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A B S T R A C T

The objective of this thesis is to prove that the Service Oriented
Architecture (SOA) paradigm can be used to create distributed,
heterogeneous, dynamic and standards-based environments for
Evolutionary Algorithms (EAs). SOA provides independence in
programming language and transmission mechanisms, and also
facilitates the dynamic component management.

A methodology to develop EAs in these environments is pro-
posed. In this methodology, called SOA-EA, the SOA paradigm
is proposed to develop Service Oriented Evolutionary Algorithms
(SOEAs). The proposed methodology takes into account the re-
quirement to develop services and EAs, and it provides the steps
to identify, specify, implement and deploy the elements that con-
form a SOEA, and how to convert a traditional EA into a SOEA.
To validate this methodology, it has been used to create a frame-
work for SOEAs, called OSGiLiath, based in a public specifica-
tion technology (OSGi). This framework provides mechanisms
for dynamic component management and language and trans-
mission independence.

OSGiLiath and SOA-EA have been used to carry out experi-
ments in different areas to validate dynamic control and differ-
ent and heterogeneous environments: uncentralized distributed
EAs, other systems integration and different EA models.

R E S U M E N

El objetivo de esta tesis es demostrar que el paradigma de Arqui-
tectura Orientada a Servicios (AOS) puede usarse para crear en-
tornos distribuidos, heterogéneos, dinámicos y basados en están-
dares para Algoritmos Evolutivos (AEs). AOS proporciona inde-
pendencia en el lenguaje de programación y mecanismo de trans-
misión y facilita la administración de componentes de forma
dinámica.

Se propone crear una metodología para desarrollar AEs en es-
tos entornos. En esta metodología, denominada SOA-EA, se pro-
pone el uso del paradigma de SOA para desarrollar Algoritmos
Evolutivos Orientados a Servicios (AEOS). La metodología pro-
puesta tiene en cuenta los requisitos para desarrollar servicios
y EAs y proporciona los pasos para identificar, especificar, im-
plementar y desplegar los componentes que forman un AEOS,
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y cómo convertir un AE tradicional a un AEOS. Para validarla,
esta metodología se ha utilizado para crear un framework para
AEOS, llamado OSGiLiath, basado una tecnología pública (OSGi).
Este framework proporciona mecanismos para administración
de componentes dinámicos, independencia del lenguaje y proto-
colo de comunicación.

Tanto OSGiLiath como SOAEA se han utilizado para realizar
experimentos en distintos campos para validar el control del di-
namismo y la heterogeneidad: AEs distribuidos no centralizados,
integración con otros sistemas y distintos modelos de EAs.
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[. . .]
But there’s no sense crying
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You just keep on trying
’til you run out of cake.

And the science gets done.
[. . .]

for the people who are
still alive.

[. . .]
Now, these points of data

make a beautiful line.
And we’re out of beta.

We’re releasing on time!
So I’m GLaD I got burned!

Think of all the things we learned!
for the people who are

still alive.
[. . .]

Still alive.

— Genetic Lifeform and Disk Operating System (GLaDOS), 2007.
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Call me Ishmael.

— Herman Melville, Moby-Dick; or, The Whale
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1.1 GOALS OF THIS THESIS

The goal of this thesis is to create a methodology that adapts
Evolutionary Algorithms (EAs) to heterogeneous, dynamic and

standard-based distributed environments. This methodology pro-
poses the use of Service Oriented Architecture (SOA) as a new
paradigm to develop EAs. To validate this methodology, a frame-
work that use all the advantages of this paradigm (dynamic bind-
ing, automatic distribution and publication of interfaces using
standards) will be created. Finally, this methodology will be used
to create Service Oriented Evolutionary Algorithms (SOEAs) in
different scenarios, where these advantages will be reflected.
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1.2 MOTIVATION

Evolutionary Computation is a scientific field that involves a
large number of bio-inspired methods, problems and tools. One

of these methods are the evolutionary Algorithms (EAs), a set of
techniques of this field applied to optimization problems [38].
These algorithms imitate the process of natural selection, giv-
ing to fittest solutions (or individuals) more probability to mate
with others to generate new solutions that inherit its information.
Thus, iteratively, better individuals would recombine to form bet-
ter solutions of the problem to solve.

Initially, the EAs were proposed as a fixed set of steps to be
executed in a machine [38]. These steps can be combined to cre-
ate new algorithms, or be used dynamically depending on some
information during the run (for example, average quality of so-
lutions). Therefore, they should be designed and developed as
loose-coupled elements. With the advancement of Internet, new
trends such as P2P, leads to a new paradigm where different
software architectures, programming languages and transmis-
sion protocols collaborate to share computational resources and
integration.

Because of this combination of different technologies and trends,
a number of challenges in the EA area needs to be addressed.
One of them is the lack of standardization and integration in EA
software tools [119]. Many frameworks for EAs exist, but with-
out the possibility of interoperation of their components. This
would be desirable because it could save time and effort in de-
velopment, reusing existent components to create new EAs. Es-
tablishing public and discoverable standards for computing el-
ements not only can help in development and integration, but
facilitate Open Science [52]. Finally, there are not mechanisms to
deal with dynamism to manage operators (locally or remotely).

Service Oriented Architecture [118] is proposed in this thesis
as a solution to address previous shortcomings. This paradigm
defines the usage of loose-coupled and self-contained elements
(services) based on public standards. Its aim is to facilitate the
integration, interoperability and discovery in different software
systems.
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1.3 CHALLENGES IN EVOLUTIONARY ALGORITHMS

In the past decades much research has been conducted on Evolu-
tionary Computation, and several challenges have been pointed

out. The ones related with this thesis are shown next:

1.3.1 Parameter Adaptation

One of the greater challenges of the EC field is to find the appro-
priate values for EAs parameters, as claimed by Eiben et al. [36].
Researchers need to put effort on finding these values in order
to attain significant performance in their EAs. Not only to adapt
the numerical parameters (such as crossover rate), but also the el-
ements that conform an evolutionary algorithm (different types
of crossovers). The integration should be as easy as possible to
allow researchers develop new algorithms easily.

1.3.2 Dynamism and distribution

As in the previous challenge, mechanisms to deal with dynamism
in operators should be addressed. That is, not only the way to
combine the operators that conform an algorithm, but also how
to dynamically select among these available elements. Also, sev-
eral authors have mentioned the problem of the limited dynamic
and reflexive capabilities for loading algorithm elements (for ex-
ample, problems and heuristics) in frameworks for EAs [119].
Thus, mechanisms to announce operators and automatically dis-
covering and binding them should be used.

Dynamism should also be managed in distributed EAs. In
the traditional parallelization models [6] issues such as fault-
tolerance, security, churn, massive scalability or decentralization
were not taken into consideration [4]. New trends on distributed
EAs (such as P2P [92] or pool-based EAs [103]) are emerging,
and classic programming paradigms (such as Object Orientation)
do not provide mechanisms to deal with these issues.

1.3.3 Adaptation to hardware

Adapting algorithm parameters to available computational re-
sources can improve performance [138]. For example, the popu-
lation size in EAs is the key to obtain good performance, because
it has effect on the quality of the solution and the time spent dur-
ing the run [91]. This parameter has been studied as a fixed [72]
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or adaptive parameter during runtime [46, 98], but without tak-
ing into account the computational power of each machine in a
heterogeneous network of computers.

Also, EAs can be used in different hardware, such as mobile
devices [63], “smart dust” [125] or inside robots [56], so EAs
could benefit from the adaptation to the execution environment.

1.3.4 Interoperability

Interoperability is the ability of making systems to work together.
In the past decades, many programming languages and distribu-
tion technologies have appeared. The integration of these tech-
nologies is an important problem to be addressed [118]. Although
several development paradigms have been proposed (for exam-
ple, the plug-in based programming [143]) to develop EAs, a re-
cent survey in metaheuristic frameworks [119] shows that there
are not any mechanism of integration in the 33 frameworks eval-
uated. As in the new trends previously described, researchers
must also deal with heterogeneous hardware and different com-
munication protocols, but also with dynamic, non-centralized or
uncontrolled environments which expose different resources.

1.3.5 Open Science

It is in the field of Open Science [7] where the integration and
standardization of the elements that conform an EA can take ad-
vantage, facilitating the re-use and access to existing software,
systems, data, and results. Open Science is a movement that en-
courages the accessibility to all scientific research process open
publicly to all citizens, based on free software, public licenses,
open data, public scientific dissemination, and finally, well de-
fined and publicly available services [52].

1.3.6 Applications

Evolutionary Algorithms have been applied to a wide number
of applications from different fields. Various types of EAs, such
as Genetic Algorithms, have been applied to optimize routing
and inventory management [42], evolutionary art [62], evolu-
tion of robot behaviour [56], optimization of Neural Networks
[18] among many others. Genetic Programming algorithms have
been used for generation of agents for videogames [43] or docu-
ment transformation [61].
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Several yearly conferences, such as EvoApps or GECCO, present
research in fields as diverse as economics [85], energy [79], vide-
ogames [107], design [30], image analysis [8], industrial environ-
ments [95], and security [73], among others. Therefore, this field
is wide enough to allow the participation of researchers of many
different areas and expertise, obtaining results applied to many
academic, cultural and industrial fields.

1.4 OBJECTIVES

The objectives that this thesis tries to achieve are:

Objective 1: Prove that the Service Oriented Architecture pa-
radigm can be used to create distributed, heterogeneous, dy-
namic and standards-based environments for EAs

EAs are a large area that deals with several fields of computer
science: parallelism and distribution, parameter adaptation or
development of applications and tools. Therefore, the first ob-
jective is to propose a new paradigm that can deal with some
of the problems in this area: lack of standardization and mech-
anisms to facilitate integration, dynamism and interoperability
of their components. First, the traditional classification of EAs
and distributed EAs will be presented to clarify their common
elements. Then, new trends in EAs (such as P2P or pool-based
EAs) will be explained to show their advantages and deficiencies.
Dynamic parameter adaptation and hardware adaptation works
will be shown. Finally, several works on the development of EAs
will be explained to extract the requirements to design EAs, and
different EA frameworks will be studied, to extract their advan-
tages and weaknesses. A new paradigm, the Service Oriented
Evolutionary Algorithms (SOEAs) will be proposed to address
the detected shortcomings.

Objective 2: Propose a methodology that is able to success-
fully adapt evolutionary algorithms to distributed, heteroge-
neous, dynamic, standards-based environments

This methodology will help to identify, specify, implement and
deploy services to create SOEAs. This methodology will have to
deal with the restrictions in the SOA and EA design identified
in previous objective, to help in development, integration and
dynamism.
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Objective 3: Validate the methodology using a SOA technol-
ogy

To validate the methodology of the previous objective, this method-
ology will be applied to create a framework (called OSGiLiath)
using a specific SOA technology (OSGi). This framework will
be used to solve some of the problems previously detected: dy-
namic binding of services, publication of service interfaces using
public standards and save time without adding specific code for
distribution. In this objective, different SOA technologies will be
compared to select the most appropriate one for the problems
we want to solve.

Objective 4: Prove that a SOA-based implementation of dis-
tributed, dynamic, standards-based evolutionary algorithms
is able to solve efficiently different problems

The final objective of this thesis is to demonstrate that SOEAs
can be used to obtain relevant scientific results in several fields.
The methodology and framework will be used to perform ex-
periments in dynamic parameter adaptation to hardware, and
creation of competitive bots for video-games.

1.5 STRUCTURE OF THE THESIS

This chapter shows an introduction to this thesis, with the mo-
tivations and questions to address. The rest of the chapters are
structured as follows:

The first step of this thesis is to prove that the Service Ori-
ented Architecture paradigm can be used to create distributed,
dynamic and standards-based environments for EAs (objective
1). The reason to use this kind of environments will be explained
in Chapter 3, where new tendencies in distributed EAs, such as
P2P or pool-based algorithms, require some mechanism to deal
dynamic control of the nodes and heterogeneous architectures.
Also, other shortcomings of this environments that can be ad-
dressed, such as the lack of integration of languages and trans-
mission protocols, will be explained.

SOA will be explained in Chapter 4 as a possible way to de-
velop this kind of distributed, dynamic, standard-based environ-
ments, as it offers mechanisms to facilitate standardization, in-
tegration, open science and dynamism. Different technologies
and methodologies for SOA will be explained. Also, the require-
ments in SOA applied to the genericity of EAs and guidelines
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to create services for EAs will be presented to accomplish the
next objective: propose a methodology that is able to successfully
adapt evolutionary algorithms to distributed, dynamic, standards-
based environments. This methodology, called SOA-EA, will be
presented in Chapter 5. SOA-EA proposes several steps to cre-
ate Service Oriented Evolutionary Algorithms (SOEAs). Steps for
identification, specification, implementation and development of
services will be presented in that chapter, with some guidelines
about how each element of the EA should be designed as a ser-
vice.

To validate SOA-EA (objective 3), this methodology will be ap-
plied in Chapter 6 to create a framework (OSGiLiath) to develop
SOEAs using a specific technology. To show the automatic bind-
ing of services, an experiment that adaptively enables and binds
services to increase the performance of a SOEA will be presented.
Different ways of exposing services publicly using standards will
be shown, with a comparison of transmission time of different
distribution technologies. Finally, a comparative study in devel-
opment time with other frameworks for EAs will be presented.

OSGiLiath will be used in Chapter 7 to develop a new method
to adapt a parameter of a distributed EA (population size) to the
computational power of the nodes that execute the algorithm. To
do this, SOA-EA will be applied to create automatic binding of
services to create a decentralized island-based SOEA. This will
be used to accomplish the objective 4: prove that a SOA-based
implementation of distributed, dynamic, standards-based evolu-
tionary algorithms is able to solve efficiently a problem of pa-
rameter adaptation to hardware.

In the next chapter (Chapters 8) OSGiLiath will be used to
create SOEAs to generate competitive bots for RTS games. SOA-
EA will be applied to create new dynamic services, obtaining
relevant results.

Finally, chapter 9 will summarize the main contributions of
this thesis and future lines of research.

Figure 1.1 shows the methodology applied to prove all the ob-
jectives of this thesis.
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Figure 1.1
Summary of the
objectives of this
thesis.
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2.1 OBJETIVOS DE ESTA TESIS

El objetivo de esta tesis es crear una metodología para adap-
tar Algoritmos Evolutivos (AEs) a entornos dinámicos, hete-

rogéneos y basados en estándares. Esta metodología propone el
uso de Arquitectura Orientada a Servicios (AOS) como un nuevo
paradigma para desarrollar AEs. Para validar esta metodología
se usará para crear un framework que use todas las ventajas de
este paradigma (enlace dinámico y distribución y publicación de
interfaces utilizando estándares). Finalmente, esta metodología
se usará para crear Algoritmos Evolutivos Orientados a Servi-
cios (AEOS) en diferentes escenarios, donde se reflejarán estas
ventajas.

11
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2.2 MOTIVACIÓN

La Computación Evolutiva es un campo científico que abarca
un gran número de métodos bio-inspirados, problemas y he-

rramientas. Uno de estos métodos son los Algoritmos Evolu-
tivos (AEs), un conjunto de técnicas aplicadas a problemas de
optimización [38]. Estos algoritmos imitan el proceso de la selec-
ción natural, dando a las soluciones (o individuos) más adaptadas
más probabilidad de cruzarse con otras para generar nuevas
soluciones que hereden su información. Así, iterativamente, los
mejores individuos se recombinan para formar mejores soluciones
al problema a resolver.

Inicialmente, los AEs fueron propuestos como un conjunto fijo
de pasos para ser ejecutados en una sola máquina [38]. Estos
pasos pueden combinarse para crear nuevos algoritmos, o es-
cogerse dinámicamente dependiendo de alguna información du-
rante la ejecución (por ejemplo, la calidad media de las solu-
ciones). Por lo tanto, deberían diseñarse y desarrollarse como ele-
mentos débilmente acoplados. Con el avance de internet, nuevas
tendencias como el P2P traen un nuevo paradigma donde dis-
tintas arquitecturas software, lenguajes de programación y pro-
tocolos de transmisión colaboran e interoperan para compartir
recursos computacionales.

Debido a esta combinación de diferentes tecnologías y tenden-
cias, se necesitan abordar nuevos retos. Uno de ellos es la falta
de estandarización e integración en las herramientas software
para EAs [119]. Existen muchos frameworks para AEs, pero sin
la posibilidad de interoperación entre sus componentes. Esta in-
tegración es deseable, ya que podría ahorrar tiempo y esfuerzo
en desarrollo, reutilizando componentes existentes para crear
nuevos EAs.

El establecimiento de estándares públicos y accesibles para ele-
mentos computacionales no sólo puede contribuir en desarrollo
e integración, si no que también facilita la adopción del principio
de Ciencia Abierta [52]. Finalmente, no existen mecanismos que
permitan lidiar con el dinamismo en operadores (local o remota-
mente).

La Arquitectura Orientada a Servicios [118] es la solución pro-
puesta en esta tesis para abordar las limitaciones previamente
mencionadas. Este paradigma define el uso de elementos (llama-
dos servicios) autocontenidos y con bajo acoplamiento. Este tipo
de arquitectura aspira a facilitar la integración, la interoperativi-
dad y el descubrimiento en diferentes sistemas software.
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2.3 DESAFÍOS EN ALGORITMOS EVOLUTIVOS

En las últimas décadas, se han realizado muchas investigaciones
en el campo de la Computación Evolutiva, y numerosos retos

han aparecido. Los retos a abordar en esta tesis son los listados
a continuación:

2.3.1 Adaptación de parámetros

Uno de los principales retos en el campo de la CE es el de en-
contrar los valores apropiados para los parámetros de los AEs,
tal y como se reivindica en Eiben et al. [36]. Los investigadores
invierten un gran esfuerzo para encontrar el valor adecuado de
estos parámetros, con el objetivo de obtener un rendimiento ade-
cuado de sus algoritmos. Sin embargo, no sólo se trata de adap-
tar los valores numéricos (como la tase de cruce), sino también
alguno de los elementos que componen un algoritmo evolutivo
(diferentes tipos de cruce). La integración debería ser lo más fácil
posible para permitir a los investigadores el desarrollo fácil de
nuevos algoritmos.

2.3.2 Dinamismo y distribución

Al igual que en el reto anterior, es necesario proveer mecanismos
para gestionar el dinamismo de operadores. Esto es, no sólo la
forma en la que los operadores que componen el algoritmo se
combinan, sino cómo seleccionar dinámicamente entre los ele-
mentos disponibles. Además, diversos autores han mencionado
el problema del limitado dinamismo y la falta de capacidades
reflexivas para cargar elementos de los algoritmos (por ejem-
plo, problemas y heurísticas) en frameworks para AEs [119]. Por
tanto, es necesario ofrecer mecanismos para la publicación de
operadores y el descubrimiento y enlace automático.

El dinamismo también tiene que ser gestionado en AEs. En
los modelos tradicionales de paralelización [6] no se tienen en
cuenta aspectos tales como tolerancia a fallos, seguridad, caída
de nodos, escalabilidad masiva o descentralización [4]. Nuevas
tendencias en algoritmos evolutivos distribuidos (como redes
P2P [92] o basados en pool [103]) han surgido en los últimos
años y los paradigmas tradicionales de programación (como la
orientación a objetos) no ofrecen mecanismos para gestionar los
aspectos anteriormente señalados.
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2.3.3 Adaptación al hardware

La adaptación de los parámetros de los algoritmos evolutivos
a los recursos computacionales disponibles puede mejorar su
rendimiento [138]. Por ejemplo, el tamaño de las poblaciones
en algoritmos evolutivos es una de las claves para obtener un
buen desempeño, puesto que afecta tanto la calidad de la solu-
ción ofrecida como el tiempo de ejecución del algoritmo [91].
Este parámetro ha sido estudiado como un parámetro fijo [72] o
cómo un parámetro adaptativo durante la ejecución [46, 98]. Sin
embargo, no se ha sido estudiado teniendo en cuenta la potencia
computacional de cada máquina en una red heterogénea.

Asimismo, AEs pueden ser ejecutados en distintos tipos de
hardware, como por ejemplo dispositivos móviles [63], “smart
dust” [125] o en robots [56]. Los AEs pueden beneficiarse tam-
bién de la adaptación al entorno de ejecución.

2.3.4 Interoperabilidad

La interoperabilidad es la propiedad que permite que diferentes
sistemas trabajen juntos. En las últimas décadas, han surgido
muchos lenguajes de programación y tecnologías de distribu-
ción. La integración de estos tecnologías es un importante di-
ficultad a superar [118]. A pesar de que varios paradigmas de
desarrollo has sido propuestos para el desarrollo de AEs (por
ejemplo, la programación basada en plug-ins [143]), un reciente
estudio in frameworks para metaheurísticas [119] muestra que
ninguno de los 33 frameworks evaluados incluye mecanismos
de integración. Como el surgimiento de nuevas tendencias como
las mencionadas anteriormente, los investigadores no sólo tienen
que enfrentarse con hardware heterogéneo y diferentes protoco-
los de comunicación, sino también con entornos dinámicos, no
centralizados o no controlados que ofrecen distintos tipos de re-
cursos.

2.3.5 Ciencia Abierta

En el campo de la Ciencia Abierta [7], la integración y estanda-
rización de los elementos que componen un AE pueden ofrecer
gran utilidad: facilitar la reutilización y el acceso a software, sis-
temas, datos y resultados ya existentes. El movimiento de Cien-
cia Abierta incentiva el acceso abierto al proceso de investigación
científica para todos los ciudadanos, el uso de software libre,
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datos abiertos, difusión de la ciencia y, finalmente, servicios bien
definidos y públicos [52].

2.3.6 Aplicaciones

Los Algoritmos Evolutivos has sido aplicados a un amplio nú-
mero de problemas en distintos campos. Distintos tipos de AEs,
como Algoritmos Genéticos, han sido utilizados para la opti-
mización de rutas y la gestión de inventario [42], arte evolu-
tivo [62], evolución del comportamiento de robots [56] y opti-
mización de Redes Neuronales [18], entre otras muchas posibles
aplicaciones. Algunos algoritmos de Programación Genética has
sido utilizados para la generación de agentes en videojuegos [43]
o transformación de documentos [61].

Numerosas conferencias anuales, como EvoApp o GECCO, pre-
sentan investigaciones en campos tan diversos como economía
[85], energía [79], videojuegos [107], diseño [30], análisis de imá-
genes [8], entornos industriales [95] y seguridad [73]. Por tanto,
este campo es suficientemente amplio para permitir la partici-
pación de investigadores en diferentes áreas de estudio, obte-
niendo resultados aplicables a diferentes campos, ya sean acadé-
micos, culturales o industriales.

2.4 OBJETIVOS

Los objetivos que esta tesis quiere validar son los siguientes:

Objetivo 1: Probar que el paradigma de la Arquitectura Ori-
entada a Servicios puede ser utilizada para crear entornos
para AEs distribuidos, dinámicos y basados en estándares

Los AEs definen un área en la que se aplican distintas ramas de
las ciencias de la computación, como el paralelismo y sistemas
distribuidos, la adaptación de parámetros y el desarrollo de apli-
caciones y herramientas. En consecuencia, el primer objetivo pro-
pone un nuevo paradigma que permita tratar con algunos de
los problemas presentes en este área: falta de estandarización y
mecanismos para facilitar la integración, el dinamismo y la in-
teroperatibilidad de sus componentes. En primer lugar, la clasi-
ficación tradicional de AEs y AEs distribuidos será presentada
para clarificar sus elementos comunes. A continuación, se expli-
carán las nuevas tendencias en AEs (como P2P y basadas en
pools), mostrando sus ventajas y deficiencias. Un nuevo paradig-
ma, los Algoritmos Evolutivos Orientados a Servicios (AEOSs)
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será propuesto para tratar de paliar las desventajas detectadas
en otros paradigmas.

Objetivo 2: Proponer una metodología que sea capaz de adap-
tar exitosamente algoritmos evolutivos en sistemas distribui-
dos, dinámicos, heterogéneos y basados en estándares

Esta metodología deberá facilitar la identificación, especificación,
implementación y despliegue de servicios para crear AEOS. Esta
metodología también tendrá que tratar con las restricciones pro-
pias de los AE y SOA identificadas en el objetivo previo, para
facilitar el desarrollo, integración y dinamismo.

Objetivo 3: Validar la metodología usando una tecnología
SOA

Para validar la metodología presentada en el objetivo anterior,
ésta será aplicada para la creación de un framework (llamado
OSGiLiath) utilizando un tecnología SOA específica: OSGi. Este
framework será utilizado para abordar algunos de los problemas
previamente detectados: enlace dinámico de servicios, publica-
ción de interfaces de servicio usando estándares públicas y el
ahorro de tiempo, eliminando la necesidad de escribir código
específico para la distribución. En este objetivo, distintas tec-
nologías SOA se compararán para seleccionar la más apropiada
para cada problema a resolver.

Objetivo 4: Probar que una implementación basada en SOA
de algoritmos evolutivos distribuidos, dinámicos y basados
en estándares tiene la capacidad de resolver de forma efi-
ciente distintos problemas

El objetivo final de esta tesis es demostrar que los AEOSs pueden
ser utilizados para obtener resultados de relevancia científica
en distintos campos. La metodología y el framework serán us-
ados en una serie de experimentos en adaptación dinámica de
parámetros al hardware y la creación de bots competitivos para
videojuegos.

2.5 ESTRUCTURA DE LA TESIS

Este capítulo ofrece una introducción a esta tesis, incluyendo su
motivación y las preguntas a abordar.

A continuación se expone la estructura del resto de capítulos:
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El primer paso de esta tesis es probar que la Arquitectura O-
rientada a Servicios puede ser utilizado para crear entornos para
AEs que sean distribuidos, dinámicos y basados en estándares
(Objetivo 1). La razón para utilizar este tipo de entornos será
explicada en el Capítulo 3, donde se muestra cómo las nuevas
tendencias en AEs distribuidos, como P2P y algoritmos basados
en pool, requieren ciertos mecanismos que proporcionen control
dinámico de los nodos y arquitecturas heterogéneas. Además,
serán explicados otros defectos de este tipo de entornos que
pueden abordarse, como la falta de integración de los lenguajes
y protocolos de comunicación.

SOA se explicará en el Capítulo 4 como un posible paradigma
para el desarrollo de este tipo de entornos distribuidos, dinámi-
cos y basados en estándares, al ofrecer mecanismos que faci-
litan la estandarización, integración, la ciencia abierta y el di-
namismo. Diferentes tecnologías y metodologías para SOA serán
explicadas. Por otra parte, se presentarán los requerimientos en
SOA aplicados a la genericidad de los AEs, así como las di-
rectrices para la creación de servicios para AEs que permitirán
cumplir con el próximo objetivo: proponer una metodología que
pueda adaptar con éxito algoritmos evolutivos a sistemas dis-
tribuidos, dinámicos y basados en estándares. Esta metodología,
llamada SOA-EA, será presentada en el Capítulo 5. SOA-EA pro-
pone varios pasos para crear Algoritmos Evolutivos Orientados
a Servicios (AEOSs). Los pasos para la identificación, especifi-
cación, implementación y desarrollo de servicios serán también
presentados en este capítulo, junto con algunas directrices acerca
de cómo deberá ser diseñado como un servicio cada elemento de
un AE.

Para validar SOA-EA (objetivo 3), esta metodología será apli-
cada en el Capítulo 6 para crear un framework (OSGiLiath) para
el desarrollo de AEOSs utilizando una tecnología específica.

Con el objetivo de mostrar el enlace automático de servicios,
se presenta un experimento en el cual se activa y enlaza de
forma adaptativa servicios para incrementar el rendimiento de
un AEOS. Se mostrarán diferentes formas de publicar servicios
utilizando diferentes estándares, comparando los tiempos de trans-
misión de cada tecnología de distribución. Finalmente, se pre-
senta un estudio comparativo de los tiempos de desarrollo con
distintos frameworks para AE.

OSGiLiath se utilizará en el Capítulo 7 para desarrollar un
nuevo método para la adaptación de parámetros de un AE dis-
tribuido (tamaño de la población) a la potencia computacional
de los diferentes nodos en los que se ejecuta el algoritmo. Para
efectuar este experimento, SOA-EA será utilizado para diseñar
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Figure 2.1
Resumen de los
objetivos de esta
tesis

servicios para la creación de un AEOS descentralizado y basado
en islas. De esta forma, se alcanzará el objetivo 4: probar que
una implementación basada en SOA de algoritmos evolutivos
distribuidos, dinámicos y basados en estándares tiene la capaci-
dad de resolver de forma eficiente distintos problemas.

En el siguiente capítulo (Capítulo 8), se utilizará OSGiLiath
para crear AEOSs que generan bots competitivos para juegos
RTS. SOA-EA será aplicada para la creación de servicios dinámi-
cos, obteniendo resultados relevantes.

Finalmente, el Capítulo 9 resumirá la principales contribuciones
de esta tesis y las futuras líneas de investigación.

La Figura 2.1 muestra cómo la metodología se aplicará para
probar todos los objetivos de esta tesis.
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I have called this principle, by which each slight variation,
if useful, is preserved, by the term of Natural Selection.

— Charles Darwin, The Origin of Species (1859), Chapter III
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Evolutionary Algorithms are a set of bio-inspired techniques ap-
plied to optimization problems [38], based on the process of

natural selection [24]. In this kind of algorithms, a population

of codified solutions (called individuals) is created. The most
adapted individuals have more chances to be selected for repro-
duction, so their offspring could inherit their genetic material.
The level of adaptation of each solution is measured using a fit-
ness function, that usually models the problem to solve.

Initially the EAs were proposed as a fixed set of steps with
different operators and data structures. Then, several ways to
parallelize these algorithms were also presented, with new clas-
sifications and operations. Nowadays, new emerging trends that
deal with new technologies (such as P2P or Cloud Computing)
and new algorithmic methods (such as parameter adaptation)
are being used. These trends require a new way to develop EAs
taking into account some shortcomings, such as integration of
heterogeneous elements or dynamic resources, and also to deal

19
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with fault-tolerance, churn, massive scalability or decentraliza-
tion.

As previously said in the introduction, the aim of this thesis
is to facilitate the development, standardization, integration and
dynamism in EAs. Therefore, in this chapter the classic classi-
fication of EAs is presented to clarify their common elements,
together with the most extended models to parallelize these al-
gorithms. This classification can be used as a base for the creation
of new algorithms, establishing their similarities, to facilitate the
development. Then, the new trends in EAs are also presented to
summarize their benefits, but also their deficiencies and prob-
lems that should be addressed (such as dynamism of computing
nodes or in the elements that form the EA). Finally, some of the
most used frameworks to develop EAs are listed and analysed, to
understand their capabilities and deficiencies (such as the lack of
standardization and integration). This way, in following chapters,
the design and development of interoperable, standardized and
dynamic services for EAs will have a solid base to start.

3.1 TYPES OF EVOLUTIONARY ALGORITHMS

The general scheme of an EA, extracted from the work of Eiben
and Smith [38] is described in Figure 3.1. Although most of

the EAs follow the scheme shown in this Figure, they have dif-
ferences depending on the representation of the solutions, the
problems to solve, and other features. A possible classification
is presented in this chapter, taking into account the new ap-
proaches that cannot fit in the traditional taxonomy. This clas-
sification would help to clarify the elements that distinguish an
algorithm from another (for example, the operators), and the ex-
isting similarities and differences, in order to establish a good
starting point for designing services for EAs.

Figure 3.1
General scheme
of an evolution-
ary algorithm in
pseudo-code

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
3 SELECT individuals for the next generation;

OD
END
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3.1.1 Classic classification of EAs

This subsection explains the traditional variants, according to the
book of Eiben and Smith [37]. These authors clarify that the fea-
tures of an EA are:

• EAs are population based.

• EAs mostly uses recombination to generate new individual
from the existing ones.

• EAs are stochastic.

These are the elements that distinguish the EAs from another
meta-heuristics (such as the Local Search [1], for example).

GENETIC ALGORITHMS These kind of algorithms were proposed
by Holland [78], and also studied by Goldberg [65] and
Michalewicz [106]. In this kind of EA, the representation of
the solution is a string of numbers (usually binary), called
chromosome (and sometimes genome). The individuals
are selected proportionally to their fitness, and then recom-
bination and/or mutation are applied to generate new in-
dividuals that will be introduced in the population. These
algorithms have been used in different areas, such as func-
tion optimization [106], combinatorial optimization [42], ar-
tificial intelligence in videogames [48], or generative art [62],
among others.

EVOLUTION STRATEGIES The Evolution Strategies (ES) are used
to solve problems whose solution is included in the domain
of real numbers. Their main difference with GAs is the in-
clusion of self-adaptation of the mutation rate, being coded
in each individual [33]. Also, the parent selection is per-
formed randomly. ES have been applied in fields such as
Evolutionary Robotics [56].

EVOLUTIONARY PROGRAMMING In Evolutionary Programming
(EP), the representation of the solution depends on the na-
ture of the problem being solved, for example, neural net-
works [18] or Radial Basis Functions (RBFs) [68] have been
used as individuals.

GENETIC PROGRAMMING The objective of this technique is to
create functions or programs to solve determined problems.
Individual representation is frequently in the form of a tree,
formed by operators (or primitives) and variables (terminals).
These sets are usually fixed and known. The genome size is,
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therefore, variable, but the maximum size of the individuals
is commonly fixed, to avoid high evaluation costs. GP has
been used to evolve LISP programs [87], or XSLT scriptsLISP: LISt

Processing
XSLT: eXtensible
Stylesheet
Language
Transformations

[61], among others.

3.1.2 Other models

Other EAs that do not match in the previous classification have
been proposed. For example Differential Evolution (DE) [137],
Estimation of Distribution Algorithms (EDAs) [93] or Baye-
sian Optimization Algorithms [121].

Combining elements of all the previous algorithms with other
heuristics is the base of Memetic Algorithms (MAs). These al-
gorithms are based on the concept of meme proposed by Dawkins
[26]. In this context, a meme is domain specific knowledge coded
by a computational representation to the effective solving of a
problem.

This kind of algorithms can be seen as an hybrid combina-
tion of the population-based evolution methods previously ex-
plained, coupled with some kind of local search. Initially, the
hybridization was made just combining two o more methods
with some kind of problem knowledge. For example combining
a genetic algorithm with Simulated Annealing (SA) [124]. The
local search can be performed before, during, or after the evalu-
ation. New trends, such as adaptive MAs [116] lead to the usage
of several memes for searching and deciding dynamically which
meme should be applied to each individual. For example, Cowl-
ing et al. proposed the term hyperheuristic [20] as the strategy
to choose the meme to be applied depending on the time and
the region of the search space (or, in a brief, heuristic to choose
memes). Other examples are the work of Krasnogor et al. [88],
where the inclusion of the memetic codification inside the indi-
vidual chromosome (Multimemes) to select which meme to use
is applied; or codify a set of rules, as proposed by Smith [132]
(Co-evolving MAs).

In brief, the memetic algorithms can be seen as a composition
of other algorithms. The integration should be as easy as possible
to allow researchers develop new algorithms easily. Moreover,
not only the way to combine the algorithms that conform the
memetic one, but also how to dynamically select among these
available memes. Thus, mechanisms to announce memes and au-
tomatically discovering and binding should be applied.
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3.2 PARALLEL AND DISTRIBUTED EVOLUTIONARY ALGORITHMS

MODELS

Evolutionary Algorithms are inherently parallelizable, since each
individual can be considered as an independent unit [4]. Thus,

there exist several ways to parallelize: for example, fitness evalu-
ation can be distributed into several slave machines, or the popu-
lation can be distributed among different nodes to be evolved at
the same time. In 2002, two main types of parallelization models
for EAs were classified by Alba and Tomassini in [6]: Global

parallel EAs and Spatially structured EAs. However, with
the aim of new technologies and architectures, such as P2P, new
ways to parallelize EAs have been proposed. In this section, the
differences of the existing classification with these new trends
are explained, and the requirements of each one are presented.

3.2.1 Traditional parallelization classification

As this classification was established in 2002, issues such as fault-
tolerance, churn, massive scalability or decentralization were not
taken into consideration. The number of computational nodes
are fixed during the whole execution and both the network and
the nodes are reliable and trustworthy.

Global parallel evolutionary algorithms

In this model, also called Farming model, Master-Slave or
Centralized EA, the parallelism is applied at evaluation level,
where a central node coordinate several slave nodes. The central
node executes the EA in a sequential way, but distributes the in-
dividuals of the population to the slaves just for being evaluated.
Figure 3.2 depicts this situation.

Spatially structured algorithms

The parallelism is performed at population level, that is, divid-
ing the population among the different computing elements. De-
pending on how the distribution is performed we have:

COARSE-GRAINED APPROACH One of the most usual approaches
is the Island model, where a number of nodes executes si-
multaneously the EA, working with different sub-populations
at the same time. Each certain number of generations some
individuals are interchanged (migrated) between popula-
tions. Figure 3.3 shows this model with a ring topology.
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Figure 3.2
Master-slave
model.

Figure 3.3
Island model
scheme using a
neighbourhood
ring topology.

FINE-GRAINED APPROACH In this approach, also called Cellu-
lar EA (CEA), each node has one individual of the pop-
ulation, and selection and reproduction are limited to the
individuals of the neighbourhood of the node [31]. Usually
a bi-dimensional grid is used as topology, such as the one
showed in the Figure 3.4.

3.2.2 New trends on parallel EAs

When developing distributed and parallel EAs (or any distributed
system in general), we should deal with the Fallacies of Distributed
Computing, proposed by Peter Deutsch and then explained by
Rotem-Gal-Oz in [126].

1. The network is reliable.

2. Latency is zero.
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Figure 3.4
Cellular Evolution-
ary Algorithm.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

These fallacies were not taken into account in the previous clas-
sification. However, with the advent of new technologies, such as
cloud computing, P2P networks, or the usage of heterogeneous P2P: Peer-to-peer

hardware, new approaches have been proposed. Distributed EAs
can be executed in other computing elements different than the
classic computers. For example, in mobile devices [63], “smart
dust” [125] or inside robots, learning from the environment in an
on-line manner [56]. But with the advancement of the Internet,
where millions of nodes can co-operate, and whose behaviour
is not totally controlled or predicted, is when new distributed
approaches have become more evident.

P2P systems are parallel infrastructures composed by a large
number of resources, without any central server [136]. In prac-
tice, the resources in these networks can appear or disappear
dynamically. These platforms can be used to execute large in-
stances of problems, taking advantage of the massive scalabil-
ity that these systems potentially offer. An example of one EA
that has been designed to take advantage of these systems, is
EvAg, proposed by Laredo et al. [92]. This algorithm uses a de- EVAG: Evolvable

Agentcentralized population, where each peer has a single individual,
and new individuals are created combining the ones in their cur-
rent neighbours. To solve the problem of the dynamic topology,
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Figure 3.5
P2P Evolutionary
Algorithm: EvAg.

the population structure is maintained using the newcast pro-
tocol [82]: each node has a cache of neighbours that can be in-
terchanged and combined. Figure 3.5 shows this algorithm and
its population structure. Results show that this algorithm out-
performs tuned GAs, using less links that a panmictic (i.e. fully
connected) population.

Technologies such as non-relational databases lead to Pool-
based EAs [69], where the computational nodes exchange in-
dividuals using a shared pool. Although this can be seen as a
farming model, there are differences in how the data flow of
individuals is managed. This allows massive scalability with a
heterogeneous underlying structure. This pool can be used as
the global population, and the nodes asynchronously read and
evaluate the individuals. It can also be used to share individuals
among islands. This can lead to automatic load-balancing and
synchronization, allowing the addition and removal of nodes.
Different technologies can be used. For example, in the work of
Meri et al., the pool used is based on the Dropbox™ or Sug-
arSync™ file storage services. Other authors propose the use
of non-relational databases, such as the work of Merelo et al.
[69], using FluidDB™. In [103] the same authors improve the
design, proposing an asynchronous, fault-tolerant, and scalable
dEA, based on the object store CouchDB™. The results show that
adding clients could not scale, but increase the fault tolerance.
Also, their experimentation shows a good methodology for de-
signing EAs in heterogeneous distributed systems, which have
the impossibility of analytic performance prediction.

Other systems, such as Grids [21] are distributed computing
systems that allow sharing geographically distributed resources
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to solve large scale problems. Several works that describe EAs be-
ing executed in these systems have been presented [80, 96, 111].
Volunteer computing [9] proposes the creation of infrastruc-
tures to allow people donate CPU cycles for a combined com-
putational effort. Its main difference with grid computing is the
presence of un-trusted resources: for example, some nodes could
return intentionally wrong results, so it requires the possibility
of replication of the results to be validated. Also, the control
of the participating nodes is not maintained by the experiment
launcher. EAs have been executed in these systems, using several
techniques, such as virtualization [140] or “parasite” computing
[70].

Summarizing, with these new trends in parallel EAs, researchers
must deal with heterogeneous hardware and different communi-
cation protocols, but also with dynamic, non-centralized or un-
controlled environments.

3.3 PARAMETER ADAPTATION IN EVOLUTIONARY ALGORITHMS

One of the greater challenges of the EC field is to find the appro-
priate values for EAs parameters [36]. Usually, these parame-

ters are established by convention or after several test runs, for
example. However, practitioners need to put effort on finding
these values in order to attain significant performance in their
EAs, even taking into account other variables, such as the com-
putational power of the machines used.

3.3.1 Parameter Control and Parameter Tuning

There are two different approaches for algorithm parameter set-
ting in EC: parameter control and parameter tuning [39]. The first
one refers to setting up a number of parameters for the Evolu-
tionary Algorithm (EA) and changing them in running time. The
parameter tuning consists in establishing a good set of parame-
ters before the run (and not changing these parameters during
runtime).

Eiben, in [35] proposes the next taxonomy for the parameter
control, according to how the are changes made:

• Deterministic methods: changes to a parameter are triggered
by a deterministic rule (for example, increase mutation rate
after certain number of generations).
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• Adaptive methods: parameters change depending on some
behaviour (for example, increase mutation rate if the aver-
age fitness of the population stagnates).

• Self-adaptive methods: parameters are encoded within the
chromosome of the individuals of the population (for exam-
ple, mutation rate can be a value in the chromosome).

Other classifications for control techniques in EAs are presented
in that work. For example, regarding to what is changed:

• Representation

• Evaluation function

• Variation of operators and their rates

• Selection operators

• Replacement operator

• Population

Finally, a third classification can be obtained according to what
evidence is available:

• Absolute evidence: The parameter changes if a rule is acti-
vated when an specific event occurs. For example: increase
mutation rate when diversity drops. In this case, human
knowledge is necessary to model these rules.

• Relative evidence: Parameters are compared with the fit-
ness of their produced offspring and the best values are
rewarded. It is not deterministic.

These classifications can be used to establish a way to man-
age or update the parameters in the development of algorithms.
For example, it should be necessary to allow a direct access to
each parameter and sources of information of the EA, indepen-
dently of the actual state of the algorithm. A possible solution
to manage the dynamic parameters, and the information of the
elements that conform the EA, is proposed in next chapters.

3.3.2 Adaptation in heterogeneous hardware

Adapting algorithm parameters to available computational re-
sources leads to improved performance (see the work of Hamadi
and Schoenauer [138]). An easy way to take advantage of the
available resources is balancing the workload [54] to distribute it
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across multiple nodes. However, assigning the same tasks to each
node on heterogeneous clusters may result in suboptimal perfor-
mance (as shown by Bohn and Lamont [14]). Parameters of an
algorithm could also be adapted to increase the performance of
the whole system. For example, the population size in EAs is
the key to obtain good performance, because it has effect on the
quality of the solution and the time spent during the run [91].
This parameter has been studied as a fixed [72] or adaptive pa-
rameter during runtime [46, 98], but without taking into account
the computational power of each machine in a heterogeneous
cluster.

The adaptation of an algorithm can be useful to leverage dif-
ferent hardware environments. One of the problems in parame-
ter adaptation in heterogeneous clusters is the representation of
the computational load. It depends on the algorithm, size of the
problem, programming language, compiler or hardware char-
acteristics, and the results obtained from artificial benchmarks
(such as Linpack [41]) should not be extolled as identificative of
the system performance [29]. For example, in the work of Gara-
mendi et al. [54], a small benchmark was executed in all nodes
at the beginning of the algorithm in order to distribute individu-
als of an Evolutionary Strategy, following a master-slave model.
However, the computational load by artificial benchmarks may
not accurately represent the correct load of the algorithm, so,
information about the algorithm itself should be used for cali-
bration.

In other works, there is no direct relation between the algo-
rithm parameters and computational resources of the nodes. For
example, Domínguez et al. [28] divided the available devices into
“faster” and “slower” nodes to create a distributed hybrid meta-
heuristic that combines two different EAs: Genetic Algorithms
and Simulated Annealing. Their system executes the heavy (in
computational terms) algorithms (GAs) in the faster nodes (com-
putational devices), and simpler meta-heuristics (SA) in the slower
ones, obtaining better results than other configurations. Gong et
al. in [67] also ordered the nodes by their computational power
to test different topology configurations in a distributed EA. Be-
sides, ordering the nodes taking into account only their previ-
ously known computational resources, the results of the previ-
ous works were not compared with executions on a homoge-
neous cluster to validate if the adaptation takes advantage of the
heterogeneity of the cluster.

The heterogeneous computational performance of nodes or
network speed can affect the performance of an algorithm. In [5],
Alba et al. compared a distributed Genetic Algorithm (dGA), one
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of the sub-types of EAs, on homogeneous and heterogeneous
clusters. Super-linear performance in terms of iterations was ob-
tained in the heterogeneous ones, being more efficient than the
same algorithm running on homogeneous machines. However,
the parameter setting was the same in both clusters and they did
not adapt the parameters to the machines used.

Adapting algorithm parameters to different nodes derives in
heterogeneous parameter sets. These sets can improve the results
in homogeneous hardware, for example, setting a random set of
parameters in each homogeneous node can also increase the per-
formance of a distributed Genetic Algorithm, as explained by
Gong and Fukunaga in [66]. That model outperformed a tuned
canonical dGA with the same parameter values in all islands.
Also, adapting the migration rate produced better results than
homogeneous periods, as explained by Salto and Alba in [128].
This indicates that heterogeneous parameters may lead to an in-
crease of performance, so it is necessary to validate if the per-
formance is due to the parameter set or to the heterogeneous
devices combination. The way to access the elements that con-
form an EA (including their parameters) proposed in this thesis
will be used in next chapters to address this issue.

3.4 DEVELOPMENT OF EVOLUTIONARY ALGORITHMS

One of the aims of this thesis is to facilitate the standardization,
integration and development of EAs.
This is due to the existing large number of frameworks for Evo-

lutionary Algorithms. Practically every programming language
has its own implementation of the basic elements that form an
EA. This implies a large effort made in each one, giving that
these elements are not compatible among them. It is also difficult
to migrate the code from a framework to another, mainly due to
design choices, such as the existence of hidden global variables
or language specific features (such as functional programming
[22]). This is important for example, to integrate and reuse the
elements of the frameworks in other systems (such as enterprise
servers, for example). However, is in the field of Open Science [7]
where the integration and standardization of the elements that
conform an EA can take advantage, facilitating the re-use and
access to existing software, systems, data, and results.

In this section, the genericity, communication and features of
the development of EAs and existing frameworks are explained
and compared to evaluate their benefits and shortcomings.
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3.4.1 Design of EAs

The work of Gagné and Parizeau [53] established six criteria to
qualify the genericity of a framework for EAs.

• Generic representation: independence of the structure of the
individuals.

• Generic fitness: Individual fitness should be as independent
as possible from the selection operators and individual rep-
resentation. That means that the fitness evaluation should
be outside of the implementation of the individuals (for ex-
ample, not implementing the fitness in the class that imple-
ments the individual).

• Generic operations: operations should be used in conjunction
with others and have minimal side effects. For example, a
multi-parent reproduction (crossover with more than two
parents, as presented by Eiben et al. [34]) requires separa-
tion of the concept crossover with only two elements, so the
abstract concept of crossover should accept a list of individ-
uals. Also, new operations can be created without affect
the existing ones, allowing the interaction of a non-limited
number of operators. Finally, the granularity of the design
of the operators should be equilibrated, not being neither
too coarse (may limit the flexibility to create new operators)
nor too fine (could be difficult to integrate all the operators).

• Generic evolutionary model: As explained in Section 3.1.1, there
exist different ways to model an EA leading to different al-
gorithms (for example, a steady-state GA versus a gener-
ational GA, or a GA versus ES). Operators should be in-
dependent of the evolutionary model, being possible the
change from a model to another.

• Parameter management: parameters, such as the population
size, may be modified during runtime. Also, a good frame-
work should accept the addition of new parameters.

• Configurable output: the output should be configurable. This
is due to different statistics that could be used depending
on the EA: for example, the tree depth in GP. Also, different
outputs (console, files) should be managed.

These issues should be accomplished to develop new algo-
rithms or operators, with independence of the programming lan-
guage used. However, as will be explained in next chapters, new
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Table 3.1
Comparison of
EA frameworks.
OO=Object-
Oriented,
SO=Service Ori-
ented, PO=Plug-in
Oriented

Name Design Language Distribution License Last version

ECJ OO Java Sockets Academic Free Lic. 2013

MALLBA OO C++ MPI Freeware 2010

jMetal OO Java N/A GNU/LGPL 2013

DREAM OO Java DRM GNU/GPL 2003

ParadiseEO OO C++ MPI CeCILL 2012

HeuristicLab OO/PO .NET Web-Services GNU/GPL 2013

METCO OO C++ MPI N/A 2009

JCLEC OO Java N/A GNU/GL 2013

Algorithm::Evol. OO Perl N/A GNU/GPL 2013

gridUFO SO Java Web Services N/A 2010

models of design and development can extend the previous cri-
teria.

3.4.2 Frameworks for EAs

Over the large number of available frameworks (see [119] for a
complete survey) a representation of them has been selected to
explain their shortcomings, that will be addressed in this thesis.

Object Oriented programming is used in several frameworks,
such as Algorithm::Evolutionary [104], METCO [94], JCLEC [141]METCO:

Metaheuristic-
based Extensible
Tool for
Collaborative
Optimization
JCLEC: Java
Class Library for
Evolutionary
Computation

or jMetal [32]. Users implement specific interfaces of these frame-
works (individual or crossover, for example) and they group them
in the source code. For example, creating an operator object that
groups several operators. However, these frameworks are not
compatible among them. For example, the operators created in
JCLEC can not be used directly in jMetal (despite both are pro-
grammed in Java).

Parallelism and distribution are possible in other frameworks,
such as MALLBA [2], DREAM [10] or ECJ [100], but using exter-DREAM:

Distributed
Resource
Evolutionary
Algorithm Machine
ECJ: Evolutionary
Computation in
Java

nal libraries (such as MPI or DRM), so the code that uses these

MPI: Message
Passing Interface
DRM: Distributed
Resource Machine

libraries is mixed with the algorithm’s code.
Even being distributed, these frameworks can not communi-

cate with each other. This implies an extra effort to combine the
capabilities that a framework can offer to other frameworks or
other programs (for example, a web server). HeuristicLab [142]
is one of the few plug-in and service oriented frameworks. It
uses web services for communication, but only to distribute the
load, after consulting a central database of available jobs. Finally,
gridUFO is a service oriented framework [110], but it only al-
lows the modification of the objective function and the addition
of whole algorithms, without combining existing services. Table
3.1 shows a summary of the previous frameworks.

In brief, although these frameworks follow the six criteria for
genericity proposed by Gagné and Parizeau previously explained,
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they present some shortcomings when it is needed to develop or
add new features: the user is forced to modify the source code or
stop the execution to add new functionalities (like load balanc-
ing, dynamic control of operators, or an user interface).

Other frameworks, not focused on EAs, can be used to deal
with some of the issues, such as dynamism in nodes. BOINC is BOINC: Berkeley

Open
Infrastructure for
Network
Computing

one of the most used frameworks in volunteer computing. This
middleware follows a master-slave architecture, where the server
is in charge of hosting the project experiments and the creation
and distribution of jobs [140]. Clients ask the server for works,
download information, compute data and upload the results.
EAs have been used in BOINC, such as the work of Fernández et
al. [140]. Other authors imitate this architecture using a browser-
based scheme [70] to distribute fitness evaluations among clients
without installing any other software. Previous systems have
the possibility of task distribution among the nodes, following
a master-slave model, but without interaction between clients.
Also, these systems does not count with automatic discovering
of operators.

3.5 CONCLUSIONS

Evolutionary Algorithms, and their subtypes (GAs, ES or GP,
among others) follow a number of common steps: initializa-

tion, evaluation, selection, recombination, mutation, replacement
and stop criterion. There exist many variations of these steps,
and the different combinations can specify one algorithm or an-
other. Memetic Algorithms also include extra elements that can
be applied, and different heuristics can be combined during the
algorithm’s run.

Distributed EAs can improve the algorithmic and computa-
tional performance over the non-parallel versions of the algo-
rithms. Classic parallelization approaches, such as the master-
slave or island-based models, have been updated with the usage
of new trends such as P2P or pool-based EAs. These new ap-
proaches manage with computational nodes entering and exiting
during the experiment runtime and heterogeneous architectures.

Other research lines, such as the parameter adaptation can im-
ply the existence of some kind of dynamism involving the parts
that compose an algorithm: for example, different recombina-
tors or mutators working at the same time. Moreover, there ex-
ist several lines of parameter adaptation in dynamic and hetero-
geneous environments, where different computational elements
are working at the same time.
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Finally, there exist a large number of different (and incompat-
ible) frameworks for EAs, each one using different languages,
technologies and communication protocols. As Parejo et al. sug-
gest in [119], a standardization of the presented (and other) frame-
works should be carried out. Moreover, it is difficult to access, in
a public way, to available public systems to execute existing EAs
to validate experiments and save time, encouraging Open Sci-
ence.

Next chapter will explain a possible technological solution to
cope with the previous issues that will be addressed in this the-
sis: development, integration, standardization and dynamism in
EAs.
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Service with a smile?

— The Joker. The Last Laugh. Batman: The Animated Series.
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The previous chapter has explained several shortcomings in the
development of EAs in some contexts, mainly related with the

integration of different frameworks, distributed programming
and heterogeneity of computational environments, among oth-
ers. This chapter explains the concept Service Oriented Archi-
tecture (SOA), with several associated technologies and method-
ologies, as a possible solution for these issues.

Research in SOA [118] is a growing field, as can be seen in
Figure 4.1, obtained from the search terms “service oriented OR
service-oriented” in the Scopus 1 database. Each year more papers
about the topic are published. This area seeks to promote ser-
vices usage and adoption, and to improve the way to use them.
For example, solving a problem combining existing services in
an automatic way [109]. Not only in the academic world, but also
in the industry, with more than a seventy percent of adoption
and satisfaction [75], adding significant value to the enterprises
[74].

1 http://www.scopus.com
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Figure 4.1
Number of pub-
lished papers (per
year) about SOA
(obtained from
Scopus database).

Service Oriented Architecture (SOA) is a computational para-
digm where agents interact with each other using loosely cou-
pled, coarse-grained, and autonomous components called ser-
vices [127]. A service is a distributed entity (such as a node, pro-
gram or function), used to obtain a result, increasing the integra-
tion of heterogeneous systems (several operating systems, proto-
cols or languages) due to this multi-platform nature. The service
users do not need to know the language used to implement the
service, and they are not forced to use a specific technology to
access that service. For example, an evolutionary algorithms re-
searcher could have access to a fitness function made publicly
available by another researcher at the other side of the world
without even knowing which programming language has been
used to implement it.

Also, with the advancement of the Internet, new scientific com-
munities, based on interoperable and distributed platforms are
emerging. These communities allow scientist to collaborate on
their research, sharing data and remote access to their programs.
To achieve this, they use SOA, obtaining the benefits of the stan-
dards it offers. Users publish and use flexible, interoperable and
configurable services. These services can be created from scratch
or by leveraging existing software [12].

Foster [52] defines the term “Service Oriented Science” as the
pursuit of scientific research using distributed and interopera-
ble networks, being the uniformity of these interfaces the key
to success. Thanks to it, researchers can discover and access the
services without developing specific access for each data source,
or program. Therefore, this paradigm has the potential to in-
crease the scientific productivity due to these public and dis-
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tributed services, and also to increase the data analysis automa-
tion in computing. There are many examples that attempt to
boost this paradigm, like Open Science Grid [7] and GLOBUS
[51]. These projects include scientific communities and globally
distributed infrastructures that support scientific and integrated
applications of different domains.

It is necessary to remark that the technology for implement-
ing services is not the key challenge in SOA, but to increase the
effort to migrate the existing work and to change the mind of
researchers and practitioners. This is, therefore, one of the aims
of this thesis: to present to EA researchers the benefits of adopt-
ing this paradigm, describing the SOA concepts, restrictions and
methodologies, but also to present the most used technologies to
chose the most adequate one.

In this chapter, the usage of SOA is proposed to facilitate the
shortcomings in the EAs presented in the previous chapter: de-
velopment, integration, standardization and dynamism. First, sev-
eral concepts to undarsted SOA are explained. Then the most
used technologies and methodologies are presented and how can
help with the previous shortcomings. After that, the benefits of
using SOA in EAs are explained, but also the restrictions of SOA
are listed in order to be considered when creating a methodology
to develop evolutionary algorithms in this paradigm.

4.1 WHAT IS A SERVICE?

A service can be seen as a function call which can be executed
locally or remotely, and which is independent of the program-

ming language or running platform. As previously said, services
have well defined interfaces, which depends on the desired tech-
nology to implement SOA. That means that the service users do
not need to know the language implementation of the service or
the operating system, and they are not forced to use a specific
technology to access to that service.

Figure 4.2 shows the basic interaction among services. First,
the service provider exposes the service, publishing its inter-
face in the service broker (or service registry). The service

consumer (or requestor) finds a service in the broker to be
used and receives its interface. Then the request is performed by
the consumer (which uses or consumes the service).

According to Valipour [139], services must follow these char-
acteristics:
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Figure 4.2
Service interac-
tion schema. The
service provider
publishes a ser-
vice description
that is used by
the consumer to
find and use the
service.

• Discoverable and Dynamically Bound: Services must be discov-
erable. Thanks to the service registry, a service consumer
can discover a service to be use at runtime.

• Self-Contained and Modular: All functions in SOA are ser-
vices. This means that every component in SOA must be
modelled as a service, or as an aggregation of services. The
services are well-defined: the interface of the service must
be fixed, and it can not change in time, because the con-
sumers or implementations of this interface should be mod-
ified with it. Services are, therefore, encapsulated: only the
interface should be used to consume a service.

• Interoperability: Consumers do not need to know how the
service implementation performs their function, as services
behave as a “black box”. This is, elements such as the pro-
gramming language or distribution protocol are indepen-
dent.

• Loose Coupling: Services should be designed to need only a
few number of well-known dependencies.

• Location Transparency: Services must be indistinguishably lo-
cal or remote, being independent of the protocol to establish
the connection.

• Composability: Developing applications in SOA means to ag-
gregate different existing services. Services are designed to
be re-usable.

Moreover, several implementations of a specific service can ex-
ist (in one or several machines). The broker can choose which one
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Figure 4.3
Example of us-
age of a service
implementation.

to use each time, or offer another if a service is temporarily un-
available. Implementations may also have a different behaviour,
so the researcher can take advantage to create an auto-adaptive
algorithm to select different implementations according to some
criteria. Figure 4.3 shows this special interaction, where two dif-
ferent implementations of an operator interface exist (even using
different languages) and the broker has chosen one of them.

The service broker in a SOA can be implemented in several
ways and have different behaviours: for example, the implemen-
tations of the services to be used can be defined in a text file
(if the services do not change in execution time). However, the
broker can also assign implementations to interfaces in an auto-
matic way, or using several rules. For example, in the context of
EAs, to select a better operator if the current one is not working
properly.

An important SOA capability is that it is not focused on a
specific implementation, but offers a set of guidelines to help
the developers. In [11] these guidelines and good practices, and
also the differences between SOA and Object Oriented Program-
ming (OOP) are explained: the main difference between SOA
and imperative programming or OOP is the order of service ex-
ecution. This order is not necessarily static, because the services
are designed to be used in a non-established and configurable
order. Furthermore, another important difference is that services
can be dynamically discovered and used (while in OOP a func-
tion/method must be previously known and can not change dur-
ing execution), being also one of the most important capabilities
the (optional) distribution in a network. Finally, in OOP the pro-
gramming language must be the same for each method call.

4.2 IMPLEMENTATION TECHNOLOGIES

Despite the fact that the concept of service is independent of the
technology used, there exist several ways to use and imple-
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ment services, being Web Services, REST, ebXML and OSGi theEBXML: Electronic
Business XML
OSGI: Open
Service Gateway
Initiative

most extended.

4.2.1 Web Services

One of most popular services implementations are Web Services

[118]. A web service is a service available over Internet, that uses
any standardized XML (eXtended Meta Language) [146] messag-
ing system, and it is not tied to any specific language or operat-
ing system [19]. As SOA proposes, web services should be self-
describing (using a standardized grammar) and self-discoverable.

Messaging system

There are several alternatives to the messaging system, as SOAP
or XML-RPC. SOAP (Simple Object Access Protocol) is a stan-
dard protocol proposed by the W3C [15] which extends the XML
remote procedure call (XML-RPC) standard. It is a complete and
mature protocol that allows performing remote method calls to
distributed routines (services) based on an XML interface.

SOAP clients can access objects and methods that are residing
in remote servers, using a standard mechanism that makes the
details of implementation transparent, such as the programming
language of the routines, the operating system or the platform
used by the provider of the service. At the moment, there exist
complete implementations of SOAP for Perl, Java, Python, C++
and most modern languages. Unlike other remote procedure call
methods, such as RMI (Remote method invocation, used by the
Java language) or XML-RPC, SOAP has two main advantages:
it can be used with any programming language, and it can use
any type of transport (HTTP, TCP, SMTP and other protocols). InHTTP: HyperText

Transfer Protocol
TCP:
Transmission
Control Protocol
SMTP: Simple
Mail Transfer
Protocol

this way, SOAP constitutes a high level protocol, making easy the
task of distributing objects among different servers, and avoiding
the difficulties derived of defining the message formats, nor the
explicit call to remote servers.

Self-description

The interfaces of the methods of web services that can be ac-
cessed are specified by a Web Services Description Language
(WSDL) [145]. The WSDL of a web service consists in an XML
description of its interface, i.e., it is a file that describes the name
of the methods, their parameters (number and type) and their
type of response.
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Self-discovery

UDDI (Universal Description, Discovery and Integration) [114] is a
technical specification for describing, discovering and integrat-
ing web services [19]. This specification includes APIs for the
storage and retrieval of information (also in an standardized
XML format).

Other standardizations

One of the advantages of using web services is that the applica-
tion stack is growing with the WS-Extensions. That is, the basic
specifications of Web Services (such as SOAP) can be extended
with transactions, security or messaging, for example. The most
used are [118]:

• WS-Addressing (authentication)

• WS-Security , WS-SecureConversation and WS-Trust (au-
thorization and secure messaging)

• WS-Policy and WS-Metadata Exchange (policy mechanisms
for interactions)

• WS-Reliable Messaging and WS-Transaction (add-on mech-
anisms for the communication channel)

Also, functional extensions, such as WSRF [112], allows the dis-
covery, inspection and interaction with stateful resources in stan-
dard and interoperable ways. Finally, BPEL (Business Process Ex-
ecution Language) [84] is an XML-based language to control the
invocation of different Web services with added business logic
to help large-scale programming.

The main advantage of using Web Services in research is their
public discovering and usage, thanks to the security extensions.
Several studies about e-science taking advantage of web services
can be found in bibliography [25, 99, 115, 122].

4.2.2 REST

Representational State Transfer (REST)2 is an alternative me-
thod to build web services. This architectural style was proposed
and defined by Fielding in [49].

In a REST-style architecture, a client sends requests to the
server, who processes them and returns responses to the client.
Requests and responses represent resources that can be addressed

2 http://en.wikipedia.org/wiki/Representational_state_transfer

http://en.wikipedia.org/wiki/Representational_state_transfer
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by a Uniform resource identifier (URI). Usually, resources are
documents or programs the client need to access.

REST usually works over the HTTP protocol. However it can
be based on other protocols that provide the appropriate mecha-
nisms to send requests and return responses.

In a REST environment, while servers are not concerned with
the client state, clients only take about their own state and how
to address resources on the server using URIs. Moreover, clients
can cache responses to improve performance. As the client-server
communication is stateless, servers are simpler and more scal-
able. Taking this into account, if the REST interface is not al-
tered, servers and clients can be modified independently. Finally,
servers can customize the functionality of the clients by sending
their logic (code) to be executed.

REST web services are simple and lightweight (as no extra
XML markup is needed), their message format is readable by hu-
mans, they are easy to build, and finally, developments achieve
a high performance [23]. The main differentiating factor is that
Web Services using SOAP tend to be operation-based, while REST
services are resource-based. This is one of the reasons REST is re-
placing SOAP on the web [102].

4.2.3 ebXML

ebXML defines a set of standards that allows the enterprises ne-
gotiate their products through the Internet. It is based on a well-
defined documents interchange using a contract-based approach
[120], providing a specification for messaging, registry/reposi-
tories and business processes description, and unlike other ap-
proaches, it is an horizontal standard (it is not oriented towards
a specific industry sector). On the contrary, Web Services expose
any kind of applications to the Web, so anyone can call them
(service approach). Another significant difference between Web
Services and ebXML is that the former is based on BPEL, which
can only describe the scenario inside a company, due to it has not
all the information about the services being orchestrated, while
the latter can be used to model a global choreography among
several companies. Due to this, and because it is mainly focused
to commercial and business processes, this technology is not go-
ing to be addressed in this thesis.
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4.2.4 OSGi

OSGi was proposed by a consortium of more than eighty compa-
nies in order to develop an infrastructure for the deployment of
services in heterogeneous network of devices, mainly oriented to
domotics [57, 59]. Nowadays it defines a specification for a SOA
for virtual machines (VMs). It provides very desirable features,
like packet abstraction, life-cycle management, packaging or ver-
sioning, allowing a significant reduction of the building, support
and deployment complexity of the applications. These features
can be useful in the field of EAs, as suggested by Wagner et al.
[143].

OSGi technology allows dynamic discovery of new compo-
nents (or services), to increase the collaboration and to minimize
and manage the coupling among modules. Moreover, the OSGi
Alliance has developed several standard component interfaces
for common usage patterns, like HTTP servers, configuration,
logs, security, management or XML management among others,
whose implementations can be obtained by third-parties.

These advantages are not so costly as can be thought: on one
hand the OSGi framework can be implemented in a jar file3 of
about 300KB, and on the other hand, and differing from the nor-
mal usage of Java, each class pre-charges only the other classes
it needs, not all. Also it is non-intrusive: the code to be executed
in OSGi can be executed without it. Finally, from its specification
in 1998 has been widely used as base in big projects: the Eclipse
IDE is built over OSGi, and also big application servers (Glass- IDE: Integrated

Development
Environment

fish4 or IBM Websphere 5) or residential gateways [57], among
other examples.

In OSGi all services can be distributed using the OSGi features,
simply setting which service is distributable and which is the dis-
tribution technology that provides service discovering and data
transmission.

4.3 METHODOLOGIES FOR DEVELOPING SOA

Regardless of the chosen SOA framework, the processes of the
platform must be analysed and modelled. So it is necessary

to use a consistent and well-defined methodology to design a
model based on a machine-readable description [58]. Business-
Centric Methodology (BCM) for Enterprise Agility and Interoperabil-

3 A jar file is a file that groups some compiled Java files.
4 http://glassfish.java.net
5 http://www.ibm.com/software/websphere/

http://glassfish.java.net
http://www.ibm.com/software/websphere/
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ity [113] is a roadmap for the development and implementation
of procedures to create effective, efficient, and sustainable inter-
operability mechanisms. It has been developed by OASIS, the
same consortium that created BPEL or UDDI, among others, and
it is complementary to other existing architectures and technolo-
gies designed to build business oriented services, like ebXML
or Web Services. BCM is formed by a set of model layers with
a step-guide process, and an information pyramid to align the
semantic information of partners. This allows the participation
of business experts and the creation of a very large documen-
tation repository. Nevertheless, this methodology has some dis-
advantages: it has a very large learning curve and it is not very
extended yet.

UN/CEFACTs Modelling Methodology (UMM) [77] is an approachUN/CEFACTS:
United Nations
Center for Trade
Facilitation and
Electronic
Business

to model the business services that each partner must provide in
order to perform a B2B collaboration. It has a complete meta-

B2B: Business to
Business

model about business processes and business information, in-
cluding a process analysis methodology. It is interesting to show
that UMM provides and supports components to capture the
knowledge about the business processes, and that it is indepen-
dent of the underlying implementation technology (ebXML, Web
Services, CORBA or EDI). Furthermore, because UMM extendsCORBA: Common

Object Request
Broker
Architecture
EDI: Electronic
data interchange

UML, we could say that this methodology is more easily adapt-

UML: Universal
Modelling
Language

able, due to the high development, acceptance and maturity of
UML [58]. In fact, a survey of B2B modelling languages show
that UMM is the most complete approach [50].

Finally, SOMA (Service Oriented Modelling and Architecture)
[11] is an architecture proposed by IBM to model service oriented
processes. It lets the identification, specification and implemen-
tation of the services, flows and components inside the SOA pa-
radigm. To achieve this tasks, it proposes a top-down modelling
oriented to intra-enterprise services (service-oriented instead of
business-oriented). It is more agile than the previous ones and it
is not focused in enterprise environments.

4.4 BENEFITS OF USING SOA IN EVOLUTIONARY ALGORITHMS

AREA

SOA has been previously used in the EA area. García-Nieto et al.
proposed Remote Optimization Service [55], a client/server envi-

ronment for launching different algorithms programmed in sev-
eral languages. Although it uses XML and DTD to define inputs
and outputs of the services, only the whole algorithm is exposed
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as a service. Also, this system does not allow dynamic discover-
ing or combination of available operators.

Web Services have been used in the grid area for optimization
problems, as can be seen in the works of [21, 83, 133, 134], where
services are defined using WSDL interfaces and other transmis-
sion mechanisms (such as Remote Procedure Call [76, 147]).

Although EAs are executed in grids [80, 96, 111]), no informa-
tion about how to design these services for EAs has been pro-
vided in previous works.

In the previous chapter several shortcomings in the Evolution-
ary Algorithms area were presented, such as the new trends of
distributed programming where nodes enter and exit in run-
time, or the incompatibility between frameworks, for example.
All these facts motivate the creation of a proper way to define
services for evolutionary algorithms. The elements that combine
an EA are candidate to be designed as services, as they can be-
have as input/output functions. Also, SOA solve the problems
previously addressed:

• Development: there exist several methodologies to model and
design services. Also, as services are re-usable, they can be
combined in different ways to create the different types of
EAs. Moreover, existing technologies, also facilitate the de-
velopment, using techniques such as versioning, packaging
or life-cycle control.

• Integration: Services are independent of the programming
language. For example, services implemented in Java may
use services implemented in C++ and vice-versa. Also, ser-
vices allow distribution transparency: it is not mandatory to
use a specific library for the distribution, or modify the code
to adapt the existing operators. Existing EA frameworks
could also be adapted to be accessed as services, providing
their interfaces.

• Standardization: Interfaces of services use public standards
(such as WSDL [145] or OSGi [117]). The service interfaces
for EAs should be abstract enough to avoid their modifica-
tion. Furthermore, as Foster claims [52], SOA is the key to
develop Open Science.

• Dynamism: Services are not aware of the order of execution,
so this paradigm can fit with new parallel approaches for
EAs, where the control of the nodes is not centralized. Also,
SOA provides techniques for automatic discovering of ser-
vices. For example, new operators in different nodes can be
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bound and used during the run of an algorithm. Also, there
should be easy to add and remove elements to achieve self-
adaptive mechanisms.

4.5 RESTRICTIONS IN SOA DESIGN FOR EAS

To allow these benefits the services for EAs should match with
the next technological restrictions:

• The services can be dynamically bound to change the needed
EA aspects.

• The source code of the basic EA services should not be re-
written or re-compiled to achieve this task. That means that
the design must be as abstract as possible.

• New services can be added in execution time.

• No specific source code for a distribution must added, nei-
ther the existing source code of the services should be modi-
fied for this purpose (that is, changing distribution libraries
must not add extra code in existing services).

One of the main restrictions in SOA, apart from focusing on
the development of abstract services, is the stateless and un-
ordered nature of services. Therefore, services must follow the
next guidelines.

First, as services are unaware of each other, there should not
be global variables in any part of the code. Services are listen-
ing, and waiting to be executed. For example, a fitness service
with a counter that is increased each time is called (to stop the
algorithm if a limit is reached, for example). If several (and dif-
ferent) algorithms were working in parallel, and calling this func-
tion concurrently, the counter could not distinguish between al-
gorithms, giving erroneous results. However, a service that main-
tains some kind of state is allowed, for example, a statistics ser-
vice that reads events from all the algorithms being executed at
the same time, but this should be managed to avoid errors.

Also, a service should not be distinguishable from local or re-
mote running in other node in the network. Every stage in the
algorithm should be treated as a service to be executed in local or
in remote, even the Population or the Parameters. Mechanisms to
ensure the correct data-sharing should be provided. Also, many
implementations of the same service could exist at the same time
(different implementations of Crossover, for example) and they
should be correctly managed and used.
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Moreover, a service is always a request-response function. For
example, the fitness calculation should not be a method of the
Individual implementation, but a function that receives a list of
individuals and returns a list of the calculated fitness of that in-
dividuals. This allow, for example, remote fitness calculation and
distributed load balancing, impossible to perform if the fitness is
a method of the Individual class.

Thinking as abstract as possible requires to separate concepts
such as the order of recombination, and the crossover itself. Usu-
ally, after parent selection, individuals are crossed in order. How-
ever, if we need a different mechanism for mating (for example,
using more than two parents, or parent selected several times)
a duplication of effort is needed. That is the reason to separate
the concept recombine from crossover (and also, following the top-
down design proposed in SOMA).

Finally, no assumptions should be taken about services pre-
viously executed or being executed next. For example, the Mu-
tation service could be applied before the Recombination or the
fitness could be calculated in the middle of the generation. Usu-
ally this step is performed in the last stage of the generation, but
if we require the individuals for other tasks: for example, a Local
Search or a statistics collector to guide the algorithm.

4.6 CONCLUSIONS

Even as SOA is used extensively in software development area,
it is not widely accepted in the main EA software, as the survey

of frameworks by Parejo et al., presented in Section 3.5 claim. The
authors of these frameworks should improve their frameworks
adding SOA technologies in order to facilitate the communica-
tion and integration among them, without duplication of effort
to re-program all the EA elements, and therefore, saving time.
Therefore, the benefits of using SOA in development, integra-
tion, standardization and dynamism (presented in Section 4.4)
could be applied. Although all the approaches described Section
3.2 are focused on the implementation of distributed EAs, the ab-
straction level of each alternative can be quite different, as shown
in Figure 4.4. As SOA is a paradigm and not a technology, ar-
eas such as Evolutionary Robotics, or EA classic frameworks can
use SOA to be designed and developed. Implementation tech-
nologies, such as Web Services, can fill the gap between SOA
(abstract) and grid (infrastructure) where interfaces are designed
using SOA principles (dynamism, visibility, loose-coupling and
heterogeneity). Finally, cloud computing can be seen as a com-
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Figure 4.4
SOA as abstract
paradigm to de-
velop EAs in differ-
ent areas. Using
specific technolo-
gies such as Web
Services allows
grid integration.
This figure has
been updated from
the one presented
in [81].

bination that extends SOA adding the scalability of the grid, ad
suggested by Jamil [81].

In this thesis the SOMA guidelines (identification, specification
and realization of the services, flows and components) are going
to be used, because it is the methodology more flexible and less
focused on commercial purposes. Next chapter will present a
methodology to use the design principles of SOA for developing
services for EAs. Then, in later chapters, a specific SOA tech-
nology will be used to develop an implementation of a service
oriented architecture for EAs.
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I don’t claim to be a methodologist, but I act like one only because I do
methodology to protect myself from crazy methodologists.

— Ward Cunningham (2004) Geek Noise
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SOA provides a good set of solutions to solve some of the prob-
lems in the EA area, such as the lack of integration, standard-

ization and dynamism control, as presented in Section 3.5. It also
allows ease of development in dynamic, distributed and hetero-
geneous systems, like the ones presented in Section 3.2.2.

SOMA methodology, presented in previous chapter (Section
4.3), establishes that the phases of the SOA design are identifi-
cation, specification, implementation and deployment of the services
and flows. Although SOMA is more focused on business envi-
ronments (where other phases exist), the ideas that it offers are
used to develop a methodology for the design of services for
EAs. In this chapter the SOA-EA (Service Oriented Architecture
for Evolutionary Algorithms) methodology is presented. SOA-
EA is an abstract methodology to develop service oriented
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evolutionary algorithms (SOEAs), that is, evolutionary algo-
rithms whose elements are services, independently of the tech-
nology to be used. It is formed by several phases to identify the
services that compose an EA and specify some of their possi-
ble behaviours, taking into account the restrictions presented in
Section 4.5. This methodology will fulfil the Objective 2 of this
thesis: Propose a methodology that is able to successfully adapt
evolutionary algorithms to distributed, heterogeneous, dynamic,
standards-based environments.

5.1 STEPS FOR DESIGNING SERVICES FOR EAS

This section presents all the steps to design and implement SOEAs
using SOA-EA. As in SOMA, the phases are not linear, but

they are iterative and incremental, that is, the designer can move
back to a previous step if necessary. For example, new services
can be discovered during the specification phase or changes on
the specification could appear in the deployment phase. Figure
5.1 shows the steps of the proposed methodology.

Figure 5.1
Methodology to
develop services
for Evolutionary
Algorithms.
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5.2 IDENTIFICATION

This phase is focused on the identification of the three constructs
of SOA: services, components and flows. So, at the end of this

step, the developers have a complete list of the services to be
designed.

First, the developers should ask themselves the following ques-
tions to facilitate the identification:

• Which problem do I need to solve?

• What elements are needed by my EA?

• Has somebody else programmed this before?

• Which operators do I need?

• Is my algorithm going to be extended in the future?

• How can I parametrize my algorithm?

Solving the previous questions is the first step to identify the
services. The next step is to classify the services in one of the
three different domains that are proposed: Algorithm domain, the
Problem Domain and the Infrastructure Domain.

5.2.1 Algorithm domain

Services in this domain are those that conform the EA. For ex-
ample, operators of individuals, stop criterion, or populations.
Also, getting the values of the parameters can also be a service,
thus the EA developer obtains two advantages over using pa-
rameters only as variables: it is not mandatory to distribute the
parameters among all services, and also they can be dynamically
modified in execution time from an external service, facilitating
self-adaptation.

5.2.2 Problem domain

In this domain, the user defines the services to address the ele-
ments of the problem. An example is the fitness function. The
fitness function is a clear EA element that can be designed as
a service. Each problem should implement an interface of the
fitness service that receives the individual, allowing the distribu-
tion of this service (instead of being a method in the individual
class, for example). There are also other services that depend on
the problem, such as an initializer of individuals.
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5.2.3 Infrastructure domain

Services in this domain are the ones that deal with the specific
infrastructure that will be used to execute the algorithm. For ex-
ample, services for user control, load balancing or logging. The
design of many of these services is out of the scope of the EAs,
but all them have to interact with the previous domains in some
way. Depending on the environment where the EA is going to be
developed, other services need to be modelled. For example, user
control in cloud environments, different mechanisms for logging
(in console, GUI...) or interconnection with other systems (such
as external databases).

5.3 SPECIFICATION

Once the services have been identified, the next step of the method-
ology establishes the inputs and outputs of the services of the

SOEA. The questions to solve prior to this phase are:

• Which are the inputs of the services?

• Which are the operations of each service?

• How are the individuals representation?

• How are the services going to be used?

• Which is the order of execution of the services?

• Is only one type of service required?

• Are the services going to be adapted to computational power
of the machines?

All the characteristics of genericity for the design of an EAs,
presented in Section 3.4.1, should be taken into account when de-
signing elements for EAs. However, requirements are also aligned
with the requirements for designing services, explained in previ-
ous chapter (Section 4.5). It is important to remark that in the
future these services could be extended, so they should be de-
signed taking into account this possibility.

5.3.1 Specifying the operators

When specifying operators (such as recombinator or mutator) they
do not have to be modelled to receive one or two individuals,
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since not all EAs have the same behaviour. They should receive
a list of individuals to be crossed or mutated each generation. Al-
most all services in an EA (like mutation or selection) will accept
individuals as input data and produce/modify these individuals.
Due to many kind of individuals may exist, the operators should
be as abstract as possible to work properly. Therefore, services
must accept interfaces of individuals as inputs, not concrete im-
plementations, such as vectors or lists (generic representation).

5.3.2 Specifying the population

The population should not be a list of individuals: it should be
a service to access the individuals and allow the variation of its
structure (for example, a change from an unique list population
to a cellular model) without affecting the rest of the services of
the algorithm. So, other services external to the EA could consult
the population state and act accordingly to some rules.

5.3.3 Specifying the fitness

As previously stated in Section 4.5, the fitness should not be cal-
culated within a method of an Individual class. To be less coupled,
it should be implemented as an external service that receives a
list of individuals (facilitating the load balancing). That way, the
service is as abstract as possible.

5.3.4 Specifying the parameters

The parameter set should be a service for the same reason, allow-
ing the possibility of performing experiments related to param-
eter control or tuning [35] in an efficient way (being separated
from the code of the existing operators).

5.3.5 Specifying the flow of the services

A SOEA can be seen as a service flow. Flows should be designed
to reduce the impact of potential future changes. An example
of service flow would be an implementation called Evolutionary
Algorithm with all the steps common to all EAs and with inde-
pendence of the implementations of these steps (generic evolu-
tionary model). This allow the adaptation of the evolutionary
model. The user can manually select the services to be combined
to create a Genetic Algorithm or an Evolution Strategy, for exam-
ple.
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Furthermore, to accomplish with the genericity presented in
Section 3.4.1, the parameters and operators should be added dy-
namically. This is done with the SOA service binding. Users can
specify the operators they need in several ways, for example, in
a configuration file, or in an intelligent manner (an algorithm),
taking into account the classification about evidence in param-
eter control presented in Section 3.3 . It is important to remark
that these “pieces” do not need to be modified and compiled
again, because the loose coupling and the dynamic binding of
SOA. Without SOA this behaviour is very difficult to achieve or
maintain, as will be explained in next section.

Also, mechanisms to allow adaptation of computational power
to the machines should be addressed in this step. As this new
paradigm may deal with dynamism and heterogeneity of the
resources, services to control these issues need to be defined:
for example, adapting parameters values or different operators
depending some metric or benchmark, or to control nodes that
disappear during running time.

5.3.6 Specifying the infrastructure services

The infrastructure services function is to manage the system.
For example, output mechanisms (GUI or logging services) that
should be independent of the services of the other domains. In
this step, also the control of the system should be described (for
example, user control or load balancing control).

5.4 IMPLEMENTATION AND DEPLOYMENT

Once the services have been identified and specified, a SOA tech-
nology should be used to implement and publish them. These

two steps of the methodology are explained together because the
decisions about the technological solution to be used is bound to
both phases.

The questions to solve in these steps are:

• Are services going to be used locally or remotely?

• How the interfaces are going to be exposed?

• Are the services public?

• How are going the changes in service dynamism to be man-
aged?

• How must be the overload of the messages?



5.4 implementation and deployment 57

• Which are the advantages of the chosen technology?

• Which are the specific considerations about security, persis-
tence, benchmarking and monitoring?

5.4.1 Select the technology to expose the interface

As presented in Section 4.2, there exist several technologies to
implement services. Depending on the use of the services, one
technology should be chosen over other. For example, a service
that is going to be used remotely and publicly from any program-
ming language should export its interface with WSDL publicly
available with an URL, to allow users to automatically generate
the client for that service. On the other side, interfaces could be
previously known, and it is not necessary to export them to the
public. This is the case of OSGi, where the interface is exposed
only to the OSGi service registry. Other mechanisms could be
used to publish and share the interfaces of the services (for ex-
ample, using a newcast protocol).

5.4.2 Select the communication mechanism

Services are also independent of the transmission mechanism, so
this issue must be considered depending on the system to deploy
the services. In the case of EAs, where the performance is impor-
tant, usually the most efficient transmission mechanism should
be preferred. However, sometimes other transmission mechanism
can be used. For example, SOAP (explained in Section 4.2), in-
cludes extra information in headers [17], producing more net-
work overload. However, this information is easier to manage
for other systems, or easier to configure to be used remotely (as
it uses a standard HTTP port).

5.4.3 Deploy in the system

Once the services have been implemented they have to be de-
ployed in the desired system. Examples of environments to de-
ploy services are application servers (such as Apache Tomcat1 or
Oracle GlassFish2), service containers (Equinox3 or Felix4), BPEL
engines (for example OpenESB5) or as a stand-alone system. In

1 http://tomcat.apache.org/
2 https://glassfish.java.net/
3 http://www.eclipse.org/equinox/
4 http://felix.apache.org/
5 http://www.open-esb.net/

http://tomcat.apache.org/
https://glassfish.java.net/
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.open-esb.net/
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this step, issues related with testing, user control, security and
persistence should be taken into account. The implementations
of the infrastructure services deal with the chosen system.

5.5 VALIDATION OF THE SERVICES

As previously remarked, during all the steps of the methodol-
ogy it must be validated if the created services for EAs accom-
plish the requirements of the development of services (Section
4.5) with the genericity of developing EAs (Section 3.4.1). There-
fore, at the end of the application of the methodology, all services
must accomplish next restrictions:

• All elements of the EA should be designed as loose-coupled,
stateless services.

• The services for EAs should operate with independence of
the structure of the individuals (generic representation).

• The operators of the EAs should be designed to be used
in conjunction with others (for example, aggregation) and
have minimal side effects (generic operations).

• The services for EAs should work with independence of the
evolutionary model (generic evolutionary model).

• Services must be discoverable and dynamically bound.

• Services must provide a standard-based interface.

• Services can be added or removed in execution time.

• Services must be indistinguishable of being executed locally
or remotely.

• No specific code should be added in the implementation of
the services to specify the distribution mechanism.

• In relation with previous requirement, the distribution mech-
anism can be modified without affect the existent code.

5.6 CONCLUSIONS

Chapter 3 presented several shortcomings in the Evolutionary
Algorithms area, such as the incompatibility between frame-

works or how to handle with new trends of distributed program-
ming, where nodes enter and exit in runtime, for example. All
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Element Current EAs
development

Using SOA Reason to migrate

Programming
language

Just one for
all elements of
the algorithm

Any Services are independent of the program-
ming language. Only the interface is re-
quired to use services

Operators Methods or
functions

Services Services allow the selection of a specific
implementation during the algorithm ex-
ecution, and also different programming
languages or distribution models

Operators
behaviour

Methods ap-
plied to a
single individ-
ual

Services that re-
ceive individual
lists

It allows load balancing and distribution,
and also to modify the operators in exe-
cution time

Operator se-
lection

Modifying the
source code

In a flexible
way outside the
source code

It is not mandatory to recompile the
source code to integrate new operators

Fitness Method that
evaluates an
individual

Service that eval-
uates an individ-
ual list

It allows the distribution, load balancing
and addition of new fitness calculators in
real time

Population Array or indi-
vidual list

Population ser-
vice

It allows to change the population type
and topography, by selecting the service
implementation

Self-
adaptation

Modifying
source code
for a specific
experiment

Self-adapting ser-
vice that selects
specific operator
implementations

It does not modify the created services
and brings more flexibility in the dy-
namic adaptation

Distribution Libraries like
MPI

SOA mecha-
nisms

SOA technologies allow changing the
transmission protocol and using extra
technologies without adding extra code

Table 5.1
Summary of mi-
gration from tradi-
tional EA program-
ming to SOA

these facts motivate the creation of a proper way to define ser-
vice oriented evolutionary algorithms (SOEAs) to facilitate the
development, integration, standardization and dynamism.

In this chapter the requirements in EA design (genericity in
representation, fitness, operations, model, parameters and out-
put) presented in Section 3.4.1, with the requirements in SOA
(genericity in interfaces, language independence, distribution and
dynamism) explained in Section 4.5, have been taken into ac-
count to propose a methodology to model the services that com-
pose a service oriented EA, and several guidelines about the
design of these services have been explained. This methodol-
ogy proposes 4 iteratively and incremental phases: identifica-
tion, specification, implementation and deployment. A number
of questions has been proposed to be answered in each phase to
help in the development and validation of the created elements.
This methodology can been used to create a service-oriented evo-
lutionary algorithm that takes advantage of the SOA capabilities,
such as loose-coupled services and automatic binding of new op-
erators.

Table 5.1 shows the advantages to design the elements of the
EA as services.



60 a methodology for developing services for eas

Next chapter will present a complete example of development
and will explain how to modify services to change from a model
to another, adding transparent distribution and load-balancing
or dynamic adaptation of the parameters.
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If the river is taken, if the garrison at Osgiliath falls,
the last defence of this city will be gone

— Gandalf The White. The Lord of the Rings.
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Previous chapter has presented SOA-EA, a methodology to de-
velop SOEAs. This chapter validates the use of SOA-EA to cre-

ate services using the steps proposed. Identification and specifi-
cation of a complete example of a SOA will be presented, solv-
ing the questions to identify a number of services and their be-
haviour.

Then, for the implementation and deployment steps, a specific
SOA technology (OSGi) will be used to implement and deploy
all the services and examples shown in previous sections, and
how to accomplish the requirements in the development of EAs
and SOA, taking advantage of the capabilities of SOA. As this
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is an iterative and and incremental methodology, new services
can be discovered or removed in further steps (for example, in-
frastructure services). The result will be a framework to facilitate
the development of SOEAs, called OSGiLiath (OSGi Laboratory
for Implementation and Testing of metaHeuristics). Finally, several
experiment to demonstrate the ease in integration and develop-
ment will be carried out to fulfil the Objective 3 of this thesis:
validate the methodology creating a framework using a SOA
technology that solves the problems addressed.

6.1 EXAMPLE OF CREATING A SERVICE ORIENTED EVOLU-
TIONARY ALGORITHM

In this example a basic SOEA will be designed. Then, to illus-
trate the iterative process of the proposed methodology and the

capabilities of using SOA this example will be extended. First,
a NSGA-II algorithm [27] will be also designed using the exist-
ing services and adding new ones. Finally, new services to add
distribution and self-adaptation will be developed.

6.1.1 Identification

As stated in in Section 3.1, a basic EA is formed by several steps.
Solving the questions in Section 5.2 and the considerations about
the design of services (Section 4.5) and the genericity of EAs (Sec-
tion 3.4.1) a number of abstract services have been identified. In
the algorithm domain, the Algorithm, Population, Parent Selector,
Recombinator, Mutator, Mutation, Replacer, Stop Criterion and
Parameters. In the problem domain, the Fitness Calculator and Ini-
tializer. Finally, in the infrastructure domain, a Launcher service to
start the algorithm.

6.1.2 Specification

Concrete implementations are defined in this step: for example,
N Tournament and Roulette are implementations of parent selec-
tors and Optimum Found the desired stop criterion. Also, to ad-
dress the problem to be solved, implementations of the Problem
domain should be created: services such as OneMax Fitness Cal-
culator or Binary Initializer. The Initializer is the service that es-
tablish the representation of the individuals (for example, a list
of elements or a tree), depending of the problem to solve. In
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this case, a ListIndividual implementation of Individual interface
is created.

As we need a fixed set of steps, a Evolutionary Algorithm service
is created to model the flow of services. The discovered services
in previous step have been specified to accept a list of individu-
als.

Figure 6.1
Diagram of a basic
genetic algorithm.
White blocks are
interfaces and or-
ange blocks are
implementations.
In this case, we
are using specific
implementations
to solve the One-
Max problem.

Figure 6.1 shows the diagram of a complete service oriented
genetic algorithm, taking into account the proposed ideas. In this
figure (and in the following ones) white blocks are the service
interfaces. Orange blocks are specific implementations of these
interfaces (that is, the source-code of the service), and arrows in-
dicate how a service implementation can make use of other ser-
vices via their interface. For example, almost all implementations
access to the Parameters service using its interface. Service imple-
mentations (orange blocks) can be selected in a configuration file
or be automatically bound when they are available (among other
options).

The change from a problem instance to another is quite sim-
ple. It is only necessary to notify the algorithm a change in the
implementation of the service Fitness Calculator. Because some al-
gorithms need to calculate the fitness every time an individual is
modified (and not only at the end of a generation) the service Fit-
ness Calculator may be used inside the implementations that mod-
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ify individuals (Initializer, Mutator or Recombinator). This should
be considered in this stage, but could be changed dynamically.
Moreover, each service can be in the local machine or distributed
on the Internet, having the same behaviour.

6.1.3 Extending the example to create a NSGA-II

As this is an iterative and incremental approach, other services
can be discovered and designed in this step. For example, the
difference between the previous version of a GA and the well
known NSGA-II lies in the selection operator. Therefore, to change
from the basic GA to NSGA-II, the mutator and crossover are
kept and new selection operators are added. Figure 6.2 shows the
diagram of the service oriented version of NSGA-II algorithm,
where the new implementations are marked with a thick border.
The problem has also been changed to Multi-Objective Knack-
sack problem [148]. New auxiliary services have been added, like
Crowding Distance Assignator or Pareto Assignator. As these ser-
vices may be used in other algorithms in the future, they should
be designed as abstract as possible. These new services are called
from the implementation (code) of the services NSGA-II Replacer
or Binary Crowding Distance Selector (black arrows indicate an in-
terface call).

6.1.4 Extending the example to add distribution

As every service must keep the same behaviour, independently
of the machine that hosts it, distribution services for load bal-
ancing of a specific service can be easily created. For example,
notifying the algorithm to use a distributed implementation for
that service, instead a local one. As previously stated, the service
Fitness Calculator receives a list of individuals to calculate their fit-
ness, so, in this example, the new fitness implementation (Basic
Fitness Distributor) binds with every fitness service available (in
the same machine or in a network). The source code of this basic
implementation simply distributes the list of individuals among
the bound services and waits for their termination. Although
more complex implementations probably will be more efficient,
the objective of this section is to show how to distribute services,
thus, this basic implementation is sufficient. Figure 6.3 shows the
modification from a sequential fitness calculator to a distributed
one. Thanks to SOA, the number of distributed fitness calcula-
tors is not fixed: calculators can be added or removed in real
time without stopping the system. As can be seen in the figure,
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Figure 6.2
Modification of the
basic GA adding
new service im-
plementations
(orange blocks
with thick lines).

if one of the nodes is a cluster, it could also implement another
fitness distributor (block with thick lines in the Figure). This easy
example can be adapted to more complex necessities depending
on the infrastructure or the problem to be solved. More com-
plex distribution services can be created, for example, taking into
account communication latencies or computation capabilities of
the nodes.

As explained in Section 3.2 other way to parallelize EAs is the
island model. Using SOA-EA, the Population service implemen-
tation can be modified to become a distributed population. Each
certain time, this population could exchange individuals with
other populations modified by other algorithms. These popula-
tions should be added or deleted in execution time without af-
fecting the algorithm execution. Figure 6.4 shows this example,
where a Replacer implementation maintains a list of references to
other Population interfaces (which can be local or remote). If one
of these population services drop, the others can continue work-
ing. The topology of these islands can also be managed from
services (such as Basic Replacer service, or another). The modi-
fication and dynamism of the population structure is difficult
to apply in existing frameworks without using SOA because it
is necessary to create mechanisms to modify the population be-
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Figure 6.3
Fitness distributor.
The thick line
implementation
also re-distribute
the individuals.

haviour, the operators to modify it, the data structures, and also
the code to manage all. With the usage of SOA, and due to the
capability of accessing to a population via its service interface, it
is not necessary to modify the source code to modify the popula-
tion and its behaviour. Also, to avoid bottlenecks in distributed
executions, asynchronous communication must be provided to
avoid idle time. This kind of communication offers excellent per-
formance when working with different nodes and operating sys-
tems, as demonstrated by [5].

Figure 6.4
Island model.
From time to time,
the Basic Replacer
Implementation
could send or re-
ceive individuals
from other islands.

6.1.5 Self-adaptation of the services

There are several ways to create self-adaptable algorithms using
SOA. For example, creating a service that modifies the param-
eters in the Parameters service, or activating and de-activating
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operators in real time. An easier way is to create a service that
manages all available services of the same kind. For example a
Mutator service that binds all the available mutation implemen-
tations and use the most adequate one depending on some rules
during the execution [130]. This idea can also be extended to
create a service that implements several interfaces and selects
the most adequate implementation for each interface respect to
some criteria, as can be seen in Figure 6.5, where thick lines rep-
resent the implementations used at the current moment (they
vary as time passes).

Figure 6.5
Self-adaptable
Algorithm. The In-
telligent Operator
Selector selects
which service im-
plementation is
used each time.

Finally, another important usage of EAs is its hybridization
with other metaheuristics, to obtain more effective search algo-
rithms [124], increasing the performance of intensification and di-
versification mechanisms. With traditional frameworks this task
can be difficult, mainly because the source code for each meta-
heuristic must be modified. Nevertheless, using SOA a combina-
tion of loosely coupled services could be used.

Summarizing, the questions presented in Section 5.4 have been
answered to obtain the next restrictions for the desired frame-
work. Initially, the services can be executed locally, they must be
dynamically bound and no extra code should be added to allow
the distribution of the created implementations. This implemen-
tation should allow asynchronous data sending/receiving, with-
out the need to implement specific functions in the source code,
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like MPI or other distribution mechanisms. EAs developers can
use the existing distribution services or create new ones, if they
want. New improvements can be added without modifying the
existing modules, that is, adding or modifying only the affected
service implementations without modifying the source code of
the other services.

6.2 IMPLEMENTATION AND DEPLOYMENT

In this section, the previous examples are going to be imple-
mented and deployed. The aim of this section is to create OS-

GiLiath, a framework to facilitate the creation of SOEAs, taking
into account the benefits of SOA, to provide a number of inter-
faces to implement and mechanisms for the dynamic binding of
services. The previous examples will be implemented and added
to the framework as a base for new developments and creation
of new services for the rest of this thesis. First, a SOA technology
will be selected, analysing their benefits and shortcomings. Then,
the steps to implement and deploy the services using the chosen
technology are explained.

6.2.1 Select the technology to use

Of the existing technologies for SOA (presented in Section 4.2)
Web Services and OSGi have been considered to compliment
with the restrictions previously addressed.

OSGi has been selected because it is faster than Web Services,
because it was designed for lightweight devices [97]. Therefore,
it can be used in embedded devices, like Evolutionary Robotics
[56]. On the contrary, as explained in Section 4.2 Web Services
were created to integrate complex data interchange among dif-
ferent companies. This is related with the transmission protocol
in Web Services, SOAP, which implies the transmission of an
XML, as explained in Section 4.2.1. This file is usually too large
(for example, a complete list of workers in a company). EAs of-
ten need to send minimal information, but a large number of
times (for example, the fitness of several individuals), so a com-
plex transmission protocol is not recommended. OSGi includes
many mechanisms for data transmission, allowing more flexibil-
ity depending on the execution environment of the algorithms
(for example, in a machine, in a local network, over the Internet,
or even in more lightweight devices).

Unlike Web Services, OSGi includes a blackboard event-ma-
nager, that is, services can inform what they are doing without
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indicating any receiver. Other services can filter this information
and actuate accordingly, so the synchronization is easier. For ex-
ample, it is not mandatory to create a variable to count the num-
ber of times that the Fitness Calculator service is executed: an
external service can track this number.

Other reason to use OSGi is the separation between OSGi and
the source code of the services, so the code of OSGi-based ap-
plications can be used in other Java-based applications without
OSGi. For the same reason, frameworks written in Java can be
migrated into services easily.

Finally, OSGi includes other features that, although they are
not related to SOA, facilitate the service development and de-
ployment: version and package control, security and life-cycle
management of the used components, that can be useful in the
development of EAs (as explained by Wagner et al. [143]). These
advantages can be used by the EA developers if they work in a
team collaboration.

To distribute the OSGi services, the OSGi 4.2 Remote Services
standard1 is proposed. The Eclipse Communication Framework2 (ECF)
has been chosen because it is the most mature and accepted im-
plementation of this standard (claimed by Petzold et al. [123]),
and it also supports the largest number of transmission proto-
cols, including both synchronous and asynchronous communi-
cation.

ECF includes a number of protocols for service discovery and
service providers:

• Service Discovery API: Includes protocols to announce and
discover remote services: Zeroconf, SLP/RFC 2608, Zookee-
per, file-based and others 3.

• Remote Service API: Includes protocols to establish the com-
munication (data streams, formats and others): R-OSGi, Ac-
tiveMQ/JMS, REST, SOAP, XMPP, ECF Generic 4. This al-
lows communication with systems that do not use OSGi or
Java.

More information about the application of OSGi in other areas,
with good practices, benefits and lessons learned is provided in
[57].

1 http://www.osgi.org/Release4/Download
2 http://www.eclipse.org/ecf/
3 http://wiki.eclipse.org/ECF_API_Docs#Discovery_API
4 http://wiki.eclipse.org/ECF_API_Docs#Remote_Services_API

http://www.osgi.org/Release4/Download
http://www.eclipse.org/ecf/
http://wiki.eclipse.org/ECF_API_Docs#Discovery_API
http://wiki.eclipse.org/ECF_API_Docs#Remote_Services_API
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6.2.2 Implementing the services

In OSGi, the services are formed by the next elements:

• Service interface. It is a Java interface. The user just needs to
specify the operations that the service will perform.

• Service implementation. The programmer just writes the code
of the interface methods.

• Service description. It is an XML file that indicates which in-
terface is being implemented and which other services need
to be activated.

These elements accomplish with the restrictions of the separa-
tion between interfaces and implementations, explained in Sec-
tion 4.5. More information about these concepts are explained in
detail in Appendix A.

In this step the interfaces of the services identified in Section
6.1, such as Algorithm, StopCriterion, Population or Recombinator
are implemented in Java. Concrete examples are TPXCrossover
or List Population. These interfaces are grouped along other inter-
faces that do not need to be a service. For example, the interface
of the object Individual. This interface is used in the Recombinator
interface, which receives a list of Individual objects to be recom-
bined, and returns another list with the recombined ones. Also,
several implementations are included, such as the rest of services
explained in previous sections, like the services for NSGA-II.

Once the services are implemented, the flow of execution must
be implemented. In previous chapter the usage of a Evolutionary
Algorithm service implementation was proposed (Section 5.3.5).
The source code of the method that executes the algorithm in the
class EvolutionaryAlgorithm (implementation) is shown in Figure
6.6. It includes methods to bind the six references to the ser-
vice implementations that are needed: Population (pop in the
code), StopCriterion, ParentSelector, Recombinator, Mutator,
and Replacer.

6.2.3 Deploying the services

The services are deployed inside an OSGi container (such as
Equinox5 or Felix 6). The container has mechanisms to list, start
and stop services. To automatically bind the service implementa-
tions with the service interfaces the Service Description is used.

5 http://www.eclipse.org/equinox/
6 https://felix.apache.org/

http://www.eclipse.org/equinox/
https://felix.apache.org/
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Each implementation of a service has an XML file indicating
which interface is being implemented, and also other proper-
ties. This file is used by OSGi to automatically bind the services.
The service descriptor of the EA is shown in Figure 6.7. This file
describes that the EvolutionaryAlgorithm class is an implemen-
tation of the Algorithm interface, and that it needs implemen-
tations of the interfaces Population, Mutator, ParentSelector,
Replacer, StopCriterion and Recombinator to be activated.

It should be noted that this file usually can be modified using a
friendly GUI, or from an assistant in Java IDEs, such as NetBeans
or Eclipse (so, users do not have to care about its XML structure).
The user interface to create this file in Eclipse is shown in Fig-
ure 6.8. The interface being implemented is set in the lower part
(Algorithm). The necessary services to activate this implementa-
tion are indicated in the upper part (with the cardinality and
functions to set and unset the service implementations in the
implementation source code).

This XML file is read by the OSGi execution environment,
which is the responsible to bind the available services to this
implementation. For example, if a ParentSelector is activated, it
is automatically bound to the variable parentSelector through
the function setParentSelector. The cardinality (explained in
Appendix A) is also set in the file, in this case, only one imple-
mentation is necessary (not multiple). This file can be modified
in execution time, so it is not required to re-compile the Java
code to use and set new services.

In brief, each implementation of a service (<implementation>)
indicates the interface to being implemented (<provide inter-

face>), and the other services this implementation needs (<re-
ference>).

Moreover, each service can provide properties to be used by
other services to obtain more information and filtering. For ex-
ample, in this case only the Replacers whose property replacerName

= nsga2 are used.

6.2.4 Managing services: implementing the NSGA-II from
the canonical GA

Following the development example shown in Section 6.1.3, the
extra services have been developed to convert the basic GA into
a NSGA-II and new implementations also have been added to
OSGiLiath to be available for users.

There exist many options for the implementation of the EA
to pick up the appropriate service. The first of them is modify-
ing the source code of the implementations. Obviously this is
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not recommended, because the service would not be loosely cou-
pled due to the specific OSGi code, and this is not a good SOA
practice. The following ways makes the service usage not code-
dependent:

• De-activating the implementation Binary Tournament from
the OSGi administration console, and activating the imple-
mentation Crowding Distance Selector (that is, manually). This
technique is not recommended, because all services are then
managed by hand, and this is very difficult with a large
number of services. However, the OSGi console allows mod-
ifying services in execution time, so it can be used in some
cases (for example, to stop the service in a machine while
another big task is being executed, and activate it again
when this task is over).

• Modifying the Service Descriptor of the Evolutionary Al-
gorithm implementation to filter the desired implementa-
tions (for example, the attribute target=“(selectorName-

=nsga2)” in Figure 6.7). This option is used when the algo-
rithm is fixed and does not need to be modified in execution
time, and the number of operators and types are known in
advance. However, as previously stated, new services can
be added in execution time (for example, if the cardinality
is set to multiple).

• Using an external service that activates or de-activates de-
sired implementations or modify their status. This technique
must be used when self-adaptation properties are used in
the algorithm, and it is presented in next subsections.

None of these options needs to modify the source code of the
existing services: they just indicates which services uses each
time.

6.2.5 Making it distributed

As previously stated in Section 4.5, services should be undistin-
guishable of being local or remote, and should not add extra
code for distribution. Therefore, all services can be distributed
using the OSGi features. In this case, the distribution is per-
formed using the service descriptor to set which service is dis-
tributable and which is the distribution technology that provides
service discovering and data transmission.

As explained in Section 6.2.1, OSGi allows several implemen-
tations for the service distribution. This specification uses the
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OSGi service registry to expose remote services to other ma-
chines (being indistinguishable from the local ones). ECF also
separates the source code from the discovery and transmission
mechanism, allowing users to apply the most adequate technol-
ogy to their needs, and providing the integration with existing
applications. For example, the lines of Figure 6.9 can been added
to any service descriptor to distribute it in the local network.

In this case, it is only necessary to set the properties that ECF
uses to identify the services being distributed in the network, in-
dicating that all implemented interfaces are distributable (servi-
ce.exported.interfaces). Also, the communication technology
to be used is established (ecf.generic.server, although another
kind of protocol could be used), and finally, the service URL (
ecf.exported.containerfactoryargs). As previously stated, the
service properties can be modified from other services, so these
properties can be added outside the XML. It should be noted
that the source code of the services has not been modified to dis-
tribute them (as would happen if MPI, or other middleware, had
been used to perform the distribution, for example).
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Figure 6.6
Java code of the
class Evolutionary
Algorithm. This
class implements
the Algorithm in-
terface, which de-
fines the operation
start()

1 //References to the implementations to use

2 Population pop;

3 ParentSelector parentSelector;

4 Recombinator recombinator;

5 Mutator mutator;

6 Replacer replacer;

7

8 //Example of the method to obtain an implementation

9 //of the ParentSelector interface

10 //(one function per reference)

11 void setParentSelector(ParentSelector sel){

12 this.parentSelector = sel;

13 //now sel is a reference to an implementation

14 //of ParentSelector

15 }

16

17 //Implementation of the start() method of the

18 //Algorithm interface

19 public void start(){

20 pop.initializePopulation();

21 actualIteration = 0;

22 do{

23 //SELECT parents

24 List<Individual> parents =

25 parentSelector.select(pop);

26

27 //RECOMBINE parents

28 List<Individual> offspring =

29 recombinator.recombine(parents);

30

31 //MUTATE offspring

32 List mutatedOffspring =

33 mutator.mutate(offspring);

34

35 //SELECT new population.

36 //pop is modified here

37 replacer.select(pop, parents,

38 offspring, mutatedOffspring);

39

40 actualIteration++;

41

42 }while(!stopCriterion.hasFinished());

43

44 }
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
3 enabled="false" immediate="true" name="OsgiliathEvolutionary" >
4 <implementation
5 class="es.ugr.osgiliath.evolutionary.EvolutionaryAlgorithm"/>
6 <service>
7 <provide interface="es.ugr.osgiliath.algorithms.Algorithm"/>
8 </service>
9 <reference bind="setPopulation" cardinality="1..1"

10 interface="es.ugr.osgiliath.evolutionary.elements.Population"
11 name="Population" policy="static" unbind="unsetPopulation"/>
12 <reference bind="setMutator" cardinality="1..1"
13 interface="es.ugr.osgiliath.evolutionary.elements.Mutator"
14 name="Mutator" policy="static" unbind="unsetMutator"/>
15 <reference bind="setParentSelector" cardinality="1..1"
16 interface="es.ugr.osgiliath.evolutionary.elements.ParentSelector"
17 name="ParentSelector" policy="static" target="(selectorName=nsga2)"
18 unbind="unsetParentSelector"/>
19 <reference bind="setReplacer" cardinality="1..1"
20 interface="es.ugr.osgiliath.evolutionary.elements.Replacer"
21 name="Replacer" policy="static" target="(replacerName=nsga2)"
22 unbind="unsetReplacer"/>
23 <reference bind="setStopCriterion" cardinality="1..1"
24 interface="es.ugr.osgiliath.evolutionary.elements.StopCriterion"
25 name="StopCriterion" policy="static" unbind="unsetStopCriterion"/>
26 <reference bind="setRecombinator" cardinality="1..1"
27 interface="es.ugr.osgiliath.evolutionary.elements.Recombinator"
28 name="Recombinator" policy="static" unbind="unsetRecombinator"/>
29 <property name="algorithmName" type="String"
30 value="EvolutionaryAlgorithm"/>
31 </scr:component>

Figure 6.7
Service descriptor
of the Evolution-
ary Algorithm
implementation.
Figure 6.8 shows
the friendly user
interface to auto-
matically create
this file using the
Eclipse program

Figure 6.8
Graphic user in-
terface in Eclipse
that generates the
Service Descriptor
of Figure 6.7

1 <property name="service.exported.interfaces" type="String" value="*"/>
2 <property name="service.exported.configs" type="String"
3 value="ecf.generic.server"/>
4 <property name="ecf.exported.containerfactoryargs" type="String"
5 value="ecftcp://localhost:3787/server"/>

Figure 6.9
Lines added to the
service descriptor
of Figure A.5 to
be discovered by
other services in a
network (this can
also be done in the
GUI)
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6.3 EXPERIMENTS

In this section, several experiments to confirm some of the ad-
vantages of using SOA and OSGi, explained in previous chap-
ters, are performed using OSGiLiath. First, a comparison of time
of using OSGi and the services as normal classes is presented
to demonstrate that OSGi does not adds extra overhead (as ex-
plained in Section 4.2.4). Experiments to demonstrate the auto-
matic adding of new operators during runtime, and integration
with other systems without modification of the existing source
code are shown. Finally, a comparison of Lines of Code (LoCs)
with other existing frameworks for EAs (presented in Section
3.4.2) is performed.

6.3.1 Comparing overhead of using services

One may think that working with services usually implies an
overhead. This is true when communication protocols like SOAP
are used, because the transmitted XML must be generated and
parsed. However, as SOA is independent of the implementations,
services also can behave as normal method calls in the same
machine.

The basic GA implemented in Section 6.2.2 is also executed
outside of the OSGi framework, and a normal Java class has been
used to integrate the interfaces and implementations “as is”. The
population has been set to 64 individuals, parents have been se-
lected using Binary Tournament, and the mutation rate has been
fixed to 0.1. Worst individuals (parents and off-spring combined)
are replaced, and the stop criterion has been set to 200 genera-
tions. Each experiment has been launched 30 times to solve the
OneMax problem [129]. OneMax is a simple linear problem that
consists in maximising the number of ones in a binary string.
That is, maximize the expression:

fOneMax(~x) =

N∑
i=1

xi (6.1)

Results of Table 6.1 show that time of services of OSGiLiath
and numerical results are not affected by the OSGi framework:
times are almost identical to the integration with Java code (p-
value << 0.05).
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Name Average solution Average Time (s)

OSGiLiath 612.36 ± 6.05 0.19 ± 18.21

OSGiLiath (without OSGi) 613.36 ± 4.50 0.19 ± 22.74

Table 6.1
Comparison of
tested EA frame-
works in time and
development.

6.3.2 Adding operators in runtime for self-adaptation

Previous sections remarked that using SOA benefits are also re-
lated to self-adaptation. A simple example is presented here to
demonstrate how easy is to convert a basic evolutionary algo-
rithm into a self-adaptive one in OSGiliath.

To demonstrate that services can be managed and deployed
during runtime, a simple experiment is proposed. An external
service to the algorithm (called Asynchronous Enabler) runs in
parallel consulting the population from time to time. If the best
individual has not been improved in a number of times, this ser-
vice automatically enables another implementation of the service
Parent Selector. This new implementation is automatically bound
to the the Selector Gatherer service and starts to use it. Figure 6.10

shows this configuration.

Figure 6.10
Service that en-
able automatically
an operator to
be used during
runtime.

This enabler does not affect the code of the existing services
(such as Population or Evolutionary Algorithm). The gatherer also
does not need specific code to acquire all operators in execution
time: it is done automatically thanks to OSGi.

Two versions have been compared: a non-adaptive version that
only uses a Binary Tournament implementation for Parent Selec-
tion service, and an adaptive one, which automatically enables
a Roulette implementation when a local optimum is found. The
parameters used in this comparison (accessed from the Parame-
ters service) are a population of 64 individuals, selector rate of
0.5, TPX crossover, bit flip mutation, and individual length of 60

genes. The Roulette selector service is enabled when the best indi-
vidual of the population has not changed in 10 seconds (checked
every 2 seconds). According to the classifications of parameter
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Table 6.2
Basic deceptive
bipolar function
(si) for MMDP.

Unitation Subfunction value

0 1.000000

1 0.000000

2 0.360384

3 0.640576

4 0.360384

5 0.000000

6 1.000000

Table 6.3
Results obtained
using the Asyn-
chronous Enabler
to solve the MMDP
problem.

Non-adaptive Adaptive

Generations 219403,10 ± 141692,16 167166,66 ± 93594,37

Evaluations 14041926,40 ± 9068298,82 10698794,66 ± 5990039,68

Time 68766,40 ± 45073,04 51710,40 ± 29329,21

control presented Section 3.3, this method is adaptive, the popu-
lation is the key change, and it is based in absolute evidence.

The problem to solve is the MMDP (Massively Multimodal
Deceptive Problem) [64]. The MMDP is designed to be difficult
for an EA, due to its multimodality and deceptiveness. Decep-
tive problems are functions where low-order building-blocks do
not combine to form higher order building-blocks. Instead, low-
order building-blocks may mislead the search towards local op-
tima, thus challenging search mechanisms. MMDP it is com-
posed of k subproblems of 6 bits each one (si). Depending on
the number of ones (unitation), si takes the values shown in Ta-
ble 6.2.

The fitness value is defined as the sum of the si subproblems
with an optimum of k (Equation 6.2). The search space is com-
posed of 26k combinations from which there are only 2k global
solutions with 22k deceptive attractors. Hence, a search method
has to find a global solution out of 25k additionally to deceptive-
ness. In this work k = 25.

fMMDP(~s) =

k∑
i=1

fitnesssi (6.2)

Table 6.3 shows the results obtained from the 30 executions
of the two configurations tested. As it can be seen, automatic
and adaptive enabling of selection operators has allowed an in-
crease of performance, reducing time and evaluations (both sig-
nificantly with a p-value<0.05 of a Wilcoxon test). It must be
remarked that the aim of this experiment is not the numerical re-
sults obtained. This example has been used to demonstrate that
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Figure 6.11
Boxplot of the
number of eval-
uations in each
configuration.

applying a methodology to develop loose coupled services that
can be dynamically bound, without modification of the existing
services, can be used to achieve better results.

6.3.3 Increasing interoperability with other systems

As previously stated, another advantage of SOA is the program-
ming language independence with respect to the service inter-
faces. Although OSGi is a kind of SOA, it does not include the
capability of interoperability with other kind of services by de-
fault. However, adaptation services can be added to transform
OSGi interfaces into other SOA interfaces, such as Web Services
(presented in Chapter 4) without modifying the existing code. So,
services that are not written in Java, neither OSGi-based, could
use services implemented in OSGiLiath (and vice-versa).

For example, using ECF all OSGi service interfaces are trans-
formed into WSDL interfaces (explained in Section 4.2.1) auto-
matically. Thus, these services could be used from other systems,
that do not need to know the implementation language of the
services in OSGiLiath. An example where an OSGi interface is
transformed into a WSDL interface is shown in Figure 6.12. The
computation node A, based on OSGi, uses the OSGi interface of
the computation node C to calculate the fitness. Node B uses the
WSDL interface to do the same task. It is not necessary to modify
existing services source code to convert an OSGi interface into a
WSDL interface. This transformation is bi-directional: given an
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WSDL interface, it can also be transformed into a service to use
inside OSGi.

Figure 6.12
Communication
with other kind of
services. Apache
CXF service auto-
matically creates
WSDL interfaces
for the OSGi inter-
faces to be used
from other envi-
ronments

To test the differences in the communication protocol two con-
figurations are going to be used. The first one (OSGi configuration)
expose a distributed OSGi service to be automatically bound by
another node, being undistinguishable from a local one (based in
the OSGi Remote Specification standard). The second one (SOAP
configuration) automatically generates a WSDL interface without
modification of the code and it is accessed from a different pro-
gramming language (PHP 5). The service are the implementa-PHP: PHP

Hypertext
Pre-processor

tion Binary Initializer, which receives the number of individuals
to generate with the size given in the Parameters service. The
individual size is 10 genomes and each configuration and num-
ber of individuals requested has been executed 100 times. Two
Ubuntu 11.10 Intel(R) Core(TM)2 Quad CPU Q6600 machines in
the same network have been used.

Results are shown in Table 6.4 and plotted in Figure 6.13, which
show the average time in seconds for each individual number
and configuration. As expected (and explained in Section 6.2.1),
the transmission time is higher in the SOAP configuration, be-
cause the extra markup added in the SOAP requests and re-
sponses for each individual transmitted. However, using the WSDL
interface and SOAP transmission mechanism have advantages
with respect to OSGi Remote Specification: language indepen-
dence and public exposition of the interfaces for automatically
create remote clients.

6.3.4 Comparing with other Frameworks

Since the OSGi framework adds features to the implementation
of the algorithm that are similar (and even superior) to those of-
fered by several of the frameworks described in Chapter 3, the
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Number of individuals OSGi configuration SOAP configuration

250 0.015 ± 0.007 0.08 ± 0.001

500 0.018 ± 0.001 0.16 ± 0.003

1000 0.029 ± 0.001 0.326 ± 0.007

2000 0.052 ± 0.008 0.641 ± 0.012

Table 6.4
Transmission
time (average ±
std. dev.) for each
configuration and
number of individ-
uals.
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Figure 6.13
Transmission
time for OSGi and
SOAP configura-
tions.

same algorithm of Section 6.3.1 (with the same operators and pa-
rameters) has been coded using several well-known frameworks,
such as Mallba (C++), Algorithm::Evolutionary (Perl), and ECJ
(Java). Table 6.5 shows the execution time achieved, average so-
lution, and Lines of Code (LoC) needed to integrate the algo-
rithm for each framework. All the algorithm implementations
have been executed on the same computer, an Ubuntu 12.04

Linux machine with Intel Core2 Quad CPU Q8200 @ 2.33GHz,
4 GB RAM, without any distribution mechanisms. The LoC have
been calculated using sloccount program.

Note that, although the services are developed under SOA,
and bound in runtime, they are not distributed. Algorithmically,
all frameworks behaves the same, and results are not quite dif-
ferent. The differences among frameworks are produced because
the different implementations of random generators, operators
or logs, for example. In the work of Merelo et al. [104], these
different behaviours are also justified.

Regarding LoCs, MALLBA has the higher number: this is be-
cause every algorithm is created as a “skeleton” and a dupli-
cation of code exist for each algorithm and problem to execute.
This is produced because many operations affect global variables:
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Table 6.5
Comparison of
tested EA frame-
works in time and
development.

Name Average solution Average Time (s) LoC

OSGiLiath 612.36 ± 6.05 0.19 ± 18.21 10

OSGiLiath (without OSGi) 613.36 ± 4.50 0.19 ± 22.74 103

MALLBA 578.76 ± 7.48 0.16 ± 0.0003 2073

ECJ 602.76 ± 6.08 1.40 ± 0.03 5

Algorithm::Evolutionary 617.60 ± 12.92 7.78 ± 0.29 41

for example the method select_offsprings() affects the global vari-
ables parents or aux. Using this method as an external service
would require a whole change in many parts of the code. Thanks
the loose-coupling of Perl, many lines of code are saved using
Algorithm::Evolutionary, mainly because many parameters and
operators are defined by default.

ECJ and OSGiLiath do not require code to combine different
operators, just only to modify some configuration files without
re-compilation. The main difference is that in ECJ the available
operators must be known prior to execution (the interfaces are
linked in the source code), while in OSGiLiath, all interfaces are
bound to their implementations in configuration files, or even
without them (for example, the implementations appear in the
same network/machine). But there also exist limitations, because
ECJ only provides fixed mechanisms of distribution, and only
certain parts of the framework can be accessed remotely, while
in OSGiLiath all operators have the chance to be distributed if
desired, modifying the configuration files.

It must be remarked that OSGiLiath does not try to compete
with the other frameworks (they are widely accepted, completed
and tested), it is only an example of how to develop EAs under
the SOA paradigm.

6.4 CONCLUSIONS

In this chapter, SOA-EA methodology has been used to create
a framework, called OSGiLiath, that accomplish with the restric-
tions and benefits of using SOA for EAs (explained in Chapter 5)
to fulfil the Objective 3 of this thesis: Validate the methodology
using a SOA technology. A number of services have been found
in the identification step and the inputs and outputs have been
described in the specification phase.

Then, in the implementation step, a comparison of two SOA
technologies based in standards have been performed: OSGi has
been selected because a number of advantages over Web Ser-
vices, such as transmission speed and ease of development. The
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abstract services of previous steps have been implemented to
form a basic GA as an example. These services can be combined
in several ways to obtain different algorithms (from a canonical
GA, a NSGA-II has been created just adding new services).

This chapter also has presented experiments to show how ser-
vices can be dynamically bound to change the needed EA as-
pects. The source code of the basic EA services have not been
re-written or re-compiled to achieve this task. Also, no specific
source code for a basic distribution have been added, neither the
existing source code has been modified, allowing saving time in
integration and development, with respect to other available EA
frameworks. Two different transmission mechanisms have been
tested (ECF Generic and SOAP) and two different standards for
exposing services (WSDL and OSGi Remote Specification) have
been used. Exposing services with public standards helps to
Open Science, as explained in Section 4.4. Therefore, all services
developed have accomplished the requirements of Section 5.5.

The source code of OSGiLiath is available in the web page
http://www.osgiliath.org under a GNU/LGPL license. Appendix
B describes the current components available in this framework.

Next chapters SOA-EA and OSGiLiath will be used to solve
several problems: parameter adaptation in heterogeneous clus-
ters and genetic programming to generate agents in video-games.

http://www.osgiliath.org
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H E T E R O G E N E O U S M A C H I N E S

It’s a wonderful thing, as a writer, to be
given parameters and walls and barriers.

— Neil Gaiman
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Adapting Evolutionary Algorithms to dynamic and heteroge-
neous architectures using SOA require some kind of mecha-

nism to take advantage of the different capacities of the resources
that are going to be used. As a part of the methodology to adapt
EAs to the SOA paradigm, in this chapter several adaptation
strategies are compared to evaluate which one is the most ade-
quate.

In this chapter, the capabilities of OSGiLiath will be used to
investigate if adapting the parameters of a distributed SOEA tak-
ing into account the computational capabilities of the different
nodes of execution leads to an increase of performance. This
question is interesting due to new trends in distributed comput-
ing presented in Chapter 4, such as Cloud Computing, GRID or

87
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Service Oriented Science are leading to heterogeneous computa-
tional devices, including for instance, laptops, tablets or desktop
PCs, working in the same environment. Thus, many laboratories,
which do not count with classic clusters but the usual worksta-
tions used by scientists, can leverage this motley set as a hetero-
geneous cluster. As explained in Chapter 3, Distributed Evolu-
tionary Algorithms have been tested successfully in this type of
systems and they have become very popular because their imple-
mentation is not complex [71]. Also, as presented in Chapter 4,
a possible way to increase the interoperability within these sys-
tems is SOA, and specifically, the use of OSGiLiath framework
as an example.

In this chapter, OSGiliath will be used to create a heteroge-
neous distributed system to be used to develop a scientific re-
search related with parameter tuning and control (explained in
Section 3.3.1). Several services to deal with automatic binding
and parameter control will be developed following SOA-EA, and
deployed in different cluster configurations. The conclusions of
this study could help to validate if the SOA paradigm, where
different resources can collaborate, can take advantage of the
heterogeneity. Also, to investigate if a change in a parameter af-
fects all the services that are going to be executed in the whole
system.

7.1 BACKGROUND AND PROBLEM DEFINITION

In Section 3.3.2 several works about adaptation in heterogeneous
environment were presented. For example, the work of Alba et
al., where dEAs with the same parameter configuration could be
more efficient in time and evaluations on heterogeneous hard-
ware configurations than on clusters with homogeneous devices,
or the work of Gong and Fukunaga, where different parame-
ters in each island increased performance. The first aim of this
chapter is to use OSGiLiath to demonstrate if adapting the sub-
population size to the computational power of an heterogeneous
cluster nodes presents an improvement in execution time. New
services will be created to deal with different distributed nodes
and setting the population sizes to give an insight to the follow-
ing research questions:

• Can a distributed SOEA be adapted to leverage the capabil-
ity of a heterogeneous cluster?

• How the adaptation of the sub-population size to the com-
putational power affects the execution time and number of
evaluations?
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population← initializePopulation()
while stopcriterionnotmet do

parents← selection(population)
offspring← recombination(parents)
offspring← mutation(offspring)
population← population + offspring
if time to migrate then

migrants← selectMigrants(population)
remoteBuffer.send(migrants)

end if
if localBuffer.size 6= zero then

population← population + localBuffer.read()
end if
population← removeWorst(population)

end while

Figure 7.1
Pseudo-code of the
used dEA: a dis-
tributed Genetic
Algorithm (dGA).

• Is there any difference between using the same sub-population
sizes in a homogeneous and a heterogeneous cluster?

• How is each service of the algorithm (selection, recombina-
tion, mutation, replacement and migration) affected by the
different configurations?

These previous questions should help to give some informa-
tion about the research of SOEAs, as the have to deal with dy-
namism and parameter adaptation to heterogeneous resources.
For example, changing a parameter in one of the nodes that ex-
ecute the SOEA may have an enormous impact in their perfor-
mance.

7.1.1 Algorithm to develop

The experimentation is centred in a distributed GA. Figure 7.1
shows the pseudo-code of the used algorithm. The algorithm is
steady-state, i.e. every generation the offspring is mixed with the
parents and the worst individuals are removed. This algorithm
is general enough and not designed specifically for this study.

The used neighbourhood topology for migration between is-
lands (nodes) is a ring (see Figure 3.3 in Chapter 3). The best in-
dividual is sent to the neighbour in the ring, after a fixed number
of generations in each island. The algorithm stops when the op-
timum (the solution to the problem) is found. Therefore, a mech-
anism to stop all the executing nodes must be implemented.
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7.1.2 Problems to solve

The results should be independent of the problem used, but the
next ones have been selected because they cover different charac-
teristics and computational demands. The problems to evaluate
are the Massively Multimodal Deceptive Problem (MMDP) and
the OneMax problem. Both problems have been described previ-
ously in Section 6.3. Each one requires different actions/abilities
by the GA at the level of population sizing, individual selection
and building-blocks mixing [71].

7.1.3 Hardware and parameter configurations

As we are going to test parameter adaptation to hardware, differ-
ent configurations should be used to compare and validate if the
change in the parameters depends only of the parameters, the
hardware heterogeneity, or the combination of both.

• HoSi/HeHa: Homogeneous Size/Heterogeneous Hardware.
The same sub-population size in each island on a heteroge-
neous cluster.

• HeSi/HeHa: Heterogeneous Size/Heterogeneous Hardware.
Different sub-population sizes in each island on a heteroge-
neous cluster.

• HoSi/HoHa: Homogeneous Size/Homogeneous Hardware.
The same sub-population size in each island on a homoge-
neous cluster.

• HeSi/HoHa: Heterogeneous Size/Homogeneous Hardware.
Different sub-population sizes (the obtained for HeSi/HeHa)
in each island on a homogeneous cluster.

• AdSi/HeHa: Adaptive Size/Heterogeneous Hardware. On-
line adaptation of sub-population sizes in each island on a
heterogeneous cluster.

7.1.4 Homogeneous Size configuration

In this configuration, each node has 256 individuals (so, the total
amount is 1024). This value has been chosen empirically, as it is
big enough to test different sub-population sizes.

The results of executing the algorithm in the will be used to
set the sizes of the next configuration.
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7.1.5 Heterogeneous Size configuration

In this chapter, for a possible offline way to calculate the compu-
tational performance of each node, the average number of gener-
ations obtained in the HoSi/HeHa configuration for both prob-
lems will be used to determine the computational power of the
heterogeneous machines. This comparison takes into account all
the evolutionary process in a fair manner (proportional to the
memory, processor and network usage), instead of a traditional
benchmark that usually relies only on the CPU speed. The pro-
posed technique is a possible way to establish the computational
power for the experiments of this chapter and to determine if
changing the sub-population size according the computational
power reduces the computing time of the whole approach.

Thus, we have used the obtained average number of genera-
tions in the previous sub-section (Table 7.2) to set proportionally
the sizes in the HeSi/HeHa and HeSi/HoHa configurations, by
dividing the total number of individuals (1024). Note that, even
having two nodes with the same processors and memory (HeN1

and HeN2), they could have different computational power: this
may be produced by different operating systems, virtual ma-
chine versions, or number of processes being executed (inside
a node).

7.1.6 Adaptive Size configuration

A third experiment is proposed to validate the hypothesis of sub-
population size adaptation to computational resources. In this
case, the adaptation of the sub-population size to the computa-
tional power of the islands (nodes) is performed during runtime
(online). Each time a node (N) receives an individual, it compares
its current number of generations (GenN) with the ones of the
node who sent the individual (node N− 1 in the ring). Then, the
sub-population size is adapted proportionally to the difference
in the number of generations, following the next equation:

size ′N =
GenN

GenN−1
sizeN (7.1)

If the new size is larger than the actual size, new individuals
are added to the sub-population cloning random existent ones.
Otherwise, the sub-population must be reduced and thus, the
worst are removed. Therefore, the service Population is used to
manage the population, as explained in Chapter 6.
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With this possible online adaptation scheme, each node only
requires to receive information from one of the neighbours and
not from the whole system. Thus, each node tends to have a num-
ber of individuals proportional to their computational power
with respect to the other nodes. Experiments on homogeneous
cluster do not alter the sub-population sizes, since the number
of current generations are equal in all nodes during runtime.

7.1.7 Restrictions

Once the problem to solve, the algorithm to implement and the
different configuration have been described, the restriction to the
services to develop are the summarized:

• There is not a central control node.

• The number of nodes participating in the experiment should
not be fixed.

• All nodes automatically bind the available distribution (mi-
gration) services.

• The nodes must stop when the optimum is found.

• Services must be executed in heterogeneous machines with
different operating systems and architectures.

• It is necessary a log service to show the current state of the
algorithm and service timings.

7.2 DESIGNING THE SERVICES WITH SOA-EA

Once the description of the system to develop has been pre-
sented, the SOA-EA methodology (explained in Chapter 5) is
used to create a SOEA that fulfils the previous requirements.

7.2.1 Identification

In addition of the services for calculating the fitness of the prob-
lems (MMDPFitnessCalculator and OneMaxFitnessCalculator), or
the OptimumStopCriterion and crossovers and mutators created
in previous chapter, new services should be added. The first one
deals with the migration between islands, so, a service Migra-
tor (to receive and send individuals from/to other nodes) needs
to be created. Also, it is necessary a service to start or stop the
remote loops in all islands at the same time (service Launcher).
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Finally, it is necessary a to manage the received individuals from
the migrators and control the population size, this can be per-
formed in a new Replacer interface: AdaptiveReplacer.

7.2.2 Specification

The service Launcher and its specification ExperimentLauncher au-
tomatically binds all available Algorithm services in the network.
This service can start all the distributed EAs at the same time
(for example, from command line when all nodes are online and
they services bound). When one of the EAs has finished, it has
to notify the others to stop.

To perform the migration taking into account the previous re-
quirements, each node offers a migration buffer to accept foreign
individuals. Also, in order to reduce bottlenecks in distributed
executions, asynchronous communication needs to be provided
to avoid idle time using reception buffers (that is, the algorithm
does not wait until new individuals arrive, but the buffers can-
not be used again until the reception is done). This kind of com-
munication offers an excellent performance when working with
different nodes and operating systems, as demonstrated in [105].

The Migrator has two operations: send and read. The first one
is used to send the individuals to the migrator, and the other is
used to read the individuals of that migrator. Usually, each node
(island) has one migrator to receive individuals, and references
to the other nodes’ migrators. In our case, the implementation
of Replacer binds the local Migrator to write in it the individ-
ual(s) to sent. In this chapter, the Migrator implementation is the
MigratorRingBuffer: this class implements that interface and au-
tomatically binds all the Migrators available in the environment
(in a vector of references). So, the migrators can be added dur-
ing runtime, and no stop the algorithm if one node fails. The
MigratorRingBuffer sends the individuals to the remote Migrator
whose id is inmediatelly higher than the local id (or the smaller,
if it not exist) following a ring topology. Figure 7.2 shows this
configuration. The Replacer implementation, a reference to the
local Migrator interface just send and read the individuals. The
MigratorRingBuffer implementation binds an unbinds other mi-
grators in other nodes, keeping a reference to these remote ser-
vice interfaces. The AdaptiveReplacer implementation binds the
local Migrator service and it manages the population sizes.
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Figure 7.2
Using the Migrator
service to create a
distributed island
EA with a ring
topology (white
boxes are service
interfaces and
orange boxes are
implementations).

Table 7.1
Details of the clus-
ters used: a homo-
geneous cluster
(Ho), and a hetero-
geneous cluster
(He)

Name Processor Memory Operating System Network

Homogeneous cluster

HoN[1-4] Intel(R) Xeon(R) CPU E5320 @ 1.86GHz 4GB CentOS 6.7 Gigabit Ethernet

Heterogeneous cluster

HeN1 Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 4GB Ubuntu 11.10 (64 bits) Gigabit Ethernet

HeN2 Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 4GB Ubuntu 11.04 (64 bits) Gigabit Ethernet

HeN3 AMD Phenom(tm) 9950 Quad-Core Processor @ 1.30Ghz 3GB Ubuntu 10.10 (32 bits) 100MB Ethernet

HeN4 Intel (R) Pentium 3 @ 800MHz 768 MB Ubuntu 10.10 (32 bits) 10MB Ethernet

7.2.3 Implementation and Deployment

All services have been implemented in OSGiLiath. The Migrator
and Algorithm services are exposed using ECF Generic Server,
as explained in Section 6.2.1). This services are, therefore, au-
tomatically bound to each node in the clusters, without notify
their IP address. Extra code to manage the communication has
not been added, as all services are undistinguishable of being re-
mote or local. Remote Migrators and Algorithms are bound thanks
to the bind/unbind methods of declarative services and ECF (ex-
plained in Section 6.2.1). Several properties can added to the ser-
vice allows to ECF automatically announce the implementation
to all nodes in the network and no specific code is required to
change from one distribution mechanism to another.

The services have been deployed in two different computa-
tional systems: a heterogeneous cluster and a homogeneous cluster.
The first one is formed by four different computers of our lab
with different processors, operating systems and memory size.
The latter is a dedicated scientific cluster formed by homoge-
neous nodes. Table 7.1 shows the features of each system and
the name of the nodes.

7.3 EXPERIMENTAL RESULTS

Once the services have been created, the different combinations
of systems and parameter are evaluated. Table 7.3 summarizes
all the parameters used in the experiments.
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Node HeN1 HeN2 HeN3 HeN4

MMDP problem

Generations 10990.25 10732.075 7721.15 717.95

Proportion 36.43 35.58 25.59 2.38

OneMax problem

Generations 2430.27 2353.77 1423.77 91.5

Proportion 38.58 37.36 22.6 1.45

Table 7.2
Average number
of generations in
each node needed
to find the op-
timum on the
heterogeneous
cluster with het-
erogeneous size.

Name Value

Crossover type Two-point crossover

Crossover rate 0.5

Mutation probability of each gene 1/individual size

Selection 2-tournament

Replacement Steady-state

Generations to migrate 64

Number of individuals to migrate 1

Stop criterion Optimum found

Individual size for MMDP 150

Individual size for OneMax 5000

Runs per configuration 40

Total individuals in HoSi and HeSi 1024

Sub-population size in each node in HoSi 256

Sub-population sizes in HeSi for MMDP 374, 364, 262 and 24 (from N1 to N4) (see Section 7.3.1)

Sub-population sizes in HeSi for OneMax 396, 382, 232 and 14 (from N1 to N4) (see Section 7.3.1)

Maximum island size in AdSi 1024

Minimum island size in AdSi 16

Initial island size in AdSi 256

Table 7.3
Parameters used
in all configura-
tions.

The three main objectives of parallel programming are to tackle
large computational problems, increase the performance of algo-
rithms in a finite time, or reduce computational time to solve the
problem (reaching the optimum). In this chapter, we focus in the
last objective. As claimed by Alba and Luque in [3], assessing
the performance of a parallel EA by the number of fitness func-
tion evaluations required to attain a solution may be misleading.
In our case, for example, the evaluation time is different in each
node of the heterogeneous cluster, so the real algorithm speed
(in time) could not be reflected correctly. However, the number
of evaluations has been included in this chapter to better under-
standing the results. The total number of generations carried out
by all nodes, and the maximum number of generations required
by the faster node in each configuration are also shown. It is dif-
ficult to compare the performance of HoHa and HeHa for the
same reason: the evaluation time is different in each system (and
even in each node). Thus, one of the objectives in this chapter
is not making the heterogeneous cluster comparable or better
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Table 7.4
Results for the
MMDP problem.

Configuration Max. generations Total generations Total evaluations Time (ms)

HoSi/HeHa 11194.8 ± 18810.08 30161.42 ± 50722.03 7723372.8 ± 12984841.71 27871.075 ± 44583.14

HeSi/HeHa 2506.1 ±5308.872 8683.9 ± 18459.58 2453677 ±5217896.18 8110.9 ± 17162.86

AdSi/HeHa 2407.10 ±3938.43 8376.35 ± 14140.55 2948946.15 ± 5165324.99 10235.89 ± 17193.98

HoSi/HoHa 2614 ±5889.93 10259.22 ± 23153.23 2628409.6 ± 5927278.22 11560.8 ± 26072.14

HeSi/HoHa 5411.92 ±15608.81 10689.15 ± 30790.7 1844908.1 ± 5314771.88 9520.325 ± 27237.35

in time than the homogeneous one (because they are, obviously,
different), but showing that the same parameter configuration
can improve performance in time on heterogeneous clusters and
could not have an effect on homogeneous ones.

7.3.1 Obtaining the HeSi sizes

After executing the algorithm 40 times per problem on the het-
erogeneous cluster, we have obtained the average number of gen-
erations in each node, as it can be seen in Table 7.2. Note how
the generations attained (and their proportion in every node) to
reach the optimum depends on the problem considered (besides
the hardware).

7.3.2 MMDP results

Table 7.4 shows the results for the MMDP problem. These results
are also shown in the boxplots of Figure 7.3 (time) and Figure
7.4 (evaluations). Table 7.8 shows the statistical significance of
the results. First, a Kolmogorov-Smirnov test is performed to as-
sess the normality of the distributions. As all distributions are
not normal, we use non-parametric tests. To compare between
two methods (HoSi and HeSi in the homogeneous cluster) a
Wilcoxon test has been applied. For a three methods comparison
(HoSi, HeSi and AdSi on heterogeneous cluster) a Kruskal-Wallis
test has been used.

In the HeHa system, offline adaptation of the sub-population
to the computational power of each node makes the algorithm
finish significantly earlier, and also, needing a lower number
of evaluations to reach the solution. On the other hand, in the
HoHa system, setting the same sub-population sizes makes no
difference in time and evaluations, that is, changing this parame-
ter has no influence in the algorithm’s performance (p-value=0.52

for time and 0.08 for evaluations).
To see the differences on how the evolution is being performed,

the average fitness in each node of HeHa is shown in Figures
7.5 and 7.6. As it can be seen, with the HeSi (Figure 7.6), the
local optima are overtaken in less time than HoSi (Figure 7.5).
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Figure 7.3
Time to obtain the
optimum in the
MMDP problem
(milliseconds).
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Figure 7.4
Number of evalu-
ations for MMDP
problem.
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Figure 7.5
Average fitness
in the first 1000
milliseconds of ex-
ecution of the four
nodes of the het-
erogeneous cluster
with the same sub-
population sizes
(HoSi/HeHa) for
the MMDP prob-
lem.
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Figure 7.6
Average fitness
in the first 1000
milliseconds of ex-
ecution of the four
nodes of the het-
erogeneous cluster
with different sub-
population sizes
(HeSi/HeHa) for
the MMDP prob-
lem.

This can be explained because in HeSi, the migration from HeN4

to HeN1 is performed faster, adding more heterogeneity to the
whole system. Gaps in the figures correspond to the time spent
in the nodes for sending the migrant individual to other nodes
(not while they are receiving them). In the HoHa configurations,
the evolution of sub-population is performed at the same time,
being the average fitness similar for all nodes during all runs.

With respect to AdSi/HeHa, results are significantly equal (p-
value 0.139) to HeSi/HeHa (and, therefore, better than HoSi/HeHa),
but this time no previous tuning has been required. Average sub-
population sizes in each node are shown in Table 7.5. The pro-
portions of size are similar to the proportions in Table 7.2. Figure
7.7 plots all the possible sizes in each node during all the runs.
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Figure 7.7
Boxplots of the
sub-population
sizes in each node
of the AdSi/HeHa
configuration dur-
ing all the runs for
the MMDP prob-
lem.
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Figure 7.8
Population size in
all nodes of the
AdSi/HeHa con-
figuration during
one execution to
solve the MMDP
problem.

This figure shows that the variation of the sub-population sizes
lies proportionally to the computational power of each node. The
outliers in boxplots are produced during the size changing, as it
can be seen in Figure 7.8. As N4 is the slower node with differ-
ence it keeps its size always close to the minimum (16 individu-
als).

Summarizing, adapting the sub-population sizes to the compu-
tational power of each machine (offline and online) has reduced
the time to obtain the optimum. The same heterogeneous fixed
sizes in the homogeneous cluster does not produce a significant
decrease of running time, so the improvement is produced by
the heterogeneity and not due to the different island sizes. More-
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Node HeN1 HeN2 HeN3 HeN4

Size 556.31 504.30 321.15 19.81

Proportion 39.69 35.98 22.91 1.41

Table 7.5
Average sub-
population size
in each node on
the heterogeneous
cluster with adap-
tive size (MMDP)
after all runs.

over, the AdSi proposal is not applicable in HoHa because there
is not differences of generations during runtime.

7.3.3 OneMax results

Results for this problem are shown in Table 7.6 and Figures 7.9
and 7.10. In this case, adapting offline the sub-population sizes
significantly decreases the running time for solving it in the het-
erogeneous cluster, but this time, the number of evaluations is
increased (see statistical significance in Table 7.9). In the homo-
geneous system, the effect of changing the sub-population sizes
is clearer, and this time the number of evaluations (and therefore,
the time) are reduced (both significantly).

The efficiency to resolve OneMax problem depends mainly on
the ability to mix the building-blocks, and less on the genetic di-
versity and size of the population (as with MMDP). No genetic
diversity is particularly required. When properly tuned, a sim-
ple Genetic Algorithm is able to solve OneMax in linear time.
Sometimes, problems like OneMax are used as control functions,
in order to check if very efficient algorithms on hard functions
fail on easier ones. As it can be seen in Figure 7.11, the average
fitness of all sub-populations are increasing in linear way in the
HoSi/HeHa configuration. However, the slower node evaluates
extremely fewer times. On the other side, in Figure 7.12, smaller
sub-population sizes make that slower nodes increase the num-
ber of evaluations, but the average fitness is also maintained
in linear way (and in smaller increase rate) between migrations.
Nevertheless, the other nodes still perform a higher number of
evaluations. That is the reason why the number of evaluations
is higher in HeHa, and lower in HoHa. Computational time is
more efficiently spent in faster nodes, having a higher chance to
cross the individuals. In addition, due to the larger size of indi-
viduals in the OneMax problem (5000 bits vs. 150 of the MMDP),
the transmission time is larger, (white gaps in the figures). It
also implies that HeN4 sends its best individual to HeN1 in an
extremely large amount of time when using HoSi (every 64 gen-
erations).
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Figure 7.9
Time to obtain the
optimum in the
OneMax problem
(milliseconds).
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Figure 7.10
Number of evalua-
tions for OneMax
problem.



104 parameter adaptation in heterogeneous machines

Figure 7.11
Average fitness
in the first 15000
milliseconds of ex-
ecution of the four
nodes of the het-
erogeneous cluster
with the same
sub-population
sizes (HoSi/HeHa)
for the OneMax
problem.
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Figure 7.12
Average fitness
in the first 15000
milliseconds of ex-
ecution of the four
nodes of the het-
erogeneous cluster
with different sub-
population sizes
(HeSi/HeHa) for
the OneMax prob-
lem.
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Configuration Max. generations Total generations Total evaluations Time (ms)

HoSi/HeHa 2430.34 ± 70.16 6299.31 ± 250.87 1614673.45 ± 64223.09 160713.65 ± 8873.46

HeSi/HeHa 2643.34 ±150.82 7969.58 ±214.92 1802321.65 ± 30511.96 151822.75 ±4764.95

AdSi/HeHa 3698.30 ± 494.56 9465.25 ± 635.07 1149277.43 ± 58887.13 103919.33 ± 6296.39

HoSi/HoHa 1791.32 ± 31.64 7111.05 ±125.11 1822476.8 ±32029.78 141176.1 ±2493.72

HeSi/HoHa 13698.12 ± 406.85 16012.625 ± 482.61 895698.2 ± 29520.99 77898.85 ± 2935.57

Table 7.6
Results for the
OneMax problem.
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Figure 7.13
Boxplots of the
sub-population
sizes in each node
of the AdSi/HeHa
configuration dur-
ing all the runs
for the OneMax
problem.

In the AdSi/HeHa configuration significantly better results in
terms of execution time (and number of evaluations) are also
attained, and even better than those obtained with HeSi. Aver-
age sizes (Table 7.7) and boxplots (in Figure 7.13) during all the
runs also show proportionality to the computational power of
each machine. As in MMDP case, some oscillations (outliers in
boxplots) may appear during the execution (as it can be seen in
Figure 7.14).

7.3.4 Running time analysis

This sub-section shows the analysis the time spent by each node
of the clusters in every service of the EA for each configuration
with fixed sizes (HoSi and HeSi). Tables 7.10 and 7.11 show the
average and standard deviation of the time spent in each stage
of the algorithm (He=Heterogeneous cluster, Ho=Homogeneous

Node HeN1 HeN2 HeN3 HeN4

Size 267.09 158.63 74.20 16.29

Proportion 51.73 30.72 14.37 3.15

Table 7.7
Average sub-
population size
in each node on
the heterogeneous
cluster with adap-
tive size (OneMax).
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Figure 7.14
Sub-population
size in each node
during one ex-
ecution of the
AdSi/HeHa con-
figuration to solve
the OneMax prob-
lem.

Table 7.8
Statistical sig-
nificance of the
results for MMDP.

Time

Kruskal-Wallis chi-squared = 20.3042, df = 2, p-value = 3.899e-05

Configuration Test obs.dif critical.dif p-value difference

AdSi/HeHa-HeSi/HeHa K-W 13.19231 18.38851 0.1390 FALSE

AdSi/HeHa-HoSi/HeHa K-W 21.11538 18.38851 0.0067 TRUE

HeSi/HeHa-HoSi/HeHa K-W 34.30769 18.38851 9×10−5 TRUE

HoSi/HoHa-HeSi/HoHa Wilcoxon - - 0.52 FALSE

Evaluations

Kruskal-Wallis chi-squared = 11.9676, df = 2, p-value = 0.002519

AdSi/HeHa-HeSi/HeHa K-W 2.794872 18.38851 1.0 FALSE

AdSi/HeHa-HoSi/HeHa K-W 21.487179 18.38851 0.0207 TRUE

HeSi/HeHa-HoSi/HeHa K-W 24.282051 18.38851 0.0028 TRUE

HoSi/HoHa-HeSi/HoHa Wilcoxon - - 0.08 FALSE

cluster). Figures 7.15 and 7.16 graphically compare these results.
As it can be seen, the migration is the most time consuming op-
eration in all configurations, being the migration in HeHa more
expensive than in HoHa. This happens because we are using the
multi-purpose laboratory network to communicate the nodes, in-
stead of the specific one used in the HoHa system. Note that the
standard deviation of the migration is larger in the HeHa cluster
because the network is having real conditions of traffic during
the experiment. In the MMDP problem (Table 7.10) changing the
sub-population size does not affect the migration time, but it af-
fects the rest of the algorithm’s stages. However, with larger data
communications (individuals of 5000 elements of the OneMax
problem), the sub-population size affects the migration time of
all nodes. This might be due to the synchronization of migration
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Time

Kruskal-Wallis chi-squared = 66.4965, df = 2, p-value = 3.635e-15

Configuration Test obs.dif critical.dif p-value difference

AdSi/HeHa-HeSi/HeHa K-W 33.27586 15.87987 2.3×10−10 TRUE

AdSi/HeHa-HoSi/HeHa K-W 53.56897 15.87987 <2×10−16 TRUE

HeSi/HeHa-HoSi/HeHa K-W 20.29310 15.87987 4.2×10−6 TRUE

HoSi/HoHa-HeSi/HoHa Wilcoxon - - 3×10−8 TRUE

Evaluations

Kruskal-Wallis chi-squared = 75.7342, df = 2, p-value < 2.2e-16

AdSi/HeHa-HeSi/HeHa K-W 57.72414 15.87987 <2×10−16 TRUE

AdSi/HeHa-HoSi/HeHa K-W 29.27586 15.87987 <2×10−16 TRUE

HeSi/HeHa-HoSi/HeHa K-W 28.44828 15.87987 <1.3×10−14 TRUE

HoSi/HoHa-HeSi/HoHa Wilcoxon - - 3×10−8 TRUE

Table 7.9
Statistical sig-
nificance of the
results for One-
Max.

Figure 7.15
Average running
time in each stage
of the algorithm
for the MMDP
problem.

buffers: if the slowest machine is sending/receiving, bottlenecks
can be propagated (as it can be seen in Figure 7.11).

Results also show how the stages of the algorithms depends on
the node of execution. For example, recombination needs more
time than mutation in both problems only in the node HeN4. The
reason might be the creation of new objects (memory allocation),
which in Java and in limited memory (and swapping) requires
more time than the iteration of elements previously created (for
example, in the mutation). Adapting the sub-population size
makes the slower node of HeHa behave in similar way than
the other nodes (same time in each stage). Moreover, the size of
the individuals affects to some parts of the EA; for example, in
OneMax the mutation requires more time than the replacement.
However, it must be taken into account that the duration of each
part of the algorithm is not related to the time to attain the op-
timum, but rather to how the diversity and search guidance is
maintained in the whole system.
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Figure 7.16
Average running
time in each stage
of the algorithm
for the ONEMAX
problem.

Table 7.10
Times of the
stages of the al-
gorithm for the
MMDP problem (in
ms).

Heterogeneous Cluster

Node Selection Recombination Mutation Replacement Migration

HoSi HeN1 0.077 ± 0.170 0.788 ± 0.779 1.004 ± 0.187 1.648 ± 20.185 82.458 ± 143.266

HoSi HeN2 0.088 ± 0.190 0.907 ± 0.932 1.145 ± 0.425 1.579 ± 17.907 76.725 ± 126.360

HoSi HeN3 0.105 ± 0.163 1.207 ± 0.927 1.374 ± 0.301 2.108 ± 21.848 108.605 ± 142.633

HoSi HeN4 1.165 ± 1.526 30.445± 59.553 12.221 ± 7.412 10.978 ± 57.135 84.936 ± 0.000

HeSi HeN1 0.067 ± 0.065 0.973 ± 0.403 1.411 ± 0.166 0.790 ± 6.266 28.081 ± 42.169

HeSi HeN2 0.062 ± 0.075 0.973 ± 0.470 1.433 ± 0.265 0.811 ± 7.056 29.667 ± 48.702

HeSi HeN3 0.066 ± 0.108 1.104 ± 0.346 1.435 ± 0.296 0.937 ± 7.072 40.964 ± 40.027

HeSi HeN4 0.109 ± 0.257 1.895 ± 5.611 0.913 ± 0.834 2.085 ± 5.626 43.880 ± 7.535

Homogeneous Cluster

Node Selection Recombination Mutation Replacement Migration

HoSi HoN1 0.163 ± 0.223 1.884 ± 2.386 1.591 ± 0.479 2.254 ± 5.513 40.256 ± 8.726

HoSi HoN2 0.151 ± 0.212 1.952 ± 2.876 1.597 ± 0.574 2.178 ± 4.922 37.110 ± 6.999

HoSi HoN3 0.154 ± 0.206 1.990 ± 3.010 1.591 ± 0.577 2.215 ± 4.743 36.413 ± 5.266

HoSi HoN4 0.146 ± 0.196 1.913 ± 2.697 1.651 ± 1.167 2.194 ± 5.124 38.429 ± 6.192

HeSi HoN1 0.214 ± 0.288 2.800 ± 3.793 2.359 ± 0.691 2.516 ± 4.706 36.972 ± 4.214

HeSi HoN2 0.190 ± 0.252 2.672 ± 3.902 2.277 ± 0.649 2.261 ± 4.546 41.171 ± 9.672

HeSi HoN3 0.148 ± 0.208 2.030 ± 3.161 1.623 ± 0.500 2.164 ± 4.512 35.551 ± 6.132

HeSi HoN4 0.045 ± 0.052 0.345 ± 1.121 0.217 ± 0.142 1.531 ± 4.856 38.106 ± 9.251

Table 7.11
Times of the
stages of the al-
gorithm for the
OneMax problem
(in ms).

Heterogeneous Cluster

Node Selection Recombination Mutation Replacement Migration

HoSi HeN1 0.048 ± 0.043 18.713 ± 13.454 31.984 ± 2.104 18.375 ± 197.676 1172.986 ± 1108.388

HoSi HeN2 0.052 ± 0.051 22.266 ± 22.716 33.553 ± 4.931 17.176 ± 180.580 1085.508 ± 995.382

HoSi HeN3 0.091 ± 1.005 42.634 ± 21.621 47.674 ± 0.546 26.094 ± 252.667 1708.402 ± 1207.925

HoSi HeN4 0.851 ± 0.435 1491.568 ± 1185.723 344.872± 6.634 5.655 ± 16.175 154.019 ±0.000

HeSi HeN1 0.072 ± 0.063 32.917 ± 26.792 49.103 ± 2.655 3.023 ± 27.647 163.479 ±157.172

HeSi HeN2 0.080 ± 0.092 43.001 ± 51.680 52.288 ± 13.210 2.527 ± 21.861 131.063 ±124.404

HeSi HeN3 0.057 ± 0.052 33.951 ± 15.063 41.375 ± 1.707 3.284 ± 30.170 186.467 ±163.906

HeSi HeN4 0.075 ± 0.107 42.443 ± 88.536 16.236 ± 12.028 4.194 ± 33.119 131.135 ±144.359

Homogeneous Cluster

Node Selection Recombination Mutation Replacement Migration

HoSi HoN1 0.091 ± 0.078 29.969 ± 21.459 47.445 ± 2.194 2.073 ± 6.970 38.782 ± 40.369

HoSi HoN2 0.093 ± 0.082 30.119 ± 22.029 47.247 ± 2.146 2.108 ± 7.440 44.303 ± 42.759

HoSi HoN3 0.089 ± 0.080 30.951 ± 21.904 47.103 ± 2.031 2.138 ± 8.006 46.107 ± 47.351

HoSi HoN4 0.098 ± 0.075 29.468 ± 20.876 47.086 ± 1.856 2.043 ± 7.491 41.458 ± 44.970

HeSi HoN1 0.144 ± 0.151 56.124 ± 48.229 72.811 ± 5.177 2.424 ± 9.056 48.165 ±57.798

HeSi HoN2 0.141 ± 0.152 51.226 ± 41.016 70.047 ± 4.152 2.427 ± 10.890 57.152 ±74.177

HeSi HoN3 0.086 ± 0.088 26.932 ± 20.460 42.963 ± 3.935 2.239 ± 8.658 51.014 ±49.648

HeSi HoN4 0.007 ± 0.008 1.215 ± 1.133 2.470 ± 0.098 1.553 ± 10.078 50.498 ± 63.983
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7.4 CONCLUSIONS

The SOA paradigm imply to deal with heterogeneous and dy-
namic environments. The different components of these environ-
ment can be adapted to take advantage of their computational re-
sources, so the services that conform a SOEA can also be adapted
in consideration. In this chapter, OSGiLiath has been used to
present a study on the adaptation of the sub-population sizes
of a distributed EA to the computational power of the different
nodes of an heterogeneous environment. Different services for
migration and algorithm control have been created to be auto-
matically bound and two adaptation schemes (offline and online)
that use information of the computational load of the algorithm
have been tested. The results of this study reveal some interest-
ing information about the use of heterogeneous systems to de-
velop EAs with the paradigm proposed in this thesis.

Results show that adapting (online or offline) the sub-popu-
lation size to the computational power of each node in the het-
erogeneous cluster yields significantly better results in time than
keeping the same parameter in all nodes. This advantage is due
to the combination of the heterogeneous parameters with the
heterogeneity of the machines. On the contrary, the same (het-
erogeneous) parameter setting in all islands of the homogeneous
cluster could not improve the results than considering the same
parameter value in all nodes.

Furthermore, changing the sub-population size affects to the
services (stages) of the SOEA that, in principle, are independent
of this parameter, such as the migration. The sub-population size
adaptation is also affected by the problem to solve. Therefore,
this should be taken into consideration when dealing with this
kind of environments and creating services for them.

In this chapter, as a possible offline parameter setting, we have
calculated the computational power of each node proportionally
to the average number of generations of the homogeneous pa-
rameter set. Moreover, a possible way to adapt online the sub-
population sizes has been performed comparing the current gen-
eration with the neighbour generation. These results are a promis-
ing starting for adapting SOEAs to the performance of each exe-
cution node, using more adequate benchmarks or in a dynamic
way.
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This last week with Fry has been great. Beneath his warm,
soft exterior beats the cold, mechanical heart of a robot.

— Bender. I, Roomate. Futurama.
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The last application to fulfill the Objective 4 is to use OSGi-
Liath to obtain competitive bots for RTS games. With this ap-

plication, Genetic Programming (explained in Section 3.1.1) will
be used to validate if the genericity in evolutionary model ex-
plained in Section 3.4.1, can also be adapted to SOA. SOA-EA
and OSGiLiath will be used to perform an study on tree depth
influence of GP to create competitive bots for RTS games. New
individuals will be used and new implementations for mutation
and crossover, and services to execute remote environments out-
side OSGi will be developed with SOA-EA.

111
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8.1 BACKGROUND

RTS Time Strategy (RTS) games are a type of videogame where
the play takes action in real time (that is, there are not turns, as in
chess). Well-known games of this genre are Age of Empires™ or
Warcraft™. In this kind of game the players have units, structures
and resources and they have to confront with other players to
win battles. Artificial Intelligence (AI) in these games is usually
very complex, because they are dealing with a lot of actions and
strategies at the same time.

The Planet Wars game, presented under the Google AI Chal-
lenge 2010

1 has been used by several authors for the study of
computational intelligence in RTS games [47, 89, 107]. This is be-
cause it is a simplification of the elements that are present in the
complex games previously mentioned (only one type of resource
and one type of unit).

Although this game has been described in previous works
[47, 89, 107], we summarize saying that the objective of the player
is to conquer enemy and neutral planets in a space-like simula-
tor. Each player has planets (resources) that produce ships (units)
depending of a growth-rate. The player must send these ships to
other planets (literally, crashing towards the planet) to conquer
them. A player win if he is the owner of all the planets. As re-
quirements, only one second is the limit to calculate next actions
(this time windows is called turn2), and no memory about the
previous turns must be used. Figure 8.1 shows a screen capture
of the game.

In this chapter we use Genetic Programming (GP) to obtain
agents that play Planet Wars game. The reason is to obtain agents
without any human knowledge, obtaining the rules to play auto-
matically.The objective of GP is to create functions or programs
to solve determined problems. Individual representation is usu-
ally in form of a tree, formed by operators (or primitives) and
variables (terminals). These sets are usually fixed and known. The
genome size is, therefore, variable, but the maximum size (depth)
of the individuals is usually fixed, to avoid high evaluation costs.

We try to solve the next questions:

• Can a tree-generated behaviour of an agent defeat an agent
hand-coded by a player with experience and whose param-
eters have been also optimized?

1 http://planetwars.aichallenge.org/
2 Although in this work we are using this term, note that the game is always

performed in real time.

http://planetwars.aichallenge.org/


8.1 background 113

Figure 8.1
Example of ex-
ecution of the
Player Wars game.
White planets and
ships are owned
by the player and
dark gray ones are
controlled by the
enemy. Clear gray
are neutral plan-
ets (not invaded).

• Can this agent beats a more complicated opponent that is
adapted to the environment?

• How does the maximum depth affects the results?

RTS games have been used extensively in the computational in-
telligence area (see [90] for a review). Among other techniques,
Evolutionary Algorithms (EAs) have been widely used in com-
putational intelligence in RTS games [90]. For example, for pa-
rameter optimization [44], learning [135] or content generation
[101].

One of these types, genetic programming, has been proved
as a good tool for developing strategies in games, achieving re-
sults comparable to human, or human-based competitors [131].
They also have obtained higher ranking than solvers produced
by other techniques or even beating high-ranking humans [40].
GP has also been used in different kind of games, such as board-
games [13], or (in principle) simpler games such as Ms. Pac-Man
[16] and Spoof [144] and even in modern video-games such as
First Person Shothers (FPS) (for example, Unreal™ [43]).

Planet Wars, the game we are going to use in this chapter,
has been used as experimental environment for testing agents in
other works. For example, in [107] the authors programmed the
behaviour of a bot (a computer-controlled player) with a decision
tree of 3 levels. Then, the values of these rules were optimized
using a genetic algorithm to tune the strategy rates and percent-
ages. Results showed a good performance confronting with other
bots provided by the Google AI Challenge. In [47] the authors
improved this agent optimizing in different types of maps and
selecting the set of optimized parameters depending of the map
where the game was taking place, using a tree of 5 levels. These
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results outperformed the previous version of the bot with 87%
of victories.

In this paper we use GP to create the decision tree, instead of
using our own gaming experience to model it, and compare this
agent with the two presented before.

8.2 APPLICATION OF SOA-EA

8.2.1 Identification

As in previous examples, in the Problem domain an Initializer of
individual and a FitnessCalculator service need to be used. The
first one generates needs to generate individuals codified as a
tree of decisions and operations (TreeGenome), and the latter one
will integrate the Planet Wars environment to OSGiLiath.

The operators of the Algorithm Domain to deal with this new
codification of indivudals needs to be created: a Crossover and
the Mutation. However, some of the operators previously de-
fined in previous chapter (such as Parent Selector) does not need
modification. Finally, inside the Infrastructure domain services to
test each individual (IndidivualTester) and convert the codifica-
tion of the individual to the appropriate codification to different
playing environments (Conversor) needs to be created.

8.2.2 Specification

The proposed agent receives a tree to be executed. The generated
tree is a binary tree of expressions formed by two different types
of nodes:

• Decision: a logical expression formed by a variable, a less
than operator (<), and a number between 0 and 1. They are
the equivalent to the “primitives” in the field of GP.

• Action: the leaves of the the tree (therefore, the “terminals”).
Each decision is the name of the method to call that indi-
cates to which planet send a percentage of available ships
(from 0 to 1) from the planet that executes the tree.

The different variables for the decisions are:

• myShipsEnemyRatio: Ratio between the player’s ships and
enemy’s ships.

• myShipsLandedFlyingRatio: Ratio between the player’s landed
and flying ships.
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• myPlanetsEnemyRatio: Ratio between the number of player’s
planets and the enemy’s ones.

• myPlanetsTotalRatio: Ration between the number of player’s
planet and total planets (neutrals and enemy included)-

• actualMyShipsRatio: Ratio between the number of ships in
the specific planet that evaluates the tree and player’s total
ships.

• actualLandedFlyingRatio: Ratio between the number of ships
landed and flying from the specific planet that evaluates
the tree and player’s total ships.

The decision list is:

• Attack Nearest (Neutral|Enemy|NotMy) Planet: The objective
is the nearest planet.

• Attack Weakest (Neutral|Enemy|NotMy) Planet: The objec-
tive is the planet with less ships.

• Attack Wealthiest (Neutral|Enemy|NotMy) Planet: The objec-
tive is the planet with higher lower rate.

• Attack Beneficial (Neutral|Enemy|NotMy) Planet: The objec-
tive is the planet more beneficial, that is the one with growth
rate divided by the number of ships.

• Attack Quickest (Neutral|Enemy|NotMy) Planet: The objec-
tive is the planet with higher facility to conquest: the lowest
product between the distance from the planet that executes
the tree and the number of the ships in the objective planet.

• Attack (Neutral|Enemy|NotMy) Base: The objective is the
planet with more ships (that is, the base).

• Attack Random Planet.

• Reinforce Nearest Planet: Reinforce the nearest player’s planet
to the planet that executes the tree.

• Reinforce Base: Reinforce the player’s planet with higher num-
ber of ships.

• Reinforce Wealthiest Planet: Reinforce the player’s planet with
higher grown rate.

• Do nothing.
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Figure 8.2
Example of a gen-
erated Java tree.

if(myShipsLandedFlyingRatio<0.796)
if(actualMyShipsRatio<0.201)
attackWeakestNeutralPlanet(0.481);

else
attackNearestEnemyPlanet(0.913);

else
attackNearestEnemyPlanet(0.819); �
An example of a possible tree is shown in Figure 8.2. This ex-

ample tree has a total of 5 nodes, with 2 decisions and 3 actions,
and a depth of 3 levels.

The bot behaviour is explained in Figure 8.3.

Figure 8.3
Pseudocode of the
proposed agent.
The tree is fixed
during all the
agent’s execution

tree← readTree()
while gamenotfinished do

starts the turn
calculateGlobalPlanets()
calculateGlobalRatios()
for p in PlayerPlanets do

calculateLocalPlanets(p)
calculateLocalRatios(p)
executeTree(p,tree)

end for
end while

A hierarchical fitness (HierarchichalFitness implementation) will
be used, as proposed in [107]. An individual is better than an-
other if it wins in a higher number of maps. In case of equality
of victories, then the individual with more turns to be defeated
(i.e. it is stronger) is considered better. The PlanetWarsFitnessCal-
culator will confront each individual to other agents a number of
times.

8.2.3 Implementation and Deployment

The TreeGenome individual is composed of Decisions and Actions
codified as strings coincident with the actions the agent can exe-
cute, according the description in previous section. The Conversor
implementation translates the tree to a string of Java code to be
executed in the Planet Wars environment by the IndividualTester,
using the Javassist3 library to compile the string into executable
Java bytecode.

3 http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/

http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
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The rest of implementations used are the ones available in OS-
GiLiath (and previously explained in chapter 6): ListPopulation,
DeterministicTournamentSelector, NGenerationsStopCriterion and Dis-
tributedFitness to execute several simulations at the same time.
Besides using Genetic Programming, the flow to use the previ-
ous services is the EvolutionaryAlgorithm implementation used
in previous chapters.

8.3 EXPERIMENTAL SETUP

Sub-tree crossover and 1-node mutation evolutionary operators
have been used, following other researchers’ proposals that have
used these operators obtaining good results [43]. In our case, the
mutation randomly changes the decision of a node or mutate
the value with a step-size of 0.25 (an adequate value empirically
tested). Each configuration is executed 30 times, with a popula-
tion of 32 individuals and a 2-tournament selector for a pool of
16 parents.

To test each individual during the evolution a battle with a
previously created bot is performed in 5 different (but represen-
tative) maps provided by Google. The maximum fitness is, there-
fore 5 victories and 0 turns. Also, as proposed by [107], and due
to the noisy fitness effect, in every generation all individuals are
re-evaluated.

Two publicly available bots have been chosen for our experi-
ments4. The first bot to confront is GeneBot, proposed in [107].
This bot was trained using a GA to optimize the 8 parameters
that conforms a set of hand-made rules, obtained from an ex-
pert human player experience. The second one is an advanced
version of the previous, called Exp-Genebot (Expert Genebot) [47].
This bot outperformed Genebot widely. Exp-Genebot bot analy-
ses the distribution of the planets of the map to chose a previ-
ously optimized set of parameters by a GA. Both bots are the
best individual obtained of all runs of their algorithm (not an
average one).

After running our algorithm without tree limitation in depth,
it has also been executed with the lower and average levels ob-
tained for the best individuals: 3 and 7, respectively, to study if
this number has any effect on the results. Table 8.1 summarizes
all the parameters used.

After all the executions we have evaluated the obtained best
individuals in all runs confronting to the bots in a larger set of
maps (the 100 maps provided by Google) to study the behaviour

4 Both can be downloaded from https://github.com/deantares/genebot

https://github.com/deantares/genebot
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Table 8.1
Parameters used
in the experi-
ments.

Parameter Name Value

Population size 32

Crossover type Sub-tree crossover

Crossover rate 0.5

Mutation 1-node mutation

Mutation step-size 0.25

Selection 2-tournament

Replacement Steady-state

Stop criterion 50 generations

Maximum Tree Depth 3, 7 and unlimited

Runs per configuration 30

Evaluation Playing versus Genebot [107] and Exp-Genebot [47]

Maps used in each evaluation map76.txt map69.txt map7.txt map11.txt map26.txt

of the algorithm and how good are the obtained bots in maps
that have not been used for training.
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8.4 RESULTS

Tables 8.2 and 8.3 summarize all the obtained results of the exe-
cution of our EA. These tables also show the average age, depth
and number of nodes of the best individuals obtained and also
the average population at the end of the run. The average turns
rows are calculated only taking into account the individuals with
lower victories than 5, because this number is 0 if they have win
the five battles.

As can be seen, versus Genebot, the average population fitness
is nearest to the optimum than versus Exp-Genebot, even with
the lowest depth. Highest permanence in the population is also
with the depth of 3 levels. On the contrary, confronting with Exp-
Genebot the configuration with unlimited depth achieves better
results. This make sense because more decisions should be taken
because the enemy can be different in each map.

In the second experiment, we have confronted the 30 bots
obtained in each configuration again with Genebot and Exp-
Genebot, but in the 100 maps provided by Google. This has been
used to validate if the obtained individuals of our method can
be competitive in terms of quality in maps not used for evalua-
tion. Results are shown in Table 8.4 and boxplots in Figure 8.4. It
can be seen that in average, the bots produced by our algorithm
perform equal or better than the best obtained by the previous
authors. Note that, even obtaining individuals with maximum
fitness (5 victories) that have been kept in the population several
generations (as presented before in Tables 8.2 and 8.3) cannot be
representative of a extremely good bot in a wider set of maps
that have not been used for training. As the distributions are not
normal, a Kruskal-Wallis test has been used, obtaining signifi-
cant differences in turns for the experiment versus Genebot (p-
value = 0.0028) and victories in Exp-genebot (p-value = 0.02681).
Therefore, there are differences using a maximum depth in the

Depth 3 Depth 7 Unlimited Depth

Victories 4.933 ± 0.25 4.83 ± 0.53 4.9 ± 0.30

Best Fitness
Turns 244.5 ± 54.44 466 ± 205.44 266.667 ± 40.42

Victories 4.486± 0.52 4.43 ± 0.07 4.711 ± 0.45

Population Ave. Fitness
Turns 130.77± 95.81 139.43 ± 196.60 190.346 ± 102.92

Best 3 ± 0 5.2 ± 1.78 6.933 ± 4.05

Depth
Population 3 ± 0 5.267 ± 1.8 7.353 ± 3.11

Best 7 ± 0 13.667 ± 7.68 22.133 ± 22.21

Nodes
Population 7 ± 0 13.818 ± 5.86 21.418 ± 13.81

Best 8.133 ± 3.95 5.467 ± 2.95 5.066 ± 2.11

Age
Population 4.297 ± 3.027 3.247 ± 0.25 3.092 ± 1.27

Table 8.2
Average results
obtained from
each configuration
versus Genebot.
Each one has been
tested 30 times.
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Table 8.3
Average results ob-
tained from each
configuration ver-
sus Exp-Genebot.
Each one has been
tested 30 times.

Depth 3 Depth 7 Unlimited Depth

Victories 4.133 ± 0.50 4.2 ± 0.48 4.4 ± 0.56

Best Fitness
Turns 221.625 ± 54.43 163.667 ± 106.38 123.533 ± 112.79

Victories 3.541 ± 0.34 3.689 ± 0.37 4.043 ± 0.38

Population Ave. Fitness
Turns 200.086 ± 50.79 184.076 ± 57.02 159.094 ± 61.84

Best 3 ± 0 5.2 ± 1.84 6.966 ± 4.44

Depth
Population 3 ± 0 5.216 ± 0.92 6.522 ± 1.91

Best 7 ± 0 12.6 ± 6.44 18.466 ± 15.46

Nodes
Population 7 ± 0 13.05 ± 3.92 16.337 ± 7.67

Best 4.266 ± 5.01 4.133 ± 4.26 4.7 ± 4.72

Age
Population 3.706 ± 0.58 3.727 ± 0.62 3.889 ± 0.71

Table 8.4
Results con-
fronting the 30
best bots attained
from each configu-
ration in the 100
maps each.

Configuration Average maps won Average turns

Versus Genebot

Depth 3 47.033 ± 10.001 133.371 ± 16.34

Depth 7 48.9 ± 10.21 141.386 ± 15.54

Unlimited Depth 50.23 ± 11.40 133.916 ± 10.55

Versus Exp-Genebot

Depth 3 52.367 ± 13.39 191.051 ± 67.79

Depth 7 58.867 ± 7.35 174.694± 47.50

Unlimited Depth 52.3 ± 11.57 197.492 ± 72.30

generation of bots. In both configurations, the trees created with
7 levels of depth as maximum have obtained the better results.

To explain why results versus Genebot (a weaker bot than Exp-
Genebot) are slightly worse than versus Exp-Genebot, even when
the best individuals produced by the GP have higher fitness,
we have to analyse how the best individual and the population
are being evolved. Figure 8.5 shows that best individual using
Genebot reaches the optimal before Exp-Genebot, and also the
average population converges quicker. This could lead to over-
specialization: that is, the generated bots are over-trained to win
in the five maps, and because re-evaluation these individuals are
still changing after they have reached the optimal.
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Figure 8.4
Average of execut-
ing the 30 best
bots in each con-
figuration (3, 7
and U) versus
Genebot (G) and
Exp-Genebot (E).
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Figure 8.5
Evolution of the
best individual
and the average
population during
one run for depth
7 versus Genebot
and Exp-Genebot.

8.5 CONCLUSIONS

This chapter presents a Service Oriented Genetic Programming
algorithm that generates agents for playing Planet Wars game
without using human knowledge. OSGiLiath has been used to
obtain relevant results in this field, adding services to manipu-
late individuals codified as a tree. All services developed follow
the genericity in EA development and the SOA requirements. In-
dependence of the individual representation with respect to the
existent services to facilitate reuse of existent services have been
shown.
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I didn’t jump. I took a tiny step,
and there conclusions were.

— Buffy Summers. Phases. Buffy: the Vampire Slayer
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This thesis studies the viability of the Service Oriented Archi-
tecture paradigm to create distributed, dynamic and standards-
based environments for EAs. To that end, the concept Service
Oriented Evolutionary Algorithm (SOEA) has been presented,
and a methodology to develop this kind of algorithms have been
proposed. This methodology has been used to validate this para-
digm under several scenarios, using specific technologies.

Some conclusions have been obtained while trying to achieve
this objective. The first one is that the Evolutionary Algorithms
can be successfully migrated to SOA, and therefore, they can
take advantage of this paradigm in scenarios of heterogeneity
and dynamism. The used SOA technology have a huge impact
in several issues (such as the publication mechanisms or trans-
mission time), so the technology should be chosen depending
on the necessities to address. In our case, OSGi has helped to
save development time, as no specific code has been added to
announce the distributed interfaces of the developed services or
mechanisms to find and bind these interfaces. Also, it must be re-
marked that SOA does not force to use only distributed services,
thus it can help in development in EAs that can be executed in
one machine (locally).

We consider that the SOA paradigm can be applied success-
fully to EAs to facilitate the integration, distribution, dynamism
and development in some scenarios. In particular, the following
contributions have been provided with this thesis:

125
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• The Service Oriented Architecture paradigm has been pro-
posed to create distributed, heterogeneous, dynamic and
standards-based environments for Evolutionary Algorithms,
as it provides mechanisms for interoperability, integration
and dynamic control.

• The requirements to develop EAs in the SOA paradigm
have been identified.

• These requirements have been taken into account to pro-
pose SOA-EA, a methodology that is able to successfully
adapt evolutionary algorithms to distributed, heterogeneous,
dynamic, standards-based environments.

• Several steps to design all the elements in an EA has been
proposed inside this methodology.

• The methodology has been validated using a specific SOA
technology: OSGi.

• A SOA-based implementation (OSGiLiath) of distributed,
dynamic, standards-based evolutionary algorithms has been
able to solve efficiently different problems.

• As an application of this methodology, two different param-
eter adaptation schemes of island-based EAs to heteroge-
neous hardware have been proposed, and an algorithm to
obtain competent bots for RTS games has been obtained.

9.1 OUTLOOK

The results presented in this thesis can be considered as the start-
ing point to a new research line in automatic adaptation of pa-
rameters and operators in dynamic and heterogeneous environ-
ments under the SOA paradigm.

Taking into account the dynamic nature of SOA, other adap-
tive mechanisms to enable or disable services (remotely or lo-
cally) depending on some metrics could be created. For exam-
ple, more experiments to enable or disable different implemen-
tations of services depending on the current state of the EA or
the execution node, as proposed in this thesis. Different bench-
mark services to analyse the algorithm can also be used to enable
automatic parameter adaptation at runtime. Also, adapting pa-
rameters or operators of different nodes entering or exiting the
topology, or adapting the parameters to the current load of the
system. For example, as the adaptation of the sub-population
size to heterogeneous hardware has been proved in this thesis,
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other parameters such as migration rate or crossover probability
could be adapted to the execution nodes.

Different transmission mechanisms (R-OSGi, JMS, REST, XMMP,
among others) can be compared easily, as no modification in
the source code of the services is necessary. More experiments
about service binding and automatic service composition can be
carried out, using different distribution technologies apart from
OSGi and Web Services (such as SLP or Zookeeper).

Although this thesis is focused on EAs, the concept of service
oriented algorithms can be extended to other meta-heuristic of
the field of EC, such as Ant Colony Optimization [108] or Parti-
cle Swarm Optimization [86]. Their specific development restric-
tions can be taken into account to modify SOA-EA to create ser-
vices for these kind of algorithms in the environments presented
in this work.

OSGiLiath will be updated with new modules and services to
address new problems. Also, a web portal to centralize services
and implementations being offered to the community will be cre-
ated as a future task. Finally, questionnaires will be proposed to
EA practitioners with different skills in programming and dif-
ferent research areas, to validate if this change of paradigm is
contributing to enhance their work.

9.2 PUBLICATIONS RELATED WITH THIS THESIS

Some of the results presented in this thesis have been published
in several peer reviewed journal and conference proceedings:

• Pablo García-Sánchez, J. González, Pedro A. Castillo, Mari-
bel García Arenas, Juan Julián Merelo Guervós Service ori-
ented evolutionary algorithms. Soft Comput. 17(6): 1059–1075

(2013).

• Pablo García-Sánchez, Maria I. García Arenas, Antonio Mi-
guel Mora, Pedro A. Castillo, Carlos Fernandes, Paloma de
las Cuevas, Gustavo Romero, Jesús González, Juan Julián
Merelo Guervós Developing services in a service oriented ar-
chitecture for evolutionary algorithms. In Proceesings of Ge-
netic and Evolutionary Computation Conference, GECCO
’13, Amsterdam, The Netherlands, July 6-10, 2013, Compan-
ion Material. p: 1341–1348. ACM, 2013.

• Pablo García-Sánchez, J. González, Pedro A. Castillo, Juan
Julián Merelo Guervós, Antonio Miguel Mora, Juan Luís
Jiménez Laredo, Maribel García Arenas A Distributed Ser-
vice Oriented Framework for Metaheuristics Using a Public Stan-
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dard. In Proceeding of Nature Inspired Cooperative Strate-
gies for Optimization. Studies in Computational Intelligence.
p: 211–222. Springer, 2010.

• Pablo García-Sánchez, Antonio Fernández-Ares, Antonio Mi-
guel Mora, Pedro Ángel Castillo, Jesús González and Juan
Julián Merelo Tree depth influence in Genetic Programming for
generation of competitive agents for RTS games. Applications
of Evolutionary Computation, EvoApplicatons 2010: Evo-
COMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, E-
voNUM, and EvoSTOC, Proceedings. Lecture Notes in Com-
puter Science Springer, 2014. (to appear).

In addition to previous publications, other works related with
SOA and their methodologies have been also published during
the development of this thesis. The next works have helped to
identify some of the requirement in SOA design and implemen-
tation (with different technologies used in this thesis):

• Pablo García-Sánchez, Jesús González, Antonio Miguel Mora,
Alberto Prieto Deploying intelligent e-health services in a mobile
gateway. Expert Syst. Appl. 40(4): 1231-1239 (2013).

• Pablo García-Sánchez, Jesús González, Pedro A. Castillo,
and Alberto Prieto Using UN/CEFACT’s modelling method-
ology (UMM) in e-health projects. In Bio-Inspired Systems:
Computational and Ambient Intelligence, 10th International
Work Conference on Artificial Neural Networks, IWANN
2009, Salamanca, Spain, June 10-12, 2009. Proceedings, Part
I, volume 5517 of Lecture Notes in Computer Science. p:
925–932. Springer, 2009.

• Pablo García-Sánchez, S. González, A. Rivadeneyra, M. P.
Palomares, and J. González. Context-awareness in a service
oriented e-health platform. In José Bravo, Ramón Hervás, and
Vladimir Villarreal (editors): Ambient Assisted Living - Third
International Workshop, IWAAL 2011, Held at IWANN 2011,
Torremolinos-Málaga, Spain, June 8-10, 2011. Proceedings,
volume 6693 of Lecture Notes in Computer Science, pages
172-179. Springer, 2011.

With respect to the application of EAs in heterogeneous envi-
ronments, some lessons learned have been also published in next
works:

• Khaled Meri, Maribel García Arenas, Antonio Miguel Mora,
Juan Julián Merelo, Pedro Ángel Castillo, Pablo García-Sán-
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chez, and Juan Luís Jiménez Laredo. Cloud-based evolution-
ary algorithms: An algorithmic study. Natural Computing, p:
1–13, 2013.

• Pablo García-Sánchez, Juan P. Sevilla, Juan Julián Merelo
Guervós, Antonio Miguel Mora, Pedro A. Castillo, Juan
Luís Jiménez Laredo, and Francisco Casado. Pervasive evo-
lutionary algorithms on mobile devices. In Distributed Com-
puting, Artificial Intelligence, Bioinformatics, Soft Comput-
ing, and Ambient Assisted Living, 10th International Work-
Conference on Artificial Neural Networks, IWANN 2009

Workshops, Salamanca, Spain, June 10-12, 2009. Proceed-
ings, Part II, volume 5518 of Lecture Notes in Computer
Science, p: 163–170. Springer, 2009.

Finally, the OSGiLiath framework has also been used to com-
pare different fitness functions in Evolutionary Art [62]. Also,
during the development of this thesis, other works related with
EA applications have been published: such as Evolutionary Ro-
botics [56], video-games bot optimization [44, 47, 48, 107], inven-
tory and route management [42, 45] or document transformation
[60, 61].

Following the principles of Open Science, all the work of this
thesis has been released using open licenses. OSGiLiath and all
experiments presented in this thesis are available under GNU/L-
GPL V3 License in our GitHub repository https://github.com/

fergunet/osgiliath.
The LaTeX files that generate this thesis have also been released

in https://github.com/fergunet/osgiliath under a Creative
Commons License. Finally, the web page http://www.osgiliath.

org describes the steps of development of this thesis: news, pub-
lications, awards and documentation.

https://github.com/fergunet/osgiliath
https://github.com/fergunet/osgiliath
https://github.com/fergunet/osgiliath
http://www.osgiliath.org
http://www.osgiliath.org
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Esta tesis estudia la viabilidad del paradigma de la Arquitectura
Orientada a Servicios (AOS) para crear entornos distribuidos,

dinámicos y basados en estándares para Algoritmos Evolutivos.
Para ello se ha presentado el concepto Algoritmo Evolutivo Ori-
entado a Servicios (AEOS), junto con una metodología para desa-
rrollar este tipo de algoritmos. Esta metodología ha sido usada
para validar este paradigma en distintos escenarios, utilizando
tecnologías específicas.

Se han obtenido algunas conclusiones mientras se desarrollaba
esta tesis. La primera es que los AEs pueden migrarse con éxito a
AOS, y por lo tanto, pueden aprovecharse de este paradigma en
escenarios de heterogeneidad y dinamismo. La tecnología SOA
usada tiene un gran impacto en diferentes ámbitos (como los
mecanismos de publicación y el tiempo de transmisión), por lo
tanto, la tecnología a usar debe escogerse dependiendo de las
necesidades a abordar. En nuestro caso, OSGi ha servido para
ahorrar tiempo de desarrollo, ya que no ha hecho falta código
específico para publicar las interfaces de los servicios desarrolla-
dos en esta tesis, o los mecanismos para encontrar y enlazar esas
interfaces. También es importante remarcar que AOS no fuerza
a utilizar servicios distribuidos, por lo que puede ayudar en el
desarrollo de AEs que se ejecutan en local.

Consideramos que el paradigma SOA puede aplicarse con éxi-
to a los AEs para facilitar la integración, distribución, dinamismo
y desarrollo en escenarios particulares. En concreto, las siguien-
tes contribuciones han sido propuestas en esta tesis:

• Se ha propuesto el paradigma de Arquitectura Orientada
a Servicios para crear entornos distribuidos, heterogéneos
dinámicos y basados en estándares para Algoritmos Evolu-
tivos, ya que proporciona mecanismos para interoperabili-
dad, integración y control del dinamismo.

131



132 conclusiones y trabajo futuro

• Se han identificado requisitos para desarrollar AEs en el
paradigma AOS.

• Estos requisitos se han tenido en cuenta para proponer SOA-
EA, una metodología que es capaz de adaptar con éxito al-
goritmos evolutivos a entornos distribuidos, heterogéneos,
dinámicos y basados en estándares.

• En esta metodología se han propuesto varios pasos para
diseñar todos los elementos de un AE.

• Esta metodología se ha validado utilizando una tecnología
SOA específica: OSGi.

• Una implementación basada en SOA (OSGiLiath) de algo-
ritmos evolutivos dinámicos y basados en estándares, ha
sido capaz de resolver eficientemente diferentes problemas.

• Como aplicación de esta metodología, se han propuesto dos
diferentes esquemas de adaptación de parámetros a hard-
ware heterogéneo en AEs basados en islas, junto con un
algoritmo para obtener bots competitivos para juegos en
tiempo real.

10.1 TRABAJO FUTURO

Los resultados presentados en esta tesis pueden considerarse
como el punto de inicio de una nueva linea de investigación
en adaptación automática de parámetros y operadores bajo el
paradigma AOS.

Teniendo en cuenta la naturaleza dinámica de AOS, se pueden
crear otros mecanismos adaptativos para activar o desactivar ser-
vicios (remota o localmente) dependiendo de algunas métricas.
Por ejemplo, más experimentos para activar o desactivar difer-
entes implementaciones de servicios dependiendo del estado ac-
tual del AE o del nodo de ejecución, como se propone en esta
tesis. Diferentes servicios de benchmarking para analizar el algo-
ritmo pueden utilizarse para activar adaptación de parámetros
en tiempo real. También, adaptando los parámetros u operado-
res de diferentes nodos que entran o salen de la topología, o
adaptando parámetros a la carga actual del sistema. Teniendo
en cuenta que en esta tesis se ha propuesto la adaptación del
tamaño de las sub-poblaciones a hardware heterogéneo, se pueden
adaptar otros parámetros del AE, como la tasa de cruce.

También se pueden comparar fácilmente distintos mecanismos
de transmisión (R-OSGi, JMS, REST, XMMP, entre otros), ya que
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no hace falta modificación del código fuente de los servicios. Así
mismo, se pueden llevar a cabo más experimentos sobre el enlace
de servicios y composición automática de servicios, utilizando
distintas tecnologías de distribución además de OSGi y Servicios
Web (como SLP o Zookeeper).

Aunque esta tesis está enfocada en EAs, el concepto de al-
goritmos orientados a servicios puede extenderse a otras meta-
heurísticas del campo de la computación evolutiva, como Ant
Colony Optimization [108] o Particle Swarm Optimization [86].
Sus restricciones de desarrollo específicas deben tenerse en cuen-
ta para modificar SOA-EA para crear servicios para este tipo de
algoritmos en los entornos presentados en este trabajo.

OSGiLiath se actualizará con nuevos módulos y servicios para
tratar nuevos problemas. También, se pretende crear un portal
web para centralizar servicios e implementaciones ofrecidas a la
comunidad. Finalmente, se propondrán cuestionarios a los de-
sarrolladores de AEs, con distintas destrezas en programación y
de distintas áreas de investigación, para validar si este cambio
de paradigma está contribuyendo a facilitar su trabajo.

10.2 PUBLICACIONES RELACIONADAS CON ESTA TESIS

Algunos de los resultados presentados en esta tesis han sido pu-
blicados anteriormente en la siguientes revistas y actas de con-
gresos revisadas por pares:

• Pablo García-Sánchez, J. González, Pedro A. Castillo, Mari-
bel García Arenas, Juan Julián Merelo Guervós Service ori-
ented evolutionary algorithms. Soft Comput. 17(6): 1059–1075

(2013).

• Pablo García-Sánchez, Maria I. García Arenas, Antonio Mi-
guel Mora, Pedro A. Castillo, Carlos Fernandes, Paloma de
las Cuevas, Gustavo Romero, Jesús González, Juan Julián
Merelo Guervós Developing services in a service oriented ar-
chitecture for evolutionary algorithms. In Proceesings of Ge-
netic and Evolutionary Computation Conference, GECCO
’13, Amsterdam, The Netherlands, July 6-10, 2013, Compan-
ion Material. p: 1341–1348. ACM, 2013.

• Pablo García-Sánchez, J. González, Pedro A. Castillo, Juan
Julián Merelo Guervós, Antonio Miguel Mora, Juan Luís
Jiménez Laredo, Maribel García Arenas A Distributed Ser-
vice Oriented Framework for Metaheuristics Using a Public Stan-
dard. In Proceeding of Nature Inspired Cooperative Strate-



134 conclusiones y trabajo futuro

gies for Optimization. Studies in Computational Intelligence.
p: 211–222. Springer, 2010.

• Pablo García-Sánchez, Antonio Fernández-Ares, Antonio Mi-
guel Mora, Pedro Ángel Castillo, Jesús González and Juan
Julián Merelo Tree depth influence in Genetic Programming for
generation of competitive agents for RTS games. Applications
of Evolutionary Computation, EvoApplicatons 2010: Evo-
COMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, E-
voNUM, and EvoSTOC, Proceedings. Lecture Notes in Com-
puter Science Springer, 2014. (to appear).

Además de las publicaciones anteriores, durante el desarrollo
de esta tesis se han publicado otros trabajos relacionados con
AOS y sus metodologías. Los siguientes trabajos han ayudado a
identificar algunos de los requisitos en el diseño e implementación
en AOS (y las diferentes tecnologías utilizadas en esta tesis):

• Pablo García-Sánchez, Jesús González, Antonio Miguel Mora,
Alberto Prieto Deploying intelligent e-health services in a mobile
gateway. Expert Syst. Appl. 40(4): 1231-1239 (2013).

• Pablo García-Sánchez, Jesús González, Pedro A. Castillo,
and Alberto Prieto Using UN/CEFACT’s modelling method-
ology (UMM) in e-health projects. In Bio-Inspired Systems:
Computational and Ambient Intelligence, 10th International
Work Conference on Artificial Neural Networks, IWANN
2009, Salamanca, Spain, June 10-12, 2009. Proceedings, Part
I, volume 5517 of Lecture Notes in Computer Science. p:
925–932. Springer, 2009.

• Pablo García-Sánchez, S. González, A. Rivadeneyra, M. P.
Palomares, and J. González. Context-awareness in a service
oriented e-health platform. In José Bravo, Ramón Hervás, and
Vladimir Villarreal (editors): Ambient Assisted Living - Third
International Workshop, IWAAL 2011, Held at IWANN 2011,
Torremolinos-Málaga, Spain, June 8-10, 2011. Proceedings,
volume 6693 of Lecture Notes in Computer Science, pages
172-179. Springer, 2011.

Con respecto a la aplicación de AEs en entornos heterogéneos,
se han aplicado algunas de las lecciones aprendidas en los si-
guientes trabajos:

• Khaled Meri, Maribel García Arenas, Antonio Miguel Mora,
Juan Julián Merelo, Pedro Ángel Castillo, Pablo García-Sán-
chez, and Juan Luís Jiménez Laredo. Cloud-based evolution-
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ary algorithms: An algorithmic study. Natural Computing, p:
1–13, 2013.

• Pablo García-Sánchez, Juan P. Sevilla, Juan Julián Merelo
Guervós, Antonio Miguel Mora, Pedro A. Castillo, Juan
Luís Jiménez Laredo, and Francisco Casado. Pervasive evo-
lutionary algorithms on mobile devices. In Distributed Com-
puting, Artificial Intelligence, Bioinformatics, Soft Comput-
ing, and Ambient Assisted Living, 10th International Work-
Conference on Artificial Neural Networks, IWANN 2009

Workshops, Salamanca, Spain, June 10-12, 2009. Proceed-
ings, Part II, volume 5518 of Lecture Notes in Computer
Science, p: 163–170. Springer, 2009.

Finalmente, el framework OSGiLiath ha sido utilizado para
comparar diferentes funciones fitness en Arte Evolutivo [62]. Du-
rante el desarrollo de esta tesis, también se han publicado otros
trabajos relacionados con distintas aplicaciones de AEs: como la
Robótica Evolutiva [56], optimización de bots en video-juegos
[44, 47, 48, 107], administración de inventario y transporte [42,
45] o transformación de documentos [60, 61].

Siguiendo los principios del movimiento de Ciencia Abierta,
todo el trabajo de esta tesis se ha liberado utilizando licencias
libres. OSGiLiath y todos los experimentos presentados en esta
tesis están disponibles en el repositorio de GitHub https://github.

com/fergunet/osgiliath bajo una licencia GNU/GPL V3.
Los ficheros LaTeX que generan esta tesis también han sido

liberados en https://github.com/fergunet/osgiliath bajo una
licencia Creative Commons. Finalmente, la página web http://

www.osgiliath.org ha descrito los pasos de desarrollo de esta
tesis: noticias, publicaciones, premios y documentación.

https://github.com/fergunet/osgiliath
https://github.com/fergunet/osgiliath
https://github.com/fergunet/osgiliath
http://www.osgiliath.org
http://www.osgiliath.org
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A.1 OSGI ARCHITECTURE

To understand how OSGi [109] works and which capabilities
could offer to the EA practitioners it is necessary to understand
how OSGi is built. OSGi has a layered model that is depicted in
Figure A.1. The terms present in this figure are:

• Bundles: OSGi components made by developers. They are
a normal jar file including Java classes, interfaces and ex-
tra files (such as the Service Descriptions). They also have
additions to the MANIFEST.MF file (a metadata file with
information about the jars).

• Services: This layer connects bundles in a dynamic way by
offering a publish-find-bind model.

• Life-Cycle: The API to install, start, stop, update, and unin-
stall bundles.

• Modules: This layer defines how a bundle can import and
export code (using the MANIFEST.MF file).

• Security: Security aspects are handled in this layer.

• Execution Environment: Defines what methods and classes
are available in a specific platform. For example, mobile de-
vices have less Java classes due to performance constraints.
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Figure A.1
OSGi layered ar-
chitecture. Every
layer is built from
the one just below.

A.2 OSGI CONFIGURATION FILES

With respect to the OSGi layers introduced above, this section
details how to use all OSGi capabilities.

OSGi implements a dynamic component model, unlike nor-
mal Java environments. Applications or components (also called
bundles) can be remotely installed, started, stopped, updated or
uninstalled on the fly; moreover, the classes and packaging man-
agement is specified in detail. The OSGi framework provides
APIs for the management of services that are exposed or used
by the bundles.

A bundle is a file containing compiled and packaged classes
and a configuration file. This file indicates which classes are im-
porte or exported by the bundle. Being SOA, the most important
concept in OSGi is the service. Services allow bundles to be dinam-
ically connected, offering a publication-search-connection model.
That is, a bundle exposes a service by a Java interface (service in-
terface in Figure 4.2), and another bundle (or itself) implements
that interface. A third bundle can access this service using the
exposed interface without having any knowledge of how it is
implemented, using the service registry (equivalent to service bro-
ker of Figure 4.2). Figure A.2 shows an example of the OSGi
architecture.

Java programmers are familiar with the jar concept. The first
difference among a bundle and a jar is that the first one has a
MANIFEST.MF file adapted to be used in OSGi. This file indi-
cates which classes imports or exports the bundle. An example
can be seen in Figure A.3. This file shows the name of the bun-
dle and its version (this is useful to select specific services), and
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Figure A.2
In OSGi, a ser-
vice can be imple-
mented by several
bundles. Other
bundles may
chose among this
implementations
using the service
registry. In this
figure, Bundles C
and D implement
a service, and A
uses the service
registry to use one
of them.

the execution environment (that is, the Java Virtual Machine re-
quired). Also, this file specifies the XML files of the declarative
services (in section Service-Component). However, this bundle can
be used as a normal jar outside OSGi.

In normal environments, the creation of a specific implemen-
tation of an interface (i.e. FitnessCalculator) is done as shown in
Figure A.4.

With Declarative Services, the new ExampleFunction() part is
not used, so if a new implementation is desired no code recom-
pilation is necessary. Figure A.5 shows a declarative service de-
scription file, which establishes in execution time which imple-
mentation is bound to the interfaces. This example indicates that
the implementation of service FitnessCalculator is VRPFitness-
Calculator, but this service is not activated until all their ref-
erences (other services, like TransportData) are also activated.
The tag cardinality means that at least one service of that kind
must exist (the first 1 represents optionality) and the second part
(the other 1 indicates the number of different implementations
that can be managed: one (1) or many (*). It is also necessary
to create XML files for the rest of services to be exposed (i.e.
TransportData) . The file where these capabilities are defined is
declared in the section Service-Component of the MANIFEST.MF
file, as can be seen in Figure A.3.

Code in Figure A.6 shows the code for this implementation.
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Figure A.3
Example of MAN-
IFEST.MF. This
example defines
which packages
are necessary to
activate the bun-
dle and which
packages are ex-
ported.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: VRP

Bundle-SymbolicName: VRP

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: JAVA-1.6

Import-Package: es.ugr.osgiliath,

es.ugr.osgiliath.algorithms,

es.ugr.osgiliath.events,

es.ugr.osgiliath.evolutionary,

es.ugr.osgiliath.evolutionary.basiccomponents.genomes,

es.ugr.osgiliath.evolutionary.basiccomponents.individuals,

es.ugr.osgiliath.evolutionary.elements,

es.ugr.osgiliath.evolutionary.individual,

es.ugr.osgiliath.evolutionary.migrator,

es.ugr.osgiliath.geneticalgorithm.distributed,

es.ugr.osgiliath.problem

Export-Package: es.ugr.osgiliath.vrp,

es.ugr.osgiliath.vrp.individual

Service-Component: OSGI-INF/vrpinitializer.xml,

OSGI-INF/vrpfitnesscalculator.xml,

OSGI-INF/vrpcrossover.xml,

OSGI-INF/vrpmutation.xml

Figure A.4
Normal way to
implement an
interface in Java.

1 class EvolutionaryAlgorithm implements Algorithm{

2 FitnessCalculator fc;

3 //A new instance is bound to a reference

4 fc = new ExampleFunction();

5 }

Figure A.5
Service Descrip-
tion. This docu-
ments indicates
that the imple-
mentation of the
service Fitness-
Calculator is VRP-
FitnessCalculator,
but it can not ac-
tivate until their
references (other
services) are acti-
vated.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
3 name="VRPFitnessCalculator" >
4 <implementation class="es.ugr.osgiliath.vrp.VRPFitnessCalculator"/>
5 <service>
6 <provide
7 interface="es.ugr.osgiliath.evolutionary.elements.FitnessCalculator"/>
8 </service>
9 <reference bind="setTransportData"

10 unbind="unsetTransportData"
11 cardinality="1..1"
12 interface="es.ugr.osgiliath.vrp.TransportData"
13 name="TransportData"
14 policy="static"
15 />
16 <property name="name" type="String"
17 value="vrpfitnesscalculator"/>
18 </scr:component>
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1 class VRPFitnessCalculator implements FitnessCalculator{
2 //Other service references,
3 TransportData tdata;
4

5 //Methods to bind/unbind each reference
6 public TransportData
7 setTransportData(TransportData tdata){
8 this.tdata = tdata;
9 }

10

11 public void
12 unsetTransportData(TransportData tdata){
13 this.tdata = null;
14 }
15

16 //Implementation of the interface method
17 List<Fitness> calculateFitness(List<Individual> inds){
18 ...
19 }
20 }

Figure A.6
Code of the imple-
mentation.
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A.3 EVENT ADMINISTRATION

The Event Administration in OSGi lets the usage of a blackboard
communication architecture where bundles can broadcast or re-
ceive events without advertising which bundles are sending or
receiving these events.

The steps needed to send events to other bundles are:

• Acquire a reference to the EventAdmin OSGi service (via
Declarative Services, for example).

• Pick a topic name for the event (for example “es/ugr/osgi-

liath/algorithms/endgeneration”)

• Send the event using the postEvent method of EventAdmin,
with the topic plus other desired properties

Code to send an event to other bundles is shown in Figure A.7.
The programmer specifies the topic String and optional proper-
ties to send to other bundles that are listening. The eventAdmin

variable is a reference to “org.osgi.service.event. EventAdmin”

service, obtained via Declarative Services or by hand (not showed).
On the other hand, the steps to handle events are:

• Register a service that implements the OSGi EventHandler
interface (via Declarative Services or manually).

• Specify in this service the topics to subscribe to. For ex-
ample, the String “es/ugr/osgiliath/algorithms/*” (the
* is a wildcard) inside the <property> tag in the Service
Description.

• Overwrite the handleEvent method of this interface with
the desired code.

The code in Figure A.8 shows how to handle events. In this
case published the ExampleService have been published with
the implementation ExampleImpl, that is listening under the
topic “es/ugr/osgiliath/algorithms/*”.

Figure A.7
Code to send an
event.

1 Properties props = new Properties(); //Optional

2 String topic =

3 "es/ugr/osgiliath/algorithms/endgeneration";

4 Event evt = new Event(topic,props);

5 eventAdmin.postEvent(evt);
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1 class ExampleImpl implements ExampleService,EventHandler{
2

3 public void handleEvent(Event ev){
4 if(evt.getTopic().endsWith("endgeneration")){
5 // An event with topic
6 // "es/ugr/osgiliath/algorithms
7 // /endgeneration"
8 System.out.println("Generation over");
9 else{

10 // Other event with topic starts with
11 // "es/ugr/osgiliath/algorithms/"
12 System.out.println("Other event received");
13 }
14 }
15 }

Figure A.8
Code to read an
event.
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This appendix describes the organization of the bundles of OSGi-
Liath (available at https://github.com/fergunet/osgiliath):

• osgiliath: This is the core bundle. It includes all the inter-
faces common to the algorithms such as Algorithm, Algo-
rithmParameters or Problem.

• Evolutionary Algorithm: Includes the EvolutionaryAlgorithm
implementation and interfaces to create the rest of the ser-
vices that form an EA: Recombinator and Crossover, Mutator
and Mutation, StopCriterion or FitnessCalculator. It also pro-
vides interfaces for the creation of individuals: Individual,
Fitness, Gene, and Genome.

• Basic Evolutionary Components: Includes several implemen-
tations (the most common ones) of the previous interfaces:
ListPopulation, ListIndividual, DoubleFitness, NGenerationStop-
Criterion, BasicOrderRecombinator, UPXListCrossover and oth-
ers.

• Binary Problems: Includes implementation of well-known
problems, such as OneMax and MMDP: OneMaxFitnessCal-
culator, MMDPFitnessCalculator or BinaryProblemRandomIni-
tializer.

• Function Problems: Multi-dimensional optimization func-
tions, such as Griegwank or Rastrigin are implemented in
this bundle, with their associate Initializers or Fitness Cal-
culators.

• NSGA2: Interfaces and implementations of services for the
NSGA2 algorithm.

• OSGiLiART: Service implementation for the creation of Evo-
lutionary Art: ArtisticIndividual or HistogramFitnessCalcula-
tor are examples.

• NoOSGi: Because OSGi allows the separation of source code
with the OSGi framework capabilities, this bundle includes
Java code to integrate the services without any specific tech-
nology (just using basic Object Oriented programming).
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• IntelligentManager: An example of how the services can be
bound/unbound in real-time. Includes, implementation In-
telligentRandomManager selects randomly from the available
Crossovers, Mutators and Replacers implementations. Also,
gatherers for other operations (such as SelectorGatherer) and
automatic enablers of services (AsynchronousEnabler).
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