections by DA of coarse particle concentrations than of
lasts longer than 36 h in the forecast period, we have usefine particle concentrations.
12 h as the assimilation period length in this paper. Also, The maximum likelihood ensemble filter (MLERJ({pan-
we conducted sensitivity studies on algorithmic parametersski, 2005 or the iterative ensemble Kalman filter (IEnKF)
e.g. the horizontal error correlation length and altitudes at(Bocquet and Sakqw013a 2014 could be used in fore-
which DA is performed. DA with the error correlation length casts of aerosols in place of the Ol method in order to avoid
Ly =100 km and assimilation from 1.0 to 3.5 kngd. leads  the tangent linear approximation of the lidar observation op-
to the best scores for Pigland PM 5 during the forecast pe- erator, and would handle the nonlinearity of the lidar ob-
riod (the evaluation was done using measurements from theervation operator. They would also update and propagate
BDQA network, since the BDQA network provides the most the background error covariance matrix during the assimi-
measurements for the DA validation). lation period. As some lidars provide measurements at sev-
The simulation results without and with lidar DA were eral channels, we expect to have better results by assimilating
evaluated using hourly concentration measurements from tha more extended lidar data set, i.e.2P& several channels.
BDQA network over France, daily concentration measure-
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The lidar-derived PBL heightMorille et al, 2007 Baars

et al, 2008 Granados-Mufioz et al2012 Lesouéf et al.
2013 could also be assimilated in the model. More accu-
rate PBL heights would improve the forecast ability of air
quality models Pielke and Uliasz1998, because the PBL
height determines the volume in which pollutants are mixed.
Finally, asSchwartz et al(2012 have shown, simultaneous
DA of different aerosol observations (RM and AOD) pro-
duced the best overall forecasts; for future works, we may
combine DA of lidar signals and mass concentration mea-
surements for real-time forecasts of aerosols.
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Appendix A: Statistical indicators

{oi}i=1., and{s;}i=1, are the observed and modelled aerosol
concentrations at time, respectively.n is the number of
available observations. The statistical indicators used to eval-
uate the results with respect to observations are the root mean
square error (RMSE), the (Pearson) correlation, the mean
fractional error (MFE), the mean fractional bias (MFB) and
the mean bias error (MBE). The statistical indicators are de-
fined as follows:

1 n
RMSE= —Z(o,-—sl-)Z, (A1)
n i=1

correlation= 2i=10i Z 00 =) , (A2)

\/Z?:l(ol' —0)231_1(si —5)?

n
MFE= 23> ol (A3)
n ‘= (si+oi)/2
MFB = li S (A4)
n = (si+0i)/2’
1 n
MBE = ZZ” — o, (A5)
i=1

— 1 n —_ 1 n
whereo = 2> " j0; ands = 2 > 1 s;.
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