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Universidad de Granada



Editor: Editorial de la Universidad de Granada
Autor:  Miguel Ángel Riveiro Taboada
D.L.: GR 2026-2014
ISBN: 978-84-9083-216-5



Universidad de Granada

E.T.S. Ingenieros de Caminos, Canales y Puertos

Departamento de Mecánica de Estructuras e Ingenieŕıa Hidráulica
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Resumen

En esta tesis, se presenta la aplicación de un algoritmo basado en el Méto-
do de Elementos de Contorno (BEM), para la resolución de problemas
elastostáticos en dominios tridimensionales que incluyan materiales inho-
mogéneos, como los Functionally Graded Materials (FGM).

La utilización del Método de la ecuación Análoga nos permite transfor-
mar el operador diferencial del problema original en otro, con un término
independiente desconocido, pero cuya solución fundamental sea conocida.
Mediante esta transformación y el uso combinado del Método de Elementos
de Contorno, la aproximación del término desconocido mediante funciones
de base radial y el Método de Doble Reciprocidad, se obtiene un sistema
de Ecuaciones Integrales de Contorno en función de los desplazamientos y
sus flujos. La aplicación del operador diferencial del problema original y,
las condiciones de contorno que incluyan derivadas de los desplazamientos,
proporciona las ecuaciones adicionales que permiten calcular los coeficientes
que definen el término independiente desconocido y los flujos de los desplaza-
mientos. La construcción de estos nuevos grupos de ecuaciones es expuesto
junto al análisis de las nuevas singularidades que surgen en este contexto.
El carácter de contorno del método se mantiene en el sentido de que el
dominio de integración de las ecuaciones resultantes se limita al contorno,
ya que las funciones de base radial se escogen de tal forma que la ecuación
análoga puede ser resuelta de forma anaĺıtica. La extensión a multidominios
incluyendo el acoplamiento de esta metodoloǵıa con el Método de Elementos
de Contorno estándar también es analizado.

La implementación de este algoritmo se realiza mediante programación
orientada objetos, con el objetivo de generar un código de elementos de
contorno altamente escalable, reutilizable y mantenible. La liberación del
nuevo estándar de FORTRAN 2003 y la disponibilidad de compiladores que
soporten las nuevas caracteŕısticas de este lenguaje, permite el desarrollo
de un nueva generación de códigos BEM en FORTRAN. En esta tesis se
estudia la aplicabilidad de estas nuevas caracteŕısticas, de cara al diseño de
un programa BEM global que pueda integrar de forma segura y eficiente las
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diferentes metodoloǵıas BEM.

Varios ejemplos numéricos de problemas lineales elastostáticos en tres dimen-
siones, que involucren materiales inhomogéneos tipo FGM se adjuntan para
la validación del algoritmo presentado, incluyendo problemas multidominio
en combinación con el Método de Elementos de Contorno estándar. Se in-
cluyen estudios de convergencia y análisis comparativos de comportamiento
de diferentes familias de funciones de aproximación.
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Abstract

In this dissertation the application of a Boundary Element Method (BEM)
based algorithm to elastostatic problems, involving 3D non-homogeneous
materials like Functionally Graded Materials (FGMs) is presented.

The Analog Equation Method (AEM) is used to transform the original
problem into a new problem with unknown fictitious source but known Fun-
damental Solution. By means of this transformation a system of uncoupled
Boundary Integral Equations (BIEs) depending on displacements and fluxes
is first obtained, combining standard Boundary Element discretization, Ra-
dial Basis Functions (RBFs) approximation for the fictitious source and the
Dual Reciprocity Method. The application of the original differential opera-
tor and the boundary conditions involving derivatives of the displacement,
provides additional equations to compute the unknown fictitious source and
the flux of the displacements. The construction of these new groups of
equations is exposed besides the analysis of the new singularities that arise in
this context. The boundary character of the method is maintained since the
integrals involved in the equations are limited only to the boundary due to
the RBFs are selected in such a way that the corresponding analog equation
could be solved analytically. The extension of this AEM-BEM methodology
to multidomains including the coupling with standard Boundary Element
Method schemes is also analyzed.

In order to implement these algorithm an object oriented programming style
have been chosen to implement a highly scalable, reusable and maintainable
Boundary Element Method code. The release of the new 2003 FORTRAN
standard and the availability of compilers capable to support the new
features like encapsulation, inheritance, and polymorphism has opened the
way to a new generation of FORTRAN BEM codes. A study of the new
supported features and its use to design a global BEM program in an object
oriented style, able to easily scale and integrate different techniques, is
presented.

Several numerical examples for three-dimensional problems in continuously
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non-homogeneous, isotropic and linear elastic FGMs are presented to validate
the algorithm, including multidomain problems coupled with standard
Boundary Element Method. Convergence studies and comparative analysis
of the behavior of different families of approximating functions are also
included.
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All men by nature desire to know.

Aristotle 1
Introduction

1.1 Motivation

Competitiveness, productivity and cost reduction have become commonly
used terminology, even for the general public. The discard of still valuable
resources and the increase of the performances that we can obtain, have
always been a key point in the strategy of industries and governments, but
this fact it is more true nowadays.

From the structural point of view we can translate these ideas to the need
of better materials, better designs and better maintenance. In the field of
materials, development of new solutions has brought us the evolution of the
materials starting from pure monolithic materials like aluminum to alloys
such as steel, composite materials such as carbon fiber and more recently the
emergence of Functionally Graded Materials (FGMs) (in Figure 1.1 it can be
observed the evolution in terms of composition in different families of Boeing
aircrafts). What underlies this evolution is that the right combination of
different materials with different properties produces materials with higher
performances that the original ones.

In recent years there has been an increased interest in the study of Func-
tionally Graded Materials. In this new class of advanced materials, there is
a continuous variation of the internal microstructure along the geometry
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CHAPTER 1. INTRODUCTION

Figure 1.1: Evolution of materials in Boeing aircraft models

of the material, resulting in a continuous variation of the properties at
macroscopic level. This allows to design materials whose properties are
adapted to the requirements and avoid interface problems displayed on the
multiphase materials due to discrete jumps of properties.

The Boundary Element Method (BEM) is a numerical methodology capable
of solving problems defined by systems of partial differential equations,
which has been widely used in recent decades to solve many problems of
scientific and industrial interest. As will be explained later, the standard
BEM formulation is restricted, in practice, to problems involving domains
with constant properties.

In recent years, the extension of this family of numerical techniques to
produce algorithms able to solve problems involving these new materials,
has been explored by the scientific community. In the literature, it can be
found several methodologies that, maintaining the pure boundary character,
in the sense that it is not necessary to mesh the domain and that the domain
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1.2. OBJECTIVES

of integration is limited to the boundary, can be applied to these problems.

The study of these techniques has led us to consider that the combination
of the Analog Equation Method (AEM), introduced by Katsikadelis [60],
with the BEM methodology was the most advantageous for their potential
generality, but it has, in its current state of development, several limitations
such as it has only been implemented in 2D and it does not allow generic
boundary conditions without the use of finite differences.

On the other hand, the multiplicity of BEM codes which are individually
developed to implement each new algorithm, even within our own research
group, suggested that it was more than convenient to streamline efforts to
create a single scalable software base, which avoids the dispersion codes and
works.

The emergence of new compilers capable of handling the latest iteration
of FORTRAN and its new object-oriented capabilities, allows to establish
a framework to develop this unique platform integrating the previously
developed codes.

1.2 Objectives

Two sets of objectives have been raised in this dissertation:

1) Generalize the AEM-BEM formulation including

• General analog operators.

• Build an integral formulation that allows to input directly boundary
conditions derived from the main variables.

• Characterize this formulation to elastic problems

• Implement this methodology to 3D problems, performing numerical
validation tests and convergence analysis of the resulting scheme.

5



CHAPTER 1. INTRODUCTION

• Perform a comparative study of the different families of approximation
functions under the AEM-BEM framework.

• Develop the coupling formulation with the Standard Boundary Element
Method and validate it by numerical tests.

2) Building the core of an object-oriented program based on the latest
iteration of FORTRAN (2003/2010) for, besides the implementation of
this algorithm, easily scale and integrate, in a natural way, different BEM
techniques. The initial defined requirements of our code are

• Multi-Domain.

• Multi-Space (2D/3D).

• Multi-Physics: several kinds of problems supported including scalar
or vector variables.

• Able to use different integration schemes at element level.

• Able to use different BEM algorithms.

• Extensive use of dynamic memory (writes data once / reads many).

• Multiple discretization schemes including simultaneous use of different
interpolations, elements.

• Support different kinds of boundary conditions including inter-phases.

• Reduction of the computational cost.

1.3 Thesis Organization

This work is divided into three main parts.

Part I covers the first three chapters. In the first introductory chapter the
motivations and objectives of this work have been exposed.

6



1.3. THESIS ORGANIZATION

Chapter 2 reviews previous works and the state of the art. It contains a
literature review of the algorithms based on the Boundary Element Method
capable of solve problems involving materials with varying properties such as
FGM (from a purely descriptive point of view). Four groups of methodologies
have been identified including the selected one that forms the basis for this
work.

In Chapter 3 some previous preliminary concepts that will be used through-
out this work are described. It includes a summary of the Boundary
Element Method formulation, both the development of the Boundary In-
tegral Equation (BIE) as the discretization process using a generalized
scheme. Subsequently, a similar treatment is made of Dual Reicprocity
Method. Then there is a brief analysis of functional approximation schemes
in the context of Dual reciprocity Methods. Finally, the Analog Equation
Method, which is the basis for this work, is introduced, both in its original
formulation, and in its later development combined with dual reciprocity
methods.

Parts II and III include the original contributions of this work. Part II
comprised chapters 4 through 7 and includes the theoretical developments
of the methodology used in this dissertation.

In Chapter 4 the limitations of the original AEM-BEM methodology are
outlined and a set of integral equations is formulated using a generic analog
operator. After the discretization of this system of equations, any boundary
value problems for linear partial differential equations with generic boundary
conditions can be solved. Also, a generic discretization scheme in order to
obtain the discretized linear algebraic system of equations is exposed.

In Chapter 5 two simplifications are introduced. The first one is due to the
choice of Laplace operator as the analog operator. The second one is due to
the choice of elastic problem to be solved. Anisotropic and isotropic elastic
formulation are covered.

Chapter 6 will focus on the discretization process and the assembly of the
system of algebraic equations that can solve the inhomogeneous isotropic

7



CHAPTER 1. INTRODUCTION

elastic problems studied in this work. Next post-processing procedures are
discussed, other numerical aspects are reviewed and AEM-BEM coupling
with the standard BEM methodology is analyzed.

The design of object-oriented program based on the latest iteration of
FORTRAN (2003/2010) is presented in Chapter 7 for, besides the imple-
mentation of the algorithm presented in this paper, build a scalable software
to integrate, in a natural way, different BEM techniques.

Part III comprised chapters 8 and 9, including the numerical results and
conclusions.

Examples of validation AEM-BEM algorithm are included in Chapter 8.
Convergence analysis of problems with Dirichlet and mixed boundary condi-
tions are attached, including comparatives of several types of approximation
functions. Additionally two examples of the AEM-BEM coupling with the
standard BEM methodology are enclosed.

The conclusions and future works are presented in Chapter 9.

Finally an appendix chapter including several mathematical developments
that, by its length, have been separated from the main text to improve its
readability.
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Reason itself does not work instinctively, but requires trial,
practice, and instruction in order gradually to progress from one
level of insight to another.

Immanuel Kant 2
State of the Art

The previous chapter introduced the motivation and objectives of this thesis,
in relation to the elastic study of Functionally Graded Materials using
algorithms based on the Boundary Element Method.

The study of these kind of problems have been addressed using different
techniques. As a general reference, Birman and Byrd published, in 2007, a
literature review of the state of the art [17], relative to the FGM modeling
and analysis and more recently (2013) Jha, Kant and Singh [52] published
another review focused on thermoelastic analysis and vibration of FGM
plates.

This chapter includes a brief literature review of precedents, focusing ex-
clusively on Boundary Element techniques, being outside the scope of this
chapter, works based on finite elements (see e.g. [64] or [1]), behavior models
( [102], [122]) or other approaches. Is also not delve into a bibliographic
study of the development of the BEM basic methodology 1. Several reviews
of the mathematical foundations and historical background [26], textbooks
that systematize basic principles and applications (e.g. [18], [19], [118] or [5])
and analysis of the development of some BEM variants [120] are available
in the literature.

1In the following chapters it will presented in more detail the basics of the Boundary
Element Method and the other algorithms used in this work.
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CHAPTER 2. STATE OF THE ART

Although the aim of this thesis focuses on the elastic problem, its analysis
and implementation using Boundary Element Methods, is integrated into the
general extension of these methods to inhomogeneous materials with varying
properties. The available solutions, including the one used in this thesis,
are generally applicable, at least conceptually, to other type of problems.

The key feature of the Boundary Element Method, in its conventional for-
mulation, is that only boundary discretization is required in order to solve
the problem. This is attained by the use of a fundamental solution that
satisfies the problem system of equations when the loading is a concentrated
source. Thus, even though research conducted in recent years have dra-
matically expand the scope of application of BEM, including, inter alia,
acoustics [4], contact mechanics [3] or soil-structure interaction [50], a Funda-
mental Solution is still needed in analytical form or with low computational
cost.

In practice, this condition often limits the application of the Boundary
Element Method to linear systems with constant coefficients. The emergence
of new materials including Functionally Graded Materials (FGMs) has in-
creased the interest in boundary element techniques capable of dealing with
materials showing such non-homogeneous properties. Several approaches
have been reported in the literature to overcome these difficulties. Focusing
on this aspect, a non comprehensive list of BEM variants comprising four
main groups can be constructed.

2.1 Pure Multidomain Methods

The first approach to solve problems involving inhomogeneous materials
is through the use of standard formulations and multidomain schemes.
This type of approach is present from the beginning of BEM development
although it is limited to piece-wise homogeneous problems.

The multidomain techniques divided the domain into multiple zones, each
characterized by a homogeneous material with constant properties. Standard

10
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OF VARIABLES

Boundary Element method is applied in every zone and coupling equations
are added in the interphase to obtain the complete system of equations. The
resulting matrix is a band matrix at the scale of the blocks derived from the
domains. These techniques were early introduced (see [11] or [19]). Several
studies have been divulged, focus on the study of assembly techniques and
resolution of these algebraic system of equations defined by the matrix
by means of factorization (as in [31]) ,or static condensation of degrees
of freedom as in [53]) among others2. It can be noted, finally, that this
approach is not only applied to collocation schemes but also to Galerkin
schemes [67] or [24].

2.2 Fundamental Solution Calculation and Change of
Variables

In this section, we include studies of obtaining fundamental solutions and
techniques that transform the original problem to one whose fundamental
solution is known.

The first type of problems to be studied in this context was potential prob-
lems in inhomogeneous solids. Chen [27] studied one and two dimensional
problems governed by the equation

∇ · (k (x)∇φ) = 0
�� ��2.1

By changes of variable, it can be shown that it is possible to obtain the
fundamental solution of these problems providing that

∇2k
1
2 = 0

�� ��2.2

2Several works like [97], have shown that, for problems with a large amount of degrees
of freedom, the multidomain approaches are superior in terms of computational efficiency
and numerical conditioning comparing to a single-zone scheme.
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Later, Shaw and Makris [104] collect these ideas, and apply these schemes
based on changes of variables to Laplace and Helmholtz problems. Shaw [105]
performed a systematic study also using transformations of the independent
variable. Ang, Clements and Kusuma [7] generalized the applicability of
these schemes to two-dimensional cases where K (x) = X(x)Y (y) if some
additional conditions are fulfilled.

Clements obtained solutions for some specific cases of second-order elliptic
equations of the type [29]

∂

∂xj

[
aijkl(x1, x2)

∂φk
∂xl

]
+ bik(x1, x2)φk = 0

�� ��2.3

and [28]

∂

∂xj

[
aijkl (x))

∂φk
∂xl

]
= 0

�� ��2.4

Manolis and Shaw [73] obtained particular solutions for the elastodynamic
equation for some specific properties variation. These constraints result in a
Poisson ratio of 0.25, a quadratic variation of the Young modulus in a single
coordinate and a density variation proportional to the Young modulus.

Sutradhar, Paulino and Gray [108] used similar techniques to obtain the
Green function for the diffusion problem

∇ · (k∇φ) = c
∂φ

∂t

�� ��2.5

for cases in which the thermal conductivity k and the specific heat c have
an exponential variation in a single coordinate of the type k = k0e

2βz

Gray, Kaplan, Richardson and Paulino [48] obtained the fundamental solu-
tion of the potential problem, in two and three dimensions, in the case of an
exponential variation in a single coordinate of the k coefficient k = k0e

−2iαz,
where the coefficient α may be imaginary. Berger, Martin, Mantic and

12
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OF VARIABLES

Gray [15] extended this approach to cover anisotropic solids with the same
type of property variation where, in this case, the k coefficient becomes a
symmetric matrix. Kuo and Chen [65] obtained, using a different approach,
the fundamental solution for both the potential and the diffusion problem
in anisotropic solids with an exponential variation of properties.

Through Fourier transforms, Martin, Richardson, Gray and Berger obtained
the fundamental solution of the three-dimensional elastic problem [77],
for the case where the material has an exponential variation in a single
coordinate of Lame coefficients

λ = λ0e
2βx µ = µ0e

2βx
�� ��2.6

where β is a constant vector that indicate the direction of the properties
variation. This fundamental solution is not given in explicit form, but
has terms as integrals (this solution was corrected and evaluated against
problems with analytic solution [30]). Chan, Gray, Kaplan and Paulino [22]
obtained the fundamental solution for the two-dimensional version of the
previous problem, for the same type of materials. This solution is also
non-explicit and has a term in the form of one-dimensional Fourier integrals.

Sutradhar and Paulino changed the approach of the methods that use
changes of variable introducing the so called “Simple BEM”. Instead of
obtaining a fundamental solution of the problem with non-homogeneous
materials, the problem itself is transformed into a homogeneous one, so
standard available algorithms and its implementations could be used with
minor variations because this method simply introduces changes in the
boundary conditions of the resultant problem. Using these techniques,
it is possible to solve, in case of materials whose properties vary along
quadratic, exponential or trigonometric functions in one coordinate, potential
problems [107] and diffusion problems [110] where the thermal conductivity
k and the specific heat c variation are proportional. This method has
been used by the same authors to study potential problems with multiple
cracks [94] involving solids with the same properties variation as the previous
case.
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In figure (2.1) an example (taken from [110]) of the application of this
technique is presented, which is compared with the results obtained using
finite elements, showing the high accuracy of the BEM algorithms.

Figure 2.1: Radial heat flux along the interior edge [110]

All the works named in this section have the advantage of allowing the reuse
of existing codes, needing only routines associated with the new fundamental
solutions 3, or in the case of “Simple BEM” only modifying the boundary
conditions of the problem. In addition they can be used in collocation or
Galerkin schemes.

3In practice, it is clear that it is necessary to make further modifications, for example,
such as those associated with boundary conditions.
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2.3. METHODOLOGIES THAT USE DOMAIN INTEGRALS

2.3 Methodologies that use domain integrals

Generally, the application fields of the methodologies outlined in the previous
section are strongly limited to a small range of functional variation of
properties, despite the advantage that the fundamental solution is obtained
in analytical form. Although they have practical applications they lack of
generality. Since the late 80s, it was proposed as a general solution a set of
methods, which can be grouped conceptually because they introduce domain
integrals in the formulation. The best known subfamilies are called dual
reciprocity methods (see as reference [93]), multiple reciprocity methods [90]
or radial integration methods [41] among others.

The general idea behind these methods is to split the differential operator
which governs the problem in two parts. The first part can be treated using
the standard BEM methodology and the remaining terms are grouped into
volume integrals in the second part4.

The key feature of these methods is the transformation of the domain
integrals into boundary integrals or sums of approximation functions. Orig-
inally, this type of algorithms were designed to solve problems where the
independent term was a general function, but they have also been applied
successfully to problems involving inhomogeneous materials. Ang, Clements
and Vahdati [6] studied differential problems of elliptic type involving inho-
mogeneous anisotropic solids with general properties variation. In this case
the differential operator is

∂

∂xi

[
λij

∂u

∂xj

]
= 0 in R2

�� ��2.7

where λij(x, y) = λ0
ijg(x, y)

Marin, Elliott, Heggs, Ingham and Lesnic studied Helmholtz type problems
[75], with general variations of the k coefficient in two dimensions domains

4In the following chapters the dual reciprocity method is explained in detail. At this
point the descriptions are limited to conceptual ideas.
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and Fahmy focused on magneto-thermo-viscoelastic problems involving
anisotropic inhomogeneous solids [36].

Subsequently Gao, Guo and Zhang combined radial integration techniques
with multidomain methods to solve elastic problems in two and three
dimensional domains [42], where the Poisson coefficient ν is constant and
the shear modulus G is defined by a general function. In the Figure 2.2, an
example of a three-dimensional problem for an exponential variation of G,
where eight subdomains have been used, is provided. A comparison of the
BEM technique with a the Finite Element Method is shown.

(a) BEM model of a cuboid consisting in
eight subdomains

(b) Numerical results for transversal in-
homogeneous material

Figure 2.2: Example taken from [42]

This same technique was subsequently used in the study of thermoelasticity
[40], fracture [123] and diffusion [95].

The last technique presented in this section is the one that has been selected
as a starting point in this thesis. This methodology was introduced by
Katsikadelis [57] for solving boundary value problems, involving linear or
non linear second order differential operators. The Analog Equation Method
and the Boundary Element Method are combined to produce an algorithm
whose fundamental solution is independent of the problem. The key idea is
to replace the original differential operator by the analog operator (which
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has known fundamental solution) and treating the unknown term produced
by this replacement using techniques that avoid domain discretization.

In the original algorithm, the unknown term is estimated directly by sum-
mation of approximation functions (mainly radial basis functions). It can
be found in the literature several works studying buckling of plates [87], dy-
namic analysis of nonlinear membranes [59] or dynamic analysis of composite
steel-concrete structures [103] among others. Subsequently Katsikadelis [60]
replace the original evaluation of the unknown term with a volume integral,
combining the previous formulation with the Dual Reciprocity Method.

Although the next chapter will detail the basis of this methodology, notice
that the original form of this formulation implied that the boundary condi-
tions of the problems must be functions of the problem variables and its
fluxes. Nerantzaki and Kandilas applied this methodology to anisotropic
elastic problems [86], where the boundary conditions are given in tensions,
evaluating the tangential derivatives needed to close the problem by means
of a finite differences approach.

In this work this idea will be extended and the analytical derivative of the
integral equations is employed in order to deal with any type of boundary
conditions, without using additional numerical approximations.

2.4 Other Methodologies

There are other approaches in the literature that can extend the range of
application of the Boundary Element Method for treating non-homogeneous
materials (and nonlinear problems). Liao introduced in the late 90’s the
so called General Boundary Element Method General (see eg [70], [68]
or [69]). In this approach, a perturbation is introduced into the equation
and an expansion series is used, resulting in an iterative scheme where
the residue decreases gradually. This approach allows to cover linear and
non-linear problems, but the computational cost can be high due to the
need of the iterative calculation. Figure 2.3 shows an example of application
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of this method to a fluid mechanics problem. In this case, a two-dimensional
problem involving an incompressible at moderately high Reynolds is studied.

Figure 2.3: Results taken from [119]

Finally two meshless methodologies will be mentioned. Formally they are
not Boundary Element type techniques, but they have emerged partly in
response to the limitations of its applicability and are close related to it.
The first method is called the Local Boundary Integral Equation Method
(LBIE) introduced by Zhu, Zhang and Atluri [124] and the second one is
the Boundary Knot Method (BKM) introduced by Chen and Tanaka [25].
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It is a good thing to proceed in order and to establish propo-
sitions. This is the way to gain ground and to progress with
certainty

Gottfried Leibniz 3
Preliminary Concepts

3.1 Boundary Element Method

The Boundary Element Method (BEM) includes a family of numerical
techniques able to solve problems defined by systems of linear partial
differential equations formulated as sets of integral equations.

Although this general definition of the Boundary Element Method can be
also used to refer to different families of numerical techniques, it allows us to
establish a first division with respect the techniques which methodology is
based on the direct use of the differential formulation (strong formulation) of
the problem. Historically, the Finite Difference Method (FDM) [81], which
is based on the direct discretization of the differential equations, can be
pointed out as the main precursor of this family and, even now, it is still been
used successfully to deal with the solution of a large number of physical or
engineering problems. Recently the methods based on strong formulations
have been received an important boost with the development of meshfree
(or meshless) methodologies which use the strong or weak formulation of
the problem. In the first group we can mention, by way of example, the
Method of Fundamental solutions (MFS) [37] or the Radial basis functions
collocation method (RBFCM) [54], [38] among others.

In contrast to the methods based on the differential formulation, methodolo-
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CHAPTER 3. PRELIMINARY CONCEPTS

gies based on integral formulations (the so-called “weak formulation”) can
be found in the literature as it has been mentioned. Without being exhaus-
tive, we can mention, for example, the Finite Volume Method (FVM) [115],
the Finite Element Method (FEM) [125], several meshfree type methodolo-
gies like the meshless local Petrov-Galekin (MLPG) method [10] and the
Boundary Element Method (BEM) [19]. The last method gets its name
because under certain conditions, the mesh procedure and the corresponding
integrals involved in this numerical technique are limited to the boundary
of the domain. This key feature is due to the use of the so-called funda-
mental solution used as a function of weight for the construction of the
integral formulation. In contrast, FEM type numerical methods use weight
functions that, broadly speaking, are independent of the problem and focus
on accurate approximation of the problem variables. In BEM, the weight
function is related to the problem to solve and, consequently, added “a priori”
information that allows several simplifications in the integral formulation.

3.1.1 Potential Integral Equation

Although, in next sections (see for example (3.4)) variations of the standard
BEM formulation capable of solving problems involving inhomogeneous
materials as Functionally Graded Materials (FGM)1 will be analyzed in
detail, this section will focus on a brief review of the Boundary Element
Method in its traditional direct formulation.

Selecting a problem governed by the Laplace operator, as the starting
point of the analysis, a short summary of the procedure is presented. This
type of problems have been extensively studied by the potential theory
and they have a wide range of applications including steady heat transfer,
electrostatics, ideal fluid flow and more (several examples can be found
in [118]). The direct formulation, based on Green’s identities, is employed
to obtain the integral formulation in preference to indirect formulations

1In the sense arbitrarily inhomogeneous, as in the literature are available fundamental
solutions applicable to problems involving materials with several variations of properties.
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3.1. BOUNDARY ELEMENT METHOD

based on potentials2.

Although this formulation is focused on the Laplace problem, and, in general,
the resulting integral equations varies depending on the differential operator
governing the problem, the procedure is completely analogous to other type
of problems.

Z

Y

X

Figure 3.1: A volume Ω bounded by a close surface Γ

Let be a general potential problem formulation defined by:

∇ · (K (x)∇φ) + b (x) = 0
�� ��3.1

It is assumed that an isotropic and homogeneous material is studied, so
K (x) = I k0. Without loss of generality, the problem can be simplified
assuming k0 = 1. Introducing these simplifications, equation (3.1) can be
reduced to the so-called Poisson equation. In this case, φ(x, y, z) is a scalar
function defined in a three-dimensional space so

∇2φ = ∇ •∇φ =

3∑
i=1

(
∂2φ

∂x2
i

)
= −b (x)

�� ��3.2

2The so-called single layer potential and double layer potential.
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where function φ(x) has a domain of definition defined by the region of
space Ω bounded by a close surface named Γ (see figure 3.1 for details). The
function φ (x) is called potential function and its corresponding surface flux
is

∂φ

∂n
= ∇φ • n

�� ��3.3

The formulation of the integral equation of the problem denoted by (3.2), is
based on the use of the Method of Weighted Residuals. With this in mind,
we can write that

∫
Ω

w (x)
[
∇2φ (x) + b (x)

]
dΩ = 0

�� ��3.4

for any sufficiently well behaved function w (x) defined in the domain Ω.

By means of the divergence theorem is easy to obtain the so-called Green’s
identities of Green3.

Green’s first identity

∫
Ω

∇w (x)∇φ (x) dΩ =

∫
Γ

w (x)
∂φ

∂n
(x) dΓ +

∫
Ω

w (x) b (x) dΩ
�� ��3.5

Green’s second identity4

∫
Γ

(
φ (x)

∂w

∂n
(x)− w (x)

∂φ

∂n
(x)

)
dΓ =

∫
Ω

(
w (x) b (x) +∇2w (x)φ (x)

)
dΩ�� ��3.6

To obtain the third Green identity is necessary to particularize w = w∗ in
expression (3.6) by using a special type of function called Fundamental

3The details of these transformations are omitted in this work for the sake of brevity.
They can be found in many textbooks, such as [118].

4In Solid Mechanics the equivalent expression is the theorem of reciprocity.
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Solution. In the case of a problem governed by Laplace operator 3.1 the
fundamental solution satisfies

∇2w∗ + δ (x− z) = 0
�� ��3.7

Combining the previous expression with equation (3.6) we obtain, for z ∈ Ω

Green’s third identity

φ (z) +

∫
Γ

(
φ (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ

∂n
(x)

)
dΓ =

∫
Ω

w∗ (x; z) b (x) dΩ
�� ��3.8

It’s clear that the fundamental solution depends on the differential operator
that governs the problem to be solved. In the case of the Laplace operator in
a three dimensional space the solution of (3.7) is available in many textbooks
as [19]

w∗ =
1

4πr

∂w∗

∂n
= − r,ini

4πr2

�� ��3.9a

where r = ‖x− z‖ r,i =
ri
r

ri = xi − zi
�� ��3.9b

It has previously been pointed out that, in the Boundary Element Method,
under certain conditions, the integrals that appear in the formulation,
and, consequently, the associated process of discretization and meshing are
restricted to the boundaries of the domain. If equation (3.8) is analyzed
it is clear that if the independent term of equation b (x) = 0, the domain
integral vanishes and a pure boundary integral equation is obtained. In this
case, equation (3.1) is known as Laplace equation, and (3.8) is reduced to

φ (z) =

∫
Γ

(
w∗ (x; z)

∂φ

∂n
(x)− φ (x)

∂w∗

∂n
(x; z)

)
dΓ

�� ��3.10

When z /∈ Ω it is clear that δ (x− z) = 0 for every point in the domain, and
it is easy to show that equation (3.10) is reduced to
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Figure 3.2: Hemisphere around a boundary point at z

∫
Γ

(
φ (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ

∂n
(x)

)
dΓ = 0

�� ��3.11

This equation is known as the exterior integral equation.

3.1.2 Integral Equation on a Boundary point

As it has been pointed out previously, equation (3.8) is valid for z ∈ Ω. If
the pole z of equation is set in the boundary the fundamental solution of
the problem, defined in (3.9a), have a singularity on z = x. In this case,
a detailed analysis of the convergence of the integral equation must be
performed. The whole process is reviewed in several textbooks available in
the literature (see for example [19]).

In this thesis a brief review of this procedure is included. The key idea is to
introduce a deformation in the domain, so that the collocation on z, which
originally was placed on the boundary, becomes an interior point. The way
to do this is augmenting the domain by a hemisphere of radius ε centered
on z, as shown in Figure (3.2).
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3.1. BOUNDARY ELEMENT METHOD

The next step is the decomposition of the integral into two parts. The first
includes the entire domain except the hemisphere of radius ε and its value
coincides with the Cauchy Principal value when ε→ 0. The second part,
corresponding to the hemisphere, is often called free term and its value is
calculated analytically. Thus, in general

∫
Γ

fdΓ = lim
ε→0

(∫
Γ−Γε

fdΓ

)
+ lim
ε→0

(∫
Γε

fdΓ

)
= −
∫

Γ

fdΓ + free term
�� ��3.12

In the case of the three-dimensional Laplace operator, the details of the
limiting process are included in the Appendix of this thesis. For a point
z ∈ Γ, it can be proved

(
1− ∆Ω (z)

4π

)
φ (z) = −

∫
Γ

(
w∗ (x; z)

∂φ

∂n
(x)− φ (x)

∂w∗

∂n
(x; z)−

)
dΓ

�� ��3.13

where the variable ∆Ω (z) have been introduced. This variable represents
the solid angle of the domain at the point (z). In the case of a smooth
surface, this value, as it can be easily checked, is 2π and, consequently

1− ∆Ω (z)

4π
=

1

2

�� ��3.14

3.1.3 General Integral Potential Equation

Taking into account the above results, we can formulate a general equation
for any position of z

c (z)φ (z) +

∫
Γ

(
φ (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ

∂n
(x)

)
dΓ

�� ��3.15

where
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c (z) =


0 if z /∈ Ω

1− ∆Ω (z)

4π
if z ∈ Γ

1 if z ∈ Ω and z /∈ Γ

�� ��3.16

where the integrals are defined on the sense of the Cauchy principal value.

3.1.4 Numerical Aspects

After the construction of the boundary integral equation, the next step to
be evaluated, is the assembly of a linear discrete system of equations that
can be solved by some type of numerical scheme. That is, the ultimate goal
is to obtain a system of the type

AX = B
�� ��3.17

To obtain this system, two types of approximations are necessary. First,
the evaluation of integrals included in the formulation will be analyzed to
subsequently, assemble the system of equations.

For the evaluation of the integrals, equation (3.15), where there is no domain
integrals, is taken as an initial reference. In later sections (see for example
(3.2)) the treatment of the domain integrals and its approximations within
the framework of the BEM will be detailed. This chapter will focus on the
classical formulation where the integrals are limited to boundary.

The first type of approximation is of geometric nature. The domain of
integration Γ is divided into a series of NE elements γk so that

Γ ≈
NE∑
k=1

Γk
�� ��3.18
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At the same time, the geometry of each of these elements is approximated
by a set of shape functions and discrete values of the element geometry in
NA points: the so-called approximation nodes. Mathematically

xk (x) ≈
NA∑
j=1

ψjk (x)xjk

�� ��3.19

Although this formulation introduces the possibility of using different func-
tions in each coordinate, in practice, the same type of functions are used.
That is, ψjk = ψj.

This technique allows to approximate complex boundaries with a high degree
of accuracy using simple geometric shapes. In three-dimensional problems
the most common is the use of planes triangles and quadrilaterals, but it is
also extended the use of higher order polynomials. The improvement in the
representation of the boundary can be achieved increasing the number of
elements or increasing the order of the approximation.

The second type of approximation is of functional nature, because the
integrand values are not always known, since some of its components are
the unknown variables of the boundary. To deal with this aspect, the same
process is used. The value of the functions defining the problem variables
to be considered, is modeled by approximation functions and the discrete
value (sometimes unknown) at the so-called approximation nodes. The
mathematical structure obtained is identical. Assuming an isoparametric
model, so that the same approximation functions which characterize the
geometry are used again, we obtain

φ ≈
NA∑
j=1

ψjφj
∂φ

∂n
≈

NA∑
j=1

ψj

(
∂φ

∂n

)
j

�� ��3.20

Introducing this discretization in (3.15) we obtain
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c (z)
NA∑
j=1

ψj (z)φj +
NE∑
k=1

∫
Γk

NA∑
j=1

ψj (x)φj
∂w∗

∂n
(x; z) dΓk

=
NE∑
k=1

∫
Γk

w∗ (x; z)
NA∑
j=1

ψj (x)

(
∂φ

∂n

)
j

dΓk

�� ��3.21

This discretized equation is valid for any z. Since the introduction of func-
tional approximations of the fields, from their values at the approximation
nodes, produces a linear equation with as many unknowns as approximation
nodes5, it is necessary to raise as many equations as unknowns in order to
solve the system of equations.

There are mainly two techniques for building these systems of linear equa-
tions in the literature: Collocation Method [19] and Galerkin method [109].

Formally, a unified formulation can be developed if it is considered that
equation (3.21) can be rewritten as

F (z) = 0
�� ��3.22

And imposing that the above equation is satisfied in accordance with an
integral formulation (“weak”) we obtain

∫
Γ

ϕi (z)F (z) dΓ = 0
�� ��3.23

Assuming ϕi (z) = δ (x− zi), equation(3.23) is reduced to the collocation
method. In this case equation (3.21) must be satisfied on a collection of k
collocation nodes. If, instead, it is assumed that ϕi (z) = ψi (z) the shape
functions used for the approximations described previously are used as
weighting functions to get the so called Galerkin method.

5In the case of problems with multiple variables, including the elastic problem, the
number of unknowns is a multiple of the amount of approximation nodes.
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Clearly, the Galerkin method presents more complexity by introducing a
double integration. There are several jobs where both methods (see [121]
and [9]) are compared from several perspectives. The context of this thesis
is restricted to the approximation using the collocation method.

Assuming, as it was indicated previously, a formulation based on collocation,
equation (3.21) can be rewritten as

NA∑
j=1

hijφj =

NA∑
j=1

gij

(
∂φ

∂n

)
j

�� ��3.24

for a collocation node i located at zi, thereby identifying terms

hij = c (zi)ψj (zi) +

∫
Γ

ψj (x)
∂w∗

∂n
(x; zi) dΓ

�� ��3.25a

gij =

∫
Γ

ψj (x)w∗ (x; zi) dΓ
�� ��3.25b

It must be pointed out that, in general, shape functions have non-zero values
only in small areas of the domain of integration. So, in practice, the domain
of integration does not extend to the entire boundary. Specifically, in the
case of piecewise constant functions, the domain of integration Γ for hij and
gij is limited to γj.

After the discretization of the integral equation (3.21), the next step is
the application of this discretized equation on i collocation nodes of the
boundary. In this way, a determined (or overdetermined) algebraic system of
equations that solves the problem is generated. This system can be written,
in matrix form, as follows

Hφ = G
∂φ

∂n

�� ��3.26

Once the system of equations is built, the introduction of the boundary
conditions of the problem allow to rearrange the system and obtain a system
as (3.17), where all the unknowns are gathered in the vector X.
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This system can be solved using direct methods such as LU decomposition

[21] or iterative schemes as GMRES [101], to obtain φ (x) and
∂φ

∂n
(x) on the

boundary.

Following the resolution of the system, additional values on the boundary
or inside the domain can be calculated from equation (3.21) with the
appropriate c (z) function to each case. Notice that, at the post-processing
phase, since the unknowns of the boundary have already been obtained,
all values of the integrands are known, and the integral equations can be
calculated directly for the desired values. Similarly, differentiated variables
associated with the problem can be calculated by differentiating equation
(3.15).

3.2 Dual Reciprocity Method

The Dual Reciprocity Boundary Element Method (DRBEM acronym in
English) was introduced by Nardini y Brebbia [82] as an extension of the
Boundary Element Method. It can treat volume integrals, that appear in the
classical formulation, maintaining the boundary character of the method.

Although its main application, both historically and currently, is the study
of dynamic processes (see for example [112] o [32]), DRBEM has been
successfully used to deal with problems with non-homogeneous materials
(see for example [111] o [76]).

As a starting point, equation (3.1), which is repeated for clarity of presenta-
tion is used.

∇ · (K (x)∇φ) + b (x) = 0
�� ��3.27

It shall be assumed again that the problem involves a homogeneous and
isotropic material with K (x) = I k0 = 1 but,in this case with a non-zero
independent term b (x).
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Following an identical process as in the section focused on BEM, the con-
struction of the integral equation, would lead to

c (z)φ (z) +

∫
Γ

(
φ (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ

∂n
(x)

)
dΓ =

∫
Ω

w∗ (x; z) b (x) dΩ�� ��3.28

where it is emphasized again that, unlike in equation (3.15) is not assumed
that the independent term is zero.

The next step is the approximation of b (x) through a sum of R approximation
functions. Thus

b (x) ≈
R∑
j=1

αjfj (x)
�� ��3.29

These approximation functions fj are selected in such a way that, if they are
used as the independent term of the problem to solve, it is easy to obtain
analytical solutions of the resulting equations.

∇2φ̂j + fj = 0
�� ��3.30

If equation (3.28) is written using fj as independent term we obtain

c (z) φ̂j (z) +

∫
Γ

(
φ̂j (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ̂j
∂n

(x)

)
dΓ =

∫
Ω

w∗ (x; z) fj (x) dΩ

�� ��3.31

Introducing this expression in equation (3.28) gives
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c (z)φ (z) +

∫
Γ

(
φ (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ

∂n
(x)

)
dΓ =

R∑
j=1

αj

[
c (z) φ̂j (z) +

∫
Γ

(
φ̂j (x)

∂w∗

∂n
(x; z)− w∗ (x; z)

∂φ̂j
∂n

(x)

)
dΓ

] �� ��3.32

This integral equation is the basis of DRBEM formulation. From here
we proceed, as in previous sections, to the discretization process for the
construction of the algebraic linear system of equations.

With this in mind, we can write the discretized version of equation (3.32)
in zi as

NA∑
k=1

Hikφk −
NA∑
k=1

Gik

(
∂φ

∂n

)
k

=
R∑
j

αj

NA∑
k=1

Hikφ̂kj −
NA∑
k=1

Gik

(
∂φ̂

∂n

)
kj

 �� ��3.33

which can be written in matrix form as

Hφ−G
∂φ

∂n
=

[
Hφ̂−G

∂φ̂

∂n

]
α

�� ��3.34

On the other hand if (3.29) is particularized in a number of evaluation
points xi ∈ Ω we obtain

b (xi) ≈
R∑
j=1

αjfj (xi)
�� ��3.35

which can be written in matrix form as

b = Fα
�� ��3.36
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Although the coefficients αj can be obtained from equation (3.36) and,
by introducing them in (3.34) the system of equations can be solved, the
following procedure is traditionally performed.

Assuming that the approximation (3.29) is particularized in a number of
points,to produce an invertible F matrix, we get

α = F−1b
�� ��3.37

If (3.37) is introduced in (3.34) we get

Hφ−G
∂φ

∂n
=

[
Hφ̂−G

∂φ̂

∂n

]
F−1b = Sb

�� ��3.38

This linear system of equations allows to solve the original problem, including
the addition of the independent term, maintaining the boundary character
of the method. It is easy to check that if the choice of the approximation
functions is restricted to solutions of the original differential operator the new
integrals appearing in the DRM methodology are confined to the boundary.

3.3 Approximation and Interpolation of functions

One aspect of the dual reciprocity methods which has not been analyzed
in the previous section, is the nature of the approximation functions fj.
This aspect has its roots in the general problem of function approximation,
which exceeds the objectives of this work, and for which there are abundant
references in literature (see, for example, [20]).

First of all,the field of study is restricted to Dual Reciprocity Methods related
works (see [55], [91], [20], [92] or [83]), which means that the approximation
functions must have analytic solution (or with very low computational cost)
of the differential operator of the problem. In addition, the mathematical
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treatment necessary for the implementation of the approximation requires
the use of relatively simple explicit analytical expressions.

A preliminary study of these methods almost entirely excludes the so-
called local methods. These methods base their approximation scheme
on sets of functions f(x), depending on a small number of near values, to
approximate data. This means that the definition of the approximation
function is changing throughout the domain, and in many cases it is not
even continuous. These two factors discard these families of approximations
functions as viable solutions in the DRM.

Similarly, approximation schemes using piecewise or spline functions, may
formally be desirable, but involve significant complexity in implementation
and its use in the DRM schemes are also discarded. In general, we can
restrict the range of approximation functions appropriate for use in the
DRM approach to three main groups.

• Radial basis functions (RBF acronym in English)

• Global Functions

• Radial basis functions augmented with global functions

These categories may have subdivisions, for example, depending on the
types of functions or the existence of parameters whose value is selectable.

In this general classification, it can be noted that the definition of the
groups allows, naturally, to build a unified formulation that includes the
three groups. This can be done using coefficients that vanish or produce
non-zero values depending on the type of approximation chosen. Of the
three above groups, the use of the second one (global functions) is clearly
a minority. The use of global functions is focused on improving radial
basis functions approximation (the third group). Although there are more
possibilities of approximation functions as polynomial functions, radial basis
functions have advantages over these, in terms of existence of interpolating
and convergence. This is mainly due to its radial symmetry, smoothness,
and and certain properties of their Fourier transform (see [20] for details).
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The approximation by radial basis functions is a general method of approxi-
mation of multivariate functions by sets of radial basis functions, ie, based
on distances to nodes. More formally, we seek to approximate functions of
the type h : Rn → R using approximants of the type

h (x) ≈
M∑
j=1

αjfj (||x− xj ||) +

N∑
k=1

βkgk (x)
�� ��3.39

whose αj and βk coefficients can be determined by equations

M∑
j=1

αjfj (||xi − xj ||) +
N∑
k=1

βkgk (xi) = h(xi) i = 1, ...M

M∑
j=1

αjgi (xj) = 0 i = 1, ...N

�� ��3.40

In the above equations we have used the generalized formulation covering
the three groups of approximation functions depending on whether the terms
βk vanish (radial basis functions), the terms αj vanish (global functions) or
both have non-zero values (radial basis functions augmented with global
functions).

The approximation of functions, by means of radial basis functions, have
been widely used in Boundary Element formulations, mainly coupled with
DRM algorithms (see, for example [93], [43], [33] o [113]).

The following list includes, without being exhaustive, some of the radial
basis functions typically used in BEM methods

• Euclidian distance f(r) = c+ r

• Gauss f(r) = e−cr
2

• Multiquadrics f(r) =
√
c+ r2

• Inverse Multiquadrics f(r) =
1√
c+ r2
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• Thin plate Spline f(r) = r2 log r

• Radial basis functions families with support

– Wendland family e.g. f(r) =
(

1− r

s

)4(
1 +

4r

s

)
for r < s

– Buhmann family e.g. f(r) = 2
(r
s

)4

log
r

s
− 7

2

(r
s

)4

+
16

3

(r
s

)3

−

2
(r
s

)2

+
1

6
for r < s

Versions of these functions improved with global functions (referred with
the term “augmented”) are also commonly used. In general, these additions,
and their associated compatibility equations (3.40), are designed to improve
system stability in the direct approximation problem (see for example [56]).

In the more typical case, with polynomial terms up to order one, the
compatibility equations in three-dimensional problem are

M∑
j=1

αj =

M∑
j=1

αjx1 (xj) =

M∑
j=1

αjx2 (xj) =

M∑
j=1

αjx3 (xj) = 0
�� ��3.41

The analysis of convergence, stability, accuracy, selection of parameters
optimal values... of these approximation functions (within the framework of
Boundary Element Methods) are aspects whose investigation remains open
and exceeds the objectives of this work (see for example [83], [45] o [23]
among others).

3.4 Analog Equation Method

The Analog Equation Method (AEM acronym in English) was introduced
by Katsikadelis in 1994 [58] as a method derived from BEM, capable of
treating domain integrals without discretizing the domain (as in the Dual
Reciprocity Methods). It has been applied successfully to linear or nonlinear
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problems [63] and to problems involving inhomogeneous materials [60] among
others.

The basis of the methodology is, in essence, very simple. The key idea is to
replace the differential operator of the original problem, whose fundamental
solution has a high computational cost or simply is not available in the
literature, for a linear differential operator with known fundamental solution,
by using the analog equation.

Let consider a problem in a domain Ω ⊆ R3 enclosed by a boundary Γ and
governed by the following boundary value problem

L(u) + b (x) = 0 in x ∈ Ω
�� ��3.42a

λ (x)u+ β (x) q = γ (x) on x ∈ Γ
�� ��3.42b

where L is a linear second order differential operator, b (x) is the known
domain loading source, λ (x) , β (x) and γ (x) are functions defined on the

boundary Γ and q =
∂u

∂n
is the flux of u. Without loss of generality we are

dealing with a scalar field u = u (x) defined in a two or three-dimensional
space (although the Analog Equation Method can deal with vectorial prob-
lems with more variables, such as elasticity [86], poro-elasticity [85], etc...)

It must be pointed out as well that with this definition, the operator L
can represent a wide variety of physical problems involving homogeneous or
inhomogeneous materials [58], plane elastostatics [62]...

The next step is to select an auxiliary operator
o

L, called analog operator,
with known fundamental solution. For the sake of simplicity, but without
loss of generality, the Laplace operator is chosen as analog operator. Thus,
if the Laplace operator is applied to the sought solution of the problem
defined by equations (3.42a) and (3.42b), the problem is transformed into

∇2u+ b̂ (x) = 0 in x ∈ Ω
�� ��3.43a

λ (x)u+ β (x) q = γ (x) on x ∈ Γ
�� ��3.43b
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where b̂ represents an unknown fictitious source . In the original methodology,
introduced by Katsikadelis [58], the solution of the problem defined by (3.43a)
and (3.43b) is decomposed into the sum of the solution of the homogeneous
problem uh and a particular solution up. Thus

u (x) = uh (x) + up (x)
�� ��3.44

The next step is to approximate the unknown fictitious source by a sum of
R approximation functions

b̂ (x) ≈
R∑
j=1

αjfj (x)
�� ��3.45

If the fj functions are selected, so that analytical solutions of the analog
operator with this set of functions as source terms is available we can write

∇2ûj + fj (x) = 0
�� ��3.46

Although not formally required, noticed that the functions fj used in these
methodologies are, mostly, radial basis functions. With this in mind, the
particular solution up can be approximated by

up (x) ≈
R∑
j=1

αj ûj (x)
�� ��3.47

The homogeneous solution is obtained using standard BEM methodology
so the Boundary Integral Equation is constructed to obtain

c (z)uh (z) = −
∫

Γ

(
uh (x)

∂w∗

∂n
(x; z)− w∗ (x; z) qh (x)

)
dΓ

�� ��3.48

which can be written in matrix form as
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HUh −GQh = 0
�� ��3.49

If this equation is particularized at an interior point of the domain (in
the Figure 3.3 is represented a distribution of internal nodes for a two-
dimensional domain), the function c (z) = 1, thus taking into account (3.44)
and (3.47) we conclude that

u (z) = −
∫

Γ

(
uh (x)

∂w∗

∂n
(x; z)− w∗ (x; z) qh (x)

)
dΓ +

R∑
j=1

αj ûj (z)
�� ��3.50

Ω

Γ

Internal nodesBoundary Nodes

Boundary Element

Figure 3.3: Two-dimensional discretization of a boundary and distribution
of internal nodes

By applying the differential operator of the original problem L to equation
(3.50) we get

b (z) =

∫
Γ

(
uh (x)L

[
∂w∗

∂n
(x; z)

]
− L [w∗ (x; z)] qh (x)

)
dΓ−

R∑
j=1

αjL [ûj (z)]�� ��3.51
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where the derivatives are taken with respect to coordinate z. If this equation
is applied to all internal points, as shown in Figure 3.3, and the resulting
equation is written in matrix form we obtain

KUh − LQh − B̂α = B
�� ��3.52

where

K = L [H] L = L [G] B̂ = L
[
Û
] �� ��3.53

It must be pointed out that equation (3.51) is applied to an internal point
where c (z) is constant and therefore its derivative is zero. Consequently,
the coefficients of the matrix H which are affected by the derivative can be
written as

h̄ij = hij − c (zi)ψj =

∫
Γ

ψj (x)
∂w∗

∂n
(x; zi) dΓ

�� ��3.54

Taking into account the definition of up as it is indicated in (3.45), equation
(3.44) can be rewritten as

u (x) ≈ uh (x) +
R∑
j=1

αj ûj (x)
�� ��3.55

and, consequently, the associated flux q =
∂u

∂n

q (x) ≈ qh (x) +
R∑
j=1

αj q̂j (x)
�� ��3.56

If these two representations are introduced into the definition of the boundary
condition as is defined in (3.43b) we conclude that
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λ (x)

uh (x) +
R∑
j=1

αj ûj (x)

+ β (x)

qh (x) +
R∑
j=1

αj q̂j (x)

 = γ (x) en x ∈ Γ�� ��3.57

which can be written in matrix form as

Λ
[
Uh + Ûα

]
+ B

[
Qh + Q̂α

]
= γ

�� ��3.58

where the diagonal matrices λ and B have been introduced. These matrices
contain on its diagonal the value at collocation nodes of the functions λ and
β.

Equations (3.49), (3.52) and (3.58) constitute a system of equations which
can be solved to obtain the boundary quantities qh and uh, as well as the α
coefficients that define up. Using these values the solution of the original
problem defined by u and q can be calculated.

As in the previous section, it is possible to manipulate equation (3.58) to
obtain an expression that relates α with Uh and Qh, to obtain, in a first
step, the values Uh,Qh of the homogeneous solution and subsequently the
α coefficients that define the particular solution.

Similarly as described in section 3.1, after obtaining the values of the
homogeneous solution on the boundary and the values of the α coefficients
that define the particular solution , equation (3.50) can be used for obtaining
the values of the solution at any point of the domain.

3.4.1 Analog Equation Method combined with Dual Reci-
procity Method

In 2005, Katsikadelis [60] introduced a variation of the method combining
the Analog equation Method with the Dual Reciprocity Method. Starting
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from the same problem raised in the previous section, that it is repeated for
sake of clarity

L(u) + b (x) = 0 en x ∈ Ω
�� ��3.59a

α (x)u+ β (x) q = γ (x) en x ∈ Γ
�� ��3.59b

if the analog operator is applied, we get again

∇2u+ b̂ (x) = 0 in x ∈ Ω
�� ��3.60a

α (x)u+ β (x) q = γ (x) on x ∈ Γ
�� ��3.60b

Using the same approximation of the unknown fictitious source term we get

b̂ (x) ≈
R∑
j=1

αjfj (x)
�� ��3.61

In this case, the boundary integral equation is used directly, following the
standard BEM process results in an equation similar to (3.28). Therefore
we obtain

c (z)u (z) +

∫
Γ

(
u (x)

∂w∗

∂n
(x; z)− w∗ (x; z) q (x)

)
dΓ =

∫
Ω

w∗ (x; z) b̂ (x) dΩ�� ��3.62

and by means of the Dual Reciprocity Method

c (z)u (z) +

∫
Γ

(
u (x)

∂w∗

∂n
(x; z)− w∗ (x; z) q (x)

)
dΓ =

R∑
j=1

αj

[
c (z) ûj (z) +

∫
Γ

(
ûj (x)

∂w∗

∂n
(x; z)− w∗ (x; z) q̂j (x)

)
dΓ

] �� ��3.63
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and using again matrix notation

HU−GQ =
[
HÛ−GQ̂

]
α

�� ��3.64

Following the same process as in the previous section, equation (3.63) is
particularized at an internal point of the domain. Thereby applying the
differential operator with respect to coordinate z we obtain

−b (z) +

∫
Γ

(
u (x)L

[
∂w∗

∂n
(x; z)

]
− L [w∗ (x; z)] q (x)

)
dΓ =

R∑
j=1

αjL [ûj (z)] +

∫
Γ

(
ûj (x)L

[
∂w∗

∂n
(x; z)

]
− L [w∗ (x; z)] q̂j (x)

)
dΓ

�� ��3.65

which can be written in matrix form as

KU− LQ =
[
B̂ + KÛ− LQ̂

]
α+ B

�� ��3.66

where once again

K = L [H] L = L [G] B̂ = L
[
Û
] �� ��3.67

In this case variables u and q are used, so the boundary conditions can be
applied directly in equations (3.64) y (3.66), in order to construct the linear
system of equations which allows to solve the problem.
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The beginning in every task is the chief thing.

Plato 4
General Analog Equation

The Analog Equation Method was introduced by Katsikadelis in 1994
[58]. The main features of this formulation have been presented briefly in
section (3.4). This methodology is able to solve general problems using the
Laplace operator as analog operator. Notice that the original form of this
formulation implied that the boundary conditions of the problems must be
linear combinations of the variables involved and their fluxes.

Later, in 2005 [60], a variation of the original formulation was introduced.
That work conjugated the analog equation method with Dual Reciprocity
Methods (see (3.4.1)), keeping the same limitation on the definition of bound-
ary conditions. Although, in subsequent works [62], the elastostatics problem
with Neumann (stress) boundary conditions was analyzed, the treatment
of these boundary conditions is not performed through the use of integral
equations. Instead, vector decomposition and numerical approximation, by
finite differences, of the tangential derivatives is used.

To illustrate this, one can assume a general elastic problem in a two dimen-
sional space with stress conditions. The operator associated with stress is
defined as

ti (x) = Cijkl (x)

[
∂uk (x)

∂xl

]
nj (x)

�� ��4.1
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where, respectively, ui and ti are the components of displacement and stress.
Manipulating the equation, we can rewrite this expression as

ti = Cijkl (x)

[
∂uk (x)

∂n
cos(x,n) +

∂uk (x)

∂t
cos(x, t)

]
nj (x) =

Cijkl (x)

[
qk (x) cos(x,n) +

∂uk (x)

∂t
cos(x, t)

]
nj (x)

�� ��4.2

where, in addition to the normal derivative, an unknown tangential deriva-
tive appears. This tangential derivative is approximated by numerical
differentiation. Finally, it can be noted that the practical implementation
of these algorithms has been conducted only in two-dimensional problems.

In this chapter a set of integral equations is formulated for a generic analog
operator, able to solve, after discretization, boundary value problems for
any linear differential operator and generic boundary conditions.

4.1 Problem statement

Let consider a problem defined in a domain Ω whose boundary is Γ, governed
by the following general boundary value problem,

Li(u) + bi (x) = 0 in x ∈ Ω i = 1, d
�� ��4.3a

Gi(u) + γi (x) = 0 on x ∈ Γ i = 1, d
�� ��4.3b

This formulation can be applied, for both scalar and vector problems of
dimension d, as well as in two and three-dimensional spaces.

Li and Gi are, respectively, second and first order linear differential operators
applied to the field components u. The functions bi (x) and γi (x) are the
independent terms of equations (4.3a) and (4.3b), which are defined in Ω

and Γ respectively.
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The definition of these operators is quite general and covers a large num-
ber of problems of interest in engineering, including problems involving
homogeneous or inhomogeneous materials. Although it is possible to extend
this methodology to include dynamic problems (see e.g. [59] or [88]), such
extension is beyond the scope of this work.

In the following sections of this chapter, three general sets of integral
equations are deduced. The system of equations comprising the three sets
allows to solve the general problem formulated above.

• u-BIE1 is the set of basic integral equations of BEM.

• q-BIE is the set of equations consisting of sums of u-BIE and its
derivatives, up to first order, associated with the boundary conditions.

• b-BIE is the set of equations consisting of sums of u-BIE and its
derivatives, up to second order, associated with differential operator
that governs the problem.

4.2 General u-BIE equation

Following the methodology introduced in the previous chapter, we assume
the existence of the solution u (x). Then, The analog operator is applied to
each component of u (x). Generally, we are dealing with a vector operator
of dimension d.

With this in mind, the system of equations consisting of (4.3a) and (4.3b)
is transformed into

o

Li(u) + b̂i (x) = 0 in x ∈ Ω i = 1, d
�� ��4.4a

Gi(u) + γi (x) = 0 on x ∈ Γ i = 1, d
�� ��4.4b

1BIE - Boundary Integral Equation.
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where, again, an unknown independent term b̂i appears. Without loss of
generality, it is assumed that the fundamental solution of the analog operator
is available in analytic form.

o

L(u) + δ (x− z) em = 0 =⇒
0

Umi (x; z) ,
0

Qmi (x; z)
�� ��4.5

where
0

Umi represents the “displacement” at any point in the i direction

produced by a source applied in the m direction.
0

Qmi is a derivative of
0

Umi
which specific formulation depends on the selected analog operator. In the
case of Laplace operator, it represents a flux, this is

0

Qmi =
∂

0

Umi
∂n

�� ��4.6

As it has been indicated, the formulation is discussed in a general way. This
section does not examine in depth the structure of this generic fundamental
solution, and simply assumed that it is known.

Following a similar procedure as described in the previous chapter, a u-BIE
integral equation can be constructed. The construction of this equation,
which is formally identical to that of any vector problem as elastic, can be
found in many textbooks (see e.g. [19]) and its deduction is omitted in this
work. So starting from2

cmi (z)ui (z)+

∫
Γ

ui (x)
0

Qmi (x; z) dΓ =

∫
Γ

qi (x)
0

Umi (x; z) dΓ+

∫
Ω

b̂i (x)
0

Umi (x; z) dΩ�� ��4.7

qi (x) is a variable calculated by applying a differential operator, which
depends on the analog operator, on the vector of variables u (x). For

2Notice that, as indicated above, in these equations, the integrals must be understood

in the sense of Cauchy principal value and the free terms are grouped in cmi (z).
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4.2. GENERAL U-BIE EQUATION

example, if elastic operator is used as analog operator, stress appears in the
integral equations, which means that qi −→ ti

In this equation, unlike in the previous chapter, generally, a new set of
unknowns b̂i appears. These new unknowns are the variables qi. These
new unknowns appear because the boundary conditions of the original
operator, are not expressed with the same variables that arise in the integral
equation associated with the analog operator (4.7). For example, if the
original operator was the elastic one, the boundary conditions consist of
combinations of displacement and stress. Respectively, if the analog operator
is the Laplace operator, displacements and fluxes appear in the integral
equations.

The next step is the application of the Dual Reciprocity Method to transform
the volume integral (4.7) into a sum of boundary integrals. In order to achieve
this transformation the unknown independent term b̂i is approximated by a
set of Ri approximation functions fji , so

b̂i (x) ≈
Ri∑
ji

αjifji (x)
�� ��4.8

The subscript ji is introduced because, formally, the approximation func-
tions, both in number and definition may be different for each index b̂i.
Although there is no formal impediment, since the field to approximate is
a priori unknown, a simplification is introduced. It is assumed that the
approximation functions for each component of b have the same mathemat-
ical definition3 and the same number of elements. Taking this into account,
equation (4.8) is rewritten as

b̂i (x) ≈
R∑
j

αijfj (x)
�� ��4.9

3The use of different types of approximation functions would complicate the imple-
mentation of the algorithm significantly, and it would require the definition of different
sets of functions with different base point positions in each coordinate.

51



CHAPTER 4. GENERAL ANALOG EQUATION

These fj approximation functions are chosen so that the analytical solution
of the analog operator with this set of functions as source terms is available,
so

o

L(u) + δkjδlifk (x) el = 0 =⇒ ûij (x) , q̂ij (x)
�� ��4.10

(4.7) Introducing (4.10)in equation (4.7), and by means of the Dual Reci-
procity Method (detailed in the previous chapter) the domain integral is
transferred to the boundary to result in

cmi (z)ui (z) +

∫
Γ

ui (x)
0

Qmi (x; z) dΓ−
∫

Γ

qi (x)
0

Umi (x; z) dΓ =

R∑
j

αpj

[
cmi (z) ûpji (z) +

∫
Γ

ûpji (x)
0

Qmi (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Umi (x; z) dΓ

] �� ��4.11

Where ûpji and q̂pji are each of the components of the vectors ûpj and ûpj .

4.3 General b-BIE Equation

If equation (4.11) is particularized for a point z inside the domain, the
function cmi (z), which includes the free terms of the integral equation is
reduced to δmi. Taking that into account the equation is transformed into

um (z) +

∫
Γ

ui (x)
0

Qmi (x; z) dΓ−
∫

Γ

qi (x)
0

Umi (x; z) dΓ =

R∑
j

αpj

[
ûpjm (z) +

∫
Γ

ûpji (x)
0

Qmi (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Umi (x; z) dΓ

] �� ��4.12

Rewriting the equation, so the variables are grouped in a vector according
to the m index, i.e.
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4.3. GENERAL B-BIE EQUATION

um =⇒ u ûpjm =⇒ ûpj
0

Qmi =⇒
0

Qi

0

Umi =⇒
0

Ui

�� ��4.13

we obtain4

u (z) +

∫
Γ

ui (x)
0

Qi (x; z) dΓ−
∫

Γ

qi (x)
0

Ui (x; z) dΓ =

R∑
j

αpj

[
ûpj (z) +

∫
Γ

ûpji (x)
0

Qi (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Ui (x; z) dΓ

] �� ��4.14

If the differential operator L of the original problem is applied to equation
(4.12) with respect to z we obtain

−bm (z) +

∫
Γ

ui (x)
0

Km
i (x; z) dΓ−

∫
Γ

qi (x)
0

Lmi (x; z) dΓ =

R∑
j

αpj

[
β̂pjm (z) +

∫
Γ

ûpji (x)
0

Km
i (x; z) dΓ−

∫
Γ

q̂pji (x)
0

Lmi (x; z) dΓ

] �� ��4.15

where

β̂pjm = Lm(ûpj )
0

Km
i = Lm(

0

Qi)
0

Lmi = Lm(
0

Ui)
�� ��4.16

It is important to remark that equation (4.15) is only valid for a point
z located inside the domain. In case that z ∈ Γ the equation is singular
and it requires a detailed analysis of its behavior close to the singularity.
This study allows to improve the interpolation functions b̂i (x) by covering
completely its domain of definition. Given the complexity of this study and
that errors obtained in the direct problems, without boundary nodes, are
small, this aspect is not addressed in this work.

4Note that, in this case, the integral equation has no singular terms because z is an
interior point.
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4.4 General q-BIE Equation

In order to obtain the integral version of the boundary conditions (repre-
sented by equation (4.3b)) a similar procedure as depicted in the previous
section is employed. It must be pointed out that this procedure, although
performed generically, requires some clarification, because it involves singular
functions.

As it was previously stated, in general, the operator G is a linear combination
of u and its first-order derivatives. Then, without loss of generality we can
define

Gm(u) = fmk (z)uk + gmkl (z)uk,l z ∈ Γ
�� ��4.17

To construct the integral version of equation 4.17, integral expressions for
uk (z) and uk,l (z) must be obtained.

For the terms associated with uk (z), equation (4.11) is taken as starting
point. If we call C to the matrix defined by the coefficients cli (z) and,
assuming that the inverse matrix of C exists, then

AC = I =⇒ A = C−1 =⇒ akl c
l
i = δki

�� ��4.18

Introducing these akl (z) multipliers in equation (4.11) we obtain

uk (z) +

∫
Γ

ui (x)
0

Qki (x; z) dΓ−
∫

Γ

qi (x)
0

Uki (x; z) dΓ =

R∑
j

αpj

[
ûpjk (z) +

∫
Γ

ûpji (x)
0

Qki (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Uki (x; z) dΓ

] �� ��4.19

where

0

Qki (x; z) = akl (z)
0

Qli (x; z)
0

Uki (x; z) = akl (z)
0

Umi (x; z)
�� ��4.20
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For the construction of the equation related to uk,l (z) a different approach
is used and equation (4.11), where the integrals must be understood in the
sense of Cauchy principal value, is not taken as starting point.

Starting from the general integral equation particularized for a point z ∈ Ω,
and taking the reference of the previous chapter, it can be written

um (z) +

∫
Γ

ui (x)
0

Qmi (x; z) dΓ =

∫
Γ

qi (x)
0

Umi (x; z) dΓ +

∫
Ω

b̂i (x)
0

Umi (x; z) dΩ�� ��4.21

where, in this case, no operation or simplification has been performed in
the integrals. Given this, the derivatives of the above equation with respect
to n are

um,n (z) +

∫
Γ

ui (x)
0

Qmi,n (x; z) dΓ =

∫
Γ

qi (x)
0

Umi,n (x; z) dΓ+∫
Ω

b̂i (x)
0

Umi,n (x; z) dΩ

�� ��4.22

If the limit to the boundary of this equation is performed, and following
the procedure shown in the previous chapter, we can get to an expression
of type

dmnst (z)us,t (z) +

∫
Γ

ui (x)
0

Qmi,n (x; z) dΓ =

∫
Γ

qi (x)
0

Umi,n (x; z) dΓ+∫
Ω

b̂i (x)
0

Umi,n (x; z) dΩ

�� ��4.23

where the integrals must be understood in the sense of Hadamard finite
parts and the free terms are grouped into dstmn (z) coefficients. This equation
has not been deduced generically for any fundamental solution but, in
subsequent sections (see chapter 5), the deduction of the the particular
expression using the analog operator selected in this work is shown.
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The expansion of the independent term by means of approximation functions,
combined with the transfer to the boundary of the volume integral using
dual reciprocity techniques gives

dmnst (z)us,t (z) +

∫
Γ

ui (x)
0

Qmi,n (x; z) dΓ−
∫

Γ

qi (x)
0

Umi,n (x; z) dΓ

R∑
j

αpj

[
dmnst (z) ûpjs,t (z) +

∫
Γ

ûpji (x)
0

Qmi,n (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Umi,n (x; z) dΓ

]
�� ��4.24

In a similar way as the previous section, the coefficients eklmn (z) are calculated
for each point z using

eklmn (z) dmnst (z) = δskδtl
�� ��4.25

The introduction of these multipliers eklmn (z) in equation (4.24) produces

uk,l (z) +

∫
Γ

ui (x)
0

Qki,l (x; z) dΓ−
∫

Γ

qi (x)
0

Uki,l (x; z) dΓ

R∑
j

αpj

[
ûpjk,l (z) +

∫
Γ

ûpji (x)
0

Qki,l (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Uki,l (x; z) dΓ

] �� ��4.26

where, respectively

0

Qki,l (x; z) = eklmn (z)
0

Qmi,n (x; z)
0

Uki,l (z) = eklmn (z)
0

Umi,n (x; z)
�� ��4.27

Combining equations (4.17), (4.19) and (4.26) the integral version of the
boundary conditions is obtained
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−γm (z) +

∫
Γ

ui (x)
0

Pmi (x; z) dΓ−
∫

Γ

qi (x)
0

Rmi (x; z) dΓ =

R∑
j

αpj

[
ζ̂pjm (z) +

∫
Γ

ûpji (x)
0

Pmi (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Rmi (x; z) dΓ

] �� ��4.28

where

−γm (z) = fmk (z)uk (z) + gmkl (z)uk,l (z)
0

Pmi (x; z) = fmk (z)
0

Qki (x; z) + gmkl (z)
0

Qki,l (x; z)

0

Rmi (x; z) = fmk (z)
0

Uki (x; z) + gmkl (z)
0

Uki,l (x; z)

ζ̂pjm (z) = fmk (z) ûpjk (z) + gmkl (z) ûpjk,l (z)

�� ��4.29

4.5 General discretized system of equations

In subsequent chapters (see chapter 6) the detailed procedure of discretiza-
tion and assembly of the resulting system using boundary elements will be
discussed. In this chapter, we focus on the general case, a more abstract
and compact5 procedure, as described in the previous chapter6, is used.

The aim of this section is to show that the set of integral equations defined in
the previous sections allows, after the discretization procedure, to construct
a determined linear system of equations able to solve the problem defined
by (4.3a) and (4.3b).

Let consider, again, a generic problem involving a vector field u of range
d. First, a functional approximation (by an approximating functions series)
of the field u is defined. This approximation relates the value of u in the

5Noticed that, formally, this approach includes discretization schemes using elements.
6Mathematical conditions required for the approximation functions are not discussed

to keep things simple in the analysis.
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boundary with the value of a series of M approximation nodes located on
xl.

ui (x) ≈
M∑
l

ψil (x)ui(xl) for i = 1, d7
�� ��4.30

In practice, these functions ψil (x) have non-zero values only in the vicinity
of xl.

Similarly we proceed with q obtaining

qi (x) ≈
M∑
l

ψil (x) qi(xl) for i = 1, d7
�� ��4.31

Without loss of generality and taking into account the expression of boundary
conditions, it can be assumed that the unknowns are

• M× d unknowns associated with ui(xl)

• M× d unknowns associated with qi(xl)

• R× d unknowns associated with αpj

for a total of (2M + R)× d unknowns.

The next step is to introduce the expressions (4.30) and (4.31) in the integral
equations. Analyzing one integral of equation (4.11) and performing the
indicated transformation we obtain

∫
Γ

ui (x)
0

Qmi (x; z) dΓ ≈
M∑
l

ui(xl)

∫
Γ

ψil (x)
0

Qmi (x; z) dΓ
�� ��4.32

7This equation does not follow the Einstein convention so the subscript i does not
imply summation.
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Thus, in the case of a collocation node k, with index l, located on zk,
associated with an approximation function ψil (x) and an approximation
node located on xl we define hij as

hij (l; zk) =

∫
Γ

ψil (x)
0

Qji (x; zk) dΓ for i, j = 1, d
�� ��4.33

The above expression does not follow the Einstein convention so the index i
does not imply summation.

Defining Hkl as the matrix of range d× d whose components are hij (l; zk)

and ul as the vector whose components are ui(xl), equation (4.32) can be
written as

∫
Γ

ui (x)
0

Qmi (x; zk) dΓ ≈
M∑
l

Hklul
�� ��4.34

Following a similar procedure is concluded that

∫
Γ

qi (x)
0

Umi (x; zk) dΓ ≈
M∑
l

Gklql
�� ��4.35

The term cmi (zk)ui (zk) is analyzed similarly. If equation (4.30) is considered
we can write

cmi (zk)ui (zk) ≈
∑
l

cmi (zk)ψil (zk)ui(xl)
�� ��4.36

Focusing on a node located on zk, the matrix Ckl of dimension d× d can be
constructed. Each component of this matrix is defined as

cij (l; zk) = cij (zk)ψjl (zk) para i, j = 1, d
�� ��4.37

thus
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cmi (zk)ui (zk) ≈
M∑
l

Cklul
�� ��4.38

Taking into account the previous results, the left-hand side of equation
(4.11), particularized on a collocation node located on zk is

cmi (zk)ui (zk) +

∫
Γ

ui (x)
0

Qmi (x; zk) dΓ−
∫

Γ

qi (x)
0

Umi (x; zk) dΓ
�� ��4.39

is transformed into

M∑
l

Cklul +
M∑
l

Hklul −
M∑
l

Gklql =
M∑
l

Hklul −
M∑
l

Gklql
�� ��4.40

Several simplifications, that reduce the computation time very significantly8,
can be used in the calculation of the second part of the integral in equation
(4.11).

If (4.11) expression is analyzed

R∑
j

αpj

[
cmi (z) ûpji (z) +

∫
Γ

ûpji (x)
0

Qmi (x; z) dΓ−
∫

Γ

q̂pji (x)
0

Umi (x; z) dΓ

] �� ��4.41

Unlike in the previous case, all functions appearing in the integrals are
known and the only unknowns are the αpj coefficients. In this case, there-
fore, the integrals can be calculated “exactly”. However, if the required
numerical effort for the “exact” calculation is compared to the simplifica-
tion indicated in (4.40), the effort is R× d times higher using the same
integration parameters.

8In the previous chapter, these simplifications were introduced directly, for sake of
brevity and because of its common use in the literature.
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To avoid this, we can approximate û and q̂ with the same functional
decomposition used for the fields u and q. Taking this into account and
“freezing” index j, we get

αpj

[
cmi (zk) ûpji (zk) +

∫
Γ

ûpji (x)
0

Qmi (x; zk) dΓ−
∫

Γ

q̂pji (x)
0

Umi (x; zk) dΓ

] �� ��4.42

can be calculated using the same procedure as the first member of equation
(4.11), getting

αj

[
M∑
l

Hklûjl −
M∑
l

Gklq̂jl

] �� ��4.43

Summing with respect to index j gives

R∑
j

αj

[
M∑
l

Hklûjl −
M∑
l

Gklq̂jl

]
=

[
M∑
l

HklÛl −
M∑
l

GklQ̂l

]
α

�� ��4.44

where, respectively, Ûl and Q̂l are matrices with vectors ûjl and q̂jl as
columns. α is column vector containing all the αpj unknowns.

Taking the above into account and using (4.39), equation (4.11) for a
collocation node located on zk ∈ Γ can be written as

M∑
l

Hklul −
M∑
l

Gklql =

[
M∑
l

HklÛl −
M∑
l

GklQ̂l

]
α

�� ��4.45

The sizes of the blocks of this equation are

• ul, ql dimension d× 1

• Hkl, Gkl dimension d× d

• Ûl, Q̂l dimension d×R · d
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• α dimension R · d× 1

If this equation is applied to a collection of M collocation nodes k located
on the boundary and the index l associated with M approximation nodes
are contracted, the discretized version of the u-BIE matrix of equations is
obtained

Hu−Gq−
[
HÛ−GQ̂

]
α = 0

�� ��4.46

In this case the sizes of the blocks of this equation are

• u, q dimension M · d× 1

• H, G dimension M · d×M · d

• Û, Q̂ dimension M · d×R · d

• α dimension R · d× 1

• Globally we have a system of M · d equations

To obtain the matrix version of equation b-BIE a similar procedure is
followed. For a node located in zk ∈ Ω it can be written

−bk +
M∑
l

Kklul −
M∑
l

Lklql =

[
B̂k +

M∑
l

KklÛl −
M∑
l

LklQ̂l

]
α

�� ��4.47

where B̂k is a matrix with vectors β̂jk as columns and bk is column vector
containing the values of the independent term αpj , both particularized in
zk ∈ Ω.

If this equation is applied to a collection of R internal nodes k located
in the domain and the index l associated with M approximation nodes
is contracted, the discretized version of the b-BIE matrix of equations is
obtained
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Ku− Lq−
[
B̂ + KÛ− LQ̂

]
α = b

�� ��4.48

In this case the sizes of the blocks of this equation are

• u, q dimension M · d× 1

• K, L dimension R · d×M · d

• Û, Q̂, B̂ dimension R · d×R · d

• α dimension R · d× 1

• b dimension R · d× 1

• Globally we have a system of R · d equations

Finally, to obtain the matrix version of equation q-BIE the same procedure
is performed again. Thus, for a node located in zk ∈ Γ it can be written

−γk +
M∑
l

Pklul −
M∑
l

Rklql =

[
Êk +

M∑
l

PklÛl −
M∑
l

LklR̂l

]
α

�� ��4.49

where Êk is a matrix with vectors ζ̂jk as columns and γk is column vector
containing the values of the independent term γ (z), both particularized on
zk ∈ Γ.

If this equation is applied to a collection of M collocation nodes k located
on the boundary and the index l associated with M approximation nodes
is contracted, the discretized version of the q-BIE matrix of equations is
obtained

Pu−Rq−
[
Ê + PÛ−RQ̂

]
α = γ

�� ��4.50

In this case the sizes of the blocks of this equation are
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• u, q dimension M · d× 1

• P, R dimension M · d×M · d

• Û, Q̂, Ê dimension M · d×R · d

• α dimension R · d× 1

• γ dimension M · d× 1

• Globally we have a system of M · d equations

The system formed by equations (4.46), (4.48), (4.50) has (2M + R)× d
equations and (2M + R)× d unknowns. This determined linear system of
equations allows to solve the problem posed initially. This system can be
written in matrix form as

AX = B
�� ��4.51

where, without loss of generality, the vector X contains the unknowns
associated with the values of u and q at the approximation nodes located
on zk, and the values of the α coefficients which describe the unknown
independent term that appears due to the application of the analog operator.
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Truth acquired by thinking of our own is like a natural limb; it
alone really belongs to us.

Arthur Schopenhauer 5
Particularized Analog Equation

In the previous chapter, a general algorithm based on Boundary Element
Method and Analog Equation Method has been developed. This algorithm
has been analyzed generically, without further assessment on the selected
analog operator, the problem to solve or the type of approximation functions.

In this chapter the peculiarities of problem to be solved and the simplifica-
tions associated with the analog operator chosen are presented.

5.1 Laplace Operator as Analog Operator

Although several works, based on different types of analog operators (e.g.
Wang uses the homogeneous isotropic elastic operator in [116]), can be found
in the literature, Laplace operator is the most usual choice. It was used in
both the original works (see [60]) and most subsequent developments (see
e.g. [61]).

In this work this choice is maintained, due to the simplicity of the associ-
ated fundamental solution, which will prevent further complications in the
mathematical developments and, especially, because it produces uncoupled
expressions, simplifying considerably the design and reducing computational
load.
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Taking the analog equation of the problem as starting point, we have

∇2ui + b̂i (x) = 0 in x ∈ Ω i = 1, d
�� ��5.1a

Gi(u) + γi (x) = 0 on x ∈ Γ i = 1, d
�� ��5.1b

Notice that, at this point, no limitation regarding the dimension of the
problem have been introduced. The problem can be either two or three di-
mensional, thermoelastic, poroeleastic... because the formulation is formally

equal. It is assumed that
0

U is the fundamental solution associated with a
scalar Laplace problem defined in a domain with the same dimension as
in our original problem. Since we are dealing with a vectorial problem of
dimension d, the following equation must be solved in order to obtain the
fundamental solution

∇2ui + δimδ (x− z) = 0 for i = 1, d
�� ��5.2

Clearly, if i = m the problem is reduced to the calculation of the fundamental

solution of the scalar Laplace operator, therefore ui =
0

U . On the other hand
if i 6= m, then ui = 0. Thus it is found that the problem is uncoupled and,
the loads applied in the m direction only generate responses in the same
direction. Taking this into account

0

Umi =
0

Uδmi
�� ��5.3

The introduction of this fundamental solution in the basic general integral
equation (prior to perform the limit to the boundary)

um (z) +

∫
Γ

ui (x) δmi
0

Q (x; z) dΓ =

∫
Γ

qi (x) δmi
0

U (x; z) dΓ+∫
Ω

b̂i (x) δmi
0

U (x; z) dΩ

�� ��5.4

produces
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um (z) +

∫
Γ

um (x)
0

Q (x; z) dΓ =

∫
Γ

qm (x)
0

U (x; z) dΓ +

∫
Ω

b̂m (x)
0

U (x; z) dΩ�� ��5.5

This equation is identical to the equation of the scalar problem, so the
particularization on a boundary point is

c (z)um (z) +

∫
Γ

um (x)
0

Q (x; z) dΓ =

∫
Γ

qm (x)
0

U (x; z) dΓ +

∫
Ω

b̂m (x)
0

U (x; z) dΩ�� ��5.6

The simplification of the terms associated with the expansion of the unknown
independent term b̂m (x), can be performed immediately following the same
procedure.

Introducing the functional approximation of b̂m (x) by R approximation
functions

b̂m (x) ≈
R∑
j

αmj fj (x)
�� ��5.7

where, in this case, the functions fj (x) are chosen so that analytical solutions
of the analog operator, with this set of functions as source terms, exist

∇2um + fj (x) el = 0 for m = 1, d
�� ��5.8

Since the equations are uncoupled, it is evident that the solution to these
equations vanishes except when m = l. In this case

ûmj (x) = ûj (x) em =⇒ ûmji = ûjδmi

q̂mj (x) = q̂j (x) em =⇒ q̂mji = q̂jδmi

�� ��5.9

67



CHAPTER 5. PARTICULARIZED ANALOG EQUATION

Introducing these expressions in equation (4.11), the integral equation
u-BIE, simplified using Laplace operator as analog operator, is obtained.

c (z)um (z) +

∫
Γ

um (x)
0

Q (x; z) dΓ−
∫

Γ

qm (x)
0

U (x; z) dΓ =

R∑
j

αmj

[
c (z) ûj (z) +

∫
Γ

ûj (x)
0

Q (x; z) dΓ−
∫

Γ

q̂j (x)
0

U (x; z) dΓ

] �� ��5.10

where this equation is extended to indices m = 1, d.

For the construction of b-BIE equation, the equation (4.15), which is
repeated for clarity of exposition, is used as starting point

−bm (z) +

∫
Γ

ui (x)
0

Km
i (x; z) dΓ−

∫
Γ

qi (x)
0

Lmi (x; z) dΓ =

R∑
j

αpj

[
β̂pjm (z) +

∫
Γ

ûpji (x)
0

Km
i (x; z) dΓ−

∫
Γ

q̂pji (x)
0

Lmi (x; z) dΓ

] �� ��5.11

where a change of notation from the original equation has been introduced.

−bm = Lm(u) β̂pjm = Lm(ûpj )
0

Km
i = Lm(

0

Qi)
0

Lmi = Lm(
0

Ui)

�� ��5.12

To obtain the above expressions, it is necessary to proceed as follows. In

this simplified case the vectors
0

Qi and
0

Ui are, respectively

0

Ui =
0

Uδmiem =
0

Uei
0

Qi =
0

Qδmiem =
0

Qei

�� ��5.13

Since the differential operator L is linear, we can define, without loss of
generality, the operator Lim as the part of the m component of the operator
L, which affects the component i of the vector to which L is applied.
Introducing this notation we obtain
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0

Km
i = Lm(

0

Qi) = Lim(
0

Q)
0

Lmi = Lm(
0

Ui) = Lim(
0

U)
�� ��5.14

The term β̂pjm can be deduced in a similar way. Taking into account that,
in this case

ûpj (x) = ûj (x) ep =⇒ β̂pjm = Lm(ûpj ) = Lpm(ûj)
�� ��5.15

If the simplifications indicated in (5.14), (5.15) and (5.9) are introduced in
equation (5.11), b-BIE particularized equation is obtained.

−bm (z) +

∫
Γ

ui (x)Lim
[

0

Q (x; z)

]
dΓ−

∫
Γ

qi (x)Lim
[

0

U (x; z)

]
dΓ =

R∑
j

αij

{
Lim [ûj (z)] +

∫
Γ

ûj (x)Lim
[

0

Q (x; z)

]
dΓ−

∫
Γ

q̂j (x)Lim
[

0

U (x; z)

]
dΓ

}
�� ��5.16

In order to obtain the particularized q-BIE equation, the same procedure,
as in the previous chapter is followed. The generic boundary condition was
defined as

Gm(u) = hmk (z)uk + gmkl (z)uk.l where z ∈ Γ
�� ��5.17

The boundary equation associated with uk (z) is obtained directly from
(5.10)

uk (z) +

∫
Γ

uk (x)
0

Q (x; z) dΓ−
∫

Γ

qk (x)
0

U (x; z) dΓ =

R∑
j

αkj

[
ûj (z) +

∫
Γ

ûj (x)
0

Q (x; z) dΓ−
∫

Γ

q̂j (x)
0

U (x; z) dΓ

] �� ��5.18

where in this case
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0

Q (x; z) =

0

Q (x; z)

c (z)

0

U (x; z) =

0

U (x; z)

c (z)

�� ��5.19

In order to obtain the term uk,l (z), the basic BEM equation, without limit
to the boundary or expansion of the independent term, is used as starting
point. So we have

uk (z) +

∫
Γ

uk (x)
0

Q (x; z) dΓ =

∫
Γ

qk (x)
0

U (x; z) dΓ+∫
Ω

b̂k (x)
0

U (x; z) dΩ

�� ��5.20

A generic derivative of the above equation, with respect to xn coordinate, is
obtained. Notice again that this equation, although is formally vectorial, is
uncoupled so it can be reduced to d identical equations. With this in mind,
the analysis of the restriction of the derivative on a boundary point located
on z, can be done by studying the integral equation associated with the
scalar problem.

Appendices (A.2) of this work contain the deduction of this limit for two
and three dimensional problems. At this point of the analysis, a generic
formulation is kept for simplicity. The integrals must be understood in
the sense of Cauchy principal value (or Hadamard finite part) and the free
terms are grouped in dnt (z) coefficients. The values of these coefficients are
deduced in the appendix and can be extracted from equations (A.40) and
(A.70).

For three-dimensional problems the coefficients are

dnt (z) =
1

2
δnt −

∫
Γ

r,n
4πr2

[nt (z)− nt (x)]−
∮

Γ

en ∧ et
4πr

dl
�� ��5.21

And, respectively, in two-dimensional problems
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dnt (z) =
1

2
δnt −

∫
Γ

r,n
2πr

[nt (z)− nt (x)]− εnt
∫

Γ

∇r

2π
dl

�� ��5.22

In compact form, the derivative of the equation (5.20) can be written as

dnt (z)uk,t (z) +

∫
Γ

uk (x)
0

Q,n (x; z) dΓ =

∫
Γ

qk (x)
0

U ,n (x; z) dΓ+∫
Ω

b̂k (x)
0

U ,n (x; z) dΩ

�� ��5.23

where, again a set coefficients eln (z) must be deduced. These coefficients
satisfy

eln (z) dnt (z) = δtl
�� ��5.24

Introducing these multipliers eln (z) in the previous equation, and expanding
the independent term similarly to the previous sections, results in

uk,l (z) +

∫
Γ

uk (x)
0

Ql (x; z) dΓ−
∫

Γ

qk (x)
0

U l (x; z) dΓ =

R∑
j

αkj

[
ûj,l (z) +

∫
Γ

ûj (x)
0

Ql (x; z) dΓ−
∫

Γ

q̂j (x)
0

U l (x; z) dΓ

] �� ��5.25

where

0

Ql (x; z) = eln (z)
0

Q,n (x; z)
0

U l (x; z) = eln (z)
0

U ,n (x; z)
�� ��5.26

The combination of (5.18) and (5.25) with equation (5.17) leads to

−γm (z) +

∫
Γ

ui (x)
0

Pmi (x; z) dΓ−
∫

Γ

qi (x)
0

Rmi (x; z) dΓ =

R∑
j

αij

[
ζ̂ijm (z) +

∫
Γ

ûj (x)
0

Pmi (x; z) dΓ−
∫

Γ

q̂j (x)
0

Rmi (x; z) dΓ

] �� ��5.27
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where

−γm (z) = hmk (z)uk (z) + gmkl (z)uk,l (z)
0

Pmi (x; z) = hmi (z)
0

Q (x; z) + gmil (z)
0

Ql (x; z)

0

Rmi (x; z) = hmi (z)
0

U (x; z) + gmil (z)
0

U l (x; z)

ζ̂ijm (z) = hmi (z) ûj (z) + gmil (z) ûj,l (z)

�� ��5.28

Equations (5.10), (5.16) and (5.28) form a set of integral equations, which
after the discretization procedure allows to solve the problem formulated.
This set of discretized equations is identical to that calculated in the previous
chapter, with some simplifications due to the use of the fundamental solution
associated with the Laplace operator. Before proceeding to detail the
process of discretization of these equations, the particularization to the
elastic problem is analyzed. This is because one purpose of this thesis is
the use of this numerical methodology for solving elastic problems.

5.2 Elastostatics Problem

In this section the set of integral equations obtained previously is particu-
larized for the elastic problem. In particular, in what follows the algorithm
is restricted to the static linear elastic case. Likewise, it is assumed that
the boundary conditions are given in the form of displacements or tensions
(and not as combinations).

Two particularized formulations are developed. The first includes the
more general definition of properties, covering inhomogeneous anisotropic
materials while the latter is restricted to the case of inhomogeneous isotropic
materials.

The formulation of the problem defined by equations (4.3a) and (4.3b) can
be easily obtained in a large number of textbooks and is easily deduced
from
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Equilibrium equations

σij,j + bi = 0
�� ��5.29

Constitutive equations

σij = Cijkl (x) εkl
�� ��5.30

The coefficients Cijkl define the elasticity tensor. For general anisotropic
materials, these coefficients are independent functions only related by con-
straints equations Cijkl = Cijlk = Cjikl = Cklij

1. In the case of isotropic
materials the coefficients are defined as

Cijkl = λ (x) δijδkl + µ (x) (δikδjl + δilδjk)
�� ��5.31

and, consequently, the constitutive equations are

σij = λ (x) δijεkk + 2µ (x) εij
�� ��5.32

Strain-displacement equations

εkl =
1

2
(uk,l + ul.k)

�� ��5.33

Traction

ti = σijnj
�� ��5.34

Combining these expressions2 we obtain

1These constraints are due to symmetries of the stress and strain tensors and the
invariance of the energy of deformation.

2Where it has taken into account that Cijkl = Cijlk.
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Cijkl (x)uk,lj + Cijkl,j (x)uk,l + bi (x) = 0 in x ∈ Ω i = 1, d
�� ��5.35a

ui = ui (x) on x ∈ Γu
�� ��5.35b

ti = Cijkl (x)uk,lnj = ti (x) on x ∈ Γt
�� ��5.35c

where equation (5.35a), in the case of an isotropic material is

(λ (x) + µ (x))uj,ji + µ (x)ui,jj + λ,i (x)uj,j+

µ,j (x) (ui,j + uj,i) + bi (x) = 0 en x ∈ Ω i = 1, d

�� ��5.36

and, respectively, equation (5.35c) is

ti = λ (x)uk,kni + µ (x) (ui,j + uj,i)nj = ti (x) en x ∈ Γt
�� ��5.37

The introduction of these expressions in the integral equation results in

u-BIE equation

In u-BIE equation there is no change associated with the particularization,
so the equation is identical to (5.10). It is repeated for clarity of exposition.

c (z)um (z) +

∫
Γ

um (x)
0

Q (x; z) dΓ−
∫

Γ

qm (x)
0

U (x; z) dΓ =

R∑
j

αmj

[
c (z) ûj (z) +

∫
Γ

ûj (x)
0

Q (x; z) dΓ−
∫

Γ

q̂j (x)
0

U (x; z) dΓ

] �� ��5.38

b-BIE equation

Formally, b-BIE equation remains unaltered. There are only changes
focused on the definitions of the kernels. Thus, equation (5.16) is repeated
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−bm (z) +

∫
Γ

ui (x)Lim
[

0

Q (x; z)

]
dΓ−

∫
Γ

qi (x)Lim
[

0

U (x; z)

]
dΓ =

R∑
j

αij

{
Lim [ûj (z)] +

∫
Γ

ûj (x)Lim
[

0

Q (x; z)

]
dΓ−

∫
Γ

q̂j (x)Lim
[

0

U (x; z)

]
dΓ

}
�� ��5.39

In this case, it is possible to give explicit expressions of Lim because every
involved operators is analytically defined. If equation (5.35a), which uses
the classical subscripts, is compared with its integral version defined by
(5.39), an adjustment is necessary in these subscripts for coupling both
expressions and avoid duplication of indices. So the following index changes
will be introduced in (5.35a): i→ m, k → i and j → k.

Taking this into account, the explicit expression of, for example, ûj is

Lim [ûj ] = Cmkil [ûj,lk] + Cmkil,k [ûj,l]
�� ��5.40

Similar expressions for
0

U and
0

Q can be obtained following the same proce-
dure.

In the case of an isotropic material, we can operate similarly, and, simply
the introduction of (5.31) in the above expressions results in

Lim [ûj ] = (λ+ µ)ûj,mi + µδmiûj,kk + λ,mûj, i+ µ,kδmiûj,k + µ,iûj,m
�� ��5.41

and again equivalent expressions can be deduced for
0

U and
0

Q.

q-BIE equation

As in the previous section, q-BIE equation does not present, at formal level,
any difference with the general equation, except direct particularization of
the independent term as tractions. Thereby adapting (5.28)
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tm (z) +

∫
Γ

ui (x)
0

Pmi (x; z) dΓ−
∫

Γ

qi (x)
0

Rmi (x; z) dΓ =

R∑
j

αij

[
ζ̂ijm (z) +

∫
Γ

ûj (x)
0

Pmi (x; z) dΓ−
∫

Γ

q̂j (x)
0

Rmi (x; z) dΓ

] �� ��5.42

If the boundary conditions notation of the general case, defined by (5.17) is
used and, considering that the boundary conditions that equation q-BIE
represents are tractions, it is immediately concluded that, in the case of a
general material

fmk (z) = 0 gmkl (z) = Cmpkl (z)np
�� ��5.43

and in the homogeneous and isotropic

fmk (z) = 0 gmkl (z) = λ (z) δklnm + µ (z) (δmknl + δmlnk)
�� ��5.44

Given the above, the system of equations defined in (5.28) can be particu-
larized for elastostatic problems obtaining

0

Pmi (x; z) = Cmpil (z)np (z)
0

Ql (x; z)

0

Rmi (x; z) = Cmpil (z)np (z)
0

U l (x; z)

ζ̂ijm (z) = Cmpil (z)np (z) ûj,l (z)

�� ��5.45

and, respectively
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0

Pmi (x; z) = λ (z)
0

Qi (x; z)nm (z) + µ (z)

(
δmi

0

Ql (x; z)nl (z) +
0

Qm (x; z)ni (z)

)
0

Rmi (x; z) = λ (z)
0

U i (x; z)nm (z) + µ (z)

(
δmi

0

U l (x; z)nl (z) +
0

Um (x; z)ni (z)

)
ζ̂ijm (z) = λ (z) ûj,i (z)nm (z) + µ (z)

(
δmiûj,l (z)nl (z) + ûj,m (z)ni (z)

)�� ��5.46

From this point, the procedure is identical to the general one for both
cases and it is merely repeated for clarity of presentation. First of all, the
coefficients dnt (z), which only depend on the chosen analog operator3, are
calculated. The value of these coefficients in two and three-dimensional
problems is given respectively by (5.21) and (5.22).

After obtaining the coefficients dnt (z), the coefficients eln (z) can be deduced
using the following equation

eln (z) dnt (z) = δtl
�� ��5.47

And again, these coefficients allow to relate the terms
0

Ql and
0

U l, listed in

(5.46), with the fundamental solution by the equation

0

Ql (x; z) = eln (z)
0

Q,n (x; z)
0

U l (x; z) = eln (z)
0

U ,n (x; z)
�� ��5.48

The set of integral equations defined by (5.38), (5.42) and (5.39) allows,
after the discretization process, the build a linear system of equations able
to solve the elastostatic problem.

The generic discretization procedure would be similar to that presented in
the previous chapter, and its formulation is not included for the sake of
brevity. Instead, in the next chapter of this thesis, a more detailed analysis

3The procedure to obtain the coefficients is detailed in the appendices.
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of the chosen discretization procedure, based on boundary elements, will be
performed.
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To be aware of limitations is already to be beyond them.

Georg Wilhelm Friedrich Hegel 6
Discretization and assembly of the system

of equations

In the previous chapter, the system of particularized integral equations has
been obtained. Two simplifications were introduced to particularize the
equations. First, Laplace operator is used as analog operator and second,
the problem selected to be solved is an elastic problem, for both anisotropic
and isotropic case, involving homogeneous and inhomogeneous materials.

From this point, the analysis is focused exclusively on the case of isotropic
materials (homogeneous or inhomogeneous). Relevant aspects of the proce-
dure of implementation and discretization of integral equations are detailed.
This procedure leads to obtain the algebraic system of equations that solves
the problem.

6.1 Discretization using Boundary Elements

The discretization by means of boundary elements is the classical technique,
that names the Boundary Element Method, used in order to construct the
algebraic system of equations that allows to solve numerically the boundary
value problems formulated in sets of Boundary Integral Equations. This
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technique, whose details can be found in numerous texts as [34], is included
in the generic technique introduced in (3.1.4).

This procedure is discussed without going into great detail. Integral equation
u-BIE of the scalar potential problem is taking as starting point. Assuming
that the collocation points are on a “smooth” part of the boundary u-BIE
equation is written as

1

2
u (z) +

∫
Γ

u (x)
0

Q (x; z) dΓ =

∫
Γ

q (x)
0

U (x; z) dΓ
�� ��6.1

The domain of integration Γ is divided into a series of NE elements Γk so
that The discretization procedure consists in the division of the boundary
into a series of elements. In these elements the variables of the problem
to be studied (in this case u y q) are approximated by the discrete value
(sometimes unknown) at the so-called approximation nodes1, and a set of
shape functions whose domain of definition is restricted to a single element.

Thus, dividing the boundary into N elements, equation (6.1) is transformed
into

1

2
u (z) +

N∑
j=1

∫
Γj

u (x)
0

Q (x; z) dΓj =
N∑
j=1

∫
Γj

q (x)
0

U (x; z) dΓj
�� ��6.2

On the other hand, for an element j with P approximation nodes we can
write

u ≈
P∑
l=1

φlu
j
l q ≈

P∑
l=1

φlq
j
l

�� ��6.3

where it has been considered that the approximation functions, formally,
do not vary among the different elements because its definition is given in

1Commonly, these approximation nodes can belong to more than one element.
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natural coordinates. This natural coordinates are associated with different
types of elements.

The introduction of (6.3) in the integrals of equation (6.2) results, for the
first term, in

∫
Γj

u (x)
0

Q (x; z) dΓj =

P∑
l=1

ujl

∫
Γj

φl (x)
0

Q (x; z) dΓj
�� ��6.4

where, from this point, equalities are used instead of approximations. If the
above equation is particularized for a collocation node located on coordinates
zi we can define

ĥjil =

∫
Γj

φl (x)
0

Q (x; zi) dΓj gjil =

∫
Γj

φl (x)
0

U (x; zi) dΓj
�� ��6.5

and consequently

∫
Γj

u (x)
0

Q (x; zi) dΓj =

P∑
l=1

ĥjilu
j
l

�� ��6.6

and

∫
Γj

q (x)
0

U (x; zi) dΓj =

P∑
l=1

gjilq
j
l

�� ��6.7

In order to evaluate the integrals of the terms ĥjil y gjil, it should be noted that
the analog equation selected in this work is the Laplace equation. This means
that the integration algorithms, used to evaluate these integrals, possess a
relatively simple formulation (even in singularities) and are available in the
literature. The details of these algorithms are omitted in this work and can
be found in several textbooks such as [34].
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A few aspects, for purposes of the numerical implementation of these algo-
rithms, must be mentioned

• An isoparametric representation is used, so the same function is being
used to approximate both the geometry of the elements and the
variables of the problem.

• The evaluation of regular integrals is performed using standard Gauss
quadratures.

• The evaluation of the near-singular integrals are performed by standard
Gauss quadrature, but using an adaptive algorithm with a tree scheme.
This means that the domain of integration is divided into subdomains
and the integral is calculated in the domain and as a sum of the
integrals of the subdomains. Comparing these values, the “quality”
of the evaluation of the integral can be studied and, eventually, the
recursive application of this algorithm achieves the prescribed error
level.

• The singularities of the fundamental solution of Laplace, are only
weakly singular and its calculation does not involve great difficulty.
Several algorithms are available in the literature, i.e. [34].

• Two types of second order elements are implemented in this work: six
node triangles and nine node quadrilaterals2

Introducing the coefficients ĥjil and gjil in equation (6.2) and particularizing
it on a point located on zi, we get

1

2
u (zi) +

N∑
j=1

P∑
l=1

ĥjilu
j
l =

N∑
j=1

P∑
l=1

gjilq
j
l

�� ��6.8

where the first term of the equation (
1

2
u (zi)) has remained unchanged for

2Formally, the formulation is similar regardless of the type of element, although there
are some peculiarities that introduce slight differences in the integration algorithms.
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now, and has not been approximated based on nodal values.

The summations defined on equation (6.8), cover all the elements and, for
each element, the approximation nodes that are included in it. In order
to compact this equation, the above two summations can be mixed in a
single sum that goes through all the approximation nodes of the boundary Γ.
Assuming there are NA approximation nodes, equation (6.8) can be written
as

1

2
u (zi) +

NA∑
k=1

ĥikuk =

NA∑
k=1

gikqk
�� ��6.9

where new coefficients ĥik and gik have been introduced. The index k refers
to the approximation node.

Assuming the approximation node with index k is part of M elements, ĥik
is defined as

ĥik =

M∑
j

∫
Γj

φl (x)
0

Q (x; zi) dΓj =

M∑
j

ĥjil

�� ��6.10

This sum includes the contributions from the M elements where the ap-
proximation node is included. In this sense, φl should be understood as the
shape function that is applied to the approximation node k, when we are
integrating over an element j that includes k.

The last step to compact the formulation implies to deal with the first term.
Assuming that the collocation node located on zi is included in an element
j, the application of (6.3) results in3

u (zi) =
P∑
l=1

φl (zi)u
j
l

�� ��6.11

3The coordinates of the node zi are introduced into the function φl via its natural
coordinates in the element.
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Keeping in mind that, due to the type of approximation functions used
in this work, every variable defined on a point located on zi, always can
be described unambiguously as a unique function of the approximation
nodes, no matter if it belongs to one element or to several elements. This
uniqueness is easy to check if we realize that a point located on zi can

1. Be contained within an element or an edge belonging to a single
element. In this case it is clear that any variable is calculated in terms
of the nodal values of that element.

2. Be contained within the boundary of an element belonging to several
elements. In this case, due to the definition of the shape functions
used, the resulting expression is identical regardless of the element,
since it only depends on the nodes of the common edge. The definition
of the shape functions used and their properties can be found in [34].
For example, if zi matches a approximation node p then, φl = 1 if l = p

and φl = 0 if l 6= p.

Taking this into account, we can define a discrete function a(i, k) such
that, for a pair constituted by a collocation node i located on zi and a
approximation node k

a(i, k) = aik =

{
0 if k does not belong to an element that contains i
φl if k belongs to an element that contains i �� ��6.12

where, as indicated, function φl is unique for each approximation node and
its value depends on the natural coordinates of the collocation node i in the
element.

Introducing (6.12) in (6.9) we get

1

2

NA∑
k=1

aikuk (zi) +

NA∑
k=1

ĥikuk =

NA∑
k=1

gikqk
�� ��6.13
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Defining hik as

hik = ĥik +
1

2
aik

�� ��6.14

thus it can finally be written as

NA∑
k=1

hikuk =

NA∑
k=1

gikqk
�� ��6.15

If this equation is applied to a collection of M collocation nodes located on
the boundary, the discretized version of the system of equations is obtained.
This system can be written, in matrix form, as follows

Hu = Gq
�� ��6.16

6.2 Discretization of the algorithm AEM-BEM

The implementation of the integral equations, at programming level, as were
presented in the previous chapter, has two drawbacks from a practical point
of view. Firstly, if standard methodology for the construction of the system
of equations is followed, the explicit expression of the kernels (associated
with the fundamental solution of the Laplace operator and its derivatives)
are used to evaluate the integrals.

And secondly, if the q-BIE equation is analyzed, it is easy to check that

the kernels expressions
0

Pmi (x; z) and
0

Rmi (x; z) of equation (5.46) depends,
through the equations (5.48) and (5.47), on the coefficients dnt (z) (defined
in (5.21)) and the properties of the material at the collocation node. These
coefficients are calculable but not known “a priori”. They are calculated on
runtime, since they depend on the geometry of the problem.
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Similarly, the kernels of the b-BIE equations depend, through equation
(5.41), on the properties of materials in the internal collocation nodes where
the equation is applied.

The algorithm is intended to be used in three-dimensional problems and,
consequently, there is an exponential increase in computational load. This
condition discards4 the use of languages with advanced features that allow,
naturally, using functions created at runtime (e.g, Matlab) and limits
the range of efficient implementation to FORTRAN and C. In this work,
object-oriented FORTRAN [51] is the language selected to implement the
AEM-BEM algorithm. It keeps intact the benefits, in terms of efficient code
generation, introducing object-oriented capabilities5.

The implementation, in a static type language, of “a priori” unknown
functions requires the use of artifices that significantly complicate the
implementation process.

On the other hand, the use of the AEM methodology allows flexibility
in the application of the algorithm to different types of problem, and an
object-oriented language allows to generate a more reusable and modular
software easily scalable to deal with new problems with different differential
operators. Considering these two aspects, the implementation of a particular
kernel valid only for a particular operator (such as elastic) partially penalizes
the advantages of the method.

To avoid this problem, it is sufficient to notice that, by using the Laplace
operator as analog operator, the equations are implicitly uncoupled. There-
fore, the integral equations of any linear problem can be decomposed into
linear combinations of integral equations (which are independent of the type
of problem) multiplied by coefficients that depend only on z.

Considering these aspects, we will proceed to detail the computational

4Aspects of simplicity of parallelization or problems associated with memory bandwidth
are not analyzed. This must be understood in the sense of generating efficient monocore
code.

5This topic will be discussed in more detail in the next chapter of this thesis.
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implementation of the AEM-BEM method.

As described in previous chapters, the system is divided in three main blocks
associated with different equations.

6.2.1 Block u-BIE

If equation (5.38) is analyzed, it is evident that the equation is uncoupled
and is identical for each index m. The deduction of the u-BIE equations
block is reduced to the calculation of d scalar problems, where d is the
dimension of the problem to solve.

So, ignoring the subscript m, and using R approximation functions for the
term b̂ we can write

c (z)u (z) +

∫
Γ

u (x)
0

Q (x; z) dΓ−
∫

Γ

q (x)
0

U (x; z) dΓ =

R∑
j

αj

[
c (z) ûj (z) +

∫
Γ

ûj (x)
0

Q (x; z) dΓ−
∫

Γ

q̂j (x)
0

U (x; z) dΓ

] �� ��6.17

Whose discretized version for a collocation node i and M approximation
nodes is

M∑
k

hikuk −
M∑
k

gikqk =
R∑
j

αj

[
M∑
k

hikûkj −
M∑
k

gikq̂kj

] �� ��6.18

It should noted again that, in terms of implementation, in this works is
considered that the boundary is “smooth” around the collocation points, so
that

c (z) =
1

2
=⇒ hik = ĥik +

1

2
aik

�� ��6.19
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Also noticed that the integrals associated with the approximation functions
of the independent term b̂i, for example

∫
Γ

ûj (x)
0

Q (x; z) dΓ
�� ��6.20

can be calculated exactly, because all functions involved are known explicitly.

However, in this work we have chosen to approximate the functions ûj and
q̂j using the same approximation scheme used in the variables u y q, because
the computational load is greatly reduced. Briefly, let us assume that the
computational cost associated with the integration of an element is defined
as C. Taking into account there are NE elements, NC collocation nodes
and NA approximation functions, the total cost of all integrals of the type
depicted in equation (6.20), which are necessary to build the discretized
system of equations, would be of order C ×NE ×NC ×NA. Using the
shape functions, the terms hik y gik can be reused, and the computational
cost is reduced to the evaluation of functions ûj y q̂j on approximation nodes
and a matrix product.

The vector equation is uncoupled so its construction can be immediately
performed from the scalar equation. Thus, rearranging terms, it can be
written to a collocation node i

M∑
k

Hikuk −
M∑
k

Gikqk −
R∑
j

αj

[
M∑
k

Hikûkj −
M∑
k

Gikq̂kj

]
= 0

�� ��6.21

where matrices Hik and Gik are diagonal matrices of order d and every term
of the identical has the same value.

Hik = hikI Gik = gikI
�� ��6.22

And vectors uk, qk, αj, ûkj and q̂kj are of dimension d.
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If this equation is applied to a collection of M collocation nodes located on
the boundary, the discretized version of the u-BIE block of equations is
obtained, which can be written in matrix form as

Hu−Gq−
[
HÛ−GQ̂

]
α = 0

�� ��6.23

The sizes of the elements of this equation are

• u, q dimension M · d× 1

• H, G dimension M · d×M · d

• Û, Q̂ dimension M · d×R · d

• α dimension R · d× 1

6.2.2 Block b-BIE

For the calculation of the block b-BIE, the procedure described in paragraph
(6.2) is taken into consideration. Thus, the integral equations of this block
are decomposed into linear combinations of integral equations. This thesis
is focused on the elastic operator, so the first and second order derivatives
of the integral equation are required.

Again, it is taken into account that the Laplace operator is used as analog
operator. This means that the integrals appear uncoupled and are identical
for every index, allowing the use of the scalar equation to build the system of
vector equations. Thus, using equation (6.17) for an internal point located
in zi, which is repeated for clarity of presentation, as starting point

u (z) +

∫
Γ

u (x)
0

Q (x; z) dΓ−
∫

Γ

q (x)
0

U (x; z) dΓ =

R∑
j

αj

[
ûj (z) +

∫
Γ

ûj (x)
0

Q (x; z) dΓ−
∫

Γ

q̂j (x)
0

U (x; z) dΓ

] �� ��6.24
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the derivative of this equation with respect to
∂

∂zs
is performed obtaining

u,s (z) +

∫
Γ

u (x)
0

Q,s (x; z) dΓ−
∫

Γ

q (x)
0

U ,s (x; z) dΓ =

R∑
j

αj

[
ûj,s (z) +

∫
Γ

ûj (x)
0

Q,s (x; z) dΓ−
∫

Γ

q̂j (x)
0

U ,s (x; z) dΓ

] �� ��6.25

whose discretized version is

ui,s +
M∑
k

ĥik,suk −
M∑
k

gik,sqk =
R∑
j

αj

[
ûij,s +

M∑
k

ĥik,sûkj −
M∑
k

gik,sq̂kj

]
�� ��6.26

Also the second derivative with respect to
∂2

∂zs∂zt
is

u,st (z) +

∫
Γ

u (x)
0

Q,st (x; z) dΓ−
∫

Γ

q (x)
0

U ,st (x; z) dΓ =

R∑
j

αj

[
ûj,st (z) +

∫
Γ

ûj (x)
0

Q,st (x; z) dΓ−
∫

Γ

q̂j (x)
0

U ,st (x; z) dΓ

] �� ��6.27

whose discretized version is

ui,st +

M∑
k

ĥik,stuk −
M∑
k

gik,stqk =

R∑
j

αj

[
ûij,st +

M∑
k

ĥik,stûkj −
M∑
k

gik,stq̂kj

]
�� ��6.28

As it has been indicated, the vector problem is constructed from the equa-
tions of the scalar problem. For this, taking the case of a general material,
the equation associated with the term bi is

σij,j + bi = Cijkl,juk,l + Cijkluk,lj + bi = 0
�� ��6.29
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On the other hand, the discretized equation of type b-BIE associated with
an internal point located in zi is (see (4.47))

M∑
k

Kikuk −
M∑
k

Likqk −
R∑
j

αj

[
b̂ij +

M∑
k

Kikûkj −
M∑
k

Likq̂kj

]
= bi

�� ��6.30

Comparing equation (6.29) with equation (6.30), and taking into account
the expressions of equations (6.26) and (6.28), the matrix Kik is formulated
as

 C1j1l,j ĥik,l + C1j1lĥik,lj C1j2l,j ĥik,l + C1j2lĥik,lj C1j3l,j ĥik,l + C1j3lĥik,lj
C2j1l,j ĥik,l + C2j1lĥik,lj C2j2l,j ĥik,l + C2j2lĥik,lj C2j3l,j ĥik,l + C2j3lĥik,lj
C3j1l,j ĥik,l + C3j1lĥik,lj C3j2l,j ĥik,l + C3j2lĥik,lj C3j3l,j ĥik,l + C3j3lĥik,lj


�� ��6.31

So to calculate the matrix Kik, the following terms must be obtained

 ĥik,1
ĥik,2
ĥik,3

  ĥik,11 ĥik,12 ĥik,13

ĥik,21 ĥik,22 ĥik,23

ĥik,31 ĥik,32 ĥik,33

 �� ��6.32

Remark again that these terms are independent of the differential operator
governing the problem.

To obtain the terms Lik and b̂ij a similar procedure is followed.

Clearly, this approach has the advantage of maintaining the flexibility of
the method dividing the calculation into two parts. The first one is the
calculation of the integrals associated with the variables and their derivatives
and is common to all problems and carries most of the computation time.
The second one includes the multipliers associated with each particular
operator which only depend on the coordinate z.
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If this equation is applied to a collection of R internal collocation nodes
located inside the domain, the discretized version of the b-BIE block of
equations is obtained, which can be written in matrix form as

Ku− Lq−
[
B̂ + KÛ− LQ̂

]
α = b

�� ��6.33

The sizes of the elements of this equation are

• u, q dimension M · d× 1

• K, L dimension R · d×M · d

• Û, Q̂, B̂ dimension R · d×R · d

• α dimension R · d× 1

• b dimension R · d× 1

6.2.3 Block q-BIE

Finally, the block of discretized integral equations associated with the
boundary conditions is constructed. The same aspects as in the previous
section are considered, although certain peculiarities must be added.

For a general problem, the boundary integral equations and their first-order
derivatives are required. In this work, only displacement and traction bound-
ary conditions have been implemented. Displacement boundary conditions
are imposed directly in the equations, so the integral version of boundary
conditions that is needed, it is restricted to tractions involving only first-
order derivatives. Again due to the uncoupling associated with the analog
operator, the scalar formulation can be used as starting point.

The construction of the first-order derivatives is based on equation (5.25),
valid for collocation points located at “smooth” parts of the boundary and
that is repeated for clarity of exposition
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u,s (z) +

∫
Γ

u (x)
0

Qs (x; z) dΓ−
∫

Γ

q (x)
0

Us (x; z) dΓ =∑
j

αj

[
ûj,s (z) +

∫
Γ

ûj (x)
0

Qs (x; z) dΓ−
∫

Γ

q̂j (x)
0

Us (x; z) dΓ

] �� ��6.34

where

0

Qs (x; z) = esp (z)
0

Q,p (x; z)
0

Us (x; z) = esp (z)
0

U ,p (x; z)
�� ��6.35

whose discretized version is

M∑
k

aikuk,s +
M∑
k

ĥ
ik,s

uk −
M∑
k

g
ik,s

qk =

R∑
j

αj

[
M∑
k

aikûkj,s +
M∑
k

ĥ
ik,s

ûkj −
M∑
k

g
ik,s

q̂kj

] �� ��6.36

In practice, the use of this equation requires a preliminary calculation, that is
common to all operators, and independent of a particular problem. Therefore,
this part of the operations can be implemented separately. With this goal
in mind and before the construction of the general matrix, coefficients dpt (z)

defined in (5.21) for all collocation points are calculated and later coefficients
esp (z) can be deduced by means of

esp (z) dpt (z) = δts
�� ��6.37

Notice that, in order to obtain these coefficients, only the inverse of the
matrix defined by the dnt (z) is necessary.

After obtaining these coefficients is immediate to notice that

∫
Γ

u (x)
0

Qs (x; z) dΓ = esp (z)

∫
Γ

u (x)
0

Q,p (x; z) dΓ
�� ��6.38
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And, therefore

ĥ
ik,s

= esp (z) ĥik,p
�� ��6.39

The next step is to particularize the boundary conditions of the problem,
which in this case are pure tractions or displacements. Since displacements
conditions are applied directly to the equation, only the traction operator
must be analyzed.

In the case of a general material, the traction equation is

ti = σijnj = Cijkluk,lnj
�� ��6.40

The discretized equation of type q-BIE associated with a boundary point
located on zi (see (4.49)) is

M∑
k

Pikuk −
M∑
R

Likqk −
R∑
j

αj

[
êij +

M∑
P

KikR̂kj −
M∑
k

Likq̂kj

]
= ti

�� ��6.41

Comparing equation (6.29) with equation (6.30), and taking into account
the expressions of equation (6.36), matrix Pik is formulated as

 C1j1lĥik,lnj C1j2lĥik,lnj C1j3lĥik,lnj

C2j1lĥik,lnj C2j2lĥik,lnj C2j3lĥik,lnj

C3j1lĥik,lnj C3j2lĥik,lnj C3j3lĥik,lnj

 �� ��6.42

So to calculate matrix Pik, the following terms must be obtained

[
ĥik,1 ĥik,2 ĥik,3

] �� ��6.43

where, again, these terms are independent of the differential operator gov-
erning the problem.
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To obtain the terms Rik and êij a similar procedure is followed.

If this equation is applied to a collection of M collocation nodes located on
the boundary, the discretized version of the q-BIE block of equations is
obtained, which can be written in matrix form as

Pu−Rq−
[
Ê + PÛ−RQ̂

]
α = t

�� ��6.44

The sizes of the elements of this equation are

• u, q dimension M · d× 1

• P, R dimension M · d×M · d

• Û, Q̂, Ê dimension M · d×R · d

• α dimension R · d× 1

• γ dimension M · d× 1

6.2.4 System of equations assembly

The set of integral equations defined in the previous section, are combined
to assemble the algebraic system of equations able to solve the boundary
value problem proposed.

From the numerical point of view, since in this work a LU decomposition has
been used as solver, the matrix inversion involves most of the computation
time, even with a modest number of degrees of freedom. It is therefore
imperative to reduce the size of the matrix as much as possible. Therefore,
although the unknown tractions can be included directly in the system of
equations, it is convenient to carry out its calculation in the postprocessing
stage.

The balance equations-unknowns is similar to chapter four. So with this in
mind and assuming, without loss of generality that
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• A three-dimensional problem

• M collocation and approximation nodes

• Displacement boundary conditions on D nodes

• Traction boundary conditions on M −D nodes

• R× 3 approximation functions of b̂

Since, only q-BIE equations have been imposed where the traction is known
we have

• (M −D)× 3 unknowns associated with u

• M × 3 unknowns associated with q

• R× 3 unknowns associated with α

And there are

• M × 3 equations u-BIE

• (M −D)× 3 equations q-BIE

• R× 3 equations b-BIE

The result is an algebraic system containing (2M −D +R)× 3 equations
and (2M −D +R)× 3 unknowns that can be solved using any standard
algorithm.

The final matrix of the system can be defined conceptually as follows.

The vector u, which includes all the values of the displacement in the
approximation nodes, is divided into two parts: u1, of dimension (M −D)× 3,
which includes the unknown displacements and u2, of dimension D × 3, which
includes known displacements. Similarly matrices H, K and P are separated
into two parts. Respectively each part includes the columns multiplying
elements of u1 or u2. The part multiplying the known displacements u2 will
be moved to the independent term of the equation. Figure (6.1) shows a
block diagram containing the composition of the system once assembled.
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3(M-D) 3M 3R 1 1

3
M

3
(M

-D
)

3
R

H1

P1

K1

−G

−R

−L

−
[
HÛ−GQ̂

]

−
[
Ê + PÛ−RQ̂

]

−
[
B̂ + KÛ− LQ̂

]

u1

q

α

=

−H2u2

t−P2u2

b−K2u2

�� ��6.45

Figure 6.1: Blocks of the algebraic system of equations

6.2.5 Postproccessing

After solving the system of equations and obtaining the values of displace-
ments ui, fluxes qi and coefficients αj of the approximation of functions, a
postprocessing procedure can be performed in order to calculate unknown
tractions, internal displacement or internal stresses.

The procedure is completely analogous to the previously presented presented
(and to the standard BEM ), and therefore has no further interest in it.

As a brief example, traction can be calculated by equation (6.41), applied
to all the collocation nodes where the traction value is desired.

In the case of internal displacement, the particularized version of equation
(6.21) applied to an internal point is used

ui = −
M∑
k

Ĥikuk +

M∑
k

Gikqk +αj

[
ûij +

M∑
k

Ĥikûkj −
M∑
k

Gikq̂kj

] �� ��6.46
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Finally, internal stresses calculation can be carried out following a similar
procedure as used for the deducing the block q-BIE. Therefore, from the
first-order derivatives of the integral equation, the internal stress equation
can be constructed. In this case, the integrals are regular and the formulation
results in

σi = −
M∑
k

Sikuk +
M∑
k

Tikqk +αj

[
σ̂ij +

M∑
k

Ŝikûkj −
M∑
k

Tikq̂kj

] �� ��6.47

Taking into account that the stress operator is

σij = Cijkluk,l
�� ��6.48

the block Sik can be written as



C111lĥik,l C112lĥik,l C113lĥik,l
C121lĥik,l C122lĥik,l C123lĥik,l
C131lĥik,l C132lĥik,l C133lĥik,l
C221lĥik,l C222lĥik,l C223lĥik,l
C231lĥik,l C232lĥik,l C233lĥik,l
C331lĥik,l C332lĥik,l C333lĥik,l


�� ��6.49

6.3 Other aspects

6.3.1 Shape functions, edges and borderlines

In the previous sections, we have introduced the simplifying assumption that
the nodes were collocated on smooth boundary points. Usually, the position
of collocation and approximation nodes coincides unless its segregation is
convenient. The most obvious case is the presence of an edge (or vertex) in
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the boundary to discretize, since the assumption of smoothness is violated
and the solid angle must be calculated. In figure (6.2) an example of the
case of a square element of nine nodes is shown. In this cases the collocation
nodes situated on the edges are moved inside the element.

Figure 6.2: Quadratic element with sharp edges

Another aspect that must be taken into account, are the elements that share
common edges and collocation nodes. In the case of zero-order elements
(constant elements), see figure (6.3), there is a unique approximation node
inside the element and, therefore, this case can not occur but in higher
order elements, for example second-order elements, is an usual situation.
The shape functions used in this work are quadratic, which are C∞ in the
interior of the element, but only C0 at global level6 (in particular between
elements). This type of interpolation improves the rate of convergence but,
due to the introduction of common nodes between adjacent elements, it is
necessary to study the behavior of the functions at these nodes.

In the literature, there are several papers that have analyzed the conditions

6There are several works in the literature that use higher order implementations as [44],
or introduce approximations with splines [114], [8].
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Figure 6.3: Zero and second order elements

for convergence of the Boundary Element Method and the requirements for
the approximation functions (e.g. [78], [79] and [47]). Detailed study of this
problem is beyond the scope of this work, but it must be emphasized that
the lack of C1 continuity in the approximation functions, introduces errors
that will hinder the convergence of the method. As an example, in the
analysis of the derivatives of the Boundary Integral Equations associated
with the Laplace operator (see A.2), expansions of the variables in terms of
their derivatives, which are discontinuous, are introduced.

Additionally it can be noted that, the geometric interpolation7 also lacks
of continuity in the calculation of geometrical derived variables as normal
vectors. Considering this, two aspects are potentially problematic. First of
all, in the strict sense, free terms associated with angles (or solid angles)
between elements appear and second, the discontinuity in the normal vector
introduce additional convergence errors8.

A simple way to avoid these difficulties, is to move all the collocation nodes
within the elements. In this case, it is clear that the boundary is smooth

7Isoparametric approximation is used. Therefore the same functions are used for
geometrical and functional approximation.

8In a lesser extent, the calculation of the tangential derivative/gradient that appears in
the integral equation derivatives is performed by direct derivation of the shape functions.
This means that the approximation order of this term have a lesser degree and it contributes
to the reduction of the order of convergence.
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at the collocation point and, consequently, functions describing both the
geometry and the variables are C∞. The drawback of this approach is the
considerably increment of unknowns for the same number of elements. For
example, in the case of a square mesh composed of n × n elements the
unknowns are increased from 9n2 to 4n2 + 4n+ 1.

6.3.2 Multidomains

The last aspect to be considered is the multidomain implementation. Three
cases are analyzed including inhomogeneous domains and combinations of
homogeneous domains (for which the standard boundary elements algorithms
are used) with inhomogeneous domains.

The case of combination of domains is divided into two cases, which are
treated differently because the interface conditions vary. This depends on
whether there is discrete gap of properties at the interface or not. In the
absence of discrete gap of properties, it is clear that the problem could be
solved without interface applying the algorithm AEM-BEM to the entire
domain. The use of multidomains in this case, arises to improve numerical
stability and accuracy of results (within the framework of BEM can be
found in the literature several works in this line, i.e. [42] o [84]).

A brief analysis of the problem, focus on the coupling equations of the
interfaces is performed . Let assume, without loss of generality, a problem
as shown in figure (6.4), where we have a solid with different domains and
mixed boundary conditions. Classic perfect adhesion conditions apply at
the interfaces. Thus the interface compatibility equations are

uij = uji on Γij

tij = −tji on Γij
�� ��6.50

Without any further assumption about the properties of each subdomain
and taking into account the aspects previously remarked, standard BEM
schemes are applied for homogeneous subdomains and AEM-BEM schemes
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Figure 6.4: Multidomain consisting in three subdomains

(detailed in this work) for inhomogeneous subdomains. These equations are
applied to the external boundaries of the problem (and in the case of an
inhomogeneous domain to a collection of internal points).

The additional compatibility equations depend on the properties of the
associated subdomain and are applied in the interfaces.

Inhomogeneous-Inhomogeneous interface without gap of proper-
ties

In this case, the coupling equations can be replaced by

uij = uji on Γij

qij = −qji on Γij
�� ��6.51

Intuitively, the equal displacement conditions in the interface, also implies
an equal tangential derivative of the displacement. The imposition of equal
traction value condition with same properties, clearly implies that the
normal derivatives (fluxes) must also be equal (opposite).
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The balance of equations and unknowns in each collocation point is per-
formed. We have three displacements, three fluxes and three tractions in
each side of the interface for a total of 18 unknowns. The use of the 6
compatibility equations (6.51) and the addition of 6 u-BIE equations from
each side of the interface results in 12 equations involving 12 unknown
displacements and fluxes .

In this case, the equations related to tractions at the interface are not
required and the tractions on the boundary can be calculated in the post-
processing stage.

In practice, the compatibility equations are introduced directly into the
system, so that only u-BIE type equations are used in the interface in order
to solve the problem.

Inhomogeneous-Inhomogeneous interface with gap of properties

In this case, the compatibility equations can not be replaced, since the
difference of properties means that the fluxes are different.

Therefore, the 18 unknowns mentioned above appear. The use of the 6
compatibility equations (6.50), along with 12 u-BIE and q-BIE equations
from each side of the interface results in a determined system of equations.

Noticed again that the compatibility equations are entered directly into
the system, so that only type u-BIE and q-BIE equations are used in the
interface in order to solve the problem.

Inhomogeneous-homogeneous interface

This case involves the coupling of different algorithms and requires more
careful analysis. In the homogeneous part standard BEM algorithm is used,
so the equation in matrix form can be written as
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Hu−Gt = Sb
�� ��6.52

where it has been assumed the existence of body forces, which have been
treated by dual reciprocity techniques, as discussed previously (see section
2 of chapter 3).

The balance of equations and unknowns in each collocation point is per-
formed again. We have twelve unknowns related to displacements and
tractions and three more unknowns related to the fluxes of the inhomoge-
neous side of the interface. In this case the 6 compatibility equations (6.50)
are combined with 6 u-BIE and q-BIE equations from the inhomogeneous
side of the interface and 3 u-BIE (standard BEM) equations from the
homogeneous side of the interface.

It should be noticedd that the traction unknowns are associated with
collocation nodes (the traction is associated with the coordinate z) for the
AEM-BEM scheme applied in the inhomogeneous part. In the other hand
the tractions unknowns are associated with approximation nodes for the
standard BEM applied in the homogeneous part. This implies that if the
collocation nodes and the approximation nodes do not coincide, the system
is not determined without further operations.

In these cases, it is necessary to relate the value of tractions in the collocation
points with the value of the traction in the approximation points. This
coupling can be done by means of the shape functions.

Generally, in an element, we can write

tc = Φcta
�� ��6.53

where tc/ta, is a vector containing the values of the traction at the colloca-
tion/approximation nodes and Φc is a matrix containing the values of the
shape functions at the collocation nodes.
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Inverting this equation, we can replace the variables ta of the homogeneous
part for a liner combination of tc in the case that the nodes do not coincide,
and therefore complete the system of equations.
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The great thing about Object Oriented code is that it can make
small, simple problems look like large, complex ones.

Unknown 7
Object-Oriented Programming in BEM: A

FORTRAN 2003 implementation

Object Oriented Programming has tremendous potential in the scientific soft-
ware field (see, for example, [49]. [16] or [72]) This approach to programming
produces easily maintainable, reusable and scalable computational codes.
This is especially critical if we consider that, one of the main unintended
consequences of code optimization in order to minimize the execution time
of each run, was frequently unstructured, unreadable and often unreliable
code, which even the program’s author had difficulty in debugging.

As it has been m in previous chapters the Boundary Element Method
(see for example [118], [5]) has been used successfully for solving many
engineering problems governed by systems of partial differential equations.
As the steady march of progress in individual scientific disciplines increases
BEM techniques field of application, the need of integrated and scalable
codes is more and more clear. Most computers programs for BEM are
written in FORTRAN language (see examples in [14] or [39]), not only
in the last 90/95 revision but even in the 77 version. Although former
FORTRAN revisions (prior to 2003) have not native support for Object
Oriented Programming most of the key features can be emulated efficiently
in the 90/95 revision [2], [46]. Despite these works there is only a limited
number of works involving object oriented programming in FORTRAN
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(for example [106]) available in the literature. Most of the works involving
object oriented programming applied to numerical methods are focused on
Object Oriented Analysis (like [74]) or C++ Implementations (like [66], [117]
or [96]). The release of the last FORTRAN 2003 revision (see further details
in [80]) fully supporting Object Oriented Programming (OOP) permits
us to transfer all this methodology directly to native FORTRAN without
elaborated construction to emulate Object Oriented features. Inheritance,
Polymorphism, dynamic type allocation, encapsulation can be used directly.
In this work an approach of object oriented programming in Boundary
Element Method is used to design the core of a modular program able to
easily scale and integrate different techniques. The Object Oriented analysis
and design is discussed in detail in order to demonstrate the advantages of
this approach.

7.1 System requirements and general considerations

First of all we need to define the requirements of our code.

• Multi-Domain

• Multi-Physics: several kinds of problems supported including 2D/3D

• Able to use different integration schemes at element level

• Able to use different BEM algorithms

• Extensive use of dynamic memory (writes data once / reads many)

• Simultaneous use of several interpolations, elements

• Support different kinds of boundary conditions including inter-phases

• Reduction of the computational cost

The implementation of the previous requirements in FORTRAN 2003 often
demands the design of structures adapted to the peculiarities of this language.
Although the design of software to validate the algorithm has consumed
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Figure 7.1: Geometrical entities

most of the time dedicated to this work, the implementation details strictly
related to the programming language will be mostly ignored because they
are not intrinsically related to the thesis aim.

Two examples of implementation aspects are exposed. The simultaneous use
of multiple types of elements in one array is explained. FORTRAN 2003 does
not directly allow arrays consisting in elements of a class and its extensions.
To overcome this difficult we can use the following approach. We can create
a derived-type which has a polymorphic variable as component. In order to
implement the linked structure depicted in the figure (7.1), derived types
with pointers as components are defined. Additionally, a constructor is
created and added to the class to allow the allocatable components to be
type defined with a method of the class. This constructor can have, as
“intent in” arguments, labels or directly data to be analyzed to decide the
proper type allocation. Figures (7.2) and (7.3) show code excerpts with the
main ideas exposed.
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Figure 7.2: Derived Type with polymorphic component

Figure 7.3: Derived Type and its constructor

Another inconvenience is that many times a type is defined primarily to serve
as a base type for extension. In this situation methods have not a natural
implementation. Although FORTRAN provides us deferred procedures and
abstract types that is not an efficient solutions many times. If we have, for
example, several kinds of properties for different types of regions, we can
simply create a method for every class with different types of arguments
and use interfaces to call those methods with the same order. If deferred
procedures in the top class are used that will force us to create all the
methods in every extension. To avoid this situation we use dummy functions
in the top class that theoretically will never be invoked. Figure (7.4) shows
an example of a dummy function. An error message is included to inform
us at what point is the allocation problem, if it exists.
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Figure 7.4: Dummy function example

The typical multi–region problem discretized according to the BEM and
solved using the corresponding algorithm has the following basic steps
presented in Table (7.1). Although some variations need to be introduced in
more sophisticated methods the essential steps remain generally the same1.

STEP 1 Read Data
STEP 2 Create system of equations

STEP 2.1 For each region
STEP 2.2 For each Element apply boundary conditions

STEP 2.3 For each collocation node evaluate integrals and set
the results in the matrix

STEP 3 Solve the system
STEP 4 Introduce the solution in the approximation nodes
STEP 5 Compute additional values

Table 7.1: Basic steps in a BEM algorithm

One of the most significant issue of almost every BEM problem is that the
kernels of the involved integrals are singular in the collocation points and only
exist in the Cauchy principal value or Hadamard finite parts sense. Several

1Some special variations of BEM like Fast Multipole [71] or Adaptive Cross Approxi-
mation [13] among others need more deep modifications and they are not initially included
in this approach.
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techniques have been used to solve this topic like direct analytical integration,
indirect approach (see for example [19]) or regularization methods (for
example [35]). In terms of implementation the key point is that integration
methods are problem and element type dependent so an integration library
will be mandatory in general BEM software. In order to cover a general
implementation our design needs to be flexible and able to incorporate
additional equations that arise whenever derivatives of the previous boundary
integral equation are taken not only to evaluate those derivatives as part of
some post-process procedure but as part of a solution algorithm.

So two levels of dependency have been identified. The first one is related
with the kernel integration and generally is related with the type of problem
and the type of element. Eventually a third agent can be involved if several
options are available: the user. Then the integral methods are set at element
level during program execution. The second one includes extensions of
classic BEM procedures (like AEM-BEM) that introduce new equations so
the general algorithm is problem dependent. Normally these extensions are
related to special regions (for example non-homogeneous) so the general
algorithm is set at region level during program execution.

7.2 Program Organization

The object oriented design proposed herein is divided at top level in two
major categories as showed in figure (7.5): Geometrical objects and libraries.
The first one is the direct translation to classes of the real objects that we
manage when we define the discretized geometry. These objects are organized
in arrays and connected using pointers capturing the real connection among
them. The second one includes groups of routines related with different type
of problems, integration methods, boundary conditions or general purpose
routines shared among multiple problems.

A brief explanation of every category is included. The objective is to give a
general idea of the different modules without going into detail.
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(a) Geometrical entities (b) Libraries

Figure 7.5: Main Program Categories

7.2.1 Geometrical entities

Class Point

It implements a geometric point in a Rn space. An object point has
simply an allocatable array of real coordinates covering problems in different
dimensions. Several entities can contain the same point so the point class
must be a separated object.

Class Node

This is the class that implements a general node. Boundary Element
Method needs, in its general case, three basic types of nodes with different
functionalities that may have different positions in the space.

Geometrical nodes simply contain a pointer to a point that situate it in the
space and is used to define the geometry of the element. The collocation
nodes are used as source point of the fundamental solution and therefore is
where we particularize our integral equations. They contain a pointer to a
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Figure 7.6: Class node and extensions

point and several logical flags that are used during the integration process.
The last type is the approximation nodes. They contain again a pointer
to a point and two general polymorphic fields which contain the physical
variables of the problem.

Additionally we have internal nodes with the same components as approx-
imation nodes, extended approximation node with a field to contain the
local normal to avoid recalculation and extended collocation node with a
field to contain the local normal and one general polymorphic field which
contain physical variable of the problem. In figure (7.6) the class node and
its extensions are represented.

Several procedures are available to create nodes, insert points, retrieve
coordinates, allocate, insert and read data...
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Class Element

This is the class that implements a general boundary element. The basic
class only contains pointers to the geometric nodes. Extension of this class
includes elements with approximation nodes and collocation nodes and
their position in local coordinates. Several extensions are implemented, for
example, two-dimensional quadratic elements and 3D quadratic elements
based on 6-nodes triangles or 9-nodes squares. In this implementation of
the direct BEM the evaluation of the matrices is done at element level,
but integration is not essentially coupled with the element. For this, the
element has an allocatable class integrator whose purpose is to alleviate
elements objects from integration tasks. This component of the element can
be changed on run time.

Several procedures are available to create elements, insert nodes, retrieve
nodes, geometrical properties...

Class Boundary

This is the class that implements a patch of hte boundary. This class has
been designed with two main objectives. The first one is to capture the
natural relation between a boundary and its boundary condition. Every
boundary has, besides pointers to elements, an allocatable class boundary
condition whose purpose is to perform all the calculations related to the
different types of boundary conditions implemented. The formulation of the
system of differential equations give us boundary conditions normally in
terms of faces or part of the surface so it is logical to keep this entity in our
design. The second one is to capture the geometrical “faces” of the domain
where the normal vector is continuous to avoid problems with calculations
of solids angles in cases that we have corners or edges between boundaries.
This is a typical situation that normally requires displacing the position of
the collocation node or calculating the solid angle of the node between faces.
It is easier and more generic to simply implement an offset.
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A consequence of this is the fact that these boundaries can be treated as
isolated entities in terms of collocation and approximation nodes. This
means that in our algebraic system of equations we can identify regions not
only related to collocation or approximation nodes but related to boundaries
(in terms of their collocation and approximation nodes) so the assembly of
the matrix is independent at boundary level. After the construction of a
boundary a procedure is run to create an internal map of nodes to assembly
the system.

Class Region

This is the class that implements a region. Basically an object region
contains pointers to boundaries, and the direction of these boundaries. The
extensions of this class refer to homogeneous or non-homogeneous and they
include data related with its material properties. Additionally it can contain
pointer to inner nodes that can be used whether to calculate the value
of the physical variable at them or as base to approximation functions
like in Dual Reciprocity Methods. There are two relevant procedures in a
region object. One is the high level integration algorithm. Properly the
integration is carried out at element level but is at region level where the
most relevant part of the algorithm organization is reflected. At this level
is where we call procedures that select the proper integration method, and
the procedures that implements boundary conditions in the approximation
nodes. Additionally, at this level, we directly assembly the final matrix of
equations with data obtained from the boundary conditions.

The second relevant procedure carried out is the introduction of the solu-
tion of the system of equations in the approximation nodes. Strictly this
procedure only passes the relevant data to the boundary condition which
performs the task.
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Class Multidomain

This is the class that implements a multidomain. Strictly every problem is
multidomain but sometimes there is only one domain. This class contains
pointers to regions as data. Additionally it creates an internal map2 which
relates boundaries with matrix parts and it permits to assembly the matrices
correctly. Its main procedure is the one that creates the matrix of the system
of equations. At this level the global matrix is created and the proper parts
are passed as pointers to the regions to fill them. Additionally a postprocess
routine is implemented to calculate any additional value.

7.2.2 Libraries

Problem Library

This Library consists of two classes of objects. The class problem, at this
level, consists basically in collection of useful labels, like the kind and dimen-
sion of variables involved, that need to be used during execution. It has been
preferred to separate problems from fundamental solutions not only for sake
of clarity but some fundamental solutions are shared among several problems
and some problems needs several functions. Two and three dimensional
Laplace problems, two and three dimensional elastosatic in homogeneous
domains and three dimensional elastostatic in non-homogeneous domains
problems are implemented at this moment.

The second class is the fundamental solution class. Their procedures,
apart from construction and initialization constants and source points, are
basically related with their evaluations and of their derivatives, and any
related function that can be requested by an integration algorithm.

2More auxiliary variables are stored in every domain to avoid recalculations
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Boundary Condition Library

This Library consists in the class boundary conditions and its extensions.
The class boundary conditions implements different types of boundary con-
ditions including inter-phases. Three main classes have been implemented.

• Basic boundary conditions where simply a function give us directly
the value of some unknowns. Extensions have been constructed for
standard BEM algorithm and AEM-BEM techniques.

• General linear boundary conditions where the unknowns are related
through a general system of equations with variable coefficients.

• Inter-phase with perfect contact condition. This boundary condition
implements compatibility and equilibrium equations directly over
the interfaces during the construction without performing additional
operations at the end of the matrix assembly. Three inter-phases are
implemented. Homogeneous-Homogeneous and Non-homogeneous -
Non-homogeneous without jump of properties, Homogeneous - Non-
homogeneous and Non-homogeneous - Non-homogeneous with jump
of properties.

The object boundary condition has two main procedures. The first one is
responsible of introducing the boundary conditions in the approximation
nodes and calculate the final positions and multipliers that we need to use
in the matrix of equations. The second one is responsible of introducing the
solution of the system in the approximation node.

As we can see, this kind of object is closely linked with boundaries objects.
In fact boundary conditions “are part of” a boundary through a pointer but
the same boundary condition can be part of several boundaries.
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Integral Library

This library consists of several classes that carry out the integration at
element level. It is aforementioned that in a generic BEM program the
integration algorithm is problem/element dependent especially due to the
singular character of the fundamental solution. Mainly three classes are
gathered in this library.

The first class is the quadrature class. It implements all the objects that
we need to perform numerical integrations through Gaussian quadratures.
Basically it has procedures to obtain the weights and position involved in
these numerical integrations.

The second class is the interpolation class. It has been designed to perform
the entire task related to interpolate values. Obviously is closely linked to
the element class and, in fact, all the calculations to obtain coordinates,
jacobian, normal and other values inside the elements are performed by this
class. Additionally, it performs all the interpolation of variables that can
be, in a general case, different from the geometrical interpolation.

The third one is the integrator class. It implements all the integration
algorithms involved in the boundary element method. In the literature three
main types of integrals can be found: regular, near-singular and singular (and
eventually hypersingular and so on). Regular and near-singular integrals can
be implemented in a quite general way with allocatable arrays which shapes
are set in run time, but singular integrals are strongly problem/element
dependent. Basically, the object integrator performs three kinds of integrals.
Suitable subroutines are selected with the constructor of the object as
part of an element, depending on three types of input data as is showed
in figure (7.7): type of problem, type of element and user inputs. The
user input is designed, for example, to pass the number of gauss point to
perform integration, or labels to select a specific integration procedure. This
user input is optional and the constructor has default options to select the
appropriate set of methods. After the integrator is initialized a condition
parameter with the level of singularity is passed when the integrate procedure
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Figure 7.7: Selection of integrator

is called to select the appropriate method.

An important issue to highlight is that all the process outlined in table (7.1)
fixed an element and cover all the collocations nodes. This fact combined
with a constant number of gauss point permits us to save inside subroutines
a great part of our calculations. Following this idea we only calculate once
variables like positions, normals, jacobians ... and store them using “save”
command achieving execution time reductions of 30-40%.

General Math Library

This library contains additional classes used for several tasks related with
mathematical operations. Briefly, class data is designed as a container
to store complex or real data in arrays. This class is used to store the
values of the physical variables and the matrices of the system. This level
of abstraction ensures us that the program can be upgraded naturally to
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Figure 7.8: Unlimited polymorphic class in linked list

dynamic problems in the frequency domain. It contains procedures to
introduce or read data in specific positions.

Class radial basis function is designed in a similar way as fundamental
solution class and is used to perform every task related with evaluations of
these kind of functions and their derivatives. This class is intended to be
used in problems with dual reciprocity methods involved.

Auxiliary Library

The last library has been divided from the previous library to gather the
classes not specifically related with the Boundary Element Method.

The class generic list is designed as linked list able to store all type of data.
The new FORTRAN standard includes an unlimited polymorphic class that
can be used to achieve that objective as showed in figure (7.8).

The class lecture is designed simply to read data from a text file used to
define the geometry, problem, boundary conditions and in general all the
data needed to define the problem.
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7.2.3 Conclusions

This chapter presented a brief study of the new supported features in
FORTRAN 2003 and its use to design a global BEM program in an object
oriented style able to easily scale and integrate different techniques. The
main classes of the proposed architecture are outlined and their principal
methods explained. Some codes excerpts are attached showing relevant
aspects of specific topics. The proposed architecture capture the natural
way of manipulating geometries and problems parameters, linking objects as
we do in theoretical approaches. The procedures to assembly the matrices
of the system equations has been designed to optimize execution time to
avoid duplication of calculations. At this point of implementation several
kinds of problems as Poisson or elastic are fully functional in 3-dimensional
geometries with quadratic elements. The addition of new problems only
requires the study of particularities of the singular integrations. If there is
no valid integrator procedure in the program able to calculate the integrals
of the new problem, the addition of a new singular integration method
and the corresponding fundamental solution will be the only necessary
tasks. Furthermore, the encapsulation of data ensures that the addition of
new problems will not affect previous implementation and allow us to split
the future work in global solution strategies which are needed to fracture
problems or local integration problems to add new singular or near singular
integrators.

Additionally the new FORTRAN 2003 standard has showed that every
relevant object oriented feature has been successfully implemented. The new
object oriented features including polymorphism, encapsulation, dynamic
binding, and data hiding, etc... prove that FORTRAN is able to produce
fully Object Oriented Programs maintaining backwards compatibility with
previous FORTRAN codes preserving previous algorithm as fully functional
procedures.
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In our reasonings concerning matter of fact, there are all imag-
inable degrees of assurance, from the highest certainty to the
lowest species of moral evidence. A wise man, therefore, pro-
portions his belief to the evidence.

David Hume 8
Numerical Examples

In this chapter a series of numerical examples, designed to show the conver-
gence1 and stability of the methodology shown analytically in the previous
chapters are presented.

The order of the examples represents, almost chronologically, different
milestones of the numerical implementation. Although formally is not
included in the scope of this thesis, an example of the initial developments
of this implementation is included. This first example studies scalar second
order elliptic operators with variable coefficients and boundary conditions
formulated in terms of the variable and its flux defined in a two-dimensional
space.

8.1 Diffusion problem

The first numerical example studies the thermal diffusion problem in a plane
blade. Mathematically the problem is defined as

∇ · [K (x)∇T ] = 0 en Ω
�� ��8.1

1It should be emphasized that the convergence of the Boundary Element Collocation
Method has not been demonstrated analytically.
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where the thermal conductivity K (x) varies according to the law

K (x) = (2x+ y + 2)2
�� ��8.2

In figure (8.1) the coefficient K vari-
ation along the blade is shown. This
problem has been chosen, firstly, be-
cause it has analytical solution whose
formula is

T (x) = 100 +
6x2 − 6y2 + 20xy + 30

2x+ y + 2 �� ��8.3

so the error analysis can be done
exactly and, secondly, because
by a change of variable of type

T (x) =
τ(x)

K0.5(x)
it is possible to

transform the original equation into
the Laplace equation.
Taking this into account, a problem
with a known fundamental solution
is obtained and, therefore, it can be
solved directly using the standard
Boundary Element Method.

Figure 8.1: Coefficient K
variation along the blade

This allow us to have a reference to compare the level of accuracy and the
convergence rate of the method. Both methods have been implemented
using constant elements2. The boundary conditions and geometry of the
blade can be found in figure (8.2). Flux boundary conditions are prescribed

2The implementation was done using Matlab as part of the MSc research prior to this
thesis.
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along two boundaries and the temper-
ature is prescribed on the remaining
four.
The first graph of results (8.3) rep-
resents, in double logarithmic scale,
the error, according to L2 norm, of
the temperature at boundary points
versus the total amount of degrees of
freedom of the problem
The L2 norm is defined as:

eL2
=
‖dex − dnum‖L2

‖dex‖L2

�� ��8.4

where dex is the vector that contains
the exact values of the unknowns, dnum

is the vector that contains the values
of the unknowns calculated numeri-
cally and ‖dex‖L2 and ‖dex − dnum‖L2

are defined respectively as

E (0.2,1.0) D (0.5,1.0)

C (0.5,3.0)

B (0.2,0.0)

A (0.0,0.0)

F (0.0,0.5)

T,n=T,n(0.5,y)

T,n=T,n(x,0)

T = T

T = T

T = T

T = T

X

Y

Figure 8.2: Geometry and
Boundary Conditions

‖dex‖L2
=

√∑
i

d2
exi

‖dex − dnum‖L2 =

√∑
i

(dex − dnum)
2
i

�� ��8.5

In this first example, the approximation function used is the ATPS 2D,
which combines radial functions with polynomial terms. Every curve is
associated with a fixed distribution of internal nodes and an increasing
amount of boundary elements.

Furthermore, the error curve associated with the problem transformed by
change of variable and solved using standard BEM is added. In this case,
the number of degrees of freedom is equal to the number of elements.
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Figure 8.3: L2 error of the temperature on the boundary

Analyzing figure (8.3) several conclusions can be extracted immediately. It
can be observed that each curve has two asymptotes, so that, in general,
the curves have a structure as shown in figure (8.4). For a curve with a
constant amount of internal nodes, the horizontal asymptote, intuitively,
represents the fact that we are not really solving the original problem, but
an approximation whose independent term is represented by the accuracy
of the radial approximation.

Thus, for a number of internal nodes the problem converges to a solution
that it is not the exact one and, consequently, the error has a minimum.
The oblique asymptote is associated with the accuracy of the Boundary
Element Method. This can be checked clearly by observing the reference
curve of the problem solved by change of variables, which has a similar
gradient.

The behavior of the error is due in part to the calculation of the integrals,
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Figure 8.4: Asymptotes of the error curves

which is determined by the discretization of the boundary. In an initial
phase, the improvement of the discretization affects both the calculation
of the domain integrals (transferred to the boundary), and the original
boundary integrals. As the amount of boundary elements grows, the ATPS
approximation is good enough, so that the dominant error is associated
with the discretization of the boundary. At one point the dominant error
returns to be associated with the independent term approximation whereby
and it tends to a nonzero value.

In general, it is observed that the error has a similar order of magnitude to
the resolution by standard boundary element method (in fact the envelope
of the error curves presents lower errors) and that an optimum range of
boundary elements for each number of internal nodes exists. According
to the tests that have been performed, as a reference value, this optimum
range can be estimated between 30 and 50 percent of degrees of freedom
associated with the approximation of the independent term. Increasing
this ratio does not provide substantial improvements and may even slightly
increase the error.
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Figure 8.5: L2 error of the flux on the boundary

The curves representing the error of the flux on the boundary are shown in
figure (8.5). In these curves is observed again, the same behavior but some
remarks must be done. The error is higher due to the so-called “corner”
problem. Nodes adjacent to the areas with jumps in the normal vector have
high errors but outside these small areas accuracy is very high.

The results of the next part of the test is shown in figure (8.6), where errors
associated with temperature in internal points are represented. Similar
behavior in all curves can be observed.

The final analysis performed for this example is a comparative analysis of
different types of approximations functions of the term b̂. Specifically, the
following approximation functions are compared
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Figure 8.6: L2 error of the temperature in the domain

• ATPS 2D

• ATPS 3D

• Multiquadrics

• c+ r

• Spline with several support values

In figures (8.7), (8.8) and (8.9) the error envelopes are shown according to L2

norm. The temperature and its flux on the boundary and the temperature
in the domain are compared for different approximation functions.

The analysis of these curves shows visually that the envelopes have the same
rate of convergence than the standard BEM, as expected. It is also noted
that the accuracy, to equal amount of degrees of freedom, is better with the
AEM-BEM algorithm for several types of approximations.

131



CHAPTER 8. NUMERICAL EXAMPLES

10
2

10
3

10
−6

10
−5

10
−4

10
−3

Total amount of degrees of freedom

T
em

p
er
a
tu
re

o
n
th
e
b
o
u
n
d
a
ry

-
L
2
er
ro
r

 

 

0.1+ r

1.0+ r

ATPS 2D
ATPS 3D
√

0.1+ r2

1.0+
√

r

Spline s=0.05

Spline s=0.1

Spline s=0.2

Spline s=0.5

BEM standard

Figure 8.7: L2 error envelopes of temperature on the boundary
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Figure 8.8: L2 error envelopes of flux on the boundary
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Figure 8.9: L2 error envelopes of temperature in the domain

This methodology has been used to solve more examples with equations
governed by more complex operators. The results are similar and are not
included in this work for the sake of brevity it. The main conclusions are:

• Linear approximation families of type f(r) = c+ r show the worst
overall performance.

• In approximation families with supports or parameters, the accuracy
of the results is strongly influenced by the value of these constants.

• Approximations with polynomial terms (ATPS and Splines) have
shown no problems of numerical stability, but the conditioning of the
resultant matrices using multiquadrics functions is highly dependent
on the parameter c, and the result can vary from the lower error in
the solution to diverge due to bad conditioning of the matrix.

• The ATPS 2D approximation functions have the best balance of
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accuracy, stability and simplicity. In addition no further considerations
(support or parameter values) are needed for its definition.

8.2 Three-dimensional elastostatic problem

8.2.1 Dirichlet boundary conditions

This example is a slightly modified version of the one included in the article
(see [98]). In that paper the AEM-BEM methodology, analyzed in this thesis,
is presented including its implementation in 3D using Dirichlet boundary
conditions.

In order to evaluate the error accurately, a problem with known exact
solutions have been generated for different geometries. In this case, the
displacement field and the properties of the domain are defined. With these
data, it is simple to obtain the associated stresses and body forces that
allow to define completely the problem. Also, fluxes (which, in this case, are
variables without physical meaning), internal stresses or any desired field
can be obtained easily.

The displacement in the domain and on the boundary are given by,

ux = sinx; uy = cos y; uz = ez
�� ��8.6

and the material properties vary according to the equations

λ = 100,000− 50,000(x− y + z); µ = 80,000 + 80,000(x+ y − z)
�� ��8.7

Geometry 1

A simple rectangular prism (see figure 8.10) is used in the first example to test
the capabilities of the algorithm to deal with inhomogeneous problems. In
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Figure 8.10: Geometry and boundary discretization of a rectangular prism

this case the dimensions of the prism are X × Y × Z = 0.20× 1.00× 0.20. The
geometry has been selected to allow a regular refinement in every coordinate
of the boundary element mesh and the internal nodes distribution.

Taking into account the dimensions of the domain, note that the coeffi-
cient λ varies from a minimum of 55,000 at (0.20, 0.00, 0.20) to a maximum
of 150,000 at (0.00, 1.00, 0.00), and coefficient µ from minimum of 64,000 at
(0.00, 0.00, 0.20) to a maximum of 176,000 at (0.30, 1.00, 0.00). The material is,
therefore, strongly inhomogeneous, and the Lame constants vary indepen-
dently. The Poisson ratio ν is also not constant and varies from a minimum
of 0.2215 at (0.20, 1.00, 0.00) to a maximum of 0.2922 at (0.00, .00, 0.20).

The problem is solved, at this stage, with ATPS 3D as approximation
function, and the results are presented identically to the previous section by
means of several graphs representing the L2 error distribution versus the
amount of degrees of freedom. Three graphs are provided to analyze the
convergence and stability of the algorithm. Since all boundary conditions are
given in displacements, graphs do not show the error of this variable. The
values of the flux on the boundary are calculated at approximation nodes
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Figure 8.11: L2 error of displacements in the domain

solving the resultant system of equations. Subsequently, in a postprocessing
stage, the values of traction on the boundary for the distribution of colloca-
tion nodes of each example is calculated. Finally, it is generated a equispaced
distribution comprising 3× 15× 3 internal points, where displacements and
stress tensors are calculated.

Each graph presents error curves, where the amount of internal nodes
remains constant and the number of elements on the boundary increases.
Also, a line that represents, approximately, the trend of error for each
calculated variable is drawn.

From the graphical analysis of results, it is seen that the theoretically
expected behavior is maintained. Again the two asymptotes that reflect,
respectively, the prevalence of errors associated with the approximation of
the term b̂ or with the boundary element approximation appear.

The evolution of the error is very stable and no conditioning problems

136



8.2. THREE-DIMENSIONAL ELASTOSTATIC PROBLEM

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Total amount of degrees of freedom

S
tr
ee
s
o
n
th
e
b
o
u
n
d
a
ry

-
L
2
er
ro
r

 

 

1x5x1 Internal Nodes
2x10x2 Internal Nodes
3x15x3 Internal Nodes
4x20x4 Internal Nodes
5x25x5 Internal Nodes
6x30x6 Internal Nodes
7x35x7 Internal Nodes

Figure 8.12: L2 error of tractions on the boundary
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Figure 8.13: L2 error of stresses in the domain
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Figure 8.14: L2 error of fluxes on the boundary

have been found in solving the resulting systems. The approximate rate of
convergence for the internal points error displacement and stress is 1.6− 1.8.
For fluxes and tractions on the boundary the rate of convergence of the
error is 0.5. Note that, in this case, the error is concentrated on the edges of
the faces of the prism and outside these small areas the error is much lower.

The final analysis performed for this example is, again, a comparative analy-
sis of different types of approximations functions of the term b̂. Specifically,
the following approximation functions are compared

• ATPS 2D

• ATPS 3D

• Multiquadrics (MQ)

• Augmented Multiquadrics (AMQ)

• Linear
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Figure 8.15: Error envelopes of displacement in the domain (a)

• Spline with several support values

• Second-order Wendland with several support values

As in the two-dimensional scalar example of the previous section, the relative
behavior of the different approximations is maintained for every (internal
displacement, flux ...) field. Due to this and, since 27 cases were compared,
only comparative graphs of displacement in internal points are included.

In graphs 8.15, 8.16 and 8.17 is included, as reference, the error curve
associated with ATPS 3D approximation. The analysis of these graphs
allows to extract several ideas quite similar to those obtained in 2D problems
(and in other 3D examples that have been executed using the code developed
in this work).

• Approximation families of type f(r) = c+ r show the worst overall
performance.

• Multiquadrics approximations, with and without polynomial terms,
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Figure 8.16: Error envelopes of displacement in the domain (b)
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Figure 8.17: Error envelopes of displacement in the domain (c)
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Figure 8.18: Geometry and boundary discretization of a bent prism

are highly dependent on c parameter, both in terms of accuracy and
stability of the resulting systems.

• In the case of approximations with support or dependent parameters,
the accuracy of the results is strongly influenced by the value of these
constants. Still, it should be noted that both types, Wendland and
spline functions, present good results and allow local approximation
implicitly. From the numerical tests performed a reference value of
the support can be extracted. The value deduced is the order of
magnitude of the typical dimensions of the problem to solve.

• The ATPS 2D approximation functions have shown again, the best
balance of accuracy, stability and simplicity. In addition no further
considerations (support or parameter values) are needed for its defini-
tion.
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Geometry 2

The second example is a geometrical variation of the domain of the previous
example. The variation of the properties and the displacements definitions
are maintained. The objective of this example is to study the behavior of the
algorithm in terms of accuracy and stability in a more complex discretization
including curved elements.

The geometrical variation consists of curving the prism of the previous
example along a quadratic path increasing the value of the z coordinate.
The equations of the lower and upper curved edges in the X = 0 plane are
given by z = 0.40y2 and z = 0.40y2 + 0.20, respectively.

The results are presented identically to the previous section by means of
several graphs representing the L2 error distribution versus the amount of
degrees of freedom. In order to facilitate visual comparison of the evolution
of the error, it has been superimposed for this purpose, the line that shows
the rate of convergence of the error of previous example. Note, finally, that
ATPS 3D is chosen again to approximate the fictitious body forces b̂.

The analysis of the graphs shows that for internal points, the results, both
in terms of accuracy and rate of convergence are virtually unchanged. In
the case of fluxes and tractions on the boundary, the error has a significant
increase although the trend continues in the case of the flux and is slightly
deteriorated in the case of tractions. It is important to note, again, that most
of this error is confined to areas close to the edges, and it is reduced markedly
as we move away from these areas. This behavior is more pronounced the
greater the angle of the edge is, which explains higher degradation of the
error of these fields (flux and traction on the boundary).

The curves comparing the different approximation families present a identical
behavior to the previous case and don’t provide additional information.
Therefore, they are not included for the sake of brevity.
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Figure 8.19: L2 error of displacements in the domain
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Figure 8.20: L2 error of tractions on the boundary

143



CHAPTER 8. NUMERICAL EXAMPLES

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Total amount of degrees of freedom

S
tr
ee
s
in

th
e
d
o
m
a
in

-
L
2
er
ro
r

 

 

1x5x1 Internal Nodes
2x10x2 Internal Nodes
3x15x3 Internal Nodes
4x20x4 Internal Nodes
5x25x5 Internal Nodes
6x30x6 Internal Nodes
7x35x7 Internal Nodes

Figure 8.21: L2 error of stresses in the domain

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Total amount of degrees of freedom

F
lu
x
o
n
th
e
b
o
u
n
d
a
ry

-
L
2
er
ro
r

 

 

1x5x1 Internal Nodes
2x10x2 Internal Nodes
3x15x3 Internal Nodes
4x20x4 Internal Nodes
5x25x5 Internal Nodes
6x30x6 Internal Nodes
7x35x7 Internal Nodes

Figure 8.22: L2 error of fluxes on the boundary
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Figure 8.23: Boundary conditions and discretization of a prism

8.2.2 Mixed boundary conditions - 1

In this example a problem including traction boundary conditions is solved.
The same displacement fields and variations of properties, as in the previous
example, are used. So we have

ux = sinx; uy = cos y; uz = ez
�� ��8.8

λ = 100,000− 50,000(x− y + z); µ = 80,000 + 80,000(x+ y − z)
�� ��8.9

Geometry 1

The example to study has the same geometry as in the example presented in
8.2.1 (see figure 8.10). Therefore we are dealing with a prism of dimensions
X × Y × Z = 0.20× 1.00× 0.20. In this case, as indicated, we have mixed
boundary conditions. On the sides contained in planes Y = 0.00 and Y = 1.00

tractions boundary conditions are applied while on the remaining part of
the boundary displacements are prescribed.
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Figure 8.24: L2 error of displacements on the boundary

The approximation function chosen remains the ATPS 3D to maintain
consistency with previous analyzes. The results are presented by the same
kind of graphs, but in this case, the errors associated with the displacements
on the boundary are included. The rate of convergence of the error for each
calculated field is also drawn approximately.

The analysis of the results shows that the expected behavior continues,
although a degradation of the accuracy can be observed. The conditioning
of the systems shown no problems.

Qualitatively the error of displacement on the boundary has a rate of
convergence of 1.3− 1.4, while rate of convergence for the displacement
and stress in the internal points is, approximately 1.5− 1.6. In the case of
tractions and fluxes on the boundary the rate of convergence is maintained
at 0.5. Note again, that the error is concentrated on the edges of the faces of
the cuboid, and it is reduced markedly as we move away from these areas.
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Figure 8.25: L2 error of tractions on the boundary
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Figure 8.26: L2 error of displacements in the domain
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Figure 8.27: L2 error of stresses in the domain
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Figure 8.28: L2 error of tractions on the boundary
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Figure 8.29: L2 error of displacements on the boundary

For the sake of brevity, the comparative analysis of the different approxima-
tions functions is discussed in the next example.

Geometry 2

In the last example of this part the curved prism is discussed again, in this
case with the same boundary conditions as in the previous example. In
figures 8.29, 8.30, 8.31, 8.32 and 8.33 the errors of the five fields studied
are represented. Lines representing the error rates of convergence of the
previous example, have been superimposed to visually asses behavioral
changes. Finally the approximation function chosen remains the ATPS 3D
to maintain consistency with previous analyses.

Visually, it can be observed that changes in behavior are similar to the ex-
ample with displacement boundary conditions. Thus, in the internal points,
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Figure 8.30: L2 error of tractions on the boundary

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Total amount of degrees of freedom

D
is
p
la
ce
m
en
t
in

th
e
d
o
m
a
in

-
L
2
er
ro
r

 

 

1x5x1 Internal Nodes

2x10x2 Internal Nodes

3x15x3 Internal Nodes

4x20x4 Internal Nodes

5x25x5 Internal Nodes

6x30x6 Internal Nodes

7x35x7 Internal Nodes

Figure 8.31: L2 error of displacements in the domain
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Figure 8.32: L2 error of stresses in the domain
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Figure 8.33: L2 error of tractions on the boundary
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Figure 8.34: Error envelopes of displacement in the boundary (a)

the results, in terms of accuracy and rate of convergence are practically
unchanged. In the case of fluxes and tractions on the boundary, the error
has a significant increase although the trend continues in the case of the
flux and is slightly deteriorated in the case of tractions.

The final analysis performed for this example is, again, a comparative
analysis of different types of approximations functions of the term b̂. The
same functions as in the Dirichlet boundary conditions case are used. Only
the comparison of one variable is presented because it is representative of
the other fields. In this case, the selected field is the displacement on the
boundary. In graphs 8.34, 8.35 and 8.36 is included, as reference, the error
curve associated with ATPS 3D approximation.

The analysis of these graphs can draw several conclusions

• Approximation families of type f(r) = c+ r still present the worst
overall performance, but its behavior is very stable.
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Figure 8.35: Error envelopes of displacement in the boundary (b)
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Figure 8.36: Error envelopes of displacement in the boundary (c)
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• Multiquadrics approximations, with and without polynomial terms,
have a totally erratic and hard of conditioning behavior.

• In the case of approximations with support or dependent parameters,
the accuracy of the results is strongly influenced by the value of these
constants. From the numerical tests performed a reference value of
the support can be extracted . The value deduced is, again, the order
of magnitude of the typical dimension.

• The ATPS 2D approximation functions have showed again, the best
balance of accuracy, stability and simplicity. In addition no further
considerations (support, parameter) are needed for its definition.

8.2.3 Mixed boundary conditions - 2

In this case a problem extracted from [42] is analyzed. A cuboid with di-
mensions of X × Y × Z = 100mm× 100mm× 30mm is studied. Every surface
except the one located on Y = 100 are placed on roller support so these
surfaces can freely move in the tangential directions, but are constrained
in the normal direction. The investigated cuboid is subjected to a uniform
tensile loading t = 1 dN/mm2 on the surface Y = 100 (see Figure 8.37). In
this case the variation of the shear modulus µ is defined as

µ = µ0e
βz where β =

log(µw/µ0)

Z

µw = 8000 dN/mm2 µ0 = 4000 dN/mm2

�� ��8.10

while Poisson’s ratio is constant with value 0.25. Body forces are not
considered.

Horizontal displacement along a line running down the center of the top
face (specifically Z = 30 mm, X = 50 mm and Y from 0 mm to 100 mm) is
presented in figure 8.38. This displacement have been selected to compare the
results obtained using the AEM-BEM algorithm with the results included
in the work [42], where is presented a variant of BEM that combines
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Figure 8.37: Cuboid under normal tensile loading on Y = 100

radial integrals with multidomains, in order to solve problems involving
inhomogeneous domains.

Three algorithms are compared. A FEM model with 70000 linear tetrahedra,
taken as a reference solution, has been performed with ABAQUS and is
represented by the solid blue line. The example presented by Gao in [42]
uses 8960 elements and 15048 internal nodes and is represented by the black
line with the values marked by crosses. The results using the technique
analyzed in this work (AEM-BEM) are shown by red square. A mesh of 70
quadratic elements in the boundary and a distribution of 300 internal nodes
have been implemented to solve the example. The approximation function
selected is ATPS 2D.

Analysis of the results shows the good agreement between the results using
the Finite Element Method and the AEM-BEM methodology. The results
presented by Gao shows a moderate difference, though clearly visible as
moving in the direction Y . Taking into account the large number of degrees
of freedom that are used in its calculation, it is possible that the definition
of properties or the boundary conditions presented in the article [42], have
some kind of definition error.
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Figure 8.38: Comparison of the displacement at the center of the top face

8.3 Multidomains

8.3.1 Example with two subdomains

The first example studies a cube (see figure 8.39), consisting of two phases
of different materials, dimensions of X × Y × Z = 1.00× 1.00× 1.00. The
top half of the cube is formed of a inhomogeneous isotropic material with
properties defined as

λ = 75,000− 50,000z µ = 10,000 + 80,000z
�� ��8.11

while the lower half, is formed of a homogeneous isotropic material with
properties defined as

λ = 50,000 µ = 50,000
�� ��8.12
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Figure 8.39: Bimaterial cube geometry

In this case, the displacement field and the properties of the domain are
defined. With these data, it is simple to obtain the associated stresses and
body forces that allow to define completely the problem. Also, fluxes (which,
in this case, are variables without physical meaning), internal stresses or
any desired magnitude can be obtained easily.

In order to evaluate the error accurately, a problem with known exact
solutions is generated. In this case, we create a displacement field which
together with defined material properties, satisfies the conditions of perfect
contact at the interface.

The displacement field is defined as

ux = zex sinx; uy = zex cos y; uz = z
�� ��8.13

The boundary conditions on the external boundaries are of mixed type,
with displacement boundary conditions on the upper and lower faces and
tractions on the sides. The discretization of the boundary consists of four
elements per side and four elements at the interface. In the inhomogeneous
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Figure 8.40: Boundary conditions and discretization

subdomain a distribution of 6× 6× 3 internal nodes is used. Figure 8.40
shows the discretization scheme of the boundary. In this case, the problem
is solved for a unique combination of boundary elements and internal nodes,
but multiple functions approximation. After the resolution of the system the
internal displacements and stresses on both sides of the cube are calculated.

Table 8.1 includes the L2 error of displacements and tractions on the bound-
ary along with displacements and stresses in the domain3. In the calculation
of these errors are included both the values associated with the homogeneous
part as the inhomogeneous one. The analysis of the results shows that,
except for high values of the parameter c associated with AMQ (augmented
multiquadrics) approximation functions, where there have been problems
of conditioning, the error value is virtually identical for all approximation
functions used. This is because, for the combination boundary element-
internal nodes used in this example, the main factor of error comes from
the calculation of the homogeneous part.

3In this case, the fluxes have not been included in the results due to its lack of physical
meaning.
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Type of uc tc ui σi

Approximation L2 error L2 error L2 error L2 error

ATPS2D 3.56E-03 5.04E-03 1.38E-03 2.26E-03

ATPS3D 3.56E-03 5.05E-03 1.39E-03 2.26E-03

Spline s=0.2 3.72E-03 5.24E-03 1.49E-03 2.37E-03

Spline s=1.0 3.44E-03 4.98E-03 1.33E-03 2.19E-03

Wendland s=0.2 3.73E-03 5.26E-03 1.48E-03 2.38E-03

Wendland s=1.0 3.46E-03 4.99E-03 1.35E-03 2.21E-03

AMQ c=0.1 3.52E-03 5.02E-03 1.37E-03 2.24E-03

AMQ c=1.0 1.23E-02 1.84E-02 6.34E-03 1.65E-02

AMQ c=10.0 8.70E-03 1.12E-02 2.79E-03 5.55E-03

Table 8.1: L2 error for different approximations
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Figure 8.41: Displacements on the boundary Y = 1.0 Z = 0.75

In figures 8.41, 8.42, 8.43 and 8.44 the numerical results obtained using
the ATPS 2D approximation function are represented and compared with
the analytical solution for the different fields studied. The curves represent
the variation of these fields along lines going through different parts of the
domain, as indicated in each graph. The level of agreement is very high, as
expected in view of the L2 error presented in the previous table.

8.3.2 Example with three subdomains

The last example presented in this thesis is a three-dimensional version of
an example included in [100], where an extension of the boundary element
method, able to solve problems involving multidomains and inhomogeneous
materials is introduced.

The multidomain studied in this example consists of three subdomains. The
first one (referred as part 1) is a cuboid of dimensions X × Y × Z = 20× 10× 10
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Figure 8.42: Stresses in the interface X = 0.5 Z = 0.5
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Figure 8.43: Displacements inside the cube X = 0.5 Z = 0.25
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Figure 8.44: Principal stresses inside the cube X = 0.5 Y = 0.5

with a hole of radius 2, which runs the entire length of the cuboid. As
boundary conditions it is assummed that the botom face is simply supported,
the top face is subjected to a normal constant load and the remaining faces
are free surfaces.

In figure 8.45 an outline with the indicated dimensions is attached. This
part is designed as isotropic and homogeneous and its properties for all
cases analyzed are E3 = 1.0 and ν = 0.25.

The second subdomain (referred as part 2) is a hollow cylinder of inside
radius 1 and outer radius 2, which fits into the hole of the cuboid and, finally,
a cylinder (referred as part 3) of radius 1 which fits into the hollow of part
2. These two pieces are shown in Figure 8.46.

Five different cases, with different properties for parts 2 and 3 are studied.
In all cases, the Poisson ratio value will be constant and equal to ν = 0.25

and perfect contact conditions between the three parts is considered. Part 3

is considered isotropic and homogeneous and its properties are E1 = 1.0 in
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Figure 8.45: Geometry and dimensions of the prism

Figure 8.46: Parts 2 and 3 outline
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Figure 8.47: Discretization using finite elements

case 1 and E1 = 0.2 in the remaining. The properties of the part 2 varies in
each case as follows

• Case 1: Part 2 isotropic homogeneous E2 = 1.0

• Case 2: Part 2 isotropic homogeneous E2 = 1.0

• Case 3: Part 2 isotropic inhomogeneous with quadratic variation of
Young Module E2 = −2.2 + 3.2r − 0.8r2

• Case 4: Part 2 isotropic inhomogeneous with linear variation of Young
Module E2 = −0.6 + 0.8r

• Case 5: Part 2 isotropic homogeneous E2 = 0.2

Two algorithms are compared. Firstly, a FEM model with 97000 elements
(quadratic tetrahedra) has been performed with ABAQUS (in figure 8.47
the discretization scheme is shown). Secondly the AEM-BEM methodol-
ogy studied in this thesis. In this case a mesh of 90 quadratic elements
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Figure 8.48: Discretization using boundary elements

(including interfaces) and a distribution of 10× 6× 3 internal nodes4 (in the
inhomogeneous part) is used. Figure 8.48 the discretization scheme using
boundary elements is shown5.

In cases where all pieces are homogeneous, standard BEM (with multi-
domain) is used to solve the problem, and their inclusion in this example
allows, firstly, to check the implementation of this scheme in the software,
and, on the other hand, to analyze variations in the results depending on
the different properties.

In view of the results of previous sections, ATPS 2D have been chosen as
approximation function in this example. Although not shown in the results,
this example has served to verify that the approximation functions work

4This distribution must be understood as longitudinal direction × circumferential
direction × radial direction.

5The elements in the front (and rear) face are quadratic and their real boundaries are
not straight, as figure 8.48 suggests.
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better when they are scaled with the order of magnitude of the typical
dimensions of the problem to be treated. This means that the function used
in this example is

f(r) =
(r
s

)2

ln
(r
s

)
where s = 10

�� ��8.14

Finally, it should be pointed that in order to avoid errors in the curved
boundaries, all collocation nodes associated with inhomogeneous boundaries
have been moved inside the elements. The reason of this is to avoid the
errors associated with the discontinuities of the approximation functions and
the normal vectors between elements (see Chapter 6 for more references).

Two graphs of results are presented: the displacement uz and the normalized
Von Misses stress, for a line that cuts across the domain from (X = 10, Z = 5,
Y = 0) to (X = 10, Z = 5, Y = 10).

In figure 8.49 displacements of the five cases are presented in a single graph,
where it can be observed that despite the coarse mesh used, the concordance
of the results is very high.

The graphs associated with stresses have been divided into two, to clarify
the analysis. The results of the homogeneous cases are included in graph
8.50 while in graph 8.51 are included the results corresponding to the
inhomogeneous cases (case 1 has remained as a reference). Although the
biggest differences are in the last graph, the correlation is quite good and
the maximum values are well represented. Finally it must be noted that
the values obtained using finite elements have some uncertainty because,
for example, the stress distributions are not even symmetrical.
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Figure 8.49: Displacement uz in all cases
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Figure 8.50: Normalized Von Misses stress in homogeneous cases
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Figure 8.51: Normalized Von Misses stress in inhomogeneous cases
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The whole sense of the book might be summed up the following
words: what can be said at all can be said clearly, and what we
cannot talk about we must pass over in silence.

Ludwig Wittgenstein 9
Conclusions

This dissertation has studied mainly, two sets of objectives:

• Study the behavior of the AEM-BEM methodology, and generalize
it including an analytical formulation using general analog operators,
introducing a integral formulation (q-BIE) that allows input directly
boundary conditions derived from the main variables, characterizing
this formulation to three dimensional elastic problems, performing a
comparative study of the different families of approximation functions
and coupling it with the standard BEM methodology.

• Build the core of an object-oriented program based on the latest
iteration of FORTRAN (2003/2010) for, besides the implementation
of this algorithm, easily scale and integrate in a natural way different
BEM techniques.

9.1 AEM-BEM Methodology Conclusions

Regarding the first set of objectives

• The AEM-BEM methodology is able to accurately resolve problems
involving inhomogeneous materials such as FGM, even using a rela-
tively small number of internal domain nodes and boundary elements.
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The algorithm is convergent and stable for most of the approximation
functions.

• Generally, it has been proved that the domain approximation functions
that exhibit better behavior in terms of stability and precision are the
ATPS type both in 2D and 3D problems. Additionally, they have the
advantage of the absence of parameters that must be adjusted.

• The behavior of the domain approximation functions is significantly
improved if they are scaled, at least, using the order of magnitude of
the problem typical dimension.

• The Wendland and Spline approximation functions also show good
behavior and allow us to introduce local approximation implicitly. As
drawback the accuracy of the results strongly depends on the value
of the support and there are no general rules for determining this
value. A support value in the order of magnitude of the problem is
a good start reference. Smaller values imply greater locality of the
approximation.

• Multiquadrics functions and its derivatives have a very unstable be-
havior and they have been discarded for later studies.

• A proportion of 50% (internal nodes DOFs – total DOFs) has proved
to have a good behavior as suggested distribution.

• In the case of he boundaries that can not be smoothly approximated
using quadratic elements, if Neumann boundary conditions are used,
the placement of the collocation nodes inside the element significantly
improves the accuracy avoiding continuity errors.

• The coupling of the standard BEM with AEM-BEM methodology
maintains high levels of accuracy and reduces the number of degrees of
freedom of multiphase problems by limiting the AEM-BEM algorithm
area of application to inhomogeneous areas.
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9.2 Object-oriented implementation Conclusions

• The proposal for the design of software architecture reproduces, natu-
rally, the geometries and problems manipulation used in the theoretical
analysis.

• The use of encapsulation techniques ensures that subsequent additions
do not affect the previous implementations, allowing the growth of
the program ensuring its integrity.

• Integrate new problems requires only a few simple steps. The addition
of a class with the parameters of the problem, the definition of the
differential operator including its variables and derivatives, an associ-
ated transfer matrix and an object that includes the integral derived
from the singular part of the fundamental solution kernel.

• Fortran 2003/2010 backwards compatibility allows easily the use of
the large base of existing algorithms written in previous FORTRAN
iterations as the basis of the objects developed for the object oriented
style software.

9.3 Future Works

Future developments will involve the development of both lines of work,
although some of them are not confined strictly to the AEM-BEM imple-
mentation. Briefly.

• Implementing a fast solver like GMRES [101] is a priority, since using
large numbers of degrees of freedom, the main part of the computation
time is consumed on the matrix inversion.

• Integrate AEM-BEM methodology for 2D problems within object-
oriented software porting it from Matlab.

• Implement new static problems such as poroelastic, thermoelastic ...
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• Develop automatic geometry transfer schemes to connect to standard
mesh definition formats.

• Implement dynamic problems using step-by-step schemes.

• Implement complex numbers based schemes to address problem types
like Helmholtz type, elastodynamics in frequency ...

• Implement schemes for solving nonlinear problems.

• Implement schemes to solve general fracture problems.

• Study the applicability of FAST BEM schemes to the AEM-BEM
methodology, in particular, Fast Multipole Method [89] and Adaptive
Cross Approximation [99], [12].

• Implement Galerkin type methodology.

• Study the parallelization of the code to reduce calculation times.

• Implement NURBS type approximation schemes [114] to avoid the
problems of discontinuity of the shape functions.
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Todo el sentido de la obra podŕıa resumirse con las siguien-
tes palabras: lo que puede exponerse puede ser expuesto con
claridad, y sobre lo que no podemos hablar debemos guardar
silencio.

Ludwig Wittgenstein 9
Conclusiones

Este trabajo ha estudiado, en ĺıneas generales, dos grandes grupos de
objetivos:

• Estudiar el comportamiento de la metodoloǵıa AEM-BEM, genera-
lizando su formulación anaĺıtica incluyendo funciones análogas gene-
rales, introduciendo una formulación integral que permita introducir
directamente condiciones de contorno en derivadas de las variables
principales, desarrollando esta formulación para problemas elásticos
tridimensionales, realizando un estudio comparativo de las diferentes
familias de funciones de aproximación y acoplando este algoritmo con
la metodoloǵıa BEM estandar.

• Construir el núcleo de un software orientado a objetos basado en
la ultima iteración de FORTRAN (2003/2010) para, además de la
implementación de este algoritmo, construir una base escalable que
permita integrar, de forma orgánica, diferentes esquemas de cálculo
tipo BEM.

9.1 Conclusiones de la Metodoloǵıa AEM-BEM

Respecto del primer grupo de objetivos
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• La metodoloǵıa AEM-BEM es capaz de resolver de forma precisa
problemas que involucran materiales inhomogéneos como los FGM,
incluso usando un número relativamente pequeño de nodos de aproxi-
mación y elementos de contorno. El algoritmo es convergente y estable
para la mayor parte de las funciones de aproximación.

• En ĺıneas generales, las funciones de aproximación que presentan un
mejor comportamiento en términos de estabilidad y precisión son las
funciones tipo ATPS tanto en problemas 2D como 3D. Adicionalmente,
presentan como ventaja la ausencia de parámetros que deban ser
ajustados.

• El comportamiento de las funciones de aproximación mejora notable-
mente si están escaladas, como mı́nimo, por el orden de magnitud de
la dimensión t́ıpica del problema a resolver.

• Las funciones tipo Wendland o Spline también presentan un buen
comportamiento y nos permiten introducir una aproximación de tipo
local de manera impĺıcita. Como contra la precisión de los resultados
depende del valor del soporte y, no existen reglas generales para
determinar este valor. Como regla general un soporte del orden de
magnitud del problema es un buen valor de referencia. Valores menores
implican mayor localidad de la aproximación.

• Las funciones multicuadráticas y derivadas presentan un comporta-
miento muy inestable y han sido descartadas para estudios posteriores.

• Una proporción del 50 % (Nodos internos – Grados de libertad totales)
resulta adecuada a falta de mejores consideraciones.

• En los contornos no aproximables mediante elementos cuadráticos, si
se utilizan condiciones en tensión, el retranqueo de todos los nodos de
colocación mejora notablemente los resultados al evitar los errores de
continuidad.

• El acoplamiento del BEM estandar con el AEM-BEM mantiene altos
niveles de precisión y, permite reducir el número de grados de libertad

174



9.2. CONCLUSIONES DE LA IMPLEMENTACIÓN ORIENTADA A
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de problemas multifase al reducir la aplicación del algoritmo AEM-
BEM a las zonas inhomogéneas.

9.2 Conclusiones de la implementación orientada a ob-
jetos

• La arquitectura propuesta para el diseño del software reproduce, de
forma natural, la forma de manipular geometŕıas y problemas que se
utiliza en los análisis teóricos

• La integración de nuevos problemas sólo requeriŕıa el añadido de
una clase con los parámetros del problema, la definición del operador
diferencial, sus variables y derivadas, una matriz de transferencia
asociada y un objeto que incluya las integrales singulares.

• El uso de las técnicas de encapsulamiento asegura que los posteriores
añadidos no afecten a las implementaciones previas permitiendo el
crecimiento del programa asegurando la integridad del mismo.

• La retrocompatibilidad del FORTRAN 2003/2010 permite el uso de
la gran base de algoritmos existentes en iteraciones anteriores del
lenguaje, como base de los objetos utilizados.

9.3 Trabajos a desarrollar

Los desarrollos futuros implican el desarrollo de ambas ĺıneas de traba-
jo, aunque ciertos desarrollos no se circunscriben de forma estricta a la
impementación del algoritmo AEM-BEM. De forma resumida.

• Dado que a grandes números de grados de libertad, la mayor par-
te del tiempo de cálculo se centra en la inversión de la matriz, la
implementación de un solver tipo GMRES [101] es una prioridad.
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• Integrar el esquema AEM-BEM para problemas 2D dentro del software
orientado a objetos desde Matlab.

• Implementar nuevos problemas tipo estático como el elastotérmico,
poroelástico...

• Automatizar los esquemas de transferencia de geometŕıas para conectar
con formatos de definición de malla estandar.

• Implementar problemas dinámicos mediante esquemas paso a paso.

• Introducir esquemas basados en números complejos para abordar pro-
blemas tipo Helmholtz, elastodinámicos en el campo de la frecuencia...

• Introducir esquemas para la resolución de probemas no lineales.

• Introducir esquemas para la resolución de probemas de fractura gene-
rales.

• Estudiar la aplicabilidad de los esquemas tipo FAST BEM a la metodo-
loǵıa AEM-BEM, en particular, los métodos multipolo [89] y Adaptive
Cross Approximation [99], [12].

• Estudiar la paralelización del código para reducir los tiempos de
cálculo.

• Implementar esquemas de aproximación tipo NURBS [114] para evitar
los problemas de discontinuidad de las funciones de forma.
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Mathematics takes us still further from what is human, into the
region of absolute necessity, to which not only the world, but
every possible world, must conform.

Bertrand Russell A
Kernels and limits

A.1 Limiting process

The assumption of smooth boundary around z is used in what follows.

In the case of the 3D Laplace operator, taking into account that Γε is defined
in our case as a sphere surface, using polar coordinates we can write

Figure A.1: Hemisphere around a boundary point at z
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∫
Γ

w∗ (x; z)
∂φ

∂n
(x) dΓ =

∫
Γ

1

4πr

∂φ

∂n
(x) dΓ =

lim
ε→0

(∫
Γ−Γε

1

4πr

∂φ

∂n
(x) dΓ

)
+ lim
ε→0

(∫
Γε

1

4πr

∂φ

∂n
(x) dΓ

)
=

−
∫

Γ

1

4πr

∂φ

∂n
(x) dΓ + lim

ε→0

(∫
θ,ϕ

1

4πε

∂φ

∂n
(x) ε2sinθdθdϕ

)
�� ��A.1

where it is clear that

lim
ε→0

(∫
θ,ϕ

1

4πε

∂φ

∂n
(x) ε2sinθdθdϕ

)
−→ 0

�� ��A.2

If we analyse the behaviour of the integral kernel

1

4πr

∂φ

∂n
(x)

�� ��A.3

when x −→ z it is clear that w∗ ∼ 1

r
, and remembering the assumption of

smoothness of the boundary at z, dΓ ∼ rdrdθ so we can conclude that

−
∫

Γ

1

4πr

∂φ

∂n
(x) dΓ =

∫
Γ

1

4πr

∂φ

∂n
(x) dΓ −→ weakly singular

�� ��A.4

so the former integral can be calculated directly as an improper one and it
is not necessary to be defined as a principal value.

Respectively
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∫
Γ

∂w∗

∂n
(x; z)φ (x) dΓ = −

∫
Γ

r,ini
4πr2

φ (x) dΓ =

− lim
ε→0

(∫
Γ−Γε

r,ini
4πr2

φ (x) dΓ

)
− lim
ε→0

(∫
Γε

r,ini
4πr2

φ (x) dΓ

)
=

−−
∫

Γ

r,ini
4π2

φ (x) dΓ− lim
ε→0

(∫
θ,ϕ

r,ini
4πε2

φ (x) ε2sinθdθdϕ

)
�� ��A.5

Taking into account that n and r are parallel in Γε then r,ini =
rini
r

= 1 so

lim
ε→0

(∫
θ,ϕ

r,ini
4πε2

φ (x) ε2sinθdθdϕ

)
=

∫
θ,ϕ

φ (z)

4π
sinθdθdϕ =

φ (z)

4π
∆Ω (z)

�� ��A.6

where ∆Ω (z) is the solid angle centred in z (2π for a smooth boundary
point)

Again when x −→ z we can state1 that
∂w∗

∂n
∼ 1

r
, and remembering the

assumption of smoothness of the boundary at z, dΓ ∼ rdrdθ we reach to

−
∫

Γ

r,ini
4πr2

φ (x) dΓ =

∫
Γ

r,ini
4πr2

φ (x) dΓ −→ weakly singular
�� ��A.7

1It can be proved that the first order term depends on the curvatures of the surface.
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A.2 Derivatives of the BIE associated with the Laplace
operator

A.2.1 3D Domains

General expressions

r =‖ x− z ‖ ri = xi − zi

∂r

∂xi
= r,i =

ri
r

∂r,i
∂xj

= r,ij =
δij − r,ir,j

r

�� ��A.8

It is easy to verify that

∂[f(r)]

∂zi
= −∂[f(r)]

∂xi

�� ��A.9

Fundamental solution for 3D Laplace operator

w∗ =
1

4πr

∂w∗

∂zi
=

r,i
4πr2

∂2w∗

∂zi∂zj
=

3r,ir,j − δij
4πr3

�� ��A.10

q∗ =
∂w∗

∂xi
ni =

∂w∗

∂n
= − r,ini

4πr2
= − r,n

4πr2

∂q∗

∂zi
=
ni − 3r,ir,n

4πr3

�� ��A.11

u-BIE

The standard boundary integral equation in the case of a scalar problem
can be written as

φ (z) +

∫
Γ

q∗ (x; z)φ (x) dΓ =

∫
Γ

w∗ (x; z) q (x) dΓ
�� ��A.12
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where

q (x) =
∂φ (x)

∂n

�� ��A.13

If we differentiate equation (A.12) along the z coordinate we obtain

φ,i (z) +

∫
Γ

∂q∗ (x; z)

∂zi
φ (x) dΓ =

∫
Γ

∂w∗ (x; z)

∂zi
q (x) dΓ

�� ��A.14

It must be pointed that it is assumed that z is a smooth boundary point in
the following steps in which the previous integral will be analysed.

The next step is to introduce a slight modification in the domain as shown
in figure (A.1) and apply equation (A.14) to this domain to get

φ,i (z) +

∫
(Γ−Γε)+Γε

∂q∗ (x; z)

∂zi
φ (x) dΓ =

∫
(Γ−Γε)+Γε

∂w∗ (x; z)

∂zi
q (x) dΓ

�� ��A.15

If we particularize the previous equation using (A.10), (A.11)

φ,i (z) +

T1︷ ︸︸ ︷∫
Γε

ni (x)

4πr3
φ (x) dΓ−

T2︷ ︸︸ ︷∫
Γε

3r,ir,n
4πr3

φ (x) dΓ−

T3︷ ︸︸ ︷∫
Γε

r,i
4πr2

q (x) dΓ +

T4︷ ︸︸ ︷∫
Γ−Γε

ni (x)

4πr3
φ (x) dΓ−

T5︷ ︸︸ ︷∫
Γ−Γε

3r,ir,n
4πr3

φ (x) dΓ−

T6︷ ︸︸ ︷∫
Γ−Γε

r,i
4πr2

q (x) dΓ = 0

�� ��A.16

where the different integrals involved have been labelled in order to analyse
them sequentially.

In what follows the main variables φ (x) and q (x) are approximated using a
Taylor expansion centred in z. Taking this into account we can write
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φ (x) ≈ φ (z) +O (r)

φ (x) ≈ φ (z) + φ,k (z) r,k +O
(
r2
)

q (x) = φ,k (x)nk (x) ≈ φ,k (z)n,k (x) +O (r)

�� ��A.17

In the case of the integrals over Γε it is straightforward to check that

• r is constant

• r,i = ni =⇒ r,n = 1

• dΓ = r2sinθdθdϕ

taking this into account we can write

Term T1 - T2

∫
Γε

ni (x)− 3r,ir,n
4πr3

φ (x) dΓ =

lim
ε→0
−→ 0︷ ︸︸ ︷∫

Γε

ni (x)− 3r,ir,n
4πr3

[φ (x)− φ (z)− φ,k (z) rk] dΓ

+

A1︷ ︸︸ ︷
φ (z)

∫
Γε

ni (x)− 3r,ir,n
4πr3

dΓ +

A2︷ ︸︸ ︷
φ,k (z)

∫
Γε

ni (x) r,k − 3r,ir,nr,k
4πr2

dΓ �� ��A.18

In order to analyse A1 we can assume without loss of generality that
n (z) = e3.

Term A1

φ (z)

∫
Γε

ni (x)− 3r,ir,n
4πr3

dΓ = −φ (z)

∫
Γε

ni (x)

2πr3
dΓ

�� ��A.19

so, taking into account that ni = r,i, the intervals of integration of the
hemisphere are respectively θ [0→ π/2] and ϕ [0→ 2π] and the components
of the normal vector can be expressed as
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n1 = sinθcosϕ n2 = sinθsinϕ n3 = cosθ
�� ��A.20

so A1 can be solved analytically.

−φ (z)

∫
Γε

ni (x)

2πr3
dΓ = −φ (z)

(∫
θ,ϕ

ni (x)

2πε3
ε2sinθdθdϕ

)
=

−φ (z)

∫
θ,ϕ

ni (x)

2πε
sinθdθdϕ = −

I1︷ ︸︸ ︷
φ (z)

2ε
δi3

�� ��A.21

At the same time

Term -T3

−
∫

Γε

r,i
4πr2

q (x) dΓ = −

lim
ε→0
−→ 0︷ ︸︸ ︷∫

Γε

r,i
4πr2

[q (x)− φ,k (z)nk (x)] dΓ

−

A3︷ ︸︸ ︷
φ,k (z)

∫
Γε

r,ink (x)

4πr2
dΓ

�� ��A.22

so if we combine A2 and A3 and we apply the previous remarks then we get
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Term A2 - A3

φ,k (z)

∫
Γε

ni (x) r,k − 3r,ir,nr,k − nk (x) r,i
4πr2

dΓ = −φ,k (z)

∫
Γε

3ni (x)nk (x)

4πr2
dΓ =

−φ,k (z)

∫
θ,ϕ

3ni (x)nk (x)

4πε2
ε2sinθdθdϕ = −φ,k (z)

∫
θ,ϕ

3ni (x)nk (x)

4π
sinθdθdϕ =

−φ,k (z)
δik
2

= −φ,i (z)

2 �� ��A.23

In the case of the integrals over Γ− Γε it is also necessary to analyse the
behaviour close to the singularity. In this case (assuming smooth boundary),
dΓ ∼ rdθdr.

Term T4

∫
Γ−Γε

ni (x)

4πr3
φ (x) dΓ =

A4︷ ︸︸ ︷∫
Γ−Γε

ni (x)

4πr3
[φ (x)− φ (z)− φ,k (z) rk] dΓ

+

A5︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

ni (x)

4πr3
dΓ +

E1︷ ︸︸ ︷
φ,k (z)

∫
Γ−Γε

ni (x) rk
4πr3

dΓ

�� ��A.24

Remembering that

∇Sφ = ∇φ− n (n •∇φ) =⇒ φ,k = φS

,k + nkq
�� ��A.25

lim
ε→0

(∫
Γ−Γε

I (x; z) dΓ

)
= −
∫

Γ

I (x; z) dΓ
�� ��A.26

and taking into account that if I (x; z) is weakly singular in Γ
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−
∫

Γ

I (x; z) dΓ =

∫
Γ

I (x; z) dΓ
�� ��A.27

Term A4 ∫
Γ−Γε

ni (x)

4πr3
[φ (x)− φ (z)− φ,k (z) rk] dΓ =

weakly singular︷ ︸︸ ︷∫
Γ

ni (x)

4πr3

[
φ (x)− φ (z)− φS

,k (z) rk
]

dΓ−

weakly singular︷ ︸︸ ︷
nk (z) q (z)

∫
Γ

ni (x) r,k
4πr2

dΓ

�� ��A.28

where it has been taking into account that nk (z) r,k → 0 for x→ z.

By means of Stokes Theorem

Term A5

φ (z)

∫
Γ−Γε

ni (x)

4πr3
dΓ = φ (z)

∫
Γ−Γε

[
ni (x)

4πr3
− 3r,ir,n

4πr3
+

3r,ir,n
4πr3

]
dΓ =

E2︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

3r,ir,n
4πr3

dΓ +

A6︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

[
∇∧ r ∧ ei

4πr3

]
n (x) dΓ

�� ��A.29

Term A6

φ (z)

∫
Γ−Γε

[
∇∧ r ∧ ei

4πr3

]
n (x) dΓ = φ (z)

∮
Γ−Γε

r ∧ ei
4πr3

dl =

regular︷ ︸︸ ︷
φ (z)

∮
Γ

r ∧ ei
4πr3

dl +

A7︷ ︸︸ ︷
φ (z)

∮
Γε

r ∧ ei
4πr3

dl

�� ��A.30

using again the assumption n (z) = e3 it can be easily proved that
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lim
ε→0

dl −→
[r
r
∧ e3

]
rdθ = [r ∧ e3] dθ

�� ��A.31

and if we introduce the previous expression we get

Term A7

φ (z)

∮
Γε

r ∧ ei
4πr3

dl = φ (z)

∫
θ

r ∧ ei
4πr3

[r ∧ e3] dθ =

I1︷ ︸︸ ︷
φ (z)

2ε
δi3

�� ��A.32

where the unbounded term I1 can be cancelled with the corresponding term
from equation (A.21).

If we expand T5 taking into account that r,n → 0 for x→ z we get

Term -T5

−
∫

Γ−Γε

3r,ir,n
4πr3

φ (x) dΓ = −

weakly singular︷ ︸︸ ︷∫
Γ

3r,ir,n
4πr3

[φ (x)− φ (z)] dΓ

−

E2︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

3r,ir,n
4πr3

dΓ

�� ��A.33

where we obtain a term labelled again as E2, that cancels the E2 term from
equation (A.29).

If we analyse the last terms
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Term -T6

−
∫

Γ−Γε

r,i
4πr2

q (x) dΓ = −

A8︷ ︸︸ ︷∫
Γ

r,i
4πr2

[q (x)− φ,k (z)nk (x)] dΓ

−

A9︷ ︸︸ ︷
φ,k (z)

∫
Γ−Γε

r,ink (x)

4πr2
dΓ

�� ��A.34

Term -A8

−
∫

Γ

r,i
4πr2

[q (x)− φ,k (z)nk (x)] dΓ = −

weakly singular︷ ︸︸ ︷∫
Γ

r,i
4πr2

[q (x)− q (z)] dΓ

−

weakly singular︷ ︸︸ ︷
φ,k (z)

∫
Γ

r,i
4πr2

[nk (z)− nk (x)] dΓ

�� ��A.35

Term -A9

−φ,k (z)

∫
Γ−Γε

r,ink (x)

4πr2
dΓ = −

E1︷ ︸︸ ︷
φ,k (z)

∫
Γ−Γε

r,kni (x)

4πr2
dΓ

−

A10︷ ︸︸ ︷
φ,k (z)

∮
Γ−Γε

∇ ∧
[ei ∧ ek

4πr

]
n (x) dΓ

�� ��A.36

where we obtain a term labelled again as E1, that cancels the E1 term from
equation (A.24).
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Term -A10

−φ,k (z)

∮
Γ−Γε

∇ ∧
[ei ∧ ek

4πr

]
n (x) dΓ = −

regular︷ ︸︸ ︷
φ,k (z)

∮
Γ

ei ∧ ek
4πr

dl

−

A11︷ ︸︸ ︷
φ,k (z)

∮
Γε

ei ∧ ek
4πr

dl

�� ��A.37

Term A11

φ,k (z)

∮
Γε

ei ∧ ek
4πr

dl = φ,k (z)

∫
θ

ei ∧ ek
4π

[r
r
∧ e3

]
dθ

�� ��A.38

By symmetry it is easy to check that

lim
ε→0

(
φ,k (z)

∫
θ

ei ∧ ek
4π

[r
r
∧ e3

]
dθ

)
−→ 0

�� ��A.39

so reordering the terms we have

1

2
φ,i (z)− φ,k (z)

∫
Γ

r,i
4πr2

[nk (z)− nk (x)] dΓ− φ,k (z)

∮
Γ

ei ∧ ek
4πr

dl+

∫
Γ

ni (x)

4πr3

[
φ (x)− φ (z)− φS

,k (z) rk
]

dΓ−
∫

Γ

3r,ir,n
4πr3

[φ (x)− φ (z)] dΓ+

φ (z)

∮
Γ

r ∧ ei
4πr3

dl =

∫
Γ

r,i
4πr2

[q (x)− q (z)] dΓ + nk (z) q (z)

∫
Γ

ni (x) r,k
4πr2

dΓ

�� ��A.40
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A.2.2 2D Domains

General expressions

r =‖ x− z ‖ ri = xi − zi

∂r

∂xi
= r,i =

ri
r

∂r,i
∂xj

= r,ij =
δij − r,ir,j

r

�� ��A.41

It is easy to verify that

∂[f(r)]

∂zi
= −∂[f(r)]

∂xi

�� ��A.42

Fundamental solution for 2D Laplace operator

w∗ = − 1

2π
log r

∂w∗

∂zi
=

r,i
2πr

∂2w∗

∂zi∂zj
=

2r,ir,j − δij
2πr2

�� ��A.43

q∗ =
∂w∗

∂xi
ni =

∂w∗

∂n
= − r,ini

4πr2
= − r,n

4πr2

∂q∗

∂zi
=

2r,ir,n − ni
2πr2

�� ��A.44

u-BIE

The standard boundary integral equation in the case of a scalar problem
can be written as

φ (z) +

∫
Γ

q∗ (x; z)φ (x) dΓ =

∫
Γ

w∗ (x; z) q (x) dΓ
�� ��A.45

where

q (x) =
∂φ (x)

∂n

�� ��A.46
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If we differentiate equation (A.45) along the z coordinate we obtain

φ,i (z) +

∫
Γ

∂q∗ (x; z)

∂zi
φ (x) dΓ =

∫
Γ

∂w∗ (x; z)

∂zi
q (x) dΓ

�� ��A.47

It must be pointed that it is assumed that z is a smooth boundary point in
the following steps in which the previous integral will be analysed.

Figure A.2: semicircle around a boundary point at z

The next step is to introduce a slight modification in the domain as shown
in figure (A.2) and apply equation (A.47) to this domain to get

φ,i (z) +

∫
(Γ−Γε)+Γε

∂q∗ (x; z)

∂zi
φ (x) dΓ =

∫
(Γ−Γε)+Γε

∂w∗ (x; z)

∂zi
q (x) dΓ

�� ��A.48

If we particularize the previous equation using equations (A.43), (A.44)
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φ,i (z) +

T1︷ ︸︸ ︷∫
Γε

ni (x)

2πr2
φ (x) dΓ−

T2︷ ︸︸ ︷∫
Γε

2r,ir,n
2πr2

φ (x) dΓ−

T3︷ ︸︸ ︷∫
Γε

r,i
2πr

q (x) dΓ +

T4︷ ︸︸ ︷∫
Γ−Γε

ni (x)

2πr2
φ (x) dΓ−

T5︷ ︸︸ ︷∫
Γ−Γε

2r,ir,n
2πr2

φ (x) dΓ−

T6︷ ︸︸ ︷∫
Γ−Γε

r,i
2πr

q (x) dΓ = 0

�� ��A.49

where the different integrals involved have been labelled in order to analyse
them sequentially.

In what follows the main variables φ (x) and q (x) will be approximated using
a Taylor expansion centered in z. Taking this into account we can write

φ (x) ≈ φ (z) +O (r)

φ (x) ≈ φ (z) + φ,k (z) r,k +O
(
r2
)

q (x) = φ,k (x)nk (x) ≈ φ,k (z)n,k (x) +O (r)

�� ��A.50

In the case of integrals over Γε it is straightforward to check that

• r is constant

• r,i = ni =⇒ r,n = 1

• dΓ = rdθ

taking this into account we can write
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Term T1 - T2

∫
Γε

ni (x)− 2r,ir,n
2πr2

φ (x) dΓ =

lim
ε→0
−→ 0︷ ︸︸ ︷∫

Γε

ni (x)− 2r,ir,n
2πr2

[φ (x)− φ (z)− φ,k (z) rk] dΓ

+

A1︷ ︸︸ ︷
φ (z)

∫
Γε

ni (x)− 2r,ir,n
2πr2

dΓ +

A2︷ ︸︸ ︷
φ,k (z)

∫
Γε

ni (x) r,k − 2r,ir,nr,k
2πr

dΓ �� ��A.51

If we analyse A1

Term A1

φ (z)

∫
Γε

ni (x)− 2r,ir,n
2πr2

dΓ = −φ (z)

∫
Γε

ni (x)

2πr2
dΓ

�� ��A.52

Taking into account that ni = r,i, the interval of integration of the semicircle
is θ [0→ π] and the components of the normal vector can be expressed as

n1 = cos θ n2 = sin θ
�� ��A.53

so A1 can be solved analytically.

−φ (z) lim
ε→0

(∫
θ

ni (x)

2πε2
εdθ

)
= −φ (z)

∫
θ

ni (x)

2πε
dθ = −

I1︷ ︸︸ ︷
φ (z)ni (z)

πε

�� ��A.54

At the same time

Term -T3
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−
∫

Γε

r,i
2πr

q (x) dΓ = −

lim
ε→0
−→ 0︷ ︸︸ ︷∫

Γε

r,i
2πr

[q (x)− φ,k (z)nk (x)] dΓ

−

A3︷ ︸︸ ︷
φ,k (z)

∫
Γε

r,ink (x)

2πr
dΓ

�� ��A.55

so if we combine A2 and A3 applying the previous remarks we get

Term A2 - A3

φ,k (z)

∫
Γε

ni (x) r,k − 2r,ir,nr,k − nk (x) r,i
2πr

dΓ = −φ,k (z)

∫
Γε

2nink
2πr

dΓ =

−φ,k (z) lim
ε→0

(∫
θ

2nink
2πε

εdθ

)
= −φ,k (z)

∫
θ

nink
π

dθ = −φ,k (z)
δik
2

= −φ,i (z)

2�� ��A.56

In the case of the integrals over the general boundary it is also necessary
to analyse the behaviour close to the singularity. In this case (assuming
smooth boundary) dΓ ∼ dr.

Term T4

∫
Γ−Γε

ni (x)

2πr2
φ (x) dΓ =

A4︷ ︸︸ ︷∫
Γ−Γε

ni (x)

2πr2
[φ (x)− φ (z)− φ,k (z) rk] dΓ

+

A5︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

ni (x)

2πr2
dΓ +

A6︷ ︸︸ ︷
φ,k (z)

∫
Γ−Γε

ni (x) rk
2πr2

dΓ

�� ��A.57

Remembering that
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∇Sφ = ∇φ− n (n∇φ) =⇒ φ,k = φS

,k + nkq
�� ��A.58

lim
ε→0

(∫
Γ−Γε

I (x; z) dΓ

)
= −
∫

Γ

I (x; z) dΓ
�� ��A.59

and taking into account that if I (x; z) is weakly singular in Γ

−
∫

Γ

I (x; z) dΓ =

∫
Γ

I (x; z) dΓ
�� ��A.60

Term A4 ∫
Γ−Γε

ni (x)

2πr2
[φ (x)− φ (z)− φ,k (z) rk] dΓ =

weakly singular︷ ︸︸ ︷∫
Γ

ni (x)

2πr2

[
φ (x)− φ (z)− φS

,k (z) rk
]

dΓ−

weakly singular︷ ︸︸ ︷
nk (z) q (z)

∫
Γ

ni (x) r,k
2πr

dΓ

�� ��A.61

where it has been considered that nkr,k → 0 for x→ z.

At the same time

Term -T5

−
∫

Γ−Γε

2r,ir,n
2πr2

φ (x) dΓ = −

weakly singular︷ ︸︸ ︷∫
Γ

2r,ir,n
2πr2

[φ (x)− φ (z)] dΓ

−

A7︷ ︸︸ ︷
φ (z)

∫
Γ−Γε

2r,ir,n
2πr2

dΓ

�� ��A.62

The next step is to combine A5 and A7 to get
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Term A5 - A7

φ (z)

∫
Γ−Γε

ni (x)− 2rir,n
2πr2

dΓ =

weakly singular︷ ︸︸ ︷
φ (z)

∫
Γ

ni (x)− ni (z)

∣∣∣∣drds

∣∣∣∣− 2r,ir,n

2πr2
dΓ +

A8︷ ︸︸ ︷
φ (z)ni (z)

∫
Γ−Γε

1

2πr2

∣∣∣∣drds

∣∣∣∣dΓ

�� ��A.63

where it has been considered that

ni (x) ≈ ni (z)− κ (z) ri +O (r)
2

r,n (x) ≈ −κ (z)

2
r +O (r)

2

dr

ds
≈ ±1 +O (r)

2

�� ��A.64

Term A8

When solving A8 some assumptions are introduced in order to simplify
the resultant equation. Formally A8 can be divided in two intervals of
integration. The first one close to the singularity Γc and the second one
including the remainder boundary Γr as it is shown in figure (A.3).

195



APPENDIX A. KERNELS AND LIMITS

Figure A.3: Decomposition of the boundary

So

φ (z)ni (z)

∫
Γ−Γε

1

2πr2

∣∣∣∣drds

∣∣∣∣ dΓ = φ (z)ni (z)

∫
Γc−Γε

1

2πr2

∣∣∣∣drds

∣∣∣∣dΓ+

φ (z)ni (z)

∫
Γr

1

2πr2

∣∣∣∣drds

∣∣∣∣ dΓ

�� ��A.65

In practice, the previous equation are not used in the general case, but close
to the singularity. In order to simplify it, the assumption Γc = Γ is used,
which is the actual implementation of the equation in a numerical method.

Then, the integral has been divided into two parts2 due to the absolute
value and can be solved analytically obtaining and unbounded term I1 which
can be cancelled with the corresponding term from equation (A.54). So

2The letters s,m and e refers, respectively to the starting, mid and end point of the
curve.
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φ (z)ni (z)

∫
Γ−Γε

1

2πr2

∣∣∣∣drds

∣∣∣∣ dΓ = φ (z)ni (z)

∣∣∣∣drds

∣∣∣∣ < 0︷ ︸︸ ︷∫ s

m

1

2πr2
dr+

φ (z)ni (z)

∣∣∣∣drds

∣∣∣∣ > 0︷ ︸︸ ︷∫ e

m

1

2πr2
dr = −φ (z)ni (z)

2π

[
1

rs
+

1

re

]
+

I1︷ ︸︸ ︷
φ (z)ni (z)

πε

�� ��A.66

If we analyse the last term

Term -T6

−
∫

Γ−Γε

r,i
2πr

q (x) dΓ = −

A9︷ ︸︸ ︷∫
Γ

r,i
2πr

[q (x)− φ,k (z)nk (x)] dΓ

−

A10︷ ︸︸ ︷
φ,k (z)

∫
Γ−Γε

r,ink (x)

2πr
dΓ

�� ��A.67

Term -A9

−
∫

Γ

r,i
2πr

[q (x)− φ,k (z)nk (x)] dΓ = −

weakly singular︷ ︸︸ ︷∫
Γ

r,i
2πr

[q (x)− q (z)] dΓ

−

weakly singular︷ ︸︸ ︷
φ,k (z)

∫
Γ

r,i
2πr

[nk (z)− nk (x)] dΓ

�� ��A.68

and if we combine A8 and A10
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Term A6 - A10

φ,k (z)

∫
Γ−Γε

r,kni (x)− r,ink (x)

2πr
dΓ = εikφ,k (z)

∫
Γ−Γε

r,2n1 − r,1n2 (x)

2πr
dΓ =

−εikφ,k (z)

∫
Γ−Γε

r,ltl (x)

2πr
dΓ = −εikφ,k (z)

∫
Γ−Γε

∇r

2π
dl =

−εikφ,k (z)

∫ m

s

∇r

2π
dl− εikφ,k (z)

∫ e

m

∇r

2π
dl =

−εikφ,k (z)

2π
[log (re)− log (rs)] �� ��A.69

where the Levi-civita symbol εij has been introduced to compact the equation
and the procedure used with the A8 term has been followed again.

So reordering the terms we gete

1

2
φ,i (z)− φ,k (z)

∫
Γ

r,i
2πr

[nk (z)− nk (x)] dΓ− εikφ,k (z)

2π
[log (re)− log (rs)] +

∫
Γ

ni (x)

2πr2

[
φ (x)− φ (z)− φS

,k (z) rk
]

dΓ−
∫

Γ

2r,ir,n
2πr2

[φ (x)− φ (z)] dΓ+

φ (z)

∫
Γ

ni (x)− ni (z)

∣∣∣∣drds

∣∣∣∣− 2r,ir,n

2πr2
dΓ− φ (z)ni (z)

2π

[
1

rs
+

1

re

]
=

∫
Γ

r,i
2πr

[q (x)− q (z)] dΓ + nk (z) q (z)

∫
Γ

ni (x) r,k
2πr

dΓ �� ��A.70
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