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Enrique González Maŕın Dr. Andrés Godoy Medina

Dr. Francisco Javier Garćıa Ruiz
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Tenured Professor of Electronics

I





To Laura

III





Why is there something rather than nothing?

The Principles of Nature and Grace, Based on Reason

Gottfried Wilhelm Leibniz (1646-1716)

V





Acknowledgements

I would like to acknowledge in these few lines a number of people who helped me

during my PhD work, and to whom I am indebted.

Foremost, I would like to express my most sincere gratitude to my advisors Prof.
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enthusiastic mathematical talks. During this time I shared the office with Prof. Diego

P. Morales Santos. It is priceless that your officemate is always in a good mood, ready

to encourage you and to aid you always but also to detach when you need it. I wish to
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Abstract

Nanoelectronics Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Modeling and Simulation of Semiconductor Nanowires for Future

Technology Nodes

by Enrique González Maŕın

The main purpose of this PhD Thesis is the analytical and numerical study of Mul-

tiple Gate (MuG) architectures and III-V compound semiconductors as technological

alternatives to continue the downscaling process of the MOSFET beyond the 22nm

node.

To do so, electrostatic and transport simulators, able to solve the Schrödinger,

Poisson and Boltzmann equations for a 1D electron gas, have been implemented. The

electrostatic solver is based on a non-parabolic effective mass approximation being able

to deal with arbitrary geometries, materials and orientations, to achieve the charge and

potential distribution in the 2D cross-section of a MuG structure. The transport solver

linearizes the 1D Boltzmann equation using the momentum relaxation time approxima-

tion (MRT), solving it by a rigorous implicit approach not common in the literature. It

includes novel models for surface roughness, coulomb dispersion, bulk phonons, polar

optical phonons and alloy disorder scattering mechanisms, including static dielectric

screening, constituting a state-of-the-art mobility simulator.

In addition, a fully analytical model able to accurately describe the electrostatic

behavior of III-V cylindrical NWs is developed. It is, to the best of our knowledge, the

most complete analytical description of the charge and potential distributions in III-V

NWs presented in the literature up-to-date. The model provides analytical expressions

for the calculation of the subband energies and the wavefunctions of the Γ-valley, taking

into account the wavefunction penetration into the gate insulator and the effective



mass discontinuity in the semiconductor-insulator interface, Fermi-Dirac statistics, two-

dimensional confinement of the carriers and non-parabolic effects. It also allows the

inclusion of arbitrary analytical profiles of interfacial states.

Using the numerical and analytical approaches, several relevant electrostatic and

transport studies of Trigates and NWs are accomplished. These two structures are

specially significant as they constitute the most consolidated architectures among MuG

transistor devices. Trigate FET introduces the fewest changes to conventional planar

transistor processing, enhancing the electrostatic control of the channel. NWs are the

ultimate evolution of the MuG architectures providing the best suppression of short

channel effects. Thus, our analytical approach allows to study the influence of the

device size and material type on the inversion charge, the drain current, the gate

capacitance and the threshold voltage of III-V NWs. To complete the analytical study,

the numerical solvers are used to elucidate the role of the L-valley on the electrostatic

and transport properties, concluding in a non-negligible influence as the NW diameter

is reduced. The numerical approach is also used to compare the performance of Si

and III-V Trigate structures. The impact of the fin width and the back gate bias is

analyzed, showing that a) the mobility enhance observed for III-V Trigates is degraded

when the width is reduced; b) the back gate bias control of the threshold voltage directly

affects to the mobility. Finally the surface roughness is revealed as the main scattering

mechanism limiting the mobility for the big majority of the sizes and materials at high

inversion charges, being the mobility behavior at low inversion charges more complex

and very dependent on size and materials.

4 Prologue



Resumen

Nanoelectronics Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Modeling and Simulation of Semiconductor Nanowires for Future

Technology Nodes

by Enrique González Maŕın

El principal objetivo de esta Tesis de Doctorado es el estudio anaĺıtico y numérico

de arquitecturas multipuerta, MuG del inglés Multiple Gate, y compuestos semicon-

ductores III-V, como alternativas tecnológicas para continuar el proceso de escalado

del transistor MOSFET más allá del nodo tecnológico de 22nm.

Con este objetivo, se han implementado simuladores electrostáticos y de transporte

capaces de resolver las ecuaciones de Schrödinger, Poisson y Boltzmann en un gas de

electrones unidimensional. El simulador electrostático está basado en la aproximación

de masa efectiva no parábolica, siendo capaz de tratar con geometŕıas, materiales y ori-

entaciones arbitrarias para obtener las distribuciones de carga y potencial en la sección

transversal bidimensional de la estructura MuG. El simulador de transporte linealiza

la ecuación de transporte unidimensional de Boltzmann, usando la aproximación de

tiempo de relajación del momento, MRT del inglés Momentum Relaxation Time, re-

solviendo el sistema resultante de manera impĺıcta. Además incluye modelos novedosos

de dispersión debida a rugosidad superficial, cargas coulombianas, fonones bulk, fonones

ópticos polares y desorden por aleación.

Adicionalmente, se ha desarrollado un modelo completamente anaĺıtico que de-

scribe el comportamiento electrostático de nanohilos, NW del inglés nanowire. Es,

hasta donde alcanza nuestro conociemiento, la descripción anaĺıtica más completa de

la distribución de la carga y el potencial en NWs ciĺındricos de materiales III-V pre-

sentada en la literatura hasta la fecha. El modelo proporciona expresiones anaĺıticas



para calcular la enerǵıa de las subbandas y las funciones de onda del valle Γ, teniendo

en cuenta la penetración de la función de onda en el aislante y la discontinuidad en la

masa efectiva en la interfaz entre el aislante y el semiconductor, aśı como estad́ıstica de

Fermi-Dirac, confinamiento bidimensional de los portadores y efectos no parabólicos.

También permite incluir un perfil arbitrario de estados en la interfaz.

Haciendo uso de las aproximaciones numérica y anaĺıtica, se realizan varios estu-

dios relevantes de carácter electrostático y del transporte en Trigates y NWs. Estas dos

estructuras son especialmente siginificativas puesto que constituyen las arquitecturas

MuG más consolidadas. Los Trigate introducen pocos cambios en el proceso de fab-

ricación planar tradicional, al mismo tiempo que incrementan el control electrostático

del canal. Los NWs son la evolución última de las arquitecturas MuG, proveyendo de

la mejor supresión de los efectos de canal corto. De esta manera, usando el enfoque

anaĺıtico se estudia la influencia del tamaño del dispositivo y el tipo de material en la

carga en inversión, la corriente de dreandor, la capacidad de puerta y la tensión umbral

en NWs III-V. Para completar el estudio anaĺıtico, los simuladores numéricos desarrol-

lados se usan para comprender el papel del valle L en las propiedades electrostáticas

y de transporte, concluyendo que tiene un influencia no despreciable a medida que el

tamaño del dispositivo se reduce. El enfoque numérico se usa también para comparar

el desempeño de estructuras Trigate de Si y materiales III-V. El impacto de la anchura

del Trigate y de la puerta trasera es analizada, mostrando que: a) el incremento de

la movilidad observado para Trigates III-V se degrada cuando la anchura se reduce

y b) el control de la puerta trasera sobre la tensión umbral afecta directamente a la

movilidad. Finalmente, la rugosidad superficial se revela como el principal mecanismo

de dispersión limitador de la movilidad para la gran mayoŕıa de tamaños y materi-

ales a alto campo, siendo su comportamiento a bajo campo más complicado y muy

dependiente del tamaño y material.
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Chapter 1

Introduction

1.1 A success story

The story of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and

the integrated circuits (IC), is probably the most successful example of the curiosity,

passion and effort characteristics of the human being nature. There is not such a

comparable level of progress in a such short period of time in any other human activity

during the history. In the brief lapse of time which goes from the appearance of the first

implementation of the MOSFET by D. Kahng and M. Atalla [1] to nowadays, MOS

technology has augmented its performance by a factor 106 [2]. If we look a little bit

further in the past, to the precursors of the MOSFET, the vacuum tubes, or the Bipolar

Juntion Transistor invented by J. Bardeen, W. Brattain and W. Shockley [3, 4], the

evolution is even more astonishing. No other human development holds the comparison.

The workhorse for the increase of the MOSFET performance has been the down-

scaling of the transistor dimensions. Guided by the Dennard rules [5], the size of the

MOSFET has been reduced from 20µm to 22nm in the last 45 years. That scaling of

the transistor dimensions had one main objective: the reduction of the capacitances

associated to the MOSFET, and consequently the increase of its switching time and

of the IC speed [6]. In addition, the reduction of the transistor area had two aside

consequences: the reduction of the switching energy and the increase in the number of

transistors per chip (which also contribute to increase the IC performance).

The continuous progress in the transistor scaling was fed by the sustained economic

progress of the last quarter of the twenty century. In the context of the capitalism



1.2. Hurdles in the way

market economy, the electronic revolution offered novel goods to be consumed, which

rapidly became first order necessities. In the last decade of the past century the ex-

plosion of the information technology (IT), Internet and the global society continued

pushing the revolution. In a kind of virtuous circle, we can state that the aforemen-

tioned factors are as much causes as consequences of the revolution. Now, the IT

market is perfectly consolidated, and the electronic devices occupy every place in our

life.

( c)

(a)

(b)

Figure 1.1: The market demand is secured by: a) the diversity of
applications, b) the creation of new necessities, c) the voracity of IT
consumers.

1.2 Hurdles in the way

While the market demand is secured by: 1) the diversity of applications, 2) the cre-

ation of new necessities, and 3) the voracity of IT consumers, the downscaling of the

MOSFET is reaching the end of the road [7]. It is not the first time that we face this

challenge, although previous statements on the downscaling halt were technological:

in the seventies the spatial resolution of the IC was thought to be determined by the

lithography wavelength [8], [9]; while in the early eighties direct tunneling through the

SiO2 gate insulator was asserted to lead to a disastrous leakage [10], [11]. Nevertheless,

8 Prologue



Chapter 1. Introduction

the present scenario points out that we are approaching to unavoidable physical limits.

The smallest of these limits is the Si interatomic distance (∼ 0.3nm) [12]. Probably

before that, at transistor channel lengths around 3nm, the direct drain to source tunnel

will distort the MOSFET operation [13]. Whether the limit is 3nm or 0.3nm, the end

is not far as the 22nm technology node is now in production.

An evidence of the proximity of the end is the continuous relentless of the scaling

process. The shrink rate of the gate length, till the last technological nodes, was

0.7 per 3 years in average, according to Moore’s law [14]. For the future nodes it

is predicted to move to 0.85 per 3 years [6]. This deceleration has been reflected

by the International Technology Roadmad for Semiconductor (ITRS) [15] which has

successively relaxed their predictions for the future technology nodes, delaying their

appearance. According to Prof. Iwai, that deceleration gives us 4 or 5 generations

(in the most optimistic case up to 7 more generations) and around 20-25 years of

continued scaling [16]. What will be the substitute once the end of the road is reached

is an open question. 2D materials: as graphene and molybdenum disulfide [17, 18];

Carbon Nanotubes (CNT) [19], molecular electronics [20] or single-atom transistors

[21] are good positioned alternatives. But there is still a lot of work to do to reach the

limit and this manuscript works out on some of the most promising alternatives.

To be able to continue the MOSFET scaling beyond the 22nm technology node, it

is worth to know why has the scaling process slowed down. Actually, it is a multiple

answer question. Some main reasons are [22–30]:

(a) The increase in the power density of the IC, which leads to critical situations related

to both the heat evacuation and the energy consumption.

(b) The short channel effects (SCEs) which result in an increased drain control of the

channel in detriment of the gate control.

(c) The extreme reduction of the ON current, Ion and of the ON/OFF current ratio

Ion/Ioff.

(d) Technological issues concerning the fabrication process which lead to non-viable

device variabilities.

The aforementioned reasons are actually quite interrelated. Thus, the increase of

the IC power density is the result of the necessity of keeping a reasonable Ion/Ioff ratio,

which imply the non-observance of the Dennard’s scaling rules. According to these
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scaling rules, if the device dimensions are reduced in a factor, K, then so must be the

IC supply voltage. That ensures a constant IC power density at the same time that

guarantees a K factor increment in the IC speed [5].

However, the reduction of the supply voltage has the side effect of strongly degrading

the Ion/Ioff ratio. Thus, the reduction of the supply voltage by a factor 1/K implies

an equal reduction of Ion. That would not affect the Ion/Ioff ratio as long as Ioff was

reduced in the same amount. But, instead of decreasing with reducing supply voltage,

Ioff increases exponentially (assuming that the threshold voltage, VT, is also decreased

to keep some symmetry in the switch operation) [13, 31].

The rate of increase in Ioff with reducing VT is controlled by the sub-treshold swing,

SS, which at room temperature under ideal conditions cannot be lower than 60mV/dec.

Best MOSFET implementations cannot bring SS < 70 − 80mV/dec which makes the

scenario even worse [32, 33]. One consequence of the trade-off between IC power density

and Ion/Ioff ratio was the alteration of the main contributions to the IC consumed

power, becoming the passive power density dominant in the last nodes[7].

The detention of the supply voltage reduction has not avoided anyway the degra-

dation of the Ion current with the MOSFET scaling. The higher vertical electric field

which results from the size reduction and constant supply voltage has leaded to a strong

degradation of the mobility. This is pointed out as the main reason for the low current

of small MOSFET implemented up to now [34, 35].

The increase of the IC power density is not the unique consequence of the supply

voltage scaling halt as SCEs are also powered. Among them, Drain Induced Barrier

Lowering (DIBL) becomes dominant [36]. For the ON state, DIBL reduces the gate

control of the channel and affects to the circuit performance, reducing severely the IC

speed. For the OFF state, DIBL can yield a punch-trough between the source and

the drain, increasing the leakage current and therefore the passive power density. One

classical way to reinforce the gate control over the channel was scaling the gate insulator

thickness [5, 37, 38]. The main difficulty with the insulator scaling is the increase of

the gate leakage current which increases the dissipated power density. The limit for the

scaling in the SiO2 thickness is around 1nm, which correspond to 3 atomic layers.

The technological issues related to the fabrication processes are not a minor ques-

tion. As the devices get smaller, the fabrication process becomes more complex. The

development of the technology requires more time and inversion, reducing the number

of companies available to compete in the process. A good example of that is the Ex-

10 Prologue



Chapter 1. Introduction

treme Ultraviolet Lithography [39]. Furthermore, the tiny size of the devices makes

them sensitive to problems almost obliterated in the past. Thus, lithography and

etch patterning-induced fluctuations can modify the device dimensions non-negligibly

[40–42], compromising its reproducibility. Oxide recess or metal gate granularity are

two additional problems [41, 42]. In bulk MOSFETs random dopants fluctuations has

revealed as the major source of variability [43].

1.3 Present and future boosters

Once the main problems have been exposed, it is worth to focus on the possible solutions

to keep the miniaturization process in the future generations. As the problems did not

appear all of a sudden, it is interesting to have a brief look on the solutions that have

moved us to the present node.

Till three or four generations ago there was no necessity to introduce really strong

innovations in the MOSFETs design. Of course, the miniaturization process was labo-

rious, but the rate of novelties introduced in the last decade exceeds a lot those needed

in the former thirty years. For that reason, we will focus on the innovations introduced

on the three nodes previous to the present [44].

The first novelty was the strain technology. The strain was adopted in the 90nm

technology node to increase the Si mobility and therefore Ion [45]. This technology

consists on stressing the Si lattice, by stretching or compressing it, resulting in a defor-

mation of the Si band-structure. Under the proper conditions this deformation increases

electron and hole mobilities [46, 47] The strain can be applied in the plane of current

flow or perpendicular to it. It can be local or global and uniaxial or biaxial (with equal

or distinct characteristics in each axis). The orientation also plays a role. Hence, there

is a big amount of possible combinations to apply the strain, although not all of them

result in higher mobilities [48].

The second novelty was the inclusion of high-κ oxides as the gate insulator. They

were adopted to improve the gate control of the channel while keeping reasonable insu-

lator thicks and reduced gate leakage currents [49, 50]. High-κ oxides were introduced

in the 45nm technology node firstly as a stack of HfO2-SiO2[51, 52]. There, SiO2 was

used to guarantee a good interface with Si. The lack of a good interface is one of the

main drawbacks of high-k materials, and it results in a high density of traps. Extensive

research is still being done to improve the interface, allowing a direct contact of the
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high-κ and Si, with interesting results when La2O3 is used achieving equivalent oxide

thickness (EOT) of 0.48nm [53].

The third novelty was the Silicon-On-Insulator technology (SOI) [54]. SOI is based

on the introduction of a buried insulator layer in the Si substrate. The insulator reduces

the degradation due to DIBL and punch-through. In addition, SOI reduces the effect of

ionizing radiations and the parasitic capacitance with respect to bulk technology [55].

Depending on the thickness of the Si layer which stands on the insulator, the semi-

conductor is partially or fully depleted, resulting in PD-SOI and FD-SOI technologies.

The SOI compatibility with the traditional fabrication processes resulted in a rapid

consolidation being extensively used in industry [56] as well as in research [57]. The

main drawback of SOI is the poor heat evacuation of the insulator layer [58], which

could discourage its adoption in the most aggressive phases of the downscaling process.

Other problem is the higher price of the SOI wafer compared with the bulk Silicon

counterpart [59].

Strain Strain 2  Gen High-k High- 2  Genk

90nm 65nm 45nm 32nm

nd nd

Figure 1.2: Main innovations introduced on the four nodes previous
to the present. After [60].

For the sake of brevity, we have mentioned here just the three more relevant nov-

elties. Nevertheless many others have been developed: elevated source and drain,

superhalo doping profiles, integration of new silicides and metal materials to form the

contacts, shallow trench isolation, work-function engineering, etc.
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In spite of the outstanding nature of these innovations, the gravity of the problems

makes them not enough to keep the downscaling process. For that reason some new

alternatives must be found. This does not mean that the aforementioned solutions are

not going to be used in the future, but they should be combined with other innovations.

The main question is: what will be these new innovations? The answer to that question

is not simple. There are several technological alternatives which have being presented

as potential solutions. Two of the most promising are III-V compound semiconductors

and Multiple Gate (MuG) architectures [6, 61]. The study of the combination of both

of them is the main goal of this work.

III-V materials are a well known player in the microelectronics industry. Their

properties make them specially appropriate for optical applications, being used in the

implementation of lasers, light-emitting diodes or light detectors. In addition, they are

supported by a well consolidated manufacturing industry, which provides big volumes

of electronic circuits for a demanding and diverse market, going from smartphones and

domestic entertainment to fiber-optics and satellite communications [61].

What makes III-V materials a promising alternative to Si is their potentiality to

increase Ion. That would allow to reduce the supply voltage (and therefore the IC

power density consumption) keeping the Ion/Ioff ratio, or increase the IC performance

without augmenting the supply voltage. Moreover, this property is not altered by the

downscaling of the channel. The increase of Ion is explained attending to the higher

velocity, v, of the carriers in III-V materials. As the channel length is downscaled, the

physical processes which limit v vary. Thus, for not too short channel lengths (& 10nm

according to Ref. [62]), the carrier transport is diffusive, due to the carrier scattering,

while for ultrashort channel lengths the transport is expected to be ballistic [63–65]. For

the first case, v ∝ µ, where µ is the mobility, while for the second case v = vinj, being

vinj the injection velocity of the electron at the source. In between the two regimes

the transport is called quasi-ballistic and v = vinj(1 − r)/(1 + r) being r ∝ µ a back

scattering rate near to the source edge [64, 65]. Therefore, high µ and vinj must be

guaranteed to keep high Ion regardless of the channel length. III-V materials fulfill the

requirement at least for electrons.

The cause of the main advantage of III-V materials (their lower effective mass in the

Γ-valley) is also one of their possible limitations, as Ion is proportional to the carrier

concentration, Ni, which is degraded due to the density of states bottleneck [66]. A

reasonable trade-off between carrier concentration and carrier velocity is the sought

solution. There are other challenges concerning III-V materials which should not be
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obliterated: 1) The outstanding electron transport properties of these materials have

not been observed for holes. Consequently, the implementation of CMOS technology

would imply the use of different materials for NMOS and PMOS [? ]. 2) Their high

permittivity is detrimental for SCEs. 3) Technological issues such as the use of an

appropriate gate insulator, or the co-integration on the Si fabrication process are not

minor issues [61]. In spite of the aforementioned matters, III-V materials are addressed

as one of the best positioned future technology booster by the ITRS [15].

As for MuG architectures, they are the most consolidated alternative proposed by

academy and industry to continue the downscaling process [67, 68]. In their first 40

years of existence, the MOSFET design did not change very much [60]. The difficulties

which arose with the downscaling process were faced under different approaches, but

the MOSFET architecture for market oriented devices remained invariant. Of course,

there were extensive research on the idea of augmenting the gate area, and devices with

two or more gates were proposed [69]. That era was over in the 22nm technology node

with the inclusion of MuG architectures in front-end products [60].

(a) (b) (c )

(d) (e) (f)

Figure 1.3: TEM images of different MuG architectures from
academia: (a) FinFET from the University of California Berkeley [70],
(b) Array of 100 fin structures from the Massachusetts Institute of
Technology [71] (c) Inverter structure composed of four parallel stacks
each with 4 Si NWs from the École Polytechnique Fédérale de Lau-
sanne [72]; and from industry (d) Si Trigates from Intelr, [60] (e) Ring
oscillator made of Si NWs from IBMr, [73] (f) FinFET from TSMCr

[74]

The main idea behind the MuG architecture is increasing the gate electrostatic

control. To do it, the MOSFET design is changed from planar, with the channel

forming a 2D layer located below the gate, to 3D, with a vertical channel and the
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gate, partially or completely, surrounding it. Depending on the region of the channel

surrounded by the gate, the MOSFET is renamed as FinFET, in which two opposite

faces of the channel are covered by the gate [75, 76], Trigate when three faces of the

channel are covered by the gate [77, 78], and gate all around (GAA) or nanowires (NW)

[79, 80] when the gate completely surrounds the channel. Other geometries such as the

Ω FET [81] or the Π FET [82] are intermediate structures between Trigate and GAA,

with some penetration of the gate into the buried insulator. We have intentionally

omitted in the previous enumeration the planar double gate (DG) MOSFET, in which

a back gate is introduced under the channel. Strictly speaking it is a MuG structure,

but it does not share with the rest of the MuG structures a vertical channel and can

be interpreted as a derivative of the SOI technology [83, 84]. Since the gate control on

the channel is increased, several beneficial effect appears such as: 1) DIBL is reduced,

2) SS is decreased, being possible to achieve almost ideal values of 60mV/dec [36] and

3) punch-through and leakage current are almost suppressed [85].

Moreover, the fabrication process of MuG devices is CMOS compatible, and the

same boosters proposed for the CMOS technology can be applied here: high-κ oxides,

strain, SOI, epitaxial grew or metal silicide for the source and drain contacts.

1.4 Objectives

As the dimensions of the transistor have entered in the sub-50nm regime the down-

scaling process has slowed down. The aggressive reduction of the device size without

a proper supply voltage scaling has enhanced the short channel effects and the power

consumption, seriously compromising its performance. The solutions to that prob-

lems need to be assertive and new paradigms in the MOSFET structure and material

composition are being addressed.

This PhD Thesis is devoted to the study of two of the most promising alterna-

tives to continue the MOSFET downscaling process beyond the 22nm technology node:

Multiple Gate architectures and III-V compounds semiconductors. Multiple Gate ar-

chitectures increase the gate control on the channel resulting in reduced short channel

effects. III-V materials have the potentiality to increase the ON current, allowing to

reduce the supply voltage and the power consumption while keeping the device perfor-

mance. This work aims areS:

• The analytical and numerical study of the behavior of III-V nanowires, focused
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on the influence of the device size and material type on the inversion charge, the

gate capacitance and the threshold voltage and the I-V characteristic.

• The numerical study of Trigate geometries made of III-V semiconductors and

their comparison with their Silicon counterparts.

• The study of the electron mobility in III-V and Si NWs and Trigates in the dif-

fusive regime including the most relevant scattering mechanisms which influence

the mobility.

1.5 Methodology

Once the objectives have been established, a brief description of the methodology fol-

lowed in this work is presented. The study of MuG architectures and III-V compound

semiconductors is divided in two parts. The first one is consigned to the electrostatics

of these devices while the second comprises the transport issues. Both parts have been

worked out according to the following scheme:

• First the theoretical background necessary for the numerical and analytical res-

olution of the 2D Schrödinger and Poisson equations is summarized in Chapter

2.

• In Chapter 3, the 2D electrostatic simulator is described and its main charac-

teristics (arbitrary geometries, orientation effects, non-parabolic bands, inclusion

of interface charges, etc.) are highlighted. Later, in Chapter 4 the numerical

solver is validated using experimental data, and used to study several relevant

electrostatic magnitudes of Trigates and NWs such as: a) the population of satel-

lite valleys of different III-V semiconductor NWs, b) the performance of III-V

and SOI Trigates c) the effect of back gate bias on the threshold voltage of SOI

Trigates.

• The analytical model for the potential, inversion charge and drain current of III-V

cylindrical NWs is proposed in Chapter 5. To develop the model, the cylindrical

symmetry of the device and the isotropic effective mass of Γ valley is taken into

consideration to solve the Poisson and Schrödinger equations in polar coordinates.

The results of this model are used to elaborate physically based analytical models

for the gate capacitance and the threshold voltage in Chapter 6. Comparisons
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with numerical simulations are accomplished for different materials, sizes and

applied gate voltages.

• In Chapter 7 the necessary background on the Boltzmann Transport Equation

(BTE) in a 1D electron gas is set, spotlighting those issues which need clear

understanding. Later the linearization of the BTE, which is used for its solution,

is presented, showing the implicit approach of the resulting equation system. The

diffusive transport paradigm is completed in Chapter 8 with the calculation of

the matrix elements in a 1D electron gas due to five different scattering processes:

surface roughness, coulomb dispersion, bulk phonons (optical and acoustic), polar

optical phonons and alloy disorder.

• Making use of the transport solver, in Chapter ?? the electron mobility of Si and

III-V Trigates and NWs is studied. Specifically, the electron mobility of InAs

NWs, and its dependence on the NW diameter, carrier density and population

of the Γ, L and X valleys is analyzed. The mobility behavior of Si and InGaAs

Trigate’s architectures of different widths is compared; and the influence of the

back gate bias on the transport properties of SOI Trigates is discussed.

• The mathematical details are included in the Appendixes A-E-

• Finally, the main conclusions of the work are present in Chapter 10.
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Chapter 2

Electrostatics of nanowires:

background

2.1 Introduction

The rest of the Chapter is organized as follows. In Section 2.2 we present the indepen-

dent particle Schrödinger equation, and we summarize the main assumptions needed to

apply equivalent Hamiltonian approximation. Section 2.3 goes on the simplification of

the Schrödinger equation presenting the effective mass approximation particularized for

parabolic bands. In Section, 2.4 the Poisson equation is introduced. Both, Schrödinger

and Poisson equations compose the physical background for the solution of the electro-

static problems studied in this part of the manuscript. In Section 2.5 we particularize

both equations for 2D confined structures. In Section 2.6 we present a non-parabolic

correction of the parabolic Schrödinger equation introduced in Section 2.3. Section 2.7

remind the density of states concept in a 1D electron gas, bringing the expression for

the quantum electron concentration. Finally, Section ?? sums up the main conclusions

of this Chapter.

2.2 Independent particle Schrödinger equation

The electron behavior in a semiconductor nano-device is governed by the laws of quan-

tum mechanics. Its position, energy and momentum are probabilistic functions deter-
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mined by the independent particle Schrödinger equation [86]:

ı~
∂

∂t
Ξ(r, t) = − ~

2

2m0
∇2Ξ(r, t) + Φ(r, t)Ξ(r, t) (2.1)

where ı is the imaginary unit, ~ = h/2π, h is the Planck constant, r is the position

vector, t is the time, Ξ(r, t) is the electron wavefunction, m0 is the electron mass and

Φ(r, t) is the electron potential energy due to the average force exerted by the rest of

the electrons and atoms nuclei as well as by the external forces.

Equation (2.1) can be analytically solved only for simple idealized problems which

is not case of our interest. Nevertheless, there are several approaches that may simplify

Eq. (2.1).

In this manuscript we make use of the equivalent Hamiltonian and the effective mass

(EMA) approximations, which have been proven as a accurate and efficient approaches

[? ]. A rigorous and detailed derivation of equivalent Hamiltonian approximation and

EMA can be found in several textbooks [86], [87], [88]. Here we just spotlight the

main assumptions of these approaches, presenting the necessary background for the

numerical and analytical solution of EMA performed in Chapters 3 and 5.

First, let us consider Eq. (2.1) in absence of external forces. Then, Φ(r, t) = φc(r)

where φc(r) is the electron potential energy due to the semiconductor crystal lattice

(comprised by other electrons and atoms nuclei). φc(r) is assumed to be static and

periodic following the spatial periodicity of the crystal.

For a static potential energy, Eq. (2.1) can be simplified by writing the electron

wavefunction as:

Ξ(r, t) = Ξ(r)ζ(t) (2.2)

Substituting Eq. (2.2) into Eq. (2.1) and multiplying it by 1/Ξ(r)ζ(t):

ı~
1

ζ(t)

∂

∂t
ζ(t) = − ~

2

2m0

1

Ξ(r)
∇2Ξ(r) + φc(r) (2.3)

So after applying separation of variables we get

ı~
1

ζ(t)

∂

∂t
ζ(t) = E −→ı~

∂

∂t
ζ(t) = Eζ(t) (2.4)

− ~
2

2m0

1

Ξ(r)
∇2Ξ(r) + φc(r) = E −→

[

− ~
2

2mo
∇2 + φc(r)

]

Ξ(r) = EΞ(r) (2.5)
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where the separation constant, E, is actually the electron energy [? ]. Equation (2.4)

results into:

ζ(t) = ζ(0)e−ı
E
~
t

(2.6)

Equation (2.5) is an eigenvalue problem where E and Ξ are the eigenvalues and eigen-

functions of the Hamiltonian (Hc). Therefore, they can be renamed as Ei and Ξi,

where i is the solution index.

The Bloch theorem imposes the periodicity of the electron wavefunction which is

given by [86]:

Ξi(r,k) =
1√
Ω
eıkrui(r, r) (2.7)

where ui(r,k) is the so-called Bloch function and is directly related to the lattice

potential φc(r) []; Ω is the volume of the semiconductor unit cell and k is the electron

wavevector.

The periodicity of the crystal lattice and the electron wavefunction leads to a dis-

cretization of the reciprocal wavevector space. Therefore, there is a solution of Eq. (2.5)

for each k value, but if the crystal is large enough k can be assumed as continuous and

Ei = Ei(k) is a band structure. Moreover Ei(k) can be demonstrated to be periodic

and therefore it study can be restricted to primitive cell of the wave-vector space.

The determination of the energy band structure has been accomplished in the lit-

erature for most semiconductors by approaches such as the pseudo-potential method

[89], the k ·p method [], the tight binding [? ] method or ab-initio approaches [90]. For

example, Fig. 2.1(a) shows the GaAs band structure as a function of the wave-vector,

obtained by the pseudo-potential method by Chelikowsky et al. in Ref [91]. The wave-

vector space can be reduced, using the crystal symmetry, to the irreducible wedge of

the Brillouin zone showed for the zinc-blende structure in Fig. 2.1(b).

When the crystal lattice potential is perturbed by the lattice vibrations, impurities

or external forces, the Hamiltonian of the Schrödinger equation can be written as

perturbation of the crystal lattice Hamiltonian: Hc + φ(r), where φ(r) is the electron

potential energy due to the external forces. If φ(r) is slowly varying function of the

position and the branches of the band structure are enough separated (as it is the case

for the first branch of the conduction band in Fig. 2.1), the Schrödinger equation can

be written for the i-th branch of the dispersion relation as:

ı~
∂

∂t
Ξ(r) = [Ei(−ı∇) + φ(r, t)]Ξ(r, t) (2.8)
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Figure 2.1: (a) GaAs energy band structure after Ref. [92]. The
conduction band minimum energy points are labeled by Γ6, X6 and
L6. (b) Brillouin zone, irreducible wedge and high symmetry points
of zinc-blende structure.

where φ(r) accounts only for the potential energy due to the external forces and Ei is

the energy in the i-th branch obtained in the unperturbed problem. The wavefunctions

solution of Eq. (2.8) are obviously different from those obtained for Eq. (2.1). Equation

(2.8) is known as the independent particle equivalent Hamiltonian Schrödinger equation

[? ].

2.3 Effective Mass approximation

In most practical cases, just the lower Ei(k) states of the conduction band are occupied

by electrons. Thus we can focus on the minimum on the minimum of the Ei(k) branches

(labeled as Γ6, X6 and L6 in Fig. 2.1). Near to the minimum the Bloch function

dependence on k can be neglected [? ] and Eq. (2.8) can be further simplified,

resulting (using the separation of variables from the previous Section) into:

[Ei(−ı∇) + φ(r)]eıkorΨ(r) = Ene
ıkorΨ(r) (2.9)

where ko is the wavevector corresponding to the minimum, En is the eigenvalue of

the left hand side Hamiltonian, and Ψ is an envelope function which is related to the
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wavefunction Ξ of Eq. (2.1) as [86]:

Ξ(r, t) = u(r, ko)e
−ıEnt

~ eıkorΨ(r) (2.10)

In other words the envelope function Ψ is a softy approximation of the electron wave-

function Ξ where the potential due to the crystal lattice is somehow averaged [? ], [?

]. Anyway, Ψ is accurate enough to describe the electron behavior in a vast majority

of nanodevices studies (including those contained in this manuscript).

In Eq. (2.9), the potential due to the crystal lattice φc is not explicitly present.

Its influence is modeled through the energy branch Ei(k) which can be expanded into

Taylor series (up to second order) around, ko = (ko1, ko2, ko3) as:

Ei(k) = Ei(ko)+
∑

j

∣

∣

∣

∣

∂E

∂kj

∣

∣

∣

∣

ko

(kj−kjo)+
1

2

∑

j, m

∣

∣

∣

∣

∂2E

∂kj∂km

∣

∣

∣

∣

ko

(kj−kmo)(km−kmo) (2.11)

with j, m = 1, 2, 3. As Ei(ko) is a minimum of Ei(k), the first derivatives evaluated

at that point are null and Ei(k) can be formulated, in matrix notation, as:

Ei(k) = Ei(ko) + [k− ko]











1
2

∣

∣

∣

∂2Ei

∂k21

∣

∣

∣

ko
· · · 1

2

∣

∣

∣

∂2Ei

∂k1∂k3

∣

∣

∣

ko
...

. . .
...

1
2

∣

∣

∣

∂2Ei

∂k3∂k1

∣

∣

∣

ko
· · · 1

2

∣

∣

∣

∂2Ei

∂k23

∣

∣

∣

ko











[k− ko]
T (2.12)

It is possible to define an electron effective mass as:

m−1ij =

∣

∣

∣

∣

∂2E

∂ki∂kj

∣

∣

∣

∣

ko

(2.13)

which characterizes the dispersion relation around the energy minimum. Then:

Ei(k) = E(ko) +
~
2

2
[k− ko]W [k− ko]

T (2.14)

where;

W =







1
m11

1
m12

1
m13

1
m21

1
m22

1
m23

1
m31

1
m32

1
m33






(2.15)

W is a symmetric matrix and therefore can be diagonalized. The dispersion relation,
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E − k, can the be written as:

Ei(k) = Ei(ko) +
~
2(kx − kxo)

2

2mx
+

~
2(ky − kyo)

2

2my
+

~
2(kz − kzo)

2

2mz
(2.16)

If the point ko is selected as the origin of the wavevector space, Eq. (2.16) can be

further simplified:

Ei(k) = Ei(ko) +
~
2k2x
2mx

+
~
2k2y
2my

+
~
2k2z
2mz

(2.17)

Using the parabolic dispersion relation of Eq. (2.17) into Eq. (2.9) results into the

parabolic EMA Schrödiger equation:

~
2

2
∇W∇T + φ(r)Ψ(r) = E′nΨ(r) (2.18)

where E′n = En − Ei(ko) is the eigenvalue referred to the minimum of the branch and

represents an energy subband being n the subband index. The truncation of the Taylor

series in the second derivative term allows to reach a simple parabolic expression for

the dispersion relation, but it can lead to a non-negligible error when Ei(k) is not a

parabolic function, as it is the case for III-V materials.

2.4 Poisson equation

In order to solve Eq. (2.18) we need to know the electron potential energy, φ(r), due

to the external forces. It can be determined from the Poisson equation which relates

the electrostatic potential, ψ, and the charge distribution in the device, ρ. The Poisson

equation together with the Schrödinger equation presented in Section 2.2 completes the

physical background necessary for the resolution of the electrostatic problems studied

in this part of the manuscript and it is formulated as:

∇[ǫ(r)∇ψ(r)] = −ρ(r) (2.19)

where ǫ(r) is the dielectric constant. The electrostatic potential, ψ(r), and the electron

potential energy, φ(r), are related as φ(r) = −qψ(r) where q is the electron charge.

The charge distribution, ρ(r) is given by:

ρ(r) = q
[

p(r)− n(r) +N+
d −N−a

]

(2.20)
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where p(r) and n(r) are the electron and hole concentrations, and N+
d and N+

a are the

donors and acceptor ionized impurities concentrations.

2.5 Particularization for 2D structures

In this manuscript we are interested structures that confine the electrons in two dimen-

sion, giving rise to 1D electron gases. In that case the wavefunction can be described

as a plane wave in the non-confined direction. Then:

Ψi(r) = ξi(s)
eıkzz√
L

(2.21)

where s is the vector position in the 2D confinement plane. Thus, introducing Eq.

(2.21) into Eq. (2.18) we get:

[

~
2

2
∇W∇T + φ(s)

]

ξi(s)
eıkzz√
L

= E′nξi(s)
eıkzz√
L

(2.22)

which decomposing the ∇ operator into the confined and non-confined variables results

into:
[

~
2

2
∇sw∇T

s +∇z
1

mz
∇T
z + φ(s)

]

ξi(s)
eıkzz√
L

= E′nξi(s)
eıkzz√
L

(2.23)

where w is the 2 × 2 first submatrix of the diagonal matrix W given in Eq. (2.15).

Thus:

eıkzz√
L

[

~
2

2
∇sw∇T

s ξi(s) + ξ(s)
~
2

2mz
ı2kz + φ(s)ξi(s)

]

= E′nξi(s)
eıkzz√
L

(2.24)

canceling terms and rearranging we get:

∇sw∇T
s ξi(s) + φ(s)ξi(s) = εnξi(s) (2.25)

where εn = E′n − ~
2kz
2mz

. This is the 2D Schrödinger equation which will be numerically

and analytically solved in Chapters 3 and 5, respectively.

Regarding the Poisson equation, the particularization for a 1D electron gas can be

readily accomplished. As the potential is assumed to vary slowly along non-confined

direction, also is the charge density ρ. Then, the z component of the ∇ operator is
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canceled out and the Poisson equation reduces to:

∇s[ǫ(s)∇sψ(s)] = −ρ(s) (2.26)

2.6 Non-parabolic corrections to the parabolic Schrödinger

equation

Up to this point, we have approximated Ei(k) as a parabolic function. However, at can

be seen in Fig. 2.1(a), near to the conduction band minimums the dispersion relation

is not always parabolic (see points X6 and L6). When the parabolic approximation is

not accurate, the most common solution in the literature consists on introducing a non

linear correction term βvEi(k)
2, where βv is called the non-parabolicity factor of the

v-th valley. Thus, the dispersion relation is expressed as [93], [66],:

Ei(k)(1 + βvEi(k)) =
~
2k2x
2mx

+
~
2k2y
2my

+
~
2k2z
2mz

(2.27)

Solving for Ei(k):

Ei(k) =
−1 +

√
1 + 4βvγk
2βv

(2.28)

where we have defined:

γk =
~
2k2x
2mx

+
~
2k2y
2my

+
~
2k2z
2mz

(2.29)

Eq. (2.28) makes difficult the resolution of the Schrödinger equation since Ei(k) can not

be decomposed into confined and non-confined components [94]. In this work we follow

the approach developed by Jin et al. [95], which proposed a non-parabolic dispersion

relation written as:

Ei(k) ≃ φi +
−1 +

√

1 + 4βv(γk,nc +Ei − φi)

2βV
(2.30)

where Ei is i-th energy subband achieved from the parabolic Schrödinger equation and

φi is the expectation value of the potential energy with respect to the wavefunction of

the i-subband, defined as:

φ=

∫

A

ξ∗i (s)φ(s)ξi(s) dA (2.31)
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where the integral is carried out in the 2D cross-section of the device. In Eq. (2.30)

γk,nc = ~
2k2z/2mz is the non-confined component of γk. This non-parabolic approxima-

tion does not require the solution of the non-parabolic Schrödinger equation as it uses

the result from the parabolic EMA approximation, resulting in a simpler procedure.

2.7 Quantum electron concentration

To determine the quantum electron concentration, it is necessary to characterize the

electron density in both the real and wave-vector space. In the real space, the electron

distribution is fully determined by the square modulus of the electron wavefunction. In

the wave-vector space, it is necessary to count the number of available electron states

and their occupancy. In this Section we briefly remind the concept of density of states

particularizing it to a 1D electron gas with a non-parabolic dispersion relation.

The wave-vector density of states, g(k), is just the number of k states divided by the

semiconductor volume. As previously mentioned, the periodicity of the crystal lattice

involves a discretization of the wave-vector space. Each k state occupies a volume in the

wave-vector space given by ΩB/N where ΩB is the volume of the Brillouin zone and N

is the number of unit cells in the real space for the given volume, V, of semiconductor:

N = V/ΩC, being ΩC the unit cell volume. Then, the wave-vector density of states is

given by:

g(k) = 2
ΩB/N

V =
(V/ΩC)/ΩB

V =
2

(2π)3
(2.32)

where ΩBΩC = (2π)3 where the factor 2 accounts for the electron spin degeneracy.

When a 1D electron as is considered, two of the three space direction are confined.

Consequently ΩB and ΩC do not represent volumes but lengths and ΩBΩC = 2π. The

wave-vector density of states is given by:

g(kz) = 2
ΩB/N

L =
(L/ΩC)ΩB

L =
2

2π
(2.33)

The energy density of states, g(E), can be determined changing the variable from k to

E and using Ei(k):

g(kz)dkz = g(E)dE → g(E) = g(k)
dk

dE
(2.34)
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Using the non-parabolic dispersion relation of Eq. (2.30) and rearranging terms we get:

g(E) =
1 + 2βv(E − φi)

√

2m∗ [E − Ei + βv(E − φi)2]
(2.35)

The states occupancy is determined by the Fermi-Dirac function:

f(E) =
1

1 + e
E−EF
kBT

(2.36)

being kB the Boltzmann constant and EF the Fermi level. Therefore the electron density

in the i-th branch in both real and energy spaces is given by:

n(s, E) =

∣

∣

∣

∣

∣

ξi(s)
eıkzz√
L

∣

∣

∣

∣

∣

2
1 + 2βv(E − φi)

√

2m∗ [E − Ei + βv(E − φi)2]

1

1 + e
E−EF
kBT

(2.37)

Integrating along the device total volume and the energy space gives the electron con-

centration under non-parabolic dispersion relation:

n =

∫

dE
1 + 2βv(E − φi)

√

2m∗ [E − Ei + βv(E − φi)2]

1

1 + e
E−EF
kBT

(2.38)

where we have used the normalization of the wavefunction:

∫

V
|ξi(s)

eıkzz√
L

|2dV = 1 (2.39)

Equation (2.38) is the expression used along this manuscript to determine the quantum

electron concentration. As for holes, and ionized impurities due to dopants, classical

expressions are considered.

p = 2

(

2πmhkBT

~2

)3/2

e
−EF−Ev

kBT (2.40)

N−a = Na f(Ea) =
Na

1 + 1
ga
e

Ea−EF
kBT

(2.41)

N+
d = Nd[1− f(Ed)] =

Nd

1 + gde
−Ed−EF

kBT

(2.42)

where mh is the hole effective mass, Ev is the valence band energy, Na (Nd), ga (gd)
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and Ea (Ed) are the acceptor (donor) concentration, level degeneracy and energy, re-

spectively.
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Chapter 3

2D Schrödinger-Poisson

simulator for MuG structures

3.1 Introduction

The analytical calculus of the integral and differential equations which govern the elec-

trostatic behavior of a Multiple Gate device (MuG) is not straightforward. Only in a

few cases, and considering some approximations, these equations can be analytically

solved, obtaining expressions for the involved physical quantities [96],[97],[98]. One of

that cases is included in this manuscript in Chapter 5.

However, even assuming that analytical expressions are helpful to understand the

device behavior, they are limited by the approximations made to solve the initial equa-

tions. The simplicity required for the analytical treatment is confronted to the com-

plexity needed to properly describe the device’s underlying physics.

Moreover, the study of technologically realistic devices involve among others: 1) not

idealized geometries [99],[100],[101],[79], which complicate the analysis; 2) experimental

inputs to the equations [102],[103] that cannot be reduced to analytical expressions; 3)

fabrication dependent issues that cannot be treated from an analytical point of view

[104][105].

For these reasons, the development of numerical tools able to study the device

physics have played a main role in the nanoelectronics field from the very beginning

[106], [107], [? ]. In response to this requirement, several commercial simulators

have been developed, allowing the study of 3D structures, such as SentaurusTM from
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Synopsisr[108] or AtlasTM from Silvacor [109], as well as 2D quantized devices, such as

VPS from TU Wien [110]. The assessment of variability and fabrication processes has

also been accomplished, for example by Gold Semiconductors Std. [111] and AthenaTM

from Silvacor [112].

In this Chapter, we describe the main characteristics of a two dimensional simulator

fully implemented within our group at UGR from scratch. Taking into consideration

the extensive collection of commercial simulators, it can be questioned why to develop

our own simulator. There are several reasons, among them

• Code control: most commercial simulators are black boxes which just allow an

user-end control of the code.

• Versatility and extensibility: opposite to commercial simulators having our own

code allows us to easily modify and extend it.

• Complete knowledge of the resolution process and its limitations: we know exactly

how the equations are solved, what is included in the resolution and what it is

neglected.

• Economic saving: usually commercial simulator licenses are expensive.

Of course there are also some disadvantages when developing our own simulator:

• Time consuming: putting down all the equations, testing and verifying the code

requires much more time than just studying and configuring a commercial simu-

lator.

• Not-optimized programming: it can affect to the simulation time.

The rest of the Chapter is organized as follows. Section 3.2 describes the main

characteristics of the two dimensional Schrödinger-Poisson (SP2D) simulator. Section

3.3 outlines the development environment: MATLABr and PDE toolboxTM. Sections

3.4, 3.5, 3.6, 3.7 3.8, 3.9 and 3.10 detail the implementation of the main characteristics

of SP2D and present a flux diagram. Finally, Section 3.11 sums up some conclusions.

3.2 Simulator description

In this Section, we outline the main characteristics of SP2D code which solves self-

consistently the Schrödinger and Poisson equations for a 2D cross-section of the channel
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of a multiple gate (MuG) device. Fig. 3.1 shows a 3D schematic view of a long channel

Trigate device. The semiconductor and insulator media are plotted as orange and gray,

while the gate contact (pinned with the label G) is plotted as red. The source and

drain contacts (pinned with the labels S and D) are plotted as green. A cross-section

of the 3D Trigate channel is marked with dashed lines and presented in a front view.

G
S

D

y
x

z

x

y

Figure 3.1: 3D schematic view of a Trigate device. The semiconduc-
tor and insulator media are plotted as orange and gray, while the gate
contact is plotted as red. The source and drain contacts are plotted
as green. A 2D cross-section cut along the channel is also plotted in
a front view.

In Fig. 3.1 we have defined a Cartesian coordinate system where:

• x̂ e ŷ are the unit vectors corresponding to the directions which contain the plane

where the 2D structure is placed (confinement plane) and

• ẑ is the unit vector corresponding to the transport direction perpendicular to the

2D structure.

The expressions for the Schrödinger and Poisson equations were presented in Chap-

ter 2. Here we recall and particularize them for 2D geometries. Thus, the 2D Schrödinger

equation under EMA is given by:

En(−ı∇)ξ(x, y) + φ(x, y)ξ(x, y) = Eξ(x, y) (3.1)

where En is the electron energy in the n-th band (fully determined by the semiconductor

properties), ξ(x, y) is the 2D wavefunction, φ(x, y) is the electron potential energy

due to an external perturbing potential ψ(x, y), and E is the total electron energy.
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The numerical solution of the Schrödinger equation accomplished by SP2D assumes

parabolic bands. This dispersion relation is later corrected using the method proposed

by Jin et al. in Ref. [95] and presented in Chapter 2 (see Section 3.7 for details on

the implementation of non-parabolicity). Under parabolic bands approximation we can

write Eq. (3.1) in the semiconductor as:

− ~
2

2

[

∂
∂x

∂
∂y

]

[

1
mxx

1
mxy

1
myx

1
myy

][

∂
∂x
∂
∂y

]

ξs(x, y) + φs(x, y)ξs(x, y) = Eξs(x, y) (3.2)

where the matrix element 1/mij , with i, j = [x, y], is related to the electron energy

ellipsoid in the way explained in Section 3.6. For the insulator, we assume an isotropic

electron effective mass, mins, and the Schrödinger equation is simplified to:

− ~
2

2mins

[

∂2

∂x2
+

∂2

∂y2

]

ξins(x, y) + φins(x, y)ξins(x, y) = Eξins(x, y) (3.3)

where the electron potential energy in the insulator φins takes into consideration the

band offset (∆φ) between the insulator and the semiconductor. The procedure followed

to determine it is summarized in Section 3.4. In Eqs. (3.2) and (3.3) we have used the

superscripts s and ins to distinguish the electron wavefunctions and potential energies

in the semiconductor and insulator, respectively. Hereinafter in this Chapter, s and ins

will be used to indicate that a variable is circumscribed to the semiconductor or the

insulator media, respectively.

We do not solve the Schrödinger equation on the metal as the electron wavefunction

is assumed to vanish at the metal-insulator interface.

For the solution of Eqs. (3.2) and (3.3) we impose boundary conditions which guar-

antee the continuity of the flux density through the semiconductor-insulator interface
1 [115]. They enforce:

(a) The electron wavefunction continuity at the semiconductor-insulator interface

ξs(x, y)

∣

∣

∣

∣

x,y∈Cs-i
= ξins(x, y)

∣

∣

∣

∣

x,y∈Cs-i
(3.4)

where Cs-i is the semiconductor-insulator interface path.

1An interesting discussion on the generalization of these boundary conditions can be found in Refs.
[113] and [114].
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(b) The continuity of the wavefunction derivative in the direction perpendicular to the

semiconductor-insulator interface

n̂ ·
[

∂

∂x
x̂,

∂

∂y
ŷ

]

[

1
mxx

1
mxy

1
myx

1
myy

]

ξs(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
= n̂ ·

[

∂

∂x
x̂,

∂

∂y
ŷ

]

1

mins
ξins(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
(3.5)

being n̂ the unit vector perpendicular to the interface at each point (x, y) ∈ Cs-i.

The 2D Poisson equation is given by:

∇ · ǫ∇ψ(x, y) = −ρ(x, y) (3.6)

where ǫ is the dielectric constant and ρ(x, y) is the charge density. We have considered

homogeneous isotropic dielectric constants in each media. This way, Eq. (3.6) can be

particularized for the semiconductor as:

ǫs

(

∂2

∂x2
+

∂2

∂y2

)

ψs(x, y) = −q
[

−n(x, y) + p(x, y)−N+
d (x, y) +N−a (x, y)

]

(3.7)

where n, p, are the electron and holes concentrations and N+
d and N−a are donor and

acceptor ionized impurities concentrations, respectively. Equivalently for the insulator

the Poisson equation is:

ǫins

(

∂2

∂x2
+

∂2

∂y2

)

ψins(x, y) = −q [−n(x, y) +Nins(x, y)] (3.8)

where Nins refers to the insulator charge concentration, also including interface states

(see Section 3.8 for a complete description). Note that the charge density in the in-

sulator considers n. This is due to the electron wavefunction penetration into this

media.

As already mentioned, SP2D assumes an ideal metal gate. Therefore, the Poisson

equation is not solved on it and ψ in the metal is determined by the applied gate

voltage, Vg. The metal properties are introduced through a boundary condition which

determines the bias of the structure:

ψins(x, y)

∣

∣

∣

∣

x,y ∈ Cm-i

= Vg − (Φm − χs) (3.9)

where Cm-i is the path along the metal-insulator interface, Φm is the metal work function
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and χs is the semiconductor electron affinity. The other boundary conditions considered

for the Poisson equation are:

(a) The continuity of the potential and the electric flux density 2 at the semiconductor-

insulator interface:

ψs(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
= ψins(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
(3.10)

n̂ · ǫs
[

∂

∂x
x̂,

∂

∂y
ŷ

]

ψs(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
= n̂ · ǫins

[

∂

∂x
x̂,

∂

∂y
ŷ

]

ψins(x, y)

∣

∣

∣

∣

x,y ∈ Cs-i
(3.11)

(b) The nullity of the electric field in the direction of n̂ at the outer boundaries of the

structure

n̂ ·
[

∂

∂x
x̂,

∂

∂y
ŷ

]

ψins(x, y)

∣

∣

∣

∣

x,y ∈ Ci-e
= 0 (3.12)

where Ci-e is the path between the insulator (usually a buried oxide for not SGT

structures) and the external region. This condition is imposed from the charge

neutrality of the whole structure.

Fig. 3.2 shows the front view of a 2D Trigate specifying the different contours

paths between media: Cs-i, Cm-i and Ci-e. Although they are particularized for a Trigate

structure, the extrapolation to any other kind of MuG structure is straightforward.

Cm-i

Cs-i

Ci-e

Figure 3.2: Contour paths in the boundaries between media for a
2D Trigate.

For the numerical implementation of Eqs. (3.2), (3.3), (3.7) and (3.8) SP2D uses

MATLABr programming language [116] and the Partial Differential Equation toolboxTM

(PDE toolboxTM) [117]. A brief description of PDE toolboxTM is given in Section 3.3.

2This boundary condition imposes null interface states. The way in which SP2D introduce interfaces
states is discussed in Section 3.8
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3.3 Finite Element Method

The PDE toolboxTM is a set of functions provided by MATLABr which helps in the

definition and resolution of 2D partial differential problems of several kinds: elliptic,

parabolic, hyperbolic, eigenvalue and nonlinear elliptic.

The key feature of PDE toolboxTM regards the discretization method. Instead of

using the Finite Differences Method (FDM) [118] for a regular discretization of the

equations, PDE toolboxTM is based on Finite Element Method (FEM) [119]. The main

advantages of FEM over FDM can be summarized in the following three [120]:

• More flexibility in terms of dealing with complex geometries and thin sections.

• Better treatment of inhomogeneous media.

• Reduced requirements on the regularity or smoothness of the solution.

The PDE toolboxTM implementation of FEM discretize the equations using a non

regular grid composed of triangles which allows a better adaptation to curved complex

geometries. Fig. 3.3 shows an example of a Trigate structure and a detail of the FEM

grid near a rounded corner. As can be seen the non-regular grid is nicely adapted to

the corner.

Figure 3.3: FEM grid for a 2D Trigate with rounded corners. Detail
of the grid around a corner

Other remarkable characteristics of PDE toolboxTM are [121]:

• Versatile boundary condition specification.
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• Flexible non-linear solvers

• Visualization tools for solutions, mesh and geometries.

The definition of equations and boundary conditions in PDE toolboxTM is easy. It

is not the aim of this Chapter to describe them. Extensive information can be found in

Refs. [117] and [121]. In the next Sections, we detail the key features of the developed

SP2D simulator.

3.4 Energy and potential reference system

In Section 3.2, we proposed a Cartesian coordinate system to spatially describe the 2D

MuG geometry and particularized Schrödinger and Poisson equations for that system.

We defined the paths which limit each media in the MuG device and imposed conditions

to relate ξ and ψ in adjacent medias. However, the resolution of Schrödinger and

Poisson equations requires an extra consideration: the definition of a reference system

for the energies and the potential. This is the aim of this Section.

Two main issues constrain the specification of the energy reference system: (a) the

origin, which, to allow an easy referencing, must be constant along the whole structure;

and (b) the relation between the potential, ψ, the potential energy, φ, and the energy

band diagram of the metal-insulator-semiconductor (MIS) structure.

Regarding the origin, no charge is expected to flow along the MuG 2D cross-section.

Therefore, the Fermi level can be assumed constant (EF(x, y) = EF). For this reason,

we choose it as the origin of the energy reference system.

Concerning the band diagram-potential relation, since SP2D is thought to study

N-type devices, we have opted to identify the conduction band and the potential:

−qψ(x, y) = φ(x, y) = Ec(x, y).

These definitions have three consequences: (a) the eigenvalues, E, of the Schrödinger

equation and φ(x, y) are referred to EF (b) the band offset between φs and φins is given

by the conduction band offset (CBO) of the MIS heterostructure; and (c) the gate

applied voltage, imposed as a boundary condition to the Poisson equation must be

referred to the potential origin, EF (see Section 3.2).

The CBO determination is not a straightforward question. While the Schottky bar-

rier model [122] has given very good results for Si-SiO2 structures, it has been revised

when other heterostructures are considered [123], [124], [125], [126]. The limitation
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of the Schottky barrier model regards the lack of consideration of the heterostructure

surface properties, which have revealed to play an important role on the CBO forma-

tion. Some discussion still remains on the underlying physical process which determine

the band alignment of the heterostructure. The two main explanations refer to: (a)

extrinsic defects: unsatisfied atomic bonds at the interface, [127], [128], [129], (b) in-

trinsic defects: metal induced gap states (MIGS),[130], [131], [132], [133], due to the

penetration of the metal wavefunctions into the semiconductor gap. Although both

theories suggest different physical origins, both conclude in the appearance of energetic

states in the gap which lead to a pinning of the Fermi level in the semiconductor. The

gap states distribution is then characterized, in both theories, by a charge neutrality

level (CNL) which indicates a change in the polarity of those states. In both theories

the band alignment expressions are equivalent.

Even if these theories are not fully correct, there is an agreement in their ability to

explain experimental results [134], [135], [136]. Based on this experimental support we

have considered the expression resulting from those models as appropriate to determine

the CBO. Then, ∆φ is given by:

∆φ = (χs − φCNL,s)− (χins − φCNL,ins) + S(φCNL,s − φCNL,ins) (3.13)

where χs and χins are the electron affinities of the semiconductor and the insulator,

φCNL,s and φCNL,ins are the CNL of the semiconductor and the insulator, the values of

which are obtained from Refs. [134], [135] and summarized (for the materials used

thorough this manuscript) in Appendix F. S is the so-called pinning factor and deter-

mines how strong the Fermi level pinning is for a given heterostructure: S = 1, means

no pinning, while for S = 0, EF is fully pinned. It is worth to note that for S = 1

Eq. (3.13) results into the difference of electron affinities which is the Schottky bar-

rier model applied to a semiconductor insulator interface. S was found to empirically

depend on the dielectric constant of the wider gap material as given by [133]:

S =
1

1 + 0.1(ǫins,∞/ǫ0 − 1)2
(3.14)

where ǫins,∞ is the dielectric constant of the insulator at high frequency and ǫ0 is the

vacuum absolute permittivity.
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3.5 Arbitrary geometry

As explained in Section 3.3, one of the main advantages of FEM is the versatility to

adapt the grid to complex geometries. The aim of this Section is to briefly show the

possibilities of SP2D to simulate complex MuG geometries. First, Fig. 3.4 shows four

geometries generated by SP2D which reproduce the 2D cross-sections of real devices

fabricated by (a) Intelr [99], (b) the University of California Berkeley [100], (c) the

École Polytechnique Fédérale de Lausanne [137], and (d) the Tokyo Institute of Tech-

nology [102]. The TEM images of the devices are reproduced for comparison. Some of

these geometries have been used in electrostatic studies obtaining very good agreement

with experimental results (see Chapter 4 for details). We have kept the color code

(including the blue color for the additional insulator) introduced in Section 3.2 for the

different materials and for the boundaries between them.

(a) (b)

(c ) (d)

Figure 3.4: SP2D geometries reproducing real devices (TEM images
are also reproduced) for: (a) a Trigate with tilted lateral walls from
Intelr [99], (b) a NW from the University of California Berkeley [100],
(c) a Triangular wire from the École Polytechnique Fédérale de Lau-
sanne [137], and (d) a Trigate from the Tokyo Institute of Technology
[102].
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Other features of SP2D which deserve to be remarked are the simulation of (a) sev-

eral insulator layers made of different materials, (b) non uniform insulator thicknesses,

(c) buried gates, (d) several independently biased gates. Fig 3.5 shows two examples

of device geometries generated by SP2D with some of these characteristics

Figure 3.5: (a) SP2D NW with rounded corner and two insulator
layers (b) SP2D Trigate geometry with non-uniform insulator thick-
ness and two independently biased gates.

3.6 Arbitrary orientation

In Section 3.2 we employed the Schrödinger equation under the EMA for the 2D cross-

section geometry and for an arbitraryly oriented device. There, we wrote the mass

tensor in its general form. In this Section, we describe how SP2D relates each matrix

element mij with i, j = x, y in Eq. (3.2) with the ellipsoid effective mass. To do it

we follow the work done in Refs. [138] and [139]. As discussed in Chapter 2 under the

EMA the conduction band dispersion relation can be written as 3:

Ec(k) = Ec,o +
~
2

2
ke We k

T
e (3.15)

where ke is the wavevector in the ellipsoid coordinate system and We is the inverse

effective mass tensor, also in the ellipsoid coordinate system. We can be written as:

We =







1
ml

0 0

0 1
mt

0

0 0 1
mt






(3.16)

3As it was proposed in Chapter 2 it is assumed here that ke is referred to ko which is the wavevector
corresponding to the minimum of the conduction band Ec,o
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being ml and mt the effective masses associated to the principal axes of the ellipsoid.

Fig. 3.6(a) illustrates the coordinate system of the ellipsoid and the relationship be-

tween the ellipsoid axes and ml and mt, being ke1, ke,2 and ke,3 the ellipsoid coordinate

system basis vectors.

The aim here is to rewrite ke in the device reference system defined in Section 3.2

to be able to do the substitution k = ı∇, where ∇ is expressed in the device reference

system. First, we must reformulate ke in the crystal coordinate system changing the

basis through a rotation. We define the crystal basis coincident with the principal axis

of a cubic system (see Fig. 3.6b). Thus, we can write:

ke = kcRe←c (3.17)

where Re←c is the matrix containing as columns the basis vectors of the ellipsoid co-

ordinate system expressed in the basis of the crystal coordinate system. It obviously

depends on kind of valley and ellipsoid. Fig. 3.6 shows an example of the construction

of the Re←c matrix for a L-valley ellipsoid.

k e3

k o k e1

ke2

( )E-Ec

h2
m

l

( )E-Ec

h2
m

t

m
t

k e3

k

k e1

e2

( )E-Ec

h2

kc3

k c2

kc1

h111i

h010i

h001i

h100i

h111i

h10-1i

h-12-1 i

(a) (b)

R =e  c

1 1 -1

1

1 -1 -1

3 2 6
2
6

6

3

23

0

Figure 3.6: (a) Ellipsoid coordinate system (ke1, ke2, ke3) and ef-
fective masses. (b) Translation from ellipsoid coordinate system to
crystal coordinate system (kc1, kc2, kc3) for a L-valley oriented in the
〈111〉 direction.

Finally, we need to change from the crystal coordinate system to the device coor-
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dinate system. To do so, we write

kc = kRc←d (3.18)

where Rc←d is the matrix containing as columns the basis vector of the crystal co-

ordinate system expressed in the basis of the device coordinate system. Usually, for

comparison with technological results, what is given is the wafer orientation and/or

the transport direction of the device referenced to the crystal cubic system. Then, the

device coordinate system basis directions can be identified with the wafer orientation

and the transport direction. To determine Rc←d we write the device basis vectors in

columns (they are already expressed in the crystal coordinate system), and we do the

inverse. But as the device basis vectors form an orthonormal basis, the inverse is just

the transpose of the matrix. So Rc←d just contains the device basis vectors written in

rows. Using Eqs. (3.17) and (3.18) we can write:

Ec(k) = Ec,0 +
~
2

2
k Wd k

T (3.19)

where Wd = Re←c Rc←d We (Re←c Rc←d)
T corresponds to the matrix tensor in the

device coordinate system:

Wd =









1
mxx

1
mxy

1
mxz

1
myx

1
myy

1
myz

1
mzx

1
mxy

1
mzz









(3.20)

As SP2D solves the Schrödinger equation in the 2D cross-section of the device, just the

projection of Wd into the x− y plane was considered in Section 3.2. There is another

effective mass related parameter taken into consideration by SP2D and obtained from

Wd: the conduction effective mass, m∗v, which determines the effective mass in the

transport direction, ẑ; where v stands for the valley index. m∗v is used in the determi-

nation of n(x, y), as it is shown in Section 3.7, and is calculated as the (3, 3) element

of the Wd inverse matrix.
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3.7 Non-parabolicity of the conduction band

The expression of the Schrödinger equation proposed in Section 3.2 assumes a parabolic

dispersion relationship for the conduction band. However, as pointed out in Chapter 2,

when III-V semiconductors are considered this approximation would result in an non-

negligible error in the electron concentration, and must be corrected. SP2D follows the

approximation proposed by Jin et al. in Ref. [95] and summarized in Section 2.6 to

introduce the non-parabolicity of the conduction band. We recall here the expression for

the electron concentration under the non-parabolic dispersion relationship introduced

in Eq. (2.37), particularizing it for the 2D Cartesian coordinate system defined in

Section 3.2 and the energy reference system described in Section 3.4.

n(x, y) =
2

~

∑

i

|ξi(x, y)|2
∞
∫

ENP
i

1 + 2βv(E − φi)
√

2m∗ [E − Ei + βv(E − φi)2]

1

1 + e
E−EF
kBT

dE (3.21)

where we have kept the nomenclature introduced in Section 2.6, that is, ENP
i is the

non-parabolic energy minimum given by:

ENP
i = φi +

−1 +
√

1 + 4βv (Ei − φi)
2

2βv
(3.22)

βv and m∗v are the non-parabolicity factor and the conduction effective mass of the v

valley, respectively; and φi is the expectation value of the potential energy with respect

to the wavefunction of the i subband, defined as:

φ=

∫∫

A

ξ∗i (x, y)φ(x, y)ξi(x, y) dx dy (3.23)

being A the device area.

Contrary to what can be done for 1D confinement [93], the integral in Eq. (3.21)

cannot be easily split into a sum of two Fermi integrals and therefore it needs to be

numerically integrated. However, the numerical integration of Eq. (3.21) diverges,

since the integrand fraction has a pole for E = ENP
i .

Then, to determine the electron concentration we change the variable of integration
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from energy, E, to wavevector, k, and n(x, y) can be obtained as:

n(x, y) =
∑

i

|ξi(x, y)|2
∑

k

g(k)fi(k) (3.24)

where g(k) = 2
πdk is the density of states in the k space for 2D confinement and fi(k)

is the occupation probability of the state with k wavevector in the i-th subband, that

is the Fermi function evaluated at ENP
i (k)

fi(k) =
1

1 + e
ENP
i (k)−EF

kBT

(3.25)

Therefore:

n(x, y) =
2

π

∑

i

|ξi(x, y)|2
∞
∫

−∞

1

1 + e
ENP
i (k)−EF

kBT

dk (3.26)

where ENP
i (k) is given by:

ENP
i (k) = φi +

−1 +

√

1 + 4βv

(

~2k2

2m∗
v
+ Ei − φi

)2

2βv
(3.27)

Eq. (3.26) does not diverge but it is computationally expensive. It should be done

for each energy level and each point of the FEM grid (due to the accelerator convergence

algorithm, see Section 3.9 for details). For a not very demanding simulation with 50

levels and a 1500 grid points it means 75000 integrals. But SP2D needs several iterations

to achieve convergence in the solutions. Let us consider 5 iterations, which is a very

favorable case. Then the number of integrations would be 375.000 for just one bias

point. To reduce the computational cost of Eq. (3.26), SP2D tabulates the integral at

the beginning of the simulation as a function of two parameters a and b. The tabulated

integral is

2

π

∞
∫

−∞






1 + e

a
kBT

+
−1+

√

1+4βv

(

~2k2

2m∗
v

+b

)

2kBT βv






−1dk (3.28)

which is valley dependent. Therefore, SP2D tabulates as many integrals as valleys are

considered in the simulation. The range of variation of the parameters a and b depends

on the size of the structure and the bias, but the integral is actually saturated for a

small range of a. Fig. 3.7 shows the integral as a function of a and b for m∗v = 0.0453
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and βv = 1 which are the values corresponding to the Γ valley of InGa0.53As0.47. Similar

trends are found for different m∗v and βv values. The result for different m∗v and βv

does not significantly vary.
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Figure 3.7: Integral of Eq. (3.28) as a function of a and b for m∗

v =
0.0453 and βv = 1.

3.8 Insulator and interface charges

SP2D considers the presence of fixed insulator charges as well as interface traps. The

implementation of fixed charges is straightforward. It merely implies the introduction

of a constant (not dependent on ψ) in the insulator Poisson equation. For this reason,

in this Section, we will focus just on the implementation of interface traps in the SP2D

simulator. If we assume an amphoteric nature for the interface traps, Qit can be related

to the density of interface states, Dit, as given by [140]:

Qit(x, y) = q

Ei(x,y)
∫

Ev(x,y)

Dd
it(E)[1 − f(E)]dE − q

Ec(x,y)
∫

Ei(x,y)

Da
it(E)f(E)dE (3.29)

where x, y ∈ Cs-i, and the superscript a (d) refers to acceptor (donor) kind of traps.

In Eq. (3.29) we have explicitly assumed that the energies associated to the interface

traps are present only in the band gap of the semiconductor. Nevertheless, SP2D allows

an arbitrary range of energies for the traps as well as arbitrary Dit profiles, including

both: experimental profiles, such as [102], [141] or [142], and analytical profiles.

Using the energy reference system proposed in Section 3.4, Eq (3.29) can be rewrit-
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ten as:

Qit(x, y) = q

−qψ(x,y)−Eg/2
∫

−qψ(x,y)−Eg

Dd
it(E)[1 − f(E)]dE − q

−qψ(x,y)
∫

−qψ(x,y)−Eg/2

Da
it(E)f(E)dE (3.30)

where it should be kept in mind that x, y ∈ Cs-i.
Mathematically the interface traps have been commonly treated as a boundary

condition to the Poisson equation (affecting to the continuity of the dielectric flux). This

mathematical treatment implies that Qit is located at a sheet of infinitesimal thickness

at the insulator-semiconductor interface. However, Qit is actually distributed in a thin

region of the insulator near to the semiconductor interface. For micrometric devices,

tins was several order of magnitude thicker than the Qit distribution region, and the

infinitesimal sheet approximation was appropriate. Nevertheless, the device scaling has

leaded to thinner tins (actually of the order of the Qit distribution region) questioning

the infinitesimal sheet approximation. Indeed, the vision ofQit as a spatially distributed

charge (for nanometric devices) has been assessed by several studies in the literature

[143][144].

In agreement with this point of view, SP2D deals with Qit as a volumetric charge

distributed along the insulator. Although some studies have provided experimental

spatial distribution profiles for Qit [144], there is still not conclusive knowledge about

it. For this reason, we have considered in SP2D to four different kinds of spatial

distributions: constant, linear, exponential and Gaussian.

The implementation of Qit as a volumetric charge has one drawback: most of the

literature published studies provide just Dit energy profiles [102], [141], [145], [142].

From Dit it is easy to determine the corresponding surface Qit as in Eq. (3.29). How-

ever, we need to establish a correspondence between the surface Qit and the volumetric

Qit. To do it, the Gauss law is used, so that we can write:

ψ|i-m − ψ|i-s =
Qit,sf

Cins,sf
(3.31)

where ψ|i-m = ψ(x, y)|x,y ∈ Cm-i
and ψ|i-s = ψ(x, y)|x,y ∈ Ci-s denote potentials at the

metal-insulator interface, and at the semiconductor-insulator interface respectively, and

we have used the subscript sf to denote Qit and Cins per unit surface. In Eq. (3.31)

one assumption is implicit: Cm-i and Cs-i are equipotential paths. This assumption,
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which can be appropriate for rotationally symmetric devices, is not valid for Cs-i when
complex MuG geometries are considered. A division of the insulator geometry into

several regions Ri, such as ψ(x, y)|x,y ∈ Cm-i∩Ri
and ψ(x, y)|x,y ∈ Cs-i∩Ri

(and thus Qit,sf)

can be assumed as constants, is required to apply Eq. (3.31). Fig. 3.8 shows a detail

of the gate insulator of a Trigate device (with rounded corners) divided into several

regions Ri. A detail of two arbitrary regions is also plotted.

L

C

C

i-m

i-s

i

C i-s\  R
i

C
i-m

\  R
i

Li

Ci-m\  Ri

Ci-s\  R
i

n̂ ĉ

ĉ

n̂

Ri

Figure 3.8: Detail of the gate insulator of a Trigate geometry (with
rounded corners) divided into several regions Ri. Curved and straight
regions are also plotted specifying the region’s contours and the vectors
n̂ perpendicular to Cs-i and ĉ perpendicular to Li

The use of Eq. (3.31) for each Ri implies an extra condition: the electric flux trough

Ri lateral boundaries, labeled as Li in Fig. 3.8, must be negligible. Otherwise, Gauss

law will not result into Eq. (3.31). This condition can be expressed mathematically as:

n̂ · ∇ψ|Ri∩[Cs-i∪Cm-i]
≫ ĉ · ∇ψ|Li

(3.32)

being n̂ the unit vector normal to the interface path and ĉ the unit vector normal to

Li.
In the limit of region thicknesses approaching to zero, each region Ri can be reduced

to a line perpendicular to the semiconductor-insulator interface, and both assumptions:

(a) ψ(x, y)|x,y ∈ Cm-i∩Ri
and ψ(x, y)|x,y ∈ Cs-i∩Ri

are constants, and

(b) that given by Eq. (3.32)

will be satisfied, as:
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(a) Cm-i ∩Ri and Cs-i ∩Ri are reduced to points and ψ is a single-valued function, and

(b) ψ is only defined for the coordinate in the n̂ direction, and its derivative in the ĉ

direction must be zero.

However, for a numerical solution using FEM the regions cannot be infinitesimally thin

and finite thickness regions must be defined as SP2D does. Finally, it is worth to note

that Cins,sf in Eq. (3.31) comes from the path integral of the electric field and, therefore,

depends on the region considered.

After discussing the conditions of validity of Eq. (3.31), we now use the Poisson

equation to determine the difference ψ|i-m − ψ|i-s at each Ri as a function of the

volumetric interface charge, Qit,vl. But to be able to get this relationship, we make

first the following premise for a given Ri:

∇‖ψ = 0 (3.33)

where ∇‖ = ĉ · ∇. In other words, ψ just varies (in each region) in the n̂ direction.

This premise is coherent and actually stronger than the one imposed in Eq. (3.32) and

it forces (through Poisson equation):

∇‖Qit,vl = 0 (3.34)

Thus, the differential form of Gauss law for a certain region Ri leads to:

∇⊥ǫins∇⊥ψ = −Qit,vl (3.35)

being ∇⊥ = n̂ · ∇. It is worth to note that ∇⊥ and ∇‖ have been defined as scalar

operators. Moreover, as shown in Fig. 3.8, n̂ cannot be equally treated in regions where

Cs-i ∩Ri is a straight segment and those where it is a curved segment. In the first case

it is not position dependent while in the second case it is. The mathematical procedure

to integrate Eq. (3.35) is detailed in Appendix A. The results are:

ψ|i-m − ψ|i-s =
1

ǫins

tins
∫

0

dϑ

tins
∫

ϑ

Qit,vl(ϑ̂)dϑ̂ (3.36)
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for straight segments and

ψ|i-m − ψ|i-s =
1

ǫins

ςc+tins
∫

ςc

1

ς
dς

ςc+tins
∫

ς

ς̂Qit,vl(ς̂)dς̂ (3.37)

for curved segments, where ςc is the radius of the curved segment (SP2D actually

implements curved segments as sections of circumference). Then, using Eq. (3.31), the

relationship between Qit,sf and Qit,vl is given by:

Qit,sf
tins
ǫins

=
1

ǫins

tins
∫

0

dϑ

tins
∫

ϑ

Qit,vl(ϑ̂)dϑ̂ (3.38)

and:

Qit,sf
ςcln(1 + tins/ςc)

ǫins
=

1

ǫins

ςc+tins
∫

ςc

1

ς
dς

ςc+tins
∫

ς

ς̂Qit,vl(ς̂)dς̂ (3.39)

for straight and curved segments, respectively. These integral equations are underde-

termined: there is not a unique expression of Qit,vl for a given value of Qit,sf.

As aforementioned, SP2D implements four different Qit,vl profiles: constant, linear,

exponential and Gaussian. The four profiles are defined in a region of thickness to,

being to ≤ tins, and their amplitude is determined by Qit,sf. The expressions for the

Qit,vl profiles, corresponding to linear and curved segment regions are summarized in

Table 3.1.

Profile Straight Curved

Constant Qit,vl(ϑ) = ActeUst(ϑ) Qit,vl(ς) = ActeUcv(ς)

Linear Qit,vl(ϑ) = Alin

(

1− ϑ
to

)

Ust(ϑ) Qit,vl(ς) = Alin

(

1− ς−ςc
to

)

Ucv(ς)

Exponential Qit,vl(ϑ) = Aexpe
− ϑ

σeUst(ϑ) Qit,vl(ς) = Aexpe
− ς−Rc

σe Ucv(ς)

Gaussian Qit,vl(ϑ) = Agaue
− ϑ2

2σ2
g Ust(ϑ) Qit,vl(ς) = Agaue

− (ς−ςc)
2

2σ2
g Ucv(ς)

Table 3.1: Qit,vl profiles implemented by SP2D.
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where Ust(ϑ) = [U(ϑ)−U(ϑ−to)] and Ucv(ς) = [U(ς−ςc)−U(ς−(ςc+to))] and U is the

step function. The values of σe and σg for straight segment regions are calculated to

yield Qit,vl(σe) = 10−4Qit,vl(0) andQit,vl(σg) = 10−4Qit,vl(0), respectively. Equivalently

for curved segments regions, σe and σg are obtained imposing Qit,vl(σe) = 10−4Qit,vl(ςc)

and Qit,vl(σg) = 10−4Qit,vl(ςc), respectively. Finally, the values of Acte, Alin, Aexp, and

Agau are determined substituting the corresponding expression of Qit,vl in Eqs. (3.38)

and (3.39). The integration procedure is, in most cases, straightforward and the results

are summarized in Tables A.1 and A.2 in Appendix A for straight and curved segments.

Fig. 3.9 shows the different Qit,vl profiles implemented by SP2D: (a) constant, (b)

linear (c) exponential and (d) Gaussian.

(a) (b)

(c ) (d)

Figure 3.9: Qit,vl profiles implemented by SP2D: (a) constant, (b)
linear (c) exponential and (d) Gaussian. An schematic depiction of
the device geometries is superimposed to the Qit,vl profiles, where the
semiconductor is plotted as orange and the insulator is plotted as
semitransparent gray

To illustrate the versatility of the implementation, different geometries correspond-

ing to a NW (a) and (d), and a Trigate device (b) and (c), are considered in Fig 3.9.

A schematic depiction of the geometries is superimposed to the Qit,vl profiles, where

the semiconductor is plotted as orange and the insulator is plotted as semitransparent

gray. In Fig. 3.9(a) to = tins/2 was assumed, while for 3.9(b), (c) and (d) to = tins
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was set. To keep the figure simple, we have assumed a constant potential along the

insulator-semiconductor interface and the same Dit energy profile for all regions.

3.9 Convergence algorithm

The wavefunctions, ξi, and energy levels, Ei obtained from Schrödinger equation de-

termine the electron concentration, n. But n enters in the Poisson equation. Then,

the Poisson solution for the potential, ψ, is translated into potential energy φ = −qψ
(where the potential barrier ∆φ must be added in the insulator). φ is part of the

Hamiltonian of the Schrödinger equation and affects the resulting eigenfunctions, ξi,

and eigenvalues, Ei.

Thus, the equation system must be solved self-consistently. However, a simple

iteration rarely converges. One common alternative scheme is underrelaxing the solu-

tion for the electron concentration. Then, for each iteration n is expressed as n(j) =

υ(j)n(j) + (1 − υ(j))n(j−1), where (j) is the iteration index and υ is an adaptive relax-

ation parameter [107]. However, the election of υ, which is iteration dependent, is not

easy. A large υ(j) results in oscillations while small υ(j) slows the convergence [146].

This problem was solved in a very elegant and illustrative way by Trellakis et al. in

Refs. [147],[148]. They used perturbation theory to determine the electron concen-

tration when a perturbing potential energy was introduced in the Hamiltonian. Using

a suitable approximation for a ratio of Fermi integrals, they found that the electron

concentration in the j-th iteration could be expressed as:

n(x, y) =
−qNc

kBT

∑

i

|ξi(x, y)|2F− 1
2

(

Ei − EF + φ(j)−φ
(j−1)

kBT

)

(3.40)

where Nc is the density of states of the conduction band:

Nc =

√

2m∗vkBT

π~2
(3.41)

and F− 1
2
is the complete Fermi-Dirac integral [149], [150]. Eq. (3.40) assumes a

parabolic dispersion relation for the conduction band.

We need to adapt this algorithm for the non-parabolic dispersion relation of Eq

(3.21). Trellakis’ approach to the problem defines a perturbation to the potential δψ

such that ψ → ψ + δψ. The Hamiltonian became H → H − qδψ while the energy
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levels and wavefunctions change to Ei → Ei + δEi and ξ → ξ + δξ, respectively; where

δEi = −q〈ξi|δψ|ξi〉.
For the non-parabolic case we have:

ENP
i = φi + δφi +

−1 +

√

1 + 4βv

(

~2k2

2m∗
v
+ Ei + δEi − φi − δφi

)2

2βv
(3.42)

where using Eq. (3.23) it is straightforward to see that δφi = −q〈ξi|δψ|ξi〉 canceling

out with δEi as defined previously. Then, comparing Eqs. (3.21) and (3.42), we can

conclude that the non-parabolic dispersion relation is transformed by the perturbation

as:

ENP
i → ENP

i + δφi → ENP
i + δEi (3.43)

The determination of the variation in the electron concentration, δn, due to the per-

turbation potential δφ is equivalent to that proposed in Ref. [147]. We replicate here

only the first step from Trellakis mathematical elaboration to show the equivalence:

n→ n+ δn (3.44)

where δn is obtained as:

δn =
∂n

∂ψ
δψ =

2

π

∂

∂ψ

∑

i

|ξi(x, y)|2
∞
∫

−∞

1

1 + e
Ei(k)−EF

kBT

dkδψ = (3.45)

2

π

∑

i

|ξi(x, y)|2
∂

∂Ei(k)

∞
∫

−∞

1

1 + e
Ei(k)−EF

kBT

dk
∂Ei(k)

∂ψ
δψ (3.46)

+
2

π
2
∑

i

|ξi(x, y)|
∂ξi
∂ψ

δψ

∞
∫

−∞

1

1 + e
Ei(k)−EF

kBT

dk (3.47)

where ∂Ei(k)
∂ψ δψ and ∂ξi

∂ψ δψ are the perturbation in the non-parabolic dispersion relation

and the wavefunction due to the perturbation in the potential δψ, respectively. We can

rename them as δENP
i and δξi. But δE

NP
i was determined in Eq. (3.43) as equal to the
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perturbation of the parabolic energy level δEi. Then:

δn =
2

π

∑

i

|ξi(x, y)|2
∞
∫

−∞

−1

kBT

e
Ei(k)−EF

kBT

(

1 + e
Ei(k)−EF

kBT

)2 dk δEi+ (3.48)

2

π
2
∑

i

|ξi(x, y)|δξi
∞
∫

−∞

1

1 + e
Ei(k)−EF

kBT

dk (3.49)

In addition, it is easy to get the equivalence of the derivative given by:

∂

∂Ei(k)

∞
∫

−∞

1

1 + e
Ei(k)−EF

kBT

dk =

∞
∫

−∞

−
1
kBT

e
Ei(k)−EF

kBT

(

1 + e
Ei(k)−EF

kBT

)2dk (3.50)

and the derivative of the Fermi Dirac integral particularized for order 0.

∂

∂x

∞
∫

0

1

1 + eǫ−x
dx =

∞
∫

0

−eǫ−x

(1 + eǫ−x)2
dx (3.51)

If we assume that the approximation made by Trellakis et al. for the quotient of Fermi

integrals of order −1
2 and −3

2 is also valid for orders 0 and 1, the procedure to determine

δn with a non-parabolic dispersion relation is equivalent to that for parabolic bands.

Then, we can reformulate the electron density under non-parabolic approximation using

the Trellakis algorithm as:

n(x, y) =
2

π

∑

i

|ξi(x, y)|2
∞
∫

−∞

(

1 + e
Ei(k)+φ(j)−φ(j−1)−EF

kBT

)−1

dk (3.52)

In the next Section we depict the flow diagram of SP2D including the adapted Trellakis

algorithm.

3.10 SP2D flow diagram

In this Section, we briefly describe the SP2D flow diagram. Fig. 3.10 shows the flow

diagram of a common run of SP2D.
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Figure 3.10: Flow diagram of SP2D. The predictor-corrector scheme
adapted from Ref. [147] is framed in a dashed line rectangle.

The simulation starts reading several input files which detail: (a) the geometry

(device width and height, insulator(s) thickness(es), rounded/squared corners, and

all other parameters concerning the geometry description), (b) the materials involved

(semiconductor, insulator(s), metal(s)),(c) configuration parameters (kind of device,

grid size, range of biasing, device orientation, etc). Using several distinct input files

allows us to clearly structure the input information.

From the kind of device and the geometry information, SP2D defines the structure to

be simulated, generates the FEM grid, and determines the boundary conditions. Using

the material information, the semiconductor and insulator(s) parameters are loaded

and the non-parabolic integral is tabulated. Then, the orientation is used to determine

the effective mass matrix and expressions for the semiconductor and insulator charge

are formulated.
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Next step is the self-consistent solutions of the Schrödinger and Poisson equations.

A first solution for the potential is obtained using a classical approximation. After

that, SP2D enters in the predictor-corrector scheme adapted from Trellakis which for

the iteration (j+1) can be summarized as:

(a) Solve the Schrödinger equation using the solution for ψ(j) obtained from previous

Poisson iteration (ψ(0) is obtained from a classical simulation). That provides ξ
(j+1)
i

and E
(j+1)
i .

(b) Solve the non-linear Poisson equation using ξ
(j+1)
i , E

(j+1)
i , ψ(j) into the electron

concentration expression given by Eq. (3.52). That gives ψ(j+1).

(c) Check the convergence criteria and come back to step (a) or continua.

Fig. 3.10 frames the predictor-corrector algorithm in dashed line. We use a double

convergence criteria: for the potential and the electron concentration. As they are

spatial dependent magnitudes we look for the worst case:

max
∣

∣ψ(j) − ψ(j+1)
∣

∣

max
∣

∣ψ(j)
∣

∣

< εψ (3.53)

max
∣

∣n(j) − n(j+1)
∣

∣

max
∣

∣n(j)
∣

∣

< εn (3.54)

where ǫψ and ǫn are convergence thresholds set to 10−4. Once the convergence has been

achieved, SP2D save all the results calculated in an output file and the run is ended.

3.11 Conclusions

In this Chapter, a self-consistent Schrödinger-Poisson solver was developed, which is

able to deal with arbitrary geometries, materials and orientations to achieve the charge

and potential distribution in the cross-section of a MuG structure. A non-parabolic

effective mass approach was employed for the Schrödinger equation, and the contribu-

tion of Γ, X (∆ for Silicon) and L valleys was included. In addition, the developed

simulator allowed the inclusion of arbitrary profile of interface states.
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Chapter 4

Electrostatic analysis of MuG

devices using SP2D

4.1 Introduction

In this chapter we apply SP2D to the study of several relevant electrostatic magnitudes

in MuG architectures. Specifically, here we focus on two structures, Trigates and NWs

due to their technological performance. The Trigate architecture introduces the fewest

changes to conventional planar transistor processing, while allowing a very good control

of the channel [151]. Indeed, as aforementioned Intelr has recently taken to production

microprocessors based on the Trigate architecture on bulk wafers [60]. Meanwhile,

NW FETs, first experimentally achieved by IBMr [79], have demonstrated superior

electrostatic control of the channel thanks to their surrounding gate.

In addition to the geometrical versatility of SP2D, we make use of its non-parabolic

dispersion relation description to study, besides SOI substrates, III-V materials. Other

characteristics of SP2D such as arbitrary orientation and the inclusion of interface

states are also exploited in the five electrostatic studies performed in this Chapter.

The rest of this Chapter is organized as follows. In Section 4.2 we compare SP2D

results with those obtained from a two-bands k · p simulator and we validate SP2D

using experimental data taken from a Trigate architecture. In Section 4.3 we focus on

the study of III-V NWs. In particular we analyze the population of satellite valleys of

different III-V semiconductors and we briefly discuss their implications on the conduc-

tion effective mass and the gate capacitance. In Sections 4.4 and 4.5 a comparative
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study of III-V and Si MuG architectures is performed. Thus, Section 4.4 is focused

on the performance of III-V and SOI Trigates as a function of the device width while

Section 4.5 compares DG and Trigate architectures, emphasizing the need of 2D stud-

ies to achieve a proper understanding of Trigate behavior. Sections 4.6 and 4.7 pay

attention to SOI Trigate architectures. Section 4.6 deals with the effect of back gate

bias on VT and analyze the body effect. In Section 4.7 we analyze the influence of Dit

on the threshold voltage, VT, and subthreshold swing, SS, of MuG structures. Finally,

Section 4.8 sums up some conclusions.

4.2 Validation of SP2D, non-parabolic EMA and semicon-

ductor parameters

In this Section we validate the SP2D simulator presented in Chapter 3 justifying its

use in the electrostatic studies proposed in subsequent Sections.

First we check the EMA for the electrons. To do so, the results from SP2D are

compared to those obtained from a two-band k · p simulator also implemented in the

Nanoelectronics Research Group [152]. Fig 4.1 shows the linear electron concentration,

Ni, as a function of the applied gate voltage, Vg, for several Si-SiO2 cylindrical NWs

(see Fig. 4.2 for a schematic depiction) with sizes ranging from 3nm to 10nm and

tins = 1nm. Two transport orientations have been considered (a) < [111] and (b) [110].

EMA non-parabolic results are plotted as dashed lines while k · p results are plotted as

solid lines.

As can be seen in Fig. 4.1, the non-parabolic SP2D accurately reproduces the results

for all NWs sizes in both orientations. Only for the smallest size there is slight difference

in the results between EMA and k · p. This result is in good correspondence with other

validations of EMA pointed out in the literature [153]. The non-parabolicity parameter

of Si is small, β∆ = 0.5eV−1, and therefore Si does not imply a very disadvantageous

scenario for parabolic EMA. For this reason, and in order to keep it clear, we have not

plotted parabolic EMA results on Fig. 4.1.

In contrast if III-V semiconductors are considered, the non-parabolic factor is higher

and the differences between parabolic and non-parabolic dispersion relation results are

larger. Fig. 4.3 presents Ni versus Vg for (a) InAs and (b) GaAs cylindrical NWs with

Rs = 5nm (circles) and Rs = 15nm (squares) considering parabolic (dashed) and non-

parabolic dispersion relations (solid). Al2O3 with tins = 2nm was employed as insulator
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Figure 4.1: Electron concentration, Ni, as a function of the gate
voltage, Vg, for several Si-SiO2 cylindrical NWs with sizes ranging from
3nm to 10nm and tins = 1nm, calculated using EMA non-parabolic
(dashed) and k · p six band simulations (solid) for (a) [111] and (b)
[110] transport orientations.
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Figure 4.2: Cylindrical NW geometry: Rs is the semiconductor ra-
dius and tins is the insulator thickness.

and [100] transport orientation is assumed.

The non-parabolic factors of InAs and GaAs for the different valleys are summarized

in Appendix F. As can be observed, the parabolic approach underestimates the electron

concentration for both materials. However, the error is larger for InAs than for GaAs,

since βΓ for InAs more than doubles its value for GaAs. An extensive comparison

between parabolic and non-parabolic electrostatic results of III-V NWs can be found

in Ref. [154].

One non-negligible question regarding simulation concerns the selection of an appro-

priate set of material parameters. There are several references in the literature which

have compiled extensive information about III-V semiconductors parameters [92], [155],
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[89], [90]. A brief discussion on their influence on the simulation results becomes nec-

essary. To do it, we have selected, due to their completeness and clarity, two studies

by Kim et al. [89] and Vurgaftman et al. [90]. InGaAs parameters obtained from Refs.

[89] and [90] are summarized in Table 4.1.

[89] [90]

Eg,Γ (eV) 0.730 0.830

Eg,L (eV) 1.480 1.182

Eg,X (eV) 1.980 1.563

mΓ (m0) 0.045 0.052

ml,L (m0) 1.232 1.661

mt,L (m0) 0.061 0.115

ml,X (m0) 1.209 4.553

mt,X (m0) 0.193 0.233

βΓ (eV) 1 1

βL (eV) 0.5 0.5

βX (eV) 0.5 0.5

Table 4.1: Eg,v, m
∗

v and βv of In0.53Ga0.47As obtained from Refs.
[89] and [90].

The main differences in Table 4.1 regard the energy gaps and effective masses of the

satellite valleys. These differences result in distinct onsets (due to Eg) and population

rates (due to m) of the satellite valleys. Fig. 4.4 shows the gate capacitance Cg, as a
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function of the gate voltage, Vg, for the two sets of parameters given in Table 4.1 for

InGaAs cylindrical NWs with sizes 2Rs = 5nm and 2Rs = 15nm. Al2O3 is used as

insulator, with tins = 2nm, and standard orientation is assumed.

When the parameters from Ref. [90] are considered, a shoulder is observed near

Vg ≈ 0.9V, for 2Rs = 5nm; while using the parameters from Ref. [89] the shoulder

appears at higher gate voltages (Vg ≈ 1.2V for 2Rs = 5nm and Vg ≈ 1.6V for 2Rs =

15nm). The position of the shoulder is related to the value of the L-valleys gap, which

determines the L-valley population onset.
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Figure 4.4: Cg as a function of Vg for two InGaAs NW sizes: 2Rs =
5nm and 2Rs = 15nm for the set of parameters given in Ref. [89]
(dashed lines) and the one given in Ref. [90] (solid lines).

Once the importance of the material parameters in the simulation results is assessed,

we have to choose a set of parameters to be considered by SP2D. To do it we have

confronted SP2D results with the experimental ones provided by Radosavljevic et al.

in Ref. [99]. In Fig. 4.5 we present the geometry implemented by SP2D to replicate

that shown in Ref. [99]. The semiconductor device width, Ws, and height, Hs, are

set to 45nm and 50nm, respectively and a tilt of 80◦ of the lateral sides is considered,

similar to that depicted in Ref. [99]. In order to get the best fit with the experimental

results, we have slightly reduced the EOT of the device from 1.2nm to 1.1nm. We

use Tantalum silicate (TaSiOx) as gate insulator, with a dielectric constant estimated

as εins = 9ε0, from the EOT and the device geometries provided in Ref. [99]. The

potential barrier height between the gate insulator and the semiconductor has been

estimated as 1.97eV, following the procedure explained in Section 3.4 and assuming

that all the parameters for TaSiOx can be calculated by a linear interpolation between

those corresponding to SiO2 and Ta2O5. As in Ref. [99], the gate penetrates into the

Electrostatics 63



4.2. Validation of SP2D

buried oxide, increasing the electrostatic control of the gate on the bottom region of

the device.

80

H

W

s

s

t ins

º

Figure 4.5: Cross-section of the Trigate with the gate penetrating
into the buried oxide as in [99]. Ws and Hs are the semiconductor
width and height respectively, tins is the oxide thickness. A tilt of 80◦

of the lateral sides has been considered.

Fig. 4.6 depicts Cg of the Trigate device as a function of the gate overdrive voltage,

Vod = Vg−VT for the experimental results from Ref. [99] (solid line) and the simulations

using both the sets of parameters in Table 4.1 from Refs. [89] (dotted line) and [90]

(dashed line). For high gate voltages the simulation results for the set of parameters

from Vurgaftman et al [90] show a hump, due to the occupation of the L valley which

can be better appreciated in Fig. 4.7, where the total charge of each kind of valley is

depicted versus Vg. The larger gap of the L valleys proposed in Ref. [89] increases the

gate voltage range where only the Γ valley contributes to the capacitance and provides

results closer to the experimental ones. Thus, hereinafter this set of parameters will be

used for simulations of III-V materials in SP2D.
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simulations using the parameters in Table 4.1 from Ref. [89] (dotted
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4.3 Comparison of III-V cylindrical NWs

In this Section we accomplish a brief study on the population of the Γ, L and X valleys

in cylindrical NWs of different III-V materials and sizes. We also discuss its influence

on the average conduction effective mass, m∗, and the gate capacitance, Cg. The NW

geometries considered in this Section are as the one depicted in Fig. 4.2 and are oriented

along the [100] crystallographic direction. Al2O3 was used as gate insulator with an

insulator thickness tins = 2nm. A metal-gate work function Φm = 5.05eV was assumed.

Fig. 4.8 shows the populations of the Γ-valley (dashed), the L-valley (dotted) and

the X-valley (dash-dotted) together with the total electron population (solid) as a

function of Vg for InAs (left), InGaAs (center) and GaAs (right) NWs of diameters

2Rs = 5nm (top) and 2Rs = 15nm (bottom).
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Figure 4.8: Ni of each kind of valley versus Vg for InAs (left) In-
GaAs (center) and GaAs (right) NWs of sizes 2Rs = 5nm (top) and
2Rs = 15nm (bottom). Total, Γ-valley, L-valley and X-valley electron
populations are plotted as solid, dashed, dotted and dash-dotted lines
respectively.

As can be seen in Fig. 4.8 the X-valley population is not relevant for the voltage
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range analyzed, limiting its interest in practical purposes, and therefore it is obliterated

in the forthcoming analysis. The main differences between curves for the different

materials and sizes regards the valley population onsets. The threshold voltages of

the Γ and L valleys, VT,Γ and VT,L, were obtained from the maximum of the second

derivative of the charge associated to each valley [156], and are summarized in Table

4.2. ∆VT refers to the difference VT,L − VT,Γ

2Rs = 5nm 2Rs = 15nm
VT,Γ (V) VT,L (V) ∆VT (V) VT,Γ (V) VT,L (V) ∆VT (V)

InAs 0.53 1.14 0.61 0.22 1.51 1.19

InGaAs 0.75 1.24 0.49 0.52 1.58 1.06

GaA 1.12 1.41 0.29 0.94 1.59 0.65

Table 4.2: VT,Γ and VT,L (determined using the second derivative of
the charge) for InAs, InGaAs and GaAs NWs of sizes 2Rs = 5nm and
2Rs = 15nm. ∆VT refers to the difference VT,L − VT,Γ

As can be noted in Fig. 4.8 and Table 4.2, InAs devices achieve the highest difference

between VT,Γ and VT,L for both sizes, due to its larger Eg,L − Eg,Γ separation (see

Appendix F). One interesting result concerns the decrease in the VT,L−VT,Γ difference,

with the device shrinking which is due to both the increase of VT,Γ and the decrease

of VT,L. This contra-intuitive result (for a decrease of device size we would expect an

increase of VT regardless the kind of valley) can be explained attending to the effect of

the confinement on the first energy level, E0, of Γ, E0,Γ and L, E0,L, valleys. E0, as is

demonstrated in Section 6.5, mainly determines VT for III-V NWs [156].

Fig. 4.9 shows the position of E0 (referred to the bottom of the conduction band)

in the sub-threshold regime (under flat well approximation) as a function of 2Rs and

the confinement effective mass, mv. As can be observed, only for small mv there is

a non-negligible change in the position of E0 with 2Rs. The values of mv for Γ and

L valleys for InAs are plotted as dashed lines 1. From, Fig. 4.9 we would expect no

meaningful change in E0,L and therefore VT,L with 2Rs, but actually VT,L increases

with 2Rs. Therefore, we have to look for the explanation somewhere else.

Fig. 4.10 depicts the dependence of E0,Γ (solid) and E0,L (dashed) (referred to EF

which is the reference for energies as proposed in Chapter 3), and the surface potential

1An isotropic effective mass for the L valley (mL = 0.6m0) was considered for illustrative purposes
in Fig. 4.9. Nevertheless the appropriate anisotropy of L-valley is taken into consideration by SP2D.
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sub-threshold voltage (under flat well approximation) as a function of
2Rs and mv. The values of mv for Γ (0.026) and L (0.6) valleys for
InAs are plotted as white dashed lines.

φs (dash-dotted) as a function of Vg for two InAs NWs with sizes (a) 2Rs = 5nm and

(b) 2Rs = 15nm. The Vg values corresponding to the threshold voltages of the Γ and L

valleys are plotted as dotted lines. Two assertions can be done from Fig. 4.10: (a) the

value E0 for which the valley turns on is pretty similar in both sizes (around 0.03eV

for the Γ-valley and around 0.075eV for the L-valley)2; (b) The dependence of E0 with

Vg is quite different from one size to the other.

The smaller the device, the sharper the decrease of E0,Γ and E0,L with Vg in the

region between VT,Γ and VT,L due to the lower inversion charge and, consequently,

potential screening. As the value E0,L for subtreshold regime and valley onset condition

does not vary very much for both sizes3, it is the slope of change of E0,L with Vg which

mainly determines VT, being VT higher when the slope is softer (larger devices).

The Vg range between VT,Γ and VT,L is of interest because the conduction effective

mass coincides with the Γ valley mass, thus providing its well-known beneficial effects on

the transport properties (see Chapter 9). As a drawback, in the same Vg range where the

higher mobility is expected, the so-called density of states bottleneck appears, limiting

the gate capacitance. Fig. 4.11 shows Cg as a function of Vg for InAs (left), InGaAs

(center) and GaAs (right) and different NW sizes: 2Rs = 5nm (solid) and 2Rs = 15nm

2Exact values are E0,Γ = 0.0371eV and E0,Γ = 0.0292eV for 2Rs = 5nm and 15nm and E0,L =
0.0828eV and E0,L = 0.0675eV for 2Rs = 5nm and 15nm.

3Some differences regarding the results from Fig. 4.9 are observed as here the anisotropy of the
L-valley is taken into consideration
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threshold voltages of the Γ and L are plotted as dotted lines.

(dashed). As can be observed, in the range between VT,Γ and VT,L (see Table 4.2) the

gate capacitance is degraded, showing oscillations in the transition between off and on

states, and actually it only increases to acceptable values when L valleys get populated.

It is for GaAs, with smaller VT,L-VT,Γ, that Cg−Vg curves increases more sharply giving

a better Cg behavior.
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4.4 Comparison of Si and III-V Trigate MOSFETs

In this Section, guided by the good results obtained in the SP2D validation done in

Section 4.2 for an InGaAs Trigate, we study the behavior of InGaAs, InGaSb and SOI

Trigate FETs, as a function of the channel width, Ws. InGaSb has not been deeply

studied in the literature for electron as majority carriers [157]. The inclusion in this

comparison obeys to the technological expectations placed on it as a good alternative

to Si in CMOS processes [157]. In addition to its well known hole mobility, InGaSb is

characterized by a low Γ-valley effective mass, which can be controlled through the In

molar fraction. On the contrary, the energy gap separation between Γ and L valleys is

small for this material (see Appendix F) affecting negatively to the its potential high

electron mobility.

Fig. 4.12 shows the Trigate geometry considered in this Section. Hs is the semicon-

ductor channel height while tins and tbox are the gate and buried insulator thicknesses,

respectively. All III-V semiconductors parameters are taken from Ref. [89] and sum-

marized in Appendix F. For the sake of simplicity in the interpretation of the results,

no tilt of the lateral sides of the Trigate is considered. The same, equivalent oxide

thickness, EOT will be used for all devices, with SiO2 as the gate insulator for the Si

Trigates and TaSiOx for the InGaAs and InGaSb ones. The material parameters of

TaSiOx are those used in Section 4.2.

tbox

t ins

Ws

Hs

tbg

rc

Figure 4.12: Trigate geometry. The channel size is Ws × Hs. tins
and tbox are the gate and buried insulator thickness, respectively. Fol-
lowing the experimental geometry from Ref. [99] the gate is extended
along the buried insulator.

Fig. 4.13 compares the gate capacitance per unit area, Cg,sf (which allows a fair

comparison between sizes) as a function of Vg for InGaAs (solid), InGaSb (dotted) and
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Si (dashed) Trigate devices. Several semiconductor widths, Ws, from 5nm to 30nm, are

considered. The semiconductor height is kept constant to Hs = 50nm. As can be seen,

the curves achieved for Si devices are very close and only for very small devices slight

variations are found. However, Ws has a stronger impact on structures made of III-V

alloys. Two main conclusions related to Ws can be deduced from these results:

(a) The threshold voltage variations associated to the higher quantization of narrower

devices are more noticeable in InGaAs and InGaSb than in Si Trigates, due to the

smaller effective masses of the InGaAs and InGaSb Γ valley. Fig. 4.14(a) shows

the increment in the threshold voltage, ∆VT, as the device width is reduced from

30nm to 5nm for Si (circles), InGaAs (squares) and InGaSb (diamonds) devices.

The observed ∆VT in InGaAs and InGaSb is three times higher than in Si for

Ws = 5nm.

(b) At large Vg values an increase of Cg is found when the device dimensions are

shrunk for InGaAs and InGaSb Trigates. This effect appears when satellite valleys

get populated, primarily because the gate voltage at which the L valleys begin to

be populated is reduced with the device width, as can be seen in Fig. 4.14(b).

The effect is more clearly observed in InGaSb devices which have a lower L valley

threshold voltages.
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Figure 4.13: Cg,sf versus Vg of InGaAs (solid), InGaSb (dotted),
and Si (dashed) Trigate MOSFETs with Hs = 50nm and Ws ranging
from 5nm to 30nm.

As also shown in Fig. 4.13, higher values for Cg are achieved for Si Trigates com-

pared to III-V materials, in agreement with the results presented in the literature for
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both planar devices [158] and NWs [159]. The capacitance degradation for InGaAs

and InGaSb devices is due to: 1) their larger inversion layer centroid [160], and 2) the

density of states bottleneck [66]. Both effects are related to the reduced confinement

effective mass of these materials.

Figs. 4.15 and 4.16 show the 2D charge distributions for InGaAs, InGaSb and Si

Trigates (10nm×30nm only) and some horizontal slices of the charge distribution in

the center of the devices, respectively.
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Figure 4.15: n (cm−3) simulated at Vg−VT = 0.5V for InGaAs (left)
InGaSb (center) and Si (right) Trigate MOSFETs with Ws = 10nm
and Hs = 50nm.

As can be seen in Fig. 4.15, the electron distribution for the Si, InGaAs and InGaSb
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Trigates is not uniform. The increase of the electrostatic control in the regions close to

the top gate and also to the bottom buried gate (especially near the corners) results in

an enhancement of the charge density in those regions. The impact of this contribution

should not be neglected for a correct modeling of Trigate geometries (see Section 4.5).
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Figure 4.16: Slice of the electron density (cm−3) at the center of the
device (see inset), at Vg = 1.2V, for InGaAs (solid), InGaSb (dotted)
and Si (dashed) Trigate MOSFETs with Hs = 50nm. Two different
semiconductor widths are considered: Ws = 5nm and Ws = 30nm.

In Fig. 4.16 the larger separation between the inversion charge and the semiconductor-

insulator interface in InGaAs and InGaSb devices with respect to Si one is clearly

depicted for Ws = 30nm. For Ws = 5nm the spatial confinement is strong enough

to obscure the influence of m∗v on the charge distribution. The degradation of Cg in

InGaAs and InGaSb for this size is therefore due to the density of states bottleneck.

4.5 Trigate versus DG comparison

To get a deeper understanding of the Trigate behavior, in this Section we have made

a comparative study of Trigates and Double Gate (DG) FETs with similar sizes. The

same kind of Trigates studied in Section 4.4 are considered (see Fig. 4.5). The electron

density of the DG MOSFETs is calculated as the charge of a slice at the center of the

Trigate (similar to the curves shown in Fig. 4.16), multiplied by the device height to

account for the whole DG device charge.

Fig. 4.17 shows the electron density per unit length (Ni) achieved for 50nm height

Trigates and the values obtained when DG devices are considered. Ws from 5nm to
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30nm are simulated.
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Figure 4.17: Ni as a function of Vg for (a) Trigates and (b) DGs
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are used as semiconductors.

Important differences are found depending on the description employed. The most

obvious is the higher total charge of Trigate devices, which is primarily related to: 1)

the increase on the device perimeter due to the top interface and 2) the non-negligible

impact of the corners, due to their higher electron concentration. That higher elec-

trostatic control of the gates on the corner regions also modifies the influence of the

satellite valleys on the device performance, as L valleys are first populated near the cor-

ners of the device. To study this effect, Figs. 4.18 and 4.19 show the charge associated

to the L valleys DG and Trigate devices made of InGaAs and InGaSb respectively. In

all the cases, important differences are found that cannot be explained just by means

of the increase in the total perimeter of the device.

Furthermore, from Figs. 4.18 and 4.19 we can asses that: 1) for InGaAs, the L-

valley population in the top and lateral regions is quite reduced since nearly doubling

the height (from 30nm to 50nm) or tripling the width (from 10nm to 30nm) does

not notably increase the L-valley concentration (from 2.5 × 107cm−1 to 3 × 107cm−1

and from 2.8 × 107cm−1 to 3 × 107cm−1 for the largest polarization, respectively); 2)

for InGaSb the L-valley population is disposed more uniformly through the different

regions reducing the role of the corners, which explain the smaller differences between

Trigate and DG.

The differences observed in the valleys population between Trigate and DG geome-

tries may influence the estimation of the electron mobility. The larger effective mass of
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the L valleys in the transport direction increases the average conduction effective mass,

m∗, of the device which is calculated as:

m∗ =
∑

v

m∗vNv

Ni
(4.1)

where m∗v and Nv are the conduction effective mass and electron concentration of the

v-th valley. Therefore, the lack of precision when describing Trigate devices as DGs

produces errors in the estimation of the conduction effective mass. Fig. 4.20 shows how

the DG modeling of the devices underestimates m∗ for InGaAs and InGaSb trigates

but overestimates it for Si.

The large increase of m∗ for large inversion charges observed in Fig. 4.20 points

out a degradation of the electron mobility in III-V materials for high gate voltages.

A thorough study of the transport properties of these devices will be carried out in

Chapter 9.
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4.6 Influence of the back-gate bias on the electrostatics of

Si Trigates

Low-power applications require dynamic control of the threshold voltage to manage

simultaneously power and performance [161], [162]. One potential solution is the back-

gate biasing that modifies VT due to the body effect. However, few works deal with

this effect on MuG MOSFETs [163], [164]. This Section analyzes the influence of back

gate bias on the performance of Si Trigate structures [165, 166].

Fig. 4.21 shows a cross-section of a Trigate with rectangular semiconductor channel,

being Ws and Hs the semiconductor width and height respectively. tins and tbox are

the thicknesses of the front gate and buried insulators, respectively. Back-gate bias

(Vbg) is applied beneath the buried oxide. Si Trigates were oriented along the [011]

crystallographic direction (ẑ), being the top and bottom (ŷ) Si-insulator interfaces

(100)-oriented, and the lateral ones (x̂) (011)-oriented.

tbox

t ins

Ws

Hs

Vfg

Vbg

y

x

zo

Figure 4.21: Trigate geometry. The channel size is Ws × Hs. tins
and tbox are the front gate insulator thickness and buried insulator
thickness, respectively.

For Si Trigates, a midgap metal gate (Φm = 4.61eV) is considered for the front gate

and a p+poly-Si for the back gate (Φ = 5.17eV). SiO2 is assumed as gate and buried

insulator with thicknesses tox = 1.2nm and tbox = 10nm, respectively. The minimum

channel width and height considered for Si is 5nm. The channel orientation has been

taken into account rotating the effective mass tensor as explained in Section 3.6. Non-
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parabolic corrections to the conduction band have also been included as explained in

Section 3.7.

First, the inversion charge (Ni) versus front gate voltage (Vfg) curves have been

studied as a function of the back gate bias (Vbg). Fig. 4.22 shows the results for a

device with Ws = 5nm and Hs = 5nm. As can be seen, only the threshold voltage (VT)

is modified when Vbg changes, while the gate capacitance as a function of the overdrive

gate voltage (Vfg − VT) remains unaltered. Negative values of Vbg increase VT, as they

reduce the overall potential in the channel, while positive ones decrease VT.
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Figure 4.22: Ni versus Vfg in a device with Ws = 5nm, Hs = 5nm,
as a function of Vbg (ranging from -2V to 2V).

The influence of the back-gate bias varies when different device widths are consid-

ered. This is due to a modification of the front-gate control on the back part of the

channel. The overall behavior, however, is quite complex, as shown in Fig. 4.23, where

different device widths are taken into account for a fixed device height, Hs=5nm, for

(a) Vgb = 2V and (b) Vgb = −2V . As can be observed, when Ws is raised, VT slightly

increases for negative values of Vbg, while it remarkably decreases for positive values

of Vbg. To explain this behavior, the influence of the quantum confinement on the

threshold voltage has to be taken into account. Hence, for negative Vbg values, there

are two contributions that tend to cancel each other:

• Firstly, the increase of the device width produces a larger influence of the back-

gate bias and thus, from a classical point of view, VT should rise.

• Secondly, the wider the device, the lower the quantum confinement and therefore

the lower its influence on the threshold voltage. In the absence of Vbg, this would
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cause a reduction of VT for wider devices.

As for positive Vbg values, the higher influence of the back gate in wider devices

tends to reduce VT, adding up to the quantum confinement effect.
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silicon width: (left) Vbg = 2V , (right) Vbg = −2V

The complete picture of VT as a function of Vbg and Ws is shown in Fig. 4.24(a)

for a Hs = 5nm device. Correspondingly the dependence of VT on Hs for varying Vbg

is plotted in Fig. 4.24(b) for a Ws = 5nm. It is easy to note for a given device size

increasing the device width augments the control of Vbg on VT while an increase of the

device height reduces that control.
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As already reported in Ref. [161], both the increase of Ws and the decrease of Hs
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are useful to augment the body factor, which is defined as

γ =

∣

∣

∣

∣

∂VT
∂Vbg

∣

∣

∣

∣

(4.2)

Fig. 4.25 depicts the body factor as a function of the channel width and height.

As can be seen, for the values of tins and tbox considered in this work, γ values higher

than 0.1 can be achieved only for width/thin devices. However, devices with almost

square aspect ratio (5nm×5nm or 20nm×15nm) can achieve γ values as large as 0.05

which may be worth for VT control [? ]. As the body factor is closely related to the

ratio between the channel-to-back-gate capacitance (Cbg) and the channel-to-front-gate

capacitance (Cfg) [162], the use of Ultra-Thin BOX is critical to even higher γ values.
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Figure 4.25: Body factor (γ) as a function ofWs andHs. The dashed
lines indicate the γ = 0.05 and γ = 0.1 isolines.

Apart from the influence of the back-gate bias on the threshold voltage, the use

of Vbg also modifies the electron distribution in the channel. Figure 4.26 represents

the normalized charge distribution along a vertical slice of a Ws × Hs = 5nm×5nm

device for different inversion charges (Ni) at Vbg = ±2V. For positive Vbg values (solid

lines), the volume inversion effect is enhanced, being the charge more homogeneously

distributed along the channel (even for large values of Ni, close to 107cm−1). On the

other hand, negative Vbg values (dashed lines) shift the charge towards the top interface.

The 2D normalized electron distribution for that device at an inversion charge of

Ni = 106cm−1 is depicted in Fig. 4.27 for (a) Vbg = −2 and (b) Vbg = 2V. Not only the

charge is closer to the top interface in the Vbg = −2V case, but it is also more confined

and closer to the lateral regions of the device. As it will be discussed in Chapter 9, this

has a strong influence on the electron mobility.
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Figure 4.27: Normalized electron distribution at Ni=106cm−1 in a
5nm ×5nm device, with (a) Vbg = −2V (b) Vbg = 2V.

4.7 Effects of interfacial states on the technological vari-

ability of Si Trigates

In this Section we study the influence of the interfacial states, Dit, on the performance

of MuG FETs and, specifically, on the subthreshold Swing and threshold voltage [167].

To do it, we consider a Trigate Si-SiO2 MOSFET as the one depicted in Fig. 4.12

but neglecting the buried gate. Ws and Hs are set to 10nm and tins to 1nm. Undoped

body, corner rounding, a midgap metal gate and, otherwise stated, (100)/[011]-oriented

devices are used. Dit has been modeled as a Gaussian function, with amplitude Ag = A0

and variance σg = σ0, following the experimental results from Ref. [102]. Other

energetic profiles described in the literature must be highlighted [103, 141, 145, 168].
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Fig. 4.28 shows experimental (solid) and modeled (dotted) (a) Dit and (b) Qit as a

function of the energy in the gap E − Ei, being Ei the intrinsic level. As in Ref. [102]

only acceptor kind traps are considered.
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Figure 4.28: (a) Dit and (b) Qit as a function of the energy in the
gap, E − Ei. Two Dit profiles are considered: an experimental one
obtained from Ref. [102] and a Gaussian profile with the same peak
and integrated charge.

Fig. 4.29 shows the SS calculated as a function of Vg − VT in the presence of the

Dit at different temperatures, T ranging from 50K to 300K. Our simulations reproduce

the behavior shown in Ref. [102]: for small Vg, the SS values are close to the ideal SS

limit, ln(10) ·kBT/q. However, there is a kink close to VT related to the presence of the

Dit, which is drifted to larger Vg values as T increases. Thus, at high T the influence

of the Dit moves above threshold voltage, being obscured by the electron charge.

For that reason, the forthcoming results are obtained, otherwise stated, at T = 50K.

First, we have compared SS for different Gaussian Dit profiles. Fig. 4.30 presents SS

as a function of Vg for increasing values of Ag: from A0/2 to 2A0. The higher Ag, the

higher Qit and, as expected from the −Qit/Cins term of VT (see Section ??) the larger

∆VT.

The amplitude and broadening in the Vg range of the SS kink increase with A.

This effect degrades the on-off transition regime, as shown in Fig. 4.31, where the total

charge density versus Vg is represented for the same Ag values considered in Fig. 4.30.

An alternative explanation of this effect can be found from the surface potential, ψs,

behavior along the Si-SiO2 interface which is shown in Fig. 4.32. The linear relation

between ψs and Vg is broken when Dit begins to fill: at that point, the increase of Qit
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Figure 4.29: SS as a function of Vg for several T ranging from 50K
to 300K for a 10nm×10nm Trigate device and a Gaussian profile as
the shown in Fig. 4.28.

screens the potential, reducing |dψs/dVg| and therefore the control of the gate on the

inversion charge.

As a consequence, as depicted in Fig. 4.32, the subband energy levels Ej show

a plateau region which extends through the Vg range where Dit keep filling up (see

Fig. 4.30). The Ej rise is responsible for a lower level occupation and thus the charge

reduction shown in Fig. 4.31.

A variation of σg also modifies the behavior of the SS kink, as shown in Fig. 4.34,

where the high correlation between the SS kink and the shape of the Dit curve is

evidenced. In this case, the Dit curves have been adjusted to have the same total

integrated charge by modifying also the amplitude, and thus ∆VT is very similar for all

the σ values.

Experimental results have shown that the Dit associated to lateral and top/bottom

regions of MuG devices can be significantly different. Thus, some experimental results

have shown a higher Dit concentration in the lateral regions compared to the top

ones [102],[169]. Fig. 4.35 shows the simulation results when different amplitudes of

the Gaussian profile are applied to the lateral and top regions. A higher lateral Dit

increases the impact on both, the SS kink and in ∆VT, mainly because the associate

perimeter is larger 2Ws > Hs.

It is more interesting to analyze the influence of each region of the device separately

on the SS and potential. In Fig. 4.36 we compare the SS achieved when Dit are placed
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Figure 4.30: SS as a function of Vg for several Ag and T = 50K for
a 10nm×10nm Trigate device.

in all the Si-SiO2 interfaces and in each of them separately: corners, top, lateral and

Si-BOX (bottom) regions are considered.

The maximum ∆VT and wider SS kink is produced by charges located at the Si-

BOX interface. This result is related to the reduction of the gate control on such

interface, which may be modeled as a reduction of the Cins associated to that region,

which would increase VT. The potential decrease due to Dit screening in each region is

depicted in Fig. 4.37: lower values are found near the regions where the Dit is placed.

Again, the stronger effect of Dit at the Si-BOX interface is perceived.

Moreover, we have considered two alternative transport orientations: [001] and [011]

(both on (100) wafers, corresponding to the top surface of the Trigate): the results show

that the orientation does not significantly impact neither the SS nor the ∆VT, due to the

fairly noticeable orientation dependence of the charge distribution in the subthreshold

regime, as seen in Fig. 4.38 (the different peak value of the charge is related to a small

VT variation, shown in Fig. 4.36).

The relationship between the SS degradation and ∆VT has been analyzed in Ref

[170], without successful results. One of the reasons may be the influence of the insulator

thickness variability, also perceived in the TEM scans of Si NWs in Ref. [102]. We have

modified the gate insulator geometry as shown in the insets of Fig. 4.39, where tins at

the center of the top/lateral regions is increased or decreased to better fit fabricated

devices. As shown in Fig. 4.39, the thicker insulator thickness provokes a degradation

on the SS and a higher ∆VT, as a consequence of the lower electrostatic control. This is
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Figure 4.31: Ni as a function of Vg for several Ag and T = 50K for
a 10nm×10nm Trigate device.

demonstrated in the inset of Fig. 4.38, where the potential along the device is plotted

for the two extreme cases showing a larger screening in the device with thicker insulator

thickness.

From all the aforementioned results, we conclude that:

(a) The reduction of the gate control increases the negative effects of the interface

charges

(b) The increase of the gate insulator thickness or the presence of a noticeable interface

charge at the Si-BOX interface of SOI devices degrades the device performance

(c) The improvement of the electrostatic control on the gate insulator interface reduces

the technological variability associated to Dit.

Hence, we can expect that the increase of the number of gates helps to reduce both

SS and ∆VT. This hypothesis is confirmed in Fig. 4.40, where Ni is depicted as a

function of Vg for different Mug structures with the same channel dimensions than the

Trigate studied in this Section. In this Figure, the hump associated to the Dit presence

is reduced as the gate control of the channel is increased, leading to the conclusion that

the NW structure is the one with better immunity against the Dit influence.
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Figure 4.37: Potential decrease due to Dit screening for Dit located
at: (a) in the Si-BOX region, (b) only in the lateral sides, (c) only in
the top side, and (d) the whole Si-SiO2 interface, for a 10nm×10nm
Trigate device.
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4.8 Conclusions

In this Chapter, Trigates and NWs made of Si and III-V semiconductors have been

studied using the SP2D simulator. It has been demonstrated that the low density

of states has a strong influence on the charge density and gate capacitance behavior

of III-V NWs. Moreover, the population of higher energy valleys (in particular, of

L valleys) can strongly modify the small conduction effective mass associated to III-V

semiconductors. Additionally, we have studied the behavior of InGaAs, and SOI Trigate

FETs, as a function of the channel width, showing that the semiconductor width has

a strong impact on InGaAs Trigates: both the threshold voltage and the gate voltage

at which the L valleys begin to be populated depend on the width. Besides, it has

been demonstrated the importance of considering the two-dimensional confinement for

III-V materials to accurately reproduce the electron distribution near the corners. This

effect produces a noticeable impact on the conduction effective mass as a result of the

different population of each valley. The control of the threshold voltage and the charge

distribution of Trigate SOI devices by modifying the back-gate bias has been studied,

confirming the possibility of achieving body factors higher than γ=0.1 as long as the

channel width over height ratio is increased as much as possible. Finally, the influence

of the interfacial states, Dit, on the performance of Si MuG FET and, specifically,

on the subthreshold swing and threshold voltage has been analyzed observing relevant

variations with the temperature and the oxide thickness. It is concluded that the higher

the number of gates the lower the degradation due to the interface states.
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Chapter 5

Charge, potential and current

analytical models for III-V NWs

5.1 Introduction

In this Chapter, an analytical model is proposed to calculate the potential, inversion

charge and drain current of III-V cylindrical NWs. To develop the model, we make use

of the cylindrical symmetry of the device and the isotropic effective mass of Γ valley to

solve the Poisson and Schrödinger equations in polar coordinates. From Schrödinger

solution we obtain expressions for the subband energies and their corresponding wave-

functions, taking into account their penetration into the gate insulator and the effective

mass discontinuity in the semiconductor-insulator interface. A complete expression for

the potential in the NW is achieved by solving the Poisson equation for an arbitrary

number of subbands. The model considers Fermi-Dirac Statistics, two-dimensional

quantum confinement of the carriers, non-parabolicity effects and interface states.

Several differences must be highlighted between this work and other models pro-

posed in the literature for cylindrical NWs [171]: 1) the inclusion of the wavefunction

penetration into the gate insulator, which has to be considered to accurately model

low-effective-mass materials [96]; 2) The non-parabolic dispersion relationship, which

is non-negiglible in III-V materials [154]; and 3) The possibility of including an arbi-

trary analytical profile of interface states, which strongly affects the operation of III-V

NWs [128].

The rest of the Chapter is organized as follows. In Section 5.2 we solve the
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Schrödinger equation in a cylindrical potential well with a finite potential barrier. The

solutions are expressed in terms of Bessel functions for the well and modified Bessel

functions of the second kind for the barrier. The correction (by means of the pertur-

bation theory) to the Schrödinger energy levels for a non-flat potential scenario is also

discussed. In Section 5.3 the Poisson equation is solved for an arbitrary number of

occupied subbands obtaining an expression for the potential in the NW. This poten-

tial is then used to correct the energy levels, as proposed in Section 5.2. Section 5.4

reviews the calculation of the electron charge considering parabolic and non-parabolic

dispersion relationships. In Section 5.5 we deal with the inclusion of interface states in

the model, allowing the introduction of any arbitrary analytical interface state profile.

In Section 5.6 we briefly discuss the implementation of all equations from Section 5.2

and 5.3, using an iterative algorithm. Section 5.7 uses the results from the charge and

potential model to build a current model for the NW. Section 5.8 validates the model

by the comparison to the results of numerical simulations for different materials, sizes

and applied gate voltages. Finally, the main conclusions of the work are presented in

Section 5.9. Appendixes B.1, B.2 and B.3 include the mathematical details for: the

normalization of the wavefunctions, the resolution of the Poisson equation and the

determination of the boundary conditions, respectively.

5.2 Subband modeling

In this Section an analytical solution of the Schrödinger equation in a cylindrical NW is

obtained, including the semiconductor, the gate insulator and the metal gate, as shown

in Fig. 5.1.

R

insT

r
0

Figure 5.1: Geometry of the circular cross-section NW. R0 is the
semiconductor radius and Tins the insulator thickness.
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Figure 5.2: Potential energy profile along a radial slice of the NW
in a finite potential well: ∆φ = φb − φa; where φa (φb) and ma

(mb) correspond to the potential energy and effective mass in the
semiconductor (insulator) respectively.

To do so, we consider a cylindrical well with finite potential barrier (∆φ), as depicted

in Fig. 5.2. Different effective masses are considered in the semiconductor (ma) and

the oxide (mb), and the wavefunctions are allowed to penetrate into the gate insulator.

This fact may impact the subband minimum energy as demonstrated by Mudanai et

al. for planar devices [96]. For the system considered, the Schrödinger equation can be

written as follows:

− ~
2

2mi
∇2ξ(r, θ) = (E − φi) ξ(r, θ) (5.1)

where ξ(r, θ) is the wavefunction associated to an energy E, and mi and φi are the

confinement effective mass and the potential energy of each region i = a, b (see Fig.

5.2). It is assumed here that neither mi nor φi depend on the azimuthal angle, θ (i.e.,

the model is applied to isotropic bands). Therefore, ξ(r, θ) can be decomposed into its

radial and angular components as:

ξ(r, θ) = R(r)Y (θ) (5.2)

Using the previous factorization, Eq. (5.1) can be written as:

Y (θ)

r2
∂2R(r)

∂r2
+
Y (θ)

r

∂R(r)

∂r
+
R(r)

r2
∂2Y

∂θ2
= −R(r)Y (θ)βi (5.3)

where we have defined:

βi =

√

2mi

~2
(E − φi) (5.4)
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Rearranging terms we get:

1

R(r)

∂2R(r)

∂r2
+

r

R(r)

∂R(r)

∂r
+ r2βi =

1

Y (θ)

∂2Y (θ)

∂θ2
(5.5)

which can be split into:
∂2Y (θ)

∂θ2
= −l2Y (θ) (5.6)

r2
∂2R(r)

∂r2
+ r

∂R(r)

∂r
+
(

βir
2 − l2

)

R(r) = 0 (5.7)

The solution of Eq. (5.6) is:

Y (θ) =
1√
2π
eılθ (5.8)

where l ∈ Z (to enforce Y is single-valued) and ı is the imaginary unit

Assuming φa < E < φb, the solution of Eq. (5.7) is:

Ri(r) =

{

A · Jl (γr) for i = a

C ·Kl (αr) for i = b
(5.9)

being Jl(γr) the Bessel function of order l, Kl(αr) the modified Bessel function of the

second kind and order l, γ = βa and α = jβb. Thus, the set of solutions for ξ(r, θ) in

Eq. (5.1) is as wide as Z.

The values of γ, α and E can be determined by applying the usual boundary

conditions to ξ in the interface between media [115]:

ξa(Rs, θ) = ξb(Rs, θ) (5.10)

1

ma

dξa(r, θ)

dr

∣

∣

∣

∣

r=Rs

=
1

mb

dξb(r, θ)

dr

∣

∣

∣

∣

r=Rs

(5.11)

Here, it is convenient to use the substitution Ê = E − φa. Then γ and α can be

rewritten as:

γ2 =
2ma

~2
Ê, α2 =

2mb

~2

(

∆φ− Ê
)

(5.12)

where ∆φ = φb − φa is the difference between the potential energies in both mediums,

that is the barrier between their conduction band levels (see Fig. 5.2).
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Then applying Eqs. (5.10) and (5.11) we get:

A · Jl(γRs) = C ·Kl(αRs) (5.13)

A

ma
γ [Jl−1(γRs)− Jl+1(γRs)] = − C

mb
α [Kl−1(αRs) +Kl+1(αRs)] (5.14)

The unknown constants, A and C, can be eliminated by dividing the two previous

equations:
η

ma

Jl−1(η)− Jl+1(η)

Jl(η)
= − ζ

mb

Kl−1(ζ) +Kl+1(ζ)

Kl(ζ)
(5.15)

where η = γRs and ζ = αRs. An additional relationship between η and ζ can be

achieved from the definition of γ and α:

η2 +
ma

mb
ζ2 =

2ma∆φR
2
s

~2
(5.16)

Equations (5.15) and (5.16) form a system from which we can calculate η and ζ.

The device dimensions and the semiconductor and insulator properties determine the

right-hand-side of Eq. (5.16); and, consequently, the solution of the system. Some

aspects must be taken into account when solving Eqs. (5.15) and (5.16):

(a) There are multiple solutions for the system: as many as values of l in Eq. (5.15).

(b) For a given l there are also several solutions as the Bessel functions involved in Eq.

(5.15) are not monotonic.

(c) Every solution with l = m, being m = 1, 2, . . . , is degenerate; having its degenerate

solution l = −m. This result can be deduced from the properties of Bessel and

modified Bessel functions:

Jv(x) = (−1)vJ−v(x)

Kv(x) = K−v(x) with v ∈ Z (5.17)

It is easy to observe that, applying these properties, Eq. (5.15) is completely

equivalent for l = m and l = −m

(d) For l = 0 the solution is non-degenerate.

For each solution pair ηj, ζj , with j = 0, 1 . . ., one can easily calculate a corre-
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sponding pair γj and αj and, using Eq. (5.12), a discrete energy level Êj as:

Êj =
~
2

2ma

η2j
R2

s

(5.18)

For the sake of clarity, let us briefly explain the subscript notation used in this Chapter.

On the one hand, we use the subscript j to enumerate the subbands, from the lowest

(j = 0) to the highest (j = N) value of Êj (where N is the number of subbands

considered). On the other hand, the subscript l indicates the order of the Bessel

function associated to the j subband; in other words the value of l in Eq. (5.15) for

which Êj is solution. Therefore, hereafter we assume l = l(j).

To better appreciate the solutions provided by the system of Eqs. (5.15) and (5.16),

Fig. 5.3 shows the first 24-th wavefunctions, sorted (left to right and top to bottom)

attending to the value of Êj , for a In0.53Ga0.47As-Al2O3 NW with 2Rs = 20nm and

tins = 1nm. The material parameters of In0.53Ga0.47As and Al2O3 are summed up in

Appendix ??. To get a more meaningful representation of the wavefunctions, we have

plotted the real part of ξj(r, j) for l ≥ 0. Plotting |ξj(r, θ)| –which actually reflects

the charge distribution– in its stead, will obscure the differences between l-values.

Nevertheless, it is easy to figure out the corresponding imaginary parts of ξj(r, θ). As

Ri(r) is real and Y (θ) = eılθ/
√
2π, the imaginary parts are just a rotation given by

π/2l (with l 6= 0) of the plotted real parts. For l = 0 the wavefunction is real. Each

wavefunction in Fig. 5.3 is labeled with its corresponding values of j and l. The missing

values of j correspond to the l < 0 results which are not plotted. The wavefunctions

for l < 0 will be equal to their l > 0 counterparts except for a factor −1 multiplying

the real parts for odd l and the imaginary parts for even l. As expected the cylindrical

symmetry of |ξj(r, θ)| is always preserved.
Hitherto, the values of the constants A and C in Eq. (5.9) have not been determined.

They can be obtained from the normalization of the wavefunction:

∫ ∫

|ξj(r, θ)|2rdrdθ = 1 (5.19)

Using Eqs. (5.2), (5.8) and (5.9), Eq. (5.19) is rewritten as:

A2
j

Rs
∫

0

rJ2
l (γjr) dr + C2

j

Rs+tins
∫

Rs

r K2
l (αjr) dr = 1 (5.20)
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max

min

j=9, l=4 j=11, l=2 j=13, l=0 j=14, l=5 j=16, l=3 j=18, l=6

j=20, l=1 j=22, l=7 j=24, l=4 j=26, l=2 j=28, l=0 j=29, l=8

j=31, l=5 j=33, l=3 j=35, l=9 j=37, l=1 j=39, l=6 j=41, l=10

Figure 5.3: First 24-th wavefunctions, sorted (left to right and top
to bottom) attending to the value Êj , for a InGaAs-Al2O3 NW with
2Rs = 20nm and tins = 1nm. Only the real part of the wavefunction
is represented.

where Aj and Cj are related by Eq. (5.13). The integration of Eq. (5.20) is detailed

in Appendix B.1. The results for Aj and Cj are:

Aj =

(

R2
s

2

[

2J2
l (γjRs)− Jl−1(γjRs)Jl+1(γjRs)− J2

l (γjRs)
Kl−1(αjRs)Kl+1(αjRs)

K2
l (αjRs)

]

− J2
l (γjRs)

K2
l (αjRs)

(Rs + tins)
2

2

[

K2
l (αj(Rs + tins))−Kl−1(αj(Rs + tins)Kl+1(αj(Rs + tins))

]

)−1/2

(5.21)

Cj =

(

R2
s

2

[

2K2
l (αjRs)−K2

l (αjRs)
Jl−1(γjRs)Jl+1(γjRs)

J2
l (γRs)

−Kl−1(αjRs)Kl+1(αjRs)

]

−(Rs + tins)
2

2

[

K2
l (αj(Rs + tins))−Kl−1(αj(Rs + tins)Kl+1(αj(Rs + tins))

]

)−1/2

(5.22)
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Up to now we have solved the Schrödinger equation for a flat potential well obtaining

expressions for the energy levels, Eq. (5.18), and the wavefunctions, Eqs. (5.8) and

(5.9). However, the flat potential well is not a realistic scenario as far as the population

associated to the subbands, and therefore the charge in the NW, becomes not negligible.

Then, the potential in the NW gets curved in a way determined by the Poisson equation,

and the solution of the simplified problem proposed in this Section is no longer accurate.

This variation of the potential in the NW can be taken in account using the pertur-

bation theory. Here the perturbation is due to the non-flat potential, ψ(r)1, in the NW.

This term only affects the potential energy of the Hamiltonian. Thus, H̃ = −qψ̃(r), be-
ing ψ̃(r) = ψ(r)− φa/q. The term −φa/q enforces the precept that ψ̃(r) is a difference

between unperturbed and perturbed scenarios. ∆φ is not included in H̃ as it was part

of the original Hamiltonian. For a non-degenerate subband, the first-order correction

of the energy level is given by [172]:

∆Êj = 〈ξ∗j |H̃|ξj〉 (5.23)

which for the NW can be written as,

∆Êj = −q
2π
∫

0

Rs+tins
∫

0

ξj(r, θ) ψ̃(r) ξ
∗
j (r, θ) r drdθ = −q

Rs+tins
∫

0

Rj(r) ψ̃(r) R
∗
j (r) r dr

(5.24)

where we have used:

2π
∫

0

Yj(θ)Y
∗
j (θ)dθ =

2π
∫

0

eılθ√
2π

e−ılθ√
2π
dθ = 1 (5.25)

For degenerate energy levels Êj = Êk, the correction factors ∆Êj and ∆Êk can be

obtained as [172]:

∆Êj,k =
1

2
(Vjj + Vkk)±

1

2

√

(Vjj − Vkk)2 + 4 |Vjk|2 (5.26)

where Vjk = 〈ξ∗j |H̃|ξk〉. As previously explained, for degenerate energy levels k and j

1We have assumed no azimuthal dependence of ψ, as can be expected due to the cylindrical symmetry
of the structure. This assumption will be demonstrated later in Section 5.3.
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it holds that l(j) = m and l(k) = −m. Then it is proved that:

Vjk = −q
2π
∫

0

eımθ√
2π

(

e−ımθ√
2π

)∗

dθ

Rs+tins
∫

0

Rj(r) ψ̃(r) R
∗
k(r) r dr = 0 (5.27)

Therefore:

∆Êj,k =
1

2
(Vjj + Vkk) (5.28)

But it can be readily checked that Vjj = Vkk as Rj(r)R
∗
j (r) = Rk(r)R

∗
k(r) –see Eqs.

(5.9) and (5.17)–. Then,

∆Êj,k = Vjj = Vkk = −q
Rs+tins
∫

0

Rj(r) ψ̃(r) R
∗
j (r) r dr (5.29)

Thus, to calculate the perturbation to the energy levels necessary to correct the flat

potential well approximation, we need to determine the potential ψ in the structure.

In the next Section we deal with the Poisson equation to determine the potential.

5.3 Potential modeling

In the present Section we undertake the calculation of the potential in the NW, ψ, due

to the charge associated to an arbitrary number of subbands. The Poisson equation in

cylindrical coordinates is:

1

r2
∂2ψ

∂θ2
+

1

r

∂

∂r

(

r
∂ψ

∂r

)

= −ρi(r, θ)
ǫi

(5.30)

where ǫi and ρi are the dielectric constant and charge density in the media i, respec-

tively. ρi is given by:

ρi = −qn(r, θ)− qNa δi,a (5.31)

where δi,a is the Kronecker delta and n(r, θ) and Na are the electron and acceptor

impurities concentrations respectively. Na is assumed constant and n(r, θ) is given by:

n(r, θ) =

N
∑

j=0

g(Êj)|ξj(r, θ)|2 (5.32)
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which for the media i can be written as:

n(r, θ) =
N
∑

j=0

g(Êj)|Rij(r)|2|Yj(θ)|2 (5.33)

being g(Êj) the density of states associated to level j. Using |Y (θ)|2 = 1/2π, the

resulting Poisson equation for the media i is:

1

r2
∂2ψ

∂θ2
+

1

r

∂

∂r

(

r
∂ψ

∂r

)

=
q

2πǫi

N
∑

j=0

g(Êj)|Rij(r)|2 +
q

ǫi
Naδi,a (5.34)

As there is no azimuthal dependence of the charge density and taking into account

the cylindrical symmetry of the NW, we can assume no azimuthal dependence for the

potential (coherently with Section 5.2). Then, the resulting Poisson equation is:

1

r

∂

∂r

(

r
∂ψ

∂r

)

=
q

2πǫi

N
∑

j=0

g(Êj)|Rij(r)|2 +
q

ǫi
Naδi,a (5.35)

A first integration of Eq. (5.35) gives:

∫

dr
∂

∂r

(

r
∂ψ

∂r

)

=
q

2πǫi

N
∑

j=0

g(Êj)

∫

r|Rij(r)|2dr +
qδi,a
ǫi

∫

rNadr + Ci (5.36)

where Ci is the integration constant in media i. A second integration of Eq. (5.36)

results in:

∫ (

∂ψ

∂r

)

dr =
q

2πǫi

N
∑

j=0

g(Êj)

∫

1

r̂

∫

r|Rij(r)|2drdr̂ +
qδi,a
ǫi

∫

r̂

2
Nadr̂ +

∫

Ci
r̂
dr̂ +Di

(5.37)

where, in both cases, the integral and sum in the right-hand-side were interchanged as

Fubini-Tonelli’s theorem is satisfied, and we have used the symbol ˆ to distinguish the

two integrations variables.

Therefore, the potential in the media i can be written as,

ψi(r) =

N
∑

j=0

q

2πǫi
g(Êj)ϕ

i
j(r) +

q

ǫi

r2

4
Naδi,a + Ci ln(r) +Di (5.38)
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where the term
q

2πǫi
g(Êj)ϕ

i
j(r) is the contribution of the j subband to the potential

in media i; and,

ϕij(r) =

∫

1

r̂

∫

r |Rij(r)|2drdr̂ (5.39)

determines the spatial distribution of this j subband contribution to the potential.

Substituting Eq. (5.9) into Eq. (5.39) we have:

ϕij(r) =











A2
j

∫

1

r̂

∫

r J2
l (γjr) drdr̂ i = a

C2
j

∫

1

r̂

∫

rK2
l (αjr) drdr̂ i = b

(5.40)

We conclude from Eq. (5.17), that degenerate energy levels j and k (with l(j) = m

and l(k) = −m ) have the same contribution to the potential. Eq. (5.40) is solved in

detail in Appendix B.2 providing the following expression:

ϕij(r) =



































































A2
j

(

r2

2
J2
l (γjr) +

r2

2
J2
l−1(γjr) + (−l + 1

2
)
r

γj
Jl−1(γjr)Jl(γjr)+

+
l

γ2j

l
∑

m=1

J2
m−1(γjr)−

l

2γ2j
J2
0 (γjr)

)

i = a

C2
j

(

r2

2
K2
l (αjr)−

r2

2
K2
l−1(αjr) + (−l + 1

2
)
r

αj
Kl−1(αjr)Kl(αjr)+

+
l

α2
j

l
∑

m=1

(−1)l−mK2
m−1(αjr)− (−1)l−1

l

2α2
j

K2
0 (αjr)

)

i = b

(5.41)

To clarify the contribution of each subband to the potential, Fig. 5.4 shows ϕj for

the first 24-th subbands, sorted left to right and top to bottom, for an InGaAs-Al2O3

NW with 2Rs = 20nm and tins = 1nm. Each ϕj was labeled with its corresponding

value of j and l. Since degenerate subbands contribute equally to the potential, their

corresponding ϕj was plotted just once.

Two conclusions can be extracted from Fig. 5.4: (a) As the order l of the Bessel

function associated to the subband increases, its contribution to the potential is more

step-like; (b) For a given l, ϕj depends softly on r for higher j. Nevertheless, ϕj is

weighted by the population of the corresponding subbands g(Êj), as proposed in Eq.

(5.38), being the first contributions always more relevant than the last ones.

Once the expression for the spatial distribution of the contribution of the subband
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j=0, l=0 j=5, l=0j=1,2  l=±1 j=3,4  l=±2

max

min

j=14, l=0

j=6,7  l=±3 j=8,9  l=±4

j=10,11  l= ± 4 j=12,13  l= ± 2 j=15,16  l= ± 5 j=17,18  l= ± 3 j=19,20  l= ± 6

j=29, l=0j=21,22  l= ± 1 j=23,24  l= ± 7 j=25,26  l= ± 4 j=27,28  l= ± 2 j=30,31  l= ± 8

j=32,33  l= ± 5 j=34,35  l= ± 3 j=36,37  l= ± 9 j=38,39  l= ± 1 j=40,41  l= ± 6 j=42,43  l= ± 10

Figure 5.4: ϕj due to first 24-th subbands, sorted (left to right and

top to bottom) attending to the value Êj , for a 2Rs = 20nm InGaAs-
Al2O3 NW with tins = 1nm.

j to the potential in the semiconductor and the insulator has been achieved, we need

to calculate the integration constants Ci and Di in both media. To do it, we apply the

following boundary conditions

dψa(r)

dr

∣

∣

∣

∣

r=0

= 0 (5.42)

ψa(Rs) = ψb(Rs) (5.43)

ǫa
dψa(r)

dr

∣

∣

∣

∣

r=Rs

= ǫb
dψb(r)

dr

∣

∣

∣

∣

r=Rs

(5.44)

ψb(Rs + tins) = Vg − Φms (5.45)

where:

(a) Eq. (5.42) is set by the cylindrical symmetry of the structure;

(b) Eqs. (5.43) and (5.44) are imposed by the continuity of the solution of the Poisson
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equation in the interface between media

(c) Eq. (5.45) is obtained from the polarization of the NW, being Vg the voltage applied

in the gate contact located at the outer shell of the NW and Φms the difference

between the metal gate work function and the semiconductor electron affinity.

The step by step procedure to determine Ca, Da, Cb and Db from these equations is

accomplished in Appendix B.3. For the sake of clarity, we write here just the final

solutions.

Ca = 0 (5.46)

Da =
q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs)+Cbln(Rs)+Db−

q

2πǫa

N
∑

j=0

g(Êj)ϕ
a
j (Rs)−

q

ǫa

R2
s

4
Na (5.47)

Cb =
Rs

ǫb





1

2π

N
∑

j=0

g(Êj)ϕ
′a
j (Rs) +

qNaRs

2
− 1

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs)



 (5.48)

Db = Vg − Φms −
1

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs + tins)− Cbln(Rs + tins) (5.49)

where ψ′aj and ψ′bj are the derivatives of ψaj and ψbj and their expressions are proposed

in Appendix B.3. Summing up, the potential in the semiconductor can be calculated

as:

ψa(r) =
q

2πǫa

N
∑

j=0

g(Êj)ϕ
a
j (r) +

q

ǫa

r2

4
Na +Da (5.50)

where ϕaj and Da are given by Eqs. (5.41) and (5.47). Correspondingly, the potential

in the insulator is given by:

ψb(r) =
q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(r) + Cbln(r) +Db (5.51)

where ϕbj , Cb and Db are given by Eqs. (5.41), (5.48) and (5.49).

Once we have a complete close expression for the potential in the NW, we can briefly

discuss about the main factors influencing its behavior. In the semiconductor, the radial

dependence of ψ(r) is governed by two terms (remind that Da is just a constant): the

first of them is associated to the electron concentration, the second one is controlled
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by the acceptor impurities. For low gate voltages the acceptor impurities term is the

main contribution to Eq. (5.50), and the potential has a quadratic dependence on

the radial coordinate. However, for low Na concentrations (< 1014cm−3) the total

variation of the potential due to Na is of the order of 10−6V or 10−7V. This variation

is negligible and the flat band approximation works well. When higher gate voltages

are considered, the potential is controlled by the first term of Eq. (5.50). Then,

the potential curvature along the semiconductor radius cannot be neglected and the

flat potential well approximation starts to fail, being necessary to correct the energy

levels as explained in Section 5.2. Regarding the potential in the insulator, there

are also two contributions, one controlled by the electron concentration and one with

logarithmic dependence on r. However, in the insulator, due to the low penetration of

the wavefunctions, the electron concentration term is, even for large Vg, much smaller

than the logarithmic term, being the potential controlled by this one.

5.4 Charge modeling

In this Section we model the electron charge, Qi, considering a parabolic and a non-

parabolic dispersion relationship. The electron charge can be calculated as:

Qi = −q
2π
∫

0

Rs+tins
∫

0

n(r, θ) rdrdθ = −q
N
∑

j=0

g(Êj)

2π
∫

0

Rs+tins
∫

0

|ξj(r, θ)|2 rdrdθ = −q
N
∑

j=0

g(Êj)

(5.52)

where we have used Eq. (5.19). For a parabolic dispersion relationship the density of

states associated to an energy level Ej is well known:

g(E) = gv

(

2m∗akBT
π~2

)1/2

F−1/2
(

EF − Ej
kBT

)

(5.53)

where gv is the valley degeneracy (gv = 1 for the Γ valley) andm∗a the transport effective

mass in the semiconductor. The rest of the terms keep their usual meaning. This

expression can be related to the solution, Êj , obtained in Section 5.2, by rearranging

the term EF − Ej in the following way:

Ej − EF = (Ej − φa) + (φa − EF ) = Êj + φa = Êj − qψc (5.54)
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where EF = 0 is assumed as a reference for energies, and φa = −qψc, being ψc = ψa(0)

the potential at the center of the NW. Then, for a parabolic approximation, g(Êj) can

be written as:

g(Êj) = gv

(

2m∗akBT
π~2

)1/2

F−1/2

(

− Êj − qψc
kBT

)

(5.55)

However, as discussed in Section 5.2, the solution Êj is not accurate if the potential is

not flat, which is the case whenever the semiconductor charge is not negligible. The

energy level Êj must be corrected by the perturbation energy ∆Êj . Then:

g(Êj) = gv

(

2m∗akBT
π~2

)1/2

F−1/2

(

− Êj +∆Êj − qψc
kBT

)

(5.56)

Up to this point, we have considered a parabolic band approximation. However, the

non-parabolicity of the conduction band in III-V materials modifies the energy levels

and the dispersion relationship. To study its effects, we recall here the model presented

by Jin et al. [95], where the following expression for the non-parabolic dispersion

relationship is proposed (see Section 2.6):

ÊNP
j (k) = φ̂j +

−1 +

√

1 + 4βv

(

~2k2

2m∗
a
+ Êj − φ̂j

)

2βv
(5.57)

where βv is the non-parabolicity factor of the v valley; k is the wavevector component

in the non-confined dimension; and φ̂j is the expectation value of the potential energy

with respect to the wavefunction of the j subband, defined as:

φ̂j =

2π
∫

0

Rs+tins
∫

0

ξj(r, θ)φ̂(r)ξ
∗
j (r, θ)rdrdθ (5.58)

where φ̂(r) is the total potential energy:

φ̂(r) =







−q(ψa(r)− ψc) 0 < r < Rs

−q(ψb(r)− ψc) + ∆φ Rs < r < Rs + tins
(5.59)

which, to be coherent with Êj, is referred to the potential energy at the center of

the NW, −qψc. φ̂j should not be confused with −qψ̃(r) as here the potential barrier
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between the semiconductor and the insulator must be taken into consideration.

To introduce the non-parabolicity in the model, we have considered two different

approaches. In the first approximation we introduced a non-parabolic correction which

only shifts the parabolic energy minimum:

∆ÊNP
j = ÊNP

j (0)− Êj = φ̂j +

−1 +

√

1 + 4βv

(

Êj − φ̂j

)

2βv
− Êj (5.60)

Then ∆ÊNP
j is introduced into (5.56) leading to:

g(Êj) = gv

√

2m∗akBT
π~2

F- 1
2

(

−
Êj +∆Êj − qψc +∆ÊNP

j

kBT

)

(5.61)

The second approximation takes into consideration the non-parabolic dispersion

relationship defined in Eq. (5.57). Therefore, g(Êj) is not determined by Eq. (5.61)

and it cannot be expressed as a function of a Fermi integral of any order. In its stead,

it is given by:

g(Êj) =
gv
π

∞
∫

−∞

(

1 + e
−ÊNP

j (k)

kBT

)−1

dk (5.62)

where ÊNP
j (k) is calculated as in Eq. (5.57) and again EF = 0. The first approximation

is simpler than the second one, but it is not accurate for large gate voltages. For this

reason, it will only be used for the threshold voltage model presented in Chapter 6.

In any other case involving non-parabolicity, the second approximation is the most

appropriate.

5.5 Interfacial states modeling

In this Section, we deal with the inclusion of interfacial states, Dit, in the model. The

presence of a non null surface charge, Qit, at the semiconductor-insulator interface mod-

ifies the boundary condition which imposes the continuity of the electric displacement

field at the interface. This boundary condition must be, then, reformulated taking into

consideration Qit:

ǫa
dψa(r)

dr

∣

∣

∣

∣

r=Rs

− ǫb
dψb(r)

dr

∣

∣

∣

∣

r=Rs

= Qit (5.63)
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with Qit and Dit are related by

Qit = q

Ei(Rs)
∫

Ev(Rs)

Dd
it(E)[1 − f(E)]dE − q

Ec(Rs)
∫

Ei(Rs)

Da
it(E)f(E)dE (5.64)

where the superscript d (a) refers to donors (acceptors) traps, and f(E) is the Fermi

function. Ec, Ev and Ei are the conduction band, the valence band and the intrinsic

Fermi level respectively. Using the references for energies proposed in Section 5.4, we

can write Ec(r) = −qψ(r). Then Ec(Rs) = −qψ(Rs) = −qψs. Thus, Eq. (5.64) can be

rewritten in terms of ψs as:

Qit = q

−qψs−Eg/2
∫

−qψs−Eg

Dd
it(E)

e
E

kBT

1 + e
E

kBT

dE − q

−qψs
∫

−qψs−Eg/2

Da
it(E)

1

1 + e
E

kBT

dE (5.65)

where Eg is the band gap. The new boundary condition in Eq. (5.63) modifies the

determination of Cb in Eq. (5.48) which now is reformulated as:

Cb =
Rs

ǫb





1

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs) +

qNaRs

2
− 1

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs)



− Rs

ǫb
Qit (5.66)

The remaining solutions from the Poisson equation obtained in Section 5.3 are kept as

aforementioned.

5.6 Iterative scheme

In this Section we discuss the implementation of the model. It is straightforward to

appreciate that the expressions for g(Êj) and ψ(r) are coupled. This interdependency is

observed in the factor ψc in Eq. (5.56) and g(Êj) in Eqs. (5.50) and (5.51). Therefore,

the model requires an iterative solution scheme. Fig. 5.5 shows a flux diagram of the

procedure employed to solve the model.

The initial solution considers a flat potential well ψ(r) = 0 (therefore ∆Êj = 0) and

a given polarization in the outer shell of the NW (given by Vg). Then we solved the

Schrödinger equation obtaining Êj and ξj from Eqs. (5.18) and (5.2). In the next step

we determine g(Êj) using Eq. (5.56) for parabolic bands or Eq. (5.62) for non-parabolic
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ψ(r) = 0, ∆Êj = 0, Vg

Get Êj and ξj from Eqs. (5.18) and (5.2)

Determine g(Êj) from Eq. (5.56) or Eq. (5.61)-(5.62)

Calculate ψ(r) from Eqs. (5.50) and (5.51)

Obtain ∆Êj from Eqs. (5.24) and (5.29)

Does ψc converge?

END

no

yes

Figure 5.5: Iterative scheme for the implementation of the model.

bands. Once we get g(Êj), we obtain ψ(r) in both media using Eqs. (5.50) and (5.51).

This allows us to recalculate ∆Êj using Eqs. (5.24) and (5.29) for non-degenerate and

degenerate energy levels respectively. The new ∆Êj values would imply a variation of

g(Êj) as given by Eqs. (5.56) and (5.62), restarting the loop. The stop condition is

the convergence of any of the variables involved, for example the potential ψc. This

iterative scheme can be optimized introducing a convergence accelerator algorithm as

Gauss-Seidel [173].
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5.7 Drain current model

In this Section we propose an analytical model for the drain current, Ids, of III-V NWs

in two scenarios: 1) when no Dit is considered; and 2) when a constant Dit is assumed.

Fig. 5.6 depicts a long channel cylindrical NW where L is the NW channel length,

and Vs and Vd are the source and drain voltages respectively. V is a gradual potential

which varies from the source, V = Vs, to the drain, V = Vd. This gradual potential

(plotted as a dashed line between the two ends of the NW in Fig. 5.6) can be modeled

as a variation in the pseudo Fermi level [174]:

EF(z) = EF(0) − qV (5.67)

The cross-section potentials at two arbitrary NW axial positions are also plotted (they

were obtained by solving the analytical charge and potential models for two arbitrary

V (z) values).

y

x

z

y

z

f( )

z

z

-qVs

-qVd

L

x

max

min

Figure 5.6: 3D schematic view of a long channel cylindrical NW.
The semiconductor and insulator media are plotted as orange and
gray, respectively while the gate contact is plotted as red. A 2D cross-
section of the potential, V is plotted for two z positions. An arbitrary
φ dependence on z is plotted as a dashed line between the two ends
of the NW.

To determine Ids we use the (drift-diffusion) current continuity condition which
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imposes [175], [176], [177]:

µ2πRsQi
dV

dz
= constant (5.68)

being µ the mobility (which for the sake of simplicity is assumed to be constant2). To

determine Ids we integrate Eq. (5.68) from the source, z = 0, to the drain, z = L,

getting:

Ids =
2πRsµ

L

Vd
∫

Vs

Qi(V )dV (5.69)

The electron charge per unit surface is given by Eq. (5.52):

Qi(V ) = − qNc

2πRs

N
∑

j=0

F− 1
2

(

− Êj +∆Êj − qψs + qV

kBT

)

(5.70)

where EF has been replaced by the pseudo Fermi level EF(z) = EF(0)−qV to take into

consideration its variation along the NW length; and, consistently with the previous

Section, the Fermi level at the source was used as a reference for energies, EF(0) = 0.

The surface potential, ψs, can be calculated as:

ψs = Vgs − (Φm − χs)−
Qi

Cins
− Qit

Cins
(5.71)

being Qit the surface charge due to interface states given, as in Eq. (5.64), by:

Qit = q

∫

Dd
it(E)[1 − f(E)]dE − q

∫

Da
it(E)f(E)dE (5.72)

As already seen in Section 5.6, Eqs. (5.70) and (5.71) are coupled. Furthermore, Qit

can have an arbitrary dependence on V . Therefore, the integration in Eq. (5.69) is

not straightforward. However there are at least two cases where the integration can be

successfully accomplished:

(A) If no interface traps are considered.

(B) If a constant profile for the interface traps is assumed and the Fermi function is

approximated by a step function.

The integration procedure in both cases is detailed in Appendix B.4. Here we recall

2This simplification, although not pretty realistic (see Chapter 7), is quite used in the literature for
long channel devices [174, 176].
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the resulting expressions.

5.7.1 Drain current when Dit = 0

When no interface traps are considered, Ids is given by:

Ids =
µ

L
(f1(Vd) + f2(Vd)− f1(Vs)− f2(Vs)) (5.73)

where f1 and f2 are defined as:

f1(V ) = −kBT

q

N
∑

j=0

F 1
2

(

− Êj +∆Êj − qψs + qV

kBT

)

(5.74)

f2(V ) = − 1

CΥ





N
∑

j=0

F− 1
2

(

− Êj +∆Êj − qψs + qV

kBT

)





2

(5.75)

being CΥ a capacitance term defined in Eq. (B.75) in Appendix B.4. It is important

to remind that ψs and ∆Êj in Eqs. (5.74) and (5.75) are the surface potential and the

correction of the energy level j for a given value V of the pseudo Fermi level. Therefore,

when evaluating f1 and f2 at Vs (Vd) in Eq. (5.73), ψs and ∆Êj would be ψss (ψsd)

and ∆Ês
j (∆Ê

d
j ), that is the surface potential and the correction to the energy level at

the source (drain) respectively. Thus, Eq. (5.73) requires the resolution of the charge

model for V = Vs and V = Vd.

5.7.2 Drain current for a constant Dit profile

When a constant Dit profile is assumed in a certain range of energies between Ea and

Eb, Ids is given by:

Ids =
µ

L









f1(Vd) + f2(Vd)− f1(Vs)− f2(Vs) +
f1(Vb) + f2(Vb)− f1(Va)− f2(Va)

1 +
qDit

Cins









(5.76)

being f1 and f2 already defined in Eqs. (5.74) and (5.75) respectively. Vb and Va are the

gradual potentials corresponding to the pseudo Fermi potential for which EF(z) = Eb
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and EF(z) = Ea, respectively.

It is worth to particularize the range of energies where the traps are present to

the upper half of the band gap, in accordance with an amphoteric perspective of the

interface traps nature [178]. Then, Ea = Ei and Eb = Ec being Ei and Ec the intrinsic

Fermi level and the conduction band edge, respectively. Then, Ids will be:

Ids =
µ

L









f1(Vd) + f2(Vd)− f1(Vs)− f2(Vs) +
f1(Vc) + f2(Vc)− f1(Vi)− f2(Vi)

1 +
qDit

Cins









(5.77)

Now, Vc and Vi are the gradual potentials for which the pseudo Fermi level crosses

trough Ec and Ei, respectively. Using the references for energies in the charge mode,

where Ec(r) = −qψ(r), it is easy to check that −qVc = −qψs and −qVi = −qψs+Eg/2.

It is noted that Eqs. (5.74) and (5.75) are pretty simplified when V is evaluated at Vi

and Vc. In fact, ∆Êj can be obliterated for V = Vi, as EF(z) = Ei and no relevant

charge concentration or potential curvature is expected; thus the arguments of F 1
2
are

simplified and F− 1
2
to Êj . For V = Vc, ∆Êj cannot be neglected and the solution of

the charge model is mandatory.

5.8 Results and discussion

In this Section, the results from the proposed analytical models are compared with the

solution of the 2D self-consistent Schrödinger-Poisson solver (see Chapter 3) for different

NW sizes and gate voltages. InAs and In0.53Ga0.47As are considered as semiconductor

materials while Al2O3 is used as gate insulator. The parameters of the simulation of

Γ, X and L valleys are summarized in Appendix F.

First we study the validity of the proposed solution of the Schrödinger equation.

A subthreshold gate voltage (Vg = 0.2V) was considered to limit the effect of: 1) the

conduction band curvature in the semiconductor and 2) the logarithmic potential well in

the insulator as much as possible. Fig. 5.7(a) shows the three lower energies calculated

with the developed analytical model (solid lines) and with the self consistent simulator

(symbols) as a function of the device size. The model energy levels corresponding to

an infinite potential well are also plotted (dashed lines). The infinite potential well
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strongly overestimates the energy levels while an excellent agreement is found for the

finite potential well model presented in this Chapter.
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Figure 5.7: Energy minimum of the first subbands of InGaAs NWs
as a function of the device size at (a) Vg = 0.2V and (b) Vg = 0.8V.
Comparison between simulation (symbols), and model results (solid
lines) considering a finite (solid) and infinite (dashed) potential well.
The first L valley energy level (not modeled) is also depicted.

The first L-valley energy level (not modeled) is also depicted in Fig. 5.7. It should

be noted that, for small devices (2Rs ≤ 10nm), the second and third subbands of the Γ

valley (i.e., the one that is modeled here) are more energetic than the first subband of

L valleys, and therefore a model accounting for L valleys would be needed to reproduce

more exactly the simulation results for small NWs. Nevertheless, this would imply a

complete new resolution of the Schrödinger and Poisson equations since L-valleys are

anisotropic.

While the results for Êj obtained from Eq. (5.18) are quite accurate for low gate

voltages (where the potential is roughly planar), for higher gate voltages the expressions

above are not so well suited, as shown in Fig. 5.7(b). The reason is that, when higher

Vg are considered, the electron concentration in the semiconductor increases, affecting

the potential that is not flat anymore.

Then, the energy levels must be corrected (using the perturbation theory) as pro-

posed by Eqs. (5.24) and (5.29). In Fig. 5.8 we show the first two energy levels as a

function of the device size (for InGaAs NWs), before (dashed) and after (solid) intro-

ducing the corrections due to the curved potential. The gate voltage is Vg = 0.8V, as

in Fig. 5.7(b). As can be seen, an excellent agreement is found between model and
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simulation results when the correction in the energy levels is introduced.
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Figure 5.8: Energy minimum of the first subbands of InGaAs NWs
at Vg = 0.8V. Comparison between simulation (symbols) and modeled
(lines) values before (dashed) and after (solid) the energy correction.

Since the energy levels from Eq. (5.1) need a correction for large Vg, it is interesting

to look at the validity of their corresponding wavefunctions in a similar scenario. Fig.

5.9, shows |Rj |2 as a function of the radial position, r, j = 0 (left) and j = 1, 2

(right) subbands of 2Rs = 10nm InGaAs NWs, considering infinite and finite potential

barriers for Vg = 0.8V. Simulation and model results are plotted as solid and dashed

lines, respectively. Even for this gate voltage (where a non-flat potential well in the NW

is expected) the wavefunctions obtained from Eq. (5.1) fit the simulation results. That

agreement reinforces the assumption, made in Section 5.2, when just the energy levels

and not the wavefunctions from Schrödinger equation were corrected. Finally, it can

be observed that for infinite potential barrier, the wavefunction is displaced away from

the semiconductor-insulator interface, highlighting the relevance of the wavefunction

penetration for a good modeling.

Once the energy levels obtained from Eq. (5.18) and corrected by Eqs. (5.24) and

(5.29) and the wavefunctions determined by Eq. (5.9) are validated, we deal with the

assessment of g(Ê) for parabolic and non-parabolic bands. Fig. 5.10 shows Ni versus

Vg for a 2Rs = 10nm InGaAs NW. Model results are plotted as dashed lines while

simulation ones correspond to solid lines. Dash-dotted line correspond to the first non-

parabolic approach (which just corrects the energy minimum.) Only three energy levels

were considered in this figure.

As can be seen, when non-parabolic effects are included, Ni as well as its slope in-
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Figure 5.9: |Rj(r)|2 versus radial position for j = 0 (a) and j =
1, 2 (b) subbands, considering a finite and an infinite potential well.
Simulation and model results are plotted as solid and dashed lines
respectively for a 2Rs = 10nm InGaAs NW for VG = 0.8V.

crease due to the higher density of states. Regarding the two approximations employed

to include the non-parabolicity, the first one fits well the non-parabolic simulation re-

sults up to Vg ≃ 0.9V. However, for higher gate voltages Ni is underestimated. The

advantage of this first non-parabolic description is the simplicity of the resulting math-

ematical expression. For these reason it will be employed when determining VT in

Chapter 6. On the contrary, the second one accurately reproduces the simulation re-

sults in a higher range, at the cost of a more complex expression. Due to its simplicity

we use the parabolic description in the forthcoming results of the model in this Chapter.

We now study the accuracy of the model expressions for the potential. Fig. 5.11

shows the potential along r for a 2Rs = 10nm InAs (left) and a InGaAs (right) NWs

with tins = 1.5nm at overdrive gate voltages Vg − VT = 0.1V (top) and Vg − VT = 0.5V

(bottom). InAs and InGaAs present notably differences in magnitudes such as the band

gap and the effective mass, allowing to test the model in distinct scenarios. VT is the

threshold voltage and its value has been calculated for InAs (VT = 0.32V) and InGaAs

(VT = 0.56V) using the maximum of the second derivative of the charge. Excellent

agreement was found between simulation and model results for the VT (see Chapter

6 for a detailed study of VT). Solid and dashed curves correspond to the simulation

and model results under consideration. The transition between semiconductor and

insulator is marked by thin dashed vertical lines. As can be seen, the model fits the

potential quite well for both materials and bias conditions. Even for higher overdrive

gate voltages, Vg − VT > 0.5V, the model is expected to work properly till the L-valley

Electrostatics 115



5.8. Results and discussion

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

N
i
(x

1
0

7
cm

-1
)

V
G

-V
T

(V)

Par. Sim.

Par. Model

Non Par. Model 1

Non Par. Model 2

Non Par. Sim.

Figure 5.10: Ni versus gate voltage for a 2Rs = 10nm InGaAs
NW. Dashed and solid lines correspond to non-parabolic and parabolic
results respectively

levels begin to be populated.

The role of the different energy levels is better appreciated from the charge distribu-

tion in the structure. Fig. 5.12 shows the electron density along the radial coordinate

of the NW for InAs (left) and InGaAs (right) NWs at the same overdrive gate voltages.

Again, solid and dashed curves correspond to the simulation and model results respec-

tively, and the transition between media are plotted as thin dashed vertical lines. The

contribution of the first energy level is also plotted (dotted line). For low overdrive gate

voltages (Vg − VT = 0.1V) nearly all the charge is due to the filling of the first energy

level (j = 0, l = 0). When a higher voltage is considered (Vg−VT = 0.5V) the charge is

pushed away from the center of the NW, due to the occupancy of the second degenerate

energy level (j = 1, 2, l = ±1). At both values of Vg − VT, it is easy to appreciate the

differences in the electron charge distribution inside the insulator for each material:

the InGaAs device has a softer charge profile in the semiconductor-insulator interface

than the InAs one due to the smaller discontinuity in the oxide-semiconductor effective

masses (ma = 0.0468 for InGaAs, ma = 0.026 for InAs and mb = 0.2 for Al2O3).

Let us evaluate the electron density per unit length, Ni, as a function of the overdrive

gate voltage. Fig. 5.13 shows Ni versus Vg−VT for several InGaAs and InAs NW sizes.

The model fits well the simulation results in all the operation regimes. The differences

observed in Fig. 5.13 for large Vg − VT in the smallest device are explained by the

occupation of higher energy levels belonging to the L valley (not considered in this

model). As it is discussed in Chapter 4, for a given overdrive gate voltage, L valley
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population increases with decreasing size. For this reason, larger differences between

model and simulation results are observed (at the same Vg − VT) for small NWs in

Fig. 5.13. Therefore, the model is expected to work properly (if a good convergence

is achieved) for much larger sizes than those shown in Fig. 5.13. For them the L-

valley population is less meaningful and the model would only be limited for very large

overdrive voltages due to a strong curvature of the potential (which cannot be taken

into account by a first order correction). The better fit obtained for the InAs NW in

Fig. 5.13 is due to its lower confinement effective mass. The lower the effective mass,

the higher the separation between the energy levels, and the larger the gate voltage

range where the model is accurate.

Now we briefly study (and validate) the model whenDit is included. Fig. 5.14 shows

the subthreshold swing and the surface potential, ψs = ψ(Rs) when Dit is considered

and when it is not, for a 15nm InAs NW (tins = 1nm). Simulation and model results

are plotted as solid and dashed lines respectively.

We have considered a Gaussian Dit distribution of acceptors traps centered in

the middle of the upper part of the gap with variance 20meV and amplitude of 5 ·
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The contribution of the first energy level is plotted sd dotted line.
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1013cm−2eV−1. It is in good correspondence with experimental profiles reported in the

literature [102]. A good agreement between model and simulation results is observed.
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The Dit shape is well reproduced by the SS curves. Regarding the surface potential,

the effect of Dit can be appreciated as a decrease of ψs as a consequence of the charge

screening.

Finally, the results from the drain current analytical model are validated with the

numerical results obtained using the solution of the SP2D solver for different NW sizes

and gate and drain voltages. The numerical current from the 2D simulator is obtained

by using Eq. (5.69). We set L = 100nm and µ = 200cm2/V s for both simulation and

model results.

First, we compare the model and simulation results when no interface states are

present. Fig. 5.15 shows Ids as a function of Vds from model (dashed) and simulation

(solid) for several Vgs values from 0.6V (stars) to 1.2V (circles), for a 2Rs = 15nm InAs

NW with tins = 1.5nm and no interface traps. It can be observed that the model fits

the simulation results in all operation regimes and for all Vgs. Only a small misfit is

observed for Vgs = 1.2V, which is due to the non-negligible population of the L-valley

subbands.

Let us now validate Ids results when a constant Dit profile is assumed. Fig. 5.16

shows Ids as a function of Vds from model (dashed lines) and simulation (solid lines)

for a 2Rs = 15nm InAs NW, assuming a constant Dit = 1013eV−1cm−2 in the upper

half of the band gap and 0 otherwise. Similar Vgs values to those of Fig. 5.15 are

considered. Once more, a good fit is observed for Ids in a wide range of Vds and Vgs
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NW.

values. Again, the small misfit between model and simulation results for Vgs = 1.2V is

due to the L-valley population.

To better appreciate the influence of the interface states on the drain current, Fig.

5.17 compares Ids results achieved by the model (dashed lines) and simulation (solid

lines) as a function of Vds at Vgs = 0.8V for several Dit values: Dit = 0 (circles),

Dit = 1013eV−1cm−2 (squares) andDit = 1.5·1013eV−1cm−2 (diamonds). The presence

of interface states results in a decrease of Ids in all regimes. As can be expected,

the larger the interface states concentration the larger the decrease in the linear and

saturated current. This dependence could be exploited to try to determine the mean

Dit value in the NW from drain current measurements.

Now we asses the validity of the model for other semiconductor materials and sizes.

Fig. 5.18 presents Ids as a function of Vds for 2Rs = 15nm (a) InGaAs and (b) GaAs

NWs at Vgs−VT = 0.5V, being VT = 0.52V for the InGaAs NW and VT = 0.90V for the

GaAs NW (both VT values were obtained from the maximum of the transconductance

[179],[156]). Simulation and model results are plotted as solid and dashed lines for

Dit = 0 (squares) and Dit = 1013cm−2eV−1 (circles). The model reproduces well the

simulation results for both materials.

The larger difference between Ids with and without Dit in GaAs (regarding that

of InGaAs) is due to its wider gap. If a constant Dit in the upper half of the gap is

considered, the total interface charge is Qit = Dit × Eg/2. Thus, the higher total Qit
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Figure 5.16: Ids as a function of Vds from model (dashed) and
simulation (solid) for several Vgs: 0.6V (stars), 0.8V (diamonds),
1V (squares) and 1.2V (circles), for Dit = 1013eV−1cm−2 for a
2Rs = 15nm InAs NW.

for GaAs implies, as was discussed in Fig. 5.17, a higher decrease in the saturation

drain current, explaining the differences between InGaAs and GaAs in Fig. 5.18.

Fig. 5.19 depicts the results for several InAs NWs ranging from 2Rs = 15nm to

2Rs = 60nm considering (a) no Dit and (b) a constant Dit = 1013cm−2eV−1 profile in

the upper half of the band gap. Ids as a function of Vds is plotted for Vgs − VT = 0.5V

being VT = 0.23V, 0.18V, and 0.15V for the 2Rs = 15nm, 30nm and 60nm NWs,

respectively. The model fits the simulation results for 2Rs = 15nm to 2Rs = 30nm in

both scenarios. Some inaccuracy in the model results, regarding the simulated ones,

is observed for the largest size: 2Rs = 60nm. In this case the source of inaccuracy

in the model is not due to the L-valley population (which is less relevant in larger

NWs as explained in Section 4.3) but to the approximation made in Appendix B.4 to

analytically integrate the current.

Although the analytical Ids expression underestimates non-negligibly the current

for large NWs, it is worth to look that the Ids difference with and without Dit is not so

distinct in model and simulation results. Fig. 5.20 shows I
w/o
ds − Iwds in the saturation

region as a function of 2Rs, being I
w/o
ds and Iwds the drain currents in absence and

presence of Dit respectively. As can be observed, the model reproduces the tendency

of the curve also for larger NWs, reinforcing its validity to extract Dit from Ids.
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GaAs respectively (b) NWs at Vgs−VT = 0.5V. Simulation and model
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5.9 Conclusions

In this Chapter we have proposed a complete model for the potential, the inversion

charge and the drain current in NWs made of III-V materials. This model presents an-

alytical expressions for the calculation of the subband energies and their corresponding

wavefunctions, taking into account their penetration into the gate insulator and the

effective mass discontinuity in the semiconductor-oxide interface. The model considers

Fermi-Dirac statistics, two-dimensional confinement of the carriers and non-parabolic

effects. It also allows the inclusion of arbitrary analytical profiles of interfacial states.

We have demonstrated that our analytical solution fits very well the numerical simu-

lations in all operating regimes and for a wide range of NW sizes and gate voltages.

The main limitation of the potential and charge models is related to the population

of energy levels associated to the L-valley, and the strong curvature of the potential

in the semiconductor (which cannot be considered by a first order correction) for very

large Vg values. As for the drain current model, it is limited for large NWs by the

approximation made when solving the long channel integral.
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Chapter 6

Gate capacitance and threshold

voltage models

6.1 Introduction

In this chapter, we develop physically based analytical models for the gate capacitance

(Cg), and the threshold voltage (VT), in III-V NWs. To do so, we use the results from

charge, potential and drain current achieved in Chapter 5. All the features from the

analytical model of Chapter 5 are kept: two-dimensional quantum confinement of the

carriers, wavefunction penetration into the gate insulator, Fermi-Dirac statistics and

the conduction band non-parabolicity.

There are two main concepts that strongly affect the behavior of electrostatic mag-

nitudes in III-V NWs:

(1) The 2D quantum confinement of the carriers which leads to: (a) a displacement

of the charge density, pushed away from the semiconductor-insulator interface [62]

and (b) a change (regarding bulk) in the behavior of the density of states, which

decrease with increasing energy [140].

(2) The low effective mass (characteristic of III-V materials) which reduces the density

of states, leading to the so-called density of states bottleneck [66].

Regarding the gate capacitance, this scenario implies that Cg is reduced much below

the insulator capacitance (Cins) and the so called quantum capacitance limit can be

reached [180]. That possibility may degrade the device performance, although some
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authors have found positive consequences regarding the control of SCEs and power-

delay product [181],[182]. In the gate capacitance model presented here we try to

achieve a better understanding, shedding light on the different terms that contribute

to Cg.

As for the threshold voltage, the traditional definition of VT (as Vg for which ψs =

2ψF being ψF the Fermi potential [183–185]) is no longer valid for III-V NWs. The

low density of states implies high surface band bendings to reach a non-negligible

electron concentration, and, consequently, a reformulation of the concept is required.

To overcome this issue, several new proposals to estimate VT have recently come up

and various articles have reviewed the different VT definitions and methods available

for its extraction [97, 179, 186–196]. However, to the best of our knowledge there is

no analytical physically based study in the literature on III-V NWs VT modeling. In

the threshold voltage model presented here we analyze the various factors which are

involved in the onset condition of the NWs providing a complete analytical expression.

The rest of this Chapter is organized as follows. Section 6.2 explains the procedure

to achieve the gate capacitance model for III-V NWs, and the different capacitance

terms are defined. In Section 6.3 we validate the gate capacitance model results with

those from the simulator presented in Chapter 3. In Section 6.4 we evaluate the contri-

bution of the different capacitance terms (the insulator capacitance, the finite density

of states and the charge distribution in the NW) to the total gate capacitance and

compare the model results with those corresponding to a Si NW. Section 6.5 explains

the process followed to achieve a VT model for III-V NWs under the parabolic band as-

sumption. In Section 6.6 we propose a non-parabolic band correction to VT. In Section

6.7 we discuss the variation on VT due to a non-null Dit. In Section 6.8 we validate the

model results with those obtained from simulation for several semiconductor materials,

NW sizes and insulator thicknesses. We also evaluate the different contributions to VT,

discuss the influence of the wavefunction penetration into the gate insulator on VT and

its dependence on the confinement effective mass of the Γ-valley. Section 6.9 sums up

the main conclusions of this Chapter. Finally, in Appendix ?? is included some calculi

related to the capacitance and threshold voltage models.
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6.2 Gate Capacitance Model

In this section we propose an analytical model for the gate capacitance of III-V cylin-

drical NWs. The NW structure is the same presented in Fig. 5.1 of Chapter 5, where

Rs was the semiconductor radius and tins the insulator thickness.

The gate capacitance is defined as:

Cg =
∂QG

∂Vg
= −∂Qs +Qins

∂Vg
≃ −∂Qs

∂Vg
(6.1)

being QG = −Qs − Qins the gate charge; Qs = Qd + Qi the total charge in the semi-

conductor; Qins the charge in the insulator; and Qi and Qd the inversion and depletion

charges in the semiconductor, respectively. In Eq. (6.1) we assumed that the charge in

the insulator is negligible compared to the charge in the semiconductor (see Appendix

C.2 for details on the goodness of the approximation). Using some trivial algebra, we

can write:
1

Cg
= − ∂Vg

∂Qs
= −∂(Vg − ψs)

∂Qs
− ∂ψs

∂Qs
(6.2)

where ψs is the semiconductor surface potential that can be related to Vg by means of

the Gauss’s law:

Vg − Φms = ψs −
Qs

Cins
(6.3)

being Cins = 2πǫins/ ln
(

1 + Tins
Rs

)

the insulator capacitance per unit length 1. Assuming

that Qd does not depend on Vg, Eq. (6.2) can be rewritten as:

1

Cg
=

1

Cins
+

1

Cinv
(6.4)

where Cinv = −∂Qi/∂ψs is the inversion capacitance [62]. The term Cinv has been

modeled in the literature in different ways [159, 197, 198]. Based on Ref. [159], Cinv is

written as:
1

Cinv
= −∂ψs

∂Qi
= −∂ψc

∂Qi
− ∂(ψs − ψc)

∂Qi
(6.5)

where ψc is the potential at the center of the NW. Following the nomenclature pro-

posed in Ref. [159], the reciprocal of the first term is the quantum capacitance,

CQ = −∂Qi/∂ψc, due to the finite density of states; and the reciprocal of the sec-

1Otherwise stated the capacitance terms mentioned throughout this Chapter are capacitances per
unit length.
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ond term is denoted by Ce, which can be expressed as [197]:

1

Ce
= −∂(ψs − ψc)

∂Qi
=

1

ǫs

∂(xiQi)

∂Qi
(6.6)

where ǫs is the dielectric constant in the semiconductor; and xi is calculated as:

xi =
1

2π

Rs
∫

0

rln

(

Rs

r

)

n(r)dr

Rs
∫

0

rn(r)dr

(6.7)

in which, coherently with Chapter 5, no dependence with the azimuthal coordinate for

n was assumed. We recall here the expression for n achieved in Chapter 5, Eq. (5.33)

n(r) =
1

2π

N
∑

j=0

g(Êj)|Rj(r)|2 (6.8)

Thus, the electron charge Qi in the semiconductor can be calculated as:

Qi = q

2π
∫

0

Rs
∫

0

rn(r)drdθ = q 2π

Rs
∫

0

rn(r)dr (6.9)

Then, substituting Eqs. (6.7) and (6.9) into Eq. (6.6) we get:

1

Ce
=∼= q

2πǫs





∑

j

Rs
∫

0

rln

(

Rs

r

)

|Rj(r)|2dr
∂g(Êj)

∂ψc





∂ψc

∂Qi
(6.10)

where it has been assumed that |Rj(r)|2 does not depend on ψc for III-V NWs, which

is consistent with the analytical model of Chapter 5 (see Fig. 5.9). It is useful to define

a quantum capacitance due to each subband j as: CQj = −q ∂g(Êj)/∂ψc. Therefore,

using the definition of CQ, we have:

1

Ce

∼= 1

CQ

∑

j

CQj

2πǫs

Rs
∫

0

rln

(

Rs

r

)

|Rj(r)|2dr (6.11)

where the integral term is, as proposed by Lee et al. in Ref. [159], closely related to an
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effective inversion-layer centroid. In a similar way, it is possible to define an effective

centroid capacitance associated to each subband j given by:

CCj =
2πǫs

Rs
∫

0

rln

(

Rs

r

)

|Rj(r)|2dr

(6.12)

Therefore:

1

Ce

∼= 1

CQ





N
∑

j=0

CQj

CCj



 (6.13)

and the inversion capacitance is expressed as:

1

Cinv

∼= 1

CQ
+

1

CQ





N
∑

j=0

CQj

CCj



 (6.14)

Using the definitions for CQ and CQj, we know that CQ =
∑

CQj . Therefore the

second term in the right-hand-side of Eq. (6.14) is a weighted mean of the centroid

capacitances of all subbands, where the weight of each subband j is controlled by the

rate of change of g(Êj) with ψc. This expression is equivalent to those proposed in

Refs. [197] and [159]. However, this one dissociates the Cinv dependence on the density

of states and on the charge distribution. Indeed, CCj just depends on |Rj(r)|2 for each

sub-band. If |Rj(r)|2 does not change with Vg (as it is the case for III-V NWs under

not too high Vg values, as it is shown in Chapter 5) then CCj is a purely geometric

capacitance.

From the previous expression we can propose the circuit model for the total gate

capacitance shown in Fig. 6.1. Although this model is less simple than others found in

the literature [198], it is physically more meaningful. Cg is given by the series connection

of the insulator capacitance, the quantum capacitance, and a contribution that depends

on the effective position of the charge. Here, the centroid capacitances associated to

each subband j are connected in series and they are weighted by the inverse of the

contribution of their subband quantum capacitance to the whole quantum capacitance.

Then, the series association of the centroid capacitances is controled by those subbands

with the highest CQj/CQ ratio. Therefore, the larger (the smaller) CQj , the larger (the

smaller) the influence of CCj associated to this level. Thus, the quantum capacitance

due to each level determines not only CQ but also how relevant CCj is for the total Cg.
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Figure 6.1: Capacitance model for III-V cylindrical NWs.

It is interesting to note that in the quantum limit CQ = CQ0 and Cinv is reduced

to the series connection of CQ0 and CC0. This particular case is consistent with other

studies of III-V MOSFETs [198, 199] and double gate MOSFETs [96] found in the

literature.

Based on the analytical model of Chapter 5, we are able to achieve analytical

expressions for Cinv, CQ and CC in this kind of structures. We recall here the expressions

obtained in Chapter 5 for the electron wavefunction ξj(r, θ)

ξj(r, θ) = R(r) · Y (θ) =

{

AjJl (γjr) · eılθ/
√
2π 0 < r < Rs

CjKl (αjr) · eılθ/
√
2π r > Rs

(6.15)

and for the density of occupied states, g(Êj):

(a) under parabolic dispersion relationship:

g(Êj) = gv

√

2m∗kBT
π~2

F- 1
2

(

− Êj +∆Êj − qψc

kBT

)

(6.16)

(b) introducing a non-parabolicity correction factor of the minimum energy level

g(Êj) = gv

√

2m∗kBT
π~2

F- 1
2

(

−
Êj +∆Êj − qψc +∆ÊNP

j

kBT

)

(6.17)
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(c) considering a full non-parabolic dispersion relationship

g(Êj) =
gv
π

∞
∫

−∞

(

1 + e
−ÊNP

j (k)

kBT

)−1

dk (6.18)

In Eqs. (6.15)-(6.18) we have kept the nomenclature introduced in Chapter 5. Now

we proceed to obtain an analytical expressions for CCj and CQj from the previous equa-

tions. First, substituting Eq. (6.15) in Eq. (6.12), the centroid capacitance associated

to level j is found:

CCj =
2πǫs

Rs
∫

0

rln

(

Rs

r

)

|AjJl(γjr)|2dr

(6.19)

where the integral in the denominator is solved for any level j in Appendix (C.1). The

resulting expression is:

CCj =
2πǫs
A2
j

(

R2
s

2
J2
l (γjRs) +

R2
s

2
J2
l−1(γjRs) + (−l + 1

2
)
Rs

γj
Jl−1(γjRs)Jl(γjRs)+

+
l

γ2j

l
∑

m=1

J2
m−1(γjRs)−

l

2γ2j
J2
0 (γjRs)−

l

2γ2j
J2
0 (0)

)−1

(6.20)

To calculate the quantum inversion-layer capacitance due to level j we derive Eqs.

(6.16), (6.17) and (6.18) with respect to ψc getting:

(a) under parabolic dispersion relation:

CQj = q2gv

√

2m∗a
kBTπ~2

F- 3
2

(

− Êj +∆Êj − qψc

kBT

)(

1− 1

q

∂∆Êj
∂ψc

)

(6.21)

(b) introducing a non-parabolicity correction factor of the minimum energy level

CQj = q2gv

√

2m∗a
kBTπ~2

F- 3
2

(

−
Êj +∆Êj − qψc +∆ÊNP

j

kBT

)(

1− 1

q

∂(∆Êj +∆ÊNP
j )

∂ψc

)

(6.22)
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(c) considering a full non-parabolic dispersion relation as proposed by Jin et al. [95]

CQj =
1

kBT

gv
π

∞
∫

−∞

e
−ÊNP

j (k)

kBT

(

∂ÊNP
j (k)

∂ψc

)(

1 + e
−ÊNP

j (k)

kBT

)−2

dk (6.23)

where the derivative rule for the Fermi-Dirac integral, Fi−1(x) = dFi(x)/dx, was used.
It should be noted that centroid capacitances are not modified regardless the dispersion

relation considered.

6.3 Capacitance model validation

Our intention here is to validate the analytical gate capacitance model by comparing

its results with those provided by the simulator presented in Chapter 3. To do so,

three different semiconductor materials (InAs, InxGa1−xAs (x = 0.53) and GaAs) and

three NW diameters (2Rs = 5nm, 10nm and 15nm) have been considered. Γ, X and

L valleys were taken into consideration in the simulations. Al2O3 was used as gate

insulator and tins was held to 1.5nm, which corresponds to an EOT of 0.6nm [200],

following to previous works [201]. The validity of the model was also checked for other

insulator materials and thicknesses. All material parameters are presented in Appendix

(F).First, a parabolic conduction band is assumed.

Fig. 6.2 shows the simulated (solid lines) and modeled (dashed lines) gate capac-

itance results as a function of the gate voltage for three different InGaAs NW sizes.

A good agreement is found for Vg < 0.7V in the 2Rs = 15nm case, and Vg < 1V in

the 2Rs = 5nm and 2Rs = 10nm cases. In its range of validity, the model accurately

reproduces the humps in the gate capacitance which are due to the occupation of the

first three energy levels. They are better observed in the 2Rs = 10nm NW for j = 0

around Vg = 0.6V and for j = 1, 2 around Vg = 0.9V (the inset of Fig. 6.2 shows g(Êj)

associated to these levels versus the gate voltage for this NW size). As shown in the

figure, the range of validity for the 2Rs = 15nm device can be extended taking into

account higher energy levels of the Γ-valley (j = 3, 4, l = ±2 and j = 5, 6, l = ±3).

However, for the 2Rs = 5nm and 2Rs = 10nm NWs, the upper energy levels are the first

sub-bands of the L-valley, which are not modeled in this work, and therefore considering

higher energy levels of the Γ-valley does not improve the results.

Fig. 6.3 compares the model (dashed lines) and simulation (solid lines) results for

132 Electrostatics



Chapter 6. Gate capacitance and threshold voltage models

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

V
G

(V)

C
G

(p
F

/c
m

)

0.3 0.6 0.9 1.20

2

4

6

V
G

(V)

g
(E

 ) j
(x

1
06 cm

-1
)

j=0

j=1,2

5nm
Mod.Sim.

10nm

15nm

j=0-2

j=0-6

j=0-4

Figure 6.2: Gate capacitance versus gate voltage for a 2Rs = 5nm
(diamonds), 2Rs = 10nm (squares), 2Rs = 15nm (circles) InGaAs
nanowires. Solid and dashed lines correspond to simulation and model
results respectively. The results of the 2Rs = 15nm NW also include
the j = 3, 4, l = ±2 and j = 5, 6, l = ±3 degenerate Γ-valley energy
level. Inset: g(Ê) due to level j = 0 and j = 1, 2 versus gate voltage
for the 2Rs = 10nm InGaAs NW.

2Rs = 10nm NWs made of different III-V materials. The gate capacitance is plotted

as a function of the gate overdrive voltage (Vg − VT). The VT values were numerically

calculated from the maximum of the second derivative of the charge respect to the gate

voltage. VT values were: 0.32V, 0.55V and 0.96V for the InAs, InGaAs and GaAs NWs,

respectively. A detailed discussion on VT is proposed in Section 6.5. Again, the gate

capacitance model fits quite well the simulation results for the three materials. The

InAs NW presents the larger range of validity for the model (up to Vg − VT = 0.6V),

when only three energy levels are considered. This is due to its lower confinement

effective mass, which increases the separation among energy levels and extends the

range of Vg where just three energy levels are enough to describe the gate capacitance

behavior (see Chapter 5).

In Fig. 6.4 we proceed to asses the capacitance model results including the non-

parabolic effects. Specifically, Fig. 6.4 shows Cg versus Vg for a 2Rs = 10nm InGaAs

NW. Non-parabolic results are plotted as dashed lines while parabolic ones correspond

to solid lines. The model results are represented as solid red in the parabolic approach,

and dashed green and red in the non-parabolic approach using the first and second ap-

proximation, respectively. As can be seen, when non-parabolic effects are included, the

gate capacitance curve shows a shift in the position of the peaks, displaced to lower gate
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Figure 6.3: Gate capacitance versus gate overdrive voltage for InAs
(circles), InGaAs (squares) and GaAs (diamonds) 2Rs = 10nm NWs.
Solid and dashed lines correspond to simulation and model results
respectively.

voltages, and in their values, that are increased. Regarding the two approximations

employed to include the non-parabolicity, the first one fits well the non-parabolic simu-

lation results up to Vg = 0.8V. However, for higher gate voltages Cg is underestimated

in the same amount than the parabolic description. The advantage of this first non-

parabolic description is the simplicity of the resulting mathematical expression which

is accurate for low Vg, being later used in Section 6.5 for the threshold voltage calcu-

lation. On the contrary, the second one accurately reproduces the simulation results

up to Vg ≃ 1V, at the cost of a more complex expression. Hereinafter, the parabolic

description is used to discuss the model and gain some further insight on the different

terms that determine the gate capacitance behavior.
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6.4 Results and discussion of the Cg model

6.4.1 Assessment of gate capacitance components.

Once the model has been validated, it is interesting to gain some further insight into the

different components of the total gate capacitance. First, we shall examine how Eqs.

(6.20) and (6.21) corresponding to CCj and CQj respectively reproduce the different

terms of Eqs. (6.4) and (6.14). Fig. 6.5 shows the modeled Cg, CQ and Ce in blue, red

and green dashed lines respectively, for the 2Rs = 10nm InGaAs nanowire. Numerical

simulation results are plotted as symbols.

A good correspondence is found between the model and the simulations results. The

misfit observed for Vg > 1V is due to the occupancy of higher L-valley energy levels

included in the simulator. It can be clearly observed that CQ mainly determines the Cg

behavior of the InGaAs NW. This situation is directly related to the density of states

bottleneck phenomenon of III-V materials [159]. The humps in CQ are reproduced

by Cg. However, their amplitude and width are modulated by Ce, which cannot be

neglected, and by Cins. Some differences between the model and the simulation results

are observed for Ce in the range 0.8V< Vg < 1V. This discrepancy arises from the initial

assumption that considers |Rj(r)|2 independent on ψc, and therefore on Vg, –see Eq.

(6.10)–. To achieve a better fit between model and simulation for Ce, this dependence
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Figure 6.5: Simulation (symbols) and model (dashed lines) results
for Cg (blue), CQ (red) and Ce (green) as a function of Vg for a 2Rs =
10nm InGaAs NW

should be taken into consideration, increasing notably the complexity of the model.

Nevertheless Ce is not the dominant contribution to Cg and therefore the agreement

between model and simulation for Cg is still good in that range of applied bias.

Fig. 6.6 presents the results of a more detailed insight in the behavior of Ce.

Specifically, it shows the contribution of each CCjCQ/CQj term achieved from the

simulation (squares) and model (red and blue dashed lines). Again, just the first three

energy levels (j = 0 and j = 1, 2) were considered. Ce is plotted as a dashed green

line. The CCj terms are also shown (solid lines and circles for model and simulation

respectively). As can be seen, a good fit between the model and the simulation results

is observed for all terms until Vg reaches 1V. For small Vg, only the first energy level

(j = 0) is populated, and therefore CQ = CQ0 and Ce = CC0. In this range, it

is possible to consider Cinv as the series combination of CQ0 and CC0, which is the

quantum limit scenario [180]. As soon as the j = 1, 2 doubly degenerate energy levels

are occupied, its quantum capacitance, CQ1, is not negligible. Then, the ratio CQ/CQ0

rises and so does the term CC0CQ/CQ0 which is no longer equal to CC0. Moreover,

CC1CQ/CQ1 is higher than the centroid capacitance CC1, because CQ > CQ1. For

Vg & 0.8V CQ1 > CQ0 (see the rate of increase of the charge in the inset of Fig. 6.2)

and, as a consequence, CC1CQ/CQ1 < CC0CQ/CQ0. Then, Ce increases from its CC0

initial value, and tends to CC1. For Vg > 1V, the CQ/CQj ratio is underestimated by

the model (as more energy levels –belonging to L-valley– are being occupied while the

model considers CQ = CQ0 + CQ1) and so are the terms CCjCQ/CQj .
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Figure 6.6: Contribution of each term to Ce. Model and simulation
results are plotted as lines and symbols respectively for the same device
as in Fig. 6.5.

Regarding the values calculated for CCj, the simulated CCj remains almost constant

with Vg. This is consistent with the model proposed in Chapter 5 which assumes that

ξj does not depend on Vg in III-V NWs. As a consequence, the model fits well the

simulated results. Moreover, CCj can be closely associated to an inversion layer position

[159]: Fig. 6.7 shows the first three simulated wavefunctions at Vg = 0.8V and their

corresponding inversion layer effective centroid determined in the way proposed by Lee

et al. [159] from the model Eqs. (C.9), (C.10) and (C.11). The larger separation of the

effective position of the charge respect to the semiconductor-insulator interface of level

j = 0 is consistent with the smaller CC0 (dashed blue) observed in Fig. 6.6.

6.4.2 Material comparison

To achieve a better understanding of the performance limits of III-V NWs, it is in-

teresting to compare some of the previous results with those of a Si NW. To do it,

we have assumed an isotropic effective mass model for Si, with a confinement effective

mass for ∆4 valleys given by m∗ = (2ml +mt)/(ml +mt) [95, 202]. In this way the

electron density does not depend on the azimuthal coordinate; and a capacitance model

similar to the proposed here can be considered [197]. It should be noted that in Si the

wavefunction depends strongly on Vg and therefore Ce cannot be expressed as in Eq.

(6.13). SiO2 is considered as gate insulator with a thickness of Tins = 0.6nm, which

is the EOT corresponding to the 1.5nm thick Al2O3 gate insulator used for the III-V

NWs [200].
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Fig. 6.8 shows the two contributions to Cinv in Eq. (6.14): CQ (solid lines) and Ce

(dashed lines), for Si (circles), InAs (diamonds), InGaAs (squares) and GaAs (stars)

NWs, all with 2Rs = 10nm, as a function of Vg − VT. It is important to note that the

Si curves were obtained numerically from Eqs. (6.5) and (6.6), while the corresponding

InAs, InGaAs and GaAs curves were calculated using the analytical expressions, as

proposed previously. For the III-V nanowires, the values of VT commented in Section

6.3 are used again. For Si, VT is numerically determined obtaining a value VT = 0.52V.

It can be observed that while CQ is the dominant term for the III-V nanowires,

it is negligible for Si in the strong inversion regime. The different values of CQ in

InAs, InGaAs and GaAs can be explained attending to the differences in their Γ-valley

effective masses. First, the lowest confinement effective mass of InAs increases the

separation between humps in CQ with respect to InGaAs or GaAs. Second, the largest

density of states effective mass of GaAs rises CQ up to values above Ce. Hence, in this

material Cinv is controled simultaneously by CQ and Ce.

It is interesting to analyse the contribution of Ce for the different materials. For gate

voltages below VT, in III-V NWs as well as in Si, Ce remains almost constant. In the

III-V NWs Ce = CC0 and the differences observed among InAs, InGaAs and InAs are

mainly due to ǫs in Eq. (6.29) and slightly to their effective mass and the wavefunction

penetration into the gate insulator. The dependence of Ce with Vg is strongly influenced
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by CQ. In this way, Ce in InAs remains constant until Vg − VT ≃ 0.25V where the

second energy level starts to get populated, while in GaAs this variation in Ce appears

for Vg − VT ≃ 0.1V.

In Si the situation is completely different. Ce remains constant only in the sub-

threshold region and then it grows linearly with Vg − VT. Moreover, since CQ is very

high, Ce determines Cinv in the inversion regime for the Si NW. Ce is closely related –see

Eq. (6.13)– to the difference between the surface and the center potential in the NW.

Therefore, to understand the differences in the Ce behavior in Si with respect to III-V

materials it is interesting to analyze the behavior of ψs and ψc with Vg. Fig. 6.9 shows

ψs (circles) and ψc (squares) in the Si (solid lines) and InGaAs (dashed lines) NWs as

a function of the gate voltage. In strong inversion, ψc is screened by the charge in Si,

and therefore it becomes constant while for InGaAs ψc keeps on increasing although at

a lower rate than ψs. This is the reason why Ce increases almost linearly with Vg in Si

but not in InGaAs. As proposed by Knoch et al. [181], this fact could be an interesting

advantage to allow a better electrostatic control of the channel and then to reduce the

short channel effects in III-V NWs.

We can complete the comparison between Si and III-V materials by studying the

gate capacitance dependence on the EOT. Fig. 6.10 shows Cg, for Vg−VT = 0.3V, as a

function of the EOT for 2Rs = 10nm Si (circles), InAs (diamonds), InGaAs (squares)

and GaAs (stars) NWs. The insulator capacitance Cins is also plotted as a dashed
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line. Again the Si curve was numerically obtained –from Eq. (6.2)– while for the

InAs, InGaAs and GaAs NWs, Cg was determined using the analytical model. For the
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Figure 6.10: Gate capacitance as a function of the EOT for a
2Rs = 10nm Si (circles), InAs (diamonds), InGaAs (squares) and
GaAs (stars) NW. Cins is also plotted as dashed a line.

Si NW the gate capacitance strongly depends on the EOT, mimicing the behavior of

Cins. However, for III-V materials, Cg is slightly affected by Cins, or by a change in

the EOT, since Cinv is the dominant contribution and it is almost independent of the

EOT, as already shown by the analytical model here proposed. This is an important

result which demonstrates the restricted impact of the continuous EOT scaling on the

performance improvement of III-V NWs, in contrast to the traditional trend of silicon
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devices.

6.4.3 Effect of the wavefunction penetration

Finally, we have performed a comparison of the results with and without wavefunction

penetration into the gate oxide. Fig. 6.11 shows the gate capacitance as a function of

the gate voltage for the 2Rs = 10nm InGaAs NW considering a finite (squares) and

infinite (circles) potential barrier. In both scenarios the model (dashed lines) fits well

the simulation results (solid lines) until Vg ≃ 1V. It should be noticed that while the

second hump is clearly present in the simulation results for the finite potential well

case, it is not in the infinite one. In the former case, the upper energy levels are due to

the Γ-valley, while in the later case they are due to the L-valley. The higher conduction

effective mass of this valley tends to strongly increase CQ, hiding the second hump.

Furthermore, the position of the humps is modified when no wavefunction penetration

is considered. This is because the resulting energy levels differ significantly (see Fig. 5.7

in Chapter 5) as it was also observed for planar devices [96]. Moreover, the amplitude

of the humps is reduced when no wavefunction penetration is included. This can be

explained attending to a displacement of the charge position in the semiconductor

farther from the semiconductor-insulator interface (as it was shown in Fig. 5.9 in

Chapter 5),
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Figure 6.11: Gate capacitance versus gate voltage for a 2Rs = 10nm
InGaAs NW. Solid and dashed lines correspond to simulation and
model results respectively. Infinite and finite potential barrier are
plotted as circles and squares respectively.
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6.5 Threshold voltage modeling

In this Section we propose an analytical model for the threshold voltage of III-V NWs

under a parabolic dispersion relation. Due to the relevance of non-parabolicity in III-V

materials, the resulting expression will be modified in Sections 6.6 and 6.7 to consider

non-parabolicity of the conduction band and interface states, respectively. The NW

structure is the same as depicted in Fig. 5.1. As mentioned in the Introduction of

the present Chapter, when small MuG devices are considered, the traditional definition

of VT corresponding to a semiconductor surface potential band bending equal to two

times the Fermi potential is no longer valid [183–185].

Here, VT is calculated as the maximum of the second derivative of the electron

charge per unit length as a function of the gate voltage, d2Qs/dV
2
g , where Qs = Qi +

Qd, is the total charge in the semiconductor. Here Qi and Qd are the inversion and

depletion charges in the semiconductor and we assume that Qd = qNaπR
2
s does not

depend on Vg. This definition of VT has been satisfactorily used in the study of the

corner effects in MuG MOSFETs [203]. We recall the expression for Qi under parabolic

dispersion relation introduced in Chapter 5. There, we showed that, around VT, Qi can

be calculated by the carriers in the first subband (see Fig. 5.7 in Chapter 5). Thus,

the resulting expression for Qi around threshold is:

Qi = qg(Ê0) = qgv

√

2mtkBT

π~2
F- 1

2

(

− Ê0 +∆Ê0 − qψc

kBT

)

(6.24)

where the nomenclature introduced in Chapter 5 is kept.

However, in order to develop a simple compact model, Qi in Eq. (6.24) can be

further simplified. For low gate voltages ∆Ê0 can be neglected since the potential in

the cross section of the NW is nearly flat and, consequently, this factor is not relevant

(see Fig. 5.7a in Chapter 5). So, after renaming Nc = qgv
√

2mtkBT/π~2, we can write

Qi = Nc F- 1
2

(

− Ê0 − qψc

kBT

)

(6.25)

Additionally, the gate capacitance, Cg, was defined in Eq. (6.1) as:

Cg ≡
dQG

dVg
= −dQs

dVg
= −dQi

dVg
(6.26)
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where QG is the gate charge. For just one subband, we got in Section 6.2 that Cg can

be expressed as:

Cg =

(

1

Cins
+

1

CQ0
+

1

CC0

)-1

(6.27)

where CQ0 and CC0 were the quantum and centroid capacitances due to the first sub-

band:

CQ0 =
dQi

dψc
=

q

kBT
NcF- 3

2

(

− Ê0 − qψc

kBT

)

(6.28)

CC0 =
4πǫs

A2
0R

2
s

(

J2
1 (γ0Rs) + J2

0 (γ0Rs)−
J0(γ0Rs)J1(γ0Rs)

γ0Rs

) (6.29)

For the sake of simplicity we define:

1

Cgeom
≡ 1

Cins
+

1

CC0
(6.30)

Then:

d2Qi

dV 2
g

= − d

dVg









1
1

Cgeom
+

1

CQ0









=

dCQ0

dVg
(

1 +
CQ0

Cgeom

)2 (6.31)

Using the Gauss law we can write:

Vg −Φms − ψs =
Qi

Cins
+

Qd

Cins
(6.32)

The surface potential can be expressed in terms of ψc as:

ψs = ψ(Rs) =
qg(Ê0)

2πǫs

R2
s

2

(

J2
1 (γ0Rs) + J2

0 (γ0Rs)−
J0(γ0Rs)J1(γ0Rs)

γ0Rs

)

+
qNaR

2
s

4ǫs
+ ψc

(6.33)

where we have particularized Eq. (5.50) for just one subband. Using Eqs. (6.24) and

(6.29) we can reformulate:

ψs =
Qi

CC0
+

Qd

4πǫs
+ ψc (6.34)

Therefore, using Eq. (6.32) and assuming dQd/dψc = 0, Eq. (6.34) can be rewritten

as:
dVg
dψc

=
dQi

dψc

1

Cins
+
dQi

dψc

1

CC0
+ 1 (6.35)
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Using Eqs. (6.28) and (6.30) Eq. (6.35) transforms into:

dVg
dψc

=

(

1 +
CQ0

Cgeom

)

(6.36)

So, applying the chain rule to dCQ0/dVg in Eq. (6.31) and substituting Eq. (6.36) we

get:

d2Qi

dV 2
g

=

dCQ0

dψc
(

1 +
CQ0

Cgeom

)3 (6.37)

Although the maximum of d2Qs/dV
2
g could be determined differentiating Eq. (6.37)

with respect to Vg and equaling the resulting expression to zero, the procedure would

result in a non linear second order differential equation. Obtaining VT from such

expression is non trivial.

In its stead, we can consider having a deeper insight in the behavior of d2Qi/dV
2
g .

Substituting Eq. (6.28) into Eq. (6.37) leads to:

d2Qi

dV 2
g

=

(

q

kBT

)2

NcF- 5
2

(

− Ê0 − qψc

kBT

)

[

1 +

q
kBT

Nc

Cgeom
F- 3

2

(

− Ê0 − qψc

kBT

)]3 (6.38)

where we have used the derivative rule for the Fermi-Dirac integral: Fi−1(u) = dFi(u)/du.
The value of ψc that maximizes this expression is the center potential at threshold volt-

age: ψ
(T)
c . Hereinafter we use the superscript (T) to denote the value of a potential at

Vg = VT.

For the sake of clarity let us define: x =
(

−Ê0 + qψc

)

/kBT , and A = q
kBT

Nc
Cgeom

.

Then, determining ψ
(T)
c in (6.38) is equivalent to obtaining the value xm that maximizes

f(x) =
F- 5

2
(x)

[

1 +AF- 3
2
(x)
]3 (6.39)

The inset of Fig. 6.12 shows f(x) around its maximum for four values of A. As can

be seen, xm varies with A, which is a function of device geometry (through Cgeom) and

of the material parameters (through Nc). We have found that for all device geometries
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and material parameters considered in this study the term A is in a range from 0.2 to

5 where xm varies as shown in Fig. 6.12 (symbols). This dependence can be fitted by

a quadratic approximation, shown as a dashed line in Fig. 6.12 and given by:

xm = (0.038A2 − 0.513A − 0.771) (6.40)

Then, ψ
(T)
c can be calculated as:

ψ(T)
c =

Ê0

q
+

[

0.038
q

kBT

(

Nc

Cgeom

)2

− 0.513
Nc

Cgeom
− 0.771

kBT

q

]

(6.41)

This expression accurately determines the center potential (referenced to EF) at thresh-

old voltage for all materials and nanowire sizes tested in this Chapter.

ψ
(T)
c and VT can be related by means of the Gauss law evaluated at Vg=VT:

VT − Φms = ψ(T)
s +

Qd

Cins
+
QT

Cins
(6.42)

where ψ
(T)
s is the semiconductor surface potential at threshold which, from Eq. (6.34),

is given by:

ψ(T)
s =

QT

CC0
+

Qd

4πǫs
+ ψ(T)

c (6.43)
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being QT the inversion charge at threshold,

QT = Nc F- 1
2

(

− Ê0 − qψ
(T)
c

kBT

)

(6.44)

and where ψ
(T)
c was given in (6.41).

6.6 Non-parabolic correction for the VT model

To provide a complete and accurate description of the threshold voltage in III-V NWs,

the effect of non-parabolic bands should not be neglected. In this Section we propose

a correction factor to Eq. (6.42) which takes into consideration the non-parabolicity

of the Γ-valley dispersion relationship. To do it, we use the correction of the parabolic

energy minimum introduced in Chapter 5, Eq. (5.60). As discussed in Fig. 5.10 in

Chapter 5, this correction is accurate enough to model the Qi versus Vg relation for low

Vg values, and it is much simpler than the complete non-parabolic dispersion relation.

Thus, using Eq. (5.60), the non-parabolic correction factor of the first energy level is:

∆ÊNP
0 = ÊNP

0 − Ê0 (6.45)

where Ê0 is the parabolic band minimum and ÊNP
0 is the non-parabolic band minimum

given by:

ÊNP
0 = φ̂0 +

−1 +

√

1 + 4β
(

Ê0 − φ̂0

)

2β
(6.46)

being β the non-parabolic factor and φ̂0 defined in Eq. (5.58):

φ̂0 =

2π
∫

0

Rs+tins
∫

0

ξ0(r, θ)φ̂(r)ξ
∗
0(r, θ)rdrdθ (6.47)

where φ̂(r) is the total potential energy referred to ψc (see Section 5.4 for details).

Consistently with the assumption made in Section 6.5 when neglecting the energy

correction factor ∆Ê0, we can approximate the potential in the semiconductor as flat

and equal to ψc. In the insulator we have to add the potential barrier ∆φ to consider

the total potential energy. Therefore, φ̂(r) can be approximated by zero inside the
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semiconductor and by ∆φ in the insulator. Then φ̂0 is given by2:

φ̂0 =
1

2π

2π
∫

0

Rs+tins
∫

Rs

C0K0(α0r)∆φC
∗
0K
∗
0 (α0r)rdrdθ = ∆φC2

0

Rs+tins
∫

Rs

|K0(α0r)|2rdr =

∆φC2
0

(

R2
s

2
[K2

0 (α0Rs) +K2
1 (αRs)]−

Rs + tins
2

[K2
0 (α0(Rs + tins)) +K2

1 (α0(Rs + tins))]

)

(6.48)

where we have used Eqs. (6.15) and (B.5) However, a more compact expression for φ̂0

can be easily obtained if we approximate K0 by [204]:

K0(α0r) ∼=
√

π

2α0r
e−α0r (6.49)

which for the expected values of α0r > 10 (all practical cases have been checked)

introduces an error lower than 3%. The validation of such an approximation is showed

in Appendix ??. Therefore, substituting Eq. (6.49) into Eq. (6.48) gives:

φ̂0 =
∆φC2

0π

4α2
0

e−2α0Rs
(

1− e−2α0tins
)

(6.50)

The term e−2α0tins is actually much smaller than 1 for all practical values of the potential

barrier, semiconductor radius, confinement effective mass (which determine α0) and tins

and therefore it can be neglected. Then, using Eq. (6.50) in Eqs. (6.46) and (6.45) the

non-parabolic correction factor becomes:

∆ÊNP
0 =

∆φC2
0π

4α2
0

e−2α0Rs − Ê0 +

−1 +

√

1 + 4β
(

Ê0 −∆φC2
0πe

−2α0Rs/4α2
0

)

2β
(6.51)

This non-parabolic correction factor modifies the energy level in Eq. (6.25). But, as

can be inferred from Eqs. (6.41) and (6.42), this is equivalent to a shift in VT given

by ∆ÊNP
0 /q. Therefore, the threshold voltage expression taking into consideration

non-parabolic bands is:

VT = Φms +
QT

CC0
+

Qd

4πǫs
+
QT

Cins
+

Qd

Cins
+ ψ(T)

c +
∆ÊNP

0

q
(6.52)

2Please remind that C0 is not a capacitance, but the normalization constant of the wavefunction in
the insulator
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where ψ
(T)
c is given by Eq. (6.41), QT by Eq. (6.44) and ∆ÊNP by Eq. (6.51).

6.7 Influence of interface states on VT

In this Section we discuss the effect of an arbitrary profile of interface states on the

threshold voltage. To this end we first determine the variation of ψc due to a non-null

Dit. As shown by Eq. (6.52) this variation of ψc can be right away translated into a

variation in VT. Therefore, we define the correction factor of VT due to a non-null Dit

as:

∆VDit
= ψwDit

c − ψw/oDit
c (6.53)

where the superscript wDit and w/oDit are used henceforth to refer to quantities with

and without Dit. To determine this difference we make use the model equations from

Sections 5.3 and 5.5. From Eq. (5.50) we get a generic expression for the center

potential, which taking into account that Jv(0) = 0 for v 6= 0 and J0(0) = 1:

ψc =
q

2πǫa

N
∑

j=0

g(Êj)
A2
j l

2γ2j
+Da (6.54)

The first term in the right-hand-side of Eq. (6.54) is not modified ifDit is considered. As

explained in Section 5.5 the presence of a non-null Dit modify the insulator integration

constant Cb, see Eq. (5.48), and consequently constants Db and Da which depend on

it, see Eqs. (5.47) and (5.49). Therefore, we can reformulate Eq. (6.53) as:

∆VDit
= DwDit

a −Dw/oDit
a (6.55)

where Da is given by:

Da =
q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs)+Cbln(Rs)+Db−

q

2πǫa

N
∑

j=0

g(Êj)ϕ
a
j (Rs)−

q

ǫa

R2
s

4
Na (6.56)

Since the expression for ϕaj , ϕ
b
j and g(Êj) do not depend on Dit we get:

DwDit
a −Dw/oDit

a = (CwDit
b − C

w/oDit

b )ln(Rs) + (DwDit
b −D

w/oDit

b ) (6.57)
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with CwDit
b and C

w/oDit

b given by Eqs. (5.66) and (5.48). We recall them here:

CwDit
b =

Rs

ǫb





1

2π

N
∑

j=0

g(Êj)ψ
′a
j (Rs) +

qNaRs

2
− 1

2π

N
∑

j=0

g(Êj)ψ
′b
j (Rs)



− Rs

ǫb
Qit (6.58)

C
w/oDit

b =
Rs

ǫb





1

2π

N
∑

j=0

g(Êj)ψ
′a
j (Rs) +

qNaRs

2
− 1

2π

N
∑

j=0

g(Êj)ψ
′b
j (Rs)



 (6.59)

where Qit is the charge due to active interface traps. As discussed in Section 5.5

it comes from an integration of Dit whose limits depends on ψs. For the sake of

simplicity, we consider here that all the traps are active at threshold voltage, which is

not an unrealistic scenario looking at ψs for voltage values close to VT (see Fig. 5.14 in

Chapter 5). From Eq. (6.59) is it straightforward to find:

CwDit
b − C

w/oDit

b =
Rs

ǫb
Qit (6.60)

Finally, Db was given by Eq. (5.49):

Db = Vg − Φms −
1

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs + tins)− Cbln(Rs + tins) (6.61)

None of the terms in the right hand side of Eq. (6.61), except Cb, depend on Dit. Then,

introducing Eq. (6.60) into Eq. (6.61),

DwDit
b −D

w/oDit

b = −Rs

ǫb
Qitln(Rs + tins) (6.62)

Substituting Eqs. (6.57), (6.60) and (6.62) into Eq. (6.55) we get:

∆VDit
= − Qit

Cins,s
(6.63)

being Cins,s = ǫb/Rsln
(

1 + tins
Rs

)

the insulator capacitance per unit surface Although

Eq. (6.63) is a commonly used formula in the literature, getting it reinforces the validity

of the aforementioned model equations. The resulting threshold voltage expression
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including Dit is:

VT = Φms +
QT

CC0
+

Qd

4πǫs
+
QT

Cins
+

Qd

Cins,s
+ ψ(T)

c +
∆ÊNP

0

q
− Qit

Cins,s
(6.64)

6.8 Validation and Results of the VT model

In this section, the results obtained with the threshold voltage model have been com-

pared with the solution of the simulator presented in Chapter 3. InAs, InxGa1−xAs

(x=0.53) and GaAs were considered as semiconductor materials. The values of the

Γ-valley effective masses, and non parabolicity factors are summed up in Appendix

F. Al2O3 was used as gate insulator, although the validity of the VT model was also

checked for other insulator materials. Different NW sizes and oxide thicknesses were

studied. The simulation results for VT were obtained from the maximum of the second

derivative of the charge with respect to the gate voltage.

The main assumption of the VT model considers that Qi can be described, around

VT, by just one energy sub-band. To check the validity of this premise, Fig. 6.13

shows the VT simulation results when only the first sub-band (solid) and when all sub-

bands (dashed) for a InAs NW. Some small differences are observed for large NW sizes

(2Rs = 20nm). To explain this behavior, the inset in Fig. 3 depicts the potential energy

profile in the cross-section of two InAs NWs with 2Rs = 5nm and 2Rs = 20 nm at VT,

including the first subband energy level (solid) and the following ones (dotted). The

Fermi level (dashed) is also depicted as the energy reference. For the smaller device, the

separation between the first energy level and the following ones is quite large, reducing

the population of the rest of the subbands and therefore confirming our assumption.

For the larger device, the separation is reduced explaining the higher influence of the

following subbands on the calculated VT . Still, this discrepancy is small enough to

validate the starting hypothesis.

Fig. 6.14 shows the modeled VT (solid lines) as a function of the NW diameter for

different III-V semiconductor materials: InAs (red), InGaAs (blue) and GaAs (green).

Again tins = 1.5nm was considered. Several NW sizes (from 2Rs =5nm to 20nm) were

simulated for each material (unfilled symbols). As can be seen, the model shows a good

agreement for all NW sizes and materials.

To analyze the influence of the wavefunction penetration into the gate insulator

on the determination of VT, we have also plotted the infinite potential barrier case in
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Figure 6.13: Threshold voltage versus NW diameter for a InAs NW
considering the lowest subband (solid) or all the subbands (dashed).
The inset shows the potential well, Fermi level (dashed), first energy
level (solid) and following energy levels (red) for InAs NWs with 2Rs =
5nm (left) and 2Rs = 20nm (right) at VT (dashed).

Fig. 6.14. Dashed lines and filled symbols correspond to model and simulation results

respectively. We can see that the model also fits the simulation results for the infinite

potential barrier [205],[98]. Larger differences in VT, between infinite and finite potential

barrier cases, are observed for all materials when small NW sizes are considered. The

higher influence of the infinite barrier in small NWs is due to their higher confinement

that increases the value of the energy levels. The differences observed between the

infinite and finite potential barrier cases are more relevant for the InAs NWs. The

reason is that this material has the lowest confinement effective mass and therefore the

largest wavefunction penetration into the gate insulator.

When very small devices are considered, the Γ-valley effective mass can notably

differ from its bulk value [201]. This dependence can be included in the model. In fact,

the model allows to consider different transport and confinement effective masses (m∗a
and ma, respectively). Thereby, m∗a affects to the Nc factor in Eq. (6.24) and ma to

Ê0 in Eq. (5.18)

Fig. 6.15 shows the threshold voltage as a function of the Γ-valley effective mass

for two InGaAs NW sizes. To keep the figure simple, we have considered a isotropic

effective mass: ma = m∗a. The rest of the material parameters (i.e. potential barrier,

non-parabolicity factor, dielectric constant, etc.) are the characteristic ones of InGaAs.

The simulation and model results are plotted as symbols and lines, respectively. A
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Figure 6.14: Threshold voltage versus NW diameter for InAs (cir-
cles), InGaAs (squares) and GaAs (diamonds) NWs. Solid lines and
unfilled symbols correspond to model and simulation results with fi-
nite potential barrier respectively. Dashed lines and filled symbols are
the model and simulation results when an infinite potential barrier
case is considered.

good fit is observed for all effective mass values. As can be seen, a lower ma increases

the threshold voltage.

It is worthy to assess the contribution of the different components of Eq. (6.52) to

VT. Fig. 6.16 shows these contributions as a function of the nanowire diameter for:

(a) InAs and (b) GaAs NWs. The contribution of the depletion charge term has not

been plotted as it is several orders of magnitude lower than any other, for the doping

level, Na = 1014cm−3, considered in this Chapter. As can be seen, in general, just

three terms control almost completely the VT behavior: Φms, ψ
(T)
c and ∆ENP

0 . The

influence of the inversion onset charge term, QT

(

C−1C0 + C−1ins

)

, is negligible for all the

NW sizes. The influence of the non-parabolic correction is much smaller in the GaAs

devices (Fig. 6.16b) than in the InAs NWs (Fig. 6.16a). The reason is the lower value

of the non-parabolicity factor of the Γ-valley, β, in GaAs (see Appendix F). Moreover,

for GaAs NW sizes larger than 2Rs = 10nm, VT is roughly determined by Φms.

Finally, the validity of the model for different insulator thicknesses is discussed. Fig.

6.17 shows the simulation (symbols) and model (solid lines) VT results as a function

of tins for 2Rs = 10nm GaAs (green), InGaAs (blue) and a InAs (red) NWs. The

results corresponding to two InGaAs NWs of 2Rs = 5nm and 2Rs = 15nm are also

plotted as dashed lines (model) and as stars and triangles (simulation). As proposed
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Figure 6.15: Threshold voltage for 2Rs = 5nm and 2Rs = 10nm In-
GaAs NWs considering different Γ-valley effective masses. Model and
simulation results are plotted as solid lines and symbols, respectively.

in Section 6.5, VT in III-V NWs remains approximately constant with tins as long as

Cins is not comparable to CQ (see Section 6.2). The model reproduces the simulation

results accurately for all proposed cases.
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6.9 Conclusions

In this Chapter, we have proposed physically based analytical models for two elec-

trostatic quantities in III-V NWs: the gate capacitance, and the threshold voltage.

These models took into consideration Fermi-Dirac statistics, the conduction band non-

parabolicity, and the two-dimensional quantum confinement of the carriers.

Regarding the gate capacitance model, it has been demonstrated that the model

fits very well the numerical results for different NW sizes and materials, and for gate

overdrive voltages up to 0.4V (in the worst case) without considering any fitting param-

eters. Its limitation was related to the occupancy of more than L-valley subbands and

the presence of strong potential curvatures in the semiconductor which severely modify

the wavefunctions obtained in Chapter 5. The different contributions to the total gate

capacitance have been identified and modeled, showing their relation with the finite

density of states and the charge distribution in the NWs. The capacitance behavior of

III-V NWs has been compared with that of their Si counterparts. Significant differences

have been found for the dominant contribution to the inversion capacitance, as well as

for the semiconductor potential dependence on the gate voltage. Furthermore, we have

shown the limited impact of the EOT reduction in the gate capacitance of III-V NWs,

in contrast to the behavior observed in Si devices. Finally, the role of the wavefunction

penetration into the gate insulator has been also analyzed, evidencing its relevance for

an accurate description of the gate capacitance.

Concerning the threshold voltage model, after some reasonable approximations, we

have come up with a simple expression of VT that will be useful for the development

of compact models for III-V cylindrical NWs. We have demonstrated that the thresh-

old voltage expression accurately reproduces the numerical results for different III-V

semiconductor materials, NW sizes, and oxide thicknesses. The influence of the wave-

function penetration into the gate insulator has been discussed, illustrating its relevance

for an accurate modeling of VT. The VT variations due to the changes in the semicon-

ductor effective mass have also been evaluated. We gave insight into the different

contributions to the threshold voltage finding interesting differences among materials.

Furthermore, we studied the VT dependence on the insulator thickness, showing no

relevant changes in a wide range of tins confirming that it is the quantum capacitance

the main capacitance term controlling the behavior of III-V MOS structures.
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Chapter 7

Boltzmann Transport Equation

and Momentum Relaxation Time

in a 1D electron gas

7.1 Introduction

The semi-classical study of the transport properties of a 1D electron gas implies the

resolution of the Boltzmann Transport Equation (BTE) [88, 206] . As it happened with

the Schrödinger and Poisson equations in the electrostatic part of this manuscript, the

BTE is not straightforward to solve in complex structures. An analytical resolution is

nearly unapproachable for most practical cases. For that reason, numerical solutions

of the BTE are commonly used to analyze the transport behavior of electronic devices.

Among them, we can highlight the Monte Carlo method, which solves the BTE col-

lecting statistics [207–211] Deterministic approaches have also been implemented [212].

Other usual approach is the linearization of the BTE using the Momentum Relaxation

Time (MRT) approximation [213–217]

In this work, we opted for evaluating the low-field electron mobility using the MRT

approximation. Thus, the main goals of this Chapter are: 1) to set up the necessary

background on the BTE in a 1D electron gas, spotlighting those issues which needs

clear understanding and 2) present the linearization of the BTE which is used for its

resolution showing the approaches needed to carry it out.

The rest of the Chapter is organized as follows. In Section 7.2 we introduce the
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BTE and particularize it for the description of the electron transport in a 1D gas.

Section 7.3 discuss the collision term of the BTE, that includes the effect of the the

scattering phenomena and the perturbing potential that they induce through the Fermi

Golden Rule. In Section 7.4, the linearization of the BTE and the definition of the

MRT are presented, and highlighting their implications. Sections 7.5 and 7.6 compare

two approaches (explicit and implicit) to solve the equations presented in Section 7.4.

In Section 7.7, we introduce the Kubo-Greenwood formula for the calculation of the

mobility from the solutions of the linearized BTE. This Chapter also includes Appendix

D that deals with the scattering mechanism employed in this work. Finally, Section

7.8 recapitulate the main conclusions obtained thorough the Chapter.

7.2 Boltzmann Transport Equation

In this Section we introduce the BTE and we particularize it to characterize the trans-

port phenomena in a 1D electron gas. The BTE describes the evolution in the real

space, momentum space and time of a statistical distribution of classical particles. Its

derivation can be found in several textbooks [88, 206, 218–220]. The most general

formulation is:
df

dt
=

[

∂f

∂t

]

diffusion

+

[

∂f

∂t

]

forces

+

[

∂f

∂t

]

collisions

(7.1)

where f is the distribution function and describes the probability of finding a particle

with a certain position and momentum at a given instant of time. Equation (7.1) reads

as follows: the distribution function f changes with time by three different mechanisms:

(i) particle’s motion diffusion (which implies a change in position), (ii) external forces

(which implies a change in momentum), and (iii) particle collisions.

When the particles to be modeled by the BTE are electrons in a semiconductor,

f = f(r,k, t), describes the electron distribution, and the first two factors of Eq. (7.1)

can be particularized as [219], [206]:

[

∂f

∂t

]

diffusion

= −1

~
∇kEj(k) · ∇f(r,k, t) (7.2)

and
[

∂f

∂t

]

forces

= −qF
~

· ∇kf(r,k, t) (7.3)

being F the external applied electric field.
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The derivation of Eq. (7.2) reads as follows: the net change in the electron distri-

bution due to electron diffusion is equal to the product of the spatial gradient, which

points in the direction of spatial change of the electron distribution, times the veloc-

ity which determines the rate of spatial change of the position with time. A similar

statement can be derived for Eq. (7.3).

Finally, distribution’s change with time due to collisions can be written as:

[

∂f

∂t

]

collisions

= Sin(r,k, t) − Sout(r,k, t) (7.4)

where Sin and Sout stand for the rate of particles changing their wavevector to k and/or

their position to r after a collision and the rate of particles changing their wavevector

from k and/or their position from r after a collision, respectively.

Using Eqs. (7.2), (7.3) and (7.4), the BTE for electrons in semiconductors can be

reformulated as 1:

df(r,k, t)

dt
+

1

~
∇kEj(k) ·∇f(r,k, t)+

qF

~
·∇kf(r,k, t) = Sin(r,k, t)−Sout(r,k, t) (7.5)

Equation (7.5) determines the change with time of the electron distribution in a

3D electron gas under a semi-classical approach2. However the object of interest along

this manuscript is the study of MuG structures with 2D spatial confinement. The two

paradigms, quantum mechanical (provided by the solution of the 2D Schrödinger and

Poisson equations in the cross-section of the MuG structure in Chapter 2) and semi-

classical (determined by the Boltzmann transport equation) need to be reassembled.

The main assumption is to consider that the potential along the transport direction, z,

of the MuG structure varies pretty slowly and thus the electron wavefunction in that

direction can be approximated by a plane wave.

Then, the 2D Schrödinger and Poisson equations are solved for the NW cross-section

(as proposed in Chapter 2) at each position z (and potential V ) along the NW length.

Since no dependence on z of the semiconductor Hamiltonian is expected, the inclusion

of V (z) can be modeled as a variation of the Fermi level along the NW length [213].

1The derivation of Eq. (7.5) is completely equivalent to that done by some authors in the literature
[88] by just applying the chain rule to df(r,k, t)/dt and assuming that r and k are independent and
functions of time. We have opted for the one presented here as it provides a deeper understanding on
the physics.

2Electrons in Eq. (7.5) are considered classical particles, but the collisions can be treated quantum
mechanically, as will be shown in Section 7.3.
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From the previous discussion we conclude that the six dimensional phase space r−k

of Eq. (7.5) is reduced to a 2D space z − kz and Eq. (7.5) is particularized for the 1D

electron gas as:

dfj(z, kz, t)

dt
+

1

~

∂Ej(kz)

∂kz

∂fj(z, kz, t)

∂z
+
qFz

~

∂fj(z, kz, t)

∂kz
=

= Sin,j(z, kz, t)− Sout,j(z, kz, t) (7.6)

where f , Sin and Sout are discretized for each subband j and Fz = −∂V (z)/∂z is the

longitudinal component of the electric field.

In the next Section, the rates of change in the electron states due to collisions,

Sin and Sout, are presented and their relation to the scattering phenomena and the

perturbing potentials that they generate are discussed.

7.3 Scattering rate and perturbation potentials. Fermi

Golden Rule

For an electron gas, Sin and Sout can be attributed to scattering events which perturb

the electron free-flights, changing their ballistic trajectory. Three assumptions are made

for the physical modeling of the scattering events: (a) the collisions occur in a very

short time scale and can be considered as instantaneous; (b) the collisions produce a

change in the particles trajectory modifying their wavenumber but they do not change

the particles’ position; and (c) the scattering interaction is weak [206].

Under these three assumptions, Sout,j can be written as:

Sout,j(z, kz, t) = fj(z, kz, t)
∑

j′,k′z

Sj,j′(kz, k
′
z)
[

1− fj′(z, k
′
z, t)

]

(7.7)

Eq. (7.7) reads as: the rate of electrons leaving the subband j and wavenumber kz

after a collision (also called the scattering output flux) at a given position z and time

t, is equal to the probability of finding the (kz, j) state
3 occupied, fj(z, kz, t), times the

sum for all possible final states (k′z, j
′) of the probability of finding the state empty,

[1 − fj′(z, k
′
z, t)], times the scattering rate from the state (j, kz) to the state (j′, k′z),

3We use the notation (kz, j) to refer to an electron belonging to the subband j with wavenumber
kz.
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Sj,j′(kz, k
′
z). A similar reasoning can be used to obtain the scattering input flux, Sin,j :

Sin,j(z, kz, t) = [1− fj(z, kz, t)]
∑

j′,k′z

Sj′,j(k
′
z, kz)fj′(z, k

′
z, t) (7.8)

Using Eqs. (7.7) and (7.8) into Eq. (7.6) the resulting 1D Boltzman equation for the

subband j is:

dfj(z, kz, t)

dt
− 1

~

∂Ej(kz)

∂kz

∂fj(z, kz, t)

∂z
+
qFz

~

∂fj(z, kz, t)

∂kz
=

[1− fj(z, kz, t)]
∑

j′,k′z

Sj,j′(k
′
z, kz)fj′(z, k

′
z, t)− fj(z, kz, t)

∑

j′,k′z

Sj′,j(k
′
z, kz)

[

1− f ′j(z, k
′
z, t)

]

(7.9)

To determine Sj,j′(kz, k
′
z) we use the Fermi Golden Rule which provides an expres-

sion for Sj,j′(k, k
′) given the perturbation potential, ψ̃, caused by the corresponding

scattering mechanism. A detailed derivation of the Fermi Golden Rule for systems con-

fined in one dimension can be found in several textbooks [88], [206], [220]. Here we just

present the main steps applied to the 2D MuG structures studied in this manuscript,

where the electron is confined in two dimensions.

The derivation of the Fermi Golden Rule starts with the time dependent Schrödinger

equation for the electron including a perturbing potential due to the scattering mech-

anism. Using the EMA and particularizing for a 1D electron gas, it can be rewritten

as:

[H(r) + φ̃(r, t)]Ψ̃j(r, t) = ı~
dΨ̃j(r, t)

dt
(7.10)

where H(r) is the Hamiltonian operator of the electrostatic unperturbed problem pre-

sented in Chapter 2, in Eq. (2.9), and φ̃ = −qψ̃ is the electron potential energy due

to the perturbing potential. The solution of the perturbed problem can be written

as a linear combination in the wavenumber space of the solutions of the unperturbed

problem, Ψ(r, t) [206]. Thus:

Ψ̃(r, t) =
∑

i,kz

ckz(t)ξi,kz(x, y)
eıkzz√
L
e−

ıEi(kz)t

~ (7.11)

where the unperturbed solution was written as in Chapter 2 and assuming a plane wave

dependency with time, where i and kz are the indexes for the subband and wavenumber,
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7.3. Scattering rate and perturbation potentials. Fermi Golden Rule

respectively. To determine the coefficients cktextz(t), Eq. (7.11) is substituted into Eq.

(7.10) leading to:

φ̃(r, t)
∑

i,kz

ckz(t)ξi,kz(x, y)
eıkzz√
L
e−

ıEi(kz)t

~ = ı~
∑

i,kz

ξi,kz(x, y)
eıkzz√
L
e−

ıEi(kz)t

~
dckz(t)

dt

(7.12)

The scattering process moves the electron from an initial state (kzo, j) to a final

state (k′zo, j
′). Multiplying both sides of Eq. (7.12) by the electron wavefunction after

the collision, ξ∗j′,k′zo(x, y)
eık

′
zoz√
L

, integrating over the volume of the device, V, and taking

into consideration the orthonormality of the solutions of the Schrödinger equation we

get:

∑

i,kz

ckz(t)

∫

V
ξi,kz (x, y)

eıkzz√
L
φ̃(r, t)ξ∗j′,k′zo(x, y)

e−ık
′
zoz

√
L

dV e−
ıEi(kz)t

~ e
ıE

j′ (k
′
zo)t

~ = ı~
dck′zo(t)

dt

(7.13)

For the mechanisms of interest, a plane wave time dependency of the perturbing po-

tential is assumed [206]:

φ̃(r, t) = φ̃(r)e±ıωt (7.14)

Then:
∑

i,kz

ckz(t)Mi,j′(kz, k
′
zo)e

−
ı(Ei(kz)−E

j′ (k
′
zo)±~ω)t

~ = ı~
dck′zo(t)

dt
(7.15)

where

Mi,j′(kz, k
′
zo) =

∫

V
ξi,kz(x, y)

eıkzz√
L
φ̃(r, t)ξ∗j′,k′zo(x, y)

e−ık
′
zoz

√
L

dV (7.16)

is the matrix element for the interaction between states (kz, i) and (kzo, j
′). Since the

scattering interaction is weak we can assume that the electron initial wavenumber kzo

is the main contribution to the sum in Eq. (7.12). In other words ck(t) ≪ ckzo(t) = 1

Then:

Mj,j′(kzo, k
′
zo)e

−
ı(Ej (kzo)−E

j′ (k
′
zo)±~ω)t

~ = ı~
dck′zo(t)

dt
(7.17)

Integrating Eq. (7.15) for a certain period of time, T , in which the scattering event

takes place, we can write:

ck′zo(T ) =
2

ı~
Mj,j′(kzo, k

′
zo)e

−
ı(Ej (kzo)−E

j′ (k
′
zo)±~ω)T

2~ sin

(

Ej(kzo)− Ej′(k
′
zo)± ~ω

2~
T

)

(7.18)
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The term |ck′zo(T )|2 actually determines the probability of the transition from the (ko, j)

state to the (k′o, j
′) state after a collision. The scattering rate Sj,j′(kz, k

′
z) can be defined

as the probability over time, therefore:

Sj,j′(kz, k
′
z) = lim

t→∞
|ck′z(T )|2

T
=

2π

~
|Mj,j′(kz, k

′
z)|2δ(Ej(kz)− Ej′(k

′
z)± ~ω) (7.19)

where we have used the properties of the sinc(x) function for x→ ∞ [221].

7.4 Momentum Relaxation Time

Once the BTE for a 1D electron gas has been presented, and the collisions term mod-

eled, a method to solve Eq. (7.6) is needed. In this Section we present the linearization

approximation, which provides a procedure to determine the electron momentum re-

laxation time that can be used to calculate the mobility as will be shown in Section

7.7.

Let us assume that only small displacements from equilibrium and uniform transport

conditions are given. In this case, the distribution function, f , and other macroscopic

quantities are independent of the transport position coordinate (f 6= f(z)). Under this

approximation, the total derivative of the occupation function in the subband j-th,

dfj/dt can be written as [88]:

dfj(kz, t)

dt
≃ −δfj(kz)

τj(kz)
= −fj(kz)− f0(Ej(kz))

τj(kz)
(7.20)

where f0(E) is the Fermi-Dirac occupation function in equilibrium, and δfj(kz) is the

deviation of the occupation function fj(kz, t) respect to f0(Ej(kz)).

The MRT approach also assumes stationary behavior, f 6= f(t), and small electric

field Fz in the ẑ direction so that ∂f/∂z ≃ 0. Thus, under a small electric field Fz in

the z direction, Eq. (7.6) can then be written as:

− qFz

~

∂fj(kz)

∂kz
= −δfj(kz)

τj(kz)
(7.21)

We can develop the derivative in the left hand size as:

∂fj(kz)

∂kz
=
∂δfj(kz)

∂kz
+
∂f0(Ej(kz))

∂kz
=
∂δfj(kz)

∂kz
+
∂f0(Ej(kz))

∂Ej(kz)

∂Ej(kz)

∂kz
(7.22)
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Introducing the previous equation into Eq. (7.21) and neglecting second-order terms,

we get: -

− qFz
∂f0(Ej(kz))

∂Ej(kz)
vj(kz)τj(kz) = δfj(kz) (7.23)

where the electron velocity definition: vj(kz) = ~
−1∂Ej(kz)/∂kz has been used. From

now on, we will simplify the notation to E = Ej(kz) and E
′ = Ej′(k

′
z).

Now, we will relate δfj(kz) to the scattering rates in Eqs. (7.7) and (7.8), in order to

achieve an expression for τj(kz) as a function of the scattering rate Sj,j′(kz, k
′
z). First,

we replace fj(kz) and fj′(k
′
z) by f0(E) + δfj(kz) and f0(E

′) + δfj′(k
′
z), respectively.

Sin,j − Sout,j = [1− f0(E)− δfj(kz)]
∑

j′,k′

Sj,i(k
′
z, kz)

[

f0(E
′) + δfj′(k

′
z)
]

−

− [f0(E) + δfj(kz)]
∑

j′,k′

Sj,j′(kz, k
′
z)
[

1− f0(E
′)− δfj′(k

′
z)
]

(7.24)

To simplify this equation we make use of the flux balance at equilibrium where the

flux from state (kz, j) to the state (k′z, j
′) must equal the flux from (k′z, j

′) to (kz, j).

Therefore:

f0(E
′)Sj′,j(k

′
z, kz)(1− f0(E)) = f0(E)Sj,j′(kz, k

′
z)(1− f0(E

′)) (7.25)

Using Eq. (7.25) neglecting the second order terms δfj(kz)δfj′(k
′
z) and making use of

the condition of flux balance in equilibrium leads to:

Sin,j − Sout,j =
∑

j′,k′z

Sj,j′(kz, k
′
z)
f0(E)(1 − f0(E

′))
f0(E′)(1− f0(E))

[

δfj′(k
′
z) (1− f0(E))− f0(E

′)δfj(kz)
]

−

−
∑

j′,k′z

Sj,j′(kz, k
′
z)
[

δfj(kz)
(

1− f0(E
′)
)

− f0(E)δfj′(k
′
z)
]

(7.26)

After some algebra, we obtain:

Sin,j − Sout,j = −δfj(kz)
∑

j′,k′z

Sj,j′(kz, k
′
z)

{

1− f0(E
′)

1− f0(E)
− δfj′(k

′
z)

δfj(kz)

f0(E)

f0(E′)

}

(7.27)
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Using Eq. (7.23), we can rewrite the term δfj′(k
′
z)/δfj(kz) as

δfj′(k
′
z)

δfj(kz)
=
qτj′(k

′
z)Fzvj′(k

′
z)
∂f0(E′)
∂E

qτj′(kz)Fzvj(kz)
∂f0(E)
∂E

=
τj′(k

′
z)vj′(k

′
z)f0(E

′)[1− f0(E
′)]

τj(kz)vj(kz)f0(E)[1 − f0(E)]
(7.28)

where the equality ∂f0(E)/∂E = f0(E) [1− f0(E)] was used. Finally, substituting Eqs.

(7.27) and (7.28) into Eq. (7.20), we get:

1

τj(kz)
=
∑

j′,k′z

Sj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

(7.29)

which is the final expression for τj(kz).

The scattering probability Sj,j′(kz, k
′
z) in Eq. (7.29) includes the cumulative effect

of all the scattering mechanisms and can be written as:

Sj,j′(kz, k
′
z) =

∑

i

Sij,j′(kz, k
′
z) (7.30)

where the i index runs over the scattering mechanisms. Substituting Eq. (7.30) into

Eq. (7.29) we get:

1

τj(kz)
=
∑

j′,k′z

[

∑

i

Sij,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

]

(7.31)

Eq. (7.31) can be written as:

1

τj(kz)
=
∑

i

1

τ ij(kz)
(7.32)

being τ ij the contribution of the i-th scattering mechanism to τj:

1

τ ij(kz)
=
∑

j′,k′z

Sij,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

(7.33)

Moreover, the calculation of τ ij depends on the total τj , and therefore, unless some

approximation is done (see Section 7.5), a self consistent solution of τj including all the

scattering mechanisms is needed. Once it is done, the contribution of a single scattering

mechanism to τj(kz), can be calculated as in Eq. (7.33).
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The direct solution of Eq. (7.31) is not straightforward as it constitutes an im-

plicit equation in τj(kz). To reduce the problem, we distinguish three kinds of scat-

tering mechanisms depending on the characteristic regarding energy and wavenumber.

Thus, if we classify the scattering mechanism in three categories, isotropic (is), elastic

anisotropic (ea) and inelastic anisotropic (ia), Eq. (7.31) can be rewritten as:

1

τj(kz)
=
∑

is

∑

j′,k′z

Sisj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

+

∑

ea

∑

j′,k′z

Seaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

+

∑

ia

∑

j′,k′z

Siaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

(7.34)

The characteristics of the three kinds of scattering mechanisms can be readily deduced

from their names and are summarized below.

• Inelastic anisotropic mechanism: the energy is not conserved, E′ 6= E, and the

scattering rate is wavenumber dependent, Sj,j′ 6= Sj,j′(kz, k
′
z).

• Elastic anisotropic mechanism: there is energy conservation, E′ 6= E, an the

scattering rate depends on the wavenumber, Sj,j′ = Sj,j′(kz, k
′
z).

• Isotropic mechanism: the scattering rate does not depend on the wavenumber,

Sj,j′ = Sj,j′(kz, k
′
z). In this category, both the elastic and inelastic mechanism are

included.

Taking into consideration these properties, Eq. (7.34) can be reformulated as:

1

τj(kz)
=
∑

is

∑

j′,k′z

Sisj,j′

(

1− f0(E
′)

1− f0(E)

)

+
∑

ea

∑

j′,k′z

Seaj,j′(kz, k
′
z)

(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

+

∑

ia

∑

j′,k′z

Siaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

(7.35)

In Appendix D we go through a more detailed discussion of the simplifications that

can be made in Eq. (7.35) for the different scattering mechanism kinds, while in the

next two Sections we discuss the two approaches that we consider for the solution of

Eq. (7.35).
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7.5 Explicit calculation of the MRT

In this Section we present an explicit approximation for the calculation of the MRT that

has been extensively used in the literature, see for example Refs. [213–217, 222]. Instead

of solving the equation system previously proposed, the explicit approach manipulates

Eq. (7.35) under some approximations to achieve a simpler explicit solution for τj .

The main assumption of the explicit calculation considers that there are small dif-

ferences between τj(kz) and τj′(k
′
z) for all sub-bands, j, j

′ and wave-vectors kz and k′z.

Using that approximation, τj(k
′
z)/τi(kz) ≃ 1, and the MRT of an elastic anisotropic

mechanism can be written as:

1

τ eaj (kz)
=
∑

j′,k′z

Seaj,j′(kz, k
′
z)

(

1− vj′(k
′
z)

vj(kz)

)

(7.36)

Equivalently, the MRT of an inelastic anisotropic mechanism is calculated as:

1

τ iaj (kz)
=
∑

j,k′z

Siaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− vj′(k
′
z)

vj(kz)

)

(7.37)

Then the total MRT for state (kz, j) is:

1

τj(kz)
=
∑

ii

1

τ isj (kz)
+
∑

ea

1

τ eaj (kz)
+
∑

ia

1

τ iaj (kz)
(7.38)

where each contribution τ iaj (kz), τ
ea
j (kz) and τ

ii
j (kz) is calculated as in Appendix D by

just simplifying Eqs. (D.7), (D.10) and (D.14) using τj(k
′
z) = τi(kz). Therefore, the

explicit approach allows the independent and explicit calculation of the MRT due to

each scattering mechanism. The total MRT is then obtained by applying the so-called

Matthiessen rule at each kz value [223] as in Eq. (??)

The assumption made in Eqs. (7.36) and (7.37) seems quite arguable as it implies

that τ does not depend on k neither on the subband. However, the explicit calculation

does work in many cases. The reason concerns the scattering rate Sj,j′ and the sym-

metry of the structures studied. When symmetric structures are considered, most of

the scattering mechanisms result in a nearly diagonal Sj,j′ matrix. Consequently, the

highest weight of the
(

1− τj′ (k
′
z)vj′ (k

′
z)

τj(kz)vj (kz)

)

term in the (j′, k′z) sum correspond to k′z = kz

where the approximation τj(k
′)/τi(k) ≃ 1 is fully satisfied.
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7.6 Implicit calculation of the MRT

In this Section we present a procedure to determine τj directly from Eq. (7.35) without

any further approximations. Four important facts must be taken into consideration

when approaching to the problem:

• Isotropic mechanisms do not depend on τj and can be calculated, for a given

(kz, j), in an independent way. In fact, we can define the contribution to τj of

the is-th isotropic inelastic mechanism as:

1

τ isj (kz)
=
∑

j′,k′z

Sisj,j′(kz, k
′
z) (7.39)

• τj(kz) depends on τj′(k
′
z) through elastic anisotropic and inelastic anisotropic

mechanisms.

• For elastic anisotropic mechanisms (kz, j) and (k′z, j
′) states have the same energy.

• For inelastic anisotropic mechanism E′ = E ± ~ω is satisfied, where E and E′

are the energies corresponding to (kz, j) and (k′z, j
′) sates, respectively. For the

sake of simplicity we just consider one inelastic anisotropic mechanism whose

energy change is known and does not depend on the device geometry, size or

any other variable: ±~ωp. A more general approach including several mechanism

with distinct inelastic anisotropic mechanism with different energy changes would

imply a discretization of the energy space and a resolution of the complete system

of Eq. (7.35) for each discrete energy value as it is done in Ref. [224].

Fig. 7.1 shows a schematic depiction of the possible transitions from an arbi-

trary state, kz (plotted as a blue filled dot). The final states resulting from an elas-

tic anisotropic process are plotted as squares while those resulting from an inelastic

anisotropic process are plotted as circles. Transitions for inelastic isotropic mechanisms

are not plotted as they can be calculated separately. Additionally, the transitions start-

ing from any of the final states must also be taken into account (and are plotted as

diamonds) as they influence the calculation of τj at the initial state through τj′ at

the final states. It is clear that this nested interdependency leads to a discretization

of the wavenumber space according to the discretization of the energy space (which

is governed by ±~ωp). In Fig. 7.1 we use kji,b/f to refer to the kz state in the back-

ward/forward branch of the j-th subband with energy Ei. For example, the initial state
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k02,f refers to the kz state in the positive branch of the 0-th subband with energy E2. To

keep the example simple enough to be afforded we have considered just three subbands

and five energy steps. Nevertheless, the extension to a larger number of subbands and

energy steps follows the same rules here proposed.
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-hw
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Figure 7.1: Schematic depiction of the possible transitions from
the k02,f state. The final states resulting from an elastic anisotropic
process are plotted as squares while those resulting from an inelastic
anisotropic process are plotted as circles. Other states resulting from
the discretization of the wavenumber space are plotted as diamonds.

From a mathematical point of view, the set of transitions depicted in Fig. 7.1 can

be formulated as an equation system. Looking for a matrix formulation of the problem,

we rewrite Eq. (7.35) by multiplying both sides by vj(kz)τj(kz) getting:

vj(kz) = τj(kz)vj(kz)





∑

is

1

τ isj (kz)
+
∑

ea

∑

j′,k′z

Seaj,j′(kz, k
′
z)+

∑

ia

∑

j,k′z

Siaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)



−
∑

ea

∑

j′,k′z

Seaj,j′(kz, k
′
z)τj′(k

′
z)vj′(k

′
z)

−
∑

ia

∑

j′,k′z

Siaj,j(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)

τj′(k
′
z)vj′(k

′
z) (7.40)

For the set of transitions introduced in Fig 7.1, we can write Eq. (7.40) as:
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(7.41)

The matrix elements Ξ, Z and Λ are determined from Eq. (7.40) following a completely

equivalent procedure to that exposed in Appendix D:4

Ξk
j
i,f = vj(k

j
i,f)
∑

is

1

τ isj (kji,f)
+
L

~2

∑

ea

∑

j′

[

|M ea
j,j′(k

j
i,f, k

j′

i,f)|2 − |M ea
j,j′(k

j
i,f, k

j′

i,b)|2
] vj(k

j
i,f)

|vj′(kj
′

i,b)|

+
L

~2

∑

ia

∑

j′

[

|M ia
j,j′(k

j
i,f, k

j′

i±1,f)|2 − |M ia
j,j′(k

j
i,f, k

j′

i±1,b)|2
] vj(k

j
i,f)

|vj′(kj
′

i±1,f)|
+ Z

kj
i,f

kj
i,f

(

1− f0(E
′)

1− f0(E)

)

(7.42)

Z
kj
i,f

kj
′

i′,f
= −sign(vj′(k

j′

i′,f))
L

~2

∑

ea

|M ea
j,j′(k

j
i,f, k

j′

i′,f)|2 (7.43)

Λ
kj
i,f

kj
′

i±1,f

= −sign(vj′(k
j′

i±1,f))
L

~2

∑

ia

|M ia
j,j′(k

j
i,f, k

j′

i′,f)|2
(

1− f0(E
′)

1− f0(E)

)

(7.44)

4It must be noted that, due to the discretization of the energy space, kz is reduced to ki (being i the
energy index); and the initial state upper and lower energies are notated as i± 1 instead of ±. Finally,
in this notation the band index j/j′ is explicitly introduced as a superscript in k instead of using the
primed/unprimed notation of the Appendix.
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The formulation of Ξ, Z and Λ for kji,b and kj
′

i′,b can be readily determine substi-

tuting kji,f and kj
′

i′,f by kji,b and kj
′

i′,b in the previous expressions. As for 1/τ isj (kji,f),

it is calculated as in the explicit approximation. The dimension of the system is

[n×1] = [n×n][n×1] where n is the number of elements of the discretized wavenumber

space. To better illustrate the transitions with origin at the k02,f state shown in Fig.

7.1, we have shadowed the row which describes them in Eq. (7.41). In that row only

the non-null elements are specified. Some other rows are written although, for the sake

of simplicity, not all non-null elements of those rows are put down.

Under symmetric bands, as those depicted in Fig. 7.1, τ(kji,b) = τ(kji,f) and v(k
j
i,b) =

−v(kji,f). Thus, the previous equation system can be solved only for the positive k

branch resulting into:
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(7.45)

where:

Ξ̃k
j
i,f = Ξk

j
i,f + Z

kj
i,f

kj
i,b

(7.46)

Λ̃
kj
i,f

kj
′

i′
= Λ

kj
i,f

kj
′

i′,f
+ Λ

kj
i,f

kj
′

i′,b
(7.47)

Z̃
kj
i,f

kj
′

i′
= Z

kj
i,f

kj
′

i′,f
+ Z

kj
i,f

kj
′

i′,b
(7.48)

which is a [n)/2× 1] = [n/2×n/2][n/2× 1] system and is actually the equation system

that we solve. Eq. (7.45) can be formulated in a matrix compact form as:

v = Λτ (7.49)

where v and τ are the column vectors containing the velocities and the MRTs, re-

spectively, of discretized wavenumbers shown in Fig. 7.1. Thus, we can determine τ
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as:

τ = Λ
−1v (7.50)

It is worth to note that Eq. (7.45) has been proposed starting at an arbitrary wavenum-

ber, k02f , and it has resulted in the determination of τ for a set of n wavenumber values

interdependent among them. This process is respected for different scattering wavenum-

bers, k02,f, until τ is modeled with enough precision for its numerical integration.

In Fig. 7.1 we have considered just five energy steps and three subbands, but

the formulation of the matrix Λ for a more complex set of transitions, with more

energy steps and more subbands can be performed following the same procedure already

shown. One non-negligible issue regarding more complex formulations, concerns the

truncation of the wavenumber set. In Fig. 7.1 we have considered just five energy steps,

but from the monotonically increase of E with kz (assumed for non-parabolic EMA),

it is easy to conclude that a non-limited number of energy steps (and wavenumber

values) result from the discretization of the wavenumber space. Moreover, due to

the nested interdependency of the transitions, τ(k02,f ) will depend on these higher k′z.

Nevertheless, Sj,j′ tends to decrease for anisotropic mechanisms with increasing |kz−k′z|,
and therefore, the influence of higher states on the determination of τ for the initial

state rapidly decreases, allowing the truncation of the discretized wavenumber space

with a simple Neumann boundary condition, that is ∂τj(E)/∂E ≃ 0 [224].

7.7 Mobility calculation

As explained in Section 7.4, in the MRT approximation only small displacements from

equilibrium are allowed and macroscopic quantities are assumed to not depend on the

transport direction. This assumption is used by the so-called Kubo-Greenwood formula

to determine the electron mobility, µ, of an electron gas [225],[226]. Here we summarize

the main steps which lead to the Kubo-Greenwood formula modified for 1D transport

under non-parabolic dispersion relation. In first place, the current density per unit

length due to the j-th subband of a 1D electron gas can be defined as [219]:

Jj = − q

L

∑

kz

vj(kz)fj(kz) = − q

L

∑

kz

vj(kz)δfj(kz) (7.51)
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where fj(kz) = f0(Ej(kz)) + δfj(kz) and the product term vj(kz)f0(Ej(kz)) vanishes

due to its odd symmetry with kz. Using Eq. (7.23) we can write:

Jj =
q2

L
Fz

∑

kz

v2j (kz)τj(kz)
∂f0(Ej(kz))

∂E
(7.52)

Assuming a linear relation between current and electric field we have:

Jj = qNjµjFz (7.53)

where Nj is the population of the j-th band. So, equaling Eqs. (7.52) and (7.53) and

solving for µ we get:

µj =
q

Nj2π

∫

dkzv
2
j (kz)τj(kz)

∂f0(Ej(kz))

∂E
(7.54)

So, the result is the Kubo-Greenwood formula for the mobility of a 1D electron gas

[95, 225–227]:

µj =
q

Nj2πkBT

∫

dkzv
2
j (kz)τj(kz)f0(Ej(kz))(1 − f0(Ej(kz))) (7.55)

The previous integral can be expressed in terms of energy using the relation dk =

dE/~vi(k):

µj =
q

Nj~πkBT

∫

dEvj(E)τj(E)f0(Ej)(1− f0(Ej)) (7.56)

where we keep the nomenclature of the previous Chapters.

7.8 Conclusions

In this Chapter, we have developed an approach to calculate the electron mobility of a

1D electron gas based on the linearization of the Boltzmann Transport Equation using

the momentum relaxation time approximation (MRT). Besides the explicit approach

for the calculation of the MRT which has been extensively used in the literature, we

showed the implicit approach resolution. The formulation of the implicit equation

system was exemplified, focusing on the nested interdependency of the transitions, and

the truncation of the discretized wavenumber space with a simple Neumann boundary

condition. The implicit resolution of the MRT must be highlighted for its rigorousness
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and singularity in the literature.
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Chapter 8

Modeling of scattering

mechanisms in NWs

8.1 Introduction

In the previous Chapter we presented the procedure to determine the momentum re-

laxation time which depends on the matrix elements corresponding to the scattering

mechanisms. In this Chapter we focus on the calculation of these matrix elements in a

1D electron gas due to five different processes: surface roughness, coulomb dispersion,

bulk phonons (optical and acoustic), polar optical phonons and alloy disorder.

Although obtaining the final expression of the matrix element of each scattering

element involves intricate mathematics, we have attempted to keep the derivations as

rigorous as possible. Thus, in order to relieve the Chapter reading, we have moved to

Appendix E some of the calculi. Despite of the mentioned mathematical complexity, the

resulting matrix element expressions are in general simple functions which can be easily

implemented. For that reason, we have not included, in this part of the manuscript,

a description of the numerical particularities of the solution process. Thus, we utilize

the wavefunctions and energy levels obtained using SP2D, and solve the expressions

numerically using MATLABr.

The rest of the Chapter is organized as follows. In Section 8.2, we discuss the surface

roughness scattering mechanism assuming that it can be characterized by a random

variable with an exponential power spectrum. In Section, 8.3 we determine the coulomb

scattering element for a fully uncorrelated distribution of impurities in the confinement
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plane and a hard-sphere model in the transport direction. Section 8.4 presents the

matrix elements due to acoustic and optical phonons while Section 8.5 doest it for

polar optical phonons. Section 8.6 introduces the matrix element due to alloy disorder

in compound semiconductors. In Section 8.7, we introduce the tensorial dielectric

screening for static mechanisms: surface roughness, coulomb and alloy disorder. Finally,

Section 8.8 summarizes the main conclusions of the Chapter. Appendix E collects the

mathematical details of some of the derivations.

8.2 Surface roughness

The set of irregularities found at the interface between the insulator and the semi-

conductor media in a MIS heterostructure (known as Surface Roughness, SR) is an

unavoidable consequence of the fabrication process, which affects negatively to the carri-

ers displacement in the direction parallel to the insulator-semiconductor interface [228].

Surface roughness is a very important scattering mechanism in bulk MOSFETs, spe-

cially at high gate voltages, when the carriers get closer to the semiconductor-insulator

interface. This process gets even more relevant when the device size is reduced and

thinner films are considered [95, 229]. Therefore, it is expected to play an important

role in the transport as the size of nanowires decreases. On the one hand, the vol-

ume inversion, due to higher confinement, shifts electrons far from the aforementioned

interface, potentially reducing the effect of SR. On the other hand, the ratio of device-

surface to device-volume ratio is augmented with respect to that of planar structures

increasing the relevance of surface related processes such as SR [230].

The modeling of the perturbing potential due to SR and the corresponding scat-

tering matrix elements has been extensively visited in the literature for 1D-confined

devices [208, 229, 231–234]. Nevertheless, only a few researchers have worked in the

modeling of 2D confined devices. We can highlight the works in Ref. [95] in which

the SR for cylindrical structures was modeled. Later works [235] extend their calcula-

tion for rectangular devices but considering only for Line Edge Roughness calculation.

Alternatives approaches can be found in Ref. [214, 236], based on Ando’s one [237],

which, according to Ref. [95], cannot capture the body thickness dependence. Only

very recently an alternative approach has been introduced almost simultaneously by

Stanojevic and Kosina in Ref. [230] and Jin et al. in Ref. [238] without constraining

the model to LER nor specific geometries or orientations. These two independent, but
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coincident, studies are, to the best of our knowledge, the most realistic approximations

to the SR physics in 2D confined devices.

In this manuscript, we have implemented this SR-model as follows. SR is defined

by a random variable ∆SR(r), being r ∈ Si-s the position vector and Si-s the surface

which delimits the insulator-semiconductor interface. The perturbing potential due to

SR is:

ψ̃SR(r) = ∆φ∆SR(r) (8.1)

where, as proposed previously in this manuscript, ∆φ is the potential energy barrier

between the semiconductor and the insulator, and ψ̃SR is only defined in Si-s

The derivation of the SR scattering element between states (kz, j) and (k′z, j
′), fol-

lows that proposed in Refs. [230] and [238]. Our aim is just to spotlight some key steps

introducing minor modifications. As proposed in Section 7.3, under the Fermi golden

rule, the scattering element is defined as:

Mj,j′(kz, k
′
z) = ∆φ

∫

Si-s
dS ξj,kz(x, y)

e−ıkzz√
L

∆(r)ξ∗j′,k′z(x, y)
eık

′
zz

√
L

(8.2)

where te volume integral has been reduced to a surface integration as ψ̃SR is only

defined at the surface Si-s. As ∆(r) is a random variable, Eq. (8.2) cannot be directly

integrated. To avoid that problem Eq. (8.2) is reformulated as a function of ∆(r)

autocorrelation function defined as:

C(r) = 〈∆(r)∆(r′)〉 (8.3)

Keeping the random nature of ∆(r), C(r) is the inverse transformation of the SR power

spectrum, a quantity which can be realistically modeled (see Subsection 8.2.3).

Thus, squaring the matrix element and applying the expected value operator 〈〉 we
get:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = ∆φ2

L2

∫

Si-s
dS

∫

Si-s
dS′ξj,kz(x, y)e

−ıkzzξ∗j′,k′z(x, y)e
ık′zz〈∆(r)∆(r′)〉

ξ∗j,kz(x
′, y′)eıkzz

′
ξj′,k′z(x

′, y′)e−ık
′
zz

′
(8.4)
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The previous integral can be rewritten as.

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = ∆φ2

L2

∫

Ci-s
dc

∫

Ci-s
dc′
∫ L

0
dz

∫ L

0
dz′ξj,kz(c)ξ

∗
j′,k′z

(c)ξ∗j,kz(c
′)ξj′,k′z(c

′)

eı(kz−k
′
z)(z

′−z)
C(r) (8.5)

where Ci-s and L are the curve which describes the insulator-semiconductor interface

in the cross-section and the device length, respectively; c is a 1D variable describing

the confinement position (x, y) along Ci-s and z is the transport coordinate. For the

sake of clarity let us define the function:

fj,j′,kz,k′z(c) = ∆φξj,kz(c)ξ
∗
j′,k′z

(c) (8.6)

Then,

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

L2

∫

Ci-s
dc

∫

Ci-s
dc′
∫ L

0
dz

∫ L

0
dz′fj,j′,kz,k′z(c)fj,j′,kz,k′z(c

′)eı(kz−k
′
z)(z

′−z)
C(r)

(8.7)

The integration procedure for Eq. (8.5) requires the transformation of the real space

into its reciprocal wavenumber space. In this transformation the periodicity of the real

space variable determines the properties of the reciprocal space. For that reason, a

distinction must be done between open and close Ci-s paths. This distinction, although
not explicitly exposed, is the main difference in the approaches followed by Stanojevic

et al. in Ref. [230] and Jin et al. in Ref. [238].

8.2.1 Derivation for open cross sections curves

Let us first consider the case when Ci-s is an open curve, for example, a bulk FinFET.

Then the autocorrelation function can be expressed in terms of the SR power spectrum,

C(q), as:

C(c, z) =
1

4π2

∫ ∫

C(q)eıqc(c
′−c)eıqz(z

′−z)
dqcdqz (8.8)

where q is used here to denote the wavevector space of the scattering mechanism,

keeping k to denote the wavevector space of electrons.
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Introducing Eq. (8.8) into Eq. (8.5) one obtains:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

4π2L2

∫

Ci-s
dc

∫

Ci-s
dc′
∫ L

0
dz

∫ L

0
dz′
∫

dqz

∫

dqcfj,j′,kz,k′z(c)f
∗
j,j′,kz,k′z

(c′)

e−ıqc(c−c
′)eı(kz−k

′
z+qz)(z

′−z)
C(q)

(8.9)

As shown in Appendix E the integration on z and z′ leads to 2πLδ(kz − k′z + qz).

Applying the δ function properties to the integral on qz, the following expression is

achieved:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

2πL

∫

Ci-s
dc

∫

Ci-s
dc′
∫

dqc fj,j′,kz,k′z(c)f
∗
j,j′,kz,k′z

(c′)e−ıqc(c−c
′)
C(qc, q

f
z )

(8.10)

being qfz = k′z − kz. Rearranging Eq. (8.10) leads to:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

2πL

∫

dqcC(qc, q
f
z )

[∫

Ci-s
dcfj,j′,kz,k′z(c)e

−ıqcc
]

[
∫

Ci-s
dc′f∗j,j′,kz,k′z(c

′)eıqcc
′
]

(8.11)

where, assuming that Ci−s is an open curve, the first term into brackets is the Fourier

transform of fj,j′,kz,k′z , and the second term is the complex conjugate of its Fourier

transform. Therefore:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

2πL

∫

dqcC(qc, q
f
z )
∣

∣

∣Fj,j′,kz,k′z’(qc)
∣

∣

∣

2
(8.12)

which is the final expression for the SR matrix element due to a transition between

states (kz, j) and (k′z, j
′).

8.2.2 Derivation for closed cross-sections

When Ci-s is a closed curve (for example in a NW FET), some variations must be

introduced in the determination of 〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉. First, ∆(r) = ∆(c, z) is a periodic

function in c, and therefore its spectrum in the qc direction is a summation of δ functions
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at multiples of qc,0 =
2π
P , where P is the length of Ci-s [239]. Thus, we can write:

C(r) =
1

4π2

∫

dqz

∫

dqc
∑

m

C(qz,mqc,0)
2π

P
δ(qc −mqc,0)e

ıqc(c′−c)eıqz(z
′−z)

(8.13)

where the 2π
P inside the integrals relates the continuous spectrum corresponding to the

non-periodic signal with the δ series Fourier components of the periodic signal. Then,

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 can be written as:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

2πL2P

∫

Ci-s
dc

∫

Ci-s
dc′
∫ L

0
dz

∫ L

0
dz′
∫

dqz

∫

dqcfj,j′,kz,k′z(c)f
∗
j,j′,kz,k′z

(c′)

∑

m

C(qz,mqc,0)δ(qc −mqc,0)e
−ıqc(c−c′)eı(kz−k

′
z+qz)(z

′−z)

(8.14)

Solving the integrals in z, z′ and qz as previously, we get:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

LP

∫

Ci-s
dc

∫

Ci-s
dc′
∫

dqcfj,j′,kz,k′z(c)f
∗
j,j′,kz,k′z

(c′)

e−ıqc(c−c
′)
∑

m

C(qfz ,mqc,0)δ(q −mqc,0) (8.15)

being again qfz = k′z − kz. The qc integral can be solved using the δ function property,

leading to:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = 1

LP

∑

m

C(qfz ,mqc,0)

[∫

Ci-s
fj,j′,kz,k′z(c)e

−ımqc,0sdc

]

[
∫

Ci-s
f∗j,j′,kz,k′z(c

′)eımqc,0s
′
dc′
]

(8.16)

The integrals into brackets can be readily related to the m-th coefficient of the Fourier

series of fj,j′,kz,k′z and its complex conjugate, given that f is a periodic function with

period the curve perimeter, P = 2π/qc,0. This last condition can be straightforwardly

checked taking into account that ξ are single-valued functions. Therefore, the matrix

element can be calculated as:

〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 = P

L

∑

m

C(qfz ,mqc,0) |fm|2 (8.17)
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where:

fm =
1

P

∫

Ci-s
fj,j′,kz,k′z(c)e

−ı 2πms
P dc (8.18)

which is the same expression proposed by Jin et al. [238] except for the different

definition of the normalization factor P , included as a part of fm coefficients here. The

advantage of this definition is that fm in Eq. (8.18) can be calculated employing FFT

algorithms, as proposed by Stanojevic and Kosina, thus accelerating their calculation.

8.2.3 SR power spectrum

The power spectrum of the SR is well known for planar structures [228], [240]. We will

assume here that the same expression of C(q) can be used in non-planar structures [95],

which is a valid assumption when P ≫ ΛSR. Thus, for an exponential autocorrelation

function, the following expression is achieved for the power spectrum [95, 229, 233]:

C(q) =
π∆2

SRΛ
2
SR

(

1 +
Λ2

SR|q|2
2

)3/2
(8.19)

where ∆SR and ΛSR are the rms value and the correlation length of the roughness, and

characterize the roughness in the direction perpendicular and parallel to the interface,

respectively. Equation (8.19) is then introduced into Eqs. (8.12) and (8.17) to deter-

mine 〈
∣

∣Mj,j′(kz, k
′
z)
∣

∣

2〉 for open and closed cross-section interface curves respectively.

8.2.4 Form factor

The form factor definition introduced in Eq. (8.6) is not unique. According to Ref. [230]

it should be modified if the effective mass discontinuity in the semiconductor-insulator

interface is taken into consideration, as:

fj,j′,kz,k′z(c) = ξ∗j,kz(c)ξj′,k′z(c)∆φ− ~
2

2

(

∇ξ∗j,kz(c)
1

mins
∇ξ∗j,kz(c) +∇ξ∗j,kz(c)W∇ξ∗j,kz(c)

)

(8.20)

wheremins is the insulator isotropic effective mass andW is the semiconductor effective

mass tensor (see Section 3.6). A non isotropic insulator effective mass could also be

considered introducing the appropriate tensor in Eq. (8.20) in the stead of 1/mins.

Alternatively, if no wavefunction penetration into the insulator is considered, the
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form factor can be approximated by [230]:

fj,j′,kz,k′z(c) =
~
2

2
mins

[

n ·W∇ξ∗j,kz(c)
] [

n ·W∇ξ∗j,kz(c)
]

(8.21)

or according to Ref. [238] as:

fj,j′,kz,k′z(c) =
~
2

2

[

n · ∇ξ∗j,kz(c)
]

W
[

n · ∇ξ∗j,kz(c)
]

(8.22)

which are equivalent expressions except for a factorminsW which may be non-negligible.

Otherwise stated we have opted for using Eq. (8.20) in the mobility results presented

in the forthcoming Chapter.

8.3 Coulomb dispersion

Nearby the semiconductor-insulator interface of a MIS heterostructure there are several

kind of charges, mainly resulting from the fabrication process, which adversely affect

to the displacement of the carriers along the transport direction. The effects of some of

these charges (concretely those due to interface traps) on some electrostatic quantities

(such as VT or SS) have been already analyzed in Chapter 4. Nevertheless there are

other kinds of charges which deserve mention here: interface fixed charges, insulator

charges, charge due to mobile ions, and ionized impurities [140, 175]. All these charges,

induce a perturbing potential which is the responsible of the so-called as coulomb

dispersion, CO. A comprehensive introduction to the aforementioned charges and an

extensive discussion on coulomb dispersion for 2D electron gases was accomplished

by Gámiz et al. in Ref. [241]. Several works have dealt with the modeling of the

coulomb perturbing potential in 1D-confined devices [209, 232, 242? –244]. For such

devices, Green functions can be analytically found and most of these works rely on

them. Screening has been proven to have an impact in the coulomb limited mobility,

and therefore it has been included in the models either using the long-wavelength

approximations based on work by Stern and Howard [245] or using the Lindhard theory

[95, 233]. Most of these works assume uncorrelated charges within the confinement

direction, but correlation on the transport direction has been treated in [241] following

the approach by Ning et al.[246].

The works dealing with coulomb scattering mechanism in NWs, such as Ref. [95,

215] assume specific geometries where the Green functions can again be calculated
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analytically. Moreover, a non-uniform distribution of the charge within the confinement

plane does not seem to be considered, leading to very high Columb limited mobilities.

In this work we follow an approach similar to that implemented in Ref.[241], in-

cluding the correlation along the transport direction, but maintaining the charge un-

correlated among the different regions of the cross section. This allows us to simulate

any situation, from a totally correlated charge in the confinement plane to a totally

uncorrelated one, by just adjusting the size of each region.

As for screening, we deal in this manuscript with the tensorial dielectric screening

based on the work by Jin et al. [95] (see Section 8.7) and therefore in our derivation

of the perturbing potential, the charge due to screening, needed to introduce the long-

wavelength approach, is not considered.

We focus here on the determination of the matrix element due to a 1D electron gas.

The perturbing potential, ψ̃CO, associated to the coulomb scattering can be obtained

by solving the Poisson equation for a given distribution of ionized impurities, −ρCO(r).

∇ǫ(r)∇ψ̃CO(r) = −ρCO(r) (8.23)

As it happens with ∆SR(r) in SR scattering, ρCO(r) is actually a random variable.

The approach used in SR, based on the determination of the expected value of the

autocorrelation function, is not applicable to coulomb dispersion as it makes Eq. (8.23),

to the best of our knowledge, irresolvable. An alternative approach consist on solving

Eq. (8.23) for a known uncorrelated distribution of punctual charges in the confinement

plane with a random distribution in the transport direction. Thus, we can write [241]:

ρCO(r) = q
∑

m

σm(z)δ(s − sm) (8.24)

where, as in SR, we have decomposed the position vector r into a confinement plane

variable s and a transport variable z. Introducing Eq. (8.24) into Eq. (8.23) and

writing ∇ as sum of its components in the confinement plane and transport direction

we get:

[∇sǫ(r)∇s +∇zǫ(r)∇z] ψ̃
CO(s, z) = −q

∑

m

σm(z)δ(s − sm) (8.25)

Following the approach by Gámiz et al. in Ref. [241], Eq. (8.25) is multiplied by e−ıqzz
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and integrated over z, to take the Fourier transform on the longitudinal direction:

[

∇sε(r)∇s + ε(r)q2z
]

ψ̃CO(s, qz) = −q
∑

m

σm(qz)δ(s − sm) (8.26)

where the derivative ∇z in the real space is transformed into a factor, qz, in the

wavenumber space. Using the superposition principle we can write the perturbing

potential as:

ψ̃CO(s, qz) =
∑

m

Gqz(s, sm)σm(qz) (8.27)

where Eq. (8.26) can be separately solved for each contribution to the potential:

[

∇sǫ(r)∇s + ǫ(r)q2z
]

Gqz(s, sm) = −qδ(s− sm) (8.28)

being Gqz(s, sm) in Eq. (8.28) the impulse response of the differential equation; in other

words its Green function.

The matrix element for a transition between states (kz, j) and (k′z, j
′) was introduced

in Eq. (7.17):

Mj,j′(kz, k
′
z) =

∫

V
dV ξj,kz(x, y)

e−ıkzz√
L

ψ̃CO(s, z)ξ∗j′,k′z(x, y)
eık

′
zz

√
L

(8.29)

Decomposing the integral in the confinement plane and transport direction we have:

Mj,j′(kz, k
′
z) =

1

L

∫

A
ds ξj,kz(x, y)ξ

∗
j′,k′z

(x, y)

∫

dze−ı(kz−k
′
z)zψ̃CO(s, z) (8.30)

Then, the expected value of the squared matrix element can be written as:

〈|Mj,j′(kz, k
′
z)|2〉 =

1

L2

∫

A
ds

∫

A
ds′ fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s′)
∫

dz

∫

dz′e−ı(kz−k
′
z)(z−z′)〈ψ̃CO(s, z)ψ̃CO(s′, z′)〉 (8.31)

where equivalently to what was done for SR, we have defined:

fj,j′,kz,k′z(s) = ξj,kz(x, y)ξ
∗
j′,k′z

(x, y) (8.32)

being, s = (x, y).

The Fourier transform of the autocorrelation function, 〈ψ̃CO(s, z)ψ̃CO(s′, z′)〉, gives
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us:

C(s, qz) = 〈ψ̃CO(s, qz)ψ̃
CO(s′, qz)〉 =

∑

m

∑

i

G∗qz(s
′, s′i)Gqz(s, sm)〈σm(qz)σ∗i (qz)〉 (8.33)

We assume that the charge is uncorrelated for different regions in the confinement plane,

so that the previous sum is null for m 6= i. Then we can define the autocorrelation of

the perturbing potential as:

〈ψ̃CO(s, z)ψ̃CO(s′, z′)〉 = C(s, z) =
1

2π

∫

C(s, qz)e
−ıqz(z′−z)dqz (8.34)

Thus, Eq. (8.31) can be rewritten as:

〈|Mj,j′(kz, k
′
z)|2〉 =

1

2πL2

∫

A
ds

∫

A
ds′ fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s′)
∫

dz

∫

dz′
∫

dqze
−ı(kz−k′z−qz)(z−z′)

∑

m

G∗qz(s
′, s′m)Gqz(s, sm)〈σm(qz)σ∗m(qz)〉 (8.35)

The integration along qz, z, and z
′ can be simplified as in Appendix E for SR. Thus:

〈|Mj,j′(kz, k
′
z)|2〉 =

1

L

∫

A
ds

∫

A
ds′fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s′)
∑

m

G∗
qfz
(s′, s′m)Gqfz (s, sm)〈σm(q

f
z )σ
∗
m(q

f
z )〉 (8.36)

where qfz = kz − kz′ . 〈σm(qfz )σ∗i (q
f
z )〉 is the power spectrum of the random distribution

of charges along the axial direction which can be determined under the hard-sphere

model, as proposed for a 2D electron gas by Ning et al. in Ref. [246] and also studied

by Gámiz et al. in Ref. [241]. In Appendix E we detail the calculus of the hard-sphere

model for a 1D electron gas. The resulting power spectrum is:

〈σm(qfz )σ∗m(qfz )〉 = Navg (1− C sinc(qzRt)) (8.37)

where, as explained in Appendix E, Navg is the average ionized impurities per unit

length and Rt is the radius of the hard sphere which determines the minimum distance

between ionized impurities. C = RtNavg is a measure of the degree of correlation

in the transport direction: C = 0 correspond to a completely uncorrelated random

distribution while C = 1 is a uniform fully correlated distribution. In Eq. (8.37) we have

assumed that the axial distribution of charges corresponding to different confinement
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plane positions are completely uncorrelated. Therefore Eq. (8.36) can be reformulated

as:

〈|Mj,j′(kz, k
′
z)|2〉 =

Navg

L

∫

A
ds

∫

A
ds′fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s′)

∑

m

G
qfz
(s, sm)G

∗
qfz
(s′, sm)

(

1− C sinc(qfzRt)
)

(8.38)

Eq. (8.38) is the final expression for the coulomb dispersion matrix element due to a

transition between states (kz, j) and (k′z, j
′).

8.4 Bulk non-polar phonons

For a non-null temperature the atoms in the semiconductor lattice vibrate, oscillating

around their equilibrium positions. Phonons (PH) are the result of a quantum mechan-

ical analysis of these semiconductor lattice vibrations. The mathematical derivation

of the phonon-electron interaction can be found in several textbooks [247], [88]. We

briefly summarize here the main ideas to understand the perturbation potential due to

phonons. In this manuscript, we neglect the confinement effects that may influence the

behavior of phonons in small devices [236, 248, 249].

The vibrations can be modeled as a set of harmonic oscillators. For a crystal with

a diatomic unit cell, there are six allowed modes of oscillation: two for each direction

in real space. In the first of these two modes, the two atoms of the unit cell oscillate

in phase while for the second one atoms vibrate in opposite phase. The two modes are

known as acoustic, A, (due to its similarities with the propagation of an acoustic wave

on air) and optic, O, (because in some ionic crystal they are excited by electromagnetic

radiation), respectively [247]. Regarding the direction of vibration of the modes they

are called transverse, T, when the atoms vibrate perpendicularly to the phonon wave-

vector, q direction (there are two transverse modes) and longitudinal, L, when the

atoms vibrate aligned with q (there is one longitudinal mode).

The modes of oscillation for Si obtained from Refs. [88, 250, 251] are shown in

Fig. 8.1 where the phonon energy is plotted as a function of the phonon wavevector

magnitude |q|. Transversal modes (TA, TO) are degenerated. For low |q| values,

acoustic phonons modes (LA and TA), show a linear E(|q|) − |q| dependence and the

energy is commonly modeled by a term EPH = ~vs|q|, where vs is the slope of the ω-|q|
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curve. For optic phonons, LO and TO, keep a constant energy EPH(|q|) = ~ωOPH,
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Figure 8.1: Phonon energy, EPH, as a function of the phonon
wavevector magnitude |q| for different modes of vibration of Si ori-
ented in [100] crystallographic direction. Transversal and longitudinal
modes are plotted as dashed and solid lines respectively. Acoustic and
optic modes are marked as A and O, respectively. Adapted from Ref.
[88] after Refs. [250], [251].

The vibrations of the crystal induce a strain in the lattice which modifies the band

edges of the semiconductor resulting in a deformation potential whose expression is

given by[247]1:

ψ̃PH(r) = D(q)uPH(r,q, t) = D(q)

√

~

2̺sωPH(q)L
A(q)e±ı(qr−ωPH(q)t)

(8.39)

whereD(q) is a deformation potential, uPH(r,q, t) is the phonon wave, ̺s is the semicon-

ductor density, ωPH = EPH/~ is the phonon frequency and A(q) is the wave magnitude

which is related to the number of phonons, nPH(q), as A(q) =
√

nPH(q) +
1
2 ± 1

2 .
2

nPH(q), is given by the Bose-Einstein distribution

nPH(q) =
1

e
EPH
kBT − 1

(8.40)

To include the effect of phonons scattering in the transport calculations we have

1The ± sign in the exponential correspond to phonon emission and absorption processes respectively.
This result stems from a quantum treatment of the electron-phonon interaction.

2Again the ± sign correspond to phonon emission and absorption processes, respectively.

Transport 189



8.4. Bulk non-polar phonons

assumed that only small |q| phonons play a relevant role in the scattering process.

8.4.1 Acoustic phonons

As seen in Fig. 8.1, for acoustic phonons a small value of |q| implies a small value of

energy, EPH, which in most of cases is negligible compared with the electron energy,

Ei(kz), and can therefore be obliterated in the calculus. As a consequence, acous-

tic phonon mechanism is assumed to be elastic 3. Two implication derive from this

assumption [206]:

(a) The term ωt in the exponential of Eq. (8.39), which as explained in Section 7.3

determines the energy transfer due to the scattering process, is removed.

(b) The Bose-Einstein function in Eq. (8.40) is simplified to kBT/EPH and nPH(|q|) =
kBT/EPH = kBT/~vs|q|

Moreover, the deformation potential for acoustic phonons is proportional to the wavenum-

ber: D(q) = DAPHq. Thus, for acoustic phonons Eq. (8.39) is simplified to:

ψ̃APH(r) = DAPH

√

kBT

2AL̺s

1

vs
e±ıqr (8.41)

where we have used Ω = AL. The matrix element due to a transition between states

(kz, j) and (k′z, j
′) is:

Mj,j′(kz, k
′
z) =

∫ L

0
dz

∫

A
dA ξj,kz(x, y)

e−ıkzz√
L

(

DAPH

√

kBT

2̺sAL

1

vs
e±ıqr

)

ξ∗j′,k′z(x, y)
eık

′
zz

√
L

(8.42)

which can be written as4:

Mj,j′(kz, k
′
z) =

DAPH

L

√

kBT

2̺sAL

1

vs

∫ L

0
dz

∫

A
dA ξj,kz(x, y)e

−ı(qxx+qyy)ξ∗j′,k′z(x, y)e
−ı(kz−k′z+qz)z

(8.43)

3This approximation is not valid for low temperatures and highly confined structures [249].
4For the sake of simplicity just the minus branch was considered. Equivalent derivation can be

found for the positive branch.
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The squared matrix element can then be calculated as:

|Mj,j′(kz, k
′
z)|2 =

D2
APH

L2

kBT

2̺sAL

1

v2s

∫

A
ds

∫

A
ds′
∫ L

0
dz

∫ L

0
dz′ fj,j′,kz,k′z(x, y)e

−ı(qxx+qyy)

f∗j,j′,kz,k′z(x
′, y′)eı(qxx

′+qyy′)e−ı(kz−k
′
z−qz)(z′−z)

(8.44)

where fj,j′,kz,k′z(x, y) was defined in Eq. (8.32). The mathematical details of the inte-

gration procedure are given in Appendix E. The resulting expression is:

|Mj,j′(kz, k
′
z)|2 =

D2
APH

L

kBT

2̺s

1

v2s

∫

A
dA fj,j′,kz,k′z(x, y)f

∗
j,j′,kz,k′z

(x, y) (8.45)

which is the same expression proposed in Refs. [95, 227]. It is important to highlight

that the matrix element does not depend on qz and, therefore, it is isotropic.

8.4.2 Optical phonons

For optical phonons a small qz does not imply a small energy, EPH, and therefore neither

of the previous approximations for acoustic phonons can be made. Instead, ωPH(|q|)
weakly depends on |q| and can be assumed as constant ωPH(|q|) = ωOPH, see Fig. 8.1.

Consequently the energy, EPH, and the number of phonons nPH(qz) = nPH are also

constant. In addition, for optical phonons the deformation potential is assumed to be

constant D(qz) = DOPH. Thus, the perturbing potential can be written as:

ψ̃OPH(z) = DOPH

√

~

2AL̺sωOPH

√

nPH +
1

2
± 1

2
e±ı(|qr|−ωOPHt) (8.46)

One main difference between the perturbing potential presented in Eq. (8.46) and

those obtained for other scattering mechanisms such as surface roughness, coulomb

dispersion and acoustic phonons in Eqs. (8.1), (8.27), and (8.41) respectively, is the

factor eıωOPHt. As explained in Section 7.3, this factor implies a change in the energy

between the initial and final states E and E′ of states (kz, j) and (k′z, j
′) such that

E′ = E ± ~ωPH.

The matrix element due to a transition between states (kz, j) and (k′z, j
′) is given
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by:

Mj,j′(kz, k
′
z) =

∫ L

0
dz

∫

A
dA fj,j′,kz,k′z(s)

e−ıkzz√
L

(

DOPH

√

~

2AL̺sωOPH

√

nPH +
1

2
± 1

2
e±ıqss±ıqzz

)

eık
′
zz

√
L

(8.47)

The square matrix element can then be written after the appropriate integration for

qx, qy, qz, z, z
′ equivalent to the carried ot for acoustic phonons in Appendix E as:

|Mj,j′(kz, k
′
z)|2 =

D2
OPH

L

~

2̺sωOPH

(

nPH +
1

2
± 1

2

)∫

A
dA fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s) (8.48)

which also coincides with the expression proposed in Refs. [95, 227] As in acoustic

phonons the matrix element is not dependent on qz, being therefore modeled as an

inelastic isotropic mechanism.

8.5 Polar Optical Phonons

Similarly to non-polar bulk phonons, polar optical phonons (POP) result from vibra-

tions of the crystal lattice. The main difference is related to the ionic nature of POP.

In polar crystals, such as III-V compound semiconductors, there is a net electronic

charge transfer between atoms of both compounds. This charge transfer leads to an

effective dipole which results into a contribution to the dielectric function and modifies

the potential induced by the lattice vibrations. The term optical comes from the high

frequency and weakly wavevector dependent nature of these phonons. The mathemat-

ical derivation of the perturbing potential due to POP can be found elsewhere [252]

leading to the so-called Fröhlich potential given by [217, 253, 254]:

ψ̃POP(r) = −ı
√

q2~ωPOP

2AL

(

1

ǫ∞
− 1

ǫ0

)

1

|q|

√

nPH +
1

2
± 1

2
e±ıqr−ωPOPt (8.49)

being ωPOP the phonon frequency, ǫ(∞) the high-frequency dielectric constant and ǫ(0)

the static dielectric constant. The rest of the terms keep the meaning used in Section

8.4. We have assumed that ωPOP does not depend on |q| and consequently neither does

nPH. As proposed in Section 7.3 and previously discussed in Section 8.4 for optical

phonons, the factor e−ıωPOPt implies a change of energy in the scattering process. The
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derivation of the matrix element for 2D-confined devices has been addressed in Ref.

[217, 253, 254]. We reproduce it here for the sake of completeness. The matrix element

can then be calculated as:

Mj,j′(kz, k
′
z) =

1√
AL

∫ L

0
dz

∫

A
dA ξj,kz(x, y)

e−ıkzz√
L

(

C POP

|q| eıqr
)

ξ∗j′,k′z(x, y)
eık

′
zz

√
L

(8.50)

where we have defined the constant:

CPOP = −ı
√

q2~ωPOP

2

(

1

ǫ∞
− 1

ǫ0

)(

nPH +
1

2
± 1

2

)

(8.51)

The square matrix element is then given by:

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
=
C2

POP

L2

1

AL

∫ L

0
dz

∫ L

0
dz′
∫

A
dA

∫

A′
dA′ fj,j′,kz,k′z(s)fj,j′,kz,k′z(s

′)

e∓ıqx(x−x
′)∓iqy(y−y′)

q2x + q2y + q2z
eı(kz−k

′
z−qz)z (8.52)

where have used the fj,j′,kz,k′z(s) definition of Eq. (8.32). If we account for all the

possible qx, qy and qz contributions, and transforming the qx, qy and qz sums in integrals

as in Eqs. (E.23), we obtain:

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
=
C2

POP

L2

1

8π3

∫

dqz

∫ L

0
dz

∫ L

0
dz′
∫

A
dA

∫

A′
dA′ fj,j′,kz,k′z(s)fj,j′,kz,k′z(s

′)

∫ ∫

dqxdqy
e∓ıqx(x−x

′)∓iqy(y−y′)

q2x + q2y + q2z
eı(kz−k

′
z−qz)z

(8.53)

The axial and qz integration of Eq. (8.53) leads to:

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
=
C2

POP

L

1

4π2

∫

A
dA

∫

A′
dA′ fj,j′,kz,k′z(s)fj,j′,kz,k′z(s

′)

∫ ∫

dqxdqy
e∓ıqx(x−x

′)∓iqy(y−y′)

q2x + q2y + q2fz
(8.54)

where qfz = kz− k′z and we have substituted q by its components. The inner integral in

Eq. (8.54) is analytically solved in Appendix E. Substituting the result into Eq. (8.53)
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we get:

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
=
C2

POP

2πL

∫

A
dA

∫

A′
dA′fj,j′,kz,kz′ (s)fj,j′,kz,kz′ (s

′)K0

(

qfz
∣

∣s− s′
∣

∣

)

(8.55)

where K0 is the modified Bessel function of the second kind and order zero. This is the

final expression for the POP matrix element due to a transition between states (kz, j)

and (k′z, j
′), which coincides with the expression achieved by Wang et al. in Ref. [253].

8.6 Alloy Disorder

In alloy semiconductors, there is some randomness in the distribution of atoms in the

positions of the zinc-blende structure. Commonly one the semiconductors occupy one

fcc lattice while the other two semiconductors distribute themselves randomly in the

second fcc lattice [255]. As a consequence, the crystal potential is not periodic. The

most common treatment of the problem consists on assuming that the alloy is actually

ordered and the resulting virtual periodic crystal potential can be calculated as an

average of those corresponding to the different semiconductor involved. The actual

non-periodic potential influence is then modeled by a scattering mechanism called alloy

disorder (AD). The expected value of the squared perturbing potential due to AD can

be determined from a statistical analysis of the differences between actual and virtual

potentials [234, 255], resulting into:

〈|ψAD|2〉 = a30x(1− x)

L
|Va − Vb|2 (8.56)

where x is the alloy molar fraction, |Va−Vb| is the potential variation due to the presence

of the alloys atoms and a0 is the lattice constant (therefore a
3
0 is the integration volume

of the perturbation potential). According to Harrison et al. [256], although |Va − Vb|
could be taken as the difference in energy band gaps for the two components of the

alloy, a more reasonable assumption is to take the vacuum level as the reference energy

level. This last option is also chosen by Bastard [255]. The matrix element between

states (kz, j) and (k′z, j
′) is:

Mj,j′(kz, k
′
z) =

∫ L

0
dz

∫

A
ds ξj,kz(x, y)

e−ıkzz√
L
ψ̃ADξ∗j′,k′z(x, y)

eık
′
zz

√
L

(8.57)
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Then, the expected value of the squared matrix element is:

〈|Mj,j′(kz, k
′
z)|2〉 =

a30x(1− x)

4L
|Va − Vb|2

∫

A
ds fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s) (8.58)

where f∗j,j′,kz,k′z(s) was defined in Eq. (8.32).

8.7 Dielectric Screening

Dielectric screening of the surface roughness, coulomb dispersion and alloy disorder

scattering potentials needs to be included in order to get the correct dependence of

the electron mobility on the effective field [95]. Moreover as it was pointed out in Ref.

[257], a tensorial dielectric screening approach is needed for an accurate model.

In this Section, we introduce screening following Lindhard theory for 2D confined

devices as in Ref. [95], but extending their approach to deal with arbitrary geometries

and with scattering mechanisms for which the unscreened matrix element, Mj,j′(kz, k
′
z),

cannot be calculated directly, and only their mean quadratic value, 〈|Mj,j′(kz, k
′
z)|〉 can

be attained. This is the case for AD and for SR when calculated as proposed in this

manuscript following Refs. [238, 258? ? ]. The influence of screening on the phonon-

electron interaction is neglected [95, 229, 233, 257]. The effective screened perturbing

potential, ψs, for a given value of qz is written as [95]:

ψs
qz(s) = ψus

qz (s) +

∫

dsGqz(s, s
′)
ρindqz (s)

ǫs
(8.59)

where ψus is the unscreened perturbing potential and ρind is the charge induced by the

perturbing potential and can be calculated as:

ρindqz (s) = −
∑

j,j′

Πqz,j,j′ψ
s
qz,j,j′ξ(s)ξj′(s) (8.60)

with

Πqz,j,j′ = e2
2gv
L

∑

k

fj,k+q − fj′,k
Ej′,k − Ej,k+q

(8.61)

where e is the electron charge, Ej,k = Ej(k) corresponds to the sum of potential and

kinetic energy of a state of subband j with wave number k, and fj,k is the occupation of

such state, namely the Fermi-Dirac function evaluated at Ej,k. The 2gv term accounts
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for spin and valley degeneracy. Finally, ψs
qz,j,j′ is calculated as:

ψs
qz,j,j′ =

∫

A
dsξj(s)ψ

s
qz(s)ξ

∗
j′(s) (8.62)

Equation (8.62) can be readily identified with the definition of the matrix element

proposed in Eq. (??).

ψs
qz,j,j′ = M s

j,j′(kz, k
′
z)
∣

∣

qz=kz−kz’
(8.63)

Multiplying Eq. (8.59) by ξi(s)ξi′(s) and integrating in the confinement plane we

can write:

ψs
qz,i,i′ = ψus

qz,i,i′ +

∫

dsξi(s)ξi′(s)

∫

dr′Gqz(s, s
′)
∑

j,j′

Πqz,j,j′ψ
s
qz,j,j′ξ(s

′)ξj′(s
′) (8.64)

which can be rewritten as:

ψs
qz,i,i′ = ψus

qz,i,i′ +
∑

j,j′

Πqz,j,j′ψ
s
qz,j,j′νqz,i,i′,j,j′ (8.65)

where νqz,i,i′,j,j′ is defined as:

νqz,i,i′,j,j′ =

∫

dsξi(s)ξi′(s)

∫

ds′Gq(s, s
′)ξj(s

′)ξj′(s
′) (8.66)

Therefore, to achieve the screened matrix elements, the following equation system has

to be solved

ψus
qz,i,i′ =

∑

j,j′

(

δij,i′j′ −Πqz,j,j′νqz,i,i′,j,j′
)

ψs
qz,j,j′ = εqz,i,i′,j,j′ψ

s
qz,j,j′ (8.67)

where εqz,i,i′,j,j′ is the dielectric tensor. Thus, the screened matrix elements are given

by:

ψs
qz,j,j′ =

∑

i,i′

ε−1qz,i,i′,j,j′ψ
us
qz,i,i′ (8.68)

The calculation of Gqz(s, s
′) for cylindrical devices was addressed by Jin et al. in

[95] and later extended for cylindrical structures with several insulator layers by Dura

et al. [215]. Nevertheless, their work deals with a isotropic effective mass, where the

angular wave number of the calculated wave functions is known a priori when solving

the Schrödinger equation. However, when the effective mass tensor is anisotropic (as,
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for example, at X and L valleys of III-V semiconductors), it is necessary to expand the

wave functions into a series of cylindrical functions in order to use those Gqz functions

even for cylindrical geometries. Moreover, these Green function are not appropriate

for any other geometry. In our simulator we have chosen to numerically solve Eq.

(8.59) for a discrete set of qz values, interpolating between them when needed. This

makes possible to work with arbitrary geometries, at the cost of a higher computational

burden.

8.7.1 Screening formulation

In this subsection we shed light on the introduction of screening in the matrix elements

of surface roughness, coulomb dispersion and alloy disorder. The process is equivalent

for all of them and therefore we will detail it in a general formulation similar to that

proposed in Ref. [259] for AD. Let us start with the unscreened expression of the

matrix element given by Eq. (8.68): Attending to the equivalence between Eqs. (8.62)

and (8.63, the screened, M s
j,j′(kz, kz′), and unscreened, Mus

i,i′(kz, kz′), matrix elements

are related by:

M s
j,j′(kz, kz′) =

∑

j,j′

ε−1qz,i,i′,j,j′M
us
i,i′(kz, kz′) (8.69)

being as previously proposed qz = k′z−kz. Thus, if the matrix element can be calculated,

the screening can be directly applied using Eq. (8.69). When this is not possible, from

the definition of the matrix element in Eq. (8.62) we have:

M s
i,i′(kz, kz′) =

1

L

∫

A
dsψ̃us

qz (s)
∑

j,j′

ε−1qz,i,i′,j,j′fj,j′,kz,k′z(s)e
ı(k′z−kz)z (8.70)

with fj,j′,kz,k′z(s) as in Eq. (8.32). We can define the screened function form factor as:

f si,i′,kz,k′z(s) =
∑

j,j′

ε−1qz,i,i′,j,j′fj,j′,kz,k′z(s) (8.71)

and rewrite (8.70) as:

M s
i,i′(kz, kz′) =

1

L

∫

A
dsψ̃us

qz (s)f
s
i,i′,kz,k′z

(s) (8.72)

The former equation proves that the screened matrix element can be calculated using

the same expressions developed in the previous Sections but with a screened form factor,
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defined in (8.71).

8.8 Conclusions

In this Chapter, the main scattering mechanisms for III-V and Silicon nanowires have

been modeled for 2D confined devices. Novel models of surface roughness, coulomb,

bulk phonons, polar optical phonons and alloy disorder scattering mechanisms have

been developed. Moreover, tensorial dielectric screening has been considered and im-

plemented. It should be highlighted that our simulator is useful for any device geometry

and for both Silicon and III-V semiconductor materials, therefore constituting a state-

of-the-art nanowire mobility simulator.
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Chapter 9

Transport studies of MuG

devices

9.1 Introduction

The previous two Chapters were devoted to the theoretical frame in which the electron

mobility of MuG devices can be calculated under the MRT approximation. In this

Chapter we study the electron mobility of Si and III-V Trigates and NWs. Specifically

we 1) discuss the electron mobility of InAs NWs, analyzing its dependence on the NW

diameter, carrier density and population of the Γ, L and X valleys; 2) compare the

mobility behavior of Si and InGaAs Trigate’s architectures of different widths; and 3)

analyze the influence of the back gate bias on the transport properties of SOI Trigates.

9.2 Electron mobility in InAs nanowires

During the last few years, numerous studies on the behavior of III-V NWs have been

carried out [260–265]. In particular, InAs NWs have received a lot of attention due

to their high electron mobility and ease of near-ohmic metal contact formation [262].

Different experiments have analyzed their transport properties as a function of param-

eters such as the temperature or the NW diameter [100? ]. However, in spite of this

interest there is a lack of knowledge about the detailed role played by each one of the

scattering mechanisms that influence on the electron mobility. So that, the main goal

of this Section is to carry out a comprehensive analysis of the electron mobility in InAs
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Figure 9.1: Electron mobility (µ) as a function of Ni for the different
mechanisms: TOT (circles), SR (squares), CO (diamonds), OPH and
APH (stars), and POP (triangles) for two InAs NW diamaters: (a)
2Rs=5nm, and (b) 2Rs=30nm.

NWs making use of the Kubo-Greenwood formalism. The implicit approach in the cal-

culation of the MRT, explained in Chapter 9, is used. The most influencing scattering

mechanisms: non-polar optical and acoustic phonons, polar optical phonons , surface

roughness and coulomb dispersion, presented in Chapter 8, are analyzed. Screening

has a non-negligible effect and is considered in the calculation of the surface roughness

and coulomb dispersion scattering rates. Finally, in this Section, we also ponder on the

contribution of the different valleys on the total electron mobility providing a thorough

understanding of the transport phenomena that may occur in these devices.

In this study, device diameters ranging from 5nm to 30nm are considered. Al2O3 is

employed as gate insulator, with Tins = 1.5nm, which corresponds to an EOT of 0.6nm

[200], in good correspondence with previous works [201]. The transport axis of the

NWs is oriented along the [001] direction. The material parameters for phonons are

presented in Appendix F. A high density of interface traps (5 ·1012cm−2) is assumed as

traditionally the quality of interfaces between III-V materials and insulators is far from

being perfect [141, 145]. As for the interface roughness an exponential autocorrelation

function is considered, see Eq. (8.19), with ∆SR = 0.5nm and ΛSR = 1.5nm. A metal

gate work function of Φm = 5.05eV is used, and the doping density is Na = 1014cm−3.

We begin analyzing the mobility dependencies with the electron density, Ni, and the

nanowire diameter, 2Rs. Fig. 9.1 shows the contribution of each scattering mechanism

to the total mobility as a function of the inversion charge for two NW diameters:
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Figure 9.2: (a) µT as a function of 2Rs for different values of Ni:
1011cm−2 (circles), 1012cm−2 (squares), 5 · 1012cm−2 (diamonds) and
1013cm−2 (stars). (b) µ as a function of Ni for different values of 2Rs:
5nm (circles), 10nm (squares), 20nm (diamonds) and 30nm (stars).

5nm and 30nm. Total (TOT), surface roughness (SR), coulomb dispersion (CO), bulk

acoustic and optical phonons (APH-OPH), and polar optical phonons (POP) limited

mobilities are plotted as circles, squares, diamonds, stars, and triangles, respectively.

The scattering mechanism’s parameters are those collected in Appendix F. As may

be seen, SR is the more limiting factor to the total mobility. For the smallest device

(2Rs = 5nm), its control extends from low to high Ni. For low inversion charge, CO

slightly reduces the total mobility with respect to the value given by SR, while for

Ni > 4 · 1012cm−2 the influence of phonons actually affects the total mobility, reducing

its value to half of the SR-limited mobility. For larger devices, SR is still the dominant

scattering mechanism for intermediate and high Ni, as the inversion charge moves

towards the semiconductor insulator interface. For small electric fields, however, µCO

and µPOP fall below µSR, affecting the final value of the total mobility.

To better appreciate the dependence of the mobility with the diameter of the NW,

Fig. 9.2(a) shows the total mobility as a function of 2Rs for different values of inversion

charge: 1011cm−2 (circles), 1012cm−2 (squares), 5 ·1012cm−2 (diamonds) and 1013cm−2

(stars). To help us to interpret the results from Fig. 9.2(a), Fig. 9.2(b) shows the

mobility as a function of the inversion charge for different NW sizes. The Ni values

considered in Fig. 9.2(a) are plotted in Fig 9.2(b) as vertical dashed lines. Studying

these figures, some conclusions can be extracted:

1. For small NWs, 2Rs < 20nm, µ decreases as the NW size is reduced. This trend
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Figure 9.3: (a) µSR as a function of 2Rs for different values of Ni:
1011cm−2 (circles), 1012cm−2 (squares), 5 · 1012cm−2 (diamonds) and
1013cm−2 (stars). (b) µSR as a function of Ni for different NW di-
ameters: 5nm (circles), 10nm (squares), 20nm (diamonds) and 30nm
(stars).

is not so clear for high Ni around 2Rs = 10nm due to the oscillations associated

to the finite density of states that can also be appreciated in Fig. 9.2(b) 1.

2. For diameters larger than 20nm, and for each Ni value, the mobility tends to

saturate with the size (see Fig. 9.2(a)).

Once the total mobility dependence with 2Rs has been analyzed, it is interesting

to have a more detailed look at the most limiting scattering mechanism. So that, SR-

limited mobility (µSR) behavior as a function of the NW diameter and Ni have been

depicted in Figs. 9.3(a) and 9.3(b), respectively. The same color and symbol code

previously used in Figs. 9.2(a) and 9.2(b) is kept now. According to these figures, we

can highlight some conclusions about the µSR behavior in InAs NWs:

1. For low Ni values, there is a continuous growth of µSR with the NW diameter. As

the electric field is low, the semiconductor charge is mainly located in the center of

the NW, minimizing the effect of SR for large devices. Therefore, the geometrical

confinement is the main reason of the reduction of µSR for small devices.

2. For large Ni values, SR scattering is the dominant mechanism, and therefore the

curves corresponding to Ni = 5 · 1012cm−2 and Ni = 1013cm−2 in Fig. 9.3(a) do

1These oscillations are similar to those experimentally demonstrated for Si devices at low tempera-
ture in Ref. [266].
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not show big differences with the corresponding ones for the total mobility shown

in Fig. 9.2(a).

3. For large NWs, µSR decreases monotonically with Ni, mainly due to the higher

electrical confinement, which increases the influence of the SR. It should be no-

ticed, however, that this trend is not maintained for small devices, where the

low density of states is responsible for the fluctuations observed for the 5nm and

10nm curves in Fig. 9.3(b).

Now, we analyze the influence of the different valleys (Γ, L and X) on the mobility

behavior. We have first estimated the relative population of each valley for two NW

diameters, 2Rs = 5nm and 2Rs = 20nm, in a wide Ni range. Our results indicate that

the population of the X valley is negligible in any case and it will not be considered in

the following discussion.
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Figure 9.4: Relative population of the Γ-valley (squares) and the
L-valley (circles) for the 2Rs = 5nm (dashed) and the 2Rs = 20nm
(solid) NWs as a function of the electron density.

The Γ valley collects all the electrons at very low inversion densities, regardless of

the NW diameter, as it could be expected due to its lower energy. However, as the

applied gate bias increases, more electrons populate the L valleys. Moreover, the NW

size plays an important role in the relative contribution of each valley, as shown in

Fig. 9.4. Thus, the reduction of the diameter increases the relative population of the

L valley (as explained in Section 4.3), making it more important than the Γ one in the

case of the 2Rs = 5nm NW for Ni values around Ni = 7 · 1012cm−2.
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For the transport orientation considered for these devices, the four L valleys have

the same, high transport effective mass (0.64m0) compared to the Γ valley (0.026m0).

Therefore, it could be expected that the L valley contribution would actually spoil the

mobility behavior as the NW diameter is reduced, since its relative weight steadily

increases. To shed light on the potential degrading effect of the L valley, we have to

evaluate first the contribution of a single subband to the total mobility. To do so, we

calculate µjnj/Ni, where µj is the mobility of the j-th subband, nj is its population

and Ni is the total one. Then, the contribution to the total mobility of a certain valley

v can be computed as

µv =
∑

j∈v
µj
nj
Ni

(9.1)

being the total mobility µ =
∑

v µv.

Making use of Eq. (9.1), we have calculated the contribution to the total mobility of

the Γ and L valleys for the same two diameters considered in Fig. 9.4, 2Rs = 5nm and

2Rs = 20nm. The results are depicted in Fig. 9.5. As shown, the contribution to the

electron mobility corresponding to the L valley is much lower than the corresponding to

the Γ valley except for very large values (Ni > 1013cm−2). We wish to draw the reader’s

attention to the logarithmic scale in the mobility axis. As the total mobility is achieved

adding up the contributions of each valley, the total mobility essentially coincides with

the contribution of the Γ valley in the range up to Ni > 1013cm−2. Taking into account

the non-negligible population of the L valley shown in Fig. 9.4, its low contribution to

the total mobility can be read as an effective degradation of the transport properties,

in particular for high values of Ni and small diameters. Thus, Fig. 9.5 provides a clear

evidence of the importance of considering the L valley when studying the transport

properties of InAs NWs.

Let us go on with the study of mobility results. As the oscillations due to the

density of states usually shadow the mobility dependence with the NW size for a given

Ni, it is interesting to consider the peak mobility in its stead. Fig. 9.6 presents the

peak mobility as a function of 2Rs for SR (squares) and POP (diamonds) and for the

total mobility (circles).

It can be observed that the total peak mobility reaches a constant value for large

NW sizes. This behavior is coherent with what was observed in Fig. 9.2(a). The peak

mobility in SR describes a continuous increase with size. This result is very similar to

that presented for low Ni in Fig. 9.3(a). It actually makes sense, as the SR mobility is

maximum at low Ni where the charge is far from the semiconductor-insulator interface.
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On the other hand, the reduction of the SR peak mobility for small devices is directly

related to the trend observed for the total mobility, showing again that, even at low

inversion densities, SR is the most limiting scattering mechanism for small devices. As

for POP, roughly a constant value for the peak mobility is found. It is clear, however,

that the peak mobility for large devices is strongly influenced by POP and therefore

this mechanism should not be neglected when studying the mobility behavior of large

III-V NWs
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9.3 Comparison of Si and InGaAs mobility in Trigate

FETs

In this Section, we complicate the scenario introducing more complex geometries: Tri-

gate FET; and an alternative III-V material: InGaAs. The Trigate FET introduces

the fewest changes to conventional planar transistor processing, while allowing a very

good control of the channel [67, 151]. InGaAs adds to the well known advantages of

III-V materials could offer an improved semiconductor-insulator interface [61].

Thus, we complete the electrostatic study performed in Section 4.4 comparing the

behavior of Si and InGaAs Trigate’s architectures. The same geometries and material

properties presented in the aforementioned Section are considered, keeping SiO2 and

TaSiOx as insulators with and EOT 1.1nm. The material parameters of TaSiOx were

calculated by a linear interpolation between those corresponding to SiO2 and Ta2O5.

In this work, [110]-oriented devices fabricated on (001) wafers are considered, thus

confining electrons within two different directions: [001] (top and bottom surfaces)

and [110] (left and right surfaces). As for the scattering mechanisms, those presented

in Chapter 8 are used here, adding to the previous Section the Alloy AD disorder

characteristic of this ternary material. The material and transport parameters are

summed up in Appendix F.

Regarding the interface quality, the density of ionized impurities is set to NCO =

5·1011cm−2, while a surface roughness correlation length ΛSR = 1.5nm is used. Distinct

rms surface roughness values are considered for the top and lateral interfaces of the

Trigate: ∆SR,TOP = 0.4nm and ∆SR,LAT = 0.5nm, after Ref. [238].

First, let us contrast the total electron mobility, µ, of Si and InGaAs Trigates

assuming equal quality semiconductor-insulator interfaces for both cases. Fig. 9.7

shows µ as a function of Ni for 30nm height Si (solid lines) and InGaAs (dashed lines)

Trigates of three different widths: 5nm (diamonds), 10nm (squares) and 20nm (circles).

In both materials, there is not a significant difference in the mobility tendency

between the two largest widths (Ws = 10nm and Ws = 20nm). Moreover, the InGaAs

mobility is for these two sizes larger than the Si mobility in the whole depicted range of

inversion charge. The InGaAs-Si mobility ratio, for a given size, reaches its maximum

at low Ni values where the InGaAs mobility is around one order of magnitude higher

than that of Si. This mobility ratio is reduced as we move toward higher Ni falling to

a factor of ∼ 2. That change in the mobility ratio of InGaAs and Si widest Trigates
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Figure 9.7: Electron mobility as a function of Ni for 30nm height Si
(solid lines) and InGaAs (dashed lines) Trigates with three different
widths: 5nm (diamonds), 10nm (squares) and 30nm (circles).

can be better analyzed attending to the different scattering mechanism contributions

to the mobility.

Fig. 9.8 shows the contribution to the total mobility (circles) of the different scat-

tering mechanism: SR (squares), AD (asterisks), POP (triangles), CO (diamonds) and

APH-OPH (stars) as a function of Ni for Ws = 20nm, Hs = 30nm (a) InGaAs and (b)

Si Trigates. Meaningful differences are observed in the mechanisms’ contributions to

the total mobility for both materials. While bulk non-polar phonons play a negligible

role in InGaAs, they mostly control the mobility at low Ni in Si. For the InGaAs

Trigates, two mechanisms not present in Si, as AD and POP, are the most limiting in

that range of Ni. This change in the mechanisms controlling the mobility explain the

large discrepancies, around one order of magnitude, observed (for that width) between

both materials in Fig. 9.7 at low Ni. However, when high electric fields are considered

SR becomes dominant for InGaAs while for Si its contribution is of the same order of

magnitude than bulk phonons. While SR limited mobility behaves distinctly in both

materials at low inversion charges, mainly due to the higher spatial confinement of

InGaAs (as a consequence of its lower effective mass), it is pretty similar for high Ni

(when the charge distribution is close to the interface in both cases). The factor ∼ 2

observed in the InGaAs-Si mobility ratio for high Ni can be attributed to the role of

bulk phonons in Si.

Up to this point, we have intentionally omitted the thinnest (Ws = 5nm) Trigates

in our analysis. The mobility behavior for them shows some dissimilarities with respect
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InGaAs and (b) Si Trigates.

to the wider sizes as it was shown in Fig. ??. First, the density of states bottleneck in

the InGaAs Trigate results in a pronounced oscillation in the total mobility. Second,

for Ni ≃ .7 · 1013cm−2 the mobility of InGaAs is degraded below that of Si. To better

understand this performance, we depict the different contributions to the mobility in

Fig. 9.9. The symbols code from the Fig. 9.8 is kept.

As can be seen, at low Ni values SR gains importance (with respect to wider devices)

in both InGaAs and Si. It is worth to note that (due to the stronger spatial confinement)

the separation from the charge centroid to the semiconductor-insulator interface (at low

electric fields) is reduced with the semiconductor width; augmenting the relevance of

SR. The distinct behavior observed between Si and InGaAs can again be ascribed to

the relevance of bulk-phonons in Si, which degrades the total mobility to ∼ 0.25 the

value given by SR. For InGaAs, AD, POP, and CO are also relevant at low Ni, reducing

the total mobility to ∼ 0.7 the SR mobility value. For high Ni there is an important

reduction in the total mobility of InGaAs (around a factor 2 that of SR) due to AD.

Since it was not commented in the previous Section, we focus now on the AD

mechanism. Fig. 9.10 shows the AD limited mobility as a function of Ni for 30nm

height InGaAs Trigates with three different widths: 5nm (diamonds), 10nm (squares)

and 20nm (circles). As can be observed, there is a monotonic decrease in AD limited

mobility with size for the whole range of depicted Ni. As explained in Chapter 8 the

matrix element of AD is controlled by the overlapping of the wavefunctions correspond-
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ing to the subbands involved in the electron transitions. As the device size is reduced,

the spatial confinement tends to increase the overlapping, and therefore augments the

matrix elements and reduces the mobility. The behavior with Ni can also be easily

explained: the higher Ni, the larger the number of occupied subbands and available

transitions for AD, and therefore, the lower the mobility.

One last question, regarding AD limited mobility, deserves to be commented: this

mechanism is extremely sensitive to the value chosen for of the alloy scattering poten-

tial, |Va − Vb| in Eq. (8.58). In this Section we have set |Va − Vb| to the difference

between the conduction band levels of InAs and GaAs, 0.52V according to Ref. [115].

However, it should be pointed out that other works in the literature choose a different

value for this parameter (see for example Ref. [267], where of |Va−Vb| = 1.6V). As the

matrix elements depend on |Va−Vb|2 that difference in the value of the alloy scattering

potentials is translated into a factor (1.6/0.5)2 ∼ 10 in the matrix elements and, con-

sequently, ∼ 1/10 in the AD limited mobility. Therefore, we highlight here the need of

a proper selection of the alloy potential for a reasonable study of the AD influence on

the mobility.

We focus now on the mobility degradation due to the L-valley population. As

explained in Section 4.4, the relative population of L-valleys in the InGaAs Trigates

tends to increase when reducing the semiconductor width. Thus we can expect a spoil

in the mobility due to their large effective mass. For the device orientation considered
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here, two L valleys have a transport effective mass m∗ = 1.1461m0 and the other two

have m∗ = 0.1154m0. Therefore, significant differences are expected between them.

Figs. 9.11 and 9.12 show the relative population and the contribution to the total

mobility, calculated using Eq. (9.1), of the Γ-valley (squares) and the two groups of

L-valleys (m∗ = 1.1461m0 plotted as circles, m∗ = 0.1154m0 plotted as diamonds) in a

Ws = 5nm (dashed lines) and a Ws = 20nm (solid lines) InGaAs Trigate. As expected,

the contribution to the electron mobility of the L valleys is lower than the one of the

Γ-valley, resulting (as explained in the previous Section) in an effective degradation of

the mobility. The contribution of the two kinds of L valleys was plotted separately,

highlighting the relevance that the orientation can have on the L-valley degradation of

the mobility for thinner devices.

Up to this point, we have compared InGaAs and Si Trigates with the same interface

characteristics. However, technological difficulties result in poorer interfaces in up-

to-date III-V insulator interfaces [268, 269]. Thus, it is interesting to analyze the

relative contributions of SR and CO when a poorer semiconductor-insulator interface is

present. Fig. 9.13 compares the InGaAs total mobility (circles), as well as SR (squares)

and CO (diamonds) limited mobilities for the previous interface (NCO = 5 · 1011cm−2,
∆SR,TOP = 0.4nm, ∆SR,LAT = 0.5nm and ΛSR = 1.5nm), plotted as solid lines and

a degraded interface (NCO = 5 · 1012cm−2, ∆SR,TOP = 0.8nm, ∆SR,LAT = 1nm and

ΛSR = 1.5nm) plotted as dashed lines, for 30nm height InGaAs Trigates with two

different widths: (a) 5nm and (b) 20nm
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The rest of the scattering mechanism are not shown since they would not be modified

as the interface is changed. The degradation in the mobility due to the degraded

quality of the interface is obvious in both sizes. The CO limited mobility is reduced

proportionally to NCO, namely in a factor 10. The SR mobility dependence on ∆SR

goes down with ∆2
SR. Thus, for the widest device the SR limited mobility is reduced

around a factor 4.

For the widest device, µCO is the most limiting contribution to the mobility for low

inversion charges when the poorest interface is considered. For the better interface, CO

affects more than SR (at low Ni < 1012cm−2), but as already shown in Fig. 9.8(a) there

are other mechanisms, such as POP and AD, which degrade further the mobility. When

higher electric fields are considered the charges moves towards the interface and the SR

becomes more relevant. In the thinner device, SR is the dominant mechanism in the

whole depicted range of Ni and the total mobility is degraded in the poor interface in a

similar amount than it is the SR limited mobility. Therefore, improving the quality of

the interface is shown to have a direct impact in the total electron mobility and should

be one of the main technological purposes to consider III-V materials as potential

substitutes of Si in MuG architectures.
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9.4 Influence of back gate bias on the electron mobility of

Si Trigates

Let us finally study the influence of the back gate bias on the transport behavior of Si

Trigate devices completing the electrostatic study of Section 4.6. To the best of our

knowledge, there is not such a study in the literature for MuG devices, although the

results for ultrathin SOI devices have pointed out that the influence of Vbg may be

non-negligible [163], [270].

As in Section 4.6 SOI Trigate structures have been studied here [165, 166]. A midgap

metal gate (Φm=4.61eV) is considered, and the gate and buried oxide (SiO2) thicknesses

are tins = 1.2nm and tbox = 10nm, respectively. The channel is oriented along the

[011] crystallographic direction, being the top and bottom Si-insulator interfaces [100]-

oriented, and the lateral ones [011]-oriented. Back-gate bias (Vbg) is applied beneath

the buried oxide. A rectangular silicon channel is simulated, being Ws and Hs the

silicon width and height respectively.

Bulk optical (OPH) and acoustic (APH) phonons, surface-roughness (SR) and

Coulomb (CO) scattering mechanisms are included in the simulations. Again, both

SR and CO scattering mechanisms are implemented taking into account the tensorial

dielectric screening [95], while the phonon interactions remain unscreened. The scatter-

ing mechanisms are introduced as in Chapter 8. The phonons parameters are summed

up in Appendix F. The surface characteristics are: ∆sr = 0.5nm, Lsr = 1.5nm and

NCO = 5× 1011 cm−2)

In this study, we have chosen two devices with sizes: Wsc×Hs = 20nm×15nm, and

Wsc ×Hs = 5nm×5nm. Both of them have similar, relatively high values of the body

factor, γ ≃ 0.05, see Fig. 4.25, and square-like cross sections. Vbg values ranging from

−2V to 2V are considered. Fig. 9.14 depicts the electron mobility as a function of the

inversion charge for constant values of Vbg, for both device sizes. As shown, higher Vbg

values increase the electron mobility for the largest device, and also for the smaller one

at high inversion charges. However, there is a non-monotonic behavior as a function of

the back-gate voltage at low Ni values, which can be better seen in Fig. 9.15, where µ

has been depicted as a function of Vbg for constant Ni values.

The behavior of these curves can be explained by studying the role of the different

scattering mechanisms. Let us first compare, in Figs. 9.16, the behavior of phonon-

limited mobility, µPH (circles), phonon and SR-limited mobility, µPH+SR (diamonds),
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Figure 9.14: Electron mobility as a function inversion charge for (a)
a 5nm×5nm and (b) a 20nm× 15nm Trigates. Vbg varies from −2V
to 2V.

and phonon, SR and coulomb-limited mobility , µPH+SR+CO (stars) as a function of

the inversion charge for Vbg = ±2V .

As can be seen, the influence of PH, SR and CO is similar in the smallest device

for both Vbg = ±2V. The reason may be found in the strong geometrical confinement.

However, for the biggest device, where the charge position can be modulated using the

back-gate bias, the mobility reduction due to SR and CO is stronger at negative values

of Vbg.

The non-monotonic behavior of µSR for Vbg = 2V observed in Fig. 9.16(b) is

related to the charge redistribution that occurs when Ni increases, as shown in Fig.

4.26. For small Ni values, the charge is located close to the Si/BOX interface and the

SR scattering due to this surface is not negligible. However, as Vfg is increased and Ni

grows, the charge is shifted from the Si/BOX towards the center of the fin, as shown

in Figs. 4.26 and 4.27, and therefore the influence of the SR scattering is reduced. As

a consequence, the achieved mobility is larger than in the Vbg = −2V case, where the

charge get closed to the top interface.

Taking into account that the Si/BOX interface is expected to have a better quality

than the lateral and top ones [271], we have simulated the behavior of the mobility

curves when, only in this interface, ∆SR is reduced to 0.2nm and NCO to 1011cm−2.

Fig. 9.17 presents the total mobility curves as a function of Ni for both, the original

device (solid lines) and the one with improved Si/BOX interface quality (dashed lines),

for Vbg = ±2V.
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In the small device, the improvement of one of the interfaces reduces the matrix

elements due to SR and CO scattering mechanisms regardless the back-gate voltage,

due to the strong geometrical confinement. Therefore, an improvement of the total

mobility is found for both Vbg = ±2V, although this improvement is higher in the

Vbg = 2V, where the charge is closer to the Si/BOX interface.

In the larger device, there is almost no influence of the Si/BOX interface improve-

ment at Vbg = −2V, as the charge is quite far from this interface even at low inversion

charges (see Fig. 4.26). However, for small Ni and positive back-gate bias, a strong

increase of the mobility is found, due to the proximity of the inversion charge to the

Si/BOX interface.

As can be seen, in the larger device, the mobility achieved for positive Vbg values

doubles that achieved for negative Vbg values in a large range of Ni values. Therefore,

the impact of Vbg on the electron mobility should not be neglected when studying the

back gate influence on the device performance.

9.5 Conclusion

In this Chapter, we have accomplished three transport studies using the implicit solu-

tion from the MRT approximation of the Boltzmann transport equation.
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First, we have analyzed the electron mobility behavior for InAs NWs as a function

of their diameter and inversion charge. We have demonstrated that surface roughness

is the most limiting mechanism as the device size is shrunk. However, polar optical

phonons and Coulomb interactions should also be considered in order to explain the

trend observed for the total mobility as a function of the device size and the electron

density. We have also demonstrated the importance of including the L valley in the

calculations as its increasing population when the diameter is reduced strongly degrades

the mobility. Therefore, neglecting the contribution of the L valley would lead to wrong

conclusions.

Second, we have compared the mobility performance of InGaAs and Si Trigates.

The mechanism contributions to the mobility have been studied for different Trigate

widths, observing relevant differences in the InGaAs-Si ratio with size.

We have analyzed the influence of the back-gate bias on the electron mobility of

Trigate silicon devices. It has been confirmed the strong impact of the back-gate bias

on the electron mobility. Positive back-gate bias pushes the charge further from the top

and lateral Si/insulator interfaces, reducing the influence of SR and Coulomb scattering

mechanisms and therefore increasing the carrier mobility. On the contrary, the carrier

mobility is degraded for negative back-gate bias.
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Chapter 10

Conclusions

As explained in the Objectives section, the main objective of this PhD Thesis was the

study of MuG architectures and III-V compounds semiconductors. In this context, the

main contributions of this work are listed next:

1. A self-consistent Schrödinger-Poisson solver was developed, which is able to deal

with arbitrary geometries, materials and orientations to achieve the charge and

potential distribution in the cross-section of a MuG structure. A non-parabolic

effective mass approach was employed for the Schrödinger equation, and the con-

tribution of Γ, X (∆ for Silicon) and L valleys was included. In addition, the

developed simulator allows the inclusion of an arbitrary profile of interface states.

2. Using this self-consistent Schrödinger-Poisson solver, Trigates and NWs made of

Si and III-V semiconductors were analyzed. It was demonstrated that the low

density of states has a strong influence on the charge density and gate capaci-

tance behavior of III-V NWs. Moreover, the population of higher energy valleys

(in particular, of L valleys) can strongly modify the small conduction effective

mass associated to III-V semiconductors. Additionally, we studied the behavior

of InGaAs, and SOI Trigate FETs, as a function of the channel width, showing

that the semiconductor width has a strong impact on InGaAs Trigates: both

the threshold voltage and the gate voltage at which the L valleys begin to be

populated depend on the width. Besides, it was demonstrated the importance

of considering the two-dimensional confinement for III-V materials to accurately

reproduce the electron distribution near the corners. This effect produces a notice-

able impact on the conduction effective mass as a result of the different population



of each valley. The control the threshold voltage and the charge distribution of

Trigate SOI devices by modifying the back-gate bias was studied, confirming the

possibility of achieving body factors higher than γ=0.1 as long as the channel

width over height ratio is increased as much as possible. Finally, the influence of

the interfacial states, Dit, on the performance of Si MuG FET and, specifically,

on the subthreshold swing and the threshold voltage was analyzed observing rel-

evant variations with the temperature and the oxide thickness. It was concluded

that the higher the number of gates the lower the degradation due to the interface

states, caused by the higher electrostatic control of the semiconductor-insulator

interface.

3. A fully analytical model for the charge and potential distributions in cylindrical

III-V nanowires was developed. This model presented analytical expressions for

the calculation of the subband energies and their corresponding wavefunctions,

taking into account their penetration into the gate insulator and the effective

mass discontinuity in the semiconductor-oxide interface, Fermi-Dirac statistics,

two-dimensional confinement of the carriers and non-parabolic effects. It also

allowed the inclusion of arbitrary analytical profiles of interfacial states. We

demonstrated that our analytical solution fits very well the numerical simulations

in all operating regimes for a wide range of NW sizes and gate voltages. The model

was extended to calculate the current in a long-channel nanowire including the

interface charge.

4. Using the results from the charge and potential models, we proposed physically

based analytical models for the gate capacitance and the threshold voltage in

III-V NWs. Regarding the gate capacitance model, it was demonstrated that the

model fits very well the numerical results for different NW sizes and materials,

without considering any fitting parameters. The different contributions to the

total gate capacitance were identified and modeled, showing their relation with

the finite density of states and the charge distribution in the NWs. The capaci-

tance behavior of III-V NWs were compared with that of their Si counterparts.

Significant differences were found for the dominant contribution to the inversion

capacitance, as well as for the semiconductor potential dependence on the gate

voltage. Furthermore, we showed the limited impact of the EOT reduction in

the gate capacitance of III-V NWs, in contrast to the behavior observed in Si

devices. The role of the wavefunction penetration into the gate insulator was
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also analyzed, evidencing its relevance for an accurate description of the gate

capacitance. Concerning the threshold voltage model, after some reasonable ap-

proximations, we came up with a simple expression of VT that will be useful for

the development of compact models for III-V cylindrical NWs. We demonstrated

that the threshold voltage expression accurately reproduces the numerical results

for different III-V semiconductor materials, NW sizes, and oxide thicknesses. The

influence of the wavefunction penetration into the gate insulator was discussed,

illustrating its relevance for an accurate modeling of VT. The VT variations due

to the changes in the semiconductor effective mass were evaluated. We gave in-

sight into the different contributions to the threshold voltage finding interesting

differences among materials. Furthermore, we studied the VT dependence on the

insulator thickness, showing no relevant changes in a wide range of tins, contrary

to what is observed in Si devices.

5. We have developed a model to calculate the electron mobility of a 1D electron

gas based on the linearization of the Boltzmann Transport Equation using the

momentum relaxation time approximation (MRT). Besides the explicit approach

for the calculation of the MRT, which has been extensively used in the literature,

we implemented an implicit approach resolution. The formulation of the implicit

equation system was exemplified, considering the nested interdependency of the

transitions, and the truncation of the discretized wavenumber space with a Neu-

mann boundary condition. We have to highlight that this implicit solution of the

MRT, taking into account several scattering mechanisms is, to the best of our

knowledge, unique in the literature for 2D confined devices.

6. The main scattering mechanisms for III-V and Silicon nanowires have been mod-

eled for 2D confined devices. Novel models for surface roughness, Coulomb, bulk

phonons, polar optical phonons and alloy disorder scattering mechanisms have

been developed. Moreover, tensorial dielectric screening has been considered and

implemented. It should be stressed that our simulator is useful for any device

geometry and for both Silicon and III-V semiconductor materials, therefore con-

stituting a state-of-the-art nanowire mobility simulator.

7. Finally, the mobility behavior of III-V and Silicon nanowires has been addressed.

In our studies, which include InAs nanowires and InGaAs trigate devices, we

have shown that the surface quality has to be improved in order to fulfil the high

electron mobility expected for III-V nanowires. In particular, surface roughness
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seems to be the most critical scattering mechanism, and for very small sizes it

limits the mobility of III-V nanowires to that of Si nanowires, therefore can-

celing the potential improvement on the device performance given by the low

conduction effective mass. We observed that polar optical phonons and Coulomb

interactions should also be considered in order to explain the trend for the total

mobility as a function of the device size and the electron density. We have also

demonstrated the importance of including the L valley in the calculations as its

increasing population when the diameter is reduced strongly degrades the mobil-

ity. Therefore, neglecting the contribution of the L valley would lead to wrong

conclusions. We analyzed the influence of the back-gate bias on the electron mo-

bility of Trigate SOI devices confirming its strong impact. Positive back-gate bias

pushes the charge further from the top and lateral Si/insulator interfaces, reduc-

ing the influence of surface roughnes and Coulomb scattering mechanisms and

therefore increasing the carrier mobility. On the contrary, the carrier mobility

was degraded for negative back-gate bias.
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Appendix A

Numerical implementation of

surface interface charge

In this Appendix we deal with the mathematical details regarding the relation between

surface interface charge, Qit,sf, and volumetric interface charge, Qit,vl, discussed in

Chapter 3. Specifically we: 1) detail the procedure to obtain a relation between Qit,vl

and ψ|i-m − ψ|i-s in both Cartesian and cylindrical coordinates; and 2) we determine

the values of Acte, Alin, Aexp, and Agau for a given value of Qit,sf.

First, we determine the relation between ψ|i-m − ψ|i-s and Qit,vl for regions with

straight and curved segments. To do it, let us properly define both problems. Fig. A.1

shows a region, Ri, corresponding to a curved segment (left) and another corresponding

to a straight segment (right).

O

C i-s\  R
i

C
i-m

\  R
i

i-s\  R
i

C i-s
i

i-s\  R
i

C
i-m

\  R
i

#

& #

& &= c

& &= c+tins

=0

#=t ins

c
Os

Figure A.1: Definition of system references to find a relation ψ|i-m−
ψ|i-s Qit,vl and Qit,sf for a curved segment (left) and a straight region
(right).

It is straightforward to see that the reference system which easiest describe the

Appendixes 227



Appendix A. Numerical implementation of surface interface charge

problem are cylindrical (for the curved segments) and Cartesian (for the straight seg-

ment) with the origins marked as O at Fig. A.1. Thus, Ci-s ∩Ri can be easily defined

as ς = ςc for the curved region and as ϑ = 0 for the straight region. Other reference

systems, with other origins could be selected, but the definition of Ci-s ∩Ri will be not

so simple. Then, we have ψ|i-s = ψ(ςc) for the curved region and ψ|i-s = ψ(0) for the

straight region.

Equivalently we obtain that ςc + tins and tins are the values of the variables ς and

ϑ which describe Ci-m ∩ Ri for the curved and the straight regions. As a consequence,

ψ|i-m = ψ(ςc + tins) for the curved region and ψ|i-m = ψ(tins) for the straight region.

We have noted the coordinate system variables as ς and ϑ to differentiate them

from typical Cartesian and cylindrical coordinates, as ϑ and ς are region dependent.

Thus, ϑ can be x o y, as defined in Section 3.2, depending on the orientation of the

region, and shifted by a certain quantity Os; while ς would be r =
√

x2 + y2 shifted by

the position of Oc with respect to origin of the Cartesian coordinate defined in Section

3.8

Moreover, Qit,vl is defined as non-null in a region of thickness to ≤ tins and (as

proposed in Section 3.8) only dependent on the coordinate perpendicular to Ci-s.
Then, we can reformulate Eq. (3.35) for straight segments as:

d2ψ(ϑ)

dϑ2
= −Qit,vl(ϑ)

ǫins
(A.1)

And for curved segments, as:

1

ς

d

dς
ς
dψ(ς)

dς
= −Qit,vl(ς)

ǫins
(A.2)

A first integration between ϑ and tins for the straight region and between ς and

ςc + tins for the curved region gives

dψ(ϑ′)
dϑ′

∣

∣

∣

∣

tins

ϑ

= −
tins
∫

ϑ

Qit,vl(ϑ)

ǫins
dϑ (A.3)

ς ′
dψ(ς ′)
dς ′

∣

∣

∣

∣

ςc+tins

ς

=

ςc+tins
∫

ς

ς
Qit,vl(ς)

ǫins
dς (A.4)
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But due to the charge neutrality of the whole structure, no electric field is expected at

Ci-m, and, therefore:
dψ(ϑ′)
dϑ′

|ϑ′=tins = 0, for straight regions, and
dψ(ς ′)
dς ′

|ς′=ςc+tins = 0

for curved regions. So:

dψ(ϑ)

dϑ
= −

tins
∫

ϑ

Qit,vl(ϑ)

ǫins
dϑ (A.5)

ς
dψ(ς)

dς
=

ςc+tins
∫

ς

ς
Qit,vl(ς)

ǫins
dς (A.6)

A second integration between 0 and tins for straight region and between ςc and

ςc + tins for curved region gives:

ψ|i-m − ψ|i-s =
1

ǫins

tins
∫

0

dϑ

tins
∫

ϑ

Qit,vl(ϑ̂)dϑ̂ (A.7)

for straight segments and

ψ|i-m − ψ|i-s =
1

ǫins

ςc+tins
∫

ςc

1

ς
dς

ςc+tins
∫

ς

ς̂Qit,vl(ς̂)dς̂ (A.8)

for curved segments.

Now, we determine Acte, Alin, Aexp, and Agau for a given value of Qit,sf. Let us

recall Eqs. (3.38) and (3.39):

Qit,sf tins =

tins
∫

0

dϑ

tins
∫

ϑ

Qit,vl(ϑ̂)dϑ̂ (A.9)

and:

Qit,sf ςcln(1 + tins/ςc) =

ςc+tins
∫

ςc

1

ς
dς

ςc+tins
∫

ς

ς̂Qit,vl(ς̂)dς̂ (A.10)

To determine Acte, Alin, Aexp, and Agau we substitute the expressions for Qit,vl given

in Tab. 3.1 into Eqs. (3.38) and (3.39) and we solve for A.

To keep this manuscript (to the best of our possibilities) clear and legible, we have

omitted the integration procedure for each profile in Table (3.1). They mostly consist
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on integrals of polynomial and exponentials functions. The results are summarized in

Tables A.1 and A.2 for straight and curved regions. In Tables. A.1 and A.2, erf and

ei refers to the error complementary function and the exponential integral function,

respectively.

Acte = 2
tins
t2o

Qit,sf

Alin = 4
tins
t2o

Qit,sf

Aexp =
tins

σe

(

1− (to + σe)e
− to

σe

) Qit,sf

Agau =

(

tins
σg

1

to
√

π/2
erf

(

to√
2σg

)

+ tins(e
− to

2σ2
g − 1)

)

Qit,sf

Table A.1: Acte, Alin, Aexp, and Agau as a function of Qit,sf for
different profiles in straight segment regions.
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Acte =
ςcln(1 +

tins
ςc

)

(ςc + to)
2

2
[ln(1 +

to
ςc
)− 1

2
] +

ς2c
4

Qit,sf

Alin =
ςcln(1 +

tins
ςc

) Qit,sf

[
(ςc + to)

2

2
[ln(1 +

to
ςc
)− 1

2
] +

ς2c
4
](1 +

to
ςc
)− [

(ςc + to)
3

3
[ln(1 +

to
ςc
)− 1

3
] +

ς3c
9
]

Aexp =
− ςc
σe
ln(1 + tins

ςc
)e−

ςc
σe Qit,sf

(ςc + to + σe)e
− ςc+to

σe ln(1 + to
ςc
) + σe(e

− ςc+to
σe − e

− ςc
σe + ei(

ςc+to
σe

)− ei(
ςc
σe
))

Agau =
− ςc
σ2g
ln(1 + tins

ςc
) Qit,sf

−[e
− t2o

2σ2
g −

√
πςc√
2σg

erf(− to√
2σg

)]ln(1 + to
ςc
) +

ςc+to
∫

ςc

e
− (ς−ςc)

2

2σ2
g

ς dς +
√
πςc√
2σg

ςc+to
∫

ςc

erf( ςc−ς√
2σg

)

ς dς

Table A.2: Acte, Alin, Aexp, and Agau as a function of Qit,sf for
different profiles in curved segment regions.
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Appendix B

Charge, potential and drain

current models related calculi

In this appendix we sum up some calculi related to the charge and potential and drain

current analytical models.

B.1 Normalization of the wavefunctions

In this Section we determine the wavefunction normalization constants A and C ob-

tained in the resolution of the Schrödinger equation in Chapter 5. We recall here Eq.

(5.20):

A2
j

Rs
∫

0

rJ2
l (γjr) dr + C2

j

Rs+tins
∫

Rs

r K2
l (αjr) dr = 1 (B.1)

Using Eq. (5.13) we have:

A2
j

Rs
∫

0

rJ2
l (γjr) dr +A2

j

(

Jl(γjRs)

Kl(αjRs)

)2
Rs+tins
∫

Rs

r K2
l (αjr) dr = 1 (B.2)

Therefore:

A2
j =





Rs
∫

0

rJ2
l (γjr) dr +

J2
l (γjRs)

K2
l (αjRs)

Rs+tins
∫

Rs

r K2
l (αjr) dr





−1

(B.3)
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Both integrals in Eq. (B.3) are known [221]:

∫

rJ2
l (γjr) dr =

r2

2

(

J2
l (γjr)− Jl−1(γjr)Jl+1(γjr)

)

(B.4)

∫

rK2
l (αjr)dr = (−1)l+1π

2

4

∫

r[H
(1)
l (iαjr)]

2dr =

(−1)l+1π
2

4

r2

2

(

[H
(1)
l (ıαjr)]

2 −H
(1)
l−1(ıαjr)H

(1)
l+1(ıαjr)

)

=

r2

2

(

K2
l (αjr)−Kl−1(αjr)Kl+1(αjr)) (B.5)

where we have used the connection formula between Kv , and the Hankel function of

the first kind, H
(1)
v :

Kv(x) = ıv+1π

2
H(1)
v (ıx) (B.6)

being ı the imaginary unit. Then, evaluating the integrals in their limits we find:

Aj =

(

R2
s

2

[

2J2
l (γjRs)− Jl−1(γjRs)Jl+1(γjRs)− J2

l (γjRs)
Kl−1(αjRs)Kl+1(αjRs)

K2
l (αjRs)

]

− J2
l (γjRs)

K2
l (αjRs)

(Rs + tins)
2

2

[

K2
l (αj(Rs + tins))−Kl−1(αj(Rs + tins)Kl+1(αj(Rs + ttox))

]

)−1/2

(B.7)

and using Eq. (5.13):

Cj =

(

R2
s

2

[

2K2
l (αjRs)−K2

l (αjRs)
Jl−1(γjRs)Jl+1(γjRs)

J2
l (γRs)

−Kl−1(αjRs)Kl+1(αjRs)

]

−(Rs + tins)
2

2

[

K2
l (αj(Rs + tins))−Kl−1(αj(Rs + tins)Kl+1(αj(Rs + ttox))

]

)−1/2

(B.8)

B.2 Resolution of the Poisson equation

In this Section we deal with the resolution of the Poisson equation for a III-V cylindrical

NW. Specifically we detail the mathematical procedure followed to obtain ϕj , that is

the spatial distribution of the contribution of the subband j to the potential ψ. We
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recall here Eq. (5.40):

ϕj(r) =











A2
j

∫ ∫

r J2
l (γjr) dr

1

r̂
dr̂ i = a

C2
j

∫ ∫

rK2
l (αjr) dr

1

r̂
dr̂ = (−1)l+1 π

2

4
C2
j

∫ ∫

r[H
(1)
l (ıαjr)]

2dr
1

r̂
dr̂ i = b

(B.9)

where Kl was rewritten in terms of H
(1)
l using the definition of Eq. (B.6). Expressing

ϕj(r) in this way allows us to give a unified treatment to the integral. This is because

H
(1)
l (also called Bessel function of the third kind) shares with Jl many recurrence

relations and connection formulas. Thus, we use the notation M(νx) to refer to both

functions, Jl (γjr) and H
(1)
l (ıαjr), in the forthcoming integration. The inner integral

in Eq. (B.9) is known:

∫

xM2
v (ax)dx =

x2

2

[

M2
v (ax)−Mv−1(ax)Mv+1(ax)

]

(B.10)

being the equality valid for both Jv and H
(1)
v as proposed in Eqs. (B.4) and (B.5).

Therefore:

∫ ∫

r′M2
l (νjr

′)dr′
1

r
dr =

1

2

∫

rM2
l (νjr)dr −

1

2

∫

rM1−1(νjr)Ml+1(νjr)dr (B.11)

The first integral in the right-hand side of Eq. (B.11) can again be solved using Eq.

(B.10). The second one can be written as:

∫

rMl−1(νjr)Ml+1(νjr)dr =

∫

rMl−1(νjr)Ml−1(νjr)dr−
2

νj

∫

rMl−1(νjr)
dMl(νjr)

dr
dr

(B.12)

where we have used the recurrence relation:

Mv+1(ax) =Mv−1(ax)−
2

a

dMv(ax)

dx
(B.13)

which is valid for both Jv and H
(1)
v . Again the first integral in the right-hand side can

be solved using Eq. (B.10). The second integral can be integrated by parts as:

∫

rMl−1(νjr)
dMl(νjr)

dr
dr = rMl−1(r)Ml(r)−

∫

Ml(νjr) [lMl−1(νjr)− rνjMl(νjr)] dr

(B.14)
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where:

u = rMl−1(νjr) −→ du = lMl−1(νjr)− νjrMl(νjr) (B.15)

dv =
dMl(νjr)

dr
−→ v =Ml(νjr) (B.16)

and where the recurrence relation:

dMv(ax)

dx
= a

[ v

ax
Mv(ax)−Mv+1(ax)

]

(B.17)

holds for both Jv and H
(1)
v . Then, the integral in the right-hand side of Eq. (B.14):

∫

Ml(νjr) [lMl−1(νjr)− νjrMl(νjr)] dr = l

∫

Ml(νjr)Ml−1(νjr)dr− νj

∫

rM2
l (νjr)dr

(B.18)

where the second integral in the right-hand side of Eq. (B.18) can be calculated using

Eq. (B.10). Applying Eq. (B.13) to Ml(νjr) with l = v + 1 in the first integral we

obtain:

l

∫

Ml(νjr)Ml−1(νjr)dr = l

∫

Ml−2(νjr)Ml−1(νjr)dr −
2l

νj

∫

dMl−1(νjr)
dr

Ml−1(νjr)dr

(B.19)

where the first integral is direct:

2l

νj

∫

Ml−1(νjr)
dMl−1(νjr)

dr
dr =

l

νj
M2
l−1(νjr) (B.20)

and:

l

∫

Ml(νjr)Ml−1(νjr)dr = l

∫

Ml−1(νjr)Ml−2(νjr)dr −
l

νj
M2
l−1(νjr) (B.21)

but it is easy to see that the first integral in the right-hand side of Eq. (B.21) is just

the integral in the left-hand side of Eq. (B.18) with a reduction of 1 in the order of M

functions. We can apply this rule recursively until we reach,

∫

M1(νjr)M0(νjr)dr = −M
2
0 (νjr)

2νj
(B.22)
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which is satisfied for both Jv and H
(1)
v . Then, the complete integral is:

∫ ∫ r

0
r′ |Ml(νjr

′)|2dr′ 1
r
dr =

1

2

r2

2
M2
l (νjr)−

1

2

r2

2
Ml−1(νjr)Ml+1(νjr)−

1

2

r2

2
M2
l−1(νjr) +

1

2

r2

2
Ml−2(νjr)Ml(νjr) +

1

2

2

νj
rMl−1(νjr)Ml(νjr) +

1

2

2

νj
νj
r2

2
M2
l (νjr)

− 1

2

2

νj
νj
r2

2
Ml−1(νjr)Ml+1(νjr) +

1

2

2

νj

l

νj
M2
l−1(νjr)−

1

2

2

νj
l

∫

Ml−1(νjr)Ml−2(νjr)dr

(B.23)

Rearranging terms we have:

3

4
r2M2

l (νjr)−
3

4
r2Ml−1(νjr)Ml+1(νjr)−

r2

4
M2
l−1(νjr) +

r2

4
Ml−2(νjr)Ml(νjr)+

+
r

νj
Ml−1(νjr)Ml(νjr) +

l

ν2j
M2
l−1(νjr)−

l

νj

∫

Ml−1(νjr)Ml−2(νjr) (B.24)

We can use the recurrence relation:

Mv+1(ax) +Mv−1(ax) =
2v

ax
Mv(ax) (B.25)

valid for Jv as well as for H
(1)
v to rewrite Ml−2 as:

Ml−2(νjr) =
2(l − 1)

νjr
Ml−1(νjr)−Ml(νjr) (B.26)

Using it in Eq. (B.24) and simplifying we get:

1

2
r2M2

l (νjr)−
3

4
r2Ml−1(νjr)Ml+1(νjr)−

r2

4
M2
l−1(νjr) + (

l + 1

2
)
r

νj
Ml−1(νjr)Ml(νjr)+

+
l

ν2j
M2
l−1(νjr) +

l

νj

∫

Ml−1(νjr)Ml−2(νjr)dr (B.27)

Now we use again Eq. (B.25) for Ml+1(νjr) and we obtain:

1

2
r2M2

l (νjr) +
1

2
r2M2

l−1(νjr) + (−l + 1

2
)
r

νj
Ml−1(νjr)Ml(νjr) +

l

ν2j
M2
l−1(νjr)−

− l

νj

∫

Ml−1(νjr)Ml−2(νjr)dr (B.28)
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Or applying the recursive integral in Eq. (B.21) and the result from Eq. (B.22) we get:

1

2
r2M2

l (νjr) +
1

2
r2M2

l−1(νjr) + (−l + 1

2
)
r

νj
Ml−1(νjr)Ml(νjr) +

l

ν2j

l
∑

m=1

M2
m−1(νjr)

− l

2ν2j
M2

0 (νjr) (B.29)

Now, we can undo the change of notation to establish the contribution of the subband

j to the potential in the semiconductor:

ϕaj (r) = A2
j

(

r2

2
J2
l (γjr) +

r2

2
J2
l−1(γjr) + (−l + 1

2
)
r

γj
Jl−1(γjr)Jl(γjr)+

+
l

γ2j

l
∑

m=1

J2
m−1(γjr)−

l

2γ2j
J2
0 (γjr)

)

(B.30)

Equivalently, using Eq. (B.6), with νj = iαj

ϕbj(r) = C2
j

(

(−1)(l+1)

(−1)(l+1)

1

2
r2K2

l (αjr) +
(−1)(l+1)

(−1)l
1

2
r2K2

l−1(αjr)+

(−1)(l+1)

ıl+1ıl
(− l

2
+ 1)

r

ıαj
Kl−1(αjr)Kl(αjr) +

l

ı2α2
j

l
∑

m=1

(−1)l+1

(−1)m
K2
m−1(αjr)−

−(−1)l+1

(−1)

l

2ı2α2
j

K2
0 (αjr)

)

(B.31)

and simplifying the powers of ı, the contribution of the subband j to the potential in

the insulator is:

ϕbj(r) = C2
j

(

rR2

2
K2
l (αjr)−

r2

2
K2
l−1(αjr) + (−l + 1

2
)
r

αj
Kl−1(αjr)Kl(αjr)+

+
l

α2
j

l
∑

m=1

(−1)l−mK2
m−1(αjr)− (−1)l−1

l

2α2
j

K2
0 (αjr)

)

(B.32)
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B.3 Determination of Ci and Di from Poisson boundary

conditions

In this Section we apply the boundary conditions of Eqs. (5.42)-(5.45) to the solution

of the Poisson equation obtained in Chapter 5 to determine the constants of integration

Ca, Da, Cb and Db. Two of these boundary conditions, given by Eqs. (5.42) and (5.44),

involve the derivatives of the potential in both media. For the sake of clarity, let us

first calculate expressions for these derivatives. Thus, we recall the expression for the

potential in the media i:

ψi(r) =
q

2πǫi

N
∑

j=0

g(Êj)ϕ
i
j(r) +

q

ǫi

r2

4
Naδi,a + Ci ln(r) +Di (B.33)

Then its derivative is:

ψ′i(r) =
dψi(r)

dr
=

q

2πǫi

N
∑

j=0

g(Êj)ϕ
′i
j (r) +

q

ǫi

r

4
Naδi,a +

Ci
r

(B.34)

where ϕ′ij (r) = dϕij(r)/dr can be written, using Eqs. (B.29), (B.30) and (B.32) as:

ϕ′ij (r) = (Bi
j)

2 d

dr

(

1

2
r2M2

l (νjr)+
1

2
r2M2

l−1(νjr) + (−l + 1

2
)
r

νj
Ml−1(νjr)Ml(νjr)+

+
l

ν2j

l
∑

m=1

M2
m−1(νjr)−

l

2ν2j
M2

0 (νjr)

)

(B.35)

being Bi
j equal to Aj (ıl+1πCj/2) for the media a (b). This way of expressing the

potential allows (as in Appendix B.2) a unique treatment of Jv and Kv (trough H
(1)
v )

simplifying the forthcoming calculus. Thus, applying the derivative relation:

dMv(ax)

dx
=

1

2
a (Ml−1(ax)−Ml+1(ax)) (B.36)

Appendixes 239



Appendix B. Charge, potential and drain current models related calculi

which is valid for both Jv and H
(1)
v , we have:

ϕ′ij (r) = (Bi
j)

2

(

rM2
l (νjr) +

νjr
2

2
Ml(νjr) [Ml−1(νjr)−Ml+1(νjr)] +

+rM2
l−1(νjr) +

νjr
2

2
Ml−1(νjr) [Ml−2(νjr)−Ml(νjr)] + (−l + 1

2
)
1

νj
Ml−1(νjr)Ml(νjr)

(−l + 1

2
)
r

2

[

Ml−2(νjr)Ml(νjr)−M2
l (νjr) +M2

l−1(νjr)−Ml−1(νjr)Ml+1(νjr)
]

+
l

νj

l
∑

m=1

Mm−1(νjr) [Mm−2(νjr)−Mm(νjr)] +
l

νj
M0(νjr)M1(νjr)

)

(B.37)

which rearranging terms can be expressed as:

ϕ′ij (r) = (Bi
j)

2

(

(− l

2
+

3

4
)rM2

l (νjr) +
νjr

2

2
Ml(νjr)Ml+1(νjr) + (− l

2
+

5

4
)rM2

l−1(νjr)+

+
νjr

2

2
Ml−1(νjr)Ml−2(νjr)+

+(−l + 1

2
)
1

νj
Ml−1(νjr)Ml(νjr) + (−l + 1

2
)
r

2
[Ml−2(νjr)Ml(νjr)−Ml−1(νjr)Ml+1(νjr)]

+
l

νj

l
∑

m=1

Mm−1(νjr) [Mm−2(νjr)−Mm(νjr)] +
l

νj
M0(νjr)M1(νjr)

)

(B.38)

Then, using Eq. (B.26) for the first appearance of Ml−2 in Eq. (B.38), we get:

ϕ′ij (r) = (Bi
j)

2

(

[− l

2
+

3

4
]rM2

l (νjr) + [
l

2
+

1

4
]rM2

l−1(νjr)+

+(−l + 1

2
)
1

νj
Ml−1(νjr)Ml(νjr) + (−l + 1

2
)
r

2
[Ml−2(νjr)Ml(νjr)−Ml−1(νjr)Ml+1(νjr)]

+
l

νj

l
∑

m=1

Mm−1(νjr) [Mm−2(νjr)−Mm(νjr)] +
l

νj
M0(νjr)M1(νjr)

)

(B.39)

In addition, we can write:

(−l + 1

2
)
r

2
[Ml−2(νjr)Ml(νjr)−Ml−1(νjr)Ml+1(νjr)] = (B.40)

(−l + 1

2
)

[

l − 1

νj
Ml−1(νjr)Ml(νjr)−

r

2
M2
l (νjr)−

l

νj
Ml(νjr)Ml−1(νjr) +

r

2
M2
l−1(νjr)

]
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where we have used the recurrence relation in Eq. (B.25) with v − 1 = l − 2 for Ml−2
and with v + 1 = l + 1 for Ml+1. Thus, substituting Eq. (B.40) into Eq. (B.39) gives:

ϕ′ij (r) = (Bi
j)

2

(

r

2
M2
l (νjr) +

r

2
M2
l−1(νjr) +

l

νj

l
∑

m=1

Mm−1(νjr) [Mm−2(νjr)−Mm(νjr)]

+
l

νj
M0(νjr)M1(νjr)

)

(B.41)

This expression can be particularized for each media giving:

ϕ′aj (r) = A2
j

(

r

2
J2
l (γjr) +

r

2
J2
l−1(γjr) +

l

γj

l
∑

m=1

Jm−1(γjr) [Jm−2(γjr)− Jm(γjr)]

+
l

γj
J0(νjr)J1(γjr)

)

(B.42)

ϕ′bj (r) = C2
j

(r

2
K2
l (αjr)−

r

2
K2
l−1(αjr)− (B.43)

l

αj

l
∑

m=1

(−1)l−mKm−1(αjr) [Km−2(αjr) +Km(αjr)] +
l

γj
(−1)l−1K0(αjr)K1(αjr)

)

where we have used Eq. (B.6) with νj = ıα as it was done in Appendix B.2 to express

Eq. (B.41) in terms of Kv(αjr). Eqs. (B.34), (B.42) and (B.43) completely determine

ψ′i.

Now we can go on with the determination of the integration constants. The first

boundary condition is:
dψa(r)

dr

∣

∣

∣

∣

r=0

= 0. (B.44)

Then

q

2πǫa

N
∑

j=0

g(Êj)ϕ
′b
j (0) +

Ca
r

∣

∣

∣

∣

r=0

= 0. (B.45)

Since Jv(0) = 0 for v 6= 0, then it is easy to check that ϕ′aj (0) = 0 and, consequently,

Ca = 0 (B.46)
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From the second boundary condition we get:

ǫa
dψa(r)

dr

∣

∣

∣

∣

r=Rs

= ǫb
dψb(r)

dr

∣

∣

∣

∣

r=Rs

(B.47)

Therefore:

q

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs) +

q

2
NaRs =

q

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs) + Cb

ǫb
Rs

(B.48)

So,

Cb =
Rs

ǫb





q

2π

N
∑

j=0

g(Êj)ϕ
′a
j (Rs) +

q

2
NaRs −

q

2π

N
∑

j=0

g(Êj)ϕ
′b
j (Rs)



 (B.49)

where ϕ′bj and ϕ′bj are given by Eqs. (B.42) and (B.43). The third boundary condition

imposes:

ψb(Rs + tins) = VG − Φms (B.50)

Then:

q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs + tins) + Cb ln(Rs + tins) +Db = VG − Φms (B.51)

and:

Db = VG − Φms −
q

2πǫi

N
∑

j=0

g(Êj)ϕ
b
j(Rs + tins) + Cb ln(Rs + tins) (B.52)

where ϕbj is given by Eq. (B.32) and Cb was obtained in Eq. (B.49). Finally the last

boundary condition is:

ψa(Rs) = ψb(Rs) (B.53)

So:

q

2πǫa

N
∑

j=0

g(Êj)ϕ
a
j (Rs)+

q

ǫa

R2
s

4
Na+Da =

q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs)+Cb ln(Rs)+Db (B.54)
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Thus:

Da =
q

2πǫa

N
∑

j=0

g(Êj)ϕ
a
j (Rs) +

q

ǫa

R2
s

4
Na +− q

2πǫb

N
∑

j=0

g(Êj)ϕ
b
j(Rs)− Cb ln(Rs)−Db

(B.55)

where ϕaj and ϕbj are given by Eqs.(B.30) and (B.32), and Cb and Db were calculated

in Eqs. (B.49) and (B.52)

B.4 Drain current analytical model related calculi

In this Section we accomplish the integration of Eq. (5.69) to obtain Ids. First, we

recall Eq. (5.69):

Ids =
2πRsµ

L

Vd
∫

Vs

Qi(V )dV (B.56)

For the sake of simplicity, we use the following notation in the forthcoming procedure:

x = V , f(x) = Qit, κj = − Êj +∆Êj
kBT

, Qi = − qNc

2πRs

N
∑

j=0

F− 1
2
(κj + y)

(B.57)

y =
qψs

kBT
− qx

kBT
=

q

kBT















VG − (Φm − χs)−
f(x)

Cins
−

− qNc

2πRs

N
∑

j=0

F− 1
2
(κj + y)

Cins
− x















(B.58)

where we have used Eq. (5.71) for the definition of ys. Then, the integral in Eq. (B.56)

can be written as:

− qNc

∫ N
∑

j=0

F− 1
2
(κj + y)dx = −qNc

∫ N
∑

j=0

F− 1
2
(κj + y)

dx

d(κj + y)
d(κj + y) (B.59)

being
d(κj + y)

dx
=
dκj
dx

+
dy

dx
(B.60)
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On the one hand, we can write

dy

dx
= − q

kBT

1

Cins

df(x)

dx
− q

kBT

−qNc

Cins

d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)

d(κj + y)

dx
− q

kBT
(B.61)

being the index j independent of the sum index i. On the other hand, using the

definition for ∆Êj proposed in Eq. 5.24:

dκj
dx

= − q

kBT

d∆Êj
dx

= − q

kBT

∫

Rj(r)
dψ̂(r)

dx
R∗j (r)rdr (B.62)

where ψ̂(r) = ψ(r)− ψ(Rs). Then we can write:

dκj
dx

= − q

kBT

(

−qNc

N
∑

i=0

d

dx
F− 1

2
(κi + y)Υij

)

(B.63)

being

Υij =

∫

Rj(r)ϕ̂iR
∗
j (r)rdr (B.64)

ϕ̂i is given by Eq. (5.41). Using Eq. (??) directly into Eq. (B.62) would highly

complicate the subsequent calculus. We consider here the following substitution:

Υj =

N
∑

i=0

F− 1
2
(κi + y)Υij

N
∑

i=0

F− 1
2
(κi + y)

(B.65)

Contrary to Υij , Υj would depend on V as it does F− 1
2
(κi + y). Actually, the Υj

dependence on V is determined by the relative population of the subbands. But we can

expect a reduced variation in the relative occupation of the subbands for medium and

strong inversion (small V ). In weak inversion (large V ) some variations are observed

as new subbands start to be populated. Nevertheless, the weak inversion scenario

corresponds to a saturated drain, and as it is well known the drain charge contribution

to the saturation current is not relevant. As a consequence, we assume Υj as a constant,

determined by the subband populations at the source: V = Vs. Then, after some algebr,
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we get:

d(κj + y)

dx
= − q

kBT

1

Cins

df(x)

dx
−

q

kBT

(

1

Cins
+ Υj

)

(−qNc)

d
N
∑

i=0

F− 1
2
(κi + y)

d(κj + y)

d(κj + y)

dx
− q

kBT
(B.66)

Using it into Eq. (B.56) we get:

Ids = −qNc
µ

L

∫ N
∑

j=0

F− 1
2
(κj+y)

kBT

q
+

(

1

Cins
+ Υj

)

(−qNc)

d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)

1 +
1

Cins

df(x)

dx

d(κj+y)

(B.67)

Eq. (B.67) is not a straightforward expression to integrate analytically. Neverthe-

less, it can be integrated in some particular cases:

1. If no interface traps are considered, then f(x) = 0

2. If a constant profile of Dit(E) is considered, and the Fermi function is approxi-

mated by a step function, then df(x)/dx = qDit

B.4.1 Drain current if no Dit is considered

If no interface traps are considered, Eq. (B.67) is simplified to:

Ids =
µ

L
(−qNc)

∫ N
∑

j=0

F− 1
2
(κj + y)











kBT

q
+

(

1

Cins
+ Υj

)

(−qNc)

d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)











d(κj + y) (B.68)
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Therefore:

Ids =
µ

L
(−qNc)

kBT

q

∫ N
∑

j=0

F− 1
2
(κj + y)d(κj + y)+ (B.69)

+
µ

L
(−qNc)

∫ N
∑

j=0

F− 1
2
(κj + y)

(

1

Cins
+ Υj

)

(−qNc)d

N
∑

i=0

F− 1
2
(κi + y) (B.70)

The first integral in the right-hand side of Eq. (B.70) is easy to solve,

∫ N
∑

j=0

F− 1
2
(κj + y)d(κj + y) =

N
∑

j=0

F 1
2
(κj + y) (B.71)

where we have used the Fermi-Dirac recurrence relation Fj+1(x) =
∫

Fj(x)dx. The

second integral is not straightforward to solve as far as the integrand is a sum of

terms scaled by a factor Υj which is not present in the differential. Similarly to the

approximation made in Eq. (B.65) we can define:

Υ =

N
∑

j=0

F− 1
2
(κi + y)Υj

N
∑

j=0

F− 1
2
(κi + y)

(B.72)

which allows us to write the second integral as:

∫
(

1

Cins
+ Υ

) N
∑

j=0

F− 1
2
(κj + y)d

(

N
∑

i=0

F− 1
2
(κi + y)

)

=

(

1

Cins
+ Υ

)

(

N
∑

j=0
F− 1

2
(κj + y)

)2

2
(B.73)

The approximation made in Eq. (B.72) is equivalent to that used in Eq. (B.65).

Therefore, the discussion about its validity referred previously can also be assumed
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here. Finally, substituting Eqs. (B.71) and (B.73) into (B.70) we get:

Ids =
µ

L















(−qNc)

N
∑

j=0

F 1
2
(κj + y) +

1

Cds
(−qNc)

(

N
∑

j=0
F− 1

2
(κj + y)

)2

2















Vd

Vs

(B.74)

where CΥ was defined as:
1

CΥ
=

(

1

Cins
+ Υ

)

(B.75)

For the sake of clarity we can define the functions:

f1(V ) = −qNc
kBT

q

N
∑

j=0

F 1
2

(

− Êj +∆Êj − qψs + qV

kBT

)

(B.76)

f2(V ) = −qNc
1

Cds





N
∑

j=0

F− 1
2

(

− Êj +∆Êj − qψs + qV

kBT

)





2

(B.77)

being the resulting drain current in absence of Dit:

Ids =
µ

L
(f1(Vd) + f2(Vd)− f1(Vs)− f2(Vs)) (B.78)

where ψss (ψsd) and ∆Ês
j (∆Ê

d
j ) are the surface potential and correction to the energy

level at the source (drain) respectively; and can be obtained solving the charge model

for V = Vs (V = Vd).

B.4.2 Drain current for a constant Dit

Now, we extend the drain current model assuming a constant Dit profile in the gap.

To do it we approximate the Fermi function by a step function. Furthermore, for the

sake of simplicity, let us consider just acceptors traps. The extension to a profile with

both kind of traps is straightforward. We can define Dit(E) as

Dit(E) = Dit × [U(E − Ei(Rs))− U(E − Ec(Rs))] (B.79)

that is a constant Dit in a certain range of energies between the conduction band at

the interface, Ec(Rs), and the intrinsic Fermi level at the interface, Ei(Rs), being U the
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step function. Introducing Eq. (B.79) into the expression for Qit, given by Eq. (5.64),

we get

Qit = −qDit

∫

U(E − Ei)− U(E − Ec)

1 + e
E+qV

kBT

dE = (B.80)

where we have substituted EF by the pseudo Fermi level. Using the references for

energies proposed in Section 5.2, we can write Ec(r) = −qψ(r). Then Ec(Rs) =

−qψ(Rs) = −qψs. Thus, Eq. (5.64) can be rewritten in terms of ψs as:

Qit = −qDit

∫

U(E + qψs + Eg/2)− U(E + qψs)

1 + e
E+qV
kBT

dE (B.81)

Assuming that the Fermi function can be approximated by a step function, its derivative

is a Dirac delta function. Then, we can write:

dQit

dV
= −qDit × [U(−qV + qψs + Eg/2) − U(−qV + qψs)] (B.82)

which using the definition in Eq. (B.58) can be reformulated as:

f(x)

x
= −qDit [U(y + Eg/2)− U(y)] (B.83)

Now we can substitute it in Eq. (B.67) resulting:

Ids = −−qNc

∫ N
∑

j=0

F− 1
2
(κj+y)

kBT

q
+

(

1

Cins
+ Υj

)

(−qNc)

d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)

1− q Dit

Cins
[U(y + Eg/2) − U(y)]

d(κj+y)

(B.84)
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Using the properties of the step function, we can split the previous integrals into three

integrals:

Ids = −q2N2
c

yc
∫

ys

N
∑

j=0

F− 1
2
(κj + y)











kBT

q2Nc
−
(

1

Cins
+ Υj

) d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)











d(κj + y)

− −q2N2
c

1− qDit

Cins

yi
∫

yc

N
∑

j=0

F− 1
2
(κj + y)











kBT

q2Nc
−
(

1

Cins
+ Υj

) d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)











d(κj + y)

−q2Nc2

yd
∫

yi

N
∑

j=0

F− 1
2
(κj + y)











kBT

q2Nc
−
(

1

Cins
+ Υj

) d
N
∑

i=0
F− 1

2
(κi + y)

d(κj + y)











d(κj + y)

(B.85)

where the integral limits ys, yd are the y-values corresponding to V = Vs and V = Vd;

and yc = 0 and yi = −Eg/2 correspond to V -values Vc and Vi such as ψs − Vc = 0

(that is EF(z) = Ec) and ψs − Vi = Eg/2 (that is EF(z) = Ei). The three integrals

in Eq. (B.85) are the same than that solved in Eq. (B.70). Then, following the afore

explained procedure and using the definitions for f1 and f2 in Eqs. (B.76) and (B.77)

we get:

Ids =
µ

L
[f1(Vc) + f2(Vc)− f1(Vs)− f2(Vs) +

+
f1(Vi) + f2(Vi)− f1(Vc)− f2(Vc)

1 +
qDit

Cins

+f1(Vd) + f2(Vd)− f1(Vi)− f2(Vi)] (B.86)

which can be simplified to:

Ids =
µ

L









f1(Vd) + f2(Vd)− f1(Vs)− f2(Vs) +
f1(Vc) + f2(Vc)− f1(Vi)− f2(Vi)

1 +
qDit

Cins









(B.87)

It should be noted that this Ids expression requires solving the model for four Fermi
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pseudo-potentials: Vs and Vd as it was in Eq. (B.68) and V1 and V2 which correspond

to the cross of EF trough Ec(Rs) = −qψs and Ei = −qψs − Eg/2. As it was in Eq.

(B.68), the values of Êj are constant and independent of V but not ∆Êj and ψs which

need to be calculated for each case.

In the linear region, Vds < Vgs − VT, just the first two integrals of Eq. (B.86) make

sense. Vd is not high enough as to move the pseudo Fermi potential below the intrinsic

level. Then, the third integral in Eq. (B.85) can be removed and the upper limit in

the second one is changed from yi to yc.
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Capacitance and threshold

voltage models related calculi

In this Appendix we sum up some calculi related to the capacitance and threshold

voltage analytical models.

C.1 Determination of the centroid capacitance

In this Section we obtain an expression for the centroid capacitance of an arbitrary

subband j, solving the integral proposed in Chapter 6. We recall here Eq. (6.12):

CCj =
2πǫs

R0
∫

0

rln

(

R0

r

)

|AjJl(γjr)|2dr

(C.1)

The integral in the denominator of Eq. (C.1) can be reformulated as:

R0
∫

0

rln

(

R0

r

)

|AjJl(γjr)|2dr = ln(R0)

R0
∫

0

r |AjJl(γjr)|2dr −
R0
∫

0

r ln(r)|AjJl(γjr)|2dr

(C.2)
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where the second term can be integrated by parts:

R0
∫

0

r ln(r)|AjJl(γjr)|2dr =
[

ln(r)

∫

r |AjJl(γjr)|2dr
]R0

0

−
R0
∫

0

(
∫

r |AjJl(γjr)|2dr
)

1

r
dr

(C.3)

but the first term in the right-hand side of Eq. (C.3) is canceled out with the first term

in the right-hand side of Eq. (C.2). Then:

R0
∫

0

rln

(

R0

r

)

|AjJl(γjr)|2dr =
R0
∫

0

∫

r |AjJl(γjr)|2dr
1

r̂
dr̂ (C.4)

where we have used the symbol ˆ to distinguish between the two integrations. This

integral is the same than the one solved in Appendix B.2 when dealing with the Poisson

equation in the semiconductor. We recall here Eq. (B.30)

A2
j

∫ ∫

r J2
l (γjr)dr

1

r̂
dr̂ = A2

j

(

r2

2
J2
l (γjr) +

r2

2
J2
l−1(γjr)+

+(−l + 1

2
)
r

γj
Jl−1(γjr)Jl(γjr) +

l

γ2j

l
∑

m=1

J2
m−1(γjr)−

l

2γ2j
J2
0 (γjr)

)

(C.5)

So, evaluating Eq. (C.5) in their limits, r = R0 and r = 0, we have::

R0
∫

0

∫

r |AjJl(γjr)|2dr
1

r̂
dr̂ = A2

j

(

R2
0

2
J2
l (γjR0) +

R2
0

2
J2
l−1(γjR0)+ (C.6)

(−l + 1

2
)
R0

γj
Jl−1(γjR0)Jl(γjR0) +

l

γ2j

l
∑

m=1

J2
m−1(γjR0)−

l

2γ2j
J2
0 (γjR0)−

l

2γ2j
J2
0 (0)

)

where we have used Jv(0) = 0 for v 6= 0. Therefore, using Eq. (C.6), CCj can be

written as:

CCj =
2πǫs
A2
j

(

R2
0

2
J2
l (γjR0) +

R2
0

2
J2
l−1(γjR0) + (−l + 1

2
)
R0

γj
Jl−1(γjR0)Jl(γjR0)+

+
l

γ2j

l
∑

m=1

J2
m−1(γjR0)−

l

2γ2j
J2
0 (γjR0)−

l

2γ2j
J2
0 (0)

)−1

(C.7)
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Furthermore, looking at the similarities between the resolution proposed here for the

centroid capacitance and the one carried out in Appendix B.2 for ϕj it is easy to

conclude that:

CCj =
2πǫs

ϕj(R0)− ϕj(0)
(C.8)

Therefore, from ϕj properties (see Section 5.3), we can assume that degenerate energy

levels have equal centroid capacitances.

To conclude this Appendix we give the particular centroid capacitance expressions

for the first five subbands: j = 0, l = 0; j = 1, 2, l = ±1; and j = 3, 4, l = ±2. They

are used later in Section 6.3. For j = 0, l = 0;

CC0 =
2πǫs
A2
j

2

R2
0

(

J2
0 (γ0R0) + J2

1 (γ0R0)−
1

γ0R0
J1(γ0R0)J0(γ0R0)

)−1
(C.9)

For j = 1, 2, l = ±1;

CC1,2 =
2πǫs
A2

1

2

R2
0

(

J2
1 (γ1R0) + J2

0 (γ1R0)−
1

γ1R0
J0(γ1R0)J1(γ1R0)+

J2
0 (γ1R0)− J2

0 (0)

γ21R
2
0

)−1
(C.10)

For j = 3, 4, l = ±2;

CC3,4 =
2πǫs
A2

3

2

R2
0

(

J2
2 (γ3R0) + J2

1 (γ3R0)−
3

γ3R0
J1(γ3R0)J2(γ3R0)+

+
4

γ23R
2
0

J2
1 (γ3R0) + 2

J2
0 (γ3R0)− J2

0 (0)

γ23R
2
0

)−1
(C.11)

where in all cases J2
0 (0) = 1

C.2 Validity of the approximations for the Cg and VT mod-

els

In this Section we check the validity of the approximations made in Chapter 6, specif-

ically in Eqs. (6.1) and (6.49), for the capacitance and threshold voltage models.
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First, we deal with the approximation in Eq. (6.1). We recall it here:

CG =
∂QG

∂VG
= −∂Qs +Qins

∂VG
≃ −∂Qs

∂VG
(C.12)

Here, we supposed that Qins was negligible compared to Qs. In the model, Qins (as-

suming no Dit) is determined by the wavefunction penetration into the insulator. For

a subband j, the ratio between the electron charge in the semiconductor (neglecting

Na) and the electron charge in the insulator is proved to be:

ϑC =

R0+tins
∫

R0

C2
jKl(αjr)rdr

R0
∫

0

A2
jJl(γjr)rdr

=
1

R0
∫

0

A2
jJl(γjr)rdr

− 1 (C.13)

where we have applied Eq. (B.1). From, ϑ we can get an estimation of the relative

error committed in Eq. (C.12). The exact value of the error depends on the relative

occupations of the different subbands and the corresponding errors associated to each

subband. Fig. shows ϑ as a function of the NW size for several materials InGaAs (solid

lines), InAs (dashed lines) and GaAs (dash-dotted lines) and subbands: j = 0, l = 0

(blue), j = 1, 2, l = ±1 (green) and j = 3, 4, l = ±2.

InAs shows the maximum error as it has the lower confinement effective mass and

consequently higher wavefunction penetration (see Fig 5.12 in Chapter 5). The behavior

of the error is non-monotonic as the penetration of the wavefunction into the insulator

is a not simple result which depends of several factors: the potential barrier height,

the size of the NW or the effective mass in the insulator and the semiconductor among

others. Nevertheless the maximum error achieved is around 5% (corresponding to

j = 3, 4, l = ±2 subband in InAs for 2R0 = 5nm), but this subband for this size is

nearly empty for a reasonable range of gate voltage (see Fig. 5.13 in Chapter 5), so

its contribution to the error in Eq. (6.1) is negligible. From Fig. C.1 we can conclude

that the approximation in Eq. (6.1) is appropriate.

In second place, we discuss the approximation in Eq. (6.49). It is a well known

approximation for K0 when the argument is high [204]. We define the relative error
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Figure C.1: ϑ as a function of the NW size for several materials:
InGaAs (solid lines), InAs (dashed lines) and GaAs (dash-dotted lines)
and subbands: j = 0, l = 0 (blue), j = 1, 2, l = ±1 (green) and
j = 3, 4, l = ±2.

due to this approximation as:

ϑT =

R0+tins
∫

R0

K0(α0r)−
√

π
2α0r

e−α0rrdr

R0+tins
∫

R0

K0(α0r)rdr

(C.14)

To validate the applicability of this expression in our threshold voltage model, Fig. C.2

shows the relative error between the analytical integral solution in Eq. (5.58) and the

approximate solution in Eq. 6.50 for several III-V materials: InGaAs (blue), GaAs

(green) and InAs (red), as a function of the semiconductor diameter when tins = 1.5nm

was considered. As can be seen the relative error is lower than 3% for the devices

considered in this work.
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Figure C.2: Relative error (ϑT) between the analytical integral so-
lution of Eq. (5.58) and the approximate solution of Eq. (6.50) as a
function of the NW size, for several III-V materials: InGaAs (plotted
as blue), GaAs (plotted as green) and InAs (plotted as red).
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Appendix D

Scattering elements

In this Appendix we briefly discuss the characteristic of the three kinds of scattering

mechanisms distinguished in Section 7.4 and their implication in the formulation of the

implicit problem given by Eq. (7.34).

D.1 Inelastic anisotropic mechanism

For an inelastic anisotropic mechanism the energy is not conserved and Sj,j′ is wavenum-

ber dependent. This can be written in the general formulation given in Eq. (7.19) as:

Siaj,j′(kz, k
′
z) =

2π

~

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
δ
(

Ej′(k
′
z)− Ej(kz)± ~ω

)

(D.1)

where the delta function restricts the non null elements of Sj,j′ to those with Ej′(k
′
z) =

Ej(kz)± ~ω. We assume that the scattering mechanism is not kz dependent itself, and

ω 6= ω(kz − k′z). Using the equivalence [88]:

∑

kz

=
L

2π

∫

dkz (D.2)
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we can write:

1

τ iaj (kz)
=
∑

j′,k′z

Sia
j,j′(kz, k

′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

=

L

~

∑

j′

∫

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
δ
[

Ej′(k
′
z)− Ei(kz)± ~ω

]

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

dk′z

(D.3)

For a 1D electron gas, with a monotonic dispersion relation (guaranteed under non-

parabolic EMA), there are only two k′z states in the subband j′ with energy Ej′(k
′
z) =

Ej(kz)+~ω and other two k′z states with Ej′(k
′
z) = Ej(kz)−~ω. We name them here k+z,b

and k+z,f for the process augmenting the electron energy and k−z,b and k−z,f for the process

reducing the electron energy. The subindex b (backward) and f (forward) denotes

transitions to final states with negative and positive kz respectively. Fig. D.1 presents

a schematic depiction of subbands j and j′ and the different kz states involved in a

transition due to an inelastic intersubband process. Inelastic anisotropic mechanisms

can also be intrasubband (see Chapter 8) and the resulting kz are plotted in Fig. D.1

as squares.

Using the δ function property:

∫

dk′zF (kz)δ(g(k
±
z )) =

∑

n

F (k±z,n)

|g′(k±z,n)|
(D.4)

where k±z,n are the zeros of g(kz) and g
′ = dg/dkz, we can rewrite Eq. (D.3) as:

1

τ iaj (kz)
=
∑

j′

L

2π

∫

2π

~

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
δ
[

E′ − E ± ~ω
]

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

dkz =

L

~

(

1− f0(E ± ~ω)

1− f0(E)

)

∑

j′

[

|Mj,j′(kz, k
′±
z,b)|2

|~vj′(k′±z,b)|

(

1−
τj′(k

′±
z,b)vj′(k

′±
z,b)

τj(kz)vj(kz)

)

+
|Mj,j′(kz, k

′±
z,f)|2

|~vj′(k′±z,f)|

(

1−
τj′(k

′±
z,f)vj′(k

′±
z,f)

τj(kz)vj(kz)

)]

(D.5)

where
∂(Ej′(k

′
z)− Ej(kz)± ~ω)

∂k′z
= ~vj′(k

′
z) (D.6)
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Using the symmetry property of the non-parabolic EMA dispersion relation, we get

vj′(k
′±
z,b) = −vj′(k′±z,f) and τj′(k′±z,b) = τj′(k

′±
z,f). Then Eq. (D.5) can be written as:

1

τ iaj (kz)
=
L

~

(

1− f0(E ± ~ω)

1− f0(E)

)

∑

j′

[

|Mj,j′(kz, k
′±
z,f)|2 − |Mj,j′(kz, k

′±
z,b)|2

|~vj′(k′±z,f)|
(

1−
τj′(k

′±
z,f)vj′(k

′±
z,f)

τj(kz)vj(kz)

)]

(D.7)

+hw

E’ E+h= w

E

E’ E-h= w
-hw

j’j

k’z,b
+

k’z,f
+

k’z,b
-

k’z,f
-

E

k z

Figure D.1: Schematic view of the transitions between k-states in
the subband j and the subband j′ due to an inelastic mechanism.
The initial state is plotted as a filled circle while the final states for
a intersubband transitions are marked with arrows and plotted as
unfilled circles. Final states resulting from a intrasubband transition
are also plotted as squares.

D.2 Elastic anisotropic mechanism

For an elastic anisotropic mechanism, Sj,j′ depends on the wavenumber but there is

energy conservation. Then, Sj,j′ can be written as:

Seaj,j′(kz, k
′
z) =

2π

~

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
δ
[

Ej′(k
′
z)− Ej(kz)

]

(D.8)
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where the delta function restricts the non null elements of Sj,j′ to those with Ej′(k
′
z) =

Ej(kz). Then, using (D.2) we can write:

1

τ eaj (kz)
=
∑

j′,k′z

Seaj,j′(kz, k
′
z)

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(kz)
′vj′(k′z)

τj(kz)vj(kz)

)

=

=
∑

j′

L

2π

∫

2π

~

∣

∣Mj,j′(kz, k
′
z)
∣

∣

2
δ
[

E′ −E
]

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

dkz

(D.9)

This expression is similar to (D.3) except for the term [1− f0(E
′)] / [1− f0(E)] = 1.

For a transition between bands j and j′ and non-parabolic EMA there are just two

possible final states k′z,b and k′z,f. Fig. D.2 presents a schematic depiction of subbands

j and j′ and the different k states involved in a transition due to an elastic process.

Again just intersubband transitions were marked with arrows, denoting the final states

with circles while the final states resulting from intrasubband transitions (also possible

in elastic anisotropic mechanisms) are plotted as squares.

Following the same mathematical procedure and the symmetry of the dispersion

relation under EMA discussed previously we reach to:

1

τ eaj (kz)
=
L

~

∑

j

[

|
Mj,j′(kz, k

′
z,f)|2 − |Mj,j′(kz, k

′
z,b)|2

~vj′(k
′
z,f)

(

1−
τj′(k

′
z,f)vj′(k

′
z,f)

τj(kz)vj(kz)

)]

(D.10)

k’z,b
E E’=

E

k z

j’j

k’z,f

Figure D.2: Schematic view of the transition between k-states in the
subband j and the subband j′ due to an elastic process. The initial
state is plotted as a filled circle, while final states for a intersubband
transition are marked with arrows and plotted as unfilled circles. Final
states resulting from an intrasubband transition are also plotted as
squares.
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D.3 Isotropic mechanism

For isotropic mechanisms (both elastic and inelastic), Sj,j′ does not depend on the

wavenumber and there is not energy conservation. Thus, Sj,j′ can be written as:

Sisj,j′(kz, k
′
z) = Sisj,j′(E) =

2π

~
|Mj,j′|2δ[Ej′(k′z)−Ej(kz)± ~ω)] (D.11)

where the Mj,j′ dependence on kz was annulled and we assumed inelastic process. The

derivation for elastic processes is the same except for the factor ±~ω. As in the inelastic

anisotropic mechanisms, we assume that the scattering mechanism is not kz dependent

itself and ω 6= ω(kz − k′z). Then, the sum over all k′z states which contribute to the

inelastic isotropic τj would be:

1

τ isj (kz)
=
∑

j′,k′z

Sisj,j′

(

1− f0(E
′)

1− f0(E)

)(

1− τj′(k
′
z)vj′(k

′
z)

τj(kz)vj(kz)

)

=

2π

~

∑

j′

|Mj,j′|2
∑

k′z

δ[E′ − E ± ~ω]

(

1− f0(E
′)

1− f0(E)

)

(D.12)

Here the term
[

1− τj′(k
′
z)vj′(k

′
z)/τj(kz)vj(kz)

]

drops in the sum. This is because for

symmetric bands: vj′(k
′±
z,f) = −vj′(k′±z,b), being k′±z,b and k′±z,f the possible final sates (see

Fig. D.1). Due to the isotropy: τj′(k
′±
z,f) = τj′(k

′±
z,b) = τj′(E

′).

Then using (D.2) we get:

∑

j

L

2π

∣

∣Mj,j′
∣

∣

2
∫

2π

~
δ
[

E′ − E ± ~ω
]

(

1− f0(E
′)

1− f0(E)

)

dk′z (D.13)

This expression is similar to (D.3) except for the term
[

1− τj′(k
′
z)vj′(k

′
z)/τj(kz)vj(kz)

]

.

Following the same mathematical procedure and the approximations for a monotonic

symmetric dispersion relation we reach:

1

τ isj (kz)
=
L

~

(

1− f0(E ± ~ω)

1− f0(E)

)

∑

j′

[

2Mj,j′

|~vj′(k′±z,f)|

]

(D.14)

Unlike in anisotropic scattering mechanisms, the momentum relaxation time of an

isotropic mechanism can be calculated independently of the rest of scattering mecha-

nism as no implicit dependence on τj is present.
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Scattering mechanisms related

calculi

In this Appendix we sum up some of the necessary calculi for the determination of the

matrix element of the different scattering mechanisms.

E.1 Surface Roughness: axial and qz integrations

In this Section we detail the space and wavenumber axial integration of Eq. (8.9)

paying attention to the normalization of the delta Dirac function. We recall space and

wavenumber axial integration in Eq. (8.9) as:

∫

dqz

∫ L

0
dz

∫ L

0
dz′eı(kz−k

′
z+qz)(z−z′)C(qz, qs) =

∫

dqzC(qz, qs)

∫ L

0
dzeı(kz−k

′
z+qz)z

∫ L

0
dz′e−ı(kz−k

′
z+qz)z

′
(E.1)

Each of the previous space axial integrations can be solved, assuming L −→ ∞, taking

into account that:
∫ ∞

−∞
e−ıqzdz = 2πδ(q) (E.2)

Then, we can rewrite Eq. (E.1) as:

2π

∫

dqzC(qz, qs)

∫ L

0
dzeı(kz−k

′
z+qz)zδ(kz − k′z + qz) (E.3)
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Let us now define, for simplicity, g(qz) =
∫ L
0 dzeı(kz−k

′
z+qz)z . Then the previous integral

leads to:

2πC(qfz , qs)g(q
f
z ) (E.4)

being qfz = k′z − kz. From the definition of g(qz), it is clear that g(qfz ) =
∫ L
0 dz = L,

and therefore Eq. (E.1):

2πLC(qfz , qs) (E.5)

E.2 Coulombian dispersion hard-sphere model

In this Section we apply the hard-spheres model proposed by Ning et al. [246] to a 1D

electron gas. The aim is to determine a power spectrum CCO
m,i(qz) from the autocorre-

lation function of a random distribution of ionized impurities along the axial direction.

The first approximation made here assumes that the distribution of charges along the

axial direction for a given position s = si in the confinement plane is completely inde-

pendent of the axial distribution corresponding to another position s = sm.
1

Now we assume that for each position sm in the confinement plane there is a random

distribution of N punctual particles along the axial direction. As explained in [241], it is

not the charge density, but its fluctuations, the responsible of the Coulomb scattering.

Therefore, we will define:

σm(z) =

N
∑

i=1

δ(z − zi)−Navg (E.6)

where Navg is the average charge density per unit length, and is related to N as,

Navg = N/L.S Taking the Fourier transform we get:

σm(qz) =

N
∑

i=1

e−ıqzzi −Navgδ(qz) (E.7)

1The approximation makes sense as far as the positions si and sm are far from each other but can
be criticizes otherwise. For the sake of simplicity we go on with it here.
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The power spectrum CCO
m,m(qz) is given by:

CCO
m,m(qz) = 〈σm(qz)σ∗m(qz)〉 =

∫

(

N
∑

i=1

e−ıqzzi −Navgδ(qz)

)





N
∑

j=1

eıqzzj −Navgδ(qz)



P (z1, ..., zN )dz1...dzN (E.8)

where P (z1, ..., zN )dz1...dzN is the probability of a set of particles 1...N to be placed

near the set of positions z1...zN . We will call W (zi, zj)dzidzj the joint probability of

particles i and j being at zi and zj regardless the positions of the rest of the particles:

W (zi, zj) =

∫

P (z1...zN )dz1...dzN
dzidzj

(E.9)

After Ning et al. [246], Eq. (E.8) can be written as:

CCO
m,m(qz) = Navg +

∑

i,j,i6=j

∫

W (zi, zj)e
−ıqz(zi−zj)dzidzj −N2

avgδ (qz) (E.10)

The hard sphere model assumes that two particles cannot be closer than Rt, and can

be uniformly distributed otherwise. Thus, W (zi, zj) is:

W (zi, zj) =







0 if|zi − zj | < Rt

1
(L−Rt)L

if|zi − zj | > Rt

(E.11)

where 1/L is the probability of a particle being at position zi and 1/(L − Rt) is the

probability of a particle being at a position zj given that there is a particle at position

zi. W (zi, zj) can be written in a more compact way as

W (zi, zj) =
1

(L−Rt)L

[

1− rect

(

zi − zj
Rt

)]

(E.12)

The integral in Eq. (E.10) results into:

∫

eıqzzjdzj

∫
[

1− rect

(

zi − zj
Rt

)]

e−ıqzzidzi (E.13)
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where the inner integral is the Fourier transform of
[

1− rect
(

zj−zi
Rt

)]

. Thus: (E.13)

∫

eıqzzj
[

δ(qz)−Rte
−ıqzzjsinc(Rtqz)

]

dzj (E.14)

which results in:

δ(qz)δ(−qz)− LRtsinc(Rtqz) (E.15)

Then we can write Eq. (E.10) as:

CCO
m,m(qz) = Navg+

1

L (L−Rt)

∑

i,j,i6=j
[δ(qz)δ(−qz)− LRtsinc(Rtqz)]−N2

avgδ (qz) (E.16)

The terms accompanying δ (qz) will only appear in the calculation when qz = 0. But

qz does not affect in CO scattering mechanisms. Thus, they can be neglected:

CCO
m,m(qz) = Navg −

1

L2
(N)(N − 1)LRtsinc(Rtqz) (E.17)

which can be rewritten, taking into account the relation L = N/Navg, and assuming

N ≃ N − 1 and L ≃ L−Rt, as:

CCO
m,m(qz) = Navg

[

1− N

L
Rtsinc(Rtqz)

]

(E.18)

where C = N
LRt = NavgRt is defined as the autocorrelation coefficient: C = 0 corre-

spond to a completely uncorrelated random distribution while C = 1 us a uniform fully

correlated distribution.

E.3 Acoustic phonon: contributions over all q

In this Section, we sum up the mathematical details for the determination of the squared

matrix element due to acoustic phonons. An equivalent procedure is followed in the

determination of |Mj,j′(kz, k
′
z)|2 in Eq. (8.48) for optical phonons. First we recall the

squared matrix element from Eq. (8.44):

|Mj,j′(kz, k
′
z)|2 =

D2
APH

L2

kBT

2̺s

1

v2s

1

AL

∫

A
ds

∫

A
ds′
∫ L

0
dz

∫ L

0
dz′ fj,j′,kz,k′z(s)e

−ı(qxx+qyy)

f∗j,j′,kz,k′z(s
′)eı(qxx

′+qyy′)e−ı(kz−k
′
z−qz)(z′−z) (E.19)
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We will focus in the term which is common to acoustic and optical phonon:

1

AL

∫

A
ds

∫

A
ds′dz
∫ L

0
dz′ fj,j′,kz,k′z(s)e

−ı(qxx+qyy)

f∗j,j′,kz,k′z(s
′)eı(qxx

′+qyy′)e−ı(kz−k
′
z−qz)(z′−z) (E.20)

We can define the Fourier transform of fj,j′,kz,k′z(x, y) as:

fj,j′,kz,k′z(qs) =

∫

A
dsfj,j′,kz,k′z(s)e

−ıqss (E.21)

where qss = qxx+ qyy Then:

1

AL

∫ L

0
dz

∫ L

0
dz′ fj,j′,kz,k′z(qs)f

∗
j,j′,kz,k′z

(qs)e
−ı(kz−k′z−qz)(z′−z) (E.22)

Now we sum over all possible states qx, qy and qz to take into consideration all the q

contributions. We convert the summation into integrals taking into consideration that:

∑

qx,qy,qz

=
AL

8π4
(E.23)

to rewrite Eq. (E.20) as:

1

8π3

∫ L

0
dz

∫ L

0
dz′
∫

dqz

∫

dqx

∫

dqy fj,j′,kz,k′z(qs)f
∗
j,j′,kz,k′z

(qs)e
−ı(kz−k′z−qz)(z′−z) (E.24)

Using the Parserval theorem:

1

4π2

∫

dqx

∫

dqy fj,j′,kz,k′z(qs)f
∗
j,j′,kz,k′z

(qs) =

∫

A
ds fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s) (E.25)

Eq. (E.24) can be written as:

1

2π

∫ L

0
dz

∫ L

0
dz′
∫

A
dA fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s)

e−ı(kz−k
′
z−qz)(z′−z) (E.26)

where the axial and qz integration can be done as in Appendix ?? resulting into:

L

∫

A
dA fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s) (E.27)
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Then substituting into Eq. (E.19)

|Mj,j′(kz, k
′
z)|2 =

D2
APH

L

kBT

2̺s

1

v2s

∫

A
dA fj,j′,kz,k′z(s)f

∗
j,j′,kz,k′z

(s) (E.28)

where the matrix element does not depend on qz and therefore it is isotropic.

E.4 Non polar phonons: qx and qy contributions

In this Section we deal with the integration of all qx and qy contributions to the matrix

element of polar optical phonons. Thus, we recall here the inner integral in Eq. (8.54).

∫ ∫

dqxdqy
e∓ıqx(x−x

′)∓iqy(y−y′)

q2x + q2y + q2z
(E.29)

I can be simplified to:

∞
∫

−∞

dqy
π

√

q2y + q2z

e±ıqy(y−y
′)e−

√
q2y+q

2
z |x−x′| (E.30)

To simplify the notation of the integral we rename:

y=qy

a=|x− x′|
c=qz

b=(y − y′)

(E.31)

Then, the integral to be solved is,

∞
∫

−∞

e±ıbye−a
√
y2+c2

√

y2 + c2
dy (E.32)

For the sake of clearness we will consider first just the minus sign in the exponential.

We will analyze the plus sign of the exponential later. Now we can rearrange the square
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root terms as:

∞
∫

−∞

e−ıbye−a
√
y2+c2

√

y2 + c2
dy =

∞
∫

−∞

e−ıbye−a|c|
√

(y/c)2+1

|c|
√

(y/c)2 + 1
dy (E.33)

where
√
c2 = |c|. We can use the change of variable:

y/c = sinh(ϕ) −→ dy = ccosh(ϕ)dϕ (E.34)

which keeps the integral limits: y → ∞ ⇒ ϕ → ∞; y → −∞ ⇒ ϕ → −∞ Here we

have supposed c > 0. If not the integral limits are inverted:
∫ −∞
∞ = −

∫∞
−∞. But the

minus sign of this integral would be cancelled with the minus sign of c in dy. So we

can write dy = |c| cosh(ϕ)dϕ regardless of the sign of c and keep the integral limits

between −∞ and ∞ . Then,

∞
∫

−∞

e−ıbye−a|c|
√

(y/c)2+1

|c|
√

(y/c)2 + 1
dy =

∞
∫

−∞

e−ıbc sinh(ϕ)e−a|c|
√

sinh2(ϕ)+1

|c|
√

sinh2(ϕ) + 1
|c| cosh(ϕ)dϕ (E.35)

Using the relation cosh2(x)− senh2(x) = 1 we get:

∞
∫

−∞

e−ıb|c| sinh(ϕ)e−a|c| cosh(ϕ)

|c| cosh(ϕ) |c| cosh(ϕ)dϕ =

∞
∫

−∞

e−ıbc sinh(ϕ)−a|c| cosh(ϕ)dϕ (E.36)

This integral can be identified with the integral representations of the Hankel functions,

(

z + ξ

z − ξ

)
1
2
v

H(1)
v

(

(z2 − ξ2)
1
2

)

=
1

iπ
e−

1
2
vπı

∞
∫

−∞

eız cosh(t)+ıξsinh(t)−vtdt if Im(z ± ξ) > 0

(E.37)

(

z + ξ

z − ξ

)1
2
v

H(2)
v

(

(z2 − ξ2)
1
2

)

= − 1

ıπ
e

1
2
vπı

∞
∫

−∞

e−ız cosh(t)−ıξsinh(t)−vtdt if Im(z ± ξ) < 0

(E.38)
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which for v = 0 are particularized as:

H
(1)
0

(

(z2 − ξ2)
1
2

)

=
1

iπ

∞
∫

−∞

eız cosh(t)+ıξsinh(t)dt if Im(z ± ξ) > 0 (E.39)

H
(2)
0

(

(z2 − ξ2)
1
2

)

= − 1

iπ

∞
∫

−∞

e−ız cosh(t)−ıξsinh(t)dt if Im(z ± ξ) < 0 (E.40)

Then, we can rearrange (E.36) as:

∞
∫

−∞

e−ıbc sinh(ϕ)−a|c| cosh(ϕ)dϕ =

∞
∫

−∞

eıa|c|ı cosh(ϕ)−ıbc sinh(ϕ)dϕ (E.41)

It is easy to identify z = a|c|ı and ξ = −bc. Then Im(a|c|ı ± −bc)=a|c|, and, as a is

always positive –see the definition in equation (E.31)–, a|c| is always positive, and we

use the first Hankel function

∞
∫

−∞

eıa|c|ı cosh(ϕ)−ibc sinh(ϕ)dϕ = iπH
(1)
0 [
(

(a|c|ı)2 − (−bc)2
)

1
2 ] = sign(c)ıπH

(1)
0 [ı

(

c2(a2 + b2)
)

1
2 ]

(E.42)

The first Hankel function is related to the modified Bessel function of the second kind,

Kv(x) =
π

2
ıv+1H(1)

v (ix) (E.43)

Then, we can write:

∞
∫

−∞

eıacı cosh(ϕ)−ıbc sinh(ϕ)dϕ = 2K0[
(

c2(a2 + b2)
)

1
2 ] (E.44)

Regarding the plus sign in the first exponential in equation (E.30), the procedure to

solve the integral keeps. The only modification would be ξ = bc instead of ξ = −bc in
the first Hankel function, but as ξ is squared, the solution will be:

∞
∫

−∞

eıbye−a
√
y2+c2

√

y2 + c2
dy = 2K0[

(

c2(a2 + b2)
)

1
2 ] (E.45)
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which is the same. Therefore we have:

∞
∫

−∞

dqy
π

√

q2y + q2z

e±ıqy(y−y
′)e−

√
q2y+q

2
z |x−x′| = 2πK0

(

|qz|
√

(x− x′)2 + (y − y′)2
)

(E.46)
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Materials parameters

In this Appendix we collect the material parameters employed in the different electro-

static and transport studies carried out in this work. Table F.1 sums up the material

parameters of several III-V compound semiconductors [89, 135, 272].

InAs GaAs In0.53Ga0.47As

Eg,Γ (eV) 0.416 1.518 0.829

Eg,X (eV) 1.477 2.003 1.597

Eg,L (eV) 1.14 1.812 1.185

mΓ (m0) 0.026 0.082 0.052

mlX (m0) 7.079 1.705 4.553

mtX (m0) 0.232 0.236 0.233

mlL (m0) 1.707 1.610 1.661

mtL (m0) 0.106 0.126 0.115

βΓ (eV/eV) 1.4 0.61 1

βX (eV/eV) 0.5 0.204 0.5

βL (eV/eV) 0.5 0.461 0.5

χs (eV) 4.9 4.15 4.6

ǫs (ǫ0) 15.15 12.9 14.17

ǫs,∞ (ǫ0) 12.75 10.92 11.8

ρs (g/cm3) 5.67 5.36 5.06

φCNL,s (eV) 4.81 5.11 4.86

Table F.1: Material parameters of several III-V compound semicon-
ductors. After [89, 135, 272]

Scattering mechanism parameters for III-V materials are collected in Table F.2,[273,

274]. The values for In0.53Ga0.47As are obtained from linear interpolation of those
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referenced for InAs and GaAs.

InAs GaAs In0.53Ga0.47As

APH

DAPH (eV) 5.8 5 5.42

vs (cm/s) 4.28 5.24 4.25

OPH

~ωOPH,Γ↔X (meV) 19.23 23.45 21.21

~ωOPH,Γ↔L (meV) 17.45 22.69 19.91

~ωOPH,X↔X (meV) 19.26 24.31 21.63

~ωOPH,L↔L (meV) 19.23 24.97 21.93

~ωOPH,X↔L (meV) 17.45 21.85 19.52

DOPH,Γ↔X (108ev/cm) 6.35 5.48 5.94

DOPH,Γ↔L (108ev/cm) 5.59 5.25 5.43

DOPH,X↔X (108ev/cm) 3.36 2.99 3.18

DOPH,L↔L (108ev/cm) 6.35 5.94 6.15

DOPH,X↔L (108ev/cm) 5.59 5.01 5.31

POP

~ωPOP,Γ↔Γ (meV) 30 36 32.8

~ωPOP,X↔X (meV) 30 36 32.8

~ωPOP,L↔L (meV) 30 36 32.8

AD

|Va − Vb| (eV) - - 0.528

a0 (10−8m) - - 5.86

Table F.2: Scattering mechanism parameters for III-V compound
semiconductors. After [273, 274]
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Table F.3 sums up the material parameters of Si [92].

Eg,∆ (eV) 1.11

mlX,∆ (m0) 0.91

mtX,∆ (m0) 0.19

β∆ (eV/eV) 0.5

χs (eV) 4.05

ǫs (ǫ0) 11.9

ρs (g/cm3) 2.33

φCNL,s (eV) 4.96

Table F.3: Material parameters of Si. After [92]

Table F.4 summarizes the scattering mechanism parameters for Si [222, 275]:

APH

DAPH (eV) 12

vs (cm/s) 9

OPH

~ωOPH,g1 (meV) 140

~ωOPH,f1 (meV) 210

~ωOPH,g2 (meV) 210

~ωOPH,f2 (meV) 570

~ωOPH,g3 (meV) 750

~ωOPH,f3 (meV) 700

DOPH,g1,∆↔∆ (108ev/cm) 0.5

DOPH,f1,∆↔∆ (108ev/cm) 0.3

DOPH,g2,∆↔∆ (108ev/cm) 1.1

DOPH,f2,∆↔∆ (108ev/cm) 1.34

DOPH,g3,∆↔∆ (108ev/cm) 11

DOPH,f3,∆↔∆ (108ev/cm) 4

Table F.4: Scattering mechanism parameters for Si. After [222, 275]

where six optical transitions has been considered: three for a low ω which as shown in

Fig. 8.1 correspond to TA, LA and TO-LO; and three for a high ω which correspond

to TA, LA-TO and LO respectively. The first three, with lower energy, are considered

intravalley, and noted as g, while the last three, (with higher energy), are assumed

intervalley and noted as f .
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The materials parameters of several insulators are collected in Table [126, 134].

SiO2 Al2O3 Ta2O5

Eg (eV) 9 8.8 4.4

mins (m0) 0.5 0.2 0.2

χins (eV) 0.9 1 3.3

ǫins (ǫ0) 3.9 9 9

ǫins,∞ (ǫ0) 2.25 3.12 4.84

S 0.86 0.69 0.4

φCNL,ins (eV) 5.4 3.8 4.4

Table F.5: Material parameters of several insulators. After [126, 134]
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[190] A. Ortiz-Conde, F.J. Garćıa Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and

Y. Yue. A review of recent MOSFET threshold voltage extraction methods.

Microelectronics Reliability, 42:583, Dec 2002.

[191] K. Nehari, J.L. Autran, D. Munteanu, and M. Bescond. A compact model for

the threshold voltage of silicon nanowire MOS transistors including 2D-quantum

confinement effects. In NSTI Nanotech 2005. NSTI Nanotechnology Conference

and Trade Show. Technical Proceedings, page 175, May 2005.

[192] A. S. Medury, K. N. Bhat, and N. Bhat. Threshold voltage modeling under size

quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-

effect transistor. Journal of Applied Physics, 112:024513, Jul 2010.

[193] P. R. Kumar and S. Mahapatra. Quantum threshold voltage modeling of short

channel quad gate silicon nanowire transistor. IEEE Transactions on Electron

Devices, 10:121, Sep 2011.

[194] Denis Flandre, Valeria Kilchytska, and Tamara Rudenko. gm/id method for

threshold voltage extraction applicable in advanced MOSFETs with nonlinear

behavior above threshold. IEEE Transactions on Electron Devices, 31:930, Sep

2010.

[195] T. Rudenko, V. Kilchytska, M.K.M Arshad, J.-P. Raskin, A. Nazarov, and

D. Flandre. On the MOSFET threshold voltage extraction by transconductance

and transconductance-to-current ratio change methods: Part I-effect of gate-

voltage-dependent mobility. IEEE Transactions on Electron Devices, 58:4172,

Dec 2011.

[196] A. Kloes, M. Weidemann, D. Goebel, and B. T. Bosworth. Three-dimensional

closed-form model for potential barrier in undoped finFETs resulting in analytical

References 299



equations for vt and subthreshold slope. IEEE Transactions on Electron Devices,

55(12):3467, 2008.

[197] F. J. G. Ruiz, I. M. Tienda-Luna, A. Godoy, L. Donetti, and F. Gámiz. A

model of the gate capacitance of surrounding gate transistors: Comparison with

double-gate MOSFETs. IEEE Transactions on Electron Devices, 57:2477, Oct

2010.

[198] D. Jin, D. Kim, T. Kim, and J. A. del Alamo. Quantum capacitance in scaled

down III-V FETs. In Electron Devices Meeting (IEDM), 2007 IEEE Interna-

tional, page 495, Dec 2009.

[199] H.S. Pal, K.D. Cantley, S.S. Ahmed, and M.S. Lundstrom. Influence of the

bandstructure and channel structure on the inversion layer capacitance of silicon

and GaAs MOSFETs. IEEE Transactions on Electron Devices, 55:904, Mar 2008.
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graphies de physique. Les Éditions de Physique, 1988. ISBN 9780470217085.

[256] J. W. Harrison and J. R. Hauser. Alloy scattering in ternary III-V compounds.

Physical Review B, page 5347, 1976.

[257] P. Toniutti, D. Esseni, and P. Palestri. Failure of the scalar dielectric function ap-

proach for the screening modeling in double-gate SOI MOSFETs and in FinFETs.

IEEE Transactions on Electron Devices, 57:3074, 2010.

References 305

http://nanohub.org/resources/11522
http://nanohub.org/resources/11522


[258] M. Tsetseri and G. P. Triberis. Mobility in V-shaped quantum wires due to

interface roughness and alloy scattering. Physical Review B, 69:075313, 2004.

[259] T. Sahu. Intersubband-coupling and screening effects on the electron subband mo-

bility in a GaAs/InxGa1−xAs delta-doped double quantum well system. Journal

of Applied Physics, 96:5576, 2004.

[260] JWW Van Tilburg, RE Algra, WGG Immink, M Verheijen, EPAM Bakkers, and

LP Kouwenhoven. Surface passivated InAs/InP core/shell nanowires. Semicon-

ductor science and technology, 25:024011, 2010.

[261] G W Holloway, Y Song, C M Haapamaki, R R LaPierre, and J Baugh. Electron

transport in InAs-InAlAs core-shell nanowires. Applied Physics Letters, 102:

043115, 2013.

[262] A C Ford, J C Ho, Y-L Chueh, Y-C Tseng, Z Fan, J Guo, et al. Diameter-

dependent electron mobility of InAs nanowires. Nano Letters, 9(1):360, 2008.

[263] S A Dayeh, D PR Aplin, X Zhou, P KL Yu, E T Yu, and D Wang. High electron

mobility InAs nanowire field-effect transistors. Small, 3:326, 2007.

[264] S Chuang, Q Gao, R Kapadia, A C Ford, J Guo, and A Javey. Ballistic InAs

nanowire transistors. Nano letters, 13:555, 2013.

[265] F Wang, S Yip, N Han, K Fok, H Lin, J J Hou, et al. Surface roughness induced

electron mobility degradation in InAs nanowires. Nanotechnology, 24(37):375202,

2013.

[266] H Yoshioka, N Morioka, J Suda, and T Kimoto. Mobility oscillation by one-

dimensional quantum confinement in Si-nanowire metal-oxide-semiconductor field

effect transistors. Journal of Applied Physics, 106:034312, 2009.

[267] M. Poljak, V. Jovanovic, D. Grgec, and T. Suligoj. Assessment of electron mobil-

ity in ultrathin-body InGaAs-on-insulator MOSFETs using physics-based mod-

eling. IEEE Transactions on Electron Devices, 59:1636, June 2012.

[268] M Yokoyama, Y Asakura, H Yokoyama, M Takenaka, and S Takagi. Impact

of Al2O3 ALD temperature on Al2O3/GaSb metal-oxide-semiconductor interface

properties. In Indium Phosphide and Related Materials (IPRM), 2013 Interna-

tional Conference on, 2013.

306 References



[269] SH Kim, M Yokoyama, R Nakane, O Ichikawa, T Osada, M Hata, M Takenaka,

and S Takagi. Strained extremely-thin body In0.53Ga0.47As-on-insulator MOS-

FETs on Si substrates. In VLSI Technology, 2013. Digest of Technical Papers.

2013 Symposium on, 2013.

[270] N. Xu, F. Andrieu, B. Ho, B.-Y. Nguyen, O. Weber, C. Mazuré, O. Faynot,
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