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Abstract: This paper describes a new method for predicting trihalomethanes (THMs) 

presence in networks of water supply systems, using a low-cost device that permits a fast 

monitoring of concentrations without need of complex analysis made in laboratories. This 

method, based on statistical models, allows the estimation of THM concentration by 

monitoring parameters whose determination is direct and easy, and therefore, THM 

presence can be carried out in real-time. These parameters values are introduced in a 

multiple regression model resulting in the concentration of THMs levels. This model has 

taken into account parameters compulsory in water quality analysis and it has been shown 

that six parameters are enough to determine accurately THM concentration. In addition, the 

feasibility of a low-cost device that directly gives THM concentration is demonstrated. 

This device can be easily designed to be transported to different points of the water supply 

network where it is intended to make control campaigns. 
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1. Introduction 

The use of chlorine revolutionized water treatment at the beginning of the 20th century; in fact the 

chlorination is currently the most extended system for disinfection throughout the world. However, 

recent research has shown that chlorine, when added to the water supply, can produce dangerous 

compounds, which may cause cancer [1–3]. More specifically, chlorine reacts with natural organic 

carbon in the water to form trihalomethanes (THMs) [4]. The THMs is a disinfection by-product 

(DBP) that is produced by the reaction of the naturally occurring organic compound in the water and 

the chlorine added as a disinfection agent [5]. 

In addition to this, compliance with the European Council Directive 98/83/CE [6] and the deeper 

understanding in the society about environmental conservation and preservation has brought as a result 

the establishment of strict requirements for wastewater treatment plants as well as drinking water 

plants. These regulations pursue to diminish the negative impact on ecosystems and human health. As 

a consequence of these huge and fast changes, water and wastewater treatment have had to make great 

effort to achieve the new requisites. Among these new requirements introduced by the Directive 98/83/CE, 

the obligation to control the presence of THMs in water supply systems is included. Because of the 

impact on human health and changes in existing supply facilities that this requires, without a doubt, its 

monitoring and control will be of great importance. 

DBP monitoring is usually time consuming and involves expensive techniques such as gas 

chromatography analysis. Hence, particular interest has grown on the development of models to 

estimate the formation of DBP, which may be an alternative for the monitoring of DBPs in the field. 

Conversely, the models can also be very useful in verifying key operational and water quality 

parameters, which may help to explain the DBP formation potential. So another possibility is to predict 

THMs concentration indirectly by mathematical models based on other materials and substances 

present in the water, that are much easier to measure. Such models can be applied in areas where it is 

difficult to perform the analyses required [7,8]. Indeed, the analysis of disinfection by-products is 

expensive and developing a simple tool that will allow knowing the concentrations of THMs, 

particularly in small or poorly resourced water supplies, is a worthy intention.  

Therefore, the main objective of this work consisted in the search of a simple system that will allow 

us to quickly estimate the amount of THMs present in water without requiring their analyses in the 

laboratory. For this purpose, we have developed a statistical model based on multiple regression from 

real water samples and confirmed its suitability for the studied water. This kind of model has been 

chosen due to the fact that, according to Kulkarni and Chellam [9], DBP mass concentrations are 

typically modeled empirically by linearly regressing each of the water quality parameters influencing 

DBP formation. In addition, log-linear power functions are extensively employed to model THM and 

Haloacetic acid (HAA) formation [10–14]. 

As mentioned before, measurement of DBP concentration in drinking water usually requires tedious 

techniques which are time consuming and significantly expensive. There have been many efforts in 
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development predictive models for DBPs. Initial models included univariate analysis where DBPs 

were correlated with Total Organic Carbon (TOC) content in raw waters [15]. Other works have 

looked for relationships between precursor and operational indicators and DBPs as well as between 

different species of DBPs [16–20]. There have been also developed multivariate models to correlate 

DBPs with different combinations of explanatory variables, such as water quality and parameters 

related to disinfection. Furthermore, predictive models for DBPs are based on data from field and 

laboratory-scaled studies. These data are collected at different sampling points. Most of these models 

have been based on empirical relationships among different parameters and DBPs concentrations, 

whilst a limited number of studies based on kinetic relationships have been performed [21–26]. These 

models have been usually developed using multivariate regression techniques while some studies are 

based on first- and second-order kinetic models and the coefficients have been estimated using 

multivariate regression analyses. 

In relation to measuring instruments, electronic tongues and noses have emerged as a fast, low-cost 

and easy system for the automated detection and classification of odor, vapors, gases and liquid 

analysis. The strategy is based on the employment of specific sensors that generates a signal pattern 

related to either a quality aspect or a specific component when it is exposed to a sample. Although the 

output of only one sensor is not enough to provide a complete characterization of the sample, the 

combination of several different devices can give lot of valuable information. Due to the versatility of 

electronics tongues and noses, there is a lot of research interest in their development for a wide range 

of applications, such as food industry (milk, wine, beer, fish, etc.) [27–33], environmental analyses, 

water quality monitoring, etc. [27,34–37]. For instance, Campos et al. [27] show an electronic tongue 

that is able to analyze COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen Demand), 

ammonia (NH4–N), orthophosphate (PO3–P), sulphate (SO4–S), acetic acid (HCA) and alkalinity (Alk) 

from an array of metallic electrodes and using a partial least squares (PLS) analysis. Another example 

of electronic tongue for water analysis is proposed by Kundu et al. [38]. In that work a system for 

water sample authentication is presented based on a back-propagation learning based neuronal network 

(BPNN). Finally, not only chemical and physical properties can be determined, but also biological 

parameters, for example, Nayak et al. [35] present an electronic nose for Escherichia coli (E. coli) 

applying a pattern recognition. 

In particular, we propose a device with different integrated sensors that measure several simple 

parameters on-site. The values obtained from these measures are automatically introduced into a 

mathematical model based on multiple regression, obtaining the value of THMs concentration 

estimated by the model. As on-site measurements are made in continuous, data acquisition procedure 

can be programmed with the model with the desired frequency. 

The device is designed to be easily transported to different points of the water supply system, where 

it is intended to carry out a control campaign. In case of detection of high concentrations of THMs, it 

could be reasonable taking samples and to make an exhaustive analysis in the laboratory, but having 

the certainty that there is actually a problem. 

It is also important to keep in mind that the problems with the THMs in the water supply systems 

are usually seasonal, having the higher risk of concentration in summer. This means that the device 

designed is useful to transport it from one place to another, as indicated above, but it is also interesting 

if it is installed for a prolonged period at a specific point in the network, in order to alert us in case of 
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an upward trend of the THMs concentration, and thus avoiding costly campaigns of laboratory analysis 

or measures to control them. 

2. Materials and Methods 

2.1. Characterization of Data 

The analyses upon which this study is based were composed of a total of 87 parameters, which 

should be included in the complete analyses described in current regulations [6]. The analyses were 

performed on real samples collected from different water distribution networks. A total of 892 analyses 

were performed on populations in a regional community in Spain. This regional community is located 

on the Mediterranean coastline, where the drinking water has high levels of THMs. These data have 

been provided by the AGBAR Corporation (Aguas de Barcelona, Barcelona, Spain), a multinational 

holding company of water management. 

From these 892 analyses and 87 different parameters, only those parameters included in all of the 

analyses were finally taken into account for the model. In addition, some potentially important 

parameters could not be taken into account because they are not included in the complete analysis 

described in the European Council Directive 98/83/CE. 

Multiple regressions and analysis of variance were performed to model the dependency of total 

THMs values with these 87 parameters, but finally, (as described in Sections 2.2 and 3), seven 

parameters showed the most significant relation: Total Organic Carbon (TOC), Combined Residual 

Chlorine (CRC), Free Residual Chlorine, Bicarbonates, Conductivity, Chloride and Temperature 

(Table 1). 

Table 1. Summary of most significant parameters measured in the 892 network water samples. 

Parameter Average Standard Deviation 

Total Organic Carbon (mg/L) 2.10 0.66 
Combined Residual Chlorine (mg/L) 0.80 0.31 

Free Residual Chlorine (mg/L) 0.61 0.29 
Bicarbonates (mg/L) 229.94 76.40 
Conductivity (μS/cm) 1172.76 615.89 

Chloride (mg/L) 221.56 153.67 
Temperature (°C) 19.5 4.2 
Total THM (μg/L) 105.80 63.61 

Note: Analytical methods according to Annexes I and III of the Council Directive 98/83/CE  

(3 November 1998), the regulation where health criteria of the quality of water for human consumption  

are established. 

2.2. Statistical Method 

Multiple regression was performed to model the dependency of THMs values as well as One-way 

Analysis of Variance (ANOVA). The software SPSS (Version 15.0; SPSS Inc. Chicago, IL, USA) was 

used to manage and analyze data from the considered samples. 
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There are several examples where models based on multiple regressions were performed to predict 

Trihalomethanes formation [39–42]. It is true that the characteristics in the THMs formation makes it 

difficult to develop an equation that can be applied universally, but it is completely feasible to quickly 

obtain an equation that can be applied to water supply systems with similar environmental conditions. 

If the environmental conditions change, the same procedure can be applied, being this procedure fast, 

and the model easily adaptable. 

Obviously, the relationships between the THMs levels and factors analyzed (total organic carbon, 

conductivity, combined residual chlorine, pH, temperature, bicarbonates) are not linear; therefore it 

was necessary to use statistical tools that allow us to correct the nonlinearity between variables. 

One of these tools is known like “the bulging rule of Mosteller and Tukey” [43] that help to find 

existent linear relations between functions whose variables were used in the statistical analysis: 

F(yi) = a0 + a1·G1(x1,i) +···+ap·Gp(xp,i) + εi; i = 1···N (1)

where yi is the expected value directly related with the THMs concentration, aj are the coefficients as 

result of the regression analysis, xi,j are the observed values of the independent variables and εi is the 

error of the model. These independent variables are used to decide in which of a set of pre-established 

groups should be classified each sample. 
With the data (yi, x1i, x2i, ..., xpi), 1 < i < n, we used an algorithm that allows us to find the 

transformations F y G, such that the empirical correlation of the transformed data (F(yj), G1(x1i), ..., 

Gp(xpi)) is approximately maximized. The procedure was made by using the above mentioned software 

and others algorithms like ACE (alternating conditional expectations), AVAS (additive and variance 

stabilization) and the Box-Cox transformations technique, obtaining similar results. 

In any case, the procedure provides the coefficients aj and εi of Equation (1) with the data acquired 

from local samples, allowing the recalibration of the model when conditions change, in other words, 

shift the values of the equation coefficients but not the transformations F y G, therefore, there is only a 

general model where the values of the coefficients depend on the local characteristics of a region or 

group of water supply systems. 

2.3. Device Description 

The algorithm proposed as a result of the multiple regression analysis could be easily integrated in 

autonomous systems for monitoring the presence of total trihalomethanes in water. To do that, we have 

designed an electronic platform that integrates all the required sensors as well as the microcontroller 

with the proper matching networks to directly and fast obtain the value of THMs in water. 

According to the algorithm of determination of THM presented in the following section, it is 

necessary to include six different sensors to detect the following properties: 

• pH 

• TOC 

• Cl− 

• Bicarbonate 

• Conductivity 

• Temperature 
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In addition to these sensors, the platform must include all the required circuitry to match the output 

signal of the sensors to the microcontroller. There are many different transduction effects and each of 

them results in a different way to manipulate the signal. The manipulated signal has also to be between 

the operating ranges of the microcontroller. All this additional circuitry is referred as matching 

networks. Note that a block to provide power to the platform is also required. 

Moreover, it is necessary to add mechanisms to acquire data. For this purpose a display to show 

results, a memory to store data and a user interface to be connected to a computer, are also included. 

There are several of these sensors available in the market, so the development of the proposed 

platform should be immediate. Further research work can be done by design an integrated  

platform [44]. A first approach could be a TOC analyzer similar to the one described by Su et al. [45]. 

This analyzer is based on a Bulk Acoustic Wave (BAW) impedance sensor, where the Total Inorganic 

Carbon (TIC) value is directly measured and TOC value is obtained by oxidation of the sample. 

Another option could be the sensor one [46] based on a capacitance membrane. 

In order to measure the pH, we propose a system similar to Fraser et al. [47] which provides 

directly a color barcode of the water pH. Another option is presented by Diamond et al. [48] with a pH 

sensor and the complete needed circuitry. Regarding the bicarbonate value, this sensor would be based 

on the patent of Benco et al. [49]. This sensor requires the measurement of the pH to determine 

bicarbonates, but this problem is solved due to the previous explained sensor.  

Moreover, a chlorine sensor is also required. This device could be similar to the one described by 

Wang et al. [50], which is a resistance sensor, or similar to the one introduced by Chou et al. [51]. A 

conductivity sensor is also required, one example of this kind of transducer is shown by Hilhorst [52] 

where conductivity is related to changes in the electrical permittivity. Finally, a thermometer is also 

needed; there are several examples in the literature for this sensor [53]. Therefore, all these sensors are 

commercially available and also can be custom-manufactured. 

As it has been mentioned above, each of these sensors requires a particular matching network to 

adapt its output signal to the input signal in the microcontroller. Furthermore, it is necessary to 

optimally program the microcontroller to calculate from the input signals, the corresponded values of 

each parameter and finally determine the THM value of the sample following Equation (1). 

Finally, as it has been mentioned before, it is necessary to include a memory to store data, an 

interface to extract these data and/or a display to visualize the current measure to functionalize the 

electronic equipment. 

According to the European Council Directive 98/83/CE, these data are requested 4–10 times/year 

depending on the volume of water distributed or produced each day within a supply zone; thus, this 

value would fix the minimum frequency to register these variables. Anyway, in order to have a more 

representative measure, it would be recommended to take at least three water samples but users could 

monitor as many times as they consider necessary taking into account the ease of measuring and 

calculations. Furthermore, there is no restriction on a specific point in the water network because this 

device is portable and operators can analyze water where they need it. Moreover, this feasibility is a 

key feature to detect anomalies in the network. 
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3. Results and Discussion 

Multiple regressions and analysis of variance were performed to model the dependency of total 

THMs values with 87 parameters included in the Annexes I and III of the Council Directive 98/83/CE [6] 

but finally, seven parameters showed the most significant relation: Total Organic Carbon (TOC), 

Combined Residual Chlorine (CRC), Free Residual Chlorine, Bicarbonates, Conductivity, Chloride 

and Temperature. 

For obtaining the statistical model, a transformation of the dependent variable (THMs) was 

proposed in order to improve the fit of the model. The first obtained model indicated that the fit was 

not appropriate enough (r = 0.686). However, the residual contains a certain functional dependence, 

which can be resolved by proposing a transformation of the dependent variable (THMs). This 

transformation consisted of a quadratic function. 

Therefore, a model with transformed values provided a better fit (r = 0.923) with the next  

adjusted model: √THM = −28.826 + 1.583 · TOC + 2.713 · lnሺߪ) − 1.307 · lnሺܤ௖) + 2.427 · pH+ 3.744 · CRC + 0.102 ·  1.8 = (THM√)ߝ (ܶ

(2)

where TOC is the Total concentration of Organic Carbon, Bc is the concentration of Bicarbonate, σ is 

the conductivity, CRC corresponds to Combined Residual Chlorine, T is the temperature at Celsius 

degree and ε is the mean absolute error. Similar studies [4,54] have shown values of the correlation 

coefficient r in the same order of magnitude than the one obtained in our model. 

In this model, the total THMs values were transformed by means of the square root. Bivariate 

correlations between the different variables show that one of the most striking correlations is that 

between chlorides and conductivity (r = 0.945); therefore, both parameters should not be 

simultaneously included in the model to avoid multicollinearity problems, for this reason, chlorides 

were excluded since it was found that this variable is determined almost exactly by conductivity. 

Furthermore, the variables, conductivity and concentrations of bicarbonates, were transformed by 

logarithms since the coefficients of the model were significantly low. 

As a result, the different models studied were composed of the following variables, which showed 

the most significant relation to THMs: 

1. TOC (Total Organic Carbon) 

2. TOC and ln(σ) 

3. TOC, ln(σ) and Combined Residual Chlorine (CRC) 

4. TOC, ln(σ), CRC, and pH  

5. TOC, ln(σ), CRC, pH and ln(Bc) 

6. TOC, ln(σ), CRC, pH, ln(Bc) and Temperature 

Of these six possibilities, the best was option 6 (TOC, conductivity, combined residual chlorine, 

pH, bicarbonates, and temperature) though the difference in goodness-of-fit was very similar in options 

2 to 6, increasing the r values from 0.742 to 0.923. 



Water 2014, 6 3597 

 

 

A statistical summary of coefficients for the variables in the regression model is shown in Table 2, 

where aj are the coefficients of the linear equation and in brackets their associated standard error, βj are 

the associated standardized coefficient that show which of the independent variables have a greater 

effect on the dependent variable and finally, values t and associated significance indicated that the 

former coefficients were significantly different from zero, that is to say, all of them are statistically 

significant for the model. This Table shows that, statistically speaking, the most important predictor 

was TOC, followed by ln(conductivity), and then CRC. On another order of magnitude, with a similar 

significance but at some distance from the first three, are pH, ln(Bicarbonates), and temperature; in 

that order. Moreover, the sign of ln(Bicarbonates) is different from the rest. This means that the sense 

of its influence, implying its presence or absence, is the inverse of the other variables. 

Table 2. Statistical summary of coefficients for the variables in the regression model. 

Dependent Variable √ۻ۶܂ aj βj t Significance 

Total Organic Carbon (TOC) 1.583 (0.071) 0.533 22.229 0.000 

ln(σ) 2.713 (0.131) 0.459 20.736 0.000 

ln(Bc) −1.307 (0.192) −0.153 −6.804 0.000 

Combined residual chlorine (CRC) 3.744 (0.253) 0.399 14.773 0.000 

pH 2.427 (0.270) 0.206 8.992 0.000 

Temperature 0.102 (0.021) 0.115 4.783 0.000 

The relationship between measured values and predicted values by the model is shown in Figure 1. 

As can be seen, the prediction band of the fit was acceptable. The data were fairly homogeneous, but 

compatible with the prediction of the model. 

Figure 1. Relationship between measured values and predicted values by the model. 

 

Some authors [42,43] also included the factor of season in their models because the seasons affect 

the THM formation. In our case, a statistical study of a climate factor indicated that the greatest 

differences were between the dry season and the rainy season. The dry season includes the moths of 

August, September, and October, and the rainy season is the rest of the year. During the dry season, a 

higher THMs concentration was expected. Nevertheless, regarding to the model, the differences were 

not statistically significant in the THM prediction and the factor of season was not included. 
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4. Conclusions 

A new multiple regression model for total THMs formation was generated, and the feasibility of a 

device for its measurements was performed. The mathematical formulation can be integrated in an 

autonomous system for predicting total THM presence in networks of water supply systems. 

The complexity of the trihalomethanes formation reaction makes it difficult to develop a universally 

applicable formula, but with this model it is completely feasible to obtain quickly an equation that can 

be applied to water supply systems with similar environment conditions. When environmental 

conditions change, a recalibration procedure is performed in order to recalculating coefficients, being 

this process fast and the model easily adaptable. 

Regarding to the model, the most significant variables to predict the concentration of total THMs by 

order of importance were following: 

- Total organic carbon (TOC) 

- Combined residual chlorine (CRC) 

- Conductivity 

- pH 

- Bicarbonates 

- Temperature. 

TOC was found to be the most significant parameter, followed by CRC and conductivity. The other 

parameters (pH, bicarbonates and temperature) were at a greater distance from the others. The 

seasonality was not included in the model although it is directly related with the temperature. 

Chlorides were excluded since it was found that this variable is determined almost exactly by 

conductivity. This meant that if they had both been included in the model, this could have produced an 

overestimation of the importance of these variables. 

Therefore, the designed electronic device has six different sensors that are commercially available 

and can also be custom-manufactured. Each of these sensors requires a particular matching network to 

adapt its output signal to the input signal in the microcontroller, then it is necessary to optimally 

program the microcontroller to calculate from the input signals, the corresponded values of each 

parameter and finally determine the total THM value of the sample. Finally, the system includes a 

memory to store data, an interface to extract these data and/or a display to visualize the current 

measure to functionalize the electronic equipment. 

The device can be measuring in real time, sending an alert signal to the users in advance, allowing 

them to take appropriate measures before there are excessive concentrations of THM, which are not 

permitted by law. It is important to keep analyzing directly THM several times per year in order to 

verify or to recalibrate the model. 

Preliminary experimental results show good agreement with the model. 

Acknowledgments 

We gratefully acknowledge financial support for this work from AGBAR Group (Aguas de 

Barcelona, Water Works Holding). 
  



Water 2014, 6 3599 

 

 

Author Contributions 

Almudena Rivadeneyra has been primarily responsible for the compiled information and the 

development of the device configuration; Maria Jesús García-Ruiz and Alejandro González-Martínez 

have been responsible for the data treatment and the development of the model; Fernando Delgado-Ramos 

has been responsible for the technical supervision of the article, with knowledge in water management 

and planification; Francisco Osorio has been responsible for the technical supervision of the article, 

with knowledge in water treatment technologies and water networks; Ovidio Rabaza is the general 

coordinator of the work. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Cantor, K.P.; Hoover, R.; Hartge, P.; Mason, T.J.; Silverman, D.T.; Levin, L.I. Drinking water 

source and risk of bladder cancer: A case—Control study. In Water Chlorination, Volume VI: 

Chemistry, Environmental Impact and Health Effects; Jolley, R.L., Bull, R.J., Davisw, W.P., Katz, S., 

Roberts, M.H., Jacobs, V.A., Eds.; CRC Press: Boca Raton, FL, USA, 1985; pp. 145–152. 

2. Cantor, K.P.; Lynch, C.F.; Hildesheim, M. Chlorinated drinking water and risk of glioma: A 

case—Control study in Iowa, USA. Epidemiology 1996, 7, S83. 

3. Monarca, S.; Zani, C.; Richardson, S.D.; Thruston, A.D.; Moretti, J.M.; Feretti, D.; Villarini, M.A. 

New approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water 

Res. 2004, 38, 3809–3819. 

4. Abdullah, M.D.; Yew, C.H.; Ramli, M.S. Formation, modeling and validation of trihalomethanes 

(THM) in Malaysian drinking water: A case study in the districts of Tampin, Negeri Sembilan and 

Sabak Bernam, Selangor, Malaysia. Water Res. 2003, 37, 4637–4644. 

5. Sadiq, R.; Rodriguez, M.J. Fuzzy synthetic evaluation of disinfection by-products—A risk-based 

indexing system. J. Environ. Manag. 2004, 73, 1–13. 

6. Directive, C. 98/83/EC of 3 November 1998 on the quality of water intended for human 

consumption. Off. J. Eur. Communities 1998, 5, 1–23. 

7. Sadiq, R.; Rodriguez, M.J. Disinfection by-products (DBPs) in drinking water and predictive 

models for their occurrence: A review. Sci. Total Environ. 2004, 321, 21–46. 

8. Nokes, C.J.; Fenton, E.; Randall, C.J. Modelling the Formation of Brominated Trihalomethanes in 

Chlorinated Drinking Waters. Water Res. 1999, 33, 3557–3568. 

9. Brown, D.; West, J.R.; Courtis, B.J.; Bridgeman, J. Modelling THMs in Water Treatment and 

Distribution Systems. ICE Proc. Water Manag. 2010, 163, 1–10. 

10. Kulkarni, P.; Chellam, S. Disinfection by-product formation following chlorination of drinking 

water: Artificial neural network models and changes in speciation with treatment. Sci. Total 

Environ. 2010, 408, 4202–4210. 

11. Westerhoff, P.; Debroux, J.; Amy, G.L.; Gatel, D.; Mary, V.; Cavard, J. Applying DBP models to 

full-scale plants. J. Am. Water Works Assoc. 2000, 92, 89–102. 



Water 2014, 6 3600 

 

 

12. Sohn, J.; Amy, G.; Cho, J.; Lee, Y.; Yoon, Y. Disinfectant decay and disinfection by-products 

formation model development: Chlorination and ozonation by-products. Water Res. 2004, 38, 

2461–2478. 

13. Hong, H.C.; Liang, Y.; Han, B.P.; Mazumder, A.; Wong, M.H. Modeling of trihalomethane 

(THM) formation via chlorination of the water from Dongjiang River (source water for  

Hong Kong’s drinking water). Sci. Total Environ. 2007, 385, 48–54. 

14. Uyak, V.; Ozdemir, K.; Toroz, I. Multiple linear regression modeling of disinfection by products 

formation in Istanbul drinking water reservoirs. Sci. Total Environ. 2007, 378, 269–280. 

15. Singer, P.C.; Chang, S.D. Correlations between trihalomethanes and total organic halides formed 

during water treatment. J. Am. Water Works Assoc. 1989, 81, 61–65. 

16. Singer, P.C.; Obolensky, A.; Greiner, A. DBPs in chlorinated North Carolina drinking water.  

Am. Water Works Assoc. 1995, 87, 83–92. 

17. Chen, W.J.; Weisel, C.P. Halogenated DBP concentrations in a distribution system. J. Am. Water 

Works Assoc. 1998, 90, 151–163. 

18. Arora, H.; le Chevallier, M.W.; Dixon, K.L. DBP occurrence survey. J. Am. Water Works Assoc. 

1997, 89, 60–68. 

19. Gallard, H.; von Gunten, U. Chlorination of natural organic matter: Kinetics of chlorination and of 

THM formation. Water Res. 2002, 36, 65–74. 

20. Gang, D.; Clevenger, T.E.; Banerji, S.K. Relationship of chlorine decay and THMs formation to 

NOM size. J. Hazard. Mater. 2003, A96, 1–12. 

21. Engerholm, B.A.; Amy, G.L. A predictive model for chloroform formation from humic acid.  

J. Am. Water Works Assoc. 1983, 75, 418–423. 

22. Adin, A.; Katzhendler, J.; Alkaslassy, D.; Rav-Acha, C. Trihalomethane formation in chlorinated 

drinking water: A kinetic model. Water Res. 1991, 25, 797–805. 

23. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals and formation of TTHMs in drinking 

water. J. Environ. Eng. 1998, 124, 1203–1210. 

24. Clark, R.M.; Thurnau, R.C.; Sivaganesan, M.; Ringhand, P. Predicting the formation of 

chlorinated and brominated by-products. J. Environ. Eng. 2001, 127, 493–501. 

25. Golfinopoulos, S.K.; Arhonditsis, G.B. Quantitative assessment of trihalomethane formation 

using simulations of reaction kinetics. Water Res. 2002, 36, 2856–2868. 

26. Gang, D.D.; Segar, R.L., Jr.; Clevenger, T.E.; Banerji, S.K. Using chlorine demand to predict 

THM and HAA9 formation. J. Am. Water Works Assoc. 2002, 94, 76–86. 

27. Campos, I.; Alcañiza, M.; Aguado, D.; Barat, R.; Ferrer, J.; Gil, L.; Marrakchi, M.;  

Martínez-Mañez, R.; Soto, J.; Vivancos, J.L. A voltammetric electronic tongue as tool for water 

quality monitoring in wastewater treatment plants. Water Res. 2012, 46, 2605–2614. 

28. Gil, L.; Barat, J.M.; García-Breijo, E.; Ibañez, J.; Martínez-Máñez, R.; Soto, J.; Llobet, E.; 

Brezmes, J.; Aristoy, M.C.; Toldrá, F. Fish freshness analysis using metallic potentiometric 

electrodes. Sens. Actuators B Chem. 2008, 131, 362–370. 

29. Paixão, T.R.L.C.; Bertotti, M. Fabrication a disposable voltammetric electronic tongues by using 

Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk 

adulteration. Sens. Actuators B Chem. 2009, 137, 266–273. 



Water 2014, 6 3601 

 

 

30. Parra, V.; Arrieta, A.; Fernández-Escudero, J.A.; García, H.; Apetrei, C.; Rodríguez-Méndez, M.L.; 

de Saja, J.A. E-Tongue based on a hybrid array of voltammetric sensors based on 

phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability 

towards red wines elaborated with different variety of grapes. Sens. Actuators B Chem. 2006, 115, 

54–61. 

31. Parra, V.; Arrieta, A.A.; Fernández-Escudero, J.A.; Rodríguez-Mendez, M.L.; de Saja, J.A. 

Electronic tongue based on chemically modified electrodes and voltammetry for the detection of 

adulterations in wines. Sens. Actuators B Chem. 2006, 118, 448–453. 

32. Francioso, L.; Bjorklund, R.; Krantz-Rulcker, T.; Siciliano, P. Classification of multiple defect 

concentrations in white wine by platinum microelectrode voltammetry. Sens. Actuators B Chem. 

2007, 125, 462–467. 

33. Winquist, F.; Bjorklund, R.; Krantz-Rülcker, C.; Lundström, I.; Östergren, K.; Skoglund, T.  

An electronic tongue in the dairy industry. Sens. Actuators B Chem. 2005, 111, 299–304. 

34. Collier, W.A.; Baird, D.B.; Park-Ng, Z.A.; More, N.; Hart, A.L. Discrimination among milks and 

cultured dairy products using screen-printed electrochemical arrays and an electronic nose.  

Sens. Actuators B Chem. 2003, 92, 232–239. 

35. Mimendia, A.; Gutierrez, J.M.; Leija, L.; Hernandez, P.R.; Favari, L.; Muñoz, R.; del Valle, M.A. 

Review of the use of the potentiometric electronic tongue in the monitoring of environmental 

systems. Environ. Model. Softw. 2010, 25, 1023–1030. 

36. Nayak, K.; Supreetha, B.S.; Deccaraman, M.; Nayak, V. E-Nose System to Detect E-Coli in 

Drinking Water of Udupi District. Int. J. Eng. Res. Dev. 2012, 1, 58–64. 

37. Winquist, F.; Olsson, J.; Eriksson, M. Multicomponent analysis of drinking water by a 

voltammetric electronic tongue. Anal. Chim. Acta 2011, 683, 192–197. 

38. Kundu, P.K.; Chatterjee, A.; Panchariya, P.C. Electronic Tongue System for Water Sample 

Authentication: A Slantlet-Transform-Based Approach. IEEE Trans. Instrum. Meas. 2011, 60, 

1959–1966. 

39. Urano, K.; Wada, H.; Takemasa, T. Empirical rate equation for Trihalomethane formation with 

chlorination of humic substances in water. Water Res. 1983, 17, 1797–1802. 

40. Morrow, C.M.; Minear, R.A. Use of regression models to link raw water characteristics to 

Trihalomethane concentrations in drinking water. Water Res. 1987, 21, 41–48. 

41. Golfinopoulus, S.K.; Xilourgidis, N.K.; Kostopoulou, M.N.; Lekkas, T.D. Use of a multiple 

regression model for predicting trihalomethane formation. Water Res. 1998, 32, 2821–2829. 

42. Golfinopoulus, S.K.; Arhonditsis, G.B. Multiple regression models: A methodology for evaluating 

trihalomethane concentrations in drinking water for raw water characteristics. Chemosphere 2002, 

47, 1007–1018. 

43. Mosteller, F.; Tukey, J.W. Data Analysis and Regression; Addison-Wesley: Reading, MA,  

USA, 1977. 

44. Chowdhury, S.; Champagne, P.; McLellan, P.J. Models for predicting disinfection by product 

(DBP) formation in drinking waters: A chronological review. Sci. Total Environ. 2009, 407, 

4189–4206. 



Water 2014, 6 3602 

 

 

45. Sanz, D.A.; Unigarro, E.A.; Osma, J.F.; Segura-Quijano, F. Low cost wireless passive 

microsensors for the detection of hazardous compounds in water systems for control and 

monitoring. Sens. Actuators B Chem. 2013, 178, 26–33. 

46. Tian, K.; Dasgupta, P.K. A permeable membrane capacitance sensor for ionogenic gases 

application to the measurement of total organic carbon. Anal. Chim. Acta 2009, 652, 245–250. 

47. Fraser, K.J.; Curto, V.F.; Coyle, S.; Byrne, R.; Benito-Lopez, F.; Diamond, D.; Schazmann, B.; 

Owens, R.M.; Malliaras, G.G. Wearable electromechamical sensors for monitoring performance 

athletes. In Proceedings of the SPIE 8118 Organic Semiconductors in Sensors and Bioelectronics IV, 

San Diego, CA, USA, 21–25 August 2011. 

48. Diamond, D.; Coyle, S.; Scarmagnani, S.; Hayes, J. Wireless Sensor Networks and  

Chemo-Biosensing. Chem. Rev. 2008, 108, 652–679. 

49. Benco, J.S.; Foos, J.S. Planar Bicarbonate Sensor. United States Patent 5554272, 10 August 1995. 

50. Wang, D.; Hu, P.; Xu, J.; Dong, X.; Pan, Q. Fast response chlorine gas sensor based on 

mesoporous SnO2. Sens. Actuators B Chem. 2009, 140, 383–389. 

51. Chou, J.C.; Ye, G.C.; Wu, D.G.; Chen, C.C. Fabrication of the array chlorine ion sensor based on 

microfluidic device framework. Solid-State Electron. 2012, 77, 87–92. 

52. Hilhorst, M.A. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. 

53. Vaz, A.; Ubarretxena, A.; Zalbide, I.; Pardo, D.; Solar, H.; García-Alonso, A. Full Passive UHF 

Tag with a Temperature Sensor Suitable for Human Body Temperature Monitoring. IEEE Trans. 

Circuits Syst. II Express Briefs 2010, 57, 95–99. 

54. Rodriguez, M.J.; Sérodes, J.B. Spatial and temporal evolution of trihalomethanes in three water 

distribution systems. Water Res. 2001, 35, 1572–1586. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


